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Abstract (English Version) 

Karst aquifers, which supply freshwater to nearly 25% of the global population, are facing depletion due to 

climate change and anthropogenic pressure. Hydrological models have been advocated for effective karst 

water resources planning and management, but studies integrating the recharge-discharge characteristics of 

karst watersheds and evaluating their response to changes in the flow dominant controls remain limited due 

to their inherent heterogeneity, anisotropy, flow duality, and non-linearity. This thesis developed the semi-

conceptual spatialized numerical model ISPEEKH (Integration of Surface ProcEssEs in Karst Hydrology) by 

coupling SWAT+, the restructured version of the semi-distributed eco-hydrological model SWAT (Soil and 

Water Assessment Tool), with the non-linear epikarst-matrix-conduit reservoir module of the rainfall-runoff 

model KarstMod to simulate the surface-underground water flows in karst watersheds. ISPEEKH was applied 

to simulate the daily water balance of the Baget catchment (13.25 km2), located in a poorly gauged region of 

the French Pyrénées and characterized by conduit-dominated non-linear flow. The model simulated the 

catchment streamflow satisfactorily (NSE = 0.67, R2 = 0.68, and PBIAS = 0.7% for the 2008−2013 calibration 

period, and NSE = 0.65, R2 = 0.69, and PBIAS = -13.83% for the 2014−2018 validation period), allowing the 

estimation of the epikarst, matrix, and conduit fluxes, including the bidirectional matrix-conduit exchange 

flow rate, the contribution of the matrix and conduit outflows to spring flow, and their seasonal variability. 

The Baget catchment's hydrological response to synthetic land-use change scenarios of afforestation and 

deforestation was then assessed using ISPEEKH. Results showed that afforestation over the entire catchment 

did not significantly affect its water balance, while deforestation for wood production increased the mean 

annual discharge by 6−9%, notably in the low-flow periods, and deforestation for pastureland development 

reduced the mean annual discharge by 5−7%, mainly in the high-flow period. Various precipitation datasets 

were then evaluated for the simulation of daily streamflow in the catchment from 2006−2018, including the 

gauge-based (CPC and E-OBS), reanalysis (SAFRAN, COMEPHORE and ERA5-Land), and satellite-based 

(PERSIANN-CDR, IMERG-LR, SM2RAIN-ASCAT and CHIRPS) products. ISPEEKH was integrated with 

a PEST framework for automated calibration, sensitivity analysis, and uncertainty quantification. Results 

showed that streamflow was significantly underestimated under the ensemble of the precipitation products. 

The gauge- and satellite-based precipitation products had the worst performance, with a flow underestimation 

bias ranging from 48 to 74%, while the reanalysis products yielded better streamflow simulation results with 

a flow underestimation bias of 30−44%. The CPC, E-OBS, ERA5-Land, IMERG-LR, and merged CPC-



iii 

 

IMERG-LR datasets downscaled to 1-km spatial resolution did not improve the model predictive performance 

compared to the coarse datasets. The downscaled datasets along with COMEPHORE were bias corrected to 

reduce the water balance discrepancy and re-applied for hydrological modeling. Significant improvement in 

the streamflow simulation were observed under the corrected COMEPHORE and downscaled E-OBS, CPC, 

and merged CPC-IMERG-LR precipitation datasets, with COMEPHORE yielding the best model predictive 

performance (NSE = 0.719, R2 = 0.736, and PBIAS = 3.2% for the calibration period, and NSE = 0.637, R2 = 

0.732, and PBIAS = -10.65% for the validation period), suggesting that fine-resolution native reanalysis 

precipitation could be used as a base dataset for the hydrological modeling of remote meso-scale karst 

catchments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iv 

 

Abstract (French Version) 

Les aquifères karstiques, fournissant de l'eau potable à environ 25% de la population mondiale, sont confrontés 

à des surexploitations en sus du changement climatique. Des modèles hydrologiques ont été préconisés pour 

une gestion efficace des ressources en eau karstique. Cette thèse développe le modèle numérique semi-

conceptuel spatialisé ISPEEKH en couplant SWAT+, la version restructurée du modèle éco-hydrologique 

semi-distribué SWAT, avec le module de réservoirs non linéaires épikarst-matrice-conduit du modèle de 

ruissellement pluvial KarstMod pour simuler les flux d'eau de surface-souterraine dans les bassins versants 

karstiques. ISPEEKH a été appliqué pour simuler le bilan hydrique quotidien du bassin versant du Baget 

(13.25 km2), situé dans les Pyrénées françaises et caractérisé par un écoulement non linéaire dominé par des 

conduits. Le modèle a simulé le débit du bassin versant de manière satisfaisante (NSE = 0,67, R2 = 0,68, et 

PBIAS = 0,7% pour la période de calibration 2008−2013, et NSE = 0,65, R2 = 0,69, et PBIAS = -13. 83% 

pour la période de validation 2014−2018), permettant l'estimation des flux des compartiments de l'épikarst, de 

la matrice et des conduits, y compris le débit d'échange entre la matrice et les conduits, et la contribution de 

la matrice et des flux de sortie du conduit principal au débit de la source karstique. La réponse hydrologique 

du bassin versant du Baget à des scénarios synthétiques de changement d’occupation du sol (reforestation et 

déforestation) a ensuite été évaluée à l'aide du modèle ISPEEKH. Les résultats ont montré que la reforestation 

sur l'ensemble du bassin versant n'a pas eu d'impact significatif sur son bilan hydrique, Le changement du 

couvert forestier à un couvert arbustif de transition a augmenté le débit annuel moyen de 6 à 9%, notamment 

pendant les périodes de faible débit, tandis que le changement du couvert forestier à des pâturages a réduit le 

débit annuel moyen de 5 à 7%, principalement en périodes de fort débit. En outre, un ensemble de données de 

précipitation a été évalué pour la simulation du débit journalier dans le bassin versant de 2006 à 2018, y 

compris les produits basés sur des données pluviométriques (CPC et E-OBS), de réanalyse (SAFRAN, 

COMEPHORE et ERA5-Land) et satellitaires (PERSIANN-CDR, IMERG-LR, SM2RAIN-ASCAT et 

CHIRPS). ISPEEKH a été intégré avec PEST pour la calibration automatisée, l'analyse de la sensibilité et la 

quantification de l'incertitude. Les résultats ont montré que le débit des cours d'eau était significativement 

sous-estimé sous l'ensemble des produits de précipitations. Les produits basés sur des données 

pluviométriques et satellitaires sont les moins performantes, avec un biais de sous-estimation du débit allant 

de 48 à 74%, tandis que les données de réanalyse ont fourni de meilleurs résultats de simulation du débit, avec 

un biais de sous-estimation du débit allant de 30 à 44%. Les données CPC, E-OBS, ERA5-Land, et IMERG-
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LR, ainsi que les données fusionnés CPC-IMERG-LR à une résolution de 1 km n'ont pas amélioré la capacité 

de prédiction du modèle par rapport aux données brutes. Les données à échelle réduite ainsi que 

COMEPHORE ont été corrigés pour réduire le biais de l'écart du bilan hydrique et ont été réappliqués pour la 

modélisation hydrologique. La simulation du débit a été améliorée significativement avec les données de 

précipitations COMEPHORE, E-OBS, CPC, et CPC-IMERG-LR corrigées. COMEPHORE a fourni la 

meilleure performance prédictive du modèle, suggérant que les précipitations de réanalyse locale à résolution 

fine pourraient être utilisées comme ensemble de données de base pour la modélisation hydrologique des 

bassins versants karstiques de méso-échelle. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vi 

 

Acknowledgements 

The thesis's success is attributed to the invaluable support of numerous individuals, to whom I express 

my sincere gratitude. 

First, I would like to extend my deepest gratitude to my thesis supervisors Prof. Dr. David Labat and 

Dr. Laurie Boithias for their contributions to the completion of this thesis. I am profoundly grateful for their 

initiative in developing the thesis subject, entrusting me with the process of defending it, 

Above all, I wish to thank them for their human qualities—their kindness, compassion, and unwavering 

encouragement during the past three years. Their support has been a beacon of hope and strength through the 

challenges I encountered along this journey. 

I would like to thank the members of the “comité de suivi de thèse” Prof. Dr. Hélène Roux and Dr. Matthieu 

Fournier for their valuable discussions during the progression of the thesis, and all the co-authors who 

contributed with their comments and suggestions to my articles. In particular, I am immensely appreciative to 

Dr. Ryan Bailey for agreeing to be part of this thesis and providing pivotal knowledge and technical skills 

necessary for the development of the code used for hydrological modeling in this thesis, and for Dr. Vianney 

Sivelle for sharing his theoretical knowledge in karst hydrology. I am also grateful to the entire doctoral 

school, and particularly to Prof. Dr. Geneviève Soucail, Mme Tanya Robinson, and Mr. Adrien Bru, for their 

assistance with the procedures and the follow-up of our thesis. 

Additionally, I extend my gratitude to my friends for the time we spent together to relax, energize, 

enjoyment our company and surroundings in France, all of which have been indispensable in maintaining my 

well-being throughout this journey. Finally, I would like to express my deepest gratitude and appreciation to 

my parents and siblings for their love and support at every stage of my life. 

 

 

 

 

 

 

 

 

 

 

 



vii 

 

Table of Contents 

ABSTRACT (ENGLISH VERSION) ............................................................................................................ II 

ABSTRACT (FRENCH VERSION) ........................................................................................................... IV 

ACKNOWLEDGEMENTS ......................................................................................................................... VI 

TABLE OF CONTENTS ............................................................................................................................ VII 

LIST OF FIGURES ........................................................................................................................................ X 

LIST OF TABLES ..................................................................................................................................... XIV 

CHAPTER 1: SCIENTIFIC BACKGROUND AND AIMS OF THE THESIS ...................................... 16 

1.1 GENERAL INTRODUCTION ........................................................................................................................ 16 

1.2 INTRODUCTION GENERALE ...................................................................................................................... 23 

1.3 PROBLEM STATEMENT ............................................................................................................................. 31 

1.4 SCIENTIFIC QUESTIONS AND RESEARCH OBJECTIVES ................................................................................ 32 

1.5 THESIS ORGANIZATION ............................................................................................................................ 34 

CHAPTER 2: MODELING METHODOLOGIES .................................................................................... 36 

2.1 LUMPED PARAMETER RAINFALL-DISCHARGE MODELING OF KARST AQUIFERS: KARSTMOD OVERVIEW .. 36 

2.2 SEMI-DISTRIBUTED HYDROLOGICAL MODELING OF WATERSHEDS: OVERVIEW OF THE SOIL AND WATER 

ASSESSMENT TOOL (SWAT) ......................................................................................................................... 44 

2.2.1 Equations in SWAT for hydrological simulation .............................................................................. 45 

2.2.1.1 Surface Water Hydrology .......................................................................................................... 46 

2.2.1.1.1 Evapotranspiration ............................................................................................................... 46 

2.2.1.1.2 Surface Runoff and Infiltration............................................................................................ 47 

2.2.1.1.3 Channel Flow and Flow Routing ......................................................................................... 49 

2.2.1.2 Subsurface Water Hydrology ..................................................................................................... 49 

2.2.1.2.1 Soil Water Percolation and Lateral Flow ............................................................................ 49 

2.2.1.2.2 Groundwater Flow and Baseflow to the Stream .................................................................. 51 

CHAPTER 3: A REVIEW OF THE APPLICATION OF THE SOIL AND WATER ASSESSMENT 

TOOL (SWAT) IN KARST WATERSHEDS ............................................................................................. 54 

SUMMARY ..................................................................................................................................................... 54 

3.1 INTRODUCTION ........................................................................................................................................ 58 

3.2 SWAT STUDIES IN KARST WATERSHEDS: SELECTION AND CLASSIFICATION METHODS ......................... 59 

3.3 RESULTS AND DISCUSSIONS ..................................................................................................................... 66 

3.3.1 Applications of Standard SWAT in Karst Watersheds ..................................................................... 66 

3.3.2 Applications of Modified SWAT in Karst Watersheds ..................................................................... 70 

3.3.2.1 Conceptual Linear One-Reservoir Model ................................................................................. 71 



viii 

 

3.3.2.2 Conceptual Linear Two-Reservoir Model ................................................................................. 78 

3.3.2.3 Conceptual Linear Three-Reservoir Model ............................................................................... 85 

3.3.2.4 Conceptual Non-linear One-reservoir Model ............................................................................ 89 

3.3.2.5 Modified Crack Flow with Conceptual Linear One-Reservoir Model ...................................... 90 

3.3.2.6 Variable Source Area Hydrology with Conceptual Linear One-Reservoir Model .................... 91 

3.3.3.7 SWAT + Water Accounting Plus (WA+) Framework ............................................................... 93 

3.4 RECOMMENDATIONS ................................................................................................................................ 94 

CHAPTER 4: ISPEEKH MODEL DEVELOPMENT AND APPLICATION IN THE BAGET 

CATCHMENT - IMPACT OF LAND-USE CHANGE ON KARST SPRING RESPONSE BY 

INTEGRATION OF SURFACE PROCESSES IN KARST HYDROLOGY: THE ISPEEKH MODEL

.......................................................................................................................................................................... 99 

SUMMARY .................................................................................................................................................... 99 

ABSTRACT .................................................................................................................................................. 102 

4.1 INTRODUCTION: ..................................................................................................................................... 103 

4.2 METHODS AND MATERIALS .................................................................................................................... 107 

4.2.1 Study site description ..................................................................................................................... 107 

4.2.2 Overview of SWAT/SWAT+ ............................................................................................................ 110 

4.2.3 The ISPEEKH model structure and code development .................................................................. 112 

4.2.4 Data collection ............................................................................................................................... 118 

4.2.4.1 Topography .............................................................................................................................. 118 

4.2.4.2 Land use and land cover .......................................................................................................... 118 

4.2.4.3 Soil ........................................................................................................................................... 119 

4.2.4.4 Hydrometeorological variables ................................................................................................ 122 

4.2.3 Model calibration and validation ................................................................................................... 123 

4.2.5 Preliminary catchment water balance assessment ......................................................................... 124 

4.2.6 land-use change scenarios ............................................................................................................. 126 

4.3 RESULTS AND DISCUSSION ..................................................................................................................... 129 

4.3.1 Annual water balance..................................................................................................................... 129 

4.3.2 Streamflow and karst aquifer water fluxes ..................................................................................... 130 

4.3.3 Impact of land-use changes on annual and monthly water fluxes ................................................. 139 

4.3.4 Impact of land-use changes on high and low flows ....................................................................... 143 

4.3.5 Hydrological modeling uncertainty and recommendations ........................................................... 148 

4.4 CONCLUSIONS ........................................................................................................................................ 151 

CHAPTER 5: EVALUATION OF PRECIPITATION PRODUCTS FOR SMALL KARST 

CATCHMENT HYDROLOGICAL MODELING IN DATA-SCARCE MOUNTAINOUS REGIONS

........................................................................................................................................................................ 152 

SUMMARY .................................................................................................................................................. 152 



ix 

 

ABSTRACT .................................................................................................................................................. 155 

5.1 INTRODUCTION ...................................................................................................................................... 156 

5.2 METHODS AND MATERIALS .................................................................................................................... 159 

5.2.1 Study Area ...................................................................................................................................... 159 

5.2.2 The ISPEEKH model ...................................................................................................................... 161 

5.2.3 The ISPEEKH model input data..................................................................................................... 165 

5.2.3.1 Topography, land use, soil and lithology ................................................................................. 165 

5.2.3.2 Meteorological variables .......................................................................................................... 166 

5.2.3.3 Streamflow data ....................................................................................................................... 171 

5.2.4 Sensitivity analysis, parameter estimation, and uncertainty quantification methods for the 

ISPEEKH model ...................................................................................................................................... 171 

5.2.4.1 Parameter ESTimation Tool (PEST) followed by sensitivity analysis .................................... 171 

5.2.4.2 Iterative ensemble smoother (iES) for parameter estimation and uncertainty quantification . 173 

5.2.5 Model predictive performance evaluation ..................................................................................... 175 

5.2.6 Correction of precipitation datasets .............................................................................................. 175 

5.3 RESULTS AND DISCUSSION .................................................................................................................... 177 

5.3.1 ISPEEKH parameters sensitivities under the precipitation products ............................................ 177 

5.3.2 Performance of coarse and downscaled precipitation datasets for catchment water balance and 

streamflow simulation ............................................................................................................................. 178 

5.3.3 Performance of volume-corrected downscaled precipitation datasets for catchment water balance 

and streamflow simulation ...................................................................................................................... 186 

5.3.4 Study limitations and future perspectives ....................................................................................... 197 

5.4 CONCLUSIONS ........................................................................................................................................ 199 

CHAPTER 6: CONCLUSIONS AND FUTURE PERSPECTIVES ....................................................... 202 

6.1 CONCLUSION ...................................................................................................................................... 202 

6.2 FUTURE PERSPECTIVES .................................................................................................................. 205 

6.3 CONCLUSION (FRENCH VERSION) ............................................................................................... 209 

6.4 FUTURE PERSPECTIVES (FRENCH VERSION) .......................................................................... 212 

REFERENCES ............................................................................................................................................. 218 

 

 

 

 

 



x 

 

List of Figures 

Figure 1. Conceptual schematic of a karst aquifer (modified after Goldscheider (2019) and Hartmann et al. 

(2014)) illustrating the heterogeneous hydrological behavior of a karst system (epikarst, matrix, and conduits), 

with dual infiltration and recharge processes, dual subsurface flow fields, and dual discharge characteristics. 

Karst aquifers are a primary source of freshwater supply for residential, industrial, and agricultural uses and 

are highly vulnerable to climate change and anthropogenic hazards (Sivelle et al., 2021). ............................ 18 

Figure 2. Schematic of KarstMod reservoirs and fluxes, including the hysteretic, losses, and groundwater 

abstraction functions (modified from Mazzilli et al., 2017) ............................................................................ 39 

Figure 3. Number of standard SWAT-based studies in karst watersheds under the NSE performance ratings 

recommended by Moriasi et al. (2015) for daily and monthly discharge simulation. ..................................... 68 

Figure 4. Number of modified SWAT-based studies in karst watersheds under the NSE performance ratings 

recommended by Moriasi et al. (2015) for daily and monthly discharge simulation. ..................................... 71 

Figure 5. (a) The Baget groundwater catchment, topographic catchment, and lithological composition, the 

Lachein stream, the Las Hountas karst spring, and the outlet stream gauging station (B1); (b) The 

meteorological data points within the catchment area. .................................................................................. 110 

Figure 6. Conceptual representation of the catchment main water balance components simulated by SWAT.

........................................................................................................................................................................ 112 

Figure 7. Conceptual representation of the water balance surface and subsurface flows simulated by ISPEEKH 

for a karst-dominated catchment. ................................................................................................................... 114 

Figure 8. The Baget catchment properties in terms of: (a) topography, (b) slope, (c) land use/land cover, and 

(d) soil. ........................................................................................................................................................... 122 

Figure 9. The HRUs of the Baget catchment ISPEEKH model, defined based on the spatial distribution of 

karst and non-karst areas inferred from the catchment lithology. ................................................................. 122 

Figure 10. Land-use classes corresponding to land-use change scenarios simulated in the Baget catchment, 

with: (a) Scenario 1 (afforestation of the full catchment area), (b) Scenario 2 (forest-to-transitional 

woodland/shrub conversion in the karst areas of the catchment), (c) Scenario 3 (forest-to-transitional 

woodland/shrub conversion), (d) Scenario 4 (forest-to-pasture transition in the karst areas of the catchment), 

and (e) Scenario 5 (forest-to-pasture transition). ........................................................................................... 128 



xi 

 

Figure 11. (a) Observed and simulated daily streamflow at the Baget catchment outlet (station B1) for the 

calibration period (January 2008–December 2013) and validation period (January 2014–December 2018); (b) 

observed and simulated daily streamflow at station B1 for year 2011; (c) observed and simulated daily 

streamflow at station B1 for year 2014. ......................................................................................................... 132 

Figure 12. Observed and simulated monthly streamflow at the Baget catchment outlet (station B1) for the 

calibration period (January 2008–December 2013) and validation period (January 2014–December 2018).

........................................................................................................................................................................ 133 

Figure 13. SAFRAN-based and simulated daily evapotranspiration of the Baget catchment for the calibration 

period (January 2008–December 2013) and validation period (January 2014–December 2018). ................ 133 

Figure 14. Annual water inflows to the epikarst, conduit, and matrix reservoirs (mm.year-1) simulated by 

ISPEEKH in the Baget catchment for the period of 2008−2018. .................................................................. 135 

Figure 15. (a) 5th, 50th and 95th percentiles of the water level in the conduit reservoir over the simulation period 

(2008−2018); (b) 5th, 50th and 95th percentiles of the water level in the matrix reservoir over the simulation 

period (2008−2018). ...................................................................................................................................... 136 

Figure 16. (a) Simulated daily water levels in the matrix and conduit reservoirs in years 2015−2018; (b) daily 

matrix-conduit exchange flow in years 2015−2018; (c) average monthly contribution of conduit flow, matrix 

flow, and matrix to conduit flow to spring discharge over the study period (2008−2018). .......................... 138 

Figure 17. Average monthly changes (mm) in (a) actual evapotranspiration (ETa), (b) surface runoff (SURQ), 

(c) groundwater recharge (RECH), and (d) streamflow (QSTREAM) for different land-use change scenarios, 

with respect to the baseline land use in the Baget catchment. ....................................................................... 143 

Figure 18. Boxplots comparing the simulated discharge at the Baget catchment outlet for Baseline land use 

and land-use change scenarios (Scenario 1 to Scenario 5), considering: (a) streamflow ≤ 0.35 m3.s-1 during the 

low-flow period (July to October), (b) 1 m3.s-1 ≤ streamflow ≤ 2.5 m3.s-1 during the high-flow period 

(November to June), and (c) streamflow > 2.5 m3.s-1 during the high-flow period (November to June). ..... 146 

Figure 19. The Baget catchment recharge area and lithological composition, with the Las Hountas karst 

spring, the Lachein stream, and the stream gauging station (B1) (modified from Al Khoury et al., 2023) .. 161 

Figure 20. Schematic representation of the hydrological processes simulated by ISPEEKH in a spring flow-

dominated karst watershed (modified from Al Khoury et al., 2023) ............................................................. 162 



xii 

 

Figure 21. Figure showing the locations of the (a) Saint Girons weather station, data points of the E-OBS and 

CPC gauge-based products, ERA5-Land and SAFRAN reanalysis products, SM2RAIN-ASCAT, 

PERSIANN-CDR, IMERG-LR and CHIRPS satellite-based products, and (b) data points of the 1-km 

resolution COMEPHORE reanalysis product and downscaled E-OBS, CPC, ERA5-Land, IMERG-LR, and 

CPC-IMERG-LR products with respect to the Baget catchment recharge area. ........................................... 170 

Figure 22. Average values of the elementary effects (EE) mean (𝜇 ∗) and standard deviation 𝜎, calculated 

with the Morris global sensitivity analysis for the selected parameters of ISPEEKH with different precipitation 

datasets. .......................................................................................................................................................... 178 

Figure 23. Daily observed and simulated streamflow of the Baget catchment in years 2008–2018, using the 

ISPEEKH model driven by precipitation of Saint Girons weather station. ................................................... 181 

Figure 24. Daily observed and simulated streamflow of the Baget catchment in years 2008–2018, using the 

ISPEEKH model driven by precipitation of the (a) CPC, (b) downscaled CPC, (c) E-OBS, and (d) downscaled 

E-OBS gauge-based products. ....................................................................................................................... 182 

Figure 25. Daily observed and simulated streamflow of the Baget catchment in years 2008–2018, using the 

ISPEEKH model driven by precipitation of the (a) SAFRAN, (b) COMEPHORE, (c) ERA5-Land, and (d) 

downscaled ERA5-Land reanalysis products. ............................................................................................... 183 

Figure 26. Daily observed and simulated streamflow of the Baget catchment in years 2008–2018, using the 

ISPEEKH model driven by precipitation of the (a) PERSIANN-CDR, (b) IMERG-LR, (c) Downscaled 

IMERG-LR, (d) CHIRPS and (e) SM2RAIN-ASCAT satellite-based products. .......................................... 184 

Figure 27. Daily observed and simulated streamflow of the Baget catchment in years 2008–2018, using the 

ISPEEKH model driven by downscaled precipitation of the merged CPC-IMERG-LR product. ................ 185 

Figure 28. Daily observed and simulated streamflow of the Baget catchment in years 2008–2018, using the 

ISPEEKH model driven by the corrected (a) downscaled CPC precipitation, (b) downscaled E-OBS 

precipitation, (c) COMEPHORE precipitation, (d) downscaled ERA5-Land precipitation, (e) downscaled 

IMERG-LR precipitation, and (f) downscaled merged CPC-IMERG-LR precipitation. NSE: Nash–Sutcliffe 

Efficiency; R2: coefficient of determination; PBIAS: percent bias; KGE: Kling–Gupta Efficiency ............ 190 

Figure 29. Radar chart of the NSE (Nash-Sutcliffe Efficiency), KGE (Kling Gupta Efficiency), KGENP 

(Kling Gupta Efficiency Non-Parametric), Rp (Pearson correlation coefficient), and Rs (Spearman correlation 



xiii 

 

coefficient) performance criteria for the (a) calibration and (b) validation periods of the mean daily streamflow 

ISPEEKH simulations with the uncorrected and corrected precipitation datasets. ....................................... 191 

Figure 30. (a) Prior and (b) posterior prediction uncertainty bands for streamflow simulation in the Baget 

catchment using ISPEEKH driven by corrected COMEPHORE precipitation dataset. ................................ 192 

Figure 31. Pearson correlation coefficient (Rp) performance criteria on the calibration and validation periods, 

based on orthogonal wavelet decomposition on observed and simulated streamflow times series under the 

uncorrected and corrected 1-km resolution precipitation datasets. ................................................................ 194 

Figure 32. Mean observed streamflow and mean minimum and maximum values of the ensemble of ISPEEKH 

streamflow simulations under the uncorrected and corrected precipitation datasets considering (a) the 

calibration period at monthly scale, (b) validation period at monthly scale, and (c) both calibration and 

validation periods at annual scale. ................................................................................................................. 196 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xiv 

 

List of Tables 

Table 1. Reference, basin description, and application of the standard SWAT studies in karst watersheds 

(category I). ...................................................................................................................................................... 61 

Table 2. Groundwater modeling approach, reference, basin description and application of the modified SWAT 

codes in karst studies (category II). ................................................................................................................. 64 

Table 3. Land-use categories of the Baget basin from Corine Land Cover database and the reclassified classes 

for the ISPEEKH model................................................................................................................................. 119 

Table 4. Annual water fluxes in the Baget catchment (mm.year-1) simulated by ISPEEKH for the period of 

2008−2018. 𝑃𝐶𝑃: precipitation; 𝐸𝑇𝑎: actual evapotranspiration; 𝑆𝑈𝑅𝑄: surface runoff; 𝑅𝐸𝐶𝐻: groundwater 

recharge; 𝑄𝑆𝑃𝑅𝐼𝑁𝐺: spring flow; 𝑄𝑆𝑇𝑅𝐸𝐴𝑀: streamflow .......................................................................... 129 

Table 5. Calibration ranges and fitted values of the calibrated parameters for the ISPEEKH model in the Baget 

catchment ....................................................................................................................................................... 131 

Table 6. Changes in the average annual water fluxes in the Baget catchment under different land-use change 

scenarios. 𝐸𝑇𝑎: actual evapotranspiration defined as the sum of canopy evaporation (𝐸𝑐𝑎𝑛𝑜𝑝𝑦), plant 

transpiration (𝐸𝑝𝑙𝑎𝑛𝑡) and soil transpiration (𝐸𝑠𝑜𝑖𝑙); 𝑅𝐸𝐶𝐻: groundwater recharge; 𝑆𝑈𝑅𝑄: surface runoff; 

𝑄𝑆𝑃𝑅𝐼𝑁𝐺: spring flow; 𝑄𝑆𝑇𝑅𝐸𝐴𝑀: streamflow .......................................................................................... 141 

Table 7. Selected parameters, parameters description, and ranges for sensitivity analysis and calibration of 

the ISPEEKH model ...................................................................................................................................... 174 

Table 8. The orographic correction multiplicative factors (OCFm) calculated for the 1-km resolution 

COMEPHORE, CPC-ds, E-OBS-ds, ERA5-Land-ds, IMERG-LR-ds and merged CPC-IMERG-LR-ds 

gridded precipitation datasets. ....................................................................................................................... 176 

Table 9. Mean annual water balance in the Baget catchment (mm.year-1) for years 2008−2018, simulated 

using ISPEEKH with Saint Girons gauge precipitation, gauge-based precipitation products (CPC, E-OBS), 

reanalysis products (SAFRAN, COMEPHORE and ERA5-Land), and satellite precipitation products 

(PERSIANN-CRD, IMERG-LR, CHIRPS, SM2RAIN-ASCAT). 𝑃𝐶𝑃: precipitation; 𝑃𝐸𝑇: potential 

evapotranspiration, 𝐸𝑇𝑎: actual evapotranspiration; 𝑆𝑈𝑅𝑄: surface runoff; 𝑅𝐸𝐶𝐻: groundwater recharge; 

𝑄𝑆𝑃𝑅𝐼𝑁𝐺: spring flow; 𝑄𝑆𝑇𝑅𝐸𝐴𝑀: streamflow. ......................................................................................... 180 

Table 10. Daily streamflow statistical performance for the ISPEEKH model simulations driven by different 

precipitation datasets. ..................................................................................................................................... 181 



xv 

 

Table 11. Optimal values of the emptying exponents (alpha) of the epikarst, matrix and conduit fluxes 

simulated by ISPEEKH under different precipitation datasets. ..................................................................... 186 

Table 12. Mean annual water balance fluxes in the Baget catchment (mm.year-1) for years for 2008−2018, 

simulated using ISPEEKH with the corrected precipitation datasets of the 1-km resolution COMEPHORE and 

downscaled CPC, E-OBS, ERA5-Land, IMERG-LR, and CPC-IMERG-LR products. ............................... 187 

Table 13. Daily streamflow statistical performance indices for the ISPEEKH simulations driven by the 

corrected COMEPHORE and downscaled ERA5-Land, CPC, E-OBS, IMERG-LR, and merged CPC-

IMERG-LR precipitation datasets. ................................................................................................................ 188 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

16 
 

 

CHAPTER 1: Scientific background and aims of the thesis 

1.1 General Introduction 

Karst aquifers are an abundant source of water in many regions across the globe, providing freshwater 

supply to 20–25% of the world population (Chen et al., 2017) and upwards of 50% of the total drinking water 

supply in some countries (Biondić et al., 2021). They cover nearly 15.2% of Earth's continental surface (Auler 

and Stevanović, 2021) and form by chemical dissolution of soluble carbonate rocks (i.e., limestone, dolomite, 

marble or evaporates) exerted by water enriched with carbon dioxide (CO2) from the atmosphere or soil zone 

(Goldscheider et al., 2020). Depending on the degree of karstification, distinctive karst features can develop, 

including sinkholes and dolines, losing streams, springs, and vast networks of subsurface and hydrologically 

connected cracks, fissures, conduits, and caves (Zeiger et al. 2021). 

A karst system is generally composed of four main water-bearing mediums with distinct 

geomorphology, hydrodynamic properties, storage, and flow patterns: (1) the soil and non-karstic zone, (2) 

the epikarst, (3) the transmission zone - the latter three forming the unsaturated zone, and (4) the saturated 

zone (Dal Soglio et al., 2020b). These contrasting layers, which are interactively connected by water flow and 

solute transport, form the karstic critical zone (Chen et al., 2018; Wang et al., 2020). Figure 1 shows a 

schematic model of a typical karst aquifer, including the surface hydrological processes and flow mechanisms 

of the underground karst subsystems. Karst aquifers behave as a dual to triple-porosity medium, which consists 

of intergranular pores (primary porosity) aggregated with fractures and bedding planes (fracture porosity) into 

a single rock matrix and solution enlarged channels and pipes networks (conduit porosity) that transfer most 

of the recharge to the karst springs (Geyer et al., 2013; Ghasemizadeh et al., 2012). The epikarst represents a 

weathered horizon of a few meters above the vadose zone, characterized by high permeability and porosity 

driven by the large supply of CO2 that increases dissolution of carbonate rocks near the land surface. Dual 

recharge mechanisms are generally observed in a karst system: (1) diffuse recharge by slow percolation of 

infiltrated water from the epikarst to the saturated zone through low permeability small fissures in the vadose 

zone and (2) concentrated recharge via highly conductive karst features (enlarged fractures, sinkholes), 

allowing a fast transit of flow through the vadose zone to the saturated zone (Paiva, and Cunha, 2020). The 

epikarst, together with the soil cover, controls water infiltration, storage, and temporal delay of recharge to 

the saturated zone by storing percolation water temporarily during the dry and low recharge periods, and 

releasing the flow quickly via the karst openings at saturation when the infiltration rate exceeds percolation. 

The epikarst’s storage capacity depends on its maturity and the permeability contrast between its bottom part 

and the underlying transmission zone. At total evolution of the epikarst, surface runoff is reduced and most of 

the infiltration that passes the epikarst flows through the conduits, while percolation through the matrix and 
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fissures does not increase Alternatively, the epikarst can be discontinuous, poorly developed, or completely 

removed by geomorphic processes, reducing its hydrological role (Bauer et al., 2005; Fidelibus et al., 2017; 

Nannoni and Piccini, 2022; Yan et al., 2022). 

The transmission zone connects and transfers recharge water from the epikarst to the saturated zone 

where the highly permeable karst conduits drain the fissured rock matrix, generating a flow to the groundwater 

discharge. Karst systems thus exhibit dual storage and subsurface flow fields: (1) prolonged groundwater 

storage and low-flow velocity (laminar flow) in the matrix, and (2) low groundwater storage with rapid flow 

velocity/non-linear (turbulent) flow in the conduits. Dual discharge patterns to the aquifer outlet are also 

observed with (1) slow and continuous flow from the matrix during dry periods and (2) fast flow from the 

conduits during heavy rainfall events (de Rooji and Graham, 2017; Giese et al., 2018; Hartmann et al., 2021). 

The conduit and the matrix also exchange flow, which primarily depends on the hydraulic head differences 

between the two mediums and on the conduit properties (Dal Soglio et al., 2020a), and can contribute 

substantially to the spring discharge during the dry and low-flow periods (Sivelle et al., 2019). Several studies 

have established that the nonlinear storage-discharge relationship best represents the epikarst-matrix-conduits 

flow dynamics (Basu et al., 2022; Chang et al., 2015; Kurtulus and Razack, 2007; Labat et al., 2000; Zhao et 

al., 2021). 

In addition, the recharge boundaries of karst aquifers may not often coincide with the drainage basin 

boundaries. While direct infiltration from precipitation on the karst outcrops forms autogenic recharge, the 

infiltration of runoff water from adjacent non-karstic areas constitutes allogenic recharge with an interbasin 

groundwater flow components that crosses the surface topographic divides through the conduits before 

emerging at the springs. Allogenic recharge could represent a significant portion of the karst spring discharge, 

particularly in high-permeability bedrock areas. Therefore, neglecting the discrepancy between the 

topographic and hydrogeological boundaries of these karst aquifers, known as binary karst systems, and the 

representation of hydrological processes of their combined karst and non-karst recharge areas, results in 

unclosed water balance and inaccurate estimates of their water resources. Interbasin groundwater flow is not 

explicitly measurable, requiring the application of hydrogeochemical approaches based on major dissolved 

elements, isotopes, electrical conductivity, and water temperature monitoring or hydrogeological studies of 

groundwater flow paths and physical techniques such as including physical techniques such as the soil–water 

budget and water level fluctuation, or a combination of these approaches (Belay et al., 2023; Bouaziz et al., 

2018; Chen et al., 2018; Hartmann et al., 2021; Le Mesnil et al., 2020; Nguyen et al., 2020; Senent-Aparicio 

et al., 2020)  

Due to their intrinsic properties and complex hydrodynamic behavior, karst aquifers are vulnerable to 

overexploitation, climate change, and contamination (Goldscheider, 2019; Gutiérrez et al., 2018). Karst 

groundwater resources continue to face a depletion stress around the globe due to increased water abstraction, 
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land use change, and climate change (Doummar et al., 2018; Fiorillo and Guadagno, 2012; Hao et al., 2009; 

Jia et al., 2017; Kovačič et al., 2020; Nerantzaki and Nikolaidis, 2020; Ruiz et al., 2022; Sivelle et al., 2021; 

Smiatek et al., 2013; Taheri et al., 2016). In well-developed karst systems, natural processes such as 

absorption, degradation, and filtration are inefficient due to low storage capacity, fast water movement, short 

residence time, and limited interaction with the material of the aquifer. Thus, contaminants can rapidly reach 

the groundwater table by concentrated recharge and propagate easily through karst conduits over large 

distances (Entezari et al., 2016; Iván and Mádl-Szőnyi, 2017).  

Therefore, understanding the hydrodynamic functioning of the karst aquifer water bearing components 

and anticipating the impacts of climate change and anthropogenic pressures on karst water resources are 

compulsory tasks to safeguard these diminishing water supplies and set effective schemes for their 

management. Yet, the assessment of karst water resources considering the spatial variability of the surface 

and underground flow determinants remains a challenge due to the aquifers’ heterogeneity, anisotropy, 

recharge and discharge duality, and flow non-linearity (Hartmann et al., 2014). 

                                             

 

Figure 1. Conceptual schematic of a karst aquifer (modified after Goldscheider (2019) and Hartmann et al. (2014)) 

illustrating the heterogeneous hydrological behavior of a karst system (epikarst, matrix, and conduits), with dual 

infiltration and recharge processes, dual subsurface flow fields, and dual discharge characteristics. Karst aquifers are a 

primary source of freshwater supply for residential, industrial, and agricultural uses and are highly vulnerable to climate 

change and anthropogenic hazards (Sivelle et al., 2021). 
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Hydrologists rely on mathematical models, which use spatially lumped to distributed numerical approaches, 

to simulate the flow processes in karst watersheds, understand their hydrodynamic behavior, and assess their 

hydrological response to changing climate and anthropogenic pressures (Cardoso de Salis et al., 2019; 

Mudarra et al., 2019). Lumped models conceptualize the physical processes at the scale of the hydrological 

system and consider different combinations of the dominant flow components as distinct (linear or non-linear) 

conceptual buckets with parameters that represent the spatially averaged characteristics of the system 

(Butscher and Huggenberger, 2008; Dwarakish and Ganasri, 2015; Fleury et al. 2007, 2009; Hartmann et al., 

2014; Sivelle et al. 2021; Tritz et al. 2011). In comparison to lumped models, the semi-distributed and 

distributed models explicitly represent the spatial variability of the watershed land and subsurface 

characteristics, boundary conditions, flow determinant inputs, and hydrological processes (Dwarakish, and 

Ganasri, 2015). Semi-distributed models may divide the watershed into hydrological response units (HRUs) 

and simulate the hydrological processes at the HRU scale, use conceptual reservoirs to model the areal 

recharge processes that lack spatial resolution, or represent the internal structure of a karst aquifer using pipe 

networks as conduit domains. Alternatively, fully-distributed models represent processes by discretizing the 

system in two- or three-dimensional grids, assigning parameters to each grid cell, and simulating a two- or 

three-dimensional form of the governing groundwater flow equation. In the context of karst hydrogeological 

modeling, distributed models are generally subdivided into three main categories, namely: (1) the fully 

equivalent porous media models, which use the average hydraulic properties over the aquifer area without 

explicitly simulating the diffusive and concentrated fast flows, (2) the double continuum models, which 

represent the matrix and karst conduits as two interacting continua with their hydraulic attributes, and 3) the 

combined discrete-continuum models in which the conduits are embedded as discrete elements inside the 

matrix  (Dwarakish and Ganasri, 2015; Gill, et al., 2021). The development and parametrization of distributed 

models are generally constrained by the need for an adequate knowledge of the geological settings (lithology, 

fractures, faults), hydraulic and geometric properties of the karst aquifer water bearing components (e.g., 

porosity, hydraulic conductivity, conduits network geometry), and the dynamic changes in the underground 

surface permeability structure (Adinehvand et al., 2017; Chang et al., 2019; Fischer et al., 2018; Ghasemizadeh 

et al., 2012; Gill et al., 2021; Hartmann et al., 2014; Malenica et al., 2018). Consequently, lumped models are 

more commonly used in data-scare and complex karst regions where distributed models fail to capture the 

spatial distribution of the aquifer properties (Adinehvand et al., 2017). However, by neglecting the spatial 

variability of the streamflow dominant controls, lumped models may lack precision in assessing the intricate 

recharge and discharge within karst aquifers, hindering accurate flow prediction. Several studies have 

demonstrated the dependence of the predictive capability of hydrological models for streamflow prediction 

on the meteorological forcing (mainly precipitation) and the significance of incorporating spatial information 

on the landscape characteristics (i.e., land use, soil, karst landforms) to simulate streamflow for sustainable 
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water resource management in karst regions (i.e., Bittner et al., 2018; Doummar et al., 2012; Le Mesnil et al., 

2021; Mo et al., 2020, 2022; Sarrazin et al., 2018; Yang et al., 2022). 

Thus, semi-distributed hydrogeological models are proposed as a hybrid approach to overcome the limitations 

of the aforementioned two model classes by combining the spatial variability of the surface flow dominant 

controls (i.e., climatic features, landscape properties) with the underlying karst aquifer dominant flow 

components. 

To date, few attempts have been made to simulate karst watershed hydrology using semi-distributed 

models that integrate spatially variable recharge, based on the hydrological landscape unit properties (i.e., 

climate, land use, soil, geology), with lumped reservoir models of the karst aquifer dominant flow components. 

Hartmann et al. (2013) developed the VarKarst model, which features the soil-epikarst flow processes, 

diffusive and concentrated recharge components, and spring flow over vertical compartments of unique soil 

and epikarst characteristics. In this model, the outflow from the epikarst compartment is divided between 

diffusive and concentrated recharge using a variable separation factor, and spring flow is calculated as the 

sum of outflows from the matrix and conduit compartments. Sarrazin et al. (2018) then incorporated the 

Penman-Monteith equation for an improved estimation of evapotranspiration by explicitly including the land 

cover properties. Bittner et al. (2018) introduced the semi-distributed LuKARS (Land use change modeling 

in KARSt systems), which lumps the areas of homogeneous land-use and soil properties in a karst watershed 

into independent spatial units called hydrotopes. These hydrotopes recharge a linear reservoir for the 

simulation of baseflow (matrix flow) component of the karst spring discharge, while the conduit quick flow 

component of the spring discharge is modeled as a preferential flow from the hydrotopes to the spring outlet. 

Moreover, Ollivier et al. (2020) proposed the semi-distributed model KaRaMel (Karst Recharge and discharge 

Model), which divides the karst aquifer recharge area into grids connected to an upper reservoir that simulates 

infiltration from the input precipitation and evapotranspiration data linearly to two lower reservoirs 

reproducing the matrix and conduit flow components of the karst spring discharge. Ollivier et al. (2021) then 

integrated a remote sensing-driven evapotranspiration model called SimpKcET (Simple Crop coefficient for 

Evapotranspiration) into KaRaMel in order to estimate evapotranspiration based on the Penman-Monteith 

approach and derive the fraction of vegetation cover in a karst catchment using the Enhanced Vegetation Index 

(EVI). Yang et al. (2022) also proposed the grid-based distributed karst Xin’anjiang hydrological model (DK-

XAJ) for flood simulation in karst watersheds, by dividing hillslope into strongly-, moderately- and poorly-

developed karst terrain cells, and implementing two-parallel linear reservoirs for the routing of the rapid-



21 

 

conduit and slow-matrix flow components of the discharge in the moderately- or strongly-developed karstic 

cells. 

The Soil and Water Assessment Tool (SWAT) (Arnold et al., 1998) is one of the most extensively used semi-

distributed eco-hydrological models internationally, owing to its comprehensive nature, robustness, and 

flexibility as an interdisciplinary tool (Aloui et al., 2023). The model has been extensively applied in 

watersheds across the globe to estimate the water budget and yield (Alitane et al., 2022; Ayivi and Jha, 2018; 

Goyal et al., 2015; Raihan et al., 2020; Saha et al., 2014; Shrestha et al., 2017; Stefanidis et al., 2016), and 

provide data-driven strategies for the sustainable management of water resources under climate change (e.g., 

Azari et al., 2015; Hao et al., 2018;  Nilawar and Waikar, 2019; Parajuli and Risal, 2021; Rashid et al., 2022; 

Shrestha et al., 2016; Zabaleta et al., 2014), land-use/cover change (e.g., Chotpantarat and Boonkaewwan, 

2018; Muthee et al, 2023; Nakatsugawa, 2021; Rajib et al., 2016; Welde and Gebremariam, 2017) and 

anthropogenic pressure (e.g., Mittal et al., 2016; Oliver et al., 2014). Despite its wide range of applications 

(CARD, 2023), few SWAT-based studies have been conducted in karst watersheds (e.g., Afinowicz et al., 

2005; Efthimiou, 2018; Jain et al., 2015; Mehdi et al., 2015; Sellami et al., 2016; Sunde et al., 2017, 2018; 

Zeiger et al., 2021). SWAT simulates diffusive recharge by soil water percolation at the HUR scale to a linear 

two-reservoir model consisting of a shallow (unconfined) aquifer reservoir with return flow to the stream 

channels and a deep (confined) aquifer that discharges water outside the watershed (Neitsch et al., 2011). 

Thus, the groundwater module in SWAT does not represent the recharge, storage and discharge dynamics of 

the karst aquifer water bearing components, which limit its model’s applicability to predict flow and simulate 

the water balance fluxes in spring-dominated karst watersheds. 

Most SWAT studies in karstified watersheds used the standard model source code and fewer modified 

it to better represent the hydrological processes of the dominant karst features in the study region. These 

modifications focused on increasing infiltration, simulating the dual slow and concentrated aquifer recharge 

components, as wells as the fluxes between the karst aquifer water bearing components and the spring. Baffaut 

and Benson (2009) and Zhou et al. (2022) represented the sinkholes in the James River and the South and 

North Panjiang River basins as ponds in SWAT and simulated the recharge to the shallow aquifer as the sum 

of diffusive flow by soil water percolation and concentrated flow by pond drainage. Yactayo (2009) modeled 

the concentrated recharge through the Opequon Creek watershed sinkholes as direct infiltration of the surface 

runoff and soil lateral flow generated in the karst areas. Palanisamy and Workman (2015) conceptualized the 
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sinkholes in the streambed of the Cane Run watershed as orifices that drain streamflow of sinking streams in 

the karst subbasins feeding the SWAT deep aquifer reservoir, and routed the reservoir discharge as rapid 

conduit flow to the watershed outlet. Moreover, Eini et al. (2020) proposed increasing aquifer recharge in the 

karst areas by modifying either the delay time variable of the SWAT recharge function or the SWAT crack 

flow module so as to model bypass flow in both dry and wet soils. Alternatively, Nikolaidis et al. (2013) 

interfaced SWAT in the karst areas with a linear matrix-conduit reservoir model fed by the outflow of the 

deep aquifer reservoir of SWAT with spring flow calculated as the sum of outflows from the matrix and 

conduit reservoirs, then added spring flow as a point source discharge to calculate the total watershed runoff 

where the springs are located. Nguyen et al. (2020) incorporated a linear matrix-conduit two-reservoir model 

into SWAT to simulate spring flow in the karst areas. In this model, the matrix reservoir is fed by diffusive 

recharge from soil water percolation, while the conduit reservoir is recharged by soil seepage, concentrated 

water losses (as interbasin groundwater flow) from sinking streams, and diffusive discharge from the matrix 

reservoir. Spring flow is calculated as the outflow from the conduit reservoir and added to direct runoff to 

simulate streamflow for a basin with karst springs. Furthermore, Wang et al. (2019b) integrated a linear three-

reservoir model into SWAT to simulate the fluxes of the epikarst, matrix, and conduits. In this model, the 

epikarst reservoir is recharged by soil percolation with an attenuation function that depends on the saturation 

moisture content, the conduit reservoir is fed by discharge from the epikarst reservoir, and direct water 

infiltration from depressions, and the matrix reservoir is fed by another fraction of the epikarst and conduit 

reservoirs discharges. Geng et al. (2021) adopted a three-reservoir epikarst-conduit-matrix configuration 

similar to Wang et al. (2019b) but removed the attenuation function of the epikarst reservoir to simulate quick 

recharge by soil water percolation and added a direct flow component from the epikarst reservoir to the river 

channels. In both models, the contribution of spring flow to the watershed runoff is calculated as the sum of 

the outflows from the matrix and conduit reservoirs. Finally, Wang and Brubaker (2014) applied a non-linear 

modification to the shallow aquifer reservoir in SWAT to simulate the return flow to the stream channels in 

the karst areas. These modified SWAT models and along with semi-distributed models applied in karst 

hydrology (i.e., VarKarst, LuKARS, SimpKcET-KaRaMel, DK-XAJ) did not collectively represent the fluxes 

of the epikarst, matrix and conduit, which include the matrix-conduit bidirectional exchange flow rate, using 

non-linear storage-discharge relationships. 
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Therefore, this thesis aims to develop a semi-distributed karst hydrological model by modification of 

the SWAT source code, which can simulate the daily surface and subsurface water flows in a karst watershed 

considering the spatial heterogeneity of the karst surface properties (i.e., land use, soil, lithology) on recharge, 

and the flow transfers between the epikarst, matrix, and conduit reservoirs using a non-linear approach.  

 

1.2 Introduction Générale 

Les aquifères karstiques représentent une source d'eau abondante dans de nombreuses régions du 

globe, fournissant de l'eau douce à 20–25 % de la population mondiale (Chen et al., 2017) et jusqu'à plus de 

50% de l'approvisionnement total en eau potable dans certains pays (Biondić et al., 2021). Ils englobent près 

de 15.2% de la surface continentale de la Terre (Auler et Stevanović, 2021) et se forment par dissolution 

chimique des roches carbonatées solubles (i.e., calcaire, dolomite, marbre ou évaporites) exercée par de l'eau 

enrichie en dioxyde de carbone (CO2) provenant de l'atmosphère ou de la zone du sol (Goldscheider et al, 

2020). En fonction du degré de karstification, des éléments karstiques distinctifs peuvent se développer, 

notamment des dolines et des gouffres, des ruisseaux souterrains, des sources, et de larges réseaux de fissures, 

fentes, conduits et grottes souterraines et connectés sur le plan hydrologique (Zeiger et al., 2021). 

Un système karstique est généralement composé de quatre principaux éléments hydrogéologiques 

présentant une géomorphologie, des propriétés hydrodynamiques, un stockage, et des régimes de flux distincts 

: (1) le sol et la zone non karstique, (2) l'épikarst, (3) la zone de transmission - ces trois derniers formant la 

zone non saturée, et (4) la zone saturée (Dal Soglio et al., 2020b). Ces zones distinctes, qui sont reliées de 

manière interactive par l'écoulement de l'eau et le transport de solutés, forment la zone critique karstique (Chen 

et al., 2018; Wang et al., 2020). La figure 1 présente un modèle schématique d'un aquifère karstique typique, 

y compris les processus hydrologiques de surface et les mécanismes d'écoulement des sous-systèmes 

karstiques souterrains. Les aquifères karstiques se comportent comme un milieu à double ou triple porosité, 

composé de pores intergranulaires (porosité primaire) regroupés avec des fractures (porosité de fracture) dans 

une matrice rocheuse et des réseaux de canaux et de conduites élargis (porosité de conduit) qui transfèrent la 

majeure partie de la recharge vers les sources karstiques (Geyer et al., 2013; Ghasemizadeh et al., 2012). 

L'épikarst représente un horizon altéré de quelques mètres au-dessus de la zone vadose, caractérisé par une 

perméabilité et une porosité élevée dues à l'apport important de CO2 qui augmente la dissolution des roches 

carbonatées près de la surface terrestre. Deux mécanismes de recharge sont généralement observés dans un 
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système karstique : (1) une recharge diffuse par percolation lente de l'eau infiltrée de l'épikarst vers la zone 

saturée à travers de petites fissures à faible perméabilité dans la zone vadose et (2) une recharge concentrée 

via des structures karstiques très conductrices (fractures élargies, dolines), permettant un transit rapide de 

l'écoulement à travers la zone vadose vers la zone saturée (Paiva, et Cunha, 2020). L'épikarst, avec le sol sus-

jacent, contrôle l'infiltration, le stockage et le délai de recharge de la zone saturée en stockant temporairement 

l'eau de percolation pendant les périodes de sécheresse et de faible recharge, et en libérant rapidement le flux 

par les canaux karstiques à la saturation lorsque le taux d'infiltration dépasse le taux de percolation. La capacité 

de stockage de l'épikarst dépend de sa maturité et du contraste de perméabilité entre sa partie inférieure et la 

zone de transmission sous-jacente. À l'évolution totale de l'épikarst, le ruissellement de surface est réduit et la 

majeure partie de l'infiltration qui traverse l'épikarst s'écoule dans les conduits, tandis que la percolation à 

travers la matrice et les fissures n'augmente plus. Par ailleurs, l'épikarst peut être discontinu, peu développé 

ou complètement dissipé par des processus géomorphologiques, ce qui réduit son rôle hydrologique (Bauer et 

al., 2005; Fidelibus et al., 2017; Nannoni and Piccini, 2022; Yan et al., 2022). La zone de transmission relie 

et transfère l'eau de recharge de l'épikarst à la zone saturée où les conduits karstiques à haute perméabilité 

vident la matrice rocheuse fissurée, générant un flux pour le débit de l'eau souterraine. Les systèmes karstiques 

présentent donc un double mode de stockage et d'écoulement souterrain : (1) stockage prolongé des eaux 

souterraines et faible vitesse d'écoulement (écoulement laminaire) dans la matrice, et (2) faible stockage des 

eaux souterraines avec vitesse d'écoulement rapide/non linéaire (turbulente) dans les conduits. Des décharges 

doubles vers la sortie de l'aquifère se produisent également avec (1) un écoulement lent et continu à partir de 

la matrice pendant les périodes sèches et (2) un écoulement rapide à partir des conduits pendant les épisodes 

de fortes pluies (de Rooji and Graham, 2017; Giese et al., 2018; Hartmann et al., 2021). Le conduit et la 

matrice échangent également des flux, qui dépendent principalement de la différence de niveaux d'eau entre 

les deux milieux et des propriétés du conduit (Dal Soglio et al., 2020a), et peuvent contribuer de manière 

substantielle au débit de la source pendant les périodes sèches et d'étiage (Sivelle et al., 2019). Plusieurs études 

ont établi que la relation stockage-débit non linéaire représente la dynamique de l'écoulement entre l'épikarst, 

la matrice et les conduits (Basu et al., 2022; Chang et al., 2015; Kurtulus and Razack, 2007; Labat et al., 2000; 

Zhao et al., 2021). 

En outre, les limites d'alimentation des aquifères karstiques ne coïncident pas toujours avec les limites des 

bassins versants. Alors que l'infiltration directe des précipitations sur les affleurements karstiques constitue 
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une recharge autogène, l'infiltration des eaux de ruissellement provenant des zones non karstiques adjacentes 

constitue une recharge allogène avec une composante d'écoulement souterrain interbassin qui traverse les 

lignes de partage topographiques de surface à travers les conduits avant d'émerger au niveau des sources. 

L'alimentation allogène pourrait représenter une part importante du débit des sources karstiques, en particulier 

dans les régions où la perméabilité du substratum rocheux est élevée. Par conséquent, négliger la différence 

entre les limites topographiques et hydrogéologiques de ces aquifères karstiques, connus sous le nom de 

systèmes karstiques binaires, et la représentation des processus hydrologiques de leurs zones de recharge 

karstiques et non karstiques combinées, aboutit à un bilan hydrique non fermé et à des estimations inexactes 

des ressources en eau. L'écoulement des eaux souterraines entre les bassins n'est pas explicitement mesurable, 

ce qui nécessite l'application d'approches hydrogéochimiques basées sur la surveillance des principaux 

éléments dissous, des isotopes, de la conductivité électrique et de la température de l'eau, ou des études 

hydrogéologiques des voies d'écoulement des eaux souterraines et des techniques physiques telles que le bilan 

hydrique du sol et la fluctuation du niveau de l'eau, ou encore une combinaison de ces approches. 

En raison de leurs propriétés intrinsèques et de leur comportement hydrodynamique complexe, les aquifères 

karstiques sont vulnérables à la surexploitation, au changement climatique et à la contamination 

(Goldscheider, 2019; Gutiérrez et al., 2018). Les ressources en eaux souterraines karstiques continuent d'être 

confrontées à un stress d'épuisement à l'échelle mondiale en raison de l'augmentation des prélèvements d'eau, 

de la modification de l'utilisation du sol et du changement climatique (Doummar et al., 2018; Fiorillo and 

Guadagno, 2012; Hao et al., 2009; Jia et al., 2017; Kovačič et al., 2020; Nerantzaki and Nikolaidis, 2020; Ruiz 

et al., 2022; Sivelle et al., 2021; Smiatek et al., 2013; Taheri et al., 2016). Dans les systèmes karstiques bien 

développés, les processus naturels tels que l'absorption, la dégradation et la filtration sont inefficaces en raison 

de la faible capacité de stockage, du mouvement rapide de l'eau, du temps de séjour court et de l'interaction 

limitée avec la roche mère en contact avec l’aquifère. Ainsi, les contaminants peuvent rapidement atteindre la 

nappe phréatique par une recharge concentrée et se propager facilement dans les conduits karstiques sur de 

grandes distances (Entezari et al., 2016; Iván et Mádl-Szőnyi, 2017). 

Par conséquent, la compréhension du fonctionnement hydrodynamique des aquifères karstiques et 

l'anticipation des impacts du changement climatique et des pressions anthropogéniques sur les ressources en 

eau karstiques sont impératifs pour sauvegarder ces réserves d'eau en diminution et mettre en place des 

programmes efficaces pour leur gestion. Cependant, l'évaluation des ressources en eau karstique en tenant 
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compte de la variabilité spatiale des déterminants des flux de surface et souterrains reste un défi en raison de 

l'hétérogénéité de ces aquifères, leur anisotropie, la dualité de la recharge et de la décharge, et la non-linéarité 

des flux (Hartmann et al., 2014). 

 

 

Figure 1. Schéma conceptuel d'un aquifère karstique (modifié d'après Goldscheider (2019) et Hartmann et al. (2014)) 

illustrant le comportement hydrologique hétérogène d'un système karstique (épikarst, matrice et conduits), avec deux 

processus d'infiltration et de recharge, deux champs d'écoulement souterrain et deux caractéristiques de décharge. Les 

aquifères karstiques sont une source primaire en eau douce pour les usages résidentiels, industriels et agricoles et sont 

très vulnérables au changement climatique et aux dangers anthropogéniques (Sivelle et al., 2021). 

 

Les hydrologues s'appuient sur des modèles mathématiques, qui utilisent des approches numériques 

spatialement agrégées ou distribuées, pour simuler les processus d'écoulement dans les bassins versants 

karstiques, comprendre leur comportement hydrodynamique et évaluer leur réponse hydrologique aux 

changements climatiques et aux pressions anthropiques (Cardoso de Salis et al., 2019 ; Mudarra et al., 2019). 

Les modèles agrégés conceptualisent les processus physiques à l'échelle du système hydrologique et 

considèrent différentes combinaisons des composantes dominantes du flux comme des réservoirs conceptuels 

distincts (linéaires ou non linéaires) avec des paramètres qui représentent les caractéristiques du système 

moyennées dans l'espace (Butscher and Huggenberger, 2008; Dwarakish and Ganasri, 2015; Fleury et al. 
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2007, 2009; Hartmann et al., 2014; Sivelle et al. 2021; Tritz et al. 2011). Par rapport aux modèles agrégés, les 

modèles semi-distribués et distribués représentent explicitement la variabilité spatiale des caractéristiques du 

bassin versant, les conditions aux limites, les contributions significatives au débit et les processus 

hydrologiques (Dwarakish et Ganasri, 2015). Les modèles semi-distribués subdivisent le bassin versant en 

unités de réponse hydrologique (HRU) et peuvent simuler les processus hydrologiques à l'échelle de l'HRU, 

utiliser des réservoirs conceptuels pour modéliser les processus de recharge de surface de faible résolution 

spatiale, ou représenter la structure interne d'un aquifère karstique en utilisant des réseaux de conduits. D'autre 

part, les modèles entièrement distribués représentent les processus en discrétisant le système en grilles à deux 

ou trois dimensions, en attribuant des paramètres à chaque cellule de la grille et en simulant une forme 

bidimensionnelle ou tridimensionnelle de l'équation gouvernant l'écoulement des eaux souterraines. Dans le 

contexte de la modélisation hydrogéologique du karst, les modèles distribués sont généralement subdivisés en 

trois catégories principales: (1) les modèles de milieux poreux entièrement équivalents, qui utilisent les 

propriétés hydrauliques moyennes sur la zone de l'aquifère sans simuler explicitement les flux rapides diffusifs 

et concentrés, (2) les modèles à double continuum qui représentent la matrice et les conduits karstiques comme 

deux continuums en interaction avec leurs attributs hydrauliques, et (3) les modèles combinés à continuum 

discret dans lesquels les conduits sont intégrés comme des éléments discrets à l'intérieur de la matrice 

(Dwarakish and Ganasri, 2015; Gill, et al., 2021). Le développement et la paramétrisation des modèles 

distribués sont généralement limités par la nécessité d'une connaissance adéquate des conditions géologiques 

(lithologie, fractures, failles), des propriétés hydrauliques et géométriques des composants de l'aquifère 

karstique (par exemple, la porosité, la conductivité hydraulique, la géométrie du réseau de conduits) et des 

changements dynamiques de la structure de perméabilité de la surface souterraine (Adinehvand et al., 2017; 

Chang et al., 2019; Fischer et al., 2018; Ghasemizadeh et al., 2012; Gill et al., 2021; Hartmann et al., 2014; 

Malenica et al., 2018). Ainsi, les modèles hydrogéologiques semi-distribués sont proposés comme une 

approche hybride pour éviter les limitations des deux classes de modèles susmentionnées en combinant la 

variabilité spatiale des facteurs qui influencent l'écoulement de surface (les caractéristiques climatiques, 

occupation du sol) avec les composantes dominantes de l'écoulement de l'aquifère karstique sous-jacent. 

