
HAL Id: tel-04929866
https://theses.hal.science/tel-04929866v1

Submitted on 5 Feb 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

AI-driven Zero-Touch solutions for resource
management in cloud-native 5G networks

Menuka Perera Jayasuriya Kuranage

To cite this version:
Menuka Perera Jayasuriya Kuranage. AI-driven Zero-Touch solutions for resource management in
cloud-native 5G networks. Networking and Internet Architecture [cs.NI]. Ecole nationale supérieure
Mines-Télécom Atlantique, 2024. English. �NNT : 2024IMTA0427�. �tel-04929866�

https://theses.hal.science/tel-04929866v1
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT DE

L’ÉCOLE NATIONALE SUPÉRIEURE
MINES-TÉLÉCOM ATLANTIQUE BRETAGNE PAYS DE LA LOIRE –
IMT ATLANTIQUE

ÉCOLE DOCTORALE NO 648
Sciences pour l’Ingénieur et le Numérique
Spécialité : Télécommunication

Par

Menuka PERERA JAYASURIYA KURANAGE
AI-Driven Zero-Touch Solutions for Resource Management in
Cloud-Native 5G Networks

Thèse présentée et soutenue à IMT Atlantique, Rennes, 18 Novembre 2024
Unité de recherche : Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA)
Thèse No : 2024IMTA0427

Rapporteurs avant soutenance :

Nadjib AIT SAADI Professor, Université Paris-Saclay / UVSQ
Jean-Louis ROUGIER Professor, Télécom Paris

Composition du Jury :
Président : Salah-Eddine EL AYOUBI Professor, Centrale Supélec
Examinateurs : Nadjib AIT SAADI Professor, Université Paris-Saclay / UVSQ

Jean-Louis ROUGIER Professor, Télécom Paris
Kandaraj PIAMRAT Maître de conférences , Université de Nantes
Philippe BERTIN Chargé de recherche, Orange/ b<>com

Encadrants : Ahmed BOUABDALLAH Maître de conférences, IMT Atlantique/ IRISA
Elisabeth HANSER Chargé de recherche, b<>com

Dir. de thèse : Loutfi NUAYMI Professor, IMT Atlantique/ IRISA

ACKNOWLEDGEMENT

First and foremost, I would like to express my heartfelt gratitude to my thesis direc-
tor, Loutfi Nuaymi, for his unwavering guidance, encouragement, and invaluable expertise
throughout my PhD journey. His support and constructive feedback have been instrumen-
tal in shaping both the theoretical and practical aspects of this work. I am equally grateful
to my thesis supervisors, Ahmed Bouabdallah, Elisabeth Hanser, Philippe Bertin, and
Thomas Ferrandiz, for their insightful advice, technical guidance, and constant encour-
agement. Their diverse perspectives and expertise have significantly enriched this thesis,
helping me navigate complex challenges and achieve meaningful results.

I would like to extend my sincere thanks to EXFO for funding this research and for
closely following the progress of my work throughout the project. Their support has been
vital in enabling this study and ensuring its successful completion.

I am deeply appreciative of my friends and colleagues at IRT b<>com for their cama-
raderie, encouragement, and practical support during this journey. Their willingness to
collaborate, provide feedback has made this experience both productive and enjoyable.

Finally, and most importantly, I would like to thank my family for their unwavering
love and support. To my parents, who have always believed in me and encouraged me to
pursue my dreams, and to my sibling, who have provided endless moral support—thank
you for your patience, understanding, and belief in my abilities. This thesis would not
have been possible without your constant reassurance and faith in me.

3

TABLE OF CONTENTS

List of Figures 9

List of Tables 13

Résumé en français 15

Abstract 23

Abbreviations 25

1 Introduction 31
Motivations . 32
Contributions . 34
Organization of the Manuscript . 36

2 Background 39
2.1 5G network & main challenges . 40

2.1.1 Service-based architecture . 40
2.1.2 5G Core network . 41

2.2 Network automation . 44
2.2.1 ETSI ZSM Framework . 47
2.2.2 Closed loop automation . 50

2.3 Cloud computing . 51
2.3.1 Cloud models . 52
2.3.2 Cloud service models . 53
2.3.3 Cloud pricing . 55
2.3.4 Cost model . 56

2.4 Kubernetes for CNF management . 56
2.4.1 System architecture . 57
2.4.2 Resource management . 60
2.4.3 Dynamic resource allocation . 62

5

TABLE OF CONTENTS

2.5 Summary . 64

3 State of the Art 67
3.1 Introduction . 67
3.2 Rule based autoscaling . 73
3.3 Queuing theory based autoscaling . 82
3.4 Control based autoscaling . 87
3.5 Reinforcement learning based autoscaling 92
3.6 Prediction based autoscaling . 99
3.7 Summary . 106

4 Resource usage forecasting for CNFs in Kubernetes environment 109
4.1 Introduction . 109
4.2 Research challenge . 110

4.2.1 Resource usage profiles of 5GC network functions 111
4.2.2 High level vs low level metrics . 116

4.3 Proposed system model . 120
4.3.1 Resource usage forecasting . 121
4.3.2 Model selection . 122
4.3.3 Data collection . 123
4.3.4 Data pre-processing, model design and training 125

4.4 Results . 126
4.4.1 Evaluation metrics . 126
4.4.2 Prediction accuracy . 127

4.5 Summary . 130

5 AI-assisted proactive autoscaling solution for CNFs 133
5.1 Introduction . 133
5.2 Research challenge . 134
5.3 Dynamic scaling model . 136

5.3.1 Scaling-up . 136
5.3.2 Scaling-down . 138
5.3.3 No scaling . 140
5.3.4 Decision timing . 140
5.3.5 Testbed . 142

6

TABLE OF CONTENTS

5.4 Results . 143
5.4.1 KPIs for the evaluation . 143
5.4.2 Benchmarking the autoscaling solution 144
5.4.3 Autoscaler comparison . 145

5.5 Summary . 150

6 CPU Throttling aware autoscaling 151
6.1 Introduction . 151
6.2 Research challenge . 152
6.3 CPU throttling aware triggering . 161

6.3.1 CPU throttling forecasting . 162
6.3.2 Trigger module integration . 164

6.4 Results . 166
6.4.1 Forecasting model evaluation . 166
6.4.2 Autoscaling solution evaluation . 167

6.5 Summary . 170

7 Conclusion 173
Summary . 173
Future Directions . 174

Publications 177

Bibliography 179

7

LIST OF FIGURES

1.1 Annual average cloud expenditure in top cloud service providers - AWS,
Azure, and Google - 2019. (from [2]) . 33

1.2 Network automation maturity model (based on [3]) 34

2.1 5G Architecture. (based on [10]) . 41
2.2 Network slicing with 5G network. (from [23]) (Copyright © 2017 IEEE) . . 45
2.3 Multi domain, multi tenant network slicing. (from [24] - modified) (Copy-

right © 2018 IEEE) . 46
2.4 ETSI ZSM reference architecture. (from [33]) 48
2.5 E2E Communication service automation with ETSI ZSM framework. (from

[33] - modified) . 49
2.6 ETSI Closed loop stages within ZSM framework compared to OODA model.

(from [33] - modified) . 50
2.7 Comparison between different cloud service models. (based on [48]) 54
2.8 Kubernetes architecture. (based on [60]) 58

3.1 The taxonomy for autoscaling web applications in clouds. (from [72]) . . . 68
3.2 High level overview of three tier architecture. (from [76] - modified) (Copy-

right © 2016 IEEE) . 69
3.3 MEC enabled 5G IoT architecture. (from [86]) (Copyright © 2020 IEEE) . 74
3.4 (a) KHPA in Kubernetes-based edge computing architecture and (b) THPA

in Kubernetes-based edge computing architecture. (from [89]) (Copyright
© 2022 IEEE) . 76

3.5 ELASTICDOCKER architecture. (from [80]) (Copyright © 2017 IEEE) . . 77
3.6 Combining vertical and horizontal scaling. (from [92]) (Copyright © 2020

IEEE) . 79
3.7 A simplified queuing model of the system. (from [96]) (Copyright © 2018

IEEE) . 82

9

LIST OF FIGURES

3.8 (a) Single-service application composed of one service which may contain
different modules. (b) Multi-service application whose invoking relation-
ships of services. (from [97]) (Copyright © 2021 IEEE) 83

3.9 The relationship between supply of resource and service performance. (from
[98]) (Copyright © 2021 IEEE) . 85

3.10 LTE CP queuing model. (from [99]) (Copyright © 2018 IEEE) 86
3.11 PID feedback control loop. (from [76]) (Copyright © 2016 IEEE) 88
3.12 Autoscaling architecture with the PID controller. (from [101]) (Copyright

© 2022 IEEE) . 89
3.13 Overview of QoS management control system. (from [102]) (Copyright ©

2018 IEEE) . 90
3.14 Custom membership function to define the status of the input metrics.

(from [103]) (Copyright © 2018 IEEE) . 91
3.15 SQLR Block diagram: ’LB’ represents the Load Balancer agent, while ’AC’

denotes the Admission Control agent. (from [106]) (Copyright © 2021 IEEE) 93
3.16 Proposed system architecture.(from [107]) (Copyright © 2022 IEEE) 95
3.17 The system architecture of autoscaling framework. (from [109]) 96
3.18 Proposed autoscaler system data flow. (from [112]) (Copyright © 2019 IEEE)100
3.19 Requested CPU for each scaling approach. (from [113]) 101
3.20 Experimental results. (from [78]) (Copyright © 2018 IEEE) 103
3.21 System architecture for the under-study cloud-native network. (from [114])

(Copyright © 2021 IEEE) . 104
3.22 Prediction-based autoscaling system architecture. (from [115]) 105

4.1 Kubernetes testbed with 5G CN. 113
4.2 5G CN resource usage profiles. 114
4.3 Resource usage profile of different applications. (from [125]) (Copyright ©

2021 IEEE) . 117
4.4 CPU usage profiles of the web application under different tbase values. (from

[4]) (Copyright © 2022 IEEE) . 119
4.5 High level architecture of the proposed solution. 120
4.6 Proposed solution with closed loop architecture. (from [5]) (Copyright ©

2023 IEEE) . 121
4.7 Data collection testbed. (from [4] - modified) (Copyright © 2022 IEEE) . . 124

10

LIST OF FIGURES

4.8 RMSE values for forecasting horizons from 1 to 12. (from [4]) (Copyright
© 2022 IEEE) . 127

4.9 MAE values for forecasting horizons from 1 to 12. (from [4]) (Copyright ©
2022 IEEE) . 129

5.1 Selecting the time step to scale in the CPU usage forecast. (from [5]) (Copy-
right © 2023 IEEE) . 135

5.2 Dynamic scaling model decision space. (from [5]) (Copyright © 2023 IEEE) 137
5.3 Average CPU usage post scale down must not surpass the remaining replica

resource capacity. 139
5.4 Autoscaling decision-making process. 140
5.5 Testbed for AI-assisted scaling solution. (from [5]) (Copyright © 2023 IEEE)142
5.6 Service response time during scaling. (from [5]) (Copyright © 2023 IEEE) . 148
5.7 Pod count and pod operational time. (from [5]) (Copyright © 2023 IEEE) . 149

6.1 Effects of CPU throttling on application processing time – single-threaded
application. (based on [144]) . 153

6.2 Comparison of processing time variation with and without CPU throttling. 156
6.3 Influence of incoming request rate, CPU usage on CPU throttling. (from

[6]) (Copyright © 2024 IEEE) . 159
6.4 Proposed CPU throttling aware autoscaling architecture. (from [6]) (Copy-

right © 2024 IEEE) . 165
6.5 RMSE and MAE values of CPU throttling forecasting models. (from [6])

(Copyright © 2024 IEEE) . 167
6.6 Service response time during scaling. (from [6]) (Copyright © 2024 IEEE) . 170
6.7 Operational time comparison. (from [6]) (Copyright © 2024 IEEE) 171

11

LIST OF TABLES

3.1 Rules in fuzzy database. (from [103]) (Copyright © 2018 IEEE) 92

4.1 Cluster resource specifications. (from [4]) (Copyright © 2022 IEEE) 111

13

RÉSUMÉ EN FRANÇAIS

L’industrie des télécommunications a connu des transformations profondes depuis le
début du XIXe siècle, encommençant par la commercialisation du télégraphe. Cette in-
novation pionnière a posé les bases de l’exploitation dans un contexte économique de
la communication longue distance , redéfinissantfondamentalement les méthodologies de
transmission de l’information. L’inventionultérieure du téléphoneaaccéléré le développe-
ment du secteurenpermettant la communication vocale, favorisantuneconnectivitéinter-
personnelle sans précédent.

Une avancée majeure s’estproduite à la fin des années 1980 avec l’avènement de
l’internet, facilitantl’échangerapided’informations à l’échellemondiale et remodelant les
paradigmes de communication. Aujourd’hui, les infrastructures modernes de télécommuni-
cationsontévoluéen réseaux sophistiqués , offrantune large gamme de services à l’ensemble
des secteurs des activités humaines (santé, finance, divertissement, . . .). Cessystèmes con-
stituent la clé de voute de l’infrastructuremondiale de l’économie numérique en permet-
tantuneconnectivitémondiale systématique.

Le déploiement actuel des réseaux de cinquièmegénération (5G) devrait considérable-
mentélargir les capacités de service et les scénariosd’application, amplifiantainsil’impacté-
conomique et societal des infrastructures numériques. La technologie 5G promet notam-
ment des vitessesmontantesallantjusqu’à 10 Gbps et des vitessesdescendantesallantjusqu’à
20 Gbps, enexploitant les fréquencesmillimétriques (au-dessus de 6 GHz) et enincorporant
des technologies avancéestelles que le Massive Multiple Input Multiple Output (MIMO)
et le beamforming au sein du réseau d’accès radio (RAN).

En plus de sesavancéestechnologiques, la 5G intègre des systèmes de gestion automa-
tisés entièrementnatifs pour le cloud , introduisant de nouvelles architectures réseau. Ces
innovations permettentunecapacité accrue, unelatenceréduite, des performances amélioré-
es et des coûtsd’exploitationinférieurs par rapport aux générationsprécédentes, position-
nant la 5G comme un élémentfondamental des infrastructures de télécommunications
futures.

Les capacitésaméliorées de la 5G sontappelées à transformer de nombreuxsecteurs,
notamment la diffusion multimédia à haut débit, les systèmes de transport intelligents,

15

Résumé en français

l’agriculture de précision, les solutions de santé avancées, les environnements de travail
à distance, l’automatisationindustrielle (Industrie 4.0) et l’industrie des jeux enligne.
Ces applications devraientapporter des avantagessubstantiels au bien-êtrehumain tout
engénérantune contribution significative à la croissanceéconomiquemondiale.

Les projections estiment qu’environ 70 % du trafic mobile sera consacré au streaming
vidéo, nécessitant des réseaux à haute capacité et une connectivité ininterrompue pour
offrir une expérience utilisateur fluide. De plus, l’adoption croissante d’objets connectés
(Internet des objets - IoT)—utilisés dans les maisons intelligentes, les environnements de
travail intelligents et la surveillance environnementale agricole— entraîne une augmenta-
tion significative des communications machine-à-machine (M2M).

Les applications avancées telles que la conduite autonome et la chirurgie à distance
imposent des contraintes très fortes , nécessitant une communication à ultra-faible latence
pour répondre aux exigences strictes de performances en temps réel. Ces cas d’utilisation
variés imposent des demandes complexes et diversifiées sur les performances des réseaux,
soulignant la nécessité de solutions de communication personnalisées. Ces solutions doivent
répondre efficacement aux besoins spécifiques en matière de qualité d’expérience (QoE), de
qualité de service (QoS) et de sécurité robuste pour garantir des performances optimales
dans toutes les applications.

L’adoption de l’architecture nativement basée sur le cloud marque une avancée signi-
ficative dans l’industrie des télécommunications, en particulier avec la mise en œuvre de la
5G. Traditionnellement, les réseaux télécoms reposaient sur une infrastructure matérielle
dédiée et ainsi que des logiciels propriétaires, limitant leur adaptabilité.

En adoptant les technologies natives du cloud, les fournisseurs de services de communi-
cation (CSP) peuvent tirer parti de la scalabilité, de l’élasticité et de l’agilité inhérentes à
l’infrastructure cloud. Cette transition non seulement rationalise la prestation de services,
mais améliore également l’efficacité opérationnelle et la flexibilité réseau.

Bien que la transition vers l’infrastructure cloud offre de nombreux avantages, elle ne
garantit pas nécessairement une réduction des coûts. Sans stratégie efficace de gestion
et d’optimisation, l’adoption du cloud peut entraîner une augmentation des dépenses
opérationnelles. De nombreuses industries ayant migré leurs opérations informatiques vers
le cloud indiquent des coûts plus élevés que prévus, souvent en raison d’inefficacités dans
l’utilisation des ressources. Les études sur la gestion des coûts du cloud révèlent qu’en
moyenne, 35 % des ressources cloud allouées aux trois principaux fournisseurs de services
cloud sont gaspillées chaque année. Ces ressources inutilisées ou sous-utilisées contribuent

16

Résumé en français

à des coûts opérationnels disproportionné et à une rentabilité réduite.
Les principaux facteurs à l’origine de ce gaspillage de ressources comportent une com-

préhension limitée des besoins en charge de travail, une visibilité insuffisante sur les
déploiements cloud et des difficultés à identifier avec précision les besoins critiques en
ressources telles que le calcul, la mémoire et le stockage. Ce manque de visibilité en-
traîne souvent une allocation de ressources sous-optimale. Des ressources insuffisantes
dégradent les performances des applications, affectant directement la QoS. Pour atténuer
cette dégradation, les organisations surprovisionnent fréquemment les ressources, ce qui
conduit à d’autres inefficacités et à une augmentation des coûts. Cette dynamique illustre
le compromis inévitable entre l’optimisation des coûts et la QoS dans les environnements
cloud.

L’optimisation des coûts dans les infrastructures cloud est un défi complexe et mul-
tidimensionnel. Elle est influencée par divers facteurs, notamment les types de modèles
de déploiement cloud (public, privé ou hybride), les structures tarifaires variées, la con-
ception architecturale des applications côté client et l’intégration des composants middle-
ware. Chaque implémentation cloud est unique et nécessite des stratégies d’optimisation
des coûts sur mesure pour équilibrer efficacité opérationnelle et rentabilité. En l’absence
d’une approche universelle, les organisations doivent évaluer et prendre en compte les
variables et contraintes spécifiques à leurs déploiements cloud.

La gestion manuelle des ressources et l’optimisation des coûts sont des processus ex-
igeants en termes de ressources et sujets à des inefficacités et des erreurs. La nature
dynamique et évolutive des environnements cloud complique encore ces tâches, rendant
l’automatisation essentielle pour une gestion efficace de ces coûts . Les solutions automa-
tisées permettent une surveillance en temps réel, une allocation intelligente des ressources
et des ajustements proactifs pour mettre en adéquation usage des ressources et besoins
des charges de travail. En s’appuyant sur l’automatisation, les organisations peuvent min-
imiser le gaspillage des ressources, améliorer la QoS et réaliser des réductions significatives
des dépenses d’investissement (CapEx) et des dépenses opérationnelles (OpEx), max-
imisant ainsi la valeur de leurs investissements cloud.

La progression vers une automatisation complète dans les télécommunications implique
l’adoption de cadres d’automatisation autonomes dotés de capacités d’auto-réparation et
d’auto-optimisation. Ces systèmes avancés permettent aux réseaux d’identifier, diagnosti-
quer et résoudre les problèmes de manière autonome tout en optimisant les performances
sans intervention externe. Cependant, le déploiement d’une telle automatisation sophis-

17

Résumé en français

tiquée dans le paysage complexe et dynamique des réseaux 5G présente des défis impor-
tants en raison des complexités architecturales et des exigences de performance diversifiées
de la 5G.

Les organismes de normalisation, notamment le 3rd Generation Partnership Project
(3GPP) et l’Institut européen des normes de télécommunication (ETSI), abordent ces
défis en promouvant une gestion de réseau entièrement automatisée et en normalisant de
nouvelles architectures . Ces efforts visent à garantir l’interopérabilité, la fiabilité et la
cohérence des déploiements 5G à l’échelle mondiale.

Les avancées en intelligence artificielle (IA) et en apprentissage automatique (ML) sont
essentielles à la réalisation de réseaux entièrement automatisés. L’IA et le ML fournissent
des analyses intelligentes, des capacités prédictives et une prise de décision autonome,
constituant la base des opérations réseau automatisées. Ces technologies améliorent les
performances en permettant une allocation dynamique des ressources, une détection des
anomalies en temps réel et une optimisation proactive.

Dans les environnements cloud, les techniques d’IA/ML jouent un rôle crucial pour
résoudre le compromis entre coût et QoS. En prévoyant les charges de travail et en esti-
mant les coûts, l’IA/ML facilite une allocation dynamique des ressources, garantissant des
performances optimales et une efficacité des coûts. Cette intégration soutient le double
objectif de maintenir une QoS élevée tout en minimisant les coûts opérationnels. Grâce
à l’automatisation pilotée par l’IA/ML, les réseaux 5G peuvent atteindre des niveaux
inégalés d’efficacité, de scalabilité et d’adaptabilité, pour devenir ainsi les fondements des
infrastructures de télécommunications de prochaine génération.

La réduction du gaspillage des ressources cloud, un facteur important de l’augmentation
des dépenses cloud, nécessite la mise en œuvre de stratégies d’allocation dynamique de
ressources, améliorées par l’automatisation. Une gestion efficace des ressources implique
de comprendre les besoins des applications et d’allouer les ressources de manière précise et
rapide. Cette approche permet de réduire les risques de surallocation et de sous-allocation,
atteignant ainsi un équilibre optimal entre coûts opérationnels et QoS.

Pour répondre au compromis coût-QoS dans les environnements cloud, en particulier
pour les fonctions réseau 5G (NFs), cette thèse propose une nouvelle solution proac-
tive d’autoscaling adaptée aux fonctions réseau natives pour le cloud (CNFs) déployées
dans des environnements Kubernetes. L’étude a identifié plusieurs défis inhérents à ce
domaine, notamment la nécessité d’analyser et de prévoir les futurs modèles d’utilisation
des ressources des NFs basées sur le cloud, de permettre une prise de décision proac-

18

Résumé en français

tive et éclairée, et d’évaluer l’influence du matériel et des middleware sous-jacents sur les
stratégies de mise à l’échelle.

La première étape de la solution proposée, met l’accent sur uneprévisionprécise de
l’utilisation des ressources des CNFs, essentielle pour éviter à la fois la surestimation et la
sous-estimation des besoins. Une surestimationentraîneune allocation de ressources inu-
tile et des coûtsaccrus, tandisqu’une sous-estimation peutdégrader les performances des
applications, affectantnégativement la QoS. La prévision des ressourcesen temps réelfour-
nit des informationsexploitablesessentielles pour l’autoscaling. Cependant, prédire les de-
mandesenressources à l’avance,reste un défimajeur. Cette complexitédécoule de la relation
complexe entre les charges de travail entrantes et la consommationréelle des ressources
des CNFs, qui peut varier considérablementenfonction des caractéristiques des charges de
travail et du comportement des applications.

Pour relever ce défi, une nouvelle méthodologie de prévision de l’utilisation des ressour-
ces, spécialement conçue pour les CNFs déployées dans des environnements Kubernetes,
est introduite. Cette méthodologie prend en compte l’interaction complexe entre les exi-
gences des charges de travail et les modèles de consommation des ressources. Elle utilise
une technique de prévision des séries temporelles multivariées exploitant des modèles
d’apprentissage profond pour capturer et prévoir avec précision l’utilisation future des
ressources des CNFs.

L’approche proposée fournit des prévisions fiables, de la consommation des ressources
sur des horizons temporels étendus, permettant des analyses en temps réel qui soutiennent
des décisions d’autoscaling proactives. Les évaluations empiriques montrent que cette
méthode de prévision améliore les approches traditionnelles, qui se basent généralement
uniquement sur des données au niveau du système ou de l’application, en termes de
précision et de fiabilité.

La deuxième phase de la solution d’autoscaling consiste à analyser les prévisions
d’utilisation du CPU générées lors de la phase initiale afin de déterminer les actions
de mise à l’échelle appropriées. Cela inclut le calcul du nombre optimal de répliques et la
planification du moment de ces opérations de mise à l’échelle pour garantir une allocation
efficace des ressources tout en maintenant les niveaux de QoS souhaités. En intégrant une
prévision précise avec des actions de mise à l’échelle stratégiques, la solution équilibre
efficacement rentabilité et performance, répondant ainsi au compromis critique entre coût
et QoS dans les environnements 5G basés sur le cloud.

Le processus de prise de décision pour l’autoscaling dans les environnements cloud est

19

Résumé en français

intrinsèquement complexe et pose des défis importants. Même avec des prévisions précises
de l’utilisation du CPU, les décisions de mise à l’échelle peuvent perturber l’équilibre déli-
cat entre coût et QoS. Malgré l’utilisation de valeurs prévues et de stratégies proactives,
des problèmes similaires à ceux observés dans les approches réactives basées sur des seuils
peuvent encore survenir. Ces problèmes incluent l’identification incorrecte des actions de
mise à l’échelle ou une mauvaise estimation du nombre requis de répliques, ce qui peut
entraîner une surallocation ou une sous-allocation des ressources.

Un autre défi réside dans le moment des décisions de mise à l’échelle, qui impacte de
manière critique l’équilibre entre coût et QoS. Les décisions de mise à l’échelle reposent
sur l’utilisation future prévue du CPU, et la latence inhérente entre l’initiation d’une
réplique et sa disponibilité opérationnelle, introduit des sensibilités temporelles. Des déci-
sions prises prématurément peuvent entraîner une allocation de ressources inutile, tandis
que des actions retardées risquent de ne pas prévenir la dégradation des performances.
Ainsi, garantir un moment optimal est essentiel pour maintenir à la fois l’efficacité des
coûts et la QoS.

Le cœur de cette phase réside dans le développement d’un mécanisme avancé d’autosca-
ling combinant des stratégies basées sur des seuils statiques et dynamiques pour dif-
férencier divers scénarios de mise à l’échelle. Ce mécanisme intègre des techniques expéri-
mentales visant à optimiser le moment des décisions de mise à l’échelle, garantissant que
les actions sont exécutées aux moments les plus efficaces. En surmontant les limitations
des capacités natives d’autoscaling de Kubernetes et en atténuant les oscillations décision-
nelles, problème courant dans les systèmes traditionnels basés sur des seuils, la solution
proposée renforce la stabilité et la robustesse du processus d’autoscaling.

Cette méthodologie permet des décisions de mise à l’échelle en temps réel, basées
sur l’utilisation prédite des ressources, minimisant les coûts opérationnels et réduisant
la dégradation de la QoS pendant les événements de mise à l’échelle. Les résultats em-
piriques montrent que cette approche proactive d’autoscaling atteint un compromis coût-
QoS supérieur par rapport aux méthodes alternatives. La solution équilibre efficacement
l’exploitation des ressources et la qualité de service, surmontant les limitations tradition-
nelles et faisant progresser les capacités de mise à l’échelle dans les environnements natifs
pour le cloud.

Malgré ses performances supérieures à la solution d’autoscaling par défaut de Kuber-
netes , le mécanisme d’autoscaling proposé a rencontré une augmentation des temps de
réponse des services lors des événements de mise à l’échelle ascendante. Ce problème était

20

Résumé en français

principalement dû à un moment sous-optimal des décisions au sein du mécanisme de mise
à l’échelle. Bien que les actions de mise à l’échelle ascendante aient été initiées de manière
proactive, les délais d’exécution ont conduit à une dégradation de la QoS. L’analyse a
révélé que, bien que les répliques aient été provisionnées avant que le pod affecté atteigne
sa capacité CPU, les temps de réponse des services s’étaient déjà détériorés.

La cause sous-jacente de cette dégradation de la QoS a été attribuée au mécanisme de
limitation du CPU inhérent à la gestion des ressources au niveau du système. Ce mécan-
isme, mis en œuvre dans les environnements Linux pour réguler et limiter la surutilisation
des ressources par les pods, a involontairement impacté les calculs de temporisation néces-
saires à des décisions de mise à l’échelle efficaces. En conséquence, il a perturbé l’équilibre
entre les coûts opérationnels et la QoS, mettant en évidence les limites de la solution
d’autoscaling initiale.

Pour pallier cette limitation, un mécanisme de déclenchement amélioré a été développé
en tant qu’extension de la solution d’autoscaling proposée. Ce mécanisme amélioré ajuste
dynamiquement le moment des décisions de mise à l’échelle en tenant compte des effets
de la limitation du CPU. En prévoyant les futurs événements potentiels de limitation du
CPU, il fournit des informations exploitables permettant des ajustements proactifs de
la mise à l’échelle, atténuant ainsi les augmentations des temps de réponse des services
causées par cette limitation.

Cette approche améliorée vise à minimiser la dégradation de la QoS lors des événe-
ments de mise à l’échelle, améliorant considérablement les performances des CNFs dans
les environnements 5G natifs pour le cloud. La solution a été validée dans un déploiement
Kubernetes en conditions réelles, avec des résultats comparés à ceux des expériences précé-
dentes. Les résultats ont démontré l’efficacité du mécanisme amélioré pour maintenir un
compromis coût-QoS plus optimal tout en réduisant la dégradation des temps de réponse
des services lors des processus de mise à l’échelle ascendante.

Les conclusions de cette thèse représentent une contribution significative au domaine
de la gestion des réseaux 5G natifs pour le cloud, en mettant particulièrement l’accent
sur la résolution du compromis critique entre coût et QoS. En explorant les subtilités de
l’allocation des ressources, des mécanismes d’autoscaling et de l’optimisation des perfor-
mances dans des environnements basés sur Kubernetes, cette recherche présente un cadre
solide et complet. Ce cadre est conçu pour être adopté par les fournisseurs de services de
communication (CSP) afin d’améliorer l’efficacité opérationnelle et la scalabilité de leurs
pratiques de gestion de réseau.

21

Résumé en français

Les contributions de ce travail font progresser l’état de l’art dans la gestion des archi-
tectures natives pour le cloud, en dotant les CSP d’outils et de méthodologies innovants
pour relever efficacement les défis complexes posés par les réseaux 5G. En introduisant
des solutions équilibrant stratégiquement les coûts opérationnels et la QoS, cette thèse
facilite la création d’infrastructures de réseau résilientes, performantes et économique-
ment durables. Ces avancées sont essentielles pour façonner la prochaine génération de
connectivité mondiale, garantissant que les réseaux restent adaptables et efficaces dans
un paysage technologique de plus en plus dynamique.

22

ABSTRACT

Recent technological advancements have spurred significant enhancements across sec-
tors such as healthcare, media, and agriculture, compelling wireless network operators to
elevate their offerings with highly dependable, low-latency, large-scale networking solu-
tions. This transformation is driven by the advent of the 5th Generation (5G) network,
designed to meet escalating demands and usher in novel applications like Augmented
Reality (AR), Virtual Reality (VR), digital twins, Industry 4.0, etc. Consequently, 5G
has fundamentally reshaped network traffic patterns and intensified the complexities of
network management.

A pivotal feature of 5G is its shift from traditional monolithic network architectures de-
pendent on Physical Network Functions (PNFs) to Cloud-native network functions (CNFs)
in cloud-native environments, promising superior performance and flexibility. This evolu-
tion has underscored the growing complexity of network management, necessitating a shift
towards automation. Recognizing this need, the European Telecommunications Standards
Institute’s (ETSI) Zero-touch Network and Service Management (ZSM) working group
has proposed a standardized framework to automate modern telecom network operations
using closed-loop architecture.

One of the primary challenges in managing 5G networks lies in dynamically scaling
network functions within cloud-native settings. Effective network management tools, cou-
pled with automation can optimize resource allocation by ensuring Quality of Service
(QoS) and reducing deployment costs. Kubernetes, a leading container management and
orchestration tool, has gained popularity among telecom providers for its adaptability
and robust performance in 5G environments. Its Horizontal Pod Autoscaler (HPA) scales
CNFs based on workload demands to maintain high availability and performance, yet
aggressive cost-saving measures like this could impact deployment efficiency.

This research tackles the critical trade-off between cost and QoS in resource autoscal-
ing for cloud-native 5G networks. We achieve this by developing advanced algorithms that
enhance scaling actions within the Kubernetes ecosystem. By leveraging deep learning,
real-time analytics, and predictive modeling, our approach improves the responsiveness
and precision of autoscaling mechanisms within the framework of ZSM’s closed-loop ar-

23

Abstract

chitecture. Utilizing closed-loop systems and adaptive control strategies, our methodology
significantly elevates autoscaling performance under real-world operational scenarios.

24

ABBREVIATIONS

5G 5th Generation

3GPP 3rd Generation Partnership Project

AI Artificial Intelligence

AMF Access and Mobility Management Function

API Application Programming Interface

AR AutoRegressive

ARIMA AutoRegressive Integrated Moving Average

AUSF Authentication Server Function

AWS Amazon Web Services

BiLSTM Bi-directional Long Short-Term Memory

CaaS Container as a Service

CapEx Capital Expenditures

CD Continuous Deployment

CFS Complete Fair Scheduler

CI Continuous Integration

CN Core Network

CNCF Cloud-Native Computing Foundation

CNF Cloud-Native Network Function

CNN Convolutional Neural Networks

CPU Central Processing Unit

CRIU Checkpoint Restore in User space

CSP Communication Service Provider

DDoS Distributed Denial of Service

DNN Deep Neural Network

25

Abbreviations

DPDK Data Plane Development Kit

DRL Deep Reinforcement Learning

E2E End-to-End

EC2 Elastic Compute Cloud

EKS Elastic Kubernetes Service

EMA Exponential Moving Average

EPC Evolved Packet Core

ETSI European Telecommunications Standards Institute

FFRLS Forgetting Factor Recursive Least Squares

GCP Google Cloud Platform

GKE Google Kubernetes Engine

GNN Graph Neural Network

GRU Gated Recurrent Units

GTP-U General Packet Radio Service Tunneling Protocol-User Plane

HPA Horizontal Pod Autoscaling

HTTP Hypertext Transfer Protocol

HW Holt-Winters

IaaS Infrastructure as a Service

IoT Internet of Things

IP Internet Protocol

JQN Jackson Queuing Network

KPI Key Performance Indicators

LSTM Long Short-Term Memory

LTE Long-Term Evolution

MA Moving Average

MAE Mean Absolute Error

MANO Management and Orchestration

MAPE-K Monitor, Analyze, Plan, Execute, Knowledge

26

Abbreviations

MARIMA Multivariate AutoRegressive Integrated Moving Average

MCMC Markov Chain Monte Carlo

MIMO Multiple Input Multiple Output

ML Machine Learning

MME Mobility Management Entity

NaaS Network as a Service

NAS Non-Access Stratum

NF Network Function

NFV Network Functions Virtualization

NFVO Network Functions Virtualization Orchestrator

NGAP Next Generation Application Protocol

NG-RAN Next Generation Radio Access Network

NRF Network Repository Function

NSA Non-Standalone

NSSF Network Slice Selection Function

NWDAF Network Data Analytics Function

ONAP Open Network Automation Platform

ONF Open Network Foundation

OODA Observe, Orient, Decide, Act

OOM Out-Of-Memory

OpEx Operational Expenditures

OS Operating System

PaaS Platform as a Service

PCF Policy Control Function

PDCP Packet Data Convergence Protocol

PFCP Packet Forwarding Control Protocol

PGW Packet Data Network Gateway

PID Proportional-Integral-Derivative

27

Abbreviations

QoE Quality Of Experience

QoS Quality of Service

QPS Queries Per Second

RAN Radio Access Network

REST Representational State Transfer

RL Reinforcement Learning

RMSE Root Mean Square Error

RNN Recurrent Neural Network

SaaS Software as a Service

SARIMA Seasonal AutoRegressive Integrated Moving Average

SARIMAX Seasonal AutoRegressive Integrated Moving Average with Exogenous
Regressors

SBA Service-Based Architecture

SCTP Stream Control Transmission Protocol

SDN Software-Defined Networking

SGW Serving Gateway

SLA Service Level Agreements

SMA Simple Moving Average

SMF Session Management Function

SON Self-Organizing Network

UDM Unified Data Management

UDR Unified Data Repository

UE User Equipment

UP User Plane

UPF User Plane Function

VAR Vector AutoRegressive

VM Virtual Machine

VNF Virtual Network Function

VPA Vertical Pod Autoscaling

28

Abbreviations

VPP Vector Packet Processing

VU Virtual User

ZSM Zero Touch Network and Service Management

29

Chapter 1

INTRODUCTION

The telecommunications sector has undergone substantial transformation since the
early 19th century, marked by the commercialization of the first telegraph service. This
foundational development established the basis for commercial long-distance communi-
cation, fundamentally altering information transmission methodologies. The subsequent
invention of the telephone further propelled the industry, introducing voice communica-
tion and creating unprecedented connections among individuals.

A pivotal advancement occurred in the late 1980s with the commercialization of the
internet, which enabled rapid global information exchange and revolutionized communi-
cation paradigms. Presently, modern telecommunication systems have evolved into highly
complex networks, delivering a diverse array of services across multiple sectors, including
healthcare, finance, and entertainment. These systems form a critical component of global
infrastructure, facilitating the digital age and ensuring seamless global connectivity.

The telecommunications industry is currently in the process of deploying 5th genera-
tion (5G) networks, a significant progression expected to greatly extend services and use
cases, thereby amplifying its economic impact. 5G networks are projected to achieve uplink
speeds of up to 10 Gbps and downlink speeds of up to 20 Gbps, utilizing millimeter-wave
frequencies (above 6 GHz) and integrating advanced technologies such as massive Multi-
ple Input Multiple Output (MIMO) and beamforming within the Radio Access Network
(RAN).

In addition to these enhancements, 5G is adapting fully cloud-native and automated
management systems, introducing new network architectures in both core and edge net-
works. These innovations will result in increased capacity, reduced latency, enhanced per-
formance, and lower operational costs compared to previous generations, solidifying 5G’s
role as a cornerstone of future telecommunications infrastructures. These advancements
position 5G to revolutionize various sectors, including high-speed media delivery, smart
transportation, smart agriculture, smart healthcare, remote work environments, indus-
trial automation (Industry 4.0), and the online gaming industry. Such applications are

31

Introduction

expected to significantly contribute to human well-being and the global economy.
Current projections suggest that 70% of mobile traffic will be dedicated to video

streaming [1], necessitating high-capacity and uninterrupted communication to ensure
seamless user experiences. Additionally, the proliferation of Internet of Things (IoT) de-
vices managing daily activities—such as smart homes, smart offices, and environmental
monitoring in agriculture—significantly increases the volume of machine-to-machine com-
munications. Moreover, emerging applications like autonomous driving and remote surgery
demand ultra-low latency communications to meet stringent time-sensitive requirements.
This diverse array of use cases imposes varying demands on network performance, ne-
cessitating customized communication solutions that address specific needs in terms of
Quality of Experience (QoE), Quality of Service (QoS), and security levels.

Motivations

Transitioning from proprietary hardware and software to a cloud-native approach
marks a significant technological advancement for the telecommunications industry, par-
ticularly with the advent of 5G. Traditionally, telecom networks have relied heavily on
specialized hardware and proprietary software solutions, often resulting in higher costs
and limited flexibility. By adopting cloud-native technologies, Communication Service
Providers (CSPs) can leverage the inherent scalability, elasticity, and agility of cloud in-
frastructures for their services, while simultaneously reducing both Capital Expenditures
(CapEx) and Operational Expenditures (OpEx).

