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1.1 Introduction

1.1.1 Deterministic Optimal Control Theory

The concept of optimal control theory involves finding an optimal strategy to optimize a certain
objective functional, where this objective functional depends on the trajectory of both the control
and state variables along time. In continuous-time deterministic cases, the evolution of the state
is determined by an ordinary differential equation, and the objective involves an integral of a
certain function of state and control over time. The formulation of objective functional is quite
flexible. For instance, one may seek to optimize an integral over a fixed time horizon, or until
a time horizon where the controlled state first reaches a certain target, or over an infinite time
horizon, for which a discounted rate is typically used. The dynamics and objective functional
may also depend on time [BCO§].

In various contexts, the optimum of control problem depends on the initial state of the
system. Thus, it is natural to consider the value function which is a mapping from the state
space of the problem to R. The value function then maps an initial state to the optimal value
of the control problem associated with that state. A closely related approach to the concept of
value function for analyzing the optimal control problem is the dynamic programming principle,
which was first formulated by Richard Bellman in 1950's [BCC57]. It asserts that, the optimal
control for the problem will remain an optimal control at any successive states along the optimal
trajectory. Let us begin by considering that the value function is sufficiently smooth, that
is, differentiable everywhere. By dynamic programming principle, one obtains that the value
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function is a solution of a non-linear partial differential equation, the so-called Hamilton-Jacobi-
Bellman equation, of the form:

F(z,v(z),Vu(z)) =0 . (1.1)

Equation indeed provides a sufficient and necessary optimality condition for the control
problem. Moreover, once is solved, it allows one to compute a closed-loop optimal control,
meaning that the optimal control is expressed as a function of the state. In practical applications,
this leads to a solution that is robust against system perturbations.

The dynamic programming principle and HJB equation provide powerful tools addressing
optimal control problems. However, the assumption that the value function is differentiable
everywhere is too restrictive. In the early 1980s, Crandall and Lions introduced the notion of
viscosity solution |[CL83; (CEL84]. Uniqueness results for the first order equation are also
established. Since then, a wide range of deterministic optimal control problems has been related
to HJB equations of the form in the viscosity sense: under certain regularity assumptions,
the value function of a deterministic optimal control problem is the unique viscosity solution of
the associated HJB equation.

For optimal control problems, it is natural and important to consider state constraints, as
they often arise in practical applications. In these contexts, the state of the system is required to
remain within the closure of a certain open domain €. For these problems, some controllability
assumptions on the dynamics and on boundaries of state constraints are required. Additionally,
the characterization of value functions by means of HJB equations should also be addressed in
state constrained sense. Among the first efforts on state constrained optimal control problems,
we mention the works of Soner [Son86a; Son86b|. In these works, Soner introduced the so-called
inward pointing qualification condition (IPQ), which indeed require that at every point of the
boundary of €2, there exists a field of the system pointing inward the domain 2. Assuming
this condition, along with other regular assumptions on €, typically that it is compact with C?
boundary, the value function is bounded and uniformly continuous on €. Moreover, the notion
of constrained viscosity solution is also proposed, which is defined as a viscosity subsolution on
2 and a viscosity supersolution on Q. The property that the value function is a viscosity super-
solution on ) imposes a boundary condition. Then, the value function of the state constrained
problem can be characterized as the unique constrained viscosity solution of the HJB equation.
Afterward, as the IPQ condition may not hold in some situations, Frankowska and co-workers
introduced another controllability assumption in a series of works [Fra93} FV00; FP00], known
as the outward pointing qualification condition (OPQ). This condition requires that every point
on the boundary of € can be reached by a trajectory originating from a point within the interior
of Q2. In this framework, the value function of the control problem is characterized as the unique
lower semicontinuous solution of the associated HJB equation. We should also mention the
recent works of [BFZ10; BFZ11] which characterized the value function of the state constrained
problems without any controllability assumptions. In this thesis, we shall consider in particular
the exit time problem (in Chapter [4). In this problem, in addition to the boundary of the
state constraint, the boundary condition for the target set should be well defined. We also refer
to [CL90] for reference.