Peu de tentatives ont été réalisées pour simuler l'hydrologie des bassins versants karstiques à l'aide de 

modèles semi-distribués qui intègrent la recharge variable spatialement, basée sur les propriétés de l'HRU (le 

climat, l’occupation du sol, le type du sol, la géologie), avec des modèles de réservoirs globaux des 
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composants d'écoulement dominants de l'aquifère karstique. Hartmann et al. (2013) ont développé le modèle 

VarKarst, qui présente les processus d'écoulement sol-épikarst, les composantes de recharge diffusives et 

concentrées, et l'écoulement de source sur des compartiments verticaux de caractéristiques uniques du sol et 

de l'épikarst. Dans ce modèle, le débit sortant du compartiment épikarst est divisé entre la recharge diffuse et 

concentrée à l'aide d'un facteur de séparation variable, et le débit de source est calculé par la somme des débits 

sortants des compartiments de la matrice et du conduit. Sarrazin et al. (2018) ont ensuite intégré l'équation de 

Penman-Monteith pour une meilleure estimation de l'évapotranspiration en incluant explicitement les 

propriétés de la couverture terrestre. Bittner et al. (2018) ont introduit le modèle semi-distribué LuKARS 

(Land use change modeling in KARSt systems), qui regroupe les zones homogènes d’occupation du sol et les 

propriétés du sol dans un bassin versant karstique en unités spatiales indépendantes appelées hydrotopes. Ces 

hydrotopes rechargent un réservoir linéaire pour la simulation du débit de base (débit matriciel) de la décharge 

de la source karstique, tandis que le débit rapide de la source est modélisé comme un débit préférentiel des 

hydrotopes vers la sortie de la source. En outre, Ollivier et al. (2020) ont proposé le modèle semi-distribué 

KaRaMel (Karst Recharge and discharge Model), qui divise la zone de recharge de l'aquifère karstique en 

grilles connectées à un réservoir supérieur qui simule l'infiltration à partir des données de précipitations et 

d'évapotranspiration d'entrée de manière linéaire vers deux réservoirs inférieurs reproduisant les composantes 

d'écoulement matriciel et de conduit de la décharge de la source karstique. Ollivier et al. (2021) ont ensuite 

intégré le modèle d'évapotranspiration SimpKcET (Simple Crop coefficient for Evapotranspiration) basé sur 

la télédétection dans KaRaMel afin d'estimer l'évapotranspiration selon l'approche Penman-Monteith et de 

dériver la fraction de la couverture végétale dans un bassin versant karstique en utilisant l'indice EVI 

(Enhanced Vegetation Index). Yang et al. (2022) ont également proposé le modèle hydrologique distribué du 

karst Xin'anjiang (DK-XAJ) pour la simulation des inondations dans les bassins versants karstiques, en 

divisant la pente des collines en cellules de terrain karstique fortement, modérément et faiblement 

développées, et en mettant en œuvre deux réservoirs linéaires parallèles pour la simulation des composantes 

d’écoulement rapide et matriciel du débit dans les cellules karstiques modérément ou fortement développées.  

Le Soil and Water Assessment Tool (SWAT) (Arnold et al., 1998) est l'un des modèles éco-

hydrologiques semi-distribués les plus utilisés au niveau international, en raison de sa robustesse et de sa 

flexibilité en tant qu'outil interdisciplinaire (Aloui et al., 2023). Le modèle a été largement appliqué dans des 

bassins versants pour estimer le bilan hydrique et débit (e.g., Alitane et al., 2022; Ayivi and Jha, 2018; Goyal 
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et al., 2015; Raihan et al., 2020; Saha et al., 2014; Shrestha et al., 2017; Stefanidis et al., 2016), et fournir des 

stratégies pour la gestion durable des ressources en eau dans le cadre du changement climatique (e.g., Azari 

et al., 2015; Hao et al., 2018;  Nilawar and Waikar, 2019; Parajuli and Risal, 2021; Rashid et al., 2022; Shrestha 

et al., 2016; Zabaleta et al., 2014), changement d’occupation du sol (e.g., Chotpantarat and Boonkaewwan, 

2018; Muthee et al, 2023; Nakatsugawa, 2021; Rajib et al., 2016; Welde and Gebremariam, 2017) et la 

pression anthropique (e.g., Mittal et al., 2016; Oliver et al., 2014). Malgré son large éventail d'applications 

(CARD, 2023), peu d'études basées sur SWAT ont été menées dans les bassins versants karstiques. SWAT 

simule la recharge diffusive par percolation de l'eau du sol à l'échelle HRU dans un modèle linéaire à deux 

réservoirs composé d'un réservoir aquifère libre (non confiné) qui se déverse dans les biefs des cours d'eau et 

un aquifère captif (confiné) qui déverse l'eau en dehors du bassin versant (Neitsch et al., 2011). Ainsi, le 

module des eaux souterraines de SWAT ne représente pas la dynamique de recharge, de stockage et de 

décharge des composantes hydriques de l'aquifère karstique, ce qui limite l'applicabilité de son modèle pour 

estimer le débit et simuler les flux du bilan hydrique dans les bassins versants karstiques dominés par les 

sources. La majorité des études SWAT sur les bassins versants karstifiés ont utilisé le code source du modèle 

standard et peu l'ont modifié pour mieux représenter les processus hydrologiques des composantes karstiques 

dominantes dans la région étudiée. Ces modifications se sont concentrées sur l'augmentation de l'infiltration, 

la simulation des deux composantes de la recharge lente et concentrée de l'aquifère, ainsi que sur les flux entre 

les composantes de l'aquifère karstique et la source. Baffaut et Benson (2009) et Zhou et al. (2022) ont 

représenté les dolines de la rivière James et des bassins des rivières Panjiang Sud et Nord comme des étangs 

dans SWAT et ont simulé la recharge de l'aquifère libre par la somme du flux diffusif de la percolation de 

l'eau du sol et du flux concentré provenant du drainage de l'étang. Yactayo (2009) a modélisé la recharge 

concentrée à travers les dolines du bassin versant d'Opequon Creek comme une infiltration directe du 

ruissellement de surface et du flux latéral du sol généré dans les zones karstiques. Palanisamy et Workman 

(2015) ont conceptualisé les dolines dans le lit des cours d'eau du bassin versant de Cane Run comme des 

orifices qui drainent le débit des cours d'eau dans les sous-bassins karstiques vers le réservoir de l'aquifère 

profond SWAT, et ont acheminé la décharge du réservoir comme un flux de conduit rapide vers l'exutoire du 

bassin versant. En outre, Eini et al. (2020) ont proposé d'augmenter la recharge de l'aquifère dans les zones 

karstiques en modifiant soit la variable de temps de retard de la fonction de recharge de SWAT, soit le module 

d'écoulement de fissures de SWAT, de manière à modéliser l'écoulement de dérivation dans les sols secs et 
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humides. Par ailleurs, Nikolaidis et al. (2013) ont couplé SWAT dans les zones karstiques avec un modèle de 

réservoir linéaire matrice-conduit alimenté par le débit sortant du réservoir aquifère profond de SWAT. Le 

débit de source a été calculé comme la somme des débits sortants des réservoirs de la matrice et du conduit, 

puis ajouté en tant que source ponctuelle pour calculer le ruissellement total du bassin versant où les sources 

karstiques sont situées. Nguyen et al. (2020) ont incorporé un modèle linéaire matrice-conduit à deux 

réservoirs dans SWAT pour simuler l'écoulement des sources dans les zones karstiques. Dans ce modèle, le 

réservoir matriciel est alimenté par une recharge diffusive provenant de la percolation de l'eau du sol, tandis 

que le réservoir du conduit est rechargé par l'infiltration du sol, les pertes d'eau concentrées (en tant que flux 

d'eau souterraine entre les bassins) provenant des cours d'eau qui se déversent dans l'aquifère, et la décharge 

diffusive du réservoir matriciel. Le débit de source est calculé à partir le débit sortant du réservoir de conduit 

et ajouté au ruissellement direct pour simuler le débit d'un bassin avec des sources karstiques. En outre, Wang 

et al. (2019b) ont intégré un modèle linéaire à trois réservoirs dans SWAT pour simuler les flux de l'épikarst, 

de la matrice et des conduits. Dans ce modèle, le réservoir epikarst est rechargé par percolation du sol avec 

une fonction d'atténuation qui dépend de la teneur en eau à saturation, le réservoir conduit est alimenté par la 

décharge du réservoir epikarst et l'infiltration directe d'eau à partir des dépressions, et le réservoir matrice est 

alimenté par une autre fraction des décharges des réservoirs epikarst et conduit. Geng et al. (2021) ont adopté 

une configuration à trois réservoirs épikarst-conduit-matrice similaire à celle de Wang et al. (2019b), mais ont 

supprimé la fonction d'atténuation du réservoir épikarst pour simuler une recharge rapide par percolation de 

l'eau du sol et ont ajouté une composante d'écoulement direct du réservoir épikarst vers les biefs. Dans les 

deux modèles, la contribution du débit de source au ruissellement du bassin versant est calculée comme la 

somme des débits sortants des réservoirs de la matrice et du conduit. Enfin, Wang et Brubaker (2014) ont 

appliqué une modification non linéaire au réservoir de l'aquifère peu profond dans SWAT pour simuler le flux 

de retour vers les canaux des cours d'eau dans les zones karstiques. Ces modèles SWAT modifiés et les 

modèles semi-distribués appliqués à l'hydrologie karstique (VarKarst, LuKARS, SimpKcET-KaRaMel, DK-

XAJ) n'ont pas représenté l'ensemble des flux de l'épikarst, de la matrice et du conduit, qui incluent le débit 

d'échange bidirectionnel matrice-conduit, par des relations stockage-débit non linéaires. 

Par conséquent, cette thèse vise à développer un modèle hydrologique karstique semi-distribué en 

modifiant le code source de SWAT afin de simuler les flux quotidiens d'eau de surface et souterrains dans un 

bassin versant karstique, en tenant compte de l'hétérogénéité spatiale des propriétés de surface du karst (i.e., 
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l'occupation du sol, les caractéristiques du sol, la lithologie) et son influence sur la recharge, et les transferts 

de flux entre l'épikarst, la matrice, et les conduits suivant une approche non linéaire. 

1.3 Problem statement 

Karst aquifers are facing a depletion stress due to increased water abstraction, land use change, and 

climate change (Kovačič et al., 2020; Nerantzaki and Nikolaidis, 2020; Ruiz et al., 2022; Smiatek et al., 2013; 

Taheri et al., 2016), which is expected to further exacerbate water scarcity with predicted temperature rises of 

1.5−4°C by 2100 (IPCC, 2023). Hydrologists use mathematical models to simulate watersheds and aquifers, 

understand their hydrodynamic behavior, and assess their response to climate change and anthropogenic 

pressure for sustainable water resource management (Cardoso de Salis et al., 2019). However, assessing karst 

water resources using spatially distributed models remains a challenge due to their heterogeneity, anisotropy, 

recharge and discharge duality, and flow non-linearity (Hartmann et al., 2014). To date, limited attempts have 

been made to simulate karst watershed hydrology using semi-distributed models that integrate spatially 

variable recharge based on the meteorological inputs, land use and soil properties. For instance, the VarKarst 

model (Hartmann et al., 2013) represents the soil-epikarst flow processes, diffusive and concentrated recharge, 

and spring discharge using vertical compartments of unique soil and epikarst characteristics. LuKARS (Land 

use change modeling in KARSt systems; Bittner et al., 2018) groups areas of homogeneous land-use and soil 

properties in a karst watershed as independent spatial units called hydrotopes to simulate the quick flow and 

baseflow components of the spring discharge. KaRaMel (Ollivier et al., 2020) divides the aquifer recharge 

area into grids and partitions recharge from an upper reservoir linearly between lower conduit and matrix 

reservoirs as a function of the soil available water capacity. These models calculate the karst aquifer discharge 

by combining slow and rapid outflows from the matrix and conduit units to a main spring outlet without 

considering surface runoff, the recharge and groundwater flow in non-karstic units in partially overlapping 

surface drainage and groundwater basins of binary karst systems, and the influence of water withdrawals. 

Additionally, Sivelle et al. (2022) compared the predictive performance of the lumped reservoir-based model 

KarstMod (Mazzilli et al., 2019) and LuKARS in simulating the spring flow of three small karst catchments 

(Kerschbaum, Oeillal, and Baget). The study showed mixed results whereby the application of semi-

distributed recharge with LuKARS improved the discharge simulation performance for the Kerschbaum (2.5 

km2) and Oeillal (43.2 km2) catchments but provided no improvement for the Baget catchment (13.25 km2). 

Few researchers have also modified the semi-distributed eco-hydrological model SWAT (Soil and Water 
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Assessment Tool, Arnold et al., 2012) or integrated it with other models to better simulate karst watershed 

hydrology, but failed to reproduce key flow processes in spring-dominated karst watersheds, including flow 

non-linearity and the flow components of the epikarst, matrix, and conduits water bearing components. Thus, 

previous research highlights the need for new numerical approaches that incorporate the recharge and 

discharge characteristics of karst watersheds and account for the spatial variability of the flow dominant 

controls for an improved assessment of karst water resources.    

1.4 Scientific questions and research objectives 

Despite the recent advances in karst hydrological modeling using semi-distributed models, to the best 

of our knowledge, there exists no semi-distributed hydrological model for karst-dominated conservative 

watersheds that simulates diffusive and concentrated recharge with flow processes of the epikarst, matrix, and 

conduits, including the bidirectional matrix-conduit exchange flow rate, using a non-linear storage-discharge 

relationship. There is also no semi-distributed model that simulates surface and subsurface flows in binary 

karst systems where the karst aquifer recharge boundaries do not coincide with the surface subbasin 

boundaries, including autogenic and allogenic recharge in tandem with the epikarst, matrix, and conduits 

fluxes in karst areas. This raises the question of whether or not we can still improve the simulation of flow 

processes in karst watersheds by providing a semi-distributed model that incorporates the recharge-discharge 

characteristics of karst watersheds while accounting for the spatial variability of the watershed surface and 

subsurface flows. 

The general purpose of the thesis is to develop a semi-distributed numerical model to simulate the surface-

underground water fluxes in karst watersheds, by coupling the semi-distributed eco-hydrological model 

SWAT (Soil and Water Assessment Tool) with the karst groundwater module of the lumped rainfall-runoff 

model KarstMod. The Baget karst catchment, located in piedmont of the French Pyrénées mountains and 

monitored by the Karst National Observatory Service (SNO Karst) (Jourde et al., 2018), was selected as the 

study site. The catchment has a recharge contribution zone of 13.25 km2 on a predominatly karst, mixed 

lithological terrain (karst landforms: 67%; non-karst rocks: 33%) and is characterized by rapid aquifer 

recharge and non-linear karst spring flow through conduits.  

Specifically, it aims to achieve the following objectives:  
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Modify the SWAT+ source code by integrating the nonlinear three reservoirs of the epikarst, matrix 

and conduits adopted in KarstMod, and test the capability of the modified model in simulating the daily 

water balance and flow dynamics of a spring-dominated conservative karst watershed. 

The SWAT+ source code will be modified by adding new subroutines that incorporate fast and 

diffusive flow recharge equations, the water balance equations that encompass the non-linear flow transfers 

between the epikarst, matrix, and conduit reservoirs of KarstMod for the simulation of spring flow in 

conservative karst aquifers, as well as the input parameters associated with new karst modules. The modified 

source code will be compiled into a new model executable termed ISPEEKH and applied to simulate 

streamflow in the Baget catchment (13.25 km2). This step includes verifying the watershed water balance 

conservation, integrating the model with a Parameter ESTimation Tool (PEST) framework for sensitivity 

analysis and automated calibration, and assessing the model capability to reproduce the duality of the recharge, 

storage and discharge in the karst area.  

Evaluate the hydrological response of the Baget catchment to land-use change scenarios of 

afforestation and deforestation to provide insights into the impacts of plausible land management plans on 

the catchment water resources. 

Natural afforestation due to land abandonment, wood production and agro-pastoralism have been 

identified as drivers of future land-use changes in the French Pyrénées and European mountains. Thus, the 

first land-use change scenario applied to the Baget catchment will assume afforestation by conversion of 

pastures, cultivation patterns, moors, heathland, and transitional woodland/shrubland to broad-leaved forests. 

The remaining scenarios will consider deforestation for wood production (i.e., conversion of forests into 

transitional woodland/shrub) and pastureland for animal grazing (i.e., transition of forests into pastures). These 

scenarios will be applied to the karst areas to evaluate their impact on the spring flow component of 

streamflow, and will be extended to the entire catchment to assess their effects on both spring flow and surface 

runoff draining non-karst areas. The distribution of land-use classes for each scenario will be determined by 

modifying the land-use and plant communities in the model input files, and the scenarios will be implemented 

under the same meteorological data used for the calibrated baseline ISPEEKH model.  

To evaluate and compare the reliability of reanalysis, gauge-, and satellite-based precipitation 

products, at coarse (tens of kilometer) and downscaled (1-km) spatial resolutions, for the daily water 
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balance and streamflow simulation in a meso-scale and sparsely gauged karst catchment, characterized by 

a short response time to precipitation. 

The ISPEEKH model predictive performance in simulating streamflow of the Baget catchment (13.25 

km2) will be evaluated under various spatially-distributed precipitation datasets of the CPC (0.5° resolution) 

and E-OBS (10-km resolution) gauge-based products, the SAFRAN (8-km resolution), COMEPHORE (1-km 

resolution) and ERA5-Land (0.1° resolution) reanalysis products, and the IMERG-LR (0.1° resolution), 

PERSIANN-CDR (0.25° resolution), CHIRPS (0.05° resolution) and SM2RAIN-ASCAT (10-km resolution) 

satellite-based products, as well as 1-km resolution downscaled IMERG-LR, ERA5-Land, CPC, E-OBS and 

merged CPC-IMERG-LR precipitation datasets. ISPEEKH will be integrated with a Parameter ESTimation 

Tool (PEST) framework for automated calibration, sensitivity analysis, and uncertainty analysis. 

1.5 Thesis organization 

This thesis is article-based and encompasses six chapters. Following the introduction presented in 

Chapter 1, Chapter 2 first presents the rainfall-runoff reservoir-based karst model KarstMod and the equations 

used by this model to simulate various flow processes of the epikarst, conduit, and matrix water bearing 

components of karst aquifers. It then provides on overview of the semi-distibuted eco-hydrological model 

SWAT and fundemantal equations adopted in the model to simulate the surface and subsurface water 

hydrological processes in watersheds with granular type aquifers. Chapter 3 is a review on the applications of 

standard and modified SWAT models in karst-influenced and dominated watersheds gathered from the 

SWAT-based peer-reviewed studies published between the years 2000 to 2022. This chapter includes a 

description of the numerical approaches applied by the modified SWAT models to simulate karst flow 

processes, and evaluates the general performance of the SWAT models in simulating streamflow in karst 

watersheds. Chapter 3 has been published in Water as a review article titled “Review of the application of the 

soil and water assessment tool (SWAT) in karst watersheds”.  Chapter 4 provides an overview of the ISPEEKH 

model development for the hydrological simulation of karst watersheds and presents the groundwater recharge 

and flow equations adopted from KarstMod in modifying the source code of SWAT+, the latest restructured 

version of SWAT, into ISPEEKH. The chapter then presents the application of ISPEEKH for the simulation 

of the daily water balance in the Baget karst catchment (13.25 km²), located in the southwestern French 

Pyrénées and characterized by nonlinear conduit-dominated karst spring flow. It analyses the results of the 

simulated streamflow and fluxes of the epikarst, matrix and conduit fluxes, including the matrix-conduit 
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bidirectional exchange flow rate and the matrix and conduit flow contributions to the spring. It also evaluates 

the hydrological response of the Baget catchment to synthetic land-use change scenarios of afforestation (i.e., 

pasture and transitional woodland/shrub conversion to forests) and deforestation (i.e., forest-to-transitional 

woodland/shrub conversion and forest-to-pasture land transition), considering the annual and monthly water 

fluxes, as well as the high and low flows. Chapter 4 has been published in Journal of Hydrology under the 

article titled “Impact of land-use change on karst spring response by integration of surface processes in karst 

hydrology: The ISPEEKH model”. Chapter 5 discusses the ISPEEKH model predictive performance in 

simulating daily streamflow in the mesoscale Baget karst catchment in fucntion of precipitation from gauge-

based, reanalysis, and satellite-based products at coarse (tens of kilometer) and 1-km (downscaled) spatial 

resolution. The chapter features the integration of ISPEEKH with a PEST framework for automated 

calibration, the analysis of the sensitivity of the ISPEEKH parameters that influence streamflow using the 

Morris screening method, and parameter estimation using the Gauss–Marquardt–Levenberg algorithm. The 

model's predictive performance of daily streamflow under raw and corrected precipitation datasets was 

assessed using metrics commonly applied in karst hydrology, in tandem with an orthogonal wavelet 

decomposition of the observed and simulated streamflow time series. The work in Chapter 5 has been 

submitted for publication in Journal of Hydrology under the article titled “Evaluation of Precipitation 

Products for Small Karst Catchment Hydrological Modeling in Data-scarce Mountainous Region”. Finally, 

Chapter 6 summarizes the main findings of the research work conducted in the thesis and provides perspectives 

for future research in spatially-distributed hydrologcal modeling of karst watersheds.  

 

 

 

 

 

 

 



36 

 

CHAPTER 2: Modeling methodologies 

2.1 Lumped parameter rainfall-discharge modeling of karst aquifers: KarstMod Overview 

KarstMod (Mazzilli et al., 2019) is a reservoir-based rainfall-runoff modeling tool developed by the French 

institution INSU-CNRS SNO KARST (Jourde et al., 2018) in the framework of conducting hydrogeological 

studies in karst aquifers. The platform reproduces the conceptual configuration of most karst models known 

in the literature and has been successfully applied to several karst regions globally to simulate groundwater 

discharge at the daily and hourly time steps, analyze the hydrodynamic behavior of complex karst systems 

(e.g. Baudement et al., 2017; Poulain et al., 2018; Kazakis et al., 2018; Lončar et al., 2018; Sivelle et al., 2019; 

Arfib et al., 2019; Duran et al., 2020; Frank et al., 2021), and assess the impacts of climate change and 

anthropogenic pressure by groundwater pumping on karst water resources availability (Sivelle et al., 2021).  

KarstMod (Figure 2) comprises four conceptual reservoirs arranged in a two-level structure: (1) the high-

level reservoir E and (2) the low-level reservoirs L, M, and C. ‘Reservoir E’ represents the infiltration zone 

(unsaturated zone) in a karst system and replicates functions of the soil and epikarst. This reservoir is 

characterized by a minimum water level 𝐸𝑚𝑖𝑛 (negative value) for the soil water content available for 

evapotranspiration. KarstMod allows the user to incorporate evapotranspiration measurements in the input 

data file or applies the Oudin’s formula (Equation (1); Oudin et al., 2005) to estimate potential 

evapotranspiration at the level of reservoir E using temperature time series in the input file (Mazzilli et al., 

2022).   

𝑃𝐸𝑇 =  
𝑅𝑒
𝜆 ∗ 𝜌

(
𝑇 + 𝐾2
𝐾1

)    𝑖𝑓  𝑇 + 𝐾2 > 0;   𝑒𝑙𝑠𝑒 𝑃𝐸𝑇 = 0 (1) 

where 𝑅𝑒 is the extraterrestrial radiation (MJ.L-2.T-1) based on the latitude and Julian day, 𝜆 is the latent heat 

flux (set to 2.45 MJ.M-1), 𝜌 is the water density [M.L-3], 𝑇 is the mean daily air temperature (°C) over the 

catchment, entered as time series in the user input file, and K1 (°C) and K2 (°C) are user-defined correction 

factors. The recommended value ranges of the adjustment factors are 5−6 for 𝐾1 and 90−110 for 𝐾2 in 

rainfall–runoff modeling. The actual (effective) evapotranspiration is then determined using a lumped 

approach as a function of the minimum moisture level in the epikarst reservoir (𝐸𝑚𝑖𝑛), and recharge to the 

lower reservoirs occurs when the water level in reservoir E exceeds 𝐸𝑚𝑖𝑛. 

The hysteretic transfer function proposed by Tritz et al. (2011) can be also implemented in KarstMod to 

account for the variable connectivity in the soil-epikarst zone and simulate fast flow driven by the saturation 

of the epikarst and preferential flow paths during heavy rainfall events. Hysteretic discharge is activated when 
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the water level in reservoir E reaches a minimum threshold 𝐸(𝑡) = 𝐸ℎ𝑦(𝑡) + ∆𝐸ℎ𝑦(𝑡), where 𝐸ℎ𝑦  and ∆𝐸ℎ𝑦  are 

the lower and upper threshold levels for the activation of the discharge, and is applied using a factor 𝜀ℎ𝑦 that 

switches to 1 when water level 𝐸 surpasses 𝐸ℎ𝑦. The hysteretic flux is divided between the conduit reservoir 

(C) and the spring outlet (S) using a partitioning coefficient 𝑥ℎ𝑦 ϵ [0, 1]. The hysteretic discharge-water level 

function from the epikarst reservoir E to the conduit reservoir C and the spring outlet S is defined as follows: 

𝑄ℎ𝑦(𝑡) = 𝜀ℎ𝑦 × 𝑘ℎ𝑦 (
𝐸(𝑡) − 𝐸ℎ𝑦(𝑡)

𝐿𝑟𝑒𝑓
)

𝛼ℎ𝑦

 (2) 

𝜀ℎ𝑦 = 0 

𝐸(𝑡) = 𝐸ℎ𝑦(𝑡) + ∆𝐸ℎ𝑦(𝑡)
} → 𝜀ℎ𝑦 = 1 (3) 

𝜀ℎ𝑦 = 1 

𝐸(𝑡) = 𝐸ℎ𝑦(𝑡)
} → 𝜀ℎ𝑦 = 0 (4) 

𝑄ℎ𝑦𝐸𝐶(𝑡) = 𝑥ℎ𝑦 × 𝑄ℎ𝑦(𝑡) 

 
(5) 

𝑄ℎ𝑦𝐸𝑆(𝑡) = (1 − 𝑥ℎ𝑦) × 𝑄ℎ𝑦(𝑡) (6) 

Losses by surface water drainage from the epikarst catchment recharge area can be integrated in KarstMod 

using a non-linear discharge function 𝑄𝐿𝑜𝑠𝑠 applied to reservoir E with a threshold water level for the activation 

of the loss function, as follows: 

𝑄𝑙𝑜𝑠𝑠(𝑡) = 𝑘𝑙𝑜𝑠𝑠(𝐸(𝑡) − 𝐸𝑙𝑜𝑠𝑠)
𝛼𝑙𝑜𝑠𝑠

  𝑖𝑓 𝐸(𝑡) > 𝐸𝑙𝑜𝑠𝑠,     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒   𝑄𝐿𝑜𝑠𝑠(𝑡) = 0 (7) 

The outflows from reservoir E occur when its storage reaches a positive value. The mass balance equation and 

discharge functions for the different flow transfers of reservoir E in KarstMod (full configuration) are 

presented below:   

{       
𝑖𝑓 𝐸𝑚𝑖𝑛 < 𝐸 < 0;  

𝑑𝐸

𝑑𝑡
= 𝑃 − 𝐸𝑇

𝑖𝑓 𝐸𝑚𝑖𝑛 < 𝐸 < 0;
𝑑𝐸

𝑑𝑡
= 𝑃 − 𝐸𝑇 − 𝑄𝐸𝑀 − 𝑄𝐸𝐶 − 𝑄𝐸𝐿 − 𝑄𝐸𝑆 − 𝑄ℎ𝑦𝐸𝐶  − 𝑄ℎ𝑦𝐸𝑆 − 𝑄𝑙𝑜𝑠𝑠

 (8) 

 

With  

𝑄𝐸𝑀(𝑡) = 𝑘𝐸𝑀 (
𝐸(𝑡)

𝐿𝑟𝑒𝑓
)

𝛼𝐸𝑀

  𝑖𝑓 𝐸(𝑡) > 0,     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒   𝑄𝐸𝑀(𝑡) = 0 (9) 

𝑄𝐸𝐶(𝑡) = 𝑘𝐸𝐶 (
𝐸(𝑡)

𝐿𝑟𝑒𝑓
)

𝛼𝐸𝐶

  𝑖𝑓 𝐸(𝑡) > 0,     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒   𝑄𝐸𝐶(𝑡) = 0 (10) 

𝑄𝐸𝑆(𝑡) = 𝑘𝐸𝑆 (
𝐸(𝑡)

𝐿𝑟𝑒𝑓
)

𝛼𝐸𝑆

  𝑖𝑓 𝐸(𝑡) > 0,     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒   𝑄𝐸𝑆(𝑡) = 0 (11) 

𝑄𝐸𝐿(𝑡) = 𝑘𝐸𝐿 (
𝐸(𝑡)

𝐿𝑟𝑒𝑓
)

𝛼𝐸𝐿

  𝑖𝑓 𝐸(𝑡) > 0,     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒   𝑄𝐸𝐿(𝑡) = 0 (12) 
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where 𝑃 is precipitation (L.T-1), 𝐸𝑇 is evapotranspiration (L.T-1), 𝐸(𝑡) is the water level in reservoirs E, M, L, 

and C, respectively, 𝐸𝑚𝑖𝑛 is the minimum water level in the epikarst for the activation of discharge into the 

lower reservoirs  (L), 𝑄𝐴𝐵 is the internal discharge rate from reservoir A (either E, M, L, or C) to reservoir B 

(either E, M, L, or C) or to the outlet S (L.T-1), 𝑘𝐴𝐵 and 𝛼𝐴𝐵 are respectively the recession coefficient (L.T-1) 

and emptying (positive) exponents for the flow 𝑄𝐴𝐵, 𝐿𝑅𝑒𝑓 is a unit length (L), 𝑘ℎ𝑦 is the specific discharge 

coefficient (L.T-1), 𝐸ℎ𝑦 is the threshold water level in reservoir E for the activation of hysteretic discharge, 

𝜀ℎ𝑦  is a binary indicator of the activation of hysteretic discharge, 𝛼ℎ𝑦  is the recession coefficient of the 

hysteretic discharge function, 𝑥ℎ𝑦 is a partitioning coefficient of the hysteretic discharge, 𝑘𝐿𝑜𝑠𝑠 is the specific 

discharge coefficient (L.T-1) for the loss function, 𝐸𝐿𝑜𝑠𝑠 is the threshold for the activation of the loss function 

(L), and 𝛼𝐿𝑜𝑠𝑠 is the recession coefficient of the loss function. 

On the other hand, reservoirs L, M, and C reproduce the different sub-systems found primarily at the level 

of the saturated zone in a karstic aquifer. ‘Reservoir M’ reproduces to the low permeability matrix unit as well 

as the small fissures and cracks in the vadose and saturated zones, allowing the simulation of a slow-flow or 

baseflow component of the aquifer discharge to the spring. ‘Reservoir C’ represents the highly permeable 

karst conduits and simulates the fast-flow component of spring flow. The flow exchange between the conduit 

and surrounding matrix is also modeled using a bidirectional exchange flow rate function that depends on the 

difference between the water levels of reservoirs M and C. ‘Reservoir L’ can represent a highly capacitive 

matrix or a lower-level subsystem of the saturated zone, and is usually traded off with ‘reservoir M’ for the 

simulation of diffuse flow in a karst system. The total discharge at the spring that drains the karst aquifer 

recharge area is computed as the sum of the slow and fast-flow components. All reservoirs can be 

activated/deactivated depending on the user’s knowledge of the karstic system. The discharge-water level 

function for each reservoir is defined as a function of a specific recession coefficient ‘k’ and an emptying 

exponent ‘α’, both denoted based on the direction of the internal flux between two reservoirs. KarstMod can 

also account for groundwater abstraction by incorporating water withdrawal functions from either one or all 

three reservoirs (L, M, and C), and directly from the spring 
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Figure 2. Schematic of KarstMod reservoirs and fluxes, including the hysteretic, losses, and groundwater 

abstraction functions (modified from Mazzilli et al., 2017)  

The mass balance equation and discharge functions for the different flow transfers of reservoirs M, E and L 

in KarstMod (full configuration) are represented by Equations (13) and (20) below:   

Reservoir M  

𝑑𝑀

𝑑𝑡
= 𝑄𝐸𝑀 − 𝑄𝑀𝑆 − 𝑄𝑀𝐶 − 𝑄𝑝𝑢𝑚𝑝

𝑀  (13) 

 

With  

𝑄𝑀𝑆(𝑡) = 𝑘𝑀𝑆 (
𝑀(𝑡)

𝐿𝑟𝑒𝑓
)

𝛼𝑀𝑆

  𝑖𝑓 𝑀(𝑡) > 0,     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒   𝑄𝑀𝑆(𝑡) = 0 (14) 

𝑄𝑀𝐶(𝑡) = 𝑘𝑀𝐶 × 𝑠𝑖𝑔𝑛 (𝑀(𝑡) − 𝐶(𝑡)) × |
𝑀(𝑡) − 𝐶(𝑡)

𝐿𝑟𝑒𝑓
|

𝛼𝑀𝐶

 (15) 

 

Reservoir C  

𝑑𝐶

𝑑𝑡
= 𝑄𝐸𝐶 − 𝑄𝐶𝑆 + 𝑄𝑀𝐶 + 𝑄ℎ𝑦𝐸𝐶 − 𝑄𝑝𝑢𝑚𝑝

𝐶  (16) 

 

With  

𝑄𝐶𝑆(𝑡) = 𝑘𝐶𝑆 (
𝐶(𝑡)

𝐿𝑟𝑒𝑓
)

𝛼𝐶𝑆

  𝑖𝑓 𝐶(𝑡) > 0,     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒   𝑄𝐶𝑆(𝑡) = (17) 
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Reservoir L  

𝑑𝐿

𝑑𝑡
= 𝑄𝐸𝐿 − 𝑄𝐿𝑆 − 𝑄𝑝𝑢𝑚𝑝

𝐿  (18) 

 

With  

𝑄𝐿𝑆(𝑡) = 𝑘𝐿𝑆 (
𝐿(𝑡)

𝐿𝑟𝑒𝑓
)

𝛼𝐿𝑆

  𝑖𝑓 𝐿(𝑡) > 0,     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒   𝑄𝐿𝑆(𝑡) = 0 (19) 

 

Finally, the discharge at the karst spring outlet is computed as follows: 

𝑄𝑆(𝑡) = 𝑅𝐴 × (𝑄𝐸𝑆(𝑡) + 𝑄𝑀𝑆(𝑡) + 𝑄𝐶𝑆(𝑡) + 𝑄𝐿𝑆(𝑡) + 𝑄ℎ𝑦𝐸𝑆 − 𝑄𝑝𝑢𝑚𝑝
𝑆 ) (20) 

where 𝑀(𝑡), 𝐿(𝑡), and 𝐶(𝑡) are the water levels (L) in reservoirs M, L, and C, respectively, 𝑄𝐴𝐵 is the internal 

discharge rate from reservoir A (either E, M, L, or C) to reservoir B (either E, M, L, or C) or to the outlet S 

(L.T-1), 𝑘𝐴𝐵 and 𝛼𝐴𝐵 are respectively the recession coefficient (L.T-1) and emptying (positive) exponents for 

the flow 𝑄𝐴𝐵, 𝐿𝑅𝑒𝑓 is a unit length (L), 𝑄𝑝𝑢𝑚𝑝
𝐿 , 𝑄𝑝𝑢𝑚𝑝

𝑀 , 𝑄𝑝𝑢𝑚𝑝
𝐶 , and 𝑄𝑝𝑢𝑚𝑝

𝑆  (L.T-1) represent the discharge rates 

per unit surface area of withdrawals from reservoirs L, M, C, and the outlet, respectively, 𝑄𝑆𝑝𝑟𝑖𝑛𝑔 (L3.T-1) is 

the discharge at the outlet, and 𝑅𝐴 is the total surface of the recharge area (L2). 

Baudement et al. (2017) applied KarstMod to characterize the hydrodynamic behavior of the 

Dardennes springs (recharge area of ~70 km²), which constitute a major source of freshwater supply for the 

city of Toulon, in south-eastern France. The conceptual model of the aquifer consisted of the upper 

soil/epikarst reservoir E, including station-measured evapotranspiration, and the two lower matrix and conduit 

reservoirs M and C, with diffusive flow from reservoir M and fast flow from the conduit reservoir C to the 

spring, and no matrix-conduit exchange flow. Hydrograph separation of the karst spring flow revealed that the 

mean proportion of baseflow was estimated at 36% of the simulated discharge whereas fast flow contribution 

covered the remaining 64% and exceeded 90% at flood scale due to the presence of a well-connected conduit 

network in the vadose and saturated zones of the aquifer. 

Lončar et al. (2018) applied KarstMod to model the discharge of the Golunbika karst spring (in 

northern Dalmatia, Croatia) and determine the distribution of groundwater flow between the matrix and 

fractured components of the aquifer. The numerical model included the epikarst, matrix, and conduit 

reservoirs, and spring flow was simulated considering linear and non-linear storage-discharge relationships. 

The non-linear model yielded better discharge simulations and higher correlation with the observed data than 
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the linear model. Additionally, the matrix (slow flow)/conduits (fast flow) contributions (%) to the spring flow 

were estimated at 19%/81% and 13%/87% of the flow under the linear and non-linear models, respectively.  

Among other studies, KarstMod was used to conceptualize the hydrodynamic regime of the Damasi-

Titanos karst aquifer (320 km2) in eastern central Greece (Kazakis et al., 2018), which provides water supply 

for a total population of 175,000 in addition to supplying local agricultural and livestock activities. The 

hydrodynamic characteristics of the aquifer, which include autogenic recharge from precipitation, diffuse 

allogenic recharge from a river crossing the aquifer recharge area and lateral outflow to adjacent sedimentary 

aquifers, were represented by reservoirs E and C considering the hysteretic fluxes  from the epikarst towards 

the conduits (𝑄ℎ𝑦𝐸𝐶) and the spring (𝑄ℎ𝑦𝐸𝑆), and the conduit outflow to the spring (𝑄𝐶𝑆). Input 

evapotranspiration to reservoir E was estimated using the Thornthwaite method (Thornthwaite and Mather, 

1957) and station-measured data. The measured times series of the river percolation to the karst system were 

incorporated (as negative values) with the groundwater abstraction and lateral outflow of the karst system to 

adjacent sedimentary aquifers through the conduit reservoir pumping function.  

Poulain et al. (2018) performed percolation monitoring and dye tracing with numerical modeling in 

KarstMod in order to evaluate groundwater recharge through the karst vadose zone of the Rochefort Cave in 

Belgium. The vadoze zone behavior was conceptualized with two reservoirs. The first reservoir (E) represents 

the soil/epikarst receiving effective rainfall and dividing infiltration into a quick flow and a diffuse flow. The 

diffuse flow, which characterizes flow through matrix and small fissures, joins the epikarst with a lower 

reservoir representing the vadose zone and leaks to the outlet from the vadose reservoir. The quick flow is a 

hysteretic discharge that accounts for the variable connectivity in the soil/epikarst zone and represents the fast 

component of the catchment response to rainfall at the saturation of the epikarst, as described by Tritz et al. 

(2011). Results showed that diffusive infiltration through the small fissures and matrix contributed to two 

thirds of the total recharge. while rapid infiltration through open fractures accounted for the remaining one 

third.  

Sivelle et al. (2019) used KarstMod to model the long-term trends of the spring discharge and internal 

flows between the matrix and conduits, including the bidirectional exchange flow, in the Aliou (11.9 km2) and 

Baget (13.25 km2) catchments at daily and hourly time steps. The KarstMod models of the two catchments 

were driven solely by precipitation and consisted of the reservoirs E, M, C reservoirs with flow exchange 

between reservoirs M and C, and only fast flow discharge from reservoir C to the spring outlet. The MASH 
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(Moving Average over Shifting Horizon) method was then applied over five decades to assess the long-term 

trends of water levels in the two aquifers, with a primary focus on the matrix water storage and the matrix-

conduit flow exchange. The analysis revealed a decrease in the matrix storage during the spring periods, 

starting in the 1960s, estimated at -13.1% for Aliou and -11.3% for Baget, coupled with a shift in the annual 

recharge patterns as the matrix water storage started to increase in the month April instead of February since 

the early 1990s. The flow exchange from the matrix to the conduits, measured as a percentage of the total 

spring discharge, was also estimated at 2−5% on a yearly basis and around 25% of the spring flow on a 

monthly basis, depending on the matrix water storage and accumulated precipitation. 

Moreover, Duran et al. (2020) applied KarstMod with natural tracer observations, discharge signal 

analysis, and decomposition methods (Fourier analysis, wavelet multiresolution) in order to interpret the 

hydrological behavior of the Norville karst aquifer, a sinkhole-spring system draining a small watershed of 10 

km2 in Normandy-France, and identify the contribution of the different aquifer compartments in the signal 

decomposition between recharge and spring discharge. The KarstMod model included all reservoirs (‘E, C, 

M, and L‘) with a non-linear discharge from reservoir C to the spring and linear relationships for the internal 

fluxes  of the remaining reservoirs. Results showed that KarstMod successfully reproduced some internal 

dynamics of the Norville karstic system whereby the trends of the internal fluxes simulated by the conceptual 

model were consistent with those of the turbidity, conductivity and piezometric measurements at the spring, 

particularly for the exchange dynamics between the conduits and the surrounding aquifer. The wavelet results 

obtained from the multiresolution analysis of the spring discharge were also strongly correlated to the internal 

outflows of reservoirs E and M, highlighting the importance of coupling multiresolution analysis with lumped 

modelling to understand the functioning of karstic system. 

Frank et al. (2021) also applied KarstMod in the framework of investigating the dynamics of the high-

alpine karst system of Disnergschroef (6.8 km2). The model included reservoir E with daily potential 

evapotranspiration estimates from the “Haude method”, and reservoirs C and M with all spring flow set 

through reservoir C. The discharge from the epikarst to the matrix and conduit reservoirs was found to be very 

responsive to rainfall, while the flow from the matrix to the conduits was nearly constant throughout the 

simulation period with slight increases directly after rainfall. This result highlighted the role of the matrix as 

a buffer during heavy rainfall events and a storage for water that sustains baseflow during dry periods by 

continuously releasing flow into the conduits. 
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Sivelle and Jourde (2020) performed time series analysis of hydrodynamic, physicochemical, and 

meteorological data, coupled with KarstMod modeling to assess the hydrodynamic functioning and 

groundwater resources variability in the Oeillal spring catchment (~42.3 km2) in Southern France. The 

KarstMod model included reservoir E with inputs of precipitation and potential evapotranspiration estimated 

using Oudin’s formula (Oudin et al., 2005), and reservoir M. The knowledge acquired from the statistical and 

correlation time series analyses helped optimize the calibration and physical significance of the lumped karst 

model. The results indicated a slow recession dynamic with a regulating power of 1.8 years, which agreed 

with the characteristic time scale for the transfer function of reservoir M, estimated at around 200 days. The 

volume of water stored in the aquifer and the annual transit volume were estimated at 7.5 Mm3 and 4.2 Mm3, 

respectively. The calibration process highlighted the need to combine high-resolution time-series analysis with 

hydrodynamic simulation of karst aquifers to assess the performance of lumped-parameter rainfall-runoff 

models. 

Sivelle et al. (2021) used KarstMod and LuKARS models to predict the impacts of climate change and 

anthropogenic pressures on water resources in the Oeillal spring catchment at horizon 2100 by coupling 12 

climate model simulations under two emission scenarios (RCP 4.5 and RCP 8.5) with four scenarios of future 

groundwater extraction for drinking water supply. The results of the simulations revealed that climate change 

(driven by temperature and potential evapotranspiration increases) had the primary impact on water 

availability by increasing the spring drying-up periods by up to 30% under RCP 4.5 and 70% under RCP 8.5. 

Combined with climate change, groundwater abstraction is expected to aggravate the decrease in spring flow 

and surpass the annual volume of transit at the spring by 2080. 

Labat et al. (2022) used KarstMod to simulate the discharge of the Touvre spring resurgence, which 

represents a binary karst system fed by delayed infiltration of effective rainfall over a karst impluvium (550 

km²) and by direct infiltration of water losses from sinking rivers that drain three adjacent non-karst basins 

(Tardoire, Bandiat and Bonnieure). The model, which consisted of reservoirs E, M, and C, incorporated the 

infiltration losses from the river system, inferred from the residence time distribution functions on tracings 

carried out in the basin, and groundwater withdrawals for domestic and agricultural use into reservoirs M and 

C as aggregated time series. The calibrated model was then used to quantify the impacts of removing 

groundwater pumping on the spring discharge and internal water levels of the matrix-conduit reservoir system. 
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2.2 Semi-distributed hydrological modeling of watersheds: Overview of the Soil and Water 

Assessment Tool (SWAT) 

The “Soil and Water Assessment Tool” (SWAT) is a continuous-time semi-distributed agro-eco-

hydrological model developed by the United States Department of Agriculture (USDA) (Arnold et al., 1998) 

to monitor the impacts of environmental and anthropogenic changes on physical processes in agricultural at 

small, regional, and subcontinental scales (Kim et al., 2013; Wang et al., 2014; Tan et al., 2015; Mittal et al., 

2016; Setegn et al., 2010; De Girolamo et al., 2017; Marhaento et al., 2018; Boufala et al., 2022; Zango et al., 

2022; Schilling et al, 2023). SWAT uses meteorological data, i.e., precipitation, air temperature, relative 

humidity, wind speed, and solar radiation, in addition to topography, soil properties, and land-use data, to 

simulate the watershed water balance components at different time steps (subdaily to annual). It can also 

model water quality and soil erosion (Brighenti et al., 2019; Bennour et al., 2022). The watershed is first 

disaggregated into subbasins connected through a stream channel, and further into HRUs that represent areas 

of homogenous land use, soil, and slope properties (Yesuf et al., 2015). The definition of HRUs is performed 

using a geographic information system (GIS), such as the ArcSWAT interface of ArcGIS or the QSWAT 

plugin of QGIS, coupled to the SWAT model to integrate the topographic, soil, and land-use inputs (Dile t al., 

2016). The simulated catchment processes in SWAT include surface runoff, infiltration, evapotranspiration, 

lateral flow, tile drainage, percolation, water stored in the soil profile, return flow from unconfined aquifers, 

consumptive water use through pumping (if any), recharge from surface water bodies, and in-stream processes, 

such as channel routing (main and tributary) and transformation of nutrients and pesticides (Golmohammadi 

et al., 2014). These hydrological components are represented in each HRU by five storage volumes, namely 

the canopy interception, snow pack, soil profile, shallow aquifer, and deep aquifer (Mehdi et al., 2015).  

SWAT+ (Bieger et al., 2017) is a completely restructured version of SWAT that was developed to 

improve the spatial representation of the elements and processes within catchments, and facilitate upgrades of 

the SWAT source code for future applications and development by the general users (Wu et al., 2020). 

Compared to the previous versions of SWAT, SWAT+ offers a greater flexibility in catchment 

discretization/configuration and a better simulation of the landscape processes, with improved runoff routing 

capabilities. In addition, spatial objects in SWAT+ have been constructed as independent modules, each with 

its own connection file where users can define the routing and the fraction of the flow exchanged between the 

catchment hydrological entities (Bieger et al., 2019, 2017).  
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2.2.1 Equations in SWAT for hydrological simulation 

Watershed hydrology in SWAT is represented by a land phase and a routing phase, whereby runoff, 

sediments, and agricultural chemical yields from all subbasin HRUs are aggregated to the main reach of the 

subbasin and routed rough the channel network to the outlet(s) of the main catchment (Bieger et al., 2015). 

The fundamental daily water balance equation used in SWAT to represent the land phase of the hydrological 

cycle is given as follows (Neupane et al., 2014): 

𝑆𝑊𝑡 − 𝑆𝑊0 =∑ (𝑃𝑑𝑎𝑦 − 𝑄𝑠𝑢𝑟𝑓 − 𝐸𝑇𝑎 −𝑊𝑠𝑒𝑒𝑝 − 𝑄𝑔𝑤)
𝑡

𝑖=1
 (21) 

where 𝑆𝑊0 and 𝑆𝑊𝑡 are the initial and final soil water content of the entire soil profile for the simulation 

period, respectively, 𝑃𝑑𝑎𝑦, 𝑄𝑠𝑢𝑟𝑓, 𝐸𝑇𝑎, 𝑊𝑠𝑒𝑒𝑝, and 𝑄𝑔𝑤 are precipitation, surface runoff, actual 

evapotranspiration, percolation and bypass flow exiting the soil bottom to the vadose zone, and return flow, 

respectively (all variables are expressed in mm H2O.day-1) 

SWAT offers different options to simulate scheduled irrigation and auto-irrigation of crops. The auto-

irrigation approach is generally used when irrigation scheduling data are lacking. Auto-irrigation is triggered 

by two stress identifiers: (1) plant water stress, whereby irrigation is applied to meet the plant water demand 

if the ratio of actual transpiration to potential transpiration falls below a user-specified threshold, and (2) soil 

water deficit, whereby irrigation is applied if the water content in the soil profile drops below field capacity 

by more than a user-defined soil water depletion threshold (Uniyal et al., 2019). Sources of irrigation include 

river reaches, reservoirs, shallow and deep aquifers, or a source from outside the watershed, and irrigation 

demand is met based on the source water availability (Thomas et al., 2021). When irrigation is applied, the 

SWAT water balance is adjusted as follows: 

𝑆𝑊𝑡 − 𝑆𝑊0 =∑ (𝑃𝑑𝑎𝑦 + 𝐼𝑟𝑟) −
𝑡

𝑖=1
∑ (𝑄𝑠𝑢𝑟𝑓 − 𝐸𝑇𝑎 −𝑊𝑠𝑒𝑒𝑝 − 𝑄𝑔𝑤)

𝑡

𝑖=1
 (22) 

where 𝑆𝑊0 and 𝑆𝑊𝑡 are the initial and the final soil water content of the entire soil profile for the simulation 

period, 𝑃𝑑𝑎𝑦, 𝐼𝑟𝑟, 𝑄𝑠𝑢𝑟𝑓, 𝐸𝑇𝑎, 𝑊𝑠𝑒𝑒𝑝, and 𝑄𝑔𝑤 represent the precipitation, irrigation, surface runoff, actual 

evapotranspiration, percolation and bypass flow exiting the bottom of the soil profile to the vadose zone, and 

return flow from the shallow aquifer to the stream, respectively (all variables are expressed in mm H2O.day-

1). 

Water from surface runoff, lateral soil flow, groundwater storage baseflow, and tile flow contributes to the 

catchment water yield, a crucial parameter in sustainable water resource management (Shao et al., 2019; Ayivi 
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et al., 2018). Water yield is defined as the net water volume leaving the HRU and entering a reach at the 

subbasin level into the main channel, as follows:  

𝑊𝑌𝐿𝐷 = 𝑄𝑠𝑢𝑟𝑓 + 𝑄𝑙𝑎𝑡 + 𝑄𝑔𝑤 + 𝑄𝑡𝑖𝑙𝑒 − 𝑇𝑙𝑜𝑠𝑠 (23) 

where 𝑊𝑌𝐿𝐷 is the water yield, 𝑄𝑠𝑢𝑟𝑓, 𝑄𝑙𝑎𝑡 , and 𝑄𝑔𝑤 are the surface runoff, soil lateral flow, and return flow 

from the shallow aquifer to the main channel, respectively, 𝑄𝑡𝑖𝑙𝑒 is the tile flow, and 𝑇𝑙𝑜𝑠𝑠 represents the water 

losses from the tributary via transmission through the riverbed (all variables are expressed in mm H2O.day-1). 

A detailed description of the processes and corresponding equations incorporated in SWAT are 

provided in the SWAT theoretical manual by Neitsch et al. (2011) and the SWAT+ documentation 

(https://swatplus.gitbook.io/docs/user/io). The following chapter subsection will focus on the flow processes 

in the critical zone with direct impact on the streamflow simulation in standard SWAT. These processes are 

grouped under surface water hydrology and subsurface water hydrology. Fundamental equations are provided 

in each subsection to help readers understand SWAT's methods for simulating surface and groundwater flows. 

 

2.2.1.1 Surface Water Hydrology 

2.2.1.1.1 Evapotranspiration 

SWAT provides three methods to simulate daily potential evapotranspiration (PET) at the HRU scale, 

namely the Penman-Monteith (Monteith, 1965), the Priestley-Taylor (Priestley and Taylor, 1972) and the 

Hargreaves methods (Hargreaves et al. 1985). Between the three approaches, the Penman-Monteith equation 

is considered the most suited to estimate PET, as it explicitly separates the effects of climate and land cover 

properties on each of the evapotranspiration components [30,33]. This method is represented with Equation 

(24), as follows (Neitsch et al., 2011):  

λE =
∆(Hnet − G) + ρair × cp(ez

0 − ez)/ra

∆ + γ(1 + rc/ra)
 (24) 

where λE is the latent heat flux density (MJ.m-2.day-1), λ is the latent heat of vaporization (MJ.kg-1), E is the 

depth rate evaporation (mm.day-1), ∆ is the slope of the saturation vapor pressure–temperature curve (de/dT) 

(kPa.°C-1), Hnet is the net radiation (MJ.m-2.day-1), G is the heat flux density to the ground (MJ.m-2.day-1), 

ρair is the air density (kg.m-3), cp is the specific heat at constant pressure (MJ.kg-1.C-1), ez
0 is the saturation 

vapor pressure of air at height z (kPa), ez is the water vapor pressure of air at height z (kPa), γ is the 

psychometric constant (kPa.°C-1), rc is the plant canopy resistance (s.m-1), and ra is the diffusion resistance of 

the air layer (aerodynamic resistance) (s.m-1). 

PET in SWAT depends on plant growth, which considers canopy resistance expressed as a function of 

the minimum effective stomatal resistance for a single leaf and the leaf area index (LAI). The LAI, defined as 

https://swatplus.gitbook.io/docs/user/io
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one half the total leaf area per unit ground area, reflects the structural characteristics of the plant canopy and 

defines the (Strauch and Volk, 2013). Evapotranspiration is also related to the canopy height required to 

determine the aerodynamic resistance parameter (Neitsch et al., 2011). 

SWAT uses the LAI in conjunction with a simplified version of the Environmental Policy Integrated Climate 

(EPIC) plant growth model to simulate the phenological development of plants and estimate 

evapotranspiration (Ferreira et al., 2021). In addition to the LAI development, the plant growth module of 

SWAT includes the simulation of daily light interception by plant leaf in function of the incident total solar 

radiation and LAI, and the conversion of intercepted light into biomass assuming a plant species-specific 

radiation-use efficiency (Alemayehu et al., 2017). Plant development is primarily dependent on the base 

temperature for growth, derived from minimum, maximum, and optimum temperature requirements. The 

plants heat unit requirements are quantified and related to the time of planting and maturity (Ma et al., 2019). 

The LAI is incremented daily based on the accumulated potential heat units. It first increases to a crop-specific 

maximum value, remains constant until the senescence stage, then decreases linearly to zero at harvest. 

Similarly, the canopy height increases until a crop-specific maximum is achieved and stays at this height 

through the remainder of the growing season (Sinnathamby et al., 2017).  The potential crop leaf growth and 

biomass are first computed under optimal conditions and further adjusted for actual growth under stress factors 

such as water, temperature, and nutrients (i.e., nitrogen and phosphorus) (Luo et al., 2008). SWAT also uses 

dormancy in function of day length and latitude to repeat the annual growth cycle for trees and perennials 

(Strauch and Volk, 2013), and offers management operations to schedule the start and end the growing season 

based on a calendar date or heat units (Alemayehu et al., 2017). 

After estimating potential evapotranspiration, SWAT calculates actual evapotranspiration (𝐸𝑇𝑎), which 

includes four components: the canopy evaporation, the plant transpiration, the sublimation and soil surface 

evaporation, and the groundwater evapotranspiration. The model first evaporates any precipitation intercepted 

by the plant canopy. Then, actual plant transpiration is estimated as a function of the potential transpiration 

adjusted for the wet canopy storage, root depth, soil water content, and the leaf area index, which depends on 

the plant developmental stage. Soil evaporation is modeled as a function of potential evapotranspiration 

adjusted for canopy evaporation and the rate of shading. If snow is present in the HRUs, sublimation takes 

place until evaporation from soil could occur after snow melting. Subsequently, SWAT proceeds to adjust the 

maximum possible soil evaporation for plant water use and partitions the evaporative demand between the 

different soil layers, in order to estimate the actual evaporation at each layer based on the soil water content 

(Ferreira et al., 2021; Abiodun et al., 2018; Aouissi et al., 2016).  

2.2.1.1.2 Surface Runoff and Infiltration  

In SWAT, soil surface runoff and infiltration are estimated from precipitation by one of the following 

two approaches: (1) the modified Soil Conservation Service Curve Number (SCS-CN) procedure and (2) the 



48 

 

Green and Ampt Mein Larson (GAML) excess rainfall method. The SCS-CN approach simulates cumulative 

surface runoff based on cumulative precipitation and soil retention properties for daily time step, whereas the 

GAML approach simulates surface runoff for subdaily time step applications using subdaily precipitation 

input data (Tan et al., 2020; Campbell et al., 2018; Bacopoulos et al., 2017). Surface runoff is estimated with 

the SCN-CN procedure as follows (Thomas et al., 2021): 

𝑄𝑠𝑢𝑟𝑓 =
(𝑃 − 𝐼𝑎)

2

(𝑃 − 𝐼𝑎) + 𝑆
      𝑤ℎ𝑒𝑛 𝑃 > 𝐼𝑎;  𝑒𝑙𝑠𝑒 𝑄𝑠𝑢𝑟𝑓 = 0 (25) 

where 𝑄𝑠𝑢𝑟𝑓 is the accumulated runoff (mm H2O), 𝑃 is the total precipitation for the day (mm H2O), 𝑆 is the 

soil moisture retention parameter, which varies spatially in function of the soil type, land use, and management 

practices and temporally with the changes in soil moisture content (mm H2O), and  𝐼𝑎 is the initial water 

abstraction prior to runoff due to surface storage, interception and infiltration (mm H2O), generally 

approximated as 0.2𝑆, but can vary with the soil type . The retention parameter 𝑆 is expressed as a function of 

the daily curve number 𝐶𝑁, which corresponds to the Antecedent Moisture Condition-II (AMC-II) for a given 

land use/land cover hydrological soil group, and 5% slope, as follows (Thomas et al., 2021):     

𝑆 =
25400

𝐶𝑁
− 254 (26) 

 

Where CN is the initial SCS Curve Number for AMC-II (average condition) for a 5% slope. 

The SCS approach defines three antecedent moisture conditions, namely AMC-I for dry/wilting point 

condition, AMC-II for average moisture, and AMC-III for wet/field capacity, represented by curve numbers 

CN1, CN2 and CN3, respectively. CN1 and CN3 are computed as a function of CN2 as follows: 

𝐶𝑁1 = 𝐶𝑁2 −
20(100 − 𝐶𝑁2)

(100 − 𝐶𝑁2 + 𝑒2.533−0.0636(100−𝐶𝑁2))
 (27) 

𝐶𝑁3 = 𝐶𝑁2 × 𝑒0.000673(100−CN2) (28) 

 

Infiltration rate is calculated using the GAML equation as follows (Her et al., 2017a): 

𝐼(𝑡) = 𝐾𝑒 (1 +
𝜓 × ∆𝜃

𝐼𝑎𝑐𝑐(𝑡)
) (29) 

where 𝐼(𝑡) is the infiltration rate (mm H2O) at the simulation time step 𝑡 (subdaily), 𝐾𝑒 is the effective 

hydraulic conductivity, which considers soil water content and land-use impact as a function of CN (mm.hour-

1), 𝜓 is the wetting front matric potential (mm), ∆𝜃 is the change in soil moisture content (mm.mm-1), and 

𝐼𝑎𝑐𝑐(𝑡) is the cumulative infiltration after ponding (mm H2O.hour-1). The cumulative depth of water infiltration 

𝐼𝑎𝑐𝑐(𝑡) is computed using Equation (30):  
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𝐼𝑎𝑐𝑐(𝑡) = 𝐼𝑎𝑐𝑐(𝑡 − 1) + 𝐾𝑒 × ∆t − 𝜓 × ∆𝜃 × 𝑙𝑛 [
𝐼𝑎𝑐𝑐(𝑡) + 𝜓 × ∆𝜃

𝐼𝑎𝑐𝑐(𝑡 − 1) + 𝜓 × ∆𝜃
] (30) 

where 𝑡 − 1 is the previous simulation time step. Equation (30) is solved using a successive substitution 

technique. Subsequently, the infiltration rate is calculated using Equation (29) for each time step. Surface 

runoff is generated when the rainfall intensity exceeds infiltration rate. Otherwise, the total rainfall volume 

during the time step infiltrates into the soil. 

2.2.1.1.3 Channel Flow and Flow Routing 

For stream channel routing, Manning’s equation is used to calculate the rate and velocity of flow in 

the reach of each subbasin when the streamflow is less than the bankfull discharge rate, computed as a function 

of the bankfull channel width and depth. SWAT incorporates floodplain inundation geometry into the channel 

routing simulation if the streamflow is greater than bankfull flow (Her et al., 2017b).   

The peak runoff rate, reached when all the subbasins are contributing to flow at the outlet, is estimated 

using the modified rational method, as follows (Malagò et al., 2018): 

𝑞𝑝𝑒𝑎𝑘 =
𝛼𝑡𝑐 × 𝑄𝑠𝑢𝑟𝑓 × 𝐴

3.6 × 𝑡𝑐𝑜𝑛𝑐
 (31) 

where 𝑞𝑝𝑒𝑎𝑘 is the peak runoff rate (m3.s-1), 𝛼𝑡𝑐 is the fraction of daily rainfall that occurs during the time of 

concentration,  𝑄𝑠𝑢𝑟𝑓 is the surface runoff (mm H2O.day-1), 𝐴 is the subbasin area (km2), and 𝑡𝑐𝑜𝑛𝑐 is the time 

of concentration for the subbasin (hours), calculated as the sum of the overland flow time and channel flow 

time. Water is routed through the channel network using either the Muskingum routing method (based on the 

continuity and empirical linear storage equations) (Cunge, 1969) or the variable storage routing method (based 

on the continuity equation) 88] (Wiiliams, 1969; Nguyen et al., 2018a) 

Water transmission losses can occur through the side and bottom of the river channels and enter the 

bank storage or the deep aquifer. Transmission losses are estimated as follows (Holvoet et al., 2008):  

𝑇𝑙𝑜𝑠𝑠 = 𝐾𝑐ℎ × 𝐿𝑐ℎ × 𝑃𝑐ℎ × 𝑇𝑇 (32) 

where 𝑇𝑙𝑜𝑠𝑠 represents the channel transmission losses (m3 H2O), 𝐾𝑐ℎ is the effective hydraulic conductivity 

of the channel alluvium (mm.hour-1), 𝐿𝑐ℎ is the channel length (km), 𝑃𝑐ℎ is the wetted perimeter in the channel 

(m), and 𝑇𝑇 is the flow travel time (hours). 

 

2.2.1.2 Subsurface Water Hydrology 

2.2.1.2.1 Soil Water Percolation and Lateral Flow 

The water percolation component in SWAT redistributes infiltrated water in the soil profile using a 

storage routing method combined with an optional crack-flow routine. Percolation is simulated when the water 

content of a soil layer exceeds its field capacity defined as the sum of the available soil water content and 



50 

 

permanent wilting point. Percolated water moves to the subsequent layer unless it is saturated, frozen, or 

impervious (Baffaut et al., 2015; Rahbeh et al., 2019; Mapes and Pricope, 2020). Water percolation is 

estimated as follows: 

𝑊𝑝𝑒𝑟𝑐,𝑙𝑦 = 𝑆𝑊𝑙𝑦,𝑒𝑥𝑐𝑒𝑠𝑠 (1 − 𝑒
−∆𝑡

𝑇𝑇𝑝𝑒𝑟𝑐,𝑙𝑦) (33) 

where 𝑊𝑝𝑒𝑟𝑐,𝑙𝑦 is the water percolating from soil layer (𝑙𝑦) to the underlying soil layer (mm H2O.day-1), 

𝑆𝑊𝑙𝑦,𝑒𝑥𝑐𝑒𝑠𝑠 is the drainable volume of water in the soil layer (computed as the difference between the water 

content of the soil layer and field capacity, in mm H2O.day-1), ∆𝑡 is the length of the time step (hours), and 

𝑇𝑇𝑝𝑒𝑟𝑐,𝑙𝑦 is the travel time through the soil layer (hours), calculated as follows:  

𝑇𝑇𝑝𝑒𝑟𝑐,𝑙𝑦 =
𝑆𝐴𝑇𝑙𝑦 − 𝐹𝐶𝑙𝑦

𝐾𝑠𝑎𝑡,𝑙𝑦
 (34) 

where 𝐾𝑠𝑎𝑡,𝑙𝑦 (mm.hour-1), 𝑆𝐴𝑇𝑙𝑦 (mm H2O), and 𝐹𝐶𝑙𝑦 (mm H2O) represent the saturated hydraulic 

conductivity, saturation water content, and field capacity water content of the soil layer, respectively.  

