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RÉSUMÉ EN FRANÇAIS

Introduction
L’apprentissage profond (Deep Learning) a connu une progression spectaculaire au

cours des quinze dernières années. Des avancées majeures, partant de la reconnaissance
de chiffres manuscrits [1] à la génération de vidéos ou la prédiction de structures pro-
téiques [2], ont été possibles grâce à l’abondance de données et à l’amélioration de la
puissance de calcul. Récemment, ces progrès ont donné naissance aux modèles fondation,
comme les transformateurs visuels (Vision Transformers, ViT) [3], qui sont devenus des
outils universels capables de traiter des tâches variées en s’appuyant sur des ensembles de
données massifs pour leur pré-entraînement.

Cependant, cette ère des modèles à grande échelle soulève plusieurs défis, notamment
en matière de confidentialité des données, d’explicabilité (XAI), et de capacité de général-
isation. Ce dernier aspect, qui est au cœur de cette thèse, questionne la capacité des
modèles à s’adapter efficacement à des tâches nouvelles et à des domaines inédits, surtout
lorsqu’ils ne disposent que de peu de données.

L’Apprentissage Parcimonieux (AP) répond à ce besoin en explorant comment les
modèles peuvent apprendre de nouvelles tâches à partir de très peu d’exemples, une ca-
pacité où les humains excellent. Nous nous concentrons sur la classification d’image dans
cette thèse. Dans ce contexte, le pré-entraînement sur des ensembles de données volu-
mineux joue un rôle crucial en réduisant les risques de sur-apprentissage sur le peu de
données disponible. Cependant, une observation clé guide cette thèse : certaines don-
nées de pré-entraînement peuvent avoir un effet nuisible sur la performance en AP, en
introduisant des biais ou des corrélations non pertinentes.

La problématique centrale de la thèse est donc formulée ainsi : dans le cadre de
l’Apprentissage Parcimonieux, comment identifier et atténuer l’impact des échantillons
adverses dans les ensembles de données de pré-entraînement afin d’améliorer la générali-
sation des modèles ?

Pour répondre à cette question, la thèse propose :

1. De développer des modèles robustes capables d’extraire des caractéristiques uni-
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verselles adaptées au FSL.

2. De proposer de nouvelles méthodologies d’évaluation pour prendre en compte la
variabilité introduite par les données.

3. D’optimiser l’utilisation des données de pré-entraînement en mettant en lumière
l’impact des sous-domaines pertinents et nuisibles sur la généralisation.

Les principales contributions seront détaillées dans les chapitres suivants. D’un point
de vue chronologique, ces contributions ont été réalisées dans l’ordre suivant : (1), (3),
puis (2) La contribution (2), étant la plus récente, repose sur l’utilisation de modèles de
fondation, ce qui n’était pas encore une norme au moment où les contributions (1) et (3)
ont été développées.

Entraîner un Extracteur de Caractéristiques Robuste

Ce chapitre s’inspire grandement du papier EASY: Ensemble Augmented-Shot Y-
shaped Learning: State-Of-The-Art Few-Shot Classification with Simple Ingredients, reçu
comme meilleur papier de 2022 du Journal of Imaging [4].

Contexte et Objectifs

Il explore les moyens de concevoir des modèles capables de produire des représentations
robustes et adaptées à l’Apprentissage Parcimonieux (AP). L’objectif est de maximiser
les performances sur des tâches où peu de données sont disponibles, tout en simplifiant
et en optimisant le processus d’entraînement. En effet, les méthodes présentées dans la
littérature proposent souvent des approches qui ne sont pas basées sur un même pré-
entraînement de référence ce qui complique l’interprétation des phénomène. Les gains
annoncées sont-ils reproductible avec un meilleur pré-entraînement. Nous proposons donc
d’optimiser le pré-entraînement avec des méthode simple pour obtenir une référence de
qualité.

Pour s’assurer de la réelle nouveauté des données d’AP, nous utilisons le type de
benchmark qui était prédominant au début de cette thèse [5, 6]. Il s’agit d’une séparation
strict des données de pré-entraînement et des données.

Le jeu de données de pré-entraînement est l’ensemble de données contenant un grand
nombre de classes et d’exemples variés. Le jeu de données nouveau est l’ensemble de
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données contient des classes totalement distinctes de celles du jeu de données de pré-
entraînement et sert à évaluer les performances des modèles sur des tâches échantillonnées.
On utilise la notation K-way-S-shot-Q-requêtes (queries), où K désigne le nombre de
classes, S le nombre d’exemples étiquetés par classe, et Q le nombre de requêtes (exemples
à classer). La précision est mesurée par le taux de requêtes correctement classifiées.

Méthode

Ce chapitre introduit une méthode simple et efficace pour pré-entraîner un extracteur
de caractéristiques robuste qui intègre plusieurs techniques trouvées communément dans
la littérature de l’époque de la publication du papier.

— Augmentation des données : Génération d’exemples synthétiques pour enrichir les
ensembles d’entraînement. En particulier, nous proposons de faire de l’augmentation
de données par rognage (cropping) sur l’ensemble support ce qui est moins commun
que de le faire lors du pré-entraînement (nous le faisons aussi). Nous proposons de
moyenner les représentations des images rognées pour avoir une représentation plus
robuste.

— Ensembles de modèles (Ensemble Learning) : Utilisation de plusieurs extracteur
de caractéristique pour capturer des perspectives diverses sur les données. Les
caractéristiques sont concaténées.

— Fonction de coût auto-supervisée : Combinaison de tâches supervisées et auto-
supervisées pour améliorer la qualité des représentations apprises. Notre fonction
de coût essaie de prédire quelle rotation a été appliquée parmi 0°, 90°, 180° , 270°.

— Post-Processing: Centrage et projection sur la sphère unité des caractéristiques
extraites. Ceci permet de mieux séparer les classes car la fonction coût entropie
croisée ne prend pas en compte la magnitude mais seulement les direction dans
lesquelles les représentation sont positionnées dans l’espace latent.

On représente la dite méthode dans la Figure 1.

Résultats

Pour chaque tâche d’AP inductive, nous utilisons le plus proche centroïde (Nearest
Class Mean, NCM) pour classifier les requêtes. Le terme inductif signifie que nous pou-
vons classifier une seule requête à la fois, contrairement au mode transductif où toutes
les KQ requêtes sont disponibles pour aider à la classification. Dans ce cas, nous pro-

7



fθi

L(·|θi, θ′
i)

L(·|θi, θ′′
i )

x ∈ B
Mix(x)

Rot(x)

Entraînement du ième backbone (Y)

Classification

Auto-supervisé

z
Ensemble de b backbones (E)

fθ2

fθ1

fθb

Echantillons augmentés (AS)

Post-processing des caractéristiques

...

fθi

Inductif

Transductif

zC = z − z zCH = zC
∥zC ∥2

Centrage Projection sur
l’hypersphere

z

Soft
K-means

NCM

zi1

ziℓ

zi3

zi2
zi

...

Nouvelle
image

ℓ rognages
générés

Caractéristiques
moyennes

z1

z2

zb

fθ′
i

fθ′′
i

Concatenation

...

Figure 1 – Illustration de la méthode proposé dans [4] (CC-BY)
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posons d’utiliser le soft k-means, une méthode inspirée du k-means classique, qui améliore
itérativement les résultats du NCM.

La méthode atteint des performances à l’état de l’art en 1-shot 5-ways et 5-way-5-
shot sur MiniImagneNet, TieredImageNet, CUB-FS, CIFAR-FS. Ces benchmarks étaient
et sont pour certains toujours des benchmarks de référence dans le domaine. L’étude
d’ablation des contributions individuelles montre que chaque ingrédient apporte un gain
significatif à la précision mesurée. En résumé, les résultats expérimentaux montrent que
cette approche dépasse des méthodes beaucoup plus complexes, établissant une nouvelle
méthode à l’état de l’art à l’époque de sa publication et ce en inductif et en transductif.

Contribution de ce chapitre

Ce travail démontre que des ingrédients simples suffisent à atteindre des performances
de pointe sur plusieurs benchmarks standards. En outre, il met en évidence les faiblesses
des approches sophistiquées qui reposent souvent sur des pré-entraînement sous-optimaux
en guise de point de départ.

Ce chapitre pose les fondations pour l’évaluation et l’amélioration des méthodologies
en AP, explorées dans les chapitres suivants.

Réinterprétation des Intervalles de Confiance en Ap-
prentissage Parcimonieux

Identification d’un Problème

Ce chapitre s’inspire largement de l’article Oops I Sampled It Again: Reinterpreting
Confidence Intervals in Few-Shot Learning, publié dans TMLR en 2024 [7]. Il aborde
le problème crucial de l’évaluation fiable des méthodes en Apprentissage Parcimonieux
(AP). Nous démontrons notamment que la méthode d’évaluation peut avoir des effets
déterminants sur les conclusions relatives à la supériorité d’une méthode d’AP par rapport
à une autre.

Les ensembles support (support set) contenant les shots (données d’entraînement pour
une tâche d’AP) étant de petite taille, ils engendrent une grande variabilité dans les
précisions (accuracy) mesurées pour chaque tâche. Certaines tâches sont difficile (faible
précision) et d’autres faciles (haute précision). Afin d’évaluer de manière équitable les
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méthodes d’AP, un grand nombre de tâches est échantillonné, et la moyenne des précisions
sur ces tâches est reportée.

Les évaluations actuelles en AP s’appuient souvent sur des intervalles de confiance
(CI) pour quantifier l’incertitude des performances des modèles sur des tâches simulées.
L’intervalle de confiance pour T tâches est généralement calculé comme suit :

CI95% = 1.96 σA√
T

(1)

où σA représente l’écart-type des précisions mesurées.

Cependant, ces CI sont habituellement calculés en supposant que les tâches d’évaluation
sont indépendantes, une hypothèse qui est rarement respectée en pratique. En effet, les
tâches sont échantillonnées avec remise (une image peut apparaître dans plusieurs tâches).

Pour répondre à cette limitation, ce chapitre introduit une nouvelle distinction entre
deux types d’intervalles de confiance :

— Intervalles Fermés (ICF) : Correspondent à la méthode prédominante dans la
littérature. Calculés en échantillonnant avec remplacement, ces intervalles ignorent
souvent les dépendances entre tâches, ce qui peut fausser les conclusions sur les
performances relatives des modèles. Le nombre de tâches T est généralement fixé
à 600 [8], mais peut atteindre 2000 [9], rendant ainsi les intervalles présentés ar-
tificiellement plus petits. Les conclusions tirées d’une analyse avec ICF ne sont
valables qu’à jeu de données fixe et ne s’étendent pas à la distribution contraire-
ment à l’ICO.

— Intervalles Ouverts (ICO) : Les tâches sont échantillonnées sans remise, (chaque
image n’est échantillonnée que pour une seule tâche), ces intervalles tiennent compte
de l’aléa des données et de l’échantillonnage des tâches. Le nombre de tâches est
alors limité par la taille du jeu de données. En pratique, les tâches sont échan-
tillonnées jusqu’à ce qu’il n’y ait plus assez d’échantillons pour former une tâche.
Lorsque le nombre de tâches est particulièrement faible, la loi de Student est utilisée
pour calculer l’ICO à la place de la formule de l’Équation 1.

Les ICF et ICO diffèrent significativement en taille, comme indiqué dans le Tableau 1.
En moyenne, les ICO sont 3,8 fois plus larges que les ICF, révélant une incertitude sous-
estimée par les intervalles fermés. Cela réduit également le nombre de comparaisons sig-
nificatives (non-superposition des ICs) entre méthodes d’AP.
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Modèle CLIP DINO
Echantillonnage Avec Remise Sans Remise Avec Remise Sans Remise

Jeu de données Nombre d’images Méthode

DTD 840 LR 79.59 ± 0.52 84.00 ± 4.50 83.29 ± 0.51 86.10 ± 4.66
FT 76.87 ± 0.56 80.76 ± 5.60 81.82 ± 0.51 84.19 ± 5.76

Quickdraw 7,710,295 LR 75.79 ± 0.66 75.54 ± 0.36 74.54 ± 0.68 74.07 ± 0.38
FT 76.18 ± 0.69 75.93 ± 0.38 74.10 ± 0.70 73.61 ± 0.39

Table 1 – Comparaison des OCIs (sans rmise) et des CIF (avec remise) en 5-shots 5-
ways et 15 requêtes (queries). CLIP et DINO sont deux modèles pré-entraînés. LR et FT
correspondent respectivement à la Régression Logistique et à l’ajustement fin (finetuning).
(CC-BY)

Méthode pour mitiger le problème

Pour rendre les comparaisons plus significatives, nous proposons deux approches. La
première consiste à utiliser des tests par paire (Paired Tests), et la seconde à choisir
judicieusement le nombre de requêtes (queries) par tâche, que nous appellerons le dimen-
sionnement.

Le test par paire (PT) consiste à évaluer deux méthodes sur exactement les mêmes
tâches et à rapporter la différence moyenne. La différence des moyennes équivaut à la
moyenne des différences ; cependant, la variance des différences ne correspond pas à la
différence des variances. Nous pouvons ainsi tirer parti du fait que les précisions (accura-
cies) des tâches sont fortement corrélées d’une méthode à l’autre. En d’autres termes, une
tâche "facile" pour une méthode a de fortes chances de l’être également pour une autre, et
inversement. Considérons un cas particulier et comparons les performances de deux méth-
odes, notées A et B (détails dans le manuscrit). Par exemple, si l’on compare A à B sur le
jeu de données Traffic Signs en configuration 5-shots 5-ways, nous trouvons, en utilisant la
méthode prédominante (CIF), que A sous-performe par rapport à B. Cette conclusion de-
vient toutefois non significative si l’on interdit la remise dans l’échantillonnage des tâches
(CIO). Il est surprenant de constater qu’en utilisant un test par paire, la conclusion est
inversée de manière significative : A sur-performe B lorsque l’aléa des données est pris en
compte.

Le dimensionnement des tâches joue également un rôle clé pour minimiser la taille
des CIOs. En effet, si nous choisissons de mesurer une précision sur un faible nombre
de requêtes, nous pouvons échantillonner davantage de tâches, car nous utilisons moins
de données. Le prix à payer dans ce cas est une plus grande variabilité des précisions
(la précision sur une seule requête peut varier entre 0% et 100%). Il existe un optimum
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permettant de minimiser l’ICO. À travers un développement mathématique, des données
simulées et des données réelles, nous démontrons l’existence de ce minimum ainsi que des
moyens de l’identifier en fonction de Q, le nombre de requêtes.

La Figure 2 illustre que ces deux approches permettent d’augmenter le nombre de
comparaisons significatives (ou concluantes). Nous avons donc proposé un benchmark
exploitant ces deux méthodes.
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Figure 2 – Effet de l’utilisation de tests par paire et du dimensionnement de tâche sur le
nombre de comparaisons concluantes avec 1, 5 et 10 shots. L’axe des ordonnées représente
le nombre de comparaisons conclusives. Quand Q n’est pas optimisé, on choisit Q = 15.
(CC-BY)

Comment se concentrer sur moins de données de pré-
entraînement peut améliorer les performances en ap-
prentissage parcimonieux ?

Ce chapitre est basé sur le pre-print Few and Fewer: Learning Better from Few Ex-
amples Using Fewer Base Classes [10] et explore une hypothèse intrigante : toutes les
données utilisées pour le pré-entraînement ne contribuent pas également à la généralisa-
tion des modèles.
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Contexte et Objectifs

Certaines parties des ensembles de données de pré-entraînement peuvent même avoir
un impact négatif sur les performances en apprentissage parcimonieux (AP), en intro-
duisant des biais ou des corrélations inutiles.

Les modèles fondation actuels sont souvent pré-entraînés sur des ensembles de données
massifs, sans discrimination explicite quant à la pertinence des exemples pour les tâches
en aval. Cette approche soulève une question fondamentale : est-il possible d’améliorer
les performances d’un modèle en AP en réduisant et en sélectionnant les données utilisées
pour son pré-entraînement ?

Ce chapitre propose une approche centrée sur les données, visant à identifier et à
ignorer les sous-ensembles nuisibles ou non pertinents, tout en optimisant l’utilisation
des échantillons utiles pour les tâches cibles. Étant donné que chaque pré-entraînement
est coûteux en calcul, nous choisissons de nous concentrer sur l’ajustement fin (fine-
tuning) d’un modèle généraliste sur un sous-ensemble des données ayant servi à son pré-
entraînement. Ainsi, nous tentons d’"oublier" certaines classes qui pourraient être néfastes
pour la performance d’une tâche few-shot.

Identification des sous-ensembles pertinents

Pour déterminer quel sous-ensemble de classes de pré-entraînement est pertinent, nous
considérons trois scénarios :

— Informé par la Tâche (IT) : Dans ce cas, nous avons accès aux données de la
tâche (l’ensemble support). Nous sélectionnons les classes de pré-entraînement les
plus similaires aux données de la tâche cible. Pour ce faire, nous identifions les K

classes les plus activées par le classifieur utilisé lors du pré-entraînement, lorsqu’il
est appliqué à la sortie de l’extracteur de caractéristiques.

— Informé par le Domaine (ID) : Dans ce cas, nous avons accès à des images du
domaine cible. Cela correspond, par exemple, à une situation où un robot prendrait
des photos non annotées issues de la même distribution que celle de la tâche.
Nous sélectionnons les classes de la même manière qu’en IT, mais en utilisant
des données non annotées et abondantes. Cette approche offre un ciblage moins
variable, mais plus biaisé, car le domaine est plus large que la tâche d’intérêt sur
laquelle l’extracteur de caractéristiques sera évalué.

— Non-informé (NI) : Dans ce cas, nous considérons qu’il n’est plus possible de
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Table 2 – Changement de performance ∆ lorsqu’on applique la méthode proposé (ajuste-
ment fin sur un sous-ensemble de classes) en utilisant la méthode informé par la tâche
(IT) ou les données (ID) (CC-BY).

Jeu de Données Méthode 1-shot 5-ways 5-shots 5-ways MD
Référence ∆ Référence ∆ Référence ∆

Aircraft IT 39.95 ±0.70 -0.06 ±0.33 63.18 ±0.74 +0.26 ±0.31 65.86 ±0.90 +1.33 ±0.25
ID +0.34 ±0.32 +0.54 ±0.31 +1.32 ±0.27

CUB IT 64.34 ±0.90 +2.64 ±0.44 87.78 ±0.59 +2.16 ±0.26 79.29 ±0.90 +1.08 ±0.19
ID +3.27 ±0.44 +2.29 ±0.26 +2.20 ±0.20

Moyenne sur 9 jeu de données IT +1.43 ±0.38 +1.39 ±0.28 +1.31 ±0.21
ID +1.73 ±0.57 +1.55 ±0.41 +1.61 ±0.30

procéder à un ajustement fin (comme en IT) lorsque la tâche est révélée, et qu’il
n’existe pas de données non annotées (comme en ID). Nous partitionnons alors les
classes en utilisant un regroupement (clustering) basé sur la méthode de Ward,
appliquée à des représentations visuelles et/ou sémantiques (noms des classes). En
appliquant certaines heuristiques, nous sélectionnons a posteriori l’un des modèles
ajustés (fine-tuned) sur chacun des groupes de classes.

Résultats et Interprétations

Nous observons une augmentation significative des performances (y compris en util-
isant des intervalles de confiance ouverts) lorsque nous ajustons sur un sous-ensemble
de classes sélectionnées avec information (IT ou ID). Comme indiqué dans la table 2,
cela n’est cependant pas toujours le cas. Sur certains jeux de données, on observe des
baisses de performances. Comment expliquer cela ? Les jeux de données où la méthode
fonctionne sont ceux où des classes similaires sont présentes dans le jeu de données de
pré-entraînement (ImageNet). C’est le cas pour CUB, un dataset d’oiseaux. En revanche,
Aircraft ne possède qu’une seule classe correspondante dans ImageNet (Airliner), ce qui
entraîne de fortes pertes de performances. En moyennant sur tous les jeux de données, nous
observons un gain de performance significatif, et ce, dans chaque type d’échantillonnage
de tâche (1-shot 5-ways, 5-shots 5-ways et échantillonnage Metadataset [8]). On note
également que les effets sont plus marqués (à la hausse comme à la baisse) lorsque l’on est
informé par le domaine, ce qui suggère que les tâches sont trop biaisées pour permettre
une sélection optimale des données adaptées.

En Non-Informé (NI), nous observons également des gains robustes, mais globalement
inférieurs à ceux obtenus avec information. Nous testons un grand nombre d’heuristiques
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pour la sélection d’extracteur de caractéristique. En 5-shots 5-ways, MCS se distingue
comme la meilleure heuristique. Nous constatons que le groupement des classes n’a pas
d’effet bénéfique significatif, car l’application des heuristiques sur une librairie d’extracteurs
de caractéristiques ajustés sur des sous-ensembles aléatoires fonctionne presque aussi bien
qu’avec des sous-ensembles choisis par groupement (en utilisant des caractéristiques vi-
suelles et/ou sémantique).

Conclusion
La thèse s’est concentrée sur l’amélioration de l’Apprentissage Parcimonieux (AP)

en adoptant une approche centrée sur les données. L’un des principaux axes explorés
a été le développement de méthodes pour entraîner des extracteurs de caractéristiques
robustes. En combinant des techniques comme l’augmentation de données, l’utilisation
d’ensembles de modèles et l’apprentissage auto-supervisé, la thèse a montré qu’il était
possible d’atteindre des performances élevées sur des benchmarks standards, tout en sim-
plifiant le processus d’entraînement.

Un autre aspect clé a été la révision des méthodes d’évaluation des performances en
AP. La distinction entre intervalles de confiance fermés et ouverts a permis de révéler des
biais dans les conclusions des benchmarks actuels, en mettant en évidence l’importance de
mieux prendre en compte la variabilité des données. Des tests par paire et le dimension-
nement de tâche ont également été proposés pour renforcer la robustesse des comparaisons
entre modèles.

Enfin, la thèse a démontré que toutes les données de pré-entraînement ne contribuent
pas de manière équivalente à la généralisation. Certaines classes peuvent introduire des
biais ou des corrélations inutiles. Une approche consistant à sélectionner les classes les
plus pertinentes ou à ajuster les modèles sur des sous-ensembles spécifiques a permis
d’améliorer les performances sur les tâches cibles.

Cette thèse apporte des avancées significatives dans le domaine de l’Apprentissage
Parcimonieux (AP). Elle remet en question l’idée très répandue selon laquelle le pré-
entraînement réalisé en une seule fois sur le plus vaste ensemble de données possible
constitue une solution universelle pour généraliser efficacement aux tâches d’AP. Des
approches plus progressives avec des modèles spécialistes sont de sérieux compétiteurs.
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Chapter 1

INTRODUCTION

Contents
1.1 Historical context of DL . . . . . . . . . . . . . . . . . . . . . . . . 21
1.2 Data and compute are the cornerstone of AI . . . . . . . . . . . . 22
1.3 Open Problems in AI . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.4 Few-Shot Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.5 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.6 Contributions and Outline . . . . . . . . . . . . . . . . . . . . . . . 27
1.7 Toolbox of Deep Learning . . . . . . . . . . . . . . . . . . . . . . . 28

1.7.1 Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.7.2 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

1.8 Usual methods in Few-shot Learning . . . . . . . . . . . . . . . . . 37
1.8.1 Few-Shot Learning 101 . . . . . . . . . . . . . . . . . . . . . . . . . 37
1.8.2 Why do we need a pre-training? . . . . . . . . . . . . . . . . . . . 38
1.8.3 Adaptation to the few-shot task . . . . . . . . . . . . . . . . . . . 39

1.9 Notations and Glossary . . . . . . . . . . . . . . . . . . . . . . . . . 40

1.1 Historical context of DL
For the past 15 years, the field of Machine Leaning (ML) made spectacular progress.

From its infancy with hand-written digits recognition [1] to its current developments with
video generation from text prompts [11] and protein folding prediction [2], Deep Learning
(DL), a sub-field of ML, is becoming increasingly prevalent in science [2, 12], culture [13],
industry [14], defense [15] and the general zeitgeist of technology [16]. As such, 2020
marked the advent of generative Artificial Intelligence (AI) available for regular consumer
in particular with the release of tools such as ChatGPT and Mid-Journey. One may wonder
as to why such tremendous progress was made in a short time frame.

21



Figure 1.1 – Source from https://epochai.org/blog/trends-in-training-dataset-sizes (CC-
BY)

1.2 Data and compute are the cornerstone of AI
Data and Compute These remarkable achievements were made possible thanks to the
increased availability of two fundamental ingredients: data and compute. First, data is now
extremely abundant. In 2023, it has been estimated that 120 zetta-bytes of information
were created [17]. The rapid expansion of cheap and ubiquitous sensors such as smartphone
cameras and the internet improved data quantity and accessibility, thus making training
datasets in AI reach unprecedented sizes as illustrated on Figure 1.1.

This increase in dataset size being processed can also be explained by the increase in
computing power which permits a higher bandwidth of data processing [18]. Computing
power for AI was largely improved thanks to the parallel computing design of Graphics
Processing Units (GPUs) originally created to accelerate computer graphics and image
processing [18, 19, 20]. This parallel architecture was perfectly fitting the highly par-
allelized structure of DL models. According to the Figure 1.2, state-of-the-art machine
learning systems today require 1010 times more training compute than at the start of the
deep learning era reflecting the evolution of the hardware [21].

Scaling laws This relation between AI advances and the growth in data and compute
has been studied more formally under the framework of the so-called “neural scaling
laws” [22, 23]. Scaling laws exhibit statistical links between, on the one hand, the number
of trainable parameters, the size of the dataset (D) or the computational cost measured in
FLOPs and, on the other hand, the performance in the model measured with its loss (L)
or accuracy. [23] found that L = βD−α with β as a function of the model architecture and
other parameters while α remains only sensitive to the task of choice (such as language,
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Figure 1.2 – © [2022] IEEE. Reprinted, with permission, from Jaime Sevilla; Lennart
Heim; Anson Ho; Tamay Besiroglu; Marius Hobbhahn and Pablo Villalobos , Compute
Trends Across Three Eras of Machine Learning, 2022 International Joint Conference on
Neural Networks (IJCNN)

vision or audio).

Consequences in terms of power consumption This dependence on compute has a
large impact on the environment, the evolution of the research community, and economic
consequences of AI [24, 25, 26]. As estimations of carbon emission are often disputable
since many factors are at play such as the source of energy, we prefer not to give world-scale
numbers here. Nonetheless, in the following, we choose to give a small-scale estimation
of power-consumption for a certain task. Please, note that such comparison is a simple
highlight and certainly does not accurately represent the full consumption of AI models
across the globe and even less its environmental impact. The generation of 1000 images
has been estimated to cost approximately 2.9 kWh of energy [27]. The reader may thus
compare it three standard microwaves ovens running at full power (1000W) for an hour.

This reliance on data and compute ushered the current “Large-Scale Era” as described
in Figure 1.2. As its name suggests, this era is characterized by the development and
utilization of large-scale foundation models. They are highly expressive universal models.
These models are particularly hard to train due to the data and compute requirements
needed to train them [28]. This splat the research community and economic interests into
two groups: those who can train large foundation models, typically large tech companies,
and those who can only use them [24]. This thesis falls into the second category. It aims
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at developing methods in the challenging cases where data is particularly scarce. Next,
we focus on the open-problems remaining in AI research.

1.3 Open Problems in AI
Among the many, open scientific problems in AI we rapidly delve into three of them:

explanability, privacy and generalization. The last one playing a central part in this thesis.

XAI or eXplainable Artificial intelligence is one of those problems. This problem
stems from the fact that in many cases a black-box model cannot be integrated in real-
world processes since trusting it would require a minimum amount of understanding of
its decision processes. More precisely, let us first define explainability:

“Explainability [...] aims for making (a) the context of an AI system’s rea-
soning, (b) the model, or (c) the evidence for a decision output accessible, such
that they can be understood by a human” [29, 30].

This may lead to the interpretability which refers to the model’s decision being explainable
and the purpose understood [31]. XAI is mostly demanded for explaining visual systems or
language models with applications in medical imaging and recommendation systems [30].
For instance, in medical imaging, attention or saliency maps on a CT (Computed Tomog-
raphy) scan can inform a physician on where a problem might have been detected [30]. In
an idealized way, such information might in turn lead the physician to dismiss a model’s
prediction given that a potential confounder, not taken into account by the model, is
identified by the human physician. A deeper understanding of the decisions and failure
cases is of utmost importance for many industries [32]. In the next paragraph, we focus
on another major open problem in AI.

Privacy Our second open-problem is about privacy. If AI models become ubiquitous
and run on servers, this means that sensitive or private unencrypted data might have to
be remotely stored on potentially adverse or unsafe servers. Such problem is addressed
by processing information on encrypted data which is what homomorphic encryption
does [33, 34] at the cost of a massive computational overhead. Another approach is to
decentralize the training though federated learning, thus avoiding centralization of infor-
mation, compute and data storage [35, 36]. Furthermore, the usage of a model can reveal
information about the content of its training dataset. Membership Inference Attack aims
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at predicting if a sample was in the training set of a model [37]. Some method can even
reconstruct samples from the dataset [38]. Another direction, differential privacy [39] also
focuses on datasets. Differential privacy provides mathematical guarantees that a dataset,
while remaining relevant for machine learning training, reveals no information (or only
a measurably small amount) about individual samples. This ensures that the privacy of
individuals in the dataset is protected, even when the data is used for analysis or training
models. Next, we focus on the open problem that is the most related to this thesis.

Generalization Finally, generalization plays a key part of this thesis and has been a
major problem in AI since its inception [40]. It is at the core of learning itself. General-
ization, as opposed to memorization, extends and abstracts the given limited information
to successfully apply it to a broad set of unseen problems. The ability to generalize is key
to the real-world usage of AI solutions. To address this issue many works have focused
on domain adaptation [41] and robustness which is the ability to retain accuracy despite
variation in the input data [42]. This thesis focuses on generalization from samples and
thus on task and domain adaptation in the context of few-shot learning. First, we will
delve into what few-shot learning is and see why pre-training is needed. We then dig into
different standard approaches to pre-train and adapt models.

1.4 Few-Shot Learning

Few Shot Learning Few-Shot Learning (FSL) emerged as one of the major challenges
of AI. The question FSL aims to answer is how to generalize knowledge from few examples.
This question arises from the remarkable ability of humans to learn new concepts from
very few examples, whereas computer vision systems appear to be particularly limited
in this task [43]. Consider the mushrooms “Pleurocybela porrigens” and “Tolypocladium
capitatum.” Most people are unfamiliar with these species by their scientific names. How-
ever, if introduced as “Angel wings” and “Round-headed truffle club,” or through a quick
online search that shows a few images of each, assuming there are only two possible choices,
the anyone could soon learn to distinguish between them during a forest walk. This task,
though straightforward for humans, poses a considerable challenge for AI models not
specifically trained on these categories. FSL aims to equip models with the capability to
learn and make accurate predictions from minimal data. The primary challenge lies in
the fact that each training sample represents a specific instance, complete with its own
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biases and atypical features. Moreover, the characteristics of interest, such as the object,
background, and color, are not always clearly defined. What is more, FSL extends beyond
image recognition, as it is also widely applied in various other domains such as sound,
language, and EEG (ElectroEncephaloGraphy) analysis and other tasks such as segmen-
tation or object detection. In the past few years, Few-Shot Learning became particularly
popular with applications in defence [44] and health [45].

In this thesis, we focus on image classification for two reasons, (1) this domain is
usually one of the forefront of AI research 1 and has excellent benchmarks (2) my team at
Institut Mines Telecom IMT Atlantique and Australian Institute for Machine Learning
AIML are particularly specialized in computer vision.

Current approaches to Few-Shot Learning Most methods today in FSL rely on
the adaptation of large foundation models. As such, the main goal of FSL consists in
adapting these universally capable models to specific tasks, using only few examples. This
is a particularly interesting change of paradigm with classical machine learning, where
the goal is no longer to generalize but instead to specialize. Obviously, the main difficulty
here is to find the good way to specialize, circumventing the unavoidable biases that come
from the very limited pool of training examples.

From the outset of this thesis, we were intrigued by a fundamental question: if a
foundation model is capable of performing a wide range of tasks (general purpose), how
does it discern which aspects of the examples given for few-shot tasks are relevant? For
illustration, a foundation model would typically focus on colors in input images, while
these colors could be orthogonal to the task at hand. Is it possible to select only the
portion of the foundation model that is meaningful for our task based on the given few
examples?

Answering this scientific question requires going through multiple steps: 1. building
efficient feature extractors from large datasets, 2. finding reliable ways to measure perfor-
mance on few-shot tasks and 3. proposing methods to efficiently select the features of the
model that are useful for the considered few-shot task.

1. Language has become another forefront recently.
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1.5 Problem statement

The starting point of this thesis is the following observation: certain training data can
be detrimental or misleading for specific tasks. Consider for example the two problems
of learning to differentiate between triangles and squares, and learning to differentiate
between black and white shapes. These two problems can be easily solved using founda-
tion vision models, but each requires distinct features. Real-world problems can be more
intricate. Therefore, a better way to frame the issue is as follows: when the feature ex-
tractor is trained, it is encouraged to focus on specific features relevant to the pretext
task it was trained on. However, when deployed for a specific few-shot task, only some of
these features may be relevant, while others might have an adverse effect by highlighting
unimportant or confusing elements in the scene.

The main goal of this thesis is to investigate the existence of adversarial samples in
the training set of the feature extractor.

Identifying adversarial samples and developing strategies to mitigate their effects can
significantly enhance our understanding of what a model is learning, which in turn can
advance Explainable AI (XAI). Additionally, focusing on few-shot learning, where a model
can adapt to a new task on the fly, holds great promise for ensuring privacy, as there is
no need to upload or share data. Finally, this question has strong ties with the theory
of generalization, understood as from a pretext task to downstream tasks. As such, the
positioning of the thesis is at the core of central and important questions in the field of
Machine Learning today.

1.6 Contributions and Outline

In the next paragraphs, we briefly outline the main contributions of this thesis. Each
of the three contributions are form a chapter in the thesis.

— Chapter 2: Making Robust Models Firstly, we study the optimal way to make
it an effective robust feature extractor for FSL. By incorporating multiple stan-
dard techniques, such as data augmentation and the inclusion of a self-supervised
loss during pre-training, we demonstrate that state-of-the-art performance can be
achieved for in-domain classification.

Highlight: We could obtain state-of-the-art performance on certain bench-
marks showing using a set of tools improving the robustness of our models.
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— Chapter 3 Accurately assessing the performance of FSL: In this section,
we focus on establishing a fair and reliable evaluation of Few-Shot Learning (FSL)
methods. A method is deemed superior if it consistently achieves higher accuracy
compared to others. We emphasize the importance of computing confidence inter-
vals in FSL evaluations. Our analysis reveals that the predominant method fails
to account for data randomness and is therefore specific to particular datasets.
We propose methods to enhance the robustness of conclusions in FSL comparative
studies while incorporating the randomness of the data.

Highlight: We demonstrate that claims of one method outperforming another
are often only valid within the specific context of a benchmark. When data ran-
domness is considered, these claims may be inconclusive. Alarmingly, we discovered
an instance where our assessment methods reversed the original conclusion.

— Chapter 4: Adapt to task using abundant and relevant data Finally, we
propose particularization through a data-centric method. This method is rare in
the sense that it neither alters the architecture nor modifies the training process
to achieve particularization. We demonstrate that certain segments of the pre-
training dataset can adversely affect generalization on specific tasks. We illustrate
that “forgetting by fine-tuning” specific portions of the pre-training dataset can
significantly enhance performance on cross-domain Few-Shot Learning (FSL) tasks.
This approach reallocates the feature space to better suit the task or domain of
interest.

Highlight: We show that significant improvements can be obtained by “better
using” the pre-training dataset. Sub-domains of the pre-training domain are either
better suited or detrimental to the transfer to downstream tasks.

1.7 Toolbox of Deep Learning

In this section, we delve into the key components that constitute Deep Learning today.
We will start by discussing the architectures used and conclude with the methods for
training these untrained models.
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1.7.1 Architectures

Unlike many significant results in classical Machine Learning (ML), Deep Learning
(DL) differentiates itself in several notable ways: (a) relevant features emerge from end-
to-end training, meaning that important representations of the input signal are not hand-
crafted or manually selected by humans, and (b) architectures are deep, consisting of
stacked layers made up of various modules. DL practitioners focus on designing archi-
tectures using inductive biases based on their understanding of the data to frame the
appropriate modules. For instance, computer vision tasks involving many 2D images have
led to the widespread use of Conv2D modules, as discussed below.