However, moving to the cloud does not inherently guarantee lower costs if not managed
properly. Many industries have migrated their IT operations to the cloud, yet experience
higher operational costs due to a lack of cost optimization. Reports on cloud cost managing
indicate that on average, 35% of allocated cloud resources in top three cloud service
providers are wasted each year [2] as illustrated in Figure 1.1. In this context, wasted
resources refer to those not fully utilized, leading to increased operational costs. Common
reasons for this include a lack of understanding of workloads, insufficient observability into
cloud deployments, and an inability to identify which resources (e.g., computing, memory,
storage) are critical for day-to-day operations.

The lack of sufficient resources can degrade application performance, adversely affect-
ing the QoS. To prevent this, many cloud users over-provision resources, further contribut-
ing to resource waste and cost increases. This highlights a major trade-off between cost

32

Introduction

Figure 1.1 – Annual average cloud expenditure in top cloud service providers - AWS,
Azure, and Google - 2019. (from [2])

and QoS in cloud-based applications. Optimizing operational costs is a complex challenge
due to numerous independent variables, including different cloud models, pricing strate-
gies, client-side application architectures, and various middleware components. Each case
requires a customized cost-optimized solution, as there is no one-size-fits-all approach.
Manual management of these factors is resource-intensive and often suboptimal, necessi-
tating the need for automation.

Automation can significantly reduce cloud resource waste by dynamically adjusting
resource allocation based on workload demands. This approach helps clients avoid over-
provisioning, thereby lowering operational costs, while also preventing under-provisioning,
which can degrade QoS and violate Service Level Agreements (SLAs). From the client’s
perspective, idle resources increase operational costs, while insufficient resources can lead
to performance issues and SLA violations. From the cloud service provider’s perspective,
idle resources increase the energy consumption of underlying hardware. By leveraging au-
tomation, CSPs can achieve efficient, scalable, and cost-effective cloud operations, thereby
fully capitalizing on the advantages of cloud-native technologies.

The evolution of network automation aims to achieve a fully automated network envi-
ronment, significantly minimizing repetitive tasks that require human intervention. This
reduces the risk of human errors, leading to enhanced operational efficiency and reliabil-
ity. The path to full automation involves leveraging self-aware automation frameworks,
characterized by self-healing and self-optimizing capabilities. These frameworks enable the
network to autonomously detect, diagnose, and resolve issues, as well as optimize perfor-
mance without external input. However, implementing such advanced automation in the

33

Introduction

Figure 1.2 – Network automation maturity model (based on [3])

intricate domain of 5G mobile networks presents substantial challenges due to its com-
plexity. Achieving this goal necessitates a phased approach, as outlined in the maturity
model described in the report [3]. Each stage of the maturity model introduces incremen-
tal capabilities, laying the foundation for the subsequent stages and ensuring robust and
scalable automation within the 5G ecosystem. Standardization bodies in the 5G domain
are addressing this challenge by advocating for fully automated network management and
actively developing and standardizing new concepts, architectures, and frameworks.

The realization of fully automated networks is largely driven by advancements in
Artificial Intelligence (AI) and Machine Learning (ML) technologies. These technologies
facilitate intelligent analytics and decision-making, optimizing network management op-
erations. In the context of the cost-QoS trade-off in cloud environments, AI/ML tech-
niques contribute to capacity planning by forecasting workloads and cost estimations.
This enables dynamic allocation of cloud resources, ensuring optimal performance and
cost efficiency.

Contributions

The objective of this thesis is to explore and enhance the efficiency of resource manage-
ment for 5G Network Functions (NFs) deployed in cloud-native environments. A primary
approach to addressing this issue involves the dynamic scaling of NFs in conjunction with
network automation. This investigation uncovered several challenges, including analyzing
and forecasting resource usage behavior of cloud-based applications, facilitating real-time
decision-making, and assessing the impact of underlying hardware and middleware on the

34

Introduction

scaling decisions. The contributions of this thesis are as follows:

Resource Usage Forecasting in CNFs

This contribution [4] addresses the cost-QoS trade-off in cloud-native 5G networks
through dynamic autoscaling by emphasizing the necessity for proactive and precise scal-
ing decisions. Accurately forecasting the resource usage of CNFs (Cloud-native network
functions) is critical to prevent under- or overestimation, which can disrupt the balance be-
tween cost and QoS. Real-time resource forecasting offers valuable insights for autoscaling;
however, predicting resource requirements in advance is challenging due to the complex
relationship between incoming workloads and actual CNF resource usage.

To tackle this issue, a novel resource usage forecasting method specifically designed
for CNFs in Kubernetes environments is proposed. This approach integrates the intricate
relationship between workload demands and resource consumption. A multivariate time
series forecasting approach, leveraging deep learning models, is introduced to capture
these complexities and accurately predict future resource usage of CNFs. The method
provides reliable forecasts of resource consumption patterns over extended time horizons,
thereby enabling real-time insights that support proactive autoscaling decisions.

Dynamic autoscaling decision-making

This contribution [5] addresses the challenges of proactive horizontal autoscaling decision-
making within Kubernetes environments. Specifically, it tackles the complexities inher-
ent in making scaling decisions, even when resource usage is accurately forecasted. Our
research introduces a novel approach that enhances the cost-QoS trade-off by prevent-
ing under-provisioning and over-provisioning through intelligent differentiation of scaling
events (scaling up, scaling down, or no scaling) and the strategic timing of these actions.

The core of this contribution lies in the development of an advanced autoscaling
mechanism that leverages both static and dynamic thresholds to distinguish between dif-
ferent scaling scenarios. This method incorporates experimental techniques to fine-tune
the timing of scaling decisions, ensuring that actions are taken at the most opportune
moments. By addressing Kubernetes’ limitations and mitigating decision oscillation ef-
fects—common issues in threshold-based scaling systems—the proposed solution enhances
the stability and effectiveness of the autoscaling process. The proposed methodology en-
ables real-time scaling decisions based on predicted resource usage, thereby minimizing
operational costs and reducing QoS degradations during scaling events. This innovative

35

Introduction

approach significantly improves the balance between cost efficiency and service quality,
providing a more robust and responsive autoscaling system for Kubernetes environments.

CPU throttling aware autoscaling

We identify Central Processing Unit (CPU) throttling as a critical challenge in cloud
computing, particularly in scenarios where CNFs operate near their allocated CPU re-
source limits, leading to QoS degradation. This challenge is exacerbated by the need to
balance the trade-off between cost and QoS, as autoscalers are designed to maximize re-
source utilization while minimizing operational costs. When CNFs approach their CPU
allocated capacity, CPU throttling mechanism is triggered, resulting in increased service
response times and adversely impacting performance-sensitive applications. Accurately
predicting the onset of CPU throttling and executing timely scaling actions is crucial to
mitigate its impact. However, this task is complicated by the intricate inter-dependencies
between Operating System (OS) mechanisms, Kubernetes orchestration, workload vari-
ability, and CPU usage patterns. These complexities make it challenging to identify the
optimal timing for autoscaling decisions, which are vital for achieving a balance between
cost efficiency and QoS.

This contribution [6] introduced a novel trigger mechanism that leverages deep learn-
ing to predict CPU throttling events and facilitate real-time scaling decisions. To the best
of our knowledge, this work is among the first to investigate CPU throttling prevention
in the context of Kubernetes using deep learning techniques. By proactively addressing
the effects of CPU throttling on service response times, this approach aims to minimize
response time degradation during scaling events, thereby significantly enhancing the per-
formance of CNFs, particularly within cloud-native 5G network environments.

Organization of the manuscript

Chapter 1 presents a general introduction to the thesis context and outlines its
direction.

Chapter 2 provides a comprehensive background on different domains addressing
the cost-QoS trade-off in cloud-native 5G networks. This chapter delves into the various
components, standards, and concepts crucial to addressing this trade-off, including the
functional architecture of 5G networks, principles of network automation, cloud computing
paradigms, and the role of Kubernetes in managing containers within cloud environments.

36

Introduction

Chapter 3 conducts an in-depth analysis of state-of-the-art autoscaling solutions
within cloud environments. The chapter begins by identifying the key considerations in
developing effective autoscaling mechanisms. It then categorizes and evaluates existing
autoscaling solutions, examining their respective advantages, disadvantages, and their
compatibility with cloud-native 5G architectures.

Chapter 4 presents the first contribution of this thesis: the development of a novel
proactive two-stage autoscaling solution. This chapter is dedicated to the initial phase,
which centers on resource usage forecasting for CNFs. A deep learning-based forecasting
method is introduced, specifically focused on cloud-native 5G environments. The chapter
concludes with a comprehensive evaluation of the proposed forecasting model, assessing
its accuracy and effectiveness in predicting resource demands where results demonstrate
that the proposed forecasting approach accurately predicts resource usage over extended
time horizons.

Chapter 5 presents the second contribution of this thesis, which addresses the second
stage of the proposed autoscaling solution. This chapter is centered on the design and
implementation of a dynamic scaling mechanism. It provides a detailed account of how
the forecasting stage is integrated with dynamic scaling to create a cohesive autoscaling
solution. It also includes detailed experimentation of the proposed solution on a real-world
cloud platform. The chapter concludes with a evaluation of the complete solution, and
the results indicate that our proposed auto-scaling solution achieves a superior balance
between cost and QoS compared to Kubernetes HPA and other state-of-the-art proactive
solution.

Chapter 6 provides the third contribution, addressing a critical issue that affects the
cost-QoS trade-off in the proposed autoscaling solution: CPU throttling during autoscaling
operations. This chapter introduces a novel autoscaling strategy specifically designed to
mitigate the adverse effects of CPU throttling. The efficacy of this strategy is evaluated,
with a focus on its impact on maintaining the balance between cost and QoS. The results
demonstrate that our proposed solution effectively minimizes QoS degradation caused by
CPU throttling during scaling, achieving a better balance between cost and QoS.

Chapter 7 concludes the thesis by summarizing the key findings and contributions. It
provides a forward-looking perspective, suggesting potential areas for future exploration
in balancing cost-QoS trade-off, energy-QoS trade-off, security aspects etc.

37

Chapter 2

BACKGROUND

The rapid evolution of 5G networks, particularly in cloud-native environments, has
introduced a new set of challenges and opportunities in managing the balance between
cost and QoS. As these networks become increasingly integral to the digital infrastructure,
the ability to optimize resource allocation dynamically is critical. To address this cost-QoS
trade-off effectively, it is essential to gain a comprehensive understanding of the various
components influencing the balance between cost and QoS, as each plays a significant role
in determining the overall efficiency and performance of the network.

The first step in tackling this challenge is to focus on the application itself: the cloud-
native 5G network. This involves delving into the intricate details of the 5G architecture,
understanding its communication protocols, and exploring the inner workings that define
its capabilities and limitations. A deep comprehension of these aspects is crucial to devis-
ing customized solutions that can optimize resource allocation, thereby improving both
cost efficiency and QoS.

Automation emerges as a key enabler in managing this balance. The telecommuni-
cations industry has long leveraged automation to streamline operations and enhanced
performance, and this trend is now extending into cloud-native 5G networks. Various
standardizing organizations have been working on establishing frameworks and guidelines
for automation in this context. Therefore, it is important to understand the current in-
dustry standards and how they can be adapted and applied to cloud-native 5G networks.
Aligning with these standards not only ensures greater interoperability but also positions
these networks for future scalability and innovation.

Another critical factor to be considered in the cost-QoS trade-off is the type of cloud en-
vironment used to deploy the 5G network. Different cloud models, whether public, private,
or hybrid, come with their own sets of pricing structures and operational characteristics.
These choices can significantly impact the cost-effectiveness and service quality of the
network. Thus, understanding the implications of these cloud environments is essential
for making informed decisions that optimize resource allocation.

39

Chapter 2 – Background

Lastly, the software tools used to manage cloud-native 5G networks are crucial in
this dynamic landscape. Kubernetes, as a leading container management platform, offers
valuable features for optimizing resource allocation, though it also presents certain limi-
tations and challenges. A comprehensive assessment of these tools is essential to identify
the most effective strategies for balancing cost and QoS. By capitalizing on the strengths
of these tools and addressing their shortcomings, it is possible to devise a resource allo-
cation strategy that improves both cost efficiency and QoS in cloud-native 5G networks.
This chapter, will explore these critical components in detail, providing the foundational
knowledge required to navigate the complex landscape of cost and QoS management in
cloud-native 5G networks.

2.1 5G network & main challenges

In response to the exponential growth in mobile network connections, a significant
advancement in 5G technology is the adoption of a cloud-native approach. This paradigm
shift facilitates networks to exhibit high scalability, resilience, and adaptability to fluc-
tuating demands. In the 5G architecture, both Radio Access Network (RAN) and Core
Network (CN) functions have embraced this cloud-native methodology, extending its ben-
efits to edge networks as well [7] [8] [9].

2.1.1 Service-based architecture

In accordance with the 3GPP (3rd Generation Partnership Project) specifications [10],
the 5G architecture not only transitions towards a cloud-native approach but also adopts
a Service-Based Architecture (SBA) [11]. This transition facilitates the decomposition of
monolithic software into manageable, independent microservices. The modular nature of
this microservice architecture enables 5G NFs to be updated, modified, scaled, migrated
and dynamically placed across the network with ease.

Furthermore, these loosely coupled, NFs with isolated resource contribute to cost re-
duction as only the necessary services need to be altered based on demand. The lightweight,
containerized nature of these network functions, coupled with their hardware indepen-
dence, enables fine-tuned resource allocation and facilitates rapid recovery [12]. In the
event of faults, services can be swiftly redirected, enhancing network resilience. This also
enables integration of Continuous Integration/Continuous Deployment (CI/CD) processes

40

2.1. 5G network & main challenges

Figure 2.1 – 5G Architecture. (based on [10])

[13], thereby improving the lifecycle management of network functions. This shift towards
a cloud-native, SBA simplifies the automation of network function and service lifecycle
management, marking a significant advancement over previous generations.

2.1.2 5G Core network

In the architecture of 5G, the 5G Core Network is a crucial component that plays a
significant role in managing communication services on the network. Beyond the adoption
of a SBA, a significant enhancement is the separation of Control Plane (CP) NFs and
User Plane (UP) NFs [14]. This separation allows the 5G CN to be more flexible and
efficient, enabling it to support a wide range of use cases. For instance, the UP can be
deployed closer to the users to improve latency, while the CP is deployed separately. This
architecture also allows for the provision of customized UPs for different services, all while
utilizing the same CP. These are just a few examples of the capabilities of the 5G CN.
The 5G architecture, as illustrated in the Figure 2.1, shows that User Equipment (UEs)
connected to the Next Generation Radio Access Network (NG-RAN) can access the CN
for its functionalities both prior to and during connection with the data network. Below
are some of the main network functions and their corresponding functionalities:

41

Chapter 2 – Background

Access and Mobility Management Function (AMF)

The Access and Mobility Management Function is responsible for handling registra-
tion, connection, and mobility management. As the CP’s access point from the NG-RAN,
it also oversees authentication and authorization processes. The UE connects to the AMF
via the N1 signaling interface, while the NG-RAN connects to the AMF via the N2 inter-
face. The N1 interface uses the Non-Access Stratum (NAS) signaling messages to manage
initial registration, mobility management, and other functions. The N2 interface uses the
Next Generation Application Protocol (NGAP) over Stream Control Transmission Pro-
tocol (SCTP) for CP communications. Additionally, the AMF manages the termination
process for both the N1 and N2 interfaces.

Session Management Function (SMF)

The Session Management Function is responsible for managing session-related pro-
cesses, including session establishment, modification, and release. It interfaces with the
User Plane Function (UPF) via the N4 interface, overseeing various UPF operations such
as policy enforcement, UP traffic management, and UP selection when multiple UPFs
are available. The N4 interface uses the Packet Forwarding Control Protocol (PFCP) to
facilitate this communication.

Network Repository Function (NRF)

The Network Repository Function is responsible for service discovery, registration, and
management within the 5G CP. It maintains profiles and instances data of NFs along with
related information.

Unified Data Management (UDM)

The Unified Data Management function is responsible for generating user authenti-
cation keys, managing subscription data, handling user identification, and exposing sub-
scriber data to authorized external entities.

Unified Data Repository (UDR)

The Unified Data Repository is responsible for delivering centralized data repository
services to other NFs through UDM. It maintains comprehensive storage of subscriber

42

2.1. 5G network & main challenges

data, policy data, and other network-related information.

Authentication Server Function (AUSF)

The Authentication Server Function oversees the UE authentication process by verify-
ing the UE’s authentication request using credentials and data retrieved from the UDM.
It ensures that the authentication key provided by the UE matches the subscriber data
maintained by the UDM, thereby granting access to the network.

Policy Control Function (PCF)

The Policy Control Function provides policies based on user profiles, network status,
and service types, utilizing subscription information to manage the CP.

User Plane Function (UPF)

The User Plane Function is responsible for packet traffic management, QoS manage-
ment, packet inspection, and policy enforcement. The UPF communicates directly with
the SMF via the N4 interface. Additionally, it interfaces with the NG-RAN through the
N3 interface, utilizing the General Packet Radio Service Tunneling Protocol-User Plane
(GTP-U) protocol to encapsulate and transport user data. Subsequently, the UPF con-
nects to external data networks via the N6 interface, employing Internet Protocol (IP)
protocols for communication.

All NFs in the CP utilize Representational State Transfer (REST) Application Pro-
gramming Interface (API) over Hypertext Transfer Protocol (HTTP) for intercommunica-
tion. In addition to the aforementioned NFs, the 3GPP specification defines several other
NFs, each serving specific use cases. For instance, the Network Slice Selection Function
(NSSF) is dedicated to managing network slicing within the 5G CN, overseeing all slicing-
related processes. A significant addition to the 5G CN is the Network Data Analytics
Function (NWDAF), which facilitates network automation. NWDAF’s primary functions
include data collection, insight generation, and performance optimization. It also lays the
foundation for integrating data-driven AI/ML technologies into 5G CN performance man-
agement. While these NFs are crucial for service management in 5G, a separate framework
is required for lifecycle and resource management in a cloud environment. The European

43

Chapter 2 – Background

Telecommunications Standards Institute (ETSI) has standardized the Management and
Orchestration (MANO) architecture for this purpose, known as NFV MANO [15]. To
ensure efficient management and orchestration of cloud-native 5G networks, network au-
tomation is essential. This automation necessitates its own standardization to facilitate
coordinated large-scale network management and enhance interoperability.

2.2 Network automation

The advent of the 5G network heralds a new era of high-performance connectivity,
supporting innovative business models such as Network as a Service (NaaS), and enabling
a wide array of use cases [16]. These advancements are not only transformative, but also
introduce significant complexity to network management.

Network slicing, a fundamental concept in 5G networks [17] [18], involves the creation
of isolated logical networks operating on a shared physical infrastructure as shown in the
Figure 2.2. These logical networks are tailored to support diverse vertical use cases and
business models [19]. This paradigm introduces a comprehensive set of challenges, in-
cluding but not limited to service lifecycle management, NF lifecycle management within
slices and service isolation, resource isolation, security between slices [20] [21] [22]. Fur-
thermore, network slicing is expected to extend across multiple domains, accommodate
multiple tenants, and support various services, as illustrated in the Figure 2.3.

This expansion underscores the complexity inherent in managing such a system, which
involves coordinating and integrating multiple isolated network slices, each with unique
requirements and performance criteria. Given this complexity, traditional manual network
management methods are becoming increasingly impractical and inefficient, and they are
prone to human error. Therefore, the need for more sophisticated, automated network
management solutions is evident.

With the development of Software-Defined Networking (SDN), which decouples the
network control plane from the data plane, and Network Functions Virtualization (NFV),
which virtualizes network functions by separating software from dedicated hardware com-
ponents, key advancements have been made in enabling network automation [23]. The
rapid improvement in general-purpose hardware performance and the cost-efficiency of
cloud operations, coupled with advancements in AI/ML technologies, further facilitate the
implementation of automated network management within advanced networking paradigms
[25].

44

2.2. Network automation

Figure 2.2 – Network slicing with 5G network. (from [23]) (Copyright © 2017 IEEE)

In the past, various approaches have been proposed over the years to enhance and
automate network management. Among these, the Observe, Orient, Decide, Act (OODA)
[26] loop and the Monitor, Analyze, Plan, Execute, Knowledge (MAPE-K) [27] model
stand out. Both models encapsulate the principles of closed-loop automation, which are
pivotal for modern network management strategies. These methodologies aim to stream-
line the management process by automating routine tasks, thus reducing the potential for
errors and improving overall efficiency.

A significant milestone in the journey toward standardized network automation is the
Self-Organizing Network (SON) concept introduced by the 3GPP [28]. SON encompasses
a suite of technologies and techniques designed to automate network configuration, op-
timization, and troubleshooting, thereby alleviating the burden on human operators and
enhancing network performance and reliability [29] [30]. However, this early standard-
ization has significant progress to make before achieving fully autonomous networks and
supporting large-scale, cross-domain modern networking as expected in 5G and beyond
[31].

45

Chapter 2 – Background

Figure 2.3 – Multi domain, multi tenant network slicing. (from [24] - modified) (Copyright
© 2018 IEEE)

46

2.2. Network automation

2.2.1 ETSI ZSM Framework

Recently, the Zero Touch Network and Service Management (ZSM) working group
of the ETSI has adopted the concept of a closed-loop framework aimed at standard-
izing telecom network automation processes [32] [33]. This framework addresses various
shortcomings found in previous standardization attempts and incorporates the latest tech-
nological advancements, accommodating modern 5G and beyond network architectures.
It offers a flexible, modular, and data-driven architecture, providing End-to-End (E2E)
automation through a unified framework and aiming to achieve fully automated network
management [34] [35].

The ZSM project has garnered significant attention from industry stakeholders, in-
cluding network operators, vendors, cloud providers, academic partners, and open-source
communities. Notably, the Open Network Automation Platform (ONAP) [36], an open-
source network orchestration and management platform, has already aligned its automa-
tion processes with the ETSI ZSM framework [37].

The proposed framework, illustrated in the Figure 2.4, comprises several management
blocks designed to achieve E2E automation. Key architectural principles embedded within
this framework include:

— Modularity: to prevent monolithic structures and tight coupling between entities.
— Extensibility: to facilitate the seamless integration of new services without com-

patibility issues.
— Scalability: to dynamically adjust management services according to demand.
— Model-Driven Design: to ensure portability, reusability, and vendor-neutral man-

agement.
— Closed-Loop Automation: to enable feedback-driven automation.
— Stateless Management: to decouple management functions from data storage ser-

vices.
Management domains are entities that can be technical or organizational, partitioned

based on deployment, functional, operational, or governance constraints. Each domain is
responsible for domain-level lifecycle management processes by integrating closed loops
within the domain.

The E2E management domain oversees all domains involved in E2E services, coor-
dinating seamless management processes. It is responsible for E2E service-level lifecycle
management and supporting E2E service-level closed-loop automation processes.

An entity used in both the management domain and the E2E management domain

47

Chapter 2 – Background

Figure 2.4 – ETSI ZSM reference architecture. (from [33])

seperatly within the ZSM framework is data services. Each management domain and
E2E management domain maintains a dedicated data service to store domain-level data,
which is kept separate from management functions. The stored data is accessible to other
authorized domains and/or E2E management domains. Besides the individual domain-
level data services, the ZSM framework also includes a cross-domain data service for
centralized storage of all management and E2E domain-level data.

Furthermore, each management domain and E2E management domain includes an
integration fabric, serving as the communication interface outside the domain. This fabric
supports service registration, access, routing invocation, and service exposure. Addition-
ally, the ZSM framework maintains a cross-domain integration fabric, interconnecting all

48

2.2. Network automation

Figure 2.5 – E2E Communication service automation with ETSI ZSM framework. (from
[33] - modified)

components to enable seamless communication across domains.

To further elucidate the framework, an illustrative case depicted in the Figure 2.5,
considers an E2E communication system comprising three management domains dedi-
cated to network segments (RAN, transport and CN). Each of these networks constitutes
a management domain, automated through closed-loop mechanisms. Each management
domain is tasked with managing various functions including, but not limited to, resource
orchestration, control assurance, and the delivery of intelligent services. These functions
are automated within their respective closed loops to ensure efficient management and
operation. In addition to these management domains, there exists an overarching E2E
management domain designed to meet customer requirements and oversee all aspects of
E2E service-level management processes. This domain encompasses service orchestration,
domain adaptation, service assurance, and the provision of comprehensive E2E service
intelligence. These processes are also automated using closed-loop mechanisms, ensuring
seamless integration and intelligent management across the entire E2E communication
system.

49

Chapter 2 – Background

Figure 2.6 – ETSI Closed loop stages within ZSM framework compared to OODA model.
(from [33] - modified)

2.2.2 Closed loop automation

As previously mentioned, each component within the proposed framework can be au-
tomated using closed-loop automation. A closed-loop mechanism functions autonomously,
making precise decisions based on continuous monitoring and analysis of the target entity.
This mechanism includes a feedback loop that provides information on the subsequent im-
pact of decisions on the target entity and suggests follow-up actions necessary to maintain
the target entity at desired operational levels [38] [39]. To achieve this, ETSI ZSM employs
the following closed-loop stages, illustrated Figure 2.6.

Monitor

This stage is responsible for data collection and data preprocessing from the target
entity. In complex systems, data can come in various formats, such as time series, cate-
gorical data, etc. and from different sources, where data can be real-time data streams,
historical data from databases, etc. Additionally, the collected data will be preprocessed
before being forwarded to the next stage for analysis.

50

2.3. Cloud computing

Analysis

In this stage, the preprocessed data is used to generate intelligent insights. The objec-
tive is to explain the reasons behind data behaviors. These insights are critical for precise
decision-making in the subsequent stage. This mechanism continuously refines its analysis
of the target entity based on the data.

Decision

Insights from the analysis stage are used to develop workflows that govern the behav-
ior of the target entity, addressing issues identified from the insights. This stage makes
corrective adjustments to maintain the desired system levels, which can be either reactive
or proactive.

Execution

This final stage is responsible for implementing the decisions made in the previous
stage. It interprets the corrective decisions and determines the necessary actions to actu-
alize those decisions.
The Knowledge state, although not an active stage in the closed loop, stores all data
flowing between stages and facilitates data sharing with other closed loops. Additionally,
authorized external entities can retrieve information or intervene at each stage.

Some tasks, which can be divided into several elements, require more than a single
closed loop for automation. In such cases, multiple closed loops can coexist, sometimes
hierarchically or in a nested form. A separate closed loop management process is necessary
to manage closed loop coordination and prevent conflicts [40]. Furthermore, optimizing
the network automation process to achieve high performance and cost-efficient manage-
ment in cloud-native 5G networks requires a thorough understanding of the deployment
environment, including cloud models, processing models, and other relevant factors.

2.3 Cloud computing

Cloud computing is a paradigm that delivers on-demand computing resources, data
storage and networking services, etc., over the internet. This concept, now a well-established
industry, is increasingly adopted across various sectors due to its numerous advantages,

51

Chapter 2 – Background

including cost reduction, scalability, reliability, lack of maintenance requirements, acces-
sibility from any location and ease of management [41] [42]. The advent of virtualization
and containerization of network functions has made cloud computing particularly appeal-
ing to telecommunications operators. Software-based network functions can now deliver
high-performance services without the dependency on dedicated hardware. Presently, a
diverse array of cloud models, service models, and pricing models are available, provid-
ing customers with the flexibility to select options that align best with their business
requirements [43].

2.3.1 Cloud models

Public clouds

Public clouds provide computing power, storage options, networking, and other ser-
vices over the internet, with infrastructure owned and managed by third-party operators
such as Google Cloud Platform (GCP) [44], Microsoft Azure [45], and Amazon Web Ser-
vices (AWS) [46]. In the context of cloud services, clients are absolved from the respon-
sibility of infrastructure and maintenance costs associated with the deployment of their
applications. Instead, they incur a fee contingent upon the specific hardware and software
requirements of their applications. This fee is subject to variation, influenced by several
factors including the pricing model, the use case, and the cloud provider. These elements
will be elaborated upon in subsequent sections. A significant advantage of public clouds is
their extensive infrastructure and the ubiquity of their data center facilities across diverse
geographical locations, which ensures high scalability and reliability. Nevertheless, despite
the robust security options available for customer applications within public clouds, the
shared infrastructure and significant exposure to the internet increase the potential for
cyber threats [47].

Private clouds

Private clouds deliver cloud services via the internet, similar to their public coun-
terparts. However, the infrastructure resides on-premises within the organization and is
managed by the same entity. This arrangement allows for a high degree of customization
for applications hosted in the cloud, as all elements are owned and controlled by the same
organization. An additional advantage of private clouds is the enhanced security they
offer, stemming from their limited exposure to the public. However, the responsibility of

52

2.3. Cloud computing

managing the infrastructure can result in substantial initial costs for hardware and soft-
ware, as well as ongoing maintenance expenses. These maintenance costs can manifest in
various forms, including infrastructure repair, labor costs, and energy consumption as-
sociated with the infrastructure. Contrary to public clouds, the infrastructure of private
clouds is typically smaller and less geographically dispersed, which may limit scalability.

Hybrid clouds

Hybrid cloud architectures represent an amalgamation of public and private cloud in-
frastructures. In this model, the client retains the discretion to determine the distribution
of deployment between the public cloud and on-premises infrastructure. This methodol-
ogy offers superior flexibility compared to other models, as it allows the client to leverage
the extensive scalability and reliability inherent to public clouds, while simultaneously
enhancing customization and security through on-premises deployment.

2.3.2 Cloud service models

In the domain of public cloud computing, providers must accommodate a diverse
array of client service requirements for their applications. To address this, providers offer
a selection of cloud service models, enabling clients to opt for the model that aligns
optimally with their needs. These service models are not mutually exclusive; clients have
the flexibility to utilize combinations of these models to optimize their solutions [48].The
Figure 2.7 illustrates the comparison of component management and ownership across
various service models.

Infrastructure as a Service (IaaS)

In Infrastructure as a Service (IaaS) service model, providers supply only hardware
resources, including compute, storage, networking, etc. and virtualization services. Clients
are responsible for deploying and operating their applications by utilizing their own OS,
middleware, and managing runtime operations.

Container as a Service (CaaS)

In the Container as a Service (CaaS) model, providers offer hardware resources, vir-
tualization services, and operating systems needed to execute containerized applications.

53

Chapter 2 – Background

Figure 2.7 – Comparison between different cloud service models. (based on [48])

However, clients must supply additional software components for deploying applications
and assume responsibility for managing runtime operations.

Platform as a Service (PaaS)

Platform as a Service (PaaS) is a cloud service model that provides hardware re-
sources, virtualization services, OS, and middleware components necessary for running
applications. In this model, clients are responsible solely for managing their application’s
runtime operations.

Software as a Service (SaaS)

In the Software as a Service (SaaS) model, providers deliver a complete application
service that includes hardware resources and all necessary software components ready
for immediate use. The cloud provider manages all aspects of hardware and software
management, as well as runtime operations.

54

2.3. Cloud computing

2.3.3 Cloud pricing

In the realm of public cloud pricing models, several factors influence pricing, including
the chosen cloud model, client specifications, market dynamics, and the cloud provider
itself. Nevertheless, there exist several prominent cloud pricing models widely adopted by
the industry [49] [50] [51].

Pay-as-you-go

In this model, clients are billed based on the actual usage of cloud resources or services.
Billing can be granular, ranging from hourly to per-second usage. This pricing structure is
optimal for highly variable demand scenarios where dynamic scaling of cloud-based appli-
cations is required. Typically, these pricing models do not necessitate upfront payments.

Reserved instances

In this pricing model, clients reserve cloud resources or services for a predefined time
period and pay a predetermined cost regardless of actual usage. This model is typically
suited for environments with stable demand, as scaling beyond the reserved capacity is
prohibited. Clients are generally required to make an upfront payment and commit to a
long-term agreement.

Spot instances

Cloud providers offer unallocated resources or services to clients with the understand-
ing that there is a risk of interruption. These resources are typically suited for non-critical
applications where interruptions are tolerable. This method is generally more cost-effective
and useful for handling sudden bursts of demand that exceed reserved instances.

Subscription based

In this pricing structure, clients are required to pay monthly or annually for access to
cloud services. This model is predominantly used in SaaS cloud models. Typically, there
are no upfront fees or long-term commitments associated with this model.

55

Chapter 2 – Background

2.3.4 Cost model

5G networks can be deployed in any cloud model, and when deployed in the public
cloud, they can be implemented under most cloud service models or pricing model. Given
the containerized nature of NFs, one effective configuration is deploying 5G networks in
the public cloud using a CaaS model. Considering the large volume of connections and
highly variable workloads associated with 5G networks, a pay-as-you-go pricing model
can be an optimal choice for cost efficiency. Typically, major cloud providers offering
CaaS, such as Google Kubernetes Engine (GKE) [52] and Amazon Elastic Kubernetes
Service (EKS) [53], set prices for client application containers based on their resource
configurations, primarily CPU and memory. Later, under the pay-as-you-go pricing model,
these providers charge clients based on the actual usage period of the application. Hence,

Cost ∝ Container operational time (2.1)

Consider the hourly rate per container for a specified resource configuration, consist-
ing of CPU and memory per service, denoted as βj where j represents the service (or
network function). Utilizing a pay-as-you-go pricing model, the cost is contingent upon
the container usage. If dynamic horizontal scaling is enabled, which involves adjusting the
replication of containers to manage the workload, for a given time duration T , the cost
can be calculated as,

Cost = βj ×
N∑

i=0
T(i,j) (2.2)

where N is the maximum number of replicas used within T , T(i,j) is the operational
time for each replica i for a given service j and T(i,j) ≤ T .

When deploying cloud-native 5G networks, it is essential to understand the capabilities
and limitations of the various software tools available to effectively manage the cost-QoS
balance in the cloud.

2.4 Kubernetes for CNF management

Kubernetes [54] is an advanced container orchestration platform that has gained
widespread adoption among cloud service providers. Originally developed by Google in
the early 2000s as a containerized application management tool within its internal data

56

2.4. Kubernetes for CNF management

centers, known as Borg [55], it was later refined into a more robust and scalable system
named Omega [56], addressing the constraints of its previous version. In 2014, Google
made the strategic decision to open-source this technology under the name Kubernetes.
Subsequently, in 2015, the governance of the project was transferred to the Cloud Na-
tive Computing Foundation (CNCF) [57], a part of the Linux Foundation [58]. Since
its inception, Kubernetes has undergone significant enhancements through contributions
from the open-source community, establishing itself as a pivotal entity in the cloud-native
ecosystem.

2.4.1 System architecture

Kubernetes is designed for deployment on bare metal servers or Virtual Machines
(VMs) on top of IaaS platforms such as OpenStack [59]. Its architecture as shown in
the Figure 2.8, is divided into two main components: the Kubernetes control plane (also
known as the master node) and the worker nodes. In this context, a node refers to either a
physical server or a VM, depending on the deployment environment. A typical Kubernetes
deployment consists of at least one master node and one or more worker nodes, collectively
referred to as a cluster. The master node hosts all the cluster management components,
while the worker nodes host all the workload container deployments.

In Kubernetes, containerized applications are deployed within entities called "Pods."
A Pod is the smallest deployable unit in Kubernetes and can contain one or multiple
containers. The resources allocated to a Pod are shared among its containers. In the
event of scaling, these Pods can be replicated, a process managed by ReplicaSets, which
will be explained later in this chapter. To access containerized applications within Pods,
Kubernetes provides a stable endpoint known as a "Service." This Service ensures reliable
communication in the cluster, allowing clients to access applications without needing to
know the IP addresses of individual Pods. When a Pod is replicated during scaling, all
replicas belong to the same Service. Additionally, Services can be configured for internal
cluster communication or to connect with external systems.

The control plane in Kubernetes architecture comprises four primary components: the
API server, etcd, scheduler, and controller manager.

57

Chapter 2 – Background

Figure 2.8 – Kubernetes architecture. (based on [60])

API Server

The API server functions as the front end of the control plane, providing an interface
for clients and other Kubernetes components to interact with the cluster. It is responsible
for managing the cluster state, handling authentication processes, performing admission
control, and validating resources.

Etcd

Etcd serves as the distributed data store for the Kubernetes cluster, storing configu-
rations, states, and Kubernetes objects. It ensures data consistency and fault tolerance
across the cluster. A Kubernetes cluster can have one or more etcd instances, which can
be deployed either within or outside the cluster.

58

2.4. Kubernetes for CNF management

Scheduler

The scheduler is responsible for assigning pods to nodes based on resource availability,
for balancing workloads, collecting metric data, and enforcing scheduling policies. It plays
a key role in resource mapping and ensuring efficient utilization of cluster resources.

Controller manager

The controller manager oversees the operations of various controllers within the cluster.
This includes monitoring the health of other components, managing resources, handling
autoscaling, managing StatefulSets and persistent volumes, and executing other processes
essential for maintaining cluster functionality.

The worker nodes in a Kubernetes cluster are equipped with three primary components
essential for container deployment and interaction with the control plane: kubelet, kube-
proxy, and container runtime.

Kubelet

The kubelet functions as an agent on each worker node, responsible for maintaining
the node’s operational state. It communicates with the Kubernetes API server to receive
instructions and report node status. Key responsibilities include pod management, mon-
itoring pod and node status, collecting metrics and logs, and managing the lifecycle of
containers on the node.

Kube-proxy

Kube-proxy manages the networking aspects of the worker node. It oversees network
traffic routing, maintains IP tables to facilitate communication between pods and ex-
ternal clients, ensures session affinity for client connections, supports service discovery
mechanisms, and contributes to cluster-wide high availability through load balancing and
failover configurations.

59

Chapter 2 – Background

Container runtime

The container runtime handles the low-level operations necessary for running con-
tainers. This includes resource allocation and management, container image handling,
and ensuring container security. Kubernetes supports multiple container runtimes such
as Docker [61], containerd [62], and CRI-O [63], allowing flexibility in runtime selection
based on specific deployment requirements and operational preferences.
It is important to note that the tasks listed for each component in the master node and
worker node are primary responsibilities but are not exhaustive.

2.4.2 Resource management

Each application deployed in Kubernetes requires resources such as CPU, memory,
and storage to operate effectively. Within a Kubernetes cluster, these resources are aggre-
gated from all available nodes and allocated by the Kubernetes scheduler. The scheduler
evaluates the resource requests specified by the client against the available resources in
the cluster to determine appropriate pod placement. It is crucial to note that resources
are not shared across nodes; therefore, the maximum resource allocation for a pod must
not exceed the resources available on a single node.

Pod resource allocation

For pod resource allocation, Kubernetes utilizes two key parameters: resource requests
and resource limits.

— Resource request :
This parameter specifies the amount of resources guaranteed by Kubernetes for

a pod’s deployment. When the scheduler places a pod on a node, it first considers
the resource request parameter. While it is not mandatory to define this parameter
during deployment, if it is omitted and the node experiences resource starvation,
the scheduler may terminate pods without defined resource requests.

