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1 Introduction

Abstract
This chapter provides an overview of the foundational concepts and emerging fields central
to this thesis, including spintronics, magnonics, cavity quantum electrodynamics (QED), and
spincavitronics. We discuss the significance of each field, highlighting their applications in modern
technology. Additionally, we outline my contributions to these topics and present the overall
structure of the thesis.

Contents
1.1 Spintronics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Magnonics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Cavity QED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Spincavitronics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5



2 Chapter 1. Introduction

1.1 Spintronics
Spintronics is a branch of solid-state physics that seeks to harness the electron’s

spin, either independently or in conjunction with its charge, to develop more efficient
electronic devices [1]. The idea of using spin, an intrinsic quantum property of electrons,
for information transport and processing emerged in the late 1980s following two key
discoveries: spin manipulation through electric and magnetic fields by Johnson and Silsbee
(1985) [2], and giant magnetoresistance (GMR), simultaneously discovered by Baibich et al.
(1988) [3] and Binasch et al. (1989) [4], which earned the 2007 Nobel Prize in Physics.

The GMR effect had an immediate impact, particularly in data storage technologies
such as hard drive read heads, and was essential to the development of Magnetic Random
Access Memory (MRAM). MRAM devices offer advantages in speed, non-volatility (pre-
serving data without power), and reduced energy consumption compared to conventional
memory technologies [5].

Subsequent research expanded to explore additional aspects of spin manipulation
[6–11], including the spin Hall effect (SHE) [12], spin-transfer torque (STT) [13, 14], the
Rashba effect [15], and spin-orbit torque (SOT) [16] in topological materials [17] and
interfacial systems [18].

For data storage, new spin-dependent transport phenomena have emerged, notably
tunneling magnetoresistance (TMR) [19], which employs magnetic tunnel junctions (MTJs)
to control current flow via electron spin [20]. The development of STT-MRAM (Spin-
Transfer Torque MRAM) has further enhanced memory performance, particularly by
reducing energy consumption [21].

Another growing area of application is spintronics sensors, which have found use in
automotive systems, medical devices, and telecommunications [22]. In telecommunications,
spin-transfer oscillators (STOs) hold promise for more compact and energy-efficient radio
transmission and reception systems [23].

Spintronics also holds potential for information processing, where controlling spin
could lead to improvements in energy efficiency and data density [24].

1.2 Magnonics
Magnonics is a relatively new field in solid-state physics that investigates the use of

magnons - quasi-particles associated with spin waves in magnetic materials - to transport
and process information. Magnons are collective excitations of electron spins in a magnetic
lattice [25], and their properties can be leveraged to replace traditional charge-based
currents, paving the way for a new class of low-power devices [26].

The concept of magnonics traces its origins to solid-state physics in 1932 when physicist
Bloch introduced the idea of spin waves. This concept was further developed by Holstein,
Primakov, and Dyson [27]. In recent years, researchers have begun exploring the potential
of magnons as information carriers for technological applications, akin to the role of
electrons in conventional electronics or photons in photonics [28].
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Interest in magnonics has surged with the rise of spintronics and the realization that
spin waves could help overcome some limitations of current electronic devices [29]. Notably,
heat dissipation, a significant challenge in charge-based electronic systems, can be largely
mitigated in magnonics systems since magnons carry information without requiring the
movement of charge [30].

The primary applications of magnonics are focused on developing logic devices [31],
and low-energy information processing systems [32]. One of the most promising areas
is the creation of non-volatile and reconfigurable logic circuits based on spin waves [33].
These devices exploit spin wave interference to perform logic operations at the nanoscale
[34].

An emerging application in neuromorphic computing also relies on magnonics [35].
Magnonics neural networks could mimic biological synapses and neurons, using spin waves
to transmit and process analog signals, potentially leading to brain-inspired computing sys-
tems capable of handling large amounts of data with significantly lower energy consumption
than traditional processors.

1.3 Cavity QED
Light-matter coupling is a fundamental phenomenon in quantum physics, describing the

interactions between photons and matter particles such as atoms, electrons, or collective
excitations (e.g., phonons or magnons). This concept is central to a wide range of
technologies, from lasers to optical sensors, and plays a key role in areas like photonic
cavities, qubits, and optomechanics [36].

Quantum electrodynamics (QED), developed by Feynman, Schwinger, and Tomonaga in
the 1940s, provided a precise framework to model the interactions between electromagnetic
fields and elementary particles [37]. A crucial concept in QED is strong coupling, which
arises when the interactions between photons and matter become intense and exceeds
individual dissipations, enough to create hybrid states known as polaritons [38, 39]. These
quasi-particles result from the mixing of photon states with the energy levels of matter,
and they underpin many modern applications [40, 41]. The study of light-matter coupling
spans fields like cavity QED, spincavitronics, and applications in quantum communication
and information processing.

In the 1980s, the development of cavity quantum electrodynamics enabled the explo-
ration of strong coupling between a photon confined in an optical cavity and a trapped
atom or molecule [42]. This phenomenon is pivotal in nonlinear optics, where high-intensity
light can modify a material’s optical properties [43]. More recently, the field of light-matter
coupling has expanded with the advent of 2D materials and plasmonic structures, allowing
for the manipulation of these interactions at the nanoscale [44].

Polaritons are also being investigated for their potential in optical transistor devices
and quantum logic [45]. By controlling the propagation of polaritons in microcavities or
waveguides, it is possible to design more compact integrated optical circuits with faster
switching speeds and lower energy consumption compared to traditional electronic devices.
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In the context of quantum information, light-matter coupling is critical for the creation
and manipulation of qubits, the fundamental units of quantum information [46–48]. These
are key components in the development of future quantum computers.

Furthermore, quantum teleportation and quantum networks directly benefit from
advances in light-matter coupling [49]. Particularly, a network of interconnected optical
cavities could enable the reliable transfer of quantum information between qubits [50],
facilitating the construction of a quantum internet [51].

1.4 Spincavitronics
Spincavitronics, or cavity magnonics, is a relatively recent subfield focused on the

strong coupling between magnons and photons within an electromagnetic cavity, resulting
in hybrid coupled states known as cavity magnon polaritons (CMPs). This emerging
field, which began to take shape in the early 2010s, lies at the intersection of spintronics,
magnonics, and cavity QED.

Soykal and Flatté (2010) [52] were the first to predict that strong magnon-photon
coupling is possible. Then, Huebl et al. (2013) [53] demonstrated strong magnon-photon
coupling between a superconducting coplanar microwave resonator and Ga-doped YIG
at 50 mK, followed by Tabuchi et al. (2014) [54], who observed this coupling below 1 K
between a YIG sphere and a 3D cavity. Concurrently, Zhang et al. (2014) [55] achieved
strong coupling in the same system at room temperature.

The broad frequency tunability and long lifetimes of magnons enable their coupling
with other particles or quasi-particles. This system holds promise for quantum magnonics,
where magnons interact with qubits mediated by cavity photons [56]. Magnons possess
long coherence times, a critical feature that allows them to serve as quantum memory, thus
preventing information loss due to the decoherence of quantum states in superconducting
qubits [57, 58]. Additionally, this could lead to sensitive detectors for single magnon
sensing, which is useful for the non-destructive detection of weak static or microwave
magnetic fields, as well as for dark matter research [59, 60].

Quantum magnonics could also facilitate the development of a bidirectional quantum
transducer between microwaves and optical light for superconducting circuits [61, 62]. This
would enable the transfer of quantum information from a superconducting qubit to optical
light via a magnon transducer, necessitating a faithful encoding of the quantum state of
the qubit into a non-classical state of the magnons [63]. Such technology would pave the
way for long-distance quantum communications [64]. Enhancing these techniques requires
increasing the coupling strength between qubits and magnons [40].

Furthermore, spincavitronics display a broad range of applicability for radiofrequency
devices, such as adjustable sensitive filters, low-noise amplifiers, isolators, circulators, and
other components in communication technologies [65–73].
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1.5 Contributions
Ultra-strong coupling regime:

The ultra-strong coupling regime occurs when the coupling strength exceeds 10% of
the cavity frequency [74], enabling the exploration of new phenomena such as virtual
excitations [75], and paving the way for exotic states like discrete time crystals [76]. This
regime enhances the performance of devices operating in the strong coupling regime,
particularly by accelerating control and response times within systems [77]. Certain
short-lifetime systems, essential for specific quantum gates, are only observable within the
USC regime, making it particularly crucial for advanced quantum applications [78, 79],
including frequency conversion and dark matter detection [77, 80].

Several approaches can achieve this regime, such as coupling a large number of dipoles
to a cavity or optimizing the coupling between a single dipole and the cavity mode [74].
Systems like inter-subband polaritons, superconducting circuits, and Landau polaritons
have experimentally demonstrated the USC regime, reaching coupling ratios as high as
1.43 [81–83].

However, in hybrid systems, it is critical that each subsystem can couple in this
regime. While the coupling regime was achieved at 60% below 10 K using superconduct-
ing/insulating/ferromagnetic multilayered microstructures [84], it has never exceeded 23%
at room temperature [85].

In this study, we developed a reconfigurable hybrid system to investigate the transition
between the strong coupling and ultra-strong coupling regimes at room temperature across
a frequency range of 0.1 to 15 GHz within a 3D cavity, achieving a coupling strength
ranging from 12% to 58% of the cavity frequency. Furthermore, our results indicate
that it is necessary to incorporate an additional term in the ferromagnetic resonance
equation to accurately describe the observed hybridization, particularly in the USC regime.
However, questions remain regarding the most suitable model to predict USC. Our study
constitutes a significant contribution to understanding these dynamics and paves the
way for developing a coherent model to describe this complex system, which could have
substantial implications for future advancements in this field.

Level attraction:
The phenomenon of level attraction in quantum systems paves the way for various

innovative applications, particularly in the development of modern communication de-
vices. Systems exhibiting effective non-Hermitian coupling enable nonreciprocal photon
transmission, which is essential for devices such as circulators and unidirectional signal
amplifiers. These components are critical for signal processing and communication [65–73].
Additionally, dissipative coupling between magnons and photons promotes applications
such as magnon gradient quantum memory, enabling the encoding of quantum information
and enhancing quantum computing technologies [86, 87].

Moreover, level attraction mechanisms open up avenues for advanced devices in
metrology and detection. Specifically, utilizing cavity modes as damped auxiliary modes
optimizes the coupling between magnons, facilitating long-range interactions that are
promising for spintronics devices and spin-based technologies [88].
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To this end, understanding the emergence of these level attractions is crucial. While
well established for open cavity systems [67, 89–94], there have been relatively few studies
on 3D cavities, and the observation of level attraction in 3D cavities has been poorly
understood, largely due to the reliance on a phenomenological model that fails to provide
a physical description of the system [95].

In this work, we contribute by presenting a physical model that elucidates the emer-
gence and coupling of antiresonances in 3D cavities, validated through simulations and
experimental measurements.

This thesis is structured as follows:

Chapter 2:
This chapter establishes the foundation for understanding magnetism by discussing

angular momentum, from electron orbits to quantum spin. It covers the quantum descrip-
tion of angular momentum in static magnetic fields and provides insights into magnetic
materials, particularly Yttrium Iron Garnet (YIG), which is significant for RF devices
and magnon-photon coupling studies. The chapter concludes by exploring spin waves in
ferromagnets, highlighting their origins in the exchange and dipolar interactions.

Chapter 3:
This chapter starts by quantizing the electromagnetic field within a cavity to establish

the cavity Hamiltonian for further analysis. It draws an analogy between light-matter
coupling and two coupled oscillators, providing a simplified framework to understand light-
matter interactions across different systems. The discussion progresses through various
coupling regimes and models, ultimately leading to the derivation of the photon-magnon
coupling model while incorporating environmental factors.

Chapter 4:
This chapter details the methodological steps used in the studies, beginning with

simulation considerations. It then reviews various fabrication techniques for the cavity, in-
cluding traditional machining, 3D plastic printing, and metallization processes. Finally, the
chapter concludes with an overview of the vector network analyzer, the primary instrument
for measurements, along with details on the laboratory setup and measurement automation.

Chapter 5:
In this chapter, we discuss our studies on the strong to ultra-strong coupling regimes

in frequency-reconfigurable three-dimensional reentrant cavities coupled with yttrium iron
garnet slabs. The findings have been published in the Physical Review B journal [96] and
can be found on arXiv.

Chapter 6:
In this chapter, we present our research on the effective coupling associated with

an antiresonance in a hybrid system of a quasi-closed photonic cavity and ferrimagnetic
material. The findings have been published in the Physical Review Applied journal [97]
and can be found on arXiv.

https://journals.aps.org/prb/abstract/10.1103/PhysRevB.107.214423
https://arxiv.org/abs/2209.14643
https://doi.org/10.1103/PhysRevApplied.22.064036
https://doi.org/10.48550/arXiv.2402.06258
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2 Magnons

Abstract
In this chapter, we lay the groundwork for understanding magnetism in materials by exploring
the concept of angular momentum, starting from electron orbits to the quantum phenomenon
known as spin. We delve into the quantum description of angular momentum in the presence
of a static magnetic field and discuss the semi-classical interpretation of measurements within
such systems. Additionally, we provide an overview of various magnetic materials, focusing on
Yttrium Iron Garnet (YIG), an artificial garnet known for its numerous advantages in radio
frequency (RF) devices and studies involving magnon-photon coupling. Finally, we conclude
with an examination of spin waves in ferromagnets, elucidating their emergence from two key
interactions: the exchange interaction and the dipolar interaction.
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2.1 Angular & Magnetic Momenta
To understand the origin of magnetism in materials, it is needed to go down to the

atomic scale in order to visualize the behavior of electrons. The fundamental parameter
of the magnetism is the angular momentum, which originates from two sources: the
orbital angular momentum, and the spin angular momentum. Initially, we will explore
the classical concept of orbital angular momentum, where an electron moves in a circular
orbit around the nucleus, and the associated orbital magnetic momentum induced by this
angular momentum. Subsequently, we will introduce the principles of quantum mechanics
and discuss the angular and magnetic momenta of a single electron in motion around its
nucleus, as well as in multi-electron atoms or ions. Finally, we will examine the interaction
between a magnetic momentum and a static magnetic field, as well as the precession of a
magnetic momentum under a uniform magnetic field, and the resulting torque exerted by
a static magnetic field on an angular momentum.

2.1.1 Classical Angular & Magnetic Orbital Momenta
In classical mechanics, the electron is viewed as a particle moving in a circular orbit

around its nucleus, as depicted in Fig. 2.1. Assuming the electron possesses momentum
p = mv, with position r, according to classical mechanics, the orbital angular momentum
of the particle can be expressed as:

L = r × p. (2.1)

Additionally, as an electron carries a negative charge of −e, its motion generates a current
I, expressed as:

Iûϕ = − ev
2πr . (2.2)

L

L

n̂

e −
r

ûφ
ûρ

ûz

v

Figure 2.1: Schematic representation of an electron orbiting circularly around its
nucleus.



10 Chapter 2. Magnons

Here, ûϕ represents the azimuthal direction in the plane of the electron’s orbit, as illustrated
in Fig. 2.1. Also, it is important to note that conventionally, the direction of the current
opposes the movement of the electron. According to Ampère’s law [98], the orbital magnetic
moment µL of the electron depends on the current and the surface area A enclosed by the
electron’s path:

µL = IAn̂, (2.3)
where n̂ is the vector normal to the orbital plane, as depicted in Fig. 2.1. The direction of
the orbital magnetic moment along the z-axis is determined by the current direction and
the “right-hand rule”, thus n̂ = ûz. Since the current and the electron velocity are opposite
in direction, we observe that for an electron, the orbital magnetic moment opposes the
orbital angular momentum. This relationship can be expressed by substituting I from
Eq. (2.2) and L from Eq. (2.1) into Eq. (2.3):

µL = γLL, (2.4)

where the gyromagnetic ratio generalized for a charged particle is given by:

γL = q

2m, (2.5)

with q representing the particle’s charge, which is equal to −e for an electron.

2.1.2 Quantum Angular & Magnetic Momenta
Quantum mechanics is built upon six fundamental postulates [99]:

1) A quantum system is associated with a quantum state defined by a quantum wave.

2) The dynamics of a quantum system are governed by the time-dependent Schrödinger
equation.

3) Measurement results in the projection of the quantum state of the system onto one
of its eigenstates.

4) Prior to measurement, a quantum system can exist as a superposition of states.

5) The Heisenberg uncertainty principle states that it is impossible to precisely measure
both the position and momentum of a particle simultaneously.

6) Two particles can be entangled, meaning their states are correlated even when
separated by distance.

In the framework of quantum mechanics, classical quantities are reformulated as
quantum operators. For instance, the classical position vector r is replaced by the quantum
operator r̂ while classical momentum is represented by the quantum operator p̂ = ℏ

i
∇̂,

where ℏ denotes the reduced Planck’s constant. According to Heisenberg’s uncertainty
principle, the position and momentum operators do not commute, which is expressed by
the commutation relation [99]:

[x̂i, p̂i] = x̂ip̂i − p̂ix̂i = iℏ. (2.6)

Here, x̂i denotes x̂, ŷ, or ẑ, and p̂i represents the momentum operator along the same axis.
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2.1.2.a Single Angular & Magnetic Momenta

Continuing with the discussion on orbital angular momentum, combining Eq. (2.1)
and (2.6), we derive the commutation relation for orbital angular momentum:

[L̂xi
, L̂xj

] = iℏL̂xk
, (2.7)

where xi, xj, and xk represents x, y, z, or their cyclic permutations. This relation can be
generalized for any angular momentum Ĵ, with the equivalent expression:

Ĵ × Ĵ = iℏĴ. (2.8)

As will be shown subsequently, it is more convenient to describe angular momentum
using the lowering and raising components, defined as:

Ĵ± = Ĵx ± iĴy, (2.9)

These operators allow for the modification of angular momentum by increasing or decreasing
its projection along the z-axis, and obey the following commutation relations:

[Ĵz, Ĵ±] = ±ℏĴ±, (2.10a)
[Ĵ+, Ĵ−] = 2ℏĴz. (2.10b)

Due to the non-commutativity of Ĵx, Ĵy, Ĵz, Ĵ+, and Ĵ−, it is impossible to precisely
determine all of these quantities through measurement within the same instance. However,
simultaneous measurement of Ĵz and Ĵ2 is feasible. These two observables are considered
as "good quantum numbers" due to their commutative nature. The operator Ĵ2 denotes
the squared magnitude of the orbital angular momentum and is expressed as:

Ĵ2 = Ĵ · Ĵ = Ĵ2
x + Ĵ2

y + Ĵ2
z = Ĵ−Ĵ+ + Ĵz(Ĵz + ℏ). (2.11)

If we consider an eigenstate |mj⟩ of Ĵz given by:

Ĵz |mj⟩ = mjℏ |mj⟩ , (2.12)

where mj is a quantum number ranging from −j to j, with jℏ representing the maximum
value that Ĵz can reach, it follows that (as demonstrated in [25] p.17):

Ĵ2 |mj⟩ = ℏ2j(j + 1) |mj⟩ . (2.13)

Conversely to classical angular momentum, the quantity associated with Ĵz will never
reach the total length value ℏ

√
j(j + 1), as illustrated in Fig. 2.2. However, we must be

careful about this interpretation, it does not imply that the x and y components have
non-zero values because Ĵz |mj⟩ ̸= Ĵ |mj⟩. This is a fundamental principle of quantum
mechanics: knowing Ĵz does not provide information about Ĵx and Ĵy. Also, for the raising
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−
√
l(l+ 1)

−l

−1

0

1

l

√
l(l+ 1)

ml

L̂

ẑ(· )(a)

−
√
s(s+ 1)

−s

−1/2

1/2

s

√
s(s+ 1)

ms

Ŝ

ẑ(· )(b)

Figure 2.2: Schematic representation of the projection along the z-axis of the
quantized values of (a) orbital and (b) spin angular momenta.

and lowering operators, applied to an eigenstate |mj⟩, it is expressed as [25]:

Ĵ+ |mj⟩ = ℏ
√
j(j + 1) −mj(mj + 1) |mj + 1⟩ , (2.14a)

Ĵ− |mj⟩ = ℏ
√
j(j + 1) −mj(mj − 1) |mj − 1⟩ . (2.14b)

In quantum mechanics, the orbital angular momentum, defined in Eq. (2.1) in classical
mechanics, is represented by:

L̂ = r̂ × ℏ
i
∇. (2.15)

Assuming that |l⟩ is an eigenstate corresponding to the maximum eigenvalue of L̂z,
expressed in spherical coordinates, it can be written as:

L̂z |l⟩ = ℏ
i
∂ϕ |l⟩ = ℏl |l⟩ . (2.16)

The solution to this equation necessitates the following condition on the eigenvalue l:

|l⟩ = eilϕl = eil(ϕl+2π). (2.17)

This implies that l is an integer, and ml can take 2l + 1 possible values, as illustrated in
Fig. 2.2 (a).

Conversely to the electron’s orbital motion, the spin is a purely quantum effect with no
classical analogy. The spin behaves as an angular momentum and can be conceptualized
classically as the electron spinning, generating a magnetic moment. The experimental
observation by Gerlach and Stern (1922) [100] revealed that the maximum quantum
number for spin s is 1/2, meaning that ms has 2s possible values, as depicted in Fig. 2.2
(b). According to Dirac’s spin theory (1965) [101], the spin magnetic moment is described
by:

µ̂S = γSŜ, (2.18)
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where γS = 2γL represents the spin gyromagnetic factor.

2.1.2.b Total Angular & Magnetic Momenta in atoms and ions

Here, our aim is to determine the net magnetic momentum of atoms and ions with
multiple electrons. Following Russell and Saunders (1925) [102], we introduce the weak
spin-orbit coupling approximation, neglecting this effect:

Ŝ =
∑

i

Ŝi, (2.19a)

L̂ =
∑

i

L̂i, (2.19b)

Ĵ = Ŝ + L̂, (2.19c)

where Si and Li represent the orbital and spin angular momenta of the ith electron in
the considered atom or ion, and J is the total angular momentum of the atom or ion.
To be differentiated them from the angular momentum of a single electron, the quantum
numbers of these operators are denoted in uppercase, i.e. l → L, s → S, and j → J . In
the same manner, ml → mL, ms → mS, and mj → mJ .

The total magnetic momentum is given by:

µ̂ = γL(L̂ + 2Ŝ) = γĴ. (2.20)

γ can also be expressed as a function of γL as:

γ = gLγL, (2.21)

where gL is the Landé factor. Deriving Eq. (2.20) leads to (see Appendix 2.A for derivation):

gL = 3
2 + S(S + 1) − L(L+ 1)

2J(J + 1) . (2.22)

In the particular case of an angular momentum only having a spin component, the Landé
factor is gL = 2. If the angular momentum only has an orbital component, the Landé
factor is gL = 1, retrieving the values in the previous subsections.

In atoms and ions, each electron is described by a wave function ψ(r), which represents
the probability amplitude of finding the electron at a specific position r. This wave function
depends on four different quantum numbers:

• n: the principal quantum number, which defines the shell and indicates the number
n− 1 of radial nodes of the wave function.

• l: the orbital angular momentum, which defines the subshell. Its range of possible
values is given by l ≤ n− 1.

• ml: the projection on the z-axis of the orbital angular momentum, which defines the
orbital. Its range of possible values is given by −l ≤ mz ≤ +l.

• ms: the projection on the z-axis of the spin angular momentum, where ms = ±1/2.
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Note that the subshell is commonly written as nX, where X is s, p, d, or f if l = 0, 1, 2
or 3, respectively.

Several shells and subshells of an atom or an ion can be filled by several electrons.
But the filling of an atom or an ion must follow two rules: the first one is the Pauli
exclusion principle. This principle states that two electrons cannot occupy the same state
simultaneously, meaning they cannot share the same shell, subshell, orbital, and spin. The
second rule is the Hund’s rule, which asserts that when an atom is in its ground state,
electrons occupying a subshell that is not entirely filled are arranged in a manner that
maximizes S. Once S is maximized, L is also maximized.

Table 2.1: Hund’s rules for the ground state configuration of the Fe3+ ion.

ml 2 1 0 -1 -2
ms ↑ ↑ ↑ ↑ ↑

Let us examine the case of the Fe3+ ion, which will be relevant later on: its electronic
configuration is 3d5. Despite the 3d subshell can accept 10 electrons, this ion only
possesses 5 electrons. Following the filling rules, the Fe3+ ion’s state has only a spin
angular momentum (as the orbital angular momenta cancel each other out). Thus, the
total angular momentum is J = S = 5/2. Since L = 0 for the Fe3+ ion, its gyromagnetic
factor is that of pure spin: |γ|/2π = 2|γL|/2π = 28 GHz.T−1. Additionally, its magnetic
moment is µ = ℏγS = −5µB. Note that it is more common to express the magnetic
moment in terms of the Bohr magneton µB = ℏ|γL| instead to γL.

2.1.3 Zeeman energy
The Zeeman energy arises from the interaction between an angular momentum and a

static magnetic field. We will first illustrate its occurrence for orbital angular momentum
from classical mechanics and then extend it to every angular momentum. First, let us
recall two fundamental laws in electromagnetism: Gauss’ Law and Faraday’s Law, which
respectively describe the behavior of electric fields and magnetic fields in vacuum.

∇ · B = 0, (2.23a)
∇ × E = −∂tB. (2.23b)

From Gauss’ law, it follows that there exists a vector potential A such that:

B = ∇ × A. (2.24)

Substituting into Faraday’s Law, we obtain:

∇ × (E + ∂tA) = 0. (2.25)

From this condition, there exists a scalar potential ϕ such that:

E = −∂tA − ∇ϕ. (2.26)
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Secondly, a particle in an electromagnetic field undergoes the Lorentz force, given by:

F = mdtv = q(E + v × B), (2.27)

where v is the velocity of the particle. Note that we did not use ∂tv because we consider
the center of mass of the particle in this equation, meaning that ∂xi

v = 0, where xi

represents x, y, or z. However, the material derivative of the vector potential is given by:

dtA = ∂tA +
3∑

i=1
(∂txi)∂xi

A, (2.28)

where ∂txi = vi is the velocity of the particle along the xi-axis. The Lorentz force can be
expressed as:

mdtv = q(v × ∇ × A − ∂tA − ∇ϕ), (2.29a)
dt(mv + qA) = q∇(v · A − ϕ), (2.29b)

where we have used the following identity:

(v × ∇ × A)x̂i = vxj
(∂xi

Axj
− ∂xj

Axi
) − vxk

(∂xk
Axi

− ∂xi
Axk

), (2.30a)
(v × ∇ × A)x̂i = ∂xi

(v · A) − dtAxi
+ ∂tAxi

. (2.30b)

From the principle of least action [103], the following condition is known as the Euleur-
Lagrange equation:

dt∂ẋi
L = ∂xi

L. (2.31)
This equation is of the same form as Eq. (2.29b). Concerning the terms on the left-hand
side, the conjugate momentum p is defined as:

p = ∂ẋL = mv + qA. (2.32)

Also, the Lagrangian is defined as:

L = T − V, (2.33)

where T = p · v/2 represents the kinetic energy, and V denotes the potential energy.
Considering the terms on the right-hand side of Eq. (2.29b) and (2.31), we determine the
potential energy as:

∇L = 1
2∇(v · p) − ∇V = q∇(v · A − ϕ), (2.34a)

∇L = 1
2q∇(v · A) − ∇V = q∇(v · A) − q∇ϕ, (2.34b)

V = q
[
ϕ− 1

2(v · A)
]
. (2.34c)
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Then, the Hamiltonian describing a particle moving in an electromagnetic field is given by:

H = T + V, (2.35a)

H = 1
2p · v + q

[
ϕ− 1

2(v · A)
]
, (2.35b)

H = 1
2mp · (p − qA) + q

[
ϕ− 1

2m(p − qA) · A
]
, (2.35c)

H = 1
2m(p − qA)2 + qϕ. (2.35d)

Substituting the momentum with its quantum operator, the Hamiltonian is expressed as:

H = 1
2m

(
ℏ
i
∇ − qA

)2

+ qϕ, (2.36a)

H = − ℏ2

2m∇2 + iℏ
q

2m [∇ · A + A · ∇] + q2

2mA2 + qϕ. (2.36b)

The first term in this Hamiltonian corresponds to the momentum of a particle moving
in a vacuum. The last term is related to the electric field. The third term, named the
diamagnetic term, represents the electromagnetic field interacting with itself. This term,
being of second order, is often neglected. The second term is of great importance and is
related to the Zeeman energy, as it will be shown.

To proceed, it is more common to work in the Coulomb Gauge [98]:

∇ · A = 0. (2.37)

Also, we will consider the particle in a magnetic field only. In the Coulomb Gauge, and
without an electric field, the scalar potential ϕ is equal to zero, regarding Eq. (2.26).
Thereby, the Zeeman term in Eq. (2.36b) writes as:

iℏ
q

2m [∇ · A + A · ∇] = iℏ
q

m
A · ∇. (2.38)

Because the magnetic field is considered static, the spatial derivatives of the magnetic
field with respect to spatial coordinates vanish:

∂xi
B = 0. (2.39)

This condition allows us to write:

∇ × (B × r) = B∇ · r − r∇ · B + (r · ∇)B − (B · ∇)r, (2.40a)
∇ × (B × r) = (∇ · r)B − (B · ∇)r, (2.40b)
∇ × (B × r) = 2B. (2.40c)

From Eq. (2.24), we have:
A = 1

2(B × r). (2.41)
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Hence, the Zeeman energy writes as:

HZ = −ℏ
i

q

2m(B × r) · ∇, (2.42a)

HZ = − q

2m(r × ℏ
i
∇) · B, (2.42b)

HZ = −µL · B. (2.42c)

Finally, generalizing for any magnetic moment, the Zeeman Hamiltonian is expressed as:

HZ = −µ · B. (2.43)

2.1.4 Larmor Precession
The Larmor precession describes the rotation of the mean magnetic moment of a

system subjected to a uniform magnetic field along the z-axis. This phenomenon can be
understood semi-classically as an angular momentum precessing around the z-axis. In the
Hilbert space of solutions, the system’s eigenfunction is represented as:

|ψ⟩ =
∑
mJ

cmJ
|mJ⟩, (2.44)

where mJ denotes the possible values of Ŝz ranging from −J to J , and cmJ
corresponds to

their probability amplitude, assumed to be real. Within the Hilbert space, the eigenvector
must satisfy the following condition:

⟨mJ |mJ ′⟩ = δJ,J ′ . (2.45)

Additionally, the state function of the system must be normalized, ensuring that the sum
of probabilities equals unity:

⟨ψ|ψ⟩ =
∑
mJ

c2
mJ

= 1. (2.46)

The eigenfunction must also satisfy the time-dependent Schrödinger equation:

iℏ∂t |ψ⟩ = HZ |ψ⟩ . (2.47)

Since the Hamiltonian in the Hilbert space of solutions is diagonal, the differential equation
can be solved for each |mJ⟩, resulting in:

cmJ
→ eiωmJ

tcmJ
, (2.48a)

|ψ⟩ =
∑
mJ

cmJ
eiωmJ |mJ⟩, (2.48b)

where ωmJ
= mJgLµBB0. The mean value of Ĵz, corresponding to its measurement, is

given by:
⟨Ĵz⟩ = ⟨ψ| Ĵz |ψ⟩ = ℏ

∑
mJ

c2
mJ
mJ . (2.49)

Thus, the measured value of the z-projection of the angular momentum equals the mean
of the possible values. The mean values of the x and y-component are calculated as (see
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Figure 2.3: Schematic representation of the spin precession of an electron in the
semi-classical picture.

Appendix 2.B for derivation):

⟨Ĵx⟩ = cos(ωLt)
J−1∑

mJ =−J

cmJ
cmJ +1J

mJ
+ , (2.50a)

⟨Ĵy⟩ = sin(ωLt)
J−1∑

mJ =−J

cmJ
cmJ +1J

mJ
+ . (2.50b)

From these equations, it shows that the measured values of the angular momentum in the
xy-plane exhibit a precession with an angular frequency equal to:

ωL = gLµB

ℏ
B0. (2.51)

This is known as the Larmor angular frequency.

If a state |mJ⟩ has a probability of one, then ⟨Ŝx⟩ and ⟨Ŝy⟩ are both 0. For a better
clarification, let us examine the scenario of a single electron spin with mj = ±1/2. We
assume that c1/2 = cos(θ/2), and c−1/2 = sin(θ/2). In this context, the mean values of the
spin angular momentum components are expressed as follows:

⟨Ŝz⟩ = ℏ
2(cos2(θ/2) − sin2(θ/2)) = ℏ

2cos(θ), (2.52a)

⟨Ŝx⟩ = ℏcos(ωLt)cos(θ/2)sin(θ/2) = ℏ
2sin(θ)cos(ωLt), (2.52b)

⟨Ŝy⟩ = ℏsin(ωLt)cos(θ/2)sin(θ/2) = ℏ
2sin(θ)sin(ωLt). (2.52c)

This scenario illustrates an angular momentum inclined at an angle θ relative to the z-axis.
It mirrors the classical behavior of an angular momentum precessing around the z-axis, as
depicted in Fig. 2.3. In a semi-classical picture, the electron resembles a “top” spinning
around the z-axis. However, it is imperative to emphasize that while this holds true for the
mean value, the quantum object itself remains time-independent, and owns an amplitude
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of probabilities for each value.

2.1.5 Equation of motion of an angular momentum
In the continuation of the previous section, we will demonstrate that a static magnetic

field induces a torque on an angular momentum. To illustrate this, we introduce the
Ehrenfest theorem:

dt ⟨Â⟩ = ⟨∂tÂ⟩ + 1
iℏ

⟨[Â, Ĥ]⟩ , (2.53)

where Â represents operator. Each component of the angular momentum Ĵ remains
time-independent (∂tĴxi

= 0). By considering the Zeeman Hamiltonian, it can be readily
demonstrated that:

dt ⟨Ĵx⟩ = −ωL ⟨Ĵy⟩ , (2.54a)
dt ⟨Ĵy⟩ = ωL ⟨Ĵx⟩ , (2.54b)
dt ⟨Ĵz⟩ = 0. (2.54c)

From this result, the torque exerted by a static magnetic field on an angular momentum
is given by:

τ = dtJ = µ × B. (2.55)
This equation describes the relaxation in insulators, while electrons must be taken into
account to describe metals. It is worth noting that this equation does not account for
precession damping rates. The damping rates are phenomenologically introduced in the
equation of motion of the net magnetization by including the so-called Gilbert damping
parameter α. This damping parameter arises from the energy transfer from precessing
spins to lattice vibrations, a process known as magnon-phonon interaction. Its origins
can be attributed to two main factors: the direct magnon-phonon coupling mediated
by spin-orbit interactions (which we have neglected so far), and the intermediate spin
wave states. In the latter case, the dipolar field due to the spin depends on their relative
distances. If the lattice vibrates, the dipolar field associated with the spin distances
changes, resulting in the creation of spin wave states.

2.2 Magnetic Materials
Magnetic materials are classified into four distinct families based on the arrangement

of their magnetic moments, which results in different responses when subjected to a static
magnetic field. These four families are known as diamagnetic, paramagnetic, ferromagnetic,
and antiferromagnetic. It’s worth noting that there is a fifth category known as ferrimagnet;
however, its physics closely resembles that of antiferromagnets and can often be considered
akin to ferromagnets, as will be discussed later. The investigations presented in this thesis
focus on a ferrimagnetic material called Yttrium Iron Garnet (YIG), and its properties
are elaborated upon in the subsequent sections.
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2.2.1 Diamagnetism
A diamagnetic material consists of atoms or ions with all their subshells filled, meaning

they do not possess a permanent magnetic moment. When subjected to a static magnetic
field, the electron orbitals undergo significant deformation. This deformation triggers
a response, known as Lenz’s law, resulting in the emergence of a net magnetization M
opposing the applied static magnetic field.

This effect is not exclusive to electronically filled atoms but applies to all types of
atoms due to the deformation of electron orbitals. However, it is often negligible compared
to other effects discussed subsequently. The susceptibility associated with diamagnetism is
relatively weak (|χdia| ∈ [10−6; 10−4] [104]) compared to other phenomena. It is important
to note that the diamagnetic susceptibility is negative because the magnetization opposes
the applied magnetic field.

2.2.2 Paramagnetism
A paramagnetic material comprised of localized magnetic moments that are randomly

oriented at thermal equilibrium, resulting in the absence of a net magnetic moment.
However, when subjected to a static magnetic field, partial alignment of the magnetic
moments with the field occurs, leading to the emergence of net magnetization. The
magnitude of this net magnetization is contingent upon the temperature and the strength
of the applied magnetic field.

Let us demonstrate the relationship between net magnetization, applied magnetic field
strength, and temperature. The system’s Hamiltonian is the Zeeman Hamiltonian, and
according to statistical mechanics, the probability of an electron being in a state with
energy EZ(mJ) follows Boltzmann’s statistics:

P (mJ) = c2
mJ

= eEZ(mJ )/kBT

J∑
mJ =−J

eEZ(mJ )/kBT

, (2.56)

where kB is the Boltzmann’s constant. The denominator is a normalization term, which
sums over all the Boltzmann’s factor associated with all possible energy states. From this,
the averaged value of the magnetic moment can be expressed as:

⟨µz⟩ =

J∑
mJ =−J

µz(mJ)e−Ez(mJ )/kBT

J∑
mJ =−J

e−Ez(mJ )/kBT

, (2.57a)

⟨µz⟩ = −gLµB

J∑
mJ =−J

mJe
−mJ x

J∑
mJ =−J

e−mJ x

. (2.57b)
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In the last equation, we defined x = gLµ0µBH/kBT . Considering the entire material, with
n magnetic moments per unit volume, we can determine the average magnetization as:

M = nµ. (2.58)

After some derivations (see Appendix 2.C), the average magnetization is given by:

⟨Mz⟩ = MsBJ(y), (2.59)

where Ms = ngLµBJ is the saturated magnetization (i.e. all spins are aligned along the
z-axis), y = xJ , and BJ is the Brillouin function defined as:

BJ(y) = 2J + 1
2J coth

(2J + 1
2J y

)
− 1

2J coth
(
y

2J

)
. (2.60)

When y is low, i.e. when the temperature is sufficiently high compared to the strength of
the applied magnetic field, the Brillouin function can be approximated as:

BJ(y) ≃ J + 1
3J y, (2.61)

Hence, the averaged magnetization can rewrite:

⟨Mz⟩ = C

T
H, (2.62)

where C = µ0ng
2
LJ(J + 1)µ2

B/3kB is the Curie constant.

Then, we define the paramagnetic susceptibility, also known as the Curie law, as:

χpara = ⟨Mz⟩
H

= C

T
. (2.63)

Considering the value of C, the paramagnetic susceptibility is higher for materials composed
of atoms with half-filled subshells (because J would be higher). Also, at high temperatures,
the paramagnetism disappears, and the material behaves similarly to a diamagnetic
material. Note that the paramagnetic susceptibility is positive and typically ranges from
10−5 to 10−3 [104].

2.2.3 Ferromagnetism
Ferromagnets exhibit a net magnetization because their magnetic moments are sponta-

neously aligned. This alignment occurs within magnetic domains, which are regions much
smaller than the material sample. At equilibrium, these domains cancel each other out,
resulting in no net magnetization. However, when an external magnetic field is applied,
the domains tend to align with it. The magnetization is considered saturated when all the
domains are perfectly aligned with the external magnetic field.

The magnetic moments within a domain spontaneously align themselves below a certain
temperature known as the Curie Temperature. According to the Weiss Theory (1907) [105],
there also exists an intrinsic magnetic field, historically referred to as the molecular field,
due to the interaction of the magnetic moments. It has been later shown that this field
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arises from exchange energy in a lattice of spins. This field is expressed as Hex = ΛexM,
where Λex is a material-dependent constant. In this mean field approximation, the theory
remains similar to that for paramagnets, with the addition of the exchange field. The
magnetization is then given by:

M = C

T
Htot = C

T
(H + ΛexM). (2.64)

The susceptibility is given by:
χferro = C

T − TC
, (2.65)

where TC = ΛexC represents the Curie temperature of the material. However, this
relationship holds true only when T > TC . Above the Curie temperature, the ferromagnetic
effect diminishes, and the material transitions to a paramagnetic state, where all magnetic
moments become randomly oriented. For temperatures well below TC, the magnetization
follows the T 3/2 Bloch’s law:

M ≃ Ms

[
1 −

(
T

TC

)3/2]
, (2.66)

where Ms = M(T = 0) denotes the saturation magnetization. This law stems from the
probability of a spin wave with wavevector k to exist at a temperature T , which is well
demonstrated in Ashcroft and Mermin (2002) [106], p. 840.

2.2.4 Antiferromagnetism
Below the Néel temperature TN, adjacent moments in an antiferromagnet are oppositely

oriented, akin to two opposing ferromagnetic sublattices. The net magnetization of these
sublattices cancels out in the absence of an applied magnetic field, resulting in no net
magnetic moment. Similar to the Curie temperature in ferromagnets, an antiferromagnet
exhibits paramagnetic behavior when the temperature exceeds the Néel temperature.

It is worth noting that ferrimagnets also consist of two sublattices, but in contrast
to antiferromagnets, the moments in the sublattices do not fully cancel each other out.
This discrepancy results in a net magnetization, effectively behaving like a ferromagnet in
microwave frequencies and below.

2.2.5 Yttrium Iron Garnet
Yttrium Iron Garnet (YIG) stands out as an artificial insulator ferrimagnet renowned

for its numerous advantages. It has secured a prominent position in RF devices and more
recently in quantum research setups. One primary advantage of YIG is its remarkably low
Gilbert damping rate, which typically ranges from 10−5 to 10−3 [13, 107–109]. This low
damping rate results in a narrow ferromagnetic resonance line, as depicted in Fig. 2.4. YIG
has two other significant advantages: a high Curie temperature (TC = 560 K), facilitating
experiments at room temperature, and a dense spin population (ns = 4.22 × 1027 m−3

[110]), which proves invaluable for magnon-photon coupling studies.
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Figure 2.4: Schematic representation of the YIG absorption magnitude as a
function of frequency. The full width at half maximum (FWHM) corresponds to the
YIG losses, which are directly related to the Gilbert damping.

YIG is represented by the chemical formula Y3Fe5O12. It adopts a cubic crystal
structure with a body-centered cubic unit cell, akin to natural garnets, featuring a lattice
constant of a = 12.376 Å. The unit cell comprises 160 ions organized as follows [111]:

• 16 octahedral sites occupied by Fe3+ ions (a-sites).

• 24 tetrahedral sites occupied by Fe3+ ions (d-sites).

• 24 dodecahedral sites occupied by Y3+ ions (c-sites).

• 96 surrounding O2− ions (h-sites).

This ferrimagnet can be viewed as a ferromagnet wherein the total magnetic momentum is
subtracted between the sublattices. Among the ions in this lattice, only Fe3+ is magnetic.
Considering the subtraction of the two sublattices, the magnetic moment of one unit cell
is equivalent to that of the Fe3+ ion, amounting to µ = 5µB at T = 0 K.

2.3 Spin Waves
A spin wave represents the collective response of spins in a medium to a perturbation.

Rather than observing a local spin reversal due to exchange interactions between nearest
spins, a collective excitation of all spins in the magnetic material occurs. The nature
of this excitation can vary, originating from interactions with optical waves (optical
photon-magnon interaction), lattice vibrations (phonon-magnon interaction), or microwaves
(microwave photon-magnon interaction). In this context, we focus on microwave photon-
magnon interactions, studying spin waves in ferromagnets where interaction frequencies
lie in the microwave range. As demonstrated in the following subsections, spin waves have
two main origins: exchange spin waves, crucial at high wavevectors where spin spacing is
significant compared to the spin wavelength; and dipole-dipole interactions arising from
magnetostatics, important at low wavevectors.
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2.3.1 Exchange Spin Waves
In ferromagnets, antiferromagnets, and ferrimagnets, spin alignment arises from

the exchange interaction, which can take different forms depending on the material.
This interaction is commonly described by the Heisenberg model, which accounts for
spin alignment based on the exchange energy between neighboring spins. In metallic
ferromagnets, the exchange interaction originates from the direct overlap of electronic
wave functions, leading to a mechanism often referred to as direct exchange. However, in
insulating magnetic oxides such as YIG, the alignment of spins is mediated by the super-
exchange mechanism [112]. In this case, the interaction is indirect and occurs through non-
magnetic ions like oxygen, balancing Coulomb and kinetic energy contributions to determine
whether the spin alignment is parallel (ferromagnetic) or antiparallel (antiferromagnetic or
ferrimagnetic).