Modules

Linear layers is the simplest module. It consists in a simple matrix multiplication with
a bias term.

Y = W X + B (1.1)

where Y ∈ RdY , X ∈ RdX , W ∈ RdY ×dX and B ∈ RdY , respectively represent the output
vector, the input vector, the matrix of weights and the bias vector. The coefficients in W

and B are parameters that can be learned during training.

Convolutions [46] used to be the cornerstone of computer vision until recently.
Given a 2D image, one can make the following observation: local structures, such as edges,
are critical to understand what the image consists in. In fact, two observations lead to this
observation. (a) If pixels were randomly shuffled the image would be unintelligible even
by a human. (b) An image shifted by a simple translation does not change. Consequently,
using an equi-variant local region pattern detector is likely create a relevant representation
of the image. This is what convolution modules consist in. Mathematically a convolution
filter acts according to Equation 1.2.

Y (i, j) = (X ∗K)(i, j) =
M−1∑
m=0

N−1∑
n=0

X(i + m, j + n) ·K(m, n) (1.2)

where Y ∈ R(H−M+1)×(W −N+1), X ∈ RH×W , K ∈ RM×N respectively represent the output
2D tensor, the input 2D tensor and the kernel. · is the element-wise product. While this
equation is a simple instantiation of the convolution operation, there are many parameters
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Figure 1.3 – Illustration of the convolution with a 3x3 kernel. (CC-BY) [46]

such as the size of the kernel M and N , the stride and padding that can influence the
design of the operation [47]. Here the coefficients in K are trainable parameters. Figure 1.3
illustrates this operation.

Attention Modules have been transformative since their inception [48]. They first
played a role as part of Transformers (a larger module comprising attention modules) [48]
in language tasks such as translation. Attention modules are designed to dynamically
focus on the most relevant parts of the input data. They can thus consider a subset of
the signal as part of the context given by the rest of the signal. With a few years delay,
it was adopted by the vision community of DL [3] and proved to be an excellent tool for
foundation models.

How are images fed to attention modules? Contrary to convolutions where the
2D structure of the image is necessary to process the image, attention modules require
something akin to a sequence of tokens as practised in language models[48]. In An Image is
Worth 16x16 Words: Transformers for Image Recognition at Scale[3], the authors propose
to divide images into square patches of c× c pixels. By unraveling, one can transform an
image of size X̂ ∈ RH×W into the representation X ∈ RL×c2 with L = HW

c2 . 2

Self-Attention explained In the following, we mathematically discuss the self-attention
module. It is the most widely used version of the attention module in vision. It consists
in an interaction between three different embedding of the input signal X ∈ RL×dX with
L the sequence length and dX the dimension of X.

2. This can be generalized to RGB (Red Green Blue) images
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K = WKX (1.3)

Q = WQX (1.4)

V = WV X (1.5)

The learnable parameters are the coefficients in WK, WQ, WV ∈ Rd×dX . They inter-
act though the attention module:

Y = softmax
(

QKT

√
d

)
V (1.6)

QKT is the matrix of similarity between keys and queries. Dividing by
√

d (for stability)
and applying the softmax function yields the attention weights α ∈ RL×L. Softmax, often
employed in the final layer of classification networks, converts logits into probabilities,
ensuring that the output vector sums to one. These values are then used to weight the
sum of values in V ∈ RL×d. WK and WQ are then trained to identify and match different
patterns, thereby learning which elements should be linked and how they should influence
the output embedding.

Non-linarities or Activation functions Let us consider the MLP [49] or (Multi-
Layer Perceptron). It consists in several stacked linear layers. The linear layers must be
separated by non-linear Activation functions otherwise the operation could be done in a
single linear operation V .

Y = W0W1W2 . . . WnX = V X (1.7)

with V ∈ RdX×dY , W0 ∈ Rm1×dY , Wn ∈ RdX×mn , and Wi ∈ Rmi+1×mi for i ∈ (1, n−1).
Several non-linear activation functions have been used [50], including the sigmoid

function (σ(x) = 1
1+e−x ), hyperbolic tangent (tanh), ReLU [51], GELU [52] and leaky

ReLU [53]. For example, ReLU, or Rectified Linear Unit, is a widely-used activation
function defined as relu = max(0, x) providing sparsity and mitigating the vanishing
gradient problem by allowing only positive values to pass through.

Other important components MaxPool (Max Pooling), AvgPool (Average Pooling),
Dropout, BatchNorm (Batch Normalization), and LayerNorm (Layer Normalization) are
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fundamental components in modern DL. MaxPool, used for downsampling, reduces spatial
dimensions by selecting the maximum value within non-overlapping subregions, thereby
preserving essential features while reducing computation and overfitting. AvgPool is an-
other downsampling operation that reduces spatial dimensions by calculating the average
value within non-overlapping subregions, smoothing the feature maps while retaining
spatial information. Dropout, introduced around 2012, is a regularization technique that
randomly sets a fraction of input units to zero during training, preventing overfitting by
encouraging redundant representations. BatchNorm, developed in 2015, normalizes inputs
across the mini-batch, addressing internal covariate shift and accelerating convergence by
standardizing the mean and variance for each mini-batch. LayerNorm, emerging around
the same time, normalizes the inputs across the features within each data sample, sta-
bilizing the learning process and improving generalization by maintaining the mean and
variance for each layer’s activations. Together, these techniques enhance neural network
training efficiency, stability, and performance.

Initialization Some Research has also been performed to study the optimal initializa-
tion for a neural net. Indeed, the choice of distribution of weight plays an important role
in the performance of the trained model [54]. Another work studies the effect choosing
the seed to obtain the best performance [55].

Construction with Modules

Given these parameterized modules, one can simply stack them or have them run in
parallel.

In this thesis, we focus on two architectures which come in various flavours and sizes
namely the ResNet [56] and the Vision Transformer [3].

ResNets stand for Residual network. This idea came from the idea that deep network
can learn more complex patterns [57]. However as models get deeper, the gradient, that
is the updating signal flowing backward trough the network (more detail in the next
section) either vanishes or explodes. To prevent this, residual blocks, denoted g here, were
invented. As shown in Figure 1.4, they consist in a normal block with the addition of a
skip connection that enables the gradient to flow to deeper parts of the network.
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Figure 1.4 – Scheme of the Residual block in ResNets taken from Deep Residual Learning
for Image Recognition, Kaiming He; Xiangyu Zhang; Shaoqing Ren; Jian Sun, CVPR
2016, IEEE copyright line © 2011 IEEE.

g(x) =
normal module︷ ︸︸ ︷

f(x) + x︸︷︷︸
skip connection

(1.8)

ResNets’s normal module is composed of convolutions and linear layers. Most used
denominations are ResNet-10, ResNet-12, ResNet-18, ResNet-50 and ResNet-101. The
number after ResNet corresponds to the number of Residual blocks with each block typi-
cally containing two layers (three for ResNet-50 and Resnet-101).

Vision Transformers Vision Transformers typically use the earlier described trans-
former with self-attention. The tranformer also contains skip connections, linear layers,
layernorm and as depicted in Figure 1.5. Denominations for ViT are typically as follows:
ViT-X/c where X can be S, B or L respectively for Small, Base or Large and c is the size
(c × c) of the patch of pixel. A small model has fewer layers and heads than a base or
large one. It also has a smaller hidden dimension (latent space dimensionality). Details
can be found in Table 1.1.

Model Layers Hidden size D MLP size Heads Params
ViT-Small 8 512 2048 8 22M
ViT-Base 12 768 3072 12 86M
ViT-Large 24 1024 4096 16 307M
ViT-Huge 32 1280 5120 16 632M

Table 1.1 – Details of Vision Transformer model variants (extended version of Table 1 in
[3])
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Figure 1.5 – Architecture of a transformer (figure taken from [48]) (Reproduction allowed
by Google)
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1.7.2 Training

In this section, we explain different methods used to train deep learning models.

A) Supervised Learning In supervised learning, a labeled dataset is available. The
model learns to predict the class of each sample accurately. In a classical supervised
classification paradigm, the network output, called a logit, has a dimensionality of Nc,
where Nc is the number of classes in the training dataset. For an input image x, the
model f will predict a vector ŷ ∈ RNc . The model progressively improves f such that ŷ

becomes the one-hot encoding of the true class of x denoted y ∈ RNc . One-hot encoding
represents a categorical variable with Nc categories as a binary vector e such that ei = δij

with j the true class of e and δij the Kronecker symbol. In this paradigm, the most
standard loss/cost/error function is the cross-entropy loss. It is defined as:

L({yi}i, {ŷi}i) = −
∑

i∈Ns

yi log(ŷi) (1.9)

with Ns the number of samples in the dataset.
For this to work effectively, the parameters must be trained though trial and error

on all samples of the dataset thanks to an algorithm named Stochastic Gradient Descent
(SGD) which updates parameters to lower the loss function.

W (t+1) = W (t) − λ
∂L(fW (t)(x), y)

∂W (t)

∣∣∣∣∣
x,y

(1.10)

where W (t) are the parameters at step (trial and error iteration) t, L is the loss function,
fW (t) is the model parameterized by W (t) such that fW (t)(x) = ŷ a prediction of the
input image x and y is the class label. λ ∈ R+ is the learning rate, a hyperparameter
controlling the update strength.

B) Self-Supervised Learning In the self-supervised learning paradigm, models learn
with unlabelled data. How is this possible? Given data one can imagine many sets of
tasks that induce the model to discover patterns in the data. For example, one can mask
one part of the image and task the model with reconstructing the masked part, or rotate
the image and ask the model to predict the applied rotation. Such tasks are not directly
classification related yet help produce useful representations for classification and other
tasks. In the following, we detail the training of DINO a major self-supervised training
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method.

DINO stands for self-distillation with no labels. In this method, an input image is
augmented or transformed twice yielding two versions of the image. Each version goes
through either a student model or a teacher model, which typically have the same ar-
chitecture. The student model learns to mimic the teacher model’s output, a process
known as distillation. The teacher’s parameters are updated not by SGD but thanks to
an exponential moving average of the student’s parameters, making it self-distillation.

A major challenge is representational collapse, where the model outputs trivial solu-
tions to minimize loss. To avoid this, DINO uses centering and sharpening techniques
in the teacher model, ensuring features do not collapse. This method produces particu-
larly effective features for k-NN classification. DINOv2, a subsequent version, achieved
performance in classification comparable to supervised settings by incorporating better
regularization, improved architecture, enhanced datasets, and distillation from large mod-
els to smaller models.

Contrastive learning Contrastive learning can be used with or without labels. The
idea of contrastive learning is to push the representations of samples from “positive pairs”
to be as close as possible from each other while separating or pushing away samples from
“negative pairs” . If labels are available, positive pairs correspond to two images of the
same class [58]. Without labels, a positive pair is two augmentations (modifications) of
the same sample. [59]. Negative pairs, conversely, are simply pairs that are not positive.
This straightforward approach yields excellent representations. There are several variants
of the contrastive loss which consider different number of pairs, or do not push away
negative pairs samples which are sufficiently apart [60].

A particular instance of contrastive learning, also makes use of semantic information. In
CLIP [58], pairs of images and their respective captions are processed jointly. CLIP stands
for Contrastive Language Image Pretraning. A text encoder creates a text representation
of a caption while the corresponding image is encoded creates an visual representation.
These matching representations (positive pairs) are then pushed to be close to one another
while separating samples from all other pairs.
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1.8 Usual methods in Few-shot Learning
In the following, we present typical methods used in Few-shot Learning. We begin

by defining an FSL task, which will highlight why FSL frequently involves a pre-training
phase followed by an adaptation phase. Subsequently, we will explain the various tech-
niques utilized during the pre-training and adaptation stages.

1.8.1 Few-Shot Learning 101

Few-Shot Training Set or Support Set Shots in FSL are labeled examples. Since
our focus is on classification in vision tasks, “examples” should be understood as images.
A classification task is said to be S-shots when S labelled samples per class are available
for training. These labels need not contain any semantic information about the class and
can simply be integers. For instance, one example might belong to class 0, another to
class i ∈ [0..K − 1] with K the number of classes in the task. Note that we already made
several choices and assumptions: (a) each classes have an equal number of shots and (b)
all examples are in classes [0..K − 1]. More complex versions that do not adhere to these
constraints are also used in the literature. All these labelled examples form the support
set S. In typical settings S ∈ {1, 5, 10} and K = 5.

Few-Shot Test Set or Query Set The query set Q is the set of unlabelled examples
for which we want to predict classes. In benchmarks, the query set is typically balanced to
ensure that the accuracy is not biased toward any particular class. Accuracy is calculated
as the ratio of correctly classified queries to the total number of queries. A typical setting
includes Q = 15 queries per class.

Good representations and ambiguity: the main challenges of FSL Consider a
simple 1-shot 2-way task. The shots are a black triangle and white square. This task
suffers from both spurious unrelated features and the ambiguity problem [61]. 1) Feature
Representation Images are simple tensors of shape (H, W, 3) with H, W the height and
width and 3 representing the RGB color channels. The challenge is to represent images in
a feature space that allows for a simple linear separation of classes. We denote the input
image x, the feature representation z. We obtain that z = g(x). g is the feature extractor.
It is typically a foundation model without its last classification layer. As mentioned earlier,
a foundation feature extractor would have features for both tasks.
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2) Ambiguity in Classification As humans, we might assume that classifying the
breed of the dog is the intended task. However, the model might focus on the background
when the task could actually be about the presence of a human, the weather, or even
the color of a specific pixel. This ambiguity is central to many open problems in few-shot
learning.

1.8.2 Why do we need a pre-training?

Reminder on Deep Learning Modern methods in computer vision are based on deep
learning, which relies on modular architectures composed of a large number of parame-
ters. These architectures process images into useful representations or features for making
predictions, such as classifications.

Parameters are numerous Modern models range from a few millions to several hun-
dred billion parameters. Given the bias-variance tradeoff, this vast number of parameters
increases the risk of learning spurious correlations, as over-parameterized models tend to
have high variance, which leads to overfitting. Although the double descent phenomenon
suggests that increasing parameters can eventually improve generalization, few-shot learn-
ing tasks initially face significant overfitting challenges, making effective pre-training es-
sential.

In the previously considered 1-shot 2-way task, starting with a randomly initialized
neural network would lead to poor representations because it can easily distinguish the
images. For example, simply averaging all pixel values could be enough to train a classifier
to distinguish the images. Highly parameterized models would therefore grossly overfit
such a small training set. Consequently, it is not a viable solution for few-shot learning.

Pre-training as a solution to few-shot overfitting A common methodology is to
learn representations using modern models with large amounts of data (excluding the
support set). This data forms the generic or base dataset. Correctly classifying 100+
classes, each containing 1000+ examples, requires the model to process the images such
that classes can be linearly separated in the latent space. This large dataset typically
reduces ambiguity and allows the model to focus on the intended classes.

Once trained, the pre-trained model provides good representations for classes defined
with only a few shots, even if these classes are initially ill-defined. This approach addresses
the overfitting issue (2) by leveraging the comprehensive feature space learned from the
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base dataset. Additionally, it can partly address the ambiguity problem (1), as the robust
representations are likely to be effective for various intended tasks. The final step involves
using these representations to classify unseen classes, which is discussed further in this
thesis.

1.8.3 Adaptation to the few-shot task

Several methods are employed to adapt to a few-shot task, broadly categorized into
two main approaches: “fixed features” and “adapted features”.

Fixed Features: In this approach, the model is kept frozen, and only the final classi-
fication layer is adjusted to accommodate the few-shot task. This method leverages pre-
trained features without altering the underlying model structure. The problem is then
reduced to finding the best classification method from feature space to the classes. This
can come through either distance-based or though Logistic Regression (LR). For example,
a distance-based classifier is the nearest neighbors methods where a sample is classified
as the closest shot available using euclidean distance.

One of the most used methods in this thesis is the NCM for Nearest Class Mean
where a center of all labeled examples from a class is computed and named centroid or
barycenter.

∀i : ci = 1
|Si|

∑
z∈Si

z , (1.11)

then associating to each query the closest centroid:

∀z ∈ Q : Cind(z, [c1, . . . , cn]) = arg min
i
∥z− ci∥2 . (1.12)

Adapted Features: This approach involves transforming either the model itself or
its features to better suit the few-shot task. This can include fine-tuning the model or
applying adapters such as LORA (LOw Rank Adapter) [62], DORA [63] a derivative of
LORA where only certain direction in the weight space are reweighed. In LORA, we
consider each matrix of weight representing a linear layer and denote it W ∈ RN×M . We
train a shift of weights ∆W of low rank: ∆W = AB with A ∈ RN×R and B ∈ RR×M . In
this setting the adapted weights are W ′ = W + ∆W . Instead of training the entire NM

parameters, we only train R(M +N) parameters which significantly less since R << M, N
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Whether using fine-tuning or adapter-based methods, the main challenge is avoid-
ing overfitting. Over-adaptation to the task’s support set can significantly hinder the
model’s ability to generalize to other tasks and, more importantly, even compromise its
performance on the specific task it was adapted for. Therefore, selecting the appropriate
hyper-parameters is crucial for achieving optimal downstream performance.

In the next chapter, we focus on training highly expressive robust feature extractors.

1.9 Notations and Glossary

Table 1.2 – Notation Table

Symbol Description
α, β, γ A scalar quantity
a A vector quantity
A A matrix
A A set
R Set of real numbers
C Set of classes in a dataset
D A dataset
K The number of classes or ways in a few-shot task
K Set of classes in a few-shot task
N Set of natural numbers
N The number of samples per class in a dataset
Q The number of queries
Q Query Set
S The number of shots
S Support Set
Tj j-th few-Shot task
Aj Accuracy of measured on task Tj

∆ Difference of Accuracy
M Number of classes in the selected subset
ci Centroid or barycenter of class i given S
x Input signal (typically an image)

Continued on next page

40



Table 1.2 – continued from previous page
Symbol Description
f Feature extractor
θ Parameters
fθ Feature extractor parameterized by parameters θ

z = f(x) Features of x given the feature extractor f

fSt Few-shot classifier using the feature extractor f and the support set
of task t : St

h Ultimate classification layer
g = h ◦ f Full model
y = h(z) = g(x) Prediction Logits
∇fθ(x) Gradient of the function f with respect to θ evaluated at x
∂f/∂x Partial derivative of f with respect to x
∥x∥ Norm of x (L2 if not specified)
x · y Dot product of x and y
x× y Cross product of x and y
In Identity matrix of size n× n

E[X] Expected value of the random variable X

Var(X) Variance of the random variable X

P (A) Probability of event A

P (A | B) Conditional probability of A given B

λi i-th eigenvalue of a matrix
ui i-th eigenvector of a matrix
σ Standard deviation
µ Mean
N (µ, σ2) Normal distribution with mean µ and variance σ2

det(A) Determinant of the matrix A
A−1 Inverse of the matrix A
tr(A) Trace of the matrix A
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Table 1.3 – Glossary Table

Acronym Description
AA Average Activation
AI Artificial Intelligence
AS Augmented Samples
CCI Closed Confidence Interval (sampling with replacement)
CI Confidence Intervals
CL Contrastive Learning
CLIP A model (Contrastive Language-Image Pre-training)
DL Deep Learning
DI Domain Informed
DINO A class of pre-trained models (self-distillation with no labels)
E Ensemble of Backbones
FIM Fisher Information Matrix
GPU Graphics Processing Unit
HPC High Performance Computing
FSL Few-Shot Learning
K-Means An unsupervised clustering method
LOO Leave-One-Out
MCS Monte-Carlo Sampling
ML Machine Learning
MLP Multi-Layer Perceptron [49]
NCM Nearest Class Mean (a classification algorithm) [64]
OCI Open Confidence Interval (sampling tasks without replacement)
Query two contexts (a) Sample of the Query Set (test set) to be classified

in FSL (b) an element in Attention modules
Query Set Test set of a few-shot task
UI Uninformed
UOT Unbalanced Optimal Transport
PT Paired Test
ReLU Rectified Linear Unit [51]
ResNet Residual Network [56]
RKM Rank-me [65]

Continued on next page

42



Table 1.3 – continued from previous page
Acronym Description
Shot Labeled sample part of the support set of a few-shot task
SNR Signal-to-noise Ratio
Support Set Small (by definition of FSL) training set of a few-shot task
SSA Support Set Accuracy
SSC Support Set confidence
SSL Self-Supervized Learning
Task Any Machine Learning Problem (most of the time refers to a clas-

sification few-shot task in this thesis)
TI Task Informed
Few-Shot Task Disjoint support and query sets with the same classes
ViT Vision Transformer [3]
XAI eXplainable Artificial Intelligence [30]
Ways Number of classes in a few-shot task
Y Double loss architecture described in Chapter 1 (shape of Y)
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Chapter 2 – Training A Robust Feature Extractor

2.1 Introduction

This chapter is largely based on the content of our paper: EASY: Ensemble Augmented-
Shot Y-shaped Learning: State-Of-The-Art Few-Shot Classification with Simple Ingredients
[66] published in the Journal of Imaging in 2022.

The remarkable performances of deep learning (DL) are generally obtained thanks
to training on to large databases. Getting the same performance with extremely limited
data may seem paradoxical. Yet transfer learning allows us to transfer this knowledge on
smaller tasks.

As mentionned in the introduction, the current paradigm of few-shot learning (FSL)
relies on foundation models as starting points for classifying new or novel classes. However,
these models are trained on vast and often undisclosed datasets, making it uncertain
whether the novel classes (i.e., the classes from which few-shot tasks are sampled) are
genuinely disjoint from the pre-training dataset. Despite this, the exceptional performance
of these off-the-shelf, highly expressive models on most few-shot tasks has made them the
de facto starting point for few-shot learning (FSL) practitioners. It is in fact, rather
cumbersome to find data that is totally unseen by these models.

In contrast, the traditional few-shot setting involves a benchmark that specifies both
the pre-training (or base) dataset and the novel dataset from which tasks are sampled
for evaluation. This design emphasizes the quest for methods able to learn on unseen
data and ensured the fair comparisons of methods. This contribution [4] adheres to this
traditional paradigm, although it is somewhat outdated in the current context. We now
provide a more detailed description of the base and novel datasets.

— A base dataset contains many examples across numerous classes. Due to its large
size, it is suitable for efficiently training DL architectures. A validation dataset is
often used conjunction with the base dataset. In a standard classification setup,
the base dataset is used for training, while the validation dataset serves as a proxy
to measure generalization performance on unseen data, aiding in hyperparame-
ter optimization. However, in few-shot learning, the validation and base datasets
usually comprise distinct classes, enabling the assessment of generalization perfor-
mance on new classes [67]. Various strategies can be employed to learn effective
feature representations from the base dataset, which will be further discussed in
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2.1. Introduction

Section 2.2;
— A novel dataset, which consists of classes that are distinct from those of the base

and validation datasets. It can be just as big as the base dataset. Tasks are sampled
from it. The labeled samples are often called the support set, and the remaining ones
the query set. In that case, the number of classes K (named ways), the number
of shots per class S and the number of query samples per class Q are given by
the benchmark. This setting is referred to as K-way-S-shot learning. Reported
performances are often averaged over a large number of runs.

To leverage the knowledge previously acquired by models on a base dataset, a common
technique is to remove their final classification layer. These models are then referred to
as feature extractor or backbone. They can be employed to convert the support and query
datasets into feature vectors, that is a representation of these images which incorporates
the priors learned in the base dataset. In this study, we exclude the use of additional data,
such as other datasets [68], and do not incorporate semantic information [69]. Prior to
the classification task, further preprocessing steps may be applied to the samples and/or
the associated feature vectors. Another significant approach involves meta-learning [70,
71, 72, 73, 74, 75], as discussed in Section 2.2.

We distinguish two cases which differ in the amount of accessible information:
— In inductive few-shot classification, only the support dataset is available to the

few-shot classifier, and prediction is performed on each sample of the query dataset
independently from each other [76];

— In transductive few-shot classification, the few-shot classifier has access to both the
support and the full query datasets when performing predictions [77]. This extra
information of knowing the whole query set (or few-shot test set) is of tremendous
help. For example, given enough queries, one might discover clusters in the query
set which can then be associated with ill-defined few-shot classes thanks to the
support set.

Both cases correspond to real-world situations. Generally, the inductive case corre-
sponds to situations where data acquisition is expensive or particularly difficult. This is
the case for FMRI data for example where it is difficult to generalize from one patient to
another and collect hours of training data on a patient could be harmful [78]. Alterna-
tively, the transductive case corresponds to situations where data labeling is expensive.
Such situation can occur when experts must properly label data but the data itself is
obtained relatively cheaply, for instance in numerous medical applications [79, 80].
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In the past few years, many contributions have introduced methodologies to cope
with few-shot problems. They use many ingredients, including distillation [81], contrastive
learning [82], episodic training [83], mixup [84], manifold mixup [67, 85] and self-supervision [67].
As a consequence, it is unclear what the positively impactful ingredients are, and whether
their performance are robust across different datasets or settings. More problematically,
we noticed that many of these contributions start with sub-optimal training procedures or
architectures. Admittedly, they provide significant accuracy boosts using their proposed
methods, but this improvements is not always robust when tested with better initial mod-
els without the proposed ingredients. We show that many of these contributions report
baseline performances that can be outperformed with a simpler training pipeline.

In this chapter, we present a very simple method combining ingredients commonly
found in the literature and yet achieving highly competitive performance. These results
were presented in our paper [4]. This work is designed to help have a clearer view on how
to efficiently and simply implement few-shot classification for real-world applications. We
aim to define a new baseline with excellent hyperparameters and training routines to
compare to and to start with, on which obtaining an accuracy boost will be much more
challenging than starting from a poorly trained backbone. Additionally, we show that a
simple approach reaches higher accuracy than increasingly complex methods proposed in
the recent few-shot literature.

The contribution from our work presented in [4] are the following:
— We introduced a very simple methodology, illustrated in Figure 2.1, for both in-

ductive or transductive few-shot classification.
— We showed the ability of the proposed methodology to reach or even beat state-

of-the-art [86, 73] accuracy on several commmon benchmarks of the field.
— All our models, obtained feature vectors and training procedures are freely available

online on our github: https://github.com/ybendou/easy
— We also proposed a simple demonstration of our method using live video streaming

to perform few-shot classification. The code is available at https://github.com/
RafLaf/webcam.

2.2 Related Work

To begin with, we emphasize on some of the few-shot classification approaches fol-
lowing the classical pipeline. Note that the methodology we proposed [4] uses multiple
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ingredients from those presented hereafter.

2.2.1 Data augmentation

First, data augmentation or augmented sampling are generally used on the base dataset
to artificially produce additional samples. Examples include rotations [67], crops [87],
jitter, GANs [88, 89], or other techniques [90]. Data augmentation on support and query
sets, however, is less frequent. Approaches exploring this direction include [82], where
authors propose to select the foreground objects of images by identifying the right crops
using a relatively complex mechanism; and [91], where the authors propose to mimic the
neighboring base classes distribution to create augmented latent space vectors.

Other forms of data augmentation combine several samples. Mixup [84] and manifold-
mixup [85] are two different forms of linear interpolation of samples and labels. Both
can be seen as regularization methods [84, 85]. Mixup creates linear interpolations at
the sample level (see Equation 2.1) while manifold mixup focuses on feature vectors as
shown in Equation 2.2 with λ ∈ (0, 1). To maintain consistency, the target labels are also
interpolated as in Equation 2.3.

xAS = λx1 + (1− λ)x2 (2.1)

zAS = λz1 + (1− λ)z2 (2.2)

yAS = λy1 + (1− λ)y2 (2.3)

2.2.2 Backbone training

Mixup is used with Self-supervision (S2) [67] to make feature extractors more robust.
Most of the time, S2 is implemented as an auxiliary loss. This loss trains the feature
extractor to recognize which transformation was applied to an image [92].

A common training strategy is episodic training. Its philosophy is to having the same
train and test conditions. Thus, the training strategy, often based on gradient descent,
does not select random batches, but uses custom batches designed as few-shot tasks [70,
93, 94, 83].

Meta-Learning, that is learning to learn, is an important line of research in FSL.

49



Chapter 2 – Training A Robust Feature Extractor

This method typically learns a good initialization network or optimizer such that adap-
tation to new classes can be learned in a few gradient steps [70, 71, 72, 73, 74, 75]. For
those acquainted with meta-learning literature, the meta-train phase aligns with the pre-
training step described in the main approach of this chapter and throughout the thesis.
In meta-train, traditional training batches are usually replaced by episodes (i.e., FSL
tasks), following the principle that training and testing conditions should closely resemble
each other. This process is referred to as episodic training. A work leverages this idea to
generate augmented tasks in the training of the feature extractor [95].

Contrastive learning or CL aims to train a model to learn to maximize similarities
between transformed instances of the same image and minimize agreement between trans-
formed instances of different images [96, 97, 98, 82]. There exist a supervized version of it.
Supervised contrastive learning is a variant of CL which has been recently used in few-shot
classification, where similarity is maximized between instances of a class instead of the
same image [99, 81].

2.2.3 Exploiting multiple backbones

Distillation was also used in the FSL literature. It aims at transferring knowledge from
a teacher model to a student model by training the latter to match the joint probability
distribution of the teacher p(x, ŷt) with ŷt the prediction of the teacher model [100, 81].

Ensembling is the concatenation of features extracted by different feature extractors.
It was used to improve performances in FSL classification [95]. It is a simple alternative
to distillation. To limit the computationally expensive training of multiple backbones, it
was proposed to use of snapshots [101].

2.2.4 Few-shot classification

Classification methods in the inductive setting are based on simple methods such as
nearest class mean [64], cosine classifiers [102] and logistic regression [91].

Thanks to the extra information, more methods can be implemented in the transduc-
tive setting. For example, clustering algorithms [82], embedding propagation [103] and
optimal transport [104] were used successfully to strongly outperform accuracies in the
inductive setting.
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Figure 2.1 – Illustration of the method we proposed [4]. Y: First, we first train several
feature extractors using the base and validation datasets. The base for direct training and
validation to select hyper-parameters on FSL tasks sampled from the validation split.
We use two cross-entropy losses in parallel: one for the classification of base classes,
and the other for the self-supervised targets (rotations). We also make use of manifold
mixup [85]. All the feature extractors are trained using the exact same routine, except
for their initialization seed (for randomness). The sampling order of data batches is also
different due to the different seed; AS: Then, for each image in the novel dataset and each
feature extractors, we generate multiple crops, then compute their feature vectors, that
we average; E: Each image becomes represented as the concatenation of the outputs of
AS for each of the trained feature extractors; Preprocessing: Our pre-processing steps
include (a) centering by removing the mean of the feature vectors of the base dataset in
the inductive case, or the few-shot run feature vectors for the transductive case, and (b)
projecting on the hypersphere. Finally, our classifier is the nearest class mean classifier
(NCM) if in the inductive setting or a soft K-means algorithm in the transductive setting.
(CC-BY)
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The methodology we proposed [4] has 5 steps, described below and illustrated in
Figure 2.1. In our experiments, we also report ablation results when omitting the optional
steps.

2.3.1 Backbone training (Y)

We augment the data with random resized crops, random color jitters and random
horizontal flips. It is standard in the FSL.

We implement a cosine-annealing scheduler [105], updating the learning rate at each
step. During a cosine cycle, the learning rate evolves between η0 and 0. After each cycle,
we warm restart the learning procedure and start again with a smaller η0. At the start,
η0 = 0.1 and reduce η0 by 10% at each cycle. Our training contains 5 cycles with 100
epochs each.

Our training uses the methodology called S2M2R described in [67]. The idea is to take
a standard classification architecture (e.g., ResNet12 [106]), and to plug-in a new logistic
regression classifier after the penultimate layer, in addition to the classification head, thus
forming a Y-shaped (two heads) model (c.f. Figure 2.1). Our new head is meant to retrieve
which one of four possible rotations (quarters of 360° turns) has been applied to the input
samples. We use a two-step forward-backward pass at each step, where a first batch of
inputs is only fed to the first classifier (for classes), combined with manifold-mixup [67,
85]. A second batch of inputs is then applied arbitrary rotations and fed to both classifiers
(classes and rotations). After this training, feature extractors are frozen.

Our experiments are performed with a standard ResNet12 as described in [106], where
the feature vectors are of dimension 640. These feature vectors are obtained by computing
a global average pooling over the output of the last convolution layer. Our feature extrac-
tor contains ∼ 12 million trainable parameters. We also experiment with reduced-size
ResNet12, denoted ResNet12

(
1
2

)
where the number of feature maps divided by 2, result-

ing in feature vectors of dimension 320, and ResNet12
(

1√
2

)
, (divided by

√
2), resulting in

feature vectors of dimension 450. The numbers of parameters are respectively ∼ 3 million
and ∼ 6 million.

As presented in the Introduction, we denote x an input sample, and f the feature
extractor then z = f(x) is the feature vector associated with x.

In the following, we use the frozen feature extractors to get feature vectors from the
base, validation and novel datasets.
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2.3.2 Augmented samples (AS)

We generate augmented feature vectors for each sample from the novel dataset. How-
ever, We do not augment the validation set because it is particularly computationally
costly. We use random resized crops from the corresponding images. We produce multiple
versions of each feature vector and average them. The role of augmentations in DL was
extensively studied in the literature [107]. It is assumed that most crops contain the object
of interest for the classification, thus making the average feature vector relevant.However
this does not work for color jitter where it might be a invalid augmentation since some
objects rely mainly on colors to be classified (e.g., birds or fruits).

Concretely, we use ℓ = 30 crops per image since larger values do not improve the
accuracy significantly. Here, this step is considered optional.

2.3.3 Ensemble of backbones (E)

To obtain yet greater performance, we proposed to concatenate the feature vectors
obtained from multiple backbones (i.e feature extractor) trained using the previously
described method, but with different random seeds. To ensure fair comparisons, when
evaluating a single backbone against an ensemble of b backbones, we adjust the number
of parameters per backbone in the ensemble so that the total number of parameters across
all b backbones matches that of the single backbone. We consider this strategy to be a
viable alternative to distillation, as it avoids the need for additional parameters and offers
a relatively straightforward implementation. This step is also optional, and we conduct
ablation tests in the next section to evaluate its impact.

2.3.4 Feature vectors preprocessing

Our last two transformations on feature vectors z are described in [64]. We denote z
the average feature vector of the base dataset if in inductive setting or of the few-shot
considered problem if in transductive setting. In the ideal case z would center the vectors
of the few-shot tasks around 0 and therefore would be the average vector of the union of
the support and query set. However, the number of samples being too small to compute
a meaningful average vector in the inductive setting, we instead use the base dataset. In
the transductive setting, queries ans shots are used for mean computation. The average
vector is therefore less noisy and can be used to compute z.
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In the first operation (C – centering of z), we compute:

zC = z− z . (2.4)

In the second operation (H – projection of zC on the hypersphere), we compute:

zCH = zC

∥zC∥2
. (2.5)

2.3.5 Classification

We denote Si (i ∈ {1, . . . , n}) the set of feature vectors (preprocessed as zCH) that
correspond to the support set of the i-th class, and Q the set of (also preprocessed) query
feature vectors.

In inductive FSL, we use a simple Nearest Class Mean classifier (NCM). First we
compute the class barycenters from labeled samples or shots:

∀i : ci = 1
|Si|

∑
z∈Si

z , (2.6)

then we associate each query to the closest barycenter:

∀z ∈ Q : Cind(z, [c1, . . . , cn]) = arg min
i
∥z− ci∥2 . (2.7)

In transductive FSL, we use a soft K-means algorithm. We compute the sequence
below indexed by t. The initial ci are computed as in Equation (2.6) :

∀i, t :


ci

0 = ci ,

ci
t+1 = ∑

z∈Si∪Q

w(z,ci
t)∑

z′∈Si∪Q
w(z′,ci

t)z , (2.8)

where w(z, ci
t) is a weight function on z, that yields the probability of being associated

with barycenter ci
t:

w(z, ci
t) =


exp
(

−β∥z−ci
t∥2

2

)
n∑

j=1
exp
(

−β∥z−cj
t∥2

2

) if z ∈ Q ,

1 if z ∈ Si .