— Resource limit :
Kubernetes allows Pods to consume resources beyond their requested alloca-

tion. However, to restrict additional resource consumption, the resource limit pa-
rameter defines the maximum amount of resources a Pod can consume. Typically,
the resource limit is set equal to or higher than the resource request. Like the re-
source request, defining a resource limit is not obligatory during deployment. The

60

2.4. Kubernetes for CNF management

primary purpose of the resource limit is to ensure that pods adhere to their allo-
cated resources, preventing excessive resource consumption by certain pods that
could impair the performance of other pods in the cluster. Kubernetes enforces
resource limits using Linux kernel mechanisms. If a pod attempts to exceed its
resource limit, Kubernetes restricts its usage according to these mechanisms. The
enforcement methods differ depending on the resource type. For the commonly
used resources, CPU and memory, Kubernetes employs two distinct mechanisms
available in the Linux kernel, which will be detailed in a subsequent section.

QoS classes

In the Kubernetes ecosystem, QoS classes play a pivotal role in orchestrating resource
allocation and pod placement processes. The scheduler utilizes these classes to prioritize
deployments based on their resource request and limit specifications.

— Guaranteed QoS class :
This class encompasses deployments where resource requests and limits are

identical. The scheduler is responsible for ensuring that the resources allocated are
in perfect alignment with the requested amounts. Pods belonging to this class are
accorded high priority during the scheduling process.

— Burstable QoS class :
Deployments falling under this class have a defined resource request. However,

the resource limit, although not mandatory, must exceed the request. The sched-
uler commits to the requested amount of resources and permits pods to utilize
resources beyond the request up to the defined limit. Pods in this class are as-
signed a moderate priority level.

— Best effort QoS class :
This class includes pods that lack defined resource requests or limits in their

deployment specifications. Despite their ability to function, these pods are not
allocated any guaranteed resources. They are accorded the lowest priority during
pod scheduling. In situations of resource contention, these pods are most susceptible
to throttling or eviction.

In Kubernetes, the initial dimensioning of resources during deployment presents a sig-
nificant challenge. Resource request and limit parameters are typically assigned based
on historical resource consumption profiles and data analysis. The resources of the pod,
namely CPU and memory, must be judiciously allocated to prevent frequent resource

61

Chapter 2 – Background

starvation and avoid costly resource wastage. The calculation of requests and limits ne-
cessitates the consideration of baseline resource usage, which represents the minimum
amount of resources required to run the pod in idle mode. Even in the absence of incom-
ing requests to process, an application maintains operational background processes such
as service discovery, session management, communication line maintenance, monitoring,
and logging.

In addition to understanding the baseline resource usage, it is crucial to comprehend
the average (σavg) and maximum (σmax) resource usage. As an example, if the application
is not sensitive to QoS and cost is a priority, the resource request and limits can be selected
to align with the Burstable QoS class as shown in equation 2.3 and equation 2.4.

Resource request = σavg (2.3)

Resource limit = σmax (2.4)

Conversely, if QoS is a priority, the request and limit can be assigned to align with
the Guaranteed QoS class as shown in the equation 2.5.

Resource request = Resource limit = σmax (2.5)

2.4.3 Dynamic resource allocation

Despite the assignment of request and limit parameters, the workload for pods does
not always reach maximum or average resource usage. In fact, the workload fluctuates
due to temporal, spatial, and other factors, leading to variations in resource demand [64].
This variability can lead to resource wastage, particularly during periods of low workload
demand. To address this issue, Kubernetes offers dynamic resource allocation for pods in
the cluster, enabling both horizontal and vertical scaling of pods.

Horizontal pod autoscaling

By default, Kubernetes provides the Horizontal Pod Autoscaling (HPA) [65] to auto-
matically scale pods based on the current workload. The underlying principle is to increase
the number of pod replicas to cope with an increasing workload and to terminate replicas
as the workload decreases. This approach ensures that the initial resource allocation does

62

2.4. Kubernetes for CNF management

not need to match the maximum or average resource demand, thereby reducing resource
wastage.

The HPA operates on a threshold-based mechanism. Static thresholds for selected
performance metrics must be set at the beginning of deployments to enable HPA to scale
up or down replicas during runtime. These performance metrics can be system metrics,
such as pod CPU and memory consumption, which Kubernetes provides by default, or
custom/external metrics that can be configured to work with HPA. Leveraging a control
loop, the HPA controller continuously fetches the required metrics and compares them
with the thresholds to make scaling decisions. For a given time ti and a performance
metric, HPA calculates the required number of replicas Pdesired [ti] based on equation 2.6.

Pdesired [ti] =
⌈
P [ti] × M [ti]

Mdesired

⌉
(2.6)

where current replica count denoted as P [ti], M [ti] denoted as the current metric value
and Mdesired is the desired threshold for the selected metrics.

Vertical pod autoscaling

Vertical Pod Autoscaling (VPA) [66] is a mechanism designed to dynamically adjust
the resource allocations (such as CPU and memory) for a single pod based on the current
workload demands. When the workload increases, VPA automatically adds more resources
to the pod. Conversely, it removes resources when the workload decreases. This allows for
refined resource management, scaling only specific resources according to demand.

VPA is not included as a preinstalled feature in Kubernetes. Instead, it can be inte-
grated as an optional plugin application. The VPA controller is responsible for monitoring
resource usage and updating the resource requests accordingly. When scaling is necessary,
the VPA controller updates the resource requests, which involves restarting the pod. This
leads to temporary unavailability of the application in the pod, potentially impacting
QoS.

Starting from Kubernetes version 1.27, it became possible to update certain resource
fields of a pod specification without requiring a restart through features like Resource
Policy. This improvement helps in maintaining better QoS for application without down-
time. However, not all updates might be applicable without a restart, and the specifics
depend on the nature of the resource changes. For instance, when scaling-up the resources
of a Pod and there are insufficient resources available on the current node, the VPA may

63

Chapter 2 – Background

relocate the Pod to another node with adequate resources. In this scenario, the VPA will
need to restart the Pod to apply the new resource configuration.

VPA operates with a single replica, presenting a single point of failure risk. This can
be particularly problematic for QoS-sensitive applications, such as 5G CN NFs, where
high availability and connectivity are critical. Consequently, this research focuses on HPA
to ensure redundancy and mitigate the risks associated with single point of failure.

Cluster autoscaler

Kubernetes extends its autoscaling capabilities beyond pod-level to include node-level
autoscaling through the Cluster Autoscaler [67]. While pod-level autoscaling, using mecha-
nisms like the HPA and VPA, effectively manages application performance amid workload
fluctuations, the resources allocated to pods are limited by the node’s resource capacity. To
address this constraint, Kubernetes offers cluster autoscaling, which dynamically adjusts
the number of nodes in a cluster by adding or removing nodes in response to workload
demands. This approach prevents underprovisioning, which could lead to exceeding HPA
or VPA limits, thereby affecting performance. It also avoids overprovisioning nodes that
remain idle, thereby optimizing operational costs.

In addition to horizontal scaling of nodes, Kubernetes supports vertical node scaling,
allowing nodes to adjust their capacity based on workload demands. However, this vertical
node scaling feature is currently in beta. To leverage either horizontal or vertical node
scaling, the cluster must be deployed on VMs within an IaaS platform, supplemented by
external middleware.

2.5 Summary

This chapter comprehensively examines the technological aspects, industry standards,
concepts, and software tools pertinent to the cost-QoS trade-off in cloud-native 5G de-
ployments. Detailed are the 5G network architecture, its components, their respective
functions, and the initiatives undertaken by telecom standardization organizations to fa-
cilitate cloud-native compatibility. Furthermore, existing network automation standards
and frameworks applicable for automating complex tasks within 5G networks are reviewed.
Subsequently, various cloud models, including service and pricing models, are explored to
provide the foundational knowledge necessary for understanding the variability of costs
associated with cloud integration. Finally, current software tools and methodologies aimed

64

2.5. Summary

at addressing the cost-QoS trade-off through dynamic autoscaling in cloud-based appli-
cations are analyzed. The next chapter explores the characteristics and requirements that
must be considered in an autoscaling solution, as well as the types of existing autoscaling
solutions presented in the literature.

65

Chapter 3

STATE OF THE ART

3.1 Introduction

Dynamic resource allocation in cloud-native environments enables applications to
maintain performance across a wide range of workloads while simultaneously reducing
operational costs. Prominent cloud service providers, including GCP, AWS, and Microsoft
Azure, etc. have already adopted dynamic resource scaling strategies within their cloud
infrastructure. These strategies range from basic rule-based autoscaling to more sophis-
ticated custom scaling strategies, such as AI/ML based autoscaling. For instance, AWS
Elastic Compute Cloud (EC2) service employs a threshold-based scaling strategy [68]
while GKE has introduced an AI-driven autoscaling solution known as Autopilot [69] for
its deployments. Recognizing the advantages of these autoscaling strategies, cloud service
providers persistently broaden their research efforts in this particular field [70] [71].

Dynamic resource allocation is a well-researched and established concept within the
field of cloud-based resource management. Various approaches exist to tackle the dynamic
autoscaling problem in cloud environment, all with the shared objective of identifying the
optimal cost-performance trade-off for a given use case.

The studies [72] [73] [74] [75] offer an exhaustive classification of autoscaling method-
ologies as illustrated in the Figure 3.1. These classifications are established considering
various elements such as the employed strategies, the encountered challenges, and the
essential characteristics within a cloud-based environment.

Identifying the need for dynamic resource scaling and optimizing resource allocation
requires a comprehensive understanding of the application architecture. Applications of
a monolithic nature, also referred to as single-tier applications, are characterized by the
consolidation of all components within a singular physical environment. In the context of
autoscaling, these applications are treated as a unified entity. Despite the advantages asso-
ciated with single-tier applications, such as diminished communication overhead between
components and the reduced monitoring services, their scalability is sub-optimal. For in-

67

Chapter 3 – State of the Art

Figure 3.1 – The taxonomy for autoscaling web applications in clouds. (from [72])

stance, when applications necessitate scaling due to resource insufficiency , the autoscaling
mechanism will indiscriminately augments resources (CPU, memory, storage, bandwidth,
etc.), irrespective of the location of the bottleneck in the application. This approach can
potentially lead to an inefficient allocation of resources affecting the operational cost.

Contrarily to single-tier , certain applications possess multiple tiers that can be seg-
regated based on their respective physical environments. This is commonly referred to as
multi-tier or n-tier architecture. The most prevalent tiers include the presentation tier,
which interacts with the end user, the business logic tier, which delivers the core func-
tionality of the application, and the data tier, responsible for data storage, as depicted in
Figure 3.2.

From an autoscaling perspective, this architecture offers greater scalability efficiency
compared to single-tier applications. This efficiency is achieved by isolating and scaling
only the bottleneck component.

Recently, most modern applications, including 5G networks, are transitioning to SBA,
where in applications are broken down into multiple components based on the service they
provide. This enhances the granularity of the scalable component from an autoscaler’s
viewpoint and facilitates more precise resources allocation. Consequently, the autoscaler
can identify and scale the targeted component without disrupting the application’s func-
tionality.

68

3.1. Introduction

Figure 3.2 – High level overview of three tier architecture. (from [76] - modified) (Copyright
© 2016 IEEE)

Despite the numerous advantages associated with both multi-tier and SBA, they also
present certain challenges. For instance, both architectures necessitate monitoring for each
component, which can be complex and costly to manage.

In cloud environments, session stickiness, or session affinity, which ensures a consistent
connection between a user and the same application instance, becomes a critical factor
in the implementation of autoscaling methodologies. When an application necessitates
the preservation of user session affinity throughout the connection, the act of scaling
the application could potentially disrupt this session affinity. Maintain session affinity
imposes constraints on horizontal scaling, inhibiting the addition or removal of replicas.
It also obstructs vertical scaling by preventing restarts with new resource configurations.
Therefore, an effective autoscaling strategy must incorporate awareness of application
sessions if it is mandated to maintain session affinity.

Furthermore, stateful applications, which require the preservation of application state,
necessitate maintaining consistency across instances during scaling. This requirement
differs from stateless applications, where state information is either not retained or is
managed externally. Stateful applications also demand additional mechanisms to manage
backups and the data recovery process in the event of scaling. Consequently, the cost
and complexity associated with implementing dynamic autoscaling differ between state-
ful and stateless applications. This difference must be taken into account when devising
autoscaling strategies.

Autoscaling solutions can be categorized based on their adaptability. Non-adaptive

69

Chapter 3 – State of the Art

strategies, such as rule-based autoscaling, operate according to a predefined set of condi-
tions. Scaling actions are triggered solely when these conditions are met, regardless of the
application’s current status or performance metrics. These strategies are typically suited
for applications with less volatile workloads, characterized by lower variability in resource
demands. In contrast, adaptive scaling strategies, including queuing theory-based, con-
trol theory-based, and advanced techniques such as RL-based methods, offer superior
adaptability. These strategies can dynamically respond to the application’s current state
and performance, potentially enhancing overall efficiency and performance more effec-
tively than non-adaptive strategies. As elaborated in [73], self-adaptive scaling strategies
are equipped with prior knowledge and a certain degree of self-awareness, enabling the
system to adjust to volatile workloads.

Autoscaling mechanisms operate on a continuous monitoring paradigm, dynamically
scaling the target application in response to varying workload and performance status.
The efficacy of this autoscaling process is essentially tied to the choice of performance
indicators that are tracked for the application. These performance metrics should accu-
rately reflect the application’s status, identify which resources require scaling, and the
implications of the scaling decision to optimize resource allocation. Certain applications
necessitate a focus on low-level or infrastructure-level performance indicators, such as
CPU utilization, memory consumption, and bandwidth usage [77], to facilitate accurate
autoscaling of the deployment. Conversely, other applications may be more sensitive to
service-level performance indicators, such as response time and throughput. It is note-
worthy that a subset of applications may derive enhanced autoscaling performance from
a hybrid approach, incorporating a mix of both infrastructure-level and service-level per-
formance indicators. This combination of performance indicators can potentially optimize
the performance of the autoscaling algorithm. Nonetheless, the choice of performance
metrics for the autoscalers strictly depends upon the specific application.

In the domain of autoscaling, one of the most challenging issues is the oscillation
of scaling decisions. This phenomenon occurs when a scaling strategy, in response to
current conditions, triggers a scaling action, only for the conditions to change shortly
thereafter, leading the strategy to reverse its decision within a brief time frame. This
cyclical behavior, often referred to as the ‘ping-pong effect’ in some research literature [78]
[79], can adversely impact application performance, including stability and load balancer
consistency, as well as result in delays in service initialization. The root cause of this
issue is generally attributed to suboptimal configuration of the scaling strategy, with non-

70

3.1. Introduction

adaptive methods such as rule-based scaling being particularly susceptible. The problem
is exacerbated in scenarios involving volatile workloads. To mitigate the oscillation effect,
several approaches have been proposed. One such method is the implementation of a
cooldown period, during which the system prohibits the reversal of scaling decisions for
a predefined time. However, without a thorough understanding of workload patterns,
this approach may lead to inefficient resource allocation. Another potential solution is to
increase the monitoring interval, which helps to smooth out fluctuations in the monitoring
data and thereby reduce the oscillation effect in decision-making. Nonetheless, extending
the monitoring interval can reduce visibility into the cluster’s status, potentially impeding
optimal resource provisioning.

The timing of autoscaling decisions plays a pivotal role in the performance of a deploy-
ment. Autoscaling can be implemented in two distinct manners: reactively or proactively.
Reactive scaling processes, such as rule-based scaling, control-based scaling,etc. are suit-
able for cloud applications with slow-moving workloads. These methodologies are reactive
in nature, responding to workload fluctuations post-occurrence. Consequently, they are
unsuitable for applications with performance sensitivity. On the other hand, cloud appli-
cations with volatile workload patterns necessitate proactive scaling. This approach an-
ticipates changes in workload and scales resources accordingly before performance issues
arise. By detecting events early, proactive scaling can prevent performance degradation,
thereby ensuring the smooth operation of the deployment. Thus, the choice between re-
active and proactive autoscaling hinges on the nature of the workload and the criticality
of decision timing for the specific deployment. Nevertheless, reactive strategies may offer
simplicity in implementation, eliminating the need for prior data collection or training.
Conversely, proactive scaling necessitates advanced training for event prediction based on
historical data, which may introduce complexity and impose significant implementation
costs.

Autoscaling within a cloud context can be executed via horizontal or vertical scaling.
The choice between horizontal and vertical scaling is contingent on a multitude of factors.
Both horizontal and vertical scaling present their unique advantages and disadvantages.
Horizontal scaling, due to its inherent replication, engenders additional redundancy and
high availability, thereby circumventing a single point of failure.

Conversely, vertical scaling offers a finer granularity compared to horizontal scaling, as
it allows for the reconfiguration of any resource values, while horizontal scaling uniformly
increases or decreases a predetermined amount of resources in the original pod. Vertical

71

Chapter 3 – State of the Art

scaling is applicable to both stateful and stateless applications, whereas horizontal scaling
may necessitate additional software components to synchronize the states of replicas in
stateful applications. Certain cloud platforms or versions necessitate application restarts
to incorporate new resource configurations in vertical scaling, whereas horizontal scaling
is devoid of such requirements. Vertical scaling eliminates the need for internal load bal-
ancers, whereas horizontal scaling necessitates them for load distribution among replicas.
Not all cloud-based softwares are compatible with horizontal scaling due to its complex
implementation nature. Certain softwares may require additional licensing for instance
replication, which could impose significant costs for horizontal scaling [80].

In the contemporary era, customers are presented with the flexibility to deploy their
applications in public clouds, private clouds, or hybrid environments. This is a critical
consideration in the context of autoscaling. For instance, public clouds propose diverse
pricing models that enable cost optimization through dynamic scaling [49]. They also
operate numerous data centers distributed across various geographical locations, enabling
them to scale customer applications effectively and minimize response times and latency.

Conversely, most private clouds lack this degree of cost flexibility and multi-datacenter
scalability. If the private cloud is hosted on-premises, dynamic scaling does not incur ad-
ditional costs but is limited by the system’s capacity. In this context, energy consumption
becomes a critical factor, necessitating the development of an autoscaling solution that in-
corporates energy efficiency considerations [81]. This includes employing cluster autoscal-
ing techniques designed to minimize the number of idle nodes, thereby reducing overall
energy consumption [82] [83] [84]. Furthermore, customers have the option to adopt a
hybrid approach, where application deployment is distributed across private and public
clouds, and potentially across different public cloud providers. In such cases, it becomes
imperative to consider factors such as pricing models and cost differences among cloud
providers in the autoscaling approach to optimize costs.

The majority of cloud service providers offer the capability to deploy applications on
either VMs or containers [85]. VMs operate on the host OS and necessitate a guest OS
for application deployment. Consequently, during a scaling events, a new VM requires
time to load the guest OS and the application, resulting in a significant delay before it
is ready for operation. In contrast, containers are lightweight entities that only require
the necessary OS dependencies and application images to deploy on the cloud. During
a scaling events, a new container also requires some time to become operational, but
this delay is significantly less than that of VMs. Therefore, it is crucial to consider these

72

3.2. Rule based autoscaling

delay differences and technology differences when implementing autoscaling strategies to
optimize both performance and cost.

In the context of this research investigation, autoscaling strategies are systematically
classified according to their resource estimation methodologies and decision-making pro-
cesses. It is crucial to note that despite the aforementioned characteristics inherent to
autoscaling techniques, the manner in which these strategies manage constraints while
simultaneously maintaining satisfactory performance levels and optimizing cost is of sig-
nificant importance. This aspect forms a critical component of our study and is examined
in detail.

3.2 Rule based autoscaling

The research study [86] underscores the pivotal role of NFV and SDN in the structure
of 5G networks. It highlights the requirement for a suitably configured orchestrator to en-
hance performance of the RAN and CN. To address this requirement, the authors propose
a unique NFV orchestrator designed to provide multiple Virtual Network Function (VNF)
life cycle functionalities, including scheduling, migration, and scaling as illustrated in Fig-
ure 3.3 . In terms of autoscaling aspect, the authors propose an autoscaling mechanism
that employs a threshold-based scaling algorithm which is based on the CPU utilization
of the VNFs and was evaluated in a Multi-access Edge Computing (MEC)-enabled 5G
testbed. The operational logic of the algorithm is to scale up the VNFs when the CPU
utilization exceeds a predefined threshold. Conversely, it scales down the VNFs when the
CPU utilization falls below a certain threshold. This approach offers the advantage of sim-
plicity in implementation and considers the resource availability of the MEC node prior
to executing the scaling decision. However, the authors note that low-level metrics such as
CPU usage alone do not offer sufficient detail about the incoming workload, which is vital
for decision-making. Furthermore, the VNFs can be CPU-intensive, Memory-intensive,
or both. In these scenarios, the decision must take into account which resource is criti-
cal for the VNF performance. A significant feature of this solution is the integration of
the autoscaling solution into the Network Functions Virtualization Orchestrator (NFVO),
providing centralized control over the network. Despite having a simple rule-based scaling
solution, making a scaling decision necessitates communication through multiple layers
of components in the proposed centralized NFVO architecture, which may not always
be ideal for time-sensitive applications. This observation underscores the complexity and

73

Chapter 3 – State of the Art

Figure 3.3 – MEC enabled 5G IoT architecture. (from [86]) (Copyright © 2020 IEEE)

challenges inherent in managing and optimizing 5G network performance.
In the work [87], the authors introduce a dynamic autoscaling solution designed to op-

timize resource allocation in Kubernetes, thereby enhancing QoS. The solution is proposed
in response to identified challenges in resource estimation, which arise due to the diverse
nature of applications and their associated workloads. The authors critique the existing
HPA in Kubernetes, stating that its singular focus on resource consumption is inadequate
for managing the complexities of modern workloads. They propose an enhancement to
the Kubernetes HPA that implements dual thresholds for scaling the number of replicas
both up and down, contingent on their respective CPU and memory usage. A key distinc-
tion between the Kubernetes HPA and the authors’ solution lies in the incorporation of
a smart load balancer in the latter. This component prioritizes assigning new workloads
to new replicas as long as they are underutilized compared to existing ones. This strat-
egy not only improves the QoS but also complements the autoscaling solution, thereby
enhancing overall system performance. Nevertheless, the scaling process is designed to be
dependent on resource consumption, and the scaling-up/down threshold selection does
not take into account fundamental operations such as CPU throttling which could affects
the QoS during the scaling process.

In the paper [88], the authors articulate the need for dynamic scalability of state-
ful databases in the context of large data streams. They observe that under high load
conditions, the performance of database services can be compromised due to excessive
resource consumption. To mitigate this issue, they propose a smart agent, designated as

74

3.2. Rule based autoscaling

“SCAL-E”. This agent interfaces with the Kubernetes metric server to monitor and scale
the repository subsystem components of a database in a GKE environment.

The authors assert that this approach ensures appropriate resource allocation and en-
hances efficiency in data storage and forwarding. Scaling events are triggered based on the
CPU usage of the nodes. Specifically, a scaling-up event is initiated if the CPU usage of
any node exceeds the scaling-up threshold, thereby preventing performance degradation
of the database. Conversely, if the CPU usage of all nodes falls below the scaling-down
threshold, a scaling-down event is initiated. These thresholds are determined through
empirical testing on CPU usage and system performance. Given the nature of stateful
applications, during periods of high traffic, the database is replicated onto a new node
when scaling-up. The authors’ evaluation indicates that this approach significantly im-
proves response times compared to a deployment without the SCAL-E agent. However,
it is important to note that this approach prioritizes application performance over cost
optimization. The replication of a database onto a new node can be costly, which is a
factor that needs to be considered in the overall evaluation of this approach.

The paper [89] presents a novel approach to Kubernetes HPA, termed ‘traffic-aware’
horizontal pod autoscaling (THPA). This approach is specifically tailored to facilitate
real-time, traffic-aware resource autoscaling for IoT applications within an edge comput-
ing context as demonstrated in the Figure 3.4. The proposed solution carries out both
upscaling and downscaling operations, which are informed by network traffic data from
nodes. The primary objective of these operations is to enhance the quality of IoT services
provided within the edge computing infrastructure. The authors identified a specific issue
with Kubernetes’ handling of scaling-up events: it distributes replicas evenly and fails to
account for the network delay between edge nodes. This problem becomes more signifi-
cant when the edge nodes are dispersed over a wide geographical area. To mitigate this
issue the proposed solution allocates replica proportions in accordance with the traffic
load present in the node and implements a scale down operation when the nodes are
experiencing low demand.

For time-sensitive IoT applications, consideration of the network delay induced by
edge nodes can significantly enhance the performance of the applications. However, it is
important to note that the strategy of distributing replicas across nodes solely to minimize
network delay could potentially degrade service quality. This is particularly true if the
resource capacity of the nodes and the resource configuration of the pod are not taken
into account in the autoscaling strategy.

75

Chapter 3 – State of the Art

Figure 3.4 – (a) KHPA in Kubernetes-based edge computing architecture and (b) THPA
in Kubernetes-based edge computing architecture. (from [89]) (Copyright © 2022 IEEE)

In the paper [90], the authors pinpoint a significant shortcoming in the Kubernetes
HPA: its inefficiency in managing scaling during traffic spikes. This problem emerges due
to the HPA’s default scaling decisions being solely predicated on resource usage, without
taking into account the number of requests that can be served while maintaining the
requisite QoS levels. This oversight can lead to a QoS degradation.

To rectify this issue, the authors put forth a service-aware autoscaling solution that
incorporates user request measurements. This solution retrieves the number of requests
from the load balancer via monitoring services. The solution computes the necessary
number of replicas using equation 3.1 by adopting a threshold for the maximum number
of users that can be served per pod without impacting QoS.

Npods =
⌈
α · Nreq

Mreq

⌉
(3.1)

Here, Npods represent the required number of pods, Nreq represent the current number
of requests and Mreq represent the number of requests a pod can handle. One of the
advantage of their approach is authors introduced α parameter to tune the calculation to
avoid resource over dimension or under dimension.

However, this approach is only effective in scenarios where there is a proportional
relationship between traffic rate and resource consumption, and each pod serves a single

76

3.2. Rule based autoscaling

Figure 3.5 – ELASTICDOCKER architecture. (from [80]) (Copyright © 2017 IEEE)

type of service. In situations where a single pod provides multiple services, and each
service necessitates different resource consumption per request, relying exclusively on
traffic rate for resource scaling may not be optimal. A mix of requests with varying
resource consumption per request arriving at the pod does not provide accurate timing
for scaling if the decisions are based on the number of requests.

In the research work [80], the authors present an autoscaling mechanism, denoted as
ELASTICDOCKER, explicitly engineered for web applications encapsulated and deployed
within Docker containers. The authors propose an alternative solution to horizontal scal-
ing, given its inherent disadvantages. This solution autonomously modifies the resources
allocated to the containers in a vertical manner, achieved through the integration of the
MAPE-K concept as illustrated in Figure 3.5.

The scaling of resources, specifically CPU and memory, is dictated by the workload
of the containers. To ensure efficient resource allocation, the solution implements two
distinct thresholds for both CPU and memory, with the scaling-up threshold set at 90%
and the scaling-down threshold at 70%. To maintain container stability post-scaling, a
‘breathing period’ is incorporated, allowing the containers to stabilize their state following
the scaling process.

However, both vertical and horizontal scaling possess their respective advantages and
disadvantages. Therefore, the selection of an approach is contingent upon the application
requirements. Moreover, the selection of thresholds should be predicated on the applica-

77

Chapter 3 – State of the Art

tion’s historical behavior. In this study, the authors establish a relatively high scaling-down
threshold, beneficial for reducing operational costs in consumption-based pricing models.
However, this may not always be conducive to maintaining application performance in
volatile workloads, as performance can degrade in high-resource usage situations. Fur-
thermore, the scaling is executed through static increments and decrements and does not
dynamically adapt to the workload, potentially affecting performance under high resource
usage.

In the research [91], the authors investigate the feasibility of non-disruptive autoscal-
ing within the Kubernetes environment. They identify a significant issue with Kubernetes
VPA in versions 1.26 and earlier, which necessitates an application restart during au-
toscaling. This disruption can negatively impact the current state of the application,
particularly for those that are performance-sensitive. As a solution, the authors propose a
novel vertical autoscaling approach, termed as RUBAS (Resource Usage Based Autoscal-
ing). RUBAS leverages Checkpoint Restore in Userspace (CRIU) technology to maintain
the application’s state during the scaling process. A key advantage of RUBAS over Ku-
bernetes VPA is its ability to migrate applications to a new node during scaling if the
current node lacks sufficient resources for the new resource configuration.

RUBAS operates by monitoring resource usage and determining the required resource
configuration based on the median resource usage plus a buffer, which is defined as the
positive deviation of the observation. This method offers an advantage over the peak
resource usage calculation used in Kubernetes VPA, as it helps to prevent resource over-
estimation. Furthermore, RUBAS exhibits adaptability to the current container situation,
dynamically adjusting resources as needed. This dynamic adjustment provides a signifi-
cant improvement over traditional threshold-based solutions, which are static and may not
adequately respond to changes in resource demand. Thus, RUBAS presents a promising
alternative for efficient and non-disruptive autoscaling in Kubernetes.

Despite the superior performance of the proposed solution in comparison to Kuber-
netes VPA, the authors have identified several potential limitations. First, the container
may continuously migrate from one node to another without any processing during scaling.
Secondly, multiple restarts can occasionally lead to the generation of corrupt container
images. The autoscaling model relies on median resource usage, making the monitoring
interval a critical factor in estimation accuracy. The authors suggest that smaller moni-
toring intervals may lead to inaccurate estimations and increased runtime. In Kubernetes,
container migration involves several steps, which may delay the new container becoming

78

3.2. Rule based autoscaling

Figure 3.6 – Combining vertical and horizontal scaling. (from [92]) (Copyright © 2020
IEEE)

operational. This delay can impact QoS. This is particularly significant in VPA, where
there is only one operational replica, compared to multiple replicas in HPA.

In the article [92], the authors explore the integration of horizontal and vertical scaling
strategies for the EPC within a cloud-based environment. The proposed methodology is
predicated on a threshold-based approach, utilizing the number of concurrent user connec-
tions to the EPC as a metric for scaling the Mobility Management Entity (MME), Serving
Gateway (SGW), and Packet Data Network Gateway (PGW). Two thresholds T1 and T2

are defined where T1 < T2 as shown in the Figure 3.6. These thresholds serve as decision
parameters for determining the necessity of horizontal or vertical scaling for the EPC. If
the number of concurrent users is below T1, scaling is deemed unnecessary. Conversely, if
the number of concurrent users falls between T1 and T2, vertical scaling is implemented
to adjust the resources. However, if the number of users exceeds T2, horizontal scaling
is initiated. The selection of these thresholds was based on previous experiments, taking
into account the CPU usage per concurrent user and the number of registrations. The
proposed solution was deployed and evaluated in AWS cloud envionment by implementing
EPC functions in VMs and utilizing eNodeB simulator instances to generate UE traffic.

79

Chapter 3 – State of the Art

This approach is able to increase the user registration per second and reduces the
latency compared to EPC without scaling capability. However, in high-traffic scenarios,
the application of two distinct thresholds for horizontal and vertical scaling can lead to
uncertainty in determining the appropriate scaling strategy. The startup delay associated
with VM initialization further complicates this issue. Specifically, if the vertical scaling
threshold is reached—necessitating a pod restart—and the number of concurrent users
exceeds the horizontal scaling threshold before the new pod becomes fully operational,
conflicts can arise in the autoscaling decisions.

The paper [93] presents a scaling process for VNF within the 5G data plane based on
the bit rate of incoming traffic across various network slices. The solution is implemented
by deploying multiple data planes across different network slices, each with distinct bit rate
configurations. These deployments are housed within a lightweight container in a LXC [94]
environment and the solution monitors the throughput of each data plane. The proposed
horizontal scaling mechanism operates on a threshold basis, scaling-up when the threshold
is reached. Following the scale up, the mechanism waits for the completion of processes
within the VNF before allowing a scale down. The authors conducted experiments to
test the scalability of containerized MME, SGW, and PGW and evaluated their scaling
solution by injecting traffic using the iperf3 traffic generator.

With carefully selected thresholds this approach can effectively counteract any de-
creases in throughput, thereby ensuring that the data planes maintain the anticipated
levels of throughput. However, it is important to note that scaling strategies based solely
on throughput, without taking into account the resource utilization of the network func-
tions, may not always yield optimal results. This is because such an approach oversee
which specific resource deficiencies that impacting performance. Additionally, scaling the
entire data plane solely based on throughput, without identifying the specific bottleneck
causing performance issues, may result in over-provisioning resources across the entire
data plane, thereby significantly increasing costs.

Within the 5G architectural framework, the decoupling of the UP from the CP enables
distributed deployment and allows telecom operators to independently autoscale UPs.
The authors of [95] assess this architecture utilizing their innovative autoscaling solution,
which are predicated on the Vector Packet Processing (VPP) rate. VPP is a method
employed to augment hardware performance, thereby enhancing the efficacy of software-
based networks.

The authors suggest that the VPP vector rate is an appropriate metric for autoscaling

80

3.2. Rule based autoscaling

data plane functions. The proposed autoscaling solution utilizes thresholds to scale the
SGW and PGW network functions in a 5G Non-Standalone (NSA) network, integrating
the Monitor, Analyze, Plan, Execute over a shared Knowledge base (MAPE-K) concept
to automate the process. However, the authors dismiss the idea of employing CPU uti-
lization as a decision-making indicator, arguing that the polling mode in the Data Plane
Development Kit (DPDK)/VPP environment leads to high CPU utilization, even when
packet processing is not occurring. Unlike the CP, the UP is required to process the data
traffic flowing through it. Therefore, monitoring the VPP vector rate in a softwarized UP
is essential to comprehend the volume and patterns of traffic to be processed.

Nevertheless, determining the required resources for processing solely based on moni-
toring the VPP vector rate does not always produce accurate results. This limitation arises
because the UP supports various service types, each with distinct resource demands per
request. Consequently, the VPP vector rate alone does not accurately reflect the actual
resource consumption of the UP. As a result, scaling the network function based solely
on this metric may not be efficient. There can be scenarios where the VPP vector rate is
low, yet resource consumption is sufficiently high to affect performance, which would go
undetected by an autoscaling solution that relies exclusively on VPP vector rate moni-
toring.

Inherent to their design, rule-based autoscaling strategies operate on a reactive basis.
The autoscaling mechanism is triggered by events that have already transpired or are
currently in progress. During the scaling-up process, a primary challenge is the latency
between the initiation of the scaling mechanism and the point at which the new repli-
cas are prepared to manage requests. This latency can fluctuate based on the specific
network function. Throughout this latency period, the operational but overloaded VMs
or containers persist in receiving user requests (unless there is an additional smart load
balancing mechanism that is aware of the scaling decisions). As a result, due to resource
scarcity, the service response time may be adversely affected. While this method may
offer an adequate scaling solution for applications with slow-moving workloads, applica-
tions with volatile workloads may experience difficulties. However, by carefully selecting
rules that take this delay into account, it is possible to mitigate resource starvation for
the incoming workload. A majority of rule-based autoscaling solutions employ a buffer
zone to avoid this issue, which involves setting the lower thresholds below the maximium
resource capacity of the NF. This approach inhibits the auto scaler from optimizing the
operational cost associated with resource usage. However, even with an adequate buffer

81

Chapter 3 – State of the Art

Figure 3.7 – A simplified queuing model of the system. (from [96]) (Copyright © 2018
IEEE)

zone, rule-based autoscaling cannot always ensure that it can accommodate all workload
variations. This underscores the necessity for a more dynamically adjustable and proactive
scaling solution.

3.3 Queuing theory based autoscaling

In the work [96], the authors address the challenge of integrating legacy network
equipment with VNFs for network operation. They argue that hardware-based legacy
networks offer superior cost-effectiveness and performance compared to VNF-operated
networks. In the context of 5G, they emphasize the importance of integrating both types
of networks, taking into account cost and performance considerations.

The authors propose leveraging the dynamic scalability of VNFs to enhance network
performance in conjunction with legacy networks, while being mindful of cost implications.
To this end, they introduce an adaptive scaling algorithm for VNFs, which is based on
a system model grounded in queuing theory as illustrated in Figure 3.7. In their system
model, they quantify the cost-performance trade-off based on several parameters: the
number of active legacy servers, the number of active VNFs, the average service response
time in both types of networks, and the associated costs. These parameters are used to
calculate the service rates for both legacy networks and VNFs. VNF scaling is performed
based on predefined thresholds tied to the number of waiting requests in the system queue.
This process is simulated using the NS2 simulator.

82

3.3. Queuing theory based autoscaling

Figure 3.8 – (a) Single-service application composed of one service which may contain
different modules. (b) Multi-service application whose invoking relationships of services.
(from [97]) (Copyright © 2021 IEEE)

Despite the ongoing transition of 5G networks to the cloud, telecom operators are not
expected to phase out legacy networks in the immediate future. In such scenarios, the
proposed autoscaling solution offers a valuable means of balancing the cost-performance
trade-off. However, this solution does not account for the resource consumption of the
VNFs or the application architecture, and relies solely on the system queue length to
scale the VNFs. Consequently, if the root cause of the service response time is resource
scarcity or starvation, such scenarios remain undetected by this autoscaling approach.

In [97], the authors tackle the challenges associated with autoscaling multi-service
applications. These challenges stem from the complex architecture of such applications as
shown in the Figure 3.8, the intricate correlations between services, and the bottlenecks
that arise due to untimely decisions. These factors complicate the optimization of cost
and performance, often leading to direct violations of SLAs.

While many autoscaling solutions attempt to address these issues by independently
scaling each service, most fail to optimize cost and performance effectively. They also
struggle to prevent bottlenecks arising from untimely scaling decisions, largely due to
their lack of consideration for the relationships between services.

The authors underscore that autoscaling multi-service applications can be particularly
challenging due to several factors. For instance, maintaining a balance between cost and
performance becomes difficult when the workload is dynamic, especially during sudden
bursts. Additionally, identifying the application’s bottleneck becomes complex when there
are intricate correlations between different services.

83

Chapter 3 – State of the Art

To mitigate these issues, the authors propose a scaling solution that models application
services based on the Jackson Queuing Network (JQN), thereby reducing the decision
space. They argue that commonly used queuing models, such as M/M/n or M/G/1,
in multi-tier applications assume that the service arrival process and service rate are
independent of services. However, the JQN model is deemed superior as it considers
service correlations among services and views the multi-service application as a whole.

The authors acknowledge the difficulty of implementing a generalized autoscaling
model based on this approach for all multi-tier applications. To simplify the solution,
they impose certain constraints: all the services form a directed acyclic graph, there is
only a single request access point, no external service has access to any internal services,
and all external services accessed by the internal services guarantee service quality.

For modeling the autoscaling based on the queuing model, the authors propose a pro-
portionality coefficient measurement strategy. This strategy maintains a balanced traffic
stream among services and calculates the required number of instances based on thresh-
olds implemented on response time, as per the queuing model. The authors consider CPU
utilization, the number of requests, and service time in the modeling process.

The authors evaluated their solution in a Kubernetes cluster by deploying a multi-
service application. Their solution collects traffic and resource usage metrics, as well as
response time metrics, through monitoring services and makes real-time scaling deci-
sions. The solution is benchmarked against other solutions, such as M/M/n/PS queuing
model-based autoscaling, RL-based autoscaling, and threshold-based Amazon autoscaler.
According to the authors, their solution excels in reducing cost and SLA violations.