2.3.1.a Magnon Dispersion Relation

The Heisenberg Hamiltonian, describing the exchange interaction between adjacent
spins, is given by:

Ĥex = −2J
ℏ2

∑
j,δ

Ŝj · Ŝj+δ, (2.67)

where j represents the spin site of the considered spin, and δ is the vector of the nearest
neighbors of this spin site. The exchange parameter J is assumed to be the same for any
of the nearest neighbors of the spins, hence it is factored out of the summation.

In addition to the exchange Hamiltonian, we also consider the Zeeman Hamiltonian
for a complete understanding of the system’s energy. Assuming a static magnetic field is
applied along the z-axis, the Hamiltonian is expressed as follows:

Ĥ = −2J
ℏ2

∑
j,δ

Ŝj · Ŝj+δ − gLµB

ℏ
B0
∑

j

Ŝz
j . (2.68)

Note that the total energy of the system is minimized when all spins are aligned along
the z-axis. This aligned state is considered as the ground state of the system. This
Hamiltonian can also be expressed as:

Ĥ = −J
ℏ2

∑
j,δ

(
S−

j S
+
j+δ + S+

j S
−
j+δ + 2Sz

jS
z
j,δ

)
− gLµB

ℏ
B0
∑

j

Sz
j . (2.69)

Because the ground state arises when all spins are aligned along the z-axis, it is more
convenient to consider each excitation of the system, i.e. each deviation of a spin from its
aligned state. To proceed, let us rewrite Ŝz

j as:

Ŝz
j = ℏ(S − m̂†

jm̂j), (2.70)

where ⟨m̂†
jm̂j⟩ = nj, and nj represent the number of reversed spins at site j. Instead of

focusing on the eigenstates of the electrons in a lattice j, we are only interested in the
spin deviation at site j, which represents the number of flipped spins. In this context, we
focus on the Fock states |nj⟩. Similar to a harmonic oscillator, m̂†

j (m̂j) raises (lowers) the
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Fock state, as:

m̂†
j |nj⟩ =

√
nj + 1 |nj + 1⟩ , (2.71a)

m̂j |nj⟩ = √
nj |nj − 1⟩ . (2.71b)

A magnon is the quasi-particle associated with the distribution of spin flips over the lattice.
Therefore, a spin reversal at site j is equivalent to the presence of a magnon at site j.
Additionally, m̂†

j (m̂j) creates (annihilates) a magnon on site j, and nj represents the
number of magnon on site j. This implies that multiple magnons can exist simultaneously
at the same site. Magnons do not obey the Pauli exclusion principle and are bosons,
exhibiting the following commutation relation:

[m̂j, m̂
†
j′ ] = δj,j′ . (2.72)

Known as the Holstein-Primakoff transformation [113], the raising and lowering spin
operators can be expressed as follows (see Appendix 2.D for derivation):

Ŝ+
j = ℏ

√
2S

√√√√1 −
m̂†

jm̂j

2S m̂j, (2.73a)

Ŝ−
j = ℏ

√
2Sm̂†

j

√√√√1 −
m̂†

jm̂j

2S . (2.73b)

At low temperature, only a few spins are reversed across the entire lattice. Consequently,
when averaging over a specific site, the number of magnons is close to zero. In the following,
we consider this approximation, known as the low-temperature approximation, which
allows us to retain only the first-order term of the Taylor series expansion of the square
root in Eq. (2.73). This leads to:

Ŝ+
j ≃ ℏ

√
2Sm̂j, (2.74a)

Ŝ−
j = ℏ

√
2Sm̂†

j. (2.74b)

Neglecting terms in m̂ higher than 2 (which follows the same approximation), the Hamil-
tonian in Eq. (2.69) becomes:

Ĥ = − 2J S
∑
j,δ

(
m̂†

jm̂j+δ + m̂jm̂
†
j+δ − m̂†

jm̂j − m̂†
j+δm̂j+δ + S

)
(2.75)

− gLµBB0
∑

j

(
S − m̂†

jm̂j

)
.

The number of magnons on a specific site j is close to zero at low temperature.
However, the total number of magnons across the lattice may not necessary be low. It only
needs to be smaller than the number of sites for the approximation to hold. Therefore, it
is more appropriate to consider magnons across the entire lattice rather than specific sites.
To facilitate this, we define magnons in the k-space. By applying the discrete Fourier
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transform to the magnon operators, we obtain:

m̂k = 1√
N

∑
j

e−ik·rjm̂j, (2.76a)

m̂†
k = 1√

N

∑
j

eik·rjm̂†
j, (2.76b)

where k is the wavevector of the magnon, and rj denotes the position vector of the jth

site. We recall that the inverse discrete Fourier transform is defined as:

m̂j = 1√
N

∑
k
ek·rjm̂k, (2.77a)

m̂†
j = 1√

N

∑
k
e−ik·rjm̂†

k, (2.77b)

where the summation is over all possible wavevectors k in the Brillouin zone. These
operators satisfy the same commutation relation, given by:

[mk,m
†
k′ ] = 1

N

∑
j,l

e−ik·rje−ik′·rl [mj,m
†
l ], (2.78a)

= 1
N

∑
j,l

e−ik·rje−ik′·rlδj,l, (2.78b)

= 1
N

∑
j

e−i(k′−k)·rj , (2.78c)

= δk,k′ , (2.78d)

where the last line follows from the property of the discrete Fourier transform. In the
k-space, the Hamiltonian is expressed as:

Ĥ = E0(B0) + Ĥ0, (2.79)

where the ground state energy is given by:

E0(B0) = −2NJZS2 −NgLµBB0S. (2.80)

The Hamiltonian Ĥ0 is given by:

Ĥ0 = − 2J S
N

∑
j,δ,k,k′

[
e−i(k−k′)·rjeik′·δm̂†

km̂k′ + ei(k−k′)·rje−ik′·δm̂km̂
†
k′

−e−i(k−k′)·rjm̂†
km̂k′ − e−i(k−k′)·(rj+δ)m̂†

km̂k′

]
(2.81a)

+ gLµB

N
B0

∑
j,k,k′

e−i(k−k′)·rjm̂†
km̂k′ ,

Ĥ0 = − 2J S
∑
δ,k

[
eik·δm̂†

km̂k + e−ik·δm̂km̂
†
k − 2m̂†

km̂k
]

+ gLµBB0
∑

k
m̂†

km̂k. (2.81b)

As for the commutation relation in Eq. (2.78), the sum over k′ vanishes for k′ ̸= k, leading
to Eq. (2.81b). After this, no terms are dependent on j, hence the sum over j equals N .
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By defining the normalized sum over all nearest neighbors of a spin as:

γk = 1
Z

∑
δ

eik·δ, (2.82)

where Z is the number of nearest neighbors of a spin, the Hamiltonian rewrites as:

Ĥ0 = JZS
∑

k

[
γkm̂

†
km̂k + γ−k

(
1 + m̂†

km̂k
)

− 2m̂†
km̂k

]
+ gLµBB0

∑
k
m̂†

km̂k, (2.83a)

Ĥ0 =
∑

k
[JZS(2 − γk − γ−k) + gLµBB0]m̂†

km̂k. (2.83b)

The fact that ∑δ e
k·δ = 0 because δ ̸= 0, ∑k γk = 0, this term is suppressed from the first

to second row in the equation above. The Hamiltonian becomes analogous to that of a
harmonic oscillator, with the ground state possessing an offset energy:

Ĥ0 = E(B0) +
∑

k
ℏωkm̂

†
km̂k, (2.84)

where the angular frequency of the magnons with wavevector k is given by:

ωk = [gLµBB0 − JZS(γk + γ−k − 2)] /ℏ. (2.85)

The Hamiltonian in Eq. (2.84) is diagonal in the Fock space of eigenvectors |nk⟩. We
consider the system in the Fock state |nk⟩, indicating a probability of 1 for this state and
0 for all others. Then, the mean value of a spin at lattice site j is given by:

⟨Ŝz
j ⟩ = ℏ ⟨nk|S − m̂†

jm̂j |nk⟩ = ℏ(S − nk

N
), (2.86)

where we utilized Eq. (2.77a) and (2.77b). This implies that as more spins are excited,
the z-component of each spin decreases more, as expected. In the semi-classical picture,
instead of observing nk spins flipped in the lattice, it effectively reduces the z-component
of all spins by nk/N . Conversely to the z-component, we find that it is impossible to
determine the x and y-components of the spin angular momentum at site j:

⟨Ŝx
j ⟩ = ℏ

√
2S
2 ⟨nk| m̂j + m̂†

j |nk⟩ = 0, (2.87a)

⟨Ŝy
j ⟩ = ℏ

√
2S
2i ⟨nk| m̂j − m̂†

j |nk⟩ = 0. (2.87b)

This does not imply the absence of components perpendicular to the applied field; rather,
it indicates that in a collective spin excitation, the individual length of perpendicular
components on a single site cannot be determined. To address this, it is useful to calculate
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the scalar product of the perpendicular components between two adjacent spins:

⟨Ŝ⊥
j · Ŝ⊥

j+δ⟩ = ⟨Ŝx
j Ŝ

x
j+δ + Ŝy

j Ŝ
y
j+δ⟩ , (2.88a)

⟨Ŝ⊥
j · Ŝ⊥

j+δ⟩ = ℏ2 S

2N ⟨nk| (mj +m†
j)(mj+δ +m†

j+δ) − (mj −m†
j)(mj+δ −m†

j+δ) |nk⟩ ,
(2.88b)

⟨Ŝ⊥
j · Ŝ⊥

j+δ⟩ = ℏ2 2S
N
nkcos(k · δ). (2.88c)

In the semi-classical picture, this provides two pieces of information regarding the precessing
spins: Firstly, the length of the perpendicular component at any site equals ℏ

√
2Snk/N ,

which depends on the number of excited spins in the lattice with wavevector k. Secondly,
the dephasing between two nearest spins is given by cos(k · δ), representing a collective
spin wave, as illustrated in Fig. 2.5 (a). It is worth noting that considering the results of
Eq. (2.86) and (2.88c), in the limit where nk ≪ N , the precessing spins form an angle:

θ ≃ tan(θ) =

√
2Snk/N

S − nk/N
≃
√

2nk

NS
. (2.89)

Finally, the cone angle of each spins along the z-axis widens with a higher number of
excited spins.

Note that for k = 0, γ0 = 1, hence the magnon angular frequency is equal to the
Larmor anguler frequency:

ω0 = gLµB

ℏ
B0. (2.90)

Let us explore the behavior of crystals with a simple cubic lattice. In a simple cubic
lattice, each spin has two nearest neighbors in each direction at the same distance, denoted
as a. Therefore, the Fourier coefficient can be expressed as:

γk = γ−k = 1
3 [cos(kxa) + cos(kya)cos(kza)] . (2.91)

At small k, this leads to the following quadratic dispersion relation:

ωk = ω0 + 4J Sa2

ℏ
k2. (2.92)

Here, the first term corresponds to the precession when all the spins are in phase (k = 0),
while the second term corresponds to the exchange energy. In this configuration, the
exchange spin wave dispersion is quadratic, as illustrated in Fig. 2.5 (b).

2.3.1.b Magnon Interaction

In the previous section, we explored the magnon dispersion relation within the non-
interacting spin wave approximation, where the number of magnons is negligible compared
to the total number of spins in the lattice. However, when the number of magnons becomes
significant, the first-order approximation in the Holstein-Primakoff transformation is no
longer accurate. In such cases, it becomes necessary to expand the transformation’s Taylor
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Figure 2.5: Illustration of (a) the precession of spin angular momenta of a spin
wave in a 1D spin chain, and (b) the quadratic dispersion relation of the exchange
spin wave frequency as a function of the wave vector in a crystal with a simple cubic
lattice.

series to the second order:

Ŝ+
j ≃ ℏ

√
2S
m̂j −

m̂†
jm̂jm̂j

4S

 , (2.93a)

Ŝ−
j ≃ ℏ

√
2S
m̂†

j −
m̂†

jm̂
†
jm̂j

4S

 . (2.93b)

This results in the addition of a new contribution to the Hamiltonian in Eq. (2.79):

H1 = JZ
N

∑
k1,k2,k3,k4

δ(k1 + k2 − k3 − k4)(γk1 = +γk3 − 2k1−k3)m̂†
k1
m̂†

k2
m̂k3m̂k4 . (2.94)

Readers can refer to Oguchi (1960) [114] for demonstration for the derivation of this
Hamiltonian. It describes the nonlinear transition probability from magnon states with
wavevectors k1 and k2 to magnon states with wavevectors k3 and k4. Thus, the exchange
interaction allows only 4-magnon mixing to occur.

2.3.2 Dipolar Spin Waves
In the study of dipolar spin waves, we examine the behavior of magnetization, which

represents the density of magnetic moments per unit volume in a sample. This implies
aligning all magnetic moments along a z-axis under the influence of a static magnetic field.
When a perpendicular periodic magnetic field is applied, the magnetization undergoes
precession, a phenomenon described by the Polder susceptibility. It will be illustrated that
the range of achievable frequencies for spin waves in a medium is restricted, forming what
is known as the spin wave manifold. Additionally, the existence of certain frequencies
depends on the boundary conditions and the shape of the sample. This encompasses two
categories: the uniform precession modes, with k = 0 (also known as Kittel modes), as
demonstrated in the last subsection; and the non-uniform precession, which gives rise to
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backward and forward volume modes and surface modes, but will not be reviewed in this
study.

2.3.2.a Polder Tensor

We consider the magnetic moments in the sample aligned along the z-axis, where a
static magnetic field is applied. The resulting magnetization is expressed as:

M = γNJ, (2.95)

where N represents the number of spins in the sample.

From Eq. (2.55), the equation of motion governing the magnetization, also known as
the Landau-Lifshitz-Gilbert equation, is expressed as:

∂tM = γµ0M × H + α

Ms
(M × ∂tM), (2.96)

where we included the phenomenological damping term of the magnetization precession,
characterized by the Gilbert damping rate α.

In addition to the static magnetic field, we consider a small time-dependent perturbation
h(t) in the perpendicular directions of the static magnetic field (i.e. hz = 0), leading to
rewrites the total field and the magnetization:

H = Heff + h(t), (2.97a)
M = Ms + m(t). (2.97b)

The magnetic field within the sample, denoted as Heff , comprises three components: the
applied static field H0, the exchange field Hex, and the anisotropic field Han. In the
subsequent analysis, we neglect the anisotropy due to its weak influence in the structure
of YIG.

It is assumed that the periodic magnetic field affects the magnetization such that it
also exhibits a periodic contribution m(t). Given the small perturbation, the component
along the z-axis remains almost equal to the saturation magnetization, hence mz = cst ≃ 0.
The time-dependent contributions are of the form ei(k·r−ωt). Considering the exchange
energy described in Eq. (2.92), from the Zeeman energy, we conclude that the exchange
magnetic field has two contributions: the first one is static and proportional to the static
magnetic field, Hex = ΛexM; and the second one is proportional to k2, and according to the
time-dependent form of m(t), it can be rewritten as hex(t) = λex∇2m(t) = −λexk

2m(t),
where Λex and λex are constant terms. Under these conditions, Eq. (2.96) can be rewritten
as:

−iωm(t) = ẑ × [(ω̃0 + ωMλexk
2)m(t) − ωMh(t)], (2.98)

where we define:

ωM = −γµ0Ms, (2.99a)
ω̃0 = ω0 − iαω, (2.99b)
ω0 = −γµ0H0. (2.99c)
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Eq. (2.98) transforms into:
m = χ̄ · h, (2.100)

where χ̄ is the Polder susceptibility given by [115]:

χ̄ =
[
χ −iκ
iκ χ

]
, (2.101a)

χ = (ω̃0 + ωMλexk
2)ωM

(ω̃0 + ωMλexk2)2 − ω2 , (2.101b)

κ = ωMω

(ω̃0 + ωMλexk2)2 − ω2 . (2.101c)

Also, the permeability tensor is given by:

b = µ̄ · h, (2.102a)

µ̄ = µ0(1 + χ̄) = µ0

1 + χ −iκ 0
iκ 1 + χ 0
0 0 1

 . (2.102b)

2.3.2.b Magneto-quasistatic Approximation

We will demonstrate the validity of the magneto-quasistatic approximation in the
sample, which imposes certain conditions on the possible spin wavevectors. To begin, let
us recall Maxwell’s equations in a medium:

∇ × H = ∂tD + J, (2.103a)
∇ × E = −∂tB, (2.103b)
∇ · D = ρ, (2.103c)
∇ · B = 0. (2.103d)

Here, H represents the magnetic field intensity, D denotes the electric flux density, J stands
for the volume electric current density, E is the electric field intensity, B represents the
magnetic flux density, and ρ represents the electric volume charge density. The equations
relating the electric flux density and the electric field intensity in the medium, as well as
between the magnetic field intensity and the magnetic flux density in the medium, are
given by:

D = ε̄ · E, (2.104a)
B = µ̄ · H, (2.104b)

where ε̄ represents the permittivity tensor, and µ̄ denotes the permeability tensor.

In the following, we consider an insulating media, which implies that ρ = 0, and J = 0.
Additionally, the media is assumed to be electrically isotropic. Assuming that e and h are
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periodic fields of the form ei(k·r−ωt), the Maxwell’s equations are expressed as follows:

k × h = −ωεe, (2.105a)
k × e = ωµ0(h + m), (2.105b)
k · e = 0, (2.105c)
k · b = 0. (2.105d)

Cross-multiplying by k on both sides of Eq. (2.105b) yields:

(k · e)k − k2e = ωµ0k × (h + m). (2.106)

Utilizing Eq. (2.105a), and (2.105c), and (2.106), the electric field is expressed as:

e = µ0ωk × m
k2

0 − k2 , (2.107)

where k0 = µ0ϵω
2. Considering Eq. (2.105a), we derive:

∇ × h = −k2
0k × m
k2

0 − k2 . (2.108)

In the two limits of small k, i.e. k ≪ k0, and high k, i.e. k ≫ k0, the waves are described
by the magnetostatic equations at the lowest order:

∇ × h ≃ 0. (2.109)

This is known as the magneto-quasistatic approximation, and it is verified under the
conditions defined above.

From this, the magnetic field originates from a scalar potential ψ such that:

h = −∇ψ. (2.110)

From Eq. (2.105d), this also can be expressed as:

∇ · (µ̄ · ∇ψ) = 0. (2.111)

This permeability, as found in Eq. (2.102b), yields the Walker’s equation [116]:

[(1 + χ)(∂x2 + ∂y2) + ∂z2 ]ψ = 0. (2.112)

Let us consider a wave in the media with a propagation angle θ with respect to the applied
static magnetic field along the z-axis. This implies that:

k2
x + k2

y = k2sin2(θ), (2.113a)
k2

z = k2cos2θ. (2.113b)

Substituting into the Walker’s equation, we obtain the following inequality:

χsin2(θ) = −1. (2.114)
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This results in the following dispersion of angular frequency in the medium:

ω =
√

[ω̃0 + ωMλexk2] [ω̃0 + ωM (λexk2 + sin2(θ))]. (2.115)

Note that this equation provides the so-called spin wave manifold in an infinite medium,
where boundary conditions do not apply. Consequently, there are no constraints on the
wavevector k or on the magnetization in the medium. However, this implies that all
frequencies can exist within a certain frequency range relative to the wavevector, defining
the spin wave manifold, as illustrated in Fig. 2.6. This spin wave manifold depends on the
contributions of both the exchange interaction and the quasi-magnetostatic approximation.
In the low k region, the exchange term is negligible, and this area is considered as dipolar
spin waves. Conversely, at high k, the dipolar term is negligible, and this region is
considered as exchange spin waves.
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Figure 2.6: Spin wave manifold for the YIG, where ω0 = 0.5ωM and λex = 3 ·10−16

m2, adapted from [25].

When dealing with a medium of finite size, boundary conditions come into play. This
implies that the magnetization remains constant at the edges of the sample and does not
precess. Consequently, certain conditions emerge regarding the uniform precession angular
frequency of the magnetization, as well as the propagation of non-uniform modes.

2.3.2.c Uniform Precession Modes

The tangential component of B must remain continuous at the surface edges of the
sample, giving rise to what is known as the demagnetizing field Hd. This field arises due
to the presence of effective magnetic surface charges and is expressed as:

Hd = −N̄ · M, (2.116)

where N̄ represents the demagnetizing tensor, which is contingent upon the shape of the
sample.

It has been demonstrated in the study by Schlömann (1962) [117] that for various
shapes, whether ellipsoids or non-ellipsoids, the trace of the demagnetizing tensor equals



34 Chapter 2. Magnons

1. We will examine the same system as previously described, featuring magnetization
saturated along the z-axis, which aligns with the direction of the static magnetic field.
Additionally, a small periodic magnetic field is applied perpendicular to the z-axis. The
total static magnetic field is given by:

H = H0 − N̄ · Ms, (2.117a)

H =

 −NxzMs
−NyzMs

H0 −NzzMs

 . (2.117b)

This implies that ω0 in Eq. (2.99c) can be expressed as:

ω0 = −γµ0(H0 −NzzMs). (2.118)

Now, taking into account the periodic contributions, we obtain the following relationship:

h = χ̄−1 · m = −N̄ · m, (2.119a)
⇒ (χ̄−1 + N̄) · m = 0. (2.119b)

From this equation, by calculating the determinant of χ̄−1 + N̄, we can determine the
angular frequency of the uniform modes. Without considering the Gilbert damping rate,
we find that:

ω =1
2
√

(Nxy −Nyx)2ω2
M + 4(ω0 +NxxωM)(ω0 +NyyωM) − 4NxyNyxω2

M (2.120)

+ i

2(Nxy −Nyx)ωM .

In the study presented in this thesis, only two shapes are considered: a sphere and
a rectangular prism. The sphere exhibits properties akin to an ellipsoidal sample: the
demagnetizing field is uniform inside the sample, and the off-diagonal components of the
demagnetizing tensor are zero. For a sphere, the diagonal components of the demagnetizing
tensor are equal and given by:

Nxx = Nyy = Nzz = 1
3 . (2.121)

Thus, the uniform precession of magnons in a spherical ferromagnet is reduced to [118]:

ωsphere = γµ0H0. (2.122)

For the rectangular prism, the components of the demagnetization tensor are position-
dependent. In the paper by Joseph and Schlömann (1965) [119], it has been shown that
the diagonal components at the first order are given by:

Nkk =cot−1[f(xi, xj, xk)] + cot−1[f(−xi, xj, xk)] + cot−1[f(xi,−xj, xk)]
+ cot−1[f(xi, xj,−xk)] + cot−1[f(−xi,−xj, xk)] (2.123)
+ cot−1[f(−xi, xj,−xk)] + cot−1[f(xi,−xj,−xk)] + cot−1[f(−xi,−xj,−xk)],
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where:

f(xi, xj, xk) =
√

(ai − xi)2 + (aj − xj)2 + (ak − xk)2 ak − xk

(ai − xi)(aj − xj)
. (2.124)

The off-diagonal components are expressed as:

Nik = log
[
G(r, ai, aj, ak)G(r,−ai,−aj, ak)G(r,−ai, aj,−ak)G(r, ai,−aj,−ak)
G(r,−ai, aj, ak)G(r, ai,−aj, ak)G(r, ai, aj,−ak)G(r,−ai,−aj,−ak)

]
,

(2.125)
where:

G(r, ai, aj, ak) = aj − xj +
√

(ai − xi)2 + (aj − xj)2 + (ak − xk)2. (2.126)

It can be observed that the off-diagonal components are symmetric: Nik = Nki. These
leads to the following angular frequency for a rectangular prism:

ωprism = γµ0
√

[H0 + (Nxx −Nzz)Ms][H0 + (Nyy −Nzz)Ms] −N2
xyM

2
s . (2.127)

Note that for Eq. (2.127), the angular frequency exhibits spatial dependence. De-
pending on the geometry of the system, the angular frequency can either be evaluated by
taking a spatial average of the components of the demagnetization tensor or approximated
using the values at the center of the rectangular prism.
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Appendices of Chapter 2

2.A Derivation of the Landé factor
To derive the Landé factor in Eq. (2.22) as discussed in Sec. 2.1.2.b, we begin with the

total magnetic momentum given in Eq. (2.20). By multiplying both sides of the equation
by Ĵ, we obtain:

γL(L̂ + 2Ŝ) · (L̂ + Ŝ) = gLγLĴ
2, (2.128a)

L̂2 + 3L̂ · Ŝ + Ŝ2 = gLĴ
2, (2.128b)

3
2 Ĵ

2 + 1
2(Ŝ2 − L̂2) = gLĴ

2. (2.128c)

After substituting L̂ · Ŝ using the identity Ĵ2 = L̂2 + L̂ · Ŝ + Ŝ2, we find:

gL = 3
2 + Ŝ2 − L̂2

2Ĵ2
. (2.129)

Upon replacing these operators with their respective eigenvalues, we obtain the Landé
factor as depicted in Eq. (2.22).
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2.B Derivation of the Larmor precession of an angular
momentum

The expression for the mean value of the x-component of angular momentum is derived
as follows:

⟨Ĵx⟩ =1
2

(∑
mJ

⟨mJ | cJe
−iωmJ

t

)(
Ĵ+ + Ĵ−

)∑
m′

J

c′
Je

iωm′
J

t |m′
J⟩

 , (2.130a)

⟨Ĵx⟩ =1
2

(∑
mJ

⟨mJ | cJe
−iωmJ

t

)
(2.130b) J−1∑

m′
J =−J

cm′
J
e

iωm′
J

t
J

m′
J

+ |m′
J + 1⟩ +

J∑
m′

J =−J+1
cm′

J
e

iωm′
J

t
J

m′
J

− |m′
J − 1⟩

 ,
⟨Ĵx⟩ =1

2

(∑
mJ

⟨mJ | cJe
−iωmJ

t

)
(2.130c) J−1∑

m′
J =−J

cm′
J
e

iωm′
J

t
J

m′
J

+ |m′
J + 1⟩ +

J−1∑
m′

J =−J

cm′
J +1e

iωm′
J

+1t
J

m′
J +1

− |m′
J⟩

 ,
⟨Ĵx⟩ =1

2

J−1∑
mJ =−J

(
cmJ +1cmJ

JmJ
+ ei(ωmJ

−ωmJ +1)t + cmJ
cmJ +1J

mJ +1
− ei(ωmJ +1−ωmJ

)t
)
, (2.130d)

⟨Ĵx⟩ =cos(ωLt)
J−1∑

mJ =−J

cmJ
cmJ +1J

mJ
+ , (2.130e)

where JmJ
+ = JmJ +1

− .
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To derive the expression for the y-component of angular momentum, we follow a
similar procedure:

⟨Ĵy⟩ = 1
2i

(∑
mJ

⟨mJ | cJe
−iωmJ

t

)(
Ĵ+ − Ĵ−

)∑
m′

J

c′
Je

iωm′
J

t |m′
J⟩

 , (2.131a)

⟨Ĵy⟩ = 1
2i

(∑
mJ

⟨mJ | cJe
−iωmJ

t

)
(2.131b) J−1∑

m′
J =−J

cm′
J
e

iωm′
J

t
J

m′
J

+ |m′
J + 1⟩ −

J∑
m′

J =−J+1
cm′

J
e

iωm′
J

t
J

m′
J

− |m′
J − 1⟩

 ,
⟨Ĵy⟩ = 1

2i

(∑
mJ

⟨mJ | cJe
−iωmJ

t

)
(2.131c) J−1∑

m′
J =−J

cm′
J
e

iωm′
J

t
J

m′
J

+ |m′
J + 1⟩ −

J−1∑
m′

J =−J

cm′
J +1e

iωm′
J

+1t
J

m′
J +1

− |m′
J⟩

 ,
⟨Ĵy⟩ = 1

2i

J−1∑
mJ =−J

(
cmJ +1cmJ

JmJ
+ ei(ωmJ

−ωmJ +1)t − cmJ
cmJ +1J

mJ +1
− ei(ωmJ +1−ωmJ

)t
)
, (2.131d)

⟨Ĵy⟩ =sin(ωLt)
J−1∑

mJ =−J

cmJ
cmJ +1J

mJ
+ . (2.131e)

2.C Derivation of the thermal averaged value of the
magnetization

Given that there are N magnetic moments per unit volume, the average of the net
magnetization, as derived from equation Eq. (2.57b) in Section 2.2.2, is expressed as:

⟨Mz⟩ = −NgLµB

J∑
mJ =−J

mJe
−mJ x

J∑
mJ =−J

e−mJ x

. (2.132)

This is analogous to taking the derivative of the natural logarithm with respect to x:

⟨Mz⟩ = −NgLµBdxln
 J∑

mJ =−J

e−mJ x

 . (2.133)

The summation over the exponential terms forms a finite geometric series, which can be
expressed as:

J∑
mJ =−J

e−mx = e−(J+1/2)x − e(J+1/2)x

e−x/2 − ex/2 , (2.134a)

J∑
mJ =−J

e−mx = sinh[(J + 1/2)x]
sinh[x/2] . (2.134b)
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Substituting this expression into Eq. (2.133), the thermal average of the magnetization
becomes:

⟨Mz⟩ = −NgLµBdx [ln (sinh[(J + 1/2)x]) − ln (sinh[x/2])] , (2.135a)
⟨Mz⟩ ≃ −NgLµBdx (sinh[(J + 1/2)x] − sinh[x/2]) . (2.135b)

After considering that the static magnetic field is weak compared to thermal agitation,
which implies H ≪ kBT → x ≪ 1, the derived equation becomes:

⟨Mz⟩ = NgLµBJ
([

1 + 1
2J

]
coth

[(
1 + 1

2J

)
Jx
]

−
[ 1
2J

]
coth

[ 1
2J Jx

])
, (2.136a)

⟨Mz⟩ = MsBJ(µ0µsH/kBT ), (2.136b)

where µs = gLJ represents the saturated magnetic moment, Ms = Nµs denotes the satu-
rated magnetization, and BJ(y) stands for the Brillouin function as defined in Eq. (2.60).

2.D Derivation of the Holstein-Primakoff Transfor-
mation

From equation Eq. (2.14a) and Eq. (2.14b) in Sec. 2.1.2.a, we express the raising and
lowering operators for the macrospin as follows:

Ŝ+
j |mj

S⟩ = ℏ
√
S(S + 1) −mj

S(mj
S + 1) |mj

S + 1⟩ , (2.137a)

Ŝ−
j |mj

S⟩ = ℏ
√
Sj(Sj + 1) −mj

S(mj
S − 1) |mj

S − 1⟩ . (2.137b)

Let us equate the eigenstate |mj
S⟩ to the state |nj⟩, where the eigenvalue nj = S −mj

S.
When the eigenstate |mj

S⟩ rises to |mj
S + 1⟩, the eigenstate |nj⟩ must decrease to |nj − 1⟩.

This implies that Eq. (2.137a) becomes:

Ŝ+
j |nj⟩ = ℏ

√
S(S + 1) − [S − nj][S − (nj − 1)] |nj − 1⟩ , (2.138a)

Ŝ+
j |nj⟩ = ℏ

√
2S
√

1 − nj

2S
√
nj |nj − 1⟩ , (2.138b)

Ŝ+
j |nj⟩ = ℏ

√
2S
√

1 − m̂j
†m̂j

2S m̂j |nj⟩ , (2.138c)

where we have utilized the magnon lowering operator from Eq. (2.71b). In the same
manner, Eq. (2.137b) transforms into:

Ŝ−
j |nj⟩ = ℏ

√
S(S + 1) − [S − nj][S − (nj + 1)] |nj + 1⟩ , (2.139a)

Ŝ−
j |nj⟩ = ℏ

√
2S
√

1 − nj

2S
√
nj + 1 |nj − 1⟩ , (2.139b)

Ŝ−
j |nj⟩ = ℏ

√
2S
√

1 − m̂j
†m̂j

2S m̂†
j |nj⟩ , (2.139c)

where we have employed the magnon raising operator from Eq. (2.71a).
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3 Light-Matter Interactions

Abstract
This chapter begins with the quantization of the electromagnetic field within a cavity to establish
the cavity Hamiltonian for subsequent analysis. Following this, an analogy is drawn between
light-matter coupling and the physics of two coupled oscillators. This simplified model aids in
comprehending the primary models describing light-matter interaction across various matter
systems. After delineating the various coupling regimes, a discourse on different light-matter
coupling models ensues. These models are then expanded to incorporate the system and its
environment. Finally, the chapter concludes with the derivation of the photon-magnon coupling
model.
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3.1 Cavity Photon Quantization
This section aims to derivate the quantization of the electromagnetic field within a

cavity. Beginning with classical electrodynamics, we expand the vector potential in terms
of cavity modes. By utilizing the appropriate expression for the potential vector, we
demonstrate that the Hamiltonian governing the cavity’s photonic modes consists of a
sum of oscillators. This distinctive characteristic enables us to quantify the Hamiltonian
of these oscillators within the Fock state of the cavity’s photonic modes, thereby achieving
the quantization of the electromagnetic field within the cavity.

3.1.1 Classical Electrodynamics
It is assumed that the cavity’s electromagnetic field does not interact with matter,

meaning the volume electric current density J and the electric volume charge density ρ are
both zero. As a result, Maxwell’s equations, as defined in Eq. (2.103), can be rewritten as:

∇ × H(r, t) = ε0εr(r)∂tE(r, t), (3.1a)
∇ × E(r, t) = −µ0∂tH(r, t), (3.1b)
µ0∇ · H(r, t) = 0, (3.1c)
ε0∇ · [εr(r)E(r, t)] = 0. (3.1d)

Here, εr(r) represents the relative permittivity, which is related to the permittivity as
ε(r) = ε0εr(r).

From equations Eq. (3.1a) and Eq. (3.1b), we can deduce:

1
εr(r)∇ × ∇ × E(r, t) = − 1

c2∂
2
t E(r, t), (3.2)

where c is the vacuum speed of light. This equation is known as the wave equation of the
electric field, also referred to as the d’Alembert equation.

3.1.1.a Wave equation of the potential vector

We remind that the electric and magnetic fields are associated with the vector potential
A, as defined in Eq. (2.24). For all subsequent analysis, it is more convenient to work in
the Coulomb gauge, as described in Eq. (2.37). It is worth noting that in this gauge, and
in the absence of electric volume charge density, the scalar potential can be chosen to be
zero, which simplifies calculations and leads to:

µ0H(r, t) = ∇ × A(r, t), (3.3a)
E(r, t) = −∂tA(r, t). (3.3b)
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Additionally, employing the Coulomb gauge allows us to reformulate the wave equation
provided in Eq. (3.2) as1:

∇2A(r, t) = εr(r)
c2 ∂2

t A(r, t). (3.4)

It is assumed that the potential vector can be separated into two variables: a spatial
variable U(r) and a temporal variable q(t). Additionally, the boundary conditions of the
cavity allow only certain eigenmodes of angular frequency ωk, which are related to the
dispersion relation considering the wave number k. It is also assumed that the mode
functions are real-valued. This dispersion relation depends on the cavity geometry; notably,
the mode expansion of the vector potential can be expressed in the general form [120]:

A(r, t) =
∑

k

Uk(r)qk(t). (3.5)

Furthermore, q(t) is a sinusoidal function of ωkt. Thereby, Eq. (3.4) becomes:

∇2Uk(r) = −εr(r)ω2
k

c2 Uk(r). (3.6)

Note that the divergence of Uk(r) is also equal to zero. In the following, it is assumed
that Uk(r) is normalized. From this, it can be shown that (see Appendix 3.3):∫

d3r εr(r)Uk(r) · Uk′(r) = εr,kδk,k′ , (3.7)

where εr,k represents the averaged relative permittivity of mode k throughout the cavity.

3.1.1.b Hamiltonian of the photonic oscillator

Before deriving the Hamiltonian of the electromagnetic field inside the cavity, it is
necessary to rewrite the vector potential in a suitable form to facilitate the solution of the
Hamiltonian. Thus, the vector potential can be rewritten as [120]:

A(r, t) =
∑

k

qk(t)
√
ε0εr,k

Uk(r). (3.8)

Therefore, the Hamiltonian of the electromagnetic field inside the cavity is expressed as:

H =1
2

∫
d3r [ε0εr(r)E(r, t) · E(r, t) + µ0H(r, t)H(r, t)] , (3.9a)

H =1
2
∑
k,k′

∫
d3r

[
ε0εr(r)

√
ε0εr,k

√
ε0εr,k′

q̇k(t)q̇k′(t)Uk(r) · Uk′(r)

+ 1
µ0

qk(t)qk′(t)
√
ε0εr,k

√
ε0εr,k′

(∇ × Uk(r)) · (∇ × Uk′(r))
]
. (3.9b)

1Utilizing the following identity: ∇ × ∇ × A = ∇(∇ · A) − ∇2A
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The integration of the scalar product in the right-hand side of Eq. (3.9b) can be rewritten
as2: ∫

d3r (∇ × Uk(r)) · (∇ × Uk′(r)) = εr,kω
2
k

c2 δk,k′ . (3.10)

This results in the following Hamiltonian:

H = 1
2
∑

k

[
q̇2

k(t) + ω2
kq

2
k(t)

]
. (3.11)

This Hamiltonian is analogous to that of an oscillator. Following the approach used for
magnons in the previous chapter, the next section will focus on the quantization of the
electromagnetic field within the cavity, beginning with this Hamiltonian.

3.1.2 Quantum Electrodynamics
To quantize the electromagnetic field inside the cavity, we need to define the following

quantum operators:

qk(t) → q̂k(t), (3.12a)
q̇k(t) = pk(t) → p̂k(t). (3.12b)

The commutation relation postulate for these two operators is as follows [120]:

[q̂k(t), p̂k′(t)] = iℏδk,k′ . (3.13)

The annihilation and creation photonic operators are defined as follows:

ĉk(t) = 1√
2ℏωk

(ωkq̂k(t) − ip̂k(t)), (3.14a)

ĉ†
k(t) = 1√

2ℏωk

(ωkq̂k(t) + ip̂k(t)). (3.14b)

The following commutation relation holds for these operators:

[ĉk(t), ĉ†
k′(t)] = δk,k′ . (3.15)

The Hamiltonian expressed in Eq. (3.11) can be rewritten in terms of the annihilation and
creation operators as:

Ĥ =
∑

k

ℏωk(n̂k + 1
2), (3.16)

where n̂k = ĉ†
kĉk is the operator of photons with wavevector k. Then, nk is the eigenvalue,

i.e. the photon number, of the Fock state |n⟩k. This leads to the quantization of the vector
potential as follows:

Â(r, t) =
∑

k

√√√√ ℏ
2ωkε0εr,k

(ĉk(t) + ĉ†
k(t))Uk(r). (3.17)

2Using the vector identity Uk(r) · (∇ × ∇ × Uk′(r)) = (∇ × Uk(r)) · (∇ × Uk′(r)) − ∇ ·
[Uk(r) × (∇ × Uk′(r))] where the last term in the right-hand side is equal to zero [120].
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This implies that the quantized electric and magnetic fields can be expressed as:

Ê(r, t) = i
∑

k

√√√√ ℏωk

2ε0εr,k
(ĉk(t) − ĉ†

k(t))Uk(r), (3.18a)

Ĥ(r, t) = 1
µ0

∑
k

√√√√ ℏ
2ωkε0εr,k

(ĉk(t) + ĉ†
k(t))∇ × Uk(r). (3.18b)

It is worth noting that the electric and magnetic fields are π/2 out of phase. Therefore,
depending on the study case, it can be more straightforward to express the electric field
as proportional to (ĉk(t) + ĉ†

k(t)) instead of i(ĉk(t) − ĉ†
k(t)). Conversely, the magnetic field

would then be proportional to i(ĉk(t) − ĉ†
k(t)) rather than (ĉk(t) + ĉ†

k(t)).

3.2 Coupling Models
In this section, we will delve into the primary models that describe various light-matter

interactions. To gain insights, we will begin by examining the coupling of two classical
harmonic oscillators, providing an intuitive introduction to coupled systems. Subsequently,
we will explore two distinct types of matter systems, leading us to the four main models
of light-matter interactions, along with their limitations and conditions of application.

3.2.1 A toy Model: Two coupled pendulums
This toy model serves as a simplified classical approach to gaining insights and

understanding of light-matter coupling.

We can categorize the coupling into two types: coherent coupling and dissipative
coupling. These two types of coupling can be effectively understood through the model of
two coupled pendulums: one spring-coupled for coherent coupling and the other dashpot-
coupled for dissipative coupling. Following the approach outlined in Harder et al. (2021)
[121], we consider two pendulums with equal masses but different rod lengths, connected
either by a spring (with spring constant k) or a dashpot and placed at a distance l from
the top of the rods. Each pendulum also exhibits an intrinsic damping rate λ1,2. These
systems are illustrated in Fig. 3.1 (a) and (b) respectively. Each pendulum has an intrinsic
eigenfrequency:

ω1,2 =
√

g

l1,2
, (3.19)

where g represents the gravitational acceleration.

3.2.2 Spring-coupled pendulums
For the case of the spring-coupled pendulums, the equation of motion for the two

pendulums can be expressed as [121]:

ϕ̈1,2 + 2λ1,2ϕ̇1,2 + ω2
1,2ϕ1,2 − 2J1,2ω1,2(ϕ2,1 − ϕ1,2) = 0, (3.20)



46 Chapter 3. Light-Matter Interactions
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Figure 3.1: Schematic illustration of two coupled pendulums with (a) a string,
leading to coherent coupling; and (b) a dashpot, leading to dissipative coupling,
with permission from [121].

where J1,2 = kl2/(2mω1,2l
2
1,2) represents the coherent coupling strength. In the case where

J1 = J2 = J , and near zero frequency detuning ∆ = ω2 − ω1 ≃ 0, Eq. (3.20) simplifies to:

ω̃ = 1
2

[
ω̃1 + ω̃2 + 2J ±

√
(ω̃1 − ω̃2)2 + 4J2

]
, (3.21)

where ω̃1,2 = ω1,2 − iλ1,2, represent complex eigenfrequencies due to damping. The
eigenfrequencies can also be expressed as ω̃± = ω± − i∆ω±, with ω± = Re(ω̃±) and
∆ω± = −Im(ω̃±). The coupling behavior manifests in the frequency dispersion under the
condition:

J >
√
λ1λ2. (3.22)

In Fig. 3.2 is presented the angular frequency of the hybridized modes ω± in (a),
and the linewidth of the hybridized modes ∆ω± in (b) versus the angular frequency
detuning ∆ = ω1 − ω2. The coupling strength has been set to J = 5 · 10−2ω1, while
damping parameters are λ1 = 10−2ω1 and λ2 = 2 · 10−3ω1. The coherent coupling exhibits
level repulsion in the dispersion frequency of the two hybridized modes, along with level
attraction in the linewidth dispersion. At zero-detuning condition, the two hybridized
modes are separated by 2J , where their total deviation from the uncoupled frequencies is
maximum. At this juncture, the lower branch corresponds to the pendulums oscillating
in phase, while the upper branch corresponds to the pendulums oscillating out-of-phase.
This observation implies that when the uncoupled frequencies of the two pendulums are
equal, the two eigenfrequencies are not equal, demonstrating a degeneracy breaking scaled
by the coupling strength. For a deeper understanding of the exchange energy between
two coupled oscillators, it is interesting to examine the time-domain evolution. At the
zero-detuning condition, the time evolution of the phase of each pendulum is given by
[121]:

ϕ1 ≃ ϕ0e
−(λ1+λ2)t/2cos(Jt)cos[(ω1 + J)t], (3.23a)

ϕ2 ≃ ϕ0e
−(λ1+λ2)t/2sin(Jt)cos[(ω1 + J)t], (3.23b)

where the initial conditions are ϕ1(t = 0) = ϕ0 and ϕ2(t = 0) = 0. These initial conditions
enable the observation of the so-called Rabi-like oscillations, where the two pendulums
oscillate rapidly at the frequency ω1 + J , modulated by the Rabi-like frequency J , as
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Figure 3.2: Coherent coupling between two spring-coupled pendulums demon-
strates (a) level repulsion in the angular frequency dispersion and (b) level attraction
in the linewidth dispersion, versus the angular frequency detuning ∆ = ω2 − ω1.
At the zero-detuning condition, where ∆ = 0, a degeneracy breaking in angular
frequency, ω+ − ω− = 2J , is observed, as illustrated in (a). The Rabi-like oscilla-
tions of angular position for each pendulum, shown in (c) for the first pendulum
and (d) for the second pendulum, indicate a periodic exchange of energy every
texch = T/4, with T = 2π/J . These simulations utilize J = 5 · 10−2ω1, λ1 = 10−2ω1,
and λ2 = 2 · 10−3ω1 as parameters.

illustrated in Fig. 3.2 (c) and (d), with the same parameters as given for Fig. 3.2 (a) and
(b). The total energy is exchanged between the two pendulums every texch = T/4, where
T = 2π/J is the Rabi-like period. It is noteworthy that if the two pendulums are initially
positioned in phase or out-of-phase with the same phase amplitude ϕ0, the modulation
beats would not appear.