SWAT incorporates a crack flow module that can be used to simulate bypass (crack) or preferential 

flow in the soil. The use of the crack flow approach to increase infiltration rates from the surface is optional 

and requires the activation of a crack flow code by the user (Eini et al., 2020). Crack volume for each soil 

layer is modeled in the dry seasons, which allows infiltrated rainwater to move rapidly through the soil profile 

along vertical cracks, and disappears in wet conditions (Fu et al., 2014). Bypass flow from the bottom of the 

soil profile to the saturated zone is computed using Equation (35), and excess water that leaves the bottom of 

the soil profile through the vadose zone is calculated by combining percolation and bypass flow, as shown in 

Equation (36) (Neitsch et al., 2011): 

𝑊𝑐𝑟𝑘,𝑏𝑡𝑚 = 0.5 × 𝑐𝑟𝑘 (
 𝑐𝑟𝑘𝑙𝑦
 𝑑𝑒𝑝𝑡ℎ𝑙𝑦

) (35) 

𝑊𝑠𝑒𝑒𝑝 = 𝑊𝑝𝑒𝑟𝑐,𝑙𝑦 +𝑊𝑐𝑟𝑘,𝑏𝑡𝑚 (36) 

where 𝑊𝑐𝑟𝑘,𝑏𝑡𝑚 is the crack flow past the lower boundary of the soil profile (mm H2O.day-1), 𝑐𝑟𝑘𝑖 is the total 

crack volume for the soil profile on a given day (mm), 𝑐𝑟𝑘𝑙𝑦 is the crack volume for the deepest soil layer 

(𝑙𝑦) on a given day (mm), 𝑑𝑒𝑝𝑡ℎ𝑙𝑦 is the depth of the deepest soil layer (𝑙𝑦) (mm), and 𝑊𝑠𝑒𝑒𝑝 is the water 

drained from the bottom of the soil profile (mm H2O.day-1).  

Lateral flow (soil interflow) along a steep hillslope is computed simultaneously with percolation when 

the soil water content exceeds its field capacity. It is simulated using a kinematic storage routing method 

(Equation (37) that is based the on slope, slope length, and saturated conductivity of each soil layer (Bieger et 

al., 2015; Mapes and Pricope, 2020), as follows:  
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𝑄𝑙𝑎𝑡 = 0.024(
2 ∗ 𝑆𝑊𝑙𝑦,𝑒𝑥𝑐𝑒𝑠𝑠 × 𝐾𝑠𝑎𝑡 × 𝑠𝑙𝑝

∅𝑑 × 𝐿ℎ𝑖𝑙𝑙
) (37) 

where 𝑄𝑙𝑎𝑡 is the daily water flux from the hillslope outlet (mm H2O.day-1), 𝑠𝑙𝑝 is the increase in elevation 

per unit distance, ∅𝑑 is the drainable (residual) porosity of the soil layer (mm/mm), and 𝐿ℎ𝑖𝑙𝑙 is the hillslope 

length (m). 

The daily water balance for each soil layer is expressed using Equation (38), as follows (Qi et al., 

2018):  

∆𝑆𝑊𝑙𝑦 = 𝑄𝑝,𝑙𝑦−1 − 𝑄𝑝,𝑙𝑦 − 𝑄𝑙𝑎𝑡,𝑙𝑦 − 𝐸𝑒,𝑙𝑦 − 𝐸𝑡,𝑙𝑦 (38) 

where ∆𝑆𝑊𝑙𝑦 is the change of soil water content at soil layer (𝑙𝑦), 𝑄𝑝,𝑙𝑦−1 is the percolation received from 

layer (𝑙𝑦 − 1), 𝑄𝑝,𝑙𝑦 and 𝑄𝑙𝑎𝑡,𝑙𝑦 are the percolation and lateral flow generated from soil layer (𝑙𝑦), 

respectively, and 𝐸𝑒,𝑙𝑦 and 𝐸𝑡,𝑙𝑦 are the evaporation and transpiration drawn from the soil layer (𝑙𝑦), 

respectively (all variables are expressed in mm H2O.day-1). 

2.2.1.2.2 Groundwater Flow and Baseflow to the Stream  

The groundwater module of SWAT comprises a system of two aquifers in each subbasin: (1) a shallow 

unconfined aquifer that generates baseflow into the stream and (2) a deep confined aquifer contributing to 

streamflow outside of the watershed (flow lost from the system) (Luo et al., 2012). Recharge from the 

unsaturated soil profile to the aquifers on a given day is calculated using an exponential decay weighting 

function that accounts for the time delay of the recharge mechanism, as follows (Shao et al. 2019): 

𝑊𝑟𝑐ℎ𝑟𝑔,𝑖 = (1 − 𝑒
−

1
𝛿𝑔𝑤,𝑠ℎ)𝑊𝑠𝑒𝑒𝑝,𝑖 + (𝑒

−
1

𝛿𝑔𝑤,𝑠ℎ)𝑊𝑟𝑐ℎ𝑟𝑔,𝑖−1 (39) 

where 𝑊𝑟𝑐ℎ𝑟𝑔,𝑖 and 𝑊𝑟𝑐ℎ𝑟𝑔,𝑖−1 represent the recharge to the aquifers (shallow and deep) at days 𝑖 and 𝑖 − 1 

(mm H2O.day-1), respectively, 𝑊𝑠𝑒𝑒𝑝,𝑖 is the water drained from the bottom of the soil profile (mm H2O.day-

1), and 𝛿𝑔𝑤,𝑠ℎ is the delay time required for recharge to reach the aquifers (days).  

Recharge components routed to the shallow (unconfined) aquifer and the deep (confined) aquifer are 

computed using Equations (40) and (41), respectively, as follows: 

𝑊𝑟𝑐ℎ𝑟𝑔,𝑠ℎ,𝑖 = (1 − 𝛽𝑑𝑝)𝑊𝑟𝑐ℎ𝑟𝑔,𝑖 (40) 

𝑊𝑟𝑐ℎ𝑟𝑔,𝑑𝑝,𝑖 = 𝛽𝑑𝑝𝑊𝑟𝑐ℎ𝑟𝑔,𝑖 (41) 

where 𝑊𝑟𝑐ℎ𝑟𝑔,𝑠ℎ,𝑖 and 𝑊𝑟𝑐ℎ𝑟𝑔,𝑑𝑝,𝑖 represent the water diverted to the shallow and deep aquifers (mm H2O.day-

1), respectively, and 𝛽𝑑𝑝 is a coefficient of percolation to the deep aquifer.  
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The shallow aquifer contributes to the streamflow if water stored in the aquifer exceeds a user-specified 

threshold. Otherwise, return flow is set to zero. The daily groundwater flow to the main river channel is 

computed using an exponential storage-discharge relationship, which incorporates the recharge from the 

shallow aquifer and a baseflow recession constant, as follows:  

𝑄𝑔𝑤,𝑠ℎ,𝑖

= {
𝑊𝑟𝑐ℎ𝑟𝑔,𝑖(1 − 𝑒

−𝛼𝑔𝑤,𝑠ℎ×∆𝑡) + 𝑄𝑔𝑤,𝑠ℎ,𝑖−1(𝑒
−𝛼𝑔𝑤,𝑠ℎ×∆𝑡), 𝑎𝑞𝑠ℎ > 𝑎𝑞𝑠ℎ𝑡ℎ𝑟,𝑞

0, 𝑎𝑞𝑠ℎ ≤ 𝑎𝑞𝑠ℎ𝑡ℎ𝑟,𝑞
 

(42) 

where 𝑄𝑔𝑤,𝑠ℎ,𝑖 is the baseflow from the shallow aquifer to the main stream channel (mm H2O.day-1), 𝛼𝑔𝑤,𝑠ℎ 

is the groundwater recession constant of shallow aquifer (days-1), 𝑎𝑞𝑠ℎ is the amount of water stored in the 

shallow aquifer (mm H2O.day-1), 𝛥𝑡 is the time step (1 day), and 𝑎𝑞𝑠ℎ𝑡ℎ𝑟,𝑞 is the threshold water level in the 

shallow aquifer for return flow to occur (mm H2O). 

The groundwater flow from the deep aquifer is represented by Equation (43), as follows:   

𝑄𝑔𝑤,𝑑𝑝,𝑖 = 𝑊𝑟𝑐ℎ𝑟𝑔,𝑑𝑝,𝑖(1 − 𝑒
−𝛼𝑔𝑤,𝑑𝑝×∆𝑡) + 𝑄𝑔𝑤,𝑑𝑝,𝑖−1(𝑒

−𝛼𝑔𝑤,𝑑𝑝×∆𝑡) (43) 

where 𝑄𝑔𝑤,𝑠ℎ,𝑖 is the groundwater flow from confined aquifer (mm H2O.day-1), 𝛥𝑡 is the time step (1 day), and 

𝛼𝑔𝑤,𝑠ℎ is the groundwater recession constant of the deep aquifer (days-1).  

In dry periods, water in the shallow aquifers may be removed by evaporation to the partially saturated 

overlaying soil through the capillary fringe that separates the saturated and vadose zones. Water can also be 

directly absorbed by deep rooted plants through transpiration (Uniyal et al, 2019). SWAT accounts for this 

phenomenon via a process defined as revap, which occurs when water storage in the shallow aquifer exceeds 

a user-defined threshold. The amount of water that can be potentially consumed by revap is calculated as 

follows (Xie et al., 2020):  

𝐸𝑇𝑟𝑣𝑝−𝑚𝑎𝑥 = 𝛽𝑟𝑣𝑝 × 𝑃𝐸𝑇 (44) 

where 𝐸𝑇𝑟𝑣𝑝,𝑚𝑎𝑥 is the maximum amount of water that can be removed from the shallow aquifer (mm 

H2O.day-1), 𝛽𝑟𝑣𝑝 is the groundwater evaporation coefficient, and 𝑃𝐸𝑇 is the potential evapotranspiration (mm 

H2O.day-1). The actual groundwater evapotranspiration is subsequently calculated based on water availability 

in the shallow aquifer, considering the following cases (Neitsch et al., 2011):  

𝐸𝑇𝑟𝑣𝑝 = {

0, 𝑎𝑞𝑠ℎ ≤ 𝑎𝑞𝑠ℎ𝑡ℎ𝑟,𝑟𝑣𝑝

𝐸𝑇𝑟𝑣𝑝,𝑚𝑎𝑥 − 𝑎𝑞𝑠ℎ𝑡ℎ𝑟,𝑟𝑣𝑝, 𝑎𝑞𝑠ℎ𝑡ℎ𝑟,𝑟𝑣𝑝 < 𝑎𝑞𝑠ℎ < (𝑎𝑞𝑠ℎ𝑡ℎ𝑟,𝑟𝑣𝑝 + 𝐸𝑇𝑟𝑣𝑝,𝑚𝑎𝑥)

𝐸𝑇𝑟𝑣𝑝,𝑚𝑎𝑥, 𝑎𝑞𝑠ℎ ≥ (𝑎𝑞𝑠ℎ𝑡ℎ𝑟,𝑟𝑣𝑝 + 𝐸𝑇𝑟𝑣𝑝,𝑚𝑎𝑥)

 (45) 

where 𝑎𝑞𝑠ℎ is the water stored in the shallow aquifer at the beginning of day 𝑖 (mm H2O.day-1) and 𝑎𝑞𝑠ℎ𝑡ℎ𝑟,𝑟𝑣𝑝 

is the threshold water level in the shallow aquifer for groundwater evaporation to occur. 
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The volumetric water balance for the shallow aquifer is represented as follows (Nguyen and Dietrich, 

2018): 

𝑎𝑞𝑠ℎ,𝑖 = 𝑎𝑞𝑠ℎ,𝑖−1 +𝑊𝑟𝑐ℎ𝑟𝑔,𝑠ℎ,𝑖 − 𝑄𝑔𝑤,𝑠ℎ,𝑖 − 𝐸𝑇𝑟𝑒𝑣𝑎𝑝,𝑖 − 𝑄𝑝𝑢𝑚𝑝,𝑠ℎ,𝑖 (46) 

where 𝑎𝑞𝑠ℎ,𝑖 and 𝑎𝑞𝑠ℎ,𝑖−1 represent water stored in the shallow aquifer on days 𝑖 and 𝑖 − 1, respectively, 

𝐸𝑇𝑟𝑒𝑣𝑎𝑝,𝑖 is the volume of water that moves upward by capillary rise, and 𝑄𝑝𝑢𝑚𝑝,𝑠ℎ,𝑖 is the water withdrawn 

by pumping from the shallow aquifer (all variables are expressed in mm H2O.day-1) . 

SWAT also simulates other types of water bodies, including wetlands, ponds, and depressions or 

potholes. These water bodies are modeled within the subbasins of the main stream channel and are fed by 

runoff originating from the subbasin in which they are located (Phiri et al., 2021). They can also contribute 

to seepage and groundwater recharge, adding to the recharge from soil water percolation (Rahman et al., 2006).  

The downward daily seepage from the pond or wetland 𝑉𝑠𝑒𝑒𝑝 (m3 H2O.day-1) is estimated using 

Equation (47) (Neitsch et al., 2011):  

𝑉𝑠𝑒𝑒𝑝 = 240 × 𝐾𝑠𝑎𝑡 × 𝐴𝑤𝑒𝑡 (47) 

where 𝐾𝑠𝑎𝑡 is the saturated hydraulic conductivity of the pond or wetland bottom (mm.hour-1) and 𝐴𝑤𝑒𝑡 is the 

water surface area of the pond or wetland (hectares).  

Daily seepage from the pothole/depression is computed as a function of soil water content, as follows 

(Dash et al., 2020): 

𝑉𝑠𝑒𝑒𝑝,𝑝𝑜𝑡 = {

240𝐾𝑠𝑎𝑡 × 𝑆𝐴, 𝑆𝑊 < 0.5𝐹𝐶

240 (1 −
𝑆𝑊

𝐹𝐶
) × 𝐾𝑠𝑎𝑡 × 𝑆𝐴, 0.5𝐹𝐶 ≤ 𝑆𝑊 < 𝐹𝐶

0, 𝑆𝑊 ≥ 𝐹𝐶

 (48) 

where 𝑉𝑠𝑒𝑒𝑝,𝑝𝑜𝑡 is the seepage from a pothole (m3 H2O.day-1), 𝐾𝑠𝑎𝑡 is the saturated hydraulic conductivity of 

the top soil layer (mm.hour-1), 𝑆𝐴 is the pothole surface area (hectares), 𝑆𝑊 is the daily soil water content of 

the profile (mm H2O), and FC is the field capacity moisture content (mm H2O). 
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CHAPTER 3: A Review of the Application of the Soil and Water Assessment Tool 

(SWAT) in Karst Watersheds 

 

Summary 

The management and sustainability of karst groundwater resources are challenging due to limited 

understanding of the critical zone flow processes and the influence of vegetation cover, climate change, and 

anthropogenic activities on these processes. Jeannin et al. (2021) applied 13 karst numerical models to 

simulate groundwater recharge and spring flow in a karst watershed. The impact of the spatial distribution of 

recharge on the discharge simulations was found to be low, with semi- and fully- distributed models having a 

comparable performance to the lumped reservoir models. On the other hand, other studies (Bittner et al., 2018; 

Doummar et al., 2012; Sarrazin et al. 2018) have shown a significant impact of the vegetation and soil 

parameters on evapotranspiration, recharge and discharge simulations.  

Over the last two decades, the semi-distributed eco-hydrological model SWAT (Soil and Water 

Assessment Tool) has been increasingly applied to simulate flow in karst watersheds and predict future karst 

water resources under climate change and land-use change scenarios. The SWAT groundwater module consists 

of two aquifer reservoirs: a shallow unconfined reservoir that generates baseflow into the stream and a deep 

confined reservoir contributing to streamflow outside the watershed. Recharge from the unsaturated soil 

profile is calculated using an exponential decay weighting function and distributed linearly between the 

aquifers using a coefficient of percolation. Some studies have directly applied the standard SWAT model to 

karst basins, while others modified its source code to improve the representation of karst hydrological 

processes. Thus, Chapter 3 presents a comprehensive review of the SWAT watershed hydrological modeling 

approach and SWAT applications in karst watersheds, aiming to investigate the different SWAT numerical 

approaches used to represent the fluxes and non-linear behavior in karst aquifers. The review identified 75 

studies on SWAT simulations in karst and partially karstified watersheds between the years 2000-2022. These 

studies were classified into two main categories: the standard SWAT model applications (50 studies) and the 

modified SWAT model applications (25 studies). The review also looked into the predictive performance of 

the models based on the Nash-Sutcliffe Efficiency (NSE), the most commonly used statistical indicator across 

all the reviewed studies.  
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Modified SWAT codes, which incorporated diffusive and concentrated recharge functions, and external 

flows from sinkholes and IGF, have led to semi-distributed karst hydrological models with comparable or 

better streamflow prediction efficiency compared to standard SWAT (Eini et al., 2020; Geng et al., 2021; 

Palanisamy and Workman, 2015; Wang and Brubaker, 2014; Wang et al., 2019b; Zhou et al., 2022). However, 

poor daily and monthly performance statistics were reported after modifications, indicating that modified 

approaches may not always guarantee successful flow simulation in complex karstic environments (Afinowicz 

et al., 2005; Baffaut and Benson, 2009, Malagò et al., 2016). 

The modified SWAT models reported in the literature can be improved to better represent karst aquifers 

heterogeneity and non-linearity. For instance, the Karst-SWAT (Nikolaidis et al., 2013) and KSWAT (Malagò 

et al., 2016) two-reservoir (matrix-conduit) models do not consider the function of the epikarst and do not 

explicitly include the diffusive and concentrated recharge components of infiltration from karstic soils to the 

deep aquifer reservoir in SWAT. Both models use the exponential decay weighting function to simulate the 

recharge to and outflows of the matrix and conduit reservoirs to the spring. The two models also follow the 

watershed surface delineation in SWAT to determine the recharge area of the spring, which may not always 

coincide with the groundwater recharge boundaries. The (matrix-conduit) SWAT_IGF (Nguyen et al., 2020) 

model improves some of the previous modified SWAT modeling constraints by simulating hydrological 

processes in non-karst and karst regions, as well as IGF, in a single executable file. SWAT_IGF considers the 

dual recharge and storage functions in karst systems but uses a linear storage-discharge relationship to model 

outflows of the matrix and conduit reservoirs. The three-reservoir models developed by Wang et al. (2019b) 

and Geng et al. (2021) represent a complete (epikarst-matrix-conduit) karst system, but their main constraint 

is that fluxes between the reservoirs are simulated using a linear storage-discharge relationship. Other models, 

such as SWAT-ML and SWAT-CF (Eini et al., 2020), Topo-SWAT (Amin et al., 2017), and SWAT-WA+ 

(Delavar et al., 2020, 2022) may be directly applied to basins affected by karst hydrology or other rapid 

infiltration phenomena but do not represent the underground flow dynamics of karst aquifers. 

 

The findings of this chapter were published as a review paper in Water: Al Khoury, I., Boithias, L., & Labat, 

D. (2023). A review of the application of the soil and water assessment tool (SWAT) in karst watersheds. 

Water, 15(5), 954. https://doi.org/10.3390/w15050954 

https://doi.org/10.3390/w15050954
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3.1 Introduction 

The earliest SWAT studies in karst watersheds (a total of 4 articles) have been reported by Gassman 

et al. (2007) as part of a full range review of research findings and methods for different application categories 

with SWAT (e.g., discharge, hydrological analyses, sensitivity analyses and calibration techniques, climate 

change impacts on hydrology, pollutant transport and fate). Their review was based on more than 250 SWAT 

articles identified in the literature up to the year 2007. Since then, the use of SWAT has seen a tremendous 

growth globally for a wide range of scales and complex environmental studies, with more than 5000 articles 

currently published in peer-reviewed journals (CARD, 2022). The number of SWAT review studies has also 

expanded to cover a variety of applications, such as: SWAT developments in landscape representation, stream 

routing, and soil phosphorus dynamics (Douglas-Mankin et al., 2010), SWAT improvements in addressing 

environmental issues (Tuppad et al., 2011), quantification of ecosystem services (Francesconi et al., 2016), 

runoff simulation, hydrological impacts under changing environment, and non-point source pollution (Wang 

et al., 2019a) SWAT limitations in simulating subdaily processes (Brighenti et al., 2019), methods used to 

develop a SWAT model at field-scale (Karki et al., 2022), SWAT simulations of hydro-climatic extremes 

(Tan et al., 2020), and SWAT applications in coastal watersheds (Aloui et al., 2023) to name a few.  

Despite these advancements, the numerical simulation of karst watersheds and their processes in SWAT is 

still underway. In fact, a recent research study by Eini et al. (2020) cited only 30 articles describing SWAT-

based applications in partially karstified and karst dominated watersheds, with just 11 studies featuring a 

modified SWAT code. To note, Eini et al. (2020) did not provide a detailed overview of the karst modeling 

approaches adopted in articles that they cited but rather an introductory synopsis prior to presenting two 

modified SWAT codes that they developed and applied in a karst watershed. Therefore, our paper is the first 

– to our best knowledge – to present an in-depth review of the studies conducted with SWAT in karst 

watersheds, building on the selected list of publications by Eini et al. (2020) and extending to the full range 

of studies between the years 2000−2022. The objectives of our present review are to: (1) describe the SWAT 

subroutines that correspond to the different processes driving the flow of water in the critical zone (i.e., surface 

runoff, evapotranspiration, infiltration, interflow, recharge, baseflow), (2) summarize and discuss the research 

methods and findings for the standard and modified SWAT models in karst influenced watersheds, and (3) 

identify potential constraints of the existing SWAT modeling approaches in representing the heterogeneous 

and non-linear flow mechanisms in karst aquifers, and (4) propose future research directions in order to 

enhance the applicability of SWAT in karst watersheds and the reliability assessment of karst water resources 

for future management and planning.  

This review will present the different applications of SWAT (i.e., water quantity and quality, land-use 

and climate change, erosion processes, ecohydrological assessment, and water resources management) in karst 

influenced and karst dominated watersheds. However, the primary focus of the discussion will be the 
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hydrological assessment in the SWAT applications that featured SWAT coupling with other hydrological 

models or modifications to the SWAT recharge and groundwater flow equations. These studies aimed to 

improve the representation of karst features, baseflow, and peak flows in SWAT prior to simulating other 

watershed processes, such sediment or pollutant transport. 

 

3.2 SWAT Studies in Karst Watersheds: Selection and Classification Methods 

We used the SWAT Literature Database (CARD) (CARD, 2022) and Google Scholar engine to 

identify SWAT research studies in karst watersheds, published between the years 2000 (the year that the first 

SWAT study in a karst watershed was published) and 2022. Searching priority was initially accorded to the 

5400+ articles available in CARD and grouped by specific application categories. All SWAT code iterations 

(standard and modified) were included in the search and selection process of the articles, based on the 

keywords “hydrologic”, “hydrologic and pollutants”, and “karst”. Consequently, 17 articles were identified in 

CARD. Then, multiple searches were performed using Google Scholar to identify the studies that have not 

been included in CARD, considering the above-mentioned criteria terms in combination with the term 

“SWAT”. Only peer-reviewed articles and published thesis reports in Google Scholar were selected for further 

assessment, whereas technical reports, abstracts/conference papers, and non-English articles were excluded. 

Combining both literature databases, a total of 75 studies related to SWAT simulations in karstic and partially 

karstified watersheds were identified. We classified these studies into two main categories: (1) the standard 

SWAT model applications (category I) and (2) the coupled/modified SWAT model applications (category II). 

Subsequently, 25 studies reporting an application of a modified SWAT or SWAT coupled with a karstic flow 

model fell under category II, while the remaining 50 studies fell under the first category I.  

In this paper, we grouped the articles under category I by region (North and Latin America, Europe, 

Asia, and Africa) and study scope (i.e., hydrological or water quality modeling, climate or land-use change 

impacts) (Table 1). For the sake of paper length, we discussed the studies under category I that presented a 

novel simulation approach or a complex application of the standard SWAT in karst watersheds. Next, we 

subdivided the articles under category II based upon: (1) the conceptual models/algorithms coupled with 

SWAT or used to modify the SWAT source code, (2) the studied karst processes/features (e.g., matrix, 

conduits, springs, sinkholes), and (3) the simulation scope (e.g., hydrological or water quality modeling, 

climate or land-use change impacts) (Table 2). Then, we thoroughly presented the core methodology and 

major findings of the SWAT studies of category II, which focused primarily on hydrological simulation. 

Appendices A-K summarize the equations of the karstic models coupled with SWAT and used in the different 

modified variants of the code. Finally, we identified potential constraints of the modified SWAT models so 

that they can so that they can be considered in developing future SWAT models adapted to karst hydrology.  
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The accuracy of the SWAT models’ outputs was reported in their respective studies using different 

statistical indicators, such as the Nash-Sutcliffe Efficiency (NSE), the coefficient of determination (R2), the 

percent bias (PBIAS%), the root mean square error observations standard deviation ratio (RSR), and the Kling-

Gupta Efficiency (KGE) (Moriasi et al., 2015; Guse et al., 2017). In this review, the overall trends of the 

hydrological models’ performance were examined using NSE, being the most commonly applied statistical 

indicator across all the reported studies. NSE is a measure of the relative magnitude of the residual variance 

against the observed data variance. It is used to assess the goodness of fit of the plot of observed versus 

simulated data, and is computed as follows (Moriasi et al., 2015):   

𝑁𝑆𝐸 = 1 −
∑ (𝑂𝑖 − 𝑆𝑖)

2𝑛
𝑖=1

∑ (𝑂𝑖 − 𝑂)
2

𝑛
𝑖=1

 (1) 

where 𝑂𝑖and 𝑆𝑖 represent the ith value of the observed and simulated data, respectively, 𝑂 is the mean 

of the observed and simulated data, and 𝑛 is the total number of observations. NSE values can vary between 

-∞ and 1. In particular, watershed streamflow simulation at the daily, monthly, and annual scales is judged as 

satisfactory if 0.5 ˂ NSE ≤ 0.7, good if 0.7 ˂ NSE ≤ 0.8, and very good for NSE ≥ 0.8. Conversely it is 

unsatisfactory if NSE ≤ 0.5, while negative NSE values indicate an unacceptable model performance (Moriasi 

et al., 2015).  
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Table 1. Reference, basin description, and application of the standard SWAT studies in karst watersheds (category I).   

Region Reference Basin name (country, size in km2) Application 

North and Latin 

America 

Spruill et al. (2000) 
University of KY Research Site 

(USA; 5.5) 

Simulation of streamflow 

Coffey et al. (2004) 
(University of KY Research Site 

(USA; 5.5) 

Simulation of streamflow 

Benham et al. (2006) Shoal Creek (USA; 367) Simulation of streamflow and bacteria fate and transport 

Amatya et al., 2011 
Chapel Branch Creek (USA; 15.55) Simulation of streamflow in a watershed with a flooded embayment outlet draining 

to a lake 

Amatya et al., 2013 
Chapel Branch Creek (USA; 15.55) Simulation of streamflow and phosphorus loads and concentrations in karst 

watershed tributaries and downstream a reservoir-like embayment outlet 

Williams et al. (2014) 
Chapel Branch Creek (USA; 15.55) Simulation of streamflow, nitrogen loads, and phosphorus loads in a karst watershed 

draining to a lake via a reservoir-like embayment 

Wilson et al. (2014) 
South Branch, Root River (USA; 

301.8) 

Impacts of traditional and alternative conservation management practices on water 

quality (sediments and phosphorus) 

Jain et al. (2015) 
Nueces River Headwaters (USA; 

2,126) 

Impacts of land-use/cover change on watershed hydrology 

Sunde et al. (2016) Hinkson Creek (USA; 231) Impacts of future urban development on watershed hydrology 

Sunde et al. (2017) Hinkson Creek (USA; 231) Impacts of climate change on watershed hydrological processes 

Sunde et al. (2018) Hinkson Creek (USA; 231) Impacts of future urbanization and climate change on watershed hydrology 

Sarkar et al. (2019) 
Conestoga River (USA; 1,230) Simulation of flow, sediment loads from upland watershed sources, flow routing, 

and sediment processes using a coupled SWAT-HSPF model 

Merriman et al. (2019) 
Upper East River (USA; 375.3) Impacts of agricultural best management practices on flow, sediment loads, and 

nutrient loads 

Sullivan et al. (2019) 

Edwards aquifer overlain by Cibolo 

Creek watershed (USA; 707) and 

Dry Comal Creek watershed (USA; 

337) 

Simulation of nitrate concentration inputs to MODFLOW CFPv2 and CMT3D 

models used to assess nitrate transport in an aquifer 

Chen et al. (2020) 
Blanco River (N/A) Multi-model projections of hydrological drought characteristics under climate 

change 

Zeiger et al. (2021) 

James River (USA; 3,770) Impacts of climate and land use on streamflow, sediment, and nutrient loads, and 

identification of critical source areas of non-point source pollution 

Al Aamery et al. (2021) 
Cane Run-Royal Spring (58) Simulation of surface runoff, surface routing, and soil water percolation inputs for a 

fluviokarst-specific combined discrete continuum numerical model 
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Karki et al. (2021) 
Apalachicola-Chattahoochee-Flint 

River (USA; 12,000) 

Simulation of groundwater areal recharge input for a MODFLOW-NWT aquifer 

model 

Europe  

Salerno and Tartari 

(2009) 

Subbasin of the Lake Pusiano 

watershed (Italy, 52.5) 

Simulation of discharge using SWAT supported by wavelet analysis to assess the 

contribution of external flow component to streamflow 

Vale and Holman (2009) 
Bosherston Lakes (UK; N/A) Quantitative assessment of the hydrological processes controlling water levels and 

groundwater–surface water interactions in a lake system 

Tzoraki et al. (2013) Evrotas (Greece; 2,050) Simulation and analysis of flood events characteristics 

Palazón and Navas (2013) Linsoles River (Spain; 284) Simulation of surface runoff and sediment yield 

Palazón and Navas (2014) 
The Barasona reservoir catchment 

(Spain; 1,509) 

Simulation of erosion and sediment yield 

Sellami et al. (2014) 
Thau catchment (France; 280) Assessment of SWAT model accuracy in predicting discharge at gauged and 

ungauged catchments within an uncertainty framework 

Gamvroudis et al. (2015) 
Evrotas River (Greece; 1,348) Simulation of watershed water budget and spatial distribution of runoff and sediment 

transport 

Malagò et al. (2015) 

Scandanavian Peninsula (106); 

Iberian Peninsula 

(556,000) 

Hydrological simulation, sensitivity analysis, multi-variable calibration, and 

regionalization of the calibrated parameters for the identification of dominant 

hydrological processes in each region 

Mehdi et al. (2015) Altmühl River (Germany; 980) Impacts of climate and land-use changes on streamflow and nutrients loads  

Sellami et al. (2016) Thau catchment (France; 280) Impacts of climate change on watershed hydrology 

Palazón and Navas (2016) 
The Barasona reservoir catchment 

(Spain; 1,509) 

Simulation of streamflow under different precipitation characterization scenarios 

Vigiak et al. (2017) 
Danube River (800,000) Simulation of sediment fluxes under soil conservation measures and identification of 

sediment budget knowledge gaps 

Efthimiou (2018) Kalamas River (Greece; 1,899.25) Simulation of watershed hydrological budget 

Martínez-Salvador and 

Conesa-García (2020) 

Upper Argos River (Spain; 510) Simulation of streamflow and sediment load 

Senent-Aparicio 

et al. (2020) 

Castril River (Spain; 120) Simulation of streamflow using SWAT supported by chloride mass balance to 

estimate IGF contribution to streamflow 

Busico et al. (2021) 
Anthemountas (Greece; 374) Assessment of groundwater recharge variations and their relationship with other 

hydrological parameters under climate change 

Sánchez-Gómez et al. 

(2022) 

Henares River (Spain; 4,070) Optimization of SWAT streamflow simulation by incorporating watershed 

geological properties in model calibration 

Asia 

Jiang et al. (2011) 
Shibetsu River (Japan; 672) Simulation of streamflow and external flow contribution to discharge from the water 

balance equation, using measured data 

Tian et al. (2016) 
Shibantang River (China; 2,248) Assessment of trade-offs and synergic relationships between ecosystem services 

(water yield, sediment yield, and net primary productivity) 

Bucak et al. (2017) 
Lake Beyşehir catchment (Turkey; 

4,704) 

Impacts of climate and land-use changes on the hydrological balance of a lake 

catchment and water levels 
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Hou and Gao (2019) 
Sancha River (China, 4,068)1 Simulation of the spatial variability of streamflow, surface runoff, and groundwater 

runoff, and analysis of their spatial correlation with environmental factors 

Jakada and Chen (2020)  
Miaogou subbasin of Gaolan River 

Basin (China; 45) 

Simulation of watershed hydrology using SWAT supported by a geological survey 

and a tracer test 

Mo et al. (2020) Xiajia River (China; 799.2) Simulation of watershed runoff under different precipitation input data 

Hou et al. (2020) 
Guizhou Province (China 4,681) Analysis of the factors affecting streamflow, surface runoff, and groundwater, and 

their interactions for different geomorphic types 

Gao et al. (2021) 

Sancha River (China, 7,061)1 Assessment of trade-offs and synergic relationships between ecosystem services 

(sediment yield and surface/slope runoff, water yield, and slope runoff) and main 

factors affecting their relationships, for different geomorphic types 

Jiang et al. (2021) 

Sancha River (China, 7,061)1 Simulation of the spatial distributions of rainfall erosivity and runoff erosivity, and 

identification of the dominant factors and their interactions affecting the spatial 

distributions of rainfall/runoff erosivity, for different geomorphic types 

Chang et al. (2022) 

Nanpan River (China; 43,200) Simulation of soil moisture using SWAT and development of a methodology for a 

comprehensive drought index based on the watershed hydrological processes 

(precipitation, runoff, and soil moisture) 

Zhang et al. (2022) 

Lijiang River (China, 5,444) Simulation of streamflow and water quality using SWAT and HSPF models driven 

by different precipitation input data, and impacts of best management practices on 

non-point-source pollution reduction 

Mo et al. (2022) 
Chengbi River (China; 2,087) Simulation of runoff under different calibration methods and precipitation input data 

Yuan et al. (2022) 

 

Gaoche catchment area of the 

Dabang River basin (China; 

1,877.20) 

Assessment of trade-offs and synergic relationships between ecosystem services 

(surface/underground runoff and surface sediment yield) and driving factors 

affecting their variation 

Africa 
Zettam et al. (2017) 

Tafna watershed (Algeria; 7,245) Simulation of watershed hydrological processes and assessment of the impacts of 

dam construction on water balance and sediment flux 

Zaibak and Meddi (2022) Cheliff basin (Algeria; 43,750) Simulation of streamflow at watershed dam-feeding subbasins and outlet 
1. There is a variation in the area of the Sancha River basin reported by Hou and Gao (2019) compared to Gao et al. (2021) and Jiang et al. (2021) .   
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Table 2. Groundwater modeling approach, reference, basin description and application of the modified SWAT codes in karst studies (category II).   

Groundwater modeling 

approach 
Reference Basin name (region; size in km2) Application – Modified SWAT name (when applicable) 

Conceptual linear one-

reservoir groundwater model 

Afinowicz et al. (2005) 
North Fork, Upper Guadalupe River (Texas-

USA; 360) 

Simulation of streamflow and water budget, and assessment crop 

management impacts on water budget 

Baffaut and Benson (2009)2 James River (Missouri, USA; 3,600) 

Simulation of streamflow and pollutant transport (in-stream 

phosphorous loads and fecal coliform concentrations) – Adapted 

SWAT/ SWAT-B&B 

Yactayo (2009)2 Opequon Creek (Virginia, USA; 890.2) 
Simulation of streamflow and nitrate transport through the 

sinkholes in a karstic watershed – SWAT-karst 

Palanisamy and Workman, 

(2015)2 

Cane Run Creek 

(Kentucky, USA; 115.6) 

Simulation of streamflow through sinkholes in the streambed – 

KarstSWAT 

Zhou et al. (2022)2 South and North Panjiang River (China; 2,762) Simulation of streamflow through sinkholes in the watershed 

Conceptual linear two-

reservoir groundwater model 

Nikolaidis et al. (2013) Koiliaris River (Crete, Greece; 132) 

Simulation of water budget and in-stream nitrate concentrations, 

and assessment of climate change impacts on hydrology and 

water quality – Karst-SWAT 

Nerantzaki et al. (2015)3 Koiliaris River (Crete, Greece; 130) 

Simulation of suspended sediment transport, and assessment of 

climate change impacts on flow, soil erosion, and sediment 

transport 

Tapoglou et al. (2019)3 Crete Island (Greece; 8,337) 
Assessment of climate change impacts on extreme 

hydrometeorological events 

Demetropoulou et al. (2019)3 Geropotamos (Crete, Greece; 525 km2) 
Methodology for the prioritization of a Program of 

Measures for water quantity and quality protection 

Nerantzaki et al. (2019)3 Crete Island (Greece; 8,265) Assessment of climate change impacts on hydrology 

Lilli et al. (2020a)3 Koiliaris River (Crete, Greece; 132) Analysis of hydrological and geochemical processes 

Nerantzaki et al. (2020)3 Koiliaris River (Crete, Greece; 130) 

Uncertainty analysis of flow simulation due to the parameter 

uncertainty of the SWAT and Karst-SWAT models and internal 

variability of climate scenarios 

Lilli et al. (2020b) 3 Koiliaris River (Crete, Greece; 130) 
Development of erosion and flood protection nature-based 

solutions 

Malagò et al. (2016) Crete Island (Greece; 8,336) Simulation of hydrological water balance – KSWAT 

Nguyen et al. (2020) 

Area in southwest Harz Mountains 

and southern Harz rim (Lower Saxony; 

Germany; 384) 

Streamflow simulation, including IGF – SWAT_IGF 

Conceptual linear three-

reservoir groundwater model 

Wang et al. (2019b)2 Xianghualing River (Hunan, China; 26.8) Streamflow simulation 

Geng et al. (2021)2 Daotian River (Guizhou, China; 99.21) Simulation of flow (including IGF) and water budget 

Conceptual non-linear one-

reservoir groundwater model 
Wang and Brubaker (2014)2 

Shenandoah River of the Potomac River Basin 

(USA; 7,607) 
Streamflow simulation 

Modified crack flow 

module; conceptual linear 

one-reservoir groundwater 

model 

Eini et al. (2020)2 Maharlu Lake (Province of Fars, Iran; 4,270) 
Simulation of crack/preferential flow, discharge, and water 

budget – SWAT-ML and SWAT-CF 
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Variable source area 

hydrology; conceptual linear 

one-reservoir groundwater 

model 

Amin et al. (2017)2 Spring Creek (Pennsylvania, USA; 370) 
Simulation of streamflow, nutrient loads, and sediment loads for 

different agricultural management practices – Topo-SWAT 

Amin et al. (2018)4 Spring Creek (Pennsylvania, USA; 370) 
Impact of dairy cropping practices on nutrient and sediment 

loads 

Amin et al. (2020) 4 Spring Creek (Pennsylvania, USA; 370) 
Impact of agricultural best management practices on nutrient and 

sediment loads 

 Gunn et al. (2021)4 Spring Creek (Pennsylvania, USA; 370) 

Impact of climate change with increasing atmospheric CO2 on 

watershed hydrology – SWAT-VSA_CO2 and SWAT-

VSA_CO2+Plant 

SWAT + Water Accounting 

Plus (WA+) framework 

Delavar et al. (2020) Tashk-Bakhtegan (Iran; 27,520) 
Assessment of water consumption and supply trends under 

different water management strategies – SWAT-FARS 

Delavar et al. (2022) Karkheh River (Iran; 42,267) 

Assessment of water supply and demand conditions in 

wet and dry periods, based on the water resources, consumption, 

and withdrawal indicators of the WA+ framework– SWAT-

Karkheh 
2. These studies reported applications of both the standard SWAT model and a modified SWAT model. 
3. These studies used the Karst-SWAT version of SWAT developed by Nikolaidis et al. (2013) without making any additional modifications to the model. 
4. These studies used the Topo-SWAT version of SWAT developed by Amin et al. (2017) 
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3.3 Results and Discussions  

3.3.1 Applications of Standard SWAT in Karst Watersheds 

Different versions of SWAT have been developed over the years to meet the growing need 

for water resources modeling and management tools, the latest being SWAT+. SWAT+ is a 

completely restructured version of SWAT that offers an enhanced flexibility in watershed 

configuration and spatial representation of landscape processes (Bieger et al., 2017, 2019). The 

identified studies in this review were conducted using the previous SWAT versions, including 

SWAT v2000, v2005, v2009, and v2012. Noticeably, SWAT+ has not yet been implemented in 

karst regions. 

The standard SWAT model has been applied to a wide range of karst dominated and karst 

influenced watershed scales to assess the hydrological cycle and simulate streamflow (Spruill et 

al., 2000; Coffey et al., 2004; Efthimiou, 2018; Spruill et al., 2000; Zettam et al., 2017), flood 

events (Tzoraki et al., 2013), erosion processes and sediment yield (Martínez-Salvador and 

Conesa-García, 2020; Palazón and Navas, 2013, 2014), as well as pollutant (nutrients and 

pathogens) transport (Amatya et al., 2013; Gamvroudis et al., 2015; Williams et al., 2014). The 

model was also used to compare water quality impacts between scenarios of different crop types 

and agricultural management practices (Merriman et al., 2019; Wilson et al., 2014). 

Several studies evaluated climate change impacts on watershed hydrology based on 

historical climate patterns and climate projections (Busico et al., 2021; Chen et al., 2020; Sellami 

et al., 2016; Sunde et al., 2017), as well as the effects of land-use change on the water budget (Jain 

et al., 2015). Other studies assessed the combined impacts of land-use and climatic changes on 

watershed hydrology and or water quality (Bucak et al., 2017; Sunde et al., 2017), including the 

influence of future urbanization and impervious surface growth (Sunde et al., 2018), and other 

anthropogenic factors, such as wastewater treatment (Zeiger et al., 2021). In other applications, 

SWAT was used to simulate the spatial and temporal evolution of runoff, groundwater, erosivity, 

and surface sediment yield in karst watersheds, considering various climatic and land features. 

These studies identified the driving factors affecting the variation of ecosystem services and 

analyzed the trade-offs and synergic relationships between them for rocky desertification 

containment and ecological protection (Gao et al., 2021; Jiang et al., 2021; Hou and Gao, 2019; 

Hou et al., 2020; Tian et al., 2016; Yuan et al., 2022). 
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Additionally, SWAT has been coupled with other models to expand the assessment of flow 

and water quality. For instance, Sarkar et al. (2019) linked SWAT with the Hydrological 

Simulation Program-FORTRAN (HSPF) to simulate flow and sediment loading from upland 

agricultural areas in a karstified watershed using SWAT, followed by in-stream sediment processes 

in HSPF. Sullivan et al. (2019) applied SWAT to model recharge nitrate concentrations from 

natural and anthropogenic sources in a karst watershed. Then, the recharge output from SWAT 

was incorporated into the Modular Three-Dimensional Finite-Difference Groundwater Flow 

Model Conduit Flow Process version 2 (MODFLOW CFPv2) and the Conduit Modular 3-

Dimensional Transport (CMT3D) model to predict groundwater flow and nitrate transport and 

levels in the aquifer. Similarly, Karki et al. (2022) estimated groundwater recharge in a karst 

watershed using SWAT, then integrated the recharge output from SWAT into a MODFLOW 

model with Newton-Raphson formulation (MODFLOW-NWT) to evaluate the impacts of 

irrigation withdrawals on groundwater levels and the stream-aquifer fluxes. Al Aamery et al. 

(2021) also simulated surface runoff, surface routing, and soil water percolation in SWAT as inputs 

for a combined discrete-continuum fluviokarst numerical model. 

Moreover, the performance of SWAT for karst watersheds hydrological and water quality 

simulations was evaluated under different precipitation input data (Palazón and Navas, 2016; Mo 

et al., 2020; Zhang et al., 2022) and with respect to various calibration approaches, such as multi-

site calibration (Mo et al., 2022) and zonal calibration that incorporates the basin geological 

properties (Sánchez-Gómez et al., 2022). 

More than 70% of the studies that used NSE to assess the performance of SWAT 

hydrological models with daily time series calibration scored NSE values greater than 0.5, and 

over 90% reported NSE values greater than 0.5 for the daily time series validation. In comparison, 

more than 90% of the studies scored NSE values higher than 0.5 with monthly calibrated models, 

while upwards of 80% reported NSE values higher than 0.5 with monthly validation (Figure 3). 

These results indicate a satisfactory performance, with numerous applications meeting the criteria 

of a “good” flow simulation, as proposed by Moriasi et al. (2015). However, some applications 

conducted in complex karst watersheds scored poor NSE statistics. The studies conducted by 

Spruill et al. (2000) and Coffey et al. (2004) in the small experimental watershed of Kentucky 

revealed that SWAT failed to accurately reproduce peak and low flows. The observed and 

simulated daily hydrographs were asynchronous, with SWAT often underestimating the peak 
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discharge rates and generating recessions that are faster than the observed data curves. The 

monthly runoff volumes at the watershed outlet were also underpredicted, which was attributed to 

the lack of explicit representation of karst geology in SWAT. A similar finding was reached by 

Benham et al. (2006) who concluded that SWAT inability to reproduce the flows sustained by 

karst features reduced the prediction efficiency of streamflow in their study watershed. At a larger 

scale, the studies undertaken in the Scandinavian and Iberian peninsulas of 106 km2 and 556,000 

km2 (Malagò et al., 2015), respectively, and in the Danube River basin of 800,000 km2 (Vigiak et 

al., 2017) revealed that the performance of SWAT was lower in karst dominated regions in 

comparison to non-karst areas, due to the model misrepresentation of baseflow in karst streams. 

Martinez-Salvador and Conesa-Garcia (2020) also emphasized on the need to improve the 

representation of extreme hydrological events (e.g., low-flow and peak-flow periods) in SWAT.  

 

Figure 3. Number of standard SWAT-based studies in karst watersheds under the NSE performance ratings 

recommended by Moriasi et al. (2015) for daily and monthly discharge simulation. 

Furthermore, several studies underlined the need to account for external and interbasin 

groundwater flows to improve the discharge simulation in SWAT (Gamvroudis et al., 2015; 

Palazón and Navas, 2013; Jakada and Chen, 2020; Jiang et al., 2011; Salerno and Tartari, 2009; 

Senent-Aparicio et al., 2020; Spruill et al., 2000). The hydrological simulations performed by 

Spruill et al. (2000) confirmed the dye tracing results from sinkholes surrounding the study site 

that an area larger than the watershed topographic boundaries contributes to streamflow. Amatya 

et al. (2011) underlined the need to couple SWAT with a subsurface hydrology model to accurately 
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characterize the dynamics of the karst groundwater flow contribution to the surface drainage 

network. Gamvroudis et al. (2015) estimated that around 33% of the water balance was lost via 

deep groundwater flow to areas outside their study watershed due to karst formations, while 

Palazón and Navas (2013) simulated the discharge losses by underground flow through swallow 

holes in the upper part of the study basin. On the other hand, Jakada and Chen (2020) confirmed 

the absence of runoff losses by subterranean flow diversion from their study watershed prior to 

conducting a hydrological simulation in SWAT. Their finding was based on the results of tracer 

tests conducted through the sinkholes in the watershed and monitoring of the springs within and 

outside the basin. 

In more complex applications, Salerno and Tartari (2009) coupled wavelet analysis with 

hydrological modeling in SWAT to identify the streamflow components in a non-conservative 

karst subbasin. After excluding the possibility of an incorrect assessment of the precipitation data, 

streamflow measurements, and evapotranspiration estimates, a series of continuous wavelet 

transform, cross wavelet transform, wavelet coherence, and phase difference analyses were applied 

to precipitation, groundwater levels, observed streamflow, and the time series constructed by the 

difference between the observed daily discharge and the streamflow simulated by a calibrated 

SWAT model of the study site. Based on the ensemble of correlations, it was established that the 

external water contribution to the river discharge was primarily due to groundwater seepage from 

a hydrogeological catchment that is larger than the surface watershed. The daily time series of the 

external water contribution was generated by multiplying the SWAT-simulated groundwater 

inflow by a yearly coefficient. This coefficient was adjusted to match the external contribution 

time series with the groundwater fluctuations simulated by SWAT and have the annual simulated 

flows equal to the observed flows. The additional water component improved the prediction 

efficiency of daily streamflow at the watershed outlet, with NSE increasing from 0.61−0.56 in the 

calibration and validation periods to 0.66−0.62, and R2 increasing from 0.71−0.69 to 0.74−0.72. 

The mean absolute error of streamflow underestimation was also reduced from 47% to 33%. 

Jian et al. (2011) simulated discharge in a non-conservative karst watershed with an initial 

average discrepancy of 47% between the observed and measured water balances. After ruling out 

the possibility of invalid precipitation, evapotranspiration, and discharge measurements, the 

external contribution of the underground flow to streamflow was added as a point source discharge 

in SWAT, adopting the mean value of the difference in the annual water budget. The hydrological 
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calibration and validation were carried out in a two-stage process. In the first step, the SWAT 

model and external flow value were calibrated using discharge data, while surface runoff, 

baseflow, and evapotranspiration were calibrated in the next step using available observational 

data. As a result, the baseflow component (excluding the external flow contribution) was calibrated 

in SWAT, and the inclusion of IGF reduced the underestimation bias of streamflow from nearly 

50% to less than 3% at the monthly scale and 15% at the daily scale. NSE and R2 values greater 

than 0.5 and 0.65, respectively, were also reached both in the calibration and validation periods. 

More recently, Senent-Aparicio et al. (2020) applied SWAT with the atmospheric Chloride 

Mass Balance (CMB) method to simulate streamflow of the Castril River basin (Spain). The study 

site is steep karst watershed fed by IGF from adjacent aquifers under steady conditions (i.e., no 

groundwater abstraction, evapotranspiration from shallow aquifers, or underflow to deep aquifers). 

The net aquifer discharge was equated to the baseflow component of streamflow, and the CMB 

approach was used to estimate the fraction of net aquifer recharge from the upstream areas as a 

proxy for the IGF contributing to additional baseflow. The corrected baseflow time series with 

IGF improved the SWAT model performance, reducing the underestimation bias of the streamflow 

simulations to less than 20% in both calibration and validation. 

3.3.2 Applications of Modified SWAT in Karst Watersheds 

A total of 18 modified SWAT models have been developed and applied across 25 studies 

in watersheds characterized by karst geology (Table 2). Models that were run at daily and monthly 

time intervals reported a higher prediction efficiency of the flow at the monthly scale than the daily 

scale, both in calibration and validation periods (Afinowicz et al., 2005; Amin et al., 2017; 

Nerantzaki et al., 2020; Nikolaidis et al., 2013). Around 80% of the studies that used NSE to 

evaluate the hydrological model performance at the daily time step reported NSE values greater 

than 0.5 for the calibration and validation periods. In comparison, more than 80% of the studies 

that used the monthly time step scored NSE values higher than 0.5 for calibration, and more than 

90% reported NSE values greater than 0.5 for validation (Figure 4). 
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Figure 4. Number of modified SWAT-based studies in karst watersheds under the NSE performance ratings 

recommended by Moriasi et al. (2015) for daily and monthly discharge simulation. 

3.3.2.1 Conceptual Linear One-Reservoir Model 

The first application of a modified SWAT code in a karst watershed was performed by 

Afinowicz et al. (2005) to evaluate the impacts of woody plants management scenarios on the 

rangeland water cycle of the North Fork of the Upper Guadalupe River, Texas (USA). The 

watershed has an area of 360 km2 and is covered by thin soils that overlie fractured limestone 

formations. The return flow (baseflow) function of the groundwater module of SWAT (v2000) 

was modified to simulate rapid infiltration in karst areas into the deep aquifer. Therefore, the deep 

aquifer recharge component was deducted from the baseflow component of streamflow to allow a 

fraction of infiltrated water to bypass the shallow aquifer and enter the deep aquifer instead of 

flowing into the channel as baseflow, as shown in Equation (1):  

𝑄𝑔𝑤,𝑖 = 𝑄𝑔𝑤,𝑖−1 × 𝑒
−𝛼𝑔𝑤×∆𝑡 + (𝑤𝑟𝑐ℎ𝑟𝑔 −𝑤𝑑𝑒𝑒𝑝) × (1 − 𝑒

−𝛼𝑔𝑤×∆𝑡) (1) 

where 𝑄𝑔𝑤,𝑖 and 𝑄𝑔𝑤,𝑖−1 are the baseflow values for the current and previous day (mm H2O.day-

1), 𝛼𝑔𝑤 is baseflow recession constant, ∆𝑡 is the time interval (days), 𝑤𝑟𝑐ℎ𝑟𝑔 is the water percolated 

past the root zone (mm H2O.day-1), and 𝑤𝑑𝑒𝑒𝑝 is the water percolated to the deep aquifer (mm 

H2O.day-1). 

The hydrological model was adjusted using daily streamflow data at the watershed outlet, 

with a 5-year warm-up period, a 5-year calibration period, and a 7-year validation period. The 
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model scored monthly NSE values of 0.29 and 0.5 for the calibration and validation periods, 

respectively. It performed less efficiently at the daily scale, with NSE values of 0.4 and 0.09. It 

also failed to accurately reproduce all discharge trends at the daily scale, particularly high peak 

flows. The results of the hydrograph simulations were attributed to the nature of the surface runoff 

in the watershed, which is characterized by sustained low baseflow and very high flow that brings 

the soil water capacity to saturation.  

Baffaut and Benson (2009) modified the groundwater recharge equation of SWAT (v2005) 

to model fast infiltration from sinkholes and losing streams to the aquifer and groundwater flow 

contribution to surface water. The improved SWAT, known as SWAT-B&B/Adapted SWAT 

model, was applied to the 3,600 km2 James River basin in southwest Missouri (USA), 

characterized by losing streams, sinkholes, and springs. 

In SWAT-B&B, recharge into the aquifer was partitioned to two components: (1) the infiltration 

from the soil bottom, representing slow flow to the porous matrix, and (2) the recharge from 

sinkholes and losing streams, representing fast flow to the conduits. Sinkholes in the study basin 

were modeled as ponds with a small drainage area and high hydraulic conductivity, while losing 

streams were represented by tributary channels with high streambed hydraulic conductivity. Thus, 

the soil and karst infiltration components were simulated using two recharge functions, each with 

a specific groundwater delay coefficient (Equations (2) and (3)). Return flow was then modeled 

with the standard SWAT function, based on the groundwater flow of the previous day and the total 

aquifer recharge of that day (Equation (4)). 

𝑟𝑐ℎ𝑟𝑔𝑠𝑒𝑒𝑝(𝑡) = (1 − 𝑒
−1

𝑔𝑤𝑑𝑒𝑙𝑎𝑦) 𝑠𝑜𝑖𝑙𝑠𝑒𝑒𝑝(𝑡) + (𝑒
−1

𝑔𝑤𝑑𝑒𝑙𝑎𝑦) 𝑟𝑐ℎ𝑟𝑔𝑠𝑒𝑒𝑝(𝑡−1) (2) 

{
𝑟𝑐ℎ𝑟𝑔𝑘𝑎𝑟𝑠𝑡(𝑡) = (1 − 𝑒

−1
𝑘𝑎𝑟𝑠𝑡𝑑𝑒𝑙𝑎𝑦)𝑘𝑎𝑟𝑠𝑡𝑠𝑒𝑒𝑝(𝑡) + (𝑒

−1
𝑘𝑎𝑟𝑠𝑡𝑑𝑒𝑙𝑎𝑦) 𝑟𝑐ℎ𝑟𝑔𝑘𝑎𝑟𝑠𝑡(𝑡−1)

𝑘𝑎𝑟𝑠𝑡𝑠𝑒𝑒𝑝(𝑡) = 𝑡𝑙𝑜𝑠𝑠 + 𝑡𝑤𝑙𝑝𝑛𝑑 + 𝑡𝑤𝑙𝑤𝑒𝑡

 (3) 

where 𝑟𝑐ℎ𝑟𝑔𝑠𝑒𝑒𝑝(𝑡) and 𝑟𝑐ℎ𝑟𝑔𝑘𝑎𝑟𝑠𝑡(𝑡) are the slow recharge from the soil layers and fast recharge 

from the sinkholes and losing streams to the aquifer (mm H2O.day-1), respectively, 𝑠𝑜𝑖𝑙𝑠𝑒𝑒𝑝(𝑡) and 

𝑘𝑎𝑟𝑠𝑡𝑠𝑒𝑒𝑝(𝑡) are the percolation from the soil bottom and losses from the sinkholes and losing 

streams (mm H2O.day-1), respectively, 𝑔𝑤𝑑𝑒𝑙𝑎𝑦 and 𝑘𝑎𝑟𝑠𝑡𝑑𝑒𝑙𝑎𝑦 represent the time delay for the 

water percolating from the soil bottom and water infiltrating from the sinkholes and riverbeds to 
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reach the aquifer (days), respectively, 𝑟𝑐ℎ𝑟𝑔(𝑡−1) is the recharge of the previous day (mm H2O.day-

1), 𝑡𝑙𝑜𝑠𝑠 is the water lost from a sinking stream (mm H2O.day-1), and 𝑡𝑤𝑙𝑝𝑛𝑑 and 𝑡𝑤𝑙𝑤𝑒𝑡 

represent the seepage from the ponds and wetlands (mm H2O.day-1), respectively. 

{
𝑄𝑔𝑤,𝑡 = 𝑟𝑐ℎ𝑟𝑔(𝑡) × (1 − 𝑒

−𝛼𝑔𝑤) + 𝑄𝑔𝑤,𝑡−1 × 𝑒
−𝛼𝑔𝑤

𝑟𝑐ℎ𝑟𝑔(𝑡) = 𝑟𝑐ℎ𝑟𝑔𝑠𝑒𝑒𝑝(𝑡) + 𝑟𝑐ℎ𝑟𝑔𝑘𝑎𝑟𝑠𝑡(𝑡)
 (4) 

where 𝑄𝑔𝑤,𝑡 is the daily return flow (mm H2O.day-1), 𝑟𝑐ℎ𝑟𝑔(𝑡) is the total aquifer recharge 

calculated as the sum of the slow recharge from the soil layers (𝑟𝑐ℎ𝑟𝑔𝑠𝑒𝑒𝑝(𝑡)) and fast recharge 

from sinkholes and losing streams to the aquifer (𝑟𝑐ℎ𝑟𝑔𝑘𝑎𝑟𝑠𝑡(𝑡)) (mm H2O.day-1), and 𝛼𝑔𝑤 is the 

baseflow recession coefficient (days).   

The hydrological model was calibrated for 8 years of daily streamflow records at 5 gauging 

stations and validated for 7 years. Streamflow biases were all less than 25%, ranging between 4% 

to 20% during the calibration period and -2% to -21% during validation. The percent bias in surface 

runoff simulation were all around 10%, indicating a better representation of the baseflow 

component to streamflow. Moreover, NSE values of around 0.5 were reached for the calibration 

and validation periods in the main stem of the stream and at the outlet, but lower values close to 

0.3 were obtained in the upstream small tributaries. Although a significant improvement in the 

NSE values could not be spotted by comparing both the standard and modified SWAT models, 

SWAT-B&B sustained more flows during the dry periods in comparison to SWAT. The model 

was then used to estimate in-stream phosphorus loads and concentrations, and fecal coliform 

concentrations. Poor water quality simulation results were obtained in almost all observational 

river reaches of the basin, both in calibration and validation periods. 

Yactayo (2009) further modified the SWAT-B&B code to simulate fast aquifer recharge 

through sinkholes at the HRU scale by introducing a new parameter called sink to the HRU 

groundwater input file. This sinkhole partitioning coefficient represented the fraction of the runoff 

drained by a sinkhole to the unconfined aquifer. With this approach, a fraction of the surface runoff 

and lateral flow in the karst HRU was no longer included in the calculation of total streamflow in 

the main channel but allocated to the daily seepage from sinking streams and sinkholes. The 

transmissions losses from the surface runoff entering the sinkholes were also not simulated. Thus, 

the unconfined aquifer recharge in non-karst regions was calculated using Equation (5), whereas 

aquifer recharge in karst regions was computed using Equation (6): 
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{
𝑟𝑐ℎ𝑟𝑔𝑠𝑒𝑒𝑝(𝑡) = (1 − 𝑒

−1
𝑔𝑤𝑑𝑒𝑙𝑎𝑦) 𝑠𝑒𝑒𝑝(𝑡) + (𝑒

−1
𝑔𝑤𝑑𝑒𝑙𝑎𝑦) 𝑟𝑐ℎ𝑟𝑔𝑠𝑒𝑒𝑝(𝑡−1)

𝑠𝑒𝑒𝑝(𝑡) = 𝑊𝑠𝑒𝑒𝑝 +  𝑡𝑤𝑙𝑝𝑛𝑑 +  𝑡𝑤𝑙𝑤𝑒𝑡

 (5) 

where 𝑟𝑐ℎ𝑟𝑔𝑠𝑒𝑒𝑝(𝑡) and 𝑟𝑐ℎ𝑟𝑔𝑠𝑒𝑒𝑝(𝑡−1) represent the recharge from the water percolating from the 

soil bottom to the aquifer on a given day and the day before (mm H2O.day-1), respectively, 𝑠𝑒𝑒𝑝 

is the recharge from percolating water and seepage from impoundments on a given day (mm 

H2O.day-1), 𝑊𝑠𝑒𝑒𝑝 is the water drained from the bottom of the soil profile (mm H2O.day-1), 𝑡𝑤𝑙𝑝𝑛𝑑 

is the seepage from the ponds (mm H2O.day-1), 𝑡𝑤𝑙𝑤𝑒𝑡 is the seepage from the wetlands (mm 

H2O.day-1), and 𝑔𝑤𝑑𝑒𝑙𝑎𝑦 is the time delay for the water percolating from the soil bottom to reach 

the aquifer (days). 

{
𝑟𝑐ℎ𝑟𝑔𝑘𝑎𝑟𝑠𝑡(𝑡) = (1 − 𝑒

−1

[𝑔𝑤𝑑𝑒𝑙𝑎𝑦/10]) 𝑠𝑒𝑒𝑝𝑑𝑖𝑟𝑒𝑐𝑡(𝑡) + (𝑒

−1

[𝑔𝑤𝑑𝑒𝑙𝑎𝑦/10])𝑟𝑐ℎ𝑟𝑔𝑘𝑎𝑟𝑠𝑡(𝑡−1)

𝑠𝑒𝑒𝑝𝑑𝑖𝑟𝑒𝑐𝑡(𝑡) = 𝑠𝑖𝑛𝑘 × (𝑠𝑢𝑟𝑓𝑞 + 𝑙𝑎𝑡𝑞)

 (6) 

where 𝑟𝑐ℎ𝑟𝑔𝑘𝑎𝑟𝑠𝑡(𝑡) and 𝑟𝑐ℎ𝑟𝑔𝑘𝑎𝑟𝑠𝑡(𝑡−1) represent the recharge from sinkholes and losing streams 

via direct conduits to the aquifer on a given day and the day before (mm H2O.day-1), respectively, 

𝑠𝑒𝑒𝑝𝑑𝑖𝑟𝑒𝑐𝑡 is the seepage from the sinking streams, ponds, and sinkholes on a given day from the 

HRU (mm H2O.day-1), 𝑠𝑖𝑛𝑘 is the sinkhole partitioning coefficient (0-1), and 𝑠𝑢𝑟𝑓𝑞 + 𝑙𝑎𝑡𝑞 is the 

sum of surface runoff and lateral flow from the HRU (mm H2O.day-1). 