One of the main advantages of this solution is its incorporation of both service-level and
infrastructure-level data to model the multi-service application autoscaler. However, as the
application architecture becomes more complex and correlations increase, the modeling
of the application also becomes more complicated to implement. Additionally, certain
metrics, such as service rates, can vary widely due to factors such as application language
and compiler optimization, which can potentially mislead the autoscaler.

In the paper [98], the authors assert that most cloud-based autoscalers employ either
horizontal scaling or vertical scaling, but not both simultaneously. The authors explain
that horizontal scaling does not always ensure high resource utilization due to the added
buffer zone when selecting scale up thresholds, which impacts cost optimization. On the
other hand, vertical scaling encounters a performance ceiling issue, implying that the
continuous addition of resources does not lead to a corresponding increase in performance,

84

3.3. Queuing theory based autoscaling

Figure 3.9 – The relationship between supply of resource and service performance. (from
[98]) (Copyright © 2021 IEEE)

as depicted in the Figure 3.9.
As a solution, the authors propose an autoscaling solution based on queuing theory

that utilizes both HPA and VPA in a Kubernetes environment.
The proposed solution collects both infrastructure-level and service-level metrics using

monitoring services in Kubernetes. Based on the collected metrics, the solution first cal-
culates the required number of pods and new resource configurations for each pod based
on a mapping system. This mapping system maps high-level metrics to low-level metrics
under different resource configurations to calculate the required number of requests that
can be processed per second. Subsequently, it calculates the resource cost based on the
cloud provider’s pricing model.

Using the M/M/c queuing model, the solution obtains the service availability parame-
ter from SLAs. After these steps, the solution computes a score for the new scaling scheme.
It then compares the score of the new scheme with the current one, and the scheme with
the highest score is executed.

This solution integrates HPA and VPA, enabling it to capitalize on the strengths of
both methodologies while mitigating their limitations, particularly in cost optimization.
However, this solution is best suited for simple monolithic applications, as implementing
it in more complex architectures may prove challenging. For instance, in multi-service ap-
plications, calculating service availability might not be straightforward with this queuing
model method.

In the paper [99], the authors emphasize the necessity for dynamic resource allocation
for CP NFs in the Long-Term Evolution Evolved Packet Core (LTE EPC). They propose

85

Chapter 3 – State of the Art

Figure 3.10 – LTE CP queuing model. (from [99]) (Copyright © 2018 IEEE)

an autoscaling solution based on a processing delay budget, which models the CP using
the G/G/m queuing model as illustrated in Figure 3.10.

When calculating the delay budget, the authors utilize the 3GPP specification as the
performance requirements for CP latency. This latency, as defined by the 3GPP, is the
average time taken to transition a UE from an idle state to an active state.

The authors formulate the resource allocation problem as an optimization problem.
The objective is to minimize the number of CPU cores allocated to each NF, subject to
the condition that the service time is less than or equal to the CP latency specification.
Additionally, there is a constraint on the maximum number of CPU cores that can be
allocated to a single VNF.

Based on the modeled average response time, the solution calculates the processing
delay budget and allocates CPUs to VNFs until the budget is fulfilled. The optimization
algorithm iterates multiple times to find the optimal distribution of CPU resources. A key
advantage of this approach is that it models the entire CP and customizes it to comply
with the standards, thereby reducing resource wastage.

This approach is limited by its inability to directly pinpoint the bottleneck VNF,
requiring multiple iterations to do so. Consequently, its computation-intensive nature
may render it unsuitable for managing fluctuating traffic.

Just as rule-based autoscaling, the majority of queuing theory-based autoscaling ap-
proaches are reactive in nature. The primary objective of these methodologies is to as-

86

3.4. Control based autoscaling

certain the response time of cloud-based applications. This is achieved by modeling the
system based on a queuing model and subsequently allocating resources to uphold an
acceptable response time.

However, these approaches face certain challenges. Once a discrepancy in response time
is detected, a certain amount of time is required to stabilize it through scaling, due to
factors such as start-up delay. Furthermore, these methods are computationally intensive,
which could prolong the process of resource optimization.

3.4 Control based autoscaling

In the realm of control engineering, Proportional-Integral-Derivative (PID) control is
a prevalent method employed to ensure system stability. The PID control mechanism
enables the regulation of both the input and output of a system, even when the system
model is not known. The PID controller operates by processing the difference between the
actual output and the desired output, also known as the error using a feedback loop. This
error is then used to adjust the system input u(t) to achieve the desired output. The PID
control function comprises three components where the proportional control component
Kp aggregates terms that exhibit a high correlation between the error e(t) and the desired
output. The integral control component Ki takes into account the historical error data
and the derivative control component Kd processes the rate of change of the error as
expressed in equation 3.2. The PID controller utilizes these components to implement
countermeasures that aim to minimize the error. This ensures that the system output
aligns closely with the desired output, thereby enhancing system stability and performance
as illustrated in Figure 3.11.

u(t) = Kp · e(t) + Ki

∫ t

0
e(t)dt + Kd · d

dt
e(t) (3.2)

In the study [76], the authors employ PID control theory to dynamically adjust the
underlying resources, thereby maintaining the performance of the application. The authors
utilize this approach to horizontally autoscale servers in a cloud environment, to maintain
a predefined response time. The authors concentrate on scaling CPU-intensive applications
by monitoring the application’s CPU usage as an input parameter and evaluating the
response time as the output metric. The authors posit that saturated CPU utilization
results in increased service response times. By adjusting the number of VMs, they increase
the CPU capacity, which in turn reduces the response time. To maintain a predefined

87

Chapter 3 – State of the Art

Figure 3.11 – PID feedback control loop. (from [76]) (Copyright © 2016 IEEE)

response time, the authors tune the PID controller to add or remove servers from the
cloud environment. This dynamic adjustment of resources presents an advantage over
static threshold-based scaling.

However, the solution is not immune to oscillation if the workload is volatile. The
response time can change if the cause of the response time change is attributed to an-
other tier, potentially misleading the algorithm to scale the deployment. Moreover, the
PID controller requires online tuning, which can cause QoS degradation until the model
stabilizes. In this study, the authors did not employ any auto-tuning mechanism, which
can prolong the tuning process. Furthermore, if the traffic pattern or system configura-
tions change drastically, the PID controller needs to be re-tuned to adjust to the new
configuration.

Similar to the previous work, [100] proposed an autoscaling solution predicated on PID
control employed to uphold QoS levels. This is achieved through the horizontal scaling of
pods within a Kubernetes cluster. The research introduces three feedback signals, which
are predicated on the average weighted workload, the request waiting time, and the CPU
utilization. The augmentation of these feedback signals enhances the visibility of the cloud
environment, thereby increasing the optimality of decision-making processes. However,
this enhancement also escalates the complexity of the PID tuning process, given the
multitude of features contributing to the error. Consequently, this increases the time
required for online tuning, which may adversely impact the performance of the application.

In the research conducted by [101] , it is explicated that an application’s resource con-
sumption is intrinsically linked to the language in which the application is written. The

88

3.4. Control based autoscaling

Figure 3.12 – Autoscaling architecture with the PID controller. (from [101]) (Copyright
© 2022 IEEE)

resource consumption is influenced by several factors including, but not limited to, the
number of threads employed, the garbage collection methodologies implemented, and the
compiler optimizations applied. These factors necessitate consideration during the formu-
lation of an autoscaling solution. The authors present an autoscaling solution tailored for
Node.js applications, distinguished by their event-driven architecture. Contrary to con-
ventional methods that depend on resource consumption - a metric that can be deceptive
for applications such as Node.js - the proposed solution is predicated on response time.
The fundamental principle is the utilization of a PID controller, which dynamically adds
or removes pods from the cluster to uphold a predetermined response time. Oscillations
are managed by instituting a cool-down period in Kubernetes, enhancing the stability of
the system as shown in the Figure 3.12.

This methodology can potentially optimize the performance of the application by
scaling pods based on application response time. However, it is noteworthy that for multi-
tiered applications, this approach could potentially misguide the algorithm. The response
time of one tier could be affected by another, resulting in imprecise scaling decisions.
This caveat underscores the complexity of devising a universally applicable autoscaling

89

Chapter 3 – State of the Art

Figure 3.13 – Overview of QoS management control system. (from [102]) (Copyright ©
2018 IEEE)

solution.
In the study [102], an autoscaling solution based on PID control is proposed. This

solution serves as a mitigation strategy against the observed degradation of QoS in static
threshold-based autoscaling solutions due to their inherent lack of adaptability. The pri-
mary goal of this solution is to dynamically adjust the allocation of CPU and memory
resources in VMs deployed in a cloud environment, in response to changes in both work-
load and QoS parameters. The system model, illustrated in Figure 3.13, consists of two
main components: the PID controller and the system identification module. The PID con-
troller actively adjusts resources to maintain a predefined QoS level by adding or removing
resources from the VM. In contrast, the system identification module is responsible for
the online tuning of PID parameters.

For the tuning of PID parameters, the authors utilize the Forgetting Factor Recursive
Least Squares (FFRLS) technique. This technique functions by comparing estimated QoS
values with actual QoS values and selecting the appropriate coefficient values. It then
applies the updated PID parameters to minimize the discrepancy between these estimated
and actual response time values. The inclusion of this module eliminates the need for
manual intervention in PID parameter tuning. However, despite the advantage of dynamic
resource adjustment, the proposed method requires online tuning of the PID controller,
which can potentially impact QoS during the tuning process.

Fuzzy logic, a variant of control theory utilized in control engineering, is capable of
decision-making under conditions of uncertainty and ambiguity. It introduces the concept
of partial truths, which exist between the extremes of absolute truth and falsehood, a
stark contrast to threshold-based solutions. This is achieved through the implementation

90

3.4. Control based autoscaling

Figure 3.14 – Custom membership function to define the status of the input metrics. (from
[103]) (Copyright © 2018 IEEE)

of a membership degree function.
Subsequently, these membership degrees are associated with fuzzy rules, which articu-

late the system’s input-output relationship, thereby facilitating decision-making processes.
This methodology enables the system to be controlled in a smooth and adaptive manner,
a significant improvement over rule-based mechanisms, which can often result in abrupt
decision impacts. This technical approach to control theory underscores the versatility and
adaptability of fuzzy logic. In the paper [103], a horizontal autoscaling method for fog com-
puting applications is proposed, leveraging the benefits of fuzzy logic in control systems.
The authors underscore the necessity for an autoscaling solution capable of dynamically
managing workloads. They note that while existing rule-based scaling is straightforward
to implement, it lacks adaptability. To address this, the authors propose an autoscaling
method that takes into account average CPU, memory, and network usages as inputs.
The authors define the status of these input metrics (high, medium, and low) based on
a custom membership function, as depicted in the Figure 3.14. Depending on the status
of each metric, different fuzzy rules are set to scale the VNF instances, as stated in the
Table 3.1. This approach offers a smoother transition between degrees compared to rule-
based scaling and exhibits greater adaptability. However, the complexity of the fuzzy rules
increases with the addition of managing features. To implement these fuzzy rules, prior
knowledge of the application behavior in the environment is required. Furthermore, the
selection of fuzzy rules must be done judiciously to optimize performance and operational
cost, adding to the complexity.

Autoscaling solutions based on control theory offer a level of adaptability that is not
achievable with rule-based autoscaling solutions. Techniques such as PID control and
fuzzy logic are employed to dynamically adjust resource allocation in response to real-
time conditions in the cloud environment. These methods calculate the optimal quantity

91

Chapter 3 – State of the Art

CPU Usage Memory Usage Network Usage Scaling
High High High High
High - - High

Medium - - Medium
Medium High Medium Medium
Medium Low Low Medium
Medium Low Medium Medium

Low - Medium Low
Low - - Low
Low - Low Low

Medium Low - Low

Table 3.1 – Rules in fuzzy database. (from [103]) (Copyright © 2018 IEEE)

of resources to add or remove, potentially offering a more cost-effective solution compared
to solutions that add or remove a predefined quantity of resources. Furthermore, these
techniques are sensitive to even minor fluctuations in performance metrics and can take
action to maintain performance within acceptable bounds. However, it is important to note
that, akin to rule-based autoscaling solutions, control-theory-based autoscaling solutions
are reactive in nature. They only take action in response to detected changes, which may
render them ineffective for handling volatile workloads, particularly when considering the
start-up delay associated with containers or VMs in the cloud.

3.5 Reinforcement learning based autoscaling

According to [104], the majority of open-source autoscaling solutions predominantly
rely on either workload-based or resource usage-based approaches. In this study, the au-
thors experiment with the application of Reinforcement Learning (RL) to resource-based
autoscaling with the aim of enhancing scaling decisions by reducing response time and
utilizing fewer resources.

The authors propose a solution to enhance Kubernetes HPA by dynamically adjusting
the scaling threshold using a Q-learning-based RL model. The learning agent monitors
CPU usage and response time, and decides whether to increase, decrease, or maintain
the current scaling threshold. Given the continuous nature of CPU usage values, the
authors employ a quantization method to convert CPU usage into discrete values for use
in Q-learning models.

92

3.5. Reinforcement learning based autoscaling

Figure 3.15 – SQLR Block diagram: ’LB’ represents the Load Balancer agent, while ’AC’
denotes the Admission Control agent. (from [106]) (Copyright © 2021 IEEE)

One of the primary advantages of this approach is its potential to minimize the effects
of CPU throttling on QoS, which is primarily caused by CPU usage reaching limits in
Kubernetes, by detecting increased response times and scaling replicas. Additionally, the
quantization of CPU usage values to reduce the state space can expedite model conver-
gence. However, this quantization process also diminishes visibility into the cloud envi-
ronment, which can lead to suboptimal scaling decisions that impact performance and
operational cost. Furthermore, the model relies solely on infrastructure-level data and
lacks visibility into workload data, which could complicate resource allocation in volatile
environments when there are complex correlations between resource consumption and
workload.

Studies [105] and [106] highlight that most contemporary autoscaling models fall short
in adapting to dynamically changing workloads in VMs, thereby impacting performance.
As a countermeasure, the authors propose a staged horizontal autoscaling solution for
VMs, leveraging multi-agent RL strategies as illustrated in the Figure 3.15.

In the first stage, the authors employ a generic load balancer that distributes traffic
based on the CPU utilization of the VMs. The underlying rationale is to direct traffic to

93

Chapter 3 – State of the Art

the replicas with the least CPU usage, thereby averting performance degradation due to
high resource consumption of the replicas.

In the second stage, a RL agent is introduced for admission control. If a VM can
process an incoming request within an acceptable response time, the request is admitted;
otherwise, it is dropped. In the third stage, another RL agent, referred to as the informant
learning agent, makes scaling decisions based on metrics developed on the CPU utilization
of the VMs. To tackle this, the authors propose a novel mapping method that converts
continuous parameters into discrete values for integration into Q-learning models.

This solution decomposes the problem into multiple stages and employs a multi-agent
method, which reduces the state-action space for each agent and could potentially increase
the convergence rate. Additionally, the use of a load balancer that directs traffic based on
CPU usage minimizes the immediate impact of scaling decisions on performance.

However, these three stages operate independently of each other, leading to challenges
in reaching optimal decisions. For instance, even though the load balancer directs traffic
based on CPU usage, it does not guarantee that requests will not be blocked by the
admission controller. This could occur when all replicas have high CPU usage and require
the third stage to scale up the deployment. Simultaneously, the penalty comparison of
violating SLAs by dropping requests versus serving the request with a higher response
time due to high resource consumption is not studied. This could indirectly impact the
cost-performance trade-off.

In the paper [107], the authors underscore the limitations of threshold-based scal-
ing mechanisms such as HPA in handling highly dynamic workloads. As a remedy, they
propose an autoscaling solution based on Deep Reinforcement Learning (DRL). Despite
the ability of RL models to learn from environmental interactions, the authors opted for
DRL models over tabular-based RL models due to the continuous nature of the features
involved in the scaling problem.

The primary objective of this study is twofold: to minimize SLA violations resulting
from increased service response time, and to maximize resource usage, thereby reducing
operational costs. The proposed solution monitors average CPU usage, the number of
current replicas, and the user request rate of deployments, using these as inputs for the
DRL model. However, the authors have restricted their action space to scaling-up or down
by 1 or 2 replicas, or no scaling.

To optimize the model, the authors have designed a reward function based on CPU
utilization and SLA violations due to increased response time. The function is designed

94

3.5. Reinforcement learning based autoscaling

Figure 3.16 – Proposed system architecture.(from [107]) (Copyright © 2022 IEEE)

to maintain an acceptable response time while maximizing average CPU utilization. The
authors tested their solution against HPA in a Kubernetes environment with two different
workload patterns, achieving improved response time, higher average CPU usage, and a
lower pod count as illustrated in the Figure 3.16.

One of the advantages of using RL in autoscaling is that it facilitates online training,
eliminating the need for data collection, offline training, and regular model updating.
However, this method has its limitations, particularly in the action space. If CPU demand
significantly increases within a short period, the model cannot deploy more than two
pods at a time, which can impact service response time. Increasing the action space
would complicate the decision process, given the large state space. Additionally, the entire
autoscaling process is handled by the DRL model, resulting in minimal transparency in
the process.

In the paper [108], the authors identify the challenge of accurately selecting resource
parameters under varying QoS requirements in standard autoscaling solutions. To address
this, they propose a two-stage solution that dynamically adjusts resource parameters to
maintain the performance of container-based cloud applications. The authors elucidate
that each application’s resource consumption and QoS requirements differ, necessitating
an autoscaling solution capable of dynamic adjustment.

95

Chapter 3 – State of the Art

Figure 3.17 – The system architecture of autoscaling framework. (from [109])

One of the most significant challenges in cloud deployments is the initial allocation
of resources. This is typically accomplished by observing historical resource consumption
data. However, in the absence of historical data, Kubernetes provides vertical autoscaling
to recommend the necessary initial resources. In their proposed solution, the first stage
utilizes this generic vertical scaling to determine the required amount of resources (CPU,
memory limits). Subsequently, when the workload fluctuates, their solution relies on the
second stage, which is a DRL-based solution, to horizontally scale pods.

The objective of this solution is to maximize resource utilization while minimizing
response time. The ability to dynamically adapt to the current situation and reduce
response time is a key advantage of the solution. The authors have tested this solution
with different deep-learning agents. However, the state space, which consists of pod count,
average CPU utilization, response time, minimum and maximum pod numbers, as well as
the action space (scaling-up and down and no scaling), is large. This is similar to the issue
in[107] and necessitates a longer online training time, which is a significant disadvantage.

In [109], the authors address the issue of extended training time for RL in cloud
Horizontal Autoscaling by introducing a multi-agent approach. This approach aims to re-
duce the state space, thereby accelerating convergence. However, in this case, the authors
employ multi-agents based on the type of VM, specifically spot instances. The authors
categorize the types of VMs deployed in the cloud (e.g., based on application type, re-
source configurations, etc.) and deploy separate agents per type to manage autoscaling as
illustrated in the Figure 3.17.

96

3.5. Reinforcement learning based autoscaling

Each monitoring component observes the type of the VM, the number of VMs in
the cloud, and the current workload. Given the continuous nature of these input data,
the authors utilize DRL agents. The reward function is designed with consideration for
operational cost, user payment, and compensation due to SLA violations. This approach
covers both performance and cost, aiding in converging to a solution that can balance
both aspects.

Furthermore, the authors implement a passive mechanism to train the DRL models,
aiming to minimize the impact of the trial and error process of the DRL model. This is
achieved by initiating on-demand VM capacity immediately if there is an interruption
to the instance processing. Despite the authors’ use of a multi-agent method per type of
VMs to reduce convergence time on the DRL model, the state space to be covered remains
large, which could potentially extend the training model.

In the contemporary landscape of cloud computing, multiple layers such as infrastruc-
ture, virtualization, and application are prevalent. The authors of the paper [110] have
identified a research gap in the development of autoscaling solutions for this architecture.
They note that most existing solutions do not incorporate visibility into this multi-layer
cloud architecture, and most autoscaling solutions operate in isolation, without a com-
prehensive understanding of the dependencies that influence them.

The authors emphasize the necessity for an autoscaling mechanism to be cognizant
of various multi layer correlations for accurate scaling. These include vertical correlations
(e.g., container/VM level dependencies), horizontal correlations (e.g., topology and service
architecture dependencies), and time correlations (e.g., time dependencies in component
behavior).

The authors further underscore that an autoscaling solution that handles a large num-
ber of features across different layers can benefit from the use of AI models to extract
complex dependencies. However, they caution that certain AI models, such as neural net-
works, can act as a “black box” in decision-making, leading to a lack of transparency and
an inability to understand the root cause of issues.

To address these challenges, the authors propose a novel multi-stage autoscaling mech-
anism that incorporates multiple AI models in decision-making. In their proposed solution,
the first stage involves monitoring and collecting data from each layer, which is then fed
into a Dynamic Bayesian Network trained to estimate causal dependencies among fea-
tures. This module aids in reducing the number of features used in the subsequent stage.

In the next stage, a pre-trained LSTM model predicts the future state of the cloud

97

Chapter 3 – State of the Art

environment, making the solution proactive. With the knowledge of SLAs, a Markov
Chain Monte Carlo (MCMC) model in the subsequent stage maps appropriate events to
adjacent states. A Q-learning model then assigns necessary actions based on the states
provided by the MCMC model. This MCMC model enables the RL model to limit the
state-action pairs, simplifying the decision-making process.

A key advantage of this solution is its ability to understand correlations between dif-
ferent layers, which is beneficial for accurate scaling decisions. For instance, application
performance could suffer due to a bottleneck in another layer, not necessarily due to re-
source starvation. In such cases, isolated autoscaling solutions that make scaling decisions
based on performance could lead to resource overprovisioning.

However, the implementation of this novel system is complex. The creation of multi-
ple AI models, training of multiple models, and large-scale data collection can be cost-
prohibitive for most cloud applications. Due to potential errors in AI model outputs,
aggregating results from multiple models can amplify these errors, potentially leading to
suboptimal scaling decisions.

As indicated in preceding studies, RL offers a fully automated process for decision-
making analysis and self-learning. However, an increased state-action space, also known
as the “state-action explosion” problem, is a well-known issue in RL. This problem is also
evident in the application of RL in cloud autoscaling, where continuous state and action
spaces, such as differences in resource utilization, number of replicas, response time, and
actions like adding, removing, and determining the number of replicas, can expand these
spaces.

This expansion can prolong the time required for model convergence. A significant
issue is that during the training period, RL can be reactive, implying a trial-and-error
approach. Consequently, if the convergence time is extensive, the cost will be higher during
the online learning period due to unoptimized decisions. Additionally, the absence of a
proper reward function and inadequate training could lead to suboptimal convergence,
indicating potential model overfitting.

Furthermore, RL operates as a “black box,” offering no explanation for its decisions,
which complicates troubleshooting or pinpointing the root cause. However, some state-of-
the-art papers have utilized clustering or quantification of the state space and action space
to convert it into a finite problem, thereby reducing the time to convergence. However,
this approach can lead to sub-optimal results due to reduced information in the clustering
or quantification.

98

3.6. Prediction based autoscaling

3.6 Prediction based autoscaling

In the domain of serverless computing, characterized by ephemeral workloads, the au-
thors in [111], elucidate that performance can be compromised when resource allocation is
based on predefined threshold based autoscaling. This highlights the necessity for dynamic
autoscaling processes capable of accurately estimating the requisite resources.

The authors acknowledge that, while long-running applications can leverage machine
learning models dependent on historical data, the serverless context necessitates a lightweight
resource usage prediction mechanism for rightsizing serverless containers. As an alterna-
tive to Kubernetes VPA, the authors propose vertical autoscaling using Simple Moving
Average (SMA) and Exponential Moving Average (EMA) methodologies to predict CPU
usage and dynamically modify pod resource configurations.

These methodologies are particularly beneficial in the context of cold starts, where
there is an absence or insufficiency of historical data for employing machine learning
methods to predict CPU usage. Despite their results demonstrating that the proposed
methods can anticipate the expected CPU load in advance, it does not always ensure the
maintenance of acceptable performance levels due to CPU throttling.

CPU throttling is a Linux kernel mechanism utilized by Kubernetes to enforce pod
CPU limits. Throttling is triggered when CPU usage reaches the defined limit, leading to
a degradation in application performance. Therefore, to maintain acceptable QoS levels,
scaling actions must be executed at the appropriate time to prevent the impact of CPU
throttling. However, this particular factor is not addressed in proposed methodology.
Furthermore, the authors contend that reducing the monitoring time interval enables
more precise detection of CPU usage fluctuations. However, frequent retrieval of new
metrics data increases monitoring cost, impacting the cost-QoS trade-off.

The paper [112] addresses the challenge of achieving an optimal trade-off between cost
and QoS in cloud environments by leveraging widely used threshold-based autoscaling
solutions, which are incapable of handling complex workload patterns.

The authors state the necessity of prediction based autoscaling to estimate the required
resources and optimize the cost based on the pricing models used by public cloud providers.
To address this issue they propose a predictive autoscaling solution that allocates resources
proactively, preventing QoS degradation due to resource starvation.

The proposed architecture as illustrated in Figure 3.18 is designed for horizontal scaling
of containers in a Kubernetes environment. It monitors the CPU usage of pods deployed in

99

Chapter 3 – State of the Art

Figure 3.18 – Proposed autoscaler system data flow. (from [112]) (Copyright © 2019 IEEE)

the Kubernetes cluster and employs a double exponential smoothing technique to predict
future CPU usage of the replicas. The autoscaler module then calculates the desired
number of replicas based on a predefined CPU usage threshold. This calculated desired
number of pods is compared with the current number of replicas to determine whether
scaling-up is necessary.

However, their prediction method is not used when scaling-down replicas. Authors
state that prediction of such situations could potentially indicate a service failure and
mislead the autoscaling solution. Therefore, they delegate the scaling-down process to
the Kubernetes HPA. The authors tested their solution and the HPA using the same
traffic pattern. Their solution demonstrated better scaling performance compared to the
HPA in terms of maintaining response time. Unlike machine learning or deep learning
models, the double exponential smoothing technique does not require extensive training,
making the prediction process lightweight. However, this prediction method can struggle
with more complex patterns, such as nonlinear trends and seasonality. Additionally, the
authors note that allowing the default HPA to handle scaling-down does not improve the
cost-QoS trade-off, especially when it uses a cool-down period to avoid oscillations.

In the research [113], the authors identified a limitation in Kubernetes’ vertical scaling
capabilities, especially when dealing with periodic workload fluctuations. To address this,
they proposed a predictive, autoscaling strategy that adjusts the CPU resource request
to prevent CPU throttling and under-provisioning resources.

100

3.6. Prediction based autoscaling

Figure 3.19 – Requested CPU for each scaling approach. (from [113])

The authors conducted experiments using two time-series prediction models to forecast
the CPU usage of the target pod. They utilized the Kubernetes metric API to collect CPU
usage data at 10-minute intervals and input these values into two models: Holt-Winters
(HW) and Long Short-Term Memory (LSTM). With a historical window of two season
lengths, both models were able to predict 24 steps into the future, with the primary
consideration being weekly patterns.

Upon predicting the CPU usage using the best performing model, two static thresholds
were established to determine whether to scale up or down. To mitigate sub-optimal scal-
ing decisions due to prediction error, a buffer zone of 120 CPU milicores was implemented.
Each scaling action determined the amount of CPU milicore based on the prediction plus
the buffer. Furthermore, they employed a cool-down period of 18 time steps to prevent
oscillations.

Predicting the required resources for longer horizons enables the scaling solution to de-
termine the necessary number of resources in advance, thereby reducing resource wastage.
However, the data extraction period is too extensive to prevent CPU throttling if the
workload is volatile. With this method, as suggested, the selected parameters are more
suitable for weekly adjustments. As depicted in the Figure 3.19 , the CPU usage in certain
situations can exceed the allocated capacity and could lead to CPU throttling. However,
the authors do not investigate the impact of CPU throttling on the response time with
their solution, which could be a valuable indicator of whether the solution minimizes SLA

101

Chapter 3 – State of the Art

violations.
In the paper [78], the authors argue that the magnitude and volatility of the traffic

expected in 5G networks cannot be managed effectively by traditional threshold-based
scaling. One of the primary reasons for this is the potential impact of startup delay
post-triggering on the performance of VNFs. The AMF, serving as the access point for
the 5G CN, is identified by the authors as a potential performance bottleneck during
periods of heavy traffic, necessitating dynamic autoscaling. To address this, the authors
propose an autoscaling solution based on traffic load prediction for managing the scaling
of AMF NF. They emphasize the utility of service-level metrics, such as the number
of incoming users, in determining whether VNFs are overloaded. Deep Neural Networks
(DNNs) and Recurrent Neural Networks (RNNs) are employed by the authors to predict
the requisite number of AMF instances, with the ETSI NFV architecture being leveraged
to deploy their solution in a cloud environment. The authors utilize a public telecom
dataset, containing temporal traffic patterns of user connections, to train their forecasting
models. These models are designed to analyze past values of incoming user connections
and predict the expected number of AMF instances.

For this purpose, the original dataset is manually categorized into ten groups, with
the required number of AMF instances being assigned to each. Following the training
and testing of both forecasting models, the authors select the model demonstrating su-
perior performance for their autoscaling experiments. The authors conduct comparative
experiments between threshold-based and their autoscaling solutions to determine which
approach optimally utilizes AMF instances and minimizes blocked requests. As illustrated
in their Figure 3.20, their solution proactively aligns incoming traffic with AMF instances,
thereby reducing blocking requests.

However, it is important to note that while their solution can match incoming traffic
with AMF instances, it does not ensure that these instances utilize the maximum capacity
of the allocated resources. Furthermore, the authors’ manual categorization of the training
data to assign AMF instances may not be optimal for maximizing resource utilization of
the VNFs, potentially leading to resource wastage and suboptimal scaling.

The study [114] propose an autoscaling solution for a comprehensive 5G network. This
solution employs two distinct scaling strategies: horizontal and vertical. These strategies
are applied to three key components of the network: the RAN, the CP and UP in the
CN. The authors underscore the significance of dynamically adapting resources to meet
demand on both the RAN and CNs. Dynamically adapting resources is particularly crucial

102

3.6. Prediction based autoscaling

(a) Evolution of AMF instances number with control traffic requests: i. threshold-based
solution; ii. RNN-based solution.)

(b) Number of blocked control traffic requests compared to the number of AMF in-
stances: i. threshold-based solution; ii. RNN based solution.

Figure 3.20 – Experimental results. (from [78]) (Copyright © 2018 IEEE)

to enhance energy efficiency during peak usage hours, as well as during periods of low
usage, such as night time.

In this solution, the selection of the scaling approach and monitoring metric is contin-
gent upon the pressure conditions within each network component. For instance, in RAN,
alleviating the pressure to decode incoming traffic at eNodeBs can be achieved through
vertical autoscaling. This not only conserves energy but also optimizes resource utiliza-
tion by maintaining lower unused resources during periods of low usage. This periods can
be identified by monitoring the UP bytes transmitted over the Packet Data Convergence
Protocol (PDCP). Similarly, both the UP and CP can benefit from horizontal scaling to
prevent resource congestion. The scaling decisions for the UP can be determined by the
traffic sent to the SWG/PGW over the S1 interface. Conversely, the CP can be scaled
based on the traffic sent over the S1-MME interface, as depicted in the accompanying
Figure 3.21.

The authors argue that while these metrics offer insights into the network’s current

103

Chapter 3 – State of the Art

Figure 3.21 – System architecture for the under-study cloud-native network. (from [114])
(Copyright © 2021 IEEE)

state, real-time prediction could be advantageous for network self-organization. To render
the autoscaling proactive, the authors employ a LSTM model. This model is trained and
tested to predict using a publicly available telecom dataset, with the Mean Absolute Error
(MAE) used to gauge the accuracy of the predictions. Subsequently, the authors determine
the scaling decision by applying rules on the predicted metric. In this scenario, the eNodeB
either increases or decreases resource allocation based on predefined thresholds. For the
UP and CP, the number of replicas to be added or removed is determined by predefined
thresholds. This solution takes into account the relevant scaling approach and metrics to
ascertain the need to scale, customized to each component. This enables the network to
optimize its resources more adaptively and proactively.

However, the solution’s execution of scaling decisions is based on predefined static
thresholds, which may not always yield optimal resource allocations. Moreover, in the
case of eNodeB vertical scaling, a predefined amount of resources is added or removed,
rather than customizing to the actual need, leading to suboptimal resource allocation.
Additionally, in the horizontal scaling of the CN, the authors scale based on the number
of connections, without information about the resource consumption of each VNF, which
also results in suboptimal scaling decisions.

In the referenced work [115], the authors address the issue of QoS degradation due
to reactive scaling which can be reduced by proactive scaling. They propose an autoscal-

104

3.6. Prediction based autoscaling

Figure 3.22 – Prediction-based autoscaling system architecture. (from [115])

ing solution that leverages a MAPE closed-loop architecture as illustrated in the Figure
3.22. This solution predicts the incoming requests using Bi-directional Long Short-Term
Memory (Bi-LSTM) models.

Unlike conventional LSTM models, which are unidirectional and only consider forward
learning in a given sequence, Bi-LSTM models incorporate both forward and backward
learning processes. The authors argue that this bi-directional learning process is more suit-
able for traffic prediction, as Bi-LSTM can learn information about the input sequence
from both ends. The authors present a forecasting model that predicts incoming traffic
and calculates the required number of replicas based on a constant value, which repre-
sents the number of requests that can be processed by a single pod. Experimental results
on multiple public datasets demonstrate the greater performance of Bi-LSTM compared
to conventional LSTM and AutoRegressive Integrated Moving Average (ARIMA) mod-
els. The results indicate that the proposed solution can accurately predict the traffic,
proactively scale, and use fewer replicas compared to the Kubernetes HPA.

However, this solution calculates the number of pods based on the maximum workload
that can be processed by a single pod. Even when the workload matches the required
pod number, it is challenging to determine when scale up is necessary without resource
consumption data. There are scenarios where the workload is not high enough to trigger

105

Chapter 3 – State of the Art

scaling but sufficient to activate CPU throttling, which can impact the service response
time. These scenarios are not visible if the scaling decisions rely solely on incoming traffic
data.

Prediction-based autoscaling mechanisms provide a proactive approach to cloud re-
source management. By leveraging demand forecasting and executing preemptive scaling
actions, these methods can minimize the inherent delays associated with scaling opera-
tions and reduce oscillations in resource allocation, a common issue in reactive scaling
strategies. Once relevant metrics have been predicted, determining the precise timing
for scaling actions based on predicted demand becomes critical. Correctly timing scal-
ing operations is essential for optimizing cost-efficiency while ensuring the required QoS
is maintained. Moreover, most prediction-based autoscaling techniques depend on large
volumes of historical data for offline model training,which can be resource-intensive.

3.7 Summary

This chapter explores the various mechanisms used for cloud resource autoscaling,
focusing on their impact on operational efficiency and the trade-off between cost and
QoS. Autoscaling methods are designed to minimize resource overprovisioning to reduce
costs while avoiding underprovisioning, which could lead to degraded QoS and SLA viola-
tions. However, selecting or designing an autoscaling solution that fits specific cloud-native
applications is a complex challenge. The performance of an autoscaling mechanism is in-
fluenced by several factors, including the application’s architecture, whether it is stateful
or stateless) its ability to adapt to fluctuating workloads, the types of metrics used to
make scaling decisions, the handling of decision oscillation, whether the decision-making
is reactive or proactive, and the method of scaling (vertical or horizontal). These fac-
tors significantly influence how well an autoscaler manages the cost-QoS balance in cloud
environments.

In examining the literature, the chapter first considers rule-based autoscalers, which
are simple to implement and widely used. They perform adequately for most cloud ap-
plications, but their reactive nature makes them less effective in handling fluctuating
workloads. Queuing theory-based autoscaling, on the other hand, dynamically adjusts to
varying workloads, offering better adaptability than rule-based approaches. Despite this,
it remains reactive and faces similar challenges, with the added complexity of being harder
to implement in large-scale architectures and potentially computationally intensive.

106

3.7. Summary

Control theory-based autoscalers, such as those using PID control and fuzzy logic,
are more adaptable to workload changes and can allocate resources more precisely, thus
improving cost efficiency. However, these methods are less suited to modern multi-tier
application architectures and are still reactive in nature. RL-based autoscalers represent
a more advanced approach, utilizing self-learning and decision-making processes to under-
stand complex workload and resource usage patterns. These methods can handle intricate
application architectures, but they come with drawbacks such as long learning times and
state-action explosion due to the large number of parameters that need to be controlled.
Additionally, RL-based solutions suffer from limited explainability, making it difficult to
interpret and troubleshoot their autoscaling decisions.

Prediction-based autoscaling takes a proactive approach, predicting workload and re-
source consumption behaviors and allocating resources accordingly. This method can be
customized for specific application components or tiers, providing a high level of adapt-
ability to balance cost and QoS. However, it requires a significant amount of historical
data for training, and the training process can be computationally demanding.

Overall, the literature reveals that there is no universal autoscaling solution that fits
all requirements. Each method has its own advantages and limitations, and the choice
of autoscaler must be tailored to the specific needs of the application to achieve an op-
timal cost-QoS balance. The next chapter delves into the autoscaling requirements for
performance-sensitive applications, such as 5G networks, and proposes a new approach
to balancing the cost-QoS trade-off in cloud environments.

107

Chapter 4

RESOURCE USAGE FORECASTING FOR

CNFS IN KUBERNETES ENVIRONMENT

4.1 Introduction

Adopting a cloud-native paradigm within 5G networks introduces novel challenges
in optimizing operational costs for CSPs. The increasing number of users, devices, and
diverse use cases necessitating tailored network configurations significantly amplifies the
complexity of this issue, surpassing that encountered in traditional cloud-based IT ser-
vices. As highlighted in the Introduction chapter, mitigating cloud resource wastage—a
primary driver of elevated cloud expenditures—can be effectively addressed through dy-
namic resource allocation and automation. By understanding resource requirements and
precisely allocating resources in a timely manner, it is feasible to circumvent both over-
provisioning and under-provisioning, thereby achieving an better cost-QoS balance.

This chapter propose a novel proactive autoscaling solution for CNFs deployed within
Kubernetes environments. The core objective of this solution is to forecast the antici-
pated resource utilization of CNFs and dynamically scale CNF resources to sustain an
optimal cost-QoS balance. The initial phase of the proposed solution concentrates on
resource usage forecasting. This involves an examination of the limitations inherent in
existing Kubernetes autoscaling solutions and an analysis of the resource usage profiles
of 5G CNFs to discern their consumption patterns. Subsequently, the correlation between
incoming workloads and resource usage is investigated. By leveraging deep learning-based
forecasting methodologies, the forecasting accuracy of CNF resource usage is enhanced,
providing intelligent analytics for the autoscaling solution. Furthermore, an exhaustive
analysis of the empirical results from the initial forecasting phase of the proposed solution
is presented. These findings provide valuable insights into the performance and efficacy
of the approach, laying the groundwork for subsequent stages of autoscaling solution.

109

Chapter 4 – Resource usage forecasting for CNFs in Kubernetes environment

4.2 Research challenge

In the domain of cloud computing, Kubernetes serves as a container management and
orchestration platform, providing native support for horizontal autoscaling of container de-
ployments. This autoscaling mechanism, detailed in Section 2.4.3, is threshold-based and
inherently reactive. Upon reaching predefined thresholds of selected performance metrics,
Kubernetes HPA dynamically scale the number of replicas within the cluster to maintain
QoS levels and minimize resource wastage.