3.2.3 Dashpot-coupled pendulums
For this case, the dashpot, due to the presence of a fluid, introduces a kinematic

viscosity and adds motion resistance to the dynamics of the pendulum, representing the
dissipative coupling. The equations of motion for the two pendulums then become [121]:

ϕ̈1,2 + 2λ1,2ϕ̇1,2 + ω2
1,2ϕ1,2 − 2Γ1,2(ϕ̇2,1 − ϕ̇1,2) = 0, (3.24)

where Γ1,2 = ν/l21,2 ≪ ω1,2 represents the dissipative coupling strength and ν denotes
the viscosity of the fluid. At near-zero frequency detuning and with Γ1 = Γ2 = Γ, the
eigenfrequencies of the system are given by:

ω̃ = 1
2

[
ω̃1 + ω̃2 − 2iΓ ±

√
(ω̃1 − ω̃2)2 − 4Γ2

]
. (3.25)

As illustrated in Fig. 3.3 (a) and (b), the coupling demonstrates level attraction
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Figure 3.3: Dissipative coupling between two dashpot-coupled pendulums demon-
strates (a) level attraction in the angular frequency dispersion and (b) level repulsion
in the linewidth dispersion, versus the angular frequency detuning ∆ = ω2 − ω1.
Near the zero-detuning condition, ranging from ∆ = −2Γ, to ∆ = 2Γ, a degeneracy
in angular frequency, ω+ ≃ ω−, is observed, as illustrated in (a). No Rabi-like
oscillations appear in the angular position of (c) the first pendulum, and (d) the
second pendulum. However, the phase two pendulums synchronize themselves after
a certain time, and share the same energy. These simulations utilize J = 5 · 10−2ω1,
λ1 = 10−2ω1, and λ2 = 2 · 10−3ω1 as parameters.

between the two hybridized modes in the angular frequency dispersion, while it exhibits
level repulsion in the linewidth dispersion, versus the angular frequency detuning ∆. The
parameters remain consistent with those specified for the two spring-coupled pendulums.
The length of this degeneracy of the hybridized mode in the angular frequency detuning
is proportional to the coupling strength. At zero-detuning condition, the minimum of
damping represents the two pendulums being in phase, while the maximum of damping
represents the two pendulums being out-of-phase. Because the out-of-phase mode is more
damped than the in-phase mode, an initial state where the two pendulums are dephased
(but not in the out-of-phase state) will synchronize themselves to finally be in phase after
a certain time. The time evolution of the phase of each pendulum when Γ ≫

√
λ1λ2 is

given by [121]:

ϕ1 ≃ ϕ0e
−(λ1+λ2)t/2 (1 + e−2Γt)

2 cos(ω1t), (3.26a)

ϕ2 ≃ ϕ0e
−(λ1+λ2)t/2 (1 − e−2Γt)

2 cos(ω1t). (3.26b)

In contrast to coherent coupling, the angular frequency is not modulated, but the
damping is much larger, as depicted in Fig. 3.3 (c) and (d). The two oscillators are
synchronized when e−2Γt ≃ 0, hence ϕ1 = ϕ2. Therefore, the amplitude and the phase
of the two pendulums are equal, and the total energy is equally shared between the two
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pendulums.

In the following sections, we present the various coherent coupling regimes that
arise in physical models. We will then discuss different models describing light-matter
interaction across various matter systems, where both coherent and dissipative coupling
occur, analogous to the behavior of two coupled pendulums.

3.2.4 Coupling Regimes
The coupling strength g can be a complex value, composed of a coherent coupling part

J , and a dissipative coupling part Γ, written as g = J − iΓ. When g is purely real, the
hybridized modes exhibit level repulsion in the frequency spectra (as shown in Fig. 3.2 for
the coherent coupling of two pendulums). Conversely, when g is purely imaginary, the
hybridized modes show level attraction in the frequency spectra (as shown in Fig. 3.3 for
the dissipative coupling of two pendulums).

Like classical harmonic oscillators, light-matter coupling is typically categorized into
two regimes: weak coupling and strong coupling regimes.

The weak coupling (WC) regime occurs when the coupling strength is less than the
intrinsic losses of each subsystem, akin to the condition in Eq. (3.22) for the pendulum.
In this scenario, where losses outweigh the coupling strength, the system cannot efficiently
exchange energy between light and matter.

Conversely, the strong coupling (SC) regime emerges when the coupling strength
surpasses the losses of the subsystems. In this regime, an oscillatory exchange of energy
quanta between light and matter becomes possible, a phenomenon known as Rabi os-
cillations. The strong coupling (SC) regime was first experimentally demonstrated in a
collection of Rydberg atoms in a microwave cavity [122]. Soon after, it was observed in a
single atom in a microwave cavity [123] and in an optical cavity [124]. Several years later,
similar phenomena were demonstrated in artificial atoms such as quantum dots [125], and
superconducting qubits, also known as circuit quantum electrodynamics (circuit QED)
systems [126].

Beyond the SC regime, we distinguish between two additional regimes based on the
ratio of the coupling strength to the eigenfrequencies of the subsystems g/ω. The system
enters the Ultra-Strong Coupling (USC) regime when g/ω > 0.1. The first observation of
the USC regime was reported in 2009 in a microcavity embedded doped GaAs quantum well
[127]. This threshold is derived from the first observation of the USC regime and does not
have a specific physical significance. However, it indicates that the usual approximations
may no longer be valid beyond this threshold.Chapter 5 presents our study on achieving the
USC regime in a YIG/cavity system, where the distinct areas of interest and applications
of the different coupling regimes are discussed.

The Deep-Strong Coupling (DSC) regime occurs when g/ω > 1, meaning that the
coupling strength exceeds the subsystem frequencies. It was initially explored theoretically
in 2010 [128], and experimentally demonstrated in 2017 using various physical realizations
[83, 129].

The differentiation of coupling regimes based on g/ω rather than intrinsic losses does
not prevent the USC or DSC regimes within the WC regime. However, conventionally, the
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SC regime is distinguished from the USC and DSC regimes when g/ω < 0.1, assuming
that the coupling strength exceeds system losses for all three regimes. Other coupling
regimes exist but are beyond the scope of this thesis. Interested readers can refer to the
literature for further details [74, 130–135].

Two different types of model describe light-matter coupling, depending on the de-
scription of matter. Matter can be considered either as a single two-level system or as a
collective two-level system. A two-level system consists of only two possible states, such as
a ground state and an excited state (for instance, the spin of a single electron). However,
multiple-level systems, like atoms or artificial atoms, can be approximated as two-level
systems. Similarly, collective multiple-level systems, such as YIG with a unit cell spin of
5/2, can be treated as collective two-level systems.

3.2.5 Two-levels System
3.2.5.a Quantum Rabi Model

The quantum Rabi model [136, 137] is the generic model describing the interaction of
a single-mode bosonic field and a two-level system (such as a cavity mode and a single
electronic spin or a qubit, for example). A two-level system can be described by the Pauli
matrices, i.e. the spin operators, in the basis formed by the ground |G⟩ state and the
excited |E⟩ state. The quantum Rabi Hamiltonian can be expressed as [39]:

ĤRabi/ℏ = ω̃cĉ
†ĉ+ 1

2 ω̃qσ̂z + Ĥint/ℏ, (3.27a)

Ĥint/ℏ = gX̂σ̂x = g(ĉ+ ĉ†)(σ̂− + σ̂+), (3.27b)

where ω̃c = ωc − iκc is the complex angular frequency of the cavity mode ωc, represents
its real value while κc denotes its internal damping. Meanwhile ĉ (ĉ†) is the cavity mode
creation (annihilation) operator. Also, ω̃q = ωq − iκq represents the complex angular
frequency associated with the transition energy between the ground state and the excited
state of the two-level system, while ωq denotes its real value, and κq its internal damping.
X̂ = ĉ+ ĉ† represents the canonical position operator of either the electric or the magnetic
field, depending of the nature of the coupling. g represents the light-matter coupling
strength. Note that the ground state energy of the cavity photon and the two-level systems
are neglected, being only an offset. The two-level system is described by the two Pauli
operators σ̂z and σ̂x or the raising and the lowering Pauli operators σ̂+ and σ̂−, respectively.
These operators act in the two-dimensional Hilbert space of the two-level system, in the
basis defined by the ground state |G⟩, and the excited state |E⟩. The Pauli operators are
expressed as:

σz =
(

1 0
0 −1

)
, σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, (3.28a)

σ+ =
(

0 1
0 0

)
, σ− =

(
0 0
1 0

)
. (3.28b)

Let us introduce an approximation to simplify calculations, particularly within the
WC and SC regimes. In the interaction picture [41], the time evolution of the operators is
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governed by the non-interacting Hamiltonian Ĥ0 = ωcĉ
†ĉ+ 1

2ωqσ̂z:

˙̂c(t) = − i

ℏ
[ĉ(t), Ĥ0] → ĉ(t) = ĉe−iωct, (3.29a)

˙̂σ±(t) = − i

ℏ
[σ̂±(t), Ĥ0] → σ̂±(t) = σ̂±e

±iωqt. (3.29b)

In this framework, the interaction Hamiltonian in Eq. (3.27b) transforms to:

Ĥint/ℏ = g
(
ĉσ̂+e

i(ωq−ωc)t + ĉ†σ̂−e
−i(ωq−ωc)t + ĉσ̂−e

−i(ωq+ωc)t + ĉ†σ̂+e
i(ωq+ωc)t

)
. (3.30)

When the frequencies of light and matter are close to resonance (i.e. ωc ≃ ωq), the Rotating
Wave Approximation (RWA) can be applied, allowing us to disregard the last two terms
in Eq. (3.30). Under the resonance condition, these last two terms are considered as
fast-oscillating terms, oscillating at twice the frequency of the level transition angular
frequency ωq. Analogous to a classical precessing dipole moment (representing the two-level
transition), the first two terms represent a field rotating in the same direction as the dipole
motion, hence termed co-rotating terms. The last two terms represent a field rotating in
the opposite direction to the dipole motion, hence termed counter-rotating terms. Over
one period of the dipole precession ω−1

q , the co-rotating terms apply a steady torque on
the dipole, while the counter-rotating terms reverse twice during this period, resulting in
their average over one period being negligible [39, 41, 74, 121, 138].

3.2.5.b Jaynes-Cummings Model

Applying the RWA results in the Jaynes-Cummings Model [139] and the Hamiltonian
is given by:

ĤJC/ℏ = ω̃cĉ
†ĉ+ 1

2 ω̃qσ̂z + Ĥint/ℏ, (3.31a)

Ĥint/ℏ = g(ĉ†σ̂− + ĉσ̂+). (3.31b)

This model is applicable to systems operating in the WC and SC regimes. Beyond the
SC regime, the effects of the counter-rotating terms become non-negligible, and only the
Rabi model can describe the physics accurately. Additionally, it is worth noting that in the
Jaynes-Cummings model, the total number of excitations in the system N̂exc is conserved
(the co-rotating terms represent the excitation and de-excitation of the two-level system,
corresponding to the absorption and emission of a photon, respectively). In contrast, the
Rabi model does not conserve N̂exc. However, the parity P̂ = eiπN̂exch is conserved in the
Rabi model, as the counter-rotating terms changes N̂exc by 2 [74].

3.2.6 Collective two-levels System
3.2.6.a Tavis-Cummings Model

The Tavis-Cummings model [140, 141] extends the Jaynes-Cummings model to consider
collective two-level systems, while still applying the RWA. Similar to the Jaynes-Cummings
model, the total number of excitations in the system N̂exc is conserved. The collective
two-level system can be generalized as a bosonic multi-mode system and represented by a
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quantum oscillator, as demonstrated for magnon modes in a ferromagnet in Sec. 2.3.1.a.
The Tavis-Cummings Hamiltonian is given by:

ĤTC/ℏ = ω̃cĉ
†ĉ+ ω̃dd̂

†d̂+ Ĥint/ℏ, (3.32a)
Ĥint/ℏ = g(ĉ†d̂+ ĉd̂†), (3.32b)

where ω̃d = ωd − iκd is the complex angular frequency of the bosonic mode related to
the collective matter excitation, where ωd represents its real value, and κd its damping.
Meanwhile d̂ (d̂†) is the annihilation (creation) operator of the matter bosonic mode. In
the Heisenberg picture, an operator â must satisfy the so-called Heisenberg equation of
motion (EoM):

˙̂a = − i

ℏ
[â, Ĥ]. (3.33)

For the considered system, the Heisenberg EoM becomes:

dtâ = −iM̄ · â, (3.34a)

M̄ =
[
ω̃c g
g ω̃d

]
, (3.34b)

where â = (ĉ, d̂)T. Assuming that the solution of ĉ and d̂ are proportional to e−iωt, the
angular eigenfrequencies of the system are determined by solving the determinant of
M̄ − ω1, where 1 is the identity matrix. Subsequently, the Hamiltonian is diagonalized in
the new basis of hybridized modes called polaritons, with annihilation (creation) operators
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Figure 3.4: Coherent (dissipative) coupling of light and matter of (a) ((c)) the
eigenfrequencies; and (b) ((d)) the linewidths of the polaritons versus the angular
frequency detuning ∆ = ωd − ωc. The linear relationship of the ratio g/ωc for the
two polariton frequencies at ωd = ωc in the case of level repulsion is depicted in
(e). These simulations utilize |g| = 0.1ωc, κc = 10−2ωc, and κd = 2 · 10−3ωc as
parameters.
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p̂± (p̂†
±) whith satisfy the commutation relation:

[p̂±, p̂
†
±] = 1. (3.35)

The angular eigenfrequencies of the Hamiltonian in the Fock state of the polaritons are
given by:

ω̃± = 1
2

[
ω̃c + ω̃d ±

√
(ω̃c − ω̃d)2 + 4g2

]
, (3.36)

such as:
[p̂±, Ĥ] = ω̃±p̂±. (3.37)

Similar to the Jaynes-Cummings model, the Tavis-Cummings model is applicable only for
systems operating in the WC and SC regimes.

In Fig. 3.4 (a) and (b), the frequencies and linewidths of the two polaritons are depicted
versus the detuning ∆ in the Tavis-Cummings model when the coupling strength is purely
real. Similarly, in Fig. 3.4 (c) and (d), the same quantities are shown when the coupling
strength is purely imaginary. In both cases, the coupling strength is set to |g| = 0.1ωc,
while the damping parameter of the cavity is κc = 10−2ωc, and κd = 2 · 10−3ωc for the
matter damping rate. We observe similar signatures for both the eigenfrequencies and
the linewidths of the polaritons as for the two cases of the coupled pendulums. When the
coupling strength is real, the signatures are equivalent to the case of the spring-coupled
pendulums, while when the coupling strength is imaginary, the signatures resemble those
of the dashpot-coupled pendulums. In Fig. 3.4 (e), is illustrated the linear evolution of
the lower (blue line) and the upper (green line) polaritons frequency at ωd = ωc versus the
ratio g/ωc when the coupling is coherent. It is important to note that this evolution is
invalid beyond the SC regime. Furthermore, this model is inefficace to describe the physics
in the DSC regime, where the lower polariton frequency becomes negative, as depicted in
Fig. 3.2.6.a (e).

3.2.6.b Dicke Model

The Dicke model [142] extends the Rabi model to account for collective two-level
systems, and it can operate in the Ultra-Strong Coupling (USC) regime. Unlike the
Jaynes-Cummings and Tavis-Cummings models, the total number of excitations is not
conserved, but the parity remains conserved. While the Rotating Wave Approximation
(RWA) is not applicable, it is still possible to find the angular eigenfrequencies, as will be
shown. The Hamiltonian of the Dicke model is given by:

ĤDicke/ℏ = ω̃cĉ
†ĉ+ ω̃dd̂

†d̂+ Ĥint/ℏ, (3.38a)
Ĥint/ℏ = g(ĉ+ ĉ†)(d̂+ d̂†). (3.38b)

In this model, the counter-rotating terms, i.e., ĉd̂ and ĉ†d̂†, cannot be neglected. Conversely
to the Tavis-Cummings model, the polaritonic operators p̂ and p̂†, which form the basis of
the diagonalized Hamiltonian, must be expressed as linear combinations of the annihilation
and creation operators of the two subsystems:

p̂± = α±ĉ+ β±d̂+ γ±ĉ
† + δ±d̂

†, (3.39)
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where α±, β±, γ±, and δ± are coefficients ensuring that Eq. (3.37) remains valid. To find
these coefficients, the Heisenberg equations of motion can be rewritten in terms of the new
vector basis â = (ĉ, d̂, ĉ†, d̂†)T, known as the Hopfield-Bogolubov transformation [84, 143]:

dtâ = − i

2M̄ · â, (3.40a)

M̄ =


ω̃c g 0 g
g ω̃d g 0
0 g ω̃c g
g 0 g ω̃d

 , (3.40b)

The factor of 1/2 and the form of M̄ arise from replacing the term ĉĉ† with (ĉĉ† + ĉ†ĉ)/2−1.
Similar to the treatment of the term ĉĉ†, a corresponding substitution has been applied to
the term d̂d̂†. While ĉ and d̂ are assumed to be proportional to e−iωt, ĉ† and d̂† naturally
vary as eiωt. Consequently, the angular eigenfrequencies of the system are determined by
solving the determinant of M̄ · diag(1, 1,−1,−1) − ω13 , resulting in:

ω̃± = 1√
2

√
ω̃2

c + ω̃2
d ±

√
(ω̃2

c − ω̃2
d)2 + 16g2ω̃cω̃d. (3.41)

According to Eq. (3.41), when the coupling strength is higher to the critical threshold
gc = √

ωcωd, the polariton frequency ω− becomes purely imaginary, indicating the onset
of a spontaneously broken parity P̂ . This critical value in the coupling strength marks a
phase transition, ushering in the superradiant phase where a new Hamiltonian emerges
with a newly conserved parity [84, 144, 145]. It is worth noting that the collective oscillator
operators stem from the Holstein-Primakoff transformation, as demonstrated for magnons
in Sec. 2.3.1.a. Building upon Eq. (2.70), Eq. (2.73a), and Eq. (2.73b), we extend the
equation describing the matter to a macroscopic angular momentum, where:

Ĵz = ℏ(J − d̂†d̂), (3.42a)
Ĵ+ = ℏd̂†(2J − d̂†d̂), (3.42b)
Ĵ− = ℏ(2J − d̂†d̂)d̂. (3.42c)

To describe the system beyond the superradiant phase, the bosonic modes are displaced
as [145]:

ĉ† → ĉ† +
√
α, (3.43a)

d̂† → d̂† −
√
β, (3.43b)

where α and β can be interpreted as macroscopic mean fields acquired by the two modes
above gc. We refer the reader to the derivation of the Hamiltonian in Emary and Brandes

3Eq. (3.40a) can also be written as ω diag(1, 1, −1, −1) · â = 1
2 M̄ · â. To find the eigenvalues of the

system, we need to calculate the determinant of a matrix written as M̄′ − ω1. For this purpose, M̄′ needs
to be equal to M̄ · diag(1, 1, −1, −1)−1 = M̄ · diag(1, 1, −1, −1).
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(2003) [145], where the Hamiltonian is given by [84]:

Ĥ/ℏ =ω̃cĉ
†ĉ+ ω̃d

1 + g̃2

2 d̂†d̂+ g

√
2

g̃2(g̃2 + 1)(ĉ† + ĉ)(d̂† + d̂)

+ ω̃d
(g̃2 − 1)(3g̃2 + 1)

8(g̃2 + 1) (d̂† + d̂)2, (3.44a)

where g̃ = 2g/ωc. The eigenfrequencies of the two polaritons in the superradiant phase
are given by:

ω̃± = 1√
2

√
ω̃2

c + ω̃2
dg̃

4 ±
√

(ω̃2
c − ω̃2

dg̃
4)2 + 4ω̃2

c ω̃
2
d. (3.45)

In Fig. 3.5 (a) and (b), the frequencies and linewidths of the two polaritons are
depicted versus the detuning ∆ in the Tavis-Cummings model when the coupling strength
is purely real. Similarly, in Fig. 3.5 (c) and (d), the same quantities are shown when
the coupling strength is purely imaginary. In both cases, the coupling strength is set to
|g| = 0.25, the system performs in the USC regime. The damping parameters for both
the photon and the matter are consistent with those given in the Tavis-Cummings model.
The signatures for both the eigenfrequencies and the linewidths of the polaritons remain
similar to the two cases of the coupled pendulums. However, a notable distinction arises
when g is purely real, wherein the damping rate of the matter tends towards infinity. This
indicates that only the upper polariton exists within a certain range of frequencies. In
Fig. 3.5 (e), we observe that the eigenfrequencies are no longer linearly proportional to the
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Figure 3.5: Coherent (dissipative) coupling of light and matter of (a) ((c)) the
eigenfrequencies; and (b) ((d)) the linewidths of the polaritons versus the angular
frequency detuning ∆. The linear relationship of the ratio g/ωc for the two polariton
frequencies at ωd = ωc in the case of level repulsion is depicted in (e). These
simulations utilize |g| = 0.25ωc, κc = 10−2ωc, and κd = 2 · 10−3ωc as parameters.
Opaque curves represent the quantities in the Dicke model, while semi-transparent
curves depict quantities in the Tavis-Cummings model.
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ratio g/ωc, and we encounter a phase transition for g/ωc > 0.5. Additionally, this figure
includes semi-transparent curves representing the eigenfrequencies and the linewidths in
the Tavis-Cummings model for comparison.

3.2.6.c Hopfield Model

The Hopfield model is more general than the Dicke model, incorporating an additional
term. Referring to Sec. 2.1.3, the diamagnetic term in Eq. (2.36b), proportional to
the square root of the vector potential, was neglected. This additional is negligible for
material with zero orbital angular momentum, and has been recently demonstrated for the
magnon-photon coupling achieved with magnetic films and superconducting resonators
[146]. However, in systems described by the Hopfield model, the diamagnetic term is no
longer negligible (such as for plasmons [84, 147]). The Hopfield Hamiltonian is given by:

ĤHopfield/ℏ = ω̃cĉ
†ĉ+ ω̃dd̂

†d̂+ g(ĉ† + ĉ)(d̂† + d̂) +D(â† + â)2, (3.46)

where the last term represents the diamagnetic term, where the vector potential Â has
been substituted by its quantized field from Eq. (3.17). Using the Thomas-Reiche-Kuhn
sum rule [148], it has been shown that for dipolar interaction, the diamagnetic factor is
given by:

D = g2

ωd

. (3.47)
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Figure 3.6: Coherent (dissipative) coupling of light and matter of (a) ((c)) the
eigenfrequencies; and (b) ((d)) the linewidths of the polaritons versus the angular
frequency detuning ∆. The linear relationship of the ratio g/ωc for the two polariton
frequencies at ωd = ωc in the case of level repulsion is depicted in (e). These
simulations utilize |g| = 0.25ωc, κc = 10−2ωc, and κd = 2 · 10−3ωc as parameters.
Opaque curves represent the quantities in the Hopfield model, while semi-transparent
curves depict quantities in the Dicke model.
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Substituting this value into the Hamiltonian and using the Hopfield-Bogolubov transfor-
mation as shown in Sec. 3.2.6.b, and redefining the coupling strength as g → g

√
ωd/ωc, we

find that:
ω̃± = 1√

2

√
ω̃2

c + ω̃2
d + 4g2 ±

√
(ω̃2

c + ω̃2
d + 4g2)2 − 4ω̃2

c ω̃
2
d. (3.48)

In Fig. 3.6 (a) and (b), the frequencies and linewidths of the two polaritons are depicted
versus the detuning ∆ in the Tavis-Cummings model when the coupling strength is purely
real. Similarly, in Fig. 3.6 (c) and (d), the same quantities are shown when the coupling
strength is purely imaginary. The coupling strength and the damping parameters for both
the photon and the matter are consistent with those given in the Dicke model. Unlike the
behavior observed in the Dicke model, the real part of ω− does not decrease to zero when
ωd ̸= 0, and its linewidth never tends to infinity. In Fig. 3.5 (e), we note that the phase
transition seen in the Dicke model is canceled, and the superradiant phase does not occur.

In summary, we defined the various models for light-matter coupling in two-level
systems and collective two-level systems. For these two cases, a straightforward model exists
to describe light-matter interaction in the strong coupling regime: the Jaynes-Cummings
and Tavis-Cummings models, respectively, where the rotating wave approximation is
applied. This simplifies the description of the phenomenon and aids comprehension.
However, beyond the SC regime, the RWA is no longer valid. In this case, the two-level
system–light interaction is better described by the Rabi model. Similarly, for collective
two-level systems-light interaction beyond the SC regime is captured by more complex
models. The Dicke model, for example, predicts a superradiant phase when gc >

√
ωcωd,

ensuring the lower polariton frequency remains positive. Alternatively, the Hopfield model,
which includes a diamagnetic term neglected in the Dicke model, does not exhibit a
superradiant phase.

3.2.7 System surrounded by its environment
In the models discussed above, the assumption is that the studied system is entirely

closed (excepted the fact that the intrinsic dissipation is assumed), meaning that the
surrounding environment is not taken into account. However, this environment can be
considered as a photon bath, wherein the electromagnetic field from outside the system can
interact with it, introducing noise and dissipation [40]. Thus, the photon bath characterizes
the incoming and outgoing fields in the system. This concept can be formalized through
input-output theory [149, 150], which leads to the scattering matrix (S-matrix) describing
the scattering through the system.

The Hamiltonian under consideration comprises three distinct components. The
first one describes the closed system, encompassing its internal modes and their mutual
interactions. Typically, this Hamiltonian is modeled using one of the approaches presented
earlier. The second term represents the photon bath, and is characterized by a continuum
of external modes of the system. This continuum implies that the environment can
accommodate all frequencies (in contrast to a cavity or a resonator operating at discrete
frequencies), thus necessitating a description with a continuum of modes, each associated
with a specific frequency. The last component represents the coupling between the external
and internal modes.
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The derivation of the input-output formalism varies depending on the type of cavity
involved. For instance, a cavity that traps light in one, two, or three dimensions will
lead to different approaches. When light is not confined in all three dimensions, the
system is considered open. In such cases, extrinsic dissipation, such as radiative losses, is
comparable to or greater than intrinsic dissipation, such as conducting losses or magnon
damping. Conversely, when the cavity confines light in all three dimensions, the system is
deemed quasi-closed, indicating that intrinsic dissipation significantly outweighs extrinsic
dissipation [121]. In the case of a cavity that doesn’t confine light in all three dimensions,
the frequency spectrum typically shows a dip in transmission at the resonance frequency.
Conversely, in a 3D cavity, the transmission spectrum typically exhibits a peak at resonance.

3.2.8 Input-Output formalism for a quasi-closed cavity
As mentioned earlier, the Hamiltonian comprises three components and is given by:

Ĥ = Ĥsys + Ĥbath + Ĥint. (3.49)

The model Hamiltonian for a closed cavity, denoted as Ĥsys, involves p internal bosonic
modes. Although the Tavis-Cummings model has been used for this illustration, it has
also been shown that the Input-Output formalism applies to systems operating in the
USC regime, such as those described by the Hopfield model [151]. The Hamiltonian is
expressed as follows:

Ĥsys

ℏ
=
∑

p

ω̃pâ
†
p(t)âp(t) + 1

2
∑
q ̸=p

(
gqpâ

†
p(t)âq(t) + h.c.

), (3.50)

where g∗
qp = gpq is the sine qua non condition for expressing the equation in a compact form

and ensuring that the Hamiltonian is Hermitian [152]. The first term in the parenthesis
represents the unperturbed Hamiltonian of a single oscillator, where ω̃p = ωp − iγint

p /2,
ωp/2π is the complex free frequency of the pth internal mode, where ωp denotes its free
frequency, while γint

p characterizes its intrinsic loss rate. Meanwhile, â†
p (âp) represents

the creation (annihilation) operator of mode p. The second term in the parenthesis is
the interaction Hamiltonian between two internal modes âp and âq, with their mutual
coupling assessed by gqp, and h.c. indicating the hermitian conjugate. Note that the mode
considered in the closed system are not only cavity modes, but can also represent bosonic
modes (such as magnons, phonons, or excitons) of a subsystem interacting with cavity
photons or other bosonic modes.

For each port n (i.e. a probe), an associated photon bath is represented by a continuum
of photonic oscillators, named external modes, with angular eigenfrequency ω. The related
Hamiltonian can be expressed as follows:

Ĥbath

ℏ
=
∑

n

∫
R

dω ωb̂†
ω,n(t)b̂ω,n(t). (3.51)

Here, b̂†
ω,n (b̂ω,n) represents the creation (annihilation) operator of the external mode

associated with port n and having the angular frequency ω.
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The interaction between the bath and the system can be described by the following
model Hamiltonian (under the RWA):

Ĥint

ℏ
= i√

2π
∑
p,n

∫
R

dω
(
κpn(ω)b̂†

ω,n(t)âp(t) − h.c.
)
, (3.52)

where κpn(ω) is the external coupling strength between the external mode b̂n,ω and the
internal mode âp. Furthermore, the unit of b̂n(t) is rad−1/2.s1/2, while the unit of κpn (ωk)
is rad1/2.s−1/2. The unit of gqp is rad1/2.s−1/2, and âp(t) has no unit. In the first Markov
approximation, the external coupling strength is assumed to be independent of the angular
frequency:

κpn(ω) = κpn ∝ √
γpn, γpn ∈ R. (3.53)

Here, γpn is real and represents the external photonic damping rate. Note that the
proportional term indicates that the external coupling strength is equal to the square root
of the external damping rate, up to a phase factor, as discussed in Chapter 6.

To describe the entire system within the framework of input-output theory, we will
apply the Heisenberg equations of motion, which describe the time evolution of external
mode operators interacting with the system. These equations capture the interaction
between incoming and outgoing photons and the electromagnetic field within the cavity.
The next step is to describe the dynamics of the internal modes and their interactions
with the environment (the external modes) using the Quantum Langevin equations.

3.2.8.a Heisenberg Equation of Motion

From Eq. (3.49) and considering the first Markov approximation given in Eq. (3.53),
the Heisenberg EoM, given in Eq. (3.33), for the external modes reads:

˙̂
bω,n(t) = −iωb̂ω,n(t) + 1√

2π
∑

p

κpnâp(t). (3.54)

The solution of this differential equation reads as:

b̂ω,n(t) = b̂τ
ω,ne

−iω(t−τ) + 1√
2π

∑
p

κpn

t∫
τ

dt′ âp(t′)e−iω(t−t′), (3.55)

where τ is a time reference.
Subsequently, we define the polychromatic bosonic operator for each port by considering
all the bosonic operators of the same port across all frequencies:

b̂τ
n(t) = 1√

2π

∫
R

dω b̂τ
ω,ne

−iω(t−τ). (3.56)

From this equation, we define the incoming and outgoing wave operators at each port:

b̂in
n (t) = b̂t0

n (t), t0 = −∞, (3.57a)
b̂out

n (t) = b̂t1
n (t), t1 = +∞. (3.57b)
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3.2.8.b Input-Output Relation

Integrating over ω on both sides, Eq. (3.55) becomes 4:

1√
2π

∫
R

dω b̂ω,n(t) = 1√
2π

∫
R

dω b̂t0
ω,ne

−iω(t−t0) + 1
2π

∑
p

κpn

t∫
−∞

dt′ âp(t′)
∫
R

dω e−iω(t−t′),

(3.58a)

1√
2π

∫
R

dω b̂ω,n(t) = 1√
2π

∫
R

dω b̂t1
ω,ne

−iω(t−t1) − 1
2π

∑
p

κpn

+∞∫
t

dt′ âp(t′)
∫
R

dω e−iω(t−t′),

(3.58b)

where the first term on the right-hand side of the first (second) equation is equal to b̂in
n (t)

(b̂out
n (t)), and the second term is equal to 1

2
∑

p κpn (−1
2
∑

p κpn), according to the following
properties [150]: ∫

R
dω e−iω(t−t′) = 2πδ(t− t′), (3.59a)

t∫
−∞

dt′ âp(t′)δ(t− t′) =
+∞∫
t

dt′ âp(t′)δ(t− t′) = 1
2 âp(t). (3.59b)

This results in the input-output relation:

b̂out
n (t) = b̂in

n (t) +
∑

p

κpnâp(t). (3.60)

3.2.8.c Quantum Langevin Equation

The Quantum Langevin Equation (QLE), which describes the internal modes and
their associated environmental losses, reads as :

˙̂ap(t) = −iω̃pâp(t) − i
∑
q ̸=p

gqpâq(t) − 1√
2π

∑
n

∫
R

dω κ∗
pn(ω)b̂ωn(t). (3.61)

Substituting the value of b̂ω,n from Eq. (3.55) for τ = t0 in the QLE gives rise to:

˙̂ap(t) = − iω̃pâp(t) − i
∑
q ̸=p

gqpâq(t) (3.62)

− 1√
2π

∑
n

κ∗
pn

∫
R

dω b̂t0
ω,ne

−iω(t−t0) + κpn

∑
q

t∫
t0

dt′
∫
R

dω e−iω(t−t′)âq(t′)
 .

The properties given in Eq. (3.59a) and (3.59b) lead to:

˙̂ap(t) = −iω̃pâp(t) − i
∑
q ̸=p

gqpâq(t) −
∑

n

κ∗
pn

(
b̂in

n (t) +
∑

q

κqn

2 âq(t)
)
. (3.63)

4Note that
t∫

+∞
dt′ f(t′) = −

+∞∫
t

dt′ f(t′), where f(t′) is a time-dependent function.
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Taking the Fourier transform5, Eq. (3.63) can be expressed as:(
ω − ω̃p + i

2
∑

n

|κpn|2
)
âp(ω) +

∑
q ̸=p

(
i

2
∑

n

κ∗
pnκqn − gqp

)
âq(ω) = −i

∑
n

κ∗
pnb̂

in
n (ω). (3.64)

In matrix form:

Ω · â = −iK∗ · b̂in, (3.65a)

Ωqp = (ω − ω̃p)δqp + i

2
∑

n

(κ∗
pnκqn) − gqp, (3.65b)

where â is the vector containing all âp(ω) operator components, b̂in is the vector containing
all b̂in

n (ω) operator components, K is the p× n matrix with κpn as components, Ωqp are
the components of the p× p matrix Ω, and δqp is the Kronecker delta.

3.2.8.d S-parameters

Substituting the solution of Eq. (3.65a) into Eq. (3.60) results in:

b̂out = S · b̂in, (3.66)

where the S-matrix reads as:

S = 1 − iKt · Ω−1 · K∗, (3.67)

where 1 is the identity matrix.

The S-matrix simplifies the computation of reflection and transmission for complex
systems with multiple internal modes and ports. As an example, Fig. 3.7 (a) depicts
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Figure 3.7: (a) Transmission spectrum of a system composed of a quasi-closed
cavity photon and a matter boson; and (b) trace of the transmission spectra versus
ω for ωd = 0.5, 1, and 1.5 in yellow, orange and red curves respectively. The intrinsic
losses rate of the cavity and the magnon are γint

c = 10 MHz and γint
m = 2 MHz, and

the external losses rate are γ00 = γ01 = 5 MHz.

5Reminding the Fourier Transform property: F [ ˙̂aq(t)] = −iωâq(ω)
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the transmission spectrum of a quasi-closed cavity composed of a cavity photon and a
matter bosonic mode. It can be shown that in a quasi-closed cavity, the eigenfrequencies
of the system are represented by peaks in the transmission. Fig. 3.7 (b) provides a visual
representation of these peaks at ωd = 0.5, 1, and 1.5 ωc.

It should be noted that the π-phase shift of the reflection phase has not been explicitly
considered. Specifically, in Eq. (3.57b), this phase shift should be applied to the outgoing
reflected wave, leading to b̂out

n (t) = −b̂t1
n (t). Consequently, this modifies the scattering

matrix element to Sii → −Sii (the Sij parameters are not considered, as the transmission
does not exhibit a π-phase shift). However, since all the terms contained in Sii inherently
include this additional π-phase (i.e. minus sign), the interferences between these terms
remain unaffected, and the underlying physics remains unchanged. Nevertheless, if we
consider a system composed of cascaded scatterers, neglecting the π-phase shift in the
reflection could introduce discrepancies in the model.

3.2.8.e Multi-tone driving

For multi-tone driving, the S-matrix does not normalize entrant power. To achieve
this normalization, it is more convenient to use another quantity, which reads as:

σ = S · b̂in∑
n |b̂in

n |
. (3.68)

This quantity lies outside the scope of the studies in this thesis; however, we demonstrate
that multi-tone driving can be straightforwardly expressed. For further insights into
two-tone driving, readers are referred to refs [153–155].

3.2.9 Input-Output formalism for an open cavity
An open system consists of one or several waveguides that carry traveling waves. These

waves can be coupled to a system comprising bosonic resonators. It is assumed that each
waveguide allows waves to travel from one port at its edge to another port at the opposite
edge. Consequently, a waveguide possesses two ports, and these ports cannot belong to
another waveguide. With a system composed of n waveguides, there are 2n ports, in
contrast to n ports for the case of a quasi-closed cavity.

In this scenario, the Hamiltonian of the bath is expressed in the k-space, reflecting the
wave propagation within the waveguide, while no propagation occurs in a closed system,
and by extension, in a quasi-closed system. The Hamiltonian of the bath for an open-cavity
is given by:

Ĥbath

ℏ
=
∑

n

+∞∫
−∞

dk ckω̃kb̂
†
k,n(t)b̂k,n(t). (3.69)

Similarly, the interaction Hamiltonian is given by:

Ĥint

ℏ
= i√

2π
∑
p,n

+∞∫
−∞

dk ck

(
κpn(ωk)b̂†

k,n(t)âp(t) − κ∗
pn(ωk)â†

p(t)b̂k,n(t)
)
. (3.70)
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In this expression, κpn(ωk) denotes the coupling strength between a traveling mode n
with frequency ωk and an internal mode p. The operators â†

p(t) (âp(t)) are the creation
(annihilation) operators of the mode p. Similarly, b̂†

k,n(t) (b̂k,n(t)) are the creation (an-
nihilation) operators of the traveling mode carried by waveguide n with wave vector k.
The quantity ck = c/

√
εk represents the speed of the traveling wave in the waveguide,

where c is the vacuum speed of light, and εk is the electric permittivity experienced by the
traveling wave in the waveguide.

In the subsequent analysis, it is assumed that all waveguides possess identical char-
acteristics, implying that traveling waves propagate uniformly regardless of the specific
waveguide. This uniformity is expressed through the consistent dependence of ck, and ωk

on k across all waveguides. Additionally, each waveguide comprises two ports, signifying
that a traveling wave with a wave vector +k in waveguide n indicates electromagnetic
wave propagation from the first port to the second port. Conversely, a traveling wave with
a wave vector −k in waveguide n signifies electromagnetic wave transmission from the
second port to the first port. Consequently, due to the opposing behaviors of positive and
negative k at the ports of the waveguide, the integral over k in the bath Hamiltonian of
Eq. (3.69) can be partitioned into two integrals, one over positive k, and the other over
negative k:

Ĥbath

ℏ
=
∑

n

 +∞∫
0

dk ckωkb̂
†
k,n(t)b̂k,n(t) +

0∫
−∞

dk ckωkb̂
†
k,n(t)b̂k,n(t)

, (3.71)

where the second integral can be expressed as:

0∫
−∞

dk ckωkb̂
†
k,n(t)b̂k,n(t) = −

−∞∫
0

dk ckωkb̂
†
k,n(t)b̂k,n(t) =

+∞∫
0

dk c−kω−kb̂
†
−k,n(t)b̂−k,n(t).

(3.72)

In the following, we assume isotropic propagation of traveling waves, i.e. ck = c−k,
and ωk = ω−k. Hence, the Hamiltonian of the bath is given by:

Ĥbath

ℏ
=
∑

n

∫
R+

dk ckωk

(
b̂†

k,n(t)b̂k,n(t) + b̂†
−k,n(t)b̂−k,n(t)

)
. (3.73)

For the same reason, κpn(ωk) = κpn(ω−k), leading to the interaction Hamiltonian in
Eq. (3.70) being rewritten as:

Ĥint

ℏ
= i√

2π
∑
p,n

∫
R+

dk ck

[
κpn(ωk)

(
b̂†

k,n(t) + b̂†
−k,n(t)

)
âp(t)

−κ∗
pn(ωk)â†

p(t)
(
b̂k,n(t) + b̂−k,n(t)

)]
. (3.74)

Integrals over k, and −k can be rewritten as integrals over ωk:∫
R+

dk ckf(k) =
∫
R+

dωk f(k) =
∫
R

dωk f(k), (3.75a)∫
R+

dk ckf(−k) =
∫
R+

dωk f(−k) =
∫
R

dωk f(k). (3.75b)
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The Heisenberg EoM for the traveling modes, with integral over ωk instead of k, read as:

˙̂
b±k,n(t) = − i

ℏ
[Ĥ, b̂±k,n(t)] = −iωkb̂±k,n(t) + 1√

2π
∑

p

κpn(ωk)âp(t). (3.76)

The solution to this differential equation for the traveling operators is given by:

b̂±k,n(t) = b̂τ
±k,n(t)e−iωk(t−τ) + 1√

2π
∑

p

κpn(ωk)
t∫

τ

dt′ e−iωk(t−t′)âp(t′), (3.77)

where τ is a time reference. The solution of the equations considering the direction of
propagation are similar to the equations int the quasi-closed system given in Eq. (3.55).

For subsequent calculations, let’s define the bosonic operators for the positive and
negative polychromatic traveling waves in waveguide n. These operators account for the
set of traveling waves in the positive and negative k-space, respectively:

b̂τ,±
n (t) = 1√

2π

∫
R

dωk e
−iωk(t−τ)b̂τ

±k,n(t). (3.78)

Given the properties outlined in Eq. (3.59a) and (3.59b), we can establish the input-output
relation for the positive and negative k waves similarly:

b̂out.±
n = b̂in.±

n +
∑

p

κpnâp(t). (3.79)

The QLE can be expressed as:

˙̂ap(t) = −iω̃pâp(t) − i
∑
q ̸=p

gqpâq(t) − 1√
2π

∑
n

∫
R

dωk κ
∗
pn

(
b̂k,n(t) + b̂−k,n(t)

)
. (3.80)

Similarly to the case of the quasi-closed cavity, we arrive at:(
ω − ω̃p + i

∑
n

|κpn|2
)
âp(ω) +

∑
q ̸=p

(
i
∑

n

κ∗
pnκqn − gqp

)
âq(ω)

= −i
∑

n

κ∗
pn

(
b̂in,+

n (ω) + b̂in,−
n (ω)

)
. (3.81)

In the matrix form:

Ω · â = −iK′ ·
(
b̂+

in + b̂−
in

)
, (3.82a)

Ωqp = (ω − ω̃p)δqp + i
∑

n

(κ∗
pnκqn) − gqp, (3.82b)

κ′
pn = κ∗

pn. (3.82c)

The expression remains consistent, with â representing the vector containing all âp(ω)
operator components, b̂±

in standing for the vector containing all b̂in,±
n (ω) operator compo-

nents, K′ representing the p × n matrix with κ′
pn as components, and Ωqp denoting the

components of the p × p matrix Ω. It is worth noting that the dissipation rates in an
open cavity are twice as large as those in a quasi-closed cavity, considering Eq. (3.65b)
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and Eq. (3.82b).

3.2.9.a Transmission and Reflection matrices

The input-output relation provided in Eq. (3.79) can also be expressed in matrix form
as:

b̂±
out = b̂±

in − iKt · Ω−1 · K′
(
b̂+

in + b̂−
in

)
= T · b̂±

in + R · b̂∓
in, (3.83)

where:

T = 1 − iKt · Ω−1 · K′, (3.84a)
R = −iKt · Ω−1 · K′. (3.84b)

This result differs significantly from the input-output formalism for a quasi-closed cavity.
Specifically, the component Tmn corresponds to the S2m,2n−1 (S2m−1,2n) parameter when
applied with b̂+

in (b̂−
in), representing the transmission parameter. Conversely, Rmn represents

the S2m−1,2n−1 (S2m,2n) parameter when applied with b̂−
in (b̂+

in), indicating the reflection
parameter. Ultimately, T and R are the transmission and reflection matrices of the waves
propagating in the positive or negative direction in the waveguide. It is noteworthy that
the off-diagonal components of T and R are identical, indicating that the waveguides
behave similarly regardless of their input ports.