1.1.2 Numerical Approximation: Grid Based Methods

Up to rare cases, optimal control problems and HJB equations can only be solved approximately
using numerical methods. Various numerical schemes have been proposed to these problems since
the pioneering works in |CL84; Cap83; Fal87]. First of all, since HJB equation is itself a non-
linear partial differential equation, it can be numerically approximated using finite difference
schemes, which are among the most common approaches for numerically solving PDEs. In finite
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difference schemes, the state space is discretized using a grid, and the PDEs are solved by ap-
proximating the partial derivatives using the values on grid nodes. These methods are referred
to as backward or forward finite difference schemes, depending on the nodes that are used for ap-
proximation. However, since the primary goal is to approximate the value function of an optimal
control problem, the convergence of these numerical schemes should also be understood in the
context of viscosity solutions. In essence, achieving convergence in numerical schemes requires
satisfying three conditions: monotonicity, consistency, and stability (see [BS91]). To attain this
convergence, a technique known as upwind correction is typically employed. This correction
helps in selecting the appropriate neighboring grid points for approximating derivatives.

Another classical numerical method used to approximate HJB PDEs is the Semi-Lagrangian
scheme. This scheme arises along with the idea of approximating the continuous optimal control
problem with a discrete time control problem |Cap83; [DI84; Fal87; FF14]. Namely, one can
first apply an Euler time-discretization on the dynamics, with a time step At. Next, the cost
functional, typically represented as an integral, is approximated using the trapezoidal-like sum.
This results in a discrete time optimal control problem, and the dynamic programming equation
associated with this discrete time problem serves as an approximation of the HJB equation.
With sufficient regularity assumptions, one can expect a convergence rate in the order of At.
However, it is important to note that this method involves only semi-discretization in time and
is defined among the entire state space, making it impractical for direct implementation. To
make it feasible for practical computations, further discretization in space is required. Consider
a regular grid with a mesh step Az for discretizing the state space, the fully discretized scheme
involves applying the Semi-Lagrangian scheme at the grid nodes. Moreover, when the point in
the next step, derived from the dynamics, does not fall within the grid, which is often the case,
the value at this node is computed through interpolation based on its neighboring nodes. A
convergence result is obtained when both At and % tend to 0. One interesting property of the
fully discretized scheme is that it can be thought of as a dynamic programming equation of a
stochastic optimal control problem [KDO1]. In this context, the grid nodes can be interpreted as
the state space, and interpolation parameters can be interpreted as the transition probabilities
of a controlled Markov chain. As we shall see in Chapter [5], we make use of this property to
demonstrate an improved convergence result.

1.1.3 Towards Mitigating the Curse of Dimensionality

Following the previous discussion, one can think that these researches on the characterization of
the value function as the unique viscosity solution of the HJB equation, as well as approximating
the solution using numerical schemes are rather complete. However, one major difficulty that
prevents this approach to be used on real applications is the well known curse-of-dimensionality,
which was first expressed by Richard Bellman in [BCC57):

o 7..what casts the pall over our victory celebration? It is the curse of dimensionality, a
malediction that has plagued the scientist from the earliest days.”

Indeed, the HJB equation is formulated in the same dimension as the state space, which typi-
cally has a very high dimension in real applications. Setting aside the problems related to the
regularity of the value function, solving high dimensional PDEs is a challenging problem in itself
and constitutes a field of study. After discretization, the size of the (nonlinear) systems to be
solved is exponential in the dimension, making the numerical computation untractable even on
modern computers. Moreover, reading, writing and storing the grid nodes as well as the solution
is in itself a problem due to the huge size. In practice, numerical computation is feasible only in
a dimension d < 4 in modern computers. Mitigating the curse of dimensionality is the primary
motivation driving all the researches in this thesis.

1. INTRODUCTION
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One additional difficulty is that solving the discretized equation requires an iterative proce-
dure. At each iteration, a computation is executed at every node of the grid, and this process
is repeated until convergence. These iterations are rather expensive. An interesting acceler-
ation method, know as the fast marching method (FMM), and also referred as a single pass
method, has been proposed originally by Sethian [Set96] and by Tsitsiklis [Tsi95], then further
studied for instance in [SVO01; SVO03; |CF07; [For09; |CCV14; Mirl9]. These methods aim to
reduce computational effort and obtain an approximate solution in such a way that, at every
point of the discretization grid, the value is computed at most k times, where k is a bound
unrelated to the discretization mesh. Such an approach was initially introduced to solve the
front propagation problem, then extended to more general stationary Hamilton-Jacobi equa-
tions. It takes advantage of the property that the evolution of the region behind a “propagation
front” is monotonically increasing, the so called “causality” property. Depending on the choice
of update operators, which correspond to the discretization schemes that are used, one can
distinguish between the finite difference fast marching method and the Semi-Lagrangian fast
marching method. In particular, for the update operator, the size of the neighborhood of each
node should be adjusted accordingly.