(2.9)

Unlike the simple K-means algorithm, we use a weighted average where weight values
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are calculated thanks to a decreasing function of the L2 distance between data points
and class barycenters. In this case, we use a softmax adjusted by a temperature value
β. Our experiments use β = 5. This setting led to consistent results across datasets and
backbones. Although practically using a finite number of steps, we find the converging
centroids c∞

i . The resulting vectors, predictions are:

∀z ∈ Q : Ctra(z, [c1
∞, . . . , cn

∞]) = arg min
i
∥z− ci

∞∥2 . (2.10)

2.4 Results

2.4.1 Ranking on standard benchmarks

First, we compare our method with state of the art on classical settings and datasets.
Here are the datasets we use:

— MiniImagenet: A dataset extracted from ImageNet with 64 base classes, 16 valida-
tion classes and 20 novel classes. Each class contains 600 images. The resolution is
(84x84);

— TieredImagenet: Another subset of ImageNet with 351 base classes, 97 validation
classes and 160 novel classes. Classes contain a variable number of samples, usually
about 1300. The resolution is (84x84);

— CUB-FS: This dataset (Caltech-UCSD Birds-200-2011) is particularly challenging
because it is only composed of pictures of birds. There are a 100 base classes,
50 validation classes and 50 novel classes. The number of images by class is not
constant, close to 60. The resolution is (50x50);

— FC-100: It is a subset of CIFAR 100. There are 60 base, 20 validation, 20 novel
classes containing 600 images. Images have a low resolution (32x32);

— CIFAR-FS: It is also a subset of CIFAR 100. There are 60 base, 16 validation, 20
novel classes containing 600 images. Images have a low resolution (32x32).

For each FSL method, we detail the number of trainable parameters and the accuracy
of 1-shot or 5-shot runs. We use Q = 15 query samples per class and results are averaged
over 10,000 runs. We present the results in Tables 2.1-2.5 for the inductive setting and
Tables 2.6-2.10 for the transductive setting 1. We report results for the existing methods

1. The codes allowing for the reproduction our experiments are available at https://github.com/
ybendou/easy.
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using their own reported results in the literature. Some methods do not include their
standard deviation over multiple runs and are thus not present in our Tables.

We emphasize that, at the time of its release, our proposed methodology provided new
state-of-the-art performance for MiniImageNet (inductive), TieredImageNet (inductive 1-
shot setting) and FC100 (transductive), while demonstrating competitive or overlapping
results on other benchmarks. Combined with other more elaborate methods, we believe
these results could be improved significantly, yielding a new standard of performance for
FSL benchmarks. In the transductive case, the proposed methodology [4] is more rarely
ranked #1. However, contrary to many alternatives it does not use any prior on the
number of samples per class in the generated FSL tasks. We show such experiments in
the supplementary material, where we demonstrate that our proposed [4] method greatly
outperforms existing techniques when benchmarking on imbalanced classes. Chiefly, our
method is simpler than others yet achieves competitive performance over multiple bench-
marks.

Table 2.1 – 1-shot and 5-shot accuracy of state-of-the-art methods and proposed solution
on MiniImageNet in inductive setting.

Method 1-shot 5-shot

≤
12

M



SimpleShot [64] 62.85± 0.20 80.02± 0.14
Baseline++ [102] 53.97± 0.79 75.90± 0.61
TADAM [108] 58.50± 0.30 76.70± 0.30
ProtoNet [83] 60.37± 0.83 78.02± 0.57
R2-D2 (+ens) [95] 64.79± 0.45 81.08± 0.32
FEAT [109] 66.78 82.05
CNL [110] 67.96± 0.98 83.36± 0.51
MELR [111] 67.40± 0.43 83.40± 0.28
Deep EMD v2 [87] 68.77± 0.29 84.13± 0.53
PAL [81] 69.37± 0.64 84.40± 0.44
invariance-equivariance [112] 67.28± 0.80 84.78± 0.50
CSEI [86] 68.94± 0.28 85.07± 0.50
COSOC [82] 69.28± 0.49 85.16± 0.42
EASY 2×ResNet12

(
1√
2

)
(ours) 70.63± 0.20 86.28± 0.12

36
M


S2M2R [67] 64.93± 0.18 83.18± 0.11
LR + DC [91] 68.55± 0.55 82.88± 0.42
EASY 3×ResNet12 (ours) 71.75± 0.19 87.15± 0.12
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Table 2.2 – 1-shot and 5-shot accuracy of state-of-the-art methods and proposed solution
on TieredImageNet in inductive setting.

Method 1-shot 5-shot

≤
12

M



SimpleShot [64] 69.09± 0.22 84.58± 0.16
ProtoNet [83] 65.65± 0.92 83.40± 0.65
FEAT [109] 70.80± 0.23 84.79± 0.16
PAL [81] 72.25± 0.72 86.95± 0.47
DeepEMD v2 [87] 74.29± 0.32 86.98± 0.60
MELR [111] 72.14± 0.51 87.01± 0.35
COSOC [82] 73.57± 0.43 87.57± 0.10
CNL [110] 73.42± 0.95 87.72± 0.75
invariance-equivariance [112] 72.21± 0.90 87.08± 0.58
CSEI [86] 73.76± 0.32 87.83± 0.59
ASY ResNet12 (ours) 74.31± 0.22 87.86± 0.15

36
M

 S2M2R [67] 73.71± 0.22 88.52± 0.14
EASY 3×ResNet12 (ours) 74.71± 0.22 88.33± 0.14

Table 2.3 – 1-shot and 5-shot accuracy of state-of-the-art methods and proposed solution
on CIFAR-FS in inductive setting.

Method 1-shot 5-shot

≤
12

M



S2M2R [67] 63.66± 0.17 76.07± 0.19
R2-D2 (+ens) [95] 76.51± 0.47 87.63± 0.34
invariance-equivariance [112] 77.87± 0.85 89.74± 0.57
EASY 2×ResNet12

(
1√
2

)
(ours) 75.24± 0.20 88.38± 0.14

36
M

 S2M2R [67] 74.81± 0.19 87.47± 0.13
EASY 3×ResNet12 (ours) 76.20± 0.20 89.00± 0.14
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Table 2.4 – 1-shot and 5-shot accuracy of state-of-the-art methods and proposed solution
on CUB-FS in inductive setting.

Method 1-shot 5-shot

≤
12

M



FEAT [109] 68.87± 0.22 82.90± 0.10
ProtoNet [83] 66.09± 0.92 82.50± 0.58
DeepEMD v2 [87] 79.27± 0.29 89.80± 0.51
EASY 4×ResNet12

(
1
2

)
(ours) 77.97± 0.20 91.59± 0.10

36
M

 S2M2R [67] 80.68± 0.81 90.85± 0.44
EASY 3×ResNet12 (ours) 78.56± 0.19 91.93± 0.10

Table 2.5 – 1-shot and 5-shot accuracy of state-of-the-art methods and proposed solution
on FC-100 in inductive setting.

Method 1-shot 5-shot

≤
12

M



DeepEMD v2 [87] 46.60± 0.26 63.22± 0.71
TADAM [108] 40.10± 0.40 56.10± 0.40
ProtoNet [83] 41.54± 0.76 57.08± 0.76
invariance-equivariance [112] 47.76± 0.77 65.30± 0.76
R2-D2 (+ens) [95] 44.75± 0.43 59.94± 0.41
EASY 2×ResNet12

(
1√
2

)
(ours) 47.94± 0.19 64.14± 0.19

36M EASY 3×ResNet12 (ours) 48.07± 0.19 64.74± 0.19
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Table 2.6 – 1-shot and 5-shot accuracy of state-of-the-art methods and proposed solution
on MiniImageNet in transductive setting.

Method 1-shot 5-shot

≤
12

M



TIM-GD [113] 73.90 85.00
ODC [114] 77.20± 0.36 87.11± 0.42
PEMnE-BMS∗ [104] 80.56± 0.27 87.98± 0.14
SSR [115] 68.10± 0.60 76.90± 0.40
iLPC [116] 69.79± 0.99 79.82± 0.55
EPNet [103] 66.50± 0.89 81.60± 0.60
DPGN [117] 67.77± 0.32 84.60± 0.43
ECKPN [118] 70.48± 0.38 85.42± 0.46
Rot+KD+POODLE [119] 77.56 85.81
EASY 2×ResNet12

(
1√
2

)
(ours) 82.31± 0.24 88.57± 0.12

36
M



SSR [115] 72.40± 0.60 80.20± 0.40
fine-tuning(train+val) [120] 68.11± 0.69 80.36± 0.50
SIB+E3BM [121] 71.40 81.20
LR+DC [91] 68.57± 0.55 82.88± 0.42
EPNet [103] 70.74± 0.85 84.34± 0.53
TIM-GD [113] 77.80 87.40
PT+MAP [122] 82.92± 0.26 88.82± 0.13
iLPC [116] 83.05± 0.79 88.82± 0.42
ODC [114] 80.64± 0.34 89.39± 0.39
PEMnE-BMS∗ [104] 83.35± 0.25 89.53± 0.13
EASY 3×ResNet12 (ours) 84.04± 0.23 89.14± 0.11
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Table 2.7 – 1-shot and 5-shot accuracy of state-of-the-art methods and proposed solution
on CUB-FS in transductive setting.

Method 1-shot 5-shot

≤
12

M



TIM-GD [113] 82.20 90.80
ODC [114] 85.87 94.97
DPGN [117] 75.71± 0.47 91.48± 0.33
ECKPN [118] 77.43± 0.54 92.21± 0.41
iLPC [116] 89.00± 0.70 92.74± 0.35
Rot+KD+POODLE [119] 89.93 93.78
EASY 4×ResNet12

(
1
2

)
(ours) 90.50± 0.19 93.50± 0.09

36
M



LR+DC [91] 79.56± 0.87 90.67± 0.35
PT+MAP [122] 91.55± 0.19 93.99± 0.10
iLPC [116] 91.03± 0.63 94.11± 0.30
EASY 3×ResNet12 (ours) 90.56± 0.19 93.79± 0.10

Table 2.8 – 1-shot and 5-shot accuracy of state-of-the-art methodsand proposed solution
on FC-100 in transductive setting.

Method 1-shot 5-shot

≤
12

M

 TADAM [108] 40.10± 0.40 56.10± 0.40
EASY 2×ResNet12

(
1√
2

)
(ours) 54.47± 0.24 65.82± 0.19

36
M



SIB+E3BM [121] 46.00 57.10
fine-tuning (train) [120] 43.16± 0.59 57.57± 0.55
ODC [114] 47.18± 0.30 59.21± 0.56
fine-tuning (train+val) [120] 50.44± 0.68 65.74± 0.60
EASY 3×ResNet12 (ours) 54.13± 0.24 66.86± 0.19
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2.4. Results

Table 2.9 – 1-shot and 5-shot accuracy of state-of-the-art methods and proposed solution
on CIFAR-FS in transductive setting.

Method 1-shot 5-shot

≤
12

M



SSR [115] 76.80± 0.60 83.70± 0.40
iLPC [116] 77.14± 0.95 85.23± 0.55
DPGN [117] 77.90± 0.50 90.02± 0.40
ECKPN [118] 79.20± 0.40 91.00± 0.50
EASY 2×ResNet12

(
1√
2

)
(ours) 86.99± 0.21 90.20± 0.15

36
M



SSR [115] 81.60± 0.60 86.00± 0.40
fine-tuning (train+val) [120] 78.36± 0.70 87.54± 0.49
iLPC [116] 86.51± 0.75 90.60± 0.48
PT+MAP [122] 87.69± 0.23 90.68± 0.15
EASY 3×ResNet12 (ours) 87.16± 0.21 90.47± 0.15
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Table 2.10 – 1-shot and 5-shot accuracy of state-of-the-art methods and proposed solution
on TieredImageNet in transductive setting.

Method 1-shot 5-shot

≤
12

M



PT+MAP [122] 85.67± 0.26 90.45± 0.14
TIM-GD [113] 79.90 88.50
ODC [114] 83.73± 0.36 90.46± 0.46
SSR [115] 81.20± 0.60 85.70± 0.40
Rot+KD+POODLE [119] 79.67 86.96
DPGN [117] 72.45± 0.51 87.24± 0.39
EPNet [103] 76.53± 0.87 87.32± 0.64
ECKPN [118] 73.59± 0.45 88.13± 0.28
iLPC [116] 83.49± 0.88 89.48± 0.47
ASY ResNet12 (ours) 83.98± 0.24 89.26± 0.14

36
M



SIB+E3BM [121] 75.60 84.30
SSR [115] 79.50± 0.60 84.80± 0.40
fine-tuning (train+val) [120] 72.87± 0.71 86.15± 0.50
TIM-GD [113] 82.10 89.80
LR+DC [91] 78.19± 0.25 89.90± 0.41
EPNet [103] 78.50± 0.91 88.36± 0.57
ODC [114] 85.22± 0.34 91.35± 0.42
iLPC [116] 88.50± 0.75 92.46± 0.42
PEMnE-BMS∗ [104] 86.07± 0.25 91.09± 0.14
EASY 3×ResNet12 (ours) 84.29± 0.24 89.76± 0.14

2.4.2 Ablation study

The relative contributions of components in the proposed method is of interest here.
To grasp them, we compare, for each dataset, the performance of various combinations
in Table 2.11 in the inductive case, and Table 2.12 in the transductive case. Surprisingly,
our full proposed methodology (EASY) is not always the best performing. We argue that
for large datasets such as MiniImageNet and TieredImageNet, the considered ResNet12
backbones does not contain enough parameters. When reducing the number of parameters
for ensemble solutions, the performance drop due to the reduction in size is not balanced
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by the diversity of the multiple backbones. When all is said and done, only AS proves
consistently beneficial to the accuracy.

2.4.3 Discussion

The proposed method achieves state-of-the-art performance on MiniImagenet by a
fair margin in the inductive case. On TieredImagenet, only S2M2R outperforms EASY in
the 5-shot setting. It might be due to TieredImagenet being the largest of the considered
datasets and thus requiring more parameters to be trained efficiently and reducing the
effectiveness of the proposed ensemble approach. The poor performance on CIFAR-FS can
be explained by the small resolution of images in the dataset which works poorly with the
augmented sample step. Our results in the inductive setting are overlapping with [112] on
FC-100 dataset, however our method provides a narrower confidence intervals compared
to other methods on the same benchmark, despite using the same number of tasks. In the
transductive case, our method achieves competitive accuracies without any prior on the
number of sample per classes. This is particularly important since several methods tend
to fail when the number of samples per class is different, as shown in the supplementary
material. Our explanation is that multiple methods tend to over-rely on this prior. This
over-reliance concern was first raised by [123]. Overall, our method is easy to implement
and requires minimal hyperparameter tuning compared to other competitive approaches.

2.5 Transductive tests with imbalanced settings

We also report performance in transductive setting when the number of query vectors
is varying for each class and is unknown. We use the protocol described in [123]. We present
the results in Tables 2.13-2.15. The Confidence Intervals of previously published methods
were not reported by [123]. We show that our method clearly outperforms existing ones
significantly.
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Table 2.11 – Ablation study of the steps of proposed solution in inductive setting, for a
fixed number of trainable parameters in the considered backbones. When using ensembles,
we use 2×ResNet12

(
1√
2

)
instead of a single ResNet12.

Dataset E AS 1-shot 5-shot

MiniImageNet

68.43± 0.19 83.78± 0.13
✓ 70.84± 0.19 85.70± 0.13

✓ 68.69± 0.20 84.84± 0.13
✓ ✓ 70.63± 0.20 86.28± 0.12

CUB-FS

74.13± 0.20 89.08± 0.11
✓ 77.40± 0.20 91.15± 0.10

✓ 75.01± 0.20 89.38± 0.11
✓ ✓ 77.59± 0.20 91.07± 0.11

CIFAR-FS

73.38± 0.21 87.42± 0.15
✓ 74.26± 0.21 88.16± 0.15

✓ 74.36± 0.21 87.82± 0.15
✓ ✓ 75.24± 0.20 88.38± 0.14

FC-100

45.68± 0.19 62.78± 0.19
✓ 46.43± 0.19 64.16± 0.19

✓ 47.52± 0.19 63.92± 0.19
✓ ✓ 47.94± 0.20 64.14± 0.19

TieredImageNet

72.52± 0.22 86.79± 0.15
✓ 74.17± 0.22 87.81± 0.14

✓ 72.14± 0.22 86.66± 0.15
✓ ✓ 73.36± 0.22 87.37± 0.15
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Table 2.12 – Ablation study of the steps of proposed solution in transductive setting
for a fixed number of trainable parameters in the considered backbones. When using
ensembles, we use 2×ResNet12

(
1√
2

)
instead of a single ResNet12.

Dataset E AS 1-shot 5-shot

MiniImageNet

80.42± 0.23 86.72± 0.13
✓ 83.02± 0.23 88.36± 0.12

✓ 80.27± 0.23 87.45± 0.12
✓ ✓ 82.31± 0.24 88.57± 0.12

CUB-FS

86.93± 0.21 91.53± 0.11
✓ 89.80± 0.20 93.12± 0.10

✓ 87.28± 0.21 91.89± 0.10
✓ ✓ 90.05± 0.19 93.17± 0.10

CIFAR-FS

84.18± 0.23 89.56± 0.15
✓ 85.55± 0.23 90.07± 0.15

✓ 84.89± 0.22 89.60± 0.15
✓ ✓ 86.99± 0.21 90.20± 0.15

FC-100

51.74± 0.23 65.39± 0.19
✓ 52.93± 0.23 66.51± 0.19

✓ 53.39± 0.23 65.71± 0.19
✓ ✓ 54.47± 0.24 65.82± 0.19

TieredImageNet

82.32± 0.24 88.45± 0.15
✓ 83.98± 0.24 89.26± 0.14

✓ 81.48± 0.25 88.40± 0.15
✓ ✓ 83.20± 0.25 88.92± 0.14
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Table 2.13 – 1-shot and 5-shot accuracy of state-of-the-art methods and proposed solution
on MiniImageNet in imbalanced transductive setting. (CC-BY)

Method 1-shot 5-shot

≤
12

M



MAML [70] 47.6 64.5
LR+ICI [124] 58.7 73.5
PT+MAP [122] 60.1 67.1
LaplacianShot [125] 65.4 81.6
TIM [113] 67.3 79.8
α-TIM [123] 67.4 82.5
ASY ResNet12 (ours) 75.65± 0.25 86.35± 0.14

36
M



PT+MAP [122] 60.6 66.8
SIB [126] 64.7 72.5
LaplacianShot [125] 68.1 83.2
TIM [113] 69.8 81.6
α-TIM [123] 69.8 84.8
EASY 3×ResNet12 (ours) 76.04± 0.27 87.23± 0.15

Table 2.14 – 1-shot and 5-shot accuracy of state-of-the-art methods and proposed solution
on TieredImageNet in imbalanced transductive setting. (CC-BY)

Method 1-shot 5-shot

≤
12

M



Entropy-min [120] 61.2 75.5
PT+MAP [122] 64.1 70.0
LaplacianShot [125] 72.3 85.7
TIM [113] 74.1 84.1
LR+ICI [124] 74.6 85.1
α-TIM [123] 74.4 86.6
ASY ResNet12 (ours) 78.15± 0.27 87.65± 0.17

36
M



Entropy-min [120] 62.9 77.3
PT+MAP [122] 65.1 71.0
LaplacianShot [125] 73.5 86.8
TIM [113] 75.8 85.4
α-TIM [123] 76.0 87.8
EASY 3×ResNet12 (ours) 78.46± 0.28 87.85± 0.13
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Table 2.15 – 1-shot and 5-shot accuracy of state-of-the-art methods and proposed solution
on CUB-FS in imbalanced transductive setting. (CC-BY)

Method 1-shot 5-shot

≤
12

M



PT+MAP [122] 65.1 71.3
Entropy-min [120] 67.5 82.9
LaplacianShot [125] 73.7 87.7
TIM [113] 74.8 86.9
α-TIM [123] 75.7 89.8
ASY ResNet12 (ours) 81.24± 0.27 87.27± 0.14

36M EASY 3×ResNet12 (ours) 83.63± 0.25 92.35± 0.09

2.6 Conclusion
In this chapter we introduced a simple feature extractor to perform few-shot classifi-

cation in both inductive and transductive cases. We combined it with augmented samples
and ensembling and showed its ability to reach state-of-the-art accuracies when deployed
using simple classifiers on multiple standardized benchmarks. Our method even outper-
formed previous methods by a fair margin (> 1%) in some cases.

2.7 What would we do differently now?
Since the beginning of this PhD, significant advancements have occurred in Few-Shot

Learning (FSL). One major shift is the replacement of training custom feature extractors
with the use of foundation models like visual CLIP and DINO v2, which offer strong,
off-the-shelf representations for nearly all domains. The study in [9] serves as an excellent
reference point for covering most of the methods developed in the field, though it provides
a holistic comparison of various approaches rather than a detailed, step-by-step ablation
of individual components. A valuable next step would be to break down these adaptation
methods into individual components and conduct a thorough ablation study.

Additionally, current benchmarks often combine visual information with language data
to enhance classifier performance [127, 128, 129]. An ablation study focused on the con-
tribution of semantic class information would also be highly beneficial in understanding
its impact.
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Chapter 3

ASSESSING ACCURACY UNCERTAINTY

WHILE CONSIDERING TASK

INTER-DEPEDANCE
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3.1 Introduction

The content of this chapter is largely based on our paper Oops, I Sampled it Again:
Reinterpreting Confidence Intervals in Few-Shot Learning [7] published in TMLR 2024.
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As discussed earlier, FSL study has led to a proliferation of new methods and novel
experimental protocols [130, 5, 4, 87]. Unlike conventional machine learning, which typ-
ically benchmarks methods using fixed training and validation splits, FSL faces distinct
challenges due to its reliance on very small and thus often biased training datasets. In
fact, the accuracy of FSL can vary significantly based on the choice of labeled training
samples [131].

CLIP DINO
NCM FT NCM FT

CLIP
NCM 0 0 0 0 + + − 0 +

FT − 0 0 0 + + 0 0 +

DINO
NCM + 0 0 + 0 + 0 0 −
FT + 0 0 + 0 0 0 0 0

Table 3.1 – Comparison of different methods for
few-shot classification. Each entry in the table
contains three elements: [With Replacement
(Closed), Without Replacement (Open),
Paired Tests (PT)]. Symbols + and − indicate
significant positive and negative differences, re-
spectively, between the method in the row and
the method in the column, while 0 denotes incon-
clusive results. The results are based on the DTD
test split (bottom-left triangle) and the Traffic
Signs split (top-right triangle) of MetaDataset,
with task sampling set to 5 shots, 5 ways, and
15 queries. Pay attention to the inversion
in bold. NCM (Nearest Class Mean), FT (Fine-
tune) with CLIP and DINO as feature extractors.
(CC-BY)

A common concern in Few-Shot
Learning (FSL), similar to traditional
machine learning, is identifying the
best-performing methods. In FSL, the
variability in performance based on
the choice of labeled data has led prac-
titioners to widely adopt the practice
of aggregating statistics across a large
number of artificially created tasks de-
rived from one or a few datasets. The
typical approach involves generating
these few-shot tasks by randomly sam-
pling the same dataset with replace-
ment, allowing the same samples to
appear in multiple tasks. By evaluat-
ing the performance across these nu-
merous tasks, researchers can calcu-
late the average accuracy and its con-
fidence interval (CI) for each method,
thus providing a statistically sound ba-
sis for comparing the effectiveness of
different approaches.

By allowing the same samples to
appear across multiple tasks, the computed CIs reflect the randomness of the sampler
rather than the data itself. These CIs are based on the standard Lindeberg-L’evy Central
Limit Theorem (CLT), which requires the underlying random variables to be independent
and identically distributed (IID) for the CIs to be statistically valid. This means that the
CIs currently reported should be seen as representing the likely range of outcomes if the
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experiment were repeated using exactly the same data. We refer to these as Closed CIs
(CCIs) throughout this chapter. However, what is often more relevant in machine learn-
ing is the range of outcomes if the experiment were repeated with data drawn from the
same underlying distribution, which we call Open CIs (OCIs). Although OCIs could be
derived by sampling tasks without replacement, this approach severely limits the number
of distinct tasks that can be generated from a given dataset. This constraint is particu-
larly problematic with smaller datasets, leading to potentially larger CIs and less decisive
comparisons between methods.

This chapter aims to underscore the importance of this key factor when calculating
CIs. We introduce approaches to tackle this challenge and achieve meaningful comparisons
while still incorporating data randomness. Our strategies involve: a) Paired Tests (PT),
where different methods are assessed on identical sets of generated tasks, and b) ensuring
tasks are appropriately sized. The discussion throughout the chapter centers on the specific
context of few-shot classification in vision, which remains the most widely studied area
within FSL research.

Our investigation using Open Confidence Intervals (OCIs) reveals that conclusions
drawn from the classical approach in few-shot learning can often be inconsistent. Notably,
we find that some methods previously reported as statistically superior to others are
actually indistinguishable when evaluated using OCIs, and the reverse can also be true.
Furthermore, we demonstrate cases where using Closed Confidence Intervals (CCIs) leads
to statistically significant conclusions that directly contradict those obtained through
Paired Tests (PT). An illustrative example is provided in Table 3.1, where we compare
various methods for few-shot classification based on their feature extractors (CLIP [58] or
DINO [132]) and adaptation techniques (Logistic Regression (LR), Nearest Class Centroid
(NCM), or Fine-Tuning (FT)). The table presents three conclusions for each pair of model
and method combinations: the first from the methodology in [9], which uses the common
approach of calculating CCIs; the second from OCIs; and the third based on PT. A result
where the row method outperforms the column method is indicated by +, while 0 signifies
no conclusive difference, and − indicates the column method outperforms the row method.
The upper triangular values in blue correspond to the Traffic Sign test split, while the
red lower triangle pertains to the DTD test split from the Metadataset benchmark by [8].
A particularly striking example emerges from the Traffic Signs dataset. When evaluated
with replacement tests, CLIP with the NCM adapter appears to underperform compared
to DINO with Fine-Tuning, yet this result is reversed when using paired tests. This starkly
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highlights the importance of carefully choosing measurement methods, as relying on the
wrong approach can lead to significant misinterpretations of the results.

Here are the main contributions of this work. They were first introduced in our pa-
per [7].

— We emphasized the critical role of considering data replacement when calculating
Confidence Intervals (CIs) for comparing FSL methods. Our study demonstrated
how the transition from closed to open CIs affects CI ranges on standard off-the-
shelf vision datasets.

— Through paired evaluations, where multiple methods are assessed on the same set
of generated tasks, we showed that this approach leads to more frequent conclusive
comparisons than relying solely on OCIs.

— We explored strategies for optimizing task generation from a given dataset, consid-
ering its size and the number of classes, to achieve narrower CIs and facilitate more
definitive comparisons between methods. This resulted in a benchmark tailored for
few-shot image classification.

3.2 Closed CIs vs. Open CIs
In this section, we aim to provide a clearer quantification of the differences between

CCIs and OCIs. To achieve this, we introduce relevant notations and describe algorithms
for task sampling. We then present a theoretical analysis to highlight the distinctions
between CCIs and OCIs, followed by an empirical comparison of their ranges on real
datasets.

3.2.1 A mathematical description of the problem

Standard Evaluation and Notations

The standard evaluation method in the field of few-shot classification is outlined in
Algorithm 1. A few-shot classification task, denoted as T = (K,S,Q), consists of a set of
classes K, a support set S = Sc∈K, and a query set Q = Qc∈K, where Sc and Qc represent
the support and query examples for each class c ∈ K.

Let K = |K| represent the number of ways (i.e., the number of classes in a few-shot
task), S = |Sc| denote the number of shots per class, and Q = |Qc| the number of queries
per class (assuming balanced classes for simplicity). Typically, few-shot evaluation involves
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constructing numerous tasks from a larger evaluation dataset.
An evaluation dataset, D = (C,X ), consists of a set of classes C and examples for all

classes, X = Xc∈C. Here, C = |C| ≥ K represents the number of classes, and N = |Xc| ≫
S + Q denotes the number of examples per class.

As noted in the introduction of this chapter, the prevailing approach to CI computation
assumes that D is fixed and deterministic, rather than probabilistic.

Algorithm 1 Predominant evaluation algorithm (CC-BY)

1: procedure Evaluate(T, K, S, Q, C, {Xc}c∈C) ▷ T tasks, K ways, S shots,
Q queries, set of classes C, set of data samples {Xc}c∈C

2: for t = 1, . . . , T do
3: K ← take(K, shuffle(C))
4: for c ∈ K do
5: Sc,Qc ← split(S, take(S + Q, shuffle(Xc)))
6: end for
7: fS ← FewShotLearn(S) ▷ S := {Sc}c∈K

8: Āt ← 1
KQ

∑
c∈K

∑
x∈Qc

1[fS(x) = c]
9: end for

10: Ā←Mean(A) ▷ Mean(A) := 1
T

∑T
t=1 At

11: σA ←
√

Var(A) ▷ Var(A) := 1
T −1

∑T
t=1(At − Ā)2

12: σĀ ← σA/
√

T

13: return Ā± 1.96σĀ ▷ 1.96σĀ = r(plimit = 95%)σĀ

14: end procedure

The standard few-shot task sampler generates T random tasks with K ways, S shots,
and Q queries from a dataset D, as described in Algorithm 1. This process introduces
additional randomness beyond the dataset itself, specifically in the selection of classes
and examples. Let Tt = (Kt,St,Qt) for t = 1, . . . , T represent the sampled tasks.

The accuracy for each task is computed as follows:

At = 1
KQ

∑
c∈Kt

∑
x∈Qtc

1[fSt(x) = c], (3.1)

where f is the model being evaluated, conditioned on the support set St.
The metric typically reported is the average accuracy across these multiple tasks. This
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is the focus of the next paragraph.

Computing Confidence Intervals

We calculate the accuracy At for the method on each task and then compute the mean
accuracy across all tasks as Ā = 1

T
(A1 + · · ·+ AT ). This leads to the following formula for

the variance:
Var[Ā] = Var[A1] + · · ·+ Var[AT ]

T 2 = Var[A]
T

. (3.2)

Assuming a sufficiently large sample size and that the mean Ā follows a normal distri-
bution as per the Central Limit Theorem, the 95% confidence interval can be calculated as
Ā± 1.96σĀ, where σĀ is the standard error (the standard deviation of the sample mean),
given by the formula:

CI = 1.96σĀ = 1.96 σA√
T

. (3.3)

It’s important to note that when dealing with a very small number of tasks, Student’s
t-distribution can be used instead. Additionally, while we used 95% confidence intervals
(CIs) as an example—since this is a common choice in the literature—this is ultimately
an arbitrary selection. For greater generality, we introduce a probability plimit for all
theoretical considerations moving forward, but we will continue using the 95

As the number of tasks T increases, it becomes inevitable that many tasks will reuse
examples, since they are constructed independently with replacement. Consequently, as
T grows large, the variance of the sample mean will converge to the conditional variance
Var[Ā | D], and the resulting confidence interval will reflect the likely range of outcomes
if the experiment were repeated with a different set of randomly selected tasks from the
same dataset. This means that such an interval does not provide any insight into how well
the method would generalize to a distribution.

Conversely, if T is kept small enough, the reuse of examples will be minimal, and the
assumption of independence might approximately hold, though this will likely result in a
significantly wider confidence interval.

We now empirically evaluate the differences between closed (tasks sampled with re-
placement) and open (tasks sampled without replacement) confidence intervals using real
datasets.
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3.2.2 Are OCIs larger than CCIs? An empirical study

In contrast to Algorithm 1, the task sampling process without replacement is de-
scribed in Algorithm 4 (see Appendix). This algorithm explicitly employs a Student’s
t-distribution estimator, anticipating that for some small datasets, only a limited number
of independent tasks can be generated. In this approach, the total number of tasks T is de-
termined by a specific stopping condition—namely, the exhaustion of the dataset—aimed
at minimizing the range of the resulting confidence intervals (CIs). Since each sample
is used only once, classes and examples can be considered as drawn independently and
identically distributed (IID) from underlying distributions p(C) and p(X | C). This is
why Open Confidence Intervals (OCIs) account for the inherent randomness in the data.

Algorithm 1 samples tasks with replacement and computes CCIs with Equation 3.3
while Algorithm 4 samples tasks without replacement and uses the student’s distribution
to compute OCIs.

For our experiments, we utilized datasets from the MetaDataset Benchmark, as de-
scribed in [8]. This benchmark includes 10 datasets, of which we employed 9, excluding
Imagenet, to focus on cross-domain results in line with recent trends in the literature
[133]. The datasets we used include Omniglot (handwritten characters), Aircraft, CUB
(birds), DTD (textures), Fungi, VGG Flowers, Traffic Signs, Quickdraw (crowd-sourced
drawings), and MSCOCO (common objects) [134, 135, 136, 137, 138, 139, 140, 141, 142].

[9] presents few-shot accuracies for 2000 tasks with 5-shots, 5-ways, and 15 queries,
in a comprehensive table covering various works on the MetaDataset datasets. The only
deviation in our study is the adoption of a T = 600 setting, which is more prevalent in
existing literature. If CCIs are found to be narrower than OCIs with this smaller T , the
difference will be even more pronounced with T = 2000 tasks, as shown in Equation 3.3.
Our primary reference for methods and models is the detailed compilation by [9], which
serves as the foundational starting point for our experiments.

Our findings, summarized in Table 3.2, present results across various few-shot meth-
ods and datasets. First, we observe that CCIs exhibit notable consistency, stemming from
the fixed number of tasks set at T = 600, which contrasts with the variability seen in
OCIs. Interestingly, CCIs are significantly narrower than OCIs for smaller datasets such
as Aircraft and DTD. On the other hand, for larger datasets like Quickdraw, CCIs be-
come broader than OCIs due to T = 600 being insufficient to fully deplete the dataset.
Specifically, the test splits for Aircraft and DTD contain 1,500 and 840 samples, respec-
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tively, while MSCOCO and Quickdraw have much larger test splits with 152,000 and 7.7
million samples, respectively. Across various datasets, models, and methods, CCIs are on
average 3.8 times narrower than OCIs. These results underscore the critical importance
of accurately interpreting Confidence Intervals, as the dramatic differences between OCI
and CCI ranges can lead to conflicting conclusions if misinterpreted.

Additionally, we observe that in cases where methods achieve near-perfect accuracy—such
as adaptation methods using CLIP (as opposed to DINO) on the CUB dataset—both
types of CIs tend to narrow. This is due to accuracy saturation at 100%, which reduces
the standard deviation of the accuracies.

Model CLIP DINO
Sampling W. Repl. W/O. Repl. W. Repl. W/O. Repl.

Dataset Name Dataset Size Method

DTD 840 LR 79.59 ± 0.52 84.00 ± 4.50 83.29 ± 0.51 86.10 ± 4.66
FT 76.87 ± 0.56 80.76 ± 5.60 81.82 ± 0.51 84.19 ± 5.76

VGG Flower 1,425 LR 98.30 ± 0.23 99.39 ± 0.84 97.48 ± 0.26 97.58 ± 2.07
FT 98.33 ± 0.23 99.27 ± 0.93 97.13 ± 0.29 97.45 ± 1.98

Aircraft 1,500 LR 75.79 ± 0.85 69.90 ± 5.59 59.04 ± 0.93 53.62 ± 5.66
FT 74.70 ± 0.85 68.95 ± 5.82 54.58 ± 0.94 49.81 ± 5.17

CUB 1,770 LR 96.85 ± 0.28 97.24 ± 1.88 92.06 ± 0.43 89.69 ± 4.03
FT 96.68 ± 0.29 97.07 ± 1.83 89.16 ± 0.52 87.47 ± 4.64

Omniglot 13,180 LR 90.55 ± 0.49 91.04 ± 0.89 93.67 ± 0.38 94.12 ± 0.79
FT 92.06 ± 0.48 92.83 ± 0.91 94.70 ± 0.36 95.09 ± 0.70

Fungi 13,463 LR 70.86 ± 0.88 74.78 ± 1.89 77.26 ± 0.75 81.64 ± 1.41
FT 68.03 ± 0.95 71.87 ± 1.96 74.02 ± 0.83 78.88 ± 1.68

Traffic Signs 39,252 LR 82.99 ± 0.87 77.02 ± 0.92 83.63 ± 0.92 75.58 ± 1.17
FT 83.64 ± 0.85 76.69 ± 0.96 84.20 ± 0.92 74.93 ± 1.23

MSCOCO 151,545 LR 72.27 ± 0.78 67.97 ± 0.63 76.05 ± 0.72 72.02 ± 0.60
FT 70.22 ± 0.79 65.97 ± 0.64 75.18 ± 0.75 71.19 ± 0.61

Quickdraw 7,710,295 LR 75.79 ± 0.66 75.54 ± 0.36 74.54 ± 0.68 74.07 ± 0.38
FT 76.18 ± 0.69 75.93 ± 0.38 74.10 ± 0.70 73.61 ± 0.39

Table 3.2 – Accuracies and associated CIs of methods on different datasets with and
without replacement in the sampling of tasks. The dataset size corresponds to the number
of images in each test split. FT and LR respectively stand for Fine-tune and Logistic
Regression. (CC-BY)

In the following sections, we explore the conclusiveness of comparative studies when
employing either Closed Confidence Intervals (CCIs) or Open Confidence Intervals (OCIs).
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3.2.3 Impact on Conclusiveness

First, we will review how confidence intervals are utilized to draw conclusions when
comparing methods. Suppose we have two variables of interest, x1 and x2, with their
respective plimit confidence intervals (a generalized version of 95% confidence intervals)
given by [x̄1 − δ1, x̄1 + δ1] and [x̄2 − δ2, x̄2 + δ2]. To conclude that x1 is smaller than x2,
we proceed as follows: if the two intervals do not overlap, and x̄1 + δ1 < x̄2 − δ2, then:

P (x1 < x2) > P (x1 < x̄1 + δ1 ∧ x2 > x̄2 − δ2) =
(

1− 1− plimit

2

)2
> plimit , (3.4)

where the (1− plimit)/2 term arises from the symmetry of the Gaussian distribution.
Given this context, the results presented in Table 3.2 can lead to varying conclusions

based on whether Closed Confidence Intervals (CCIs) or Open Confidence Intervals (OCIs)
are used. For instance, using the DTD dataset, CCIs facilitate clear comparisons between
different backbones and methods, whereas OCIs result in inconclusive comparisons due
to overlapping intervals. This discrepancy should not be viewed as a contradiction but
rather as an illustration of different paradigms for comparison. CCIs assess methods as if
they were applied to the same data, while OCIs evaluate them in terms of the underlying
distribution. To enhance the conclusiveness of method comparisons, we proposed [7] two
approaches: paired tests, discussed in Section 3.3, and task sizing, covered in Section 3.4.