As an example, Fig. 3.8 (a) depicts the transmission spectrum of an open cavity
composed of a cavity photon and a matter bosonic mode. It can be shown that in an
open cavity, the eigenfrequencies of the system are represented by dips in the transmission.
Fig. 3.8 (b) provides a visual representation of these dips at ωd = 0.5, 1, and 1.5 ωc.
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Figure 3.8: (a) Transmission spectrum of an open system composed of a cavity
photon and a matter boson; and (b) trace of the transmission spectra versus ω for
ωd = 0.5, 1, and 1.5 in yellow, orange and red curves respectively. The intrinsic
losses rate of the cavity and the magnon are γint

c = 10 MHz and γint
m = 2 MHz, and

the external losses rate are γ00 = γ01 = 400 MHz.
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3.2.9.b Multi-tone driving

For multi-tone driving in an open cavity, the normalized parameter can be expressed
as:

σ± = T · b̂±
in + R · b̂∓

in∑
n

(
|b̂in,+

n | + |b̂in,−
n |

) . (3.85)

3.3 Microwave photon-magnon coupling
In this section, we derive the Hamiltonian that arises from physical considerations in

the case of photon-magnon coupling. From this, we will define the coupling strength as a
function of a so-called filling factor.

As demonstrated earlier, both the Hamiltonians governing the magnon mode, denoted
as Ĥm, and the cavity photonic mode, denoted as Ĥc, can be described by quantum
harmonic oscillators:

Ĥm = ℏωmm̂
†m̂, (3.86a)

Ĥc = ℏωcĉ
†ĉ. (3.86b)

Both equations stem from Eq. (2.84) for the magnon mode and Eq. (3.16) for the cavity
photonic mode. Notably, the ground states of the magnon, denoted by E(B0), and the
cavity photon, represented by 1/2ℏωc, are omitted as they merely serve as energy offsets
and are not pertinent to the subsequent calculations. Additionally, only the Kittel mode,
corresponding to k = 0, is considered as the magnon mode.

In the ensuing analysis, we examine a ferromagnetic material coupled with the cavity
electromagnetic field. It is also assumed that the angular momentum of the ferromagnet
is solely due to the spin-one. Furthermore, we posit the presence of a static magnetic field
oriented along the z-axis, facilitating the alignment of all spins along this axis. Since we
focus solely on the uniform precession magnon mode, we can interpret all spins in the
sample as constituting a single macrospin.

Ŝ → NSŜ, (3.87)

where NS represents the total number of spins within the sample. As outlined in Sec. 2,
the interaction between magnons and photons arises via the Zeeman interaction. Referring
to Eq. (2.43) and Eq. (2.58), the interaction Hamiltonian governing the magnetization of
the entire ferromagnet can be expressed as:

Ĥint = −µ0

∫
Vm

d3r M̂ · ĥ. (3.88)

Here, M̂ = nSµ̂, where nS = NS/Vm represents the spin density within the ferromagnet,
with Vm being the volume of the ferromagnetic material. Since the magnetic moment
solely arises from the spin angular momentum, the number of spins corresponds to the
number of magnetic moments within the material. From Eq. (2.20), the macrospin can
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also be expressed as:
Ŝ = NS

γ
µ̂ = Vm

γ
M̂. (3.89)

Moreover, the total length of the macrospin is given by:

S = NS
µ

ℏγ
= −NS

µ

gLµB
. (3.90)

Substituting the magnetization operator with the macrospin operator using Eq. (3.89),
and the cavity magnetic field with its value in Eq. (3.18b), the interaction Hamiltonian in
Eq. (3.88) can be expressed as:

Ĥint = − γ

Vm

√√√√ ℏ
2ωcε0εr,c

∫
Vm

d3r Ŝ · (ĉ† + ĉ)∇ × U. (3.91)

Applying the Holstein-Primakoff transformation to replace the macrospin operator with
the magnon operator using Eq. (2.70), Eq. (2.74a), and Eq. (2.74b), we derive:∫

Vm

d3r Ŝxĥx = ℏ
2

√
2S(m̂† + m̂)(ĉ† + ĉ)

∫
Vm

d3r ∇ × U · x, (3.92a)∫
Vm

d3r Ŝyĥy = i
ℏ
2

√
2S(m̂† − m̂)(ĉ† + ĉ)

∫
Vm

d3r ∇ × U · y, (3.92b)∫
Vm

d3r Ŝzĥz = ℏ(S − m̂†m̂)(ĉ† + ĉ)
∫

Vm

d3r ∇ × U · z. (3.92c)

Referring to the supplementary information of Flower et al. (2019) [156], the expression
above can be rewritten as a function of the ratio of the magnetic field within the ferromagnet
to the total energy field associated with the total h-field in the entire cavity. Initially, we
consider the Hamiltonian of the magnetic field component in Eq. (3.9b). The energies of
the magnetic field within the magnetic material and the entire cavity are expressed as:

HVm = 1
2µ0

∫
Vm

d3r h · h = 1
2µ0

q2(t)
ε0εr,c

∫
Vm

d3r (∇ × U(r)) · (∇ × U(r)) , (3.93a)

HVc = 1
2µ0

∫
Vc

d3r h · h = 1
2µ0

∫
Vc

d3r |h|2 = 1
2µ0

q2(t)
ε0εr,c

εr,cω
2
c

c2 . (3.93b)

Combining these two equations, the energy ratio is expressed as:

HVm

HVc

=
∫

Vm
d3r h · h∫

Vc
d3r |h|2

=
∫

Vm
d3r (∇ × U(r)) · (∇ × U(r))

εr,cω2
c/c

2 . (3.94)

This implies that the rotational of U(r) can be parametrized as a function of the magnetic
field:

∇ × U(r) =
√
εr,cωc

c

h√∫
Vc

d3r |h|2
. (3.95)

Finally, the interaction Hamiltonian, can be expressed as:

Ĥint/ℏ = gx(m̂† + m̂)(ĉ† + ĉ) + igy(m̂† − m̂)(ĉ† + ĉ) + gzm̂
†m̂(ĉ† + ĉ) + Ωz(ĉ† + ĉ). (3.96)
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Here, gx and gy represent the coupling strengths in the two directions perpendicular to
the static magnetic field. These are the couplings of interest in the studies presented in
this thesis, and are given by:

gx = −γ
√
ℏµ0ωcS

2Vm

∫
Vm

d3r h · x√∫
Vc

d3r |h|2
, (3.97a)

gy = −γ
√
ℏµ0ωcS

2Vm

∫
Vm

d3r h · y√∫
Vc

d3r |h|2
. (3.97b)

The two terms gz and Ωz represent the coupling strength along the z-axis and the effective
field associated with the spins aligned along the z-axis, respectively. They are expressed
as:

gz = γ
√
ℏµ0ωc√
2Vm

∫
Vm

d3r h · z√∫
Vc

d3r |h|2
, (3.98a)

Ωz = γ
√
ℏµ0ωcS√
2Vm

∫
Vm

d3r h · z√∫
Vc

d3r |h|2
. (3.98b)

It is worth noting that gz is negligible when a periodic magnetic field is applied along
the z-axis. This is because it is not proportional to the square root of S, and hence
not directly related to the number of spins NS in the material, unlike the perpendicular
coupling strengths gx and gy. Furthermore, in the studies undertaken in this thesis, the
periodic magnetic field is applied perpendicular to the static magnetic field, resulting in
only gx and gy being considered in all subsequent analyses.

It is noteworthy that Equation Eq. (3.96) represents the Dicke model, wherein there
exists a coupling phase between the Cartesian directions, as highlighted in Gardin et al.
(2023) [157]. Then, by considering only the coupling strengths in the perpendicular
direction, the Hamiltonian in Equation Eq. (3.96) can be simplified to:

Ĥint/ℏ = g(eiϕm̂† + e−iϕm̂)(ĉ† + ĉ) + h.c. (3.99)

Here, the coupling strength is expressed as:

g

2π = η
√
ωc

|γ|
4π

√
|µ|
gLµB

µ0ℏnS. (3.100)

for YIG, the constant terms on the right-hand side of ωc are provided in Sec. 2.2.5, and
are equal to 16.5493 · 103 Hz1/2. In the coupling strength expression, we introduced the
filling factor, expressed as:

η =

√(∫
Vm

d3r h · x
)2

+
(∫

Vm
d3r h · y

)2

√
Vm

∫
Vc

d3r |h|2
. (3.101)

The filling factor quantifies the proportion of the effective magnetic field perpendicular
to the static magnetic field within the volume of the magnetic material Vm, relative to
the total field within the entire volume of the cavity Vc. Regarding the coupling phase, it
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varies depending on the direction of the magnetic field and is expressed as:

ϕ = arg
[∫

Vm

d3r h · x + i
∫

Vm

d3r h · y
]
. (3.102)

When dealing with a single cavity mode in one-tone driving, the coupling phase does not
exert any influence. Consequently, the polariton frequencies adhere to those of the Dicke
model in Eq. (3.45) without applying the RWA or align with the Tavis-Cummings model’s
frequencies when the RWA is implemented, as outlined in Eq. (3.36).
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Appendix of Chapter 3

To demonstrate orthogonality, we start with the wave equation for Uk(r) in Eq. (3.6).
Multiplying both sides by Uk′(r) and integrating across the entire cavity volume yields:

∫
d3r Uk′(r) · ∇2Uk(r) = ω2

k

c2

∫
d3r εr(r)Uk′(r) · Uk(r). (3.103)

After performing two integrations by parts on the left-hand side6, we get:∫
d3r Uk′(r) · ∇2Uk(r) =

∫
d3r (∇2Uk′(r)) · Uk(r), (3.104)

Given that the Coulomb gauge applies to Uk, it follows that:

ω2
k

c2

∫
d3r εr(r)Uk′(r) · Uk(r) = ω2

k′

c2

∫
d3r εr(r)Uk′(r) · Uk(r) (3.105a)

ω2
k − ω2

k′

c2

∫
d3r εr(r)Uk′(r) · Uk(r) = 0 (3.105b)

The last equation establishes the orthogonality relation between Uk(r) and Uk′(r) when
k ̸= k′: ∫

d3r εr(r)Uk′(r) · Uk(r) = 0, ∀k ̸= k′. (3.106)

It is also assumed that Uk(r) is normalized throughout the cavity:∫
d3r Uk(r) · Uk(r) = 1. (3.107)

These two equations enable us to express:∫
d3r εr(r)Uk′(r) · Uk(r) = εr,kδk′,k (3.108)

where εr,k is the averaged relative permittivity of mode k throughout the cavity.

6First integration:
∫

d3r Uk′(r) · ∇2Uk(r) =
∫

surf dS Uk′(r) · ∇Uk(r) −
∫

d3r ∇Uk′(r) · ∇Uk(r).
Second integration:

∫
d3r ∇Uk′(r) · ∇Uk(r) =

∫
surf dS ∇Uk′(r) · Uk(r) −

∫
d3r ∇2Uk′(r) · Uk(r).

Note that the surface integrals cancel, using the equalities
∫

surf dS Uk′(r) · ∇Uk(r) = −
∫

surf dS Uk(r)∇ ·
Uk′(r) and

∫
surf dS ∇Uk′(r) · Uk(r) = −

∫
surf dS (∇ · Uk(r)) Uk′(r). This cancellation occurs because the

modes Uk are confined within the cavity and vanish at infinity (see [158] p.163), and the divergences are
equal to zero due to the Coulomb gauge.
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4 Methodology

Abstract
This chapter outlines the various methodological steps employed in the studies. It begins with
a discussion of the simulation considerations, including the use of perfect electric conductors
for the cavity walls, the mesh grid, and the incorporation of the magnetic properties of the
ferrimagnet in both the EigenModes and Frequency Domain solvers. Following this, the chapter
covers the different fabrication techniques for the cavity, ranging from traditional machining to
3D plastic printing, including metallization processes. The chapter concludes with an overview of
the functionality of the vector network analyzer, the primary instrument used in the measurement
campaign, and details the laboratory setup and measurement automation.
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4.1 Simulations
The simulations presented in this thesis were conducted using COMSOL Multiphysics®,

specifically employing Finite Element Modeling (FEM). This numerical method is widely
utilized to address complex physics problems and to simulate the behavior of physical
systems under various conditions. FEM works by dividing the spatial domain of interest
into finite elements that form a mesh. Each of these elements is interconnected by nodes,
and for each element, differential equations are formulated (in this case, based on the
wave equation). These local equations are then assembled into a global matrix equation
that represents the entire mesh. Boundary conditions and initial conditions are also
incorporated to simulate environmental interactions and initial states. The resulting
matrix equation is solved using various numerical techniques, such as iterative or direct
methods. FEM is capable of modeling both 2D and 3D systems, with the latter requiring
significantly more computational power, memory, and time to solve [159].

In the following subsections, we will focus on the RF module, which simulates electro-
magnetic phenomena in the radio frequency (RF) domain. This module is particularly
useful for designing and simulating RF devices such as antennas, waveguides, filters, inte-
grated circuits, and resonant cavities. The simulations are based on Maxwell’s equations
and can be solved in either the time domain or the frequency domain. The studies pre-
sented in this thesis focus on solving the frequency domain equations, assuming sinusoidal
excitations and linear media, leading to the following time-harmonic field representation
[160]:

E(x, y, z, t) = E(x, y, z)eiωt, (4.1a)
H(x, y, z, t) = H(x, y, z)eiωt. (4.1b)

From the Maxwell’s equations given in Eq. (2.103) and the relations in Eq. (2.104),
where the permittivity tensor ε̄ is complex-valued, we derive the time-independent wave
equation for the electric field as follows:

∇ × (µ̄−1∇ × E) − ω2ε̄E = 0. (4.2)

We assume the complex permittivity is expressed as:

ε̄ = ε0

[
ε̄′ − i

(
σ̄

ωε0
+ ε̄′′

)]
, (4.3)

where the first term in the parentheses represents conduction losses (with σ̄ being the
electrical conductivity), and ε̄′′ accounts for dielectric losses. Substituting this into
Eq. (4.2), we obtain the reduced wave equation:

∇ × µ̄−1
r (∇ × E) − k2

0ε̄
′[1 − itan(δ)]E = 0, (4.4)

where the loss tangent tan(δ) is defined as:

tan(δ) =

σ̄

ωε0
+ ε̄′′

ε̄
, (4.5)
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and k0 is the wave number in a vacuum, given by:

k0 = ω

c0
, (4.6)

with c0 being the speed of light in a vacuum.

Furthermore, the solutions to these equations are obtained by applying the following
boundary conditions between two dielectric media:

n̂2 × (E1 − E2) = 0, (4.7a)
n̂2 × (H1 − H2) = Js, (4.7b)

where Ei and Hi are the electric and magnetic fields in medium i (for i = 1, 2), n̂2 is the
outward normal from medium 2, and Js represents the surface current density.

4.1.1 Perfect Electric Conductor
In simulations, all the physics is restricted within a finite volume space. For instance,

when simulating a cavity, the boundaries of the cavity also define the boundaries of the
simulation space. By default, these boundaries are treated as Perfect Electric Conductors
(PEC), which leads to the following boundary conditions:

− n̂2 × E2 = 0, (4.8a)
− n̂2 × H2 = Js, (4.8b)

where the subscript 2 denotes the inner medium in the cavity.

(a) (b)

Figure 4.1: Sketch of two different cavities: Multi-re-entrant cavity from [161] with
modeled copper walls in blue and PEC conditions for the outer cavity boundary;
and double re-entrant cavity presented in Chapter 5 with PEC conditions for the
inner cavity boundary.
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Fig. 4.1 illustrates two different approaches to cavity simulation. In panel (a), the
multi-re-entrant cavity discussed in [161] is shown. Here, the cavity walls are modeled as
a conductive material (copper with σ = 58.7 · 106 S.m−1), and the outer boundaries are
treated as PEC. This setup more accurately reflects real-world conditions by accounting for
conductive losses and the effect of probe placement within the cavity wall. However, this
approach incurs high computational costs due to the detailed modeling of wall conductivity
and probe placement.

In contrast, panel (b) depicts a double re-entrant cavity from the study presented
in Chapter 5. In this case, the simulation space boundaries are defined by the inner
cavity walls, with the conductive losses of the cavity walls excluded from the model. This
simplification significantly reduces computational time while still providing useful insights
into the cavity’s behavior.

4.1.2 Mesh
An essential aspect of FEM simulations is the mesh, which discretizes the entire

system for analysis. A coarser mesh accelerates computation but may lack precision or

(a)
(b)

(c) (d)

Figure 4.2: Illustration of the different meshing strategies for the cavity elements:
(a) a fine mesh applied to the cavity air and walls; (b) and (c) a finer mesh used for
the cavity posts and probe elements; and (d) a extremely fine mesh dedicated to the
YIG elements.
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fail to capture important details. Conversely, a finer mesh provides greater accuracy but
significantly increases computational time.

To balance accuracy and efficiency, it is crucial to adapt the mesh to different regions
of the system. COMSOL Multiphysics® offers a range of predefined mesh sizes, from
extremely coarse to extremely fine, with varying maximum and minimum element sizes,
and growth rates.

In the simulations discussed in this thesis, we employed a strategy of using different
mesh sizes for different components of the cavity. The aim was to achieve a mesh fine enough
to ensure convergence of the results while minimizing computational time. Specifically:

• Cavity Air and Walls: The mesh for the air and wall regions was set to fine,
providing a balance between computational speed and accuracy.

• Probes and Posts: For elements involving probes and other components where the
boundaries are not modeled as PEC, the mesh was set to finer to ensure detailed
resolution.

• YIG Elements: The YIG slabs or spheres, which are critical for accurate results,
were assigned an extremely fine mesh.

These mesh calibrations are illustrated in Fig. 4.2, with (a) and (b) showing the mesh
for the cavity air and walls, (c) for the posts and probes, and (d) for the YIG elements.
This approach ensures that the mesh is adequately refined in regions of interest while
optimizing the overall computational efficiency.

4.1.3 EigenModes Simulation
To illustrate this section, we will discuss the simulations presented in [161]. This study

highlights the significance of coupling phases in creating synthetic gauge fields in “loop
coupled system” as described by Eq. (3.102).

In the appendix of [161], it is presented the design of a cavity that introduces a
non-trivial phase shift between two consecutive cavity modes and two magnons, while
operating in the strong coupling regime. A non-trivial phase is defined as a total effective
phase Φ that deviates from 0 or π/4 radians and is expressed as:

Φ = ϕ22 − ϕ21 − (ϕ12 − ϕ11), (4.9)

where ϕij denotes the coupling phase between a cavity mode j and a magnon i. For further
details on coupling phases and their implications, the reader can refer to [161].

To achieve this, the study involved developing a re-entrant cavity equipped with five
posts, which also ensures uniform coupling strength across multiple YIG spheres. This
configuration allows precise control over the coupling phases and facilitates the exploration
of synthetic gauge field phenomena.

In Eigenmodes (EM) analyses, we seek the complex solutions of the eigenfrequency λp,
where the time-dependence term of the electric field is expressed as eλpt. The complex
eigenfrequency λp is written as:

λp = −iωp + δp, (4.10)
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where ωp represents the eigenfrequency, and δp accounts for the damping.

Eigenmodes (EM) simulations are employed to determine the mode frequencies and
its quality factor Qp for the study presented in Chapter 3. The quality factor is given by:

Qp = ωp

2|δp|
. (4.11)

Here, δp represents the total damping in the system. This damping depends on several
factors: dielectric losses ε̄′′ (which are not considered in our studies), conduction losses (as
described in Eq. (4.3), considered only when PEC conditions are not applied to the inner
cavity walls), and the damping rates associated with the probes γpn, where p denotes a
cavity mode and n the port number, as given in Eq. (3.53). Thus, the quality factor can
be rewritten as:

Qp = ωp

γint
p +∑

n γpn

, (4.12)

where γint
p represents the intrinsic losses of the internal mode, encompassing conduction

losses, dielectric losses, and magnetic losses when a magnetic material is considered (Gilbert
damping in the case of a ferrimagnet). Consequently:

|δp| = 1
2

(
γp +

∑
n

γpn

)
. (4.13)

The factor 1/2 accounts for a quasi-closed cavity, as mentioned in Eq. (3.65b). It is
important to note that the quality factor Qp is used exclusively in the study presented in
Chapter 6, where the inner cavity walls are considered as PEC and the permittivity of the
dielectric and YIG materials are assumed to be purely real (i.e., no losses). Additionally,
in EM simulations, the Polder tensor is not considered, implying that YIG is assumed
fully saturated (µr = 1), and thus magnetic damping is not accounted for. Consequently,
losses are attributed solely to the external damping rates, and the damping term is given
by |δp| = ∑

n γpn/2.

In all studies presented in this thesis, the filling factor η has been estimated from the
EM simulations based on the proportion of the RF magnetic field within the ferrimagnet
relative to the entire cavity, as described in Eq. (3.101). The electric and magnetic
field solutions from these simulations are phasors, as EM solutions are obtained in the
frequency domain and are time-independent. To interpret these phasor solutions in the
time domain, we consider the fields at t = 0. The real part of the electric field represents
its maximum amplitude, since the differential equations are solved for the electric field.
The magnetic field, which is π/2 out of phase with the electric field, has its maximum
amplitude represented by the imaginary part.

The filling factor in simulations is described by:

η =

√(∫
Vm

d3r I{hx}
)2

+
(∫

Vm
d3r I{hy}

)2

√
Vm

∫
Vc

d3r (I{hx}2 + I{hy}2 + I{hz}2)
. (4.14)

Here, I{hx}, I{hy}, and I{hz} denote the imaginary parts of the magnetic field compo-
nents hy, hz, and hx, respectively.
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(a) (b)

Figure 4.3: Sketch of (a) the magnetic probe, and (b) the electric probe. The
red marker indicates the domain point probe used in COMSOL Multiphysics®. The
magnetic field is probed along the axis perpendicular to the normal “loop” probe
direction, while the electric field is probed along the axis of the probe.

In COMSOL Multiphysics®, scalar-valued quantities can be monitored and analyzed
using probes [162]. These probes allow for detailed examination of various physical
quantities throughout the simulation domain. Specifically, domain probes are used to
extract the RF magnetic field in any direction and integrate it over the volume of the
system’s components. This capability facilitates the calculation of coupling strengths and
the ratio g/ω using global variable probes.

Additionally, the effective coupling phase, as defined in Eq. (4.9), was determined by
averaging the RF magnetic fields in each of the YIG spheres. For each eigenmode, the
angle of a cavity mode is calculated using the domain probes with the formula:

ϕpn = atan2 [I(hy), I(hx)] . (4.15)

This method enabled the design of a cavity that introduces a non-trivial phase between
modes, with detailed information about the cavity dimensions and features provided in
Appendix 4.A.

For the study in Chapter 6, domain point probe were utilized to determine the sign of
the RF magnetic field h at the center of the magnetic probe. This was done along the
normal direction to the plane formed by the probe’s loop, as shown in Fig. 4.3 (a) by the
red maker. Similarly, for an electric probe, the RF electric field E close to the probe along
the probe’s axis was used to identify the sign, illustrated in Fig. 4.3 (b) by the red maker.

The EM simulations also allow for the extraction of field mappings at various plane
coordinates, which are essential for mode analysis in subsequent chapters. For example,
Fig. 4.4 shows the norm of the RF magnetic field in a color plot within the (x, y) plane at
the z-coordinate of the YIG sphere centers. This visualization provides insights into the
spatial distribution of the field for different cavity modes.
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Figure 4.4: Representation of the |H|-field of the first three cavity modes in the
(x, y) plane at the z-coordinate corresponding to the center of the YIG spheres.

4.1.4 Frequency Domain Simulation
4.1.4.a S-parameters

In Frequency Domain (FD) simulations, scattering parameters (S-parameters) are
used to characterize the behavior of a system in terms of transmitted and reflected voltage
waves at the ports of the cavity. The S-parameters are computed by analyzing the electric
field Ei at the fundamental mode of the ith port and the electric field Ec inside the cavity.
The ports are typically modeled as matching loads (e.g., 50 Ω as a standard value [163])
to minimize reflections and accurately represent real-world conditions. In this thesis, the
ports are assumed to be coaxial cables operating in the Transverse ElectroMagnetic (TEM)
mode.

For a coaxial transmission line, the TEM mode is characterized by specific electric and
magnetic field distributions. The scalar potential Φ in the coaxial line is given by [163]:

Φ = V0
ln(b/ρ)
ln(b/a) , (4.16)

where V0 is the potential of the inner conductor, a and b are the radii of the inner and
outer conductors, respectively. The coordinate system used here is cylindrical with ρ
representing the radial direction and θ the azimuthal direction, as depicted in Fig. 4.5.
Given the electric field E can be derived from the gradient of the scalar potential:

E = −∇Φ, (4.17)

the components of the electric and magnetic fields are calculated as follows:

Eρ = V0

ρ ln(b/a) , (4.18a)

Hθ = V0

ρZ ln(b/a) , (4.18b)

where Z is the characteristic impedance of the coaxial line. The other components of the
electric and magnetic fields are zero. In the coaxial line, the electric field is oriented along
the radial axis ρ and the magnetic field is oriented along the azimuthal axis θ, as shown in
Fig. 4.5 (a) and (b) from the COMSOL Multiphysics® simulation.
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Figure 4.5: Sketch of the simulated (a) electric field, and (b) magnetic field of the
TEM mode in a coaxial line.

In simulations, ensuring that the electric fields at the port boundaries match in terms
of their power is crucial for accurate analysis of S-parameters. The Poynting vector, which
represents the power flow in an electromagnetic field, is used to compute the power at the
port boundary. The power P at a port boundary surface area Ω is given by:

P =
∫

Ω
dΩ n̂ · S = 1

2

∫
Ω

dΩ n̂ · R{E × H∗}, (4.19)

where n̂ is the normal vector to the surface Ω.

For a TEM mode, the magnetic field H can be expressed as [163]:

H = 1
ZTEM

(n̂ × E), (4.20)

where ZTEM is the impedance of the TEM wave, given by [163]:

ZTEM =
√
µ

ε
. (4.21)

Substituting Eq. (4.20) into Eq. (4.19), the total power at the port boundary becomes:

P = 1
2ZTEM

∫
Ω

dΩ |E|2 (4.22)

In the cavity, the electric field at the port boundary is the sum of the incoming wave (if
the port is excited) and the transmitted or reflected waves. The power at these boundaries
must be consistent with the port modes, which represent their excitations. Therefore, the
equality of power at the boundary can be expressed as:

δij
1

2ZTEM

∫
Ωi

dΩi R{Ej · E∗
i } = 1

2ZTEM

∫
Ωi

dΩi R{Ec · E∗
i } − 1

2ZTEM

∫
Ωi

dΩi R{SijEi · E∗
i }.

(4.23)



4.1. Simulations 81

Here, Ωi represents the surface area of the ith port boundary. The term on the left-hand
side represents the power of the excited port, where δij is the Kronecker delta indicating
orthogonality between port modes when i ̸= j. The first term on the right-hand side
accounts for the coupling between the electric fields of the port mode and the cavity at the
port boundary, while the last term represents the power associated with the transmitted
or reflected port mode.

From Eq. (4.23), the S-parameters can be derived as:

Sij =
∫

Ωi
dΩi (Ec − δijEj) · E∗

i∫
Ωi

dΩi Ei · E∗
i

(4.24)

When the S-parameters are defined in decibels (dB), the convention used is:

|Sij|(dB) = 10 log(|Sij|2) = 20 log(|Sij|). (4.25)

This dB representation is employed in this thesis as well.

4.1.4.b Physics convention

COMSOL Multiphysics® is a versatile tool for simulating electromagnetic fields based
on solving Maxwell’s equations. However, it does not directly support micromagnetic
simulations, which are essential for accurately modeling phenomena such as photon-magnon
coupling in magnetic materials. To address this limitation when simulating photon-magnon
coupling in a ferrimagnetic domain, a workaround involves incorporating the demagnetizing
field into the applied static magnetic field.

When a static magnetic field H0 along the z-axis, the total static magnetic field
Htot within the ferrimagnetic domain is affected by the demagnetizing field. Considering
Eq. (2.117b), this total static magnetic field is given by:

Htot = H0 −NzzMs, (4.26)

where Nzz is the demagnetizing factor along the z-axis. For different geometries, this
factor takes specific forms, and is defined by Eq. (2.121) for a sphere, and by Eq. (2.123)
for a slab.

In the software, the magnetic dynamics of a YIG material is represented using the per-
meability tensor µ̄. When dealing with electromagnetic waves in COMSOL Multiphysics®,
the time dependence is conventionally expressed as eiωt, as defined in Eq. (4.1). However,
in condensed matter physics, and throughout this thesis, the convention is e−iωt. This
difference in sign convention affects the formulation of the permeability tensor. Following
a similar derivation as in Sec. 2.3.2.a , but adapting it to software’s convention, the
permeability tensor µ̄ given in Eq. (2.102b) becomes:

b = µ̄ · h, (4.27a)

µ̄ = µ0(1 + χ̄) = µ0

1 + χ iκ 0
−iκ 1 + χ 0

0 0 1

 . (4.27b)
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Here, the components χ and κ are defined similarly to the expressions in Eq. (2.101b) and
(2.101b), at the exception that ω̃0 = ω0 + iαω.

In Chapter 6, the phases obtained from the input-output model are compared to those
derived from FD simulations. Due to the differences in conventions, the transmission
phases and the smooth phase transitions observed at resonances or antiresonances are
inverted between the two approaches. This inversion results from the time-dependent
term of the solution, which, in the context of the Schrödinger equation, is expressed as
e−iωt (as derived in [164] on p.38-39). This convention is crucial for maintaining a positive
frequency in the system.

To align with the software’s convention, where the time-dependence is expressed as
eiωt, it is necessary to change the sign of one of the terms in the Schrödinger equation.
After making this adjustment, the time derivative of an operator Â in the Heisenberg
picture is expressed as:

∂tÂ = i

ℏ
[Â, Ĥ]. (4.28)

This expression is derived similarly to the conventional quantum mechanics approach, as
demonstrated [99] on p.321-322. This consistency in phase convention is crucial when
comparing the results from quantum models with those from simulations.

Based on the adjustments for the phase convention, the S-matrix for a quasi-closed
cavity is now expressed as:

S = 1 + iKt · Ω−1 · K∗, (4.29)
The components of the matrix Ω, which were initially defined in Eq. (3.65b), must also be
rewritten as:

Ωqp = (ω − ω̃p)δqp − i

2
∑

n

(κ∗
pnκqn) − gqp. (4.30)

Additionally, the complex frequency of the pth internal mode is given by ω̃p = ωp + iγint
p /2.

The derivation of the input-output model for a quasi-closed cavity under the software
convention is detailed in Appendix 4.B. To illustrate this, consider a system comprising
a single cavity mode with positive external coupling phases at two probes. In both
conventions, we introduce the complex frequency of the cavity mode as ω̃p = ωp − iγint

p /2.
The transmission in the two conventions is then expressed as follows:

S21 = −i
√
γ00γ01

ω − ω0 + i

2(γ00 + γ01 + γint
0 )

, (4.31a)

Ssoft
21 = i

√
γ00γ01

ω − ω0 − i

2(γ00 + γ01 − γint
0 )

, (4.31b)

where ω0 denotes the cavity mode frequency, γ00 and γ01 represent the dissipation loss rates
at the two probes. In Eq. (4.31a), γint

0 corresponds to the intrinsic loss rate of the cavity
mode and shares the same sign as the other dissipation rates. However, in Eq. (4.31b), the
sign of γint

0 is opposed to that of the dissipation rates, indicating a gain in the COMSOL
convention.

In Fig. 4.6 (a), we illustrate the transmission magnitude for a cavity mode with ω0 = 5



4.1. Simulations 83

0 5 10
ω0 [GHz]

30

20

10

0

|S
2
1
| [

dB
]

(a)

0 5 10
ω0 [GHz]

−π

−π
2

0

π
2

π

Φ
2
1
 [r

ad
]

(b)

0

π/2

π

−π/2

20
0

(c)

e−iωt

eiωt

Figure 4.6: Modeled transmission of a single cavity mode using the input-output
formalism with two conventions: e−iωt shown in blue and eiωt shown in red, with
intrinsic loss rates treated as negative in both models. The transmission magnitude is
presented in (a), the phase in (b), and the phase trajectories in a polar representation
in (c).

GHz, γ00 = γ01 = γint
0 = 0.1. To emphasize the importance of the sign convention in the

imaginary part, the transmission calculated using the input-output model from Eq. (4.31a)
is shown in blue. Here, the minus sign of the complex cavity frequency effectively represents
a loss, as indicated by the fact that the transmission at the resonance frequency does not
reach 0 dB. Conversely, the transmission obtained following the simulation convention
described in Eq. (4.31b) is depicted in red. In this case, the minus sign for the imaginary
part of the complex cavity frequency corresponds to a gain, resulting in the transmission at
the resonance frequency exceeding 0 dB. This highlights that in COMSOL Multiphysics®,
special attention must be paid to the signs of the imaginary parts when incorporating
losses, as it directly impacts the interpretation of the simulation results.

The phases corresponding to these transmissions are given by:

Φ21 = tan2−1
[
−2(ω − ω0),−(γ00 + γ01 + γint

0 )
]
, (4.32a)

Φsoft
21 = tan2−1

[
2(ω − ω0),−(γ00 + γ01 − γint

0 )
]
. (4.32b)

Here, the tan2−1 function is used, which correctly accounts for the signs of both the real
and imaginary components of S21 to yield the correct phase.

In Fig. 4.6 (b), the transmission phases corresponding to the two conventions are shown
in blue and red, as defined by Eq. (4.32a) and (4.32b), respectively. The figure illustrates
that the phases before and after the resonance are inverted between the two conventions.
Additionally, both conventions show a phase jump at the resonance passing through the
value π. However, the phase trajectory exhibits a counter-clockwise (CCW) behavior for
the e−iωt convention, while it shows a clockwise (CW) behavior for the software convention,
as depicted in Fig. 4.6 (c).

In the following analysis, we compare the magnitude and phase transmission obtained
from a FD simulation with those derived from the input-output model under both phase
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conventions. The FD simulations were conducted on a double re-entrant cavity loaded
with a dielectric slab, as detailed in Sec. 6.7, with the corresponding magnitude and phase
transmission shown in Fig. 6.9.
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Figure 4.7: FD simulations are shown in solid blue lines and compared to the
input-output model in red for a double re-entrant cavity loaded with a dielectric
slab. The magnitude of the transmission is presented in (a), and the phases in (b).
The dashed and solid red lines correspond to the input-output model using two
software conventions, denoted as “i-o 1” and “i-o 2”, with the exception that a phase
Φ = αω + βω2 is added to the S-parameter for “i-o 1”. The green solid line, labeled
“i-o 3”, represents the modeled phase using the e−iωt convention.

By fitting the dissipation rates at the two probes for four different cavity modes, as
well as the intrinsic losses, both phase conventions accurately reproduce the simulated
transmission. This is demonstrated in Fig. 4.7 (a), where the FD simulation results are
shown by the solid blue line, and the modeled transmission is represented by the dashed
red line.

Fig. 4.7 (b) illustrates the phase comparison: the simulated phase is depicted in blue,
the phase modeled using the software convention in red (labeled “i-o 2”), and the phase
modeled with the e−iωt convention in green (labeled “i-o 3”). The dashed red line (labeled
“i-o 1”) represents the input-output model using the software convention with an additional
polynomial phase term, Φ = αω + βω2, where α and β are fitted parameters, to better
match the simulated phase. This polynomial phase correction accounts for phase variations
not captured by the standard input-output model but does not alter the underlying physics.
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Notably, when examining the phase at ω ≃ 0, where the added phase term equals
zero, the input-output model derived using the software convention aligns with the FD
simulations, while the phase is inverted for the e−iωt convention. Additionally, the smooth
phase jumps observed in the software convention exhibit the same trajectory as those in
the FD simulations, in contrast to the trajectory in the e−iωt convention, which is opposed.

Therefore, in chapter 6, the input-output model is utilized with the same convention
as COMSOL Multiphysics® to ensure that the phase calculations are consistent across
with simulations.

4.2 Cavity Conception

4.2.1 Design
Once the cavity optimized with simulations software, and before fabrication, the cavity

must be modelized with a computer aided design (CAD) software. In this thesis, the
cavities were designed on SolidWorks CAD 3D®.

The conception of the cavity has to respond to two constraints: The cavity has to be
adapted to the utilized SMA connector in measurement, where the data sheet is given
in Appendix 4.C. As depicted in Fig. 4.8 (a), the cavity is mounted of two rectangular
symmetrical pieces of both sides of the cavity. A central hole enables to pass the probe

(a) (b)

Figure 4.8: Design of the double reentrant cavity (presented in Chapter 5) on
SolidWorks CAD 3D®. Blue arrows present the probed insertions in the cavity
holes, and brown arrows the hole for the screws to maintain probes. Green arrows
represent holes to assemble (a) the base of the cavity and (b) the lid of the cavity.
Red areas represent the same plane height once the cavity assembled.
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throughout the cavity after fabrication (represented by blue arrows), and are maintained
by two screws, where insertions are represented by brown arrows.

A second design requirement was to create a cavity capable of adjusting the distance
between the tops of the posts and the top of the cavity (see Chapter 5 for more details). It
has been chosen that the cavity would be divided into two distinct pieces: the base of the
cavity, referred in Fig. 4.8 (a); and the lid of the cavity, referred in Fig. 4.8 (b). These two
pieces are assembled with six screws, and represented by green arrows. From this, top of
the posts and the top of the base of the cavity are at the same plane height (represented
by red areas). When assembled with the lid, the distance between the top of the posts
and the top of the lid in the cavity are determined by the extrusion on the lid (the blank
area in the center of the red area). Different cavity lid with different extrusion height were
fabricated for the study in Chapter 5.

4.2.2 Fabrication
Two methods were employed for the fabrication of the cavities. One is the 3D printing,

making possible to create some complex cavity design at least cost, but with weak accuracy.
The second one is the aluminum or copper machining with higher accuracy. However,
the second method is more expensive and does not enable to fabricate the more complex
cavities. The double re-entrant cavity has been machined by Protolabs 3D Hubs®. This
cavity is made of aluminum and presents a surface roughness of 3.2 µm. The cylindrical
cavity from [95] and presented in Chapter 6 has been machined at IMT Atlantique. The
machining tool used is the Hurco VM10i®, which offers a positioning accuracy of 10 µm.
It should be noted that the cavity discussed in Sec. 5.6.0.b will soon be machined using
this equipment. In Fig. 4.9 is presented the double reentrante cavity fabricated by both
methods, were the printed cavity is shown in Fig. 4.9 (a), and metalized in (b), and the
machined cavity is illustrated in Fig. 4.9 (c).

The 3D printing is elaborated with a Form 3B+® utilizing a liquid based process,
named stereolithography (SLA). This process uses a liquid photopolymer resin, which is a
light-sensitive material that hardens when exposed to ultraviolet (UV) light, of 405 nm.
This resin is placed in a vat. The object is fabricated on the plate of a build platform
which can displace on the vertical z-axis. A laser beam with a beam size of 85 µm, guided

(a) (b) (c)

Figure 4.9: Rendering of the double reentrante cavity after (a) 3D printing, (b)
metallization, and (c) machining.
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by a set of mirrors (named as galvanometer), selectively cures the resin by tracing a
cross-sectional layer of the desired object on the surface of the liquid. The displacement
on the (x, y) plane is of 25 µm. After one layer is cured, the build platform uppers by a
small increment of 25 µm, to allow for the next layer of liquid resin to be exposed and
cured. This process repeats, building the object layer by layer from the bottom up. Once
the printing is complete, the object is washed with alcohol isopropyl (IPA) to remove
excess resin. An additional curing in a UV oven to ensure full polymerization and enhance
mechanical properties. The utilized resin is the High Temp Resin® from FormLabs® being
highly resistant. This resin enables that the weak structure, such as posts in reentrante
cavities, does not flex during fabrication. The cavities fabricated with this resin were
post-polymerized in a UV bath at 60°C during 60 minutes.

A preliminary surface treatment of a plastic material is essential to ensure the chemical
and mechanical compatibility of the metallization layer to be deposited (see Fig. 4.10 (a)).
The most commonly used techniques for 3D metallization are mechanical and chemical
treatments. Mechanical treatment significantly increases surface roughness by creating
micro-cavities, typically through high-pressure sandblasting [165]. While this method can
be applied to various geometries (from 2D to 3D), the resulting metallization quality is
often suboptimal due to the high initial roughness. Additionally, the directional nature
of sandblasting makes it challenging to reach certain areas of the structure. The most
effective method for surface preparation is a chemical treatment using chromic acid [166].
This technique is widely adopted at the industrial scale because it simultaneously creates
both chemical and mechanical affinity (through increased roughness) between the substrate
and the deposited metal. Moreover, since the process is conducted in immersion, it can
be applied to all geometries, including the most complex ones, ensuring comprehensive
surface modification.

Following surface modification using one of the two techniques described above, the
next step is to activate the surface. The most common method involves incorporating
palladium (Pd) nanoparticles onto the plastic surface, as depicted in Fig. 4.10 (b). The
activation process occurs in two steps [167]. First, the surface is immersed in a solution
of tin chloride (SnCl2), where the tin ions Sn2+ is adsorbed by the substrate S, as shown
in Eq. (4.33a). This step is followed by immersion in a solution of palladium chloride
(PdCl2). During immersion, the tin is completely removed from the surface as shown
in Eq. (4.33b), and the amount of Pd deposited corresponds exactly to the quantity of
oxidized tin. As a result of this reaction, nanometric particles ranging from 1 to 4 nm
are dispersed across the substrate surface. These Pd particles serve as catalytic sites for

(a) Surface Treatment

Sandblasting

Activation(b)

Pd adsorption

Electroless(c)

Cu deposition

(d) Electrodeposition

Cu deposition
+

Sn deposition

Figure 4.10: Metallization steps of a 3D printed cavity.
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the subsequent electroless deposition process (or autocatalytic deposition), which occurs
without an external electron source.

S + Snsol
2+ −−→ S · Snads

2+ (4.33a)
S · Snads

2+ + Pdsol
2+ −−→ S · Pdads + Snsol

4+ (4.33b)

The distinctive feature of autocatalytic deposition is its ability to metallize electrically
insulating surfaces. The mechanism of autocatalytic deposition can be understood through
the fundamental principles of electrochemical deposition [167, 168]. As the name suggests,
electroless deposition is a chemical process that does not require electrodes, meaning
no external electric current is supplied, as sketched in Fig. 4.11 (a). Nevertheless, the
insulating surface to be metallized, which contains the catalyst, will subsequently be
referred to as the electrode. Without activation, i.e. without the catalyst, metallization
cannot begin. The solution contains metal in ionic form, Msol

Z+ (such as copper ions,
Cu2+), and a reducing agent Redsol. The overall reaction of the autocatalytic bath can be
described as follows:

Msol
Z+ + Redsol

catalytic surface−−−−−−−−−→ Mlat + Oxsol, (4.34)

where Oxsol represents the oxidation product of the reducing agent. This reaction occurs
exclusively on the activated surface due to the presence of Pd nanoparticles, which act
as the catalyst. The metal initially present in the solution is then deposited onto the
surface of the substrate, referred to as Mlat, as illustrated in Fig. 4.10 (c). Additionally,
the solution contains stabilizers that help maintain a relatively constant pH and stabilize
the reaction, preventing the metallic ions in the solution from reducing and forming metal

M

MZ +
Red

Ox

Ze −

Electroless(a)

-+

CathodeAnode

MMZ +

Ze −

Electrodeposition(b)

Figure 4.11: Sketch of (a) the electroless and (b) the electrodeposition techniques.
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precipitates. Consequently, the reaction concludes spontaneously once the metal layer on
the substrate reaches approximately 3 µm in thickness [169].

After the electroless plating stage, the metallic layer is further thickened using elec-
trodeposition [170] (see Fig. 4.10 (d)). Electrodeposition involves the chemical deposition
of metal onto a conductive substrate (the cathode) through an electric current. The
procedure, illustrated in Fig. 4.11 (b), involves applying a current between the anode and
a cathode, both immersed in an electrolyte solution containing the metal to be deposited
in ionic form (MZ+):

Msol
Z+ + Ze− electrode−−−−−→ Mlat. (4.35)

This equation describes the reaction that occurs once electrons (Ze−) are supplied by the
external power source. When the current is inactive, the reaction ceases. The process
is divided into two stages: the first stage increases the copper layer thickness to 5–10
µm, while the second stage deposits an additional 8 µm of tin to ensure high electrical
conductivity [169]. The final metallic layer deposited on each cavity has a total thickness
of 16–21 µm, which corresponds to at least seven skin depths1, at 1 GHz [171].