However, in the context of 5G networks, characterized by high traffic volume and di-
verse traffic patterns, such a reactive scaling mechanism may not optimally balance the
cost-QoS trade-off for several reasons. Firstly, there is a temporal delay between the ini-
tiation of the scaling-up process and the operational readiness of new replicas [116]. This
delay is attributable to several factors, including decision-making overhead in the Ku-
bernetes control plane, CNF image availability, and software dependencies. Consequently,
this delay is also contingent on the CNFs within the pod. During this period, existing
replicas are subjected to heavy workloads under resource constraints, potentially degrad-
ing QoS. This issue is particularly pronounced when the scaling-up threshold is set high
to maximize pod resource utilization, which helps reduce resource wastage. To circum-
vent this issue, scaling-up thresholds can be set significantly lower, but this may lead to
premature scaling without exceeding the resource capacity of existing replicas, thereby
increasing resource wastage. Manually selecting an appropriate threshold to balance the
cost-QoS trade-off is thus a challenging task.

Secondly, in scenarios with volatile traffic behavior, threshold-based scaling can result
in oscillations in scaling decisions. Frequent fluctuations in incoming workload prompt
the threshold-based mechanism to continuously adjust the number of replicas, leading to
frequent scaling-up and down of replicas. Given the aforementioned delay in Kubernetes
HPA, this can result in QoS degradation of the CNFs. Although Kubernetes offers a cool-
down period to mitigate the impact of such oscillations, restricting the HPA from making
rapid replica changes for a specified duration, this limitation hinders the autoscaler’s
ability to make optimal scaling decisions, affecting the cost-QoS trade-off.

To optimize dynamic scaling decisions in an autoscaler, thereby minimizing QoS degra-
dation, SLA violations, and operational costs, it is essential to understand the startup
delay of CNFs and anticipate future resource usage behavior. Proactively analyzing re-
source usage and making precise scaling decisions thus provides a more effective solution

110

4.2. Research challenge

Table 4.1 – Cluster resource specifications. (from [4]) (Copyright © 2022 IEEE)

CPU Memory Storage
Master Node 12 cores 8GB 240GB
Worker Node 1 8 cores 16GB 225GB
Worker Node 2 8 cores 16GB 240GB

in such scenarios. Accurately predicting the resource usage of CNFs requires considera-
tion of several factors. Firstly, it is essential to accurately identify the pivotal resource
for dynamic scaling decisions. Making scaling decisions based on incorrect resource us-
age metrics can significantly disrupt the cost-QoS trade-off. Secondly, understanding how
the selected resource usage metric responds to incoming workloads is crucial. Given that
different CNFs perform varied tasks, the relationship between workload and resource us-
age can differ significantly depending on the specific CNF. Therefore, investigating these
factors is imperative for accurately forecasting future resource usage to enable proactive
autoscaling.

4.2.1 Resource usage profiles of 5GC network functions

To devise a custom proactive autoscaling solution for cloud-native 5G network func-
tions, a thorough investigation of their resource usage profiles is essential for designing
a resource usage forecasting model. This process involves identifying critical resources
for application performance and scaling needs, as the impact of resource scarcity on the
network function’s QoS profile varies depending on the type of resource. For example,
insufficient CPU availability can result in CPU throttling, which adversely affects service
response times until the autoscaler increases resources. Conversely, a lack of memory may
trigger an Out-Of-Memory (OOM) condition, leading to the termination of the network
function and resulting in service unavailability.

For this purpose, an experiment was conducted by deploying 5G CN CP CNFs in a
Kubernetes cluster. The objective of the experiment is to inject UE traffic into the 5G CN
CNFs, thereby inducing resource consumption due to the processing of incoming traffic.
This configuration enables the analysis of the individual resource consumption profiles of
each CNF. The Kubernetes testbed was deployed in a bare-metal configuration consisting
of three physical nodes: one master node and two worker nodes. Each node operated on
Ubuntu 20.04.4 and utilized Docker as the container runtime. Detailed hardware specifi-
cations for each node are provided in the accompanying Table 4.1.

111

Chapter 4 – Resource usage forecasting for CNFs in Kubernetes environment

For the 5G CN, the open-source SD-Core version 1.3 [117], a project from the Open
Network Foundation (ONF) [118], was utilized. It is noteworthy that each network func-
tion was deployed without any resource limitations, thereby allowing unrestricted resource
usage. The resource pool within the cluster was sufficiently large, eliminating the need
for network functions to compete for resources. The 5G CN CP NFs focused on this
experiment:

— Access and Mobility Management Function (AMF)
— Authentication Server Function (AUSF)
— Unified Data Repository (UDR)
— Network Repository Function (NRF)
— Unified Data Management (UDM)
— Policy Control Function (PCF)
— Session Management Function (SMF)
In addition to the 3GPP standard NFs, a SCTP load balancer was also deployed.

This feature, introduced in SD-Core version 1.3, facilitates the handling of multiple AMF
instances. To monitor the resource consumption of the 5G CN NFs, Prometheus [119]
monitoring service was deployed. Additionally, Grafana [120] data visualization software
tool was also deployed.

For UE traffic generation, an open-source traffic simulator named UERANSIM version
3.2.6 [121] was employed, which includes both UE and gNodeB functionalities. The traffic
simulator was located outside the Kubernetes cluster, and the gNodeB connected with
the AMF via the SCTP protocol. The complete testbed is depicted in the Figure 4.1. As
outlined in Section 2.1.2, 5G CN NFs perform various tasks; however, for simplicity, this
experiment focused solely on the UE registration and de-registration processes. The 3GPP
standard call flow for UE registration and de-registration is detailed in the corresponding
specification [122].

The UE registration and de-registration requests were generated based on the following
three scenarios as a continuous stream without any sleep time between scenarios.

1. 200 UEs registrations at 1 UE per second → Sleep for 100 seconds → De-register
all the UEs at 1 UE per second.

2. 400 UEs registrations at 2 UE per second → Sleep for 100 seconds → De-register
all the UEs at 2 UE per second.

3. 800 UEs registrations at 4 UE per second → Sleep for 100 seconds → De-register
all the UEs at 4 UE per second.

112

4.2. Research challenge

Figure 4.1 – Kubernetes testbed with 5G CN.

Upon completion of the traffic generation process, the CPU and memory usage profiles
of all 5GC NFs were collected from the Prometheus database. These resource usage pro-
files were gathered and stored as time series data, with data points collected at 15-second
intervals by Prometheus. The captured data is illustrated in the Figure 4.2. It is notewor-
thy that during the experiment, the SMF exhibited no significant resource utilization. As
a result, its resource usage profiles were excluded from the analysis.

The Figure 4.2a illustrates the CPU usage profiles of all NFs during the experiment.
Initially, before injecting traffic, each NF exhibited different CPU consumption levels, but
all were negligible, indicating the baseline resource usage in their idle states, as detailed
in Section 2.4.2.

A noteworthy observation is the CPU usage profile of the PCF NF. In the first scenario,
there is a slight increase in CPU consumption, but it subsequently returns to idle values
for the remainder of the experiment, irrespective of the number of UE connections. In
contrast, the CPU consumption of other NFs varies with the incoming workload. For
instance, while there are some differences in CPU consumption among all other NFs in

113

Chapter 4 – Resource usage forecasting for CNFs in Kubernetes environment

(a) CPU usage profiles of 5G CN.

(b) Memory usage profiles of 5G CN.

Figure 4.2 – 5G CN resource usage profiles.

scenario 1, the CPU usage for AUSF, UDM, and UDR in scenarios 2 and 3 remains nearly
identical, despite the doubling of UE connections and traffic rate between scenarios.

AMF and NRF exhibit significant changes in CPU usage corresponding to the incom-
ing workload. However, even though the number of connections and the connection rate
doubles with each scenario, the CPU usage does not increase proportionally. The AMF,
being the gateway to the 5G CN and responsible for UE registrations and de-registrations,
shows the most substantial changes in CPU usage across the scenarios. After the traffic
injection ceases, all NF CPU usages return to their idle states, reducing consumption.

The Figure 4.2b illustrates the memory usage profiles of all NFs during the experiment.
In contrast to CPU usage, initial memory usage is substantial and varies for each NF. The

114

4.2. Research challenge

AMF exhibits notable changes in memory usage corresponding to variations in workload.
However, these workload increments and decrements are not consistently reflected across
all scenarios, making the detection of workload changes from the AMF memory usage
profile ambiguous. Despite variations in the number of connections and traffic rates across
scenarios, the memory usage profiles of the other NFs do not exhibit significant changes
in response to varying workloads compared to initial resource consumption.

A significant observation is that, following the experiment, the memory usage of all
NFs does not revert to their initial values. In this version of the SD Core, all NFs operate in
a stateless manner. This design implies that for any given request, NFs—including but not
limited to AMF and SMF, which were strictly stateful in previous versions—retrieve the
necessary data from a repository solely for request processing. After processing, the data
is stored back in the repository, thus not remaining in memory. Therefore, the memory
usage profiles of the NFs are expected to revert to idle usage values after the experiment.
The failure of memory usage profiles to return to these values could be attributed to
factors such as the efficiency of the garbage collection process, the programming language
used, and compiler optimizations.

Cloud-based applications are typically classified as CPU-intensive, memory-intensive,
or a combination of both [79]. In this study involving the 5G CN, NFs such as AUSF,
UDR, NRF, and UDM displayed significant variations in CPU usage relative to memory
usage profiles under incoming workloads, thereby categorizing them as CPU-intensive. In
contrast, the AMF demonstrated consistent behavior in both CPU and memory usage
under varying workloads, indicating characteristics of both CPU and memory-intensive
operations.

Based on the analysis of resource usage profiles across all NFs under varying workload
patterns, it is concluded that CPU should be selected as the critical resource for autoscal-
ing the 5G CN in this research. When the autoscaler horizontally scales pods based on
CPU usage, it also increases memory resources due to pod replication, thereby fulfilling
memory requirements, provided that memory requests and limits are appropriately con-
figured. This approach addresses the issue of selecting CPU as the crucial resource for
autoscaling, even for NFs such as AMF, which are both CPU and memory-intensive. The
findings of this experiment, indicating that NFs are primarily CPU-intensive rather than
memory-intensive, are also confirmed by the study [123] that utilized Free5GC as their
5G CN within a Kubernetes environment.

However, certain NFs, such as the NWDAF, which is responsible for data collection

115

Chapter 4 – Resource usage forecasting for CNFs in Kubernetes environment

and statistical model learning processes within the 5G CN, require substantial memory
resources, making them more likely to be memory-intensive. Nevertheless, this NF is not
available in the SD Core version used in the experiment and is thus out of scope for this
research study.

A limitation of the experiments is the exclusive use of UE registrations and de-
registrations with only a few NFs. For more robust and conclusive results, future ex-
periments should incorporate a broader range of 5G CN services, including other 3GPP-
specified NFs, under real-world traffic conditions.

4.2.2 High level vs low level metrics

A pivotal consideration in the realm of autoscaling is the continuous monitoring of
cloud-native applications. This involves the systematic collection of deployment status
data, performance metrics, resource consumption information, etc.. Such data aggrega-
tion enables sophisticated analytics, thereby informing and optimizing scaling decisions.
However, the operation of these monitoring services can incur significant costs [124]. A
monitoring service may either be an additional subscription in a public cloud or an im-
plementation within the cluster which necessitates allocation of additional resources for
deployment, thereby both scenarios contributing to operational costs.

Moreover, an increase in the number of monitoring metrics can potentially overload
the monitoring service, leading to increased resource consumption. Therefore, metric se-
lection is a critical component of an autoscaling solution, presenting a trade-off between
the cost and visibility offered by monitoring services. In essence, the cost of enhancing
visibility through monitoring services should not outweigh the benefits derived from their
use in autoscaling. Therefore, identifying the critical metrics to monitor, determining the
appropriate frequency of data collection, and configuring other parameters that facili-
tate the autoscaling solution are essential to balancing the cost-QoS trade-off in cloud
applications.

Modern telecom networks exhibit a diverse range of traffic patterns. Consequently,
system-level metrics or low-level metrics [98], such as the resource consumption of CNFs,
are insufficient to provide the necessary visibility for proactive resource allocation [78].
While some studies employ low-level metrics in their autoscaling solutions, others prefer
application level metrics or high-level metrics, such as request rate, latency etc. obtained
from third-party monitoring services [125] [126]. These studies argue that high-level met-
rics offer superior prediction visibility. However, relying solely on high-level metrics for

116

4.2. Research challenge

Figure 4.3 – Resource usage profile of different applications. (from [125]) (Copyright ©
2021 IEEE)

prediction can present several challenges.
In the context of CNFs, the correlations between incoming workload and resource usage

of CNFs vary [123]. Consequently, identical traffic patterns can result in different resource
consumption patterns. Therefore, relying solely on high-level metrics, such as the rate
of incoming requests, does not accurately reflect the actual resource consumption. This
inadequacy hinders informed assessments of resource utilization and impedes effective
scaling decisions.

To understand the varying correlations between incoming traffic and resource con-
sumption for different CNFs, a study [125] examines resource utilization profiles across
diverse applications by comparing resource usage for three distinct applications within a
Kubernetes environment, correlated with increasing rates of incoming requests.

For this purpose, an NGINX web server, a Node.js web application, and an image
classification application were deployed along with monitoring services. The experiment
involves injecting increasing request rate and monitoring the number of Queries served Per
Second (QPS) relative to the number of deployed pods. The collected data is illustrated
in Figure 4.3. It is important to note that the dotted lines in each application’s resource
profile, labeled as "Fitted function," represent the authors’ mathematical approximations

117

Chapter 4 – Resource usage forecasting for CNFs in Kubernetes environment

of the resource usage profiles and are not pertinent to this study. In the plot, the Node.js
application demonstrates a linear relationship between the incoming request rate and pod
usage. Similarly, the NGINX application exhibits an almost linear correlation. In con-
trast, the image classification application, which is markedly resource-intensive, presents
a quadratic relationship between the request rate and pod count. Additionally, NGINX
served the highest number of requests, followed by Node.js, with the image classifica-
tion application serving the lowest number of requests despite utilizing a similar number
of replicas. This experiment indicates a more complex interaction between the incom-
ing request rate and resource usage, underscoring the importance of understanding this
correlation for effective autoscaling decision-making.

However, this experiment does not elucidate the interaction between resource usage
and incoming request rates in complex workload patterns among CNFs. To further in-
vestigate this impact on autoscaling decisions, an experiment was conducted using a web
application deployed on the Kubernetes testbed described in Section 4.2.1. This web ap-
plication consists of a single service that processes a complex trigonometric math function
upon receiving a parameter via an HTTP request. By altering this parameter, the com-
plexity of the function can be varied, thereby modifying the CPU usage and processing
time (tbase) for each request. In this experiment, two tbase were selected to analyze two
different CPU usage profiles for the same incoming workload pattern. The web application
was containerized and deployed on a pod with a CPU request of 350 milicores and no
CPU limit, enabling unrestricted CPU consumption. Once deployed, a predefined HTTP
traffic pattern was injected into the web application for the two distinct tbase values in
separate trials.

The first tbase value, denoted as tbase(P1) was used to create CPU usage profile 1, while
the second tbase value, denoted as tbase(P2) was used to create CPU usage profile 2. Since
tbase(P1) is greater than tbase(P2), CPU usage profile 1 is expected to exhibit higher CPU
usage compared to CPU usage profile 2. Data collected from both trials, obtained through
monitoring services, is presented in Figure 4.4.

In the collected data, the CPU usage profile 1, characterized by a higher tbase value,
exhibits elevated CPU usage which reached a max of 50% in comparison to profile 2 which
only maxed around 39% under identical traffic conditions.

A key distinction between the two CPU usage profiles is observed during the high
CPU usage period, specifically between the 250 and 800 time points. During this interval,
CPU usage profile 2 exhibits significant fluctuations in comparison to CPU usage profile 1.

118

4.2. Research challenge

Figure 4.4 – CPU usage profiles of the web application under different tbase values. (from
[4]) (Copyright © 2022 IEEE)

This discrepancy can be attributed to the higher tbase value of CPU usage profile 1, which
results in longer processing times for incoming requests. Consequently, CPU usage profile
1 demonstrates reduced sensitivity to variations in the incoming workload. This indicates
that, under identical workload patterns, CPU usage profiles influenced by differing request
processing times do not exhibit proportional behavior.

Returning to the original assertion, the reliance on high-level metrics, such as incoming
traffic data, fails to accurately represent the actual resource consumption of CNFs due to
the complex correlations between workload and resource consumption, as demonstrated
by these experiments. As explained in the Section 3.6, autoscaling methodologies that
utilize predictive high-level metrics, such as request rate, to estimate required resources
often overlook the dynamic interplay between workload and resource consumption.

For instance, Study [126] proposed a proactive autoscaling method utilizing a fore-
casting model to predict future traffic loads. This method then employs a static value
representing the maximum traffic load manageable by a CNF to convert the predicted
traffic load into the expected number of replicas required for scaling. From the experi-
ments, it was evident that the correlations between incoming request rate and resource
usage varied depending on the CNF type and is complex. Furthermore, this complexity
increases with more intricate workload patterns. Therefore, using static values to deter-
mine the number of replicas from forecasted request rates overlooks these correlations,
potentially leading to inefficient autoscaling decisions.

119

Chapter 4 – Resource usage forecasting for CNFs in Kubernetes environment

Figure 4.5 – High level architecture of the proposed solution.

4.3 Proposed system model

As an alternative solution for Kubernetes HPA and existing state-of-the-art autoscal-
ing solutions, we propose an AI-assisted proactive scaling solution that balances the trade-
off between operational costs and QoS for CNF deployments in a cloud-native environ-
ment. The cornerstone of this solution is its proactive nature, necessitating accurate scal-
ing decisions based on anticipated pod resource usage behavior, precise replica calculation,
and timely scaling actions. The solution unfolds in two stages: initially, a multivariate time
series forecasting model predicts future resource consumption of pods within a single de-
ployment; subsequently, a dynamic scaling algorithm makes scaling decisions informed
by the forecasting model’s predictions. The proposed high-level system architecture is
illustrated in Figure 4.5.

To ensure the seamless automation of our scaling approach, the solution aligns with
the closed-loop stages of the ETSI ZSM framework. The process begins with data col-
lection, such as incoming traffic and CPU usage of replicas, using monitoring services
within the cluster. This data is then processed to enable the forecasting model to predict
the total future CPU usage of the replicas per service. The analytics derived from this
process inform the dynamic scaling model’s decisions, which adapt to the cluster’s status.
Finally, the Kubernetes control plane executes these decisions, managing the creation or
termination of additional replicas. The interconnected stages of the proposed solution are
depicted in Figure 4.6, demonstrating its integration with the closed-loop system.

In the context of developing an autoscaling solution for the 5G CN, high availability

120

4.3. Proposed system model

Figure 4.6 – Proposed solution with closed loop architecture. (from [5]) (Copyright © 2023
IEEE)

is a critical priority. Although both horizontal and vertical scaling have their respective
advantages and disadvantages, horizontal scaling is preferred due to its capacity to add
redundancy through replication, thereby mitigating the single point of failure inherent
in vertical scaling. Consequently, our solution design emphasizes a horizontal scaling ap-
proach to enhance system resilience and ensure continuous availability. It is important to
note that the design choices of the proposed solution are exclusively intended for stateless
applications and are not directly applicable to stateful CNFs.

4.3.1 Resource usage forecasting

The primary goal of the initial phase is to accurately forecast the total resource us-
age for a specific Kubernetes service within the cluster. Leveraging insights from prior
experimental analytics detailed in Section 4.2.2, the forecasting model is tailored to pre-
dict CPU usage in CNFs, where CPU is the critical resource for autoscaling decisions.
It is essential to assimilate the complex correlation between CPU usage and the rate of
incoming requests to enhance the precision of the forecasts. When designing a predictive
model, multiple factors must be meticulously evaluated. These include the number of

121

Chapter 4 – Resource usage forecasting for CNFs in Kubernetes environment

features used in the forecasting, the computational complexity—especially if the model
is to be employed in real-time prediction scenarios—and the model’s proficiency in rec-
ognizing temporal patterns such as trends and seasonality. The current state-of-the-art
encompasses a wide range of methodologies for time series forecasting. Therefore, it is
crucial to judiciously select a model that aligns with the objectives.

4.3.2 Model selection

Since the proposed approach aims to incorporate both CPU usage data and the incom-
ing request rate to enhance forecasting accuracy, both time series data must be utilized
as features to forecast future CPU usage, necessitating the use of a multivariate model.
Consequently, the chosen model must be proficient in handling the temporal relationships
of multiple variables and capturing the correlations between features during forecasting.

A crucial aspect to consider is the computational complexity of the forecasting model.
The objective is to implement a real-time forecasting model that delivers instantaneous
analytics for an autoscaling solution. Models with elevated computational complexity may
necessitate extended processing times, potentially compromising decision accuracy due
to delays in analytics. Furthermore, high computational complexity results in increased
resource utilization,which contradicts the primary objective of the autoscaling solution:
minimizing operational costs.

Moreover, the selection of an appropriate time series forecasting model must be con-
gruent with the inherent characteristics of the dataset. Datasets may exhibit singular
or multiple underlying trends and seasonal components, necessitating the use of models
specifically designed to address these features. Telecom datasets, in particular, frequently
present complex patterns, including multiple trends and seasonalities across various time
scales such as yearly, monthly, weekly, daily, or hourly intervals. Not all forecasting models
are equipped to accommodate these diverse patterns effectively.

In the literature, the most commonly used statistical models for time series forecast-
ing, such as AutoRegressive (AR), Moving Average (MA), and AutoRegressive Integrated
Moving Average (ARIMA), are less complex [127] and relatively easy to implement. How-
ever, these models are not designed to forecast data with multiple trends and seasonalities.
Extended versions of these models, such as Seasonal Auto Regressive Integrated Moving
Average (SARIMA), Seasonal AutoRegressive Integrated Moving Average with Exoge-
nous Regressors (SARIMAX), and HW models, are more complex compared to ARIMA
and can handle multiple trends and seasons [128], but they are still designed to forecast

122

4.3. Proposed system model

single-variable data. To address the issue of multivariate data, models like Vector Au-
toRegressive (VAR) [129] and Multivariate AutoRegressive Integrated Moving Average
(MARIMA) [130] are specifically designed.

Deep learning models, such as Long Short-Term Memory (LSTM), Gated Recurrent
Units (GRU), and Convolutional Neural Networks (CNN), are known for their capabil-
ities in complex pattern recognition. These models are more sophisticated and resource-
intensive during training, yet they can handle multiple trends and seasonal features [131]
and can be multivariate. Additionally, forecasting with deep learning models shows sig-
nificantly higher accuracy compared to conventional statistical models in some studies
[132].

Compared to VAR and MARIMA models, deep learning models have the advantage
of storing information about the dataset within their cell structures [129], which can
beneficial for accurate forecasting with a short historical data window.

Given the advantages of deep learning models in time series forecasting and their high
compatibility with the requirements, LSTM, GRU, and CNN models have been selected
for initial phase of the autoscaling solution. It is essential to acknowledge that these
models exhibit differences in their internal mechanisms, which could affect differently in
their forecasting accuracy. Further investigation is required to elucidate these accuracy
variations and to identify the best performing model for the autoscaling solution.

4.3.3 Data collection

Deep learning models are data-driven algorithms that necessitate historical data to
learn hidden patterns, which are subsequently employed for forecasting, classification,
and various other tasks. The accuracy of these models’ outputs is highly dependent on
the quality and quantity of the data utilized during the training phase.

A suitable dataset that meets these requirements and aligns with several objectives of
this research is the open-source real-world dataset from Telecom Italia [133]. This dataset
encompasses data on incoming calls, SMS, and internet traffic over a three-month period,
providing detailed traffic patterns on a monthly, weekly, daily, and hourly basis within
the Telecom Italia cellular network in the city of Milano.

Given that the primary objective of this study is to incorporate both CPU usage
data and incoming traffic data (request rate) to enhance the forecasting of future CPU
usage for CNFs, the dataset from Telecom Italia is unsuitable for the experiments for the
following reasons. First, the dataset exclusively contains traffic load information (number

123

Chapter 4 – Resource usage forecasting for CNFs in Kubernetes environment

Figure 4.7 – Data collection testbed. (from [4] - modified) (Copyright © 2022 IEEE)

of requests) and lacks resource usage data for the associated network functions. Secondly,
the data extraction rate, with a temporal granularity of 10 minutes, is too coarse for an
autoscaling algorithm, where autoscaling solution must detect changes and the the replicas
must become operational within seconds. Therefore, inspired by the hourly traffic patterns
in the Telecom Italia dataset, a new dataset was created to align with the objectives of
our proposed autoscaling solution.

To create the new dataset, a containerized web application was deployed in a pod
within the Kubernetes testbed established in Section 4.2.1, as illustrated in Figure 4.7.
The web application emulates a single-service, CPU-intensive CNF that uses REST APIs
for communication. For monitoring and data collection from the cluster, the Prometheus
monitoring tool was deployed. Prometheus scrapes data metrics from the cluster at 15-
second intervals, storing them as time-series data. Additionally, to collect the HTTP
request rate, a free version of the Kong API gateway [134] was deployed. The API gate-
way acts as an access point for external requests to the cluster and is integrated with
Prometheus to scrape traffic data metrics. For data visualization, Grafana was deployed.

The methodology involves injecting the web application with HTTP requests accord-
ing to a predefined traffic pattern, thereby causing the web application to process each
incoming request and induce CPU consumption within the pod. To generate HTTP traffic
loads, the free version of the K6 load testing tool was employed.

For the predefined traffic pattern, the objective was to replicate the hourly traffic
pattern of a weekday from the Telecom Italia dataset, maintaining both trend and sea-
sonality characteristics. However, discrepancies in data extraction and limitations in the
parameters of the K6 traffic-generating tool impeded the successful recreation of the traf-

124

4.3. Proposed system model

fic pattern. Despite these constraints, a synthetic traffic pattern was developed, exhibiting
multi-trend and volatility attributes. This synthetic pattern is designed to challenge fore-
casting models and autoscaling decision-making processes in subsequent phases of the
research.

Additionally, the pod hosting the web application was deployed with no resource limi-
tations and isolated from other deployments within the cluster to prevent CPU throttling
and minimize potential interference with CPU usage data. This approach ensures that
the CPU usage metrics accurately reflect the resource demands of the specified traffic
pattern. Any interference during data collection could distort these metrics and impact
scaling decisions in subsequent stages of the analysis.

During the data collection process, Prometheus concurrently extracts both incoming
request rate and corresponding CPU usage metrics at same timestamps. The resulting
dataset comprises 1,000 data points for each metric, spanning a duration of 4 hours and
10 minutes. The incoming traffic rate varies from 0 to 255 requests per second, while CPU
usage ranges from 0 to 520 millicores.

4.3.4 Data pre-processing, model design and training

To train the selected deep learning models, raw data must be pre-processed to en-
sure compatibility with the model. This pre-processing involves handling missing values,
encoding categorical data, and other necessary transformations. A crucial step in this
process is data normalization, which addresses the vanishing gradient problem [135] by
ensuring that all data features are within the same range. This normalization step also im-
proves model convergence speeds [136]. In this study, min-max normalization was applied
to both CPU usage data and incoming request rate data, as shown in equation 4.1.

x
′ = x − min (x)

max (x) − min (x) (4.1)

Where x represents the original value and x
′ denotes the normalized value.

Given that the selected deep learning models fall under the category of supervised
learning models, the training processes require target label data in addition to the input
features. Consequently, the normalized data must be restructured to align with the deep
learning model architecture. To achieve this, a sliding window approach is employed. In
this approach, the model utilizes a window of past values to predict a future window, with
the window sliding one step at a time. For this experiment, the past value window is fixed

125

Chapter 4 – Resource usage forecasting for CNFs in Kubernetes environment

at 10 steps, while the future value window ranges from 1 to 12 steps. This configuration
facilitates the assessment of the model’s forecasting accuracy across varying time horizons.
For a given time ti, incoming request rate R[ti] and total CPU usage C[ti] input time
series for the forecasting model can be represented as {(R[ti−k], C[ti−k])}k=0,...,9 where k

represents the step numbers. Similarly, the output time series Γ̂ [ti] given by equation 4.2
where Ĉ [ti+k] is the forecasted CPU usage value.

Γ̂ [ti] =
(
Ĉ [ti+k]

)
k=1,...,12

(4.2)

Existing literature demonstrates that the input window size has a substantial effect on
model accuracy [137]. Specifically, larger window sizes enhance informational content but
concurrently increase computational complexity. Conversely, smaller window sizes lower
computational demands but reduce the amount of information available. An in-depth
analysis of these trade-offs was beyond the scope of the present study.

In alignment with the defined model architecture, the normalized data were adjusted
to conform to the prescribed input and output window sizes. For the purpose of model
training, the dataset was partitioned into two segments: 60% was designated for training,
and the remaining 40% was allocated to testing. Given the sequential nature of the data, it
was imperative to preserve the continuity of the data stream throughout the preprocessing
stage.

4.4 Results

4.4.1 Evaluation metrics

Several methodologies are available for assessing the accuracy of time series predic-
tions. To evaluate the accuracy of the forecast, the error between the target labels and the
model outputs is computed. Two of the most widely utilized metrics for error measure-
ment in time series forecasting are Root Mean Square Error (RMSE) and Mean Absolute
Error (MAE). RMSE values can be calculated using equation 4.3 where the label data
(target time steps) represents xi and predicted data represents x̂i and n represents the
number of data points.

RMSE =
√√√√ 1

n

n∑
i=1

(xi − x̂i)2 (4.3)

MAE can be calculated using the equation 4.4 where xi represents the label data

126

4.4. Results

(a) LSTM (b) GRU

(c) CNN

Figure 4.8 – RMSE values for forecasting horizons from 1 to 12. (from [4]) (Copyright ©
2022 IEEE)

(target time steps) and x̂i represents the predicted value and n represents the number of
data points. And MAE gives the absolute average error value for the prediction.

MAE = 1
n

n∑
i=1

|xi − x̂i| (4.4)

4.4.2 Prediction accuracy

The trained models were assessed using the test dataset by generating forecasts for
horizons spanning from 1 to 12 time steps and subsequently computing the RMSE and
MAE metrics. Forecasting future CPU usage using the proposed approach, which inte-

127

Chapter 4 – Resource usage forecasting for CNFs in Kubernetes environment

grates both incoming request rate and CPU usage, is expected to yield relatively high
accuracy. This is due to the model’s capability to account for the temporal patterns of
both features and their interactions, in contrast to univariate CPU forecasting models
that rely solely on temporal patterns of CPU usage. To evaluate the advantage of this
approach in forecasting, a comparative analysis was conducted against univariate deep
learning models that were exclusively trained on historical CPU usage data. For this
comparison, the same deep learning models and datasets were employed, excluding the
incoming request data, and identical preprocessing procedures were applied to the uni-
variate model. For ease of reference, the proposed multivariate models will be referred to
as MC+R mode, and the univariate models will be referred to as MC mode. Each model
under each mode was tested 10 times to ensure robustness, and the average RMSE and
MAE values were calculated. and shown in the Figure 4.9.

Since RMSE and MAE measure the error metrics of the forecast, predictions with rela-
tively lower RMSE and MAE values indicate higher forecast accuracy. The RMSE values
calculated in the LSTM and GRU forecasting models under MC+R mode are initially
higher than those under MC mode, but the difference between the two modes decreases
as the step size increases. For steps beyond 6, the RMSE values of MC+R mode become
lower than those of MC mode, and the difference between RMSE values widens with the
step number. However, although the CNN model under MC+R mode shows a slightly
higher RMSE value compared to MC mode, the RMSE difference between the two modes
remains insignificant until step 9. Beyond step 9, the difference between the two modes
starts to widen slightly. Globally, all models under all modes show increasing RMSE values
with step size. Additionally, this increase is gradual in MC+R mode, whereas MC mode
experiences a more aggressive increase. The behavior of the calculated MAE values for all
models under all modes is similar to the RMSE plots.

Due to the squaring of errors prior to averaging, the RMSE assigns greater weight to
larger errors. Consequently, RMSE values are highly sensitive to substantial deviations;
sharp increases in RMSE at higher step numbers suggest a significant deterioration in
forecasting accuracy with increasing forecast horizons. Conversely, the MAE exhibits a
similar trend, indicating fewer extreme outliers and reduced bias in error direction.

Based on the behavior of the RMSE and MAE values across forecast horizons, MC

mode is beneficial for shorter forecasting horizons, while MC+R mode is more advantageous
for longer forecasts. In MC mode, the time series forecasting model needs to learn past
time series properties, whereas in MC+R mode, the model must learn both the time

128

4.4. Results

(a) LSTM (b) GRU

(c) CNN

Figure 4.9 – MAE values for forecasting horizons from 1 to 12. (from [4]) (Copyright ©
2022 IEEE)

series properties of each feature and the interrelationships between features, increasing
the complexity of the learning phase. The results indicate that this complex correlation in
MC+R mode negatively impacts short-term forecasting but significantly benefits long-term
forecasting, particularly in LSTM and GRU models compared to MC mode. Additionally,
the CNN model shows a smaller difference between MC and MC+R modes in RMSE and
MAE values, indicating that the additional correlations between incoming request rate
and CPU usage have less impact on model accuracy.

Among all models and modes evaluated, the GRU model exhibits the lowest RMSE
and MAE values, indicating it is the best-performing model, especially for longer fore-

129

Chapter 4 – Resource usage forecasting for CNFs in Kubernetes environment

casting horizons. The results demonstrate that the proposed solution, which integrates
both incoming request rate and CPU usage, offers distinct advantages over alternative
methods, particularly from the perspective of proactive autoscaling. Providing long-term
forecast analytics with relatively high accuracy is beneficial for understanding future re-
source usage patterns in Kubernetes pods and facilitating scaling decisions to optimize
the trade-off between cost and QoS.

4.5 Summary

This chapter explores the trade-off between cost and QoS in cloud-native applications,
with a particular focus on cloud-native 5G environments through dynamic autoscaling.
As 5G networks expand, managing this balance becomes increasingly challenging due to
their large user capacity and diverse use cases. To address this, the chapter introduces a
novel proactive autoscaling solution tailored to the resource demands of 5G applications.

The chapter begins by identifying key resource metrics that influence autoscaling de-
cisions, emphasizing the importance of understanding the correlation between incoming
traffic and resource utilization for accurate prediction-based autoscaling. It then presents
a high-level model of a two-stage autoscaling solution, focusing on the design of the first
stage. In this stage, a new resource usage forecasting approach is proposed, leveraging
deep learning models that integrate both system-level and application-level metrics. This
approach aims to accurately predict future resource needs, providing real-time analytics
essential for the next stage of the autoscaling solution. The results show that this forecast-
ing method is more accurate than traditional approaches that rely on either system-level
or application-level data alone.

However, a notable limitation of this research is its focus on a limited subset of 5G CN
NFs and types of services for analyzing resource usage profiles and correlations within 5G
networks. To enhance the generalizability of the proposed solution, future work should
extend the experimental scope to include all network functions and a comprehensive
range of services. Furthermore, owing to limitations inherent in open-source 5G traffic
generators at that time, specifically their incapacity to generate complex traffic patterns,
a synthetic dataset derived from a web application was used for training and testing the
forecasting model. The research would benefit from employing real 5G traffic data across
various network functions to improve the accuracy and applicability of the forecasting
approach. The chapter concludes by setting the stage for the next phase of the autoscaling

130

4.5. Summary

solution, where the analytics from the forecasting model will be used to make precise
scaling decisions, ultimately aiming to balance cost and QoS more effectively.

131

Chapter 5

AI-ASSISTED PROACTIVE AUTOSCALING

SOLUTION FOR CNFS

5.1 Introduction

The second phase of the proposed autoscaling solution focuses on interpreting the CPU
usage forecast generated in the previous phase and determining the appropriate scaling
actions, including the required number of replicas and the timing of these decisions.

This decision-making process is inherently complex. Even with precise CPU usage
forecasts, autoscaling decisions can easily disrupt the cost-QoS trade-off. Despite utilizing
forecasted values and proactive scaling decisions, similar issues encountered in reactive
threshold-based scaling approaches may still arise. Incorrect identification of scaling ac-
tions or miscalculation of the necessary replicas can lead to resource overprovisioning,
increasing operational costs, or under-provisioning, resulting in QoS degradation due to
resource shortages. Furthermore, the cost-QoS trade-off may be adversely affected by im-
proper timing of scaling decisions. It is crucial to recognize that scaling decisions are based
on future CPU usage predictions, and there is a latency between the creation and oper-
ational readiness of new replicas. Consequently, the operational cost and QoS are highly
sensitive to the timing of scaling decisions, whether they are made too early or too late.
This chapter conducts an in-depth analysis of how scaling decisions impact the cost-QoS
trade-off. A novel dynamic scaling model is introduced, leveraging real-time forecasted
CPU usage data to determine the optimal scaling actions and required number of replicas
by employing both static and dynamic thresholds. Subsequently, the timing of scaling
decisions is experimentally assessed to achieve a balanced cost-QoS trade-off. This new
dynamic scaling model is then integrated into the comprehensive autoscaling solution
and evaluated under real-time traffic conditions within a Kubernetes environment. The
performance of this solution is compared against Kubernetes HPA under various thresh-
olds and a state-of-the-art proactive autoscaling solution. The results of each comparison

133

Chapter 5 – AI-assisted proactive autoscaling solution for CNFs

experiment are presented to identify the model that best balances the cost-QoS trade-off.

5.2 Research challenge

One of the primary challenges in implementing an autoscaling solution is the precise
calculation of required resources and the determination of optimal timing for executing
scaling decisions. In the context of horizontal scaling, this involves accurately computing
the necessary number of replicas and deploying them at appropriate moments during
runtime. The proposed autoscaling solution adopts a proactive approach, utilizing real-
time CPU usage forecasting to inform scaling decisions and timing. To ensure the correct
number of pods is allocated and to optimize scaling timing, several factors need to be
considered.

Reducing operational costs through autoscaling can be achieved by minimizing the
deployment’s operational time, particularly under a pay-as-you-go pricing model. In the
case of horizontal scaling, the total operational cost for a given period is calculated by
summing the operational time of all replicas within that period, as detailed in Section
2.3.4. Consequently, reducing the number of replicas directly lowers operational costs.
One effective strategy to minimize the total operational time and reduce the number of
replicas is to maximize the resource utilization of existing replicas before triggering further
scaling. Conversely, replicas should be scaled down promptly when there is a significant
decrease in resource utilization. This approach minimizes underutilized replicas, thereby
reducing the required number of pods and associated costs.

However, aggressive cost-reduction strategies can adversely impact the QoS of the de-
ployment. Delaying the scaling-up of the deployment until existing replicas reach their
maximum resource capacity can result in an inability to provision additional replicas in a
timely manner. This delay may cause existing replicas to operate under resource starva-
tion, leading to QoS degradation. For instance, replicas experiencing CPU starvation will
struggle to process incoming requests promptly, directly affecting service response times.
Conversely, prematurely scaling-down replicas can redirect the workload from terminated
replicas to those still operational, increasing their resource usage and negatively impact-
ing QoS. This sudden surge in resource demand may push existing replicas beyond their
capacity, potentially triggering oscillations in scaling decisions. Such oscillatory behavior
can degrade the performance of CNFs, further compromising QoS.