The modified model known as SWAT-karst was applied in the 890.2 km2 Opequon Creek 

watershed, located in the Potomac and Shenandoah River basin in Virginia. For SWAT-karst, a 

new land-use category was added to the land-use map so that sinkholes may be represented by 

HRUs, based on the area of the sinkhole regions and the land use where the sinkholes are located. 

Similar to SWAT-B&B, sinking streams were represented by tributary channels with high 

hydraulic conductivities. SWAT-karst, SWAT-B&B and SWAT were run at the daily time step 

for a period of 11 years and compared in terms of their performance efficiency in simulating 

streamflow and other water balance components without any model calibration. All three models 

overestimated streamflow, and the values of the PBIAS, NSE, and RSR were unsatisfactory at all 

subbasin outlets and streamflow gages where discharge values were compared. Nonetheless, both 

SWAT-B&B and SWAT-karst performed better than SWAT in simulating karst discharge, and 

SWAT-karst had a more significant impact on the distribution of the water balance components, 
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by simulating less runoff and more baseflow in karst regions with sinkholes. The authors noted 

that aquifer recharge diverted by sinkholes to regions outside the watershed could be a reason 

behind SWAT-karst overestimating discharge and failing to meet the acceptable performance 

criteria. However, they maintained that parameter sink values could be modified to control the 

depth of water that recharges the unconfined and confined aquifers (Equation (7)): 

𝑑𝑒𝑒𝑝(𝑡) = 𝑊𝑠𝑒𝑒𝑝.𝑑𝑝 + (1 − 𝑠𝑖𝑛𝑘) ∗ (𝑠𝑢𝑟𝑓𝑞 + 𝑙𝑎𝑡𝑞) (7) 

where 𝑑𝑒𝑒𝑝 is the depth of water in the deep aquifer for the day from the HRU (mm 

H2O.day-1), 𝑊𝑠𝑒𝑒𝑝.𝑑𝑝 is the water recharging the deep aquifer from the HRU (mm H2O.day-1), 𝑠𝑖𝑛𝑘 

is the sinkhole partitioning coefficient (0-1), and 𝑠𝑢𝑟𝑓𝑞 + 𝑙𝑎𝑡𝑞 is the sum of surface runoff and 

lateral flow from the HRU (mm H2O.day-1). 

Yactayo (2009) also modeled the nitrate loading that recharges the aquifers through the sinkhole 

as a function of: (1) the volume of surface runoff and lateral flow lost to sinkholes in karst regions, 

and (2) the nitrate aquifer recharge loading from the soil water percolation. Similar to the flow 

simulation results, the values of the in-stream nitrate concentrations calculated from aquifer 

recharge and nitrate in baseflow were unsatisfactory. 

Palanisamy and Workman (2015) incorporated an orifice flow transfer function and a 

successive summation routing algorithm (SSRA) into SWAT in order to simulate groundwater 

flow from sinkholes located in the streambed to a spring. The modified SWAT code, called 

KarstSWAT, was applied to the Cane Run watershed of 115.6 km2 in Kentucky (USA), where 

numerous sinkholes found along the river streambed divert surface runoff through an underground 

conduit to the main watershed spring. The karst aquifers to which sinkholes drain the river flow 

largely overlap the Cane Run surface watershed, and runoff routing into the sinkholes depends on 

the incoming streamflow volume, the sinkhole size, and the capacity of the underground conduit.  

To represent this unique hydrological setting, sinkholes were conceptualized as orifices and were 

modeled as outlets of the karst subbasins during watershed delineation in SWAT. The discharge 

capacity of the sinkholes was simulated using a head-discharge relationship (Equation (8)) as a 

function of a diameter range that corresponds to the size of the sinkholes:  

𝑄 = 𝐶𝑑𝐴√2𝑔𝐻 (8) 
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where 𝑄 is the capacity of the sinkhole (L3/T), 𝐶𝑑 is a coefficient of discharge, 𝐴 is the area of the 

orifice (L2), 𝑔 is the acceleration due to gravity (L/T2), and 𝐻 is the head (water level) at the orifice 

mouth, set as the depth of water leaving the reach segment upstream of the sinkhole (L). 

The discharge from the sinkholes and infiltration from the soil profile bottom were then added to 

the deep aquifer reservoir in SWAT, aggregated at HRU level, and transferred to the spring outlet 

using the SSRA algorithm with a maximum travel time of one day. The number of the subbasin in 

which the sinkholes are located and the diameter of the sinkholes were specified in an input file 

called sink.dat, while groundwater basins that drain the aquifer water to the spring were defined in 

a file called gw_flow.dat. 

KarstSWAT was calibrated for 3 years using daily streamflow measurements at the Cane 

Run River, and validated for another 3 years using runoff data at the Cane Run River and spring 

outlet. Compared to the original SWAT model, KarstSWAT showed a better representation of the 

hydrological cycle in the karst watershed. The average annual surface runoff and recharge to 

shallow aquifer decreased by 65% and 91%, respectively, while deep aquifer recharge increased 

many folds as water was partially diverted through the sinkholes rather than the soil. The 

cumulative observed and simulated streamflow plots, with and without sinkholes, also 

demonstrated that KarstSWAT reduced channel flow during low flow and high flow periods. The 

modified model performance was further assessed against the original SWAT model under a 

multitude of runoff events during which at least 10 mm of peak rainfall was observed. Results 

showed that KarstSWAT improved the prediction of the peak flows and baseflow, with average 

the NSE and R2 values increasing from 0.23 to 0.77 and 0.78 to 0.87, respectively. Moreover, the 

discrepancy between the observed and simulated spring flow was attributed to the capacity of the 

orifices to transfer flow, whereby the overestimation of streamflow by KarstSWAT resulted in the 

underestimation of spring discharge and vice versa. Nonetheless, discharge at the watershed spring 

was continuously simulated, showing a good agreement with the observed spring hydrographs at 

different time periods. 

Zhou et al. (2022) also modified SWAT (v2012) to simulate fast infiltration through karst 

sinkholes in the upper course of the South Panjiang River, Southwest China. The basin extends 

over an area of 2,762 km2 that is mainly covered by limestone and under the influence of a 

subtropical humid monsoon climate. Due to the karst effect, sinkholes have formed across the 
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watershed subbasins as opposed to only in the streambed (the case of the study the Cane Run 

watershed, Palanisamy and Workman., 2015).  

The authors used the pond module of SWAT to represent the sinkhole processes. While infiltration 

from the bottom of the soil profile in both karst and non-karst areas is modeled using the same 

delay time variable in the original SWAT, the recharge function was modified to simulate the rapid 

recharge of groundwater aquifer in sinkholes. Water leaving the ponds to the aquifer was separated 

from percolation with a delay time variable specific to pond leakage and set to 1/50 of its original 

value. Hence, recharge was divided into two components: leakage recharge of the soil profile and 

rapid recharge of the karst sinkholes (Equation (9)).  

𝑟𝑐ℎ𝑟𝑔(𝑗) = (1 − 𝑒
−

1
𝑑𝑒𝑙𝑎𝑦) (𝑠𝑒𝑝𝑏𝑡𝑚(𝑗) + 𝑔𝑤𝑞𝑟𝑢(𝑗)) + (1 − 𝑒

− 

1
𝑑𝑒𝑙𝑎𝑦
50 ) ∗ 𝑟𝑐ℎ𝑟𝑔𝑘𝑎𝑟𝑠𝑡 + (𝑒

− 

1
𝑑𝑒𝑙𝑎𝑦
50 )𝑟𝑐ℎ𝑟𝑔1 (9) 

where 𝑟𝑐ℎ𝑟𝑔(𝑗) is the daily recharge to the shallow aquifer (mm H2O.day-1), 𝑑𝑒𝑙𝑎𝑦 is the 

groundwater delay time required for the water to infiltrate from the soil bottom to the aquifer 

(days), 𝑠𝑒𝑝𝑏𝑡𝑚(𝑗) is the daily percolation from the bottom of the soil profile (mm H2O.day-1), 

𝑔𝑤𝑞𝑟𝑢(𝑗) is the daily groundwater contribution to streamflow (mm H2O.day-1), 𝑟𝑐ℎ𝑟𝑔𝑘𝑎𝑟𝑠𝑡 is the 

amount of water seeping through the ponds (mm H2O.day-1), and 𝑟𝑐ℎ𝑟𝑔1 is the recharge from the 

previous day (mm H2O.day-1). 

The pond module was added at the subbasin scale, and sinkholes were represented by one pond in 

each subbasin whereby a fraction of the subbasin area drains the surface flow into the pond. A 

high hydraulic conductivity value was set at the bottom of the ponds in order to maximize 

infiltration and groundwater recharge.  

The SWAT model was adjusted using monthly streamflow data, with 2 years of warm-up, 

calibration, and validation each. The modified SWAT model improved the streamflow 

simulations: the values of the NSE and R2 indicators increased from 0.35−0.66 (calibration-

validation) and 0.7−0.76, respectively, in the original SWAT to 0.61−0.79 and 0.74−0.83 in the 

modified SWAT, with a higher prediction accuracy of the peak flow and baseflow at the daily time 

interval. The use of the pond module, with large hydraulic conductivity values and short recharge 

durations, also reduced the surface runoff and lateral flow in the subbasins with sinkholes and 

increased baseflow depth by rapidly diverting the surface water to the shallow aquifer. 
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3.3.2.2 Conceptual Linear Two-Reservoir Model 

Nikolaidis et al. (2013) interfaced SWAT with a spreadsheet version of the linear two-

reservoir model proposed by Kourgialas et al. (2010) to simulate discharge and nitrate transport in 

the Koiliaris River basin (132 km2) in Crete, Greece, under climate change. The modified SWAT 

model, known as Karst-SWAT, comprises an upper reservoir representative of the fast flow in the 

conduits and a lower reservoir for the slow flow in the matrix and narrow fractures. The model 

uses two proportionality coefficients to partition karst recharge between the two compartments 

and models another flow fraction from the upper to the lower reservoir. The sum of outflows from 

the matrix and conduit reservoirs forms the total discharge of the karstic area (see Equations (10) 

to (14)).  

𝑄𝑖𝑛,𝑢𝑝 = 𝛼1 × 𝑄𝑖𝑛_𝑑𝑒𝑒𝑝𝐺𝑊 (10) 

𝑄𝑖𝑛,𝑙𝑜𝑤 = (1 − 𝛼1) × 𝑄𝑖𝑛_𝑑𝑒𝑒𝑝𝐺𝑊 + 𝛼2𝑄𝑢𝑝 (11) 

where 𝑄𝑖𝑛,𝑢𝑝 and 𝑄𝑖𝑛,𝑙𝑜𝑤 represent the water inflows to the upper and lower reservoirs (mm 

H2O.day-1), respectively, 𝑄𝑖𝑛_𝑑𝑒𝑒𝑝𝐺𝑊 is the deep groundwater flow from SWAT (mm H2O.day-1), 

𝛼1 is the fraction of deep groundwater flow entering the upper reservoir, 𝛼2 is the fraction of flow 

from the upper reservoir to the lower reservoir, and 𝑄𝑢𝑝 is the outflow of the upper reservoir (mm 

H2O.day-1). 

𝑄𝑢𝑝 = 𝑄𝑢𝑝−1𝑒
−𝑘𝑢𝑡 + (𝛼1𝑄𝑖𝑛_𝑑𝑒𝑒𝑝𝐺𝑊)(1 − 𝑒

−𝑘𝑢𝑡) (12) 

𝑄𝑙𝑜𝑤 = 𝑄𝑙𝑜𝑤−1𝑒
−𝑘𝑙𝑡 + [(1 − 𝛼1)𝑄𝑖𝑛_𝑑𝑒𝑒𝑝𝐺𝑊 + 𝛼2𝑄𝑢𝑝](1 − 𝑒

−𝑘𝑙𝑡) (13) 

𝑄𝑇 = (1 − 𝛼2)𝑄𝑢𝑝 + 𝑄𝑙𝑜𝑤 (14) 

where 𝑄𝑇 is the total spring discharge (mm H2O.day-1), 𝑄𝑢𝑝 and 𝑄𝑙𝑜𝑤 represent the outflows of 

the upper and lower reservoirs (mm H2O.day-1), respectively, 𝑄𝑢𝑝−1 and 𝑄𝑙𝑜𝑤𝑒𝑟−1 are the values 

of 𝑄𝑢𝑝 and 𝑄𝑙𝑜𝑤 at the previous time step (mm H2O.day-1), respectively, 𝑘𝑢 and 𝑘𝑙 are the recession 

coefficients of the upper and lower reservoirs (day-1), respectively, 𝑄𝑖𝑛_𝑑𝑒𝑒𝑝𝐺𝑊 is the deep 

groundwater flow from SWAT (mm H2O.day-1), 𝛼1 is the fraction of deep groundwater flow 

entering the upper reservoir, 𝛼2 is the fraction of flow from the upper reservoir to the lower 

reservoir, and 𝑡 is the time step (1 day). 
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In the case of the Koiliaris River basin, the recharge area of the springs contributing to the 

total watershed flow extends at least 50 km2 beyond its boundaries. Nikolaidis et al. (2013) first 

used SWAT to model the surface hydrological processes (precipitation, evapotranspiration, 

infiltration, runoff) and route the percolated water to the deep groundwater aquifer. The extent of 

karst areas contributing to the emergence of springs from outside the watershed boundaries was 

established based on the geologic knowledge of the study site and a mass balance modeling 

approach. Then, the SWAT-simulated deep groundwater flow in karst areas was assigned to the 

karstic reservoir model in order to estimate the spring flow contribution to discharge. After 

calibration of the reservoir model parameters, the resultant karst flow time series were input to 

SWAT as a point source to simulate the overall watershed runoff. 

The parameters of the karst flow reservoir and SWAT models were adjusted using high frequency 

flow measurements at the watershed outlet, surface runoff measurements at a major tributary of 

the river, and long-term monthly spring flow records. The overall model prediction efficiency of 

discharge was satisfactory. At the monthly time step, NSE values of 0.77−0.61, PBIAS of -22.1%; 

-11.8%, and RSR of 0.62−0.63 were reached during calibration and validation, respectively, 

whereas NSE of 0.62-0.43, PBIAS of (-22.3%; -11.6%), and RSR of 0.48−0.75 were achieved for 

the daily runoff simulations. 

From the water quality perspective, Nikolaidis et al. (2013) incorporated a nitrate mass 

balance model to the upper and lower reservoirs of the karst flow model, assuming that nitrate is 

conservative in karst. A karst factor was added to the nitrate mass balance equation of the lower 

reservoir to account for the extra dilution of the incoming nitrate loads by the permanent karst flow 

volume below the spring level. After calculating the nitrogen inputs in the watershed and the 

extended karst recharge area based on the local land-use practices, the hydrological and water 

quality modeling parameters were adjusted using nitrates grab sample data at a river tributary and 

groundwater wells, coupled with high frequency nitrate data, grab samples at the watershed outlet, 

and flow measurements. The simulated nitrate concentrations were adequate compared to the 

nitrate grab sample measurements.  

The impact of climate change on the water budget of the Koiliaris River basin was also 

predicted up to the year 2050, using three climate change scenarios for a combination of general 

and regional circulation climate models. The results of the climatic projections suggested that 
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precipitation, evapotranspiration, and runoff could decrease by 17%, 8%, and 22%, respectively, 

for the time horizon 2030−2050 compared to 2010−2029.  

Nerantzaki et al. (2015) later adopted the Karst-SWAT flow model by Nikolaidis et al. 

(2013) to first simulate the hydrology and suspended sediment transport in the Koiliaris River 

basin then predict the impacts of climate change on discharge, soil erosion, and sediment transport. 

The concentration of suspended sediments in the karstic watershed was calculated using the same 

mass balance equations and deep karst factor adopted by Nikolaidis et al. (2013) for nitrates. Four 

additional years of simulation were added to the validation period of the model previously 

calibrated by Nikolaidis et al. (2013). Next, climate change scenarios were run up the year 2090 

after adjusting the most sensitive flow and water quality parameters. The results of the discharge 

simulations were adequate, with daily NSE, PBIAS, and RSR of 0.8, 25.3%, and 0.45, 

respectively, and monthly NSE, PBIAS, and RSR of 0.83, 23.4%, and 0.41, respectively. The 

suspended sediments calibration results were less adequate, with daily NSE of 0.7, PBIAS of 57%, 

and RSR of 0.55, suggesting an overestimation bias.  

The results of the climate change scenarios showed that surface runoff and spring flow could 

decrease by nearly 70 to 77% between the time periods of 2010−2049 and 2050−2090. The 

erosion rate of the watershed main subbasin and surface sediments export were also expected to 

drop by 48% and 55%, respectively, whereas sediments emerging from the springs were not 

substantially affected by climate change.  

Following an analysis of climate change impacts in the Crete Island using Karst-SWAT, 

Demetropoulou et al. (2019) proposed a program of measures to improve water governance in the 

525 km2 Geropotamos basin located in central-southern part of the island. Nerantzaki et al. (2019) 

also used Karst-SWAT to forecast the hydrological response of the Crete region under climate 

change scenarios up to the year 2098, considering different irrigation sources in SWAT. Moreover, 

Tapoglou et al. (2019) applied Karst-SWAT to predict the impact of climate change on the 

hydrological cycle and the frequency of extreme hydrological and meteorological events in Crete. 

Nerantzaki et al. (2020) further expanded the research work conducted in the Koiliaris River basin 

with Karst-SWAT by assessing: (1) the uncertainty of the watershed runoff and karstic flow 

simulations due to the parameter uncertainty in SWAT and Karst-SWAT, and (2) the impact of 

internal variability (or stochastic uncertainty) of the meteorological input data on the flow 

simulations for the reference period and under the climate change scenarios. The uncertainty of 



81 

 

the flow models was estimated by combining the Sequential Uncertainty Fitting Version 2 (SUFI-

2) in the SWAT Calibration and Uncertainty Program (SWAT-CUP) interface and the @RISK by 

PALISADE software, while the effect of input internal variability on the flow output was evaluate 

using Monte Carlo simulations.  

Within the framework of studying the hydrological and geochemical processes in the 

Koiliaris European Critical Zone Observatory, Lilli et al. (2020a) used Karst-SWAT to simulate 

the hydrological budget of the Koiliaris River basin and gain insight on the hydrological pathways 

and response of the karst during extreme events. Additionally, Karst-SWAT was applied to 

simulate surface flow and spring flow in the Koiliaris River basin, which were required to 

determine the design flows and flood frequency within the framework of developing nature-based 

solutions for the riparian forest restoration and flood protection project at the Koiliaris Critical 

Zone Observatory (Lilli et al., 2020b).  

Malagò et al. (2016) developed a two-reservoir modeling approach by linking SWAT-B&B 

(Baffaut and Benson, 2009) and Karst-SWAT (Nikolaidis et al., 2013). The resultant hybrid model, 

called KSWAT, was used in conjunction with SWAT to simulate the water balance, spring flow, 

and total discharge in the Island of Crete in Greece. The study area extends over 8,336 km2 of 

which 2,730 km2 is karst.  

A SWAT model of the Crete Island was set up and the modified model KSWAT was applied only 

in the karst subbasins of the region. The daily aquifer recharge from the karst subbasins was 

simulated using SWAT-B&B. The area of the subbasins contributing to the recharge of a particular 

spring or group of springs was identified based on the local geological maps and dominant karst 

soils. Recharge from the soil profile bottom, stream losses, and seepage from other water bodies 

to the deep aquifer were maximized by: (1) setting the deep aquifer percolation fraction and 

minimum groundwater delay to 1, (2) adjusting the groundwater coefficient of capillary rise to 0.1 

to prevent the upward movement of water to the unsaturated zone, and (3) minimizing the return 

flow from the shallow and deep aquifers in SWAT. The deep aquifer recharge time series generated 

by SWAT-B&B were then input to Karst-SWAT in order to simulate and calibrate the discharge 

of the springs. The parameters of the Karst-SWAT model were adjusted based on daily spring 

discharge data from 47 gauging stations in Crete.  

The hydrologic model in SWAT was adjusted using a step-wise calibration with monthly 

streamflow data at 15 stream gauging stations. Snow, surface runoff, lateral flow, and baseflow 
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parameters were first calibrated separately in order to adjust the timing of the runoff signal and the 

discharge values (peak flow and baseflow). Then, the model was recalibrated based on the 

streamflow-related parameters combined with the adjusted variables of the other water budget 

components. The final near optimal parameter set of the calibrated subbasins was transferred to 

the ungauged subbasins using the hydrological similarity approach with the Partial Least Squares 

Regression, in order to identify similar subbasins based on the correlation between the watershed 

and discharge characteristics.  

Subsequently, the calibrated spring discharge time series from Karst-SWAT were added to the 

Crete SWAT model as point sources in order to predict the total monthly runoff across the island, 

and a final calibration was performed to adjust discharge. The results of the performance indicators 

showed that only 40% of the calibrated gauging stations scored NSE values greater than 0.5, while 

50% had R2 values higher than 0.5 and 64% reached PBIAS lower than 25%. 

Nguyen et al. (2020) added a two-reservoir karstic flow model to the original groundwater 

module of SWAT. The improved SWAT code, termed SWAT_IFG, consists of two conceptual 

groundwater models compiled in a single executable file: (1) the standard SWAT one-reservoir 

model applied to non-karst terrains, and (2) the modified two-reservoir model used in karst areas. 

The two-reservoir groundwater model of SWAT_IGF represents a variant of the Karst-flow model 

by Nikolaidis et al. (2013). In SWAT_IGF, the matrix reservoir receives diffuse recharge as a 

linear function of daily infiltration from the soil bottom, considering the time delay of flow in the 

unsaturated zone (Equations (15) and (16)): 

𝑊𝑟𝑑,𝑖 = [(1 − 𝑒
−

1
𝛿𝑔𝑤)𝑊𝑠𝑒𝑒𝑝,𝑖] × 𝜷 + (𝑒

−
1
𝛿𝑔𝑤)𝑊𝑟𝑑,𝑖−1 

(15) 

where 𝑊𝑟𝑑,𝑖  and 𝑊𝑟𝑑,𝑖−1 (mm H2O.day-1) represent the amount of diffuse recharge to the matrix 

reservoir on day 𝑖 and 𝑖 −  1, respectively, 𝛿𝑔𝑤 is the delay time for the infiltrated water to reach 

the matrix storage reservoir (days), β is a recharge separation factor (0-1), 𝑊𝑠𝑒𝑒𝑝,𝑖 is the total 

amount of water exiting the bottom of the soil profile on day 𝑖 (mm H2O.day-1). 

𝑄𝑖𝑛𝑚𝑎𝑡𝑟𝑖𝑥,𝑖 = ∑ 𝑊𝑟𝑑,𝑖,𝑗

𝑛ℎ𝑟𝑢𝑠

𝑗=1

× 𝑎𝑗 ∗ 10
−3 (16) 

Where 𝑄𝑖𝑛𝑚𝑎𝑡𝑟𝑖𝑥,𝑖 (m
3 H2O.day-1) is the total volume of diffuse recharge to the matrix reservoir on 

day 𝑖, 𝑊𝑟𝑑,𝑖,𝑗 (mm H2O.day-1) and 𝑎𝑗 (m
2) are the diffuse recharge and area of HRU number 𝑗, 
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respectively, 10−3 is a unit conversion factor from mm H2O to m H2O, and 𝑛ℎ𝑟𝑢𝑠 is the number 

of HRUs in the recharge area.  

The conduit reservoir receives another fraction of the soil water seepage as concentrated 

recharge with infiltration losses from sinking streams. It is also fed by diffuse discharge from the 

matrix reservoir, which represents the flow exchange mechanism between the two karst domains 

(Equations (18) and (19)). Groundwater outflow from the matrix storage reservoir to the conduit 

is modeled using a linear storage-discharge equation with a matrix recession coefficient (Equation 

(17)).  

𝑄𝑚𝑎𝑡𝑟𝑖𝑥,𝑖 = 𝑄𝑚𝑎𝑡𝑟𝑖𝑥,𝑖−1(𝑒
−𝛼𝑚𝑎𝑡𝑟𝑖𝑥∆𝑡) + (1 − 𝑒−𝛼𝑚𝑎𝑡𝑟𝑖𝑥∆𝑡) ∑ 𝑊𝑟𝑑,𝑖,𝑗

𝑛ℎ𝑟𝑢𝑠

𝑗=1

∗ 𝑎𝑗 ∗ 10
−3 (17) 

where 𝑄𝑚𝑎𝑡𝑟𝑖𝑥,𝑖 and 𝑄𝑚𝑎𝑡𝑟𝑖𝑥,𝑖−1 are the outflows from the matrix storage reservoir on day 𝑖 and 

𝑖 − 1 (m3 H2O.day-1), respectively, 𝛼𝑚𝑎𝑡𝑟𝑖𝑥 is the recession constant of the matrix storage reservoir 

(day-1), 𝛥𝑡 is the time step (1 day), 𝑊𝑟𝑑,𝑖,𝑗 (mm H2O.day-1) and 𝑎𝑗 (m
2) are the diffuse recharge 

and area of HRU number 𝑗, respectively, 10−3 is a unit conversion factor from mm H2O to m H2O, 

and 𝑛ℎ𝑟𝑢𝑠 is the number of HRUs in the recharge area. 

𝑊𝑟𝑐,𝑖 = (1 − 𝛽)𝑊𝑠𝑒𝑒𝑝,𝑖 (18) 

where 𝑊𝑟𝑐,𝑖 (mm H2O.day-1) is the concentrated recharge from closed depressions, fractures, and 

sinkholes to the conduit storage reservoir on day 𝑖  𝛽 is a recharge separation factor (0-1), and 

𝑊𝑠𝑒𝑒𝑝,𝑖 is the total amount of water exiting the bottom of the soil profile on day 𝑖 (mm H2O.day-

1). 

 

The total volume of concentrated recharge 𝑄𝑖𝑛,𝑐𝑜𝑛𝑑𝑢𝑖𝑡 (m
3 H2O.day-1) to the conduit reservoir on 

day 𝑖 is calculated as follows: 

𝑄𝑖𝑛,𝑐𝑜𝑛𝑑𝑢𝑖𝑡 = ∑ 𝑊𝑟𝑐,𝑖,𝑗

𝑛ℎ𝑟𝑢𝑠

𝑗=1

∗ 𝑎𝑗 ∗ 10
−3 + 𝑟𝑡𝑡𝑙𝑐𝑖 + 𝑄𝑚𝑎𝑡𝑟𝑖𝑥,𝑖 (19) 

where 𝑄𝑖𝑛,𝑐𝑜𝑛𝑑𝑢𝑖𝑡 (m3 H2O.day-1) is the total volume of concentrated recharge to the conduit 

reservoir on day 𝑖, 𝑄𝑚𝑎𝑡𝑟𝑖𝑥,𝑖 is the outflow from the matrix storage reservoir on day 𝑖, 𝑟𝑡𝑡𝑙𝑐𝑖 is the 

recharge from losing streams on day 𝑖 (m3 H2O.day-1), 𝛥𝑡 is the time step (1 day), 𝑊𝑟𝑐,𝑖,𝑗 (mm 

H2O.day-1) and 𝑎𝑗 (m
2) are the concentrated recharge and area of HRU number 𝑗, respectively, 
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10−3 is a unit conversion factor from mm H2O to m H2O, and 𝑛ℎ𝑟𝑢𝑠 is the number of HRUs in the 

recharge area. 

Outflow from the conduit reservoir to the spring is also modeled via a linear storage-

discharge relationship adjusted for the total recharge volume to the conduits and a conduit 

recession coefficient (Equation (20)). The total discharge of the basin where the spring is located 

is then simulated as the sum of the direct runoff (surface runoff and lateral flow) and the outflow 

from the conduit reservoir to the spring (Equation (21)):  

𝑄𝑐𝑜𝑛𝑑𝑢𝑖𝑡,𝑖 = 𝑄𝑐𝑜𝑛𝑑𝑢𝑖𝑡,𝑖−1(𝑒
−𝛼𝑐𝑜𝑛𝑑𝑢𝑖𝑡∆𝑡) + [ ∑ 𝑊𝑟𝑐,𝑖,𝑗

𝑛ℎ𝑟𝑢𝑠

𝑗=1

× 𝑎𝑗 × 10
−3 + 𝑟𝑡𝑡𝑙𝑐𝑖 + 𝑄𝑚𝑎𝑡𝑟𝑖𝑥,𝑖] (1 − 𝑒

−𝛼𝑐𝑜𝑛𝑑𝑢𝑖𝑡∆𝑡) (20) 

where 𝑄𝑐𝑜𝑛𝑑𝑢𝑖𝑡,𝑖 and 𝑄𝑐𝑜𝑛𝑑𝑢𝑖𝑡,𝑖−1 are the outflows from the conduit storage reservoir on day 𝑖 and 

𝑖 – 1 (m3 H2O.day-1), respectively, 𝛼𝑐𝑜𝑛𝑑𝑢𝑖𝑡 is the recession constant of the conduit storage 

reservoir (day-1), 𝑟𝑡𝑡𝑙𝑐𝑖 is the amount of recharge from losing streams on day 𝑖 (m3 H2O.day-1), 𝛥𝑡 

is the time step (1 day), 𝑊𝑟𝑐,𝑖,𝑗 (mm H2O.day-1) and 𝑎𝑗 (m
2) are the concentrated recharge and area 

of HRU number 𝑗, respectively, 10−3 is a unit conversion factor from mm H2O to m H2O, and 

𝑛ℎ𝑟𝑢𝑠 is the number of HRUs in the recharge area. 

The total runoff  𝑄𝑟𝑖𝑣𝑒𝑟,𝑖 (m
3 H2O.day-1) of the basin at the location of the spring is calculated as 

follows: 

𝑄𝑟𝑖𝑣𝑒𝑟,𝑖 = 𝑄𝑐𝑜𝑛𝑑𝑢𝑖𝑡,𝑖 + 𝑄𝑑𝑖𝑟𝑒𝑐𝑡,𝑖 (21) 

Where  𝑄𝑟𝑖𝑣𝑒𝑟,𝑖 (m
3 H2O.day-1) is the total runoff of the basin at the location of the spring  𝑄𝑑𝑖𝑟𝑒𝑐𝑡,𝑖 

is the daily direct runoff calculated as the sum of the surface runoff and lateral flow from the basin 

where the spring is located (m3 H2O.day-1), and 𝑄𝑐𝑜𝑛𝑑𝑢𝑖𝑡,𝑖 is the outflow from the conduit storage 

reservoir on day 𝑖 (m3 H2O.day-1). 

SWAT_IGF was applied to simulate discharge in the drainage basin of the karst dominated 

southern Harz rim and non-karst southwest Harz Mountains in Northern Germany. The watershed 

covers an area of 384 km2 and has one river outlet and a main spring outlet (the Rhume spring). 

The spring is mainly fed by allogenic recharge and river transmission losses from upstream 

subbasins via a connected network of losing streams in the area, with only 4% of the spring 

discharge originating from autogenic recharge and nearly 96% from IGF. When applying 

SWAT_IGF, an aquifer classification map with information about the aquifer types and spring 
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recharge area in the study site was incorporated into the model to delineate karst and non-karst 

HRUs. Subsequently, the suitable conceptual reservoir model could be assigned (the two-reservoir 

model for the karst HRUs and the one-reservoir model for the non-karst HRUs), and recharge from 

the extended karst area could be routed to the spring outlet. 

SWAT_IGF was run for 14 years at the daily time step, with 3 years of warm-up, 6 years 

of calibration, and 5 years of validation. The model parameters were fitted based on multi-site 

daily streamflow data and satellite-derived actual evapotranspiration records (the Moderate 

Resolution Imaging Spectroradiometer MOD16 ETa). A multi-criteria NSE objective function was 

used to assess the overall performance of the model simulation, with equal weights allocated to 

the multi-gauge streamflow observations and evapotranspiration data. Results showed that the use 

of MOD16 ETa data in the calibration did not affect the model performance. The flow simulation 

at the spring outlet improved with multi-gauge calibration, as the NSE values varied from 

0.75−0.48 (calibration-validation) with the single gauge calibration to 0.69−0.62 under the multi-

site calibration. The model performance for all remaining streamflow gauging stations also 

improved with multi-site calibration, and NSE values of 0.54−0.91 and 0.6−0.91 were reached 

for the calibration and validation periods, respectively. Additionally, the model prediction 

uncertainty was reduced. The PBIAS values calculated at the different gages fell below 10%, while 

KGE values ranged between 0.68 and 0.91. Yet, the observed and simulated streamflow 

hydrographs showed that SWAT_IGF underestimated the high and low flows, which is a property 

inherited from the original SWAT model. Nonetheless, the model successfully simulated IGF and 

transmission losses from the rivers contributing to the spring discharge.  

3.3.2.3 Conceptual Linear Three-Reservoir Model 

Wang et al. (2019b) coupled SWAT (v2012) with a linear three-reservoir model. The 

modified model consists of: (1) an upper reservoir that reproduces the regulation and storage 

function of the epikarst and is recharged by percolation from the soil bottom, (2) a middle reservoir 

that represents the conduits system fed by infiltration from the epikarst, depressions, and avens, 

and (3) a lower reservoir corresponding to the matrix system recharged by the epikarst and conduit 

reservoirs. Daily infiltration to the upper reservoir is simulated as a function of the saturation 

moisture content in the epikarst system, its water-holding content, and saturated hydraulic 

conductivity (Equations (22) and (23)).  
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𝑇𝑇 =
𝑠𝑎𝑡 − 𝑓𝑐

𝑘
 (22) 

where 𝑇𝑇 is the attenuation coefficient, 𝑠𝑎𝑡 is the saturation moisture content in the 

epikarst system (mm H2O), 𝑓𝑐 is the water holding capacity in the epikarst system (mm H2O), and 

𝑘 is the saturated hydraulic conductivity (mm.hour-1). 

𝑄𝑖 = 𝑊𝑠𝑡 (1 − 𝑒
−𝑡
𝑇𝑇) (23) 

where 𝑄𝑖 is the water infiltrated through the epikarst on a given day (mm H2O.day-1), 𝑊𝑠𝑡 is the 

water content in the epikarst which varies in function of the daily percolation from the soil bottom 

(mm H2O.day-1), and 𝑡 is the simulation time step (1 day), and 𝑇𝑇 is the attenuation coefficient. 

To simulate the intercompartment fluxes, a proportionality coefficient (𝛼1: 0.5-1) is introduced to 

separate the recharge from the epikarst reservoir between the quick flow and slow flow reservoirs, 

based on the degree of karstification of the watershed. Another coefficient (𝛼2: 0.1-0.5) is used to 

split the discharge from the conduit reservoir between the slow flow reservoir and the basin outlet 

(Equations (24) and (25)):  

𝑄𝑖𝑛,𝑢𝑝 = 𝛼1𝑄𝑖 + 𝑄𝐶 (24) 

𝑄𝑖𝑛,𝑙𝑜𝑤 = (1 − 𝛼1)𝑄𝑖 + 𝛼2𝑄𝑢𝑝 (25) 

Where 𝑄𝑖𝑛,𝑢𝑝 and 𝑄𝑖𝑛,𝑙𝑜𝑤 represent the daily recharge values to the upper and lower reservoirs, 

respectively, 𝑄𝑖 is the water infiltrated through the epikarst on a given day 𝑖, 𝑄𝐶 is the injection 

volume from the depression and aven (all variables are expressed in mm H2O.day-1). 

The outflows from the conduit and matrix reservoirs are modeled using the standard 

attenuation functions of SWAT (Equations (26) and (27)).  

𝑄𝑢𝑝 = 𝑄𝑢𝑝−1(𝑒
−𝑘𝑢𝑡) + (𝛼1𝑄𝑖 + 𝑄𝐶) ∗ (1 − 𝑒

−𝑘𝑢𝑡) (26) 

𝑄𝑙𝑜𝑤 = 𝑄𝑙𝑜𝑤−1(𝑒
−𝑘𝑙𝑡) + [(1 − 𝛼1)𝑄𝑖 + 𝛼2𝑄𝑢𝑝] ∗ (1 − 𝑒

−𝑘𝑙𝑡) (27) 

where 𝑄𝑢𝑝 and 𝑄𝑙𝑜𝑤 are the daily discharge values of the upper and lower reservoirs (mm H2O.day-

1), 𝑄𝑢𝑝−1 and 𝑄𝑙𝑜𝑤−1are the discharge values of the upper and lower reservoirs on the previous 

day (mm H2O.day-1), 𝑄𝑖 is the water infiltrated through the epikarst on a given day (mm H2O.day-

1), 𝑄𝐶 is the recharge from the depression and aven (mm H2O.day-1), 𝛼1 is the coefficient of 

proportionality for infiltration from the epikarst to the upper reservoir, and 𝛼2 is the coefficient of 
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proportionality for infiltration from the upper to the lower reservoir, and 𝑘𝑢 and 𝑘𝑙 are the recession 

coefficients of the upper and lower reservoirs (day-1), respectively. 

Finally, the total karst flow is calculated as the sum of the discharge components of the 

matrix and conduit reservoirs (Equation (28)), which is then added to the surface runoff to simulate 

the total discharge at the watershed outlet. 

𝑄𝑇 = (1 − 𝛼2)𝑄𝑢𝑝 + 𝑄𝑙𝑜𝑤 (28) 

where 𝑄𝑇 is the total contribution of the reservoirs to streamflow (mm H2O.day-1), 𝑄𝑢𝑝 and 𝑄𝑙𝑜𝑤 

represent the discharge components from the upper reservoir and lower reservoirs (mm H2O.day-

1), respectively, and 𝛼2 is the coefficient of proportionality for infiltration from the upper to the 

lower reservoir. 

The original and modified SWAT models were applied to predict daily runoff for a fully 

karstified watershed of 26.76 km2 located in Hunan Province, China, with a calibration period of 

180 days and a validation period of 100 days. The study area is primarily covered by Devonian 

and Carboniferous limestone and exhibits karst depressions, caves, and underground rivers. The 

SWAT three-reservoir model yielded a streamflow simulation that was significantly better than 

that obtained by the standard SWAT model in both calibration and validation, with NSE values 

increasing from 0.57−0.63 to 0.81−0.83 and R2 values increasing from 0.58−0.62 to 0.82−0.84. 

Geng et al. (2021) later modified the SWAT model proposed by Wang et al. (2019b) in 

order to improve the simulation of rapid recharge to the epikarst reservoir through direct water 

percolation from the soil bottom without attenuation. The modelers also added a discharge 

component from the epikarst reservoir to the river channels. Three coefficients of proportionality 

were thus introduced to the three-reservoir groundwater model in order to separate the flow from 

the epikarst reservoir between a surface runoff component and two recharge components to the 

matrix and conduit reservoirs (Equations (29) to (31)). 

𝑄𝑘𝑟 = (1 − 𝐾𝑑)𝑡𝑤𝑙𝑝𝑛𝑑 + 𝐾𝑑𝑄𝑘𝑟0 (29) 

where 𝑄𝑘𝑟 and 𝑄𝑘𝑟0 represent the recharge of karst groundwater on a given day and the day before 

(mm H2O.day-1), respectively, 𝑡𝑤𝑙𝑝𝑛𝑑 represents pond leakage (mm H2O.day-1), and 𝐾𝑑 is the 

flow delay coefficient in the karst groundwater recharge from sinkholes (days). 
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{
 
 

 
 
𝑄𝑖 = 𝑄𝑖,0(𝑒

−𝛼𝑖∆𝑡) + 𝑄𝑖𝑛,𝑖(1 − 𝑒
−𝛼𝑖∆𝑡)

𝑄𝑖𝑛,𝑢𝑝 = 𝑄𝑠𝑒𝑒𝑝
𝑄𝑖𝑛,𝑚𝑖𝑑 = 𝑄𝑘𝑟 + 𝛽1𝑄𝑢𝑝

𝑄𝑖𝑛,𝑙𝑜𝑤 = 𝛽2𝑄𝑢𝑝 + 𝛽3𝑄𝑚𝑖𝑑
𝑖 = 𝑢𝑝,𝑚𝑖𝑑, 𝑙𝑜𝑤

 (30) 

where 𝑄𝑖 is the discharge of reservoir 𝑖 on a given day (mm H2O.day-1), 𝑖 denotes the reservoir 

(one of the upper, middle, and lower reservoirs), 𝑄𝑖𝑛,𝑖 is the daily recharge to reservoir 𝑖 (mm 

H2O.day-1), 𝛼𝑖 is the recession constant of reservoir 𝑖 (day-1), ∆𝑡 is the time step (1 day), 𝑄𝑖,0 is the 

discharge of reservoir 𝑖 on the previous day (mm H2O.day-1), 𝑄𝑘𝑟 is the karst groundwater recharge 

on a given day (mm H2O.day-1), 𝑄𝑠𝑒𝑒𝑝 the daily infiltration recharge from the soil bottom (mm 

H2O.day-1), and 𝛽1, 𝛽2, and 𝛽3 are coefficients of proportionality. 

𝑄𝑇 = (1 − 𝛽1 − 𝛽2)𝑄𝑢𝑝 + (1 − 𝛽3)𝑄𝑚𝑖𝑑 + 𝑄𝑙𝑜𝑤 (31) 

where 𝑄𝑇 is the total discharge of karst groundwater 𝑄𝑇 (mm H2O.day-1), 𝑄𝑢𝑝, 𝑄𝑚𝑖𝑑 and 𝑄𝑙𝑜𝑤 

represent the outflows from the upper, middle, and lower reservoirs (mm H2O.day-1), respectively, 

and 𝛽1, 𝛽2, and 𝛽3 are coefficients of proportionality. 

Rapid infiltration through sinkholes, ponors, and fractures was also replaced by pond leakage with 

concentrated (fast) recharge similar to the computational method proposed by Baffaut and Benson 

(2009). The remaining intercompartment fluxes were modeled similarly to the model by Wang et 

al. (2019b).  

The modified SWAT model was applied to simulate the hydrological cycle processes in 

the Daotian River basin, including the contribution of the streamflow and baseflow components to 

the runoff at the watershed outlet. The study site is situated in the Guizhou Province, China, and 

has a temperate monsoon climate. It covers a total area of 99.21 km2 of which ∼53% is dolomite, 

∼38% limestones, and ∼9% clastic rocks. The karst landscape is characterized by karst 

depressions, sinkholes, and well-connected networks of conduits of high hydraulic conductivity, 

particularly in the limestone area. Due to karst effects, the watershed recharge boundaries extend 

by 24.75 km2 beyond its surface drainage area, and the additional water is discharged into the 

watershed through underground conduits. The areas outside the topographic drainage divides and 

the flow paths of the karst subterranean rivers that exist in the watershed were determined by 

conducting a karst survey and an artificial tracer test prior to hydrological modeling. After 

determining the flow paths of the subterranean river based on the spatial distribution of the 
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subterranean river inlet, ponors, and sinkholes, the DEM data were modified to convert the 

subterranean river into a surface river. By adopting this approach, the actual catchment boundaries 

of the watershed were correctly identified by SWAT for the subbasins delineation. 

The modified SWAT model was calibrated using daily streamflow measurements at the 

watershed outlet for 6 years (1993−1998). Two validation periods were considered under various 

annual precipitation patterns: the first from 1999 to 2002 (normal, dry, and wet years) and the 

second from 2003 to 2006 (normal and dry years). The performance of the modified SWAT model 

was compared to that of a previous model run in SWAT at monthly time scale. Both models had 

satisfactory simulations of monthly discharge. Yet, the modified SWAT model had a better 

prediction efficiency than the original SWAT, scoring NSE values of 0.87-0.83/0.85, R2 of 0.88-

0.84/0.86, and PBIAS of 2.5% – (-1.9%/-15%) for the calibration and two validation periods, 

respectively. The three-reservoir model also improved the simulation of the karst water cycle by 

increasing the groundwater recharge and return flow components. As a result, the NSE for the 

baseflow simulation of the modified SWAT model was 0.09 higher than that of the original SWAT 

model, which underestimated flows below 0.7 m3.s-1 in the dry periods and overestimated runoff 

during wet periods.  

3.3.2.4 Conceptual Non-linear One-reservoir Model 

Wang and Brubaker (2014) replaced the linear reservoir model in SWAT with a single non-

linear reservoir based on the algorithm of Wittenberg (1994) (Equations (32) and (33)), providing 

a modified SWAT version called ISWAT. The ISWAT model was tested in the Shenandoah River 

watershed of the Potomac River basin (USA), which drains a large karstic area of 7,607 km2. It 

was calibrated using 13 years of daily discharge records across 14 gauging stations, with 2 years 

of warm-up, and validated for 4 years. To account for the spatial variability of the geology and 

soils in the watershed during calibration, the parameters of the non-linear reservoir (i.e., 

groundwater recession coefficients and exponents) were grouped by soil type.  

𝑆𝑠ℎ − 𝑆𝑠ℎ,𝑚𝑖𝑛 =
1

𝛼𝑔𝑤
𝑄𝑔𝑤

𝛽𝑔𝑤  (32) 

𝑄𝑔𝑤 = (𝛼𝑔𝑤(𝑆𝑠ℎ − 𝑆𝑠ℎ,𝑚𝑖𝑛))
1/𝛽𝑔𝑤

 (33) 

where 𝑆𝑠ℎ is the shallow aquifer storage (L), 𝑆𝑠ℎ,𝑚𝑖𝑛 is the minimum storage for groundwater flow 

to occur (L), 𝛼𝑔𝑤 is a scale parameter (𝑇𝛽𝐿3(1−𝛽)), 𝛽𝑔𝑤 is a dimensionless coefficient. If 𝛽𝑔𝑤 = 

1, the non-linear model becomes linear. 
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The ISWAT model performance was assessed against that of the linear SWAT model by 

comparing the simulated and observed streamflow hydrographs at the different gauging stations, 

and the recession curves in the low flow periods with the baseflow taken as the lowest 30% of 

daily discharge. The non-linear ISWAT model reproduced low flow discharge and recession 

curves better than SWAT, but simulated peak flows with a comparable accuracy to SWAT. The 

NSE (modified) and R2 indices improved with the use of the non-linear model at the level of eight 

and ten observational river reaches, respectively, with values of 0.5 and 0.6. The non-linear model 

also lowered the overall relative bias of the simulations by 3%, with the majority of the 

observational river reaches scoring a bias less or equal to 10%. 

3.3.2.5 Modified Crack Flow with Conceptual Linear One-Reservoir Model 

Eini et al. (2020) modified SWAT (v2012) to increase groundwater recharge in karst areas 

by: (1) adjusting the groundwater recharge function in SWAT to increase infiltration in karst HRUs 

(the SWAT-ML model), and (2) expanding the crack flow module in SWAT to retain the formation 

of cracks independently of soil moisture conditions (the SWAT-CF model). These modifications 

were based on the premise that preferential flow through the soil sinks and cracks can be 

representative of rapid recharge in karst landforms. Both SWAT-ML and SWAT-CF were applied 

in the Maharlu Lake, a large watershed of 4,270 km2 in Southwest Iran, of which 37% is covered 

by extensive karst areas (limestone and dolomite). Several karst-fissured aquifers are well 

developed in these areas due to lithology, climate, and tectonic activity.  

In SWAT-ML, infiltration from non-karst areas was calculated using the standard SWAT 

recharge equation (Equation 34)), while fast infiltration from karst areas was modeled by dividing 

the delay variable in the original groundwater recharge equation by a new non-dimensional 

calibration parameter (X) (Equation (35)), which can be increased depending on the volume and 

numbers of cracks in a karst HRU:   

𝑟𝑐ℎ𝑟𝑔(𝑗) = (1 − 𝑔𝑤𝑑𝑒𝑙𝑎𝑦(𝑗)) ∗ (𝑠𝑒𝑝𝑏𝑡𝑚(𝑗) + 𝑔𝑤𝑞𝑟𝑢(𝑗)) + 𝑔𝑤𝑑𝑒𝑙𝑎𝑦(𝑗) ∗ 𝑟𝑐ℎ𝑟𝑔1 (34) 

𝑟𝑐ℎ𝑟𝑔𝑘𝑎𝑟𝑠𝑡(𝑗) = (1 − 𝑒

−1
𝑔𝑤𝑑𝑒𝑙𝑎𝑦(𝑗)

𝑋 )(𝑠𝑒𝑝𝑏𝑡𝑚(𝑗) + 𝑔𝑤𝑞𝑟𝑢(𝑗)) + (𝑒

−1
𝑔𝑤𝑑𝑒𝑙𝑎𝑦(𝑗)

𝑋 )𝑟𝑐ℎ𝑟𝑔𝑘𝑎𝑟𝑠𝑡1 (35) 

where 𝑟𝑐ℎ𝑟𝑔(𝑗) and 𝑟𝑐ℎ𝑟𝑔𝑘𝑎𝑟𝑠𝑡(𝑗) represent the daily recharge values from non-karst and karst 

HRUs (mm H2O.day-1), respectively, 𝑗 denotes the HRU number, 𝑔𝑤𝑑𝑒𝑙𝑎𝑦(𝑗) is the recharge delay 
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time (days), 𝑠𝑒𝑝𝑏𝑡𝑚(𝑗) is the daily percolation from the bottom of the soil profile (mm H2O.day-

1), 𝑔𝑤𝑞𝑟𝑢(𝑗) represents the seepage from the lakes, wetlands, and riverside branches (mm H2O.day-

1), 𝑟𝑐ℎ𝑟𝑔1 and 𝑟𝑐ℎ𝑟𝑔𝑘𝑎𝑟𝑠𝑡1 represent the recharge values from the previous day (mm H2O.day-1), 

and X is a non-dimensional calibration parameter (1, +∞) used to adjust infiltration rates in karstic 

HRUs. 

In SWAT-CF, the standard SWAT function that calculates crack volume during the crack 

flow process was modified by adding a new parameter of the crack volume based on new moisture 

conditions (Equation (36)) to achieve a year-round crack formation in the soil matrix: 

𝑣𝑜𝑙𝑐𝑟𝑘(𝑙,𝑗) = 𝑐𝑟𝑙𝑎𝑔 ∗ 𝑣𝑜𝑙𝑐𝑟𝑘(𝑙,𝑗) + (1 − 𝑐𝑟𝑙𝑎𝑔) ∗ 𝑣𝑜𝑙𝑐𝑟𝑘𝑛𝑒𝑤 (36) 

where 𝑣𝑜𝑙𝑐𝑟𝑘 is the crack volume for soil layer (mm), 𝑐𝑟𝑙𝑎𝑔 is a daily lag factor for crack 

development, 𝑣𝑜𝑙𝑐𝑟𝑘𝑛𝑒𝑤 is the crack volume for soil layer based on new moisture conditions 

(mm), 𝑗 is the HRU number, and 𝑙 is the counter.  

As a result, SWAT-CF can simulate crack flow in karst HRUs both in dry and wet soil conditions 

during surface flow events, as opposed to standard SWAT, which only models crack volume on 

drier days as a function of crop capacity and soil moisture. 

SWAT, SWAT-ML and SWAT-CF were applied in the Maharlu Lake, a large watershed 

of 4,270 km2 in Southwest Iran, of which 37% is covered by extensive karst areas (limestone and 

dolomite). Several karst-fissured aquifers are well developed in these areas due to lithology, 

climate, and tectonic activity.  The hydrological models developed with SWAT, SWAT-ML, and 

SWAT-CF were run using streamflow data recorded at 3 gauging stations, with 3 years of warm-

up, 26 years of calibration, and 4 years of validation. Both modified SWAT models outperformed 

SWAT in simulating monthly streamflow at different stations, with SWAT-ML having the best 

overall accuracy. The average NSE value increased from 0.64 with SWAT to 0.67 using SWAT-

CF and 0.69 using SWAT-ML, while the average R2 value varied from 0.70 to 0.69 and 0.72 under 

SWAT-CF and SWAT-ML, respectively. The modified models also increased the prediction 

accuracy of the baseflow and water budget components.  

3.3.2.6 Variable Source Area Hydrology with Conceptual Linear One-Reservoir Model 

Other relevant applications of SWAT in karst watersheds include the use of Topo-SWAT 

(initially termed SWAT-VSA), a modified version of SWAT that was applied to simulate flow, 

sediments yield, and nutrients loads in a watershed with variable source area (VSA) hydrology 
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(Amin et al., 2017). Compared to SWAT, Topo-SWAT incorporates a topographic wetness index 

(TI) that indicates the saturation potential of a landscape unit and the subsequent likelihood of 

runoff generation. Ten equal-area wetness classes ranging from 1 to 10 (1 being 10% of the 

watershed with the lowest runoff potential, and 10 being 10% of the watershed with the highest 

runoff potential) were used to overlay a wetness class layer with the soil map of the study site and 

generate a single GIS layer and associated lookup tables for the SWAT slope class and soil layers.  

Topo-SWAT was tested in the Spring Creek watershed in northeastern USA. Spring Creek 

has a surface water watershed area of 370 km2 but is defined by a groundwater recharge boundary 

of 450 km2, which is characterized by saturation excess surface runoff from VSAs (e.g., perched 

and losing streams in the headwater regions of the watershed, low surface runoff in the forested 

uplands due to quick infiltration through shallow soils, overland flow generated at the base of 

hillslopes). Some of the adjustments made to the model parameters to accurately represent karst 

hydrology in the study watershed included reducing the initial curve number, restricting the 

groundwater delay factor to 1 day, setting the baseflow recession factor to 0.011 day based on 

observed daily streamflow records, and introducing the contribution of the springs that recharge 

outside Spring Creek but discharge inside the watershed as point sources.    

Topo-SWAT outperformed SWAT in modeling daily streamflow for a 12-year simulation period, 

with NSE of 0.73−0.79, PBIAS of -2.8 to -3.7%, and R2 of 0.71-0.77 in the calibration and 

validation periods. Moreover, Topo-SWAT successfully reproduced the VSA hydrology of the 

watershed using the wetness class distribution approach and predicted water quality adequately. 

The calibrated Topo-SWAT model of the Spring Creek watershed was later used to simulate 

nutrient and sediment loadings under four dairy cropping scenarios of different land areas, feed 

production, and nutrient input strategies (Amin et al., 2018). The model was also applied to 

evaluate the impacts of agricultural best management practices on nutrient water quality in the 

watershed (Amin et al., 2020). Gunn et al. (2021) further modified SWAT-VSA by integrating a 

daily dynamic time series of CO2 into the model and implementing changes to the plant subroutines 

to additionally include flexible stomatal conductance and LAI parameters. The generated models, 

namely SWAT-VSA_CO2 and SWAT-VSA_CO2+Plant, were used to predict the impacts of 

climate change with increasing atmospheric CO2 on the water balance of the Spring Creek 

watershed.  
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3.3.3.7 SWAT + Water Accounting Plus (WA+) Framework 

Delavar et al. (2020) coupled SWAT with the Water Accounting Plus (WA+) framework, 

providing a hybrid tool to analyze water resources and support macro and micro water planning in 

watersheds, based on past, current and future trends in water demand and supply. WA+ uses four 

sheets to assess water resources in a basin, including resource base, evapotranspiration, 

productivity, and withdrawal components. In order to populate these sheets with input data 

generated by hydrological simulation in SWAT, the SWAT source code was modified to: (1) 

simulate and report the daily groundwater level changes, and (2) model the interactions and 

exchanges between the aquifers located in different subbasins by overlaying the subbasin HRUs 

layer and aquifer boundaries during HRUs definition. The SWAT-WA+ tool was used to evaluate 

the trends in water supply and consumption in the Tashk-Bakhtegan karst watershed (27,520 km2) 

in Iran, where 60% of the irrigation demand is met by groundwater. Delavar et al. (2022) 

remodified SWAT (v2012) and linked it with WA+, adding the crack flow module proposed by 

Eini et al. [36] with the other modifications previously implemented by Delavar et al. (2020) to 

link SWAT and WA+. The model was applied to assess different conditions of water supply and 

demand under wet and dry periods in the karstified Karkheh River basin (42,267 km2) in Iran. 

The customized SWAT-WA+ frameworks, namely SWAT-FARS for the Tashk-

Bakhtegan basin and SWAT-Karkheh for Karkheh River basin, were calibrated for streamflow, 

groundwater levels, evapotranspiration, and crop yields using a multi-stage calibration process. 

Both models scored NSE and R2 values higher than 0.5 for the streamflow and groundwater levels 

simulations in the calibration and validation periods. The outputs of the modified SWAT models 

were then used to run the WA+ framework. The results of the WA+ assessments revealed that the 

Tashk-Bakhtegan basin has suffered a decline in the volume of manageable water by more than 

20% while irrigation demand increased by more than 50%, and that the volume of manageable 

water in the Karkheh River basin has dropped while groundwater abstraction increased by 17% 

due to climate change.   

Several SWAT applications showed that accounting for external flows from sinkholes and IGF, in 

conjunction with the implementation of reservoir models in SWAT, is needed to achieve an 

adequate representation of karstic flows (Palanisamy and Workman, 2015; Nikolaidis et al., 2013; 

Nerantzaki et al., 2015; Nerantzaki et al., 2020; Nguyen et al., 2020; Wang et al., 2019b; Amin et 

al., 2017; Delavar et al., 2020). Overall, coupling SWAT with karst flow models and adding 
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external functions that reproduce karst features and processes to the SWAT source code have 

resulted in semi-distributed karstic flow models that simulated discharge with a comparable or 

better prediction efficiency than standard SWAT (Eini et al., 2020; Palanisamy and Workman, 

2015; Wang et al., 2019b; Zhou et al., 2022; Geng et al., 2021; Wang and Brubaker, 2014) while 

accounting for the dynamics of the different components in a karst system (when applicable).  

However, poor daily and monthly performance statistics were still reported by Afinowicz 

et al. (2005), Baffaut and Benson (2009), and Malagò et al. (2016) following the modification of 

the SWAT code. These results which suggest that modified approaches applied to the groundwater 

recharge and reservoir functions in SWAT may not always guarantee a successful simulation of 

the flow in complex karstic environments. For instance, Afinowiz et al. (2005) indicated that 

additional modifications to the SWAT flow modules could be required to adequately simulate the 

large volumes of surface runoff and return flow during flood events as opposed to baseflow during 

low flow periods. Additionally, we could not identify published studies in which the modified 

SWAT models were applied across different watersheds, with the exception of the Karst-SWAT 

model (Nikolaidis et al., 2013) which has been used in the Koiliaris River Basin and the Island of 

Crete for a multitude of applications (i.e., hydrological and geochemical analyses, climate change 

impacts, management practices). Thus, one could infer that these models have not been widely 

tested in other karst basins or they only worked for watersheds with comparable geomorphological 

and hydrogeological characteristics to the basins in which they were initially applied.  

3.4 Recommendations  

The modified SWAT models listed in Table 2 can be further improved to have a better 

representation of karstic heterogeneity and non-linearity in their structure. Highlighting the 

constraints of these models would be the initial step to enhance their adaptability to other karst 

watersheds with more complex surface water-groundwater hydrodynamics. First, the Karst-SWAT 

(Nikolaidis et al., 2013) and KSWAT (Malagò et al., 2016) two-reservoir models do not consider 

the function of the epikarst and do not explicitly include the diffuse and concentrated recharge 

components of infiltration from the karstic soils to the deep aquifer reservoir in SWAT. Both 

models use the exponential decay weighting function to simulate recharge and outflows of the 

matrix and conduit reservoirs. However, the non-linear models are generally more suitable than 

the linear ones in representing the hydraulic behavior of karst systems, particularly during low 

flow periods and flood events (Chang et al., 2015; Eris and Wittenberg, 2015; Jukic and Denic-
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Jukic, 2006). Moreover, the two models follow the watershed surface delineation in SWAT to 

determine the recharge area of the spring, which may not always coincide with the groundwater 

recharge boundaries. This requires a tedious assessment of the karst areas recharging the springs 

outside the watershed in tandem with the introduction of the spring flow time series contributing 

to the watershed discharge as point sources in SWAT to simulate IGF.  

Some of the Karst-SWAT and KSWAT modeling constraints were improved in the two-

reservoir SWAT_IGF model (Nguyen et al., 2020), which simulates the hydrological processes in 

non-karst and karst regions as well as IGF in a single executable file. Although SWAT_IGF 

considers the dual recharge and storage functions in karst systems, it uses the linear storage-

discharge relationship to model the outflows of the matrix and conduit reservoirs and does not 

account for the function of the epikarst either. In SWAT_IGF, the exchange flow rate between the 

matrix and conduits is simulated as a diffuse net unidirectional flow from the matrix to the conduit. 

Yet, flow can be transferred from the conduit to the matrix, and vice versa, based on the change in 

the water level gradient between the two mediums. Additionally, the spring flow contribution to 

discharge in karst areas is modeled as a single outflow from the conduit reservoir, whereas both 

the matrix and conduits can contribute to the karst discharge with different flow regimes (slow 

matrix discharge during low flow periods and fast conduit discharge during heavy rainfall 

seasons).  

Next, the three-reservoir models developed by Wang et al. (2019b) and Geng et al. (2021) 

incorporate the epikarst, matrix, and conduit functions, and thus represent a complete underground 

karst system. Yet, their main constraint is that fluxes between the reservoirs are simulated using a 

linear storage–discharge relationship.  

SWAT-B&B (Baffaut and Benson, 2009), SWAT-karst (Yactayo, 2009), KarstSWAT 

(Palanisamy and Workman, 2015), and the karst model developed by Zhou et al. (2022) can 

simulate fast infiltration in karst watersheds dominated by spring flow fed by sinkholes. However, 

they all apply the linear reservoir of SWAT to model groundwater flow without considering the 

different storage and recharge functions of the main karst components (epikarst, matrix, and 

conduits). In comparison with SWAT-B&B, SWAT-karst, and the modified SWAT model of Zhou 

et al. (2022), which all rely on the pond and wetland modules of SWAT for the simulation of flow 

through the sinkholes, only KarstSWAT can simulate IGF. With KarstSWAT, groundwater basins 

that drain the aquifer water to the spring can be identified during watershed delineation and 
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included in a user defined input file to route the total recharge to the spring. Nonetheless, the model 

may only be applied in karst watersheds where sinkholes are solely located along the river 

streambed. Using KarstSWAT, it was also assumed that flow from the losing streams directly 

recharges the deep aquifer through the sinkholes and emerges at the spring within a day, as the 

length of the flow path from the aquifer to the spring was unknown. Although this assumption was 

suitable for a specific study basin, additional data on storage, time of travel, and flow diversion 

pathways would have been required to simulate discharge in other watersheds. The study by 

Yactayo (2009) corroborates this finding, as field investigations were needed to improve the model 

performance by determining whether the sinkholes route the flow within the study watershed or 

divert it outside of the watershed.  

The SWAT-ML and SWAT-CF dedicated to watersheds with crack/preferential flow (Eini 

et a., 2020), the Topo-SWAT specific to watersheds with variable surface area hydrology (Amin 

et al., 2017), and the SWAT-WA+ models (Delavar et al., 2020, 2022) may be directly applied to 

basins affected by karst hydrology or other rapid infiltration phenomena. Nevertheless, they do not 

represent the underground flow dynamics (epikarst-matrix-conduits) of karst aquifers either. 