The metallization of the cavities was subcontracted to Elliptika®, a company based in
Brest, France, specializing in the design and development of RF and microwave products
and solutions. The mechanical approach described above for surface pretreatment was
employed in the fabrication of the cavities presented in this thesis.

The YIG slab and spheres were fabricated by Ferrisphere, Inc®, a company specialized
in YIG fabrication. As mentioned in [172], the sharpness of the magnetic resonance
linewidth of the YIG spheres depends on their surface roughness, meaning that the YIG
material needs to be polished. Here, we outline the procedure for YIG sphere polishing.

Initially, YIG is produced as large single-crystal YIG cylinders, measuring a few
centimeters in length and a few millimeters in diameter. The cylinder is then cut into

YIG spheres
holders

Grinder

Figure 4.12: Grinder used to polish YIG spheres, with permission from [172].

cubes, which are subsequently ground to form spheres. The grinding process involves
mounting a sandpaper sheet onto a rotating grinder plate, which operates at a high

1The skin depth determines, in first approximation, the width of the region where the current is
concentrated within a conductor. It is used to calculate the effective resistance at a given frequency and is
given by [163]: δ =

√
2/(ωµσ).
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frequency. The YIG cubes are placed in a holder (as shown in Fig. 4.12), allowing them to
be abraded into spherical shapes. Throughout the process, different grades of sandpaper
are used, progressing from coarser to finer grains to achieve the desired polished finish.

4.3 Experimental Setup

4.3.1 Vector Network Analyser
The Vector Network Analyzer (VNA) is the primary instrument used in our measure-

ments, enabling us to probe the physical properties of the device under test (DUT). The
VNA computes the scattering parameters (S-parameters) by measuring the reflected and
transmitted voltage waves at each port. Let V +

i denote the amplitude of the incident
voltage wave at port i, and V −

j denotes the amplitude of the transmitted or reflected
voltage wave at port j. The S-parameters are defined as:

Sij = V −
i

V +
j

∣∣∣∣∣
V +

k
=0 ∀ k ̸=j

. (4.36)

To better understand the systematic errors inherent to the VNA and characterize its
performance, we outline its operation. Although various VNA architectures exist, we focus
on the architecture of the two-port R&S® ZNB40 from Rohde & Schwarz®. , used in our
laboratory. Each port of the VNA shares the same structure, which consists of three key
components: the RF signal source, the reference block, and the test block, as depicted in
Fig. 4.13.

The VNA source is tunable in both RF frequency and power. In our measurements,
only the RF frequency is swept. A switch positioned after the source allows automatic
selection of the port to be excited, enabling sequential measurement of S11, S21, S22, and
S12.

Both the reference and test blocks consist of a directional coupler and a receiver. In
the reference block, the coupler directs a small portion of the forward wave to the receiver
while allowing the majority to propagate toward the DUT. Conversely, in the test block,
the coupler is arranged to direct the backward wave toward the receiver, while allowing
the forward wave to continue toward the DUT. Thus, the couplers in the reference and
test blocks are mounted inversely, as depicted in Fig. 4.13. For each coupler, we define the
incident wave as the wave to be diverted (the forward wave in the reference block and the
backward wave in the test block), and the reverse wave as the wave that passes through.

However, couplers are not ideal and introduce losses within the VNA. A key char-
acteristic is the coupler’s directivity, which quantifies the error introduced by reverse
waves passing through the coupling device. The following terms describe the various losses
contributing to the directivity error [173]:

• Insertion loss: This loss represents the attenuation of waves passing through the
coupler. It is expressed as:

Insertion Loss (dB) = −10 log10

(
output power
input power

)
, (4.37)
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DUT
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ADC
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ADC
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IF

ADC

IF

Ref. 1

Ref. 2

Test. 1

Test. 2

Port 1
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Figure 4.13: Vector Network Analyzer block diagram.

where lower insertion loss corresponds to less signal attenuation. Typically, insertion
loss is about 1 dB.

• Coupling Factor: This describes the fraction of the incident wave that is coupled.
The uncoupled portion is effectively lost. It is given by:

Coupling Factor (dB) = −10 log10

(
incident coupled power

incident power

)
, (4.38)

where a higher coupled power results in a lower coupling factor. The typical coupling
factor ranges from 10 to 20 dB.

• Isolation: Ideally, no reverse wave should be coupled, but in practice, some reverse
waves are coupled, leading to errors. Isolation is expressed as:

Isolation (dB) = −10 log10

(
reverse coupled power

reverse power

)
, (4.39)

where better isolation (higher dB) indicates fewer errors. Accurate VNAs typically
require a minimum isolation of 30 dB.
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• Directivity: This metric characterizes the ability of the VNA to distinguish between
incident and reverse waves within the coupler. It is given by:

Directivity (dB) = Isolation (dB) − Coupling Factor (dB) − Insertion Loss (dB),
(4.40)

Higher directivity indicates lower measurement errors.

Due to the broad frequency range of a VNA, implementing a receiver capable of
detecting all frequencies directly would be both expensive and space-prohibitive, as it
would require specialized electronics for each frequency band. Instead, a more efficient
approach is employed using a heterodyne downconversion receiver. In this method, all
frequencies are downconverted to a fixed Intermediate Frequency (IF), allowing the receiver
to be optimized for this single frequency. This is achieved through the use of a tunable
local oscillator (LO) that adjusts its frequency to match the RF signal. When the incident
wave and LO are mixed, two new frequencies are produced: the sum and difference of the
two input frequencies. Since lower-frequency electronics are more cost-effective, a filter is
used to retain only the difference frequency, which corresponds to the IF. This filter has a
defined bandwidth, known as the IF bandwidth (IFBW).

Moreover, to avoid the high cost associated with an LO that covers the entire VNA
frequency range, the LO signal is clipped to generate a square wave. A square wave
contains the odd harmonics of the fundamental LO frequency. By mixing these harmonics
with the incident wave and filtering the result, the desired IF signal is obtained. However,
broadband noise and spurious signals can also be downconverted through these harmonics,
producing unwanted components within the IFBW. This is why users can select the IFBW.
A wider IFBW enables faster measurements but introduces more noise, while narrower
IFBW offers a higher signal-to-noise ratio (SNR) but results in longer measurement times
due to the filter’s stabilization time, which is inversely proportional to the IFBW.

The receiver is also equipped with an anti-aliasing low-pass filter, a low-noise amplifier
(LNA) to improve the SNR, and an analog-to-digital converter (ADC) that samples the IF
signal. Once digitized, digital signal processing (DSP) is used to extract the magnitude
and phase of the signal. Finally, any additional processing or error corrections are handled
by the central processing unit (CPU).

Before utilizing the VNA, calibration is necessary to obtain accurate S-parameter
measurements. The calibration is essential because, once cables or other RF components
are added to connect the VNA to the device under test (DUT), the S-parameters must
be adjusted to account for these additional components. Furthermore, internal elements
of the VNA can introduce systematic errors, such as imperfect RF-source switching or
limited coupler directivity, as mentioned earlier [174]. Various calibration procedures exist
to correct these errors. Here, we describe the widely used 12-term Short-Open-Load-Thru
(SOLT) calibration method for two-port VNAs [175, 176]. This method is sometimes
referred to as TOSM (Thru-Open-Short-Match).

The SOLT calibration method is conducted in two stages: first, the error terms for
each port are determined individually using the Short-Open-Load (SOL) technique; then,
the remaining error terms between the two ports are identified using the Thru method.
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4.3.1.a 1-Port Error Model

In this model, we consider only one port of the VNA connected to the DUT. In our
measurements, the DUT corresponds to the cavity. However, during calibration, the DUT
corresponds to reference devices from the calibration kit provided with the instrument,
specifically Short, Open, and Load (SOL) circuits with well-known ideal values.

Fig. 4.14 illustrates the cascaded S-parameters schemes for each port. The E (E ′)
matrix, with components eij (e′

ij), represent the S-matrix of the systematic errors for port
1 (port 2). The variables a0 and b0 (a′

3 and b′
3) denote the incident and reflected waves

at the port 1 receiver, while a1 and b1 (a′
2 and b′

2) represents the incident and reflected
waves at the DUT connectors, which we aim to quantify. The terms without primes refer
to waves and errors when port 1 is excited, while those with primes represent waves and
errors when port 2 is excited.

It is crucial to distinguish between the errors depending on which port is excited, as
the VNA uses an RF-source switch to toggle between ports. Any imperfections in this
switch can result in non-reciprocal errors between forward (port 1 excitation) and reverse
(port 2 excitation) measurements. Specifically, e00 (e′

33) represents the directivity of port 1
(port 2), e10 and e01 (e′

23 and e′
32) account for transmission and reflection tracking for port

1 (port 2), and e11 (e′
22) describes the match for port 1 (port 2). In the literature, Sii is

commonly referred to as Γ when considering a single port. For clarity in this subsection
and the next, we will continue using the notation Sii.

Referring to Fig. 4.14 (a), the measured reflection coefficient Sm
11 = b0/a0 at port 1 can

be expressed as follows. The incident and reflected waves at the DUT port are described
by:

a1 = e11b1 + e10a0, (4.41a)
b1 = S11a1. (4.41b)

From these, the incident wave at the DUT can be written as:

a1 = e10

1 − e11S11
a0. (4.42)

a0

b0

e10

e01

e00 e11

a1

b1

S11

DUT(a) b ′2

a ′2

e ′32

e ′23

e ′22 e ′33

b ′3

a ′3

S22

DUT(b)

Figure 4.14: 1-Port Error Model Scheme
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Next, referring again to Fig. 4.14 (a), , the reflected wave b0 is given by:

b0 = e00a0 + e01b1 = e00 − ∆eS11

1 − e11S11
a0, (4.43)

where ∆e = det{E} = e00e11 −e01e10. Finally, we obtain the measured reflection coefficient
as:

Sm
11 = b0

a0
= e00 − ∆eS11

1 − e11S11
. (4.44)

From transmission line theory, the reflection coefficient S11 for short, open, and load
circuits is known [163]. These can be expressed as:

Sshort
11 = − 1 → Sm,short

11 = ∆e − e00

1 − e11
, (4.45a)

Sopen
11 = 1 → Sm,open

11 = e00 − ∆e

1 − e11
, (4.45b)

Sload
11 = 0 → Sm,load

11 = e00. (4.45c)

From Eq. (4.45a) and (4.45b), the error terms can be derived as:

e11 =
(

1 + Sm,open
11 − e00

e00 − Sm,short
11

)
(1 + Sm,open

11 − e00)−1 , (4.46a)

e01e10 = (1 − e11)Sm,open
11 − e00 + e00e11. (4.46b)

Similarly, at port 2, the parameters can be expressed as follows:

Sm
22 = b′

3
a′

3
= e′

33 − ∆′
eS22

1 − e22′S22
, (4.47a)

Sload
22 = e′

33, (4.47b)

e′
22 =

(
1 + Sm,open

22 − e′
33

e′
33 − Sm,short

22

)
(1 + Sm,open

22 − e′
33)

−1
, (4.47c)

e′
23e

′
32 = (1 − e′

22)S
m,open
22 − e′

33 + e′
33e

′
22. (4.47d)

With these equations, 6 out of the 12 error terms are determined. It is noteworthy that
knowing the cross terms e01e10 and e′

23e
′
32 is sufficient for error correction, thus reducing

the total number of independent terms needed from 14 to 12.

4.3.1.b 2-Ports Error Model

For the 2-port error model, additional errors not accounted for in the 1-port error
model, as illustrated in Fig. 4.15, are considered. These include errors E2 from port 2
when port 1 is excited, and E ′

1 when port 2 is excited. Additionally, leakage errors e30 and
e′

03 account for cross-talk between ports 1 and 2, where the waves do not pass through the
DUT.
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Applying a similar derivation as in Sec. 4.3.1.a, the measured S-parameters are
expressed as (see Appendix 4.D for derivations):

Sm
11 = b0

a0
= e00 + e01e10

S11 − e22∆S

1 − e11S11 − e22S22 + e11e22∆S

, (4.48a)

Sm
21 = b3

a0
= e30 + e10e32

S21

1 − e11S11 − e22S22 + e11e22∆S

, (4.48b)

Sm
22 = b′

3
a′

3
= e′

33 + e′
23e

′
32

S22 − e′
11∆S

1 − e′
11S11 − e′

22S22 + e′
11e

′
22∆S

, (4.48c)

Sm
12 = b′

0
a′

3
= e′

03 + e′
01e

′
23

S12

1 − e′
11S11 − e′

22S22 + e′
11e

′
22∆S

, (4.48d)

where ∆S = det{S} = S11S22 − S12S21.

The remaining errors can be determined through a two-step process. The first step
involves testing the isolation of the system to identify the leakage terms e30 and e′

03. By
using matched loads at both ports, the following relations are obtained:

Sload
21 = 0 → Sm,load

21 = e30, (4.49a)
Sload

12 = 0 → Sm,load
12 = e′

03. (4.49b)
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Figure 4.15: 2-Ports Error Model Scheme.
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Typically, this isolation step is optional and primarily necessary for very low power signals.
In many cases, the leakage terms are assumed to be zero by default.

The final four components are derived using the Thru calibration method, where:

Sthru =
[
0 1
1 0

]
. (4.50)

From this, the remaining terms are calculated as follows:

Sm,thru
11 = e00 + e01e10

e22

1 − e11e22
⇒ e22 = e00 + Sm,thru

11

e01e10 + e11(e00 + Sm,thru
11 )

, (4.51a)

Sm,thru
21 = e30 + e10e32

1
1 − e11e22

⇒ e10e32 = (1 − e11e22)(Sm,thru
21 − e30), (4.51b)

Sm,thru
22 = e′

33 + e′
23e

′
32

e′
11

1 − e′
11e

′
22

⇒ e′
11 = e′

23 + Sm,thru
22

e′
23e

′
32 + e′

11(e′
33 + Sm,thru

22 )
, (4.51c)

Sm,thru
12 = e′

03 + e′
01e

′
23

1
1 − e′

11e
′
22

⇒ e′
01e

′
23 = (1 − e′

11e
′
22)(S

m,thru
21 − e′

03). (4.51d)

With the SOLT calibration, all error terms affecting the measurement setup are
identified and can be corrected. This involves computing the DUT’s S-parameter by
isolating the Sij parameters in Eq. (4.48). For detailed expressions and further explanations,
the reader can refer to [176].

4.3.2 Measurement & automation
In this section, we present the experimental setup and the Python program developed

for automating measurements. The program is available on GitHub. and provides a
graphical user interface (GUI) for convenient control of measurement instruments. The
instruments are managed using the PyVisa Python package, which interfaces with devices
following the Virtual Instrument Software Architecture (VISA) standard. This allows
control of various instruments and communication protocols such as GPIB, USB, and
Ethernet.

As shown in Fig. 4.16, the interface consists of several blocks, with each block repre-
senting a specific instrument type that may or may not be part of the measurement setup.
The GUI provides standard commands linked to the laboratory’s available instrument
brands, and the program automates the measurement process differently based on the
selected instruments.

In this example, we focus on the operation of the program when using the Vector
Network Analyzer (VNA), the power supply (PS) for the electromagnet (EM), and the
gaussmeter (GM). Although the source meter is included in the program for potential
future measurements, it was not used for the experiments presented in this thesis. The
source meter could apply current or detect weak signals by filtering them to the modulation
frequency, which is useful for generating the Spin Hall Effect (SHE) or detecting Hall
voltage via inverse SHE (iSHE) [7, 8, 11, 12, 17].

https://github.com/Boursailles/SoftMeasure
https://pyvisa.readthedocs.io/en/latest/
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(a) (b)

Figure 4.16: Automation measurements interface showing the user settings config-
uration for defining measurement parameters.

As illustrated in Fig. 4.16, the interface allows the user to define key parameters for
the VNA, including start and stop frequencies, the number of points in the sweep, the
IFBW, and the input power. For the power supply, the user specifies the start and stop
current values and the number of steps, while the gaussmeter settings enable selection
of the magnetic field units. Before starting measurements, the user must define a folder
path where the data will be saved, including files for the applied current, magnetic field,
and each S-parameter (both in magnitude, dB, and phase). As shown in Fig. 4.16 (b),
the user can stop the measurement at any time, at which point the instruments reset
(with the power supply returning to I = 0) and disconnect, allowing the instruments to
be used locally rather than remotely. The interface is designed with safety in mind: it
prevents application of current values exceeding 38 A and reminds the user to activate the
electromagnet cooling system prior to measurement. Any errors, such as missing file paths
or connection issues, are reported via the interface, along with detailed error messages
and tracebacks.

As depicted in Fig. 4.17, the measurement process begins with instrument connection
and initialization. During initialization, the power supply sets the current to I = 0 to
ensure no current is applied. Once initialized, the system enters a measurement loop, where
measurements continue until the target current is reached. In each iteration, the system

Instruments
Connection

Instruments
Initialization

Iapplied

+
save

Iapplied

+
save

Hmeas

+
save

Hmeas

+
save

Smeas

+
save

Smeas

+
save

Instruments
Disconnection

while Iapplied <Imax

Figure 4.17: Flowchart of a measurement campaign illustrating the sequential
steps involved in conducting measurements.
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Cavity Hall probe

Figure 4.18: (a) Laboratory setup with the cavity shown in the inset. (b) and (c)
SMA connectors for probing the electric E- and magnetic H-fields, respectively.

applies the next current value and records it. Subsequently, the gaussmeter measures
and logs the corresponding magnetic field. Finally, the VNA performs a frequency sweep,
recording the S-parameters. After the loop completes, the instruments reset and disconnect,
with the power supply returning to I = 0 before disconnection.

The experimental setup comprises the following instruments, as shown in Fig. 4.18 (a):

• VNA: The two-ports R&S® ZNB40 from Rohde & Schwarz® is employed, covering a
frequency range from 100 kHz to 40 GHz. It provides a wide dynamic range of up to
135 dB with an IF bandwidth from 1 Hz to 10 MHz, and an adjustable power input
between -60 dBm and 10 dBm. After calibration, the VNA achieves an effective
directivity of approximately 42 dB, source match of 38 dB, load match of 40 dB,
reflection tracking of 0.05 dB, and transmission tracking of 0.02 dB [177].

• Gaussmeter (GM): The Lake Shore Cryotronics, Inc® Model 455 DSP gaussmeter
is used to measure magnetic flux density, with a range from 35 µT to 35 T. In DC
mode, the accuracy is ± 0.075 % [178].

• Power Supply (PS): The electromagnet is powered by the SYSTEM 9700 from
Danfysik®, which includes a polarity switch enabling current up to ± 50 A at 60 V
DC [179]. Its accuracy specifications are listed in Table 4.1. The power supply can
be controlled through either voltage or current.



4.3. Experimental Setup 99

Table 4.1: Accuracy characteristics of the Danfysik® SYSTEM 9700 [179]

Current setting resolution 20 bits DAC
Current reproducibility ±10 ppm

Absolute current calibration −0/+ 400 ppm at Imax
Current read-back resolution 16 bits ADC
Voltage read-back resolution 16 bits ADC

• Electromagnet (EM): The EM7-HV electromagnet from Lake Shore Cryotronics,
Inc® is utilized, with an air gap between the poles of up to 178 mm and pole cap
diameters of 51 mm. The coils have a resistance of 1.0 Ω, allowing a maximum
continuous operating current of ±67.5 A at ±75 V. The coil temperature limit is
45°C, and the water inlet temperature must be maintained between 15°C and 25°C
[180].

Fig. 4.18 show the SMA connectors used as electric and magnetic field probes, respec-
tively. The magnetic field probes are custom-made in the laboratory. The power supply
and electromagnet enable magnetic fields of up to 2 T, with a gap of approximately 2 cm
between the poles, while the VNA can measure frequencies up to 40 GHz. As an example,
Fig. 4.19 illustrates the magnitude of the transmission spectrum as a function of both the
magnetic field and the applied RF frequency.

For data post-processing, the polariton frequencies were extracted from the transmission
spectra, as shown in Fig. 4.20 (a) by identifying transmission maxima within specific
regions (indicated by red squares in Fig. 4.20 (b)). Selecting specific regions helps to avoid
maxima from other cavity modes or polaritons resulting from coupling with additional
magnonic modes, which could otherwise reduce the accuracy of the fitting results. The
extracted frequency values as a function of the applied magnetic field were then fitted to
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Figure 4.19: Measurement of the transmission spectrum as a function of the
applied static magnetic field H0 and the RF field frequency.
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Figure 4.20: Data post-processing steps: (a) transmission spectrum; (b) extraction
of the maxima in defined regions corresponding to the polariton frequencies; (c)
fitting results of the extracted data values.

the theoretical model using the least squares method, which minimizes the sum of squared
errors between the observed data and the model predictions [181].
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Appendices of Chapter 4

4.A Engineering arbitrary physical phases through a
quintuple reentrante cavity

The objective of this investigation is to design a cavity capable of introducing a
non-trivial phase between consecutive modes while performing in the strong coupling
regime. Re-entrant cavities have demonstrated a favorable ease of design for observing
various phenomena, and are more detailed in Chapter 5.

In this study, we developed a quintuple re-entrant cavity tailored to achieve several key
objectives. This cavity design facilitates the observation of a non-trivial phase difference
between consecutive modes, ensures uniform coupling strength across multiple YIG spheres,
and performing within the strong coupling regime. Furthermore, the phase relationship
between the two modes is contingent upon the positioning of four posts within the cavity,
as demonstrated in our analysis. By manipulating the positions of these posts, it is feasible
to fine-tune the coupling phase by adjusting the gap between the top of the post and the
cavity lid.

(a)

(b)

êαêα ′

(c)

êαêα ′

αα ′

(d)

Figure 4.21: Representation of the quintuple reentrante cavity (a) in the three
dimensions; (b) in the (z, x) plane zoomed to view the gap d between the top of
the posts and the lid; (c) in the (x, y) plane with represented the direction êα and
the direction êα′ being the symetric to êα versus the y-axis passing throughout 0;
(d) in the (x, y) plane with the direction êα making an angle α versus the x-axis
representing the angle forming by the two peripherical posts at the right-hand side
of the cavity where the center of the azimuthal displacement is the center of the
YIG sphere of the right-hand side. The two YIG spheres are represented in blue.

The cavity dimensions were optimized to maximize the coupling strength for each YIG
sphere and to ensure that the phase falls within a range [nπ/4, (n + 1)π/4] with n ∈ Z
relative to a free dimension variable α, as detailed below. As depicted in Fig. 4.21, the
cavity is cylindrical and features five cylindrical posts. The cavity has a radius of 14 mm
and a height of 2.25 mm. All posts have the same height, which depends on the value
of the gap d; thus, the post height is 2.25 − d. Positioned at the center of the cavity is a
fixed post with a radius of 0.7 mm. The two YIG spheres are located on either side of
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the center post along the x-axis, with a spacing of 0.1 mm from the center post. Four
additional posts are situated at the periphery of each YIG sphere, spaced 0.1 mm from the
spheres. These peripheral posts are symmetrically positioned with respect to the y-axis,
which passes through the center of the cavity. The radius of the peripheral posts is 0.6
mm. Relative to the direction êα, the two peripheral posts on the right-hand side of the
cavity are positioned at ±45°. Additionally, the direction êα forms an angle α with the
x-axis, ranging from 0° to 45°, allowing for tuning of the coupling phases.

The H-field distributions are depicted in Fig. 4.4 for the first three modes of the cavity.
Our focus lies on the second and third modes due to their high filling factor values η,
which are quite similar for both modes and spheres, as illustrated in Table 4.2. This
table presents the eigenfrequencies f of the first three modes of the cavity, along with the
filling factors ηL and ηR for the YIG spheres on the left and right-hand sides, respectively.
Additionally, the associated coupling strengths gL and gR are provided. The values are
given for an angle α = 0° and a gap d = 50 µm.

Table 4.3 presents similar characteristics for the two modes of interest, along with the
averaged H-field direction inside each YIG sphere and the phase coupling. It is observed
that the coupling strength slightly decreases from α = 0ř to α = 45ř, while the difference
in coupling strength between mode 1 and mode 2 slightly increases. However, the coupling
strength remains relatively constant, ranging from 4.2% to 5.7%. The phase coupling
varies between 129° and 180° for α ranging from 45° to 0°, allowing for measurements with
a non-trivial phase between 135° and 180°.

Table 4.2: Cavity Modes characteristics of the 3 first modes for d = 50 µm.

Mode f [GHz] ηL ηR gL/ω gR/ω
0 4.02 0.018 0.019 0.011 0.012
1 8.29 0.125 0.123 0.055 0.056
2 12.03 0.144 0.145 0.055 0.055

Table 4.4 presents the same information for a fixed angle of 45° while varying the gap
d from 100 µm to 5 µm. It demonstrates that measurements with a non-trivial phase can
be conducted within the range of 90° to 135°.
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Table 4.3: Cavity Modes characteristics versus α for d = 50 µm

α [°] f [GHz] ηL ηR gL/ω gR/ω ϕL [°] ϕR [°] θ [°]

0 8.29 0.125 0.123 0.057 0.056 90 90 18012.03 0.144 0.145 0.055 0.055 -90 90

5 8.29 0.125 0.122 0.057 0.056 -91 -88 17012.09 0.141 0.142 0.053 0.053 -86 87

10 8.27 0.125 0.122 0.057 0.055 -92 -87 16012.07 0.139 0.140 0.053 0.053 -82 83

15 8.33 0.124 0.122 0.056 0.055 86 95 15112.09 0.134 0.134 0.050 0.051 -79 80

20 8.38 0.124 0.120 0.056 0.055 85 96 14412.07 0.130 0.130 0.049 0.049 -76 78

25 8.48 0.122 0.121 0.055 0.054 -97 -83 13912.05 0.126 0.125 0.047 0.047 -76 77

30 8.54 0.122 0.119 0.055 0.054 83 98 13312.03 0.121 0.121 0.046 0.046 -74 75

35 8.62 0.121 0.119 0.054 0.053 -98 -81 13111.99 0.119 0.119 0.045 0.045 106 -105

40 8.74 0.121 0.118 0.054 0.052 81 99 13011.97 0.115 0.115 0.044 0.044 -73 74

45 8.90 0.120 0.118 0.053 0.052 -99 -80 12811.96 0.112 0.112 0.042 0.042 -74 74

Table 4.4: Cavity Modes characteristics versus d for α = 45°

d [µm] f [GHz] ηL ηR gL/ω gR/ω ϕL [°] ϕR [°] θ[°]

5 3.34 0.123 0.116 0.088 0.083 80 102 1464.67 0.154 0.157 0.093 0.095 97 -95

10 4.63 0.124 0.115 0.075 0.070 -100 -78 1476.45 0.155 0.158 0.080 0.082 97 -94

25 6.88 0.122 0.118 0.061 0.059 -100 -79 1449.61 0.156 0.158 0.066 0.067 98 -97

50 8.90 0.120 0.118 0.053 0.052 -99 -80 12911.95 0.112 0.112 0.043 0.043 -74 74

100 10.84 0.112 0.110 0.045 0.044 82 98 9012.77 0.051 0.051 0.019 0.019 -53 53
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4.B Input-Output formalism for a quasi-closed cavity
with COMSOL Multiphysics® convention

4.B.0.a Heisenberg Equation of Motion

From Eq. (3.49) and considering the first Markov approximation given in Eq. (3.53),
the Heisenberg EoM, given in Eq. (3.33), for the external modes reads:

˙̂
bω,n(t) = iωb̂ω,n(t) − 1√

2π
∑

p

κpnâp(t). (4.52)

The solution of this differential equation reads as:

b̂ω,n(t) =b̂τ
ω,ne

iω(t−τ)

− 1√
2π

∑
p

κpn

τ∫
t

dt′ âp(t′)eiω(t−t′),
(4.53)

where τ is a time reference.
Subsequently, we define the polychromatic bosonic operator for each port by considering
all the bosonic operators of the same port across all frequencies:

b̂τ
n(t) = 1√

2π

∫
R

dω b̂τ
ω,ne

iω(t−τ). (4.54)

From this equation, we define the incoming and outgoing wave operators at each port:

b̂in
n (t) = b̂t0

n (t), t0 = +∞, (4.55a)
b̂out

n (t) = b̂t1
n (t), t1 = −∞. (4.55b)

4.B.0.b Input-Output Relation

Integrating over ω on both sides, Eq. (4.53) becomes:

1√
2π

∫
R

dω b̂ω,n(t) = 1√
2π

∫
R

dω b̂t0
ω,ne

iω(t−t0) (4.56a)

− 1
2π

∑
p

κpn

+∞∫
t

dt′ âp(t′)
∫
R

dω eiω(t−t′),

1√
2π

∫
R

dω b̂ω,n(t) = 1√
2π

∫
R

dω b̂t1
ω,ne

iω(t−t1) (4.56b)

+ 1
2π

∑
p

κpn

t∫
−∞

dt′ âp(t′)
∫
R

dω eiω(t−t′),

where the first term on the right-hand side of the first (second) equation is equal to b̂in
n (t)

(b̂out
n (t)), and the second term is equal to −1

2
∑

p κpn (1
2
∑

p κpn), according to the following
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properties [150]: ∫
R

dω eiω(t−t′) = 2πδ(t− t′), (4.57a)
t∫

−∞

dt′ âp(t′)δ(t− t′) =
+∞∫
t

dt′ âp(t′)δ(t− t′) = 1
2 âp(t). (4.57b)

This results in the input-output relation:

b̂out
n (t) = b̂in

n (t) −
∑

p

κpnâp(t). (4.58)

4.B.0.c Quantum Langevin Equation

The Quantum Langevin Equation (QLE) reads as:

˙̂ap(t) = iω̃pâp(t) + i
∑
q ̸=p

gqpâq(t) + 1√
2π

∑
n

∫
R

dω κ∗
pn(ω)b̂ωn(t). (4.59)

Substituting the value of b̂ω,n from Eq. (4.53) for τ = t0 in the QLE gives rise to:

˙̂ap(t) =iω̃pâp(t) + i
∑
q ̸=p

gqpâq(t) (4.60)

+ 1√
2π

∑
n

κ∗
pn

∫
R

dω b̂t0
ω,ne

iω(t−t0) − κpn

∑
q

t0∫
t

dt′
∫
R

dω eiω(t−t′)âq(t′)
 .

The properties given in Eq. (4.57a) and (4.57b) lead to:

˙̂ap(t) = iω̃pâp(t) + i
∑
q ̸=p

gqpâq(t) +
∑

n

κ∗
pn

(
b̂in

n (t) −
∑

q

κqn

2 âq(t)
)
. (4.61)

Taking the Fourier transform2, Eq. (4.61) can be expressed as:(
ω − ω̃p − i

2
∑

n

|κpn|2
)
âp(ω) −

∑
q ̸=p

(
i

2
∑

n

κ∗
pnκqn + gqp

)
âq(ω) = −i

∑
n

κ∗
pnb̂

in
n (ω). (4.62)

In matrix form:

Ω · â = −iK∗ · b̂in, (4.63a)

Ωqp = (ω − ω̃p)δqp − i

2
∑

n

(κ∗
pnκqn) − gqp, (4.63b)

where â is the vector containing all âp(ω) operator components, b̂in is the vector containing
all b̂in

n (ω) operator components, K is the p×m matrix with κpm as components, Ωqp are
the components of the p× p matrix Ω, and δqp is the Kronecker delta.

2Reminding the Fourier Transform property: F [ ˙̂aq(t)] = iωâq(ω)
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4.B.0.d S-parameters

Substituting the solution of Eq. (4.63a) into Eq. (4.58) results in:

b̂out = S · b̂in, (4.64)

where the S-matrix reads as:

S = 1 + iKt · Ω−1 · K∗, (4.65)

where 1 is the identity matrix.

4.C SMA connector data sheet

Figure 4.22: Data sheet of the utilized SMA connector

4.D 2-Ports Error Model
Here, we aim to derivate the S-parameters in the 2-Port Error Model from Sec. 4.3.1.b.
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4.D.1 Sm
11 calculation

Referring to Fig. 4.15 (a), we have:

a2 = e22b2

b2 = S21a1 + S22a2
⇒

b2 = S21

1 − e22S22
a1

a2 = e22S21

1 − e22S22
a1

. (4.66)

Moreover, we have:
a1 = e10a0 + e11b1

b1 = S12a2 + S11a1
. (4.67)

Substituting a2 into the expression of b1 we have:

b1 =
(

e22S21

1 − e22S22
+ S11

)
a1 (4.68)

Substituting a1, b1 is expressed as:

b1 = e10
S11 − e22∆S

1 − e11S11 − e22S22 + e11e22∆S

a0. (4.69)

Furthermore, we have:
b0 = e00a0 + e01b1. (4.70)

We finally arrive at the expression of the measured reflection Sm
11 at port 1 given in

Eq. (4.48a) by substituting b1 into the expression of b0. The same derivation referring to
Fig. 4.15 (b) permits to find the measured reflection Sm

22 at port 2, given in Eq. (4.48c).

4.D.2 Sm
21 calculation

Substituting b1 given in Eq. (4.67) into the expression of a1, it reads that:

a1 = e10a0 + e11(S12a2 + S11a1). (4.71)

By substituting a2 from Eq. (4.66), the expression of a1 is given by:

a1 = e10
e22S22

1 − e11S11 − e22S22 + e22∆S

a0 (4.72)

Moreover, referring to Fig. 4.15 (a), we have:

b3 = e30a0 + e32b2. (4.73)

By substituting b2 from Eq. (4.66) into this expression, it becomes that:

b3 = e30a0 + e32
S21

1 − e22S22
a1. (4.74)

We finally arrive at the expression of the measured transmission Sm
21 at port 1 given in

Eq. (4.48b) by substituting a1 into the expression of b3. The same derivation referring to
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Fig. 4.15 (b) permits to find the measured transmission Sm
12 at port 2 given in Eq. (4.48d).
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5 Strong to ultra-strong coherent
coupling measurements in a
YIG/cavity system at room

temperature

Abstract
We present an experimental study of the strong to ultra-strong coupling regimes at room
temperature in frequency-reconfigurable three-dimensional reentrant cavities coupled with a
yttrium-iron-garnet slab. The observed coupling rate, defined as the ratio of the coupling strength
to the cavity frequency of interest, ranges from 12% to 59%. We show that certain considerations
must be taken into account when analyzing the polaritonic branches of a cavity spintronic device
where the RF field is highly focused in the magnetic material. Our observations are in excellent
agreement with electromagnetic finite-element simulations in the frequency domain. This study
has been published in the Physical Review B journal [96] and can be found on arXiv. The
section titled Further Work includes additional studies, particularly simulations approaching the
deep-strong coupling regime.
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5.1 Introduction
As mentioned in Sec. 3.2.4, the Ultra-Strong Coupling (USC) regime is achieved when

the coupling strength exceeds 0.1 times the cavity frequency. Similar to the Strong Coupling
(SC) regime, the USC regime also presents significant interest for various applications.
For instance, devices that operate efficiently in the SC regime could potentially achieve
enhanced performance in the USC regime. This is because the coupling, which facilitates
the exchange between two subsystems, would enable faster control and response times [77].
Additionally, specific short-lifetime systems, such as those required for certain quantum
gates [78], might only be observable in the USC regime [79]. More broadly, achieving the
USC regime allows the exploration of novel phenomena, including new stable states of
matter. For example, recent predictions indicate the potential existence of discrete time
crystals in the USC regime for systems described by the Dicke model [76]. Furthermore,
the ground state in the USC regime presents light and matter excitations, due to the
counter-rotating term. This means that all excited states are dressed by multiple states
containing different numbers of excitations, i.e. virtual excitations. Virtual excitations are
known in non-linear optics, by analogy the virtual excitations in the USC regime could
lead to higher order processes [75], such as higher-harmonic and sub-harmonic generation,
multiphoton absorption [182], parametric amplification, Raman scattering [183], and Kerr
effect to name a few.

Two methods can be employed to achieve the USC regime in a system [74]. The first
approach involves coupling many dipoles to the same cavity mode. Although each dipole
individually has a small coupling strength, the cumulative effect of a large number of
dipoles results in a macroscopically increased effective coupling. The second approach
optimizes the different degrees of freedom to enhance the coupling strength between a
single dipole and the cavity mode.

The USC regime was first predicted in 2005 [184] and experimentally demonstrated
in 2009 [127] using intersubband polaritons. Intersubband polaritons are hybrid quasi-
particles formed from the interaction between an optical microcavity and doped quantum
wells. The dipole moment of these polaritons is oriented along the growth axis, and they
couple with transverse magnetic polarized waves. Quantum wells, created by layering
different semiconductor materials at the nanoscale, confine carriers in a potential well,
leading to the splitting of electronic bands into discrete and parallel subbands. Electrons in
the conduction band can be collectively excited in the THz and mid-infrared regions. This
system holds promise for applications in quantum key distribution, quantum teleportation,
and quantum repeater technologies [185, 186]. The highest coupling strength achieved so
far is a ratio of g/ω = 0.45 [81].

Similar to other systems with many dipoles, Landau polaritons have exhibited a
coupling ratio of g/ω = 1.43 [129]. These quasi-particles result from the hybridization
between a microcavity and doped quantum wells under a transverse magnetic field, with
the in-plane dipole coupling to transverse electric-polarized radiation. The USC regime
has been observed in various cavity types, including split-ring resonators [82], photonic
crystal cavities [187], and coplanar microresonators [188]. Researchers have investigated
several phenomena within the USC regime, such as the Bloch-Siegert shift, which occurs
when anti-resonant terms are considered [189], and phenomena associated with the Deep
Strong Coupling (DSC) regime, including light-matter decoupling [129].
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Superconducting circuits are considered the most promising platform for achieving
artificial atoms (composed of Josephson junctions) coupled to LC resonators, such as
lumped-element circuits or transmission lines [190, 191]. Operating at GHz frequencies
and cooled to millikelvin temperatures, these systems allow for easy design and in situ
tuning of properties like coupling strength and frequency. They have been extensively used
to engineer quantum states and realize quantum gates [192]. This platform also marked
the first experiment to reach the DSC regime, achieving a coupling ratio of g/ω = 1.34
[83].

In recent years, Cavity-Magnon Polaritons (CMPs) have garnered significant interest
for various applications in quantum information, including frequency conversion, quantum
memories, and quantum communication. Additionally, CMPs have shown promise in
metrology for high-accuracy and stability clocks [156, 193–195], as well as in the detection of
dark matter [77, 80]. So far, the USC regime in cavity spintronics has been experimentally
achieved at low [84, 156, 196–198] and room [55, 85] temperatures, and investigated
theoretically [109, 199].

Very recently, Golovchanskiy et al. (2021) [198] proposed an approach to achieve
on-chip USC hybrid magnonic systems reaching g/ω = 0.6 and based on superconduct-
ing/insulating/ferromagnetic multilayered microstructures operating below 10 K. They
highlighted in particular the drastic failure of currently adopted models in the USC regime.

Here, we present measurements and simulations of a reconfigurable hybrid system that
allows the study of the transition from the SC to USC regimes at room temperature in the
0.1-15 GHz frequency range. We utilize a magnetic field-focusing double-post reentrant
cavity first described by Goryachev et al. (2014) [196]. A set of three different resonators
(by their dimensions and post shapes) allow us to follow the evolution of the coupling
strength through USC regime (starting from the SC/USC limit). With these results we
confirm that it is necessary to add an extra term in the expression of the ferromagnetic
resonance (FMR) frequency equation to accurately describe the observed hybridization
(measurements and simulations) with the commonly used Dicke model [142]. We show that
this additional term does not depend on the coupling rate but on the level of confinement
of the rf magnetic field in the magnetic material. Moreover, this added term can be
negligible in the SC regime, while it is essential in the USC regime.

5.2 Hybrid System Description
The multiple post re-entrant cavity [200] is a unique type of microwave cavity. Within

the simple cylindrical cavity, can exist several metallic posts, presenting a potentially
tunable gap between the top of the gap, and the lid of the cavity, as illustrated in Fig. 5.1
for a double re-entrant cavity.

Assuming the whole cavity as a lumped LC-circuit, it as been shown that each post can
be considered as a microwave resonator owing the following capacitance C and inductance
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L [200–203]:

C = επr2

d
, (5.1a)

L = µ0(H − d)
2π ln

(
R

r

)
, (5.1b)

where ε is the permittivity, r is the post radius, d is the gap length, H is the cavity height
(H − d is then the post height), and R is the cavity radius. Then, each post has a intrinsic
resonance frequency writing as:

ωc = 1√
LC

=
√

2√
µ0ε(H/d− 1)r2ln(R/r)

. (5.2)

Noteworthily, the cavity frequencies are proportional to the intrinsic frequencies of the
posts [200], meaning that decreasing (increasing) the gap d or increasing (decreasing) the
post’s surface will decrease (increase) the cavity frequencies.

The double re-entrant cavity proposed in [196] is loaded with a YIG sphere in order
to reach a filling factor to 3%, and a ratio g/ω of 0.1. The hybrid system presented here is
made of a modified re-entrant cavity and a commercial single crystal of YIG. The YIG is
a slab of 3.82×6.09×0.61 mm3. The choice of a millimetric slab allows to focus uniformly
the magnetic field throughout the YIG volume in a much simpler way than with a YIG
sphere, with adapting the post shapes.

The two first-order resonant modes of the double re-entrant cavity are termed the
Dark Mode (DM) and the Bright Mode (BM). Both contain the electric field of the mode
between the top of the post and the lid of the cavity. For the DM (as shown in Fig. 5.2
(a)), the RF electric fields (e-fields) focused above the two posts are in-phase, resulting in
the circulating RF magnetic fields (h-fields) destructively interfering in the region between
the posts (hence “dark”), whilst the opposite is true for the BM (as shown in Fig. 5.2
(b)). The advantages of such a cavity are three-fold: first, the highly localized electric
field results in extremely large frequency sensitivity to any perturbations inside this region
(displacement of the containment area or modification of the dielectric material). Secondly,
the physical separation of the electric and magnetic fields permits separate interaction
with both magnetic and electrically sensitive devices at different locations, potentially

(a) (b)

Figure 5.1: Double re-entrant cavity (a) without the lid; and (b) profile cut where
a YIG slab is positioned between the two posts.
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Figure 5.2: Re-entrant cavity with electromagnetic simulation using COMSOL
Multiphysics® overlay where |h|2 is displayed for the first two photonic modes: (a)
the DM; and (b) the BM.

simultaneously. Finally, the magnetic field focusing between the posts results in extremely
strong interactions with any magnetically susceptible material placed there.

5.3 Optimization
An appropriate optimization of the cavity allows one to maximize the coupling and to

obtain a quasi-homogeneous h-field inside the YIG slab. With the use of Finite Element
Modeling (FEM) and following the procedure described by Bourhill et al. (2020) [110],
we were able to precisely predict and therefore optimize prior to construction, the cavity
frequency, frequency tuning range, and the coupling strength, we recall writes as (see
Sec. 3.3):

g

2π = η
√
ωc

γ

4π

√
µ

gLµB
µ0ℏnS, (5.3)

where γ = 2π 28 GHz.T−1 is the gyromagnetic ratio for YIG, gL = 2 is the Landé g-factor
for an electron spin, µ0 is the vacuum permeability, µB is the Bohr magneton, µ = 5µB is
the magnetic moment at each Fe atom site, ns = 4.22 × 1027 m−3 is the spin density for
YIG [110]. It is worth noting that the spin density value has been a point of confusion
in the literature. Bourhill et al. (2020) [110] provides the exact value based on lattice
considerations, where ns = (a3/8)−1 with a = 12.376 Å, as the spin is shared by eight
distinct unit cells in the cubic crystal lattice (hence the 1/8 factor) [204]. The filling factor
η is expressed as:

η =

√(∫
Vm

d3r h · x
)2

+
(∫

Vm
d3r h · y

)2

√
Vm

∫
Vc

d3r |h|2
. (5.4)
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R= 12 mm

L= 6 mm

W= 0.6 mm

H= d+ 4.2 mm

d

dp = 0.7 mm

Figure 5.3: Technical drawing of the double re-entrant cavity with the optimized
parameter values.
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The optimization of the cavity design was based on the maximization of the filling
factor η and the h-field homogeneity at the first BM inside the YIG slab. For a correct
distribution of the RF field inside the cavity (seen as a Perfect Electric Conductor, PEC),
it is necessary to consider the electrical property of the YIG, namely a relative dielectric
permittivity of 15. Dynamic magnetic properties are not useful at this stage and the
material is treated as a simple dielectric, with the Polder tensor being neglected.