3.3 Paired tests

3.3.1 Definitions

To mitigate the range of Open Confidence Intervals (OCIs), we suggest employing
paired tests. As noted in the introduction, FSL tasks vary greatly in difficulty, leading to
significant variance in accuracy across tasks. Interestingly, a task that is considered hard
for method A often presents a similar level of difficulty for method B. This correlation in
task difficulty between different methods, identified by [131], is supported by our findings.
As shown in Figure 3.1, which depicts accuracies on tasks generated from the Traffic
Sign dataset using two different feature extractor and adaptation method combinations,
there is a notable correlation of 0.675 between the two methods. This strong correlation
underscores the potential for reducing accuracy variance due to task sampling by utilizing
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paired testing.
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Figure 3.1 – Scatter plot of task accuracies
for two different combinations of feature ex-
tractor and adaptation methods on the Traf-
fic Signs benchmark. (CC-BY)

Formally, let us define ∆t = At − Bt

as the accuracy difference between method
A and method B on task t. The mean
difference across tasks is given by ∆̄ =
1
T

∑T
t=1 ∆t. While the mean of the differ-

ences is simply the difference between the
means, E[∆̄] = E[Ā]−E[B̄], the variance of
this difference can be significantly reduced
if the accuracies are positively correlated
across tasks.

Var[∆̄] = Var
[

1
T

T∑
t=1

∆t

]
= 1

T
Var [At −Bt]

(3.5)
since Var[X − Y ] = Var[X] + Var[Y ] −
2 Cov(X, Y ).

The reduced variance of ∆t compared to At results in a correspondingly narrower
confidence interval, as specified in Equation 3.3. Consequently, this can lead to situations
where two methods show significant differences when analyzed using paired testing, even
if no significant differences are observed when directly comparing the accuracies.

We conducted experiments comparing various methods to fine-tuning (FT), with the
results presented in Table 3.3. Each row in the table corresponds to a specific dataset and
feature extractor, while each column represents a combination of an adaptation method
and a feature extractor. The table displays two sets of conclusions: one based on direct
accuracy comparisons and the other based on paired tests. It is important to note that in
all cases, we utilized Open Confidence Intervals (OCIs), meaning that tasks were sampled
without replacement.

Furthermore, paired tests never yield conclusions that contradict those obtained from
direct accuracy comparisons. This consistency stems from the previously discussed prop-
erties of the mean of differences. The primary difference between the two methods lies in
their capacity to draw conclusive comparisons.

The fine-tuning adaptation method is used as the baseline in Table 3.3 primarily due
to its significant computational cost. This cost arises from the update the all weights in
the feature extractor and the head for each task. The goal is to assess whether fine-tuning
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offers superior performance compared to more cost-effective methods. In comparative
analyses focusing solely on the same feature extractor and excluding comparisons between
CLIP and DINO, fine-tuning often either performs worse than other methods or yields
inconclusive results. Specifically, FT outperforms other methods in only 4 out of 36 cases,
while it underperforms in 14 cases. All remaining instances are inconclusive. Therefore,
considering the substantial computational overhead, FT does not appear to offer a distinct
advantage. It is also important to note that the effectiveness of fine-tuning is highly
dependent on hyperparameters, meaning that any conclusions about this method are
contingent upon a specific set of hyperparameters [143].

For the nine datasets under consideration, we conducted a total of 135 unique compar-
isons, focusing on distinct pairs of (model, method) across two models and three methods.
Out of these, 57 comparisons yielded conclusive results using direct comparison with Open
Confidence Intervals (OCI), whereas 94 comparisons were conclusive when using paired
tests. This distribution is illustrated in Figure 3.6.

Table 3.1 demonstrates that the three methods for computing Confidence Intervals
(CIs) lead to differing assessments of significance between two methods, as illustrated for
the DTD and Traffic Signs datasets. Among the 114 cases where comparisons with re-
placement yielded conclusive results, approximately 23% (or 27 instances) show a pattern
where an initially significant comparison becomes non-conclusive under sampling with-
out replacement, but is conclusive again when paired tests are applied. Conversely, in
around 11% of the cases (or 12 instances) where a comparison was previously considered
significant, the paired test does not confirm conclusiveness.

A particularly striking example of inversion is observed in a case where a method
initially deemed significantly more accurate than another was found to be significantly
less accurate when using a paired test. This reversal occurred in the comparison of Fine-
tuning (FT) with DINO versus Nearest Class Centroid (NCM) with CLIP features on the
Traffic Signs dataset. This instance illustrates that a method may significantly outperform
another on a specific dataset but underperform when evaluated across the entire distribu-
tion. It underscores that the dataset can be an specific instance that favors one method.
This example highlights the critical importance of careful interpretation of Confidence
Intervals (CIs).
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Figure 3.2 – Variance of the average accuracy versus the number of queries with synthetic
data. The two classes are represented as 1D Gaussians N (−1, 1) and N (1, 1). The dataset
size is N = 1000 (500 samples per class). Tasks are sampled according to Algorithm 4, with
the number of shots fixed at 5. We fit this data using the model described in Equation 3.9
and observe a strong correspondence between the model and our experimental results.
(CC-BY)

3.4 Sizing tasks to narrow OCIs

A pertinent issue that arises from the previous discussion is how to size tasks when
performing sampling without replacement, with the aim of reducing the range of obtained
CIs. In this context, we fix the size of the support set at K ·S, leaving the number of queries
per task and per class Q as the variable to adjust. Increasing the number of queries will
inevitably reduce the total number of tasks we can construct, as shown in the following
equation. Assuming a balanced dataset, we can estimate the number of tasks T that can
be sampled by fully utilizing the dataset:

T ≈
⌊
|D|
|T |

⌋
≈
⌊

CN

K(Q + S)

⌋
, (3.6)

where |T | represents the total number of samples in each task, including both the
support and query sets.
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Increasing Q not only reduces the number of tasks but also impacts
√

Var(At), which
directly influences the CI. Thus, a trade-off emerges between the number of queries and the
number of tasks that can be generated, making it challenging to minimize OCIs effectively
for any given dataset.

When Ā is measured with a small T (which results in a large Q), the CI ranges
become quite broad, as outlined in Equation 3.3. Conversely, setting Q = 1 enables the
generation of numerous tasks (large T ) but introduces significant variance because class
accuracy tends to be either 0% or 100%. To address this, our objective is to find the
optimal number of queries, denoted as Q∗, that minimizes the variance of the average
accuracy Var(Ā) and thus the width of the CIs. We will first prove mathematically that
such an optimal Q∗ exists by deriving the expression for Var(Ā).

3.4.1 Mathematical derivation of Var(Ā)

Suppose tasks are drawn IID without replacement, we write the variance of Ā as:

Var
(
Ā
)

= 1
T

Vart (At) , (3.7)

with At the accuracy for an arbitrary task t. By definition of the variance,

Var (At) = E[(At)2]− (E[At])2. (3.8)

For a given support set, the expected accuracy for some class c is denoted µt,c.

µt,c ≜ EQt(1[fSt(x) = c] | St).

Then the expectation of At becomes

E[At] = ESt [µt,c],

Along the same lines, we can derive E[(At)2],

E[(At)2] = EStEQt [(At)2|St].

For a fixed St, 1[fSt(x) = c] and 1[fSt(x′) = c′] are not independent and their distri-
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bution will depend on the classes c and c′. Using Equation 3.1, we obtain .

E[(At)2] = 1
(KQ)2

∑
c

∑
c′

∑
x

∑
x′

EStEQt [1[fSt(x) = c]1[fSt(x′) = c′]].

We now separate cases where x = x′ from cases where c = c′ and finally cases where
both are different.

E[(At)2] = 1
KQ

ESt [µt,c] + Q− 1
KQ

ESt [(µt,c)2] + 1
K2

∑
c

∑
c′ ̸=c

ESt [µt,cµt,c′ ].

Using Equation 3.8, we find:

Var (At) = 1
KQ

ESt [µt,c] + Q− 1
KQ

ESt [(µt,c)2] + 1
K2

∑
c

∑
c′ ̸=c

ESt [µt,cµt,c′ ]− (ESt [µt,c])2.

Let us define some parameters,

m1 ≜ E[At] = 1
K

∑
c

ESt [µt,c],

m2 ≜
1
K

∑
c

ESt [(µt,c)2],

and
m3 ≜

1
K2

∑
c

∑
c′ ̸=c

ESt [µt,cµt,c′ ].

We get that
E[(At)2] = 1

KQ
m1 + Q− 1

KQ
m2 + m3.

This gives
Var (At) = 1

KQ
m1 + Q− 1

KQ
m2 + m3 − (m1)2.

Then, using Equation 3.6 (removing the rounding) and 3.7, we approximate:

Var
(
Ā
)

= K

NC
(αQ + β

Q
+ γ), (3.9)

with α = m2
K

+ m3 − (m1)2, β = S
K

(m1 −m2) and γ = m1
K
− m2

K
+ S

K
m2 + S(m3 − (m1)2).

First, let us notice that β > 0 since for µ ∈ [0, 1], µ2 < µ .
These parameters are difficult to estimate in particular when dealing with real datasets
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and methods. If α ≤ 0, then Var
(
Ā
)

is decreasing as a function of Q since Q ∈ N. In
the following, we focus only on cases where α > 0. This choice is supported by empirical
evidence, which we will present later, indicating a U-shaped relationship between the
variance of Ā and Q for a certain range of S. Assuming this, Var

(
Ā
)

reaches its minimum
at Q∗ =

√
β
α
. Next, we study what this entails as S and N vary.

3.4.2 Effect of S and N on Q∗

Based on the definitions of α and β provided in Equation 3.9, we determine that Q∗

increases with S and remains constant with respect to N . In this section, we provide
empirical evidence demonstrating that these theoretical findings hold true in practical
applications with real datasets.

We proposed [7] investigating the variance model of Ā in relation to Q using a simplified
1D sample representation. In our approach, we model two class distributions as Gaussians,
Ni = N (µi, σi) for i ∈ 1, 2. We generate an artificial balanced dataset of size N . Tasks
are sampled from this dataset until it is exhausted, following the process described in
Algorithm 4, with K and C set to 2. Using the NCM classifier, we calculate the accuracies
for these tasks to determine the average accuracy Ā. This process of creating synthetic
datasets from Gaussians and measuring Ā is repeated multiple times, yielding a set of
{Āj}j for specific parameters S, Q, N,N1,N2. We then compute the empirical variance
Var(Ā) based on these results.

In Figure 3.2, we present the measured Var(Ā) as a function of Q. The datasets
consist of 1000 samples evenly distributed between two classes, with the number of shots
set to S = 5. The model described in Equation 3.9 fits the data with high accuracy. The
discretization effect observed at high Q is attributed to the limited number of tasks. We
will next explore how S and N influence Var(Ā) and compare these findings with our
synthetic data experiments.

As S increases, the curve’s minimum shifts from Q∗ = 1 toward Q∗ → +∞, as il-
lustrated in Figure 3.3. This trend confirms the predictions of our model. When S = 1,
setting Q∗ = 1 results in two notable effects: (a) the high variance of At due to the small
support and query sets increases the variance of Ā, and (b) a low Q allows for a signifi-
cantly larger T , thereby reducing the overall variance of Ā, as described in Equation 3.3.
In contrast, for S ≥ 20, the scenario effectively becomes one of classical transfer learning,
where the narrowest confidence interval is achieved with a single task that has a large
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support and query set.
We also identify a third regime where, for intermediate values of S, Q∗ is nontrivial.

This regime is exemplified by the S = 5 case shown in Figure 3.3.
Regarding the effect of increasing N , Equation 3.9 suggests that Q∗ should remain

unaffected. Indeed, Figure 3.3 shows only a minor and likely negligible shift in Q∗ with
increasing N . We will now investigate how these findings apply to real-world datasets.
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Figure 3.3 – Variance of the average accuracy Ā and the number of tasks T across varying
settings of S and N , based on synthetic datasets with two 1D Gaussian distributions,
N (−1, 1) and N (1, 1). The left pair of graphs illustrates results with a fixed number of
shots (S = 5), whereas the right pair of graphs presents results for a constant sample size
in the synthetic dataset (N = 1000). (CC-BY)

Real Dataset Experiments

We now examine the results from real image datasets, which often have imbalanced
class distributions and varying numbers of classes. Our goal is to verify whether the
findings from synthetic data apply to these more complex scenarios.

Our analysis confirms that Q∗ remains independent of dataset size. However, a larger
dataset size increases T , which consequently scales the confidence interval (CI95%). Con-
sistent with synthetic data observations, we see a discretization of the confidence interval
at high Q values, corresponding to a lower number of tasks (T ).

The results across different shot settings (1, 5, and 10 shots) are consistent with
synthetic data patterns, as shown in Figure 3.4. For a 1-shot setting, the optimal number of
queries, Q, is 1. For 5-shot and 10-shot settings, the optimal values for Q are approximately
5 and 7, respectively. Figure 3.4 also demonstrates that using 15 queries is not effective in
narrowing the OCI. Similar trends for Q∗ are observed with DINOv2 as well, as detailed
as shown in Figure 3.5.
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Figure 3.4 – (Left) Confidence Interval ranges (Right) Corresponding number of tasks
generated. This experiment is conducted with CLIP. In all graphs the x-axis is the number
of queries Q. These results represent averages from multiple trials, with the number of
trials tailored according to the Task Count (T ). Some curves are stopped before Q reaches
100 because of the number of samples per class. We do not show Omniglot and Quickdraw
for visibility. (CC-BY)
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Figure 3.5 – This figure shows that the value of Q∗ is not dependent on the model used.
This experiment is conducted using DINO v2 instead of CLIP. (Left) Confidence Interval
ranges (Right) Corresponding number of tasks generated. In all graphs the x-axis is the
number of queries Q. These results represent averages from multiple trials on DINO v2,
with the number of trials tailored according to the Task Count (T ). Some curves are
stopped before Q reaches 100 because of the number of samples per class. We do not
show Omniglot and Quickdraw for visibility. (CC-BY)

86



3.5. Benchmark Proposal

3.5 Benchmark Proposal
Building on our earlier findings, we proposed [7] a straightforward benchmark that in-

corporates Paired Tests and selects the value of Q as the optimal one identified previously.
This approach assumes that the minimum of the confidence interval for ∆ also occurs at
Q∗, and implicitly that the covariance is independent of Q. These assumptions are sup-
ported by the increase in conclusive comparisons shown in Figure 3.6 when optimizing Q

and applying Paired Tests. Specifically, while Paired Tests alone resulted in 94 conclusive
comparisons, optimizing Q in conjunction with Paired Tests increased this number to 97
conclusive comparisons.
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Figure 3.6 – Impact of Paired Tests on the number of conclusive comparisons between all
possible pairs formed from combinations of models and methods across datasets (excluding
Omniglot for technical reasons) for 1, 5, and 10 shots. The Y-axis represents the number
of conclusive comparisons. For comparisons where Q is not optimized, we use Q = 15.
(CC-BY)

This histogram demonstrates that paired tests combined with optimized task sizes
yield the highest number of conclusive comparisons. The optimization of Q provides a
modest improvement over simple paired tests.

Let us define the baselines in this benchmark. In Table 3.4, we present results from
our evaluation using DINOv2 as the baseline model and the adaptation methods previ-
ously studied. Our experiments consistently reveal that, for a given model, fine-tuning is
generally less effective than both logistic regression and nearest class centroid methods.
Additionally, the choice of model proves crucial, with DINOv2 showing a distinct advan-
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tage over CLIP and DINO across most datasets. Our benchmark, including code, seed
values, task descriptions, and accuracy results, is available for reference and use.
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Model CLIP DINO DINOv2

Dataset Method LR LR LR NCM

Aircraft
1-shot 9.241 ± 4.274 25.931 ± 3.693 0.000 ± 1.161 -0.552 ± 1.091
5-shot 2.286 ± 7.402 16.143 ± 6.311 -2.286 ± 2.043 -1.286 ± 2.027
10-shot -0.816 ± 5.803 10.204 ± 5.083 -4.286 ± 2.568 -1.224 ± 2.565

CUB
1-shot 10.743 ± 2.067 25.486 ± 2.991 0.000 ± 0.000 0.000 ± 0.000
5-shot 2.545 ± 1.410 7.515 ± 2.150 0.121 ± 0.247 -0.121 ± 0.247
10-shot 1.008 ± 1.464 4.706 ± 3.114 0.000 ± 0.000 0.000 ± 0.000

DTD
1-shot 7.805 ± 4.722 5.122 ± 4.724 0.976 ± 1.941 0.488 ± 1.191
5-shot 8.750 ± 5.057 3.500 ± 4.109 -0.250 ± 1.979 0.000 ± 1.348
10-shot 4.762 ± 2.905 1.905 ± 4.392 -3.492 ± 3.253 -1.270 ± 1.937

Fungi
1-shot 15.357 ± 1.262 11.937 ± 1.174 -0.533 ± 0.507 0.235 ± 0.438
5-shot 10.247 ± 1.369 3.115 ± 1.225 -3.098 ± 0.658 -2.417 ± 0.677
10-shot 7.316 ± 1.286 0.584 ± 1.224 -2.879 ± 0.890 -1.753 ± 0.799

MSCOCO
1-shot 12.360 ± 1.013 8.820 ± 0.975 0.450 ± 0.377 0.180 ± 0.306
5-shot 9.952 ± 0.411 6.406 ± 0.389 -0.196 ± 0.187 0.172 ± 0.141
10-shot 8.181 ± 0.371 3.883 ± 0.354 -1.056 ± 0.204 -0.202 ± 0.158

Omniglot
1-shot -1.898 ± 1.227 -5.923 ± 1.163 -2.111 ± 0.793 -0.850 ± 0.755
5-shot 0.760 ± 1.016 -1.932 ± 0.954 -1.308 ± 0.564 -0.973 ± 0.628
10-shot 0.240 ± 1.136 -2.246 ± 1.027 -1.788 ± 0.669 -0.698 ± 0.733

Quickdraw
1-shot 4.590 ± 1.079 6.530 ± 1.049 -1.170 ± 0.547 1.760 ± 0.526
5-shot 6.016 ± 0.429 7.850 ± 0.449 -1.028 ± 0.210 -0.160 ± 0.235
10-shot 5.541 ± 0.331 6.454 ± 0.354 -1.109 ± 0.171 -0.266 ± 0.188

Traffic Signs
1-shot -1.770 ± 1.055 -0.600 ± 1.034 -0.920 ± 0.519 0.520 ± 0.467
5-shot -4.243 ± 0.820 -4.078 ± 0.673 -1.537 ± 0.396 -0.367 ± 0.395
10-shot -5.453 ± 0.948 -4.919 ± 0.781 -2.857 ± 0.453 -0.821 ± 0.443

VGG Flower
1-shot 4.576 ± 1.810 12.034 ± 2.243 0.000 ± 0.477 0.000 ± 0.000
5-shot 0.545 ± 0.829 2.182 ± 1.521 0.000 ± 0.000 -0.182 ± 0.378
10-shot 0.000 ± 0.000 1.039 ± 0.968 0.260 ± 0.579 0.260 ± 0.579

Table 3.4 – Comparative differences in paired tests. This table contrasts the performance
of DINOv2 with Fine-tuning (FT) against DINOv2 combined with Nearest Class Centroid
(NCM) or Logistic Regression (LR), as well as the performance combinations of CLIP with
DINO using LR. (CC-BY)
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3.6 Related Work
Few-Shot Learning Since the landmark studies of [94] and [5], the field of few-shot
learning has witnessed significant advancements. Most approaches leverage a pretrained
feature extractor, trained on a large, diverse dataset [144, 66, 145]. This feature extractor
can either be used directly on the target problem [64] or adapted for improved perfor-
mance [146]. The variety among proposed methods lies in how they integrate the pre-
trained feature extractor with their specific adaptation techniques [9]. Initially, bench-
marks such as MiniImageNet [94], Omniglot [134], and TieredImageNet [147] focused on
in-domain scenarios, where the feature extractor is trained on classes that are disjoint
from those in the target problem but originate from the same dataset. However, the field
has shifted towards cross-domain evaluations with the introduction of Meta-Dataset [8]
(MD) and later COOP [148], where the feature extractor is trained on a large, generic
dataset and then applied to a variety of domains, including fine-grain problems.

Several papers have focused on the concept of sampling tasks with targeted diffi-
culty for few-shot learning. In [149], the authors emphasize that model performance can
be enhanced by sampling meta-learning tasks of increasing difficulty. Other works, such
as [150] and [151], explore techniques like resampling failed meta-training tasks—identified
as challenging—or increasing the likelihood of including previously misclassified samples
or classes in future tasks, thereby directing the model’s focus to more difficult tasks. Esti-
mating task difficulty remains a complex issue, and various solutions have been proposed
to address this challenge [131].

The difficulty-based sampling approach discussed in [131] is pertinent to our research
as it allows for the sampling of groups of tasks with uniform difficulty, thereby reducing
the range of confidence intervals. However, our study utilizes paired tests, which elimi-
nate the need for such difficulty-based dependencies and offer a more broadly applicable
methodology. Paired tests themselves are not a novel aspect of our work. They were origi-
nally developed over a century ago to analyze changes in small populations over time [152,
153]. These foundational studies demonstrated that examining individual differences pro-
vides more statistical power and insights compared to analyzing average changes across
the entire population.

Confidence Intervals The concept of confidence intervals was introduced by Polish
mathematician Jerzy Neyman [154] in the early 1930s, complementing Fisher’s contem-
poraneous ideas with a distinct theoretical framework. While confidence intervals gained
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broader application and became a standard in medical research by the 1980s, they rely
on specific assumptions about the data distribution. In contrast, the bootstrap method,
developed by [155], provides a distribution-free approach for estimating ranges. Although
our study focuses on traditional confidence intervals due to their widespread use and es-
tablished understanding in few-shot learning literature, similar insights could be obtained
using the bootstrap method.

Challenges in Statistical Interpretation and Methodological Biases The issue
of misleading confidence intervals extends beyond our specific field. [156] have highlighted
pervasive misinterpretations of confidence intervals across various scientific domains. Com-
pounding this issue is the frequent tendency to overlook or underreport negative or null
(non-conclusive) results, which further skews interpretations. [157] emphasizes the need to
recognize and thoroughly analyze negative results in computer vision research. Addition-
ally, the impact of dataset biases on evaluation metrics has been extensively documented
by [158]. Their study, "Unbiased Look at Dataset Biases," reveals and quantifies vari-
ous biases, including selection, capture, and negative set biases, underscoring the critical
differences between dataset-based findings and real-world performance.

3.7 Limitations

One key limitation of our study is that for large datasets like MSCOCO or QuickDraw,
the conventional method of calculating confidence intervals (CI) can result in intervals
larger than our proposed OCIs. Therefore, in these cases, using the conventional CI may
not be an unreasonable approximation.

Additionally, while our mathematical model explains the origin of the minimum CI in
relation to Q, it falls short of providing a method to find this minimum analytically. This
is because estimating the parameters α, β, and γ in Equation 3.9 is not straightforward.

Moreover, as discussed at the conclusion of paragraph 3.2.2, achieving 100% accuracy
can adversely affect the computation of confidence intervals, particularly impacting the
value of the paired test CI in Equation 3.5.

Lastly, we acknowledge that paired tests introduce additional complexity. They require
a fixed seed and necessitate saving and sharing individual task accuracies when using the
benchmark and comparing methods.
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Figure 3.7 – The instance-conditional prompts learned by CoCoOp are much more gen-
eralizable than CoOp to the unseen classes © [2022] IEEE. Reprinted, with permission,
from [Kaiyang Zhou et al., Conditional Prompt Learning for Vision-Language Models ,
2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 27
September 2022]

3.8 Conclusion
In this study, we highlighted the significant disparity between Open and Closed mea-

surements of method accuracy in Few-Shot Learning. Specifically, while OCIs account for
data randomness, they tend to be much wider than CCIs. We pinpointed two key strategies
for reducing the width of OCIs and subsequently developed a benchmark incorporating
these strategies. Our results emphasize the critical importance of using confidence inter-
vals that reflect data variability in evaluations. We advocate for extending this practice
beyond classification and computer vision to all fields that utilize task-based few-shot
learning assessments.

3.9 What would we do differently now?
As mentioned in the related work section 3.6, FSL is now increasingly focused on

the CoOP [148] benchmark. In this benchmark, we make use of vision-language models
and their ability to cope open-set visual concepts. Instead of prompt-engineering a prefix
that corresponds to the task “This picture represent a <class> weather”, CoOP relies on
the learning prefix prompt tokens as shown in Figure 3.7. Later [159] made the prompt
conditional on the input image.

This benchmark uses the evaluation protocol in the CLIP paper [58] with 1, 2, 4, 8
or 16 shots for training. The reported accuracy is averaged over three tasks. The shots
are sampled from a train set. The query set is fixed and corresponds to the full test set.
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All the available classes are selected in the three tasks (K = C). This fixed setting has
several key advantages and drawbacks.

Advantages
— The absence of randomness in the shot sampling and query sampling makes the

benchmark highly consistent. Its interpretation is less misleading in the sense that
the number obtained has no CI.

— All classes within one dataset are sampled which is more realistic.
— Thanks to the visual-language models, the 1, 2, 4, 8 or 16 shots settings can be

compared to the zero-shot regime (only using semantic information).

Drawbacks
— CIs are usually not reported since there is no randomness in the task sampling.

Thus no conclusion on the distribution can be drawn.
— Averaging on only three tasks might not be enough to fairly assess the performance

of a method.
— The fixed query set means tasks are not independent.
— The sampled shots are with replacement meaning that they are even less indepen-

dent (although the probability of collision for one-shot is low it is not the case for
16 shots). 1

We think it would be of interest to evaluate how CIs could be created to estimate the
accuracy of methods on the distribution from which these datasets are sampled. That
would require the division of the dataset between independant splits for each task/seed 2.
It would also be interesting to evaluate the stability of the conclusions if the shots were
sampled from other seeds. Is three enough?

1. https://github.com/KaiyangZhou/CoOp/blob/ff61507c790454bce7c5052c3ac39e60772f1f89/
lpclip/linear_probe.py at line 29 and 37; replace = False simply means that the shots must be
different within one class/task but not across tasks.

2. In this setting we consider a new seed for each task see line 29 in the code.
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Model CLIP DINO
Method LR NCM FT LR NCM FT

Model Dataset

CLIP

Aircraft 00 00 ++ ++ ++
CUB 00 00 ++ ++ ++
DTD 0− 00 0− 0− 00
Fungi 0− 0− −− −− −−

MSCOCO −− 0− −− −− −−
Omniglot 0+ 00 0− −− −−

Quickdraw 0+ 00 ++ ++ ++
Traffic Signs 00 00 0+ ++ 0+
VGG Flower 00 00 0+ 0+ 0+

DINO

Aircraft −− −− −− 0− 00
CUB −− −− −− 0− 00
DTD 00 00 00 00 00
Fungi ++ ++ ++ 0− 0−

MSCOCO ++ ++ ++ 0− 0−
Omniglot ++ ++ ++ 0+ 00

Quickdraw −− −− −− 0− 0−
Traffic Signs 0− 0− 0− 0− 0+
VGG Flower 0− 0− 0− 00 00

Table 3.3 – Impact of Paired Testing on Significance Relative to Simple Comparison. In
this analysis, we compare the Finetune (FT) method against all other methods across
both CLIP and DINO models. The initial character in each pair denotes the significance
outcome determined without replacement, while the subsequent character reflects the re-
sult derived with paired testing. Here, 0 represents a non-significant difference, + indicates
a significantly higher accuracy of the FT method, and − conveys a significantly lower accu-
racy. The FT columns comparing CLIP and DINO are opposites of each other. (CC-BY)
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4.1 Introduction
The content of this chapter is largely based on our preprint Few and Fewer: Learning

Better from Few Examples Using Fewer Base Classes [10] from 2023, later extended and
improved in 2024.

As mentioned in the introduction, FSL considers problems where training data is
severely limited. It represents a challenge for deep learning, which typically requires large
datasets of training examples [144]. In these situations, the standard approach to leverage
deep learning involves transfer learning: training or selecting a pre-trained model a model
on a large, distinct "base dataset" to create a feature extractor, which then incorporates
additional knowledge from the "target dataset" to tackle the specific task. One of the most
straightforward transfer strategies is thus to embed the target data into an appropriate
feature space, and then to learn a simple classifier with minimal parameters in order to
avoid overfitting to the few labeled examples [64].

However, the success of transfer learning is heavily influenced by the similarity between
the base and target domains. Recent research [160] indicates that a significant domain
gap can actually hinder performance [161]. This chapter tackles the critical question: Can
the domain gap be reduced by fine-tuning on a subset of base classes that closely resemble
the target distribution? By focusing the model’s learning on a more relevant and narrowly
defined subset of base classes that are closely aligned with the target distribution, this
approach seeks to effectively minimize the domain gap and improve transfer learning
outcomes.

This challenges the notion that universal feature extractors can consistently deliver
high performance across any few-shot task, a prevalent assumption in the field [162].
While the prevailing literature suggests that leveraging foundational models trained on
vast Internet-scale datasets is the optimal approach for new problems with limited data,
our approach demonstrates that customized models can significantly outperform generic
ones on specific tasks. This finding underscores the No Free Lunch theorem [163], which
asserts that no single model is universally superior for all problems.
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In this chapter, we explore a powerful concept: starting with an off-the-shelf model
trained on a base dataset—referred to as the “base model” or “feature extractor”, we pro-
pose [10] fine-tuning it using only the most relevant classes from that same base dataset.
This approach aims to minimize the influence of classes that might negatively impact per-
formance on the target task, while preserving a sufficiently large pool of training examples
to avoid overfitting during fine-tuning. Our work prioritizes fine-tuning over pre-training
from scratch due to computational constraints, though we also explore pre-training on
subsets of the base dataset.

We explore the challenge of selecting a subset of base classes from a dataset, aiming
to fine-tune the feature extractor in a way that results in a feature representation with
improved inductive bias for a few-shot learning task.

In our study, we work with eight target domains from Meta-Dataset [8] within a cross-
domain framework. We find that, for the majority of these domains, fine-tuning a feature
extractor with a selected subset of ImageNet base classes enhances the target features used
by a Nearest Class Mean (NCM) classifier. Subsequently, we assess our approach under
three distinct scenarios: Domain-Informed (DI), Task-Informed (TI), and Uninformed
(UI), each representing varying levels of prior knowledge available about the target task.

The primary contributions of this work, previously submitted in our preprint [10], are
as follows:

— We demonstrated that accuracy can be improved by fine-tuning with a carefully
chosen subset of base classes.

— We proposed straightforward techniques for selecting this subset based on differ-
ent levels of information about the few-shot task, including either the few-shot
examples themselves or unlabelled data from the target domain.

— We explored the potential of using a pre-built library of feature extractors, each
fine-tuned on different class subsets. We evaluated various strategies for predefining
these class subsets and several heuristics for dynamically selecting a relevant class
subset during inference.

4.2 Background and related work

Terminology.
A few-shot classification task, also known as an episode, consists of a support set used

to train the classifier and a query set used to test it. The support set includes a limited
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number of examples per class. If there are K classes and each class has S examples, the
task is referred to as "S-shot K-way" classification.

When benchmarking few-shot learning methods, accuracy is evaluated on the query set
and averaged across a large number of tasks. Depending on the context, one may choose
between inductive few-shot learning, where each query is classified independently, and
transductive few-shot learning, where all queries are processed simultaneously, allowing
the classifier to leverage information from their joint distribution. In this chapter, we con-
centrate on inductive few-shot learning, though the techniques discussed can potentially
be adapted for transductive scenarios.

Few-shot paradigms.
In the literature, a common strategy for tackling few-shot tasks is to use a feature

extractor pre-trained on a large, general-purpose dataset referred to as the “base dataset.”
As mentioned earlier, this base dataset is often an internet-scale collection, and pre-trained
models are frequently off-the-shelf foundation models. However, to maintain better control
over the data used in training, we chose to pre-train our own model instead of relying
on foundation models. This approach also ensures a fair comparison with most methods
published at the time of our contribution, which adhere to the MetaDataset benchmark,
requiring strict control over the base dataset.

Various strategies have been proposed for training efficient feature extractors, includ-
ing meta-learning methods [6] and closed-form learners [5, 164, 165]. Some approaches
focus on directly learning a mapping from support examples and a query input to a pre-
diction [94, 166, 167, 168, 169, 170]. However, straightforward classical batch learning of
feature extractors has also demonstrated State-Of-The-Art performance [4], which is why
we opt for these simpler feature extractors in our work.

After selecting a feature extractor, various adaptation strategies have been explored [64,
8]. Simple classifiers like Nearest Neighbor or Nearest Class Mean (NCM) that require
no additional learning [64, 171, 5] have demonstrated competitive performance. Due to
their simplicity and effectiveness, we adopt this approach. Recent findings [9] also suggest
that our proposed methodology could enhance the performance of any feature extractor
training algorithm, providing further motivation for its use.

Lightweight adaptation of feature extractors.
Several previous works have aimed to develop task-specific feature extractors for few-

shot learning by introducing a limited number of task-specific parameters into the model,
often in the form of residual adapters [172] or Feature-wise Linear Modulation (FiLM)

98



4.2. Background and related work

layers [173]. In a multi-domain context, these parameters can be trained independently
for each domain [174, 175]. Alternatively, in other settings, task-specific parameters must
either be trained on the support set [176] or predicted from the support set through meta-
learning [177, 178, 168]. While feature adaptation has proven effective for multi-domain
few-shot learning, it becomes challenging in cross-domain scenarios due to the requirement
of training on the support set. Instead, this chapter, based on contributions form our
preprint [10], proposes updating all parameters of the feature extractor by revisiting the
base dataset and fine-tuning on a subset of relevant classes.

Selecting feature extractors or class subsets.
In our work, we consider a setting which requires selecting amongst feature extractors

that were each fine-tuned on a subset of base classes. Doing this requires predicting the
downstream performance of a feature extractor, a problem already considered in [179].
In this work, they proposed the RankMe metric that is a smooth measure of the feature
matrix rank.

[180] proposed to measure task similarity using the Fisher Information Matrix (FIM),
and demonstrated the ability of their proposed metric to select a feature extractor trained
on an appropriate subset of classes. The experimental section will show that straightfor-
ward measures such as cross-validation error perform at least as well as these more involved
measures when using a simple classifier in the few-shot setting.

[174] proposed to use a linear combination of features from several domain-specific
feature extractors, with coefficients optimized on the support set. Given that our objective
is not to obtain the highest accuracy but rather to investigate whether accuracy can be
improved using fewer base classes, we do not consider mixtures of features in this chapter.