Finally, the non-linear ISWAT model (Wang and Brubaker, 2014) does not account for the 

diffuse/slow recharge and concentrated/rapid recharge into karst aquifer systems. In addition, it 

does not explicitly represent the storage and discharge functions of three main subsystems in karst 

(epikarst, matrix, and conduits) due to the lumped feature of the reservoir model in SWAT.  

On the other hand, climate change effects on karst hydrology and water quality were 

investigated with the modified SWAT models proposed by Nikolaidis et al. (2013), Nerantzaki et 

al. (2015), Tapoglou et al. (2019), Nerantzaki et al. (2019), and Gunn et al. (2021). Some studies 

evaluated water resources in a karst watershed for different trends in water supply and consumption 

(Delavar et al., 2020) as well as the joint impacts of climate change and groundwater withdrawal 

on water resources availability (Delavar et al., 2022). Other studies simulated in-stream water 

quality under different agricultural management practices (Amin et al., 2017, 2018, 2020). 

However, the use of modified SWAT models for the integrated understanding of the critical zone 

processes and the quantification of the impacts of evapotranspiration and vegetation cover change 

on karst water resources are still lacking. Among the studies that applied a modified SWAT code 

in a karst basin (Table 2), Lilli et al. (2020a) confirmed the conceptualization of the two-reservoir 

karstic system with Karst-SWAT through geomorphologic and tidal analyses. Then, the authors 
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used Karst-SWAT to simulate the hydrological budget and pathways in the critical zone and 

investigate the response of karst during extreme events. Nguyen et al. (2020) investigated the 

impact of evapotranspiration on the hydrological performance of SWAT_IGF by using satellite-

derived ETa (Moderate Resolution Imaging Spectroradiometer MOD16 ETa at 8-day time step 

and 1 km2 spatial resolution) in tandem with multi-site streamflow calibration. ET was simulated 

in SWAT_IGF using the Penman-Monteith approach. Results of the NSE index showed that the 

use of ETa as an additional variable for the calibration of discharge had little to no effect on the 

model performance in the study watershed, compared with the case in which multi-gauge 

streamflow calibration was carried out separately. The authors maintained, nonetheless, that these 

findings should not be generalized to other remote sensing products and to studies in other karst 

areas, considering more research on the use of 𝐸𝑇𝑎 for the calibration of karst hydrological models 

and streamflow estimation is needed. Moreover, only Afinowicz et al. (2005) used a modified 

SWAT code to predict the impact of land-use change on the hydrological cycle of a karst area. In 

particular, the authors developed scenarios for brush control strategies in function of slope, 

rangeland cover density, and soil depth, to determine the most favorable areas for increasing the 

watershed water yield. All scenarios of the brush reduction cover resulted in a decrease in 

evapotranspiration and increases in surface runoff, baseflow, and deep aquifer recharge, with the 

greatest effect observed on recharge.  

Therefore, future research in the realm of karst hydrological modeling should integrate 

spatially distributed ET data from remote sensing models that account for the dynamics of the land 

use (Ollivier et al., 2021) with multi-source precipitation data derived from ground-based 

observations or satellite products (Mo et al., 2022; Zhang et al., 2022). This approach could 

improve the spatial distribution of aquifer recharge and the overall rainfall-discharge relationship 

in karstic watersheds. Other areas of future research could include testing the capabilities of the 

newly released SWAT+ version in simulating discharge in karst watersheds, particularly extreme 

flows (peak and low flows), and comparing the performance efficiency of SWAT+ to previous 

SWAT versions. The performance of SWAT should also be compared to other modeling 

approaches used in karst hydrological applications (Jeannin et al., 2021) in order to improve its 

representation of the high and low flows sustained by karst features. Additionally, it is 

recommended to model the rainfall-discharge relationship in highly dynamic karst aquifers using 

subdaily time intervals (e.g., hourly time step) in order to reach a better prediction of the flood 
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peak discharge during high rainfall events. Assessing the discharge at lower time series can 

improve the mitigation of karst flash floods at the spring outlet and the management of 

groundwater storage for future water supply (Baudement et al., 2017). Finally, future studies could 

focus on developing solute transport models that incorporate the different components and flow 

dynamics in karst hydrosystems.  
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CHAPTER 4: ISPEEKH Model Development and Application in the Baget 

Catchment - Impact of land-use change on karst spring response by integration 

of surface processes in karst hydrology: The ISPEEKH model 

Summary 

In Chapter 4, the semi-distributed karst hydrogeological model "Integration of Surface 

Processes in Karst Hydrology (ISPEEKH)" was developed by modifying the uniform recharge and 

linear reservoir for groundwater and baseflow simulation in SWAT+ into three non-linear 

reservoirs corresponding to the epikarst (reservoir E), matrix (reservoir M), and conduits (reservoir 

C) in a karst system. The model uses input digital elevation model, land-use map, and overlapped 

soil and lithology maps to divide the watershed into subbasins connected through stream channels 

and hydrological response units (HRUs). It then uses weather input data to simulate daily land 

surface and soil hydrologic fluxes at the HRU scale, including potential evapotranspiration, actual 

evapotranspiration, surface runoff, channel flow, soil lateral flow, and soil water percolation. 

ISPEEKH is suitable for simulating groundwater flow in karst-dominated catchments where 

surface runoff generation is low and karst spring flow forms the major portion of streamflow. The 

simulated groundwater fluxes include the fast recharge from the epikarst to conduits, the slow 

recharge from the epikarst to the matrix, the conduit quick-flow and matrix slow-flow components 

of the karst spring discharge, and the conduit-matrix bidirectional exchange flow rate. 

The ISPEEKH model was applied to the Baget catchment, using a 30-m spatial resolution 

DEM from the US Geological Survey, a 100-m resolution land use map from the Corine Land 

Cover database, and a soil map from the Food and Agriculture Organization's Digital Soil Map of 

the World. The model delineated karst and non-karst HRUs based on catchment lithology. The 

daily meteorological data included corrected 1-km resolution COMEPHORE precipitation and 

minimum and maximum air temperature, relative humidity, solar radiation, and wind speed at 8-

km resolution from SAFRAN for years 2006-2018. 

The model was calibrated using daily streamflow data at the catchment outlet from 2006-2013 

(with 2 years of warm-up) and validated from 2014-2018. Parameter sensitivity analysis and 

calibration were performed using the PEST software, and the model predictive performance was 

evaluated using various indices applied in hydrological modeling. 

The Baget catchment water balance was simulated using ISPEEKH from 2006-2018, with a mean 

annual precipitation of 1824 mm and evapotranspiration estimated at 601 mm. The model 
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successfully simulated groundwater storage and spring discharge from recharge to karst reservoirs 

based on water balance conservation. It adequately reproduced the catchment hydrological 

response to heavy precipitation events during high-flow periods and provided a reasonably 

accurate estimation of low-flow magnitude. However, some peaks were underestimated during 

calibration and validation periods. The model's adequacy in simulating evapotranspiration was 

also assessed. 

ISPEEKH modeled the flow processes of the epikarst, conduit, and matrix in the Baget 

catchment, revealing a high connectivity between the epikarst and underlying vadose zone through 

the conduits. The model reproduced the conduit and matrix storages, showing fast rise in water 

storage during the high-flow periods and attenuated storage in the low recharge periods. The values 

of the emptying exponents of the epikarst-to-conduit flow and conduit-to-spring flow indicated 

non-linear flow dynamics. The matrix-to-conduit volumetric flow to total spring flow varied 

between 5% and 9% during the 2008-2018 study period, with a contribution to monthly discharge 

varying from 4-7% in the high flow periods to 22% in low-flow periods. 

The Baget catchment has experienced significant land abandonment, leading to 

degeneration of pasture land and increased recolonization of forests. Natural afforestation, wood 

production, and agro-pastoralism could drive future land-use/land-cover changes. To investigate 

the impact on hydrology and water resources availability, alternative land-use change scenarios 

were simulated, including full catchment afforestation, deforestation due to wood production, and 

conversion to pastureland for animal grazing. The Mann-Whitney U-Test/two-tailed test was used 

to assess the impact of land-use changes on streamflow variability during the low- and high-flow 

periods. Results showed that the impact of afforestation on low flow was insignificant. However, 

low flow increased with deforestation for transitional woodland-shrub, whereas deforestation for 

pasture development reduced streamflow values ranging between 1 and 2.5 m3.s-1 in the high-flow 

periods. Peak flows greater than 2.5 m3.s-1 were relatively insensitive to all land-use changes. 

 

The findings of this chapter were published in the Jounral of Hydrology as: Al Khoury, I., 

Boithias, L., Bailey, R. T., Ollivier, C., Sivelle, V., & Labat, D. (2023). Impact of land-use change 

on karst spring response by integration of surface processes in karst hydrology: The ISPEEKH 

model. Journal of Hydrology, 626, 130300. https://doi.org/10.1016/j.jhydrol.2023.130300 

https://doi.org/10.1016/j.jhydrol.2023.130300
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Abstract 

Karst groundwater represents a source of freshwater for a quarter of the world's population. 

Modeling the hydrological behavior of karst aquifers considering the spatial variability of the 

recharge processes and land-use change impacts on water availability remains a challenge for karst 

water resources management. Therefore, this study proposes a new semi-distributed hydrological 

model named Integration of Surface ProcEssEs in Karst Hydrology (ISPEEKH) for simulating the 

surface-underground water flows in karst-dominated catchments. ISPEEKH couples the 

restructured version of the Soil and Water Assessment Tool (SWAT+) with a non-linear three-

reservoir groundwater model that represents the epikarst and matrix-conduit flow components in 

a karst aquifer. ISPEEKH was applied to the Baget karst catchment (13.25 km2) in the Pyrénées 

mountains of southwest France, characterized by a conduit-dominated spring flow and low surface 

runoff. The model simulated the catchment daily discharge satisfactorily, with NSE = 0.67 and R2 

= 0.68 for the 2008−2013 calibration period, and NSE = 0.65 and R2 = 0.69 for the 2014−2018 

validation period. The catchment evapotranspiration and discharge amounted to 33% and 67% of 

the average annual precipitation, respectively, and nearly 80% of the discharge was attributed to 

spring flow. The matrix-to-conduit flow accounted for 4−7% of the monthly spring flow during 

the high-flow period (December to June), and up to 22% during the low-flow period (July to 

October). ISPEEKH was then used to assess the hydrological response of the Baget catchment to 

land-use change scenarios of afforestation and deforestation for wood production and pasture 

development. Afforestation of the full catchment area did not alter the catchment hydrology 

significantly. Deforestation for wood production reduced annual evapotranspiration by 12−18% 

and increased annual recharge by 7−8%, resulting in annual discharge rising by 6−9%. These 

changes in the water balance components were most noticeable during the low-flow season and 

would augment freshwater availability. Conversely, deforestation for pasture development raised 

annual evapotranspiration by 13−17% while reducing annual recharge by around 7% and discharge 

by 5−7%. These changes in the hydrological components were most remarkable during the high-

flow season and affected discharge below 2.5 m3.s-1. 
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4.1 Introduction 

Karst aquifers cover upwards of 15% of Earth’s continental surface (Goldscheider et al., 2020) 

and provide freshwater supply for nearly 25% of the global population (Lukač Reberski et al., 

2022). A depletion in karst groundwater levels and an attenuation of karst springs have already 

been detected in different regions of the world (Fiorillo and Guadagno, 2012; Hao et al., 2009; Jia 

et al., 2017; Kovačič et al., 2020; Taheri et al., 2016), and are further anticipated due to rising 

water abstraction and changes in climate and vegetation cover (Doummar et al., 2018; Nerantzaki 

and Nikolaidis, 2020; Ruiz et al., 2022; Sivelle et al., 2021; Smiatek et al., 2013). In particular, the 

spatiotemporal variability of the land use is a main driver of groundwater resources availability by 

altering hydrological components, such as evapotranspiration, surface runoff, infiltration and 

aquifer recharge (Bai et al., 2019; Gashaw et al., 2018; Woldesenbet et al., 2017). Afforestation, 

deforestation, rapid urbanization, and farmland abandonment are primary examples of land-use 

changes that have drastically affected catchment water balance and yield around the globe, 

particularly in the Mediterranean belt and mountainous regions (García-Ruiz et al., 2011; Guo et 

al., 2023; Palacios-Cabrera et al., 2022). Thus, acquiring accurate data on the spatiotemporal 

evolution of the surface water and groundwater fluxes by incorporating land-use change impacts 

on karst catchment hydrology through numerical modeling  is fundamental for adequate water 

resources planning and management (Cardoso de Salis et al., 2019; Messerschmid and Aliewi, 

2022; Ruiz et al., 2022). Yet, the assessment of karst groundwater recharge and water resources 

by integration of climate and geospatial data in distributed karst hydrological models remains a 

challenge due to the intrinsic heterogeneity, duality, anisotropy, and nonlinearity of karst aquifers 

(Chang et al., 2021; Hartmann et al., 2014; Jeannin et al., 2021; Messerschmid et al., 2020). To 

date, studies that have evaluated the hydrological response of karst catchments to changes in 

vegetation cover and land-use parameters have rarely been conducted (Bittner et al., 2018; 

Doummar et al., 2012; Ruiz et al., 2022; Sarrazin et al., 2018).  

Hydrological models used to simulate the water balance in karst catchments should consider 

the recharge types and hydrodynamics of the karst aquifer water bearing components. Karst 

aquifers behave as a dual to triple-porosity medium where diffuse recharge is generated by slow 

percolation of infiltrated water through the fractures and fissures (matrix porosity), while 

concentrated recharge develops via enlarged channels and pipe networks (conduit porosity) (Geyer 

et al., 2013; Goldscheider and Drew, 2007; Paiva and Cunha, 2020). The highly-weathered 
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uppermost zone of the karst aquifer, known as epikarst, receives surface runoff leakage through 

fissures and controls the recharge of the saturated zone by storing percolation water temporarily 

during dry and low recharge periods, and by releasing quick flow via karst openings at saturation 

during high recharge periods. At total evolution of the epikarst, surface runoff decreases to zero or 

small values, and most of the infiltration water that passes the epikarst flows through the conduits, 

while percolation through the matrix and fissures does not increase (Bauer et al., 2005; Fidelibus 

et al., 2017; Yan et al., 2022). Hartmann et al. (2021) highlighted the need to consider the interplay 

of partially overlapping surface and subsurface catchments and the influence of non-karstic units 

on recharge in karst-dominated catchment modeling. Moreover, karst hydrological models must 

reproduce both the delayed matrix groundwater storage and slow discharge during the dry season 

and the low conduit storage and fast discharge to springs during the wet period (de Rooij and 

Graham, 2017; Giese et al., 2018; Hartmann et al., 2021). The matrix-conduit exchange flow rate, 

generated by the head difference between the two domains (Dal Soglio et al., 2020a), should also 

be considered in karst groundwater flow modeling as it can represent a substantial portion of the 

spring discharge during the dry and low-flow conditions (Sivelle et al., 2019). In addition, multiple 

studies have established that the storage-discharge relationship of the karst flow processes is 

mostly nonlinear (Basu et al., 2022; Chang et al., 2015; Kurtulus and Razack, 2007; Labat et al., 

2000; Tritz et al., 2011; Zhao et al., 2021).  

 Numerical approaches in karst hydrology are either spatially lumped or spatially 

distributed. Lumped models are commonly used in data-scarce and complex karst regions. They 

generally operate by distributing infiltration to several linear or non-linear reservoirs that represent 

the different karst storage and spring discharge components, and by applying transfer functions 

that relate the input rainfall signal to the output spring discharge without consideration of the 

spatial variability of the surface and subsurface flow determinants over the catchment (i.e., 

meteorological forcing, topography, land use, soil, karst landform). In comparison, fully 

distributed aquifer models discretize and simulate an orthogonal two- or three-form of the 

governing groundwater flow equation (e.g., equivalent porous media, dual continuum media, 

discrete fracture network, coupled discrete conduit network). However, the parametrization of 

such models in karst aquifers is generally constrained by the need for exhaustive data on the 

hydrogeological and geometric properties of the karst system, and by the dynamic changes in the 

hydraulic conditions of the underground surface permeability structure (Adinehvand et al., 2017; 
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Chang et al., 2019; Fischer et al., 2018; Ghasemizadeh et al., 2012; Hartmann et al., 2014; 

Malenica et al., 2018; Gill et al., 2021). To overcome the limitations of both methods, 

conceptually-based distributed karst modeling approaches, which combine lumped conceptual and 

distributed model features (i.e., spatially distributed recharge coupled with dominant karst flow 

components as distinct conceptual reservoirs) can provide a transition from traditional lumped to 

distributed models. This approach maintains the ability to assess the spatial variability of the 

hydrological factors even with scarce hydrogeological data on the underlying karst structure (Yang 

et al., 2022).  

To date, there have been few attempts to simulate karst hydrology by coupling spatially 

distributed recharge with conceptually-based groundwater models. Sarrazin et al. (2018) 

incorporated the Penman-Monteith evapotranspiration equation into the grid-based semi-

distributed model VarKarst (Hartmann et al., 2013), which reproduces soil-epikarst flow processes 

and spring discharge over vertical compartments of unique soil and epikarst characteristics. In 

VarKarst, the outflow from each epikarst compartment is divided between diffuse and 

concentrated recharge using a variable separation factor, and spring discharge is calculated as the 

sum of outflows from the matrix and conduit compartments. Bittner et al. (2018) developed the 

semi-distributed model Land use change modeling in KARSt systems (LuKARS), which lumps 

the dominant hydrotopes of homogeneous land-use and soil properties in a karst catchment as 

independent spatial units. These hydrotopes recharge a shared linear reservoir for baseflow (matrix 

flow) simulation, while rapid (conduit) discharge is modeled as preferential flow from the 

hydrotopes to the spring outlet. Ollivier et al. (2021) integrated a remote sensing-driven 

evapotranspiration model called Simple Crop coefficient for Evapotranspiration (SimpKcET) into 

the gridded Karst Recharge and discharge Model (KaRaMel). KaRaMel consists of an upper 

reservoir that recharges lower linear matrix and conduit reservoirs past its storage capacity. It then 

simulates spring discharge as the sum of the matrix and conduit flow components. Yang et al. 

(2022) also proposed the distributed karst Xin’anjiang (DK-XAJ) model which classifies hillslopes 

in a karst catchment as strongly-, moderately- and poorly-developed karst grid cells, and 

implements a linear two-reservoir model into the moderately- and strongly-developed karstic cells 

for the simulation of the conduit and matrix flows.  

 The Soil and Water Assessment Tool (SWAT) (Arnold et al., 1998)  is one of the most 

extensively utilized semi-distributed eco-hydrological models internationally, owing to its 
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comprehensive nature, robustness, and flexibility as an interdisciplinary tool (Aloui et al., 2023). 

Despite its wide range of applications (CARD, 2023), SWAT has been used to conduct 

hydrological studies in only few karstified catchments (e.g., Afinowicz et al., 2005; Efthimiou, 

2018; Jain et al., 2015; Mehdi et al., 2015; Sellami et al., 2016; Sunde et al., 2017, 2018; Zeiger et 

al., 2021). The uniform recharge by soil water percolation to the shallow and deep aquifers and 

the linear reservoir for groundwater return flow simulation in SWAT (Neitsch et al., 2011) limit 

its applicability in simulating the water balance of spring-dominated karst catchments and in 

assessing the impacts of land-use changes on karst water resources. Few authors have modified 

the SWAT source code to better reproduce recharge to karst aquifers based on the main karst 

features in the study regions (Baffaut and Benson, 2009; Yactayo, 2009; Nikolaidis et al., 2013; 

Wang and Brubaker, 2014; Palanisamy and Workman, 2015; Wang et al., 2019b; Nguyen et al., 

2020; Geng et al., 2021; Zhou et al., 2022). These modified SWAT models and semi-distributed 

models (i.e., VarKarst, LuKARS, SimpKcET-KaRaMel, DK-XAJ) applied in karst hydrology did 

not represent the epikarst, matrix and conduit flow processes, which include the matrix-conduit 

bidirectional exchange flow rate, using non-linear storage-discharge relationships (Al Khoury et 

al., 2023b). Therefore, the aim of this study was to develop a semi-distributed model termed as 

Integration of Surface ProcEssEs in Karst Hydrology (ISPEEKH) that can simulate the daily 

surface-underground water fluxes in a karst-dominated catchment by accounting for: the spatial 

heterogeneity of the catchment properties (i.e., weather, land use, soil, lithology), the diffuse and 

concentrated recharge from karst and non-karst units in the catchment recharge area, the dominant 

flow processes in the karst aquifer, including the bidirectional flow exchange between the matrix 

and conduits, and the non-linearity of the karst system. ISPEEKH was developed by implementing 

a non-linear three-reservoir model of the epikarst, matrix and conduits into SWAT+, the latest 

restructured version of SWAT (Bieger et al., 2017). It was then applied to the Baget catchment 

(13.25 km2) located in the Pyrénées mountains of southwest France and drained primarily by a 

karst spring with non-linear conduit flow. Thus, the objectives of this research work were to: (1) 

modify the SWAT+ source code by integrating a karst aquifer reservoir-based model of the 

epikarst, matrix and conduits with non-linear storage-discharge relationships, (2) test the capability 

of the new model to simulate the daily water balance and flow dynamics of the karst-dominated 

Baget catchment, and (3) evaluate the hydrological response of the Baget catchment to land-use 
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change scenarios of afforestation and deforestation, providing insights into the impacts of plausible 

land management plans on the catchment water resources. 

 

4.2 Methods and materials 

4.2.1 Study site description  

The Baget is a karst catchment located in the piedmont of the Pyrénées mountains (station 

B1 at 42°57'18.06"N; 1°1'52.76"E), in the Ariège Department, southwest of France (Figure 5a). 

It is one of the nine experimental sites monitored by the Karst National Observatory Service (SNO 

Karst) (Jourde et al., 2018) (https://sokarst.org/en/home-2021/) and part of the French network of 

Critical Zone Observatories Research and Applications–National Research Infrastructure 

(OZCAR-RI) (Gaillardet et al., 2018). The groundwater contribution zone of the Baget karst spring 

is nearly 13.25 km2 (Mangin, 1975), which extends beyond the catchment topographic boundaries 

of 8.65 km2 to the east. The Baget lies on a mixed lithological terrain, consisting of Jurassic and 

Cretaceous karstified landforms that occupy nearly 67% of the groundwater catchment area and 

non-karstified rocks that cover the remaining 33% of its surface, primarily at the lower catchment 

boundary (Debroas, 2009; Mangin, 1975). The large carbonate part of the catchment includes: (1) 

a crystalline limestone band outcropping between Cretaceous impermeable silicate rocks (black 

flysch to the south, and breccia-metamorphic layers to the north), and (2) Jurassic dolomites in the 

northern upper side of the catchment, bounded by silicates (Cretaceous flysch of Arbas, other 

lithologies, and Paleozoic Lachein schists) (Ulloa-Cedamanos et al., 2021).  

 The Baget catchment is under an Atlantic oceanic climate with mountainous influence. A 

mean daily air temperature of 12 ± 6.3°C and a mean annual precipitation of 975.5 mm were 

recorded at the meteorological station of Saint Girons (43°00'19"N; 01°06'25"E; 414 m a.s.l), 

located outside the catchment at 8.3 km from its outlet (Figure 5b). The catchment snowpack is 

generally low, and snowmelt does not contibute significantly to discharge (Ulloa-Cedamanos et 

al., 2020).  

 The Baget is a highly karstified and dynamic catchment characterized by rapid infiltration, 

fast transit time between recharge and discharge, and strong non-linear rainfall-runoff relationship, 

as evidenced by the convolution and spectral analyses of rainfall and discharge rates performed by 

Labat et al. (1999; 2000). The Baget karst system includes a shallow epikarstic zone with active 

water storage and drainage to the saturated zone (Ulloa-Cedamanos et al., 2020). The catchment 
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streamflow is formed predominantly by the discharge of the Las Hountas perennial karst spring 

through well-developed conduit networks and partially by the Lachein stream, which drains the 

impermeable terrains in the catchment and usually dries up in the low-flow period (Figure 5a). 

Tracer tests and lumped-parameter modeling of the epikarst-conduit-matrix system of the Baget 

catchment showed that non-linear conduit flow is the main component of the karst spring 

discharge, and that the matrix continuously exchanges flow with the conduit networks without 

direct slow flow contribution to the spring (Sivelle et al., 2019; 2020). The mean annual catchment 

discharge measured at the outlet gauging station B1, 60 m below the Las Hountas spring (Figure 

5a), was 0.44 ± 0.67 m3.s-1 (years 1978−2018), with maximum and minimum values of 10.10 and 

0.02 m3.s-1 in the high- and low-flow periods, respectively (Ulloa-Cedamanos et al., 2020).  
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Figure 5. (a) The Baget groundwater catchment, topographic catchment, and lithological composition, the 

Lachein stream, the Las Hountas karst spring, and the outlet stream gauging station (B1); (b) The 

meteorological data points within the catchment area. 

4.2.2 Overview of SWAT/SWAT+ 

 The Soil and Water Assessment Tool (SWAT) is a time-continuous, semi-distributed, 

process-based, eco-hydrological model developed by the US Department of Agriculture-

Agriculture Research Service (USDA-ARS) to assess the short- and long-term impacts of land 

management practices on water, erosion and agricultural yields in ungauged basins (Arnold et al., 

1998, 2012). It divides catchments into subbasins and further into hydrological response units 

(HRUs) of homogeneous land-use, slope, and soil characteristics to simulate key processes, such 

as hydrology, plant growth, and land management. SWAT applies a simplified version of the 

Environmental Policy Integrated Climate (EPIC) crop growth module (Williams et al., 1989) to 

simulate the phenological development of plants based on daily heat unit accumulation represented 

by the sum of the difference between the average daily temperatures and the base temperature. The 

model uses the intercepted photosynthetically active radiation to compute the daily increase in 

total plant biomass, which is attenuated by stress factors such as water, temperature, and nutrients 

(Ferreira et al., 2021; Sinnathamby et al., 2017). The catchment water balance is driven by moisture 

and energy inputs, such as daily precipitation, minimum and maximum air temperature, solar 

radiation, wind speed, and relative humidity. The simulated hydrological processes include canopy 

storage, evapotranspiration, surface runoff, soil water lateral flow and percolation, aquifer 

recharge, groundwater return flow to the streams, and capillary rise from shallow aquifers into the 

root zone (Abbaspour et al., 2015). A conceptual representation of the catchment main water 

balance components simulated by SWAT is shown in Figure 6. 

 Potential evapotranspiration (PET) in SWAT can be estimated using the Penman-Monteith 

(Monteith, 1965), Priestley-Taylor (Priestley and Taylor, 1972), or Hargreaves (Hargreaves and 

Samani, 1985) methods, and actual evapotranspiration (𝐸𝑇𝑎) is simulated as the sum of canopy 

evaporation, soil evaporation, and plant transpiration (Abiodun et al., 2018). Daily surface runoff 

is simulated in SWAT by the modified Soil Conservation Service Curve Number method (USDA-

SCS, 1972) as a function of the daily precipitation and soil retention properties (Thomas et al., 

2021). The peak runoff rate is calculated with the modified rational method (Chow et al., 1988). 

The simulation of catchment hydrology is split between a land phase and a routing (in-stream) 
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phase. Flow is modeled for each HRU and area-weighted to subbasin level in the land phase. It is 

then routed through the streams of the subbasins to the outlets during the routing phase (Romagnoli 

et al., 2017). The rate and velocity of the channel flow in each subbasin reach are determined using 

Manning’s equation when streamflow is less than the bankfull discharge rate, while floodplain 

geometry is incorporated into the channel routing simulation when streamflow is greater than the 

bankfull flow (Her et al., 2017b). Flow is routed through channels using the Muskingum routing 

method (Overton, 1966) or variable storage coefficient method (Williams, 1969). In this study, the 

Penman-Monteith approach was adopted for PET estimation as it separates the effects of climate 

and land cover on each of the evapotranspiration components by explicitly including land cover 

properties (Sarrazin et al., 2018), and the variable storage coefficient method was used for flow 

routing. 

 Water percolation from the bottom of the soil profile is calculated using a layered storage 

routing model in which downward flow occurs when the soil layer field capacity is exceeded 

(Rahbeh et al., 2019). Subsurface soil lateral flow is computed simultaneously with soil water 

percolation using a kinematic storage routing method (Sloan and Moore, 1984) that accounts for 

the variation in conductivity, slope and, soil water content (Zhou et al., 2013). Water drained from 

the soil then recharges a shallow (unconfined) aquifer and a deep (confined) aquifer reservoirs, 

using exponential delay functions and a coefficient to partition the recharge linearly between the 

two reservoirs. Water losses (𝑄𝑇𝐿𝑂𝑆𝑆) by transmission through the channels can also be simulated 

and are assumed to enter the bank storage or the deep aquifer (Holvoet et al., 2008). Baseflow 

(return flow) to the stream is modeled when the shallow aquifer reservoir storage exceeds a user-

defined water level using a linear storage-discharge relationship, whereas discharge from the deep 

aquifer is considered lost outside the catchment (Pfannerstill et al., 2014). Finally, the watershed 

streamflow (water yield) is generated by the sum of surface runoff, soil lateral flow, and baseflow 

from groundwater (Ayivi and Jha, 2018). 
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Figure 6. Conceptual representation of the catchment main water balance components simulated by SWAT. 

 SWAT+ (Bieger et al., 2017) is a restructured version of SWAT that was developed to 

improve the spatial representation of the elements and processes within catchments, and facilitate 

upgrades of the SWAT source code for future applications and development by the general users 

(Wu et al., 2020). Compared to the previous versions of SWAT, SWAT+ offers a greater flexibility 

in catchment discretization/configuration and a better simulation of the landscape processes, with 

improved runoff routing capabilities. In addition, spatial objects in SWAT+ have been constructed 

as independent modules, each with its own connection file where users can define the routing and 

the fraction of the flow exchanged between the catchment hydrological entities (Bieger et al., 2019, 

2017). A detailed description of the processes and corresponding equations incorporated in SWAT 

are provided in the SWAT theoretical manual by Neitsch et al. (2011) and the SWAT+ 

documentation (https://swatplus.gitbook.io/docs/user/io), currently under development.  

 

4.2.3 The ISPEEKH model structure and code development 

 The Integration of Surface ProcEssEs in Karst Hydrology (ISPEEKH) is a semi-distributed 

model that simulates flow processes of the surface and infiltration zone at the hydrological 

response unit (HRU) scale, considering the spatial variability of the meteorological inputs, 

https://swatplus.gitbook.io/docs/user/io
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topography, land use, soil and lithology, and applies three distinct conceptual reservoirs to simulate 

the dominant flow components of the unsaturated and saturated zones in karst aquifers. We 

developed ISPEEKH by modifying the linear reservoir module for groundwater and baseflow 

simulation in SWAT+ revision 60.5.4 into a non-linear three-reservoir model that incorporates 

functions of the epikarst, matrix and conduits, with recharge from diffuse and concentrated flows 

to the reservoirs. FORTRAN90 language in Visual Studio 2019 was used to modify the source 

code of SWAT+. 

 Figure 7 shows the conceptual structure of the ISPEEKH model, which includes the land 

surface, recharge zone and karst system water fluxes. The land surface and soil hydrologic fluxes, 

including precipitation, evapotranspiration, direct (surface) runoff, lateral flow, and percolation 

are simulated using the original SWAT+ subroutines. The groundwater fluxes, which comprise the 

recharge from karst and non-karst areas, stream transmission losses, pumping, and spring 

discharge to the stream channels are simulated using the new karst module added to SWAT+. This 

karst groundwater flow module incorporates three non-linear reservoirs organized in a two-level 

structure: (1) the higher-level compartment E, which represents the epikarst, and (2) the lower-

level reservoirs M and C corresponding to the matrix and conduit components of karst aquifers, 

respectively. The structure and storage-discharge functions of the three reservoirs were based on 

the conceptual configuration of karst aquifers adopted in the rainfall-runoff model KarstMod 

(Mazzilli et al., 2019), which has been successfully applied in simulating karst springs discharge 

and analyzing the flow dynamics of complex karst systems globally (Baudement et al., 2017; 

Duran et al., 2020; Frank et al., 2021; Kazakis et al., 2018; Labat et al., 2022; Lončar et al., 2018; 

Poulain et al., 2018; Sivelle et al., 2019).  
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Figure 7. Conceptual representation of the water balance surface and subsurface flows simulated by 

ISPEEKH for a karst-dominated catchment. 

 ISPEEKH was developed to simulate the hydrological processes in karst-dominated 

catchments, wherein surface runoff generation is low and karst spring flow constitutes a significant 

portion of the stream discharge. The conceptual reservoir of the epikarst considers direct rainfall 

infiltration without surface runoff generation through surface-exposed and well-developed 

epikarstic fissures, in addition to infiltrated water that can move laterally down a hillslope through 

soil layers and water percolation from the bottom of the soil profile where soil overlays the 

epikarst. Thus depending on the epikarst near-surface development and soil development at the 

soil–epikarst interface in a study karst catchment, the epikarst reservoir can be recharged by daily 

surface runoff (𝑄𝑆𝑈𝑅𝐹
𝐾 ), soil lateral flow (𝑄𝐿𝐴𝑇

𝐾 ), and percolation from the bottom of the soil 

(𝑄𝑃𝐸𝑅𝐶
𝐾 ) in karst HRUs, considering the delay time in the unsaturated zone, as shown by Equation 

(1): 
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𝑅𝐸𝐶𝐻𝐸,𝑖 = 𝑅𝐸𝐶𝐻𝐸,𝑖−1 × 𝑒
−
1
𝛿𝐸 + (1 − 𝑒

−
1
𝛿𝐸) × ∑ (𝑄𝑆𝑈𝑅𝐹,𝑖,𝑗

𝐾 + 𝑄𝐿𝐴𝑇,𝑖,𝑗
𝐾 + 𝑄𝑃𝐸𝑅𝐶,𝑖,𝑗

𝐾 )

𝑛ℎ𝑟𝑢𝑠−𝐾

𝑗=1

 (1) 

where 𝑅𝐸𝐶𝐻𝐸,𝑖 and 𝑅𝐸𝐶𝐻𝐸,𝑖−1 represent the recharge from the land surface and soil to the epikarst 

reservoir on days 𝑖 and 𝑖 − 1 (mm.day-1), respectively, 𝛿𝐸 is the delay time for infiltrated water to 

reach the epikarst reservoir (days), 𝑄𝑆𝑈𝑅𝐹,𝑖,𝑗
𝐾 , 𝑄𝐿𝐴𝑇,𝑖,𝑗

𝐾  and 𝑄𝑃𝐸𝑅𝐶,𝑖,𝑗
𝐾  are surface runoff, soil lateral 

flow and soil percolation on day 𝑖 from the karst HRU 𝑗 (mm.day-1), respectively, and 𝑛ℎ𝑟𝑢𝑠 − 𝐾 

is the number of HRUs in the karst recharge area.  

The epikarst reservoir then discharges the flows (𝑄𝐸𝑀) into the matrix reservoir and (𝑄𝐸𝐶) into 

the conduit reservoir when its water level exceeds a user-defined threshold. Thus, the water balance 

of the epikarst reservoir is represented by Equation (2), as follows:  

{
 
 

 
 𝑑𝐸(𝑡)

𝑑𝑡
= 𝑅𝐸𝐶𝐻𝐸(𝑡) − 𝑄𝐸𝑀(𝑡) − 𝑄𝐸𝐶(𝑡)

𝑑𝐸(𝑡)

𝑑𝑡
= 𝑅𝐸𝐶𝐻𝐸(𝑡) − 𝑘𝐸𝑀 (

𝐸(𝑡) − 𝐸𝑚𝑖𝑛
𝐿𝑟𝑒𝑓

)

𝛼𝐸𝑀

− 𝑘𝐸𝐶 (
𝐸(𝑡) − 𝐸𝑚𝑖𝑛

𝐿𝑟𝑒𝑓
)

𝛼𝐸𝐶 (2) 

where 𝑅𝐸𝐶𝐻𝐸 is the daily recharge from the land surface and soil to the epikarst reservoir 

(mm.day-1), 𝑄𝐸𝑀 and 𝑄𝐸𝐶 are the daily outflows from the epikarst reservoir to the matrix and 

conduit reservoirs (mm.day-1), respectively, 𝐸 is the daily water level in the epikarst reservoir 

(mm), 𝐸𝑚𝑖𝑛 is the minimum water level for the activation of the epikarst discharge (mm), 𝐿𝑟𝑒𝑓 is 

a unit length (mm), 𝑘𝐸𝑀 and 𝑘𝐸𝐶 are the specific discharge coefficients of the epikarst fluxes to 

the matrix and conduits reservoirs (mm.day-1), respectively, and 𝛼𝐸𝑀 and 𝛼𝐸𝐶 are positive 

emptying exponents (unitless). 

 Percolation from the bottom of the soil profile in non-karst HRUs (𝑄𝑃𝐸𝑅𝐶
𝑁𝐾 ) recharges the 

matrix reservoir, while lateral flow generated in non-karst HRUs (𝑄𝐿𝐴𝑇
𝑁𝐾 ) seeps directly into the 

conduit reservoir. The conduit reservoir also receives concentrated recharge from streamflow 

losses by transmission in the channels (𝑄𝑇𝐿𝑂𝑆𝑆), as shown by Equations (3) and (4): 

𝑅𝐸𝐶𝐻𝑀,𝑖 = 𝑅𝐸𝐶𝐻𝑀,𝑖−1 × 𝑒
−
1
𝛿𝑀 + (1 − 𝑒

−
1
𝛿𝑀) × ∑ (𝑄𝑃𝐸𝑅𝐶,𝑖,𝑗

𝑁𝐾 )

𝑛ℎ𝑟𝑢𝑠−𝑁𝐾

𝑗=1

 (3) 

𝑅𝐸𝐶𝐻𝐶,𝑖 = 𝑄𝑇𝐿𝑂𝑆𝑆,𝑖 + ∑ (𝑄𝐿𝐴𝑇,𝑖,𝑗
𝑁𝐾 )

𝑛ℎ𝑟𝑢𝑠−𝑁𝐾

𝑗=1

 (4) 
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where 𝑅𝐸𝐶𝐻𝑀,𝑖 and 𝑅𝐸𝐶𝐻𝑀,𝑖−1 represents recharge by soil water percolation from non-karst 

HRUs to the matrix reservoir on day 𝑖 and 𝑖 − 1 (mm.day-1), respectively, 𝛿𝑀 is the delay time for 

infiltrated water to reach the matrix reservoir (days), 𝑄𝑃𝐸𝑅𝐶,𝑖,𝑗
𝑁𝐾  is the soil percolation on day 𝑖 from 

the non-karst HRU 𝑗 (mm.day-1), 𝑅𝐸𝐶𝐻𝐶,𝑖 is the recharge to the conduit reservoir on day 𝑖 

(mm.day-1), 𝑄𝐿𝐴𝑇,𝑖,𝑗
𝑁𝐾  is the soil lateral flow on day 𝑖 from the non-karst HRU 𝑗 (mm.day-1), 𝑄𝑇𝐿𝑂𝑆𝑆,𝑖 

represents water transmission losses on day 𝑖 (mm.day-1), and 𝑛ℎ𝑟𝑢𝑠 − 𝑁𝐾 is the number of HRUs 

in the non-karst recharge area. 

 The bidirectional exchange flow rate between the matrix and conduit reservoirs (𝑄𝑀𝐶) is 

estimated as a function of the difference between the daily water levels of the two reservoirs, with 

water flowing from the reservoir with the higher water level to the reservoir with the lower water 

level. Moreover, groundwater pumping from the matrix reservoir (𝑄𝑃𝑈𝑀𝑃
𝑀 ) and conduit reservoir 

(𝑄𝑃𝑈𝑀𝑃
𝐶 ), if any, can be specified by the user to account for domestic, agricultural, and industrial 

withdrawals. The outflow of the matrix reservoir (𝑄𝑀𝑆) and the outflow of the conduit reservoir 

(𝑄𝐶𝑆) form the spring discharge of the karst system (𝑄𝑆𝑃𝑅𝐼𝑁𝐺). Therefore, the water balance of the 

matrix and conduit reservoirs are represented by Equations (5) and (6), respectively, as follows: 

Matrix Reservoir 

{
 
 

 
 𝑑𝑀(𝑡)

𝑑𝑡
= 𝑅𝐸𝐶𝐻𝑀(𝑡) + 𝑄𝐸𝑀(𝑡) − 𝑄𝑀𝐶(𝑡) − 𝑄𝑀𝑆(𝑡) − 𝑄𝑃𝑈𝑀𝑃

𝑀 (𝑡)

𝑑𝑀(𝑡)

𝑑𝑡
= 𝑅𝐸𝐶𝐻𝑀(𝑡) + 𝑄𝐸𝑀(𝑡) − 𝑘𝑀𝐶 (

𝐶(𝑡) − 𝑀(𝑡)

𝐿𝑟𝑒𝑓
)

𝛼𝑀𝐶

− 𝑘𝑀𝑆 (
𝑀(𝑡)

𝐿𝑟𝑒𝑓
)

𝛼𝑀𝑆

− 𝑄𝑃𝑈𝑀𝑃
𝑀 (𝑡)

 (5) 

 

Conduit Reservoir 

{
 
 

 
 𝑑𝐶(𝑡)

𝑑𝑡
= 𝑅𝐸𝐶𝐻𝐶(𝑡) + 𝑄𝐸𝐶(𝑡) + 𝑄𝑀𝐶(𝑡) − 𝑄𝐶𝑆(𝑡) − 𝑄𝑃𝑈𝑀𝑃

𝐶 (𝑡)

𝑑𝐶(𝑡)

𝑑𝑡
= 𝑅𝐸𝐶𝐻𝐶(𝑡) + 𝑄𝐸𝐶(𝑡) + 𝑘𝑀𝐶 (

𝐶(𝑡) − 𝑀(𝑡)

𝐿𝑟𝑒𝑓
)

𝛼𝑀𝐶

− 𝑘𝐶𝑆 (
𝐶(𝑡)

𝐿𝑟𝑒𝑓
)

𝛼𝐶𝑆

− 𝑄𝑃𝑈𝑀𝑃
𝐶 (𝑡)

 (6) 

where 𝑅𝐸𝐶𝐻𝑀 and 𝑅𝐸𝐶𝐻𝐶 are the recharge components to the matrix and conduit reservoirs 

(mm.day-1), respectively, 𝑄𝐸𝑀 and 𝑄𝐸𝐶 are the outflows from the epikarst reservoir to the matrix 

and conduit reservoirs (mm.day-1), respectively, 𝐶 and 𝑀 are the daily water levels in the matrix 

and conduit reservoirs (mm), respectively, 𝐿𝑟𝑒𝑓 is a unit length (mm), 𝑄𝑀𝐶 is the daily bidirectional 

exchange flow between the matrix and conduit reservoirs (mm.day-1), 𝑄𝑀𝑆 and 𝑄𝐶𝑆 are the daily 
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outflows from the matrix and conduit reservoirs to the spring (mm.day-1), respectively, 𝑘𝑀𝐶, 𝑘𝑀𝑆, 

and 𝑘𝐶𝑆 are the specific discharge coefficients of the matrix and conduit fluxes (mm.day-1), 𝛼𝑀𝐶, 

𝛼𝑀𝑆, and 𝛼𝐶𝑆 are positive exponents (unitless), and 𝑄𝑃𝑈𝑀𝑃
𝑀  and 𝑄𝑃𝑈𝑀𝑃

𝐶  are the daily pumping rates 

from the matrix and conduit reservoirs (mm.day-1), respectively. 

 Finally, the daily karst spring flow is routed with the surface runoff generated in non-karst 

HRUs (𝑄𝑆𝑈𝑅𝐹) to the watershed outlet in order to simulate total streamflow (𝑄𝑆𝑇𝑅𝐸𝐴𝑀), as follows: 

𝑄𝑆𝑇𝑅𝐸𝐴𝑀,𝑖 = 𝑄𝑆𝑃𝑅𝐼𝑁𝐺,𝑖 + 𝑄𝑆𝑈𝑅𝐹,𝑖 = 𝑄𝐶𝑆,𝑖 + 𝑄𝑀𝑆,𝑖 + 𝑄𝑆𝑈𝑅𝐹,𝑖 (7) 

where 𝑄𝑆𝑇𝑅𝐸𝐴𝑀,𝑖 is the total discharge at the watershed outlet on day 𝑖, 𝑄𝑆𝑃𝑅𝐼𝑁𝐺,𝑖 is the daily spring 

flow contribution to streamflow from karst HRUs (calculated as the sum of conduit outflow 𝑄𝐶𝑆,𝑖 

and matrix outflow 𝑄𝑀𝑆,𝑖), and 𝑄𝑆𝑈𝑅𝐹,𝑖 is the daily surface runoff in non-karst HRUs (all variables 

are expressed in mm.day-1). The simulated streamflow hydrograph is given in m3.s-1. 

 

Three new subroutines for the simulation of the karst flow processes were added to the 

source code of SWAT+ revision 60.5.4: karst_module, karst_read, and karst_control. The 

karst_module includes an array of the user input parameters of the groundwater model (e.g., initial 

water levels, infiltration delay time values, discharge coefficients, and emptying exponents of 

reservoirs E, M, and C) and an array of the output variables for the simulated karst groundwater 

fluxes. The karst_module also contains arrays for the HRU surface runoff, lateral flow, percolation, 

transmission losses, and HRU properties (e.g., HRU type: karst vs non-karst). The HRU surface 

runoff, lateral flow, and percolation arrays, defined in the karst_module subroutine, are populated 

in the hru_control subroutine, while the channel transmission losses array is defined in the 

channel_control subroutine.  

The karst_read module is called if one or more karst objects are identified in the model. A karst 

object is defined as a single epikarst-matrix-conduit reservoir model, and the number of karst 

objects is specified in the input file “object.cnt”. In the case of the Baget catchment, the number 

of karst object was set to 1 corresponding to one karst apring outlet. The karst_read module first 

searches for the user input file ‘karst.data’, which contains the values of the input parameters for 

each karst object, the HRU properties (i.e., karst vs non-karst, HRU pumping source), and the daily 

pumping rates (if any). Then, it proceeds to read in the data for each karst object and allocates the 

karst_module arrays based on the number of karst objects, as well as the HRU surface runoff, 
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lateral flow, and percolation arrays based on the number of HRUs in the model. Moreover, the 

karst_read module sets the initial water levels in reservoirs E, M, and C to start the simulation, 

and prepares the output file “karst_wb_d.txt” that will store the daily simulated values of the water 

fluxes defined in the karst_d array.  

The karst_control subroutine computes the water flux to/between each karst reservoir and the 

discharge of the the karst spring to the stream channel (Equations 1 to 7), then stores and writes 

out the daily karst water fluxes to “karst_wb_d.txt”. The spring flow simulated in the karst_control 

module is then routed to one or more channels downstream the watershed outlet(s) by connecting 

the karst object(s) to the primary outlet channel(s) in the model. For the karst spring flow, this 

connection is established via the “karst.con” input file, which indicates the number of the channels 

to which the karst object is connected and the fraction of flow received by each channel.  

 

4.2.4 Data collection 

The input data required to develop a hydrological model of the Baget catchment with 

ISPEEKH included a digital elevation model (DEM), land-use/land-cover map and a soil map, in 

addition to daily time series of precipitation (mm), minimum and maximum air temperature (°C), 

relative humidity (fraction), solar radiation (MJ.m-2.day-1) and wind speed (m.s-1). The complete 

set of meteorological data was available for the years 2006 to 2018. 

4.2.4.1 Topography 

 The DEM of the Baget catchment was obtained at 30-m spatial resolution from the Shuttle 

Radar Topography Mission ‘SRTM, 2014’ files (1 Arc-Second Global) of the US Geological 

Survey (USGS) (https://earthexplorer.usgs.gov/) (Figure 8a). The catchment altitude ranges from 

502 to 1404 m m.s.l., and slopes vary mostly between 10 to 30%, becoming steeper (30−40%) in 

some regions in the lower part of the catchment (Figure 8b).  

4.2.4.2 Land use and land cover 

 A land-use/land-cover map of the Baget catchment was extracted at 100-m resolution from 

Corine Land Cover (CLC) (https://land.copernicus.eu/pan-european/corine-land-cover), 

considered the reference land-use/land-cover database at the Pan-European level. The CLC 

nomenclature comprises 44 LULC classes organized in three levels (described in Baudoux et al., 

2021). The map is produced in vector format with a minimum mapping unit of 25 hectares and a 

minimum feature width is 100 meters, and in raster format with a 100×100-m pixel resolution. The 

https://earthexplorer.usgs.gov/
https://land.copernicus.eu/pan-european/corine-land-cover
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approaches used for CLC mapping vary by country depending on the available technology and 

access to regional land-cover information (i.e., aerial photographs, local knowledge, and statistics), 

and range from manual image interpretation via supervised classification of satellite images (i.e. 

Landsat, SPOT) to bottom-up combination and generalization of existing national datasets. A CLC 

map has been released for the reference years 1990, 2000, 2006, 2012 and 2018, with a thematic 

accuracy of 86–98% depending on the country (Aune-Lundberg and Strand, 2021; Baudoux et al., 

2021). The land-use trajectory approach was then applied to analyze the land-use dynamics in the 

catchment area over the hydrological simulation period of 2006−2018. The derived CLC maps of 

the catchment, available for the years 2006, 2012 and 2018, were integrated in ArcMap 10.8, and 

the land-use trajectory change was examined pixel by pixel using the overlay method (Nkwasa et 

al., 2020). Six land-use categories were identified in the catchment, and no interannual changes in 

the land-use classes and their corresponding area proportion were detected over the study period 

of 2006−2018. The catchment is mainly covered by broad-leaved and coniferous forests, 

amounting to 74.6% and 9.9% of its area, respectively, followed by pastures (8.1%), moors and 

heathland (5%), and sparse transitional woodland-shrub and agricultural lands (around 1% each) 

(Figure 8c). All land-use categories were reclassified into land-use classes that are identifiable in 

the SWAT land-use database (Table 4). 

 

Table 3. Land-use categories of the Baget basin from Corine Land Cover database and the reclassified 

classes for the ISPEEKH model 

Land-use CLC description CLC Code Land use (%) Land-use SWAT description 
Land-use SWAT 

code 

Pastures 231 8.3% Pasture PAST 

Complex cultivation patterns 242 1.2% Agricultural land-generic AGRL 

Broad-leaved forest 311 74.6% Forest-Deciduous FRSD 

Coniferous forest 312 9.7% Forest-Evergreen FRSE 

Moors and heathlands 322 5.0% 
Range grasses temperate 

mountain systems 
RNGE_TEMS 

Transitional woodland-shrub 324 1.3% 
Range brush temperate 

mountain systems 
RNGB_TEMS 

 

4.2.4.3 Soil  

 A soil map of the Baget catchment was derived from the Food and Agriculture 

Organization (FAO) Digital Soil Map of the World (with a scale of 1:5,000,000), available at 
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https://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/faounesco-soil-map-of-the-

world/en/. A single soil class termed ‘Bd77-1-2b-6424’ was identified over the catchment 

according to the FAO soil map. It corresponds to the soil of sequence number ‘6424’ in the 

SWAT+ soil database, which has a sandy-loam texture. We overlayed both soil and lithology 

maps, and named the soil type covering the catchment karst areas ‘Bd77-1-2b-6424-Karst’ instead 

of ‘Bd77-1-2b-6424’ in the soil map attributes (Figure 8d) so as to separate karst and non-karst 

HRUs based on the catchment lithology and send the surface runoff and unsaturated flows in the 

soil generated at HRU level to their respective groundwater reservoirs, following the ISPEEKH 

conceptual representation of the water balance flow processes (Figure 7). Accordingly, we 

updated the SWAT+ “usersoil” database and corresponding look-up table. In addition, local 

estimations of the hydraulic conductivity of the soil overlaying the epikarstic zone were obtained 

by measuring infiltration at 30 sampling points with 30s- and 60s-time intervals, which yielded an 

average hydraulic conductivity value of 29.48 mm.hr-1. This value closely matched the average 

value of the soil hydraulic conductivity (29.62 mm.hr-1) inferred from the FAO soil map and 

SWAT+ soil database.    

 

https://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/faounesco-soil-map-of-the-world/en/
https://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/faounesco-soil-map-of-the-world/en/
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Figure 8. The Baget catchment properties in terms of: (a) topography, (b) slope, (c) land use/land cover, 

and (d) soil. 

.  

We used QSWAT+ 2.0.3 in QGIS to set up the Baget catchment model based on the input 

DEM, land-use and soil maps, slope characteristics, and catchment outlet location. All the land-

use, soil, and slope classes were maintained in the final HRU definition, resulting in 225 HRUs of 

which 116 are karst and 109 are non-karst. The HRUs delineation followed the areal distribution 

of the karst and non-karst regions of the catchment, with karst HRUs accounting for nearly 70% 

of the catchment area and non-karst HRUs for the remaining 30% (Figure 9). 

 

 

Figure 9. The HRUs of the Baget catchment ISPEEKH model, defined based on the spatial distribution of 

karst and non-karst areas inferred from the catchment lithology. 

4.2.4.4 Hydrometeorological variables 

Daily precipitation data in the Baget catchment for the period of 01/01/2006–31/12/2018 

were derived at 39 grid points using the COMEPHORE (COmbinasion en vue de la Meilleure 

Estimation de la Précipitation HOraiRE) product of the French weather forecasting agency Météo-

France (Figure 5b). COMEPHORE is an hourly reanalysis of surface precipitation accumulation 

over France at a 1-km spatial resolution, which merges data from 24 radars of the French network 

that provides pseudo-CAPPI (Constant Altitude Plan Position) images every 5 minutes over a 

512 × 512-km area, with observations from nearly 4200 rain gauges, including 1200 gauges at 



123 

 

hourly time step (Fumière et al., 2020; Le Roy et al., 2020). A detailed description of 

COMEPHORE and its application over France is provided by Tabary (2007) and Tabary et al. 

(2012). In addition, daily time series of minimum and maximum air temperature, relative humidity, 

wind speed, and solar radiation for the period of 01/01/2006–31/12/2018 were extracted at four 

grid points adjacent to the Baget catchment area using the 8-km SAFRAN (Système d’Analyse 

Fournissant des Renseignements Adaptés à la Nivologie) product of Météo-France (Figure 5b). 

The SAFRAN analysis system of atmospheric variables in France is detailed in Durand et al. 

(1993) and Quintana-Segui et al. (2008). Daily measurements of precipitation, air temperature, 

relative humidity, wind speed, and solar radiation acquired from the ‘Météo-France’ weather 

station of “Saint Girons” (43°00'19"N; 01°06'25"E; altitude: 414 m.s.l., nearly 8.3 km downstream 

of the Baget catchment outlet) were also used to run ISPEEKH and compare the hydrological 

simulation results to those obtained from the model driven by the COMEPHORE and SAFRAN 

meteorological variables.   

Streamflow data required for the calibration and validation of the hydrological model were 

retrieved from the gauging station B1, located 60 m downstream of the Baget catchment spring 

(Figure 5a). At this station, stream water level is measured continuously at 30-min interval by a 

float-type water-level sensor (OTT Thalimedes; Loveland, CO, USA), and discharge is calculated 

using the rating curves adopted by Mangin (1975): a linear function for 𝐻 < 0.24 𝑚 

[𝑄 (𝑚3. 𝑠−1) = 2𝐻 − 0.45; 𝑅2 = 1] and a polynomial function for 𝐻 > 1.3 𝑚 [𝑄 (𝑚3. 𝑠−1) =

17.3𝐻3 − 52.6𝐻2 + 65.4𝐻 − 24.1; 𝑅2 = 1]. The daily discharge data recorded from 01/01/2006 

to 31/12/2018 were used in accordance with the available weather data. Under this period, 

discharge values ranged between 0.04 to 8.95 m3.s-1, with an average of 0.45 m3.s-1. 

4.2.3 Model calibration and validation 

 The ISPEEKH model was run using the corrected COMEPHORE precipitation data and 

the temperature, wind speed, solar radiation, and relative humidity datasets of SAFRAN for the 

period of 2006−2018. The model was then calibrated using the daily streamflow recorded at 

gauging station B1 from 2006 to 2013 (with 2 years of warm-up), and validated for years 

2014−2018. Parameter sensitivity analysis and model calibration were performed with the 

Parameter Estimation (PEST) software for the automated calibration of the 16 parameters of the 

ISPEEKH groundwater module and other parameters that affectthe surface and unsaturated zone 

flows. PEST applies a regulization process and nonlinear techniques (the Gauss-Marquardt-
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Levenberg algorithm) to change the values of the calibration parameters and minimize the residual 

between the simulated and observed datasets (Doherty, 2018). It can also perform a local 

sensitivity analysis using the paramater derivatives in the Jacobian matrix at each iteration and 

provide composite sensitivity measures of the model parameters influence on the catchment 

streamflow (Bailey et al., 2022).  

We used the Nash-Sutcliffe Efficiency factor (NSE), coefficient of determination (R2), and percent 

of bias (PBIAS) to evaluate the model performance in simulating the catchment daily discharge 

according to Moriasi et al. (2015), in addition to the Kling-Gupta efficiency coefficient (KGE) 

(Gupta et al., 2009). KGE is a multi-objective function that has been increasingly applied to 

evaluate modeling performance in karst hydrology due to its limited bias to high streamflow 

compared to the commonly used NSE. The KGE function images the Euclidian distance from the 

ideal point in the scaled space of the three components: the linear correlation coefficient between 

the observed and simulated discharge, the ratio between the mean observed and mean simulated 

discharge, and the ratio between the standard deviation of each of the simulated and observed 

streamflow (Ollivier et al., 2021). 

4.2.5 Preliminary catchment water balance assessment 

A preliminary hydrological simulation was conducted to evaluate the annual water balance 

of the Baget catchment for the period of 2006−2018, using the available meteorological input data 

and the Penman-Monteith approach for evapotranspiration estimation. During this period, the 

mean annual COMEPHORE precipitation over the catchment was 1235 mm, and the mean annual 

discharge measured at the gauging station B1 was 1086 mm, compared to mean annual simulated 

discharge of 590 mm and actual evapotranspiration of 591 mm. Consequently, a negative water 

balance discrepancy (difference between observed and simulated annual discharge) equivalent to 

40% of mean annual precipitation was identified, suggesting either a significant uncertainty in the 

precipitation records, streamflow measurements and or evapotranspiration estimates, or an 

additional water contribution from a larger groundwater recharge area or interbasin groundwater 

flow. The possibility of additional water contribution was first ruled out based on the work of 

Mangin (1975) who established that the Baget catchment is fed by a groundwater recharge area of 

13.25 km2 and does not gain water from neighboring catchments. The streamflow data of years 

2006−2018 were then compared to past measurements at the outlet gauging station B1 between 

1969 and 2005. The discharge values had similar order of magnitude at seasonal and annual scales 



125 

 

(e.g., mean annual discharge of 1135 mm for years 1969−1973, 1010 mm for years 2000−2005), 

showing that the uncertainty due to streamflow magnitude is unlikely to generate the water balance 

discrepancy. Next, the SAFRAN analysis system was applied to derive daily time series of 

potential evapotranspiration with the Penman-Monteith approach and actual evapotranspiration 

over the Baget catchment. The mean annual PET (687 mm) and ETa (591 mm) simulated with 

ISPEEKH based on the Penman-Monteith method were comparable to the PET (796 mm) and ETa 

(667 mm) values produced from SAFRAN in the period of 2006−2018, indicating that the 

uncertainty of the evapotranspiration estimation is insufficient to justify the water balance 

discrepancy.  

Thus, the difference in the annual water balance was attributed to inappropriate 

precipitation data. It appears that the water balance discrepancy has been masked in previous 

studies (e.g., Sivelle et al., 2019) whereby the Baget catchment streamflow was simulated using 

the rainfall-runoff model KarstMod driven solely by precipitation input of the Météo-France Saint 

Girons weather station (43°00'19"N; 01°06'25"E; 414 m m.s.l., 8.3 km from the Baget catchment 

outlet, Figure 5b) without considering the land use and evapotranspiration contribution to the 

water balance. The mean annual precipitation recorded at this station in the for the 2006−2018 

period was 969 mm, which is too low to sustain the observed streamflow at the catchment outlet 

when other flow determinants (e.g., land use, soil) are incorporated in spatially-distributed 

hydrological modeling. In addition, the historical precipitation recorded at various observational 

points of the Météo-France network of weather stations surrounding the study area was also 

examined. A mean annual precipitation of 1050−1270 mm was determined based on the nearest 

stations to the catchment (excluding Saint Girons station) at altitudes between 565 and 735 m. 

However, a mean precipitation of 1750 mm has been previously reported at the Balagué 

meteorological station (42°58'06.5"N; 01°00'39"E; 658 m m.s.l.) situated 0.5 km from the Baget 

catchment and monitored in the 1973−1999 period (Johannet et al., 2008). Therefore, it was 

concluded that the precipitation datasets from the rain gauges in the vicinity of the catchment and 

COMEPHORE do not represent the precipitation regime of the Baget catchment where the altitude 

reaches 1000−1400 m m.s.l. in the highlands of the spring groundwater contribution zone. This 

outcome can be further validated by the findings of Fumière et al. (2020) that COMEPHORE 

precipitation, derived based on the combination of rain gauges and radar data, is underestimated 
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in the Pyrénées region compared to the rest of France, due to precipitation under catch and low 

radar coverage in the mountainous areas. 

In order to adjust the COMEPHORE gridded precipitation data over the simulation period 

of 2006−2018, we calculated an orographic correction multiplicative factor of 1.44 by “Doing 

Hydrology Backward (DHB) (Kirchner’s methodology) (Khan and Koch, 2018) based on the 

rearranged water balance Equation (8) with the SAFRAN gridded actual evapotranspiration data 

and discharge at the outlet gauging station B1. Following the approach outlined in Khan and Koch 

(2018), both the groundwater losses and change of glacier ice volume were considered null for the 

Baget catchment. 

𝑂𝐶𝐹𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑣𝑒 =
𝑃𝐶𝑃𝑡𝑟𝑢𝑒
𝑃𝐶𝑃𝑜𝑏𝑠

=
𝑄𝑜𝑏𝑠 + 𝐸𝑇𝑎 + 𝐺𝑤 + ∆𝑔

𝑃𝑜𝑏𝑠
 (8) 

where 𝑃𝐶𝑃𝑡𝑟𝑢𝑒 is the true (corrected) aerial precipitation, 𝑃𝐶𝑃𝑜𝑏𝑠 is the observed (uncorrected) 

precipitation, 𝑄𝑜𝑏𝑠 is the observed discharge of the gauged catchment, 𝐸𝑇𝑎 is the actual 

evapotranspiration, 𝐺𝑤 represents groundwater recharge losses, and ∆𝑔 represents the losses or 

gains of glacier ice volume.  

4.2.6 Land-use change scenarios 

 Following the calibration and validation of the ISPEEKH model, alternative land-use 

change scenarios were simulated in order to investigate their potential impact on the Baget 

catchment hydrology and water resources availability. Land abandonment in the Baget catchment 

has resulted in substantial degeneration of pasture land and growing recolonization of forests 

(Ulloa-Cedamanos et al., 2022). Natural afforestation due to the abandonment of pastoral and 

arable lands has been the main land change trajectory in European mountains, particularly in the 

Pyrénées, with several scenario-based studies anticipating further expansion of the forest cover in 

the future. In addition, wood production and agro-pastoralism have been established as drivers of 

future land-use/land-cover changes in the French Pyrénées (Houet et al., 2017). Therefore, the 

following land-use change scenarios were developed for the Baget catchment by considering 

further evolution of the landscape closure by natural afforestation (Scenario 1) and deforestation 

for local wood production and or pastoral activities as plausible land management practices 

(Scenarios 2 to 5): 
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• Scenario 1: supposes full catchment afforestation by converting pastures, cultivation patterns, 

moors and heathland, and transitional woodland-shrub to broad-leaved forests, that is 15.5% 

increase in broad-leaved forest area. 