The optimization was carried out for a fixed value of the distance d between the posts
and the lid of the cavity (d = 50 µm). Then, there exist only three free parameters for
the optimization of the hybrid system, two for the size of the posts, the width W and the
length L, and one for the cavity, the radius R. The other parameters such as the height of
the posts (H = 4.2) mm and the distance between the posts (dp = 0.7) mm were fixed by
the constraints imposed by the YIG dimension and the cavity manufacturing accuracy.
The cavity parameters with their optimized values are given in the technical drawing in
Fig. 5.3.

As depicted in Fig. 5.4, the containment of the h-field inside the YIG is at its maximum
when the post dimensions are of the slab dimensions. Hence, the width of the posts has
been optimized over a range from 0.1 mm to 2 mm, and their lengths from 4 mm to 8
mm. The radius of the cavity does not have a big impact on η. The cavity radius has
been optimized over a range from 10 mm to 14 mm. Each contour represents the value of
η with respect to W and L. The hashed contour delimits the surface where η ≥ 78.5%.
For better feasibility, we choose the largest values of W and L. This leads to an optimal
value of η for W = 0.6 mm, L = 6 mm, and R = 12 mm.

The simulated evolution of the two eigenmodes (DM and BM) are shown in the inset
of Fig. 5.5 (a) with respect to the distance d, with a range from 1 to 100 µm. Decreasing
d will decrease the frequency of the eigenmodes and the frequency difference between
the BM and the DM. Fig. 5.5 (a) shows electromagnetic simulation results for η (right
y-axis) and g/ω (left y-axis) versus d for a cavity with the optimized dimensions, where
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Figure 5.4: Filling factor η function of the width (W) and the length (L) of the
two posts.
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ω = ωBM the frequency mode of interest in our study. η is maximized for d = 9 µm. The
variation of η over this range of d values is only 2.7%, therefore we may consider it more
or less invariant. The tuneability of the distance d plays a role on the g/ω ratio as shown
in Fig. 5.5 (a). Indeed, ω/2π is decreasing with d, and η is remaining almost constant.
Considering Eq. (5.3), g/2π is a function of η and the square root of ω. Therefore, the
ratio g/ω will increase with the inverse of the square root of ω from 36.8 to 80.5% as d
decreases from 100 to 1 µm.

Fig. 5.5 (b) illustrates the SC to DSC transition for YIG with the frequency dependence
of g/ω. The blue dots correspond to the values extracted from EM simulation already
discussed in Fig. 5.5 (a) and the solid line dependencies are based on Eq. (5.3) for two
constant values of η, 0.79 (blue) and 1 (green). The magnetic properties of YIG require
working in a specific frequency range in order to explore the DSC. For the maximum
reachable value of η (green line), which corresponds to the entire h-field perpendicular to
H0 and fully confined to Vm, DSC is possible when the magnons are coupled to a microwave
mode below 1.72 GHz [110]. In our case (with η close to 0.79), DSC is achievable but at a
smaller resonant frequency (1.07 GHz). Note that the optimized cavity configuration of
this work does not allow to reach the DSC due to the presence of the dark mode which
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versus d for Eigen-Mode simulations (EM). Inset: Evolution of simulated DM and
BM frequencies versus d. (b) Evolution of g/ω versus the BM frequency for η = 1
and η = 0.79.
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prevents clear identification of the coupling signature in the spectra when the DM and
BM are close, and the difficulty to control distance d lower than 4 µm.

5.4 Results and Discussion

5.4.1 Simulation Details
To compare the experimental results, simulations in the frequency domain (FD),

solving for the S21 scattering parameter were conducted for different values of d from 2
to 100 µm. For these simulations, we considered the excitation probes and hence the
coupling losses. Losses due to finite conductivity of the cavity walls are also taken into
consideration.

The static and dynamic magnetic properties of YIG are used to solve the frequency
response of the entire system as a function of the applied magnetic field. The spin dynamics
of ferrimagnetic systems can be described by the Landau-Lifshitz-Gilbert (LLG) equation
and the frequency dependence of the coupled dynamics can be accurately estimated
by using a linear solution of the LLG equation in solving Maxwell’s equations. Some
consideration regarding the shape of the YIG sample must be taken into account. As
mentioned in Sec. 2.3.2.c, the FMR dispersion for a relatively thick slab geometry requires
careful consideration. Based on the works of Kittel (1948) [118], Schlömann (1962) [117],
the demagnetizing field expression has been adapted to our non-ellipsoidal sample of YIG.
From these results, it is determined that the demagnetizing field is significantly different
from the thin-film form, and therefore for accurate simulations proper consideration of
this difference must be taken into consideration.

Hence, considering Eq. (2.117a) the effective static magnetic field in the YIG is different
from the applied one and read as:

Hi = H0 −Nzz(x, y, z)Ms, (5.5)

where Hi is the internal static magnetic field along the z-axis, and Nzz is the spatially
dependent demagnetizing component along the z-axis, given in Eq. (2.123). Note that the
off-diagonal components of the demagnetizing tensor are equal to zero for the considered
slab dimensions, leading the effective field Hi to be only in the z-axis. More details about
the simulations are given in Sec. 4.1.

5.4.2 Experimental Setup
To reach the specifications described above, an aluminum cavity with an accuracy of

20 µm has been machined. For the applied static magnetic field, we used an electromagnet
where the produced field is aligned along the z-axis (see Fig. 5.2), in the direction of the
height of the posts. H0 aligns all the spin moments along the z-axis and to saturate the
macroscopic YIG magnetization. With the shape of the cavity, the h-field for the BM,
considered as the perturbative field, is only along the x-axis inside the YIG slab between
the two posts, as shown in Fig. 5.2 (b) due to the constructive interference of the two
h-fields around each post. A gaussmeter allows one to measure in situ H0 magnitudes.
S-parameters are measured with a two-port Vector Network Analyzer (VNA), with the
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magnitude and phase of the scattering parameters recorded between 0.1 to 15 GHz with
an input power of −10 dBm. All measurements are conducted at RT. The magnitude of
the S21 transmission spectra as a function of H0 are displayed in Fig. 5.6 for measurement
and simulation with differing sized gaps between the top of the posts and the roof of the
cavity. Experimentally, this is varied by using different cavity lids which had recesses of
differing heights machined into them. More details about the experimental setup are given
in Sec. 4.3.

5.4.3 Results
Measurement and simulation results of magnetic spectroscopy of the cavity magnon

system are shown in Fig. 5.6 as the first and second column, respectively, for different values
of d. Each row represents a comparison between a measurement and a simulation with a
distance close to the measured value. The latter can be determined by the unperturbed
value of fDM, which acts as a calibration for d.

The external magnetic field was always applied symmetrically for negative and positive
values. This allows to improve the fit accuracy on measurements, because we have twice
as many data points. All measurements with complete frame are shown in Appendix 5.A.

We can easily distinguish the two hybrid eigenfrequencies f+ = ω+/2π (for the higher
branch) and f− = ω−/2π (for the lower branch) from either side of the BM frequency. It
should be noted that at low H0 values the BM is not visible, whilst we can clearly see the
DM which is the lowest frequency mode and has a negligible coupling with the magnon
mode, hence is constant versus H0.

Some minor discrepancies between simulation and experiment should be pointed out:

(i) an inflection point on the curvature of the upper CMP in frequency at low H0
(observed only in the USC regime) for measurements, appearing neither in simulation
nor analytic fits;

(ii) anti-resonances only appearing either in measurement, the horizontal one around 4.3
GHz in Fig. 5.6 (a) and (e), or in simulation with a S-like shape, around 10, 4, and
2 GHz in respectively Fig. 5.6 (b), (d) and (f). Let us notice that this anti-resonance
does not appear in measurements when a cavity mode is overlapping with this
transmission dip, as shown for d = 11 µm in Fig. 5.6 (c) and Fig. 5.19 (e), and for d
= 116 µm in Fig. 5.19 (a). However, the study on antiresonances in Chapter 6 allows
for a clear identification of two behaviors: the first involves a cavity antiresonance
coupling with magnons, mediated by the magnon’s interaction with different cavity
modes; the second describes a non-coupled cavity antiresonance, which depends on
the various cavity mode frequencies and their associated dissipations;

(iii) another magnon mode exists near the upper CMP in simulations. It is clear that it
is another magnon mode because its H-field’s frequency dependence does not change
as d is varied.
Differences given in the two last points could be explained by the fact that the YIG
sample is a perfect rectangular prism in simulation whereas the real sample is not.
The imperfections of the YIG geometry could result in a weak transmission, which
could be not detected in measurement.
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Figure 5.6: Transmission spectra versus frequency and H0 for (a), (c), (e) measure-
ments at RT, and (b), (d), (f) simulations. Comparison spectra between measurement
and simulations are shown for different distances d as labelled. A fit with the Dicke
model with a shifted magnon frequency is shown superimposed on (c) and (d)
where the FMR frequency (fFMR = ωFMR/2π) is shown in black, the DM frequency
(fDM = ωDM/2π) in red, the BM frequency (fBM = ω/2π) in orange and the two
polariton frequencies (f± = ω±/2π) in white.
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Despite these minor deviations, the agreement between simulations and measurements
on the magnon-photon coupling and the resulting CMPs is excellent. In particular, we
validated the spatial distribution of the demagnetizing field, hence the expression of the
FMR for a slab, and the ability of the Maxwell’s equations to describe the system. This
permits one to conduct a simulation with a magnetic field larger than experimentally
possible in order to extract the BM frequency. Indeed, it is impossible to measure the
unperturbed BM frequency fBM in the USC regime even when applying a high magnetic
field near to 2 T.

5.4.4 Model Description
In the USC regime, the Tavis-Cummings model becomes no longer applicable [127,

190], as g/ω > 0.1 leads to a failure of the rotating wave approximation as the interaction
term of the Hamiltonian can no longer be assumed to be “slowly rotating” compared to
the system terms. As mentioned in Sec. 3.3, the standard model for cavity magnonics is
the Dicke model, with polariton angular frequency given by (c.f. Sec. 3.2.6.b):

ω± = 1√
2

√
ω2

c + ω2
m ±

√
(ω2

c − ω2
m)2 + 16g2ωcωm. (5.6)

Additionally, as explained in Sec. 3.2.6.b, the system enters in the superradiant phase
when g ≥ √

ωcωm. In this phase, the eigenfrequencies of the two polaritons become:

ω± = 1√
2

√
ω2

c + ω2
mg̃

4 ±
√

(ω2
c − ω2

mg̃
4)2 + 4ω2

cω
2
m. (5.7)

where g̃ = 2g/ωc.

We notice that the Dicke model in its normal and superradiant phase cannot describe
observed polariton frequency dispersion for measurements and simulations. Indeed, in
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Figure 5.7: Transmission spectra versus the RF frequency and the H-field for (a)
d = 65 µm and (b) d = 4 µm. The DM frequency is shown in red while the FMR
frequency is shown in black. The BM (in orange) and the CMP frequencies (in
white) were fitted with the Dicke model in its (a) normal phase and (b) superradiant
phase.
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Fig. 5.7, is depicted two measured transmission spectra at (a) d = 65 µm and (b) d = 4 µm.
According to the results from the EM simulation illustrated in Fig. 5.5, these two spectra
would depict a system performing in the normal phase in Fig. 5.7 (a), and superradiant
phase in Fig. 5.7 (b). In Fig. 5.7 (a), the two eigen-modes of the fit with the Dicke
model in its normal phase shown in dotted white line which are not consistent with the
measurement, and prove the inability to fit with the standard Dicke model.

Moreover, in Fig. 5.7 (b), the fit with the superradiant phase, seems to be consistent
with the measured transmission spectrum. However, the fitted parameters are ωc = 4.75
GHz, and g = 2.58 GHz conversely to ωc ∼ 3.2 GHz and g ∼ 1.9 GHz considering results
from EM simulation. This mismatch means that the superradiant phase does not occur,
and that the Dicke model is not able to describe the physics of the system in the USC
regime.

As mentioned in Sec. 3.2.6.c, the diamagnetic term D is negligible for the magnon-
photon coupling. Indeed, it has been recently shown in Ghirri et al. (2023) [146] that
in the USC regime (here for a system composed of a magnetic film in contact with
superconducting resonator) the magnon-photon coupling does not follow the Hopfield
model. For the sake of completeness, we decided to follow the methodology used in Keller
et al. (2020) [205], where it was demonstrated that the physics of Landau polaritons is
described by a Hopfield-like model where the diamagnetic term is scaled by a parameter
ξ. In this study, it has been found that the parameter ξ is lower than one for Landau
polaritons. Then, the angular eigenfrequencies in the Hopfield model given in Eq. (3.48)
become:

ω± = 1√
2

√
ω2

c + ω2
m + 4ξg2 ±

√
(ω2

c − ω2
m + 4ξg2)2 + 4g2ωcωm. (5.8)

In Fig. 5.8 is depicted the transmission spectrum for d = 65 µm, and also a fit with
the Hopfield-like model with ξ being (a) less, (b) equal (leading to the standard Hopfield
model), and (c) more than one. As illustrated, the only effect of this prefactor is equivalent
to increase (for ξ < 1) or decrease (for ξ > 1) the BM frequency, whereas it is needed to
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Figure 5.8: Transmission spectra versus the RF frequency and the H-field for
d = 65 µm. The DM frequency is shown in red while the FMR frequency is shown
in black. The BM (in orange) and the CMP frequencies (in white) were fitted with
the Hopfield-like model where the prefactor is (a) ξ < 1, (b) ξ = 1, (c) ξ > 1.



122 Chapter 5. Strong to ultra-strong coherent coupling measurements in a YIG/cavity
system at room temperature

have a model which affects the FMR. Finally, the Hopfield model, even modified, is not
able to describe the physics of the magnon-photon coupling in the USC regime.

To remedy these issues, it has been proposed by Golovchanskiy et al. (2021) [84] to
modify the Dicke model with the addition of a H-field in the FMR dispersion equation.
We also modified the term of the FMR frequency dependence in Eq. (2.127) to:

ωm → ωm + ∆m (5.9)

here ∆m = 2πf∆ is a frequency shift, which will be further discussed in Sec. 5.4.5. This
modified Dicke model was found to fit best the experimental and simulation spectra, as
seen in the white dashed lines of Fig. 5.6 for d = 75 µm in (a) and (b), d = 11 µm in (c)
and (d), and d = 4 µm in (e) and (f). Measurement fit, shown in Fig. 5.6 (a), (c), and
(e), is achieved with the BM frequency fBM (in orange), the coupling strength g/2π, and
the added frequency f∆ as fitting parameters. For simulation fit, shown in Fig. 5.6 (b),
(d), and (f), the BM frequency is considered as fixed parameter. Indeed, simulations were
performed at an artificial high H-field (H0 = 10 T), in order to tune the magnon mode
many orders of coupling strength away, and clearly distinguish the two photonic modes.

All values of fit parameters for measurements are available in Appendix 5.A, and are
pooled with simulations in Fig. 5.9. For the measurements (shown in blue), the distance
d has been estimated from the measured DM frequency. The fitted BM frequencies of
the measurements are in good agreement with simulations (shown in black in the inset of
Fig. 5.9). Regarding the coupling strength g/ω, we achieve a ratio g/ω ranging from 0.35
to 0.59, corresponding to d = 116 µm to d = 4 µm, respectively. As mentioned in Sec. 5.2,
the values of g/ω are different from the optimization step ones (dotted red curve), mainly
due to the different estimated frequencies, shown in the inset. Once again, the correlation
between fitted simulations and measurements for the ratio g/ω are also good. This clearly
demonstrates the validity of the simulations.
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Figure 5.9: g/ω versus d for fitted FD simulations (in black) and for fitted
measurements (in blue). The simulation trend is plotted in the black dashed line.
Inset: DM and BM frequencies versus the distance d, in the black dashed line
are shown DM and BM reading values from simulations at extremely high applied
H-field. Eigen-Mode (EM) simulations are shown as the red dashed line.
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5.4.5 Discussion
We discuss here the physical meaning of the frequency shift in the modified Dicke

model. For a deeper understanding of the behavior of this added term, we investigated the
transition between the SC and the USC regimes. In order to study a wide range or g/ω
values, we have used two other cavities with the same YIG sample. The first described
machined cavity will be named “CAV01” in the following. This cavity operates in a g/ω
range from 0.35 to 0.59, as mentioned in the Table 5.2 in Appendix 5.A.

The second cavity, “CAV02”, has been 3D printed and has the same shape as CAV01,
but with smaller height posts. This cavity is performing in a certain range of g/ω, from
0.28 to 0.32 (see Table 5.3 in Appendix 5.B).

The third cavity, “CAV03’", is also a double re-entrant 3D printed cavity with cylinder
posts, adjustable in height. This cavity was used in a previous work [110] to experimentally
verify a reworked theory that predicts coupling values from simulations alone. The cavity
has radius Rcav = 20 mm and height Hcav = 4.6 mm, whilst the posts have radius Rpost
= 2.05 mm and are spaced to 2.7 mm. The operating ratio g/ω is lower than the two
other cavities and enables to have experimental results at the SC/USC threshold, with
g/ω comprised between 0.12 and 0.25 (see Table 5.4 in Appendix 5.C).

The operating range in BM frequencies, coupling strengths, and added frequencies for
the three cavities are summarized in Table 5.1.

Table 5.1: Operating range of the cavities

Cavity fBM [GHz] g/2π [GHz] ∆m/2π [GHz]
CAV01 2.80 - 7.65 1.64 - 2.68 2.27 - 2.59
CAV02 7.63 - 9.79 2.42 - 2.72 1.63 - 1.74
CAV03 2.35 - 5.53 0.58 - 0.69 0.29 - 0.50

Thanks to the validation of the FD simulations, we were able to simulate the CAV01
design for different dimensions of the YIG slab, while keeping the aspect ratio of the slab
constant. Since the demagnetizing components described in Eq. (2.123) are only dependent
on this aspect ratio, the FMR remains unchanged. However, still decreasing the YIG slab
dimensions decrease the filling factor η, therefore the coupling strength and g/ω from 0.36
to 0.05 with d = 50 µm.

We plotted ∆m/ω versus g/ω in Fig. 5.10 (a) which clearly display a quadratic
dependence. For g/ω ≤ 0.1, ∆m/ω is more or less negligible. This description agrees with
the commonly situated transition point (shown as the red dotted line) between the SC and
USC regimes where all models converge. Our simulations show the need for the ∆m/2π
parameter to properly fit the data. Fig. 5.10 (b) shows that ∆m/2π is linearly proportional
to η2. According to this observation and the definition of η, we noticed that the more
this energy is confined in the YIG, the larger the shift in the magnon frequency will be.
In the literature, the parameter η is not so often considered or estimated. In ref [110],
we had the opportunity to test the model of Eq. (5.3) and (5.4) on multiple published
experimental results, and η rarely exceeds 0.05 in any of them. As a reminder, and in view
of the description in Fig. 5.5, our system (CAV01) proposes a η of about 0.79.
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Figure 5.10: (a) ∆m/ω versus g/ω and (b) ∆m/2π versus η2. Shown are the FD
simulations on CAV01 in red and measurements in blue, in green for CAV02, and
in purple for CAV03. In (a) and (b), fitted values for a reduced CAV01 with an
aspect ratio equal to 0.025 as the black square. The two data points circled in (a)
correspond to the same value of ∆m/2π in (b).

In Fig. 5.10 is represented by square marker a simulation where dimensions of the
cavity and the YIG are reduced by a ratio equal to 0.025 for d = 50 µm. By decreasing
the dimensions of the entire cavity CAV01 by this ratio, the BM frequency is increased to
275 GHz. Then, this cavity operates in the SC regime. However, the proportion of the
h-field in the YIG remains the same, hence also η.

In Fig. 5.10 (a), are circled the reduced system performing in the SC regimes, and
the unmodified cavity in the USC regime presenting the same η value. In Fig. 5.10 (b), it
is shown that the frequency shift ∆m/2π is the same for both cavities, and for the same
value of η2. It is then important to note that this effect is not bounded to the coupling
strength and hence to the coupling regime, but instead to the filling factor, something
that has never been discussed so far.

Considering Eq. (5.3), ∆m/2π is also linearly proportional to g2/ω which is a dependent
function of the magnetic properties of the YIG and η2. As a physical mechanism, we have
identified two nonlinear processes that could be involved in the appearance of ∆m/2π in
this study, due to their similar behavior: the multi-photon Rabi oscillations [74, 75, 182] for
its effective coupling being proportional to g2/ω. When the coupling between an artificial
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Figure 5.11: ∆g/ω versus (a) g/ω; and (b) ∆m/ω. Shown are the FD simulations
on CAV01 in red and measurements in blue, in green for CAV02, and in purple for
CAV03.

single atom and a cavity is in the USC regime, the system can exchange several photons
(and undergo multi-photon Rabi oscillations) instead to a single one (commonly known
as Rabi oscillation); and the self-Kerr, and the cross-Kerr effects [206–210] presenting a
frequency shift of the magnon, due to magnetocrystalline anisotropy and magnon-magnon
interactions, respectively.

As a remark, we note an offset far detuned from the BM frequency at a zero H-field
arising for high g/ω when the FMR is shifted. This offset in frequency, when the FMR
is shifted, leads to a forbidden gap in frequency, noted ∆g, where there is no resonance
linked to the CMP. Without adding the shift ∆m to the FMR in the Dicke model, and
without applied H-field, the frequency of the upper polariton is equal to the cavity one.
Considering Fig. 5.11, ∆g/ω is not observable when g/ω is equal or lower to 0.2. For
higher g/ω values, ∆g/ω is quadratic, as shown in (a). In (b) is shown the evolution of
∆g/ω versus ∆m/ω.

5.5 Conclusion
In conclusion, we proposed a double re-entrant cavity design to achieve USC magnon-

photon coupling at microwave frequencies, which was supported by both experimental
data and electromagnetic simulations. To the best of our knowledge, this is the only
demonstration of USC magnon-photon coupling at room temperature so far. Noteworthily,
reaching the USC without cryogenic temperatures is promising for the development of RF
applications based on cavity spintronics.

We explained the importance of optimizing the filling-factor η for reaching the USC,
aside from just the frequency of the resonator and the spin density. Importantly, the cavity
we proposed is parametrized by the distance d between the posts and the lid. We showed
that tuning this parameter allowed to continuously go from the regular SC to the USC
regime. The ability to study the transition from the SC to USC regime is a significant
step towards understanding the physics of USC magnon-photon coupling.
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Indeed, we showed that the standard models describing the coupling of a single resonator
mode to many dipoles (e.g. the Dicke and Hopfield models) failed to properly describe
our experimental data. Nevertheless, thanks to the validation of our electromagnetic
simulations, we showed that a frequency shift in the magnon frequency adequately modelled
our data, which we note is fully captured by the classical Maxwell’s equations. Furthermore,
we showed that this frequency shift only depended on the filling-factor η, highlighting its
importance for hybrid magnon-photon systems. While the physical origin of the magnon’s
frequency shift is still unknown, we hope that its relation with η will motivate further
research into deriving a proper theoretical model for USC magnon-photon coupling.

5.6 Further Works
In this section, is presented a study which could help to the understanding of the

physical meaning of the added shifted magnonic frequency term. This section outlines two
different approaches to achieving the DSC regime. These methods are similar to those
employed in the initial study. After maximizing the filling factor η, and consequently the
coupling strength g, we explored various strategies to reduce the cavity frequency ω, with
the aim of increasing the ratio g/ω.

The first method in the study aimed to maximize g/ω by reducing the distance d
between the top of the posts and the lid in the double re-entrant cavity. Experimentally,
the minimum achievable distance was 4 µm, resulting in g/ω = 0.59. An untested approach
involves depositing a thin dielectric layer (several hundred of nanometers) on the top of
the posts using chemical vapor deposition (CVD). According to Fig. 5.5 (a), this could
increase g/ω to 0.81 with d = 1 µm, and even higher for d < 1 µm. However, increasing
the coupling strength could cause the lower polariton to overlap with the DM, potentially
complicating the observation of the coupling in the transmission spectra.

5.6.0.a 1 post connected

Considering the work by [110], it has been demonstrated that the DM and BM
frequencies can be independently tuned by adjusting the distances d1 and d2 of the posts
(refer to Fig. 5.12 (c) for the schematic). Specifically, the BM is only slightly affected by
tuning one of the post distances, whereas the DM is primarily influenced by the post with
the smaller distance.

In Fig. 5.12 (a), the distance d1 of one post is kept constant at 50 µm, while the
distance d2 of the other post is tuned from 100 µm to 0 µm. We observe that the DM
exhibits a behavior similar to when both posts have the same distance d (c.f. Fig. 5.5 (a)),
approaching zero when one of the posts is connected to the lid. However, the BM only
slightly decreases with decreasing d2, and does not exhibit the same behavior as when
both posts have the same distance. When both distances are equal, i.e. d1 = d2 = 50 µm,
the ratio g/ω is 0.39, while it reaches g/ω ≃ 0.41 whith d1 = 50 µm and d2 = 0 µm as
illustrated in Fig. 5.12 (b). This slight increase is due to the small decrease in the BM
frequency.

When one post is connected to the lid of the cavity, the electric field is focused at the
top of the other post. This configuration causes the magnetic field to circulate around
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Figure 5.12: Evolution of (a) the DM and BM frequencies, and (b) the ratio g/ω
(in blue) and η (in red) of the BM versus d2, with d1 = 50 µm for EM simulations.
(c) A scheme of the parameters d1 and d2 in the cavity.

the post where the electric field is focused. The connected post acts as a node for the
magnetic field within the cavity. Since there is no second source of focused electric field,
the magnetic field around the second post is necessarily in phase with the magnetic field
generated by the first post. Consequently, only the BM occurs when one post is connected
to the lid, while the DM does not appear.

Connecting one post to the lid allows for the maximization of g/ω. Based on this
observation, EM simulations were conducted to visualize its evolution with varying d2,
swept from 100 µm to 1 µm, while keeping d1 = 0 µm. As shown in Fig. 5.13, g/ω reached
0.65 at d2 = 4 µm, compared to g/ω = 0.59 when both posts are d = 4 µm from the lid.
Compared to the scenario where d2 = d = 50 µm, the coupling ratio increased by 5%,
while at d2 = d = 4 µm, it grew by 10%. The coupling ratio would reach 0.90 at d2 = 1
µm, representing an increase of 11%. However, without a new method to experimentally
decrease the gap, connecting a post to the cavity does not allow for significant progress into
the USC regime, nor does it enable reaching the DSC regime. Nevertheless, connecting a
post suppresses the DM in the experiments and results in a slightly higher g/ω. In the
following cavity design ideas aimed at reaching the DSC regime, one of the two posts
remains connected to the lid of the cavity.
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5.6.0.b Enlarge the post/plate

In this section, we develop a new design of cavity post in order to theoretically reach
the DSC regime. We remind that the cavity frequencies are inversely proportional to the
post surface S2, due to its effective capacitance (c.f. Eq. (5.2) and (5.1a)). This means
that by increasing the surface of the top of the posts would enable to increase the coupling
ratio. We decided to keep the length of the post equal to L = 0.6 mm, with d2 = 10 µm,
while the width W2 of the unconnected post is tuned from 0.6 mm to 6 mm, as illustrated
in Fig. 5.14 (c). This means that the post surface is tuned from S2 = 3.52 to S2 = 35.91
mm2. Fig. 5.14 (a) and (b) show the conducted EM simulations.

As depicted in Fig. 5.14 (a), the value of g/ω increases from 0.53 at a post width
W2 = 0.6 mm to 0.76 at W2 = 6 mm (square markers). Regarding Fig. 5.14 (b), this
increase in g/ω is effectively due to the decrease in the cavity frequency ω/2π, which drops
from 3.58 GHz to 1.41 GHz. However, η decreases from 0.77 to 0.69, indicating that the
DSC would not be reached at ω/2π = 1.1 GHz, as mentioned in Fig. 5.5. The thicker the
post, the greater its impact on the internal electromagnetic field, hence on η.

To remedy on the decrease of the η value, and to still grew the ratio g/ω, we thought
about a new post design. As depicted in Fig. 5.14 (c), the cavity on the right kept a thin
post (W = 0.6) as in the previous subsection, but is mounted of a thin plate (presenting a
height of 0.5 mm) at its top in order to keep the same surface as the post S2, and also
function of the plate width W2. By comparison, the newly designed post presents value of
η (with circle markers) more or less constant, where η ≃ 0.76. From this, the ratio g/ω
reaches 0.88 at W2 = 6 mm (with ω/2π = 1.28 GHz). As a remark, the frequencies of both
the two designed posts are nearly similar, indicating that the capacitive effect dominates
the frequency evolution. At this stage, two cavities were designed in order to follow the
ratio g/ω from 0.6 to more than 1 in the DSC regime experimentally, and are presented in
Appendix 5.D. The EM values of one of these cavities, named CAVmust

01 are presented in
Fig. 5.14 (in diamante markers) at d2 = 10 µm. The second cavity is not reported because
it presents a larger surface plate value. However, these cavities do not show interpretable
results. Indeed, in these measurements, only the lower CMP occurs, while the upper CMP
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seems to not appear. To understand, FD simulations were performed on the two cavities
presented in Fig. 5.14 (c), for different values of W2 (0.6, 1, 2, and 3 mm), on a frequency
range from 0 to 6 GHz with a step of 10 MHz, and at two values of the applied static
magnetic field: Hsat (H = 100 T to discard any magnonic modes from the coupling frame),
and at H = 0.01 T, at the coupling frame.

These simulations are presented in Fig. 5.15. Fig. 5.15 (a) and (b) illustrate the
transmission versus the post or plate widths. In Fig. 5.15 (a), with a saturated applied
static magnetic field, we observe the cavity frequency decreasing from 3.5 GHz at W2 = 0.6
mm to 1.8 GHz at W2 = 6 mm. In Fig. 5.15 (b), with a static magnetic field applied at
0.01 T, a split resonance is observed where the lower polariton frequency shifts from 1.2
GHz at W2 = 0.6 mm to 0.9 at W2 = 6 mm. The peak at higher frequency, representing
the upper CMP, is less defined for W2 < 6 mm but becomes better defined at W2 = 6 mm.
Nevertheless, the coupling remains observable for all values of W2 mm. The upper CMP
decreases from approximately 5.2 GHz at W = 0.6 mm to 4.3 GHz at W = 6 mm.

In Fig. 5.15 (c) and (d), the transmission versus the plate width for different widths is
presented. At Hsat, the cavity frequency decreases from 3.5 GHz at W2 = 0.6 mm to 1.7
GHz at W2 = 6 mm, as illustrated in Fig. 5.15 (c). This indicates that the plate allows
achieving a lower cavity frequency at higher widths compared to a large post. However,
referring to Fig. 5.15 (d), the upper CMP is almost not visible at W2 > 2 mm, whereas it
remains clear for the post configuration. At W2 = 2 mm, the upper CMP is still visible,
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but its magnitude is weak enough and would likely disappear in simulations at d = 4 µm
or less.

The cavity with a plate width of W2 = 1 mm and the cavity without a plate but with
a width of W2 = 6 mm were selected for further study. These cavities are respectively
named CAV04 and CAV05. In Fig. 5.16 the ratio g/ω (in blue) and the cavity frequency
ω/2π (in red) are shown as a function of d2 from 1 to 100 µm, based on EM simulations.
The cavity CAV04 could potentially achieve a ratio of g/ω = 1.0 at d2 = 1 µm, while
CAV05 could reach g/ω = 1.34 at the same d2, primarily due to its larger post surface area
compared to the plate surface area. However, at d2 = 4 µm the DSC regime is not yet
reached. The cavity CAV05 is very close to the DSC regime with g/ω = 0.95, while CAV04
achieves a ratio of 0.72.

To determine the magnon shift for both cavities, finite-difference (FD) simulations
were conducted over a frequency range of 10 GHz with a step size of 10 MHz, and for 8
different values of the applied magnetic field H0 ranging from 0 to 150 mT. In Fig. 5.17
(a), the transmission versus ω2π for various H0 values is shown for cavity CAV04. While
the lower CMP is clearly observable, the upper CMP rapidly diminishes with increasing
H0. Due to the limited number of H0 values and the disappearance of the upper CMP
resonance at higher H0 values, the fit of the CMP was performed using only one variable,
the magnon frequency shift ∆m. The cavity frequency and coupling strength values were
derived from the EM simulation results. The fitted CMP frequencies are depicted as blue
dashed lines in Fig. 5.17 (a), with a cavity frequency ωc = 1.93 GHz, coupling strength
g = 1.39 GHz, and resulting magnon frequency shift ∆m = 2.54 ± 0.36 GHz. In Fig. 5.17
(a), the transmission versus ω2π for various H0 values is shown for cavity CAV05. The
fitted CMP frequencies are illustrated as blue dashed lines in Fig. 5.17 (b), with a cavity
frequency ωc = 0.90 GHz, coupling strength g = 0.86 GHz, and resulting magnon frequency
shift ∆m = 2.50 ± 0.37 GHz.

These values were compared to previous cavity simulation and measurement data, as
depicted in Fig. 5.18, where ∆m/ω is plotted against g/ω. The two added values (grey
diamond for CAV04 and black square for CAV05) align well with the quadratic dependence
of ∆m/ω on g/ω. In this section, we confirmed that the dependence of ∆m/ω in the USC
regime remains consistent, even approaching the DSC regime. These new simulations
also demonstrated that the cavity geometry has no impact on this dependence. However,
we have shown that connecting one post can suppress the DM and slightly increase the
g/ω ratio of the BM. It was also demonstrated that adding a plate on top of the post is
theoretically the best method to avoid decreasing η, thereby achieving a higher g/ω ratio
for the same surface area as a larger post. However, it was observed that the upper CMP
vanishes with a plate surface larger than 2 mm.

To conclude, the optimal 3D cavity design to achieve the DSC regime involves connect-
ing one post to the lid and increasing the surface area of the unconnected post. Future
simulations could explore which post designs might further optimize the coupling ratio;
for instance, a semi-circular post might outperform the rectangular base used in this
study. Such a cavity could be readily machined, potentially enabling the first experimental
measurements of a 3D cavity operating in the DSC regime.
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Appendices of Chapter 5

5.A Measurements of CAV01

Table 5.2: The parameters associated with measurements at different values of
distance d between the post and the lid of the machined cavity. The numbering
refers to the spectra shown in Fig. 5.19. fDM and fBM represent the frequencies of
the dark and bright modes, respectively; g is the coupling strength of the bright
mode; ∆m/2π is the observed frequency shift of the magnon; and fgap refers to the
forbidden frequency gap between the two polaritons.

Numbering d fDM fBM g/2π g/ω g2/2πω ∆m/2π fgap
[µm] [GHz] [GHz] [GHz] [GHz] [GHz] [GHz]

(a) 116 3.75 7.65 2.68 0.35 0.94 2.35 0.58
(b) 75 3.19 7.31 2.62 0.36 0.94 2.29 0.54
(c) 65 3.05 7.16 2.56 0.36 0.92 2.31 0.54
(d) 36 2.40 6.44 2.41 0.37 0.90 2.27 0.64
(e) 11 1.38 4.46 2.03 0.46 0.92 2.39 0.87
(f) 4 0.81 2.80 1.64 0.59 0.96 2.59 1.22
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Figure 5.19: Transmission spectra versus the RF frequency and the H-field. The
DM frequency fDM is shown in red while the FMR frequency fFMR is shown in
black. The BM frequency fBM (in orange) and the CMP frequencies f± (in white)
were fitted with the modified Dicke model with parameters shown in Table 5.2.
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5.B Measurements of CAV02

Table 5.3: The parameters associated with measurements at different values of
distance d between the post and the lid of the printed cavity. The numbering
refers to the spectra shown in Fig. 5.20. fDM and fBM represent the frequencies of
the dark and bright modes, respectively; g is the coupling strength of the bright
mode; ∆m/2π is the observed frequency shift of the magnon; and fgap refers to the
forbidden frequency gap between the two polaritons.

Numbering fDM fBM g/2π g/ω g2/2πω ∆m/2π fgap
[GHz] [GHz] [GHz] [GHz] [GHz] [GHz]

(a) 4.06 9.79 2.72 0.28 0.76 1.63 0.24
(b) 3.26 8.76 2.59 0.30 0.77 1.71 0.30
(c) 3.01 8.32 2.52 0.30 0.76 1.74 0.31
(d) 2.64 7.63 2.42 0.32 0.77 1.69 0.34
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Figure 5.20: Transmission spectra versus the RF frequency and the H-field. The
DM frequency fDM is shown in red while the FMR frequency fFMR is shown in
black. The BM frequency fBM (in orange) and the CMP frequencies f± (in white)
were fitted with the modified Dicke model with parameters shown in Table 5.3.
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5.C Measurements of CAV03

Table 5.4: The parameters associated with measurements at different values of
distance d between the post and the lid of the printed cavity. The numbering
refers to the spectra shown in Fig. 5.21. fDM and fBM represent the frequencies of
the dark and bright modes, respectively; g is the coupling strength of the bright
mode; ∆m/2π is the observed frequency shift of the magnon; and fgap refers to the
forbidden frequency gap between the two polaritons.

Numbering fDM fBM g/2π g/ω g2/2πω ∆m/2π fgap
[GHz] [GHz] [GHz] [GHz] [GHz] [GHz]

(a) 3.02 5.53 0.65 0.12 0.08 0.33 0.01
(b) 2.29 4.36 0.69 0.16 0.11 0.29 0.02
(c) 1.44 2.92 0.63 0.22 0.14 0.37 0.02
(d) 1.30 2.35 0.58 0.25 0.14 0.50 0.05
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Figure 5.21: Transmission spectra versus the RF frequency and the H-field. The
DM frequency fDM is shown in red while the FMR frequency fFMR is shown in
black. The BM frequency fBM (in orange) and the CMP frequencies f± (in white)
were fitted with the modified Dicke model with parameters shown in Table 5.4.
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5.D Cavities with post-mounted plate
As explained in the main text, the post-mounted plate is the most efficient design and

was selected for measurement. However, this design is particularly challenging to machine.
3D printing offers the capability to create such complex post shapes. Nevertheless, one
of the printing steps involves heating the newly printed object to harden the resin. Thin
and wide structures, such as the plate, can bend during this process. To address this
issue, we designed a new shape for the plate, featuring a "mustache"-like form to better
distribute the surface area and weight around the post, as depicted in Fig. 5.22. These
two cavities were designed to experimentally follow the ratio g/ω from 0.6 to above 1 in
the DSC regime. The first cavity, named CAVmust

01 and depicted in Fig. 5.22 (a), has a post
surface area of 32.14 mm2. Referring to Fig. 5.22 (d), the plate dimensions are L1 = 14
mm, Wp,1 = 2 mm, and Wp,2 = 1 mm. The fillets defining the radius of the corners, as
given in Fig. 5.22 (b), have the following dimensions: F1 = 2 mm, F2 = 1 mm, F3 = 0.5
mm, and F4 = 0.5 mm.

The ratio g/ω for this cavity ranges from 0.51 at d = 100 µm to 1.08 at d = 4 µm, as
illustrated in Fig. 5.23 (a). Its values at 10 µm are reported in Fig. 5.14.

The second cavity, named CAVmust
02 , is depicted in Fig. 5.22 (c). This cavity is designed

to allow deeper exploration into the DSC regime. The dimensions of the cavity are:
L1 = 18 mm, Wp,1 = 8 mm, and Wp,2 = 4 mm, F1 = 8 mm, F2 = 2 mm, F3 = 2 mm, and
F4 = 1 mm. The ratio g/ω for this cavity ranges from 0.70 at d = 100 µm to 1.57 at d = 4
µm, as illustrated in Fig. 5.23 (b).

Unfortunately, we were unable to observe the coupling in the transmission spectra
during measurements for the two cavities, CAV04 and CAV05. The reasons for this failure
are provided in the main text.

(a) (c)

F1

F2
F3 F4

(b) L1

L2

2R

Wp, 1

Wp, 2

(d)

Figure 5.22: (a) ((c)) 3/4 and profile (b) ((d)) views of the cavity CAVmust
01

(CAVmust
02 ).
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6 Level attraction in a quasi-closed
cavity

Abstract
We provide a comprehensive analytical description of the coupling associated with an antiresonance
within a hybrid system comprised of a quasi-closed photonic cavity and a ferrimagnet. Whilst the
level attraction between a resonant system inside an open cavity is well understood, the physical
underpinnings of this phenomena within quasi-closed cavities have remained elusive. Leveraging
the input-output theory, we successfully differentiate between the repulsive and attractive aspects
of this coupling. Our model demonstrates that by understanding the phase-jump at the resonances
and the antiresonance, we can predict the nature of the coupling of the antiresonance for a
given position of the ferrimagnet in the cavity. This study has been published in the Physical
Review Applied journal [97] and can be found on arXiv. The section titled Further Work includes
additional studies, particularly measurements on a double reentrant cavity.
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6.1 Introduction
The level attraction of modes has garnered significant interest over the past decade,

offering new opportunities for the development of microwave and quantum devices. In
particular, level attraction has gained attention for its potential to give rise to two distinct
types of singularities, as illustrated in Fig. 6.1 (c) and (d). One of these is the exceptional
point (EP), which leads to the coalescence of polariton frequencies [35, 40, 211]. EPs enable
several intriguing applications, including topological energy transfer [212], which involves
the robust transfer of energy between systems that are resistant to both thermal and
quantum fluctuations - a feature of great interest for quantum communication. Moreover,
a small perturbation near an EP can induce a measurable frequency splitting, thereby
enhancing the sensitivity of devices designed for sensing applications [213–215].

The second singularity emerging in systems exhibiting level attraction is the bound
state in the continuum (BIC). At this point, the hybridized modes remain perfectly
embedded within the radiation continuum without radiating energy [216], resulting in an
exceptionally long lifetime [217] i.e. one of the eigenfrequencies has no imaginary part,
as shown in Fig. 6.1. The presence of BICs holds promise for applications in slow-light
devices, sensing, and quantum memory technologies [40, 217].

Furthermore, the level attraction of photons and magnons can had to spontaneously
break the parity-time-symmetry (PT-symmetry), and can form a high-fidelity Bell state
[218]. Bell states are a particular kind of entanglement between two particles, with a strong
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Figure 6.1: Dissipative coupling between light and matter shown in the eigen-
frequencies (a), (c), (e), and the polariton linewidths (b), (d), (f) as a function
of the angular frequency ωd. Bound states in the continuum (BICs) correspond
to real eigenvalues with no imaginary components, while exceptional points (EPs)
appear in systems exhibiting level attraction, where the linewidths of the two bosonic
modes converge to equality, where ∆ωd

and ∆ωc represent the matter and the light
dissipation, respectively.
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correlation, even spatially separated, hence are fundamental in quantum information such
as quantum teleportation, quantum cryptography, and quantum error correction [219].
Hence, it is important that the entanglement is steady and robust against perturbation of
the environment, which can lead to instability [218].

Systems described by an effective non-Hermitian Hamiltonian can exhibit non-reciprocal
photon transmission [65–73]. This property is valuable for devices such as circulators,
backscattering isolators, and unidirectional signal amplifiers, which are critical components
in modern communication and signal processing technologies.

Level attraction can manifest in both dissipative or coherent systems. In dissipative
systems, the effective Hamiltonian is non-Hermitian, leading to dissipative coupling
characterized by the spectral signature of mode level attraction. It has been demonstrated
that in open cavities - identified by an antiresonance (dip) in the transmission spectra at
their mode frequencies - dissipative coupling can occur when both the cavity mode and
the magnon (in the case of cavity magnonics) are coupled to the same traveling wave, i.e.,
the same waveguide [67, 89–94].

Dissipative coupling also arises in mediated coupling scenarios, where traveling waves
serve as a medium for coupling between two systems. Alternatively, this coupling can be
mediated by an intermediate dissipative mode. Theoretical studies have demonstrated that
a dissipative reservoir, which may include traveling waves or a damped auxiliary mode,
can mediate coupling between two oscillators [121, 220]. Initially predicted by Metelmann
and Clerk (2015) [65] and later refined by Yu et al. (2019) [221], this framework has been
used to explain the first experimental observation of dissipative magnon-photon coupling
[222].

Beyond effective dissipative magnon-photon coupling, it has been experimentally
shown that a cavity mode can function as a damped auxiliary mode, facilitating mediated
dissipative magnon-magnon coupling [223]. In this case, the cavity can couple to magnons
either coherently or dissipatively [224]. This type of dissipative coupling holds considerable
promise for applications such as magnon gradient memory, which could enable quantum
information encoding [86], as well as for quantum computation [87, 224]. Furthermore,
mediated coupling has been shown to enable long-distance interactions, enhancing the con-
trol and manipulation of cavity spintronic devices, with significant potential for advancing
spin-based technologies [88].