Re-using the base dataset in transfer learning.
For small datasets training, it is critical to avoid over-fitting. As such, several works

have explored regularization techniques such as selective parameter updates [181] or aux-
iliary losses [182, 183, 184, 185]. In contrast, our approach leverages a subset of the base
dataset, informed by knowledge of the downstream task. Although this general concept
is not entirely new outside the context of few-shot learning, as previous studies have ex-
plored using the base dataset for more than task-agnostic pre-training, our application
was novel in this domain [10]. For instance, [186] demonstrated that transfer learning can
be enhanced by retaining a subset of base dataset classes during fine-tuning, employing
separate classifiers and losses for each dataset. Beyond manual class selection, they pro-
posed generating class subsets by solving Unbalanced Optimal Transport (UOT) for the

99



Chapter 4 – Less is More: How focusing a model on less data can improve downstream
Few-Shot Accuracy?

distance between class centroids in feature space.
Previous studies have used low-level image distances to select a subset of examples

(rather than entire classes) for inclusion in fine-tuning [187], or alternatively, selected a
subset of classes during the pre-training phase before fine-tuning exclusively on the target
dataset [188].

Although the works that focus on selecting class subsets are the most closely related
to this chapter, they all rely on fine-tuning with the target set and do not address the
few-shot setting, typically using at least 600 examples (which corresponds to 20% of the
Caltech 101 dataset).

In contrast, this work focuses on few-shot learning, where fine-tuning on the support set
is challenging [9]. We opt to work with subsets of classes rather than individual examples,
as this simplifies the problem, helps maintain dataset balance, and offers a straightforward
approach for selecting a feature extractor.

Domain adaptation.
In our work, we also introduce a Domain-Informed (DI) setting, which shares some

similarities with domain adaptation methods [189, 190] by leveraging unsupervised data
from the target domain.

4.3 Feature extractors for fewer base classes

4.3.1 Formulation
Our simple few-shot pipeline comprises three stages:

Step 1. Train a feature extractor with parameters θ with a labeled base dataset containing
classes C;

Step 2. Fine-tune the feature extractor on a specific subset of base classes C ′ ⊂ C to produce
the parameters θ′;

Step 3. Extract features for the query and support sets and perform NCM classification.

As mentioned in the introduction, the feature extractor is a deep neural network
fθ : Rm → Rn, trained alongside an affine output layer h, such that the composition h◦fθ

minimizes the softmax cross-entropy loss [4]. The Nearest Class Mean (NCM) classifier
computes the centroid of each class in the feature space and classifies new examples based
on the minimum Euclidean distance to these centroids.
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The canonical approach to few-shot learning [64] skips directly from Step 1 to Step
3, effectively setting θ′ = θ. However, this places high demands on the feature extractor,
expecting it to be universal, with its representations immediately applicable to any down-
stream task, even those from different domains. While much of the prior work in few-shot
learning has focused on enhancing Step 3, we propose the hypothesis that fine-tuning
on fewer base classes (resulting in a smaller dataset) could actually improve accuracy in
few-shot tasks. A 2D visualization of this effect on a 3-way task is provided below.
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Figure 4.1 – PCA of features of three classes before and after fine-tuning using DI (suc-
cessful example). We clearly observe an increased separability between classes orange and
blue. (CC-BY)

We now address the challenge of selecting a suitable class subset C ′. We explore three
different settings for class subset selection, each defined by varying levels of task knowl-
edge and constraints on running time. In the Task Informed (TI) setting, the support
set S is directly used to select the class subset C ′. This represents the ideal scenario, but
the computational cost of fine-tuning on a subset of the base dataset may be imprac-
tical, especially when multiple few-shot tasks need to be solved or when rapid classifier
deployment is required.

The Domain Informed (DI) setting considers cases where fine-tuning a feature
extractor for each few-shot task is infeasible, but a dataset D—a superset of classes from
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the same domain as S—is available to guide class subset selection, without requiring
labels. This is a realistic scenario, such as when a robot explores an environment and
collects a large number of unlabeled images from the target domain. DI selection also
benefits from providing a lower-variance estimate of the class subset, especially as the
number of shots in the support set decreases, though it introduces higher bias since the
examples do not perfectly match the few-shot task.

Lastly, Uninformed (UI) selection defines multiple class subsets C1, . . . , CL in ad-
vance, without any knowledge of the target domain. This approach introduces the addi-
tional challenge of selecting the most appropriate class subset (and corresponding feature
extractor) for a given support set. UI is particularly relevant for applications with strin-
gent computational or latency constraints, where a general-purpose set of specialists is
required.

The primary baselines to consider are the canonical approach using an NCM classifier
(i.e., skipping Step 2 as mentioned earlier) and fine-tuning on the support set (S).
The remainder of this section will focus on developing methods for selecting class subsets
in each of the previously outlined settings.

4.3.2 Choosing class subsets: Informed settings

The informed settings (TI, DI) involve selecting a subset of base classes C ′ ⊂ C based
on a set of examples X = {xi}i. In the TI setting, X corresponds to the support set,
whereas in the DI setting, X refers to the domain examples D, disregarding the labels.
The selected class subset C ′ will then be used to fine-tune the "base" feature extractor,
which was originally trained on the full base dataset.

Algorithm 3 Average Activation selection (TI, DI) (CC-BY)
Require: Base classes C, examples X = {xi}, pre-trained model with feature extractor h

and classifier g, class subset size M = 50
1: Compute average scores
2: p = 1

|X |
∑

xi∈X softmax(g(h(xi))
3: Sort p in descending order return C ′ := First M classes of p

To select a class subset, we need a method to identify which base classes are most rele-
vant for a given set of examples X , representing either the task or the domain. Fortunately,
the base model already includes a classifier that assigns a score to each base class. We
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propose a simple approach: compute the average class likelihoods predicted by the base
model on the novel set X , and select the M highest-scoring classes. This straightforward
strategy, referred to as Average Activations (AA), is described in Algorithm 3. 1

While this procedure does not guarantee the selection of the class subset that will
yield the optimal representation after fine-tuning, it serves as a low-cost and reasonable
approximation. In all experiments, we use M = 50 to ensure that the subset sizes are
comparable to those in the UI setting, which is described in the following section.

As a point of comparison, we also consider a more advanced selection strategy that
requires labels for the set of examples X used to inform the selection. Specifically, we
adopt the Unbalanced Optimal Transport (UOT) formulation from [186], which assigns
unit mass to the classes in both X and C and uses the distance between class centroids
to construct the cost matrix. All regularization parameters follow the settings from [186],
and similarly, we select the top M = 50 base classes based on the resulting (unnormalized)
marginals on C.

4.3.3 Choosing class subsets: Uninformed setting

In the uninformed setting, we address situations where fine-tuning the model on de-
mand is impossible. Our goal is to use off-the-shelf techniques to build a static library
of specialized feature extractors, each trained on class subsets determined in an unsuper-
vised manner. This allows us to select an appropriate class subset based on the support
set without additional fine-tuning.

To achieve this, we apply agglomerative hierarchical clustering to the base classes
using Ward’s method [191]. Each class is represented either by its centroid under the
base feature extractor hθ (visual features, V) or by a vector embedding of its name from
the text encoder of the publicly available CLIP model [58] (semantic features, Se). As
recommended in the original CLIP paper [58], we prepend "a photo of a" to the class
labels to improve representation quality.

We obtain final clusters by setting a distance threshold that produces eleven relatively
balanced clusters for the 712 classes in the ImageNet training split of Meta-Dataset [8].
This process is repeated for the concatenation of visual and semantic features (denoted
X), with both types of feature vectors normalized and centered prior to concatenation.
As a baseline for comparison, we also create a random (R) partitioning of the base classes

1. Although the softmax cross-entropy loss is invariant to an additive constant, this does not affect
the ranking of the unnormalized logits.
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into eleven subsets.
After clustering, a separate feature extractor is fine-tuned for each class subset, result-

ing in a static library of class subsets and corresponding model parameters (C ′
j, θ′

j). The
base model (C, θ) is also included in the static library.

4.3.4 Heuristics for selecting a feature extractor

Lastly, we address the challenge of selecting the most appropriate specialist feature
extractor given the support set for a new few-shot task. To tackle this, we propose a set of
heuristics that are expected to correlate with accuracy on the query set. These heuristics
leverage the labeled support set S, the feature extractor hθ′

j
, and the class subset C ′

j that
was used during fine-tuning.

We describe the heuristics here:

Leave-One-Out (LOO). Leave-One-Out (LOO) is a form of cross-validation applied
to the support set. In this approach, validation is performed by randomly selecting a
single element from the support set, excluding it from the calculation of class centroids.
This process is repeated multiple times, and the results are averaged to estimate accuracy.
To speed up computations, we isolate one sample per class in our experiments. LOO is
essential because it minimizes the impact on the training set, which is crucial in few-shot
settings. In such conditions, removing even a small number of elements from the support
set can significantly affect the classifier’s performance.

Signal-to-Noise Ratio (SNR). Signal-to-Noise Ratio (SNR) is another metric that
correlates with accuracy. In the case of isotropic Gaussian distributions, it serves as an
ideal heuristic for predicting theoretical accuracy. For two classes i, j, SNR is defined as
follows:

SNR(i, j) = δ

ξ
= 2∥E(N i)− E(N j)∥2

σ(N i) + σ(N j)
(4.1)

where E(N i) and σ(N i) represent the empirical expectation and standard deviation
of class i in the support set, respectively. In this context, δ is the margin between the class
centroids, and ξ refers to the noise, represented by the sum of the standard deviations.
For tasks involving more than two classes, the SNR is computed as the average over all
pairs of classes.
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Support Set Accuracy (SSA) SSA measures the accuracy of the support set using
an NCM (Nearest Class Mean) classifier. In this case, we evaluate a few-shot task where
the support set also serves as the query set, meaning the classifier is tested on the same
examples used for training. This provides a direct estimation of how well the model fits
the support set.

Support Set Confidence (SSC) SSC provides a confidence score and serves as a
soft version of SSA. It assesses how tightly grouped the shots are around their respective
centroids.

SSC ≃ E
(

max
i

(
softmax

k

(
−di,k

T

)))
(4.2)

Here, di,k represents the distance between a support sample i and the centroids k, with
T being the temperature parameter. Essentially, it measures how well the class samples
are clustered around their centroids.

Monte-Carlo Sampling (MCS). Monte-Carlo Sampling [192] generates virtual ex-
amples by sampling from regularized Gaussian distributions fitted to each class in the
support set to create an artificial validation set. In MCS, we first compute an empirical
covariance matrix and centroid for each class in the support set within the feature space.
Virtual data points are then generated in this space to reflect the distribution of the sup-
port set. These virtual data points are classified in the same way as any query examples,
and the resulting accuracy is used as a proxy for the actual performance. For single-shot
scenarios, an isotropic variance is applied.

Rank-Me (RKM). Rank-Me [179] is a heuristic that correlates with the performance
of downstream tasks, as introduced in [179]. This method involves defining a soft version
of the rank [193] and measuring this pseudo rank on a feature matrix derived from a
model. Higher ranks are indicative of better performance. In this approach, we use the
features of the support set to compute the rank.

FIM FIM corresponds to the Fischer Information Matrix as described in [180]. Fisher
Information Matrix provides a measure of task similarity using a probe network. We have
directly made use of their code to create embeddings for tasks and datasets. The Fisher
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information matrix (F) is defined as

F = Ex,y∼p̂(x)pθ(y|x)
[
∇θ log pθ(y|x)∇θ log pθ(y|x)T

]
(4.3)

that is, the expected covariance of the scores (gradients of the log-likelihood) with respect
to the model parameters θ. x are inputs and y are labels. p̂ is the empirical distribution
defined by the training set and p = σ◦h◦fθ the baseline model. fθ is the feature extractor,
h the classification head and σ the sigmoid function. The distance is measured using the
normalized diagonals of the FIM of datasets. Cosine distance is used. We used the probe
networks proposed by [180]. We compute the distances between clusters of base classes
and support sets from few-shot tasks.

AA Finally, Average Activation (AA), which was previously used for subset selection,
can also be applied here. Average Activation selects the cluster of classes that is most
activated by the support set of a task. The index of the chosen cluster s is given by:

s = argmax
i

 ∑
c∈Pi;x∈S

pθ(yc|x)
 (4.4)

where pθ(yc|x) represents the activation of the base class c for a given image x in the
support set S. Pi denotes the cluster of base classes i. We select the class subset that has
the highest cumulative activation in the support set for the task.

In contrast to other methods, the SNR, AA, and FIM heuristics can be used with just
a single shot. SNR addresses this challenge by focusing solely on between-class covariance
in the one-shot scenario. Additionally, except for AA, all heuristics require evaluating the
candidate feature extractor. Consequently, selecting a class subset will involve exhaustively
evaluating all feature extractors in the library, which typically involves only a few dozen
models.

To assess the effectiveness of our heuristics, we compare them against a random heuris-
tic (RH) that selects a feature extractor uniformly at random, as well as an oracle that
always chooses the feature extractor with the highest accuracy on the validation set. The
oracle represents an upper bound on the best possible performance for a given set of
few-shot tasks and feature extractors. However, this level of performance might not be
attainable with the available information.
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4.4 Experiments
We present results on eight datasets from the Meta-Dataset, excluding ImageNet and

QuickDraw. These datasets include Omniglot (handwritten characters), Aircraft, CUB
(birds), DTD (textures), Fungi, VGG Flowers, Traffic Signs, and MSCOCO (common
objects) [134, 135, 136, 137, 138, 139, 140, 142].

In the following, fine-tuning on the support set is one of our baselines, denoted as
S. We use the methodology proposed by [8] for fine-tuning with some minor differences
detailed in the Appendix.

In the following analysis, fine-tuning on the support set serves as one of our baselines,
denoted as S. We employ the fine-tuning methodology outlined by [8], with some minor
modifications detailed in the Appendix.

We consider three sampling procedures for generating few-shot tasks: 1-shot 5-ways, 5-
shots 5-ways, and the task-sampling procedure described by Meta-Dataset [8], referred to
as MD. The MD procedure involves tasks with a significantly larger but variable number
of shots and ways.

We report both the baseline accuracy and the performance improvement, or boost,
denoted as ∆, with respect to the baseline. For each dataset and sampling procedure, we
sample a fixed set of 600 few-shot tasks, which remains constant across all methods (S,
TI, DI, DI-UOT, TI-UOT).

Since accuracy is measured using the same set of tasks for all methods, the confi-
dence interval for the accuracy boost can be computed using paired trials. The confidence
intervals for the baselines represent the distribution of the sample mean across the 600
tasks.

4.4.1 Effect of informed class selection

The primary objective of our first experiment is to examine how fine-tuning feature
extractors on a subset of base classes before applying NCM classification impacts the
few-shot accuracy. In this experiment, we focus on the Average Activation (AA) selection
strategy in both Task-Informed (TI) and Domain-Informed (DI) settings. We compare
these results against fine-tuning directly on the support set, as well as the Unbalanced
Optimal Transport (UOT) selection strategy [186] applied in both DI and TI settings.

This comparative analysis allows us to evaluate how these different approaches affect
performance in few-shot tasks, shedding light on the effectiveness of various class subset
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selection strategies for fine-tuning.

Table 4.1 presents the baseline accuracies and relative performance boosts across all
settings for each dataset and few-shot sampling procedure. Table 4.2 shows the results
of using DI using logistic regression rather than the NCM classifier, following the no-
replacement sampling method described in Chapter 3. While most conclusions remain
consistent across the distributions, DTD stands as an exception, where the sample size is
too small to draw definitive conclusions. Throughout the paper, except for Table 4.2, all
confidence intervals (CI) are standard CCIs as defined in Chapter 3. In our discussion of
Table 4.1, which uses CCIs, we note that the results closely align with those from logistic
regression and OCIs. To clarify, OCIs refer to Open Confidence Intervals, which are CIs
derived when tasks are sampled without replacement. Further results, using CCIs with
logistic regression and MD sampling, are provided in Table 4.3 in the Appendix.

The results demonstrate that Domain-Informed (DI) selection of base classes can
lead to substantial accuracy improvements. On average, DI selection yields a boost of
+1.62± 0.08 points across all datasets and sampling methods. However, the performance
boost varies significantly across datasets, and this disparity is most pronounced for Traf-
fic Signs and Aircraft. For Traffic Signs, a consistent decline in accuracy is observed,
except when fine-tuning is applied with a sufficient number of shots. This is likely due to
the lack of visually similar images in ImageNet. For instance, while ImageNet contains
around 50 bird classes relevant to CUB, the most strongly activated class for Traffic Signs
is Nematode, which is unrelated to the domain of traffic signs. This is compounded by
the lower resolution and tightly cropped nature of Traffic Sign images, which differ sig-
nificantly from the higher-resolution images in ImageNet. The feature extractor, trained
on high-quality ImageNet images, may struggle to effectively capture fine details in low-
resolution images, further hindering its performance on Traffic Signs. It appears across
all experimental settings that any fine-tuning is particularly detrimental to the few-shot
performance on Traffic Signs.

Similarly, minimal gains on Aircraft are likely due to the limited presence of relevant
ImageNet classes, such as airliner and military plane, which may act as supersets of the
few-shot task classes. Relatively poor boosts are obtained on the Aircraft dataset because
it is almost fully captured by just two base classes. The ’airliner’ class may contribute to a
collapse of all Aircraft classes, causing confusion between them and reducing performance.
Paradoxically, closely related classes could be detrimental rather than helpful in this case,
suggesting that more research is needed to explore the potential impact of class collapse.

108



4.4. Experiments

Table 4.1 – The table shows the change in performance when fine-tuning on the support
set (S), using Task-Informed (TI) subset selection, Domain-Informed (DI) subset selection,
and DI-UOT subset selection. Positive boosts with overlapping confidence intervals are
highlighted in bold. Overall, DI achieves the best results, followed by TI, while S yields
the lowest performance. Additionally, the UOT selection strategy is outperformed by the
simpler AA selection. The full table, including UOT results for each dataset, is provided
in the appendix. (CC-BY)

Dataset Method 1-shot 5-ways 5-shots 5-ways MD
Baseline ∆ Baseline ∆ Baseline ∆

Aircraft
S

39.95 ±0.70
-3.60 ±0.64

63.18 ±0.74
-1.48 ±0.61

65.86 ±0.90
+5.33 ±0.69

TI -0.06 ±0.33 +0.26 ±0.31 +1.33 ±0.25
DI +0.34 ±0.32 +0.54 ±0.31 +1.32 ±0.27

CUB
S

64.34 ±0.90
-19.28 ±0.88

87.78 ±0.59
-18.97 ±0.63

79.29 ±0.90
-14.51 ±0.60

TI +2.64 ±0.44 +2.16 ±0.26 +1.08 ±0.19
DI +3.27 ±0.44 +2.29 ±0.26 +2.20 ±0.20

DTD
S

45.21 ±0.77
+0.66 ±0.77

70.10 ±0.59
-3.12 ±0.59

76.03 ±0.69
-6.67 ±0.69

TI +2.85 ±0.46 +2.77 ±0.33 +2.44 ±0.29
DI +2.90 ±0.48 +2.96 ±0.33 +2.78 ±0.31

Fungi
S

53.01 ±0.92
-6.59 ±0.74

74.87 ±0.80
-8.33 ±0.62

51.57 ±1.16
-15.05 ±0.53

TI +0.92 ±0.39 +1.67 ±0.30 +1.07 ±0.26
DI +1.07 ±0.41 +1.89 ±0.29 +1.38 ±0.25

Omniglot
S

61.80 ±1.03
-3.16 ±1.11

81.53 ±0.76
+3.53 ±0.85

59.51 ±1.31
-4.59 ±1.07

TI +2.65 ±0.38 +2.94 ±0.29 +3.74 ±0.23
DI +3.52 ±1.22 +3.57 ±0.81 +3.93 ±0.61

MSCOCO
S

43.91 ±0.85
-5.44 ±0.66

63.04 ±0.79
-6.20 ±0.63

44.99 ±0.99
-17.00 ±0.72

TI +1.27 ±0.35 +1.87 ±0.29 +1.85 ±0.17
DI +1.62 ±0.34 +2.09 ±0.30 +2.25 ±0.17

Traffic Signs
S

57.35 ±0.85
-4.67 ±0.66

74.11 ±0.78
+6.17 ±0.62

53.77 ±1.05
+0.77 ±1.00

TI -0.84 ±0.32 -1.22 ±0.25 -2.02 ±0.17
DI -0.79 ±0.95 -1.48 ±0.77 -1.82 ±0.44

VGG Flower
S

75.86 ±0.84
+0.19 ±0.79

94.46 ±0.33
-1.45 ±0.37

92.77 ±0.58
-5.18 ±0.51

TI +2.04 ±0.40 +0.64 ±0.18 +1.03 ±0.16
DI +1.88 ±0.41 +0.52 ±0.18 +0.84 ±0.16

Average

S -5.24 ±0.78 -3.73 ±0.61 -7.11 ±0.73
TI +1.43 ±0.38 +1.39 ±0.28 +1.31 ±0.21
DI +1.73 ±0.57 +1.55 ±0.41 +1.61 ±0.30

DI-UOT +0.63 ±0.47 +0.36 ±0.33 +0.32 ±0.28
TI-UOT +1.43 ±0.36 +1.10 ±0.44 +1.21 ±0.32
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Table 4.2 – The table shows the performance gains using Logistic Regression (5-ways 15-
queries) and compare the different sampling method and Confidence Intervals as explained
in Chapter 3. ∆ is the result of paired tests. (CC-BY)

1-shot No Replacement With Replacement
Dataset Baseline DI ∆ Baseline DI ∆
DTD 52.444 ± 5.013 53.481 ± 4.832 1.037 ± 4.303 48.990 ± 1.687 52.638 ± 1.653 3.648 ± 1.061

VGG Flower 80.615 ± 4.754 80.513 ± 4.105 -0.103 ± 1.831 77.600 ± 1.642 79.743 ± 1.602 2.143 ± 0.757
Aircraft 40.157 ± 2.766 42.353 ± 3.365 2.196 ± 1.267 42.124 ± 1.399 42.962 ± 1.550 0.838 ± 0.695

CUB 72.392 ± 3.900 74.745 ± 4.361 2.353 ± 1.418 67.343 ± 1.880 70.657 ± 1.840 3.314 ± 0.861
Omniglot 78.830 ± 1.924 82.422 ± 1.590 3.593 ± 2.369 79.581 ± 1.747 83.610 ± 1.613 4.029 ± 2.099

Fungi 50.735 ± 1.782 52.644 ± 1.817 1.910 ± 0.685 55.056 ± 1.882 56.567 ± 1.950 1.512 ± 0.767
Traffic Signs 57.328 ± 1.014 55.493 ± 0.972 -1.835 ± 0.993 59.543 ± 1.701 58.552 ± 1.840 -0.990 ± 1.758
MSCOCO 42.010 ± 0.510 43.004 ± 0.524 0.994 ± 0.203 44.914 ± 1.643 45.657 ± 1.740 0.743 ± 0.766

5-shots No Replacement With Replacement
Dataset Baseline DI ∆ Baseline DI ∆
DTD 73.905 ± 4.285 75.429 ± 3.802 1.524 ± 2.006 73.162 ± 1.260 74.962 ± 1.229 1.800 ± 0.597

VGG Flower 95.556 ± 1.639 95.889 ± 1.643 0.333 ± 0.626 95.267 ± 0.551 95.886 ± 0.490 0.619 ± 0.325
Aircraft 67.429 ± 3.598 65.810 ± 4.095 -1.619 ± 1.851 68.990 ± 1.572 68.810 ± 1.600 -0.181 ± 0.652

CUB 90.917 ± 3.474 92.167 ± 3.028 1.250 ± 1.019 90.019 ± 0.978 91.162 ± 0.987 1.143 ± 0.434
Omniglot 94.280 ± 0.762 96.346 ± 0.527 2.066 ± 0.829 94.457 ± 0.705 96.029 ± 0.564 1.571 ± 0.856

Fungi 74.552 ± 1.811 75.769 ± 1.728 1.217 ± 0.673 76.589 ± 1.422 77.572 ± 1.426 0.983 ± 0.570
Traffic Signs 79.010 ± 1.024 77.787 ± 1.009 -1.223 ± 0.796 81.800 ± 1.328 81.152 ± 1.386 -0.648 ± 1.414
MSCOCO 61.352 ± 0.606 62.246 ± 0.611 0.894 ± 0.200 65.095 ± 1.609 65.905 ± 1.586 0.810 ± 0.644
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These factors account for the considerable variability in performance boosts in the DI
setting, as further detailed in the Appendix. Figure 5.11 helps to clarify these results in
the context of the initial table presented in the chapter.

Interestingly, the assumption that class selection would only result in significant gains
for relatively easy tasks, or when the base feature extractor is already quite effective, is
not supported by the results. In fact, the improvements tend to be inversely correlated
with the baseline accuracy, with greater boosts observed when the initial accuracy is lower.
This inverse correlation between accuracy and performance boost is empirically evidenced
in Figure 4.4. For example, the poor performance on Aircraft and Traffic Signs may also
stem from the fact that these tasks rely more heavily on shape representation, whereas
the base feature extractor may prioritize color and texture, which are more beneficial
for datasets like CUB, VGG Flower, and DTD. Further exploration of this hypothesis is
required.

The results show that the Unbalanced Optimal Transport strategy [186] yields im-
provements that are either comparable to or worse than the simple Average Activation
approach. Notably, there is a significant performance decline on Omniglot, which has
the largest number of classes in its test split (659), suggesting that the algorithm’s hy-
perparameters are likely sensitive to the scale of the task and apparenlty led to a poor
convergence of the Sinkhorn algorithm used to compute the UOT [194].

The set of classes chosen by the Unbalanced Optimal Transport (UOT) method differs
substantially from those selected by the Average Activation (AA) strategy. We observed
that the Intersection over Union (IoU) between these class sets varied, ranging from 22%
for MSCOCO to 78% for CUB.

Task-Informed selection is frequently observed to slightly underperform compared to
Domain-Informed selection. This is particularly evident in the case of CUB, where the base
dataset includes a substantial number of relevant classes (birds) that can be leveraged for
class subset retrieval. This highlights the higher variance associated with selecting class
subsets from fewer examples (as shown in the Appendix). The results suggest that the
bias inherent in Domain-Informed selection is more advantageous than the variance of
Task-Informed selection, even in settings with larger data availability.

Fine-tuning on the support set (S) can be highly effective, particularly in higher data
regimes such as the 5-way 5-shot and Meta-Dataset (MD) task sampling. For instance,
boosts of up to ∆ = +6.17± 0.62 points were observed for 5-way 5-shot classification on
Traffic Signs. The baseline accuracy for Traffic Signs is notably low, likely due to the lack
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of relevant data in the base dataset. Consequently, fine-tuning on the support set can have
a significant positive impact, where other methods might only amplify or diminish the
influence of less relevant classes in the base dataset. A similar effect, albeit on a smaller
scale, may also be observed for Aircraft.

During our experiments, we found that fine-tuning on the support set is highly sen-
sitive to hyperparameter choices. Among the various configurations we tested (details
provided in the Appendix), fine-tuning often resulted in a considerable decrease in per-
formance. This suggests that the main challenge of this method is identifying the optimal
hyperparameters for each task without a validation set.

When the domain is known, Domain-Informed selection proves to be the most reliable
method for improving few-shot accuracy. This is particularly true in low-data scenarios
such as 1-shot 5-way classification, where it benefits significantly from the information
provided by unlabeled examples. Even in mixed sampling scenarios with more shots, DI
maintains its advantage, though the difference is less pronounced. When the domain is
unknown, Task-Informed selection is generally a safer alternative compared to fine-tuning
on the support set, which can sometimes lead to poor outcomes.

Overall, the results demonstrate that training with a smaller subset of base classes can
substantially enhance accuracy compared to using the full feature extractor. This supports
the notion that fine-tuning with a class subset can improve performance. Additionally, we
assessed this increased accuracy by measuring the silhouette score [195]. The silhouette
score for target features improved by ∆ = +0.0103 across all datasets, compared to an
average baseline silhouette score of -0.001.

4.4.2 Uninformed setting

Our second main experiment focuses on the Uninformed (UI) setting. We aim to assess
whether it is possible to achieve a performance boost relative to the baseline without
prior knowledge of the task during fine-tuning. This involves comparing methods for
unsupervised class subset construction and feature extractor selection. The results are
illustrated in Figure 4.2, which shows the performance improvements for each domain
and selection heuristic using MD sampling with both concatenated (X) and random (R)
subset constructions.

First, we note that we achieved a significant boost in accuracy in most cases. Both
MCS and SSA consistently improved performance across all our experiments when used
with the X subset design. This is particularly noteworthy as it highlights the potential
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Figure 4.2 – Difference in accuracy compared to the baseline after selecting feature ex-
tractors using various heuristics. Tasks are sampled according to the MD protocol. In
R (resp. X), heuristics select a feature extractor from the R (resp. X) library of feature
extractors. The oracle OR (resp. OX) identifies the best feature extractor for each task
within the R (resp. X) library. The Random Heuristic (RH) chooses a feature extractor
at random. SSA and MCS are the top-performing heuristics. A well-chosen class (X) is
particularly beneficial for datasets showing high performance boosts. (CC-BY)

for deploying such solutions in scenarios with stringent computational and latency con-
straints, supporting our second claim from the introduction.

It is not surprising that X generally outperforms R, especially in datasets where im-

113



Chapter 4 – Less is More: How focusing a model on less data can improve downstream
Few-Shot Accuracy?

provements are substantial, indicating that a well-designed subset is preferable. The X-
based oracle often achieves notably higher accuracy than its R-based counterparts al-
though it is not the case on certain datasets like MSCOCO. Some heuristics, such as AA
and FIM, seem to perform poorly with X. This issue arises especially with MSCOCO, a
dataset closely related to the ImageNet distribution. This suggests that meaningful subset
construction is particularly crucial when the target dataset is finer-grained or less similar
to the base dataset. Results for V, Se. (detailed in Figure 5.10 in the Appendix), and X are
comparable, with a slight edge for V, especially on the Traffic Signs dataset. Nonetheless,
we chose to present results for X due to its combination of orthogonal cues, making it
more robust in novel domains. We also show results with similar conclusions in the 1-shot
and 5-shot regimes in Figures 5.9 and 5.8.

Among the different heuristics, Support Set Accuracy (SSA) performs best on average
across datasets and subset constructions under MD sampling, with an average boost of
∆ = +1.13± 0.22 points. For 5-shot 5-way tasks, Monte-Carlo Sampling (MCS) delivers
the highest boost with ∆ = +0.78 ± 0.27 points. In 1-shot 5-way tasks, the Signal to
Noise Ratio (SNR) heuristic provides the best boost with ∆ = +0.74 ± 0.38 points. No-
tably, even under the challenging condition of a single shot per class, significant accuracy
improvements are achievable by using a feature extractor fine-tuned on a pre-determined
subset of base classes. The large gap between our methods and the oracle (denoted by
O) suggests that the maximum achievable boost is consistently above 2%, with potential
gains reaching up to 6%. Our heuristic outperforms previous methods such as FIM [180]
and RKM [179]. However, the heuristic based on Average Activation of the base classifier
was found to be less reliable across domains compared to our baseline.

4.4.3 Implementation details

In both the TI and S settings, fine-tuning is conducted for each task, limiting our
ability to explore the hyperparameter space for every case. This constraint is particularly
significant in the TI setting, where a full two-step fine-tuning process involving 50 classes
is required for each task, dataset, and sampling configuration. In contrast, for the DI
setting, we leverage the validation split to select class subsets, ensuring the process is
task-independent but still domain-dependent.

We used the Adam optimizer [196] to train the classifier during the first step and SGD
with Nesterov momentum of 0.9 [197] for the complete fine-tuning in the second step.
The learning rate was set to 0.001 with a cosine scheduler [105] to ensure comparability
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across settings. To focus on the effect of data selection, we limited the dataset size to 10k
examples. Fine-tuning was conducted for 10 epochs in the first step (with a frozen feature
extractor) and for 20 epochs in the second step (with an unfrozen feature extractor). A
simple ResNet-12 architecture was used as the feature extractor.

In the Appendix, we demonstrate that the DI setting can be further improved by using
heuristics to select feature extractors fine-tuned with different learning rates. We followed
standard procedures for training fθ, as outlined in [164, 4]. Experiments were run on two
GPU clusters, utilizing Nvidia A100s and V100s, while an Nvidia 3090-equipped machine
was used for prototyping our methods.

4.4.4 Discussion

We have also demonstrated that our findings extend to segmentation tasks, as shown in
Table 4.6 in the appendix. Our work touches on a broad range of questions, many of which
remain unexplored. For instance, we only briefly address the geometric and ontological
relationships between source and target classes, which are likely crucial in predicting the
direction and magnitude of the accuracy boost. Additionally, self-supervised fine-tuning
may outperform other approaches in scenarios where (a) none of the base classes are
directly relevant to the target domain, or (b) ontological relationships, such as inclusion,
exist between base and target classes (e.g., using a base class like "dog" to classify between
different breeds).

In the UI setting, we fixed the number of clusters, and in the DI and TI settings, we
fixed the number of selected classes. Our analysis demonstrates that this choice is near-
optimal for most datasets. Furthermore, a heuristic for determining the appropriate subset
size is provided in Figure 4.3. Future research could delve into analyzing these methods
in the context of domain shifts between support and query examples [198]. While we
intentionally left these areas unexplored to focus on other aspects, they present promising
directions for future investigation.

4.4.5 Ablation study on the number of selected classes

Another limitation of our study is the high computational cost associated with certain
heuristics (FIM, MCS, and LOO) and settings (TI, TI-UOT, and to a lesser extent, S). As
mentioned earlier, fine-tuning on the support set can be highly beneficial, but its success
is often hindered by challenges in optimizing hyperparameters. We believe that methods
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Figure 4.3 – Relative gain in accuracy compared to the baseline after fine-tuning (Do-
main Informed setting), with varying numbers of classes M selected using the Average
Activation (AA) method. The star markers indicate points where 90% of the cumulative
activation across classes is achieved. For all datasets except Aircraft and Fungi, the 90%
cumulative activation threshold is reached at approximately the same number of classes
(M ∼ 40), which corresponds to the peak relative gain compared to the baseline. Figure
5.11 illustrates the distribution of activation across classes. (CC-BY)

capable of predicting the accuracy of few-shot tasks could be invaluable for setting these
parameters more effectively.

Finally, we believe that fine-tuning is not the only solution for adapting embeddings
to a task. Carefully designed, data-dependent projections could offer fast, "on-the-fly"
solutions to boost performance, especially in situations where computational constraints
or task-specific adaptations are necessary.

Finally, can our results generalize to other models? According to [9], training and
adaptation algorithms are largely uncorrelated. This suggests that our adaptation method
could be effectively applied to any pre-training algorithm, offering flexibility across differ-
ent model architectures.

However, it is important to note that our approach focuses exclusively on inductive
classification. While inductive methods are frequently emphasized in academic research,
they are often less relevant in real-world industrial applications. In practice, tasks such
as predicting few-shot accuracy and using query set information to improve embeddings
are more critical for optimizing performance in these environments.
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Figure 4.4 – DI Boost versus baseline accuracy in 1-shot 5-ways for CUB. This refutes
the hypothesis that only problems which already enjoy high accuracy can benefit from
subset selection: rather, there is a negative correlation between boost in accuracy and
baseline accuracy (as mentioned in the chapter). The regular grid stems from the discrete
set of possible outcomes for 75 query examples (5 ways with 15 query examples per class).
(CC-BY)

4.5 Conclusion

In conclusion, this chapter presented several approaches for identifying relevant sub-
sets of base classes that, when fine-tuned, can significantly enhance accuracy in few-shot
tasks. Notably, fine-tuning on a subset selected from the unlabeled target domain proved
to be the most consistent strategy for improving performance. However, this approach
does not yield the same benefits across all datasets, leaving many questions unanswered.
We hope this will encourage the community to further explore this effect, particularly the
impact of dataset scale. Additionally, we proposed a straightforward strategy for building
an offline static library of feature extractors, from which one can be dynamically selected
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for few-shot tasks. As interest in foundational models that serve as universal embeddings
for downstream tasks continues to grow, we believe our work provides an intriguing coun-
terpoint for future research.

4.6 Appendix

4.6.1 Impact of learning rate on fine-tuning (DI selection)

We fine-tuned the baseline model on DI-selected subsets using various learning rates,
as illustrated in Figure 5.4, which demonstrates that the improvement in accuracy over
the baseline is highly sensitive to the chosen learning rate.

Given the significant impact learning rate has on final accuracy, we further propose
using our heuristics to identify the most appropriate learning rate. It’s important to note
that AA and FIM cannot be used to select learning rates for feature extractors, as these
methods are based solely on data selection, independent of the model. In Figures 5.5 and
5.6, we observe substantial performance improvements across most datasets. These figures
indicate that, for certain datasets, the heuristically selected learning rates can outperform
the previously reported rate of 0.001 from the main chapter.