While these issues are more prominent in reactive autoscaling strategies, they can

134

5.2. Research challenge

Figure 5.1 – Selecting the time step to scale in the CPU usage forecast. (from [5]) (Copy-
right © 2023 IEEE)

still arise in proactive scaling strategies if not properly addressed. The proposed au-
toscaling solution forecasts future CPU usage of the deployment in real-time, enabling
proactive scaling decisions to manage the cost-QoS trade-off effectively. Additionally, the
forecasting stage provides long-term forecasts with relatively high accuracy, facilitating
an understanding of CPU usage behavior within the forecast horizon.

The primary challenge is to maximize CPU usage of the replicas while accounting
for the scaling-up delay. When forecasted CPU usage indicates that expected usage will
exceed the existing capacity of the replicas, the autoscaling solution must identify this
need in advance and deploy additional replicas before the existing replicas reach maximum
capacity, considering the scaling-up delay. Similarly, when forecasted CPU usage indicates
a decrease, the autoscaling solution must scale down promptly while estimating workload
distribution among existing replicas to prevent sudden CPU usage spikes and minimize
the impact of oscillation on QoS.

Consider a CPU usage forecast provided by the deep learning model at time ti. An
example output of the forecasting model is shown in Figure 5.1. The forecasting model
predicts i + k steps into the future, indicating an increase in CPU usage in the upcoming
time steps. If the autoscaling solution executes the scaling decision at ti by analyzing the
forecast from ti to ti+k, several scenarios are possible. If the scaling-up decision is exe-

135

Chapter 5 – AI-assisted proactive autoscaling solution for CNFs

cuted earlier than the optimal timing, operational costs may increase due to unnecessary
early resource allocations. Conversely, if the scaling-up decision is executed later than
the optimal timing, there will be insufficient time for a new replica to become ready and
operational, thus increasing the service response time.

Similarly, if the expected CPU usage is projected to decrease in the upcoming time
steps, executing the scaling-down decision earlier than the optimal timing will redirect
the incoming load to other operational pods, potentially exceeding their capacity and
triggering a subsequent scaling-up action. This scenario can create an oscillation or ping-
pong effect between scaling-up and down, negatively impacting service response time. If
the scaling-down decision is executed too late, operational costs will increase as resources
are allocated for an extended period without being fully utilized. Therefore, to balance
QoS and operational cost, scaling-up and down decisions must be carefully dimensioned.
The solution must leverage accurate CPU usage forecasts to make timely scaling de-
cisions that preemptively address potential resource constraints and avoid unnecessary
operational costs.

5.3 Dynamic scaling model

In the subsequent phase of the proposed autoscaling framework, an advanced decision-
making algorithm is implemented to address the previously identified challenges associated
with the cost-QoS trade-off. The primary functions of this model are to process the out-
put of the CPU usage forecasting model, determine the appropriate scaling direction (up
or down), compute the required number of replicas, and optimize the timing of scaling
operations. To accurately interpret the forecasted CPU usage and determine the scaling
direction, two thresholds are established. These thresholds filter the forecasting model’s
output, thereby dividing the decision-making process into three distinct zones, as illus-
trated in Figure 5.2.

5.3.1 Scaling-up

To filter scaling-up events in the forecasted output sequence generated by the deep
learning model, a scaling-up threshold is introduced. This threshold is used to identify
scenarios where the autoscaler must add new replicas, thereby increasing resources to
handle anticipated resource usage while maintaining expected QoS levels. The objective

136

5.3. Dynamic scaling model

Figure 5.2 – Dynamic scaling model decision space. (from [5]) (Copyright © 2023 IEEE)

is to allow existing replicas to fully utilize the allocated resource capacity and trigger
scaling-up before resource usage surpasses this capacity, which could negatively impact
the service response time of the CNF. In this context, the maximum resource capacity
refers to the CPU request specified in the Kubernetes pod. Consequently, the scale up
threshold can be aligned with the CPU request (or 100% per-pod utilization) to detect
scaling-up events in the forecast.

Considering these factors, a new formula has been developed to calculate the required
number of replicas during scaling-up, as shown in equation 5.1. This formula determines
the number of replicas P̂ [i] at each forecasted step by dividing the forecasted total CPU
usage per service Ĉ[i+k] for k number of steps by the CPU request. The maximum value
obtained from these calculations represents the minimum number of pods required at a
given instance i to maintain the necessary QoS levels. Choosing a higher number of replicas
than this value results in overprovisioning, leading to increased costs, while selecting a
lower number of replicas leads to QoS degradation due to insufficient resources. Since the
formula may produce fractional values, and the number of replicas must be an integer,
these values are rounded up to the next nearest integer.

P̂ [i] = ⌈max{ Ĉ[i + k]
CPUrequest

}k=1...12⌉ (5.1)

137

Chapter 5 – AI-assisted proactive autoscaling solution for CNFs

5.3.2 Scaling-down

To achieve cost-effective operations, it is essential to reduce the number of replicas
as soon as resource utilization decreases. However, determining the appropriate threshold
for resource decline that permits safe scaling-down is critical. To address this challenge, a
dynamic scaling-down threshold is introduced that adapts based on the expected redistri-
bution of processing loads after scaling-down. In Kubernetes, when a pod is terminated,
the total traffic for the service is redistributed among the remaining replicas. Kubernetes,
by default uses a round-robin load-balancing algorithm for distributing incoming requests
across replicas [138] resulting CPU usage across all replicas is nearly uniform. As a result,
an increase in workload on the remaining replicas is expected, leading to higher average
CPU usage. It is critical to ensure that this increase does not exceed the full capacity of
each remaining replicas during the scaling-down events. Failure to manage this appropri-
ately can lead to an oscillating (ping-pong) effect between scaling-up and down, thereby
affecting QoS.

Given these considerations, to minimize the impact on average CPU usage in the
remaining replicas after scaling-down, a sequential termination of pods is preferred over
simultaneous termination. Consequently, when determining the scaling-down threshold,
the average CPU usage of the remaining replicas after scaling-down must remain below
the CPU request, or below 100% in percentage terms, as demonstrated in the example
case illustrated in Figure 5.3.

According to the aforementioned principle, consider a scenario where the current num-
ber of replicas P [ti] is operating with an average CPU usage equal to the scaling-down
threshold. For a given moment ti the scaling-down threshold ϕ[ti] can be calculated as,

ϕ[ti] = CPU request × P [ti+1]
P [ti]

(5.2)

where P [ti+1] is the number of pods after scale down. Since the termination of pods
is sequential,

P [ti+1] = P [ti] − 1 (5.3)

From 5.2 and 5.3,

ϕ[ti] = CPU request × (P [ti] − 1)
P [ti]

(5.4)

138

5.3. Dynamic scaling model

Figure 5.3 – Average CPU usage post scale down must not surpass the remaining replica
resource capacity.

When scaling-down one pod at a time, it is more cost-effective to determine the scaling-
down threshold by considering the load redistribution for the remaining replicas that only
exceed their CPU usage up to their maximum capacity. However, in practical environ-
ments, the CPU usage of individual replicas can deviate slightly from the average. If
the CPU usage of any replica exceeds its full capacity, even marginally, it can lead to
QoS degradation. Therefore, the solution includes a 20% buffer of the full capacity when
calculating the scale down threshold.

Furthermore, the proposed pod scaling-down mechanism enforces a constraint that
limits the scaling-down to a minimum of one replica at all times, irrespective of whether
resource consumption exceeds the specified scale down threshold. This design choice is
put in place to guarantee uninterrupted service availability.

Additionally, the scaling-down process is initiated only when all forecasted values
consistently remain below the dynamic scale down threshold. Utilizing extended forecast
sequences for CPU usage enables the autoscaling system to mitigate fluctuations and
reduce the risk of QoS degradation caused by volatile traffic patterns.

139

Chapter 5 – AI-assisted proactive autoscaling solution for CNFs

Figure 5.4 – Autoscaling decision-making process.

5.3.3 No scaling

In a given situation, if the forecasted CPU usage values lie between the scaling-up and
scaling-down thresholds, it indicates that the anticipated CPU usage can be managed by
the current number of operational replicas. Consequently, no scaling action is necessary.
The complete autoscaling decision-making process is illustrated in the Figure 5.4.

5.3.4 Decision timing

The proposed autoscaling solution bases scaling decisions on forecasted CPU usage
values, making the timing of these decisions critical for balancing cost and QoS trade-offs.
Specifically, in the context of scaling-up events, an anticipated increase in CPU usage first
manifests at the end of the forecasted sequence (at the horizon). The proposed solution
initiates scaling actions at the current time step based on predicted future CPU usage
values. Consequently, longer forecast sequences prompt earlier scaling actions, which may
result in additional replicas being provisioned before the CPU usage reaches its peak. This
preemptive scaling can be suboptimal, as it may prevent the CPU usage from reaching full
capacity, thereby impacting long-term operational costs. The primary question is: What
is the optimal length of the forecasted CPU usage sequence that should be monitored to

140

5.3. Dynamic scaling model

initiate the scaling-up decision, thereby maximizing CPU utilization while maintaining
acceptable QoS levels.

An optimal strategy involves aligning the forecast horizon with the scaling-up delay
in Kubernetes. This approach ensures that additional replicas are fully operational by the
time CPU usage of the existing replicas is expected to peak.

However, this strategy may not be effective in practice for several reasons. First, even
if additional replicas are deployed and operational when the current replicas reaches its
maximum CPU usage, the round-robin load balancing algorithm may still distribute in-
coming requests equally among all replicas. As a result, the replicas that has already
reached its maximum CPU capacity will continue to receive new requests, leading to
potential QoS degradation. Furthermore, this degradation is influenced by the incoming
traffic rate . Additionally, although the most accurate forecasting model was selected, the
predictions are not entirely precise. The accuracy of the forecast decreases as the number
of steps forecasting increases, as discussed in Section 4.4.2. Consequently, longer forecast
horizons with decreasing accuracy at the end of the sequence directly impacting scaling-up
decisions and their timing.

Conversely, the proposed algorithm has already addressed the timing for scaling-down.
When the average CPU usage falls below the scaling-down threshold for the duration of
the entire sequence, the additional replicas will be terminated immediately.

Given these challenges, determining the optimal timing for scaling-up decisions is a
complex problem that requires balancing the cost-QoS trade-off. Instead of relying solely
on a theoretical approach, an experimental, iterative method was employed to identify
the appropriate forecast length for executing scaling-up decisions. The complete scaling
solution was deployed alongside the target application for autoscaling, and a traffic pattern
(see Section 4.3.3) was injected (detailed deployment procedures will be explained in the
next section).

Experiments were conducted by setting the forecast length to a fixed value and allow-
ing the autoscaler to make scaling decisions. Upon completion of each experiment, Key
Performance Indicators (KPIs) detailed in the next section were monitored to evaluate
performance in balancing the cost-QoS trade-off. By systematically varying the forecast
length and assessing the KPIs, this iterative approach identified a forecasting sequence
length of 7 steps as providing the best balance between cost and QoS trade-offs.

The challenge of determining the optimal timing for decision-making in AI/ML domain
is well known [139]. Although addressing this issue through a theoretical approach is

141

Chapter 5 – AI-assisted proactive autoscaling solution for CNFs

Figure 5.5 – Testbed for AI-assisted scaling solution. (from [5]) (Copyright © 2023 IEEE)

beyond the scope of this study, we draw readers’ attention to studies such as [140] and
[141], which address the cost-accuracy trade-off in the decision-making process for time
series classification problems using a theoretical approach.

5.3.5 Testbed

To deploy the proposed autoscaling solution, the testbed described in Section 4.2.1
was utilized, incorporating several modifications to the system architecture. The com-
plete configuration of the testbed is presented in Figure 5.5. The existing testbed setup
uses Prometheus to collect data on incoming requests and CPU usage from the cluster. In
addition to these metrics, the current replica count data is also retrieved for the dynamic
scale down threshold calculation. Prometheus provides access to the collected real-time
time series data via its APIs, enabling the solution to be deployed externally to the Kuber-
netes cluster. The same web application described in Section 4.2.2 , with identical resource
configurations, was used as the target application to evaluate the proposed autoscaling
solution. Following deployment, continuous traffic was generated using the script prepared
during the data collection phase.

Similar to the Kubernetes HPA, the proposed solution continuously collects cluster
information at 15-second intervals. It queries the Prometheus database for metrics in-

142

5.4. Results

cluding incoming request rate, CPU usage, and current replica count data per service.
The solution forecasts future CPU usage for 7 steps ahead at each interval and makes
real-time scaling decisions based on these forecasts. These scaling decisions are communi-
cated to the Kubernetes API server on the master node. The Kubernetes control manager
and scheduler then execute these decisions by creating or terminating pods on the worker
nodes.

5.4 Results

The proposed solution aims to minimize QoS fluctuations during scaling operations
while simultaneously reducing operational costs. Consequently, the chosen KPIs for the
evaluation process must reflect these objectives. For the evaluation, three KPIs have been
selected: service response time, total replica count, and replica operational time.

5.4.1 KPIs for the evaluation

Service response time

As outlined in Section 5.2, delays in initiating the addition of new replicas or premature
reduction in the number of existing replicas by the scaling mechanism can lead to QoS
degradation. This degradation is primarily caused by CPU overload on the remaining
replicas. To quantify QoS variations during the scaling process, the 95th percentile of the
service response time—defined as the round-trip time between the API Gateway and the
HTTP server replicas—was calculated.

Pod count and pod operational time

Inadequate scaling of replicas by the scaling mechanism can directly impact operational
costs. Minimizing the use of additional replicas and their operational time can reduce costs
in a consumption-based pricing model. Therefore, the scaling mechanism must create and
terminate the desired number of replicas at the right time. To evaluate operational costs,
data on the total replica count (number of active replicas) and their operational time per
service were collected.

143

Chapter 5 – AI-assisted proactive autoscaling solution for CNFs

5.4.2 Benchmarking the autoscaling solution

To benchmark the performance of the proposed scaling solution against Kubernetes
HPA and the leading state-of-the-art solution, experiments were conducted under identical
testbed configurations and traffic patterns for each scenario.

HPA with different thresholds

The Kubernetes HPA was configured to scale based on pod CPU utilization using three
predefined thresholds. These thresholds were selected to illustrate distinct operational
scenarios. In the first scenario, the HPA triggers replica scaling when the average pod CPU
utilization reaches 100%, prioritizing the reduction of pod count and operational duration
over maintaining QoS levels during scaling. This approach allows pods to utilize their
maximum CPU capacity before scaling occurs. In the second scenario, a 50% threshold
was set, enabling the HPA to initiate scaling early, emphasizing the maintenance of higher
QoS levels during scaling, albeit potentially increasing operational costs. Lastly, the third
scenario employs an 80% threshold to strike a balance between maintaining elevated QoS
levels during scaling and minimizing operational expenditures.

Autoscaling with traffic load prediction

To benchmark the proposed solution against a state-of-the-art solution, a proactive
scaling approach based on traffic load prediction was adopted, inspired by a previous
study [126]. This approach utilizes a deep learning-based time series forecasting model,
specifically an LSTM model, to predict future traffic load and adjust the number of replicas
in the cluster. The solution was implemented with modifications to suit this experiment
testbed.

In the forecasting model, as described in the study, only incoming request rate data
was used to predict future incoming request rates. Therefore, the LSTM model was trained
using 60% of traffic data in the dataset created in Section 4.3.3 and validated using the
remaining 40%. The model’s accuracy was evaluated using the RMSE, achieving a value
of 0.0849 when predicting traffic load for a one-time step interval of 15 seconds. After
predicting the traffic load, the required number of replicas P̂ [i] was determined based on
equation 5.5:

For a given time ti,

144

5.4. Results

P̂ [i] = min
(

vnfmax,

⌈
R̂[ti+1]

γ

⌉)
(5.5)

In this context, R̂[ti+1] denotes the predicted requests per second for the ti+1 time step,
while vnfmax represents the maximum number of pods supported by the cluster, which
can vary depending on the CPU allocation and cluster resource capacity. The parameter
γ signifies the maximum number of requests a pod can manage, adjusted according to
the CPU allocated per pod. For the experiments, each pod was provisioned with 400
millicores, and after empirical testing, it was determined γ to be 160 requests per second
for this CPU configuration.

5.4.3 Autoscaler comparison

For each scenario, the experiment was conducted five times to assess the robustness
of the results. Figure 5.6 depicts the service response time (95th percentile) and the total
pod count over time for each experiment. Figure 5.6a shows the performance of the HPA
with a scale up threshold of 100%. With this threshold, the HPA added a second replica
when CPU usage spiked due to heavy traffic and terminated replicas even with brief
drops in CPU usage. This led to numerous scaling-up and scaling-down events during the
experiment. Each scaling-up event significantly increased service response time, reaching
a maximum peak of 720 milliseconds (ms). However, the service response time swiftly
returned to an average of 5ms once the additional replica was active. Although there were
spikes in service response time during each scaling-up event, the peak values differed due
to varying incoming traffic rates at those times. The HPA’s 100% threshold led to delayed
scaling, causing spikes in service response time due to insufficient time for newly created
replicas to become operationally ready.

Figure 5.6b illustrates the service response time and pod count for the HPA with a
50% scale up threshold. In this setup, the HPA added replicas when the average CPU
usage of existing replicas reached half their capacity, leading to a maximum of four pods
during the experiment. Even though the HPA scaled down replicas during periods of lower
CPU usage, the pod count remained higher compared to the HPA 100% threshold setup.
In this case, the HPA maintained the service response time at 5ms without any spikes
during scaling events. This demonstrates that an autoscaler prioritizing QoS levels can
maintain stable service response times, albeit with increased operational costs.

For the HPA with an 80% scale up threshold, as depicted in Figure 5.6c, the HPA

145

Chapter 5 – AI-assisted proactive autoscaling solution for CNFs

(a) HPA 100%

(b) HPA 50%

146

5.4. Results

(c) HPA 80%

(d) SOA Solution.

147

Chapter 5 – AI-assisted proactive autoscaling solution for CNFs

(e) Proposed AI assisted scaling

Figure 5.6 – Service response time during scaling. (from [5]) (Copyright © 2023 IEEE)

generated additional replicas during periods of high CPU usage. The HPA kept the sec-
ond replica active throughout the peak period, not scaling-down during brief CPU usage
drops. Importantly, this configuration led to only one scale up event, resulting in a single
peak (maximum 195ms) during scaling, unlike the HPA with a 100% threshold. These
observations indicate that the HPA with an 80% threshold provides a more balanced
cost-QoS trade-off compared to the HPA with 100% and 50% thresholds.

Figure 5.6d shows the results of the autoscaler inspired by state-of-the-art solution
[126], which scales based on predicted traffic loads. This solution scaled up for each CPU
usage spike and scaled down during brief lower CPU usage periods. Each scaling-up event
caused a spike in service response time (maximum 700ms) due to the delay in creating
new replicas. Furthermore, this solution experienced more frequent scaling-up and scaling-
down events compared to any HPA threshold setting. Despite predicting future traffic
loads to determine the necessary number of replicas, the solution failed to proactively
scale in a way that reduced service response time during scaling. This failure is likely
because predicting one step ahead is insufficient for the autoscaling solution to detect
and initiate scaling. Additionally, the number of requests that a single pod can handle,

148

5.4. Results

Figure 5.7 – Pod count and pod operational time. (from [5]) (Copyright © 2023 IEEE)

denoted as γ, can vary during request processing, potentially leading to inefficient scaling
decisions.

Figure 5.6e presents the results of the proposed solution. The data indicate that service
response time exhibited spikes during each scaling-up event, with a maximum peak of
50ms. The solution successfully scaled up the second replica in response to high CPU usage
and scaled down during periods of low CPU demand. Notably, the solution effectively
minimized service response time during scaling-up events, despite scaling-down the second
replica briefly when CPU usage dropped. This demonstrates that accurate longer-term
forecasts can enable proactive decision-making to minimize QoS degradation.

Figure 5.7 displays the operational time of replicas across all experiments. All ap-
proaches maintained the initial pod operational throughout the experiment due to the
minimum replica count being set to one. However, the operational times for additional
replicas varied depending on the approach. Specifically, the HPA with a 100% threshold
kept the second replica operational for 105 minutes, HPA with an 80% threshold for 119
minutes, and HPA with a 50% threshold for 150 minutes—the longest duration among
all approaches. The latter it also maintained two other replicas operational for 110 and
12 minutes, respectively. The state-of-the-art solution operated the second replica for
only 55 minutes, the shortest duration observed. The proposed scaling solution utilized
the second replica for 104 minutes, which is less than all HPA configurations but more
than the state-of-the-art solution. Despite the state-of-the-art solution’s lower operational
time for the second replica, it exhibited the poorest service response time profile among
all experiments. Overall, the proposed solution demonstrates a superior balance between
minimizing operational costs and service response time during scaling events, outperform-

149

Chapter 5 – AI-assisted proactive autoscaling solution for CNFs

ing all other approaches evaluated in terms of cost-QoS trade-off. A significant observation
from this experiment is that CPU throttling occurs even when CPU usage remains below
the defined CPU limit, regardless of the scaling approach. Consequently, CPU throttling
contributes to increases in service response time. Therefore, it is crucial to understand the
behavior of CPU throttling and consider its impact on the autoscaling decision-making
process.

5.5 Summary

In this chapter, the focus is on addressing the challenge of making precise scaling
decisions based on resource usage forecasts provided in an earlier stage. The primary
goal is to reduce operational costs by maximizing resource utilization, thereby minimizing
unnecessary replication and their associated operational time. However, the inherent delay
in scaling-up within Kubernetes, which can influence service response times during scaling
events, is carefully considered. To tackle these challenges, the chapter introduces a new
scaling model that utilizes both static and dynamic thresholds to determine whether to
scale up, scale down, or maintain the current resource allocation. The timing of these
scaling decisions, which significantly affects the balance between cost and QoS, is also
explored and experimentally derived. The proposed autoscaling solution is then evaluated
in a real-world test environment, where it is benchmarked against several other solutions.
The results demonstrate that this proactive autoscaling approach offers a better cost-QoS
trade-off compared to alternatives. However, the chapter also acknowledges limitations
in the solution. Notably, the model does not account for errors in the forecasting model
during threshold and decision timing calculations. To mitigate this, static buffer zones are
used, though this is not the optimal approach. Additionally, the chapter suggests that the
solution would benefit from further evaluation under conditions of high traffic volume and
complex patterns to better assess its effectiveness and applicability. The chapter concludes
by identifying CPU throttling as another significant factor that could disrupt the cost-
QoS balance in the autoscaling solution, setting the stage for further investigation in the
next chapter on how to mitigate this issue.

150

Chapter 6

CPU THROTTLING AWARE AUTOSCALING

6.1 Introduction

In the preceding chapter, a novel proactive autoscaling solution was introduced to opti-
mize the cost-QoS trade-off. Despite outperforming both the default Kubernetes HPA and
a state-of-the-art alternative, the solution encountered increased service response times
during the scaling-up process. This issue primarily arose from suboptimal decision timing
within the proposed autoscaling mechanism. Although scaling-up decisions were made
proactively, the timing was delayed, leading to QoS degradation. Analysis indicated that
even though replicas were created seven steps before the pod reached its CPU capacity,
QoS had already been adversely affected.

The root cause of this QoS degradation is linked to the CPU throttling mechanism
inherent in the underlying system processes. While designed to enhance resource man-
agement in Linux environments by controlling and limiting pod resource overuse, this
mechanism negatively impacts the timing computations necessary for effective scaling
decisions, resulting in a suboptimal cost-QoS balance.

Kubernetes enforces CPU usage limits for CPU-intensive CNFs through a CPU throt-
tling process managed by the Linux kernel’s Complete Fair Scheduler (CFS) [142]. When
a pod exceeds its designated CPU limit, CFS intervenes, throttling the pod and restrict-
ing its CPU usage beyond the defined limit. This throttling introduces computational
delays, directly impacting the CNF’s service response time. To maintain high application
performance during dynamic scaling with CPU limits, understanding the CPU throttling
mechanism is crucial to preventing service response time degradation.

This chapter investigates CPU throttling behavior and its impact on CNF service
response times within the Kubernetes environment. Building upon the previously intro-
duced autoscaling solution, an enhanced triggering mechanism is presented that dynam-
ically adjusts the timing of scaling decisions by accounting for CPU throttling effects.
This mechanism forecasts potential future CPU throttling events, providing insights to

151

Chapter 6 – CPU Throttling aware autoscaling

avoid service response time increases due to throttling. The new solution was tested in
a real-world Kubernetes environment, with results compared to previous experiments to
evaluate its effectiveness in balancing the cost-QoS trade-off.

6.2 Research challenge

To mitigate the impact of CPU throttling on service response times during scaling
operations, a comprehensive understanding of the CPU throttling mechanism within the
Linux kernel is essential. In a Kubernetes deployment, assigning a CPU limit translates
this parameter into a CPU quota within the Linux kernel, which is managed by the CFS
in the cgroup subsystem.

A cgroup, or control group [143], is a Linux kernel feature designed to manage resources
for a collection of processes. The CFS ensures equitable distribution of CPU time by
periodically enforcing the CPU quota for each cgroup. This enforcement interval, known
as the CPU period, has a default duration of 100ms. Therefore, when a CPU limit is set,
it is converted into a corresponding CPU time quota within this CPU period.

For instance, if a cgroup is allocated 1 CPU core (equivalent to 1000 millicores) limit,
it is permitted to operate for 100ms within each 100ms CPU period. This allocation
allows the cgroup to utilize 100% of the CPU during this period. If a cgroup exhausts its
allocated CPU quota within the CPU period, the CFS will throttle the cgroup, causing
it to halt processing until the next CPU period begins. This mechanism is referred to as
CPU throttling.

Given this explanation, in a single threaded process, the CPU time quota (T0) within
a CPU period (Tw) for a specified CPU limit (Climit) can be calculated as follows:

T0 = Climit

1000 × Tw (6.1)

In Kubernetes, when a pod is provisioned with a defined CPU limit, the container
runtime automatically creates a cgroup for the pod. This cgroup is configured with the
specified CPU limit, ensuring enforcement of resource usage according to the defined
constraints.

Due to this suspension of request processing caused by CPU throttling, service re-
sponse time can be adversely affected. To elucidate the impact of CPU throttling on ser-
vice response time, consider a single-threaded application deployed with a 1000 millicores
CPU limit, requiring 100ms to process an incoming request (processing time - tbase) as

152

6.2. Research challenge

(a) Application with 100ms processing time with 1 CPU.

(b) Application with 100ms processing time with 400 CPU millicores.

Figure 6.1 – Effects of CPU throttling on application processing time – single-threaded
application. (based on [144])

illustrated in the Figure 6.1a. In this scenario, the entire request can be processed within
a single CPU period.

However, if the same application is deployed with a CPU limit of 400 millicores, the
CPU quota allocated per CPU period, based on the equation 6.1, will be 40ms. Assuming
the CFS schedules this CPU quota at the beginning of each CPU period, the CPU will
be throttled for the remaining 60ms of the period. Consequently, the request cannot be
fully processed within a single CPU period. Therefore, processing the entire request will
span 2 CPU periods plus an additional 20ms, totaling 220ms as illustrated in the Figure
6.1b. This results in a service response time increase of 120ms due to throttling.

As previously mentioned, these calculations assume that the CFS allocates the CPU
quota for this cgroup at the beginning of each CPU period. However, in practice, the CFS
uses the red-black tree (rbtree) algorithm [145] to schedule CPU quotas throughout the

153

Chapter 6 – CPU Throttling aware autoscaling

CPU period. The CPU period is divided into time slices, which are short intervals used
by the CFS to schedule processes. Thus, the placement of the CPU quota can vary within
the CPU period, which can cause fluctuations in service response time.

An experiment was conducted to analyze the impact of CPU throttling on the service
response time of a web application. The objective was to measure the variation in service
response time due to CPU throttling for known service times under a specified CPU limit.

The experiment utilized the same testbed described in Section 4.2.1, with modifications
to the web applications deployed on the cluster. The web application was modified to
measure request processing time, thereby revealing the delay effects of CPU throttling
when applied. Specifically, a timer was set at the beginning of the main function and
another timer at the end of the main function to measure the time difference, representing
the total time taken to process a request. This method reveals how processing time varies
due to CPU throttling when applied and the CFS scheduling process.

The processing time data was then gathered through a monitoring service within the
Kubernetes cluster. In addition to the aforementioned modifications, the main function
in the web application was designed to allow the processing time (tbase) to be varied by
adjusting the complexity of the function through a parameter. This will allow to measure
processing time difference for different tbase values.

The modified web application was deployed in the Kubernetes cluster with two resource
configurations. The first configuration had a CPU request of 1000 millicores CPU with no
CPU limit denoted as C1000, and the second configuration had a CPU request and CPU
limit of 400 millicores CPU denoted as C400, providing a CPU quota of 40ms within each
CPU period. The objective of the first configuration is to measure the tbase in the absence
of CPU throttling, while the second configuration aims to observe variations in tbase due
to the presence of CPU throttling imposed by the CPU limit.

Subsequently, a steady stream of HTTP requests was injected into the pod. Each
request was processed, and the processing time for each request was measured. To ensure
robustness in the results, 10,000 requests were injected with a 1-second interval between
consecutive requests for each case, and the results were collected. Given the tbase values
under investigation, this interval was sufficiently large to prevent request congestion in
the queues or overloading processes that could affect the processing time measurements.
The experiment was repeated for all tbase values by adjusting the parameter in the web
application.

To analyze the impact of CPU throttling and the CFS on processing time, four tbase

154

6.2. Research challenge

(a) Under C1000 configuration. (b) Under C400 configuration.

(c) Processing time (tbase) ≈ 10ms

(d) Under C1000 configuration. (e) Under C400 configuration.

(f) Processing time (tbase) ≈ 20ms

(g) Under C1000 configuration. (h) Under C400 configuration.

(i) Processing time (tbase) ≈ 50ms

155

Chapter 6 – CPU Throttling aware autoscaling

(j) Under C1000 configuration. (k) Under C400 configuration.

(l) Processing time (tbase) ≈ 80ms

Figure 6.2 – Comparison of processing time variation with and without CPU throttling.

values were selected: 10ms, 20ms, 50ms, and 80ms. It is important to note that accurately
tuning application parameters to yield precise tbase values is challenging due to the be-
havior of the CFS. As a result, each reported tbase value represents an average derived
from 50 iterations for the selected parameter within the application. For each selected
tbase value, a steady stream of requests was injected into the C1000 resource configuration,
upon completion, another request stream directed to the second resource configuration,
C400.

The collected processing time data, as shown in Figure 6.2, reveals a notable obser-
vation: across all tbase values in the C1000 configuration, where CPU throttling is not
anticipated, variability in processing times is present during processing. The distribu-
tion of processing times exhibits a single Gaussian pattern or combination of multiple
Gaussian patterns especially in C400 cases. The observed variability is likely attributable
to several factors, including compiler optimization techniques and cache memory opti-
mization strategies, which may reduce the base execution time tbase. Additionally, delays
introduced by the CFS due to background processes could further contribute, as CPU
resources are allocated to the entire pod rather than being dedicated exclusively to the
application within the pod, potentially increasing tbase.

For tbase values of 10ms and 20ms, the service response time remains near identical
under both resource configurations. This consistency arises because of the absence of
a CPU limit, there is no CPU throttling under C1000, and under a CPU limit of 400
millicores C400, tbase is less than the CPU time quota (tbase < 40ms), thus preventing the
need for CPU throttling processes to engage. Consequently, the processes proceed without

156

6.2. Research challenge

interruptions.
However, for tbase values of 50ms and 80ms, which exceed the CPU time quota in C400,

CPU throttling was expected. In this scenario, a single request could not be processed
within a single CPU period, causing it to span multiple CPU periods. As a result, the
processing time with CPU throttling increased significantly as shown in the Figure 6.2h
and 6.2k. Under both resource configurations, for the selected tbase values, the experimental
processing time distribution exhibits a distinct mean value, regardless of CFS scheduling
and CPU throttling mechanisms.

This experiment highlights the complexity of kernel-level scheduling and its impact on
processing time when CPU throttling is introduced. The experiment investigated scenar-
ios in which tbase is both lower and higher than the CPU time quota. In standard cloud
engineering practice, a resource configuration where tbase exceeds the CPU time quota is
suboptimal, as it causes CPU throttling even under low workloads. To address this, it is
necessary to adjust the CPU time quota. Typically, in most common resource configu-
rations tbase is much less than the CPU time quota, allowing the application to function
without encountering CPU throttling under low workloads.

However, even when tbase is significantly lower than the CPU time quota, under high
workloads, this quota can be exceeded depending on the number of requests processed
within a given CPU period. Theoretically, under high traffic conditions, CPU throttling
is influenced by how rapidly the CPU time quota is consumed within a CPU period.
Under this premise, the request rate plays a critical role in the CPU throttling process.
Given that each request demands a specific CPU processing time, CPU usage also has a
substantial impact on the extent of CPU throttling.

From an autoscaling standpoint, the primary objective is to scale the replicas proac-
tively, ensuring that scaling occurs prior to the engagement of the CPU throttling mech-
anism, thereby preventing any negative impact on service response times particularly for
deployments with tbase << CPU time quota. Consequently, accurately identifying the
onset of CPU throttling is essential.

To investigate the behavior of CPU throttling in a real-world deployment in tbase <<

CPU time quota cases, particularly in relation to varying incoming request rates and
CPU usage patterns, a series of controlled experiments were conducted under different
traffic scenarios. The web application previously discussed in Section 4.2.2 was redeployed
within the same Kubernetes testbed environment, with CPU requests and limits config-
ured at 0.35 millicores. In this context, the tbase was approximately 2 milliseconds, which

157

Chapter 6 – CPU Throttling aware autoscaling

is considerably lower than the corresponding CPU time quota of 35 milliseconds. This tbase

value is selected to enable high traffic loads, triggering CPU throttling only during periods
of high CPU utilization. The experiment’s goal was to incrementally increase the traffic
directed to the web application exceed its maximum capacity. This approach allowed for
close monitoring of the initiation of CPU throttling and an analysis of its correlation with
traffic rate and CPU usage.
For the experiment, following traffic scenarios were introduced as a continuous traffic flow.
In this context, the traffic generator instantiates Virtual Users (VUs) according to the
predefined scenarios as follows:

— Scenario 1: Reach 250 VUs in 2 minutes → maintain current traffic rate for 5
minutes → decrease to 1 VU in 2 minutes → maintain for current traffic rate 5
minutes

— Scenario 2: Reach 250 VUs in 5 minutes → maintain current traffic rate for 5
minutes → decrease to 1 VU in 2 minutes → maintain for current traffic rate 5
minutes

— Scenario 3: Reach 250 VUs in 10 minutes → maintain current traffic rate for 5
minutes → decrease to 1 VU in 2 minutes → maintain for current traffic rate 5
minutes

— Scenario 4: Reach 250 VUs in 20 minutes → maintain current traffic rate for 5
minutes → decrease to 1 VU in 2 minutes → maintain for current traffic rate 5
minutes

Each VU autonomously enters a continuous loop, initiating requests to the web appli-
cation. A randomized interval, ranging from 0 to 2 seconds, is applied between successive
transmissions to simulate variable request arrivals.

Data collected from the Kubernetes metrics APIs, including inbound request rate,
pod CPU usage, and pod CPU throttling, is presented in Figure 6.3. In Kubernetes,
detailed CPU throttling-related metrics, such as the number of CPU periods allocated,
the number of throttled CPU periods, and the throttled CPU time, are typically available
via Prometheus. To assess CPU throttling and determine when throttling is engaged, the
CPU throttling values depicted in the plot are derived from the following equation 6.2,
which considers both throttled CPU periods and the total CPU periods allocated to the
pod over a 1-minute moving window. This metric indicates the percentage of CPU periods
that were throttled relative to the total number of allocated CPU periods for the given
cgroup.

158

6.2. Research challenge

(a) Incoming request rate

(b) CPU usage.

(c) CPU throttling

Figure 6.3 – Influence of incoming request rate, CPU usage on CPU throttling. (from [6])
(Copyright © 2024 IEEE)

159

Chapter 6 – CPU Throttling aware autoscaling

CPU throttling = Throttled periods

Total allocated CPU periods
× 100% (6.2)

Figure 6.3a demonstrates that the incoming traffic rate peaked at 140 requests per
second, while Figure 6.3b shows that CPU usage reached a maximum of 350 millicores
under each scenario, as expected. Figure 6.3c illustrates the CPU throttling behavior
observed across the different scenarios. In Scenario 1, with the highest VU initiation
rate, the maximum incoming request rate was achieved earlier than in other Scenarios,
with the time to reach this peak gradually increasing in subsequent Scenarios. Despite
Scenario 1 demonstrated a rapid acceleration in request rate, it processed the fewest
total requests during this acceleration phase. This outcome is attributed to the scenario
achieving the peak request rate within a shorter time frame, thereby limiting the total
number of requests processed.

An additional observation is that the time required to achieve the maximum request
rate (time duration between request rate 0 to 140 in Figure 6.3b) in each scenario does not
correspond to the VU initiation duration specified in the script (time duration between
request rate 0 to green crosses marking in Figure 6.3b). As indicated by the green crosses
marking, the stabilization point of VU initiation, the request rate in Scenario 4 stabilizes
earlier than in Scenario 1, with Scenarios 2 and 3 exhibiting intermediate behavior. The
stabilization of the request rate at 140 requests per second across all scenarios, despite
continued VU initiation—particularly in Scenarios 2, 3, and 4—is attributed to the CPU
reaching its limit, which prevents handling requests beyond this threshold.

CPU throttling analysis indicates that, in each scenario, the percentage of CPU periods
throttled relative to the total allocated CPU periods stabilizes at 50% to keep CPU usage
within the designated limits. However, this percentage may be influenced by the CFS
process, necessitating further investigation to clarify its impact.

From an autoscaling perspective, the key observation is the initiation point of CPU
throttling. As marked by the red crosses, the onset of CPU throttling varies across different
traffic rates and CPU usage levels in each scenario. Scenarios with higher traffic rates tend
to trigger CPU throttling earlier than those with lower traffic rates. Additionally, CPU
throttling is initiated earlier at higher CPU usage levels within scenarios with higher
traffic rates compared to those with lower CPU usage and traffic rates.

The relationship between incoming traffic rate, CPU usage, and CPU throttling is
complex and challenging to precisely quantify. As a result, identifying the exact threshold
at which the Linux kernel initiates throttling based on these parameters is difficult. This

160

6.3. CPU throttling aware triggering

complexity is further exacerbated by factors such as the CPU time quota allocated to
the pod and the CFS process. The challenge of determining CPU throttling activation is
particularly pronounced in environments with variable traffic patterns and multithreaded
applications. It is important to note that this study does not address CPU throttling in
the context of multithreaded applications.

6.3 CPU throttling aware triggering

The previously implemented autoscaling mechanism employed a seven-step CPU usage
forecasting model to inform scaling decisions. This approach was based on the premise that
predicting the need for scaling seven steps ahead could prevent CPU usage from surpassing
its allocated capacity, thereby mitigating potential increases in service response times
during scaling events. The timing for scaling-up was determined through an experimental,
iterative process. However, this method proved sub-optimal, as the evaluation revealed
that the proposed solution still encountered increases in service response time during
scaling events.