In coherent systems, two primary mechanisms can lead to level attraction. Theoretically,
it has been shown that coherent coupling between systems with positive and negative
energies can result in level attraction [225]. A negative energy system refers to one that has
been previously pumped to its highest excited state [226, 227]. For instance, a collective
spin ensemble can exhibit both effective positive and negative energy: when the ensemble
is polarized along the direction of the static magnetic field, the spin precession carries
positive energy. In contrast, when the polarization opposes the static magnetic field,
the precession is reversed, and the energy becomes negative [228]. In a ferromagnetic
system, the quasi-particle associated with this negative energy corresponds not to the
magnon - typically associated with a distribution of spins flipped opposite to the applied
magnetic field, as discussed in Sec. 2.3.1.a - but to a distribution of spins flipped in the
same direction as the magnetic field.
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Level attraction in coherent systems can also arise from interference effects. While level
attraction as been predicted [229] and experimentally observed [153, 154] in two-tone driven
systems, where both cavity modes and magnons are driven, we recently demonstrated
through an analytical model and simulations that this coupling signature originates from
interference phenomena [155]. Furthermore, a recent study showed that interference
between a magnon coupled to different cavity modes can lead to level attraction [230].

In contrast, the attractive character of the coupling between an antiresonance cavity
mode and a magnon in a quasi-closed cavity was solely experimentally identified by Rao
et al. (2019) [95]. To explain this observation, a phenomenological model based on RLC
circuits was employed. However, this approach did not provide a clear understanding
of the mechanisms underlying the emergence of level attraction. A more comprehensive
understanding of the origins of this phenomenon is a valuable insight for the design of
cavities in the various applications detailed above.

In this chapter, we focus on the coupling between an antiresonance and a magnon
mode by applying input-output theory. This approach provides a deeper understanding of
the parameters that govern the coupling behavior, whether it is repulsive or attractive. We
begin by introducing the general S-matrix derived from input-output theory and proceed
to explore the two distinct pathways leading to the occurrence of antiresonance. This
analysis provides significant insight into the factors contributing to the antiresonance
coupling phenomenon, particularly focusing on the phase-jump, which is the key feature
of the effective antiresonance coupling behavior.

Finally, the agreement between finite element method (FEM) simulations and our
proposed model prove the possibility to precisely control the coupling behavior when
positioning a ferrimagnetic sphere at different locations in a quasi-closed cavity.

6.2 Physical Model
As a reminder of Sec. 3.2.8, the model Hamiltonian for a closed cavity, denoted as

Ĥsys, encompasses p internal bosonic modes, which can be either photons or magnons in
the context of this study. The Hamiltonian is expressed as follows:

Ĥsys

ℏ
=
∑

p

ω̃pâ
†
p(t)âp(t) + 1

2
∑
q ̸=p

(
gqpâ

†
p(t)âq(t) + h.c.

). (6.1)

The first term represents the unperturbed Hamiltonian of a single oscillator, where
ω̃p = ωp − iγint

p /2, ωp/2π is the eigenfrequency, γint
p represents the intrinsic loss rates, and

â†
p (âp) is the creation (annihilation) operator of mode p. The second term is the interaction

Hamiltonian between two internal modes âp and âq, with their mutual coupling assessed
by gqp, and h.c. indicating the hermitian conjugate. Note that the factor 1/2 on the
intrinsic losses term can be derived from the input-output theory [40]. It is worth noting
that the fast oscillating terms (i.e. â†

pâ
†
q and âpâq) are neglected in this approximation,

which is known as the Rotating Wave Approximation (RWA) [231]. Indeed, this study
follows the work of Rao et al. (2019) [95], where various couplings were investigated in the
strong-coupling regime. Additionally, using the RWA simplifies the calculations and offers
a comprehensive understanding of the antiresonances and coupling effects that arise.
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In a quasi-closed cavity, the cavity modes are coupled to a common photon bath
[150, 152]. For each port n (i.e. a probe), an associated photon bath is represented by a
continuum of photonic oscillators, named external modes, with eigenfrequency ω. The
related Hamiltonian can be expressed as follow:

Ĥbath

ℏ
=
∑

n

∫
R

dω ωb̂†
ω,n(t)b̂ω,n(t). (6.2)

Here, b̂†
ω,n (b̂ω,n) represents the creation (annihilation) operator of the external mode

associated with port n and having the frequency ω.

The interaction between the bath and the system can be described by the following
model Hamiltonian (under the RWA):

Ĥint

ℏ
= i√

2π
∑
p,n

∫
R

dω
(
κpn(ω)b̂†

ω,n(t)âp(t) − h.c.
)
, (6.3)

where κpn(ω) is the external coupling strength between the external mode b̂n,ω and the
internal mode âp.

In the first Markov approximation, the external coupling strength is assumed to be
independent of the frequency:

κpn(ω) = κpn = √
γpne

iϕpn , γpn ∈ R. (6.4)

Here, γpn is real and represents the external photonic damping rate. Additionally, a phase
contribution ϕpn is introduced to the external coupling κpn, as previously discussed in
[232, 233]. The coupling phase is contingent on the phase of the electric (magnetic) field
injected or probed within the cavity. At a given time t, the first probe injects a field with
a certain phase. Consequently, each excited cavity mode shares the same phase at this
location in their field distribution within the cavity. However, the phase of the modes
at the second probe may differ, according to their field distribution, giving rise to both
constructive and destructive interferences. A probe senses the field only along one axis,
thereby resulting in an external coupling phase of either 0 or π.

The complete Hamiltonian is given by:

Ĥ = Ĥsys + Ĥbath + Ĥint. (6.5)

It is important to note that, owing to the RWA, this Hamiltonian is no longer applicable
to systems operating beyond the Strong-Coupling (SC) regime, where gqp/

√
ωqωp < 0.1

and κpn(ω)/√ωp < 0.1 [74, 77, 151]. It is important to note that the input-output theory
in the USC regime has already been explored in prior work by [151]. Further investigations
into the antiresonance behavior within this regime would provide valuable insights and
could be an interesting direction for future research. Both internal and external modes
obey to the bosonic relation3. The derivation of the S-matrix using the input-output
theory is given in Sec. 3.2.8.d.

3[âi(t), â†
j(t)] = δij , [b̂ω,i(t), b̂†

ω′,j(t)] = δijδ(ω − ω′), where δij and δ(ω − ω′) are the Kronecker
symbols.
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6.3 Physics of an antiresonance
The following section will discuss the two contributions to the existence of an antireso-

nance with two internal modes: when both modes are hybridized Cavity-Magnon Polaritons
(CMP), and when both modes are photonic modes. These scenarios are illustrated in the
two system schemes in Fig. 6.2 (a), and (b), respectively. Fig. 6.2 (c), a combination of
Fig. 6.2 (a) and (b), will be discussed in Sec. 6.4. In the rest of the study, the magnonic
loss rates correspond to γm = αω, where α = 2.10−4 is the Gilbert damping of YIG [8],
while the intrinsic photonic loss rates are neglected. Neglecting the photonic loss rates (i.e.
from 0 to 10γm) has no impact on the physics of the antiresonance except on its linewidth;
however, its frequency and coupling behavior remain unaffected.
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Figure 6.2: Schemes of classical oscillators representing a quasi-closed cavity
composed of (a) a photonic mode ĉ0 coupled with strength g0 to a magnon mode m̂;
(b) two photonic modes ĉ0 and ĉ1; and (c) two photonic modes ĉ0 and ĉ1 coupled
with strength g0 and g1 respectively to a magnon mode m̂. b̂0 and b̂1 are the ports,
and κij = √

γijeiϕij the external couplings.

6.3.1 One photon mode & one magnon mode
The depicted system in Fig. 6.2 (a) consists of a single photonic mode ĉ0 with a

frequency ω0, interacting with two ports (i.e. two probes) denoted as b̂0 and b̂1. The
coupling strengths for these interactions are characterized by κ00 and κ01, respectively.
Additionally, the magnon m̂ with a frequency of ωm is only coupled to the photonic mode
with a coupling strength of g0. According to Eq. (3.65) and (4.65), the transmission of
this system is expressed as follows:

S21 = −i
√
γ00γ01∆̃me

iΦ0

∆̃0∆̃m − g2
0

, (6.6)

where ∆̃m = ω − ω̃m, ω̃m = ωm − i
2α, ∆̃0 = ω − ω̃0, ω̃0 = ω0 − i

2(γ00 + γ01), and
Φ0 = ϕ01 − ϕ00.
Minimizing the denominator in Eq. (6.6) gives rise to the complex polaritonic frequencies:

ω̃± = 1
2

[
ω̃0 + ω̃m ±

√
(ω̃m − ω̃0)2 + 4g2

0

]
, (6.7)

where ω± = R{ω̃±} represents the polaritonic frequencies, and γ± = I{ω̃±} polaritonic
loss rates. Minimizing the numerator of Eq. (6.6) leads to the determination of the
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Figure 6.3: (a) Transmission spectrum of a system composed of a cavity photon
and a magnon, sketched in Fig. 6.2 (a), using Eq. (6.6), and the polariton frequency
dependence in dashed white line using Eq. (6.7). The phase of the S21 parameter for
both cases Φ0 = 0 and Φ0 = 1 is presented with red lines, arbitrarily at ωm = 0.5ω0
and ωm = 1.5ω0, respectively. The phase-jumps of both the polariton resonances and
the antiresonance for the two cases Φ0 = 0 and Φ0 = 1 are respectively represented
in (b) and (d), respectively. The arrow of the middle represents the antiresonance
phase-jump, while the two others shows the polariton resonance phase-jumps. In
green is represented the negative phase-jump (from π/2 to −π/2), while in purple is
represented the positive phase-jump (from −π/2 to π/2).

antiresonance frequency ωar arising from the interaction between a photon and a magnon:

ωar = ωm. (6.8)

For this case, regardless of the coupling phase between the cavity photon and the
ports, the antiresonance frequency will always coincide with the magnon frequency, which
is the externally non-excited oscillator, as highlighted in the transmission spectra of the
system depicted in Fig. 6.3 (a).

Note that Eq. (6.6) can be expressed as a sum of Lorentzians:

S21 = −i
√
γ00γ01

ω̃+ − ω̃−

(
ω̃m − ω̃−

ω − ω̃−
+ ω̃+ − ω̃m

ω − ω̃+

)
eiΦ0 . (6.9)

The terms within the parentheses correspond to the resonances of the lower and upper
polaritons. Numerators and the shared factor term (except for eiΦ0) are all positive. As
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a result, the phase of both resonances shift from π/2 to −π/2 when Φ0 = 0 (referred to
as negative phase-jump in all subsequent discussions, indicated by the green arrows in
Fig. 6.3 (b)), and from −π/2 to π/2 when Φ0 = π (positive phase-jump, represented by
the purple arrows in Fig. 6.3 (c)). The phases for both cases are shown with red lines in
Fig. 6.3 (a), arbitrarily at ωm = 0.5ω0 for Φ0 = 0, and at ωm = 1.5ω0 for Φ0 = π. The
common phase factor eiΦ0 for both polaritons indicates that these resonances undergo the
same phase-jump.

To emphasize the phase-jump of the antiresonance, the transmission can be rewritten
in a different manner:

S21 = −i
√
γ00γ01∆̃me

iΦ0

(ω − ω̃−)(ω − ω̃+) . (6.10)

In a frequency range between the two polariton frequencies, the given equation characterizes
the antiresonance. In this frequency range, all terms maintain the same sign except for
∆m = R{∆̃m}, which influences the phase-jump. To ensure a meaningful comparison of
the phase in Eq. (6.9), it is crucial that all terms remain positive (excluding ∆m and eiΦ0);
otherwise, the phase-jump would be affected. However, ω − ω+ is negative around the
antiresonance frequency. Therefore, to render all terms positive in the expression of the
transmission, Eq. (6.10) becomes:

S21 = −i
√
γ00γ01∆̃me

iΦar

(ω − ω̃−)(ω̃+ − ω) , (6.11)

where Φar = Φ0 +π represents the phase factor of the antiresonance, and its phase factor is
π-dephased compared to the phase factors of the polaritons, meaning that the phase-jump
is positive when Φ0 = 0, and negative when Φ0 = π, as depicted in Fig. 6.3 (b) and (c)
with the purple and green arrows, respectively. In this scenario, it has been shown that
the phase-jumps does not impact the behavior of the antiresonance; the antiresonance
frequency will always lie between the two polaritonic frequencies.

In the next subsection, we will demonstrate that, according to the scenario depicted in
Fig. 6.2 (b); the antiresonance frequency can be explicitly dependent on the phase-jumps
involved in the system. Furthermore, in the final subsection illustrated in Fig. 6.2 (c), we
will demonstrate that antiresonance coupling can exist and, depending on the different
phase-jumps involved in the system, this coupling will exhibit either level repulsion or
attraction. It is important to note that the specific path the phase takes during the
phase-jump - whether it passes through 0 or π - is not crucial for the antiresonance
coupling. What matters is the sign of the phase-jump: whether it is negative (indicated
by the green arrow) or positive (indicated by the purple arrow) for both the resonances
and the antiresonance.

6.3.2 Two photon modes
The system illustrated in Fig. 6.2 (b) comprises two photonic modes ĉ0 and ĉ1 with

frequencies ω0 and ω1, respectively. These two photon modes interact with two ports, b̂0
and b̂1, characterized by external coupling strengths denoted as κ00 and κ01 with respect
to mode ĉ0, and κ10 and κ11 with respect to mode ĉ1. From Eq. (3.65) and Eq. (4.65), the
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Table 6.1: Antiresonance behavior

Φ = 0 Φ = π
δ > 1

ωar ∈ [ω0;ω1]
ωar ∈ [0;ω0]

δ < 1 ωar ∈ [ω1; +∞[

transmission of such a system reads:

S21 = −i
√
γ00γ01∆̃1e

iΦ0 + √
γ10γ11∆̃0e

iΦ1 − i

2Γ2
1

∆̃0∆̃1 + |Γ|2

4

, (6.12)

where ∆̃1 = ω − ω̃1, ω̃1 = ω1 − i

2(γ10 + γ11), Φ1 = ϕ11 − ϕ10, Γ = √
γ00γ10e

i(ϕ10−ϕ00) +
√
γ01γ11e

i(ϕ11−ϕ01), and Γ2
1 = √

γ00γ11Γei(ϕ11−ϕ00) + √
γ01γ10Γ∗ei(ϕ01−ϕ10).

The complex resonance frequencies of the transmission read:

ω̃± = 1
2

[
ω̃0 + ω̃1 ±

√
(ω̃1 − ω̃0)2 − |Γ|2

]
. (6.13)

In the context of a cavity exhibiting non-degenerate modes, the following hypothesis
applies:

|ω̃1 − ω̃0| ≫ |Γ|. (6.14)
This inequality reflects the condition that the frequency difference between the two
modes is significantly larger than the magnitude of Γ, interpreted as an indirect coupling
mediated by the common coupling to the probes between the two photonic modes. In this
approximation, the complex resonance frequencies are equal to the complex photon mode
frequencies:

ω̃− = ω̃0, ω̃+ = ω̃1. (6.15)
The antiresonance frequency of such a system is given by:

ωar = ω1 + δeiΦω0

1 + δeiΦ , (6.16)

where δ =
√
γ10γ11/γ00γ01 represents the external dissipation ratio between the mode ĉ1

and ĉ0 at the two probes, and Φ = Φ1 − Φ0 = ϕ00 + ϕ11 − ϕ01 − ϕ10 represents the phase
factor difference between the two photonic modes.

We highlight three distinct antiresonance frequency regimes based on the values of δ
and Φ, summarized in Table 6.1, and discussed just below.

Considering the hypothesis given in Eq. (6.14), the transmission from Eq. (6.12) can
also be expressed as a sum of Lorentzians:

S21 = −i


√
γ00γ01e

iΦ0 + i

2Γ2

ω − ω̃0
+

√
γ10γ11e

iΦ1 − i

2Γ2

ω − ω̃1

 , (6.17)
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Figure 6.4: Three cases of the frequency dependence of the antiresonance of the
system composed of two cavity photons, sketched in Fig. 6.2 (b). δ and Φ are defined
in Eq. (6.16). The magnitude of the transmission in shown in blue, while the phase
is represented in red. Green arrows represent the negative phase-jumps (from π/2
to −π/2), while purples arrows represent the positive phase-jumps (from −π/2 to
π/2).

where Γ2 = Γ2
1

ω̃1 − ω̃0
, is negligible far from the antiresonance frequency. By neglecting Γ2,

the two terms represent isolated photon modes.

When Φ = 0, the antiresonance frequency ωar is situated between the two photon mode
frequencies ω0 and ω1, as depicted in Fig. 6.4 (a) in blue. This corresponds to the scenario
where the two Lorentzians in Eq. (6.17) share the same phase factor, i.e. Φ0 = Φ1, therefore
the same phase-jump, as illustrated in Fig. 6.4 (a) with the green arrows. Thereby, the
two Lorentzian are π-dephased and destruct themselves for frequencies between ω0 and ω1.
This aligns with the case discussed in Sec. 6.3.1 in Eq. (6.9); when two eigenmodes share
the phase factor, the antiresonance frequency lies between their respective eigenfrequencies.

When Φ = π, the antiresonance frequency ωar is either less than ω0 or higher than
ω1, but it is not situated between the two photon mode frequencies. This corresponds to
the scenario where the phase factor of the two Lorentzians in Eq. (6.17) are π-dephased,
therefore opposed phase-jumps, as highlighted by their respective green and purple arrows
in Fig. 6.4 (b) and (c). Two cases arise: when δ > 1, indicating that the photon mode ĉ1 is
more coupled with the probes than the photon mode ĉ0, and the antiresonance frequency
ωar is lower than ω0, as illustrated in Fig. 6.4 (b); when δ < 1, indicating that the photon
mode ĉ0 is more coupled with the probes than the photon mode ĉ1, and ωar is higher than



6.4. Coupling behavior 149

ω1, as shown in Fig. 6.4 (c).

As in the previous section, the transmission can be rewritten to emphasize the phase
of the antiresonance:

S21 = −i
√
γ00γ01|1 + δ|(ω − ωar)eiΦar + i

2Γ2
3

(ω − ω−)(ω − ω+) , (6.18)

where Γ2
3 = √

γ00γ01(γ10 + γ11) + √
γ10γ11(γ00 + γ01) − Γ2

1, is negligible far from the
antiresonance frequency, and Φar = Φ0 + arg(1 + δeiΦ).

When Φ = 0, the term ω − ω+ becomes negative because the antiresonance frequency
is situated between the two photon frequencies, and Φar → Φar + π.

Similar to the case of a system composed of one photon and one magnon, as discussed
in Sec. 6.3.1, Φar = π when Φ0 = Φ1 = 0, and Φar = 0 when Φ0 = Φ1 = π. This indicates
an opposing phase-jump of the antiresonance compared to the phase-jumps of the two
resonances (indicated by a purple arrow in Fig. 6.4 (a)).

In the case where Φ = π, i.e. Φ1 = Φ0 + π, the antiresonance has the same phase-jump
as the second photon mode, i.e. Φar = Φ1, as illustrated in Fig. 6.4 (b) by their shared
purple arrows. Conversely, when δ < 1, the antiresonance has the same phase-jump as the
first photon mode, i.e. Φar = Φ0, as depicted in Fig. 6.4 (c) by their shared green arrows.
Understanding the phase-jump of the resonances and antiresonance is highly valuable in
cavity engineering, as demonstrated in the following sections.

To conclude on the occurrence of antiresonances, we have explored two simplified
scenarios involving only two internal modes. In a real cavity containing an infinity of
modes, obtaining an analytical expression for the antiresonance frequency becomes a
complex task. Nevertheless, it is feasible to obtain a reasonable approximation of the
antiresonance frequency in a real cavity by considering the nearest and most attractive
modes numerically, as will be shown later.

6.4 Coupling behavior
Here, we clarify all the contributions and conditions required to observe either an-

tiresonance level repulsion or level attraction between two cavity photon modes and one
magnon mode. The system is illustrated in Fig. 6.2 (c). From Eq. (3.65) and Eq. (4.65),
the transmission of such a system reads:

S21 = −i
√
γ00γ01(∆̃1∆̃m − g2

1)eiΦ0 + √
γ10γ11(∆̃0∆̃m − g2

0)eiΦ1 + Γ4g0g1 − i

2Γ2
5∆̃m

∆̃0∆̃1∆̃m − g2
0∆̃1 − g2

1∆̃0 + |Γ|2

4 ∆̃m + i

2(Γ + Γ∗)g0g1

,

(6.19)
where Γ4 = √

γ00γ11e
i(ϕ11−ϕ00) + √

γ01γ10e
i(ϕ01−ϕ10),

and Γ2
5 = √

γ00γ11Γ∗ei(ϕ11−ϕ00) + √
γ01γ10Γei(ϕ01−ϕ10).

Under the assumption outlined in Eq. (6.14), the system features three resonance frequencies
given by:

Ω− = ω−
0 , Ω0 = ω+

0 + ω−
1 − ωm, Ω+ = ω+

1 , (6.20)



150 Chapter 6. Level attraction in a quasi-closed cavity

where ω±
0 = ω±(ω̃0), and ω±

1 = ω±(ω̃1), from Eq. (6.7).
The minima in transmission of the system are determined by the following antiresonance
frequencies:

ω±
ar = 1

2

[
ωar + ωm ±

√
(ωar − ωm)2 + 4|gar|2eiΦar

]
, (6.21)

where ωar is defined in Eq. (6.16). The effective coupling strength between the two
antiresonances reads as:

gar =
√
g2

1 + δeiΦg2
0 + Cg0g1

1 + δeiΦ , (6.22)

where C =
√
γ11/γ01e

i(ϕ11−ϕ01) +
√
γ10/γ00e

i(ϕ00−ϕ10), g0 and g1 are the coupling strengths
of each cavity mode to the magnon, and δ and Φ are the same as in Eq. (6.16). When
Φ = π, gar can be either real or imaginary, depending on the values of δ, g0, g1, and C. In
Eq. (6.21), we chose to explicitly introduce the effective coupling phase Φar, justifying the
absolute value of the effective coupling strength. This choice implies that Φar is equal to 0
(π) when gar is real (imaginary), leading to level repulsion (attraction).

Drawing an analogy with the resonance frequencies of a single photon coupled with a
magnon described in Eq. (6.7), we can derive the Hamiltonian that governs the antireso-
nance:

Ĥar

ℏ
= ωarĉ

†
arĉar + ωmm̂

†m̂+ gar(ĉ†
arm̂+ eiΦar ĉarm̂

†), (6.23)

where ĉ†
ar (ĉar) represents the effective creation (annihilation) operator of the cavity

antiresonance with an eigenfrequency of ωar. Note that the eigenfrequencies resulting from
the diagonalization of this Hamiltonian correspond to the antiresonance frequencies in
Eq. (6.21). From here, we demonstrate that antiresonance coupling arises from interferences
at a port due to multiple internal modes [230]. As explained by Gardin et al. (2024)
[155] for level attraction due to interferences in two-tone driving, the Hamiltonian in
Eq. (6.23) does not adequately describe the system. Indeed, while this Hamiltonian
successfully captures the antiresonance coupling, it falls short in describing the entire
spectrum, particularly the resonances. Although the dissipative coupling is typically
modeled using a non-Hermitian Hamiltonian, the level attraction observed here remains
a hallmark of a Hermitian Hamiltonian, representing the coherent coupling of internal
modes. This level attraction at the antiresonance arises from interference between the
different cavity modes, all of which are coupled to the same probes. This indicates that
the observed level attraction for the antiresonance is not due to dissipative coupling, as
previously suggested by [95]. By retrieving this Hamiltonian for the description of the
antiresonance, we can understand why, in certain circumstances, level attraction has been
misinterpreted as dissipative coupling.

It is worth noting that while the effective Hamiltonian in Eq. (6.23) and the frequencies
of the effective antiresonances in Eq. (6.21) have been previously introduced based on
phenomenological considerations, the effective coupling strength gar lacked a clear physical
explanation [95]. The transmission spectrum of the antiresonance exhibits a level repulsion
when the coupling strength gar is real. Conversely, the transmission spectrum shows a
level attraction when gar is imaginary.

In the case where only one photonic mode is coupled with the magnon mode and the
phase-jump of the two modes are opposed, i.e. Φ1 = Φ0 + π, the spectrum will exhibit
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Table 6.2: Effective coupling behavior

g1 = 0 g0 = 0

δ > 1 gar = g0√
1 − δ−1

∈ R gar = i
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δ − 1
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Figure 6.5: Transmission spectra of the system sketched in Fig. 6.2 (c) considering
the 4 different cases related in Table 6.2 and using Eq. (6.19) showing either an
effective level repulsion or level attraction between the antiresonances, where δ and
Φ are defined in Eq. (6.16), and the effective antiresonance frequency dependences in
dashed white lines using Eq. (6.21). The phase of the S21 parameter is presented with
red lines, at arbitrary ωm values. Φ = π in all four cases. Green arrows represent
the negative phase-jumps (from π/2 to −π/2), while purples arrows represent the
positive phase-jumps (from −π/2 to π/2).
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either a repulsive or an attractive signature, and this is determined by the value of δ. The
various situations based on the values of g0, g1, and δ, when Φ = π are illustrated in Table
6.2.

As mentioned earlier, when δ > 1, ωar ≤ ω0. In this case, the phase-jump of the
lower cavity mode and the cavity antiresonance ĉar are opposed, as depicted in Fig. 6.5
(a) and (b), where their arrows are green and purple, respectively. As a result, the lower
CMP resulting from the hybridization of the magnon and the lower cavity mode exhibits
level repulsion with the antiresonance mode, as depicted in Fig. 6.5 (a). In this case, the
coupling strength gar is real, as provided in Table 6.2. However, the upper cavity mode
and the cavity antiresonance exhibit the same phase-jump, represented by purple arrows.
Consequently, the lower CMP resulting from the hybridization of the magnon and the
upper cavity mode exhibits level attraction with the antiresonance modes, as shown in
Fig. 6.5 (b). Here, gar is imaginary, as also indicated in Table 6.2.

Conversely, when δ is less than 1, ωar ≥ ω1. In this scenario, the phase-jumps of the
upper cavity mode and the cavity antiresonance are opposed (purple and green arrows,
respectively), while the lower cavity mode and the cavity antiresonance exhibit the same
phase-jump, as illustrated in Fig. 6.5 (c) and (d) by green arrows. This leads to level
attraction at the antiresonance coupling when the magnon is coupled to the lower cavity
mode, as depicted in Fig. 6.5 (c), and to level repulsion at the antiresonance coupling
when the magnon is coupled to the upper cavity mode, as shown in Fig. 6.5 (d). Their
respective coupling strengths are imaginary and real, as noted in Table 6.2.

In summary, when there is an opposed phase-jump between a cavity mode and an
antiresonance mode, it leads to level repulsion in the coupling between the antiresonance
and the CMP resulting from the hybridization of the cavity mode and a magnon. Conversely,
when there is a similar phase-jump between a cavity mode and an antiresonance mode, it
results in level attraction in the coupling between the antiresonance and the CMP.

As mentioned earlier, in contrast to this two-mode cavity, a real cavity is characterized
by an infinite amount of modes coupled to the same magnon mode. This results in a
highly complex system, making it challenging to derive a straightforward analytic equation
with easy interpretability. Nevertheless, the analysis of the phase of the resonances and
the cavity antiresonance proves to be valuable for engineering cavities and predicting the
coupling behavior of the antiresonance.

6.5 Simulation

6.5.1 Model comparison
This section, focusing on FEM simulation on COMSOL Multiphysics®, aims to put

into practice the concepts from the previous section applied not only to just two-mode
cavity but to a cylindrical cavity exhibiting seven modes in the Ku-band coupled to one
magnon mode, represented by a YIG sphere placed at different locations.

It has previously been concluded that proximity to a node of the RF H-field of
a cavity antiresonance was an essential condition for observing the level attraction of
an antiresonance [95]. In this study, level attraction was observed exclusively in the
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experimental measurements. The simulations were based on CST Studio®, where the
H-field distribution is a combination from both probes excited, which does not accurately
represent the real field distribution within the measurement setup, where ports are
excited alternately, one at a time. Additionally, the simulations did not account for the
magnetic properties of the YIG, treating it only as a dielectric, and did not analyze the
antiresonance behavior as a function of the YIG’s position within the cavity. Moreover,
the level attraction was attributed to the Lenz effect produced by the cavity, generating
a microwave current that hinders the dynamics of the magnetization. It was concluded
that the CMP solely repulsively interacted with the antiresonances. Consequently, in
an antinode of the RF H-field of a cavity antiresonance, the strong repulsive coupling
would prevent the manifestation of the Lenz effect. However, CMP can in fact exert either
repulsive or attractive influence on the coupling with the antiresonance. This behavior
depends on the phase-jumps of both the antiresonance and the hybridized cavity mode.

A plausible initial approach to modeling a cavity with infinite modes involves consider-
ing the minimum number of modes necessary to achieve the same antiresonance frequency.
Identifying the phase-jump of an antiresonance provides insights into whether a cavity
mode, through the CMP resulting from its coupling with a magnon, behaves repulsively
or attractively with the antiresonance.

6.5.2 Cavity features
In this study, a cylindrical cavity described in [95] is utilized, featuring a height of

35 mm and a radius of 12.5 mm. Positioned at each side of the cavity are two electrical
probes, arranged in parallel as displayed in Fig. 6.6 (a). These probes are situated at 10
mm from the cavity’s bottom. A YIG sphere, having a radius of 0.5 mm, is positioned at
two distinct locations: position A (x, y, z = 11.9, 0, 0.6 mm from the bottom center of the
cavity), inducing level repulsion; and position B (x, y, z = 0, 0, 0.6 mm), inducing level
attraction.

In Fig. 6.6 (c) and (d), the amplitude and the phase of the transmission are respectively
depicted. Seven cavity modes were considered in the input-output model to match the
same |S21| trace from the Frequency Domain (FD) simulations. To accomplish this, we first
solve for the eigenmodes of the system to extract various parameters, including the phases
of the E-field located at each probe, the quality factor, and the cavity mode frequencies,
as detailed in Table 6.3, following the procedure described in Sec. 4.1.3. It is worth noting
that our assumption involved equal coupling of a cavity mode with each probe, resulting
in equal external coupling strengths between an internal mode and ports. As depicted
in the inset of Fig. 6.6 (c), there is a frequency shift of ∆ = 11 MHz observed for the
antiresonance around 13.59 GHz between the FD simulation and the input-output model,
corresponding to the frequencies of 13.589 GHz and 13.600 GHz respectively.

Note that we need to consider a sufficient number of modes to approach the FD
simulation closely as illustrated in Fig. 6.6 (b), which shows the dependence of the
mismatch between FD simulation and input-output as function of the number of modes
considered. For instance, when only the TM012 and TE212 modes are considered, the
discrepancy between the simulation and the model is 758 MHz. However, this mismatch
decreases to 329 MHz when the TE211 mode is included in the model considerations.
Therefore, when considering seven modes, the discrepancy is minimized to 11 MHz. The
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Figure 6.6: (a) Schematic of the cylindrical cavity, whith A the YIG position to
observe effective repulsive coupling, and B the YIG position to observe effective
attractive coupling; (b) Graph illustrating the convergence of the antiresonance
frequency between the FEM simulation frequency ωFD and the input-output model
frequency ωIO based on the number of considered modes; (c) |S21|, and (d) Φ21
versus the frequency of the empty cavity, where the input-output model in dashed
red line is compared to the FEM simulation in solid blue line. Green dots in (b) and
areas in (d) represent modes exhibiting a negative phase-jump (from π/2 to −π/2).
Purple dots in (b) and areas in (d) depict modes exhibiting a positive phase-jump
(from −π/2 to π/2), as observed for the phase-jump of the antiresonance at 13.59
GHz in the same color in (d).
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Table 6.3: Cavity Modes characteristics

Coupling Φ21- Mode ω/2π
Q

gA/2π gB/2π
jump [GHz] [MHz] [MHz]

repulsive -
TE211 12.4 1525 13.5 0.0

(green area)
TM012 12.5 4441 39.3 0.0
TE212 14.4 912 30.1 0.0
TM013 15.8 9228 43.3 0.0

attractive + TE113 14.6 7501 3.6 50.0

(purple area) TM111 15.2 12023 3.2 72.2
TE311 16.6 739 2.5 4.5

input-output model demonstrates consistent phase, resembling the FEM simulation, except
for a constant phase shift proportional to the frequency in the FEM simulation, as shown
in Fig. 6.6 (d). As demonstrated in Sec. 4.1.4.b, this frequency shift can be compensated
by introducing a second-order polynomial phase correction to the transmission parameter.
Importantly, this adjustment does not affect the underlying physics. Since the same phase
is applied to all terms in the expression for S21, the magnitude - representing its absolute
value - remains unchanged. Moreover, the phase-jump considerations, which are essential
for characterizing the nature of different antiresonance couplings, are also preserved. As
mentioned in Sec. 6.3.1, the specific path the phase takes during the phase-jump is not
important; what matters is whether the phase-jump is considered positive or negative. In
the model, a positive phase-jump indicates a shift from π/2 to −π/2, while a negative
phase-jump corresponds to a shift from −π/2 to π/2. However, due to the polynomial
phase shift, it is no longer practical to rely on the simulated phase itself. Nevertheless,
the phase-jump consistently alternates between positive and negative, meaning that we
must count the number of phase-jumps between the antiresonance and the resonance
for proper interpretation. Furthermore, with the inclusion of more than 7 modes, the
model fails to converge for the antiresonance frequency and cannot accurately match the
frequency obtained from FEM simulations. This phenomenon may be attributed to the
first Markov approximation, where the external coupling is assumed to be independent of
frequency [234, 235]. Consequently, there is a significant influence from far-detuned modes
on the antiresonance frequency. However, this shifts the antiresonance frequency without
altering its phase-jump, which remains the key feature for predicting whether the effective
antiresonance coupling would be repulsive or attractive.

Around the antiresonance at a frequency of 13.59 GHz, the phase undergoes a positive
phase-jump, from −π/2 to π/2. On the contrary, the resonances may exhibit a positive or
negative phase-jumps, depicted in purple or green areas respectively in Fig. 6.6 (d), and
are summarized in Table 6.3, where the YIG sphere has been placed at either position A or
B in simulations. As mentioned earlier, a resonance with the same phase-jump contributes
attractively, while a resonance with an opposite phase-jump acts repulsively with the
antiresonance.

The TMθrz and TEθrz modes are characterized by the number of field nodes in the
θ (spanning 180°), r, and z directions, where r represents the radial direction and θ
symbolizes the azimuthal direction in the xy-plane. Referring to Fig. 6.6, for a specified
r value (in this case, equal to 1), only the θ number will determine the coupling phase



156 Chapter 6. Level attraction in a quasi-closed cavity

dependence associated with each mode since the probes are oriented in the radial direction.
In this scenario, modes with an odd θ number induce a repulsive effect, while modes with
an even θ number generate an attractive influence.

The H-field and E-field distributions of the repulsive mode TE212 is illustrated in
Fig. 6.7 (a) and (c), while the field distributions of the attractive mode TE113 is depicted
in Fig. 6.7 (b) and (d). For each mode in the Ku-band, we calculated the coupling
strengths [110] for two distinct locations of the YIG sphere, A and B, as summarized
in Table 6.3. Here, we present only two modes to illustrate the main message of the
chapter: regarding the field distribution of modes that act repulsively or attractively to the
generated antiresonance permit in determining the optimal positioning of the YIG sphere
as function of the needs, level attraction or repulsion behavior with the antiresonance.
The conclusion of the field distribution of the two illustrated mode also applies for the
other repulsive and attractive modes, as shown in Appendix 6.B.

At the bottom right side in the xz-plane of the cavity (position A), the YIG sphere
is positioned at an anti-node of the H-field for the repulsive modes and at a node of the
H-field for the attractive modes. In contrast, at the bottom center position (position
B), the YIG sphere is placed at a node of the H-field for the repulsive modes and at an
anti-node of the H-field for the attractive modes. More generally, we observe that the
repulsive modes exhibit a minimum in the H-field at position B, while the attractive
modes show a minimum in the H-field at position A. This indicates that by carefully
positioning the YIG sphere within the cavity, we can selectively minimize the impact of
either the repulsive or attractive mode.

The modes are either even (for repulsive modes) or odd (for attractive modes) along
the azimuthal direction, determining the sign of the probed E-field in transmission. This
relationship is depicted in Fig. 6.7, which shows the E-field distribution in the xy-plane.
In Fig. 6.7 (e) and (f), the FD simulation of the transmission spectrum versus the
magnon frequency and the applied RF frequency reveals the effective level repulsion of
the antiresonance when the YIG sphere is positioned at position A, and the effective
level attraction of the antiresonance when the YIG sphere is positioned at position B,
respectively. Both types of coupling are effectively replicated by the input-output model,
depicted in white dashed lines in Fig. 6.7 (e) and (f). Note that the effective antiresonance
frequencies were obtained by fitting the resulting spectra from the input-output model.
These frequencies are illustrated in Sec. 6.A.

Despite the similarity in coupling behavior, there exists a notable disparity in the
coupling strengths between the simulation and the model. Specifically, the effective
repulsive (attractive) coupling strength is of 26 MHz (15 MHz) in the simulation, contrasting
with 14 MHz (24 MHz) in the model when the YIG sphere is positioned at location A
(B). This discrepancy may arise from the approximations made for the external coupling
strength and the neglected internal photonic damping rates. Additionally, limitations
in mode truncation may contribute to an inadequate value. Nevertheless, our findings
demonstrate that modes can exhibit either repulsive or attractive effective coupling, and
by strategically engineering cavities to spatially separate the modes, it becomes possible
to control the coupling behavior when positioning the YIG sphere at different locations.
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Figure 6.7: Norm of the H-field in the xz-plane for (a) TE212 and (b) TE113.
Norm of the E-field in the xy-plane at the height of the probes for (c) TE212, and
(d) TE113. In (a)-(d), the circles illustrate the positions (A or B) of the YIG sphere
mentioned in Fig. 6.6, and the black arrows in (c) and (d) indicate the polarization
of the E-field at the probe locations. The transmission spectra from FD simulation
are shown in (e) when the YIG sphere is placed at position A, and in (f) when
the sphere is placed at position B. Utilizing the parameter values from Table 6.3,
including the mode frequencies, the phase of the E-field polarization at each probe,
the quality factors, and the coupling strengths of the 7 modes, the white dashed line
in (e) and (f) represents the antiresonance frequency obtained by fitting the resulting
spectra from the input-output model sketched in Fig. 6.12 in Appendix 6.A.



158 Chapter 6. Level attraction in a quasi-closed cavity

6.6 Conclusion
This study has provided valuable insights into the intricate interaction between cavity

modes and magnons within quasi-closed cavities. Through the incorporation of the input-
output formalism enhanced with a crucial phase factor in external couplings, we have
not only successfully replicated antiresonance behavior in simulations but also provided
explanations for the intriguing phenomena of antiresonances, encompassing both their level
repulsion and level attraction, as observed in the transmission spectrum. Furthermore,
we provided and demonstrated the physical underpinnings of the effective antiresonance
coupling gar. Understanding the phase-jumps of the antiresonance and the different mode
families (e.g. characterized by their symmetries), enables the prediction of the behavior of
gar regarding the coupling of mode families.

The reconfigured model introduced here carries promising implications for cavity
design, offering a versatile tool to tailor these structures for a wide range of applications,
from metrology [214, 215] to RF devices [236, 237] and the domain of quantum devices
[87, 238–240].

6.7 Further Work
In this section, we compare the model developed using input-output theory, as presented

in this chapter, with measurements performed on the double re-entrant cavity. We aim
to verify the statement from [95], which claims that the RF magnetic field in the cavity
only acts repulsively with a cavity antiresonance. To justify this statement, it has been
considered the RF magnetic field distribution in the cavity at the antiresonance frequency,
as presented in Sec. 6.5.2. It has been concluded that positioning the YIG sphere in an
intense field would produce level repulsion, while positioning the YIG sphere at a field
minimum would produce level attraction. This was explained by the negative back-action
due to the Lenz effect being dominant when the YIG sphere is at a field minimum (the
spin precession induces an RF h-field, which impede the the spin precession).

In this chapter, we analytically demonstrate that no Lenz effect occurs. The antireso-
nance arises from interferences between different pathways, i.e. cavity modes, that the RF
field takes. Consequently, the RF coupling depends on the phase-jump of the different
cavity modes and their coupling strengths with the magnon.

Considering COMSOL Multiphysics® simulations, measurements, and modeling, we
will show that the field distribution at the antiresonance frequency provides no insights
into the coupling nature of the antiresonance. Only an analysis of the different modes on
each side of the antiresonance can yield a correct interpretation.

6.7.1 Antiresonance creation
The first step is to design a cavity that presents an antiresonance distinct from a

simple cylindrical cavity. For this purpose, we used a double re-entrant cavity, previously
described in Chapter 5. To create an antiresonance at a sufficiently low frequency, we
used a dielectric with a relative permittivity εr = 10 and dimensions 6.2×3.8×0.6 mm3,
positioned between the two posts. To understand how antiresonances can occur, FD
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simulations were performed on the cavity for eight different dielectric widths, ranging from
520 µm to 580 µm. The transmissions for each dielectric width are depicted as solid black
lines in Fig. 6.8 (a). As shown, two antiresonances occur and repel each other in frequency
as the dielectric width increases. To understand which variables cause these antiresonance
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Figure 6.8: (a) Transmission of the dielectric-loaded cavity at different dielectric
widths: FD simulation in solid black lines; input-output model with fitted γi0 values
in dashed red lines; and input-output model with the mean over dielectric widths of
the fitted γi0 values in dotted green line. (b)-(e) show the mode frequencies in blue
and the fitted γi0/2π values in orange versus the dielectric width for the first four
modes. The mean values of γi0/2π over the dielectric widths are represented by the
dotted orange lines for each mode.
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dynamics, each of the transmissions was fitted using the input-output model. In the FD
simulations, the cavity boundaries were considered perfect electric conductors, meaning
that intrinsic dissipation rates associated with electric losses are null. The fitted variables
are the external dissipation rates γij, associated with the external coupling strengths κij.
In this cavity, two probes are considered, and their coupling to one mode is assumed to be
equal, i.e., γi0 = γi1, where i represents the considered cavity mode, and 0 or 1 represents
the first or second probe in the cavity.

The fitted values of the external dissipation rates are illustrated in Fig. 6.8 for (b)
γ00, (c) γ10, (d) γ20, and (e) γ30 with respect to the dielectric width. Note that the mode
frequencies ωi are depicted in Fig. 6.8 (b)-(e) and are known from eigenmodes simulations.
The external coupling phases ϕij lead to the same phase jumps for the first and third
modes, and are opposed to the second and fourth modes.

The dashed red line in Fig. 6.8 (a) represents the transmission of the input-output
model with the values given in Fig. 6.8 (b)-(e), accurately reproducing the resonances and
antiresonances in the frequency range from 3.5 to 16.5 GHz. We observe that only the
frequency of the second mode depends on the dielectric width, decreasing slightly from
8.54 to 7.50 GHz as the width increases from 520 to 580 µm. Additionally, the external
dissipation rates of the first mode remain relatively constant, while those of the second
mode decrease. However, the external dissipation rates of the last two modes vary with
respect to the dielectric width without a clear trend.

To understand the role of the second mode’s frequency decrease and the variation in
external dissipation rates, all transmissions were plotted as dotted green lines in Fig. 6.8
(a) using the input-output model, assuming constant γ values equal to their mean values
across different dielectric widths. We also observe the attraction of the two antiresonances
with decreasing dielectric width, which is primarily due to the increasing frequency of the
second mode. However, without the γ variations of the last two modes, the attraction of
the two antiresonances is not sufficient to match the simulation results.

In the following subsection, we will focus on the second antiresonance, higher in
frequency. This analysis will demonstrate that the field distribution at the antiresonance
frequency does not provide insights into the antiresonance coupling behavior.

6.7.2 Coupling analysis
The measured transmission of the dielectric-loaded cavity without a YIG sphere is

depicted in Fig. 6.9 (a) as a solid black line, where the second antiresonance frequency is
at 11.46 GHz. Unlike the FD simulations, intrinsic losses of the modes were considered.
Consequently, the number of unknown variables increased to eight: four external dissipation
rates γi0 as previously; and four intrinsic dissipation rates γint

i associated with each cavity
mode.