One of the interests of fast marching method appears in the computational complexity.
In general, the fast marching method implemented in a d—dimensional grid with M points
requires a number of arithmetic operations in the order of KyM log(M), in which the constant
K, € [2d, D% depends on the type of discrete neighborhood that is considered (and D is the
maximal diameter of neighborhoods). To efficiently achieve this complexity bound, a particular
date structure should be adjusted. For the classical fast marching method, the data of nodes
are normally stored using two types of data structure: A full d—dimensional matrix (or tensor),
which contains the information of the whole discretization grid and the value functions computed
at each step; A dynamical linked list, which contains the information of the narrow band nodes
using the value function. We give more details of the data structure for fast marching method
in Chapter 4] where we introduce a new data structure for our method, in which the grid is
dynamically constructed around the optimal trajectory.

1.1.4 Max-plus Numerical Methods

As previously mentioned, both the finite difference scheme and the fully discretized Semi-
Lagrangian scheme lead to equations that can be interpreted dynamic programming equations
for stochastic optimal control problems with discrete time and state spaces. More recently,
max-plus based discretization schemes have been developed for solving first-order HJB equa-
tions. These schemes rely on a max-plus basis representation of the discretized value function,
which leads to a discrete time deterministic optimal control problem. In a broad sense, these
methods take advantage of the max-plus linearity of the evolution semigroup of the HIB PDE,
the so called Lax-Oleinik semigroup. After a time discretization, this allows one to approximate
the value function for a given time horizon, by a supremum of appropriate “basis functions”,
for instance quadratic forms. These supremums are propagated through the action of the Lax-
Oleinik semigroup between two successive time steps. In particular, in the work of Fleming and
McEneaney [FMO00|, it is demonstrated that any semiconvex function can be represented as the
max-plus linear combination of quadratic functions centered at a dense countable subset. Then,
assuming semiconvexity of the value function, they approximate it at a given time horizon using
the max-plus linear combination of quadratic functions. The propagation between two succes-
sive time steps is done by applying a max-plus linear operator on the coefficients of max-plus
linear combination. This approximation can be interpreted as a dynamic programming equation
for a discrete time deterministic optimal control problem.

Alternatively in [AGLO§|, a similar form of approximation for the value function was pro-
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posed. To establish the recursive equations for the scalar coefficients, the authors introduced
a family of “test functions”. The iterative computation of these scalar coefficients in this case
involves the application of a nonlinear operator. This operator can be thought of as a projection
onto the space of basis functions and then a projection onto the space of test functions. This
approximation scheme can be interpreted as a dynamic programming equation of a deterministic
zero-sum two player game. Furthermore, the authors provide a convergence result with detailed
error estimates and demonstrate that the computational complexities of their approaches re-
main comparable to those of classical grid-based methods. In Chapter [6] we shall combine these
max-plus approximations with direct methods, leading to a higher degree of accuracy.

One way to overcome the curse of dimensionality is to assume some structure of the control
problem. This is particularly what was proposed by McEneaney’s curse of dimensionality free
method in [McEQ7]. In this work, McEneaney considers infinite horizon switched optimal con-
trol problems, for which the Hamiltonian is expressed as a maximum of finite many “simpler”
Hamiltonians. Each of these Hamiltonians is a linear-quadratic form originating from a linear
quadratic optimal control problem. The author demonstrates that the complexity exhibits cubic
growth in dimension (of the state)(see also [McE09|). This complexity, however, is bounded by
a number that is exponential in the number of time steps, which is referred to as the “curse
of complexity”. Several “pruning” methods are then proposed to improve such a complexity
bound, for instance, in [GMQ11; |Qul4b].