• Scenario 2: supposes that only forest areas in the karst regions of the catchment will be replaced 

by transitional woodland-shrub due to wood production, that is 57.6% increase in transitional 

woodland-shrub area. 

• Scenario 3: supposes that all forest areas in the catchment will be converted to transitional 

woodland-shrub due to wood production, that is 84.4% increase in transitional woodland-shrub 

area. 

• Scenario 4: supposes that only forest areas in the karst regions of the catchment will be replaced 

by pastures for animal grazing, that is 57.6% increase pasture area. 

• Scenario 5: supposes that all forest areas in the catchment will be converted to pastures for 

animal grazing, that is 85.8% increase pasture area. 

The land-use change scenarios of deforestation for wood production and pastoral activities 

were first each applied to the karst areas of the study catchment in order to evaluate their impact 

on the spring flow component of streamflow, and were then extended to the entire catchment 

in order to assess their impacts on both streamflow components: the spring flow of the karst 

aquifer and surface runoff draining the non-karst areas of the catchment.     

 The distribution of the land-use classes for each of the five scenarios is shown in Figure 

10a-e. These scenarios were generated by modifying the land-use and plant communities in the 

model input files to maintain the original spatial set-up of the HRUs, and implemented under the 

same meteorological data used for calibration of the baseline ISPEEKH model. This approach, 

called “fixing-changing method” by changing the land use maps and keeping other inputs constant, 

has been employed extensively in land-use change impact studies to uncover the responses of 

hydrological components to land-use change scenarios (Cecílio et al., 2019; Gashaw et al., 2018; 

Rigby et al., 2022). 
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Figure 10. Land-use classes corresponding to land-use change scenarios simulated in the Baget catchment, 

with: (a) Scenario 1 (afforestation of the full catchment area), (b) Scenario 2 (forest-to-transitional 

woodland/shrub conversion in the karst areas of the catchment), (c) Scenario 3 (forest-to-transitional 
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woodland/shrub conversion), (d) Scenario 4 (forest-to-pasture transition in the karst areas of the catchment), 

and (e) Scenario 5 (forest-to-pasture transition). 

4.3 Results and discussion 

4.3.1 Annual water balance 

The main water balance fluxes of the Baget catchment were simulated using ISPEEKH 

over the period of 2008−2018 (Table 4). The mean annual catchment ETa was 601 mm, equivalent 

to 33% of average annual precipitation (1824 mm), which is comparable to the mean annual 

ETa estimate (667 mm) from SAFRAN for the catchment. The mean annual catchment QSTREAM, 

formed by the karst spring flow and surface runoff generated over non-karst terrains, amounted to 

1216 mm, which corresponds to 67% of average annual precipitation. The mean annual QSPRING 

(972 mm) represented nearly 80% of water yield, whereas SURQ only contributed to the remaining 

20%. Additionally, the mean annual RECH (972 mm) was equal to QSPRING, demonstrating the 

ability of ISPEEKH to successfully simulate groundwater storage and spring discharge from the 

recharge to the karst reservoirs based on the water balance conservation. These figures seem to 

provide a realistic representation of the Baget catchment drainage characteristics, where the Las 

Hountas perennial spring generates most of the streamflow downstream of the catchment outlet.  

 

Table 4. Annual water fluxes in the Baget catchment (mm.year-1) simulated by ISPEEKH for the period of 

2008−2018. 𝑃𝐶𝑃: precipitation; 𝐸𝑇𝑎: actual evapotranspiration; 𝑆𝑈𝑅𝑄: surface runoff; 𝑅𝐸𝐶𝐻: 

groundwater recharge; 𝑄𝑆𝑃𝑅𝐼𝑁𝐺: spring flow; 𝑄𝑆𝑇𝑅𝐸𝐴𝑀: streamflow 

Year 𝐏𝐂𝐏 𝐄𝐓𝐚 𝐒𝐔𝐑𝐐 𝐑𝐄𝐂𝐇 𝐐𝐒𝐏𝐑𝐈𝐍𝐆 𝐐𝐒𝐓𝐑𝐄𝐀𝐌 

2008 1558 573 175 789 786 969 

2009 1499 645 146 688 693 849 

2010 1675 635 155 858 853 1019 

2011 1572 624 144 771 762 919 

2012 1516 639 141 742 751 906 

2013 2672 598 440 1567 1557 2029 

2014 2143 567 313 1198 1195 1535 

2015 1818 598 268 988 1003 1297 

2016 1680 569 176 911 912 1111 

2017 1657 580 154 845 824 1001 

2018 2271 584 355 1333 1353 1744 

Average 1824 601 224 972 972 1216 
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4.3.2 Streamflow and karst aquifer water fluxes 

 The fitted values of the calibrated parameters are reported in Table 5. The most sensitive 

parameter was found to be the emptying exponent of the conduit-to-spring flow (𝛼𝑐𝑠), which is 

consistent with the discharge characteristics of the conduit-dominated Baget catchment. The 

observed and simulated daily streamflow hydrographs at the Baget catchment outlet for years 

2008−2018 are illustrated in Figure 11. The calculated values of NSE (0.673 in calibration; 0.653 

in validation), R2 (0.677 in calibration; 0.69 in validation), and PBIAS (0.7% in calibration; -

13.83% in validation) indicate a satisfactory model performance for daily streamflow simulation 

according to Moriasi et al. (2015). Moreover, The KGE values were 0.789 in calibration and 0.782 

in validation. Overall, ISPEEKH adequately reproduced the karst hydrological response to heavy 

precipitation events during the high-flow periods by preserving the rising and recession limbs of 

the observed hydrograph. It also provided a reasonably accurate estimation of the low-flow 

magnitude. Yet, several peaks (generally those larger than 3 m3.s-1) were underestimated during 

the calibration period, whereas the model estimated the peaks more adequately in the validation 

period. At monthly scale, the model performance was very good (Moriasi et al., 2015) with NSE 

and R2 values of 0.924 in calibration and 0.87−0.897 in validation. Monthly KGE was 0.945 in 

calibration and 0.853 in validation, whereas monthly PBIAS remained comparable to daily PBIAS 

with 0.726% in calibration and -13.69% in validation (Figure 12). In comparison, the KarstMod 

model of the Baget catchment proposed by Sivelle et al. (2019) yielded daily NSE values of 0.53 

and 0.51, and daily KGE values of 0.58 and 0.61, for calibration and validation, respectively.  

 Moreover, the adequacy of the calibrated ISPEEKH model in simulating 

evapotranspiration was assessed by comparing the daily simulated evapotranspiration to the 

SAFRAN-based evapotranspiration in the catchment in years 2008−2018. The NSE, R2, and 

PBIAS values were 0.729, 0.799 and 8.94%, respectively, for calibration, and 0.813, 0.86 and 

11.1%, respectively, for validation, indicating an adequate model performance (Figure 13).    
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Table 5. Calibration ranges and fitted values of the calibrated parameters for the ISPEEKH model in the 

Baget catchment 

Parameter Description Unit 
Calibration 

range 

Sensitivity 

rank 

Fitted 

value 

𝑬𝒔𝒄𝒐 Soil evaporation factor - 0-1 13 0.95 

𝑬𝒑𝒄𝒐 Plant uptake factor - 0-1 7 0.99 

𝑷𝒆𝒓𝒄𝒐 Soil percolation coefficient - 0.1-1 2 
0.15(1) 

0.3(2) 

𝒉𝑬,𝟎 Initial water level the in epikarst mm 1-25 15 20 

𝒉𝑴,𝟎 Initial water level the in matrix mm 1-25 4 20 

𝒉𝑪,𝟎 Initial water level the in conduit mm 1-25 5 20 

𝑬𝒎𝒊𝒏 
Minimum water level for epikarst flow 

activation 
mm 0-1 19 0.1 

𝜶𝑬𝑴 
Emptying exponent of the epikarst-

matrix flow 
- 0.5-1 16 0.792 

𝜶𝑬𝑪 
Emptying exponent of the epikarst-

conduit flow 
- 0.5-2 3 1.968 

𝜶𝑴𝑪 
Emptying exponent of the matrix-

conduit flow 
- 0.5-2 6 1.098 

𝜶𝑴𝑺 
Emptying exponent of the matrix-

spring flow 
- 0.5-1 12 0.638 

𝜶𝑪𝑺 
Emptying exponent of the conduit-

spring flow 
- 0.5-2 1 1.863 

𝒌𝑬𝑴 
Discharge coefficient of the epikarst-

matrix flow 
mm.day-1 0.0001-0.01 17 0.001 

𝒌𝑬𝑪 
Discharge coefficient of the epikarst-

conduit flow 
mm.day-1 0.0001-0.09 9 0.033 

𝒌𝑴𝑪 
Discharge coefficient of the matrix-

conduit bidirectional flow 
mm.day-1 0.0001-0.05 11 0.011 

𝒌𝑴𝑺 
Discharge coefficient of the matrix-

spring flow 
mm.day-1 0.0001-0.01 14 0.004 

𝒌𝑪𝑺 
Discharge coefficient of the conduit-

spring flow 
mm.day-1 0.0001-0.09 10 0.077 

𝜹𝑬 
Recharge delay from the soil to the 

epikarst 
day 0.5-2 18 1 

𝜹𝑴 
Recharge delay from the soil to the 

matrix 
day 1-3 8 2 

(1) this value is set for the karst HRUs; (2) this value is set for the non-karst HRUs 
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Figure 11. (a) Observed and simulated daily streamflow at the Baget catchment outlet (station B1) for the 

calibration period (January 2008–December 2013) and validation period (January 2014–December 2018); 

(b) observed and simulated daily streamflow at station B1 for year 2011; (c) observed and simulated daily 

streamflow at station B1 for year 2014. 
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Figure 12. Observed and simulated monthly streamflow at the Baget catchment outlet (station B1) for the 

calibration period (January 2008–December 2013) and validation period (January 2014–December 2018). 

 

Figure 13. SAFRAN-based and simulated daily evapotranspiration of the Baget catchment for the 

calibration period (January 2008–December 2013) and validation period (January 2014–December 2018). 

ISPEEKH successfully modeled different flow processes of the epikarst, conduit, and 

matrix. The simulated epikarst recharge and flow to the conduit reservoir reflect a high 
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connectivity between the epikarst and underlying vadose zone through the conduits, as almost all 

simulated flow through the epikarst reservoir is transferred to the conduit reservoir with low inflow 

to the matrix (Figure 14). Observations of the daily water storage in the matrix and conduits are 

not available for the Baget catchment. Nonetheless, the simulated water levels in the matrix and 

conduit reservoirs revealed that ISPEEKH reproduced the conduit and matrix water storages by 

following flow patterns that are consistent with the characteristics of a conduit-dominated karst 

spring. Water level fluctuations in the conduit reservoir showed a fast rise of the water storage 

followed by a rapid water transfer to the spring during the high-flow period, and an attenuated 

storage in the low-recharge period (Figure 15a). Conversely, Figure 15b showed a lower 

variability of the simulated matrix storage in comparison to the conduit, indicating slow transfer 

time and low matrix discharge to the spring, with a gradual water storage drop during the low-flow 

season.   

 The emptying exponent 𝛼𝑀𝐶 was found to be nearly linear (Table 5), indicating that the 

exchange flow rate between the conduit and matrix is generally governed by the hydraulic 

conductivity of the fissured system and the difference between the water levels of the matrix and 

conduit reservoirs. The simulated exchange flow rate (𝑄𝑀𝐶) was mostly positive (flow from the 

matrix to the conduit) as water storage in the matrix reservoir remained less variable and frequently 

higher than the conduit reservoir water storage, whereas 𝑄𝑀𝐶 was negative (flow from the conduit 

to the matrix) when the water level in the conduit reservoir surpassed the matrix water level during 

the high-flow period (Figure 16a-b). The ratio of the matrix-to-conduit exchange volume to total 

spring flow varied between 5% and 9% during the 2008–2018 period, with an average value of 

8%. Moreover, the matrix contribution to the monthly karst discharge amounted to 4–7% between 

November and June, and increased to 22% during the July-to-October low-flow period. In 

addition, the conduit outflow followed a non-linear law and accounted for most of the spring 

discharge (92–95% of spring flow in the November-to-June period and 75–83% of spring flow in 

the July-to-October period), while the direct contribution of the matrix to spring flow was 

negligible (Figure 16c). These values generally agree with the study of Sivelle et al. (2019) in 

which the matrix-conduit flow contribution to spring flow of the Baget catchment was estimated 

at 2–5% annually and up to 25% in months of low rainfall, based on lumped rainfall-runoff 

modeling with KarstMod driven by input precipitation of years 1970–2016 from the 

meteorological station of Saint Girons. The authors adopted a linear law for the matrix-conduit 
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flow exchange mechanism and set all the spring discharge through the conduit reservoir using a 

non-linear law.   

 

 

Figure 14. Annual water inflows to the epikarst, conduit, and matrix reservoirs (mm.year-1) simulated by 

ISPEEKH in the Baget catchment for the period of 2008−2018. 
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Figure 15. (a) 5th, 50th and 95th percentiles of the water level in the conduit reservoir over the simulation 

period (2008−2018); (b) 5th, 50th and 95th percentiles of the water level in the matrix reservoir over the 

simulation period (2008−2018). 
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Figure 16. (a) Simulated daily water levels in the matrix and conduit reservoirs in years 2015−2018; (b) 

daily matrix-conduit exchange flow in years 2015−2018; (c) average monthly contribution of conduit flow, 

matrix flow, and matrix to conduit flow to spring discharge over the study period (2008−2018). 

The modified SWAT models reported in the literature were tested across karstified 

watersheds with distinct climatic conditions, karst features, and recharge areas ranging from less 

than 30 km2 to larger than 8,000 km2. Moreover, they were calibrated at daily and or monthly scale 

using different calibration/validation periods (months to years) and single to multi-gauge 

streamflow calibration. The modified SWAT models that were calibrated at daily scale showed 

contradictory performances (Moriasi et al., 2015), implying that modified SWAT modeling 

approaches did not always guarantee an improved simulation of the karst catchment streamflow. 

More than half of the models had satisfactory (i.e., 0.5 ˂ NSE ≤ 0.7) (Nguyen et al., 2020; 

Nikolaidis et al., 2013; Palanisamy and Workman, 2015; Wang and Brubaker, 2014) to strong 

performances (i.e., NSE > 0.7) (Geng et al., 2021; Nguyen et al., 2020; Palanisamy and Workman, 

2015; Wang et al., 2019b) with respect to daily streamflow simulation, while some studies reported 

poor performances (i.e. NSE ≤ 0.5) even at monthly scale (Afinowicz et al., 2005; Baffaut and 

Benson, 2009; Malagò et al., 2016). In comparison, ISPEEKH showed a satisfactory performance 

of the daily discharge simulation over 11 years while incorporating additional karst flow processes 

that allowed an explicit representation of the karst recharge pathways and non-linear dynamics of 

the epikarst, matrix and conduits. Jeannin et al. (2021) also evaluated the performance of thirteen 

models commonly used in karst hydrology, including neural networks, reservoir-based, semi-

distributed and fully-distributed groundwater models, in simulating the spring discharge of the 

Milandre karst hydrogeological system (MKHS) located in Northern Switzerland and fed by a 

recharge area of 13 km2. The lumped reservoir model Gardenia and semi-distributed model 

VarKarst were the only two models to score NSE and KGE values of ∼0.8, while the remaining 

models reported NSE values between -0.24 and 0.65, and KGE values from 0.37 to 0.72 with 

variations of 0.05 to 0.08 between daily and hourly simulations. It should also be noted that only 

the KRM_1 semi-distributed model accounted for the land-use spatial variability despite not 

producing better results than the other models. Thus, the semi-distributed modeling scheme 

implemented in ISPEEKH could be a promising approach to simulate karst hydrology considering 

the spatial variability of the flow determinants. 
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4.3.3 Impact of land-use changes on annual and monthly water fluxes 

The calibrated ISPEEKH model was used to simulate the hydrological response of the 

Baget catchment to five land-use change scenarios of afforestation and deforestation schemes. The 

average annual values of the catchment main hydrological components were then compared for 

the baseline land use and the different land-use change scenarios (Table 6). Under Scenario 1, 

which represents afforestation of the full catchment area by 15.5% gain in broad-leaved forest 

cover, ETa decreased from 601 to 592 mm.year-1 (-1.5%). In particular, afforestation would 

increase plant transpiration (Eplant) from 460 to 470 mm.year-1 (+2.17%), while reducing soil 

evaporation (Esoil) from 55 to 39 mm.year-1 (-29.1%) and canopy evaporation (Ecanopy) marginally 

from 86 to 83 mm.year-1 (-3.49%). In addition, SURQ increased marginally to 227 mm.year-1 (3 

mm increase; +1.33%), and RECH reached 976 mm.year-1 (4 mm increase; +0.41%) due to higher 

surface water infiltration to the epikarst in the catchment karstic areas. These minor changes in 

evapotranspiration, surface runoff and recharge rates resulted in a slight increase in QSTREAM from 

1216 to 1224 mm.year-1 (+0.66%). 

 Under forest-to-woodland/shrub transition in the karst areas of the catchment (Scenario 2), 

the mean annual ETa decreased by 71 mm (-11.8%), with 105 mm decrease in Eplant (-22.9%), 14 

mm increase in Ecanopy (+16.3%), and 20 mm increase in Esoil (+36.4%). The mean annual RECH 

rose by 67 mm (+6.9%) due to an increase in epikarst recharge from surface runoff and soil water 

percolation in karst areas, followed by a subsequent 67 mm increase in QSTREAM, which reached a 

mean annual value of 1284 mm (+5.3%). The changes in the hydrological components were more 

remarkable with woodland-shrub expansion over the entire catchment (Scenario 3). ETa further 

decreased to 494 mm.year-1, with lower Eplant (154 mm decrease; -33.5%) and higher Ecanopy (17 

mm increase; +19.3%) and Esoil (30 mm increase; +55.1%). RECH then reached 1048 mm.year-1 

(76 mm increase; +7.6%) due to added recharge by soil lateral flow and percolation to the conduit 

and matrix, and SURQ contributing directly to discharge further increased to 249 mm.year-1, which 

is 25 mm up from its value in Scenario 2. Consequently, the average annual QSTREAM rose to 1319 

mm.year-1 (103 mm increase; +8.5%). 

 The changes in the water fluxes under forest-to-pasture conversion (Scenario 4 and 

Scenario 5) were opposite to those simulated under forest-to-woodland/shrub transition (Scenario 

2 and Scenario 3). The mean annual ETa increased to 676 mm.year-1 (75 mm increase; +12.5%) 
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under Scenario 4 of pasture expansion in the catchment karst areas, and further to 705 mm.year-1 

(104 mm increase; +17.3%) with total deforestation of the catchment for pasture development 

(Scenario 5). This ETa intensification was attributed to higher values of all evapotranspiration 

components, as Ecanopy increased to 101−106 mm.year-1 (15−20 mm increase; +17.4−23.2%), 

Eplant rose to 491−500 mm.year-1 (31−40 mm increase; +6.4−8.7%), and Esoil increased to 84−99 

mm.year-1 (29−44 mm increase; +52.7−80%). On the other hand, RECH dropped to 908 mm.year-

1 (64 mm decrease; -6.6%) under Scenario 4 due to lower recharge to the epikarst, and further to 

904 mm.year-1 (68 mm decrease; -7%) under Scenario 5 with lower infiltration to the epikarst, 

matrix and conduit reservoirs. These changes generated a decrease in the mean annual QSPRING by 

64−68 mm (-6.6% to -7%), followed by a fall in QSTREAM to 1153 mm.year-1 (63 mm decrease; -

5.2%) under Scenario 4 and 1126 mm.year-1 (90 mm decrease; -7.4%) under Scenario 5. 
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Table 6. Changes in the average annual water fluxes in the Baget catchment under different land-use change 

scenarios. 𝐸𝑇𝑎: actual evapotranspiration defined as the sum of canopy evaporation (𝐸𝑐𝑎𝑛𝑜𝑝𝑦), plant 

transpiration (𝐸𝑝𝑙𝑎𝑛𝑡) and soil transpiration (𝐸𝑠𝑜𝑖𝑙); 𝑅𝐸𝐶𝐻: groundwater recharge; 𝑆𝑈𝑅𝑄: surface runoff; 

𝑄𝑆𝑃𝑅𝐼𝑁𝐺: spring flow; 𝑄𝑆𝑇𝑅𝐸𝐴𝑀: streamflow 

Land-use scenario Baseline Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 

Land-use proportions (%)       

Pastures 8.1 0 8.1 8.1 65.7 93.9 

Complex cultivation patterns 1.1 0 1.1 1.1 1.1 1.1 

Broad-leaved forest 74.6 90.1 17 0 17 0 

Coniferous forest 9.9 9.9 9.9 0 9.9 0 

Moors and heathland 5 0 5 5 5 5 

Transitional woodland-shrub 1.3 0 58.9 85.7 0 0 

Hydrological variable       

𝐄𝐓𝐚 

Value (mm) 601 592 530 494 676 705 

Change (mm) 0 -8 -71 -107 75 104 

Percent change (%) 0 -1.5 -11.8 -17.8 12.5 17.3 

Ecanopy 

Value (mm) 86 83 100 103 101 106 

Change (mm) 0 -3 14 17 15 20 

Percent change (%) 0 -3.5 16.3 19.8 17.4 23.3 

Eplant 

Value (mm) 460 470 355 306 491 500 

Change (mm) 0 10 -105 -154 31 40 

Percent change (%) 0 2.2 -22.8 -33.5 6.7 8.7 

Esoil 

Value (mm) 55 39 75 85 84 99 

Change (mm) 0 -16 20 30 29 44 

Percent change (%) 0 -29.1 36.4 54.5 52.7 80 

𝐑𝐄𝐂𝐇 

Value (mm) 972 976 1039 1048 908 904 

Change (mm) 0 4 67 76 -64 -68 

Percent change (%) 0 0.4 6.9 7.8 -6.6 -7 

𝐒𝐔𝐑𝐐 

Value (mm) 224 227 224 249 224 203 

Change (mm) 0 3 0 25 0 -21 

Percent change (%) 0 1.3 0 11.2 0 -9.4 

𝐐𝐒𝐏𝐑𝐈𝐍𝐆 

Value (mm) 972 976 1039 1048 908 904 

Change (mm) 0 4 67 76 -64 -68 

Percent change (%) 0 0.4 6.9 7.8 -6.6 -7 

𝐐𝐒𝐓𝐑𝐄𝐀𝐌 

Value (mm) 1216 1224 1283 1319 1153 1126 

Change (mm) 0 8 67 103 -63 -90 

Percent change (%) 0 0.7 5.5 8.5 -5.2 -7.4 

  

The changes in the monthly values of the water fluxes were assessed for the five land-use 

change scenarios with respect to the baseline land use (Figure 17). Under full forest cover 

(Scenario 1), ETa decreased slightly by 0.3−3.6 mm.month-1 between September and May, while 



142 

 

increasing by 0.3−2.1 mm.month-1 from June to August (Figure 17a). With the transformation of 

forests to transitional woodland-shrub, a decrease in ETa occurred throughout the months of May 

to October. The drop in ETa was particularly remarkable in the summer season between June and 

September, amounting to -12.4 to -28 mm.month-1 under Scenario 2 and -18 to -40.6 mm.month-1 

under Scenario 3. As for the remaining months, minor increases in ETa were generally simulated, 

with the largest (around 2−5 mm) occurring in March and April (Figure 17a). In contrast, 

deforestation for pasture development raised ETa in all months. The highest ETa increases were 

simulated from March to May and in October, ranging from 10.7 to 16.5 mm.month-1 under 

Scenario 4 and 15.3 to 21 mm.month-1 under Scenario 5 (Figure 17a).  

 The impact of land-use changes on SURQ could be explicitly observed under Scenarios 1, 

3 and 5 in which the afforestation/deforestation schemes were extended to the karst areas of the 

catchment. SURQ was relatively stable under afforestation (Scenario 1), increasing by less than 1 

mm.month-1 from November to May, with no major variation during the summer season (Figure 

17b). In contrast, SURQ increased by 1−9.3 mm.month-1 between May and November following 

the conversion of forests to woodland/shrub in Scenario 3, and decreased by 1−6.4 mm.month-1 

from October to June due to pasture land expansion in Scenario 5, with no remarkable changes in 

the remaining summer months. 

 Under afforestation in Scenario 1, RECH increased only by 0.2−2 mm.month-1 from 

November to May, while showing a slight decrease of less than 1 mm.month-1 between July and 

October. Forest-to-woodland/shrub transition increased RECH during the summer season by 

5.8−13 mm.month-1 and 6.2−15.7 mm.month-1 under Scenario 2 and Scenario 3, respectively. 

RECH increased further throughout the months of October and November by upwards of 17.8−20.3 

mm.month-1 under Scenario 2 and 18.5−22.7 mm.month-1 under Scenario 3. On the other hand, 

deforestation for pasture development did not significantly alter RECH during summer season. 

Instead, RECH decreased during the rainy season, particularly from March to May and in 

November, with a decline of 9−13.7 mm.month-1 under Scenario 4 and 9.4−14.1 mm.month-1 

under Scenario 5 (Figure 17c).  

 The seasonal changes in RECH and SURQ directly affected monthly discharge, with 

QSTREAM increasing by 5−20 mm.month-1 between June and December with transitional 

woodland-shrub expansion in the catchment karst areas (Scenario 2), and upwards of 6.1−29.1 

mm.month-1 due to the conversion of all forest areas to transitional woodland-shrub (Scenario 3). 
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The decrease in discharge in Scenarios 4 and 5 was also consistent with the changes in recharge 

and surface runoff during the rainy season, as QSTREAM dropped by 3−12.6 mm.month-1 from 

October to June under partial forest-to-pasture conversion and further by 4.7−16.7 mm.month-1 

with complete forest-to-pasture transition. In comparison, the monthly QSTREAM variations due to 

afforestation in Scenario 1 were considerably lower than those of deforestation: QSTREAM 

decreased marginally by 0.4−0.8 mm.month-1 between July and October, while increasing by 

0.2−2.8 mm.month-1 from November to June (Figure 17d). 

 

Figure 17. Average monthly changes (mm) in (a) actual evapotranspiration (ETa), (b) surface runoff 

(SURQ), (c) groundwater recharge (RECH), and (d) streamflow (QSTREAM) for different land-use change 

scenarios, with respect to the baseline land use in the Baget catchment. 

4.3.4 Impact of land-use changes on high and low flows  

The impact of land-use changes on streamflow variability was evaluated with respect to: 

(1) the low-flow period (July to October) during which the observed discharge values at the 
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catchment outlet were below 0.35 m3.s-1 95% of the time, and (2) the high-flow period (November 

to June), considering the intermediate peak flow values between 1 and 2.5 m3.s-1 and the peaks 

higher than 2.5 m3.s-1. The Mann-Whitney U-Test/two-tailed test (Mann and Whitney, 1947) was 

conducted to detect the statistical differences in the low and high flows between Baseline and each 

of the land-use change scenarios, with a significance threshold at 𝑝-value < 0.05.  

According to the Mann-Whitney test statistics, no significant difference in the low flow 

was identified between Baseline and Scenario 1 (𝑝-value = 0.377 ˃ 0.05), suggesting that the 

impact of full landscape closure by afforestation on the low flow is difficult to identify. This 

outcome is further validated by the distribution of flow data below 0.35 m3.s-1 (Figure 18a), where 

the median and mean low flow values decreased only from 0.139 and 0.142 m3.s-1 under Baseline 

to 0.138 and 0.14 m3.s-1, respectively, under Scenario 1. 

Conversely, the Mann-Whitney test results were significant for Scenario 2 (𝑝-value < 

0.0001) and Scenario 3 (𝑝-value < 0.0001), as low flow showed a tendency to increase with the 

growing transitional woodland-shrub cover (Figure 18a). The interquartile range of the low flow 

values increased from 0.111−0.163 m3.s-1 (median: 0.139 m3.s-1, mean: 0.142 m3.s-1) under 

Baseline to 0.136−0.194 m3.s-1 (median: 0.163 m3.s-1, mean: 0.172 m3.s-1) in Scenario 2 that is 

forest-to-woodland evolution over 57% of the catchment area, and further to 0.145−0.203 m3.s-1 

(median: 0.169 m3.s-1, mean: 0.181 m3.s-1) with added degradation of the forest cover in over 84% 

of the catchment area (Scenario 3).  

As regards deforestation for pasture development, the Mann-Whitney test result was 

insignificant under Scenario 4 (𝑝-value = 0.152 ˃ 0.05), corresponding to forest-to-pasture 

transition in 57% of the catchment area, whereas it was relatively significant for Scenario 5 (𝑝-

value = 0.019 < 0.05) with the transition of all forest areas in over 85% of the catchment to 

pastures. Accordingly, discharge in Scenario 5 showed a slight downward trend as indicated by 

the decrease in the interquartile range of the low flow values to 0.109−0.16 m3.s-1 (median: 0.134 

m3.s-1, mean: 0.138 m3.s-1) (Figure 18a).  

Concerning the land-use change impacts on high-flow discharge, the Mann-Whitney test 

results for Scenario 1 (𝑝-value = 0.757 ˃ 0.05), Scenario 2 (𝑝-value = 0.573 ˃ 0.05), and Scenario 

3 (𝑝-value = 0.422 ˃ 0.05) did not reveal any statistically significant differences in the streamflow 

values between 1 and 2.5 m3.s-1 under afforestation and transition of the forest cover to woodland-

shrub. The interquartile flow range only shifted from 1.204−1.75 m3.s-1 (median: 1.424 m3.s-1, 
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mean: 1.515 m3.s-1) for Baseline to 1.209−1.757 m3.s-1 (median: 1.427 m3.s-1, mean: 1.522 m3.s-1) 

under Scenario 1, 1.21−1.781 m3.s-1 (median: 1.43 m3.s-1, mean: 1.53 m3.s-1) under Scenario 2, and 

1.213−1.8 m3.s-1 (median: 1.437 m3.s-1, mean: 1.538 m3.s-1) under Scenario 3 (Figure 18b). 

However, the changes in the high-flow discharge of 1−2.5 m3.s-1 were more apparent under the 

deforestation for pasture development scenarios, showing an overall decreasing trend and lower 

interquartile ranges: 1.155−1.699 m3.s-1 (median: 1.361 m3.s-1, mean: 1.468 m3.s-1) under Scenario 

4 (𝑝-value = 0.046 < 0.05),  and 1.13−1.678 m3.s-1 (median: 1.344 m3.s-1, mean: 1.448 m3.s-1) 

under Scenario 5 (𝑝-value = 0.004 < 0.05). As to discharge values greater than 2.5 m3.s-1, the 

Mann-Whitney test results (Scenario 1 𝑝-value = 0.942 ˃  0.05; Scenario 2 𝑝-value = 0.873 ˃  0.05; 

Scenario 3 𝑝-value = 0.755 ˃  0.05; Scenario 4 𝑝-value = 0.683 ˃  0.05; Scenario 5 𝑝-value = 0.544 

˃ 0.05) and associated boxplots (Figure 18c) indicated that the high peak flows were relatively 

insensitive to all applied land-use changes.  
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Figure 18. Boxplots comparing the simulated discharge at the Baget catchment outlet for Baseline land use 

and land-use change scenarios (Scenario 1 to Scenario 5), considering: (a) streamflow ≤ 0.35 m3.s-1 during 
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the low-flow period (July to October), (b) 1 m3.s-1 ≤ streamflow ≤ 2.5 m3.s-1 during the high-flow period 

(November to June), and (c) streamflow > 2.5 m3.s-1 during the high-flow period (November to June).   

To the best of the authors’ knowledge, no spatially-distributed hydrological simulation has 

been previously conducted on the impacts of forest cover change on karst water resources in the 

southwestern French Pyrénées. Thus, the results of the land-use change scenario-based analysis 

were compared to global studies. Filoso et al. (2017) evaluated the impacts of forest cover 

expansion and restoration on catchment water yield globally, and concluded that annual yield 

decreased (negative impact) with forest expansion in most of the reviewed case studies, while 

some studies reported no change, positive, mixed, and unclear effects. At the seasonal scale, the 

majority of case studies also indicated a decrease in baseflow and peak flows due to forest cover 

expansion. In our case, the impact of full catchment afforestation on water yield was not 

statistically significant for a 15.5% gain in forest cover. This outcome agrees with the findings of 

Brown et al. (2005) stating that forest cover changes of less than 20% in small catchments do not 

influence water yield. It also corroborates the findings of Zhang et al. (2017) who established, 

based on a global review of catchment hydrological response to forest cover change, that no 

significant relationship between annual runoff response and forest cover gain is detectable in small 

catchments. 

In terms of deforestation, the land-use change scenario analysis in this study showed mixed 

impacts on water resources. Forest cover loss and conversion to transitional woodland-shrub 

(Scenarios 2 and 3) reduced annual evapotranspiration and increased surface runoff and 

groundwater recharge in both karst and non-karst areas of the catchment, resulting in a higher 

annual water yield. These results corroborate the findings of the global review studies by Zhang et 

al. (2017) and Hou et al. (2023), showing that forest cover loss generally increased annual runoff 

and decreased evapotranspiration. The increase in discharge mainly occurred in the low-flow 

season of the Baget catchment, which suggests that supporting local wood production within the 

catchment could have unintended positive impacts on the seasonal availability of water. In 

contrast, forest cover loss and transition to pastures (Scenarios 4 and 5) led to higher annual 

evapotranspiration coupled with lower annual recharge and discharge. These changes in the water 

balance components were mainly detectable during the high-flow season and reduced flow values 

as high as 2.5 m3.s-1, suggesting that the conversion of forest areas in the catchment to pastures 

might be beneficial by reducing flood magnitude (Filoso et al., 2017). Nonetheless, pasture 
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development might also limit water availability during the low-flow season, particularly in the 

month of October where the combination of higher evapotranspiration and lower groundwater 

recharge could become substantial if all forested areas are converted to pastures. 

Overall, the hydrological sensitivity of the Baget catchment annual streamflow to forest 

cover change was 0.045 under forestation and 0.093 under deforestation. These figures are well 

below the average sensitivities of 1.24% and 0.91% change in annual streamflow established by 

Hou et al. (2023) for each 1% change in forest cover by forestation and deforestation. Nonetheless, 

the hydrological response of streamflow to forest cover change varies with climate and catchment 

characteristics (i.e., tree species, land-use and soil properties, topography, catchment size), and 

energy-limited catchments such as Baget (dry index < 0.76), where forest growth is more 

dependent on temperature than water availability, are less responsive to forest cover change than 

water-limited catchments (Hou et al., 2023; Zhang et al., 2017).  

4.3.5 Hydrological modeling uncertainty and recommendations 

The results of the ISPEEKH model calibration and land-use change scenarios in the Baget 

catchment may be biased by uncertainty that stems from: (1) the definition of the baseline 

hydrological model under the current input data (e.g., weather, topography, land use, soil), model 

structure and equations used to represent the karst catchment flow processes, (2) the 

parametrization, (3) the choice of the objective functions and optimization algorithms, and (4) the 

non-uniqueness of the optimum set of calibrated parameters (Abbaspour et al., 2018).  

The input precipitation data used in this study were extracted at 1-km spatial resolution 

from COMEPHORE, a reanalysis of surface precipitation accumulation over France merging both 

radar and rain gauge data. The initial hydrological simulation using the COMEPHORE 

precipitation yielded an underestimation of the Baget catchment water balance due to the low 

quality of the radar coverage on high altitude and precipitation under catch in the Pyrénées 

mountainous region. Consequently, the gridded precipitation dataset was adjusted by an 

orographic correction multiplicative factor of 1.44. Although the correction of precipitation 

ensured water balance closure, the calibrated ISPEEKH model still underestimated several peaks, 

particularly in the calibration period, showing that precipitation correction could not accurately 

capture the daily rainfall amount for all heavy precipitation events over the simulation period. 

Additionally, watershed modeling and streamflow simulation uncertainty depends on the 
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uncertainty associated to the 8-km resolution SAFRAN-based meteorological data, as well as the 

DEM, land use, and soil raster maps resolution and source. 

In order to enhance the model’s capability to predict the catchment streamflow, mainly 

peak flow rates during heavy rainfall events, we recommend strategic improvements in monitoring 

the discharge generation characteristics in the Baget catchment by: (1) installing rain gauges at 

different observational points that would capture the altitude effect on rainfall within the 

catchment, and (2) sustaining long-term nested observations of the soil and epikarst properties 

(e.g., soil water content, soil-epikarst interface infiltration rate), outlet discharge including zero 

flow, water table and subsurface hydrodynamics. Subsequently, field measurements can be 

combined with spatial analysis techniques to achieve a better understanding of water movement 

between the surface and subsurface at different spatial and temporal scales, and detect possible 

flow processes that might have been ignored or simplified in hydrological modeling of the 

catchment (Kampf et al., 2020). This approach, coupled with finer resolution DEM, land-use and 

soil maps, would reduce the hydrological modeling input data and water balance uncertainties, and 

improve the model structure, the representation of the surface and subsurface flow processes and 

their interactions, and parametrization (i.e., the choice of parameters for calibration and the 

regionalization of parameters). Furthermore, future applications of ISPEEKH shall include the 

simulation of the Baget catchment discharge at subdaily time steps using the Green-Ampt Mein-

Larson infiltration module in the SWAT+ source code with subdaily input precipitation data. The 

use of subdaily time scales could improve the prediction of the peak flow rates measured during 

event-based floods, which were underestimated by the model run with the Curve Number 

infiltration method and daily precipitation. Brighenti et al. (2019) reviewed SWAT studies with 

subdaily flow simulation and compared the hydrological performance of the Green-Ampt Mein-

Larson and Curve Number methods. Although the authors did not reach a definitive consensus on 

which method would generate more robust results, they concluded that the Green-Ampt Mein-

Larson approach improved hydrograph peaks, with the one-hour time step being the most suitable 

time scale for the subdaily model application, while the Curve Number method yielded better 

performance for medium flows. 

On the other hand, a local sensitivity analysis was conducted in this study using PEST, 

followed by an automated calibration of the selected model parameters. Although the model 

adequately reproduced the dynamics of the conduit-dominated karst catchment with non-linear 
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storage-discharge patterns, an uncertainty analysis is recommended to reduce parameter 

uncertainty and gain more confidence in the numerical modeling results. SWATplus-CUP 

(https://www.2w2e.com/home/SwatPlusCup) is an interface for the calibration of SWAT+ models, 

which allows users to perform single and multi-objective calibration, sensitivity analysis (local 

and global), and uncertainty analysis using several optimization algorithms, namely the 

Generalized Likelihood Uncertainty Estimation (GLUE) (Beven and Binley, 1992), Parameter 

Solution (ParaSol) (Van Griensven and Meixner, 2006), and Sequential Uncertainty Fitting (SUFI‐

2) (Abbaspour et al., 2015). Other open-source tools that have been developed for the calibration 

of SWAT+ models include the SWAT+toolbox (Chawanda, 2022) and SWATplusR/SWATrunR 

(Schürz, 2019). These tools currently accommodate the subroutines of the standard SWAT+ source 

code, requiring further adjustment to integrate the added subroutines of modified SWAT+ codes 

and implement an uncertainty analysis. Only then, the different optimization algorithms provided 

by these tools can be tested and evaluated for their performance, using dotty plots to visualize 

parameter sensitivity, 95% prediction uncertainty (95PPU), and p-factor and r-factor to quantify 

the uncertainty. This multi-tool calibration and uncertainty analysis would be useful to identify: 

(a) the optimization approach that captures the most optimal parameters set while yielding the best 

performance and computational efficiency in terms of the model parameter uncertainty, and (b) 

possible different parameter ranges with similar discharge results in calibration and validation. 

Finally, uncertainty arising from parameters non-uniqueness can be reduced by including multiple 

outlets or other variables such as evapotranspiration (ET) in calibration (Abbaspour et al., 2018; 

Zhao et al., 2018). In this study, the hydrological model was calibrated using the gauged discharge 

at the only outlet of the Baget catchment, and the ISPEEKH-simulated ET showed good agreement 

with the gridded ET available from SAFRAN. In order to further constrain the parameter values 

by using ET as an additional variable for calibration, we propose applying the remote sensing 

driven ET model “SimpKcET” (Ollivier et al., 2021), previously tested in the large aquifer of the 

Fontaine de Vaucluse (1,162 km2, Southeast of France), to estimate ET of the Baget catchment. 

SimpKcET simulates ET in karst areas as a function of the fraction of vegetation cover (derived 

from the Enhanced Vegetation Index) and the fraction of rocks and coarse elements in soils 

growing on carbonate bedrock.  

https://www.2w2e.com/home/SwatPlusCup
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4.4 Conclusions 

 In this study, a semi-distributed karst hydrological model termed ISPEEKH was proposed 

for the simulation of surface and subsurface flow processes in karst-dominated catchments. The 

model was developed by modifying the recharge functions of the SWAT+ source code and 

implementing a non-linear three-reservoir karst module that reproduces processes of the epikarst 

and matrix-conduit system. ISPEEKH was applied to model the water balance of the Baget karst 

catchment in the southwestern French Pyrénées, for the years 2008−2018. The model simulated 

the daily discharge at the catchment outlet with good accuracy by reproducing the hydrograph 

steep rise limbs and recessions with suitable magnitudes of both the high and low flows. It also 

represented the internal flow dynamics of the conduit-dominated karst catchment adequately. 

ISPEEKH was then used to predict the impacts of land-use change scenarios of afforestation and 

deforestation on the Baget catchment hydrology. Results showed that afforestation did not have a 

significant influence on annual water yield. However, the impacts of deforestation on the 

catchment hydrology were mixed. The conversion of the forests to transitional woodland/shrub 

reduced annual evapotranspiration by up to 17.8% and increased annual recharge and discharge 

by 7.8% and 8.5%, respectively, with a positive impact on water availability during the low-flow 

period. In comparison, the transition from forests to pastures increased annual evapotranspiration 

by up to 17.3%, while lowering annual recharge by 7% and discharge by 7.4%. The discharge 

reduction occurred primarily during the high-flow period, affecting streamflow values below 2.5 

m3.s-1. The approach adopted in this study served to improve numerical modeling of karst flow 

dynamics using semi-distributed models that incorporate the impact of land-use changes on 

groundwater resources. Future applications of ISPEEKH should include the simulation of the 

water balance of large karst catchments and the assessment of the impacts of anthropogenic 

pressures (e.g., groundwater abstractions for domestic, agricultural, and industrial supply) and 

climate change on karst water availability. 
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CHAPTER 5: Evaluation of Precipitation Products for Small Karst Catchment 

Hydrological Modeling in Data-scarce Mountainous Regions   

Summary 

This study compares the reliability of reanalysis, gauge-, and satellite-based precipitation 

products for daily water balance and streamflow simulation in the meso-scale Baget karst 

catchment (13.25 km2), located in a poorly gauged region in the French Pyrenees mountains. 

ISPEEKH, integrated with a PEST framework for automated calibration, global sensitivity 

analysis, and parameter estimation, was applied to simulate the catchment's hydrological response 

to different precipitation datasets from 2006 to 2018. The daily precipitation datasets used in this 

study were retrieved from: (1) Saint Girons weather station located 8.3 km from the Baget 

catchment outlet, (2) CPC (0.5°) and E-OBS (10-km)  gauge-based products; (3) SAFRAN (8-

km), COMEPHORE (1-km), and ERA5-Land (0.1°) reanalysis products; (4) IMERG-LR (0.1°), 

PERSIANN-CDR (0.25°), CHIRPS (0.05°), and SM2RAIN-ASCAT (10-km) satellite-based 

products, and (5) downscaled 1-km resolution CPC, E-OBS, ERA5-Land, IMERG-LR, and 

merged CPC-IMERG-LR products. The daily minimum and maximum air temperature, relative 

humidity, wind speed, and solar radiation data were obtained from SAFRAN. 

The study used ISPEEKH to simulate Baget catchment daily streamflow from 2006 to 

2018, with a 2–year warm-up period, 6–year calibration period, and 5−year validation period. The 

Morris screening method was used to evaluate the sensitivity of the ISPEEKH parameters 

governing streamflow. The pestpp-sen software tool, implemented within the PEST++ 

environment, was used to compute sensitivity indices for the Morris method. The Iterative 

Ensemble Smoother (iES) method, integrated into the PEST++ environment, was applied to 

generate prior and posterior estimates of ISPEEKH parameters. The iES uses the Ensemble 

Kalman Filter (EnKF) for data assimilation, updating state variables by incorporating measured 

data into the model results. Chen and Oliver (2013) modified the ES to operate iteratively using 

the Gauss–Levenberg–Marquardt (GLM) algorithm, improving the minimization of the sum-of-

squared residuals objective function for non-linear problems. 

The model's predictive performance of daily streamflow was evaluated using various metrics such 

as Nash-Sutcliff efficiency (NSE), coefficient of determination (R2), percent of bias (PBIAS), and 

Kling-Gupta efficiency (KGE). A wavelet multiresolution analysis (MRA) was used to project 

streamflow on an orthogonal basis, allowing for the evaluation of the hydrological model 
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performance across different temporal scales by calculating the Pearson correlation coefficient on 

the calibration and validation periods.  

The study found that the discharge coefficients and emptying exponents of the conduit-to-

spring flow and epikarst-to-conduit flow were the most sensitive parameters, regardless of the 

precipitation product. This is consistent with the discharge characteristics of the Baget catchment, 

which has a shallow epikarst with a high connectivity to a network of well-developed conduits. 

ISPEEKH successfully simulated karst groundwater storage and spring flow from the recharge 

input, conserving the water balance. However, the Baget catchment water balance for the 2008-

2018 period showed a significant streamflow underestimation from 30 to 80%, with a mean annual 

precipitation varying between 887 mm under the CPC precipitation and 1451 mm under the 

downscaled ERA5-Land precipitation. The NSE, R2, PBIAS, and KGE metrics showed 

unsatisfactory performance for daily streamflow simulation. The reanalysis COMEPHORE, 

SAFRAN, and ERA5-Land precipitation products outperformed the gauge- and satellite-based 

precipitation products. The spatial downscaling of the CPC, IMERG-LR, ERA5-Land and E-OBS 

data, and merging of the CPC and IMERG-LR datasets did not improve the model predictive 

performance substantially compared to the coarse datasets. 

In order to resolve the issue of the water balance discrepancy due to precipitation 

underestimation and with the lack of reliable precipitation monitoring network, the 1-km resolution 

COMEPHORE, CPC, E-OBS, ERA5-Land, IMERG-LR, and CPC-IMERG-LR precipitation 

datasets were corrected using orographic correction multiplicative factors, calculated by "Doing 

Hydrology Backward" based on the daily measured streamflow at the catchment outlet and actual 

evapotranspiration estimates from SAFRAN. Following the correction, the calibrated ISPEEKH 

models for the 2008-2018 period showed comparable water balance components, with mean 

annual precipitation of 1781-1824 mm, evapotranspiration of 598-623 mm, and streamflow of 

1160-1194 mm. The PBIAS values were significantly reduced. The corrected COMEPHORE 

precipitation improved streamflow simulation with the highest overall NSE, R2, and KGE values, 

indicating satisfactory to good performance, whereas the corrected downscaled IMERG-LR 

precipitation consistently performed poorly, suggesting that that fine-resolution regionally-tailored 

reanalysis precipitation products, such as COMEPHORE for France, could serve as base data for 

the hydrological modeling of streamflow in poorly gauged meso-scale karst catchments. Future 

research should involve installing daily and subdaily operating rain gauges at different altitudes in 
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the Baget catchment to capture the spatial and temporal distribution characteristics and apply 

observation-based correction methods to the precipitation products.  

 

The findings of this chapter were were published in the Jounral of Hydrology as:: Al Khoury, 

I., Boithias, L., Sivelle, V., Bailey, R.T., Abbas, S.A., Filippucci, P., Massari, C., & Labat, D. 

(2024). Evaluation of Precipitation Products for Small Karst Catchment Hydrological Modeling 

in Data-scarce Mountainous Regions. Journal of Hydrology, 132131. 
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Abstract  

The accuracy of gauge-based, satellite-based and reanalysis precipitation products for streamflow 

simulation has rarely been investigated in data-scarce and meso-scale karst catchments 

characterized by infra-daily response time due to the predominance of quick flow processes. This 

study evaluates and compares the reliability of gauge- and satellite-based precipitation products 

(CPC, E-OBS, PERSIANN-CDR, IMERG-LR, SM2RAIN-ASCAT, CHIRPS) and reanalysis 

products (SAFRAN, COMEPHORE, ERA5-Land) in simulating daily flow of the Baget karst 

catchment (13.25 km2), located in the Southwestern French Pyrenees. The assessment was 

conducted over the 2006–2018 period using the semi-distributed karst hydrogeological model 

ISPEEKH, integrated with a PEST framework for model calibration, global sensitivity analysis 

using the Morris method, and parameter estimation using an iterative ensemble smoother form of 

the Gauss-Levenberg-Marquardt algorithm. The discharge coefficients and emptying exponents of 

the epikarst-to-conduit and conduit-to-spring quick flows were the most sensitive model 

parameters irrespective of the input precipitation, and ISPEEKH successfully reproduced the non-

linear conduit flow dynamics in the catchment. Yet, simulated streamflow was significantly 

underestimated under the ensemble of precipitation products (up to 32–79% in calibration period 

and up to 28–70% in validation period), and the reanalysis products outperformed the gauge- and 

satellite-based products. Downscaling of the CPC, IMERG-LR, ERA5-Land and E-OBS products, 

and merging of the CPC and IMERG-LR datasets at 1-km spatial resolution did not improve the 

model predictive performance. Finally, the study showed that watershed-scale precipitation 

correction can effectively improve the hydrological simulation performance in the catchment, 

particularly with the French reanalysis precipitation product COMEPHORE. This result 

emphasizes the need to install representative rain gauge stations at different altitudes in studied 

karst catchments of similar scale and hydrodynamics characteristics, and apply observation-based 

correction methods in order to reduce the errors in regional reanalysis precipitation database and 

optimize the karst discharge simulation. 

Keywords: Karst catchment; Pyrenees Mountain range; Satellite precipitation; Reanalysis 

precipitation; ISPEEKH 
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5.1 Introduction 

Karst landscapes, formed by chemical dissolution of soluble carbonate rocks by acid water 

enriched with carbon dioxide, cover nearly 15.2% of the Earth’s ice-free continental surface 

(Goldscheider et al., 2020) and supply groundwater to 9–25% of the world’s population (Chen et 

al., 2017; Stevanović, 2019). Compared to granular aquifers, the hydrological behavior of karst 

aquifers is highly complex, nonlinear, and non-stationary (An et al., 2020; Labat et al., 2000a). 

Karst aquifers exhibit dual-to-triple porosity with discrete conduit networks embedded in a larger 

fissured matrix. They are characterized by dual recharge and discharge mechanisms, including 

diffuse infiltration through the matrix and slow-flow discharge into the spring, primarily in the 

low-flow periods, and concentrated infiltration into secondary porosity features (i.e., fissures, 

channels, conduits, fractures and sinkholes), with quick-flow discharge into the spring during the 

wet periods or after a significant recharge event (Geyer et al., 2013; Paiva and Cunha, 2020). A 

bidirectional matrix-conduit exchange flow can also occur due to the head difference between the 

two domains (Dal Soglio et al., 2020a; Zhao et al., 2021). Moreover, karst aquifers often 

encompass an uppermost weathered zone of carbonate rocks with high porosity and permeability, 

called epikarst, which stores water and controls the recharge towards the matrix and conduits 

(Bailly-Comte et al., 2008; Fidelibus et al., 2017). These hydrogeological characteristics render 

karst aquifers flow behavior very sensitive to changes in precipitation patterns and recharge rates 

induced by climate change, land use change, and other anthropogenic activities, impacting 

groundwater storage (Fiorillo and Guadagno, 2012; Klaas et al., 2020; Mo et al., 2023; Nerantzaki 

and Nikolaidis, 2020; Ruiz et al., 2022; Taheri et al., 2016). Therefore, the adequate management 

of water resources in karst watersheds requires a sufficient understanding of their recharge and 

discharge dynamics, coupled with an accurate assessment of their water balance using karst-

specific hydrological modeling tools. 

Hydrological models aim to approximate the transfer function between meteorological forcing 

(i.e., precipitation, temperature, potential evapotranspiration) and river streamflow (or spring 

discharge). One common approach for hydrological modeling consists of considering different 

combinations of the dominant flow components as distinct conceptual buckets. This approach has 

been widely developed during the past decades (Azimi et al., 2023; Bittner et al., 2018; Butscher 

and Huggenberger, 2008; Fleury et al., 2007, 2009; Mazzilli et al., 2019; Sivelle et al., 2023; Tritz 

et al., 2011), and applied to simulate karst spring discharge and further assess the impact of 
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groundwater abstraction (Cousquer and Jourde, 2022; Labat et al., 2022) and climate change 

(Hartmann et al., 2012; Sivelle et al., 2021) on karst water resources. However, by neglecting the 

spatial variabilities of the meteorological forcing and landscape characteristics (i.e., topography, 

karst terrains, soil and land use), lumped models may lack precision in assessing the intricate 

recharge and discharge within karst aquifers, hindering accurate flow prediction and data-driven 

karst water resources management. On the other hand, fully-distributed models discretize karst 

watersheds into two- or three-dimensional grid units assigned with specific hydraulic parameters, 

and simulate flow between these computational units using differential equations. These models, 

however, require an adequate knowledge of the geological settings (lithology, fractures, faults) 

and their hydraulic properties (porosity, hydraulic conductivity), which are highly heterogeneous 

in karst aquifers and can be challenging or impossible to acquire (Fischer et al., 2018; 

Ghasemizadeh et al., 2012; Gill et al., 2021; Jeannin et al., 2021). Thus, semi-distributed 

hydrogeological models are proposed as a hybrid approach to overcome the limitations of the 

aforementioned two model classes by combining the spatial variability of the surface flow 

dominant controls (i.e., climatic features, landscape properties) with the underlying karst aquifer 

dominant flow components (Hartmann et al., 2013; Ollivier et al., 2020).  

Precipitation is one of the key driving factors in the hydrological modeling of watershed water 

balance fluxes. Numerous studies have demonstrated the dependence of the predictive capability 

of hydrological models for streamflow prediction on the input precipitation data (Bárdossy et al., 

2022; Camici et al., 2018; Maggioni and Massari, 2018), as well as on the spatial discretization of 

the precipitation field from lumped to distributed, showing results that vary with the watershed 

physiographic and climatic properties. By assessing the hydrological response of an ensemble of 

basins to precipitation variability (i.e., complete precipitation field and sampled precipitation) and 

rainfall-runoff modeling approaches (i.e., lumped and distributed), Arnaud et al. (2011) concluded 

that small catchments were mostly sensitive to precipitation input uncertainties produced by 

sampling of precipitation, while the largest catchments were sensitive to uncertainties generated 

by discarding the spatial variability of precipitation. Lobligeois et al. (2014) also evaluated 

streamflow simulation for an ensemble of catchments using lumped and semi-distributed models 

driven by 1-km high resolution precipitation, and showed that differences in model performance 

were insignificant between lumped and semi-distributed approaches but highly variable between 

catchments due to the spatial heterogeneity of the precipitation fields. In addition, Emmanuel et 
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al. (2017) found that higher spatial resolution of precipitation could improve model performance, 

while Huang et al. (2019) concluded that streamflow simulations improved marginally with higher 

precipitation spatial resolution and were more sensitive to the temporal resolution of precipitation. 

These findings underscore the importance of identifying the most suitable precipitation estimate 

for hydrological applications.  

The sparse distribution of rain gauges in watersheds poses challenges for hydroclimatic 

analysis, prompting the need for alternative precipitation inputs for streamflow simulation. Apart 

from gauge-based precipitation, recent developments in Earth observation and atmospheric 

reanalysis have provided long-term precipitation datasets with comparable or even broader spatial 

coverage than in-situ station observations. In this regard, there are two main categories of satellite 

precipitation products: those that infer precipitation from clouds and atmosphere characteristics 

(Top-Down approach), such as PERSIANN-CDR (0.25° spatial resolution; Ashouri et al., 2015) 

and IMERG (0.1° resolution, Huffman et al., 2019), and those that infer precipitation from the 

variation of soil moisture (Bottom-Up approach), such as SM2RAIN-ASCAT (0.1° resolution, 

Brocca et al., 2019). Moreover, reanalysis data such as ERA5 (0.25° resolution; Hersbach et al., 

2020) and COMEPHORE (1-km resolution; Tabary et al., 2012) are commonly used. However, 

these precipitation products can generate biased streamflow forecasts due to various error sources 

(Aryal et al., 2023; Bitew et al., 2012; Dos Reis et al., 2017; Peinó et al., 2024; Satgé et al., 2019; 

Zhang et al., 2020) which hinders their application in assessing the hydrological response of karst 

watersheds with fast aquifer recharge and conduit flow to changing climate conditions.  

Currently, there are very few studies that examine the impact of various precipitation inputs 

from satellite and reanalysis data products on streamflow simulation in karstified watersheds 

(Chang et al., 2024; Furl et al., 2018; Gan et al., 2020, 2021; Li et al., 2019; Mo et al., 2020, 2022; 

Wang et al., 2017). Most of these studies were conducted in China, being one of the largest karst 

areas in the world, across watersheds ranging from 103 to 105 km2. Nonetheless, karst watersheds 

in Europe are often characterized by smaller recharge areas; for instance, the largest karst spring 

in Europe, Fontaine de Vaucluse, has a recharge area of around 1,160 km2 (Ollivier et al., 2019). 

Of the studies reported in the literature, Mo et al. (2020) evaluated the suitability of coarse and 

corrected IMERG satellite precipitation for daily and monthly streamflow simulation in the XiaJia 

River basin (799.2 km2) using the SWAT model. Results showed that SWAT performance under 

the original IMERG rainfall dataset was unsatisfactory due to major streamflow underestimation, 
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while corrected IMERG precipitation significantly improved the simulations. Mo et al. (2022) 

simulated streamflow of the Chengbi River basin (2,087 km2) using SWAT driven by gauge-

measured precipitation, IMERG precipitation, and 1-km resolution precipitation derived by 

geographical weighted regression (GWR) fusion of the measured and IMERG data. The station-

measured precipitation data performed best, followed by the GWR fusion precipitation dataset, 

while the IMERG satellite precipitation yielded the worst performance, highlighting the 

significance of fusion processing to improve streamflow simulation at the daily and monthly 

scales. Thus, there is a notable research gap associated with assessing the accuracy of gauge-based, 

satellite-based or reanalysis precipitation products for the hydrological modeling of meso-scale 

karst basins (approximately 10–103 km2; Uhlenbrook et al., 2004), using distributed or semi-

distributed hydrological models. To the best of our knowledge, this is the first study that aims to 

evaluate and compare the reliability of reanalysis, gauge-, and satellite-based precipitation 

products, at coarse (tens of kilometer) and 1-km (downscaled) spatial resolution, for daily water 

balance and streamflow simulation in a meso-scale karst catchment with short response time to 

precipitation and sparse precipitation monitoring network. The Baget karst catchment (13.25 km2) 

in the piedmont of the Pyrenees mountains, southwest of France, serves as the study area. The 

semi-distributed karst hydrogeological model ISPEEKH (Al Khoury et al., 2023a), a modified 

version of SWAT+ (Bieger et al., 2017) for spring flow-dominated karst watersheds, was used to 

simulate the hydrological response of the Baget catchment to the different precipitation datasets 

over the years 2006–2018. ISPEEKH was integrated with a Parameter ESTimation Tool (PEST) 

framework in order to perform automated calibration, identify model parameters that influence 

streamflow simulation using the Morris method for global sensitivity analysis, and estimate the 

model parameter values using an iterative ensemble smoother (iES) form of the Gauss-Levenberg-

Marquardt algorithm.   

 

5.2 Methods and materials 

5.2.1 Study Area 

The Baget is a karst catchment in the Pyrenees mountains, southwest of France (station B1 

at 42°57'18.06"N; 1°1'52.76"E) (Figure 19). It is part of the KARST National Observatory Service 

(SNO KARST, Jourde et al., 2018) and part of the French network of Critical Zone Observatories 

Research and Applications–National Research Infrastructure (OZCAR, Gaillardet et al., 2018). 
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The Baget catchment has a groundwater recharge contribution zone of about 13.25 km2 and is 

characterized by rapid infiltration, fast transit time between recharge and discharge, and strong 

nonlinear rainfall-runoff relationship (Labat et al., 1999, 2000a). The geology within the catchment 

consists of a mixed lithological terrain: Jurassic and Cretaceous karstified landforms (~67% of the 

recharge area) and non-karstified rocks (~33% of the recharge area). The large carbonate part of 

the catchment includes a crystalline limestone band and Jurassic dolomites (Debroas, 2009).  

The Baget catchment is exposed to an Atlantic oceanic climate with mountainous 

influence. The mean daily air temperature is 12 ± 6.3°C and the mean annual precipitation is 975.5 

mm, based on the records of the Saint Girons meteorological station (43°00'19"N; 01°06'25"E; 

414 m a.s.l). The catchment's snowpack is generally low, and snowmelt does not significantly 

contribute to discharge (Padilla et al., 1994; Richieri et al., 2024; Ulloa-Cedamanos et al., 2020). 

The catchment's streamflow is primarily formed by the perennial karst spring Las Hountas 

through well-developed conduit networks and partially by the Lachein stream, which drains the 

impermeable terrains in the catchment. The mean annual catchment discharge measured at the 

outlet gauging station B1 was 0.44 ± 0.67 m3.s-1. Tracer tests (Sivelle and Labat, 2019) and 

lumped-parameter hydrological modeling of the Baget karst system (Sivelle et al., 2019; Shirafkan 

et al., 2023) show that nonlinear conduit flow is the main component of the karst spring discharge. 
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Figure 19. The Baget catchment recharge area and lithological composition, with the Las Hountas karst 

spring, the Lachein stream, and the stream gauging station (B1) (modified from Al Khoury et al., 2023a) 

5.2.2 The ISPEEKH model 

The Integration of Surface ProcEssEs in Karst Hydrology (ISPEEKH) is a semi-distributed 

karst hydrological model (Figure 20, Al Khoury et al., 2023a) that was developed by modifying 

the source code of SWAT+ (revision 60.5.4), the restructured version of the Soil and Water 

Assessment Tool (SWAT) (Bieger et al., 2017). It was used in the study as other modified SWAT-

based models reported in the literature and applied in karst hydrology (e.g., Baffaut and Benson, 

2009; Geng et al., 2021; Nerantzaki et al., 2020; Nikolaidis et al., 2013; Nguyen et al., 2020; 

Palanisamy and Workman, 2015; Wang and Brubaker, 2014; Wang et al., 2019;Yactayo, 2009; 

Zhou et al., 2022) do not collectively reproduce the flow processes of the epikarst, matrix and 

conduits, including the matrix-conduit bidirectional exchange flow rate, using non-linear storage-

discharge relationships (Al Khoury et al., 2023a). 
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Figure 20. Schematic representation of the hydrological processes simulated by ISPEEKH in a spring flow-

dominated karst watershed (modified from Al Khoury et al., 2023a) 

ISPEEKH uses input digital elevation model (DEM), land-use map, and overlapped soil 

and lithology maps to divide the watershed into subbasins connected through stream channels and 

further into hydrological response units (HRUs) of homogeneous land-use, slope, soil, and 

karst/non-karst landform properties. It then utilizes spatially-variable weather input data (i.e., 

precipitation, minimum and maximum air temperature, solar radiation, wind speed, and relative 

humidity) to simulate the daily vadose zone water balance fluxes at the HRU scale. The land 

surface and soil hydrologic fluxes, including potential evapotranspiration (Monteith, 1965), actual 
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evapotranspiration (sum of canopy evaporation, soil evaporation, and plant transpiration), direct 

(surface) runoff method (USDA-SCS, 1972), lateral flow (Sloan and Moore, 1984), and 

percolation (Neitsch et al., 2011) are simulated in ISPEEKH using the original SWAT+ 

subroutines. SWAT differentiates between solid and liquid precipitation based on near-surface air 

temperature. If the snowfall temperature parameter is lower than the mean daily air temperature, 

precipitation is classified as snow. When precipitation is considered solid, it accumulates at the 

ground surface until snowmelt, which is influenced by air and snowpack temperature, daylight 

hours, and snow areal coverage. A detailed description of the vadose zone water balance fluxes 

and corresponding equations applied in standard SWAT+ is provided in the SWAT theoretical 

manual (Neitsch et al., 2011).  