4.6.2 About batch normalization during fine-tuning

During the fine-tuning process, both the feature extractor parameters and batch nor-
malization statistics can be adjusted to fit the selected subset. The most recent statistics
are estimated using moving averages, while the parameters are updated through gradi-
ent descent. To explore this further, we conducted experiments where the learning rate
was set to 0, meaning only the batch normalization statistics were updated. As shown
in Figure 5.4, updating only the batch normalization statistics can significantly enhance
performance, particularly in the case of Omniglot.

4.6.3 A closer look at the unsupervised selection of classes

The dendrograms constructed using Ward’s method are shown below. In Figures 5.13
and 5.14, we zoom in on the bird cluster. Both semantic and visual features display
a remarkable ability to identify a bird-related cluster, though each also includes some
anomalies (non-birds) and omits certain birds. Further details are provided in the figure
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captions. This highlights the reasoning behind our approach, which leverages both visual
and semantic features (X) for selection.

4.6.4 Logistic Regression Few-Shot Classifier

We confirmed that our method enhances feature quality even when using a Logistic
Regression (LR) classifier instead of the NCM classifier. As shown in Table 4.3, DI fine-
tuning consistently improves the representations, demonstrating a positive impact across
both classifiers.

Table 4.3 – Accuracy obtained using a Logistic Regression (LR) classifier for both the
baseline and proposed methodology (instead of NCM). (CC-BY)

Dataset 1-shot 5-ways 5-shot 5-ways MD
Baseline ∆ Baseline ∆ Baseline ∆

Aircraft 42.28 ±0.72 +0.07 ±0.42 68.50 ±0.69 -0.08 ±0.33 72.47 ±0.99 +0.88 ±0.27
CUB 65.28 ±0.82 +4.81 ±0.47 86.74 ±0.58 +2.91 ±0.29 77.85 ±0.93 +2.81 ±0.21
DTD 50.57 ±0.78 +1.88 ±0.50 72.02 ±0.60 +2.15 ±0.37 80.21 ±0.74 +1.92 ±0.31
Fungi 55.58 ±0.90 +0.45 ±0.45 76.32 ±0.76 +1.47 ±0.33 42.78 ±1.09 +2.59 ±0.27

Omniglot 66.41 ±0.99 +2.77 ±1.14 87.68 ±0.63 +1.86 ±0.66 64.45 ±1.35 +3.33 ±0.61
MSCOCO 46.97 ±0.87 +0.83 ±0.41 66.57 ±0.73 +0.60 ±0.32 44.42 ±1.09 +1.38 ±0.18

Traffic Signs 62.36 ±0.85 -1.16 ±0.93 83.96 ±0.64 -1.18 ±0.61 59.73 ±1.12 +2.78 ±0.38
VGG Flower 80.11 ±0.72 +1.50 ±0.38 95.15 ±0.30 +0.63 ±0.19 91.19 ±0.61 +1.91 ±0.19

Average 58.69 ±0.44 +1.39 ±0.23 79.62 ±0.35 +1.04 ±0.15 66.64 ±0.58 +2.20 ±0.12
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4.6.5 Training from Scratch

We compared the DI finetuning to training from scratch on the same DI subsets. We
report the results in Table 4.4. We see that only for omniglot, training on fewer, more
similar classes, helps. We used the same hyperparameters to train our baseline model.

This suggests that refining a universal feature extractor may be more effective than
training directly on a specialized dataset. This approach aligns seamlessly with the paradigm
of foundation models.

Table 4.4 – Accuracy obtained when deploying the proposed methodology training from
scratch on DI subsets (instead of finetuning). (CC-BY)

Dataset 1-shot 5-ways 5-shot 5-ways MD
Baseline ∆ Baseline ∆ Baseline ∆

Aircraft 39.95 ±0.70 -7.77 ±0.62 63.18 ±0.74 -19.12 ±0.64 65.87 ±0.90 -25.28 ±0.60
CUB 64.34 ±0.90 -8.13 ±0.85 87.78 ±0.59 -9.58 ±0.53 79.29 ±0.90 -14.43 ±0.42
DTD 45.21 ±0.77 -1.24 ±0.76 70.10 ±0.60 -6.98 ±0.53 76.03 ±0.69 -8.83 ±0.53
Fungi 53.01 ±0.92 -11.25 ±0.78 74.87 ±0.79 -15.54 ±0.61 51.57 ±1.16 -15.87 ±0.50

Omniglot 61.80 ±1.03 +3.10 ±1.26 81.53 ±0.76 +2.85 ±0.84 59.51 ±1.31 +3.82 ±0.66
MSCOCO 43.91 ±0.85 -5.52 ±0.62 63.04 ±0.79 -9.39 ±0.58 44.99 ±0.99 -10.37 ±0.35

Traffic Signs 57.35 ±0.85 -5.17 ±1.00 74.11 ±0.78 -4.17 ±0.77 53.77 ±1.05 -5.03 ±0.46
VGG Flower 75.86 ±0.84 -8.80 ±0.82 94.46 ±0.33 -6.94 ±0.46 92.77 ±0.58 -8.63 ±0.40

Average 55.18 ±0.44 -5.60 ±0.33 76.13 ±0.38 -8.61 ±0.29 65.47 ±0.55 -10.58 ±0.29

4.6.6 Silhouette scores

In Table 4.5, we present silhouette scores [195] (calculated using scikit-learn) that
demonstrate improved separability of target classes due to DI fine-tuning. These scores
offer insight into how well each sample is positioned within its class, reflecting both the
compactness and separation of the classes. Across all datasets, the silhouette score for
features in different classes increased by ∆ = +0.0103, compared to an average baseline
silhouette score of -0.001.
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Dataset Baseline Ours
Aircraft 0.0104 0.0096
CUB 0.0303 0.0317
DTD 0.0293 0.0460
Fungi -0.0436 -0.0342
Omniglot -0.0719 -0.0016
Traffic Signs -0.0279 -0.0374
VGG Flower 0.0919 0.0913
MSCOCO -0.0277 -0.0224
Average -0.0011 0.0103

Table 4.5 – Comparative Analysis of Silhouette Scores for Features Extracted Using Two
Different Backbones Across Diverse Datasets. (CC-BY)
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4.6.7 Segmentation Tasks

Table 4.6 shows that our DI finetuning improved representations for segmentation
tasks as well. This highlights the ability of our method to improve performances on dif-
ferent types of tasks.

Table 4.6 – mIOU, mIOU reduced (hard classes ignored, specific to Cityscape) and accu-
racy on the segmentation dataset of Cityscape [199] using the method developed in [200].
Our experiments compare DI feature extractors with our baseline feature extractor on the
same seeds (paired tests). (CC-BY)

Metric 1-shot 5-ways 5-shot 5-ways
Baseline DI Baseline DI

mIOU 18.46± 0.26 18.72± 0.25 22.76± 0.13 23.07± 0.13
mIOU Reduced 21.87± 0.31 22.17± 0.30 26.92± 0.15 27.28± 0.15

Accuracy 70.49± 0.38 71.13± 0.33 74.24± 0.14 74.78± 0.13

4.6.8 Feature space distortion or better features?

To determine whether the observed improvement is due to mere distortion rather
than an enhancement in representation, we conducted experiments in which the backbone
was kept fixed and only an additional linear layer (with bias) was trained on the class
subset. This setup allows the linear layer to potentially distort the feature space without
fundamentally altering the representation.

The results, presented in Table 4.7, indicate that training only this linear layer leads
to a decrease in the accuracy of the NCM classifier. This finding suggests that fine-tuning
does indeed improve the representation rather than merely distorting the feature space.
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Table 4.7 – Difference in performance between using the features from the backbone
directly vs. adding an extra linear layer, using DI subsets. We use the NCM classifier on
top each time. The Mode column give more details about the extra layer that is placed
just before the classification head. This extra layer is trained with the classification head
in the same way as step 1. When “Finetune" is added to the mode we simply also apply
step 2 (unfrozen backbone). “640x640" corresponds to a randomly initialized linear layer.
“640x640 Res" corresponds to the same layer initialized at 0 with a skip connection (c.f.
ResNet architecture). (CC-BY)

Dataset Mode 1-shot 5-ways 5-shot 5-ways MD

Average

640x640 Finetuned Res +1.71± 0.35 −0.08± 0.25 −1.19± 0.20
640x640 Res +0.59± 0.35 −2.18± 0.24 −3.66± 0.20
640x50 −1.69± 0.37 −6.64± 0.28 −10.44± 0.26
Finetuned 640x50 −0.80± 0.38 −5.60± 0.28 −8.83± 0.25
640x640 −0.32± 0.37 −3.77± 0.26 −5.82± 0.23

Aircraft

640x640 Finetuned Res −1.11± 0.85 −5.16± 0.76 −7.81± 0.59
640x640 Res −1.10± 0.84 −7.10± 0.73 −10.85± 0.61
640x50 −5.05± 0.86 −14.11± 0.74 −21.84± 0.66
Finetuned 640x50 −4.50± 0.81 −13.76± 0.77 −20.64± 0.66
640x640 −2.40± 0.87 −10.51± 0.73 −15.48± 0.60

CUB

640x640 Finetuned Res +8.02± 0.93 +1.82± 0.48 +0.49± 0.41
640x640 Res +9.37± 0.93 +1.24± 0.48 −0.41± 0.46
640x50 +6.37± 0.97 −1.80± 0.50 −6.38± 0.52
Finetuned 640x50 +7.86± 0.94 −0.92± 0.48 −4.82± 0.50
640x640 +9.13± 0.96 +0.51± 0.49 −1.73± 0.47

DTD

640x640 Finetuned Res +3.79± 0.99 +1.65± 0.66 −0.48± 0.63
640x640 Res +2.02± 0.97 +0.62± 0.66 −2.05± 0.61
640x50 +3.91± 1.01 −2.16± 0.63 −7.06± 0.67
Finetuned 640x50 +5.63± 0.99 −2.02± 0.66 −6.73± 0.65
640x640 +2.74± 1.02 +0.11± 0.65 −3.07± 0.62

Fungi

640x640 Finetuned Res −0.54± 0.99 −3.09± 0.67 −2.82± 0.56
640x640 Res −1.72± 0.98 −5.14± 0.67 −4.60± 0.56
640x50 −2.53± 0.98 −8.89± 0.69 −10.24± 0.60
Finetuned 640x50 −2.60± 0.98 −8.25± 0.67 −8.03± 0.58
640x640 −1.71± 0.99 −6.29± 0.67 −6.16± 0.62

MSCOCO

640x640 Finetuned Res +1.20± 0.98 +4.04± 0.70 +3.05± 0.46
640x640 Res +1.81± 0.99 +1.81± 0.75 +0.59± 0.45
640x50 +1.99± 1.02 +0.52± 0.76 −3.13± 0.46
Finetuned 640x50 +2.44± 0.97 +1.08± 0.76 −1.94± 0.46
640x640 +1.80± 0.98 +1.17± 0.77 −0.81± 0.45

Omniglot

640x640 Finetuned Res −0.42± 1.19 −0.84± 0.84 −1.61± 0.57
640x640 Res −5.16± 0.88 −6.10± 0.55 −7.43± 0.49
640x50 −11.48± 0.95 −15.09± 0.63 −17.28± 0.61
Finetuned 640x50 −9.04± 1.27 −11.78± 0.93 −13.66± 0.66
640x640 −7.93± 0.95 −9.24± 0.58 −10.78± 0.50

Traffic Signs

640x640 Finetuned Res +2.06± 0.92 +2.14± 0.71 +1.19± 0.44
640x640 Res +1.02± 0.95 −0.00± 0.70 −0.95± 0.43
640x50 −1.85± 0.94 −4.81± 0.74 −8.44± 0.45
Finetuned 640x50 −1.86± 0.95 −3.12± 0.73 −7.01± 0.46
640x640 −0.06± 0.94 −0.87± 0.72 −2.32± 0.43

VGG Flower

640x640 Finetuned Res +0.65± 0.91 −1.17± 0.38 −1.54± 0.33
640x640 Res −1.51± 0.95 −2.75± 0.38 −3.57± 0.34
640x50 −4.83± 0.96 −6.81± 0.47 −9.19± 0.43
Finetuned 640x50 −4.35± 0.93 −5.99± 0.47 −7.81± 0.41
640x640 −4.16± 1.01 −5.06± 0.43 −6.19± 0.40
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4.6.9 Support set fine-tuning

We adhered closely to the protocol outlined in [8] for fine-tuning on the support set,
employing several configurations. We reproduced three of these configurations, which are
reported as the best results. The performance, as shown in Table 4.8, is generally quite
low. This suggests that overfitting may be a significant issue due to the small size of the
training dataset.

4.7 What would we do differently now?
As noted in the introduction, this work commenced in 2022 and concluded in 2023,

reflecting the FSL paradigm of that period.
To align with current practices, we would adapt this work to the contemporary paradigm

by applying the two-step adaptation process to foundation models using subsets of their
training datasets.

These foundation models are frequently trained using contrastive learning [58] or self-
supervised learning [132]. It remains uncertain whether the improvements observed in this
study would transfer to these models. Our subset adaptation could take several forms:

— Classical supervised learning [201]
— Supervised contrastive learning
— Self-supervised methods
Since foundation models are trained on internet-scale datasets, applying Average Acti-

vation (AA) on such large-scale data poses significant challenges. Consequently, extensive
efforts would be required to obtain representative prototypes of subdomains in the training
data.
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Table 4.8 – Performance of fine-tuning on the support set with varying hyperparameters.
We could not explore more than three settings as these require long computational effort.
All Positive values are highlighted. Frozen signifies that only the last classification layer
was trained while the rest of the network was frozen. (CC-BY)

Sampling Dataset Frozen; lr = 10−3 lr = 10−3 lr = 10−4

1-shot 5-ways

Aircraft -12.24 ±0.73 -3.60 ±0.64 -6.64 ±0.66
CUB -18.04 ±0.86 -19.28 ±0.88 -25.52 ±0.97
DTD -3.74 ±0.88 0.66 ±0.77 -6.32 ±0.78
Fungi -10.90 ±0.81 -6.59 ±0.74 -14.91 ±0.87

Omniglot -29.13 ±1.06 -3.16 ±1.11 -21.17 ±1.08
MSCOCO -4.47 ±0.70 -5.44 ±0.66 -9.09 ±0.70

Traffic Signs -8.37 ±0.90 -4.67 ±0.66 -8.73 ±0.75
VGG Flower -20.69 ±1.15 0.19 ±0.79 -16.78 ±0.95

Average -13.45 ±0.85 -5.24 ±0.75 -13.64 ±0.81

5-shot 5-ways

Aircraft -24.55 ±0.85 -1.48 ±0.61 -11.71 ±0.67
CUB -15.60 ±0.82 -18.97 ±0.63 -25.50 ±0.70
DTD -16.33 ±0.84 -3.12 ±0.59 -9.49 ±0.62
Fungi -13.86 ±0.81 -8.33 ±0.62 -18.28 ±0.76

Omniglot -39.31 ±1.08 3.53 ±0.85 -22.57 ±1.09
MSCOCO -5.11 ±0.66 -6.20 ±0.63 -11.43 ±0.65

Traffic Signs -4.03 ±0.81 6.17 ±0.62 -0.67 ±0.62
VGG Flower -17.36 ±0.96 -1.45 ±0.37 -9.87 ±0.57

Average -17.02 ±0.81 -3.73 ±0.59 -13.69 ±0.68

MD

Aircraft -33.49 ±0.90 5.33 ±0.69 -16.98 ±0.82
CUB -18.49 ±0.65 -14.51 ±0.60 -39.36 ±0.80
DTD -24.93 ±0.94 -6.67 ±0.68 -11.06 ±0.63
Fungi -18.90 ±0.65 -15.05 ±0.53 -30.75 ±0.66

Omniglot -40.25 ±1.02 -4.59 ±1.07 -36.27 ±1.01
MSCOCO -8.85 ±0.44 -17.00 ±0.72 -20.21 ±0.50

Traffic Signs -14.70 ±0.57 0.77 ±1.00 -16.93 ±0.65
VGG flower -34.71 ±1.05 -5.18 ±0.51 -25.93 ±1.02

Average -24.29 ±0.76 -7.11 ±0.71 -24.69 ±0.74





Chapter 5

GENERAL CONCLUSION

5.1 Summary of contributions

In this thesis, we have explored several strategies to enhance the robustness, fairness,
and adaptability of Few-Shot Learning (FSL) models. Our work addresses key challenges
in FSL, focusing on building universal models that generalize well across tasks, establish-
ing more reliable evaluation protocols, and optimizing task-specific adaptation through a
data-centric approach.

In the second chapter, we presented a straightforward feature extractor designed for
few-shot classification in both inductive and transductive settings. By integrating it with
augmented samples and ensembling techniques, we demonstrated its capability to achieve
state-of-the-art accuracy when paired with simple classifiers across multiple standardized
benchmarks. In several instances, our approach surpassed previous methods by a notable
margin, exceeding 1% improvement in accuracy.

In Chapter 3, we demonstrated that the confidence intervals commonly reported in the
FSL literature can be misleading, as the conclusions drawn from them are often specific
to particular datasets rather than being representative of the overall data distribution.
We presented two methods to obtain more conclusive comparisons between pairs of FSL
methods. These include paired tests and task sizing.

In chapter 4, we showed that particularization to a FSL task from a general feature
extractor can be done in two steps. The gap is progressively closed using by finetuning
on a related subset of the pre-training or base dataset, then by adapting to the task in a
traditional way. This, to our knowledge is the first demonstration of improvement in the
FSL setting.
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5.2 General answer to the Problem statement
As demonstrated in Chapter 4, some components of the pre-training dataset might be

forgotten or discarded from the model weights to enhance transfer learning for few-shot
tasks. Consequently, we address the issue of adversarial samples in the training set of the
feature extractor. Our pre-adaptation approach allows us to focus more easily on selecting
which data to retain rather than which to discard. Additionally, we assessed the optimal
size of the subset of classes to retain in comparison to the full dataset. This optimal size
appears to be significantly influenced by the relationship between the base and target
domains.

This finding lends support to research focused on data-centric AI [202] and core set
approaches [203]. While the introduction of this thesis suggested that more data gener-
ally improves performance, our results add nuance to this view. A single high-performance
general-purpose model may not be the ultimate solution for every problem. This under-
scores the No Free Lunch theorem [163], which asserts that no single model is universally
optimal for all tasks. We hope this insight will also stimulate research into the adversarial
nature of specific modules, neurons, or feature dimensions within models for particular
tasks.

5.3 Outlooks and Future works

5.3.1 What is a real-world scenario?

In a context where companies are looking to integrate AI into their operations, re-
searchers may question the practical relevance of their focus. Criticizing and upgrading
academic benchmarks is not new [198, 204, 8, 205, 206]. In a large-scale study spanning
health institutions, scientific research, and industry, a comprehensive survey and steering
committee of their specific few-shot learning needs would provide valuable insights. Un-
derstanding the fundamental mismatches between computer science academia and outside
setting could foster the development of benchmarks that more closely reflects the com-
plexities of real-world problems.

Several key questions about what constitutes a real-world scenario remain open. A
first one within the context of computer vision is: how often is classification sufficient
as opposed to using more informative methods such object detection [207] or segmenta-
tion [208]?
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In the following, we limit the scope of the proposal to classification as it is the main
focus of this thesis. Even within classification several questions remain: for instance, what
target accuracy levels are necessary for successful deployment in real applications? Indeed,
once the target accuracy is reached it might be less relevant to obtain further gains of
performance. Should the support and query sets be sampled from the same distribution,
as highlighted by [198]? Should the support set be balanced, or can it be skewed to reflect
real-world class imbalances, as alluded to in [8]?

Moreover, many real-world scenarios involve the presence of data that does not belong
to any predefined class, underscoring the importance of Few-Shot Out-of-Distribution De-
tection (FSOOD) [209]. In FSOOD, the challenge extends beyond classifying known cat-
egories; it requires models to identify and correctly handle unknown or undefined classes
that should be categorized as other. Addressing this challenge enhances the robustness
and practicality of few-shot learning models when confronted with diverse, unpredictable
data distributions.

Furthermore, in certain real-world contexts, there may be a greater emphasis on maxi-
mizing recall for specific critical classes, potentially at the expense of precision. Investigat-
ing these trade-offs, along with the broader questions of class imbalance and distributional
shifts, would pave the way for research more closely aligned with solving real-world prob-
lems.

To address these questions effectively, we propose a two-step evaluation process in-
spired by ELO scores [210], designed to assess both the relevance of tasks and the effec-
tiveness/relevance of methods in few-shot learning.

Step 1: Task Evaluation Initially, institutions would use a dedicated software platform
featuring a range of few-shot learning tasks, without associated methods. The platform
would present pairs of tasks to the participants repeatedly. For each pair, participants
would evaluate and rank the tasks based on their relevance to real-world applications,
including factors such as:

— Practical Applicability: How well the tasks represent real-world challenges.
— Complexity and Diversity: The breadth of scenarios covered by the tasks.
— 0 and few-shot mix: Some scenarios might include classes defined by images and/or

text and/or sound and/or other modalities. For example, some rare animals may
only have been heard, their sound could be indicative for an detection using images.

— Other features of a task that were not listed here.
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This process helps identify which tasks are most relevant and useful for practical applica-
tions, providing a clearer understanding of what types of problems are most pressing for
industries and researchers.

Step 2: Method Evaluation In the second phase, the focus shifts to evaluating various
few-shot learning methods. Using the previously selected tasks, the software platform
would now present pairs of methods applied to these tasks. Participants would rank the
methods based on criteria such as:

— Accuracy and Robustness: Performance metrics including precision, recall, and
handling of out-of-distribution samples.

— Class Imbalance Handling: Effectiveness in managing skewed class distributions.
(if relevant on the task)

— Explanability and Interpretability
— Other information that might be relevant.
By separating the task selection from the method evaluation, this approach ensures

that the methods are assessed based on the most relevant and challenging tasks identified
in the first step. This two-tiered evaluation process helps industries and researchers under-
stand both the types of tasks they should focus on and which methods are most effective
for those tasks. It also provides valuable insights into the current literature, guiding future
research and practical implementations.

Finally, because the software is open-source, users can load their own problems locally.
This allows them to choose whether to disclose their data and to evaluate and rank
methods based on their specific tasks.

5.3.2 Feature Space Dynamics in transfer learning: Onthological
relations bewteen source and target

Ontological relationships between source (base) and target classes were discussed in
the thesis as potential factors that could either enhance or hinder performance of transfer
learning, though no definitive conclusions were reached. This project proposal aims to
explore this aspect more thoroughly.

For example, if the pre-training dataset includes broad classes (e.g., "dog") that serve
as supersets for some or all of the target classes (e.g., "malamute"), does this negatively
impact performance? Conversely, what happens if the target classes are supersets of the

130



base classes? This question is particularly important, as it is often assumed that training
samples from the same class tend to converge toward a single point in feature space, which
may reduce the ability to later differentiate between subclasses within that broader class.

In self-supervised and contrastive learning settings, the structure of the feature space
differs significantly [211, 212, 213]. How does this affect the conclusions previously drawn?

5.3.3 Alternative Methods to Incorporate Semantic Information
in the FSL-VLM Framework

In the current framework for few-shot learning (FSL), Vision Language Models (VLMs)
offer several advantages:

Clarifying tasks: FSL tasks are often subject to multiple interpretations. For in-
stance, the task may focus on the background rather than the central object in an image.
Providing a semantic representation of class labels can help mitigate this ambiguity [61].

Reducing shot variance: A semantic class representation can inform the model
of a class’s semantic center, helping to minimize shot variance. The shot might deviate
from this center for valid reasons—such as the targeted class not fully matching the
semantic description—or for less valid reasons, like the shot being a poor class prototype.
This raises an important question. In [133], it is demonstrated that for certain datasets,
learning with a linear probe on up to four shots does not surpass zero-shot performance.
This prompts the inquiry: when do shots provide real value, and how should visual and
semantic information be effectively combined?

However, utilizing semantic information in FSL is not limited to this approach. Could
such information guide the adaptation of visual models? A study has shown that CLIP
reveals property-specific roles of many attention heads (e.g., location or shape) [214]. We
suggest that coupling class semantic information with structured reweighting or pruning
of foundation models could be a promising approach. If the task involves birds, could the
contributions of attention heads unrelated to birds be reduced or even eliminated? This
pruning strategy could provide a hardware-efficient method to compress and specialize
models without traditional or parameter-efficient fine-tuning (e.g on embedded platforms
without backpropagation). This method might offer a more precise correction than simply
adding semantic information in VLMs. Moreover, it could potentially extend to purely
visual models, assuming their modules can be semantically interpreted.
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5.3.4 The Future Role of LLMs in FSL

Vision-Language Models (VLMs) are already capable of handling language-intensive
tasks like Visual Question Answering (VQA) [215] and Image Captioning [216]. However,
their language understanding and reasoning capabilities remain limited compared to pure
LLMs. What can external, dedicated LLMs contribute to enhance these models?

For practitioners with proprietary data (e.g., in sectors such as industry, defense, or
healthcare), LLMs could provide significant value by guiding models with information not
encountered during the pretraining of foundation models. For instance, users could prompt
the model to avoid specific pitfalls and direct it toward relevant aspects of the task. As
an example, a geologist might indicate that certain features in the data are irrelevant to
the task while others are potentially important, though their relevance is uncertain. This
opens the door for Human-in-the-loop AI, enabling highly specialized applications.

Additionally, LLMs can enhance the output phase by offering detailed explanations
for the model’s decisions. They could generate a comprehensive list of potential classifi-
cation patterns, along with corresponding rationales, and invite users to choose the most
appropriate interpretation for their specific needs.

This prompts important questions: What role might LLMs play in the future of vision-
based few-shot learning (FSL)? What unique knowledge or capabilities could they offer
that VLMs alone cannot? Are LLMs destined to merge with other modalities? Further-
more, could studying the distinctions between purely language-based models and multi-
modal models offer new insights into human cognition and representation in fields like
cognitive science and psychology?
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APPENDIX

5.4 Appendix of Chapter 2

5.4.1 Influence of the temperature in the transductive setting

Figure 5.1 shows how different values of the temperature β of the soft K-means changes
the accuracy. β = 5 leads to the best accuracies on the two considered datasets. Conse-
quently, we chose this value in our other experiments. In this experiment, we useed three
ResNet12 with 30 augmented samples.
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Figure 5.1 – Ablation study of Temperature of the soft K-means used in the transductive
setting. We perform 105 runs for each value of β. (CC-BY)

5.4.2 Influence of the number of crops

In Figure 5.2, we show how the accuracy of our methodology is impacted by the
number of crops ℓ used during Augmented Sampling (AS). When using ℓ = 1, we report
the performance of the method without using crops but using a simple global reshape
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instead. The performance monotonically increases along with the number of crops used.
A notable exception to this rule is a small drop of performance when switching from a
global reshape to crops. This drop is easily explained simply as few crops are likely to
miss the object of interest. However, the computational time to generate the crops also
increases linearly. Consequently, we use ℓ = 30 as a trade-off between accuracy and time
complexity. We use a single ResNet12 in these experiments.
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Figure 5.2 – Ablation study of Augmented Samples, we perform 105 runs for each value of ℓ.
(CC-BY)

5.4.3 Influence of the number of backbones

Figure 5.3 shows how the performance is influenced by the number of backbones b at
the Ensemble step (E). The performance increases steadily but saturates quickly. We use
30 augmented samples in this experiment.
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Figure 5.3 – Ablation study of the number of backbones, we perform 105 runs for each
value of b. (CC-BY)
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5.5 Appendix of Chapter 3: Additional results on the
benchmark

Algorithm 4 Full dataset no-replacement evaluation algorithm
1: procedure EvaluateUntilDepleted(K, S, Q, C, {Xc}c∈C) ▷ K ways, S shots, Q

queries, set of classes C, set of data samples {Xc}c∈C

2: Initialize T = {} ▷ List to store all tasks
3: while There are at least K classes in C with at least S + Q examples each do
4: K ← Randomly select K classes from C with at least S + Q examples
5: Initialize S = {} and Q = {}
6: for each c in K do
7: Sc ← Randomly select S examples from Xc

8: Qc ← Randomly select Q examples from Xc excluding Sc

9: Remove Sc and Qc from Xc

10: Add Sc to S
11: Add Qc to Q
12: end for
13: Add (S,Q) to T
14: end while
15: Initialize A = {} ▷ List to store all accuracies
16: for t ∈ T do
17: Add At to A ▷ Measure the accuracy of task t
18: end for
19: Ā = Mean(A)
20: δ95% = t(|A| − 1, 95%)

√
V ar(A)

|A| ▷ t is the critical value for the Student’t
distribution

21: return Ā± δ95%

22: end procedure

These results highlight the performance differences when using DINO and CLIP mod-
els with finetuning as baselines. Once again, finetuning generally underperforms compared
to other adaptation methods.
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Method LR NCM
Dataset Sampling

Aircraft
1-shot -0.690 ± 1.790 0.690 ± 1.519
5-shot -5.286 ± 2.802 -2.857 ± 2.731
10-shot -5.510 ± 3.391 -0.408 ± 3.290

CUB
1-shot -1.486 ± 1.467 0.914 ± 1.388
5-shot -2.182 ± 1.740 -0.970 ± 1.738
10-shot -4.874 ± 2.737 -3.529 ± 2.822

DTD
1-shot -1.220 ± 2.111 -0.488 ± 1.540
5-shot -1.750 ± 2.457 -0.250 ± 2.518
10-shot -2.540 ± 1.320 -1.587 ± 1.937

Fungi
1-shot -0.549 ± 0.561 1.427 ± 0.514
5-shot -3.166 ± 0.728 -1.770 ± 0.627
10-shot -3.658 ± 0.920 -3.009 ± 0.789

MSCOCO
1-shot 0.840 ± 0.389 0.000 ± 0.380
5-shot -0.846 ± 0.199 -0.210 ± 0.176
10-shot -2.488 ± 0.224 -0.695 ± 0.193

Omniglot
1-shot 2.976 ± 0.675 2.749 ± 0.724
5-shot 1.430 ± 0.484 -0.183 ± 0.556
10-shot 0.065 ± 0.560 -0.458 ± 0.656

Quickdraw
1-shot 1.800 ± 0.646 3.590 ± 0.691
5-shot -0.546 ± 0.267 -0.680 ± 0.303
10-shot -1.841 ± 0.223 -1.531 ± 0.260

Traffic Signs
1-shot 0.880 ± 0.429 1.310 ± 0.486
5-shot -0.900 ± 0.354 0.911 ± 0.372
10-shot -2.189 ± 0.400 0.725 ± 0.412

VGG Flower
1-shot -2.542 ± 1.755 1.695 ± 1.475
5-shot -0.545 ± 0.623 -0.909 ± 1.085
10-shot -0.519 ± 0.776 -0.519 ± 0.776

Table 5.1 – Paired test difference between DINO with FT and LR and NCC on DINO.
FT, NCC and LR respectively stand for Fine-tuning, Nearest Class Centroid, Logistic
Regression. (CC-BY) 155



Method LR NCM
Dataset Sampling

Aircraft
1-shot 0.828 ± 1.850 4.000 ± 2.033
5-shot 0.000 ± 1.934 0.571 ± 2.301
10-shot -3.469 ± 2.436 -5.510 ± 2.191

CUB
1-shot -0.229 ± 1.500 1.714 ± 1.313
5-shot -0.364 ± 0.962 -0.848 ± 1.266
10-shot -0.504 ± 0.934 -0.504 ± 1.297

DTD
1-shot -2.195 ± 2.184 2.195 ± 2.584
5-shot -2.500 ± 3.002 -2.000 ± 2.806
10-shot -5.079 ± 2.859 -4.444 ± 1.937

Fungi
1-shot -2.086 ± 0.747 0.439 ± 0.703
5-shot -3.217 ± 0.792 -2.826 ± 0.868
10-shot -4.394 ± 0.929 -4.069 ± 0.986

MSCOCO
1-shot -0.840 ± 0.536 1.670 ± 0.528
5-shot -2.090 ± 0.241 -0.970 ± 0.232
10-shot -3.099 ± 0.239 -1.503 ± 0.233

Omniglot
1-shot 4.723 ± 0.725 4.723 ± 0.799
5-shot 1.688 ± 0.606 0.532 ± 0.670
10-shot 0.371 ± 0.702 -0.087 ± 0.831

Quickdraw
1-shot 0.760 ± 0.731 4.940 ± 0.759
5-shot 0.226 ± 0.299 -0.284 ± 0.327
10-shot -0.376 ± 0.236 -0.754 ± 0.268

Traffic Signs
1-shot -0.500 ± 0.590 0.590 ± 0.606
5-shot -0.481 ± 0.373 -0.745 ± 0.449
10-shot -1.642 ± 0.418 -0.458 ± 0.478

VGG Flower
1-shot -1.356 ± 1.408 0.169 ± 1.305
5-shot -0.182 ± 0.665 0.000 ± 0.774
10-shot -0.519 ± 0.776 -0.519 ± 0.776

Table 5.2 – Paired test difference between CLIP with FT and LR and NCC on CLIP.
FT, NCC and LR respectively stand for Fine-tuning, Nearest Class Centroid, Logistic
Regression. (CC-BY) 156



5.6 Appendix of Chapter 4

5.6.1 Other tables and Figures
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Figure 5.4 – Boost in Accuracy compared to the baseline for various learning rates lr
using the DI selected feature extractor of each dataset. Learning rate is set to 0 when
only batch normalization statistics are updated. In the chapter we only show the case of
lr = 0.001. We observe a significant effect of the choice of the learning rate. (CC-BY)
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Figure 5.5 – Selection of learning rate in DI setting using heuristics in MD sampling. Fixed
corresponds to the performance of lr = 0.001 that was presented in the first table of the
chapter. Our methods outperforms the DI accuracy boost (Fixed) on Aircraft, Omniglot
and Traffic Signs. We use the different learning rates presented in Table 5.4 (CC-BY)
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Table 5.3 – Performance change using the fine-tuning on the support (S), with a Task-
Informed (TI) subset selection, a Domain-Informed (DI) subset selection, and DI-UOT
subset selection. All positive boosts with overlapping confidence intervals are bolded.
(CC-BY)