1.1.5 Concentrating on Optimal Trajectories

Another efficient way to overcome the curse-of-dimensionality is to replace the general problem
of solving the HJ equation and approximating the value function in the entire state space with
the computation of only one or several optimal trajectories with a fixed initial state. The
latter problem can be solved, under some convexity assumptions, by the Pontryagin Maximum
Principle approach [RZ98; RZ99; Tré05], or by direct methods|Tré05; Bon+06]. In the same
inspiration, in discrete time setting, one can use the stochastic dual dynamic programming
(SDDP) method, which was first introduced in [PP91]. It is designed to solve deterministic or
stochastic control problems with a specific structure where the costs are jointly convex with
respect to state and control, in the case of minimization, and the dynamics are linear with
respect to both state and control. Such a special structure guarantees that the value function is
convex at every time horizon. Thus, the value function is approximated by a finite supremum
of affine maps (that is, a piecewise affine convex map), and the approximated value function,
together with the optimal trajectories starting from the fixed initial state, can then be computed
efficiently using linear programming solvers. We refer to [Shall; |(GLP15] for the convergence of
SDDP. In cases where the assumptions on costs and dynamics are not satisfied, meaning in the
absence of convexity, the SDDP method typically only leads to a local optimum. In Chapter
we develop a new numerical method, which can be thought of as an extension of SDDP method
to semiconcave problems.

More recently, other methods consist in exploiting the structure of the problem, in particular
to reduce the set of possible trajectories among which the optimization is done. For instance,
in [AFS19; AFS20], the authors introduced a tree-structured discretization, taking advantage of
the Lipschitz continuity of the value function. In [BGZ22|, the authors introduced an adaptive
discretization in the control space, which has been shown to be efficient when the dimension of
the control space is low.

Concentrating on optimal trajectories is the very initial idea of our works in Chapter
Chapter [6] and Chapter [7]

1. INTRODUCTION
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1.1.6 Recent Development of Numerical Methods

The development of efficient numerical methods for solving HJB equations remains a prominent
research topic, in particular with several recent studies aiming to overcome the curse of dimen-
sionality. One recent method, introduced in [DO16], is based on the Hopf formula. This method
focus on the HJ equation with Hamiltonian depends only on the gradient of the value function.
Instead of discretization, the authors propose a method to solve HJ equation by combining the
Hopf formula with the split Bregman iterative approach (JGO09]). The authors also show that
their method has a complexity bound that is polynomial in the dimension. Deep learning and
neural network techniques are also applied to solve the HJB equation and to find a feedback
control law, for instance in [Kan+21; DDM23; BPW23].

Other recent methods are based on tensor decomposition. Among them we can cite the ap-
proximation of HJB equation using low-rank hierarchical tensor product approximation together
with Monte-Carlo method proposed in [OSS22]. Additionally, in [DKK21|, the authors intro-
duced a tensor train approximation for the value function of the control problem. Subsequently,
the resulting nonlinear system is solved using a Newton iterative method. Developing a tropical
analogue of low-rank tensor approximation for the value function to solve the HJB equation is
one of the motivations for the studies in Chapter [7]

1.2 Contributions

In this thesis, we develop new numerical methods, for solving the deterministic optimal control
problems and the associated first order Hamilton-Jacobi-Bellman equations. Additionally, we
analyze the convergence, computational complexity, and regularity properties of these methods.
Our primary objective is to tackle and mitigate the curse of dimensionality. One common idea
to address this challenge is to concentrate on identifying one or several optimal trajectories with
fixed initial and/or final conditions.

1.2.1 Summary and Organization

e In Chapter [3] we give essential background on deterministic optimal control theory and
the numerical methods that will be used in the rest of this thesis.

o In Chapter [d] we focus on a particular and fundamental problem, the minimum time prob-
lem. We present our new algorithm, considering both continuous aspects and numerical
approximation. We show the convergence and we establish a computational complexity
bound w.r.t. certain error bound. We present numerical tests up to dimension 7, confirming
the speed of the method.

e In Chapter [5 we analyze a particular Semi-Lagrangian scheme for the minimum time
problem and the associated eikonal equation. We prove a regularity property for the
discretized value function. We establish the convergence rate of both the semi-discretized
scheme and fully discretized scheme. In particular, we apply the result to derive a sufficient
condition for the ideal complexity bound of Chapter

o In Chapter [6] we consider general finite horizon deterministic optimal control problems.
First, we combine direct methods with max-plus finite element method, leading to an
algorithm with a higher degree of accuracy. Then, we adapt the idea of Chapter [4] to this
context, that allows one to obtain the ideal complexity bound with a relaxed condition.

e In Chapter we introduce a novel method to approximate the problem with a fixed
initial state. This method is inspired by, and can be thought of as, a generalization of
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the (Stochastic) Dual Dynamic Programming algorithm adapted to semiconcave prob-
lems. We show that our method converges to the global optimum under certain regularity
assumptions. We present numerical benchmarks on N—body problems.