To represent the flow in the saturated zone, the diffusive recharge equations and linear 

reservoir model for baseflow simulation in granular-type aquifers in SWAT+ were modified in 

ISPEEKH into diffuse and concentrated recharge equations and a nonlinear three-reservoir model 

of the epikarst, matrix and conduits water bearing components of karst aquifers. Thus, ISPEEKH 

applies three nonlinear reservoirs organized in a two-level structure: the upper reservoir (E) 

representing the epikarst zone, and the lower reservoirs (M) and (C) that represent the low-

permeability matrix and highly permeable conduits, respectively. For karst-dominated catchments 

characterized by low surface runoff generation and significant spring flow contribution to the 

overall discharge, ISPEEKH considers direct rainfall infiltration without surface runoff generation 

over the surface-exposed and well-developed epikarstic zone, with lateral flow down hillslopes 

and soil water percolation in areas where the soil covers the epikarst (Equation (1)). Water 

percolation from the soil profile in non-karst HRUs recharges the matrix reservoir diffusely 

(Equation (2)), while soil lateral flow generated in non-karst areas and water losses from sinking 

channels seep directly into the conduit reservoir (Equation (3)). The simulated groundwater fluxes 

include: fast recharge from the epikarst to conduits (𝑄𝐸𝐶) and slow recharge from the epikarst to 

the matrix (𝑄𝐸𝑀), which are activated when the water level of reservoir E exceeds a lower storage 

threshold (𝐸𝑚𝑖𝑛), the conduit quick-flow (𝑄𝐶𝑆) and matrix slow-flow (𝑄𝑀𝑆) components of the 

karst spring discharge, and the conduit-matrix bidirectional exchange flow rate (𝑄𝑀𝐶) as a function 

of the difference between the water levels of the two reservoirs M and C. The water balance of the 

reservoirs E, M and C are represented by Equations (4), (5) and (6), respectively. The model can 

also account for user input daily groundwater abstraction (pumping) data from the matrix and / or 
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conduits. Spring flow from the karst aquifer (𝑄𝑆𝑃𝑅𝐼𝑁𝐺) is finally added to surface runoff generated 

over the non-karst areas (𝑄𝑆𝑈𝑅𝐹) to form the total catchment discharge downstream the karst 

spring outlet(s) (Equation (7)). 

𝑅𝐸𝐶𝐻𝐸,𝑖 = 𝑅𝐸𝐶𝐻𝐸,𝑖−1 × 𝑒
−
1
𝛿𝐸 + (1 − 𝑒

−
1
𝛿𝐸) × ∑ (𝑄𝑆𝑈𝑅𝐹,𝑖,𝑗

𝐾 + 𝑄𝐿𝐴𝑇,𝑖,𝑗
𝐾 + 𝑄𝑃𝐸𝑅𝐶,𝑖,𝑗

𝐾 )

𝑛ℎ𝑟𝑢𝑠−𝐾

𝑗=1

 (1) 

𝑅𝐸𝐶𝐻𝑀,𝑖 = 𝑅𝐸𝐶𝐻𝑀,𝑖−1 × 𝑒
−
1
𝛿𝑀 + (1 − 𝑒

−
1
𝛿𝑀) × ∑ 𝑄𝑃𝐸𝑅𝐶,𝑖,𝑗

𝑁𝐾

𝑛ℎ𝑟𝑢𝑠−𝑁𝐾

𝑗=1

 (2) 

𝑅𝐸𝐶𝐻𝐶,𝑖 = 𝑄𝑇𝐿𝑂𝑆𝑆,𝑖 + ∑ 𝑄𝐿𝐴𝑇,𝑖,𝑗
𝑁𝐾

𝑛ℎ𝑟𝑢𝑠−𝑁𝐾

𝑗=1

 (3) 

Where 𝑅𝐸𝐶𝐻𝐸,𝑖 and 𝑅𝐸𝐶𝐻𝐸,𝑖−1 represent the recharge to the epikarst reservoir on days 𝑖 and 𝑖 − 1 

(mm.day-1), respectively, 𝛿𝐸 is the delay time for infiltrated water to reach the epikarst (days),  

𝑄𝑆𝑈𝑅𝐹,𝑖,𝑗
𝐾 , 𝑄𝐿𝐴𝑇,𝑖,𝑗

𝐾  and 𝑄𝑃𝐸𝑅𝐶,𝑖,𝑗
𝐾  are surface runoff, soil lateral flow, and soil percolation on day 𝑖 

from the karst HRU 𝑗 (mm.day-1), respectively, 𝑅𝐸𝐶𝐻𝑀,𝑖 and 𝑅𝐸𝐶𝐻𝑀,𝑖−1 represent recharge by 

soil water percolation from non-karst HRUs to the matrix reservoir on days 𝑖 and 𝑖 − 1 (mm.day-

1), respectively, 𝛿𝑀 is the delay time for infiltrated soil water to reach the matrix (days), 𝑛ℎ𝑟𝑢𝑠 −

𝐾 is the number of karst HRUs in the recharge area, 𝑄𝑃𝐸𝑅𝐶,𝑖,𝑗
𝑁𝐾  is the soil water percolation on day 

𝑖 from the non-karst HRU 𝑗 (mm.day-1), 𝑅𝐸𝐶𝐻𝐶,𝑖 is the recharge by soil lateral flow in non-karst 

HRUs and water losses from channels to the conduit reservoir on day 𝑖 (mm.day-1), 𝑄𝐿𝐴𝑇,𝑖,𝑗
𝑁𝐾  is the 

soil lateral flow on day 𝑖 from non-karst HRU 𝑗 (mm.day-1), 𝑄𝑇𝐿𝑂𝑆𝑆,𝑖 represents water losses from 

channels on day 𝑖 (mm.day-1), and 𝑛ℎ𝑟𝑢𝑠 − 𝑁𝐾 is the number of non-karst HRUs in the recharge 

area. 

Epikarst Reservoir 

{
 
 

 
 𝑑𝐸(𝑡)

𝑑𝑡
= 𝑅𝐸𝐶𝐻𝐸(𝑡) − 𝑄𝐸𝑀(𝑡) − 𝑄𝐸𝐶(𝑡)

𝑑𝐸(𝑡)

𝑑𝑡
= 𝑅𝐸𝐶𝐻𝐸(𝑡) − 𝑘𝐸𝑀 (

𝐸(𝑡) − 𝐸𝑚𝑖𝑛
𝐿𝑟𝑒𝑓

)

𝛼𝐸𝑀

− 𝑘𝐸𝐶 (
𝐸(𝑡) − 𝐸𝑚𝑖𝑛

𝐿𝑟𝑒𝑓
)

𝛼𝐸𝐶 (4) 

 

Matrix Reservoir 

{
 
 

 
 𝑑𝑀(𝑡)

𝑑𝑡
= 𝑅𝐸𝐶𝐻𝑀(𝑡) + 𝑄𝐸𝑀(𝑡) − 𝑄𝑀𝐶(𝑡) − 𝑄𝑀𝑆(𝑡) − 𝑄𝑃𝑈𝑀𝑃

𝑀 (𝑡)

𝑑𝑀(𝑡)

𝑑𝑡
= 𝑅𝐸𝐶𝐻𝑀(𝑡) + 𝑄𝐸𝑀(𝑡) − 𝑘𝑀𝐶 (

𝐶(𝑡) − 𝑀(𝑡)

𝐿𝑟𝑒𝑓
)

𝛼𝑀𝐶

− 𝑘𝑀𝑆 (
𝑀(𝑡)

𝐿𝑟𝑒𝑓
)

𝛼𝑀𝑆

− 𝑄𝑃𝑈𝑀𝑃
𝑀 (𝑡)

 (5) 

 

Conduit Reservoir 
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{
 
 

 
 𝑑𝐶(𝑡)

𝑑𝑡
= 𝑅𝐸𝐶𝐻𝐶(𝑡) + 𝑄𝐸𝐶(𝑡) + 𝑄𝑀𝐶(𝑡) − 𝑄𝐶𝑆(𝑡) − 𝑄𝑃𝑈𝑀𝑃

𝐶 (𝑡) 

𝑑𝐶(𝑡)

𝑑𝑡
= 𝑅𝐸𝐶𝐻𝐶(𝑡) + 𝑄𝐸𝐶(𝑡) + 𝑘𝑀𝐶 (

𝐶(𝑡) − 𝑀(𝑡)

𝐿𝑟𝑒𝑓
)

𝛼𝑀𝐶

− 𝑘𝐶𝑆 (
𝐶(𝑡)

𝐿𝑟𝑒𝑓
)

𝛼𝐶𝑆

− 𝑄𝑃𝑈𝑀𝑃
𝐶 (𝑡)

 (6) 

 

Where E, 𝑀 and 𝐶 are the daily water levels of the epikarst, matrix and conduit reservoirs (mm), 

respectively, 𝑄𝐸𝑀 and 𝑄𝐸𝐶 are the discharge components from reservoir E to reservoir M and 

reservoir C (mm.day-1), respectively, 𝐸𝑚𝑖𝑛 is the minimum water level for the activation of the 

epikarst discharge function (mm), 𝐿𝑟𝑒𝑓 is a reference length for normalization of the water level 

of the reservoirs, 𝑄𝑀𝐶 is the matrix-conduits bidirectional exchange flow (mm.day-1), 𝑄𝑀𝑆 and 𝑄𝐶𝑆 

are the matrix and conduits discharge components into the spring (mm.day-1), respectively, 𝑘𝐸𝑀, 

𝑘𝐸𝐶, 𝑘𝑀𝐶, 𝑘𝑀𝑆, and 𝑘𝐶𝑆 are the specific discharge coefficients of the epikarst, matrix and conduit 

reservoirs fluxes (mm.day-1), 𝛼𝐸𝑀, 𝛼𝐸𝐶, 𝛼𝑀𝐶, 𝛼𝑀𝑆, and 𝛼𝐶𝑆 are positive exponents (unitless), and 

𝑄𝑃𝑈𝑀𝑃
𝑀  and 𝑄𝑃𝑈𝑀𝑃

𝐶  are the pumping rates from the matrix and conduit reservoirs (mm.day-1), 

respectively. 

𝑄𝑆𝑇𝑅𝐸𝐴𝑀,𝑖 = 𝑄𝑆𝑃𝑅𝐼𝑁𝐺,𝑖 + 𝑄𝑆𝑈𝑅𝐹,𝑖 = 𝑄𝑀𝑆,𝑖 + 𝑄𝐶𝑆,𝑖 + 𝑄𝑆𝑈𝑅𝐹,𝑖 (7) 

Where 𝑄𝑆𝑇𝑅𝐸𝐴𝑀,𝑖 is the total discharge downstream the Las Hountas karst spring, 𝑄𝑆𝑃𝑅𝐼𝑁𝐺,𝑖 is the 

spring flow contribution of the karst aquifer to streamflow  (sum of the matrix outflow 𝑄𝑀𝑆,𝑖 and 

conduit outflow 𝑄𝐶𝑆,𝑖),, and 𝑄𝑆𝑈𝑅𝐹,𝑖 is the contribution of surface runoff generated in non-karst 

areas of the catchment to streamflow on day 𝑖 (all variables are expressed in mm.day-1). The 

simulated streamflow hydrograph is given in m3.s-1. 

5.2.3 The ISPEEKH model input data 

5.2.3.1 Topography, land use, soil and lithology 

The DEM of the Baget catchment was obtained from the US Geological Survey's Shuttle 

Radar Topography Mission files at 30−m spatial resolution (https://earthexplorer.usgs.gov/). The 

catchment altitude ranges from 502 to 1404 m a.m.s.l., and slopes vary between 10 to 30%. A land-

use/cover map of the catchment was extracted at 100−m resolution from Corine Land Cover (CLC) 

database (https://land.copernicus.eu/pan-european/corine-land-cover), available at the Pan-

European level for years 1990, 2000, 2006, 2012 and 2018. The land-use trajectory approach was 

applied to examine land-use change in the catchment over the hydrological simulation period of 

2006−2018. Six land-use categories were identified, with no interannual changes detected. The 

https://earthexplorer.usgs.gov/
https://land.copernicus.eu/pan-european/corine-land-cover
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catchment is mainly covered by broad-leaved and coniferous forests (~85%), followed by pastures 

(~8%), moors and heathland (~5%), sparse transitional woodland-shrub (~1%) and agricultural 

lands (~1%). A soil map of the catchment was derived from the Food and Agriculture Organization 

(FAO) Digital Soil Map of the World at 1:5,000,000 scale (https://www.fao.org/soils-portal/soil-

survey/soil-maps-and-databases/faounesco-soil-map-of-the-world/en/), and overlaid with a 

lithology map, to delineate karst and non-karst HRUs based on the catchment lithology, and to 

simulate the recharge from the karst and non-karst landforms to the E, M and C reservoirs 

following the karst groundwater module of ISPEEKH. The Baget catchment model was created 

using QSWAT+ 2.0.3 in QGIS based on the input DEM, land-use and soil maps, slope 

characteristics, and outlet location. A total of 19 subbasins and 225 HRUs were defined, with 116 

HRUs being karst and 109 non-karst. The total area of the karst HRUs represented 70% of the 

catchment area while the non-karst HRUs accounted for 30%, and the HRUs delineation followed 

the areal distribution of the karst and non-karst regions in the catchment. 

5.2.3.2 Meteorological variables 

The meteorological variables required to conduct the hydrological simulations with 

ISPEEKH, using the Penman Monteith approach for evapotranspiration estimation, are daily 

precipitation, minimum and maximum air temperature, relative humidity, wind speed, and solar 

radiation. The precipitation datasets used in this study were retrieved from: (1) Saint Girons 

weather station (43°00'19"N; 01°06'25"E; 414 m a.m.s.l.), located 8.3 km from the Baget 

catchment outlet, (2) CPC and E-OBS gauge-based products; (3) SAFRAN, COMEPHORE, and 

ERA5-Land reanalysis products; (4) IMERG-LR, PERSIANN-CDR, CHIRPS, and SM2RAIN-

ASCAT satellite-based products. Additionally, the daily minimum and maximum air temperature, 

relative humidity, wind speed, and solar radiation data were obtained from SAFRAN. The data 

points of the different products used in this study are shown in Figure 21.  

The CPC precipitation dataset (Chen et al., 2008) is part of the products suite of the CPC 

Unified Precipitation Project, underway at the United States National Oceanic and Atmospheric 

Administration (NOAA) Climate Prediction Center (CPC). The dataset is constructed by 

interpolating the daily records from more than 30,000 gauge stations using the optimal 

interpolation (OI) objective analysis technique (Jiang et al., 2023), with a spatial coverage of 0.5° 

global land and a daily temporal resolution from 1979 to the present (Xie et al., 2007). The CPC 

data are available for download at https://psl.noaa.gov/data/gridded/data.cpc.globalprecip.html.   

https://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/faounesco-soil-map-of-the-world/en/
https://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/faounesco-soil-map-of-the-world/en/
https://psl.noaa.gov/data/gridded/data.cpc.globalprecip.html
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E-OBS (European Daily High-Resolution Observational Gridded Dataset; Haylock et al., 

2008) is a land-only gridded daily observational dataset for precipitation and other atmospheric 

variables over Europe. This dataset is based on observations from the meteorological stations 

(22,600 stations, September 2022) provided by the National Meteorological and Hydrological 

Services (NMHSs) and other data holding institutes across Europe (Cornes et al., 2018). The E-

OBS dataset is delivered on regular latitude-longitude grids with spatial resolutions of 0.1° and 

0.25° from 1950 to near present (June 2023), and is accessible through the European Climate 

Assessment & Dataset (ECA&D, https://www.ecad.eu/download/ensembles/download.php). E-

OBS version 25.0e - 10 km spatial resolution was adopted in this study. 

 COMEPHORE (COmbinasion en vue de la Meilleure Estimation de la Précipitation 

HOraiRE; Tabary, 2007; Tabary et al., 2012) is an hourly reanalysis of surface precipitation 

accumulation over metropolitan France at 1-km spatial resolution, provided by the French weather 

forecasting agency Météo-France for years 1997−2022. The COMEPHORE precipitation 

estimates are obtained using the data from the French network of 24 radars and hourly and daily 

precipitation rain gauges (approximately 4200 rain gauges with a daily time step including 

approximately 1200 rain gauges with an hourly time step) (Fumière et al., 2020; Le Roy et al., 

2020).  

SAFRAN (Système d’Analyse Fournissant des Renseignements Adaptés à la Nivologie; 

Quintana-Seguí et al., 2008) is an hourly analysis system of atmospheric variables (precipitation, 

2-meter air temperature and humidity, 10-meter wind speed, downward solar and infrared 

radiation, and cloudiness), from 1958 to present, provided by Météo-France for metropolitan 

France and Corsica at 8-km spatial resolution. Estimates of the surface variables are derived over 

homogeneous climatic areas, determined based on topography, and refined with respect to nearby 

gauge-based observations using the optimal interpolation method. The analyses of temperature, 

humidity, wind speed, and cloud cover are carried out every 6 hours based on a first guess from 

the weather prediction model ARPEGE (Déqué et al., 1994) or the ECMWF archives. Precipitation 

is analyzed at daily time step with an initial guess inferred from climatological fields (Vidal et al., 

2010). The analyzed variables are then interpolated at the hourly time step, where hourly 

precipitation distribution is inferred using the diurnal specific humidity cycle and separated 

between rainfall and snow using the 0.5 ⁰C isotherm (Moucha et al., 2021). Solar and infrared 

radiation are estimated from the vertical profiles of temperature, humidity, and cloudiness, using 
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a radiative transfer model (Ritter and Geleyn, 1992) due to the lack of observations for these two 

variables. Finally, all atmospheric variables are projected to an 8-km regular grid at the elevation 

of the grid cells in each homogeneous climatic zone, using the vertical profiles for each zone.   

ERA5-Land (fifth generation European Centre for Medium-Range Weather Forecasts 

ECMW Reanalysis on global land surface; Hersbach et al., 2020; Muñoz-Sabater et al., 2021) is a 

spatially enhanced global dataset for the land component of the ERA5 reanalysis product, which 

is developed by ECMWF at 0.25° spatial resolution and hourly temporal resolution from 1950 

onwards. The ERA5-Land dataset is obtained by forcing the HTESSEL land surface component 

(version Cy45r1 of the Integrated Forecasting System ISF) with low atmospheric meteorological 

fields from ERA5. Precipitation data in ERA5-Land are generated from ERA5 through a linear 

interpolation method based on a triangular mesh (Wu et al., 2023), reducing the spatial resolution 

to 0.10° (Muñoz-Sabater et al., 2021). The dataset is available from the Copernicus Climate data 

store (https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land?tab=overview). In 

this study, the ERA5-Land hourly dataset was aggregated to obtain daily values.  

IMERG (Integrated Multi-satellitE Retrievals for the Global Precipitation Measurement 

(GPM) mission; Huffman et al., 2019) is a precipitation product with 30-min temporal resolution, 

0.1° spatial resolution, and 60° N–60° S full coverage. The product combines microwave 

precipitation estimates and microwave precipitation-calibrated infrared fields, including monthly 

surface precipitation gauge analyses to create research-level products. The Late-run version of the 

dataset (IMERG-LR), characterized by 14 h latency, was adopted in the study, and the product 

was accumulated to daily time scale (https://gpm.nasa.gov/data/directory).  

PERSIANN-CDR (Precipitation Estimation from Remotely Sensed Information using 

Artificial Neural Networks- Climate Data Record; Ashouri et al., 2015) is a multi-satellite 

precipitation dataset that provides near-global precipitation information (60°N-60°S latitude and 

0°–360° longitude) at 0.25° spatial resolution and daily temporal resolution, from 1983 to near 

present. The PERSIANN-CDR precipitation estimate is generated by processing the Gridded 

Satellite (GridSat-B1) infrared data using the PERSIANN algorithm, and by artificial neural 

network training using the National Center for Environmental Prediction (NCEP) Stage IV hourly 

precipitation data (Nguyen et al., 2018; Salmani-Dehaghi and Samani, 2021). The PERSIANN-

CDR data are publicly available through the U.S. NOAA National Centers for Environmental 

Information (NCEI) at https://www.ncdc.noaa.gov/cdr/atmospheric/precipitation-persiann-cdr 

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land?tab=overview
https://gpm.nasa.gov/data/directory
https://www.ncdc.noaa.gov/cdr/atmospheric/precipitation-persiann-cdr
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and the Centre for Hydrometeorology and Remote Sensing (CHRS) Data Portal at 

http://chrsdata.eng.uci.edu . 

CHIRPS (Climate Hazards center InfraRed Precipitation with Station data) is a quasi-

global precipitation dataset covering 50°S-50°N (and all longitudes). The dataset incorporates 

0.05° resolution satellite imagery with in-situ station data in order to create a gridded daily rainfall 

time series spanning from 1981 to near present (Funk et al., 2015). The daily/0.05° CHIRPS V2.0 

dataset was used in this study (https://data.chc.ucsb.edu/products/CHIRPS-

2.0/global_daily/netcdf/). 

SM2RAIN-ASCAT (Soil Moisture to Rain—Advanced SCATterometer V1.5) is a global 

scale daily rainfall product of 10-km spatial resolution, obtained by application of the SM2RAIN 

algorithm (Brocca et al., 2014, 2019) to the Advanced SCATterometer (ASCAT) satellite soil 

moisture data (Wagner et al., 2013). In fact, SM2RAIN algorithm allows to invert the soil water 

equation to infer rainfall from the variation of soil moisture The SM2RAIN-ASCAT used in this 

study spans the period of 2007–2022, available at (http://hydrology.irpi.cnr.it/download-

area/sm2rain-data-sets/).  

The CPC, E-OBS, ERA5-Land and IMERG-LR coarse precipitation datasets were 

downscaled to 1-km resolution by leveraging the statistical information from CHELSA 

(Climatologies at high resolution for the earth’s land surface areas; Karger et al., 2017), a high-

resolution (30 arc sec, ~1-km) global downscaled climate product hosted by the Swiss Federal 

Institute for Forest, Snow and Landscape Research WSL. It is based on a mechanistical statistical 

downscaling of global reanalysis data or global circulation model output, and includes climate 

layers for various time periods and variables. A triple collocation technique was then applied to 

merge the downscaled CPC and IMERG-LR datasets (Filippucci et al., 2024). The resulting high-

resolution precipitation products were applied in the hydrological modeling of the Baget catchment 

(Figure 21). Precipitation data that have been downscaled are indicated with '-ds' appended to each 

product name throughout the manuscript. 

http://chrsdata.eng.uci.edu/
https://data.chc.ucsb.edu/products/CHIRPS-2.0/global_daily/netcdf/
https://data.chc.ucsb.edu/products/CHIRPS-2.0/global_daily/netcdf/
http://hydrology.irpi.cnr.it/download-area/sm2rain-data-sets/
http://hydrology.irpi.cnr.it/download-area/sm2rain-data-sets/
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Figure 21. Figure showing the locations of the (a) Saint Girons weather station, data points of the E-OBS 

and CPC gauge-based products, ERA5-Land and SAFRAN reanalysis products, SM2RAIN-ASCAT, 

PERSIANN-CDR, IMERG-LR and CHIRPS satellite-based products, and (b) data points of the 1-km 

resolution COMEPHORE reanalysis product and downscaled E-OBS, CPC, ERA5-Land, IMERG-LR, and 

CPC-IMERG-LR products with respect to the Baget catchment recharge area. 
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5.2.3.3 Streamflow data 

Streamflow at gauging station B1 (Figure 19), located 60 m downstream of the Las 

Hountas spring, is calculated from the stream water level measured at 30 min-interval by a float-

type water-level sensor, and calibrated using rating curves that yield a coefficient of determination 

(R2) of 1 annually. The daily streamflow data from 01/01/2006 to 31/12/2018 at station B1 were 

used to calibrate and validate ISPEEKH for each precipitation dataset. During this period, 

streamflow was measured continuously, and the daily discharge varied from 0.04 to 8.95 m3.s-1, 

with an average value of 0.45 m3.s-1. 

5.2.4 Sensitivity analysis, parameter estimation, and uncertainty quantification methods for 

the ISPEEKH model 

5.2.4.1 Parameter ESTimation Tool (PEST) followed by sensitivity analysis 

For each precipitation dataset, ISPEEKH was set up to simulate the Baget catchment daily 

streamflow from 2006 to 2018, with a 2–year warm-up period (2006–2007), a 6–year calibration 

period (2008–2013), and a 5−year validation period (2014–2018). The models were calibrated 

with respect to daily streamflow measured at the gauging station B1. A preliminary manual 

calibration was first performed to determine the appropriate range values of the emptying 

exponents and discharge coefficients that not only optimize the simulated streamflow but also 

accurately represent the simulated water levels of the epikarst, matrix, and conduit reservoirs. This 

calibration process is required as the ISPEEKH model's ability to reproduce the dynamic behavior 

of water storage in these reservoirs is contingent upon these parameters. In particular, the model 

must capture the flow patterns of the conduit and matrix water storage. For the conduit storage, 

this includes a rapid rise in water levels followed by a swift water transfer to the spring during the 

high-flow periods, and an attenuated response with a gradual depletion during the low-recharge 

periods. In contrast, matrix water storage should exhibit lower variability with slower water 

transfer and reduced discharge to the spring. This manual calibration helps avoid unrealistic 

scenarios where certain parameter combinations lead to continuously increasing water levels in 

one or more reservoir even when the streamflow simulation appears satisfactory. Under this 

application, it was found that the value of the emptying exponents of the epikarst-to-conduit flow 

(𝛼𝐸𝐶) and conduit-to-spring flow (𝛼𝐶𝑆) must not exceed 2.5. The models were then calibrated 

automatically using the nonlinear, model-independent parameter estimator PEST (Doherty, 2018). 

PEST implements a local optimization technique that is based on the Gauss–Marquardt–Levenberg 



172 

 

algorithm to minimize the objective function of the squared sum of weighted residuals between 

the simulated and observed data.  

The Morris screening method (elementary-effects test) for qualitative global sensitivity 

analysis (GSA) (Morris, 1991) was applied to assess the sensitivity of the ISPEEKH parameters 

governing streamflow. The selected parameters, which include those related to evapotranspiration, 

surface runoff, soil water fluxes, and karst groundwater fluxes, are listed in Table 7 with their 

respective value ranges for sensitivity analysis. The Morris method evaluates the relative 

sensitivity of the model parameters by calculating the change in the model output when a specific 

model parameter is altered (i.e., elementary effect), while keeping all other parameters constant. 

A single elementary effect for the 𝑖th parameter is computed as follows: 

𝐸𝐸𝑖 =
𝑓(𝑥1, … , 𝑥𝑖 + ∆𝑖 , … , 𝑥𝑝) − 𝑓(𝑥)

∆𝑖
 (8) 

 

where 𝐸𝐸𝑖 is the elementary-effect value of the ith model parameter, 𝑓 represents the model; 

𝑥1, … , 𝑥𝑖 is the model parameter value, and ∆𝑖 is the change in ith model parameter.  

With this method, the mean and standard deviation of all elementary effects for a given model 

parameter are used to assess parameter sensitivity and are calculated as follows: 

𝜇𝑖
∗ =

1

𝑛
∑|𝐸𝐸𝑖(𝑗)|

𝑛

𝑗=1

 (9) 

𝜎𝑖 = √
1

𝑛 − 1
∑[𝐸𝐸𝑖(𝑗) −

1

𝑛
∑𝐸𝐸𝑖(𝑗)

𝑛

𝑗=1

]

𝑛

𝑗=1

 (10) 

where 𝜇𝑖
∗ and 𝜎𝑖 represent the mean and standard deviation of all 𝐸𝐸𝑖 for a given parameter 𝑖, and 

n is the number of 𝐸𝐸𝑖 computations.  

The pestpp-sen software tool (White et al., 2020) within the PEST++ environment was 

implemented to generate parameter values, update ISPEEKH files, run the model simulations and 

compute sensitivity indices for the Morris method. 

SWAT+ allows for the calibration of various parameters by applying a single value within a given 

parameter range, adding an increment to an existing value, or applying a relative change of spatial 

parameters. For the calibration of ISPEEKH with PEST, template files were created from the 

model input files by replacing the original values of the targeted calibration parameters in their 
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respective input files with placeholders. Using these template files, the updated values of the 

calibration parameters are written to the model input files at each iteration of a PEST run. The 

parameters associated with the epikarst, matrix, and conduits reservoirs in the “karst.data” input 

file (i.e., the initial reservoir water levels, threshold water level for flow activation, emptying 

exponents and discharge coefficients) correspond to the karst aquifer properties and independent 

of the spatial variability of the surface HRUs. The curve numbers, evapotranspiration parameters, 

and soil parameters are calibrated at HRU level using template files of the “cntable.lum”, 

“hydrology.hyd” and “soil.sol” input files, respectively.  

5.2.4.2 Iterative ensemble smoother (iES) for parameter estimation and uncertainty quantification 

The Iterative Ensemble Smoother (iES) method (Chen and Oliver, 2013), integrated in the 

pestpp-ies tool (White, 2018) within the PEST++ environment (Welter et al., 2015), was 

implemented in this study to generate prior (uncalibrated results) and posterior uncertainty 

estimates of ISPEEKH parameters. The iES method uses the Ensemble Kalman Filter (EnKF), an 

algorithm for data assimilation that updates state variables by incorporating measured data into the 

model results, based on correlations between the state variables and measured data (Evensen, 

1994). The EnKF was initially implemented in the ensemble smoother scheme (ES)(Van Leeuwen 

and Evensen, 1996). ES was then modified by Chen and Oliver (2013) to operate iteratively using 

the Gauss–Levenberg–Marquardt (GLM) algorithm (the iES method) with a Jacobian matrix filled 

with finite-difference approximated derivatives, and improve minimization of the sum-of-squared 

residuals objective function for nonlinear problems. Chen and Oliver (2013) later reformulated the 

GLM algorithm to derive an approximate Jacobian matrix empirically from an ensemble of random 

parameter values, whereby the model needs to be run once for each member of the ensemble (i.e. 

realization) rather than once for each parameter. This reformulation reduced the computational 

burden of populating a full rank Jacobian matrix for models with a large number of parameters 

while maintaining the ability to be parallelized and model independent (non-intrusive).  

The iES method starts with a prior ensemble of parameter values. A Jacobian matrix of 

parameter sensitivities is derived from the relationships between the model parameters and output, 

using a range of parameter values from the prior ensemble. The Jacobian matrix is applied to 

update each parameter ensemble iteratively by minimizing model residuals through the GLM 

algorithm, resulting in a posterior ensemble of optimized model parameters. The propagation of 

the ensemble of parameter realizations until a satisfactory fit with the observed data yields an 
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estimate of the posterior parameter distribution, which can be used to quantify the uncertainty in 

the forecasts of interest. 

 
Table 7. Selected parameters, parameters description, and ranges for sensitivity analysis and calibration of 

the ISPEEKH model 

Parameter Parameter description Parameter range Hydrological process 

𝒄𝒏_𝒑𝒂𝒔𝒕𝒈_𝒇 

(𝒄𝒏_𝒂; c𝒏_𝒃; 

𝒄𝒏_𝒄; 𝒄𝒏_𝒅) 

SCS runoff curve numbers for 

pastures 

-20% to +15% 

(relative) 

Surface runoff 
𝒄𝒏_𝒘𝒐𝒐𝒅_𝒇 

(𝒄𝒏_𝒂; c𝒏_𝒃; 

𝒄𝒏_𝒄; 𝒄𝒏_𝒅) 

SCS runoff curve numbers for broad-

leaved and coniferous forests 

-20% to +15% 

(relative) 

𝒆𝒔𝒄𝒐 Soil evaporation compensation factor 0.9–1 
Evapotranspiration 

𝒆𝒑𝒄𝒐 Plant uptake compensation factor 0.9–1 

𝒑𝒆𝒓𝒄𝒐 Percolation coefficient 0–0.5 

Soil water fluxes 

𝒂𝒘𝒄 
Available water capacity (mm 

H2O.mm−1 soil) of the ith soil layer 

-60% to +80% 

(relative) 

𝒃𝒅 
Moist bulk density (g.cm−3 or 

Mg.m−3) of the ith soil layer 

-20% to +20% 

(relative) 

𝒔𝒐𝒍_𝒌 
Saturated hydraulic conductivity 

(mm.h−1) of the ith soil layer 

-20% to +20% 

(relative) 

𝒉𝑬,𝟎( 𝒉𝒆_𝒊𝒏𝒊𝒕) Initial water level in the epikarst (mm) 1–25 

Epikarst-matrix-conduit 

fluxes 

𝑬𝒎𝒊𝒏( 𝒆_𝒎𝒊𝒏) Minimum water level for epikarst flow 

activation 

0.01–1 

𝜹𝑬( 𝒈𝒘𝒅𝒆𝒍𝒂𝒚_𝒆) Recharge delay to the epikarst (days) 0.5–2 

𝜶𝑬𝑪( 𝒂_𝒆𝒄) Emptying exponent of the epikarst-

conduit flow 

0.5–2.5 

𝒌𝑬𝑪( 𝒌_𝒆𝒄) Discharge coefficient of the epikarst-

conduit flow (mm.day-1) 

0.0001–0.095 

𝜶𝑬𝑴( 𝒂_𝒆𝒎) Emptying exponent of the epikarst-

matrix flow 

0.5–1.5 

𝒌𝑬𝑴( 𝒌_𝒆𝒎) Discharge coefficient of the epikarst-

matrix flow 

0.0001–0.01 

𝒉𝑴,𝟎( 𝒉𝒎_𝒊𝒏𝒊𝒕) Initial water level in the matrix (mm) 1–25 

𝜹𝑴( 𝒈𝒘𝒅𝒆𝒍𝒂𝒚_𝒎) Recharge delay from the soil to the 

matrix (days) 

1–3 

𝜶𝑴𝑪( 𝒂_𝒎𝒄) Emptying exponent of the matrix-

conduit flow 

0.5–1.3 

𝒌𝑴𝑪( 𝒌_𝒎𝒄) Discharge coefficient of the matrix-

conduit flow (mm.day-1) 

0.0001–0.05 

𝜶𝑴𝑺( 𝒂_𝒎𝒔) Emptying exponent of the matrix-

spring flow 

0.5–1.5 

𝒌𝑴𝑺( 𝒌_𝒎𝒔) Discharge coefficient of the matrix-

spring flow (mm.day-1) 

0.0001–0.01 

𝒉𝑪,𝟎 ( 𝒉𝒄_𝒊𝒏𝒊𝒕) Initial water level in the conduit (mm) 1–25 
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𝜶𝑪𝑺( 𝒂_𝒄𝒔) Emptying exponent of the conduit-

spring flow 

0.5–2.5 

𝒌𝑪𝑺( 𝒌_𝒄𝒔) Discharge coefficient of the conduit-

spring flow (mm.day-1) 

0.0001–0.095 

 

5.2.5 Model predictive performance evaluation 

The capacity of the model to predict streamflow under the different precipitation datasets 

was evaluated with performance metrics commonly used in karst hydrology: the Nash-Sutcliff 

efficiency NSE (Nash and Sutcliffe, 1970), the coefficient of determination R2, the percent of bias 

PBIAS (Gupta et al., 1999) (positive values indicate model underestimation bias, while negative 

values indicate model overestimation bias), and the Kling-Gupta efficiency KGE (Gupta et al., 

2009), adopting the performance quality classes by Moriasi et al. (2015) and Jeannin et al. (2021). 

The non-parametric Kling-Gupta efficiency KGENP (Pool et al., 2018) and the correlation 

coefficients of Pearson Rp and Spearman Rs evaluation metrics were also computed so as to 

account for additional aspects of the model performance.  

A wavelet multiresolution analysis (MRA), which is commonly used to decompose a signal 

into a progression of successive approximations and details in increasing order of resolution, was 

conducted to project streamflow on an orthogonal basis of wavelet generated from a filter band 

following a dyadic scale. For an orthogonal decomposition, the sum of all components (details and 

residue or smooth) returns the initial signal. The usual performance criteria consider the mean 

errors and do not capture how the model errors can be structured in time and frequency (Labat et 

al., 2000b; Sivelle et al., 2022). Thus, the application of MRA on both observed and simulated 

streamflow times series under the uncorrected and corrected precipitation datasets allows the 

evaluation of the hydrological model performance across different temporal scales by calculating 

the Pearson correlation coefficient (𝑅𝑝) on the calibration and validation periods according to the 

dyadic scale.  

5.2.6 Correction of precipitation datasets 

The preliminary assessment of the Baget catchment water balance conducted by Al Khoury 

et al. (2023a) suggests that precipitation is generally underestimated in the study area, which 

results in the underestimation of the simulated streamflow. Several approaches are reported in the 

literature to correct the bias of precipitation products based on observed precipitation data from 

representative meteorological stations, including the ratio bias and dual-core smoothing correction 

methods, and the cokriging, probability matching, Bayesian correction, and optimal interpolation–
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probability matching methods, among others (Ye et al., 2023). In the case of the Baget catchment, 

the only available observed precipitation dataset is from the meteorological station of Saint Girons 

(414 m m.a.s.l), which is located outside the catchment at 8.3 km from its outlet. Therefore, in the 

absence of a precipitation monitoring network that captures the altitude effect within the 

catchment, the 1-km resolution COMEPHORE, CPC-ds, E-OBS-ds, ERA5-Land-ds, IMERG-LR-

ds and merged CPC-IMERG-LR-ds gridded precipitation datasets were corrected in order to 

resolve the water balance discrepancy prior to model calibration by “Doing Hydrology Backward 

(DHB) (Kirchner’s methodology). Accordingly, an orographic correction multiplicative factor 

(𝑂𝐶𝐹𝑚) was computed for each dataset based on a rearranged water balance equation (Khan and 

Koch, 2018):   

𝑂𝐶𝐹𝑚,𝑖 =
𝑃𝐶𝑃𝑡𝑟𝑢𝑒,𝑖
𝑃𝐶𝑃𝑜𝑏𝑠,𝑖

=
𝑄𝑜𝑏𝑠 + 𝐸𝑇𝑎 − ∆𝑔

𝑃𝑜𝑏𝑠,𝑖
 (11) 

Where 𝑂𝐶𝐹𝑚,𝑖 is the calculated orographic correction multiplicative factor for the gridded 

precipitation dataset 𝑖, 𝑄𝑜𝑏𝑠 is the mean annual catchment discharge, 𝐸𝑇𝑎 is the catchment mean 

annual actual-evapotranspiration, ∆𝑔 represents the catchment mean annual change in glacier 

storage, 𝑃𝑜𝑏𝑠,𝑖 is the observed (uncorrected) precipitation dataset 𝑖, and 𝑃𝐶𝑃𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑,𝑖 is the true 

(corrected) precipitation dataset 𝑖. The measured streamflow data at the gauging station B1 and 

the grid-based actual evapotranspiration estimates from SAFRAN over the 2006−2018 simulation 

period were used for the calculation of the 𝑂𝐶𝐹𝑚 for each precipitation dataset (Table 8), and the 

change of glacier ice volume is null for the catchment. 

 
Table 8. The orographic correction multiplicative factors (𝑂𝐶𝐹𝑚) calculated for the 1-km resolution 

COMEPHORE, CPC-ds, E-OBS-ds, ERA5-Land-ds, IMERG-LR-ds and merged CPC-IMERG-LR-ds 

gridded precipitation datasets. 

Precipitation dataset 𝑂𝐶𝐹𝑚 value 

CPC-ds 2.03 

E-OBS-ds 1.85 

COMEPHORE 1.42 

ERA5-Land-ds 1.23 

IMERG-LR-ds 1.48 

CPC-IMERG-LR-ds 1.89 
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5.3 Results and Discussion 

5.3.1 ISPEEKH parameters sensitivities under the precipitation products 

The sensitivities of the selected parameters were computed under all precipitation datasets 

using the Morris screening method for minimizing streamflow errors. The sensitivity measures 

(i.e., the mean (𝜇∗) and the standard deviation (𝜎)) are based on the elementary effect absolute 

values of the model parameters and are not related to the scale and magnitude of the input or 

outputs. Thus, they show relative relation between parameters (Abbas et al., 2024). The order of 

magnitude of (𝜇∗) and (𝜎) for all parameters and parameter sensitivity ranks remained consistent 

across all precipitation datasets, and the average values of (𝜇∗) and (𝜎) obtained from the 

sensitivity analysis run under each precipitation dataset are illustrated in Figure 22. The discharge 

coefficient and emptying exponent of the conduit-to-spring flow (𝑘𝐶𝑆;  𝛼𝐶𝑆) and the discharge 

coefficient and emptying exponent of the epikarst-to-conduit flow (𝑘𝐸𝐶;  𝛼𝐸𝐶) ranked consistently 

as the top four most sensitive parameters irrespective of the input precipitation data, while the 

emptying exponents of the epikarst-to-matrix, matrix-to-spring, and bidirectional matrix-to-

conduit fluxes (𝛼𝐸𝑀;  𝛼𝑀𝑆; 𝛼𝑀𝐶) were noticeably less sensitive than their counterparts 𝛼𝐸𝐶  and 

𝛼𝐶𝑆. This outcome is compatible with the discharge characteristics of the Baget catchment which 

includes a shallow epikarst with high connectivity to network of well-developed conduits in the 

saturated zone, resulting in most infiltration water passing from the epikarst to the conduits and 

then emerging at the spring outlet through the conduits, with low contribution from the matrix to 

the overall discharge. The discharge coefficients of the epikarst-to-matrix flow, matrix-to-conduit 

bidirectional flow, and matrix-to-spring flow (𝑘𝐸𝑀;  𝑘𝑀𝐶; 𝑘𝑀𝑆) also ranked among the most 

sensitive parameters along with soil parameters (i.e., percolation coefficient 𝑝𝑒𝑟𝑐𝑜, available water 

capacity 𝑎𝑤𝑐, and moist bulk density 𝑏𝑑). Overall, the parameters governing karst groundwater 

flow and infiltration were the most sensitive while all surface runoff and evapotranspiration 

parameters ranked among the least sensitive. These results are also consistent with the recharge-

discharge characteristics of the Baget catchment, where direct infiltration of most rainfall over the 

surface-exposed and well-developed epikarst zone of the Baget catchment feeds the karst aquifer 

and spring flow, with low surface runoff generation and contribution to the catchment streamflow.  
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Figure 22. Average values of the elementary effects (EE) mean (𝜇∗) and standard deviation (𝜎), calculated 

with the Morris global sensitivity analysis for the selected parameters of ISPEEKH with different 

precipitation datasets.   

5.3.2 Performance of coarse and downscaled precipitation datasets for catchment water 

balance and streamflow simulation 

The assessment of the Baget catchment water balance for the 2008–2018 period revealed 

that water balance is in deficit under all the precipitation data series (Table 9). The mean annual 

precipitation (𝑃𝐶𝑃) varied between 887 mm under coarse CPC and 1451 mm under ERA5-Land-

ds. The mean annual simulated streamflow (𝑄𝑆𝑇𝑅𝐸𝐴𝑀) values ranged from 262 to 802 mm 

compared to a mean annual observed streamflow of 1145 mm in years 2008–2018. The simulated 

mean annual recharge (𝑅𝐸𝐶𝐻) to the karst aquifer reservoirs was consistently equal to the 

simulated spring flow (𝑄𝑆𝑃𝑅𝐼𝑁𝐺), showing that ISPEEKH modeled karst groundwater storage and 

spring flow from the recharge input successfully by conserving the water balance. The Baget is a 

conservative catchment with a groundwater recharge zone of 13.25 km2 (Mangin, 1975), ruling 

out the possibility of additional water contribution to the spring discharge from a larger recharge 

area or interbasin groundwater flow. The 𝑄𝑆𝑃𝑅𝐼𝑁𝐺 contribution to 𝑄𝑆𝑇𝑅𝐸𝐴𝑀 varied between 

80−92%, while direct surface runoff (𝑄𝑆𝑈𝑅𝐹) accounted for the remaining 18−20%, which is 

consistent with the Baget catchment discharge characteristics where the perennial Las Hountas 

karst spring is the primary source of discharge. The simulated mean actual evapotranspiration 

(𝐸𝑇𝑎) values (582–721 mm.year-1) were comparable to the SAFRAN-based mean annual 𝐸𝑇𝑎 (667 
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mm), indicating that the uncertainty due to 𝐸𝑇 estimation is unlikely to generate the water balance 

discrepancy. Moreover, historical records also show that streamflow magnitude has been in the 

order of 1000 mm.year-1 over the 1969–2005 period, indicating that the streamflow measurement 

uncertainty does not justify the water balance discrepancy. Thus, precipitation recorded at low 

altitude at Saint Girons station (414 m. a.m.s.l.), 8.3 km from the catchment outlet, cannot sustain 

the observed streamflow, while field observations in the 1973−1999 period report a mean annual 

precipitation of 1750 mm 0.5 km from the catchment (658 m a.m.s.l.) (Johannet et al., 2008). 

Subsequently, the values of the NSE, R2, and PBIAS metrics (Table 10) showed 

unsatisfactory performance for daily streamflow simulation (NSE ≤ 0.5, R2 ≤ 0.6, PBIAS ≥ ± 

15% in both calibration and validation periods (Moriasi et al., 2015). The SAFRAN and 

COMEPHORE reanalysis products, with mean annual 𝑃𝐶𝑃 of 1274 and 1287 mm, respectively, 

scored higher NSE and R2 values than all remaining precipitation products, particularly during 

validation where NSE and R2 were satisfactory (0.50 < NSE ≤ 0.70; 0.60 < R2 ≤ 0.75) despite a 

PBIAS of 40%. The coarse and downscaled ERA5-Land datasets yielded the lowest PBIAS values 

(28 to 35%) among all precipitation products. In contrast, the performance from the gauge-based 

and satellite-based precipitation products was unacceptable, with NSE and KGE values close to or 

below 0, low R2, and high PBIAS of 50 to 80%. The reanalysis COMEPHORE, SAFRAN, and 

ERA5-Land precipitation products outperformed the gauge- and satellite-based precipitation 

products. Moreover, the spatial downscaling of the CPC, IMERG-LR, and E-OBS data to 1-km 

resolution and merging of the downscaled IMERG-LR and CPC data did not improve the 

predictive performance compared with the coarse datasets, while downscaling of ERA5-Land only 

improved the water balance estimation marginally by reducing the underestimation bias by 3−4% 

across both the calibration and validation periods. The observed and simulated hydrographs under 

the ensemble of precipitation products are provided in Figures 23 to 27. Overall, considerable 

discrepancies in the average annual precipitation estimates, exceeding 500 mm.year-1,were 

revealed between the products. Hence, the reanalysis, gauge- and satellite-based precipitation 

products considered in this study do not represent the precipitation regime of the Baget catchment. 

Precipitation is generally underestimated in the Pyrenees region due to precipitation under catch 

by the rain gauges and the low-quality radar coverage in the mountainous regions, which 

corroborates the poor model predictive performance with the gauge- and satellite-based 

precipitation products. Yet, the French kilometric dataset COMEPHORE benefits from rain gauge 
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data collected by the French electricity company, which maintains various hydroelectric power 

plants to increase the quality of the dataset in several regions, such as Normandy and central 

France. The combination of radar and rainfall data in COMEPHORE provides a dataset on the 

Pyrenees that is of lower quality than the data on the rest of France but that remains of higher 

quality than other observational precipitation databases currently available for this mountainous 

region (Fumière et al., 2020). This could justify the higher streamflow simulation performance 

obtained under COMEPHORE precipitation compared to the gauge- and satellite-based 

precipitation products. The results of our study could not be compared to those of previous studies 

in karst catchments, particularly those conducted by Mo et al. (2020, 2022) in the XiaJia (799.2 

km2) and Chengbi (2,087 km2) karst river basins in China, due to the discrepancy in the basins’ 

sizes relative to the Baget catchment (13.25 km2) as well as the differences in the climatic features, 

landscape properties (i.e., topography, karst terrains, land use, and soil), and karst recharge and 

groundwater flow dynamics. Nonetheless, both studies reported an underestimation of flow under 

the raw IMERG satellite precipitation and underlined the need to apply correction and fusion 

methods based on gauge-measured precipitation to improve the model predictive performance.  

 

Table 9. Mean annual water balance in the Baget catchment (mm.year-1) for years 2008−2018, simulated 

using ISPEEKH with Saint Girons gauge precipitation, gauge-based precipitation products (CPC, E-OBS), 

reanalysis products (SAFRAN, COMEPHORE and ERA5-Land), and satellite precipitation products 

(PERSIANN-CRD, IMERG-LR, CHIRPS, SM2RAIN-ASCAT). 𝑃𝐶𝑃: precipitation; 𝑃𝐸𝑇: potential 

evapotranspiration, 𝐸𝑇𝑎: actual evapotranspiration; 𝑆𝑈𝑅𝑄: surface runoff; 𝑅𝐸𝐶𝐻: groundwater recharge; 

𝑄𝑆𝑃𝑅𝐼𝑁𝐺: spring flow; 𝑄𝑆𝑇𝑅𝐸𝐴𝑀: streamflow. 

Precipitation    

dataset 
𝑷𝑪𝑷 𝑷𝑬𝑻 𝑬𝑻𝒂 𝑸𝑺𝑼𝑹𝑭 𝑹𝑬𝑪𝑯 𝑸𝑺𝑷𝑹𝑰𝑵𝑮 𝑸𝑺𝑻𝑹𝑬𝑨𝑴 

Saint Girons 996.36 851.20 720.63 25.53 233.01 232.65 261.73 

CPC 886.67 690.64 581.44 19.89 271.36 271.04 293.93 

CPC-ds 892.17 686.97 581.87 26.47 265.76 265.43 295.25 

E-OBS 949.78 681.60 574.54 44.54 311.30 311.17 360.01 

E-OBS-ds 964.98 687.11 584.63 46.03 313.91 313.81 364.42 

SAFRAN 1274.09 690.13 599.31 97.14 540.02 540.16 645.29 

COMEPHORE 1287.34 686.84 591.07 132.54 517.80 517.49 660 

ERA5-Land 1414.97 689.23 620.93 127.48 624.50 624.34 762.96 

ERA5-Land-ds 1450.54 685.20 619.58 138.76 651.18 650.99 802.34 

PERSIANN-CDR 982.77 692.03 598.29 30.75 341.02 340.66 375.64 

IMERG-LR 1202.27 683.79 601.09 75.36 503.45 502.66 585.60 
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IMERG-LR-ds 1214.14 688.95 607.15 75.39 507.47 506.47 589.30 

CPC-IMERG-LR-ds 950.85 687.30 596.73 37.34 296.66 296.36 337.57 

CHIRPS 1098.07 695.29 597.00 53.94 441.35 441.45 502.13 

SM2RAIN-ASCAT 1180.72 693.38 620.11 66.06 453.84 453.82 526.35 

 

Table 10. Daily streamflow statistical performance for the ISPEEKH model simulations driven by different 

precipitation datasets. 

 Calibration Validation 

Precipitation dataset NSE R2 PBIAS KGE NSE R2 PBIAS KGE 

Saint Girons -0.162 0.202 81.54% -0.226 0.171 0.46 72.17% 0.016 

CPC -0.149 0.217 79.46% -0.223 0.106 0.469 68.53% -0.044 

CPC-ds -0.103 0.266 78.2% -0.179 0.101 0.474 69.7% -0.057 

E-OBS 0.021 0.345 72.91% -0.064 0.278 0.537 63.67% 0.109 

E-OBS-ds 0.049 0.351 71.36% -0.034 0.268 0.525 64.62% 0.101 

SAFRAN 0.478 0.606 44.15% 0.366 0.557 0.732 43.25% 0.356 

COMEPHORE 0.496 0.63 47.76% 0.374 0.625 0.682 36.35% 0.547 

ERA5-Land 0.434 0.556 35.09% 0.338 0.452 0.585 31.6% 0.334 

ERA5-Land-ds 0.459 0.555 32.06% 0.379 0.477 0.577 27.72% 0.379 

PERSIANN-CDR -0.127 0.113 67.87% -0.221 -0.102 0.098 66.52% -0.25 

IMERG-LR -0.018 0.114 51.36% -0.051 0.111 0.201 46.15% 0.083 

IMERG-LR-ds -0.015 0.126 53.25% -0.062 0.094 0.174 43.29% 0.088 

CPC-IMERG-LR-ds -0.047 0.296 74.8% -0.127 0.176 0.481 65.7% 0.021 

CHIRPS 0.058 0.201 53.53% 0.03 -0.089 0.064 59.50% -0.177 

SM2RAIN-ASCAT 0.024 0.255 59.08% -0.065 0.001 0.168 48.39% -0.105 

 

 

Figure 23. Daily observed and simulated streamflow of the Baget catchment in years 2008–2018, using the 

ISPEEKH model driven by precipitation of Saint Girons weather station. 
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Figure 24. Daily observed and simulated streamflow of the Baget catchment in years 2008–2018, using the 

ISPEEKH model driven by precipitation of the (a) CPC, (b) downscaled CPC, (c) E-OBS, and (d) 

downscaled E-OBS gauge-based products. 
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Figure 25. Daily observed and simulated streamflow of the Baget catchment in years 2008–2018, using the 

ISPEEKH model driven by precipitation of the (a) SAFRAN, (b) COMEPHORE, (c) ERA5-Land, and (d) 

downscaled ERA5-Land reanalysis products. 
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Figure 26. Daily observed and simulated streamflow of the Baget catchment in years 2008–2018, using the 

ISPEEKH model driven by precipitation of the (a) PERSIANN-CDR, (b) IMERG-LR, (c) Downscaled 

IMERG-LR, (d) CHIRPS and (e) SM2RAIN-ASCAT satellite-based products. 
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Figure 27. Daily observed and simulated streamflow of the Baget catchment in years 2008–2018, using the 

ISPEEKH model driven by downscaled precipitation of the merged CPC-IMERG-LR product. 

The optimal values of the emptying exponents (alpha) of the epikarst, matrix and conduit 

fluxes are summarized in Table 11. The values of the epikarst-to-conduit flow emptying exponent 

𝛼𝐸𝐶 (1.775–2.5; Mean: 2.309) and conduit-to-spring flow emptying exponent 𝛼𝐶𝑆 (1.536–2.5; 

Mean: 2.126) indicate that ISPEEKH simulated the conduit fluxes in the Baget catchment as 

nonlinear, which is consistent with the karst aquifer discharge dynamics. These results indicate 

that the model is well adapted to reproduce the hydrodynamic behavior of the study catchment, 

despite underestimating streamflow under all precipitation products. On the other hand, the 

emptying exponent of the matrix-to-conduit bidirectional flow rate 𝛼𝑀𝐶 (0.939–1.3; Mean: 1.081) 

was mostly close to 1, suggesting that the exchange flow between the conduit and the surrounding 

matrix is primarily determined by the hydraulic conductivity of the fissured system. 
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Table 11. Optimal values of the emptying exponents (alpha) of the epikarst, matrix and conduit fluxes 

simulated by ISPEEKH under different precipitation datasets. 

Precipitation dataset 𝜶𝑬𝑴 𝜶𝑬𝑪 𝜶𝑴𝑪 𝜶𝑴𝑺 𝜶𝑪𝑺 

Saint Girons 1.000 2.500 1.129 0.519 2.201 

CPC 0.863 2.484 1.055 0.512 2.466 

CPC-ds 0.738 2.433 1.300 0.543 2.452 

E-OBS 0.867 2.468 1.025 0.506 2.467 

E-OBS-ds 0.920 2.474 1.085 0.506 2.462 

SAFRAN 0.799 2.500 1.176 0.578 1.536 

COMEPHORE 0.789 2.430 1.056 0.513 1.885 

ERA5-Land 0.721 2.500 1.061 0.575 2.077 

ERA5-Land-ds 0.734 2.500 0.939 0.570 1.985 

PERSIANN-CDR 0.738 1.929 1.094 0.575 1.737 

IMERG-LR 0.757 1.775 1.070 0.593 1.776 

IMERG-LR-ds 0.743 1.788 1.032 0.585 1.920 

CPC-IMERG-LR-ds 0.923 2.487 1.124 0.519 2.491 

CHIRPS 0.764 1.918 1.033 0.584 1.933 

SM2RAIN-ASCAT 0.820 2.455 1.033 0.503 2.500 

Min 0.721 1.775 0.939 0.503 1.536 

Max 1.000 2.500 1.300 0.593 2.500 

Mean 0.812 2.309 1.081 0.545 2.126 

 

5.3.3 Performance of volume-corrected downscaled precipitation datasets for catchment 

water balance and streamflow simulation 

Following the correction of the COMEPHORE, CPC-ds, E-OBS-ds, ERA5-Land-ds, 

IMERG-LR-ds and merged CPC-IMERG-LR-ds precipitation data, the calibrated ISPEEKH 

models yielded comparable values of the water balance components for the 2008−2018 period, 

with mean annual 𝑃𝐶𝑃 of 1781−1824 mm, 𝐸𝑇𝑎 of 598−620 mm (equivalent to 33−35% of 𝑃𝐶𝑃), 

𝑄𝑆𝑈𝑅𝐹 of 194−237 mm, 𝑅𝐸𝐶𝐻 and 𝑄𝑆𝑃𝑅𝐼𝑁𝐺 of 920−963 mm, and 𝑄𝑆𝑇𝑅𝐸𝐴𝑀 of 1160−1194 mm 

(equivalent to 65−67% of 𝑃𝐶𝑃) (Table 12). 𝑄𝑆𝑃𝑅𝐼𝑁𝐺 represented 78−82% of 𝑄𝑆𝑇𝑅𝐸𝐴𝑀 and channel 

flow amounted to the remaining 18−22%. The PBIAS (absolute values) were reduced considerably 

to less than 5% in calibration and 10% in validation after precipitation correction. 
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Table 12. Mean annual water balance fluxes in the Baget catchment (mm.year-1) for years for 2008−2018, 

simulated using ISPEEKH with the corrected precipitation datasets of the 1-km resolution COMEPHORE 

and downscaled CPC, E-OBS, ERA5-Land, IMERG-LR, and CPC-IMERG-LR products. 

Precipitation dataset 𝑷𝑪𝑷 𝑷𝑬𝑻 𝑬𝑻𝒂 𝑸𝑺𝑼𝑹𝑭 𝑹𝑬𝑪𝑯 𝑸𝑺𝑷𝑹𝑰𝑵𝑮 𝑸𝑺𝑻𝑹𝑬𝑨𝑴 

CPC-ds 1801.51 684.69 608.15 224.41 919.75 919.47 1164.76 

E-OBS-ds 1788.33 685.09 602.63 210.29 963.24 962.91 1193.82 

COMEPHORE 1823.76 685.15 598.35 236.71 926.39 926.24 1184.05 

ERA5-Land-ds 1780.99 684.39 620.16 207.46 933.96 932.08 1159.57 

IMERG-LR-ds 1792.90 688.06 619.85 193.71 951.99 949.33 1162.39 

CPC-IMERG-LR-ds 1799.23 685.19 617.59 208.93 944.92 944.48 1173.16 

 

The corrected COMEPHORE precipitation yielded the streamflow simulation with the highest 

overall NSE, R2, and KGE values (Table 13), indicating satisfactory (0.50 < NSE ≤ 0.70; 0.60 < 

R2 ≤ 0.75) to good performance (0.70 < NSE ≤ 0.80; 0.75 < KGE ≤ 0.85) based on Moriasi et al. 

(2015) and Jeannin et al. (2021). The corrected E-OBS-ds precipitation improved the model 

predictive performance from unacceptable to satisfactory, both in calibration and validation. The 

CPC-ds and merged CPC-IMERG-LR-ds precipitation correction also enhanced the model 

performance, particularly in calibration where both NSE and R2 surpassed 0.6 compared to 0.5 in 

validation, while KGE exceeded 0.7 in calibration and 0.6 in validation. On the other hand, the 

NSE and R2 metrics varied only marginally under the corrected ERA5-Land-ds precipitation, as 

opposed to KGE increasing from 0.38 to above 0.6 and 0.5 in calibration and validation, 

respectively. Finally, the corrected IMERG-LR-ds precipitation consistently performed poorly in 

streamflow simulation, with very low NSE, R2, and KGE metrics. 
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Table 13. Daily streamflow statistical performance indices for the ISPEEKH simulations driven by the 

corrected COMEPHORE and downscaled ERA5-Land, CPC, E-OBS, IMERG-LR, and merged CPC-

IMERG-LR precipitation datasets. 

 Calibration Validation 

Precipitation dataset NSE R2 PBIAS KGE NSE R2 PBIAS KGE 

CPC-ds(1) 0.638 0.65 2.58% 0.787 0.533 0.54 -6.33% 0.666 

CPC-ds(2) -0.103 0.266 78.2% -0.179 0.101 0.474 69.7% -0.057 

E-OBS-ds(1) 0.646 0.666 -2.25% 0.81 0.67 0.66 -6.23% 0.786 

E-OBS-ds(2) 0.049 0.351 71.36% -0.034 0.268 0.525 64.62% 0.101 

COMEPHORE(1) 0.719 0.736 3.20% 0.854 0.637 0.732 -10.65% 0.772 

COMEPHORE(2) 0.496 0.63 47.76% 0.374 0.625 0.682 36.35% 0.547 

ERA5-Land-ds(1) 0.56 0.564 1% 0.603 0.523 0.531 -4% 0.547 

ERA5-Land-ds(2) 0.459 0.555 32.06% 0.379 0.477 0.577 27.72% 0.379 

IMERG-LR-ds(1) 0.016 0.087 3.87% 0.168 0.014 0.108 -7.37% 0.232 

IMERG-LR-ds(2) -0.015 0.126 53.25% -0.062 0.094 0.174 43.29% 0.088 

CPC-IMERG-LR-ds(1) 0.623 0.624 2.1% 0.719 0.499 0.503 -7.3% 0.614 

CPC-IMERG-LR-ds (2) -0.047 0.296 74.8% -0.127 0.176 0.481 65.7% 0.021 
(1) precipitation dataset after correction; (2) precipitation dataset before correction 

 

Although precipitation correction ensured water balance closure by mitigating the 

streamflow volume underestimation, this approach did not improve streamflow simulation for 

every precipitation dataset. The model driven by the corrected COMEPHORE precipitation best 

reproduced the discharge patterns during the high-flow periods by preserving the rising and 

recession of the observed hydrograph, while accurately estimating most peak flow values (Figure 

28c). In comparison, the models run with the corrected CPC-ds (Figure 28a), E-OBS-ds (Figure 

28b) and merged CPC-IMERG-LR-ds (Figure 28f) precipitation datasets often underestimated 

peaks greater than 3 m3.s-1. Moreover, the model better estimated flow during recession under the 

corrected COMEPHORE precipitation rather than the CPC-ds, EOBS-ds and merged CPC-

IMERG-LR-ds precipitation. Under the corrected ERA5-Land-ds precipitation, peak flow rates 

were generally underestimated, while intermediate and low flows were overestimated, resulting in 

simulated falling limbs that are higher than the falling limbs of the observed hydrograph (Figure. 