Fits were performed iteratively on the external dissipation rates, followed by the
intrinsic dissipation rates until convergence, within the frequency range of 3.3 to 15.7 GHz.
The results are shown as dashed grey lines in Fig. 6.9 (a). The fitted transmission, depicted
by the dashed red line, shows excellent agreement with the measured transmission. The
fitted values are detailed in Table 6.4.
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Figure 6.9: (a) Transmission of the dielectric-loaded cavity: Measurement in solid
black line; and input-output model with fitted γi0 and γint

i values in dashed red
line. The fit was made in the frequency range from 3.5 to 16.5 GHz depicted by the
dashed grey lines. (b) FD simulation of the transmission of the dielectric-loaded
cavity with a dielectric width of 566 µm. The magnitude is depicted in blue, and the
phase in red. The modes with the same phase-jump are illustrated in the green areas
and arrows, while the modes and the considered antiresonance with the opposite
phase-jump are shown in the purple areas and arrows. The dotted grey line indicates
the measured considered antiresonance frequency. The inset shows the RF magnetic
field in the cavity at the antiresonance frequency. (c)-(f) depict the RF magnetic
fields of the first four modes and the different YIG positions.

In Fig. 6.9 (b), the simulated transmission is depicted by a solid blue line for a
dielectric width of 566 µm. While the frequencies of the cavity modes do not match the
measurements exactly, the second antiresonance at 11.42 GHz is very close to the measured
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Table 6.4: Fitted values of the external dissipation rates γi0 and the internal
dissipation rates γint

i for the first four modes.

modes γi0 [MHz] γint
i [MHz]

TM010 1.186 ± 0.006 3.4 ± 0.7
TM110 0.2334 ± 0.0007 20.2 ± 0.7
TM210 7.56 ± 0.03 38.1 ± 1.3
TM310 8.89 ± 0.04 40.2 ± 1.7

value of 11.46 GHz, indicated by the dotted grey line. The phase Φ21 is shown as a solid
red line, indicating that the first and third modes share the same phase-jump, represented
by the green area and arrow, and are opposed to the second and fourth modes, represented
by the purple area and arrow. In the representations with the arrows, the total phase shift
is considered, referring to the shift discussed Sec. 4.1.4.b. As shown, this shift does not
alter the “nature” of the phase-jump we need to consider; that is, the specific phase values
before and after the phase-jump are irrelevant. Instead, what matters is the number of
phase-jumps separating a resonance from the antiresonance. Depending on whether this
number is even or odd, the phase-jumps will be categorized as either the same or opposed,
which in turn determines whether the coupling is attractive or repulsive.

The second antiresonance exhibits the same phase-jump as the second and fourth
modes, implying that these modes contribute attractively to the antiresonance coupling,
while the other two modes contribute repulsively.

In the inset of Fig. 6.9 (b), the RF magnetic field distribution at the antiresonance
frequency is shown, with various placements of the YIG sphere, numbered from 1 to 6, and
an additional position 3b for a second YIG sphere, which will be discussed later. According
to the conclusions in [95], position 1 of the YIG sphere would exhibit attractive coupling
of the antiresonance or, at the very least, a less repulsive coupling compared to position 6,
because the magnetic field is minimized at position 1 and maximized at position 6.

In Fig. 6.9 (c)-(f), the first four modes are illustrated: TM010 at 3.78 GHz, TM110
at 7.78 GHz, TM210 at 15.22 GHz, and TM310 at 16.08 GHz. For the measurements,
the mode frequencies are ω0/2π = 3.71 GHz, ω1/2π = 7.26 GHz, ω2/2π = 14.78 GHz,
and ω3/2π = 15.54 GHz. Interpreting the antiresonance coupling based solely on the RF
magnetic field distribution of these modes is challenging.

However, some observations can be made regarding the magnetic field distribution
at specific positions. At position 1, the two “attractive modes” (TM110 and TM310) have
minimized field intensity, whereas their field is significantly higher at position 3. For the
“repulsive modes” (TM010 and TM210), the field intensity is relatively constant between
positions 1 and 3. This suggests that the antiresonance coupling strength would be more
attractive or less repulsive at position 3 compared to position 1. Similarly, at position 6,
the field intensity for the “attractive modes” is less than at position 3, while the field for
the “repulsive modes” remains constant, implying that position 6 is less attractive or more
repulsive than position 3.

It is important to note that the field distributions in Fig. 6.9 (c)-(f) are not normalized,
and their values were saturated to better observe the field variations. Crucially, it is not
merely the mode with the higher field intensity at the YIG position that determines the
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Table 6.5: Coupling strength values in MHz of the first four modes at the 6 YIG
sphere positions from EM simulations.

modes
positions 1 2 3 4 5 6

TM010 32.14 40.19 52.41 48.89 43.95 42.40
TM110 3.05 8.93 23.45 20.03 16.84 16.41
TM210 82.15 44.06 32.43 32.76 20.34 3.93
TM310 25.06 58.58 82.53 78.36 46.19 5.79

antiresonance coupling behavior. As demonstrated in Eq. (6.22), the internal coupling
strengths are effectively “weighted” by the external dissipation rates, meaning that the
coupling behavior at the antiresonance is influenced by the interplay of these factors rather
than by field intensity alone.

To investigate the coupling behavior at various YIG sphere positions, the coupling
strengths for each mode were computed using eigenmodes simulations. These computed
values are summarized in Table 6.5 and were incorporated into the input-output model
alongside the dissipation rates provided in Table 6.4. From the measurements, the
gyromagnetic ratio of the YIG spheres was estimated to be γ = 28.74 ± 0.20 GHz.T−1.

The transmission spectra from the input-output model for all YIG positions are
illustrated in the first column of Fig. 6.10. The Gilbert damping rate was arbitrarily
set to α = 2.10−3 to align with the measurement observations. Note that no fitting was
performed on α as it does not affect the coupling behavior. The increase in damping
rate could be attributed to the excitation of multiple magnon modes, driven by the
inhomogeneous RF magnetic field concentrated on the YIG [241]. These spectra align
with the previous interpretation of the modes’ field distributions. Specifically, at position
1, the antiresonance coupling exhibits level repulsion, whereas at position 3, it shows level
attraction. Furthermore, position 6 also demonstrates no coupling, meaning that the
coupling effectively decreased by compensation between “attractive modes” and “repulsive
modes”.

The second column of Fig. 6.10 presents the measured transmission spectra for all YIG
positions. It is evident that interpreting the antiresonance coupling behavior based on the
field distribution at the antiresonance frequency did not accurately predict the coupling
behavior. In particular, it was anticipated that position 1 would exhibit a weaker repulsive
coupling compared to position 6; however, the measurements reveal the opposite trend.

The third column in Fig. 6.10 depicts the measured phases Φ21 for all YIG positions.
Although the coupling behavior is not always clear from certain transmission measurements
- where coupling with higher magnon modes obscures the antiresonance polaritons around
the coupling frame - the phase jump in the phase spectra helps track the polariton
frequencies. The dotted black line in the third column represents the fitted antiresonance
polaritons according to the input-output model.

We observe that the evolution of the antiresonance coupling across different YIG
positions is consistent between the input-output model and the measurements. Specifically,
positions 1, 3, 4, and 5 exhibit the same coupling strength and nature. However, for
positions 2 and 6, where the coupling strengths are respectively very low or does not
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Figure 6.10: Transmission spectra at the 6 YIG sphere positions, showing the
magnitude for the input-output model in the first column, the measurements in
the second column, and the phase of the measurements in the third column. The
antiresonance polariton frequencies from the input-output transmission spectra are
indicated by dotted black lines in the third column.
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Figure 6.11: Transmission spectra with two YIG spheres positioned at 3 and 3b
for (a) the input-output model and (b) measurements. In (b), the antiresonance
polariton frequencies from the input-output model are indicated by a dotted white
line.

occur, the coupling behavior differs, and the measurements indicate level repulsion. This
discrepancy can be attributed to the fact that the resonance coupling strengths were
extracted from EM simulations, which used different mode frequencies than those measured.
Consequently, the coupling strength may vary slightly, leading to different antiresonance
coupling behaviors at low coupling strengths.

In Fig. 6.11, we present the transmission spectra of (a) the input-output model and
(b) the measurement with two YIG spheres placed at positions 3 and 3b. For the model,
the coupling strengths of each mode at position 3b are assumed to be the same as those
at position 3, based on symmetry considerations of the cavity. The effective antiresonance
coupling strength in the model is gar/2π = 195 ± 61 MHz, and the antiresonance polariton
frequencies fit well with the measurements, as indicated by the dotted white line in
Fig. 6.11(b). This demonstrates that by considering the field distribution of the cavity
modes, we can tune the antiresonance as desired and increase the coupling strength,
regardless of the coupling nature.
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Appendices of Chapter 6

6.A Model fitting
In Fig. 6.12, the transmission spectra generated by the input-output model for two

distinct positions of the YIG sphere (A and B) are illustrated in (a) and (b) respectively.
To generate these spectra, the model was provided with necessary parameter values,
including the mode frequencies, the phase of the E-field polarization at each probe, the
quality factors, and the coupling strengths of the 7 modes as detailed in Table 6.3. Due
to the complexity of obtaining an analytical solution for the polariton frequencies, the
antiresonance frequencies were determined by fitting the two spectra.

13.4 13.5 13.6 13.7 13.8
ωm/2π [GHz]

13.50

13.55

13.60

13.65

13.70

ω
/2
π

 [G
H

z]

(a)

13.4 13.5 13.6 13.7 13.8
ωm/2π [GHz]

(b)

140

120

100

80

60

40

20

|S
21
| [

dB
]

Figure 6.12: Transmission spectra generated by the input-output model for two
different positions of the YIG sphere: (a) when positioned at A, and (b) when
positioned at B. The parameter values injected into the model, including mode
frequencies, the phase of the E-field polarization at each probe, quality factors, and
coupling strengths of the 7 modes, are detailed in Table 6.3. The antiresonance
frequencies, indicated to the dashed white lines, were determined by fitting the
spectra.

6.B Field Distribution of cavity modes
Fig. 6.13 illustrates the magnitudes of the H- and E-fields for the seven considered

cavity modes in the input-output model, as discussed in Sec. 6.5.2.

For r = 1, the repulsive modes exhibit an even θ number, leading to a minimum
in the H-field at position B. Additionally, the E-field polarization at the two probes is
π-dephased, a condition necessary for observing level repulsion in the effective coupling of
the antiresonance at 13.59 GHz with the coupled magnon-photon mode.
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Conversely, with r = 1, the attractive modes exhibit an odd θ number, resulting in a
minimum of the H-field at position A. Furthermore, the E-field polarization at the two
probes is in phase, a condition for observing level attraction in the effective coupling of
the antiresonance at 13.59 GHz with the coupled magnon-photon mode.
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Figure 6.13: Norm of the H-field in the xz-plane for (a)-(d) repulsive modes
and (i)-(k) attractive modes. Norm of the E-field in the xy-plane at the height of
the probes for (e)-(h) repulsive modes, and (l)-(n) attractive modes. The circles
illustrate the positions (A or B) of the YIG sphere mentioned in Fig. 6.6, and the
black arrows in (e)-(h) and (l)-(n) indicate the polarization of the E-field at the
probe locations.
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7 Conclusion & Outlook

In this thesis, we explore the dynamic field of spincavitronics, with a particular
emphasis on the robust interplay between cavity modes and magnons in three-dimensional
(3D) cavities. The exploration of cavity magnon polaritons has demonstrated that strong
coupling between magnons and photons can result in innovative hybrid states with
significant applications across quantum technologies and communication systems.

The origins of spincavitronics can be traced back to key contributions made in the
early 2010s, with the prediction of strong magnon-photon coupling by Soykal and Flatté
(2010) [52], followed by experimental confirmations from Huebl et al. (2013) [53], Tabuchi
et al. (2014) [54], and Zhang et al. (2014) [55] that marked significant advancements in our
understanding of these interactions. These pioneering studies underscored the versatility
of magnons, characterized by their broad frequency tunability and long coherence times,
thereby positioning them as promising candidates for quantum memory applications. Their
role in quantum magnonics further opens new avenues for enhancing quantum computing
and communication technologies.

A significant aspect of this research is the characterization of the ultra-strong coupling
regime, wherein the coupling strength surpasses 10% of the cavity frequency. The USC
regime not only enhances performance across various applications but also enables the
observation of novel phenomena, highlighting its potential for exploring new states of
matter and deepening our understanding of light-matter interactions. Mechanisms to
achieve the USC regime, whether by coupling multiple dipoles or optimizing the coupling
strength of a single dipole to a cavity mode, provide an expanded toolkit for experimental
and theoretical investigations in cavity magnonics.

Our experimental findings validate the critical importance of optimizing parameters,
such as the filling factor, in realizing USC, alongside conventional factors like resonator
frequency and spin density. The utilized reconfigurable double-post reentrant cavity design
permits to explore the transition from strong coupling to the USC regime, marking a
substantial advancement in our comprehension of magnon-photon interactions. Notably,
our results suggest that commonly utilized models, such as the Dicke and Hopfield models,
may not fully encapsulate the complexities observed in our data, necessitating further
refinement of theoretical frameworks. The incorporation of a magnon frequency shift
related to the filling factor introduces a new dimension in modeling magnon-photon
interactions, warranting additional research to elucidate the underlying physics.
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Moreover, we highlighted in this thesis the critical role of level attraction in systems ex-
hibiting strong coupling between magnons and antiresonance cavity modes. The emergence
of singularities, such as exceptional points and bound states in the continuum, offers excit-
ing prospects for applications in sensing technologies and quantum information processing.
Level attraction has the potential to enhance device sensitivity, enabling robust energy
transfer against external perturbations. Through the application of input-output theory,
we elucidate the fundamental principles governing the coupling behaviors of antiresonances
in quasi-closed systems.

Overall, the studies presented in this thesis contribute significantly to our understanding
of cavity magnon polaritons, examining the dynamics of strong and ultra-strong coupling
regimes while unveiling new opportunities for the advancement of quantum technologies
and radiofrequency applications. The implications for cavity design and optimization
extend from metrology to advanced quantum devices, highlighting the versatility and
promise of spincavitronics for future technological developments.

Outlook:

Our investigation into USC between an Yttrium Iron Garnet (YIG) slab and a 3D
cavity reveals a coupling ratio of 59% at room temperature, a milestone in magnon-photon
coupling. However, the observed magnon frequency shift, previously unreported, requires
elucidation. Future theoretical work should focus on understanding this phenomenon,
particularly the nonlinearities that may arise due to the coupling strength, which are only
observable in the USC regime.

Our recent advancements in cavity design have demonstrated enhanced coupling ratios
beyond those reported previously, providing deeper insights into the quadratic evolution
of magnon frequency shifts relative to coupling ratios. Future machining of these cavities
aims to produce new experimental data approaching the deep strong coupling regime, a
frontier not yet achieved in magnon-photon hybrid systems at room temperature.

The level attraction of antiresonances within quasi-closed cavities has been insufficiently
explored thus far, here we relate the future direction in the exploration of level attraction
of antiresonances in quasi-closed cavities:

(i) Our study demonstrates that excessive mode incorporation can lead to discrepancies
between measurements or simulations and the developed model. Specifically, the first
Markov condition in the input-output derivation assumes a constant external coupling
strength over frequency, implying that cavity modes distant from the antiresonance
may exert influence. For one-dimensional cavities, such as Fabry-Pérot cavities, it
has been shown that coupling strength follows a cardinal sinusoidal function. A
proper generalization for 3D cavities could resolve the aforementioned discrepancies.

(ii) The literature presents several models aimed at interpreting observations of level
attractions, particularly for open cavities. However, these models often incorporate
phase factors to align with experimental results, lacking deeper physical justification.
Future work could clarify and develop a more physically grounded model.

(iii) A primary objective in leveraging level attraction within a system is to achieve
exceptional points. While level attraction exists in 3D cavities, we posit that EPs
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Figure 7.1: Non-reciprocity of the antiresonances between transmission probes as
a function of the applied magnetic field and input microwave frequency for two YIG
positions in the dielectric-loaded double re-entrant cavity, where the antiresonance
coupling is (a) repulsive, and (b) attractive.

can be generated by modulating magnon dissipation, as is customary. Future
investigations will explore tuning dissipation through the spin Hall effect [242].

(iv) Our recent measurements of double reentrant cavities, as discussed in our exploration
of level attraction, reveal significant potential for non-reciprocity in 3D cavities, as
depicted in Fig. 7.1. We attribute this phenomenon to the combination of internal
coupling phases (highlighted in [157]), and external coupling phases elucidated in
our study.

Ultimately, enhancing our model to incorporate models describing the ultra-strong
coupling regime may yield higher tunability of antiresonances and increased non-reciprocity.
Moreover, the cavity designs can be adapted for integration on a printed circuit board
(PCB) using substrate integrated waveguide (SIW) technology [243, 244], which serves as
the integrated analog of a 3D cavity. In this case, the dimensions must account for the
substrate and dielectric permittivities, enabling operation within the same frequency range
while maintaining comparable magnon-photon coupling performance. However, additional
losses are introduced by the dielectric material and the metallic vias, which serve as cavity
walls, leading to a reduction in the quality factor.
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Résumé

Chapitre 1 - Introduction:

La spincavitronique, ou magnonique en cavité, est un domaine de recherche récent qui
se concentre sur le couplage fort entre les magnons, qui sont des quasi-particules associées
aux ondes de spin dans les matériaux ferromagnétiques, et les photons à l’intérieur d’une
cavité électromagnétique. Ce couplage donne lieu à des états hybrides, appelés polaritons
magnons-cavité (CMP). Ce domaine, qui a commencé à prendre forme au début des
années 2010, se situe à l’interface de plusieurs disciplines : la spintronique, qui explore les
propriétés des spins dans les systèmes électroniques, la magnonique, qui étudie les ondes
de spin, et l’électrodynamique quantique en cavité (QED), où les interactions entre la
matière et la lumière sont étudiées dans des environnements confinés. Ce cadre théorique
et expérimental ouvre de nouvelles perspectives pour le développement de dispositifs
quantiques avancés, particulièrement en matière de communication et de traitement de
l’information.

Un des régimes les plus intéressants dans ce domaine est le régime de couplage ultra-fort
(USC), où la force de couplage dépasse 10% de la fréquence de la cavité. Ce régime permet
d’explorer des phénomènes encore plus complexes, comme les excitations virtuelles, et
pourrait donner lieu à des états exotiques tels que les cristaux temporels discrets. Le
régime USC améliore également les performances des dispositifs fonctionnant dans le
régime de couplage fort, notamment en accélérant les temps de réponse et de contrôle
dans les systèmes. Ce régime est particulièrement crucial pour des applications quantiques
avancées, comme la conversion de fréquence, les portes logiques quantiques, et même la
détection de matière noire. Pour atteindre ce régime, différentes approches sont étudiées,
comme l’optimisation du couplage entre un grand nombre de dipôles ou un seul dipôle avec
le mode de la cavité. Cependant, l’obtention de ce régime à température ambiante reste
un défi. Des progrès ont été réalisés à des températures très basses, mais des résultats
significatifs à température ambiante sont encore rares.

Dans la première étude de cette thèse, un système hybride reconfigurable a été
développé pour étudier la transition entre le régime de couplage fort et celui de couplage
ultra-fort, à température ambiante et dans une plage de fréquences allant de 0,1 à 15 GHz.
Grâce à cette configuration, un couplage allant de 12% à 59% de la fréquence de la cavité
a été atteint. Nos résultats suggèrent également qu’il est nécessaire d’incorporer un terme
supplémentaire dans l’équation de résonance ferromagnétique pour décrire avec précision
l’hybridation observée dans le régime USC. Cette étude constitue une contribution majeure
à la compréhension des dynamiques dans ce régime, et ouvre la voie à la mise au point
d’un modèle cohérent pour décrire ces systèmes complexes, ce qui pourrait avoir des
implications importantes pour le développement de nouvelles technologies quantiques.

Un autre aspect clé de ce domaine est le phénomène d’attraction des niveaux dans les
systèmes quantiques, qui présente des applications prometteuses dans le développement
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de dispositifs de communication moderne. L’attraction des niveaux, en permettant un
couplage non-hermitien entre les magnons et les photons, favorise des transmissions
de photons non-réciproques, essentielles pour des dispositifs comme les circulateurs et
les amplificateurs de signaux unidirectionnels, qui sont des éléments cruciaux dans les
technologies de communication. De plus, le couplage dissipatif entre magnons et photons
permet des applications telles que la mémoire quantique à gradient de magnon, un
développement prometteur pour améliorer le stockage et la gestion de l’information dans
les technologies de calcul quantique. L’attraction des niveaux pourrait également jouer un
rôle important dans les dispositifs de détection de précision et en métrologie, en facilitant
l’interaction longue distance entre les magnons, utile pour les technologies basées sur les
spins.

Les premières prédictions théoriques du couplage fort magnon-photon ont été faites
en 2010, et dès 2013, des démonstrations expérimentales ont confirmé ces prédictions à
des températures extrêmement basses. Depuis, des expériences réussies ont été réalisées
à température ambiante, notamment avec des sphères de YIG (grenat d’yttrium et
de fer), ouvrant la voie à des avancées dans la magnonique quantique. Grâce à la
longue durée de cohérence des magnons, ces systèmes sont envisagés comme de possibles
mémoires quantiques, empêchant ainsi la perte d’information due à la décohérence des
qubits supraconducteurs. En outre, ces systèmes sont prometteurs pour la détection
non-destructive de champs magnétiques statiques ou micro-ondes faibles, ainsi que pour la
recherche sur la matière noire.

Dans ce contexte, la spincavitronique pourrait également permettre le développement
d’un transducteur quantique bidirectionnel entre les micro-ondes et la lumière optique dans
les circuits supraconducteurs. Cela permettrait de transférer de l’information quantique
d’un qubit supraconducteur vers la lumière optique via un transducteur de magnons,
ouvrant la voie à des communications quantiques longue distance. Ces dispositifs nécessitent
cependant d’améliorer encore la force de couplage entre qubits et magnons. En parallèle,
des applications potentielles de la spincavitronique dans le domaine des radiofréquences
apparaissent, comme des filtres réglables, des amplificateurs à faible bruit ou encore des
isolateurs et circulateurs, essentiels pour les technologies de communication modernes.

Enfin, l’observation du phénomène d’attraction des niveaux dans des cavités 3D, bien
que prometteuse, reste encore mal comprise. Peu d’études ont été réalisées sur ce sujet, et
les modèles actuels sont largement phénoménologiques, sans offrir une description physique
complète des systèmes. Dans ce travail, nous avons proposé un modèle physique qui
explique l’apparition et le couplage des anti-résonances dans les cavités 3D, soutenu par
des simulations et des mesures expérimentales. Ces résultats apportent une nouvelle
compréhension des mécanismes de couplage dans ces systèmes hybrides, contribuant à
leur développement pour des applications futures dans la communication quantique et les
technologies de détection à haute précision.

Chapitre 2:

Dans ce deuxième chapitre, les bases du magnétisme dans les matériaux sont posées
en explorant le concept de moment angulaire, depuis les orbites électroniques jusqu’au
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phénomène quantique du spin. Une première partie se concentre sur la description
quantique du moment angulaire en présence d’un champ magnétique statique, avec une
analyse à travers une interprétation semi-classique, suivis de l’introduction de l’énergie de
Zeeman et du phénomène de précession de Larmor. Une attention particulière est portée
à l’équation du mouvement d’un moment angulaire sous l’effet d’un champ magnétique.

La deuxième section présente une vue d’ensemble des différents types de matériaux
magnétiques : diamagnétiques, paramagnétiques, ferromagnétiques et antiferromagnétiques.
Une attention spéciale est accordée au YIG, un matériau artificiel utilisé dans des dispositifs
à radiofréquences (RF) en raison de ses propriétés magnétiques uniques et de sa pertinence
dans les études de couplage magnon-photon. Le YIG est présenté comme un matériau de
référence dans le domaine de la magnonique en raison de ses faibles pertes et de sa grande
stabilité, ce qui en fait un choix privilégié pour des applications dans des dispositifs RF.

Enfin, le chapitre se termine par une analyse des ondes de spin dans les ferromagnétiques,
qui émergent de deux interactions principales : l’interaction d’échange et l’interaction
dipolaire. Les ondes de spin d’échange, gouvernées par l’interaction d’échange entre les
spins voisins, et les ondes de spin dipolaires, résultant des interactions dipolaires à longue
portée, sont examinées en détail. Ces phénomènes sont essentiels pour comprendre le
comportement des matériaux ferromagnétiques dans des conditions dynamiques et leurs
applications dans le domaine de la spincavitronique.

Chapitre 3:

Le troisième chapitre débute par la quantification du champ électromagnétique au
sein d’une cavité pour établir l’Hamiltonien de la cavité, base essentielle pour les analyses
ultérieures. Cette étape permet de décrire les interactions fondamentales entre la lumière
et la matière dans un cadre quantique. L’approche classique de l’électrodynamique est
d’abord exposée, suivie de sa version quantique, dans le but d’introduire la modélisation
des interactions lumière-matière.

Ensuite, une analogie est développée entre le couplage lumière-matière et la physique
de deux oscillateurs couplés. Ce modèle simplifié, illustré par des pendules couplés via des
ressorts ou des amortisseurs, permet de mieux comprendre les principales caractéristiques
des différents régimes de couplage. Ces analogies mécaniques aident à conceptualiser les
interactions complexes qui se produisent dans des systèmes quantiques réels. Le chapitre
poursuit en définissant et en discutant ces régimes de couplage, avec une attention partic-
ulière portée aux systèmes à deux niveaux, qui sont fondamentaux dans la compréhension
de l’électrodynamique quantique en cavité. Les systèmes collectifs à deux niveaux, où de
nombreux dipôles interagissent simultanément avec un champ électromagnétique, sont
également abordés, afin de comprenre l’interaction entre la lumière et les quasi-particules
associées au comportement collectif des systèmes de plusieurs particules (magnons, phonons,
excitons, plasmons, ...).

Le chapitre explore ensuite comment ces systèmes interagissent avec leur environnement,
notamment à travers le formalisme d’entrée-sortie. Ce formalisme est essentiel pour
modéliser des cavités quasi-fermées ou ouvertes, où les photons, venant de l’environnement
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extérieur, peuvent intéragir avec le système, influençant ainsi les propriétés des systèmes
étudiés. L’interaction avec l’environnement est un facteur crucial dans la description
réaliste des systèmes quantiques, car elle permet de prendre en compte les pertes et les
interférences avec l’extérieur.

Enfin, le chapitre se termine par la dérivation du modèle de couplage photon-magnon
dans des cavités micro-ondes, une interaction centrale dans le domaine de la spincavit-
ronique. Ce couplage permet d’explorer les interactions entre les photons et les magnons
dans des matériaux magnétiques comme le YIG. Cette dernière section est d’une grande
importance pour comprendre le comportement des systèmes hybrides.

Le chapitre offre ainsi une vue d’ensemble des modèles théoriques qui sous-tendent
le couplage lumière-matière et leur application aux systèmes réels, en s’appuyant sur des
concepts de physique classique et quantique pour guider le lecteur vers une compréhension
approfondie des phénomènes complexes dans ce domaine.

Chapitre 4:

Le quatrième chapitre présente les différentes étapes méthodologiques utilisées dans
les études de cette thèse. Il commence par discuter des simulations réalisées pour étudier
les propriétés des cavités électromagnétiques, en se concentrant sur les considérations
physiques des simulations, en particulier l’utilisation de conducteurs électriques parfaits
pour les parois de la cavité et la configuration de la grille de maillage. Il est discuté des
paramètres liés au couplage magnon-photon pouvant être extrait des simulations avec le
solveur des modes propres, tels que le facteur de forme, la fréquence et les pertes dans le
système. Les simulations prennent en compte les propriétés magnétiques du YIG pour le
solveur en domaine fréquentiel, afin de modéliser les interactions entre les magnons et les
photons au sein de la cavité, et d’en extraire les paramètres S, que ce soit l’intensité ou la
phase.

Ensuite, le chapitre décrit les différentes techniques de fabrication utilisées pour
concevoir les cavités. Cela inclut des méthodes traditionnelles de fraisage mécanique ainsi
que des techniques plus récentes comme l’impression 3D en plastique. La métallisation,
un processus clé pour garantir la conductivité des parois des cavités imprimées en 3D, est
également abordée en détail. Ces approches permettent de créer des cavités capables de
supporter les expérimentations sur le couplage photon-magnon.

La dernière section se concentre sur l’instrumentation et les mesures expérimentales.
Elle détaille le fonctionnement de l’analyseur de réseau vectoriel, l’instrument principal
utilisé pour les mesures des paramètres électromagnétiques de la cavité. Cette section
décrit aussi l’agencement expérimental dans le laboratoire et l’automatisation des mesures,
qui permet d’améliorer l’efficacité des campagnes de tests. L’ensemble de ce chapitre
fournit ainsi une vue d’ensemble des outils et méthodes utilisés pour la simulation, la
conception, et la mesure des cavités dans le cadre de ces recherches.
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Chapitre 5:

Le cinquième chapitre présente une étude expérimentale du passage du régime de
couplage fort (SC) au régime de couplage ultra-fort (USC) dans des cavités réentrantes tridi-
mensionnelles reconfigurables en fréquence, couplées à un parallélépipède macroscopique
de YIG à température ambiante. Le taux de couplage observé, défini comme le rapport
entre la force de couplage et la fréquence de la cavité, varie de 12% à 59%. Les résultats
montrent que certaines considérations spécifiques doivent être prises en compte lors de
l’analyse des branches polaritoniques dans ces dispositifs, où le champ RF est fortement
concentré dans le matériau magnétique. Ces observations concordent parfaitement avec les
simulations électromagnétiques par éléments finis effectuées dans le domaine fréquentiel.

Le chapitre débute par un rappel du régime USC, qui se produit lorsque la force de
couplage dépasse 10% fois la fréquence de la cavité. Ce régime, tout comme le régime
SC, présente un grand intérêt pour diverses applications, telles que l’amélioration des
dispositifs de spintronique et de communication quantique. Dans le régime USC, des
phénomènes nouveaux émergent, comme ceux dûs aux excitations virtuelles, ce qui ouvre
la voie à des processus d’ordre supérieur, tels que la génération de sous-harmoniques ou
l’absorption multi-photonique.

L’atteinte du régime USC peut se faire de deux façons principales : soit en couplant
un grand nombre de dipôles à un même mode de cavité, soit en optimisant les degrés de
liberté pour améliorer la force de couplage entre un seul dipôle et la cavité. Depuis sa
première démonstration expérimentale en 2009, plusieurs systèmes ont été étudiés dans
ce contexte, notamment les polaritons inter-sous-bandes, les circuits supraconducteurs et
les polaritons magnons-cavités (CMPs). Ces derniers ont récemment montré un grand
potentiel dans des domaines tels que la métrologie, les mémoires quantiques et la détection
de matière noire.

Dans cette étude, nous avons conçu un système hybride reconfigurable permettant de
suivre la transition du SC au USC à température ambiante, dans une gamme de fréquences
de 0,1 à 15 GHz. Les cavités réentrantes à double plots utilisées, qui concentrent le champ
magnétique RF dans le matériau YIG, ont permis d’observer cette transition, et de révéler
la nécessité d’ajouter un terme supplémentaire à la fréquence de résonance ferromagnétique
(FMR) dans les modèles standards pour ces conditions de couplages afin de décrire avec
précision la fréquence des polaritons.

La cavité a été conçu afin d’optimiser certains paramètres tels que le facteur de
remplissage, qui est cruciale pour atteindre le régime USC. Les distances entre les éléments
de la cavité ont été ajustées pour permettre une transition progressive entre les régimes SC
et USC, offrant ainsi une meilleure compréhension des mécanismes en jeu dans le couplage
magnon-photon.

Les résultats obtenus montrent un excellent accord entre les mesures expérimentales et
les simulations électromagnétiques. Cependant, les modèles standards utilisés pour décrire
le couplage dans ces systèmes, comme les modèles de Dicke et de Hopfield, se sont révélés
inadéquats pour expliquer les données expérimentales. Un décalage de fréquence dans la
résonance magnonique, dépendant du facteur de remplissage, a permis de mieux ajuster
les résultats, une observation qui reste à expliquer théoriquement. Bien que son origine
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physique ne soit pas encore claire, il constitue une piste prometteuse pour de futures
recherches sur ces systèmes hybrides.

En conclusion, cette étude démontre un couplage ultra-fort magnon-photon à tempéra-
ture ambiante, ouvrant ainsi de nouvelles perspectives pour les applications en spintronique
et dans les dispositifs RF. Nous avons montré que l’optimisation du facteur de remplissage
est essentielle pour atteindre le régime USC et que les modèles existants doivent être
adaptés pour prendre en compte des effets spécifiques observés dans ce contexte. Enfin,
cette étude jette les bases pour de futures investigations visant à mieux comprendre la
physique du couplage USC magnon-photon, avec des applications potentielles dans des
domaines aussi variés que les technologies quantiques et les dispositifs RF.

Chapitre 6:

Dans le chapitre 6, nous proposons une description analytique approfondie du couplage
effectif associé à une anti-résonance au sein d’un système hybride constitué d’une cavité
photonique quasi-fermée et d’un matériau ferrimagnétique. Alors que le phénomène
d’attraction de niveaux entre un système résonant dans une cavité ouverte est bien
compris, les fondements physiques de ce phénomène dans les cavités quasi-fermées restent
flous. En nous appuyant sur la théorie de l’entrée-sortie, nous parvenons à distinguer entre
les aspects répulsifs et attractifs de ce couplage. Notre modèle suggère qu’en comprenant le
saut de phase aux résonances et l’anti-résonance étudiée, nous pouvons prédire la nature du
couplage effectif de l’anti-résonance en fonction de la position du matériau ferrimagnétique
dans la cavité.

L’attraction de niveaux d’énergies des états hybrides a suscité un intérêt croissant au
cours de la dernière décennie, ouvrant de nouvelles perspectives pour le développement
de dispositifs à micro-ondes et quantiques. L’attraction de niveaux est particulièrement
prometteuse car elle peut donner lieu à deux types distincts de singularités : les points
exceptionnels (EP) et les états liés dans le continuum (BIC). Les EP permettent des
applications tels que le transfert topologique d’énergie, et peuvent améliorer la sensibilité
des dispositifs de détection. Quant aux Bics, ils permettent aux modes hybridés de ne
pas dissiper d’énergie, offrant ainsi une durée de vie exceptionnellement longue, ce qui est
avantageux pour des applications dans des dispositifs à lumière lente, la détection et la
mémoire quantique.

De plus, l’attraction de niveaux entre photons et magnons peut mener à une rupture
spontanée de la symétrie parité-temps (PT), favorisant ainsi la formation d’états de Bell
à haute fidélité. Ces états de Bell sont cruciaux pour les applications en information
quantique, y compris la téléportation et la cryptographie quantique. La robustesse de
cette intrication est essentielle pour éviter les instabilités causées par les perturbations
environnementales.

Aussi, un Hamiltonien non-Hermitien peuvent afficher une transmission non-réciproque
des photons, ce qui est essentiel pour des dispositifs tels que des circulateurs et des
amplificateurs de signal unidirectionnels. L’attraction de niveaux peut se manifester dans
des systèmes dissipatifs, où le Hamiltonien effectif est non-Hermitien, ou dans des systèmes
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cohérents, par le biais d’interactions entre systèmes ayant des énergies effectives positives
et négatives, ou d’interférences.

Notre analyse se concentre sur le couplage entre une anti-résonance le magnon à
l’aide de la théorie d’entrée-sortie. Cette approche nous permet de mieux comprendre les
paramètres qui régissent le comportement du couplage, qu’il soit répulsif ou attractif. Nous
présentons la matrice S générale dérivée de cette théorie et explorons différents systèmes
simples composées de un ou deux modes photonique et un magnon afin de comprendre
l’émergence et la nature de couplage des anti-résonances. Nous mettons en avant le saut
de phase, qui est un élément clé du comportement du couplage effectif de l’anti-résonance.

Nous avons également validé notre modèle par des simulations utilisant la méthode
des éléments finis (FEM), confirmant ainsi la possibilité de contrôler précisément le
comportement du couplage en positionnant une sphère de YIG à différentes emplacements
dans une cavité quasi-fermée.

En conclusion, cette étude apporte des éclaircissements sur l’interaction complexe entre
les modes de cavité et les magnons dans les cavités quasi-fermées. Grâce à l’incorporation
d’un formalisme d’entrée-sortie, enrichi d’un facteur de phase crucial, nous avons non
seulement reproduit le comportement des anti-résonances dans nos simulations, mais
également fourni des explications la nauture des couplages des anti-résonances, permettant
à la fois d’expliquer la répulsion et l’attraction des niveaux d’énergie observées dans le
spectre de transmission. La compréhension des sauts de phase de l’anti-résonance et des
différents modes de cavité nous permet de prédire le comportement de l’intéraction entre
les anti-résonances de cavité et le magnon.

Chapitre 7 - Conclusion:

Dans cette thèse, nous explorons le domaine dynamique de la spincavitronique, en
mettant particulièrement l’accent sur l’interaction robuste entre les modes de cavité et les
magnons dans des cavités tridimensionnelles (3D). L’exploration des intéractions magnon-
photon a démontré que leur couplage fort peut donner lieu à des états hybrides jusqu’alors
peu explorés, avec des applications significatives dans les technologies quantiques et les
systèmes de communication.

Les origines de la spincavitronique remontent à des contributions clés faites au début
des années 2010, notamment la prédiction d’un couplage fort entre les magnons et les
photons en 2010, suivie de confirmations expérimentales en 2013 et 2014, qui ont marqué
des avancées significatives dans notre compréhension de ces interactions. Ces études
pionnières ont souligné la polyvalence des magnons, caractérisés par leur large capacité
de réglage de fréquence et leurs longs temps de cohérence, les positionnant ainsi comme
des candidats prometteurs pour les applications de mémoire quantique. Leur rôle dans
la magnonique quantique ouvre également de nouvelles perspectives pour améliorer les
technologies de calcul et de communication quantiques.

Un aspect important de cette recherche est la caractérisation du régime de couplage
ultra-fort (USC), où la force de couplage dépasse 10% de la fréquence de la cavité. Le régime
USC améliore non seulement les performances dans diverses applications, mais permet
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également l’observation de phénomènes nouveaux, soulignant son potentiel pour explorer
de nouveaux états de la matière et approfondir notre compréhension des interactions
lumière-matière. Les mécanismes pour atteindre le régime USC, que ce soit par le couplage
de plusieurs dipôles ou l’optimisation de la force de couplage d’un seul dipôle à un mode
de cavité, offrent un large champ de possibilités pour les investigations expérimentales et
théoriques en spincavitronique.

Nos résultats expérimentaux valident l’importance cruciale de l’optimisation des
paramètres, tels que le facteur de remplissage, pour réaliser l’USC, en plus des facteurs
conventionnels comme la fréquence du résonateur et la densité de spins. Le design de
cavité réentrante à double plots reconfigurable utilisé permet d’explorer la transition du
régime SC au régime USC, marquant un progrès substantiel dans notre compréhension
des interactions magnons-photons. Nos résultats suggèrent également que les modèles
couramment utilisés, tels que les modèles de Dicke et de Hopfield, peuvent ne pas saisir
pleinement les complexités observées dans nos données, nécessitant un raffinement supplé-
mentaire des cadres théoriques. L’incorporation d’un décalage de fréquence des magnons
lié au facteur de remplissage introduit une nouvelle dimension dans la modélisation des
interactions magnons-photons, nécessitant des recherches supplémentaires pour élucider la
physique sous-jacente.

De plus, nous avons souligné dans cette thèse le rôle crucial de l’attraction de niveaux
d’énergie des modes hybridés dans les systèmes couplés entre les magnons et les anti-
résonances de cavité. L’émergence de singularités, telles que les points exceptionnels et les
états liés dans le continuum, offre des perspectives intéressantes pour les applications dans
les technologies de détection et le traitement de l’information quantique. L’attraction de
niveaux a le potentiel d’améliorer la sensibilité des dispositifs, permettant un transfert
d’énergie robuste face aux perturbations extérieures. Grâce à l’application de la théorie
d’entrée-sortie, nous élucideons les principes fondamentaux régissant les comportements
de couplage des anti-résonances dans des systèmes quasi-fermés.

Dans l’ensemble, les études présentées dans cette thèse contribuent de manière significa-
tive à notre compréhension des polaritons magnon-photons, examinant la dynamique des
régimes de couplage fort et ultra-fort. Les implications pour la conception et l’optimisation
des cavités s’étendent de la métrologie aux dispositifs quantiques avancés, soulignant la
polyvalence et le potentiel de la spincavitronique pour les développements technologiques
futurs.

Notre investigation sur l’USC à température ambiante est une étape importante dans
la compréhension du couplage magnons-photons. Le décalage de fréquence des magnons
observé, auparavant non rapporté, nécessite des éclaircissements. Les travaux théoriques
futurs devraient se concentrer sur la compréhension de ce phénomène, en particulier des
non-linéarités qui peuvent surgir en raison de la force de couplage, qui ne sont observables
que dans le régime USC.

Nos avancées récentes en matière de conception de cavités ont démontré des rapports
de couplage améliorés au-delà de ceux rapportés précédemment, offrant une déscription
précise sur l’évolution quadratique des décalages de fréquence des magnons par rapport
aux rapports de couplage. Les futurs travaux de fabrication de ces cavités visent à produire
de nouvelles données expérimentales s’approchant du régime de couplage deep-strong
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(DSC), une frontière encore non atteinte dans les systèmes hybrides magnons-photons à
température ambiante.

L’attraction de niveaux des anti-résonances au sein de cavités quasi-fermées a été
insuffisamment explorée jusqu’à présent ; nous relions ici les directions futures dans
l’exploration de l’attraction de niveaux des modes hybrides avec des anti-résonances dans
les cavités quasi-fermées :

(i) Notre étude démontre qu’une incorporation excessive de modes peut entraîner des
écarts entre les mesures ou les simulations et le modèle développé. En particulier, la
première condition de Markov dans la dérivation d’entrée-sortie suppose une force de
couplage externe constante en fonction de la fréquence, impliquant que les modes de
cavité éloignés de l’anti-résonance peuvent exercer une influence conséquente. Pour
les cavités unidimensionnelles, telles que les cavités Fabry-Pérot, il a été démontré
que la force de couplage suit une fonction sinusoidale cardinale. Une généralisation
appropriée pour les cavités 3D pourrait résoudre les écarts mentionnés ci-dessus.

(ii) La littérature présente plusieurs modèles visant à interpréter les observations d’
attractions de niveaux, en particulier pour les cavités ouvertes. Cependant, ces
modèles intègrent souvent des facteurs de phase pour s’aligner avec les résultats
expérimentaux, manquant d’une justification physique. Les travaux futurs pourraient
clarifier et développer un modèle plus physiquement.

(iii) Un objectif principal en exploitant l’attraction de niveaux dans un système est
d’atteindre des points exceptionnels. Bien que l’attraction de niveaux existe dans
les cavités 3D, nous posons l’hypothèse que des EP peuvent être générés dans ces
cavité avec les anti-résonances, en modulant la dissipation des magnons, comme
c’est généralement le cas. Les futures investigations exploreront le réglage de la
dissipation à travers l’effet Hall de spin.

(iv) Nos récentes mesures de cavités doubles réentrantes, telles que discutées dans notre
étude de l’attraction de niveaux, révèlent un potentiel significatif pour la non-
réciprocité dans les cavités 3D. Nous attribuons ce phénomène à la combinaison des
phases de couplage internes et externes élucidées dans notre étude.

Pour conclure, l’amélioration de notre modèle pour intégrer des modèles décrivant
le régime de couplage ultra-fort pourrait permettre un meilleur contrôle de la fréquence
des anti-résonances et une non-réciprocité accrue. De plus, les conceptions de cavité
peuvent être adaptées pour une intégration sur un circuit imprimé (PCB) en utilisant
la technologie des guides d’ondes intégrés au substrat (SIW), qui constitue l’analogue
intégré d’une cavité 3D. Dans ce cas, les dimensions doivent tenir compte du substrat
et des permittivités diélectriques, permettant une opération dans la même gamme de
fréquences tout en maintenant des performances de couplage magnon-photon comparables.
Cependant, des pertes supplémentaires sont introduites par le matériau diélectrique et les
vias métalliques, qui servent de parois à la cavité, ce qui entraîne une réduction du facteur
de qualité.
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