1.2.2 Contribution of Chapters

We now present in details the chapters that contain original works and that constitute the
contributions of this thesis.

1.2.2.1 Contribution of Chapter El: A multilevel Fast Marching Method For the
Minimum Time Problem

In Chapter |4} we introduce a new algorithm to approximate the solutions of a class of stationary
Hamilton-Jacobi PDEs arising from minimum time problem optimal control problems. In par-
ticular, we focus on finding the minimum traveling time between two given sets g and KCggt
in a given domain €2, along with the optimal trajectories.

For this purpose, we address two problems, one involving the usual time direction called
“arrival to Kget” and the other involving the reverse direction called “start from Kq.”. We
characterize the value functions vgs, v5q of these two problems using two state constrained HJB
equations in their respective directions. We then characterize the geodesic points using vss and
U4, in Proposition and Lemma Moreover, based on these two value functions, we
define an open subdomain O, of €2,

Op =A{z € (2\ (Kae UKant)) | Fo(z) < ;gg{fv(y) +nk ) (1.2)

where F,(z) = vss (z) + v54(x) — vss (x)vsa(x). We show the equivalence between the subdomain
O, and the d—geodesic points in Lemma and Lemma Based on these properties,
we establish in Theorem [4.3.16] that, if we reduce the state space from 2 to O,, then for every =
in the set of —geodesic points with § < 7, the new value functions v¢; (z) and v (z) are equal
to vss (z) and vsq(x), respectively.

Our new algorithm takes advantage of the aforementioned properties. We rely on nested grid
approximations, and look for the optimal trajectories by using the coarse grid approximations
to reduce the search space in fine grids. More precisely, following a coarse approximation in
the coarse grid, two approximate value functions Ug , Uf{i are computed in the grid nodes. We
then select the active nodes using an approximation formula derived from , where v is
replaced by v and 7 is replaced by a parameter ny. The active nodes can be thought of as
neighborhood points around the optimal trajectory. The fine grid is dynamically constructed
“around” these active nodes. Then, computations of the approximate value functions vé@,vﬁd
are only performed on the selected fine grid nodes. We give in Algorithm the details of the
two level method (2LFMM). Then, we prove in Theorem the convergence of two level fast
marching method, stating that if nz is sufficiently large, the error estimate is as good as the one
obtained by directly discretizing the whole domain with the fine grid. The concept of coarse-
fine approximation can be extended to the multi-level case. Given a family of successive mesh
steps Hy < Hy... < Hy = h, and a family of real positive parameters {n,n2,...,nn-1}, the
multi-level fast marching method (MLFMM) is presented in Algorithm and the convergence
result is presented in Theorem [£.4.4]

We provide a computational complexity bound with respect to the error e, in order to
show the improvement of our algorithm compared to other grid based methods. To begin, we
bound the space complexity of 2LFMM by the volume of tubular neighborhoods around optimal
trajectories in Proposition [£.5.2 More precisely, given a coarse mesh step H, a fine mesh step

1. INTRODUCTION
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h and parameter 7y, the space complexity can be expressed as follows

~ B(d-1)
Copa(H, h) = O(Cd(% + (’7H)hd)) , (1.3)
where (3 is the “stiffness” of the value function around optimal trajectories, see Assumption |(A6)|
This space complexity indeed involves nodes in coarse grid, included in a ball of volume of O(1),
and the nodes in fine grid, included in a tubular neighborhood of the optimal trajectory with
volume of O((nz)?@=1). The same analysis as in two level case also works for the N—level case,
for which the space complexity is deduced from a hierarchy of tubular neighborhood. One can
observe that the complexity bound in , as well as the one for N—level case, is a function
of the family of coarse mesh steps when h is fixed. Then, the mesh steps are chosen such that
the complexity bound achieves it’s minimum. Moreover, once the mesh steps are chosen, the
complexity becomes a function of the number of levels N. Thus, N is again chosen to minimize
the complexity. We present in Theorem the main result for this complexity bound. To

summarize, for our multi-level method, the number of arithmetic operations is in the order of
- _14+@d-1)(1-1p)
O(Cde R ), where C' > 1 is a constant depending on the problem characteristics and