28d). Moreover, the simulated and observed hydrographs under the corrected IMERG-LR-ds 

precipitation were asynchronous and showed noticeable discrepancies for the high- and low-flow 

magnitudes (Figure 28e). Nonetheless, the NSE, KGE, KGENP, Rp and Rs metrics, calculated 

for the mean simulated daily streamflow hydrographs and plotted in radar charts for the calibration 

and validation periods (Figure 29), showed a globally higher model predictive performance under 
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the ensemble of corrected precipitation data. Figure 30 illustrates the observed and best estimated 

daily streamflow with prior and posterior prediction uncertainty bands under the corrected 

COMEPHORE precipitation. The plot in Figure 30a represents the prior parameter ensembles 

with wider uncertainty bands, while the plot in Figure 30b shows the posterior ensemble that 

reduced the uncertainty band, indicating that the ensemble smoother has incorporated the 

observational data effectively with higher quality precipitation data.  
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Figure 28. Daily observed and simulated streamflow of the Baget catchment in years 2008–2018, using the 

ISPEEKH model driven by the corrected (a) downscaled CPC precipitation, (b) downscaled E-OBS 

precipitation, (c) COMEPHORE precipitation, (d) downscaled ERA5-Land precipitation, (e) downscaled 
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IMERG-LR precipitation, and (f) downscaled merged CPC-IMERG-LR precipitation. NSE: Nash–Sutcliffe 

Efficiency; R2: coefficient of determination; PBIAS: percent bias; KGE: Kling–Gupta Efficiency 

 

Figure 29. Radar chart of the NSE (Nash-Sutcliffe Efficiency), KGE (Kling Gupta Efficiency), KGENP 

(Kling Gupta Efficiency Non-Parametric), Rp (Pearson correlation coefficient), and Rs (Spearman 

correlation coefficient) performance criteria for the (a) calibration and (b) validation periods of the mean 

daily streamflow ISPEEKH simulations with the uncorrected and corrected precipitation datasets. 
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Figure 30. (a) Prior and (b) posterior prediction uncertainty bands for streamflow simulation in the Baget 

catchment using ISPEEKH driven by corrected COMEPHORE precipitation dataset. 

 

Figure 31 shows the Pearson correlation coefficient (Rp) performance metric as a function 

of time scale, based on the application of an orthogonal wavelet decomposition on the observed 

and simulated streamflow under the uncorrected and corrected 1-km resolution precipitation 

datasets. The uncorrected COMEPHORE and ERA5-Land-ds reanalysis precipitation products 

had comparable performances and outperformed their counterparts for the various scales. 

Correlations under COMEPHORE ranged from 0.289 to 0.874 in the calibration period and 0.228 

to 0.906 in the validation period for the 2- to 32-day scales, while correlations under ERA5-Land-

ds varied from 0.098 (2 days) to 0.819 (32 days) in calibration and 0.156 (2 days) to 0.836 (16 

days) in validation. The uncorrected CPC-ds and E-OBS-ds gauge-based precipitation datasets 

yielded correlations of 0.182−0.564 and 0.245−0.666, respectively, in calibration for the 2- to 32-

day scales, and correlations of 0.262−0.767 and 0.198−0.827, respectively, in validation. 

Moreover, the uncorrected CPC-IMERG-LR-ds precipitation scored correlations in the range of 
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0.201 (2 days)−0.588 (32 days) during calibration and 0.401 (2 days)−0.804 (32 days) during 

validation. The model driven by the uncorrected IMERG-LR-ds precipitation showed the poorest 

performances:  correlations were negative for the 2-day scale, and varied from 0.132 (4 days) to 

0.252 (32 days) in calibration and 0.160 (4 days) to 0.387 (16 days) in validation. 

Model performance improved across the various time scales under the corrected COMEPHORE, 

E-OBS-ds, and CPC-ds products. The corrected COMEPHORE precipitation exhibited the highest 

correlations, which ranged from 0.785 to 0.941 in the calibration period and 0.769 to 0.931 in the 

validation period for the scales from 4 days to 32 days. Under the E-OBS-ds precipitation, 

correlations increased to 0.686 (4 days)–0.932 (32 days) in calibration and to 0.703 (4 days)–0.919 

(32 days) in validation. Correlations also improved considerably under the corrected CPC-ds 

precipitation, increasing to 0.699–0.862 and 0.656–0.819 for the 4- to 32-day scales. On the other 

hand, correlations were higher with the CPC-IMERG-LR-ds precipitation mainly during 

calibration, increasing to 0.322 (2 days)–0.846 (32 days). Under the corrected ERA5-Land-ds 

precipitation, correlation values increased slightly (0.652−0.833) in the calibration period for the 

4- to 32-day scales but decreased (0.031−0.741) in the validation period, showing an overall 

comparable model performance to the uncorrected ERA5-Land-ds precipitation. Correlations only 

increased in the calibration period for the 16- to 32-day scales but diminished in the validation 

period under the corrected IMERG-LR-ds precipitation, indicating a lower model performance for 

the high compared to the uncorrected IMERG-LR-ds precipitation. 
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Figure 31. Pearson correlation coefficient (Rp) performance criteria on the calibration and validation 

periods, based on orthogonal wavelet decomposition on observed and simulated streamflow times series 

under the uncorrected and corrected 1-km resolution precipitation datasets. 
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Figure 32 shows the envelopes of monthly average simulated streamflow values under the 

various uncorrected and corrected 1-km resolution precipitation datasets. The envelope formed 

with the uncorrected precipitation data reveals significant discrepancies between simulated and 

observed discharge, at both monthly and annual scales. This suggests limitations in the ISPEEKH 

model's ability to accurately reproduce the catchment hydrological processes when driven with 

uncorrected precipitation inputs. In contrast, the envelope with corrected precipitation datasets 

demonstrates satisfactory predictive performances, with narrower ranges of simulated streamflow 

values and reduced discrepancies between the simulated and observed discharge patterns, both in 

the calibration and validation periods. Thus, the incorporation of corrected precipitation data has 

enhanced the reliability and predictive capability of the hydrological model, leading to more robust 

simulations of streamflow dynamics.  
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Figure 32. Mean observed streamflow and mean minimum and maximum values of the ensemble of 

ISPEEKH streamflow simulations under the uncorrected and corrected precipitation datasets considering 

(a) the calibration period at monthly scale, (b) validation period at monthly scale, and (c) both calibration 

and validation periods at annual scale.    
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Overall, these findings underscore the importance of accurate precipitation data quality for 

the hydrological modeling of small-scale karst watersheds characterized by quick flow processes, 

and highlight the value of incorporating corrected precipitation datasets to enhance the 

hydrological model’s predictive capability as opposed to relying on globally used gauge-, and 

satellite-based and reanalysis precipitation products, both at coarse and downscaled spatial 

resolutions. The COMEPHORE reanalysis of precipitation by merging radar and rain gauge data, 

covering metropolitan France, was found to be more reliable than the global gauge- and satellite-

based precipitation products. Therefore, for future research, daily and subdaily operating rain 

gauges should be installed at different altitudes in the Baget catchment in order to capture the 

spatial and temporal distribution characteristics of the catchment precipitation, then evaluate the 

spatial and temporal scale accuracy of regional and global precipitation products with respect to 

the station-measured precipitation. Subsequently, different bias correction methods could be 

applied to these products (Ye et al., 2023), and watershed hydrological modeling can be performed 

with the raw and corrected precipitation datasets so as to re-evaluate their accuracy at daily and 

subdaily time scales, and assess the performance of the bias correction methods. Additionally, this 

study suggests that the development of fine-resolution native reanalysis precipitation products 

could serve as base data for streamflow simulation in remote meso-scale karst catchments. To 

improve the model streamflow prediction performance, it is recommended to either apply 

watershed-scale precipitation volume correction methods (e.g., “Doing Hydrology Backward 

(DHB)” (Kirchner’s methodology) if there are no representative ground stations or use 

precipitation information from available representative nearby stations to correct the base 

precipitation. 

5.3.4 Study limitations and future perspectives  

This study underscored the importance of accurate precipitation data quality for the 

hydrological modeling of mesoscale ungauged karst catchments characterized by quick flow 

processes. It highlighted the value of applying corrected precipitation datasets at downscaled 

spatial resolution to enhance the hydrological model’s predictive capability of streamflow in such 

catchments as opposed to relying on globally used gauge-based, satellite-based and reanalysis 

precipitation products at coarse spatial resolutions. A catchment-scale precipitation volume 

correction was performed to close the water budget before model calibration by “Doing Hydrology 

Backward (DHB)” (Kirchner’s methodology), with orographic correction multiplicative factors 
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calculated for the 1-km resolution precipitation products. This correction method, however, did 

not improve the simulated hydrographs under all precipitation datasets. The corrected 

COMEPHORE reanalysis product, specifically developed by merging radar and rain gauge data 

for metropolitan France, delivered the best simulation results, suggesting that fine-resolution 

regionally-tailored reanalysis precipitation products could serve as base data for streamflow 

simulation in remote meso-scale karst catchments. 

This finding underscores a critical limitation: the absence of representative precipitation gauges 

within the study catchment. Raw precipitation products, whether gauged-based, satellite-based or 

reanalysis, cannot fully substitute for direct, localized observations. Moreover, the bias correction 

of these products, while necessary, is insufficient to achieve high accuracy without a robust 

network of precipitation gauges within the catchment. The presence of such gauges is 

indispensable for capturing the spatial and temporal variability of precipitation, ensuring the 

reliability of hydrological models in similar ungauged or sparsely gauged regions. Thus, for future 

research, daily and subdaily operating rain gauges should be installed at different altitudes in the 

Baget catchment in order to capture the spatial and temporal distribution characteristics of the 

catchment precipitation, then evaluate the spatial and temporal scale accuracy of regional and 

global precipitation products with respect to the station-measured precipitation. Subsequently, 

different correction methods could be applied to these products, and watershed hydrological 

modeling could then be performed with the raw and corrected precipitation datasets so as to re-

evaluate their accuracy at daily and subdaily time scales, and assess the performance of the 

correction methods.  

Several approaches are reported in the literature to correct gridded precipitation products with 

gauge observations such as ratio bias correction, dual-core smoothing correction, Bayesian 

correction, cokriging, probability matching, optimal interpolation–probability matching, 

integrated fusion through inverse error variance weighting (Ye et al., 2023), artificial neural 

networks (Ait Dhmane et al., 2023), frequency correction (Li et al., 2023), and distribution 

mapping (Londhe et al., 2023).On the other hand, the elevation bands method has been commonly 

used in SWAT to consider the orographic effects on precipitation in mountainous regions. The 

method applies up to ten equally spaced elevation bands in each subbasin to adjust regional 

precipitation by weighting the elevation difference between the rain gauge and the band, and 

multiplying the elevation difference by a constant input precipitation lapse rate (Tuo et al., 2016). 
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Several studies have shown that the elevation bands method in SWAT enhanced the accuracy of 

the precipitation estimation and runoff simulations in mountainous regions (Chiphang et al., 2020; 

Wu et al., 2019; Zhang et al., 2015), while others underlined the need to improve it as the increase 

in precipitation with altitude should not constant but rather dependent on the precipitation amount. 

In their study, Galván et al. (2014) observed that the elevation band method in SWAT often 

underestimates intense precipitation and overestimates lower precipitation due to discrepancies 

between subbasin altitudes and rain gauge elevations. To address this, they proposed a 

modification to the SWAT source code that calculates a ratio to multiply precipitation at the 

recording gauge and determine precipitation in the elevation band, rather than adding a constant 

value. Similarly, Grusson et al. (2015) identified issues with SWAT's overestimation of snow at 

higher elevations, attributing this to the use of uniform temperature and precipitation lapse rates. 

They suggested two approaches to mitigate this: (1) increasing the number of elevation bands, or 

(2) using the existing bands more effectively by setting thinner bands at higher altitudes to cover 

smaller elevation ranges. In SWAT+, the precipitation and temperature lapse rates should adjust 

precipitation and temperature based on elevation data from spatial objects and weather files. 

Although these changes were planned to be reflected in the SWAT+ source code and 

documentation, the new inputs were not operational in the version of SWAT+ used in this study. 

Finally, continuous streamflow data from gauge station B1 was used to calibrate the model. 

However, since spring flow is a major component of streamflow in the Baget catchment, the 

absence of continuous spring flow measurements for calibration limits the model's ability to fully 

capture groundwater dynamics, introducing uncertainty in simulating both spring flow and overall 

streamflow. Therefore, future work should prioritize the collection of continuous spring flow data 

at Las Hountas, along with groundwater level measurements and hydrogeochemical data, to enable 

a more comprehensive model calibration. This would result in a more accurate representation of 

water fluxes and storage dynamics within the karst aquifer, ultimately improving streamflow 

predictions. 

5.4 Conclusions  

This study evaluated the performance of several coarse- and fine-resolution precipitation 

products in simulating daily streamflow in the small-scale Baget karst catchment (13.25 km2), 

located in a sparsely monitored region in the Pyrenees mountains, southwest of France, and 

characterized by rapid rainwater infiltration. The ensemble of precipitation datasets used in this 
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study included: the gauged-based products CPC and E-OBS, the reanalysis products SAFRAN, 

COMEPHORE and ERA5-Land, and the satellite-based products PERSIANN-CDR, IMERG-LR, 

SM2RAIN-ASCAT, and CHIRPS. The CPC, E-OBS, ERA5-Land, and IMERG-LR precipitation 

datasets were downscaled to 1-km resolution and applied together with 1-km resolution merged 

CPC-IMERG-LR precipitation in the hydrological analysis. The Baget catchment's hydrological 

response to the precipitation products was simulated over years 2006–2018 using the ISPEEKH 

model, a modified variant of the Soil and Water Assessment Tool (SWAT+) for spring flow-

dominated karst watersheds. This model incorporates three nonlinear reservoirs to simulate fluxes 

of the epikarst, conduit, and matrix water-bearing components in a karst aquifer. In conclusion: 

• The discharge coefficients and emptying exponents governing the epikarst outflow to the 

conduits and the conduit outflow to the spring were the most sensitive model parameters 

across the precipitation products used in this study. This result aligns with the discharge 

patterns observed in the Baget catchment, where fast recharge and conduit-dominated flow 

behavior are prevalent.  

• Water balance analysis from 2008 to 2018 revealed a noticeable deficit under the ensemble 

of the precipitation datasets. The gauge- and satellite-based precipitation products yielded 

the lowest model prediction performances, with a flow underestimation bias of around 48 

to 74%. The reanalysis products outperformed the gauge- and satellite-based precipitation 

products, scoring higher NSE, R2, and KGE metrics, and an overall 30–44% flow 

underestimation bias. The COMEPHORE precipitation performed best, followed by 

SAFRAN and ERA5-Land precipitation.  

• The downscaling of the CPC, IMERG-LR, ERA5-Land and E-OBS precipitation datasets 

to finer 1-km spatial resolution improved the model predictive performance insubstantially 

or only marginally compared to the coarse datasets.  

• The optimal values of the emptying exponents of the epikarst-to-conduit and conduit-to-

spring outflows, simulated under the ensemble of the precipitation products, were mostly 

greater than 2, suggesting that ISPEEKH was adapted to reproduce the nonlinear conduit 

flow dynamics in the Baget catchment and that the discrepancy in the model predictive 

performance is mainly related to precipitation quality. 

• Finally, this study underscored the significance of incorporating spatially distributed 

corrected precipitation from various products in order to enhance the reliability of models 
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in the hydrological simulation of highly responsive small karst catchments. Based on 

catchment-scale precipitation correction, the COMEPHORE reanalysis of precipitation 

covering mainland France generated the best streamflow simulation, highlighting the need 

to install in-situ gauges stations at various altitudes in the catchment to correct the fine 

resolution reanalysis precipitation data for further improvement of the discharge 

simulations. 
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CHAPTER 6: Conclusions and future perspectives 

6.1 Conclusions 

The Soil and Water Assessment Tool (SWAT) has experienced significant global growth 

in conducting environmental studies, with over 5000 peer-reviewed articles published. SWAT 

review studies covered a variety of applications including SWAT developments in landscape 

representation, stream routing, soil phosphorus dynamics, ecosystem services quantification, 

runoff simulation, hydrological impacts assessment under a changing environment, non-point 

source pollution, and coastal watershed applications. However, numerical simulation of karst 

watersheds and their processes in SWAT is still ongoing, despite advancements in SWAT models 

and methods. 

A review of 75 peer-reviewed studies published between 2000 and 2022 examined the 

applications of standard and modified SWAT models in karst-influenced and karst-dominated 

watersheds. The review emphasized the limited number of studies that used karst numerical 

modeling with SWAT. Most studies reported direct application of standard SWAT in karst 

watersheds, while few have modified the source code or integrated it with other karst aquifer-based 

groundwater models to improve karst watershed hydrology simulation. While SWAT adequately 

simulated streamflow in several karst areas, it was found to have poor predictive performance in 

complex karst watersheds, failing to accurately reproduce peak and low flows, generating faster 

regressions than observed data, and underpredicting runoff volumes due to the lack of explicit 

representation of karst features hydrodynamics. Additionally, the modified SWAT models did not 

fully reproduce flow functions of epikarst, matrix, and conduits in karst aquifers using a non-linear 

storage-discharge relationship. 

The study proposes a semi-distributed karst hydrological model called ISPEEKH for 

simulating surface and subsurface flow processes in karst-dominated catchments. The model was 

developed by modifying the recharge functions of the SWAT+ source code and implementing a 

non-linear three-reservoir karst module that reproduces the epikarst-matrix-conduit system. 

ISPEEKH was applied to model the water balance of the Baget karst catchment in the southwestern 

French Pyrénées from 2008-2018, characterized by fast response to rainfall, nonlinear flow 

patterns and dominant karst spring discharge through underground conduits. The model accurately 

simulated daily discharge at the catchment outlet (NSE = 0.67, R2 = 0.68, and PBIAS = 0.7% for 



203 

 

the 2008−2013 calibration period, and NSE = 0.65, R2 = 0.69, and PBIAS = -13.83% for the 

2014−2018 validation period), using COMEPHORE reanalysis precipitation adjusted by an 

orographic correction multiplicative factor of 1.44. It also represented the internal matrix-conduit 

flow dynamics of catchment adequately. ISPEEKH was used to predict the impacts of land-use 

change scenarios of afforestation and deforestation on the Baget catchment hydrology. Results 

showed that afforestation did not significantly influence annual water yield, while deforestation 

had mixed impacts. The transition from forests to transitional woodland/shrub reduced annual 

evapotranspiration and increased recharge and discharge, particularly in the low-flow season, 

whereas the transition from forests to pastures increased evapotranspiration and reduced discharge, 

primarily in the high-flow season. Following the development of ISPEEKH and its first application 

in the Baget, a second study was conducted to compare the reliability of reanalysis, gauge-, and 

satellite-based precipitation products for daily water balance and streamflow simulation in a meso-

scale karst catchment with short response time to precipitation and sparse precipitation monitoring 

network, taking the Baget catchment as a case study. To run the simulations, ISPEEKH was 

integrated with a Parameter ESTimation Tool (PEST) framework for automated calibration, global 

sensitivity analysis, and parameter estimation. The study included daily precipitation datasets from 

Saint Girons weather station, CPC and E-OBS gauge-based products, SAFRAN, COMEPHORE, 

and ERA5-Land reanalysis products, and IMERG-LR, PERSIANN-CDR, CHIRPS, and 

SM2RAIN-ASCAT satellite-based products. The CPC, E-OBS, ERA5-Land, and IMERG-LR 

coarse precipitation datasets were downscaled to 1-km resolution using CHELSA, which is based 

on a mechanistical statistical downscaling of global reanalysis data or global circulation model 

output, and a triple collocation technique was subsequently applied to merge the downscaled 

datasets CPC and IMERG-LR datasets. The resulting kilometric precipitation products were also 

used in hydrological modeling of the Baget catchment. The study analyzed the sensitivity of 

selected ISPEEKH parameters under the various precipitation datasets using the Morris screening 

method. The top four most sensitive parameters were the discharge coefficients and emptying 

exponents of the conduit-to-spring flow and epikarst-to-conduit flow across all input precipitation 

datasets. Overall, the parameters governing karst groundwater flow and infiltration were the most 

sensitive, while surface runoff and evapotranspiration parameters were among the least sensitive. 

The optimal values of emptying exponents of epikarst-to-conduit and conduit-to-spring outflows 
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were mostly greater than 2, indicating that ISPEEKH was adapted to reproduce nonlinear conduit 

flow dynamics in the Baget catchment 

The Baget catchment water balance for the 2008-2018 period showed a considerable deficit 

under all precipitation datasets, resulting in a flow underestimation bias of 69% to 79% under the 

CPC precipitation for the calibration and validation periods, and 28% to 32% under the 1-km 

resolution ERA5-Land precipitation. Overall, the reanalysis COMEPHORE, SAFRAN, and 

ERA5-Land precipitation products outperformed the gauge- and satellite-based precipitation 

products. The study found that downscaling of the CPC, IMERG-LR, E-OBS and ERA5-Land 

precipitation datasets to 1-km spatial resolution improved the model predictive performance 

unsubstantially compared to the coarse datasets. The study also highlighted the importance of 

incorporating spatially distributed corrected precipitation to enhance model reliability in 

hydrological simulations of highly responsive small karst catchments. The water balance 

discrepancy was resolved by correcting the precipitation datasets at 1-km resolution using 

orographic correction multiplicative factors, calculated using the "Doing Hydrology Backward" 

methodology. The envelopes of monthly average simulated streamflow values under the various 

uncorrected and corrected 1-km resolution precipitation datasets were compared. The envelope of 

the uncorrected datasets showed significant discrepancies between simulated and observed 

discharge, indicating limitations in the model's ability to accurately reproduce catchment 

hydrological processes. Meanwhile, the envelope for the corrected datasets show satisfactory 

predictive performances, with narrower ranges of simulated streamflow values and reduced 

discrepancies between simulated and observed discharge patterns during calibration and validation 

periods, highlighting the need for in-situ representative gauge stations for further correction of 

correct fine resolution precipitation products. The COMEPHORE reanalysis of precipitation 

covering mainland France generated the best streamflow simulation (NSE = 0.719, R2 = 0.736, 

PBIAS = 3.2%, and KGE = 0.854 for the 2008−2013 calibration period, and NSE = 0.637, R2 = 

0.732, PBIAS = -10.65%, and KGE = 0.772 for the 2014−2018 validation period), suggesting that 

fine-resolution native reanalysis precipitation could serve as the base dataset for the streamflow 

modeling in remote meso-scale karst catchments. 
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6.2 Future perspectives 

A semi-distributed karst hydrological model with spatially variable recharge can be 

developed either by increasing model complexity through the addition of flow processes and 

parameters, or by incorporating spatial information about the meteorological forcing and karst 

watershed landscape characteristics into the model. Following the development of ISPEEKH, 

future research should focus on verifying whether or not semi-distributed models that explicitly 

integrate the spatial variability of the groundwater recharge and other streamflow dominant 

controls yield better predictive performance in the hydrological simulation of karst (-dominated) 

watersheds than lumped parameter models. To address this question, an ensemble of karst 

watersheds, having an increasing order of heterogeneity of the landscape properties, groundwater 

recharge mechanisms, discharge signatures, and anthropogenic pressure, should be selected. For 

each watershed, distinct karst mathematical models (e.g., KarstMod, LuKARS and ISPEEKH), 

exploring different level of functional complexity to reproduce the recharge and streamflow spatial 

variability should be developed. KarstMod and LuKARS are lumped-parameter models that use 

spatially aggregated effective precipitation to model recharge from the karst aquifer autogenic 

recharge area and discharge from one main karst outlet. Both models simulate groundwater 

withdrawals and allogenic recharge as spatially aggregated time series. While KarstMod uses a 

single reservoir to simulate lumped recharge from the unsaturated zone, LuKARS considers 

recharge spatial variability by grouping areas of homogeneous land use and soil properties as 

distinct recharge reservoirs called hydrotopes. ISPEEKH, on the other hand, integrates the spatial 

variability of all meteorological inputs and landscape properties of the watershed recharge area at 

the hydrological response unit (HRU) scale. It models the unsaturated zone flow processes at the 

HRU scale and groundwater flow in the saturated zone, including discharge to multiple outlets for 

both karst and non-karst recharge areas. ISPEEKH also allows the simulation of water withdrawals 

from aquifers underlying the delineated subbasins and allogenic recharge as a function of water 

losses from the channels connecting subbasins.  

 Following model calibration, a comparative performance evaluation of the KarstMod, 

LuKARS and ISPEEKH flow simulations in each watershed can be conducted using statistical and 

signature metrics commonly applied in karst hydrology. First, the simulated flow time series of 

the three models should be compared to the observed flow time series at the gauging station(s) in 

each watershed, using performance metrics for low flow (e.g., mean square error of log discharge 



206 

 

MSEL, Transformed root mean square error TRMSE), high flow (e.g., Nash–Sutcliffe efficiency 

NSE, Root mean square error RMSE), discharge dynamics (e.g., coefficient of determination R2), 

volume of transit (e.g., modified balance error BE, volumetric error VE), in addition to the Kling-

Gupta efficiency coefficient KGE and non-parametric Kling-Gupta efficiency KGENP, among 

other metrics. In addition, the Akaike Informative Coefficient AIC [AIC = 2 k + Nln(RSS), where 

k is the number of model parameters, N the number of observations and RSS is the sum of the 

squared residuals] can be computed to evaluate how the flow simulation performance evolves 

with the increasing number of parameters in the three models. The autocorrelation function (ACF) 

on both observed and simulated discharge, and the cross-correlation function (CCF) between 

precipitation and both observed and simulated discharge with each watershed model can be 

calculated, and complemented with cross wavelet spectrum (XWT) and cross wavelet coherence 

(WTC) analysis to highlight the relationships between simulated recharge and observed discharge 

signals (Pfannerstill et al., 2014; Sivelle et al., 2022). Finally, the findings from the watershed 

modeling set can be compiled to validate if the use of a semi-distributed model with a finer 

representation of the recharge-discharge spatial variability improves the hydrological simulation 

performance compared to lumped modeling.  

 

The ISPEEKH model configuration applied to the Baget catchment is suitable for unary or 

conservative karst watersheds where autogenic recharge over the karst surface topographic basin 

is the primary component of spring flow. However, it cannot be used to simulate flow in binary 

karst watersheds where both autogenic recharge and allogenic recharge from neighbouring (often 

non-karst) basins contribute to the karst spring discharge. Therefore, a new configuration of 

ISPEEKH should be proposed for binary karst watersheds by incorporating the recharge and 

groundwater flow processes of combined karst and non-karst aquifers, including the contribution 

of allogenic recharge by interbasin groundwater flow to the karst spring flow. The new ISPEEKH 

model can be tested in the Touvre binary karst system as a case study. The perennial Touvre karst 

spring, located in the west of France, is the second largest water resurgence in the country after 

the Fontaine de Vaucluse, with a mean streamflow that varies between 3 m3.s-1 and 49 m3.s-1 

annually. The Touvre basin is fed by autogenic recharge on a karst impluvium of 550 km2 and by 

allogenic recharge from sinking streams that drain three external non-karst basins (Tardoire, 

Bandiat, and Bonnieure), bringing its total groundwater recharge contribution zone to nearly 1600 
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km2. In addition, it is exploited for domestic, agricultural, and industrial water demand, requiring 

further modifications to the original ISPEEKH source code to integrate user-defined input files for 

domestic/municipal, industrial or irrigation water demand, and water supply from river channels 

or aquifers. 

Future research should also focus on addressing water scarcity issues in karst watersheds, 

driven by climate change and anthropogenic pressure. Taking the Touvre basin as a case study, 

synthetic scenarios of climate projections and anthropogenic pressures should be implemented 

(e.g., at horizon 2100) using the calibrated ISPEEKH model of the Touvre. The first step would 

be to assess future water resources in the Touvre basin considering climate projections only and 

no changes in the anthropogenic drivers of water scarcity from the reference period into the future 

period (i.e., same land use and or groundwater abstraction patterns from the reference period into 

the future). The climate projections of the DRIAS-2020 dataset (total precipitation, air 

temperature, wind speed, and relative humidity), available over France through the DRIAS portal 

(http://www.drias-climat.fr/), downscaled to 8-km resolution and bias-corrected with respect to 

Safran reanalysis data (Soubeyroux et al., 2020) could be used for the analysis. Next, future water 

resources in the Touvre watershed can be evaluated under the climate projections combined with 

changes in the land use and or groundwater abstraction patterns from the reference period into the 

future. For instance, the land-use change scenarios can be implemented by generating new land 

use maps that consider 10–100% conversion of cropland to natural vegetation, and or 10–100% 

conversion of natural vegetation to cropland, resulting in changes in future groundwater 

abstractions for irrigation. The impact of groundwater abstraction on available water resources can 

also be studied by considering 10–100% increase/decrease in domestic water withdrawals. The 

hydrological response of the watershed under all scenarios can be assessed using a comprehensive 

set of flow measures from the model simulations, with a primary focus on low-flow conditions 

(e.g., mean annual runoff, mean daily flow, absolute minimum flow, flow duration curve and flows 

with 70−99% time exceedance) (Smakhtin, 2001). 

The impact of multi-site streamflow calibration on the predictive performance of the 

ISPEEKH−Touvre model could be investigated by applying: (1) single-gauge calibration with 

respect to the daily karst spring flow measured at the Foulpougne station, and (2) multi-gauge 

calibration with the daily karst spring flow measured at the Foulpougne station and streamflow 

measured at the Montbron, Feuillade, Saint-Ciers and Coulgens stations, using a weighted 

http://www.drias-climat.fr/
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objective function. Future research could also focus on investigating the impact of using 

evapotranspiration (e.g., evapotranspiration derived from the remote sensing-driven 

evapotranspiration model SimpKcET in karst areas, Ollivier et al., 2021) and or measured 

groundwater levels as additional calibration variables on the model performance.  

 

Semi-distributed models such as ISPEEKH can still carry a large number of parameters, 

whereby their direct determination with necessary confidence makes them computationally costly. 

Surrogate models offer a reliable approach to address this issue, commonly known as “the curse 

of dimensionality” (Verleysen and François, 2005), by fusion of computationally optimized 

versions of existing modeling pipelines, based on both lumped and semi-distributed karst models, 

with an effective dimensionality reduction technique that can handle the spatiotemporal 

hydrological data and provide the means to quantify the uncertainty. In this context, more 

advanced research could focus on model reduction based on the variable bandwidth Diffusion 

Maps nonlinear dimensionality reduction approach (Berry, 2016; Coifman, 2006) combined with 

the kernel ridge regression for learning surrogate model parameters in the reduced space. Unlike 

other methods (e.g., the active subspace method applied by Teixeira Parente et al. (2019)), this 

nonlinear dimensionality reduction technique does not require a knowledge of the prior 

distribution of the input parameters. Instead, its optional bandwidth calibration step requires the 

knowledge of the data sampling density, which can be effectively interpolated from the 

geographical locations of observational stations. It is also well suited for exploratory data analysis 

because of its tolerance to the low amount and/or accuracy of the collected experimental data (Van 

Der Maaten et al., 2009). Moreover, the deterministic nature of this method allows the computation 

of the parameter sensitivity (Harlim, 2018). The surrogate model can then be used to perform 

Bayesian inversion of the model parameters and parametric uncertainty quantification. 

 

The ISPEEKH model proposed in this thesis has not been developed for modeling solute 

transport. Therefore, future research should aim to couple the karst aquifer flow model with solute 

transport models that reproduce the dominant solute transport processes (of major ions such as K, 

Na, Ca, Mg, Cl, and SO4 or anthropogenic contaminants such as NO3) in the epikarst, matrix and 

conduit compartments, considering stationary karst aquifers.  Different solute transport modeling 

approaches with varying orders of complexity can be tested for each subsystem. For instance, 

perfect mixing of solutes (Amin and Campana, 1996, van der Velde, 2012), Nash cascade with 
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perfect mixing (Nash, 1957; 1959), and calibrated transfer function are three methods that can be 

tested for the epikarst transport processes, while the perfect mixing and dual-domain (mobile-

immobile) models (Becker and Bellin, 2013) could be applied for the conduit system. As for the 

matrix, where different transit times of the water flowing through the domain should be considered 

together with the solute concentration gradient in the flow exchange between matrix and conduits, 

the applicability of the following modeling approaches can be investigated: (1) a simple bucket 

model that considers perfect solute mixing in the matrix, that is the solute mixing will be 

instantaneous on the model time-discretization level, (2) the 1-dimensional advection-dispersion 

equation commonly implemented in homogeneous porous media transport models, and (3) a 

transfer function that can simulate different transit times of a solute in the matrix (Jury, 1982). 

6.3 Conclusion (French version) 

L'outil d'évaluation des sols et de l'eau (SWAT) a connu une croissance mondiale 

significative pour mener des études environnementales, avec plus de 5 000 articles évalués par des 

pairs. Les études d'évaluation de SWAT ont couvert une variété d'applications, y compris les 

développements de SWAT dans la représentation du paysage, le routage des cours d'eau, la 

dynamique du phosphore dans le sol, la quantification des services écosystémiques, la simulation 

du ruissellement, l'évaluation des impacts hydrologiques dus à l'évolution de l'environnement, la 

pollution des sources non ponctuelles et les applications pour les bassins versants côtiers. 

Cependant, la simulation numérique des bassins versants karstiques et de leurs processus dans 

SWAT est toujours en cours, malgré les progrès des modèles et des méthodes SWAT.  

Une revue de 75 études évaluées par des pairs et publiées entre 2000 et 2022 a examiné les 

applications des modèles SWAT standard et modifiés dans les bassins versants influencés et 

dominés par le karst. La revue a souligné le nombre limité d'études qui ont utilisé SWAT pour la 

modélisation numérique du karst. La plupart des études indiquent une application directe de 

SWAT standard dans les bassins versants karstiques, alors que peu d'entre elles ont modifié le code 

source ou l'ont intégré à d'autres modèles d'eaux souterraines basés sur des aquifères karstiques 

afin d'améliorer la simulation de l'hydrologie des bassins versants karstiques. Bien que SWAT ait 

simulé de manière adéquate le débit des cours d'eau dans plusieurs zones karstiques, il s'est avéré 

que sa performance était médiocre dans les bassins versants karstiques complexes, ne parvenant 

pas à reproduire avec précision les débits de pointe et les faibles débits, générant des régressions 
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plus rapides que les données observées, et sous-estimant les volumes de ruissellement en raison 

du manque de représentation explicite de l'hydrodynamique des composantes karstiques. En outre, 

les modèles SWAT modifiés n'ont pas entièrement reproduit les fonctions d'écoulement de 

l'épikarst, de la matrice et des conduits dans les aquifères karstiques en utilisant une relation 

stockage-débit non linéaire. 

Cette étude propose un modèle hydrologique karstique semi-distribué appelé ISPEEKH 

pour simuler les processus d'écoulement de surface et souterrains dans les bassins versants 

karstiques. Le modèle a été développé en modifiant les fonctions de recharge du code source de 

SWAT+ et en mettant en œuvre un module karstique non linéaire à trois réservoirs qui reproduit 

le système épikarst-matrice-conduit. ISPEEKH a été appliqué pour modéliser le bilan hydrique du 

bassin versant karstique de Baget dans le sud-ouest des Pyrénées françaises de 2008 à 2018, 

caractérisé par une réponse rapide aux précipitations, un flux non linéaire et une décharge 

dominante des sources karstiques à travers des conduits souterrains. Le modèle a simulé avec 

précision le débit journalier à l'exutoire du bassin versant (NSE = 0,67, R2 = 0,68, et PBIAS = 

0,7% pour la période de calibration 2008-2013, et NSE = 0,65, R2 = 0,69, et PBIAS = -13,83% 

pour la période de validation 2014-2018), en utilisant les précipitations de la réanalyse 

COMEPHORE ajustées par un facteur multiplicatif de correction orographique de 1,44. Il a 

également représenté la dynamique du flux interne matrice-conduit du bassin versant de manière 

adéquate. ISPEEKH a été utilisé pour évaluer l'impact des scénarios de changement d'occupation 

du sol (boisement et déboisement) sur l'hydrologie du bassin versant de Baget. Les résultats ont 

montré que le boisement n'avait pas d'influence significative sur la ressource en eau annuelle, 

tandis que la déforestation avait des effets mixtes. Le changement du couvert forestier à un couvert 

arbustif de transition a réduit l'évapotranspiration annuelle et augmenté la recharge et le décharge 

à l’exutoire, en particulier pendant la saison de faible débit, tandis que le changement du couvert 

forestier à des pâturages a augmenté l'évapotranspiration et réduit la décharge, principalement 

pendant la saison de fort débit. Après le développement d'ISPEEKH et sa première application sur 

le Baget, une deuxième étude a été menée pour évaluer la pertinence d’un ensemble de produits 

de précipitation basés sur des données pluviométriques, de réanalyse et satellitaires pour la 

simulation du bilan hydrique quotidien et du débit dans un bassin versant karstique de méso-

échelle caractérisé par un temps de réponse court aux précipitations et un réseau de suivi des 

précipitations peu dense. 
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Pour effectuer les simulations, ISPEEKH a été intégré à un outil d'estimation des 

paramètres (Parameter ESTimation Tool - PEST) pour une calibration automatisée, une analyse 

de sensibilité globale et une estimation des paramètres. L'étude a inclus les précipitations 

quotidiennes provenant de la station météorologique de Saint-Girons et l’ensemble de 

précipitations quotidiennes basés sur des données pluviométriques des produits CPC et E-OBS, de 

réanalyse SAFRAN, COMEPHORE et ERA5-Land, et satellitaires IMERG-LR, PERSIANN-

CDR, CHIRPS et SM2RAIN-ASCAT. Les données CPC, E-OBS, ERA5-Land, et IMERG-LR sur 

les précipitations brutes ont été réduites à une résolution de 1 km en utilisant CHELSA, qui est 

basé sur une réduction d'échelle statistique mécanique des données de réanalyse globale ou des 

sorties de modèles de circulation globale, et une technique de triple colocalisation a ensuite été 

appliquée pour fusionner les données réduites CPC et IMERG-LR. Tous les produits de 

précipitations à une résolution de 1 km ont également été utilisés dans la modélisation 

hydrologique du bassin versant de Baget. L'étude a analysé la sensibilité d'une série de paramètres 

ISPEEKH sous les données de précipitation en utilisant la méthode de sélection de Morris. Les 

quatre paramètres les plus sensibles étaient les coefficients de décharge et les exposants de vidange 

de l'écoulement du conduit vers la source et de l'écoulement de l'épikarst vers le conduit pour toutes 

les données de précipitations d'entrée. Dans l'ensemble, les paramètres régissant l'écoulement et 

l'infiltration des eaux souterraines karstiques étaient les plus sensibles, tandis que les paramètres 

du ruissellement de surface et de l'évapotranspiration étaient parmi les moins sensibles. Les valeurs 

optimales des exposants de vidange des débits de l'épikarst vers le conduit et du conduit vers la 

source étaient pour la plupart supérieures à 2, ce qui indique que le model ISPEEKH a été adapté 

pour reproduire la dynamique non linéaire de l'écoulement du conduit dans le bassin versant de 

Baget.  

Le bilan hydrique du bassin versant de Baget pour la période 2008-2018 a montré un déficit 

considérable sous l’ensemble de données de précipitation, entraînant un biais de sous-estimation 

du débit de 69% à 79% avec les précipitations CPC pour les périodes de calibration et de validation, 

et de 28% à 32% avec les précipitations ERA5-Land à 1 km de résolution. Globalement, les 

produits de précipitations de la réanalyse COMEPHORE, SAFRAN et ERA5-Land ont été plus 

performants que les produits de précipitations basés sur les données pluviométriques et 

satellitaires. L'étude a montré que la réduction d'échelle des données de précipitation CPC, 

IMERG-LR, E-OBS et ERA5-Land à une résolution spatiale de 1 km améliorait la performance 
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prédictive des modèles de manière non substantielle par rapport aux ensembles de données brutes. 

L'étude a également mis en évidence l'importance d'incorporer des précipitations corrigées 

spatialisées pour améliorer la fiabilité du modèle dans les simulations hydrologiques de petits 

bassins versants karstiques très réactifs. La divergence du bilan hydrique a été résolue en corrigeant 

les ensembles de données de précipitations à une résolution de 1 km à l'aide de facteurs 

multiplicatifs de correction orographique, calculés en utilisant la méthodologie "Doing Hydrology 

Backward". Les enveloppes des valeurs moyennes mensuelles du débit simulé sous les différentes 

données de précipitation non corrigées et corrigées à une résolution de 1 km ont été comparées. 

L'enveloppe de l’ensemble de données non corrigés a montré des écarts significatifs entre les débits 

simulés et observés, ce qui indique des limites dans la capacité du modèle à reproduire avec 

précision les processus hydrologiques du bassin versant. En revanche, l'enveloppe de l’ensemble 

de données corrigées montre des performances prédictives satisfaisantes, avec des plages plus 

étroites de valeurs de débit simulées et des écarts réduits entre les modèles de débit simulés et 

observés pendant les périodes de calibration et de validation, ce qui souligne la nécessité de 

disposer de stations de mesure de précipitation représentatives in situ pour corriger davantage les 

produits de précipitations à résolution fine. La réanalyse COMEPHORE des précipitations 

couvrant la France continentale a généré la meilleure simulation de débit (NSE = 0,719, R2 = 0,736, 

PBIAS = 3,2%, et KGE = 0,854 pour la période de calibration 2008-2013, et NSE = 0,637, R2 = 

0. 732, PBIAS = -10.65%, et KGE = 0.772 pour la période de validation 2014-2018), suggérant 

que les précipitations de réanalyse native à résolution fine pourraient servir comme un ensemble 

de données de base pour la modélisation du débit des cours d'eau dans les bassins versants 

karstiques à méso-échelle.  

6.4 Future perspectives (French version) 

Un modèle hydrologique karstique semi-distribué avec une recharge spatialement variable 

peut être développé soit en augmentant la complexité du modèle par l'ajout de processus 

d'écoulement et de paramètres, soit en incorporant des informations spatiales sur le forçage 

météorologique et les caractéristiques du bassin versant karstique dans le modèle. Suite au 

développement d'ISPEEKH, les recherches futures devraient se concentrer sur la vérification du 

fait que les modèles semi-distribués qui intègrent explicitement la variabilité spatiale de la recharge 

des eaux souterraines et d'autres facteurs qui influencent l’écoulement aboutissent à une meilleure 
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performance prédictive dans la simulation hydrologique des bassins versants karstiques (-dominés) 

que les modèles à paramètres globaux. Pour répondre à cette question, il convient de sélectionner 

un ensemble de bassins versants karstiques présentant un ordre croissant d'hétérogénéité des 

propriétés du bassin versant, des mécanismes de recharge des eaux souterraines, des patrons 

d’écoulement et de la pression anthropique. Pour chaque bassin versant, des modèles 

mathématiques karstiques distincts (par exemple, KarstMod, LuKARS et ISPEEKH), explorant 

différents niveaux de complexité fonctionnelle pour reproduire la recharge et la variabilité spatiale 

des écoulements, devraient être développés. KarstMod et LuKARS sont des modèles à paramètres 

globaux qui utilisent des précipitations effectives agrégées dans l'espace pour modéliser la 

recharge à partir de la zone de recharge autogène de l'aquifère karstique et l'écoulement à partir 

d'un exutoire karstique principal. Les deux modèles simulent les prélèvements d'eau souterraine et 

la recharge allogène sous forme de séries temporelles agrégées dans l'espace. Alors que KarstMod 

utilise un seul réservoir pour simuler la recharge forfaitaire de la zone non saturée, LuKARS 

considère la variabilité spatiale de la recharge en regroupant les zones homogènes d’occupation 

du sol et des types du sol comme des réservoirs de recharge distincts appelés hydrotopes. 

ISPEEKH, quant à lui, intègre la variabilité spatiale de tous les apports météorologiques et des 

propriétés du paysage de la zone de recharge du bassin versant à l'échelle de l'unité de réponse 

hydrologique (HRU). Il simule les processus d'écoulement de la zone non saturée à l'échelle de 

l'HRU et l'écoulement des eaux souterraines dans la zone saturée, y compris l'écoulement vers des 

exutoires multiples pour les zones de recharge karstiques et non karstiques. ISPEEKH permet 

également de simuler les prélèvements d'eau dans les aquifères sous-jacents aux sous-bassins 

délimités et la recharge allogène en fonction des pertes d'eau dans les conduits reliant les sous-

bassins.  

Après la calibration du modèle, une évaluation comparative des performances des 

simulations de débit de KarstMod, LuKARS et ISPEEKH dans chaque bassin versant peut être 

réalisée à l'aide de mesures statistiques couramment appliquées en hydrologie karstique. Tout 

d'abord, les séries temporelles de débit simulées par les trois modèles doivent être comparées aux 

séries temporelles de débit observées à la (aux) station(s) de jaugeage dans chaque bassin versant, 

en utilisant des mesures de performance pour les faibles débits (par exemple, l'erreur quadratique 

moyenne du logarithme du débit MSEL, l'erreur quadratique moyenne transformée TRMSE), les 

forts débits (par exemple, l'efficacité de Nash-Sutcliffe, erreur quadratique moyenne RMSE), la 
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dynamique du débit (par exemple, coefficient de détermination R2), le volume de transit (par 

exemple, erreur d'équilibre modifiée BE, erreur volumétrique VE), en plus du coefficient 

d'efficacité de Kling-Gupta KGE et de l'efficacité non paramétrique de Kling-Gupta KGENP, 

parmi d'autres mesures. En outre, le coefficient informatif d'Akaike AIC [AIC = 2 k + Nln(RSS), 

où k est le nombre de paramètres du modèle, N le nombre d'observations et RSS la somme des 

carrés des résidus] peut être calculé pour évaluer l'évolution des performances de la simulation de 

flux par rapport à l’augmentation du nombre de paramètres dans les trois modèles. La fonction 

d'autocorrélation (ACF) sur les débits observés et simulés, et la fonction de corrélation croisée 

(CCF) entre les précipitations et les débits observés et simulés avec chaque modèle de bassin 

versant peuvent être calculées, et complétées par l'analyse du spectre d'ondelettes croisées (XWT) 

et de la cohérence d'ondelettes croisées (WTC) pour mettre en évidence les relations entre la 

recharge simulée et les signaux de débits observés (Pfannerstill et al., 2014 ; Sivelle et al., 2022). 

Enfin, les résultats de la modélisation du bassin versant peuvent être compilés pour valider si 

l'utilisation d'un modèle semi-distribué avec une représentation plus fine de la variabilité spatiale 

de la recharge-décharge améliore la performance de la simulation hydrologique par rapport à la 

modélisation forfaitaire. 

La configuration du modèle ISPEEKH appliquée au bassin versant de Baget convient aux 

bassins versants karstiques unaires où la recharge autogène sur le bassin topographique de surface 

du karst est la principale composante de la décharge des sources. Cependant, il ne peut pas être 

utilisé pour simuler l'écoulement dans les bassins versants karstiques binaires où la recharge 

autogène et la recharge allogène des bassins voisins (souvent non karstiques) contribuent à 

l'écoulement de la source karstique. Par conséquent, une nouvelle configuration d'ISPEEKH 

devrait être proposée pour les bassins versants karstiques binaires en incorporant les processus de 

recharge et d'écoulement des eaux souterraines des aquifères karstiques et non karstiques 

combinés, y compris la contribution de la recharge allogène par l'écoulement des eaux souterraines 

entre les bassins à la décharge des sources karstiques. Le nouveau modèle ISPEEKH peut être testé 

dans le système karstique binaire de la Touvre comme cas d’étude. La source karstique pérenne 

de la Touvre, située dans l'ouest de la France, est la deuxième plus grande résurgence d'eau du 

pays après la Fontaine de Vaucluse, avec un débit moyen qui varie entre 3 m3.s-1 et 49 m3.s-1 par 

an. Le bassin de la Touvre est alimenté par une recharge autogène sur un impluvium karstique de 

550 km2 et par une recharge allogène à partir de cours d'eau descendants qui drainent trois bassins 
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extérieurs non karstiques (Tardoire, Bandiat et Bonnieure), ce qui porte à près de 1600 km2 la zone 

totale de contribution à l'alimentation de la nappe phréatique. 

Les recherches futures devraient également se concentrer sur les problèmes de pénurie 

d'eau dans les bassins versants karstiques, engendrés par le changement climatique et les pressions 

anthropogéniques. En prenant le bassin de la Touvre comme exemple, des scénarios synthétiques 

de projections climatiques et de pressions anthropiques devraient être mis en œuvre (par exemple, 

à l'horizon 2100) en utilisant le modèle ISPEEKH calibré de la Touvre. La première étape 

consisterait à évaluer les futures ressources en eau dans le bassin de la Touvre en tenant compte 

uniquement des projections climatiques et de l'absence de changements dans les facteurs 

anthropiques de pénurie d'eau entre la période de référence et la période future (c'est-à-dire les 

mêmes schémas d'occupation des sols et/ou de prélèvement d'eau souterraine entre la période de 

référence et la période future). Les projections climatiques issues des données DRIAS-2020 

(précipitations totales, température de l'air, vitesse du vent et humidité relative), disponibles pour 

la France sur le portail DRIAS (http://www.drias-climat.fr/), mises à l'échelle à une résolution de 

8 km et corrigées des biais par rapport aux données de la réanalyse Safran (Soubeyroux et al., 

2020), pourraient être utilisées pour l'étude. Ensuite, les ressources en eau futures dans le bassin 

versant de la Touvre peuvent être évaluées en fonction des projections climatiques combinées à 

des changements dans l'occupation des sols et/ou dans les schémas de prélèvement d'eau 

souterraine depuis la période de référence dans le futur. Par exemple, les scénarios de changement 

d'occupation du sol peuvent être mis en œuvre en générant de nouvelles cartes d'occupation du sol 

qui tiennent compte d'une conversion de 10 à 100% des sols cultivés en végétation naturelle, ou 

d'une conversion de 10 à 100% de la végétation naturelle en sols cultivés, ce qui entraîne des 

changements dans les futurs prélèvements d'eau souterraine pour l'irrigation. L'impact des 

prélèvements d'eau souterraine sur les ressources en eau disponibles peut également être étudié en 

considérant une augmentation/diminution de 10 à 100% des prélèvements d'eau à usage 

domestique. La réponse hydrologique du bassin versant en fonction de tous les scénarios peut être 

évaluée à l'aide d'un ensemble de mesures de débit issues des simulations du modèle, en se 

concentrant principalement sur les conditions d'étiage (par exemple, ruissellement annuel moyen, 

débit journalier moyen, débit minimum absolu, courbe de durée d'écoulement et débits avec un 

dépassement de temps de 70 à 99%) (Smakhtin, 2001). 
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L'impact de la calibration multi-sites des débits sur la performance prédictive du modèle 

ISPEEKH-Touvre pourrait être étudié en appliquant : (1) une calibration basée sur un seul exutoire 

par rapport au débit journalier des sources karstiques mesuré à la station de Foulpougne, et (2) une 

calibration multi-exutoires avec le débit journalier des sources karstiques mesuré à la station de 

Foulpougne et les débits mesurés aux stations de Montbron, Feuillade, Saint-Ciers et Coulgens, en 

utilisant une fonction objective pondérée. Les recherches futures pourraient également se 

concentrer sur l'étude de l'impact de l'utilisation de l'évapotranspiration (par exemple, 

l'évapotranspiration dérivée du modèle d'évapotranspiration basé sur les données de télédétection 

SimpKcET dans les zones karstiques, Ollivier et al., 2021) et des niveaux d'eau souterraine 

mesurés comme variables de calibration supplémentaires sur la performance du modèle. 

Les modèles semi-distribués tels que ISPEEKH peuvent encore comprendre un grand 

nombre de paramètres, dont la détermination directe avec le degré de confiance nécessaire les rend 

coûteux en termes de calcul. Les modèles de substitution offrent une approche fiable pour résoudre 

ce problème, communément appelé « the curse of dimensionality» (Verleysen et François, 2005), 

en fusionnant des versions optimisées sur le plan du calcul des pipelines de modélisation existants, 

basés sur des modèles karstiques globaux et semi-distribués, avec une technique efficace de 

réduction de la dimensionnalité qui peut traiter les données hydrologiques spatio-temporelles et 

fournir les moyens de quantifier l'incertitude. Dans ce contexte, des recherches plus avancées 

pourraient se concentrer sur la réduction des modèles basée sur l'approche de réduction de la 

dimensionnalité non linéaire des cartes de diffusion à largeur de bande variable (Berry, 2016; 

Coifman, 2006) combinée à la régression ridge à noyau pour l'apprentissage des paramètres du 

modèle de substitution dans l'espace réduit. Contrairement à d'autres méthodes (par exemple, la 

méthode du sous-espace actif appliquée par Teixeira Parente et al. (2019)), cette technique de 

réduction de la dimensionnalité non linéaire ne nécessite pas de connaître la distribution préalable 

des paramètres d'entrée. Par contre, son étape optionnelle de calibration de la bande passante 

nécessite la connaissance de la densité d'échantillonnage des données, qui peut être efficacement 

interpolée à partir des emplacements géographiques des stations d'observation. Il est également 

bien adapté à l'analyse exploratoire des données en raison de sa tolérance à la faible quantité et/ou 

précision des données expérimentales collectées (Van Der Maaten et al., 2009). De plus, la nature 

déterministe de cette méthode permet de calculer la sensibilité des paramètres (Harlim, 2018). Le 
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modèle de substitution peut alors être utilisé pour réaliser l'inversion bayésienne des paramètres 

du modèle et la quantification de l'incertitude paramétrique. 

Le modèle ISPEEKH proposé dans cette thèse n'a pas été développé pour modéliser le 

transport de solutés. Par conséquent, les recherches futures devraient viser à coupler le modèle des 

flux des aquifères karstiques avec des modèles de transport de solutés qui reproduisent les 

processus dominants de transport de solutés (des ions majeurs tels que K, Na, Ca, Mg, Cl, et SO4 

ou des contaminants anthropogéniques tels que NO3) dans les compartiments de l'épikarst, de la 

matrice et du conduit, en partant de l'hypothèse d'aquifères karstiques stationnaires.  Différentes 

approches de modélisation du transport des solutés avec différents niveaux de complexité peuvent 

être testées pour chaque sous-système. Par exemple, le mélange parfait des solutés (Amin and 

Campana, 1996, van der Velde, 2012), la cascade de Nash avec mélange parfait (Nash, 1957; 

1959), et la fonction de transfert calibrée sont trois méthodes qui peuvent être testées pour les 

processus de transport dans l'épikarst, tandis que le mélange parfait et les modèles à double 

domaine (mobile-immobile) (Becker and Bellin, 2013) pourraient être appliqués pour le système 

de conduits. En ce qui concerne la matrice, où différents temps de transit de l'eau s'écoulant à 

travers le domaine doivent être pris en compte avec le gradient de concentration de soluté dans 

l'échange de flux entre la matrice et les conduits, l'applicabilité des approches de modélisation 

suivantes peut être étudiée : (1) un modèle « réservoir » qui considère un mélange parfait de soluté 

dans la matrice, c'est-à-dire que le mélange de soluté sera instantané au niveau de la discrétisation 

temporelle du modèle, (2) l'équation unidimensionnelle d'advection-dispersion couramment mise 

en œuvre dans les modèles de transport en milieu poreux homogène, et (3) une fonction de transfert 

qui peut simuler différents temps de transit d'un soluté dans la matrice (Jury, 1982). 
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Titre : Modélisation spatialisée semi-conceptuelle des flux d'eaux surface - souterrain en milieu karstique
Mots clés : modélisation semi-distributée, Bassins versants karstiques, SWAT, KarstMod, ISPEEKH, Hydrologie karstique
Résumé : Les aquifères karstiques, fournissant de l'eau potable à environ 25% de la population mondiale, sont confrontés à des
surexploitations en sus du changement climatique. Des modèles hydrologiques ont été préconisés pour une gestion efficace des ressources en
eau karstique. Cette thèse développe le modèle numérique semi-conceptuel spatialisé ISPEEKH en couplant SWAT+, la version restructurée du
modèle éco-hydrologique semi-distribué SWAT, avec le module de réservoirs non linéaires épikarst-matrice-conduit du modèle de ruissellement
pluvial KarstMod pour simuler les flux d'eau de surface-souterraine dans les bassins versants karstiques. ISPEEKH a été appliqué pour simuler le
bilan hydrique quotidien du bassin versant du Baget (13.25 km2), situé dans les Pyrénées françaises et caractérisé par un écoulement non
linéaire dominé par des conduits. Le modèle a simulé le débit du bassin versant de manière satisfaisante (NSE = 0,67, R2 = 0,68, et PBIAS = 0,7%
pour la période de calibration 2008−2013, et NSE = 0,65, R2 = 0,69, et PBIAS = -13. 83% pour la période de validation 2014−2018), permettant
l'estimation des flux des compartiments de l'épikarst, de la matrice et des conduits, y compris le débit d'échange entre la matrice et les conduits,
et la contribution de la matrice et des flux de sortie du conduit principal au débit de la source karstique. La réponse hydrologique du bassin
versant du Baget à des scénarios synthétiques de changement d’occupation du sol (reforestation et déforestation) a ensuite été évaluée à l'aide
du modèle ISPEEKH. Les résultats ont montré que la reforestation sur l'ensemble du bassin versant n'a pas eu d'impact significatif sur son bilan
hydrique, Le changement du couvert forestier à un couvert arbustif de transition a augmenté le débit annuel moyen de 6 à 9%, notamment
pendant les périodes de faible débit, tandis que le changement du couvert forestier à des pâturages a réduit le débit annuel moyen de 5 à 7%,
principalement en périodes de fort débit. En outre, un ensemble de données de précipitation a été évalué pour la simulation du débit journalier
dans le bassin versant de 2006 à 2018, y compris les produits basés sur des données pluviométriques (CPC et E-OBS), de réanalyse (SAFRAN,
COMEPHORE et ERA5-Land) et satellitaires (PERSIANN-CDR, IMERG-LR, SM2RAIN-ASCAT et CHIRPS). ISPEEKH a été intégré avec PEST pour la
calibration automatisée, l'analyse de la sensibilité et la quantification de l'incertitude. Les résultats ont montré que le débit des cours d'eau était
significativement sous-estimé sous l'ensemble des produits de précipitations. Les produits basés sur des données pluviométriques et satellitaires
sont les moins performantes, avec un biais de sous-estimation du débit allant de 48 à 74%, tandis que les données de réanalyse ont fourni de
meilleurs résultats de simulation du débit, avec un biais de sous-estimation du débit allant de 30 à 44%. Les données CPC, E-OBS, ERA5-Land, et
IMERG-LR, ainsi que les données fusionnés CPC-IMERG-LR à une résolution de 1 km n'ont pas amélioré la capacité de prédiction du modèle par
rapport aux données brutes. Les données à échelle réduite ainsi que COMEPHORE ont été corrigés pour réduire le biais de l'écart du bilan
hydrique et ont été réappliqués pour la modélisation hydrologique. La simulation du débit a été améliorée significativement avec les données de
précipitations COMEPHORE, E-OBS, CPC, et CPC-IMERG-LR corrigées. COMEPHORE a fourni la meilleure performance prédictive du modèle,
suggérant que les précipitations de réanalyse locale à résolution fine pourraient être utilisées comme ensemble de données de base pour la
modélisation hydrologique des bassins versants karstiques de méso-échelle.

Title: Semi-conceptual spatialized modeling of surface - underground water flows in a karst environment
Key words: semi-distributed numerical modeling, karst watersheds, SWAT, KarstMod, ISPEEKH, Karst hydrology
Abstract: Karst aquifers, which supply freshwater to nearly 25% of the global population, are facing depletion due to climate change and
anthropogenic pressure. Hydrological models have been advocated for effective karst water resources planning and management, but studies
integrating the recharge-discharge characteristics of karst watersheds and evaluating their response to changes in the flow dominant controls
remain limited due to their inherent heterogeneity, anisotropy, flow duality, and non-linearity. This thesis developed the semi-conceptual
spatialized numerical model ISPEEKH (Integration of Surface ProcEssEs in Karst Hydrology) by coupling SWAT+, the restructured version of the
semi-distributed eco-hydrological model SWAT (Soil and Water Assessment Tool), with the non-linear epikarst-matrix-conduit reservoir module
of the rainfall-runoff model KarstMod to simulate the surface-underground water flows in karst watersheds. ISPEEKH was applied to simulate
the daily water balance of the Baget catchment (13.25 km2), located in a poorly gauged region of the French Pyrénées and characterized by
conduit-dominated non-linear flow. The model simulated the catchment streamflow satisfactorily (NSE = 0.67, R2 = 0.68, and PBIAS = 0.7% for
the 2008−2013 calibration period, and NSE = 0.65, R2 = 0.69, and PBIAS = -13.83% for the 2014−2018 validation period), allowing the
estimation of the epikarst, matrix, and conduit fluxes, including the bidirectional matrix-conduit exchange flow rate, the contribution of the
matrix and conduit outflows to spring flow, and their seasonal variability. The Baget catchment's hydrological response to synthetic land-use
change scenarios of afforestation and deforestation was then assessed using ISPEEKH. Results showed that afforestation over the entire
catchment did not significantly affect its water balance, while deforestation for wood production increased the mean annual discharge by 6−9%,
notably in the low-flow periods, and deforestation for pastureland development reduced the mean annual discharge by 5−7%, mainly in the
high-flow period. Various precipitation datasets were then evaluated for the simulation of daily streamflow in the catchment from 2006−2018,
including the gauge-based (CPC and E-OBS), reanalysis (SAFRAN, COMEPHORE and ERA5-Land), and satellite-based (PERSIANN-CDR, IMERG-
LR, SM2RAIN-ASCAT and CHIRPS) products. ISPEEKH was integrated with a PEST framework for automated calibration, sensitivity analysis, and
uncertainty quantification. Results showed that streamflow was significantly underestimated under the ensemble of the precipitation products.
The gauge- and satellite-based precipitation products had the worst performance, with a flow underestimation bias ranging from 48 to 74%,
while the reanalysis products yielded better streamflow simulation results with a flow underestimation bias of 30−44%. The CPC, E-OBS, ERA5-
Land, IMERG-LR, and merged CPC-IMERG-LR datasets downscaled to 1-km spatial resolution did not improve the model predictive performance
compared to the coarse datasets. The downscaled datasets along with COMEPHORE were bias corrected to reduce the water balance
discrepancy and re-applied for hydrological modeling. Significant improvement in the streamflow simulation were observed under the corrected
COMEPHORE and downscaled E-OBS, CPC, and merged CPC-IMERG-LR precipitation datasets, with COMEPHORE yielding the best model
predictive performance (NSE = 0.719, R2 = 0.736, and PBIAS = 3.2% for the calibration period, and NSE = 0.637, R2 = 0.732, and PBIAS =
-10.65% for the validation period), suggesting that fine-resolution native reanalysis precipitation could be used as a base dataset for the
hydrological modeling of remote meso-scale karst catchments.
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