Dataset Method 1-shot 5-ways 5-shots 5-ways MD
Baseline ∆ Baseline ∆ Baseline ∆

Aircraft

S

39.95 ±0.70

-3.60 ±0.64

63.18 ±0.74

-1.48 ±0.61

65.86 ±0.90

+5.33 ±0.69
TI -0.06 ±0.33 +0.26 ±0.31 +1.33 ±0.25
DI +0.34 ±0.32 +0.54 ±0.31 +1.32 ±0.27

DI-UOT -0.25 ±0.33 -0.04 ±0.30 +0.86 ±0.27
TI-UOT -0.06 ±0.33 -0.01 ±0.30 +0.93 ±0.26

CUB

S

64.34 ±0.90

-19.28 ±0.88

87.78 ±0.59

-18.97 ±0.63

79.29 ±0.90

-14.51 ±0.60
TI +2.64 ±0.44 +2.16 ±0.26 +1.08 ±0.19
DI +3.27 ±0.44 +2.29 ±0.26 +2.20 ±0.20

DI-UOT +2.99 ±0.43 +2.07 ±0.27 +1.97 ±0.20
TI-UOT +2.64 ±0.44 +1.11 ±0.26 +0.96 ±0.19

DTD

S

45.21 ±0.77

+0.66 ±0.77

70.10 ±0.59

-3.12 ±0.59

76.03 ±0.69

-6.67 ±0.69
TI +2.85 ±0.46 +2.77 ±0.33 +2.44 ±0.29
DI +2.90 ±0.48 +2.96 ±0.33 +2.78 ±0.31

DI-UOT +2.26 ±0.51 +2.62 ±0.34 +2.82 ±0.32
TI-UOT +2.85 ±0.46 +2.44 ±0.32 +2.82 ±0.32

Fungi

S

53.01 ±0.92

-6.59 ±0.74

74.87 ±0.80

-8.33 ±0.62

51.57 ±1.16

-15.05 ±0.53
TI +0.92 ±0.39 +1.67 ±0.30 +1.07 ±0.26
DI +1.07 ±0.41 +1.89 ±0.29 +1.38 ±0.25

DI-UOT +0.74 ±0.40 +1.46 ±0.29 +0.91 ±0.25
TI-UOT +0.92 ±0.39 +1.51 ±0.28 +0.80 ±0.25

Omniglot

S

61.80 ±1.03

-3.16 ±1.11

81.53 ±0.76

+3.53 ±0.85

59.51 ±1.31

-4.59 ±1.07
TI +2.65 ±0.38 +2.94 ±0.29 +3.74 ±0.23
DI +3.52 ±1.22 +3.57 ±0.81 +3.93 ±0.61

DI-UOT -3.70 ±1.00 -5.02 ±0.68 -5.76 ±0.66
TI-UOT +2.65 ±0.38 +2.58 ±0.82 +2.46 ±0.62

MSCOCO

S

43.91 ±0.85

-5.44 ±0.66

63.04 ±0.79

-6.20 ±0.63

44.99 ±0.99

-17.00 ±0.72
TI +1.27 ±0.35 +1.87 ±0.29 +1.85 ±0.17
DI +1.62 ±0.34 +2.09 ±0.30 +2.25 ±0.17

DI-UOT +1.27 ±0.35 +1.75 ±0.29 +2.09 ±0.18
TI-UOT +1.27 ±0.35 +1.30 ±0.28 +2.05 ±0.18

Traffic Signs

S

57.35 ±0.85

-4.67 ±0.66

74.11 ±0.78

+6.17 ±0.62

53.77 ±1.05

+0.77 ±1.00
TI -0.84 ±0.32 -1.22 ±0.25 -2.02 ±0.17
DI -0.79 ±0.95 -1.48 ±0.77 -1.82 ±0.44

DI-UOT -0.48 ±0.33 -0.64 ±0.27 -1.26 ±0.18
TI-UOT -0.84 ±0.32 -0.99 ±0.77 -1.33 ±0.43

VGG Flower

S

75.86 ±0.84

+0.19 ±0.79

94.46 ±0.33

-1.45 ±0.37

92.77 ±0.58

-5.18 ±0.51
TI +2.04 ±0.40 +0.64 ±0.18 +1.03 ±0.16
DI +1.88 ±0.41 +0.52 ±0.18 +0.84 ±0.16

DI-UOT +2.18 ±0.40 +0.67 ±0.18 +0.90 ±0.16
TI-UOT +2.04 ±0.40 +0.90 ±0.17 +0.95 ±0.16

Average

S -5.24 ±0.78 -3.73 ±0.61 -7.11 ±0.73
TI +1.43 ±0.38 +1.39 ±0.28 +1.31 ±0.21
DI +1.73 ±0.57 +1.55 ±0.41 +1.61 ±0.30

DI-UOT +0.63 ±0.47 +0.36 ±0.33 +0.32 ±0.28
TI-UOT +1.43 ±0.36 +1.10 ±0.44 +1.21 ±0.32

159



SNR LOO MCS SSA SSC RKM RH Fixed

−2.5

0.0

2.5

5.0

7.5

∆
(%

)

Aircraft

Oracle

SNR LOO MCS SSA SSC RKM RH Fixed

−2.5

0.0

2.5

5.0

7.5

∆
(%

)

CUB

Oracle

SNR LOO MCS SSA SSC RKM RH Fixed

−2.5

0.0

2.5

5.0

7.5

∆
(%

)

DTD

Oracle

SNR LOO MCS SSA SSC RKM RH Fixed

−2.5

0.0

2.5

5.0

7.5

∆
(%

)

Fungi

Oracle

SNR LOO MCS SSA SSC RKM RH Fixed

−2.5

0.0

2.5

5.0

7.5

∆
(%

)

Omniglot

Oracle

SNR LOO MCS SSA SSC RKM RH Fixed

−2.5

0.0

2.5

5.0

7.5

∆
(%

)

MSCOCO

Oracle

SNR LOO MCS SSA SSC RKM RH Fixed

−2.5

0.0

2.5

5.0

7.5

∆
(%

)

Traffic Signs

Oracle

SNR LOO MCS SSA SSC RKM RH Fixed

−2.5

0.0

2.5

5.0

7.5

∆
(%

)

VGG Flower

Oracle

Figure 5.6 – Selection of learning rate in DI setting using heuristics in 5-ways 5-shots
sampling. Fixed corresponds to the performance of lr = 0.001 that was presented in the
first table of the chapter. Our methods outperforms the DI accuracy boost (Fixed) on
Aircraft, Omniglot and Traffic Signs. We use the different learning rates presented in
Table 5.4 (CC-BY)
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Figure 5.7 – Selection of learning rate in DI setting using heuristics in 1-ways 5-shots
sampling. Fixed corresponds to the performance of lr = 0.001 that was presented in the
first table of the chapter. In this case, the available data for the selection is not sufficient
to outperform Fixed. We use the different learning rates presented in Table 5.4 (CC-BY)
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Figure 5.8 – Difference of accuracy with baseline after feature extractor selection using
heuristics. Task are sampled following the 5-ways 5-shots sampling procedure. In R (resp.
X) heuristics select a feature extractor amongst the R (resp. X) library of feature extractor.
The oracle OR (resp. OX) selects the best feature extractor for each task in the R (resp.
X) library. The Random Heuristic (RH) picks a feature extractor uniformly at random.
(CC-BY)
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Figure 5.9 – Difference of accuracy with baseline after feature extractor selection using
heuristics. Task are sampled following the 1-ways 5-shots sampling procedure. In R (resp.
X) heuristics select a feature extractor amongst the R (resp. X) library of feature extractor.
The oracle OR (resp. OX) selects the best feature extractor for each task in the R (resp.
X) library. The Random Heuristic (RH) picks a feature extractor uniformly at random.
(CC-BY)
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Figure 5.10 – Difference of accuracy with baseline after feature extractor selection using
heuristics. Task are sampled following the MD protocol. In V (resp. Se.) heuristics select
a feature extractor amongst the V (resp. Se.) library of feature extractor. The oracle OV
(resp. OSe.) selects the best feature extractor for each task in the V (resp .Se.) library.
The Random Heuristic (RH) picks a random feature extractor. (CC-BY)
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Figure 5.11 – Logit activations of ImageNet classes when target datasets are processed by
the base model. While it may seem surprising that the ImageNet ‘Street sign’ class is not
strongly activated within the Traffic Signs dataset, this is because its tightly cropped, low
resolution images are highly dissimilar from the photographs of street signs in ImageNet.
Notice how Aircraft is almost fully captured by two classes. (CC-BY)

165



LOO MCS SSA SSC RH

−1

0

1

2

3

4

5

∆
(%

)

Aircraft

LOO MCS SSA SSC RH

−1

0

1

2

3

4

5

∆
(%

)

CUB

LOO MCS SSA SSC RH

−1

0

1

2

3

4

5

∆
(%

)

DTD

LOO MCS SSA SSC RH

−1

0

1

2

3

4

5

∆
(%

)

Fungi

LOO MCS SSA SSC RH

−1

0

1

2

3

4

5

∆
(%

)

Omniglot

LOO MCS SSA SSC RH

−1

0

1

2

3

4

5
∆

(%
)

MSCOCO

LOO MCS SSA SSC RH

−1

0

1

2

3

4

5

∆
(%

)

Traffic Signs

LOO MCS SSA SSC RH

−1

0

1

2

3

4

5

∆
(%

)

VGG Flower

OR

OV

OSe.

OX

R

V

Se.

X

Figure 5.12 – Ablation of the effect of R, V, Se. and X on a reduced number of heuristics
for readability. X is sometimes outperformed by V and Se. but overall X is the best.
(CC-BY)
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Figure 5.13 – Zoom over the birds (gray), reptiles (yellow) and monkeys (pink) of the
Semantic (Se.) dendrogram of classes built using Ward’s method. Notice that we used “a
photo of a" in front of each classes to improve the CLIP embedding. Out of the 44 classes
in the birds cluster 3 classes are not birds : The proboscis monkey, Yellow Lady’s Slipper,
Fox Squirrel. Their semantic relations to birds must explain their relation to this cluster.
Some ambiguous words like “Crane" or “Kite" might not be captured by the semantic
embeddings. (CC-BY)
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Figure 5.14 – Zoom over the birds (gray), reptiles (yellow) and buildings (pink) of the
Visual (Se.) dendrogram of classes built using Ward’s method. Notice that “Kite" was
classified as part of the birds for trivial reasons (kites in the sky can be mistaken for a
bird). (CC-BY)
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bib

apron
Christmas stocking

pencil box, pencil case
wallet, billfold, notecase, pocketbook
handkerchief, hankie, hanky, hankey

pillow
chain mail, ring mail, mail, chain armor, chain armour, ring armor, ring armour

cardigan
poncho
stole

dishrag, dishcloth
sock

mitten
wool, woolen, woollen

Windsor tie
bow tie, bow-tie, bowtie

suit, suit of clothes
lab coat, laboratory coat

groom, bridegroom
academic gown, academic robe, judge's robe

mortarboard
bearskin, busby, shako

military uniform
trench coat

abaya
cloak

bulletproof vest
jersey, T-shirt, tee shirt

sweatshirt
velvet

jean, blue jean, denim
sleeping bag
mosquito net
plastic bag

gown
hoopskirt, crinoline

overskirt
vestment
kimono

pajama, pyjama, pj's, jammies
miniskirt, mini

sarong
swimming trunks, bathing trunks

brassiere, bra, bandeau
bikini, two-piece

maillot
maillot, tank suit
feather boa, boa

fur coat
wig

cowboy hat, ten-gallon hat
sombrero

bonnet, poke bonnet
shower cap
bath towel

diaper, nappy, napkin
bathing cap, swimming cap

Band Aid
ice lolly, lolly, lollipop, popsicle

milk can
barrel, cask
bucket, pail

ashcan, trash can, garbage can, wastebin, ash bin, ash-bin, ashbin, dustbin, trash barrel, trash bin
rain barrel

mixing bowl
eggnog

espresso
coffee mug

cup
whiskey jug
coffeepot

teapot
vase

pitcher, ewer
water jug

nipple
pill bottle

lotion
sunscreen, sunblock, sun blocker

hair spray
punching bag, punch bag, punching ball, punchball

lipstick, lip rouge
rubber eraser, rubber, pencil eraser

beer glass
goblet

red wine
Petri dish
beaker

measuring cup
wine bottle
beer bottle

pop bottle, soda bottle
thimble

saltshaker, salt shaker
perfume, essence

water bottle
cocktail shaker
soap dispenser
running shoe

clog, geta, patten, sabot
sandal

cowboy boot
Loafer
holster

backpack, back pack, knapsack, packsack, rucksack, haversack
mailbag, postbag

purse
pickelhaube

breastplate, aegis, egis
cuirass

piggy bank, penny bank
teddy, teddy bear

crash helmet
football helmet

mask
ski mask

gasmask, respirator, gas helmet
knee pad
bottlecap

shield, buckler
tray

dial telephone, dial phone
lens cap, lens cover

face powder
waffle iron

manhole cover
coil, spiral, volute, whorl, helix

vault
golf ball

tennis ball
baseball

soccer ball
bolo tie, bolo, bola tie, bola

chain
necklace

scuba diver
jellyfish
bubble

dining table, board
folding chair

rocking chair, rocker
four-poster

quilt, comforter, comfort, puff
studio couch, day bed

crib, cot
bassinet
cradle

hamper
shopping basket

fire screen, fireguard
plate rack

paper towel
toilet tissue, toilet paper, bathroom tissue

bathtub, bathing tub, bath, tub
tub, vat

toilet seat
washbasin, handbasin, washbowl, lavabo, wash-hand basin

barbell
dumbbell

barber chair
espresso maker
pencil sharpener

toaster
iron, smoothing iron

vacuum, vacuum cleaner
letter opener, paper knife, paperknife

scabbard
screwdriver

ballpoint, ballpoint pen, ballpen, Biro
fountain pen

hammer
hatchet

cleaver, meat cleaver, chopper
spatula

plane, carpenter's plane, woodworking plane
can opener, tin opener
corkscrew, bottle screw

spindle
mortar
ladle

wooden spoon
shovel
broom

swab, swob, mop
drumstick

plunger, plumber's helper
matchstick

quill, quill pen
rapeseed

sandbar, sand bar
seashore, coast, seacoast, sea-coast

breakwater, groin, groyne, mole, bulwark, seawall, jetty
lakeside, lakeshore

geyser
volcano

cliff, drop, drop-off
promontory, headland, head, foreland

alp
valley, vale

triumphal arch
castle
palace

bell cote, bell cot
church, church building

monastery
dome

planetarium
mosque

stupa, tope
obelisk

beacon, lighthouse, beacon light, pharos
water tower

chainlink fence
turnstile

bannister, banister, balustrade, balusters, handrail
prison, prison house

shower curtain
theater curtain, theatre curtain

window screen
shoji

sliding door
window shade

maze, labyrinth
stone wall
tile roof

megalith, megalithic structure
hay

cliff dwelling
thatch, thatched roof

dam, dike, dyke
wreck

viaduct
steel arch bridge

suspension bridge
birdhouse

mobile home, manufactured home
barn

boathouse
picket fence, paling

worm fence, snake fence, snake-rail fence, Virginia fence
greenhouse, nursery, glasshouse

patio, terrace
apiary, bee house

lumbermill, sawmill
park bench
catamaran
trimaran
schooner

yawl
drilling platform, offshore rig

pirate, pirate ship
container ship, containership, container vessel

dock, dockage, docking facility
fireboat

liner, ocean liner
aircraft carrier, carrier, flattop, attack aircraft carrier

submarine, pigboat, sub, U-boat
horse cart, horse-cart

oxcart
barrow, garden cart, lawn cart, wheelbarrow

plow, plough
dogsled, dog sled, dog sleigh

bobsled, bobsleigh, bob
snowmobile

lifeboat
speedboat
gondola
canoe

paddle, boat paddle
space shuttle

airliner
warplane, military plane

airship, dirigible
balloon

parachute, chute
altar

throne
pedestal, plinth, footstall
lampshade, lamp shade

table lamp
yurt

mountain tent
umbrella
fountain

stage
totem pole

traffic light, traffic signal, stoplight
flagpole, flagstaff

pole
moped

motor scooter, scooter
bicycle-built-for-two, tandem bicycle, tandem

mountain bike, all-terrain bike, off-roader
jinrikisha, ricksha, rickshaw
tricycle, trike, velocipede

unicycle, monocycle
basketball
volleyball
rugby ball

ballplayer, baseball player
balance beam, beam

horizontal bar, high bar
parallel bars, bars

shopping cart
crutch

stretcher
pool table, billiard table, snooker table

croquet ball
ping-pong ball
racket, racquet

amphibian, amphibious vehicle
half track

tank, army tank, armored combat vehicle, armoured combat vehicle
snowplow, snowplough

steam locomotive
Model T
tractor
go-kart

lawn mower, mower
forklift

golfcart, golf cart
limousine, limo

beach wagon, station wagon, wagon, estate car, beach waggon, station waggon, waggon
minivan

grille, radiator grille
convertible

sports car, sport car
cab, hack, taxi, taxicab

racer, race car, racing car
bullet train, bullet

school bus
streetcar, tram, tramcar, trolley, trolley car
trolleybus, trolley coach, trackless trolley

electric locomotive
passenger car, coach, carriage
recreational vehicle, RV, R.V.

minibus
ambulance

police van, police wagon, paddy wagon, patrol wagon, wagon, black Maria
moving van

garbage truck, dustcart
trailer truck, tractor trailer, trucking rig, rig, articulated lorry, semi

fire engine, fire truck
tow truck, tow car, wrecker

jeep, landrover
pickup, pickup truck

Polaroid camera, Polaroid Land camera
reflex camera

carpenter's kit, tool kit
space bar
modem

cellular telephone, cellular phone, cellphone, cell, mobile phone
iPod

oscilloscope, scope, cathode-ray oscilloscope, CRO
cassette

radio, wireless
CD player

cassette player
tape player

chest
crate

chiffonier, commode
file, file cabinet, filing cabinet

wardrobe, closet, press
entertainment center

home theater, home theatre
monitor

television, television system
china cabinet, china closet

medicine chest, medicine cabinet
refrigerator, icebox
mailbox, letter box

pay-phone, pay-station
dishwasher, dish washer, dishwashing machine
washer, automatic washer, washing machine

desk
photocopier

microwave, microwave oven
safe

cinema, movie theater, movie theatre, movie house, picture palace
freight car
scoreboard
street sign

prayer rug, prayer mat
brass, memorial tablet, plaque

doormat, welcome mat
packet

book jacket, dust cover, dust jacket, dust wrapper
carton

binder, ring-binder
envelope

jigsaw puzzle
comic book

crossword puzzle, crossword
menu

tobacco shop, tobacconist shop, tobacconist
bookcase

bookshop, bookstore, bookstall
library

rotisserie
bakery, bakeshop, bakehouse
butcher shop, meat market

toyshop
confectionery, confectionary, candy store

grocery store, grocery, food market, market
shoe shop, shoe-shop, shoe store

barbershop
restaurant, eating house, eating place, eatery

junco, snowbird
water ouzel, dipper

jay
magpie

chickadee
brambling, Fringilla montifringilla

robin, American robin, Turdus migratorius
house finch, linnet, Carpodacus mexicanus

bulbul
coucal
macaw
lorikeet

goldfinch, Carduelis carduelis
hornbill
toucan

hummingbird
bee eater
jacamar

indigo bunting, indigo finch, indigo bird, Passerina cyanea
peacock
flamingo

cock
hen

African grey, African gray, Psittacus erithacus
sulphur-crested cockatoo, Kakatoe galerita, Cacatua galerita

great grey owl, great gray owl, Strix nebulosa
bald eagle, American eagle, Haliaeetus leucocephalus

kite
vulture

ptarmigan
quail

ruffed grouse, partridge, Bonasa umbellus
partridge

black grouse
prairie chicken, prairie grouse, prairie fowl
red-backed sandpiper, dunlin, Erolia alpina

dowitcher
bittern

limpkin, Aramus pictus
ostrich, Struthio camelus

bustard
white stork, Ciconia ciconia
black stork, Ciconia nigra

goose
pelican

albatross, mollymawk
little blue heron, Egretta caerulea

crane
spoonbill

American egret, great white heron, Egretta albus
red-breasted merganser, Mergus serrator

oystercatcher, oyster catcher
ruddy turnstone, Arenaria interpres

redshank, Tringa totanus
European gallinule, Porphyrio porphyrio

black swan, Cygnus atratus
American coot, marsh hen, mud hen, water hen, Fulica americana

drake
king penguin, Aptenodytes patagonica

squirrel monkey, Saimiri sciureus
marmoset

titi, titi monkey
three-toed sloth, ai, Bradypus tridactylus

capuchin, ringtail, Cebus capucinus
howler monkey, howler

spider monkey, Ateles geoffroyi
baboon

macaque
guenon, guenon monkey

patas, hussar monkey, Erythrocebus patas
orangutan, orang, orangutang, Pongo pygmaeus

proboscis monkey, Nasalis larvatus
siamang, Hylobates syndactylus, Symphalangus syndactylus

gorilla, Gorilla gorilla
chimpanzee, chimp, Pan troglodytes

Madagascar cat, ring-tailed lemur, Lemur catta
gibbon, Hylobates lar

langur
colobus, colobus monkey

indri, indris, Indri indri, Indri brevicaudatus
Angora, Angora rabbit

hamster
guinea pig, Cavia cobaya

echidna, spiny anteater, anteater
porcupine, hedgehog

marmot
beaver

fox squirrel, eastern fox squirrel, Sciurus niger
wood rabbit, cottontail, cottontail rabbit

hare
wombat

hog, pig, grunter, squealer, Sus scrofa
wild boar, boar, Sus scrofa

warthog
koala, koala bear, kangaroo bear, native bear, Phascolarctos cinereus

wallaby, brush kangaroo
llama

hartebeest
impala, Aepyceros melampus

gazelle
Indian elephant, Elephas maximus

tusker
African elephant, Loxodonta africana

ibex, Capra ibex
ram, tup

bighorn, bighorn sheep, cimarron, Rocky Mountain bighorn, Rocky Mountain sheep, Ovis canadensis
sorrel

Arabian camel, dromedary, Camelus dromedarius
bison

ox
water buffalo, water ox, Asiatic buffalo, Bubalus bubalis

guacamole
broccoli

head cabbage
cauliflower
honeycomb

corn
ear, spike, capitulum

jackfruit, jak, jack
custard apple
pot, flowerpot

artichoke, globe artichoke
pineapple, ananas

yellow lady's slipper, yellow lady-slipper, Cypripedium calceolus, Cypripedium parviflorum
strawberry

pomegranate
hip, rose hip, rosehip

buckeye, horse chestnut, conker
fig

acorn
zucchini, courgette

cucumber, cuke
bell pepper

Granny Smith
orange
lemon
banana

acorn squash
spaghetti squash
butternut squash

dough
French loaf

bagel, beigel
pretzel

cheeseburger
hotdog, hot dog, red hot

carbonara
meat loaf, meatloaf

pizza, pizza pie
mashed potato

potpie
burrito

Crock Pot
frying pan, frypan, skillet

wok
caldron, cauldron

Dutch oven
hot pot, hotpot

soup bowl
consomme

trifle
plate

ice cream, icecream
chocolate sauce, chocolate syrup

cardoon
daisy

admiral
monarch, monarch butterfly, milkweed butterfly, Danaus plexippus

ringlet, ringlet butterfly
lycaenid, lycaenid butterfly

cabbage butterfly
sulphur butterfly, sulfur butterfly

grasshopper, hopper
cricket

walking stick, walkingstick, stick insect
mantis, mantid

dragonfly, darning needle, devil's darning needle, sewing needle, snake feeder, snake doctor, mosquito hawk, skeeter hawk
damselfly
leafhopper

lacewing, lacewing fly
bee
fly

cicada, cicala
tarantula

barn spider, Araneus cavaticus
wolf spider, hunting spider

black and gold garden spider, Argiope aurantia
garden spider, Aranea diademata

harvestman, daddy longlegs, Phalangium opilio
black widow, Latrodectus mactans

ladybug, ladybeetle, lady beetle, ladybird, ladybird beetle
leaf beetle, chrysomelid

dung beetle
ground beetle, carabid beetle

rhinoceros beetle
tiger beetle

long-horned beetle, longicorn, longicorn beetle
weevil

cockroach, roach
tick

ant, emmet, pismire
tree frog, tree-frog

bullfrog, Rana catesbeiana
tailed frog, bell toad, ribbed toad, tailed toad, Ascaphus trui

common newt, Triturus vulgaris
eft

banded gecko
whiptail, whiptail lizard

alligator lizard
American chameleon, anole, Anolis carolinensis

green lizard, Lacerta viridis
agama

African chameleon, Chamaeleo chamaeleon
common iguana, iguana, Iguana iguana

frilled lizard, Chlamydosaurus kingi
European fire salamander, Salamandra salamandra

spotted salamander, Ambystoma maculatum
box turtle, box tortoise

mud turtle
terrapin

Gila monster, Heloderma suspectum
Komodo dragon, Komodo lizard, dragon lizard, giant lizard, Varanus komodoensis

African crocodile, Nile crocodile, Crocodylus niloticus
American alligator, Alligator mississipiensis

horned viper, cerastes, sand viper, horned asp, Cerastes cornutus
sidewinder, horned rattlesnake, Crotalus cerastes

diamondback, diamondback rattlesnake, Crotalus adamanteus
hognose snake, puff adder, sand viper

night snake, Hypsiglena torquata
king snake, kingsnake

boa constrictor, Constrictor constrictor
rock python, rock snake, Python sebae

vine snake
green snake, grass snake

green mamba
Indian cobra, Naja naja

garter snake, grass snake
thunder snake, worm snake, Carphophis amoenus

ringneck snake, ring-necked snake, ring snake
nematode, nematode worm, roundworm

water snake
sea snake
scorpion

centipede
isopod
zebra

trilobite
chambered nautilus, pearly nautilus, nautilus

goldfish, Carassius auratus
axolotl, mud puppy, Ambystoma mexicanum

rock beauty, Holocanthus tricolor
eel

puffer, pufferfish, blowfish, globefish
triceratops

platypus, duckbill, duckbilled platypus, duck-billed platypus, Ornithorhynchus anatinus
sea lion

hippopotamus, hippo, river horse, Hippopotamus amphibius
armadillo

snail
slug

loggerhead, loggerhead turtle, Caretta caretta
leatherback turtle, leatherback, leathery turtle, Dermochelys coriacea

conch
starfish, sea star
tench, Tinca tinca

sturgeon
gar, garfish, garpike, billfish, Lepisosteus osseus

barracouta, snoek
coho, cohoe, coho salmon, blue jack, silver salmon, Oncorhynchus kisutch

grey whale, gray whale, devilfish, Eschrichtius gibbosus, Eschrichtius robustus
killer whale, killer, orca, grampus, sea wolf, Orcinus orca

hammerhead, hammerhead shark
great white shark, white shark, man-eater, man-eating shark, Carcharodon carcharias

tiger shark, Galeocerdo cuvieri
dugong, Dugong dugon

electric ray, crampfish, numbfish, torpedo
stingray

hermit crab
rock crab, Cancer irroratus

fiddler crab
Dungeness crab, Cancer magister

king crab, Alaska crab, Alaskan king crab, Alaska king crab, Paralithodes camtschatica
spiny lobster, langouste, rock lobster, crawfish, crayfish, sea crawfish

American lobster, Northern lobster, Maine lobster, Homarus americanus
crayfish, crawfish, crawdad, crawdaddy

coral fungus
gyromitra

hen-of-the-woods, hen of the woods, Polyporus frondosus, Grifola frondosa
agaric

earthstar
stinkhorn, carrion fungus

mushroom
bolete

flatworm, platyhelminth
sea slug, nudibranch

chiton, coat-of-mail shell, sea cradle, polyplacophore
sea cucumber, holothurian

lionfish
sea anemone, anemone

sea urchin
anemone fish

brain coral
coral reef

Figure 5.15 – Visual (V). dendrogram of classes built using Ward’s method (CC-BY)
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a photo of a shower curtain

a photo of a theater curtain, theatre curtain
a photo of a mosquito net
a photo of a sliding door

a photo of a window screen
a photo of a window shade
a photo of a paper towel

a photo of a toilet tissue, toilet paper, bathroom tissue
a photo of a quilt, comforter, comfort, puff

a photo of a diaper, nappy, napkin
a photo of a handkerchief, hankie, hanky, hankey

a photo of a sarong
a photo of a bath towel

a photo of a dishrag, dishcloth
a photo of a doormat, welcome mat
a photo of a prayer rug, prayer mat

a photo of a kimono
a photo of a poncho
a photo of a abaya
a photo of a gown

a photo of a overskirt
a photo of a cloak
a photo of a stole

a photo of a fur coat
a photo of a trench coat

a photo of a academic gown, academic robe, judge's robe
a photo of a vestment

a photo of a lab coat, laboratory coat
a photo of a suit, suit of clothes

a photo of a wool, woolen, woollen
a photo of a cardigan

a photo of a sweatshirt
a photo of a jean, blue jean, denim
a photo of a jersey, T-shirt, tee shirt

a photo of a pajama, pyjama, pj's, jammies
a photo of a maillot

a photo of a maillot, tank suit
a photo of a bikini, two-piece

a photo of a brassiere, bra, bandeau
a photo of a miniskirt, mini

a photo of a swimming trunks, bathing trunks
a photo of a shield, buckler

a photo of a chain mail, ring mail, mail, chain armor, chain armour, ring armor, ring armour
a photo of a breastplate, aegis, egis

a photo of a cuirass
a photo of a meat loaf, meatloaf

a photo of a bearskin, busby, shako
a photo of a feather boa, boa

a photo of a hoopskirt, crinoline
a photo of a pencil box, pencil case

a photo of a wallet, billfold, notecase, pocketbook
a photo of a knee pad
a photo of a scabbard
a photo of a holster
a photo of a purse

a photo of a bulletproof vest
a photo of a apron

a photo of a bib
a photo of a plastic bag

a photo of a pillow
a photo of a sleeping bag

a photo of a backpack, back pack, knapsack, packsack, rucksack, haversack
a photo of a punching bag, punch bag, punching ball, punchball

a photo of a balloon
a photo of a bubble

a photo of a umbrella
a photo of a kite

a photo of a parachute, chute
a photo of a bow tie, bow-tie, bowtie

a photo of a Windsor tie
a photo of a bolo tie, bolo, bola tie, bola

a photo of a chain
a photo of a necklace

a photo of a cowboy hat, ten-gallon hat
a photo of a sombrero

a photo of a mortarboard
a photo of a pickelhaube

a photo of a bathing cap, swimming cap
a photo of a shower cap

a photo of a mask
a photo of a ski mask

a photo of a crash helmet
a photo of a football helmet

a photo of a wig
a photo of a bonnet, poke bonnet

a photo of a dome
a photo of a water bottle
a photo of a wine bottle
a photo of a beer bottle

a photo of a pop bottle, soda bottle
a photo of a sunscreen, sunblock, sun blocker

a photo of a perfume, essence
a photo of a hair spray

a photo of a lotion
a photo of a espresso maker

a photo of a espresso
a photo of a tench, Tinca tinca

a photo of a consomme
a photo of a gasmask, respirator, gas helmet

a photo of a scuba diver
a photo of a bottlecap

a photo of a lens cap, lens cover
a photo of a measuring cup

a photo of a face powder
a photo of a Petri dish

a photo of a can opener, tin opener
a photo of a corkscrew, bottle screw

a photo of a cocktail shaker
a photo of a saltshaker, salt shaker

a photo of a piggy bank, penny bank
a photo of a pill bottle

a photo of a pencil sharpener
a photo of a soap dispenser

a photo of a toilet seat
a photo of a mixing bowl
a photo of a soup bowl

a photo of a bucket, pail
a photo of a pot, flowerpot

a photo of a milk can
a photo of a coffee mug

a photo of a cup
a photo of a beaker

a photo of a beer glass
a photo of a goblet
a photo of a vase

a photo of a pitcher, ewer
a photo of a water jug

a photo of a whiskey jug
a photo of a coffeepot

a photo of a teapot
a photo of a washbasin, handbasin, washbowl, lavabo, wash-hand basin

a photo of a bathtub, bathing tub, bath, tub
a photo of a tub, vat

a photo of a waffle iron
a photo of a frying pan, frypan, skillet

a photo of a wok
a photo of a hot pot, hotpot

a photo of a caldron, cauldron
a photo of a Crock Pot

a photo of a Dutch oven
a photo of a spatula

a photo of a ladle
a photo of a wooden spoon

a photo of a hammer
a photo of a hatchet
a photo of a broom
a photo of a shovel
a photo of a barbell

a photo of a dumbbell
a photo of a four-poster

a photo of a crutch
a photo of a pole

a photo of a iron, smoothing iron
a photo of a vacuum, vacuum cleaner

a photo of a mortar
a photo of a stretcher

a photo of a ballpoint, ballpoint pen, ballpen, Biro
a photo of a fountain pen

a photo of a swab, swob, mop
a photo of a ear, spike, capitulum

a photo of a cleaver, meat cleaver, chopper
a photo of a letter opener, paper knife, paperknife

a photo of a quill, quill pen
a photo of a drumstick
a photo of a matchstick
a photo of a screwdriver

a photo of a spindle
a photo of a rubber eraser, rubber, pencil eraser

a photo of a Band Aid
a photo of a thimble
a photo of a baseball

a photo of a ballplayer, baseball player
a photo of a rugby ball
a photo of a soccer ball
a photo of a basketball
a photo of a volleyball

a photo of a croquet ball
a photo of a ping-pong ball

a photo of a golf ball
a photo of a tennis ball

a photo of a bagel, beigel
a photo of a pretzel

a photo of a cheeseburger
a photo of a burrito
a photo of a dough

a photo of a pizza, pizza pie
a photo of a carbonara

a photo of a eggnog
a photo of a trifle

a photo of a mashed potato
a photo of a potpie

a photo of a chocolate sauce, chocolate syrup
a photo of a sorrel
a photo of a velvet

a photo of a red wine
a photo of a ice cream, icecream

a photo of a ice lolly, lolly, lollipop, popsicle
a photo of a plunger, plumber's helper

a photo of a lipstick, lip rouge
a photo of a hotdog, hot dog, red hot

a photo of a Christmas stocking
a photo of a mitten
a photo of a sock

a photo of a Loafer
a photo of a French loaf

a photo of a clog, geta, patten, sabot
a photo of a cowboy boot
a photo of a running shoe

a photo of a sandal
a photo of a groom, bridegroom

a photo of a admiral
a photo of a military uniform

a photo of a drake
a photo of a shoji

a photo of a volcano
a photo of a nipple

a photo of a alp
a photo of a goose
a photo of a cock
a photo of a hen

a photo of a hamster
a photo of a teddy, teddy bear

a photo of a hay
a photo of a daisy

a photo of a lifeboat
a photo of a fireboat

a photo of a fire engine, fire truck
a photo of a dock, dockage, docking facility
a photo of a drilling platform, offshore rig

a photo of a aircraft carrier, carrier, flattop, attack aircraft carrier
a photo of a container ship, containership, container vessel

a photo of a liner, ocean liner
a photo of a space shuttle

a photo of a airliner
a photo of a warplane, military plane
a photo of a bobsled, bobsleigh, bob

a photo of a bullet train, bullet
a photo of a airship, dirigible

a photo of a submarine, pigboat, sub, U-boat
a photo of a gondola
a photo of a canoe

a photo of a paddle, boat paddle
a photo of a schooner

a photo of a yawl
a photo of a pirate, pirate ship

a photo of a wreck
a photo of a catamaran
a photo of a trimaran
a photo of a space bar

a photo of a sandbar, sand bar
a photo of a minibus
a photo of a minivan

a photo of a ambulance
a photo of a school bus
a photo of a moving van

a photo of a pickup, pickup truck
a photo of a cab, hack, taxi, taxicab

a photo of a racer, race car, racing car
a photo of a sports car, sport car

a photo of a jeep, landrover
a photo of a tank, army tank, armored combat vehicle, armoured combat vehicle

a photo of a amphibian, amphibious vehicle
a photo of a half track

a photo of a mobile home, manufactured home
a photo of a recreational vehicle, RV, R.V.