The primary issue stemmed from the initiation of CPU throttling before CPU usage
reached the predefined limit. Consequently, even though new replicas were in operation
well in advance of the scale up delay, service response time had already deteriorated.
To maintain service response time without degradation during scaling, the autoscaling
mechanism must trigger the scale up process before CPU throttling is engaged. However,
prioritizing QoS and initiating scaling earlier than the previously proposed solution could
result in prolonged replica operation, thereby increasing operational costs. To preemp-
tively trigger scaling before CPU throttling impacts service response time, it is crucial
to predict when CPU throttling is expected to occur. However, as demonstrated by the
experiments in Section 2, accurately modeling the CPU throttling process is challenging
due to its intricate interactions with the allocated CPU quota, Linux kernel scheduling,
incoming request rate, and pod CPU usage.

In the field of AI, deep learning models have shown exceptional capability in recogniz-
ing complex patterns within multivariate temporal data. These models have facilitated
the generation of highly accurate forecasts, as demonstrated by their performance in
prior solutions. Consequently, deep learning can be leveraged to predict the onset of CPU
throttling by accounting for the intricate interactions among the aforementioned factors.
To enhance the decision-making process within the autoscaling solution, a novel proac-

161

Chapter 6 – CPU Throttling aware autoscaling

tive autoscaling methodology is proposed, incorporating a deep learning-based trigger
mechanism. This approach aims to proactively determine the optimal timing for scaling
decisions, thereby mitigating the impact of CPU throttling on service response time. The
newly proposed autoscaling solution builds upon the foundation of the previous imple-
mentation and consists of three distinct subsystems.

The first subsystem, the CPU usage forecasting model, employs a deep learning-based
time series forecasting model to predict future CPU usage behavior for a service deployed
in a Kubernetes cluster, similar to the previous solution.

The second subsystem, the dynamic scaling model, calculates the required resources
based on the forecasts generated by the deep learning model in the first subsystem. This
subsystem includes slight modifications to the previous dynamic scaling model to accom-
modate the new trigger model.

The third subsystem, the trigger model, is a new addition that utilizes a deep learning-
based forecasting model to predict CPU throttling events and trigger scaling-up processes
accordingly. Detailed explanations of these subsystems and their interactions will be pro-
vided in the subsequent subsections.

6.3.1 CPU throttling forecasting

The objective of CPU throttling forecasting is to provide predictive insights into future
CPU throttling behavior, enabling the autoscaling mechanism to preemptively scale up
replicas before CPU throttling adversely affects service response times.

As demonstrated by the experiment in Section 6.2, the occurrence of CPU throttling
is influenced by the rate of incoming requests and the CPU utilization of the pod. Conse-
quently, three key input features were identified for the forecasting model: average inbound
request rate, average CPU usage, and average CPU throttled seconds. The use of average
values for these features is justified by the fact that CPU throttling occurs based on the
conditions of individual pods. Given that Kubernetes utilizes a round-robin algorithm for
traffic distribution among replicas, it is assumed that conditions among all replicas are
uniformly distributed. The average values for all features were calculated based on the
metrics retrieved per service. Specifically, to calculate the average CPU throttling among
replicas, CPU throttled seconds per service metric was utilized.

The primary goal is to scale up replicas before CPU throttling occurs. However, the
uniform behavior among replicas can be disrupted during scaling events. When the trig-
ger model detects an increase in CPU throttling in advance, the dynamic scaling model

162

6.3. CPU throttling aware triggering

initiates the scaling process. Once the new replicas are operational, the round-robin load
balancer begins distributing requests across both the existing and new replicas. To prevent
CPU throttling in the existing replicas, it is essential to initiate scaling early, accounting
for the scaling-up delay, which will be discussed later in this section.

From the perspective of the forecasting model, which relies on average metric values,
these values are expected to decrease sharply once a new replica becomes operational
after a scaling event. This decrease happens because, prior to scaling, the existing replicas
have high average metric values, while the new replicas show lower metric values for a
brief period until all replicas stabilize. Consequently, when calculating the overall average
metric value, it can drop significantly. Nevertheless, the extent of the decrease in the
average metric value is contingent upon the number of active replicas associated with
each service. This abrupt change in input metrics can negatively affect the forecasting
model’s prediction accuracy. To mitigate this, scaling events should be included as a
feature in the forecasting model. Therefore, current pod count metrics are integrated as
a feature to improve predictive accuracy in such scenarios.

Given the proven effectiveness of the selected deep learning models (LSTM, GRU, and
CNN) in multivariate time series forecasting, as shown by the total CPU usage forecast-
ing results in Chapter 4, these models were similarly applied to evaluate the forecasting
performance for average CPU throttling seconds in the trigger model.

For the selected forecasting models, the determination of optimal past and future
prediction window sizes was critical. Specifically, establishing an appropriate prediction
horizon is vital for generating actionable insights into the autoscaler mechanism. However,
consistent with the approach detailed in Section 4.3.4, the past value window for CPU
throttling was fixed at 10 steps. The selection of the forecasting horizon must account
for the scale up delay, ensuring that when CPU throttling is detected, the autoscaler can
initiate new replicas promptly. This allows the replicas to become operational before the
anticipated increase in CPU throttling, thereby mitigating its impact on service response
time. However, due to the data extraction granularity limitations, accurately measuring
the scale up delay is challenging. For this experiment, the time required to provision a
new replica in the target web application is shorter than the data collection interval of 15
seconds per step. Consequently, a single-step prediction model was selected.

For the model training process, a new dataset was constructed using selected features
based on criteria similar to those outlined in Section 4.3.4. However, incorporating scaling
events into the training data was essential. This inclusion was necessary because scaling

163

Chapter 6 – CPU Throttling aware autoscaling

actions, triggered by the dynamic scaling model, can alter the input data for the forecast-
ing model, potentially leading to inaccurate forecasts if not accounted for. Consequently,
the training dataset needed to encompass scaling events to allow the model to learn how
features behave during these operations. To address this requirement, the proactive scal-
ing solution from previous work was leveraged during the data collection process. Since
the autoscaling solution made several scaling decisions throughout the experiment, the
dataset was ensured to capture relevant information on scaling events.

The new dataset was preprocessed and split into training and test sets, with a 60%
and 40% allocation, respectively. The training dataset was utilized to train all models, and
forecasting accuracy was evaluated using RMSE and MAE metrics. The detailed results
of these evaluations are presented in a subsequent section. The model with the best
performance was then selected as the CPU throttling prediction model for integration
into the new trigger module.

6.3.2 Trigger module integration

To integrate the newly introduced trigger mechanism into the previously proposed
autoscaling solution, it is required to modify the dynamic autoscaler model. The updated
model delegates all scaling-up events to the trigger mechanism. Specifically, the autoscaler
will initiate scaling-up replicas when a rise in predicted CPU throttling values is detected.
scaling-down and no-scaling events will continue to be managed by the dynamic scaling
model, maintaining consistency with the previously established solution.

In this configuration, the new autoscaling solution retrieves input data from monitoring
services at 15-second intervals. The CPU throttling model predicts throttling values one
step ahead. The CPU usage forecasting model, however, now estimates future CPU usage
ten steps ahead, as opposed to the previous seven steps. The decision timing no longer
depends on the number of forecasting steps, as scaling-up decisions are now initiated based
on insights from the new trigger model.

The predicted CPU usage values are initially filtered through the scaling-down thresh-
old to assess whether any value in the forecasted sequence exceeds this threshold. If any
value surpasses the threshold, further analysis is required to determine whether the au-
toscaler should initiate a scale up or maintain the current state. If all values in the fore-
casted sequence are equal to or below the scaling-down threshold, the autoscaler will
scale down by one pod at a time. Any value in the forecasted sequence that exceeds the
scaling-down threshold is used to calculate the required number of replicas using equation

164

6.3. CPU throttling aware triggering

Figure 6.4 – Proposed CPU throttling aware autoscaling architecture. (from [6]) (Copy-
right © 2024 IEEE)

5.1, following the approach used in the previous solution. Once the required number of
replicas is calculated, it is compared with the current replica count for that service. If the
required and current replica counts are equal, no scaling action is taken. However, if the
required replica count exceeds the current count, the autoscaler will wait for insights from
the CPU throttling forecasting model before initiating a scale up action.

During the initial fine-tuning phase of the autoscaling solution, it was observed that
very low levels of CPU throttling had an insignificant effect on service response time,
making scale up actions in response to such low throttling levels unnecessary and likely to
increase operational time. To address this, a filtering mechanism was implemented that
applies a predefined threshold of 0.05 millicores to the CPU throttling values provided
by the CPU throttling forecasting model, filtering out any throttling values below this
threshold. A scaling-up decision will be triggered by any forecasted CPU throttling value
that surpasses this threshold.

In the scaling-up decision process, two binary variables are considered, leading to
several possible scenarios. If the calculated replica count exceeds the current replica count

165

Chapter 6 – CPU Throttling aware autoscaling

and CPU throttling is expected to surpass the predefined threshold, a scaling-up action is
required. This ensures that the solution scales up replicas with optimal timing, preventing
CPU throttling from negatively impacting service response time.

However, if the calculated number of replicas exceeds the current number of replicas
but CPU throttling remains below the threshold, this indicates that scaling-up is antic-
ipated, but the expected workload not expected to caused any QoS degradation due to
CPU throttling. In this case, no immediate scaling action is necessary, avoiding premature
scaling.

On the other hand, if the expected number of replicas equals the current number of
replicas while CPU throttling increases beyond the threshold, this may suggest that the
CPU throttling is increasing due to an issue other than resource starvation, and therefore
no scaling action is required. Such situations are rare and can be caused by issues like a
software bug in older Linux kernels (bug 512ac999), which caused CPU throttling even
when CPU usage was low [146]. Modern Linux kernels have already patched this problem.

Lastly, if the calculated replica count is equal to the current number of replicas and
the predicted CPU throttling is below the predefined threshold, no scaling-up actions are
required. The complete proposed autoscaling solution is illustrated in Figure 6.4.

The newly proposed solution was deployed in a Kubernetes cluster within the same
testbed and configuration, utilizing the same traffic pattern as the previous solution.
The evaluation of the new autoscaling solution focused on service response time, replica
count, and operational time to assess its effectiveness in balancing the cost-QoS trade-off.
A comprehensive analysis of the results will be presented in the following section.

6.4 Results

6.4.1 Forecasting model evaluation

The evaluation of CPU throttling forecasting models was performed using a test
dataset, where model performance was assessed by calculating the RMSE and MAE val-
ues. This evaluation was repeated ten times to ensure the robustness of the results. The
distributions of the RMSE and MAE values across these iterations are illustrated in the
box plots presented in Figures 6.5a and 6.5b.

Analysis of the median RMSE and MAE values revealed that the GRU model exhibited
the lowest median values for both metrics. Additionally, the low variability in RMSE

166

6.4. Results

(a) RMSE values (b) MAE values

Figure 6.5 – RMSE and MAE values of CPU throttling forecasting models. (from [6])
(Copyright © 2024 IEEE)

and MAE values indicates that the GRU model’s performance is consistently reliable. In
contrast, the LSTM model demonstrated moderate median RMSE and MAE values but
exhibited the highest variance in RMSE, suggesting less consistent performance. The CNN
model displayed the highest median RMSE and MAE values, with moderate variability,
yet it also produced significant outliers in both metrics, indicating instances of poor
performance. Based on these findings, the GRU model outperformed the other models in
predicting CPU throttle seconds and was selected for the autoscaling application.

6.4.2 Autoscaling solution evaluation

To evaluate the performance of the newly proposed autoscaling solution, critical met-
rics were analyzed, including the 95th percentile of service response time to represent QoS,
as well as pod count and their operational durations to reflect operational costs. These
results were benchmarked against the previous autoscaling solution and the Kubernetes
HPA set at an 80% scaling threshold as shown in the Figure 6.6. The 80% threshold was
chosen for the HPA because it offers a comparable profile in service response time, replica
count, and operational time to both the previous and the newly proposed solutions.

Figure 6.6a presents the service response time profile and pod count graphs for the
HPA configured with an 80% threshold. Throughout the experiment, only a single scaling-
up event and a single scaling-down event were observed. Although CPU usage did not
reach its defined limit during the scaling-up process, CPU throttling was triggered and

167

Chapter 6 – CPU Throttling aware autoscaling

persisted throughout the start-up delay of the second pod. This throttling resulted in a
substantial increase in service response time, with a peak reaching 195ms.

As shown in Figure 6.6b, the previous autoscaling solution, which relied on predicted
CPU usage, effectively detected early increases in CPU demand and scaled up additional
replicas to manage the increased workload. It also responded to short-term decreases in
CPU usage by scaling-down replicas, thereby reducing pod count and operational time.
However, despite these advantages, the solution experienced several service response time
spikes during the scaling-up process, with a maximum peak of 50ms. This issue is primarily
attributed to the difficulty of detecting CPU throttling solely through predicted CPU
usage, even when extending the prediction horizon by 7 steps. Nevertheless, these response
time spikes were considerably lower than those observed with the HPA configured at the
80% threshold.

The CPU throttle-aware autoscaling solution, as depicted in Figure 6.6c, demonstrated
a significant improvement in reducing service response time, achieving a peak of only
24ms. This improvement is attributed to the solution’s effective CPU throttle prediction,
which enabled the initiation of early scale up actions, thereby minimizing the impact of
CPU throttling on service response times. Additionally, the autoscaler avoided frequent
scaling-down of replicas in response to short-term decreases in CPU usage, resulting in
fewer scale down events compared to the previous solution.

Figure 6.7 illustrates the operational time of each pod across different approaches,
highlighting variations in the duration for which the second pod was active. In all ap-
proaches, a maximum of two pods was deployed to handle the workload. The first pod
remained operational throughout the entire experiment, making the total operational time
dependent on the duration of the second pod’s activity. In the HPA solution, the second
pod maintained continuous operation for 119 minutes. By comparison, the previous so-
lution, the second pod was active for a total of 104 minutes. Despite periods of brief
scaling-down, the CPU throttling aware autoscaling solution sustained the second pod’s
operation for 119 minutes. Notably, the CPU throttle-aware autoscaling solution initiated
the scaling-up of the second pod earlier than the other approaches. This behavior can be
attributed to the CPU throttling mechanism, which activates before CPU usage reaches
its threshold limits.

The results indicate that reducing service response time spikes typically requires an
extended operational time due to early scale up. However, the new approach successfully
achieved the lowest service response time spikes, even with an operational time comparable

168

6.4. Results

(a) Kubernetes HPA 80%

(b) Previous autoscaling solution.

169

Chapter 6 – CPU Throttling aware autoscaling

(c) CPU throttling aware autoscaling solution.

Figure 6.6 – Service response time during scaling. (from [6]) (Copyright © 2024 IEEE)

to the HPA solution. In light of the primary objective—to optimize the trade-off between
cost and QoS, the proposed CPU throttle-aware autoscaling solution effectively minimized
service response time spikes while incurring only a marginal increase in pod operational
time, thereby outperforming other approaches.

6.5 Summary

This chapter delves into the CPU throttling process within the Linux kernel, partic-
ularly its impact on service response times during the scaling process. The focus is on
understanding how CPU throttling occurs when CPU limits are defined, and how it af-
fects the processing times of requests. The chapter also examines the relationship between
incoming request rates, CPU usage, and the engagement of CPU throttling.

To address the negative impact of CPU throttling on service performance, a new
autoscaling solution is proposed. This solution leverages deep learning models to predict
and mitigate CPU throttling in real-time. The new solution was implemented and tested in

170

6.5. Summary

Figure 6.7 – Operational time comparison. (from [6]) (Copyright © 2024 IEEE)

a real-world Kubernetes environment, where it demonstrated an ability to reduce service
response times during scaling, offering a better cost-QoS trade-off compared to previous
autoscaling methods and Kubernetes HPA.

The research is limited to single-threaded applications with a single service, whereas
real-world applications are often multi-threaded and involve multiple services. Expand-
ing the research to encompass more complex applications and testing under heavy and
intricate traffic patterns could improve its applicability.

171

Chapter 7

CONCLUSION

Summary

As 5G mobile networks increasingly adopt cloud-native architectures, the shift to-
ward cloudification brings both opportunities and challenges. While it enhances service
reliability, scalability, availability and lower cost, the complexity of managing these cloud-
based systems grows significantly, particularly given the high traffic volumes and diverse
use cases that demand tailored network configurations. Central to this complexity is the
trade-off between ensuring high QoS and managing operational costs effectively. Without
proper resource management, CSPs risk either over-provisioning, which drives up costs,
or under-provisioning, which can degrade performance.

This thesis has addressed this critical cost-QoS trade-off by developing and evaluating
a proactive autoscaling solution for cloud-native 5G NFs. The goal was to efficiently
allocate resources to handle incoming workloads without compromising QoS or incurring
unnecessary costs.

The first stage of the proposed solution introduced a novel approach to resource usage
forecasting based on deep learning. By generating highly accurate long-term forecasts,
this method provides critical insights for the subsequent autoscaling stage, allowing for
better preparation against QoS degradation caused by scale up delays and minimizing
the oscillations in scaling decisions due to fluctuating traffic patterns. The results demon-
strated that this deep learning-based approach outperforms traditional single-variable
forecasting methods, offering more accurate predictions that consider both system-level
and application-level requirements and their correlations.

The second stage focused on translating these resource usage forecasts into precise
autoscaling actions. By determining the appropriate times for scaling-up, scaling down,
or maintaining current resource levels, the dynamic autoscaling solution, which leverages
both static and dynamic thresholds, optimized resource utilization. This approach resulted
in significant cost savings while maintaining high QoS levels, as shown by the comparative

173

analysis with existing solutions.
Recognizing the impact of CPU throttling in Kubernetes environments, particularly

during scaling events, an enhancement to the autoscaling mechanism was proposed that
specifically addresses this issue. By incorporating a new trigger mechanism based on deep
learning forecasts, the solution effectively mitigates the negative effects of CPU throttling
on QoS. The results indicated a notable reduction in QoS degradation, further balancing
the cost-QoS trade-off.

The findings of this thesis contribute to a deeper understanding of the intricacies
involved in managing cloud-native 5G networks, particularly in relation to the cost-QoS
trade-off. The proposed solutions offer practical insights and methodologies that can be
adopted by CSPs to enhance the efficiency of their network management practices.

In conclusion, the proactive autoscaling solutions developed in this thesis provide a
robust framework for addressing the challenges of resource management in cloud-native
5G networks. By carefully balancing the trade-off between cost and QoS, these solutions
pave the way for more sustainable and efficient network operations in the era of 5G and
beyond.

Future directions

The findings of this research serve as a robust foundation for several potential avenues
of exploration within the autoscaling domain in cloud-native 5G environments. While
this study has provided insights into optimizing the cost-QoS trade-off for 5G networks
deployed on public clouds under specific pricing models, there are multiple directions
for future work that can further enhance the efficiency, sustainability, and security of
autoscaling mechanisms.

One promising area for future research is the exploration of energy consumption and
performance trade-offs in autoscaling, particularly from the perspective of cloud service
providers or private cloud owners. While the focus has been on CSPs as customers, op-
timizing autoscaling strategies to conserve energy for cloud providers themselves remains
an open challenge. For instance, future work could investigate methods for scheduling
new replicas to minimize the number of operational nodes, either by removing idle nodes
or putting them into sleep mode. This could lead to significant energy savings. However,
this approach introduces potential challenges, such as performance degradation due to
node-level CPU throttling and OOM processes when too many replicas are packed into

174

a single node. Addressing these challenges will require innovative solutions that carefully
balance energy efficiency with maintaining acceptable performance levels.

Another important direction for future research is the consideration of inter-dependen
-cies between NFs within 5G CN. While this research focused on resource usage forecast-
ing for individual NFs, each service in the 5G CN involves multiple interconnected NFs.
To address the complexities of such application architectures, Graph Neural Networks
(GNNs) could be leveraged to perform time series forecasting that takes into account the
correlations and interrelationships between NFs. This approach could lead to more ac-
curate resource usage predictions and, consequently, more effective autoscaling. However,
the dynamic nature of 5G networks, particularly with horizontal scaling where replicas are
frequently added and removed, presents challenges in maintaining a stable and accurate
graph representation. Exploring solutions to manage these dynamically changing graphs
in real-time would be a valuable contribution to the field.

Additionally, future work could explore the integration of security mechanisms into
autoscaling strategies, particularly in response to emerging threats such as Distributed
Denial of Service (DDoS) attacks targeting cloud environments. These attacks are not
necessarily designed to disrupt application performance but rather to inflict economic
damage by artificially inflating resource usage, leading to unnecessary scaling. Developing
autoscaling solutions capable of detecting and mitigating such attacks in real time could
help balance the cost-QoS trade-off more effectively and protect cloud deployments from
economic exploitation. This line of research would be crucial in enhancing the resilience
and cost-effectiveness of autoscaling in cloud-native 5G environments.

In summary, future work can build upon this research by exploring energy-efficient
autoscaling strategies, leveraging advanced forecasting techniques like GNNs to account
for NF inter-dependencies, and integrating security measures to protect against cost-
targeted attacks. We believe these research directions hold significant potential to advance
the autoscaling domain in cloud-native 5G networks, addressing both current challenges
and emerging threats.

175

PUBLICATIONS

1. M. P. J. Kuranage, L. Nuaymi, A. Bouabdallah, T. Ferrandiz and P. Bertin, "Deep
learning based resource forecasting for 5G core network scaling in Kubernetes envi-
ronment," IEEE 8th International Conference on Network Softwarization (NetSoft),
2022.

2. M. P. Jayasuriya Kuranage, E. Hanser, L. Nuaymi, A. Bouabdallah, P. Bertin and
A. Al-Dulaimi, "AI-assisted proactive scaling solution for CNFs deployed in Ku-
bernetes," IEEE 12th International Conference on Cloud Networking (CloudNet),
2023.

3. M. P. Jayasuriya Kuranage, E. Hanser, A. Bouabdallah, L. Nuaymi and P. Bertin,
"CPU Throttling-Aware AI-Based Autoscaling for Kubernetes," IEEE International
Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC),
2024.

177

BIBLIOGRAPHY

[1] Ericsson, « Mobility Report », Tech. Rep., Jun. 2024. [Online]. Available: https:
//www.ericsson.com/en/reports-and-papers/mobility-report/ (visited on
08/13/2024).

[2] Flexera, « Essential Strategies for Managing Cloud Costs », Tech. Rep., 2019. [On-
line]. Available: https://info.flexera.com/CM-WP-Essential-Strategies-fo
r-Managing-Cloud-Costs (visited on 08/13/2024).

[3] D. Ramsay, « Autonomous networks: exploring the evolution from level 0 to level
5 », Tech. Rep., Dec. 2021. [Online]. Available: https://inform.tmforum.org/r
esearch-and-analysis/reports/autonomous-networks-exploring-the-evol
ution-from-level-0-to-level-5 (visited on 08/25/2024).

[4] M. P. Jayasuriya Kuranage, L. Nuaymi, A. Bouabdallah, et al., « Deep learning
based resource forecasting for 5G core network scaling in Kubernetes environ-
ment », in IEEE 8th International Conference on Network Softwarization (Net-
Soft), Jun. 2022. [Online]. Available: https://ieeexplore.ieee.org/document
/9844056.

[5] M. P. Jayasuriya Kuranage, E. Hanser, L. Nuaymi, et al., « AI-assisted proactive
scaling solution for CNFs deployed in Kubernetes », in IEEE 12th International
Conference on Cloud Networking (CloudNet), Nov. 2023. [Online]. Available: htt
ps://ieeexplore.ieee.org/document/10490067.

[6] M. P. Jayasuriya Kuranage, E. Hanser, A. Bouabdallah, et al., « CPU throttling-
aware AI-based autoscaling for Kubernetes », in IEEE 35th International Sym-
posium on Personal, Indoor and Mobile Radio Communications (PIMRC), Sep.
2024. [Online]. Available: https://ieeexplore.ieee.org/document/10817283.

[7] A. Basta, A. Blenk, K. Hoffmann, et al., « Towards a Cost Optimal Design for a 5G
Mobile Core Network Based on SDN and NFV », IEEE Transactions on Network
and Service Management, Dec. 2017. [Online]. Available: https://ieeexplore.i
eee.org/document/7994617.

179

https://www.ericsson.com/en/reports-and-papers/mobility-report/
https://www.ericsson.com/en/reports-and-papers/mobility-report/
https://info.flexera.com/CM-WP-Essential-Strategies-for-Managing-Cloud-Costs
https://info.flexera.com/CM-WP-Essential-Strategies-for-Managing-Cloud-Costs
https://inform.tmforum.org/research-and-analysis/reports/autonomous-networks-exploring-the-evolution-from-level-0-to-level-5
https://inform.tmforum.org/research-and-analysis/reports/autonomous-networks-exploring-the-evolution-from-level-0-to-level-5
https://inform.tmforum.org/research-and-analysis/reports/autonomous-networks-exploring-the-evolution-from-level-0-to-level-5
https://ieeexplore.ieee.org/document/9844056
https://ieeexplore.ieee.org/document/9844056
https://ieeexplore.ieee.org/document/10490067
https://ieeexplore.ieee.org/document/10490067
https://ieeexplore.ieee.org/document/10817283
https://ieeexplore.ieee.org/document/7994617
https://ieeexplore.ieee.org/document/7994617

[8] N. Li, X. Xu, Q. Sun, et al., « Transforming the 5G RAN With Innovation: The
Confluence of Cloud Native and Intelligence », IEEE Access, 2023. [Online]. Avail-
able: https://ieeexplore.ieee.org/abstract/document/10006796.

[9] S. D. A. Shah, M. A. Gregory, and S. Li, « Cloud-Native Network Slicing Using
Software Defined Networking Based Multi-Access Edge Computing: A Survey »,
IEEE Access, 2021. [Online]. Available: https://ieeexplore.ieee.org/abstra
ct/document/9317860.

[10] 3GPP, System architecture for the 5G System (5GS), Release 15, TS 23.501, 2003.
[Online]. Available: https://portal.3gpp.org/.

[11] G. Mayer, « RESTful APIs for the 5G Service Based Architecture », Journal of
ICT Standardization, 2018. [Online]. Available: https://ieeexplore.ieee.org
/document/10258072.

[12] S. Imadali and A. Bousselmi, « Cloud Native 5G Virtual Network Functions: De-
sign Principles and Use Cases », in IEEE 8th International Symposium on Cloud
and Service Computing (SC2), Nov. 2018. [Online]. Available: https://ieeexplo
re.ieee.org/abstract/document/8567377.

[13] K. Trantzas, C. Tranoris, S. Denazis, et al., « An automated CI/CD process
for testing and deployment of Network Applications over 5G infrastructure », in
IEEE International Mediterranean Conference on Communications and Network-
ing (MeditCom), Sep. 2021. [Online]. Available: https://ieeexplore.ieee.org
/abstract/document/9647628.

[14] E. Guttman and I. Ali, « Path to 5G: A Control Plane Perspective », Journal of
ICT Standardization, 2018. [Online]. Available: https://ieeexplore.ieee.org
/abstract/document/10258071.

[15] ETSI, Network Functions Virtualisation (NFV); Management and Orchestration,
v1, GS NFV-MAN 001, Dec. 2014. [Online]. Available: https://www.etsi.org/d
eliver/etsi_gs/nfv-man/.

[16] S. Yrjölä, P. Ahokangas, and M. Matinmikko-Blue, « Novel Context and Platform
Driven Business Models via 5G Networks », in IEEE 29th Annual International
Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC),
Sep. 2018. [Online]. Available: https://ieeexplore.ieee.org/abstract/docum
ent/8580819.

180

https://ieeexplore.ieee.org/abstract/document/10006796
https://ieeexplore.ieee.org/abstract/document/9317860
https://ieeexplore.ieee.org/abstract/document/9317860
https://portal.3gpp.org/
https://ieeexplore.ieee.org/document/10258072
https://ieeexplore.ieee.org/document/10258072
https://ieeexplore.ieee.org/abstract/document/8567377
https://ieeexplore.ieee.org/abstract/document/8567377
https://ieeexplore.ieee.org/abstract/document/9647628
https://ieeexplore.ieee.org/abstract/document/9647628
https://ieeexplore.ieee.org/abstract/document/10258071
https://ieeexplore.ieee.org/abstract/document/10258071
https://www.etsi.org/deliver/etsi_gs/nfv-man/
https://www.etsi.org/deliver/etsi_gs/nfv-man/
https://ieeexplore.ieee.org/abstract/document/8580819
https://ieeexplore.ieee.org/abstract/document/8580819

[17] NGMN, Description of Network Slicing Concept,v1.0.8, Sep. 2016. [Online]. Avail-
able: https://www.ngmn.org/.

[18] M. Chahbar, G. Diaz, A. Dandoush, et al., « A Comprehensive Survey on the
E2E 5G Network Slicing Model », IEEE Transactions on Network and Service
Management, Mar. 2021. [Online]. Available: https://ieeexplore.ieee.org/do
cument/9295415.

[19] L. U. Khan, I. Yaqoob, N. H. Tran, et al., « Network Slicing: Recent Advances,
Taxonomy, Requirements, and Open Research Challenges », IEEE Access, 2020.
[Online]. Available: https://ieeexplore.ieee.org/abstract/document/90032
08.

[20] K. Kozłowski, S. Kukliński, and L. Tomaszewski, « Open issues in network slicing »,
in 9th International Conference on the Network of the Future (NOF), Nov. 2018.
[Online]. Available: https://ieeexplore.ieee.org/document/8598130.

[21] X. Foukas, G. Patounas, A. Elmokashfi, et al., « Network Slicing in 5G: Survey
and Challenges », IEEE Communications Magazine, May 2017. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/7926923.

[22] H. Zhang, N. Liu, X. Chu, et al., « Network Slicing Based 5G and Future Mobile
Networks: Mobility, Resource Management, and Challenges », IEEE Communica-
tions Magazine, Aug. 2017. [Online]. Available: https://ieeexplore.ieee.org
/abstract/document/8004168.

[23] F. Z. Yousaf, M. Bredel, S. Schaller, et al., « NFV and SDN—Key Technology
Enablers for 5G Networks », IEEE Journal on Selected Areas in Communications,
Nov. 2017. [Online]. Available: https://ieeexplore.ieee.org/document/80605
13.

[24] A. de la Oliva, X. Li, X. Costa-Perez, et al., « 5G-TRANSFORMER: Slicing and
Orchestrating Transport Networks for Industry Verticals », IEEE Communications
Magazine, Aug. 2018. [Online]. Available: https://ieeexplore.ieee.org/docum
ent/8436050.

[25] A. Kaloxylos, A. Gavras, D. Camps Mur, et al., « AI and ML – Enablers for Beyond
5G Networks », Zenodo, Tech. Rep., Dec. 2020. [Online]. Available: https://zen
odo.org/records/4299895 (visited on 07/25/2024).

181

https://www.ngmn.org/
https://ieeexplore.ieee.org/document/9295415
https://ieeexplore.ieee.org/document/9295415
https://ieeexplore.ieee.org/abstract/document/9003208
https://ieeexplore.ieee.org/abstract/document/9003208
https://ieeexplore.ieee.org/document/8598130
https://ieeexplore.ieee.org/abstract/document/7926923
https://ieeexplore.ieee.org/abstract/document/8004168
https://ieeexplore.ieee.org/abstract/document/8004168
https://ieeexplore.ieee.org/document/8060513
https://ieeexplore.ieee.org/document/8060513
https://ieeexplore.ieee.org/document/8436050
https://ieeexplore.ieee.org/document/8436050
https://zenodo.org/records/4299895
https://zenodo.org/records/4299895

[26] M. Ryder and C. Downs, « Rethinking reflective practice: John Boyd’s OODA loop
as an alternative to Kolb », The International Journal of Management Education,
Nov. 2022. [Online]. Available: https://www.sciencedirect.com/science/arti
cle/pii/S1472811722001057.

[27] J. Kephart and D. Chess, « The vision of autonomic computing », Computer, Jan.
2003. [Online]. Available: https://ieeexplore.ieee.org/document/1160055.

[28] 3GPP, Telecommunication management; Self-Organizing Networks (SON); Con-
cepts and requirements, Release 8, TS 32.500. [Online]. Available: https://porta
l.3gpp.org/.

[29] P. T. Endo, M. S. Batista, G. E. Gonçalves, et al., « Self-organizing strategies for
resource management in Cloud Computing: State-of-the-art and challenges », in
2nd IEEE Latin American Conference on Cloud Computing and Communications,
Dec. 2013. [Online]. Available: https://ieeexplore.ieee.org/abstract/docum
ent/6842215.

[30] N. Marchetti, N. R. Prasad, J. Johansson, et al., « Self-Organizing Networks: State-
of-the-art, challenges and perspectives », in 8th International Conference on Com-
munications, Jun. 2010. [Online]. Available: https://ieeexplore.ieee.org/doc
ument/5509022.

[31] E. Coronado, R. Behravesh, T. Subramanya, et al., « Zero Touch Management:
A Survey of Network Automation Solutions for 5G and 6G Networks », IEEE
Communications Surveys & Tutorials, 2022. [Online]. Available: https://ieeexp
lore.ieee.org/abstract/document/9913206.

[32] ETSI, Zero-touch network and Service Management (ZSM); Requirements based
on documented scenarios, V1.1.1, GS ZSM 001, Oct. 2019. [Online]. Available:
https://www.etsi.org/deliver/etsi_gs/ZSM/001_099/001/.

[33] ETSI, Zero-touch network and Service Management (ZSM); Reference Architec-
ture, V1.1.1, GS ZSM 002, Aug. 2019. [Online]. Available: https://www.etsi.or
g/deliver/etsi_gs/ZSM/001_099/002/.

[34] C. Benzaid and T. Taleb, « AI-Driven Zero Touch Network and Service Manage-
ment in 5G and Beyond: Challenges and Research Directions », IEEE Network,
Mar. 2020. [Online]. Available: https://ieeexplore.ieee.org/document/89949
61.

182

https://www.sciencedirect.com/science/article/pii/S1472811722001057
https://www.sciencedirect.com/science/article/pii/S1472811722001057
https://ieeexplore.ieee.org/document/1160055
https://portal.3gpp.org/
https://portal.3gpp.org/
https://ieeexplore.ieee.org/abstract/document/6842215
https://ieeexplore.ieee.org/abstract/document/6842215
https://ieeexplore.ieee.org/document/5509022
https://ieeexplore.ieee.org/document/5509022
https://ieeexplore.ieee.org/abstract/document/9913206
https://ieeexplore.ieee.org/abstract/document/9913206
https://www.etsi.org/deliver/etsi_gs/ZSM/001_099/001/
https://www.etsi.org/deliver/etsi_gs/ZSM/001_099/002/
https://www.etsi.org/deliver/etsi_gs/ZSM/001_099/002/
https://ieeexplore.ieee.org/document/8994961
https://ieeexplore.ieee.org/document/8994961

[35] M. Liyanage, Q.-V. Pham, K. Dev, et al., « A survey on Zero touch network and
Service Management (ZSM) for 5G and beyond networks », Journal of Network
and Computer Applications, Jul. 2022. [Online]. Available: https://www.science
direct.com/science/article/pii/S1084804522000297.

[36] ONAP, Open Network Automation Platform. [Online]. Available: https://www.o
nap.org/ (visited on 07/26/2024).

[37] R. Rokui, H. Yu, L. Deng, et al., « A Standards-Based, Model-Driven Solution
for 5G Transport Slice Automation and Assurance », in 6th IEEE Conference on
Network Softwarization (NetSoft), Jun. 2020. [Online]. Available: https://ieeex
plore.ieee.org/abstract/document/9165451.

[38] ETSI, Zero-touch network and Service Management (ZSM); Closed-Loop Automa-
tion; Part 1: Enablers, V1.1.1, GS ZSM 009-1, Jun. 2021. [Online]. Available: htt
ps://www.etsi.org/deliver/etsi_gs/ZSM/001_099//.

[39] ETSI, Zero-touch network and Service Management (ZSM); Closed-Loop Automa-
tion; Part 2: Solutions for automation of E2E service and network management
use cases, V1.1.1, GS ZSM 009-2, Jun. 2022. [Online]. Available: https://www.e
tsi.org/deliver/etsi_gs/ZSM/001_099/.

[40] ETSI, Zero-touch network and Service Management (ZSM); Closed-Loop Automa-
tion; Part 3: Advanced topics, V1.1.1, GR ZSM 009-3, Aug. 2023. [Online]. Avail-
able: https://www.etsi.org/deliver/etsi_gr/ZSM/001_099/.

[41] G. Lin, D. Fu, J. Zhu, et al., « Cloud Computing: IT as a Service », IT Professional,
Mar. 2009. [Online]. Available: https://ieeexplore.ieee.org/abstract/docum
ent/4804041.

[42] C. Gong, J. Liu, Q. Zhang, et al., « The Characteristics of Cloud Computing »,
in 39th International Conference on Parallel Processing Workshops, Sep. 2010.
[Online]. Available: https://ieeexplore.ieee.org/abstract/document/55990
83.

[43] Google, What are the different types of cloud computing? [Online]. Available: ht
tps://cloud.google.com/discover/types-of-cloud-computing (visited on
07/26/2024).

[44] Google, Google Cloud Platform. [Online]. Available: https://cloud.google.com/
(visited on 09/08/2024).

183

https://www.sciencedirect.com/science/article/pii/S1084804522000297
https://www.sciencedirect.com/science/article/pii/S1084804522000297
https://www.onap.org/
https://www.onap.org/
https://ieeexplore.ieee.org/abstract/document/9165451
https://ieeexplore.ieee.org/abstract/document/9165451
https://www.etsi.org/deliver/etsi_gs/ZSM/001_099//
https://www.etsi.org/deliver/etsi_gs/ZSM/001_099//
https://www.etsi.org/deliver/etsi_gs/ZSM/001_099/
https://www.etsi.org/deliver/etsi_gs/ZSM/001_099/
https://www.etsi.org/deliver/etsi_gr/ZSM/001_099/
https://ieeexplore.ieee.org/abstract/document/4804041
https://ieeexplore.ieee.org/abstract/document/4804041
https://ieeexplore.ieee.org/abstract/document/5599083
https://ieeexplore.ieee.org/abstract/document/5599083
https://cloud.google.com/discover/types-of-cloud-computing
https://cloud.google.com/discover/types-of-cloud-computing
https://cloud.google.com/

[45] Microsoft, Microsoft Azure. [Online]. Available: https://azure.microsoft.com/
(visited on 07/26/2024).

[46] Amazon, Amazon Web Services (AWS). [Online]. Available: https://aws.amazon
.com/ (visited on 07/26/2024).

[47] Y. Jadeja and K. Modi, « Cloud computing - concepts, architecture and chal-
lenges », in International Conference on Computing, Electronics and Electrical
Technologies (ICCEET), Mar. 2012. [Online]. Available: https : / / ieeexplore
.ieee.org/abstract/document/6203873.

[48] Google, PaaS vs IaaS vs SaaS: What’s the difference? [Online]. Available: https:
//cloud.google.com/learn/paas-vs-iaas-vs-saas (visited on 07/23/2024).

[49] C. Wu, R. Buyya, and K. Ramamohanarao, « Cloud Pricing Models: Taxonomy,
Survey, and Interdisciplinary Challenges », ACM Comput. Surv., Oct. 2019. [On-
line]. Available: https://doi.org/10.1145/3342103.