0 < v < 1 is the convergence rate of the classical fast marching method. Hence, considering
~ _d ~  _1+(@d=1)A—-9B)
the dependence in e only, we reduce the complexity bound from O(e” ") to O(e v

In typical situations in which the value function is smooth with a nondegenerate Hessian in the
neighborhood of an optimal trajectory, one has 5 = 1/2. In exceptional cases, with a Li—type
geometry, one can get § = 1. Observe that the complexity bound reduces to 5(Cd5_1) when
~ = 8 = 1. Thus, considering the dependence in ¢ only, the complexity bound becomes 6(6_1)
and is thus of same order as for one dimensional problems.

To numerically implement the algorithm, we introduce a dedicated data structure, a “hash
table”, to store the successive constrained (dynamically constructed) grids, for every level. Every
time a new node is selected, we compute its slot by a hash function, then store the necessary
information for computation in that slot, see details in Section [4.4.4, We present numerical tests
up to dimension 7, and we analyze the effective complexity of our multilevel algorithm.

1.2.2.2 Contribution of Chapter Convergence and Error Estimates of a Semi-
Lagrangian Scheme for the Eikonal Equation

In Chapter [ we consider a particular Semi-Lagrangian scheme for numerically solving the
eikonal equation arising from the minimum time problem of reaching a target set IC, in which
the time step varies depending on the state. The aim is to establish a sufficient condition
for achieving a convergence rate of order 1 for both the semi-discretized scheme and the fully
discretized scheme, where in the case of the semi-discretized scheme, the convergence rate is
expressed in terms of the time step, while for the latter one, it is in terms of both the time
step and the mesh step. This result is also applied to derive sufficient conditions for achieving
a convergence rate of 1 for Semi-Lagrangian type fast marching method. To the best of our
knowledge, this is the first time that such a convergence rate is established. We then apply this
result to obtain the ideal complexity bound of the method proposed in Chapter [4]

We first consider the semi-discretized scheme. We represent the solution of the discretized
system as the value function of a discrete time deterministic optimal control problem. The
first main result is presented in Proposition in which we show that under particular
semiconcave assumptions on the dynamics and on the distance function to the target set (see
details in Assumption , we obtain that the discrete time value function is semiconcave,
that is

" (x + 2) — 20" (2) + o (@ — 2) < O|2||?, for every x,z € RT\ K . (1.4)
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Sketch of Proof of Proposition[5.5.4 We derive this property by considering the discrete time
optimal control problems with initial states x + 2z, * — 2z and x, respectively. Let y* denote
the optimal trajectory for the problem with initial state x. We construct feasible trajectories,
denoted as y* and y~ for the problems with initial states  + z and z — 2, in the following
manner: y+ and y~ initially follow the same control trajectory as for y*; if y* first reaches K,
then y* and y~ continue along a straight line to K. Otherwise, if y~ reaches K first, after then,
yT repeats two times the control of trajectory y* until y* reaches K. After that, y™ follows a
straight line trajectory. is subsequently deduced by calculating the costs of the trajectories
y~,y " and y*, respectively. O

For the convergence rate, one side, namely v — v", is easier to bound from above since the
discrete set of trajectories is a subset of the continuous one. In the other direction, bounding
v — v involves viscosity techniques and the semiconcavity of v". We present this result as the
second main result in Theorem [£.3.5

We then consider the fully discretized scheme, and we begin by considering a simple P;
(piecewise linear) interpolation operator I;. Our aim is to establish an upper bound on ||w® —
UhHoo, where w” is the solution of the fully discretized scheme. For the upper bound of w” — v",
we use the fact that both the interpolation operator and Bellman operator associated with
the discrete time deterministic control problem are non-expensive, with the Bellman operator

exhibiting a contraction rate of (1 — %) Additionally, when v exhibits semiconcavity, the

supremum over x of (I1[v"] — v")(z) is bounded by Ch2. For the upper bound of v" — w", we
first represent the solution of the fully discretized system as the value function of a stochastic
control problem. Then, we show that, under semiconvex assumptions on the dynamics and on
the distance function to the target set (see details in Assumption , we can derive an error
in the order of h is. This result is presented in Proposition which in short is as follows,

sup (v — w")(z) < Ch . (1.5)
z€R?