a photo of a police van, police wagon, paddy wagon, patrol wagon, wagon, black Maria
a photo of a tow truck, tow car, wrecker

a photo of a trailer truck, tractor trailer, trucking rig, rig, articulated lorry, semi
a photo of a beach wagon, station wagon, wagon, estate car, beach waggon, station waggon, waggon

a photo of a limousine, limo
a photo of a passenger car, coach, carriage

a photo of a streetcar, tram, tramcar, trolley, trolley car
a photo of a trolleybus, trolley coach, trackless trolley

a photo of a freight car
a photo of a electric locomotive
a photo of a steam locomotive

a photo of a mountain bike, all-terrain bike, off-roader
a photo of a unicycle, monocycle

a photo of a bicycle-built-for-two, tandem bicycle, tandem
a photo of a tricycle, trike, velocipede

a photo of a plow, plough
a photo of a snowplow, snowplough

a photo of a dogsled, dog sled, dog sleigh
a photo of a barrow, garden cart, lawn cart, wheelbarrow

a photo of a horse cart, horse-cart
a photo of a oxcart
a photo of a moped

a photo of a motor scooter, scooter
a photo of a forklift

a photo of a lawn mower, mower
a photo of a tractor

a photo of a convertible
a photo of a go-kart

a photo of a snowmobile
a photo of a speedboat

a photo of a jinrikisha, ricksha, rickshaw
a photo of a golfcart, golf cart

a photo of a Model T
a photo of a greenhouse, nursery, glasshouse

a photo of a patio, terrace
a photo of a planetarium

a photo of a mountain tent
a photo of a yurt

a photo of a cliff dwelling
a photo of a thatch, thatched roof

a photo of a stone wall
a photo of a tile roof

a photo of a apiary, bee house
a photo of a honeycomb

a photo of a barn
a photo of a boathouse

a photo of a bell cote, bell cot
a photo of a birdhouse

a photo of a prison, prison house
a photo of a castle
a photo of a palace

a photo of a mosque
a photo of a church, church building

a photo of a monastery
a photo of a breakwater, groin, groyne, mole, bulwark, seawall, jetty

a photo of a promontory, headland, head, foreland
a photo of a seashore, coast, seacoast, sea-coast

a photo of a lakeside, lakeshore
a photo of a valley, vale

a photo of a dam, dike, dyke
a photo of a cliff, drop, drop-off

a photo of a china cabinet, china closet
a photo of a chiffonier, commode

a photo of a medicine chest, medicine cabinet
a photo of a lumbermill, sawmill

a photo of a carpenter's kit, tool kit
a photo of a plane, carpenter's plane, woodworking plane

a photo of a oscilloscope, scope, cathode-ray oscilloscope, CRO
a photo of a pool table, billiard table, snooker table

a photo of a racket, racquet
a photo of a barber chair
a photo of a barbershop
a photo of a folding chair

a photo of a rocking chair, rocker
a photo of a park bench

a photo of a studio couch, day bed
a photo of a hamper

a photo of a shopping basket
a photo of a shopping cart

a photo of a bassinet
a photo of a cradle

a photo of a crib, cot
a photo of a fire screen, fireguard
a photo of a grille, radiator grille

a photo of a plate rack
a photo of a scoreboard
a photo of a street sign

a photo of a brass, memorial tablet, plaque
a photo of a manhole cover

a photo of a lampshade, lamp shade
a photo of a table lamp

a photo of a beacon, lighthouse, beacon light, pharos
a photo of a traffic light, traffic signal, stoplight

a photo of a fountain
a photo of a geyser

a photo of a water tower
a photo of a barrel, cask
a photo of a rain barrel

a photo of a flagpole, flagstaff
a photo of a pedestal, plinth, footstall

a photo of a turnstile
a photo of a totem pole
a photo of a stupa, tope

a photo of a megalith, megalithic structure
a photo of a obelisk

a photo of a triumphal arch
a photo of a suspension bridge
a photo of a steel arch bridge

a photo of a viaduct
a photo of a picket fence, paling

a photo of a chainlink fence
a photo of a worm fence, snake fence, snake-rail fence, Virginia fence

a photo of a bannister, banister, balustrade, balusters, handrail
a photo of a balance beam, beam

a photo of a horizontal bar, high bar
a photo of a parallel bars, bars

a photo of a bookcase
a photo of a bookshop, bookstore, bookstall

a photo of a library
a photo of a cinema, movie theater, movie theatre, movie house, picture palace

a photo of a restaurant, eating house, eating place, eatery
a photo of a butcher shop, meat market

a photo of a confectionery, confectionary, candy store
a photo of a bakery, bakeshop, bakehouse

a photo of a grocery store, grocery, food market, market
a photo of a tobacco shop, tobacconist shop, tobacconist

a photo of a shoe shop, shoe-shop, shoe store
a photo of a toyshop

a photo of a CD player
a photo of a tape player

a photo of a cassette
a photo of a cassette player

a photo of a pay-phone, pay-station
a photo of a cellular telephone, cellular phone, cellphone, cell, mobile phone

a photo of a dial telephone, dial phone
a photo of a reflex camera

a photo of a modem
a photo of a radio, wireless

a photo of a iPod
a photo of a Polaroid camera, Polaroid Land camera

a photo of a mailbag, postbag
a photo of a mailbox, letter box

a photo of a ashcan, trash can, garbage can, wastebin, ash bin, ash-bin, ashbin, dustbin, trash barrel, trash bin
a photo of a garbage truck, dustcart

a photo of a rotisserie
a photo of a microwave, microwave oven

a photo of a toaster
a photo of a dishwasher, dish washer, dishwashing machine
a photo of a washer, automatic washer, washing machine

a photo of a file, file cabinet, filing cabinet
a photo of a photocopier

a photo of a refrigerator, icebox
a photo of a wardrobe, closet, press

a photo of a jigsaw puzzle
a photo of a crossword puzzle, crossword

a photo of a binder, ring-binder
a photo of a book jacket, dust cover, dust jacket, dust wrapper

a photo of a carton
a photo of a comic book

a photo of a menu
a photo of a envelope

a photo of a packet
a photo of a monitor

a photo of a home theater, home theatre
a photo of a entertainment center

a photo of a television, television system
a photo of a chest
a photo of a crate
a photo of a safe
a photo of a vault

a photo of a throne
a photo of a altar
a photo of a stage
a photo of a tray
a photo of a plate
a photo of a desk

a photo of a dining table, board
a photo of a marmoset

a photo of a titi, titi monkey
a photo of a capuchin, ringtail, Cebus capucinus

a photo of a colobus, colobus monkey
a photo of a guenon, guenon monkey

a photo of a squirrel monkey, Saimiri sciureus
a photo of a Madagascar cat, ring-tailed lemur, Lemur catta

a photo of a indri, indris, Indri indri, Indri brevicaudatus
a photo of a siamang, Hylobates syndactylus, Symphalangus syndactylus

a photo of a howler monkey, howler
a photo of a spider monkey, Ateles geoffroyi

a photo of a gibbon, Hylobates lar
a photo of a langur

a photo of a brambling, Fringilla montifringilla
a photo of a indigo bunting, indigo finch, indigo bird, Passerina cyanea

a photo of a goldfinch, Carduelis carduelis
a photo of a house finch, linnet, Carpodacus mexicanus

a photo of a fox squirrel, eastern fox squirrel, Sciurus niger
a photo of a robin, American robin, Turdus migratorius

a photo of a coucal
a photo of a junco, snowbird

a photo of a chickadee
a photo of a bulbul

a photo of a hummingbird
a photo of a yellow lady's slipper, yellow lady-slipper, Cypripedium calceolus, Cypripedium parviflorum

a photo of a sulphur-crested cockatoo, Kakatoe galerita, Cacatua galerita
a photo of a king penguin, Aptenodytes patagonica

a photo of a proboscis monkey, Nasalis larvatus
a photo of a bee eater
a photo of a jacamar
a photo of a hornbill
a photo of a lorikeet
a photo of a macaw
a photo of a toucan

a photo of a black grouse
a photo of a ptarmigan

a photo of a quail
a photo of a partridge

a photo of a ruffed grouse, partridge, Bonasa umbellus
a photo of a prairie chicken, prairie grouse, prairie fowl

a photo of a little blue heron, Egretta caerulea
a photo of a American egret, great white heron, Egretta albus

a photo of a white stork, Ciconia ciconia
a photo of a black stork, Ciconia nigra

a photo of a black swan, Cygnus atratus
a photo of a European gallinule, Porphyrio porphyrio

a photo of a American coot, marsh hen, mud hen, water hen, Fulica americana
a photo of a limpkin, Aramus pictus

a photo of a bittern
a photo of a bustard

a photo of a ruddy turnstone, Arenaria interpres
a photo of a red-backed sandpiper, dunlin, Erolia alpina

a photo of a redshank, Tringa totanus
a photo of a dowitcher

a photo of a water ouzel, dipper
a photo of a red-breasted merganser, Mergus serrator

a photo of a oystercatcher, oyster catcher
a photo of a horned viper, cerastes, sand viper, horned asp, Cerastes cornutus

a photo of a hognose snake, puff adder, sand viper
a photo of a diamondback, diamondback rattlesnake, Crotalus adamanteus

a photo of a sidewinder, horned rattlesnake, Crotalus cerastes
a photo of a vine snake

a photo of a green snake, grass snake
a photo of a garter snake, grass snake

a photo of a green lizard, Lacerta viridis
a photo of a green mamba

a photo of a boa constrictor, Constrictor constrictor
a photo of a rock python, rock snake, Python sebae

a photo of a Indian cobra, Naja naja
a photo of a thunder snake, worm snake, Carphophis amoenus

a photo of a night snake, Hypsiglena torquata
a photo of a ringneck snake, ring-necked snake, ring snake

a photo of a king snake, kingsnake
a photo of a eel

a photo of a water snake
a photo of a sea snake

a photo of a maze, labyrinth
a photo of a nematode, nematode worm, roundworm

a photo of a coil, spiral, volute, whorl, helix
a photo of a European fire salamander, Salamandra salamandra

a photo of a spotted salamander, Ambystoma maculatum
a photo of a common newt, Triturus vulgaris

a photo of a axolotl, mud puppy, Ambystoma mexicanum
a photo of a banded gecko

a photo of a Gila monster, Heloderma suspectum
a photo of a African crocodile, Nile crocodile, Crocodylus niloticus

a photo of a American alligator, Alligator mississipiensis
a photo of a common iguana, iguana, Iguana iguana

a photo of a Komodo dragon, Komodo lizard, dragon lizard, giant lizard, Varanus komodoensis
a photo of a American chameleon, anole, Anolis carolinensis

a photo of a African chameleon, Chamaeleo chamaeleon
a photo of a agama

a photo of a frilled lizard, Chlamydosaurus kingi
a photo of a whiptail, whiptail lizard

a photo of a alligator lizard
a photo of a bullfrog, Rana catesbeiana

a photo of a tree frog, tree-frog
a photo of a tailed frog, bell toad, ribbed toad, tailed toad, Ascaphus trui

a photo of a box turtle, box tortoise
a photo of a mud turtle

a photo of a terrapin
a photo of a loggerhead, loggerhead turtle, Caretta caretta

a photo of a leatherback turtle, leatherback, leathery turtle, Dermochelys coriacea
a photo of a chiton, coat-of-mail shell, sea cradle, polyplacophore

a photo of a sea cucumber, holothurian
a photo of a flatworm, platyhelminth

a photo of a sea slug, nudibranch
a photo of a brain coral
a photo of a coral reef

a photo of a sea anemone, anemone
a photo of a anemone fish

a photo of a starfish, sea star
a photo of a sea urchin

a photo of a electric ray, crampfish, numbfish, torpedo
a photo of a puffer, pufferfish, blowfish, globefish

a photo of a stingray
a photo of a dugong, Dugong dugon

a photo of a trilobite
a photo of a isopod
a photo of a jellyfish
a photo of a conch

a photo of a chambered nautilus, pearly nautilus, nautilus
a photo of a lionfish

a photo of a fiddler crab
a photo of a Dungeness crab, Cancer magister

a photo of a rock crab, Cancer irroratus
a photo of a king crab, Alaska crab, Alaskan king crab, Alaska king crab, Paralithodes camtschatica

a photo of a crayfish, crawfish, crawdad, crawdaddy
a photo of a American lobster, Northern lobster, Maine lobster, Homarus americanus

a photo of a spiny lobster, langouste, rock lobster, crawfish, crayfish, sea crawfish
a photo of a coho, cohoe, coho salmon, blue jack, silver salmon, Oncorhynchus kisutch

a photo of a grey whale, gray whale, devilfish, Eschrichtius gibbosus, Eschrichtius robustus
a photo of a killer whale, killer, orca, grampus, sea wolf, Orcinus orca

a photo of a hammerhead, hammerhead shark
a photo of a great white shark, white shark, man-eater, man-eating shark, Carcharodon carcharias

a photo of a tiger shark, Galeocerdo cuvieri
a photo of a barracouta, snoek

a photo of a sturgeon
a photo of a gar, garfish, garpike, billfish, Lepisosteus osseus

a photo of a fly
a photo of a bee

a photo of a cicada, cicala
a photo of a grasshopper, hopper

a photo of a cricket
a photo of a cockroach, roach

a photo of a ladybug, ladybeetle, lady beetle, ladybird, ladybird beetle
a photo of a ant, emmet, pismire

a photo of a snail
a photo of a slug
a photo of a tick

a photo of a hermit crab
a photo of a eft

a photo of a scorpion
a photo of a centipede

a photo of a walking stick, walkingstick, stick insect
a photo of a mantis, mantid

a photo of a dragonfly, darning needle, devil's darning needle, sewing needle, snake feeder, snake doctor, mosquito hawk, skeeter hawk
a photo of a damselfly
a photo of a leafhopper

a photo of a lacewing, lacewing fly
a photo of a ringlet, ringlet butterfly

a photo of a cabbage butterfly
a photo of a sulphur butterfly, sulfur butterfly

a photo of a lycaenid, lycaenid butterfly
a photo of a rock beauty, Holocanthus tricolor

a photo of a goldfish, Carassius auratus
a photo of a monarch, monarch butterfly, milkweed butterfly, Danaus plexippus

a photo of a tiger beetle
a photo of a dung beetle

a photo of a rhinoceros beetle
a photo of a weevil

a photo of a long-horned beetle, longicorn, longicorn beetle
a photo of a ground beetle, carabid beetle

a photo of a leaf beetle, chrysomelid
a photo of a tarantula

a photo of a wolf spider, hunting spider
a photo of a black and gold garden spider, Argiope aurantia

a photo of a barn spider, Araneus cavaticus
a photo of a garden spider, Aranea diademata

a photo of a harvestman, daddy longlegs, Phalangium opilio
a photo of a black widow, Latrodectus mactans

a photo of a peacock
a photo of a jay

a photo of a magpie
a photo of a crane

a photo of a spoonbill
a photo of a flamingo
a photo of a pelican

a photo of a albatross, mollymawk
a photo of a bald eagle, American eagle, Haliaeetus leucocephalus

a photo of a vulture
a photo of a echidna, spiny anteater, anteater

a photo of a porcupine, hedgehog
a photo of a triceratops

a photo of a wombat
a photo of a armadillo

a photo of a great grey owl, great gray owl, Strix nebulosa
a photo of a African grey, African gray, Psittacus erithacus

a photo of a Angora, Angora rabbit
a photo of a guinea pig, Cavia cobaya

a photo of a wood rabbit, cottontail, cottontail rabbit
a photo of a hare

a photo of a wallaby, brush kangaroo
a photo of a koala, koala bear, kangaroo bear, native bear, Phascolarctos cinereus

a photo of a sea lion
a photo of a marmot
a photo of a beaver

a photo of a platypus, duckbill, duckbilled platypus, duck-billed platypus, Ornithorhynchus anatinus
a photo of a three-toed sloth, ai, Bradypus tridactylus

a photo of a hog, pig, grunter, squealer, Sus scrofa
a photo of a wild boar, boar, Sus scrofa

a photo of a gorilla, Gorilla gorilla
a photo of a orangutan, orang, orangutang, Pongo pygmaeus

a photo of a chimpanzee, chimp, Pan troglodytes
a photo of a patas, hussar monkey, Erythrocebus patas

a photo of a baboon
a photo of a macaque

a photo of a bighorn, bighorn sheep, cimarron, Rocky Mountain bighorn, Rocky Mountain sheep, Ovis canadensis
a photo of a ibex, Capra ibex

a photo of a hartebeest
a photo of a impala, Aepyceros melampus

a photo of a gazelle
a photo of a ram, tup

a photo of a ox
a photo of a bison

a photo of a ostrich, Struthio camelus
a photo of a Arabian camel, dromedary, Camelus dromedarius

a photo of a zebra
a photo of a llama

a photo of a warthog
a photo of a hippopotamus, hippo, river horse, Hippopotamus amphibius

a photo of a water buffalo, water ox, Asiatic buffalo, Bubalus bubalis
a photo of a tusker

a photo of a Indian elephant, Elephas maximus
a photo of a African elephant, Loxodonta africana

a photo of a bolete
a photo of a mushroom

a photo of a agaric
a photo of a coral fungus

a photo of a stinkhorn, carrion fungus
a photo of a earthstar
a photo of a gyromitra

a photo of a hen-of-the-woods, hen of the woods, Polyporus frondosus, Grifola frondosa
a photo of a corn

a photo of a orange
a photo of a lemon

a photo of a banana
a photo of a guacamole
a photo of a bell pepper

a photo of a Granny Smith
a photo of a zucchini, courgette

a photo of a cucumber, cuke
a photo of a rapeseed

a photo of a butternut squash
a photo of a spaghetti squash

a photo of a acorn squash
a photo of a broccoli

a photo of a head cabbage
a photo of a cauliflower

a photo of a pineapple, ananas
a photo of a artichoke, globe artichoke

a photo of a cardoon
a photo of a hip, rose hip, rosehip

a photo of a strawberry
a photo of a pomegranate
a photo of a custard apple

a photo of a buckeye, horse chestnut, conker
a photo of a jackfruit, jak, jack

a photo of a fig
a photo of a acorn

Figure 5.16 – Semantic (Se.) dendrogram of classes built using Ward’s method (CC-BY)
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apron
Christmas stocking

pencil box, pencil case
wallet, billfold, notecase, pocketbook
handkerchief, hankie, hanky, hankey

pillow
chain mail, ring mail, mail, chain armor, chain armour, ring armor, ring armour

cardigan
poncho
stole

dishrag, dishcloth
sock

mitten
wool, woolen, woollen

Windsor tie
bow tie, bow-tie, bowtie

suit, suit of clothes
lab coat, laboratory coat

groom, bridegroom
academic gown, academic robe, judge's robe

mortarboard
bearskin, busby, shako

military uniform
trench coat

abaya
cloak

bulletproof vest
jersey, T-shirt, tee shirt

sweatshirt
velvet

jean, blue jean, denim
sleeping bag
mosquito net
plastic bag

gown
hoopskirt, crinoline

overskirt
vestment
kimono

pajama, pyjama, pj's, jammies
miniskirt, mini

sarong
swimming trunks, bathing trunks

brassiere, bra, bandeau
bikini, two-piece

maillot
maillot, tank suit
feather boa, boa

fur coat
wig

cowboy hat, ten-gallon hat
sombrero

bonnet, poke bonnet
shower cap
bath towel

diaper, nappy, napkin
bathing cap, swimming cap

Band Aid
ice lolly, lolly, lollipop, popsicle

milk can
barrel, cask
bucket, pail

ashcan, trash can, garbage can, wastebin, ash bin, ash-bin, ashbin, dustbin, trash barrel, trash bin
rain barrel

mixing bowl
eggnog

espresso
coffee mug

cup
whiskey jug
coffeepot

teapot
vase

pitcher, ewer
water jug

nipple
pill bottle

lotion
sunscreen, sunblock, sun blocker

hair spray
punching bag, punch bag, punching ball, punchball

lipstick, lip rouge
rubber eraser, rubber, pencil eraser

beer glass
goblet

red wine
Petri dish
beaker

measuring cup
wine bottle
beer bottle

pop bottle, soda bottle
thimble

saltshaker, salt shaker
perfume, essence

water bottle
cocktail shaker
soap dispenser
running shoe

clog, geta, patten, sabot
sandal

cowboy boot
Loafer
holster

backpack, back pack, knapsack, packsack, rucksack, haversack
mailbag, postbag

purse
pickelhaube

breastplate, aegis, egis
cuirass

piggy bank, penny bank
teddy, teddy bear

crash helmet
football helmet

mask
ski mask

gasmask, respirator, gas helmet
knee pad
bottlecap

shield, buckler
tray

dial telephone, dial phone
lens cap, lens cover

face powder
waffle iron

manhole cover
coil, spiral, volute, whorl, helix

vault
golf ball

tennis ball
baseball

soccer ball
bolo tie, bolo, bola tie, bola

chain
necklace

scuba diver
jellyfish
bubble

dining table, board
folding chair

rocking chair, rocker
four-poster

quilt, comforter, comfort, puff
studio couch, day bed

crib, cot
bassinet
cradle

hamper
shopping basket

fire screen, fireguard
plate rack

paper towel
toilet tissue, toilet paper, bathroom tissue

bathtub, bathing tub, bath, tub
tub, vat

toilet seat
washbasin, handbasin, washbowl, lavabo, wash-hand basin

barbell
dumbbell

barber chair
espresso maker
pencil sharpener

toaster
iron, smoothing iron

vacuum, vacuum cleaner
letter opener, paper knife, paperknife

scabbard
screwdriver

ballpoint, ballpoint pen, ballpen, Biro
fountain pen

hammer
hatchet

cleaver, meat cleaver, chopper
spatula

plane, carpenter's plane, woodworking plane
can opener, tin opener
corkscrew, bottle screw

spindle
mortar
ladle

wooden spoon
shovel
broom

swab, swob, mop
drumstick

plunger, plumber's helper
matchstick

quill, quill pen
rapeseed

sandbar, sand bar
seashore, coast, seacoast, sea-coast

breakwater, groin, groyne, mole, bulwark, seawall, jetty
lakeside, lakeshore

geyser
volcano

cliff, drop, drop-off
promontory, headland, head, foreland

alp
valley, vale

triumphal arch
castle
palace

bell cote, bell cot
church, church building

monastery
dome

planetarium
mosque

stupa, tope
obelisk

beacon, lighthouse, beacon light, pharos
water tower

chainlink fence
turnstile

bannister, banister, balustrade, balusters, handrail
prison, prison house

shower curtain
theater curtain, theatre curtain

window screen
shoji

sliding door
window shade

maze, labyrinth
stone wall
tile roof

megalith, megalithic structure
hay

cliff dwelling
thatch, thatched roof

dam, dike, dyke
wreck

viaduct
steel arch bridge

suspension bridge
birdhouse

mobile home, manufactured home
barn

boathouse
picket fence, paling

worm fence, snake fence, snake-rail fence, Virginia fence
greenhouse, nursery, glasshouse

patio, terrace
apiary, bee house

lumbermill, sawmill
park bench
catamaran
trimaran
schooner

yawl
drilling platform, offshore rig

pirate, pirate ship
container ship, containership, container vessel

dock, dockage, docking facility
fireboat

liner, ocean liner
aircraft carrier, carrier, flattop, attack aircraft carrier

submarine, pigboat, sub, U-boat
horse cart, horse-cart

oxcart
barrow, garden cart, lawn cart, wheelbarrow

plow, plough
dogsled, dog sled, dog sleigh

bobsled, bobsleigh, bob
snowmobile

lifeboat
speedboat
gondola
canoe

paddle, boat paddle
space shuttle

airliner
warplane, military plane

airship, dirigible
balloon

parachute, chute
altar

throne
pedestal, plinth, footstall
lampshade, lamp shade

table lamp
yurt

mountain tent
umbrella
fountain

stage
totem pole

traffic light, traffic signal, stoplight
flagpole, flagstaff

pole
moped

motor scooter, scooter
bicycle-built-for-two, tandem bicycle, tandem

mountain bike, all-terrain bike, off-roader
jinrikisha, ricksha, rickshaw
tricycle, trike, velocipede

unicycle, monocycle
basketball
volleyball
rugby ball

ballplayer, baseball player
balance beam, beam

horizontal bar, high bar
parallel bars, bars

shopping cart
crutch

stretcher
pool table, billiard table, snooker table

croquet ball
ping-pong ball
racket, racquet

amphibian, amphibious vehicle
half track

tank, army tank, armored combat vehicle, armoured combat vehicle
snowplow, snowplough

steam locomotive
Model T
tractor
go-kart

lawn mower, mower
forklift

golfcart, golf cart
limousine, limo

beach wagon, station wagon, wagon, estate car, beach waggon, station waggon, waggon
minivan

grille, radiator grille
convertible

sports car, sport car
cab, hack, taxi, taxicab

racer, race car, racing car
bullet train, bullet

school bus
streetcar, tram, tramcar, trolley, trolley car
trolleybus, trolley coach, trackless trolley

electric locomotive
passenger car, coach, carriage
recreational vehicle, RV, R.V.

minibus
ambulance

police van, police wagon, paddy wagon, patrol wagon, wagon, black Maria
moving van

garbage truck, dustcart
trailer truck, tractor trailer, trucking rig, rig, articulated lorry, semi

fire engine, fire truck
tow truck, tow car, wrecker

jeep, landrover
pickup, pickup truck

Polaroid camera, Polaroid Land camera
reflex camera

carpenter's kit, tool kit
space bar
modem

cellular telephone, cellular phone, cellphone, cell, mobile phone
iPod

oscilloscope, scope, cathode-ray oscilloscope, CRO
cassette

radio, wireless
CD player

cassette player
tape player

chest
crate

chiffonier, commode
file, file cabinet, filing cabinet

wardrobe, closet, press
entertainment center

home theater, home theatre
monitor

television, television system
china cabinet, china closet

medicine chest, medicine cabinet
refrigerator, icebox
mailbox, letter box

pay-phone, pay-station
dishwasher, dish washer, dishwashing machine
washer, automatic washer, washing machine

desk
photocopier

microwave, microwave oven
safe

cinema, movie theater, movie theatre, movie house, picture palace
freight car
scoreboard
street sign

prayer rug, prayer mat
brass, memorial tablet, plaque

doormat, welcome mat
packet

book jacket, dust cover, dust jacket, dust wrapper
carton

binder, ring-binder
envelope

jigsaw puzzle
comic book

crossword puzzle, crossword
menu

tobacco shop, tobacconist shop, tobacconist
bookcase

bookshop, bookstore, bookstall
library

rotisserie
bakery, bakeshop, bakehouse
butcher shop, meat market

toyshop
confectionery, confectionary, candy store

grocery store, grocery, food market, market
shoe shop, shoe-shop, shoe store

barbershop
restaurant, eating house, eating place, eatery

junco, snowbird
water ouzel, dipper

jay
magpie

chickadee
brambling, Fringilla montifringilla

robin, American robin, Turdus migratorius
house finch, linnet, Carpodacus mexicanus

bulbul
coucal
macaw
lorikeet

goldfinch, Carduelis carduelis
hornbill
toucan

hummingbird
bee eater
jacamar

indigo bunting, indigo finch, indigo bird, Passerina cyanea
peacock
flamingo

cock
hen

African grey, African gray, Psittacus erithacus
sulphur-crested cockatoo, Kakatoe galerita, Cacatua galerita

great grey owl, great gray owl, Strix nebulosa
bald eagle, American eagle, Haliaeetus leucocephalus

kite
vulture

ptarmigan
quail

ruffed grouse, partridge, Bonasa umbellus
partridge

black grouse
prairie chicken, prairie grouse, prairie fowl
red-backed sandpiper, dunlin, Erolia alpina

dowitcher
bittern

limpkin, Aramus pictus
ostrich, Struthio camelus

bustard
white stork, Ciconia ciconia
black stork, Ciconia nigra

goose
pelican

albatross, mollymawk
little blue heron, Egretta caerulea

crane
spoonbill

American egret, great white heron, Egretta albus
red-breasted merganser, Mergus serrator

oystercatcher, oyster catcher
ruddy turnstone, Arenaria interpres

redshank, Tringa totanus
European gallinule, Porphyrio porphyrio

black swan, Cygnus atratus
American coot, marsh hen, mud hen, water hen, Fulica americana

drake
king penguin, Aptenodytes patagonica

squirrel monkey, Saimiri sciureus
marmoset

titi, titi monkey
three-toed sloth, ai, Bradypus tridactylus

capuchin, ringtail, Cebus capucinus
howler monkey, howler

spider monkey, Ateles geoffroyi
baboon

macaque
guenon, guenon monkey

patas, hussar monkey, Erythrocebus patas
orangutan, orang, orangutang, Pongo pygmaeus

proboscis monkey, Nasalis larvatus
siamang, Hylobates syndactylus, Symphalangus syndactylus

gorilla, Gorilla gorilla
chimpanzee, chimp, Pan troglodytes

Madagascar cat, ring-tailed lemur, Lemur catta
gibbon, Hylobates lar

langur
colobus, colobus monkey

indri, indris, Indri indri, Indri brevicaudatus
Angora, Angora rabbit

hamster
guinea pig, Cavia cobaya

echidna, spiny anteater, anteater
porcupine, hedgehog

marmot
beaver

fox squirrel, eastern fox squirrel, Sciurus niger
wood rabbit, cottontail, cottontail rabbit

hare
wombat

hog, pig, grunter, squealer, Sus scrofa
wild boar, boar, Sus scrofa

warthog
koala, koala bear, kangaroo bear, native bear, Phascolarctos cinereus

wallaby, brush kangaroo
llama

hartebeest
impala, Aepyceros melampus

gazelle
Indian elephant, Elephas maximus

tusker
African elephant, Loxodonta africana

ibex, Capra ibex
ram, tup

bighorn, bighorn sheep, cimarron, Rocky Mountain bighorn, Rocky Mountain sheep, Ovis canadensis
sorrel

Arabian camel, dromedary, Camelus dromedarius
bison

ox
water buffalo, water ox, Asiatic buffalo, Bubalus bubalis

guacamole
broccoli

head cabbage
cauliflower
honeycomb

corn
ear, spike, capitulum

jackfruit, jak, jack
custard apple
pot, flowerpot

artichoke, globe artichoke
pineapple, ananas

yellow lady's slipper, yellow lady-slipper, Cypripedium calceolus, Cypripedium parviflorum
strawberry

pomegranate
hip, rose hip, rosehip

buckeye, horse chestnut, conker
fig

acorn
zucchini, courgette

cucumber, cuke
bell pepper

Granny Smith
orange
lemon
banana

acorn squash
spaghetti squash
butternut squash

dough
French loaf

bagel, beigel
pretzel

cheeseburger
hotdog, hot dog, red hot

carbonara
meat loaf, meatloaf

pizza, pizza pie
mashed potato

potpie
burrito

Crock Pot
frying pan, frypan, skillet

wok
caldron, cauldron

Dutch oven
hot pot, hotpot

soup bowl
consomme

trifle
plate

ice cream, icecream
chocolate sauce, chocolate syrup

cardoon
daisy

admiral
monarch, monarch butterfly, milkweed butterfly, Danaus plexippus

ringlet, ringlet butterfly
lycaenid, lycaenid butterfly

cabbage butterfly
sulphur butterfly, sulfur butterfly

grasshopper, hopper
cricket

walking stick, walkingstick, stick insect
mantis, mantid

dragonfly, darning needle, devil's darning needle, sewing needle, snake feeder, snake doctor, mosquito hawk, skeeter hawk
damselfly
leafhopper

lacewing, lacewing fly
bee
fly

cicada, cicala
tarantula

barn spider, Araneus cavaticus
wolf spider, hunting spider

black and gold garden spider, Argiope aurantia
garden spider, Aranea diademata

harvestman, daddy longlegs, Phalangium opilio
black widow, Latrodectus mactans

ladybug, ladybeetle, lady beetle, ladybird, ladybird beetle
leaf beetle, chrysomelid

dung beetle
ground beetle, carabid beetle

rhinoceros beetle
tiger beetle

long-horned beetle, longicorn, longicorn beetle
weevil

cockroach, roach
tick

ant, emmet, pismire
tree frog, tree-frog

bullfrog, Rana catesbeiana
tailed frog, bell toad, ribbed toad, tailed toad, Ascaphus trui

common newt, Triturus vulgaris
eft

banded gecko
whiptail, whiptail lizard

alligator lizard
American chameleon, anole, Anolis carolinensis

green lizard, Lacerta viridis
agama

African chameleon, Chamaeleo chamaeleon
common iguana, iguana, Iguana iguana

frilled lizard, Chlamydosaurus kingi
European fire salamander, Salamandra salamandra

spotted salamander, Ambystoma maculatum
box turtle, box tortoise

mud turtle
terrapin

Gila monster, Heloderma suspectum
Komodo dragon, Komodo lizard, dragon lizard, giant lizard, Varanus komodoensis

African crocodile, Nile crocodile, Crocodylus niloticus
American alligator, Alligator mississipiensis

horned viper, cerastes, sand viper, horned asp, Cerastes cornutus
sidewinder, horned rattlesnake, Crotalus cerastes

diamondback, diamondback rattlesnake, Crotalus adamanteus
hognose snake, puff adder, sand viper

night snake, Hypsiglena torquata
king snake, kingsnake

boa constrictor, Constrictor constrictor
rock python, rock snake, Python sebae

vine snake
green snake, grass snake

green mamba
Indian cobra, Naja naja

garter snake, grass snake
thunder snake, worm snake, Carphophis amoenus

ringneck snake, ring-necked snake, ring snake
nematode, nematode worm, roundworm

water snake
sea snake
scorpion

centipede
isopod
zebra

trilobite
chambered nautilus, pearly nautilus, nautilus

goldfish, Carassius auratus
axolotl, mud puppy, Ambystoma mexicanum

rock beauty, Holocanthus tricolor
eel

puffer, pufferfish, blowfish, globefish
triceratops

platypus, duckbill, duckbilled platypus, duck-billed platypus, Ornithorhynchus anatinus
sea lion

hippopotamus, hippo, river horse, Hippopotamus amphibius
armadillo

snail
slug

loggerhead, loggerhead turtle, Caretta caretta
leatherback turtle, leatherback, leathery turtle, Dermochelys coriacea

conch
starfish, sea star
tench, Tinca tinca

sturgeon
gar, garfish, garpike, billfish, Lepisosteus osseus

barracouta, snoek
coho, cohoe, coho salmon, blue jack, silver salmon, Oncorhynchus kisutch

grey whale, gray whale, devilfish, Eschrichtius gibbosus, Eschrichtius robustus
killer whale, killer, orca, grampus, sea wolf, Orcinus orca

hammerhead, hammerhead shark
great white shark, white shark, man-eater, man-eating shark, Carcharodon carcharias

tiger shark, Galeocerdo cuvieri
dugong, Dugong dugon

electric ray, crampfish, numbfish, torpedo
stingray

hermit crab
rock crab, Cancer irroratus

fiddler crab
Dungeness crab, Cancer magister

king crab, Alaska crab, Alaskan king crab, Alaska king crab, Paralithodes camtschatica
spiny lobster, langouste, rock lobster, crawfish, crayfish, sea crawfish

American lobster, Northern lobster, Maine lobster, Homarus americanus
crayfish, crawfish, crawdad, crawdaddy

coral fungus
gyromitra

hen-of-the-woods, hen of the woods, Polyporus frondosus, Grifola frondosa
agaric

earthstar
stinkhorn, carrion fungus

mushroom
bolete

flatworm, platyhelminth
sea slug, nudibranch

chiton, coat-of-mail shell, sea cradle, polyplacophore
sea cucumber, holothurian

lionfish
sea anemone, anemone

sea urchin
anemone fish

brain coral
coral reef

Figure 5.17 – Visual-Semantic (X). dendrogram of classes built using Ward’s method
(CC-BY)
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Figure 5.18 – Histogram of the number of shots and ways for each dataset using MD
sampling. This shows the great variability of the sampling procedure described in [8].
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Figure 5.19 – Number of selections of ImageNet1k classes. The classes are ordered to be
less and less selected in 1-shots 5-ways. We observe a strong difference in class selection
between samplings. 1-shot 5-ways is clearly less consistent across episodes since the initial
plateau depicting the base classes which are selected in all 600 episodes (top left of each
plot) is often much smaller (if present at all) for these tasks. (CC-BY)
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Titre : Approches centrées sur les données pour l’adaptation dans l’apprentissage parcimo-
nieux.

Mot clés : Apprentissage Parcimonieux, Apprentissage Profond, Vision par ordinateur, Inter-

valle de Confiance

Résumé : Cette thèse présente trois contri-
butions principales visant à faire progresser
l’apprentissage par peu d’exemples (ou parci-
monieux) (Few-Shot Learning, FSL) en amé-
liorant la robustesse des modèles, l’évaluation
précise des performances, et l’adaptation spé-
cifique aux tâches. Tout d’abord, nous explo-
rons des méthodes pour construire des ex-
tracteurs de caractéristiques robustes en in-
tégrant des ingrédients simples, ce qui permet
d’atteindre des performances à l’état de l’art
dans des tâches de classification en domaine.
Ensuite, nous abordons la nécessité d’évalua-
tions fiables des méthodes FSL en mettant
l’accent sur les intervalles de confiance, révé-
lant que les approches d’évaluation prédomi-
nantes négligent souvent l’aléa des données,

entraînant des conclusions spécifiques à cer-
tains jeux de données. Nous proposons des
techniques d’évaluation qui tiennent compte
de cette variabilité, démontrant que les re-
vendications de supériorité entre méthodes
peuvent changer en conséquence voire s’in-
verser. Enfin, nous introduisons une approche
centrée sur les données, améliorant l’adapta-
tion aux tâches inter-domaines en oubliant sé-
lectivement certaines portions du jeu de don-
nées de pré-entraînement, ce qui permet de
réallouer l’espace des caractéristiques pour
améliorer la généralisation. Ensemble, ces
contributions offrent des perspectives com-
plètes pour le développement de modèles
FSL robustes et adaptatifs.

Title: Few-Shot Learning: A Data-centric Approach for Adaptation

Keywords: Few-shot Learning, Deep Learning, Computer Vision, Confidence Intervals

Abstract: This thesis presents three key
contributions aimed at advancing Few-Shot
Learning (FSL) through improved model ro-
bustness, accurate performance assessment,
and task-specific adaptation. First, we ex-
plore methods for building robust feature ex-
tractors by incorporating simple ingredients,
achieving state-of-the-art performance in in-
domain classification tasks. Next, we address
the need for reliable evaluations of FSL meth-
ods by showing that the predominent eval-
uation protocol is misleading in that it does
not account for the randomness of the data,

leading to conclusions that may be dataset-
specific. We propose evaluation techniques
that account for this randomness, demonstrat-
ing that claims of superiority between meth-
ods can change under these considerations.
Lastly, we introduce a data-centric approach
that enhances cross-domain task adaptation
by selectively forgetting portions of the pre-
training dataset, reallocating feature space to
improve generalization. Together, these con-
tributions provide comprehensive insights for
developing robust, adaptable FSL models.
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