[50] S. Kansal, G. Singh, H. Kumar, et al., « Pricing Models in Cloud Computing »,
in International Conference on Information and Communication Technology for
Competitive Strategies, Oct. 2014. [Online]. Available: https://doi.org/10.114
5/2677855.2677888.

[51] S.-H. Chun and B.-S. Choi, « Service models and pricing schemes for cloud com-
puting », Cluster Computing, Jun. 2014. [Online]. Available: https://doi.org/1
0.1007/s10586-013-0296-1.

[52] Google, Google Kubernetes Engine (GKE). [Online]. Available: https://cloud.g
oogle.com/kubernetes-engine (visited on 07/28/2024).

[53] Amazon, Elastic Kubernetes Service. [Online]. Available: https://aws.amazon.c
om/eks/ (visited on 07/28/2024).

[54] Kubernetes, Production-Grade Container Orchestration. [Online]. Available: http
s://kubernetes.io/ (visited on 07/28/2024).

[55] A. Verma, L. Pedrosa, M. Korupolu, et al., « Large-scale cluster management at
Google with Borg », in 10th European Conference on Computer Systems, Apr.
2015. [Online]. Available: https://dl.acm.org/doi/10.1145/2741948.2741964.

184

https://azure.microsoft.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://ieeexplore.ieee.org/abstract/document/6203873
https://ieeexplore.ieee.org/abstract/document/6203873
https://cloud.google.com/learn/paas-vs-iaas-vs-saas
https://cloud.google.com/learn/paas-vs-iaas-vs-saas
https://doi.org/10.1145/3342103
https://doi.org/10.1145/2677855.2677888
https://doi.org/10.1145/2677855.2677888
https://doi.org/10.1007/s10586-013-0296-1
https://doi.org/10.1007/s10586-013-0296-1
https://cloud.google.com/kubernetes-engine
https://cloud.google.com/kubernetes-engine
https://aws.amazon.com/eks/
https://aws.amazon.com/eks/
https://kubernetes.io/
https://kubernetes.io/
https://dl.acm.org/doi/10.1145/2741948.2741964

[56] M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek, et al., « Omega: flexible, scal-
able schedulers for large compute clusters », in 8th ACM European Conference on
Computer Systems, Apr. 2013. [Online]. Available: https://dl.acm.org/doi/10
.1145/2465351.2465386.

[57] CNCF, Cloud Native Computing Foundation. [Online]. Available: https://www.c
ncf.io/ (visited on 07/28/2024).

[58] The Linux Foundation. [Online]. Available: https://www.linuxfoundation.org
(visited on 07/28/2024).

[59] OpenStack, Open Source Cloud Computing Infrastructure. [Online]. Available: ht
tps://www.openstack.org/ (visited on 09/08/2024).

[60] T.-T. Nguyen, Y.-J. Yeom, T. Kim, et al., « Horizontal Pod Autoscaling in Kuber-
netes for Elastic Container Orchestration », Sensors, Jan. 2020. [Online]. Available:
https://www.mdpi.com/1424-8220/20/16/4621.

[61] Docker, Accelerated Container Application Development, May 2022. [Online]. Avail-
able: https://www.docker.com/ (visited on 07/28/2024).

[62] Containerd. [Online]. Available: https://containerd.io/ (visited on 07/28/2024).

[63] CRI-O. [Online]. Available: https://cri-o.io/ (visited on 07/28/2024).

[64] H. D. Trinh, N. Bui, J. Widmer, et al., « Analysis and modeling of mobile traffic
using real traces », in IEEE 28th Annual International Symposium on Personal,
Indoor, and Mobile Radio Communications (PIMRC), Oct. 2017. [Online]. Avail-
able: https://ieeexplore.ieee.org/abstract/document/8292200.

[65] Kubernetes, Horizontal Pod Autoscaling. [Online]. Available: https://kubernete
s.io/docs/tasks/run-application/horizontal-pod-autoscale/ (visited on
07/30/2024).

[66] Google, Vertical Pod autoscaling. [Online]. Available: https://cloud.google.c
om/kubernetes- engine/docs/concepts/verticalpodautoscaler (visited on
07/30/2024).

[67] Kubernetes, Cluster Autoscaling. [Online]. Available: https://kubernetes.io/d
ocs/concepts/cluster-administration/cluster-autoscaling/ (visited on
07/30/2024).

185

https://dl.acm.org/doi/10.1145/2465351.2465386
https://dl.acm.org/doi/10.1145/2465351.2465386
https://www.cncf.io/
https://www.cncf.io/
https://www.linuxfoundation.org
https://www.openstack.org/
https://www.openstack.org/
https://www.mdpi.com/1424-8220/20/16/4621
https://www.docker.com/
https://containerd.io/
https://cri-o.io/
https://ieeexplore.ieee.org/abstract/document/8292200
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://cloud.google.com/kubernetes-engine/docs/concepts/verticalpodautoscaler
https://cloud.google.com/kubernetes-engine/docs/concepts/verticalpodautoscaler
https://kubernetes.io/docs/concepts/cluster-administration/cluster-autoscaling/
https://kubernetes.io/docs/concepts/cluster-administration/cluster-autoscaling/

[68] F. L. Ferraris, D. Franceschelli, M. P. Gioiosa, et al., « Evaluating the Auto Scal-
ing Performance of Flexiscale and Amazon EC2 Clouds », in 14th International
Symposium on Symbolic and Numeric Algorithms for Scientific Computing, Sep.
2012. [Online]. Available: https://ieeexplore.ieee.org/document/6481061.

[69] Google, Autopilot overview. [Online]. Available: https://cloud.google.com/kub
ernetes-engine/docs/concepts/autopilot-overview (visited on 04/21/2024).

[70] K. Rzadca, P. Findeisen, J. Swiderski, et al., « Autopilot: workload autoscaling at
Google », in 15th European Conference on Computer Systems, Apr. 2020. [Online].
Available: https://dl.acm.org/doi/10.1145/3342195.3387524.

[71] Y. Zhang, Y. Yu, W. Wang, et al., « Workload consolidation in alibaba clusters:
the good, the bad, and the ugly », in 13th Symposium on Cloud Computing, Nov.
2022. [Online]. Available: https://dl.acm.org/doi/10.1145/3542929.3563465.

[72] C. Qu, R. N. Calheiros, and R. Buyya, « Auto-Scaling Web Applications in Clouds:
A Taxonomy and Survey », ACM Computing Surveys, Jul. 2018. [Online]. Avail-
able: https://dl.acm.org/doi/10.1145/3148149.

[73] T. Chen, R. Bahsoon, and X. Yao, « A Survey and Taxonomy of Self-Aware and
Self-Adaptive Cloud Autoscaling Systems », ACM Computing Surveys, Jun. 2018.
[Online]. Available: https://dl.acm.org/doi/10.1145/3190507.

[74] T. Lorido-Botran, J. Miguel-Alonso, and J. A. Lozano, « A Review of Auto-scaling
Techniques for Elastic Applications in Cloud Environments », Journal of Grid
Computing, Dec. 2014. [Online]. Available: https://doi.org/10.1007/s10723-0
14-9314-7.

[75] Y. Al-Dhuraibi, F. Paraiso, N. Djarallah, et al., « Elasticity in Cloud Computing:
State of the Art and Research Challenges », IEEE Transactions on Services Com-
puting, Mar. 2018. [Online]. Available: https://ieeexplore.ieee.org/abstrac
t/document/7937885.

[76] C. Barna, M. Fokaefs, M. Litoiu, et al., « Cloud Adaptation with Control Theory
in Industrial Clouds », in IEEE International Conference on Cloud Engineering
Workshop (IC2EW), Apr. 2016. [Online]. Available: https://ieeexplore.ieee
.org/abstract/document/7527853.

186

https://ieeexplore.ieee.org/document/6481061
https://cloud.google.com/kubernetes-engine/docs/concepts/autopilot-overview
https://cloud.google.com/kubernetes-engine/docs/concepts/autopilot-overview
https://dl.acm.org/doi/10.1145/3342195.3387524
https://dl.acm.org/doi/10.1145/3542929.3563465
https://dl.acm.org/doi/10.1145/3148149
https://dl.acm.org/doi/10.1145/3190507
https://doi.org/10.1007/s10723-014-9314-7
https://doi.org/10.1007/s10723-014-9314-7
https://ieeexplore.ieee.org/abstract/document/7937885
https://ieeexplore.ieee.org/abstract/document/7937885
https://ieeexplore.ieee.org/abstract/document/7527853
https://ieeexplore.ieee.org/abstract/document/7527853

[77] D. Niu, H. Xu, and B. Li, « Resource Auto-Scaling and Sparse Content Replication
for Video Storage Systems », ACM Transactions on Modeling and Performance
Evaluation of Computing Systems, Nov. 2017. [Online]. Available: https://dl.ac
m.org/doi/10.1145/3079045.

[78] I. Alawe, A. Ksentini, Y. Hadjadj-Aoul, et al., « Improving Traffic Forecasting for
5G Core Network Scalability: A Machine Learning Approach », IEEE Network,
Nov. 2018. [Online]. Available: https://ieeexplore.ieee.org/document/85536
53.

[79] M. Mekki, B. Brik, A. Ksentini, et al., « XAI-Enabled Fine Granular Vertical
Resources Autoscaler », in IEEE 9th International Conference on Network Soft-
warization (NetSoft), Jun. 2023. [Online]. Available: https://ieeexplore.ieee
.org/abstract/document/10175438.

[80] Y. Al-Dhuraibi, F. Paraiso, N. Djarallah, et al., « Autonomic Vertical Elasticity of
Docker Containers with ELASTICDOCKER », in IEEE 10th International Con-
ference on Cloud Computing (CLOUD), Jun. 2017. [Online]. Available: https://i
eeexplore.ieee.org/document/8030623.

[81] W. A. Hanafy, Q. Liang, N. Bashir, et al., « CarbonScaler: Leveraging Cloud
Workload Elasticity for Optimizing Carbon-Efficiency », ACM on Measurement
and Analysis of Computing Systems, Dec. 2023. [Online]. Available: https://dl
.acm.org/doi/10.1145/3626788.

[82] M. A. Tamiru, J. Tordsson, E. Elmroth, et al., « An Experimental Evaluation of the
Kubernetes Cluster Autoscaler in the Cloud », in IEEE International Conference
on Cloud Computing Technology and Science (CloudCom), Dec. 2020. [Online].
Available: https://ieeexplore.ieee.org/abstract/document/9407312.

[83] M. Wang, D. Zhang, and B. Wu, « A Cluster Autoscaler Based on Multiple Node
Types in Kubernetes », in IEEE 4th Information Technology, Networking, Elec-
tronic and Automation Control Conference (ITNEC), Jun. 2020. [Online]. Avail-
able: https://ieeexplore.ieee.org/document/9084706.

[84] Q. Wu, J. Yu, L. Lu, et al., « Dynamically Adjusting Scale of a Kubernetes Cluster
under QoS Guarantee », in IEEE 25th International Conference on Parallel and
Distributed Systems (ICPADS), Dec. 2019. [Online]. Available: https://ieeexpl
ore.ieee.org/document/8975761.

187

https://dl.acm.org/doi/10.1145/3079045
https://dl.acm.org/doi/10.1145/3079045
https://ieeexplore.ieee.org/document/8553653
https://ieeexplore.ieee.org/document/8553653
https://ieeexplore.ieee.org/abstract/document/10175438
https://ieeexplore.ieee.org/abstract/document/10175438
https://ieeexplore.ieee.org/document/8030623
https://ieeexplore.ieee.org/document/8030623
https://dl.acm.org/doi/10.1145/3626788
https://dl.acm.org/doi/10.1145/3626788
https://ieeexplore.ieee.org/abstract/document/9407312
https://ieeexplore.ieee.org/document/9084706
https://ieeexplore.ieee.org/document/8975761
https://ieeexplore.ieee.org/document/8975761

[85] T. V. Doan, G. T. Nguyen, H. Salah, et al., « Containers vs Virtual Machines:
Choosing the Right Virtualization Technology for Mobile Edge Cloud », in IEEE
2nd 5G World Forum (5GWF), Sep. 2019. [Online]. Available: https://ieeexpl
ore.ieee.org/abstract/document/8911715.

[86] I. Sarrigiannis, K. Ramantas, E. Kartsakli, et al., « Online VNF Lifecycle Man-
agement in an MEC-Enabled 5G IoT Architecture », IEEE Internet of Things
Journal, May 2020. [Online]. Available: https://ieeexplore.ieee.org/docume
nt/8854289.

[87] L. M. Ruíz, P. P. Pueyo, J. Mateo-Fornés, et al., « Autoscaling Pods on an On-
Premise Kubernetes Infrastructure QoS-Aware », IEEE Access, 2022. [Online].
Available: https://ieeexplore.ieee.org/abstract/document/9732997.

[88] E. Karypiadis, A. Nikolakopoulos, A. Marinakis, et al., « SCAL-E: An Auto Scaling
Agent for Optimum Big Data Load Balancing in Kubernetes Environments », in
International Conference on Computer, Information and Telecommunication Sys-
tems (CITS), Jul. 2022. [Online]. Available: https://ieeexplore.ieee.org/doc
ument/9832990.

[89] L. H. Phuc, L.-A. Phan, and T. Kim, « Traffic-Aware Horizontal Pod Autoscaler in
Kubernetes-Based Edge Computing Infrastructure », IEEE Access, 2022. [Online].
Available: https://ieeexplore.ieee.org/abstract/document/9709810.

[90] F. Tonini, C. Natalino, L. Wosinska, et al., « Demonstrating the Benefits of Service-
Aware Pod Autoscaling with Shared Resources », in IEEE 9th International Con-
ference on Network Softwarization (NetSoft), Jun. 2023. [Online]. Available: http
s://ieeexplore.ieee.org/document/10175413.

[91] G. Rattihalli, M. Govindaraju, H. Lu, et al., « Exploring Potential for Non-Disrupt-
ive Vertical Auto Scaling and Resource Estimation in Kubernetes », in IEEE
12th International Conference on Cloud Computing (CLOUD), Jul. 2019. [Online].
Available: https://ieeexplore.ieee.org/document/8814504.

[92] C. H. T. Arteaga, F. B. Anacona, K. T. T. Ortega, et al., « A Scaling Mechanism
for an Evolved Packet Core Based on Network Functions Virtualization », IEEE
Transactions on Network and Service Management, Jun. 2020. [Online]. Available:
https://ieeexplore.ieee.org/document/8941016.

188

https://ieeexplore.ieee.org/abstract/document/8911715
https://ieeexplore.ieee.org/abstract/document/8911715
https://ieeexplore.ieee.org/document/8854289
https://ieeexplore.ieee.org/document/8854289
https://ieeexplore.ieee.org/abstract/document/9732997
https://ieeexplore.ieee.org/document/9832990
https://ieeexplore.ieee.org/document/9832990
https://ieeexplore.ieee.org/abstract/document/9709810
https://ieeexplore.ieee.org/document/10175413
https://ieeexplore.ieee.org/document/10175413
https://ieeexplore.ieee.org/document/8814504
https://ieeexplore.ieee.org/document/8941016

[93] T. V. K. Buyakar, A. K. Rangisetti, A. A. Franklin, et al., « Auto scaling of data
plane VNFs in 5G networks », in 13th International Conference on Network and
Service Management (CNSM), Nov. 2017. [Online]. Available: https://ieeexplo
re.ieee.org/document/8256027.

[94] LXC, Linux Containers. [Online]. Available: https://linuxcontainers.org/
(visited on 08/14/2024).

[95] V.-G. Nguyen, K.-J. Grinnemo, J. Taheri, et al., « On Auto-scaling and Load
Balancing for User-plane Gateways in a Softwarized 5G Network », in 17th In-
ternational Conference on Network and Service Management (CNSM), Oct. 2021.
[Online]. Available: https://ieeexplore.ieee.org/document/9615536.

[96] Y. Ren, T. Phung-Duc, Y.-K. Liu, et al., « ASA: Adaptive VNF Scaling Algorithm
for 5G Mobile Networks », in IEEE 7th International Conference on Cloud Net-
working (CloudNet), Oct. 2018. [Online]. Available: https://ieeexplore.ieee.o
rg/document/8549542.

[97] J. Tong, M. Wei, M. Pan, et al., « A Holistic Auto-Scaling Algorithm for Multi-
Service Applications Based on Balanced Queuing Network », in IEEE International
Conference on Web Services (ICWS), Sep. 2021. [Online]. Available: https://ie
eexplore.ieee.org/document/9590244.

[98] Z. Ding and Q. Huang, « COPA: A Combined Autoscaling Method for Kuber-
netes », in IEEE International Conference on Web Services (ICWS), Sep. 2021.
[Online]. Available: https://ieeexplore.ieee.org/document/9590262.

[99] J. Prados-Garzon, A. Laghrissi, M. Bagaa, et al., « A Queuing Based Dynamic
Auto Scaling Algorithm for the LTE EPC Control Plane », in IEEE Global Com-
munications Conference (GLOBECOM), Dec. 2018. [Online]. Available: https:
//ieeexplore.ieee.org/abstract/document/8648023.

[100] S. Burroughs, H. Dickel, M. van Zijl, et al., « Towards Autoscaling with Guaran-
tees on Kubernetes Clusters », in IEEE International Conference on Autonomic
Computing and Self-Organizing Systems Companion, Sep. 2021. [Online]. Available:
https://ieeexplore.ieee.org/document/9599238.

[101] S. Bhandari, M. Patrou, N. Chahal, et al., « Supervisory Event Loop-based Au-
toscaling of Node.js Deployments », in IEEE International Conference on High

189

https://ieeexplore.ieee.org/document/8256027
https://ieeexplore.ieee.org/document/8256027
https://linuxcontainers.org/
https://ieeexplore.ieee.org/document/9615536
https://ieeexplore.ieee.org/document/8549542
https://ieeexplore.ieee.org/document/8549542
https://ieeexplore.ieee.org/document/9590244
https://ieeexplore.ieee.org/document/9590244
https://ieeexplore.ieee.org/document/9590262
https://ieeexplore.ieee.org/abstract/document/8648023
https://ieeexplore.ieee.org/abstract/document/8648023
https://ieeexplore.ieee.org/document/9599238

Performance Big Data and Intelligent Systems (HDIS), Dec. 2022. [Online]. Avail-
able: https://ieeexplore.ieee.org/document/9991325.

[102] S. Gong, B. Yin, and K.-y. Cai, « An Adaptive PID Control for QoS Management
in Cloud Computing System », in IEEE International Symposium on Software
Reliability Engineering Workshops (ISSREW), Oct. 2018. [Online]. Available: htt
ps://ieeexplore.ieee.org/document/8539182.

[103] F.-H. Tseng, M.-S. Tsai, C.-W. Tseng, et al., « A Lightweight Autoscaling Mech-
anism for Fog Computing in Industrial Applications », IEEE Transactions on In-
dustrial Informatics, Oct. 2018. [Online]. Available: https://ieeexplore.ieee.o
rg/abstract/document/8272512.

[104] P. Benedetti, M. Femminella, G. Reali, et al., « Reinforcement Learning Applicabil-
ity for Resource-Based Auto-scaling in Serverless Edge Applications », in IEEE In-
ternational Conference on Pervasive Computing and Communications Workshops
and other Affiliated Events (PerCom Workshops), Mar. 2022. [Online]. Available:
https://ieeexplore.ieee.org/document/9767437.

[105] C. Ayimba, P. Casari, and V. Mancuso, « Adaptive Resource Provisioning based on
Application State », in IEEE International Conference on Computing, Networking
and Communications (ICNC), Feb. 2019. [Online]. Available: https://ieeexplo
re.ieee.org/document/8685605/.

[106] C. Ayimba, P. Casari, and V. Mancuso, « SQLR: Short-Term Memory Q-Learning
for Elastic Provisioning », IEEE Transactions on Network and Service Manage-
ment, Jun. 2021. [Online]. Available: https://ieeexplore.ieee.org/document
/9416291.

[107] Z. Xiao and S. Hu, « DScaler: A Horizontal Autoscaler of Microservice Based on
Deep Reinforcement Learning », in IEEE 23rd Asia-Pacific Network Operations
and Management Symposium (APNOMS), Sep. 2022. [Online]. Available: https:
//ieeexplore.ieee.org/document/9919994.

[108] A. A. Khaleq and I. Ra, « Intelligent Autoscaling of Microservices in the Cloud for
Real-Time Applications », IEEE Access, 2021. [Online]. Available: https://ieee
xplore.ieee.org/document/9361549.

190

https://ieeexplore.ieee.org/document/9991325
https://ieeexplore.ieee.org/document/8539182
https://ieeexplore.ieee.org/document/8539182
https://ieeexplore.ieee.org/abstract/document/8272512
https://ieeexplore.ieee.org/abstract/document/8272512
https://ieeexplore.ieee.org/document/9767437
https://ieeexplore.ieee.org/document/8685605/
https://ieeexplore.ieee.org/document/8685605/
https://ieeexplore.ieee.org/document/9416291
https://ieeexplore.ieee.org/document/9416291
https://ieeexplore.ieee.org/document/9919994
https://ieeexplore.ieee.org/document/9919994
https://ieeexplore.ieee.org/document/9361549
https://ieeexplore.ieee.org/document/9361549

[109] L. Lin, L. Pan, and S. Liu, « Learning to make auto-scaling decisions with hetero-
geneous spot and on-demand instances via reinforcement learning », Information
Sciences, Oct. 2022. [Online]. Available: https://www.sciencedirect.com/scie
nce/article/pii/S0020025522011902.

[110] S. Vakilinia, C. Truchan, J. Kempf, et al., « Automated Enforcement of SLA for
Cloud Services », in IEEE 11th International Conference on Cloud Computing
(CLOUD), Jul. 2018. [Online]. Available: https://ieeexplore.ieee.org/docum
ent/8457782.

[111] Y. Zhao and A. Uta, « Tiny Autoscalers for Tiny Workloads: Dynamic CPU Al-
location for Serverless Functions », in 22nd IEEE International Symposium on
Cluster, Cloud and Internet Computing (CCGrid), May 2022. [Online]. Available:
https://ieeexplore.ieee.org/document/9825916 (visited on 02/07/2024).

[112] H. Zhao, H. Lim, M. Hanif, et al., « Predictive Container Auto-Scaling for Cloud-
Native Applications », in International Conference on Information and Commu-
nication Technology Convergence (ICTC), Oct. 2019. [Online]. Available: https:
//ieeexplore.ieee.org/abstract/document/8939932.

[113] T. Wang, S. Ferlin, and M. Chiesa, « Predicting CPU usage for proactive autoscal-
ing », in 1st Workshop on Machine Learning and Systems, Apr. 2021. [Online].
Available: https://dl.acm.org/doi/10.1145/3437984.3458831.

[114] A. Mudvari, N. Makris, and L. Tassiulas, « ML-driven scaling of 5G Cloud-Native
RANs », in IEEE Global Communications Conference (GLOBECOM), Dec. 2021.
[Online]. Available: https://ieeexplore.ieee.org/document/9685874.

[115] N.-M. Dang-Quang and M. Yoo, « Deep Learning-Based Autoscaling Using Bidi-
rectional Long Short-Term Memory for Kubernetes », Applied Sciences, Jan. 2021.
[Online]. Available: https://www.mdpi.com/2076-3417/11/9/3835.

[116] E. H. Beni, E. Truyen, B. Lagaisse, et al., « Reducing cold starts during elastic
scaling of containers in kubernetes », in 36th Annual ACM Symposium on Applied
Computing, Apr. 2021. [Online]. Available: https://dl.acm.org/doi/10.1145/3
412841.3441887.

[117] ONF, SD-Core - documentation, v 1.3. [Online]. Available: https://docs.sd-co
re.opennetworking.org/master/release/1.3.html (visited on 06/05/2024).

191

https://www.sciencedirect.com/science/article/pii/S0020025522011902
https://www.sciencedirect.com/science/article/pii/S0020025522011902
https://ieeexplore.ieee.org/document/8457782
https://ieeexplore.ieee.org/document/8457782
https://ieeexplore.ieee.org/document/9825916
https://ieeexplore.ieee.org/abstract/document/8939932
https://ieeexplore.ieee.org/abstract/document/8939932
https://dl.acm.org/doi/10.1145/3437984.3458831
https://ieeexplore.ieee.org/document/9685874
https://www.mdpi.com/2076-3417/11/9/3835
https://dl.acm.org/doi/10.1145/3412841.3441887
https://dl.acm.org/doi/10.1145/3412841.3441887
https://docs.sd-core.opennetworking.org/master/release/1.3.html
https://docs.sd-core.opennetworking.org/master/release/1.3.html

[118] ONF, Open Networking Foundation. [Online]. Available: https://opennetworkin
g.org/ (visited on 06/05/2024).

[119] Prometheus, Monitoring system & time series database. [Online]. Available: http
s://prometheus.io/ (visited on 06/05/2024).

[120] Grafana, The open observability platform. [Online]. Available: https://grafana
.com/ (visited on 06/05/2024).

[121] A. Güngör, UERANSIM, Jun. 2024. [Online]. Available: https://github.com/a
ligungr/UERANSIM (visited on 06/05/2024).

[122] 3GPP, Procedures for the 5G System (5GS), Release 15, TS 23.502, 2016. [Online].
Available: https://portal.3gpp.org/.

[123] E. Goshi, M. Jarschel, R. Pries, et al., « Investigating Inter-NF Dependencies in
Cloud-Native 5G Core Networks », in 17th International Conference on Network
and Service Management (CNSM), Oct. 2021. [Online]. Available: https://ieee
xplore.ieee.org/document/9615565.

[124] R. Makhlouf, « Cloudy transaction costs: a dive into cloud computing economics »,
Journal of Cloud Computing, Jan. 2020. [Online]. Available: https://doi.org/1
0.1186/s13677-019-0149-4.

[125] L. Toka, G. Dobreff, B. Fodor, et al., « Machine Learning-Based Scaling Manage-
ment for Kubernetes Edge Clusters », IEEE Transactions on Network and Service
Management, Mar. 2021. [Online]. Available: https://ieeexplore.ieee.org/do
cument/9328525.

[126] T. Subramanya and R. Riggio, « Centralized and Federated Learning for Predictive
VNF Autoscaling in Multi-Domain 5G Networks and Beyond », IEEE Transactions
on Network and Service Management, Mar. 2021. [Online]. Available: https://ie
eexplore.ieee.org/document/9319704.

[127] S. P. Sone, J. J. Lehtomäki, and Z. Khan, « Wireless Traffic Usage Forecasting
Using Real Enterprise Network Data: Analysis and Methods », IEEE Open Journal
of the Communications Society, 2020. [Online]. Available: https://ieeexplore.i
eee.org/document/9108216.

192

https://opennetworking.org/
https://opennetworking.org/
https://prometheus.io/
https://prometheus.io/
https://grafana.com/
https://grafana.com/
https://github.com/aligungr/UERANSIM
https://github.com/aligungr/UERANSIM
https://portal.3gpp.org/
https://ieeexplore.ieee.org/document/9615565
https://ieeexplore.ieee.org/document/9615565
https://doi.org/10.1186/s13677-019-0149-4
https://doi.org/10.1186/s13677-019-0149-4
https://ieeexplore.ieee.org/document/9328525
https://ieeexplore.ieee.org/document/9328525
https://ieeexplore.ieee.org/document/9319704
https://ieeexplore.ieee.org/document/9319704
https://ieeexplore.ieee.org/document/9108216
https://ieeexplore.ieee.org/document/9108216

[128] A. Kumar Dubey, A. Kumar, V. García-Díaz, et al., « Study and analysis of
SARIMA and LSTM in forecasting time series data », Sustainable Energy Tech-
nologies and Assessments, Oct. 2021. [Online]. Available: https://www.scienced
irect.com/science/article/pii/S2213138821004847.

[129] S. Ouhame and Y. Hadi, « Multivariate workload prediction using Vector Autore-
gressive and Stacked LSTM models », in New Challenges in Data Sciences: Acts of
the Second Conference of the Moroccan Classification Society, Mar. 2019. [Online].
Available: https://dl.acm.org/doi/10.1145/3314074.3314084.

[130] S. Rinchen, A. Yassine, K. Schwartzentruber, et al., « Integrating Small Scale
Green Energy into Smart Grids: Prediction for Peak Load Reduction », in Inter-
national Conference on Computer and Applications (ICCA), Aug. 2018. [Online].
Available: https://ieeexplore.ieee.org/abstract/document/8460222.

[131] T. Xie and J. Ding, « Forecasting with Multiple Seasonality », in IEEE Interna-
tional Conference on Big Data (Big Data), Dec. 2020. [Online]. Available: https:
//ieeexplore.ieee.org/document/9378072.

[132] F. V. Atabay, R. M. Pagkalinawan, S. D. Pajarillo, et al., « Multivariate Time
Series Forecasting using ARIMAX, SARIMAX, and RNN-based Deep Learning
Models on Electricity Consumption », in 3rd International Informatics and Soft-
ware Engineering Conference (IISEC), Dec. 2022. [Online]. Available: https://i
eeexplore.ieee.org/document/9998301.

[133] T. Italia, Telecommunications - SMS, Call, Internet - TN, Feb. 2020. [Online].
Available: https://dataverse.harvard.edu/dataset.xhtml?persistentId=do
i:10.7910/DVN/QLCABU (visited on 02/04/2024).

[134] KongHQ, Kong Gateway. [Online]. Available: https://docs.konghq.com (visited
on 06/06/2024).

[135] X. Wu, B. Xiang, H. Lu, et al., « Optimizing Recurrent Neural Networks: A Study
on Gradient Normalization of Weights for Enhanced Training Efficiency », Applied
Sciences, Jan. 2024. [Online]. Available: https://www.mdpi.com/2076-3417/14
/15/6578.

[136] V. Gupta and R. Hewett, « Adaptive Normalization in Streaming Data », in 3rd
International Conference on Big Data Research, Jan. 2020. [Online]. Available:
https://dl.acm.org/doi/10.1145/3372454.3372466.

193

https://www.sciencedirect.com/science/article/pii/S2213138821004847
https://www.sciencedirect.com/science/article/pii/S2213138821004847
https://dl.acm.org/doi/10.1145/3314074.3314084
https://ieeexplore.ieee.org/abstract/document/8460222
https://ieeexplore.ieee.org/document/9378072
https://ieeexplore.ieee.org/document/9378072
https://ieeexplore.ieee.org/document/9998301
https://ieeexplore.ieee.org/document/9998301
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/QLCABU
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/QLCABU
https://docs.konghq.com
https://www.mdpi.com/2076-3417/14/15/6578
https://www.mdpi.com/2076-3417/14/15/6578
https://dl.acm.org/doi/10.1145/3372454.3372466

[137] Y. Shynkevich, T. M. McGinnity, S. A. Coleman, et al., « Forecasting price move-
ments using technical indicators: Investigating the impact of varying input window
length », Neurocomputing, 2017. [Online]. Available: https://www.sciencedirec
t.com/science/article/pii/S0925231217311074.

[138] N. Nguyen and T. Kim, « Toward Highly Scalable Load Balancing in Kubernetes
Clusters », IEEE Communications Magazine, Jul. 2020. [Online]. Available: http
s://ieeexplore.ieee.org/abstract/document/9161999.

[139] A. Renault, A. Bondu, A. Cornuéjols, et al., Early Classification of Time Series:
Taxonomy and Benchmark, Jul. 2024. [Online]. Available: http://arxiv.org/ab
s/2406.18332 (visited on 08/13/2024).

[140] A. Bondu, Y. Achenchabe, A. Bifet, et al., « Open challenges for Machine Learn-
ing based Early Decision-Making research », SIGKDD Explor. Newsl., Dec. 2022.
[Online]. Available: https://dl.acm.org/doi/10.1145/3575637.3575643.

[141] P.-E. Zafar, Y. Achenchabe, A. Bondu, et al., « Early Classification of Time Series:
Cost-based multiclass Algorithms », in IEEE 8th International Conference on Data
Science and Advanced Analytics (DSAA), Oct. 2021. [Online]. Available: https:
//ieeexplore.ieee.org/abstract/document/9564134.

[142] Linux, CFS Scheduler — The Linux Kernel documentation. [Online]. Available:
https://docs.kernel.org/scheduler/sched-design-CFS.html (visited on
09/08/2024).

[143] Linux, Control Groups — The Linux Kernel documentation. [Online]. Available:
https://docs.kernel.org/admin-guide/cgroup-v1/cgroups.html (visited on
09/08/2024).

[144] Amazon, Using Prometheus to Avoid Disasters with Kubernetes CPU Limits | Con-
tainers, Section: Amazon Elastic Kubernetes Service, Sep. 2022. [Online]. Available:
https://aws.amazon.com/blogs/containers/using-prometheus-to-avoid-d
isasters-with-kubernetes-cpu-limits/ (visited on 09/10/2024).

[145] Linux, Red-black Trees — The Linux Kernel documentation. [Online]. Available: ht
tps://www.kernel.org/doc/Documentation/rbtree.txt (visited on 09/08/2024).

194

https://www.sciencedirect.com/science/article/pii/S0925231217311074
https://www.sciencedirect.com/science/article/pii/S0925231217311074
https://ieeexplore.ieee.org/abstract/document/9161999
https://ieeexplore.ieee.org/abstract/document/9161999
http://arxiv.org/abs/2406.18332
http://arxiv.org/abs/2406.18332
https://dl.acm.org/doi/10.1145/3575637.3575643
https://ieeexplore.ieee.org/abstract/document/9564134
https://ieeexplore.ieee.org/abstract/document/9564134
https://docs.kernel.org/scheduler/sched-design-CFS.html
https://docs.kernel.org/admin-guide/cgroup-v1/cgroups.html
https://aws.amazon.com/blogs/containers/using-prometheus-to-avoid-disasters-with-kubernetes-cpu-limits/
https://aws.amazon.com/blogs/containers/using-prometheus-to-avoid-disasters-with-kubernetes-cpu-limits/
https://www.kernel.org/doc/Documentation/rbtree.txt
https://www.kernel.org/doc/Documentation/rbtree.txt

[146] C.-C. Chuang and Y.-C. Tsai, « Performance Evaluation and Improvement of a
Cloud-Native Data Analysis System Application », in International Conference on
Electronic Communications, Internet of Things and Big Data (ICEIB), Dec. 2021.
[Online]. Available: https://ieeexplore.ieee.org/document/9686398.

195

https://ieeexplore.ieee.org/document/9686398

Titre : Solutions Zero-Touch basées sur l’IA pour la gestion des ressources dans les réseaux
5G natifs du cloud

Mot clés : 5G, Mise à l’échelle automatique, Kubernetes, Cloud natif, Apprentissage profond,

Limitation du processeur

Résumé : Le déploiement des réseaux 5G a in-
troduit des architectures cloud-native et des sys-
tèmes de gestion automatisés, offrant aux four-
nisseurs de services de communication une in-
frastructure évolutive, flexible et agile. Ces avan-
cées permettent une allocation dynamique des
ressources, augmentant celles-ci en période de
forte demande et les réduisant en période de faible
utilisation, optimisant ainsi les CapEx et OpEx. Ce-
pendant, une observabilité limitée et une caractéri-
sation insuffisante des charges de travail entravent
la gestion des ressources. Une surprovisionne-
ment pendant les périodes creuses augmente les
coûts, tandis qu’un sous-provisionnement dégrade
la QoS lors des pics de demande. Malgré les so-
lutions existantes dans l’industrie, le compromis
entre efficacité des coûts et optimisation de la QoS

reste difficile. Cette thèse aborde ces défis en pro-
posant des solutions d’autoscaling proactives pour
les fonctions réseau dans un environnement cloud-
native 5G. Elle se concentre sur la prévision pré-
cise de l’utilisation des ressources, l’identification
des opérations de changement d’échelle à mettre
en œuvre, et l’optimisation des instants auxquels
opérer ces ajustements pour préserver l’équilibre
entre coût et QoS. De plus, une approche no-
vatrice permet de tenir compte de façon efficace
du throttling de la CPU. Le cadre développé as-
sure une allocation efficace des ressources, ré-
duisant les coûts opérationnels tout en maintenant
une QoS élevée. Ces contributions établissent une
base pour des opérations réseau 5G durables et
efficaces et proposent une base pour les futures
architectures cloud-native.

Title: AI-Driven Zero-Touch Solutions for Resource Management in Cloud-Native 5G Networks

Keywords: 5G, Autoscaling, Kubernetes, Cloud-native, Deep learning, CPU Throttling

Abstract: The deployment of 5G networks
has introduced cloud-native architectures and au-
tomated management systems, offering communi-
cation service providers scalable, flexible, and ag-
ile infrastructure. These advancements enable dy-
namic resource allocation, scaling resources up
during high demand and down during low usage,
optimizing CapEx and OpEx. However, limited ob-
servability and poor workload characterization hin-
der resource management. Overprovisioning dur-
ing off-peak periods raises costs, while under-
provisioning during peak demand degrades QoS.
Despite industry solutions, the trade-off between
cost efficiency and QoS remains unresolved. This
thesis addresses these challenges by proposing

proactive autoscaling solutions for network func-
tions in cloud-native 5G. It focuses on accurately
forecasting resource usage, intelligently differenti-
ating scaling events (scaling up, down, or none),
and optimizing timing to achieve a balance be-
tween cost and QoS. Additionally, CPU throttling,
a significant barrier to this balance, is mitigated
through a novel approach. The developed frame-
work ensures efficient resource allocation, reduc-
ing operational costs while maintaining high QoS.
These contributions establish a foundation for sus-
tainable and efficient 5G network operations, set-
ting a benchmark for future cloud-native architec-
tures.

	List of Figures
	List of Tables
	Résumé en français
	Abstract
	Abbreviations
	Introduction
	Motivations
	Contributions
	Organization of the Manuscript

	Background
	5G network & main challenges
	Service-based architecture
	5G Core network

	Network automation
	ETSI ZSM Framework
	Closed loop automation

	Cloud computing
	Cloud models
	Cloud service models
	Cloud pricing
	Cost model

	Kubernetes for CNF management
	System architecture
	Resource management
	Dynamic resource allocation

	Summary

	State of the Art
	Introduction
	Rule based autoscaling
	Queuing theory based autoscaling
	Control based autoscaling
	Reinforcement learning based autoscaling
	Prediction based autoscaling
	Summary

	Resource usage forecasting for CNFs in Kubernetes environment
	Introduction
	Research challenge
	Resource usage profiles of 5GC network functions
	High level vs low level metrics

	Proposed system model
	Resource usage forecasting
	Model selection
	Data collection
	Data pre-processing, model design and training

	Results
	Evaluation metrics
	Prediction accuracy

	Summary

	AI-assisted proactive autoscaling solution for CNFs
	Introduction
	Research challenge
	Dynamic scaling model
	Scaling-up
	Scaling-down
	No scaling
	Decision timing
	Testbed

	Results
	KPIs for the evaluation
	Benchmarking the autoscaling solution
	Autoscaler comparison

	Summary

	CPU Throttling aware autoscaling
	Introduction
	Research challenge
	CPU throttling aware triggering
	CPU throttling forecasting
	Trigger module integration

	Results
	Forecasting model evaluation
	Autoscaling solution evaluation

	Summary

	Conclusion
	Summary
	Future Directions

	Publications
	Bibliography