Sketch of Proof. We consider a controlled Markov chain with initial state z. For any strategy o”,
we construct a deterministic trajectory that follows the same control as the one associated with
o in the stochastic case. This trajectory is indeed a feasible trajectory for the deterministic
discrete system. We then derive by calculating the costs of the stochastic control problem
with strategy o”, and of the deterministic problem with the constructed trajectory, which is
mainly based on two properties: (i) the states of the Markov process have the property that the
expectation of 1 — & is ha, and the covariance is bounded by h? (see (5-69)); (ii) A property
related to the expectation of semiconvex functions (see Lemma [5.4.3)). ]
We then apply the convergence result of the fully discretized scheme to show that the fast
marching methods, using update operators derived from a Semi-Lagrangian type discretization,
have a convergence rate of order h under the assumptions we introduced, where h represents
the mesh grid. As a consequence, the computational complexity of the multilevel fast marching
method introduced in Chapter [4] depends solely on 3, the stiffness of the optimal trajectory.

1.2.2.3 Contribution of Chapter @: An Adaptive Multi-Level Max-Plus Method
for Deterministic Optimal Control Problems

In Chapter [6] we consider finite horizon deterministic optimal control problems that involve
both initial and final costs. First, we combine max-plus approximations with direct methods,
leading to a numerical method with a higher degree of accuracy. Then, we extend the idea
of dynamic grid refinement around tubular neighborhood of optimal trajectories, which was
introduced in Chapter [4

1. INTRODUCTION
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We characterize the optimality conditions by considering a pair of HJB PDEs associated to
two optimal control problems: one involving forward dynamics with fixed initial state and free
final state, and a dual one involving backward dynamics with fixed final state and free initial
state. We adapt the max-plus finite element method to approximate the two value functions
vl, and vl, for every t € {0,d,...,T}. In more details, considering first v’ 4, and given a finite
family of basis functions {w;}1<i<p, vi4 is approximated by a max-plus linear combination of
the basis functions with coefficients {\7%'}1<i<p. The recursive equation of scalars between
two successive time steps is obtained by introducing a set of test functions {z;}1<j<q (see details
in Proposition . Our first work is based on the observation that the small time propagation
of basis functions leads to a new optimal control problem,

1)
(2, 8°[w;]) = max{zj(:c(O)) —i—/o E(x(s),u(s))dsjtwi(:c(é))} : (1.6)

We show in Proposition [6.3.2] and Lemma that, under certain regularity assumptions on
f and ¢ (see details in Assumption , choosing strongly concave basis functions and test
functions w;, z; (for instance quadratic functions), within a given time horizon § < S, the
problem is actually a concave program with respect to the trajectory (x(-),w(-)). This
property can be explained by the “propagation” of the strong concavity of the initial and/or
terminal costs in over a small time horizon. It implies that Problem can be solved
exactly, or with an error that is negligible compared to 4, by employing a direct method. We
propose to approximate this problem by a direct method. The complete algorithm is presented
in Algorithm [6.1] The error estimate is also presented in Theorem [6.3.4] which is then a direct
consequence of the results of [Lak07].

After obtaining the approximation of the two value functions, we apply a similar approach
as in Chapter [f] to approximate the optimal trajectory. In this case, the value of the problem is
represented (approximately) by the scalars AL, , /\id in two directions, that is

v* & sup {)\f’t + )\;d’t + <w§%,wj-d>}, Vtelo,T]. (1.7)
1<ij<p
We then select sets of indices ¢ and j that are n—optimal in . These indices are indeed
in correspondance with neighborhoods in R? of some dual optimal trajectories for v%, and vly,
respectively. The (primal) optimal trajectories can then be identified based on these sets of
indices, see Theorem [6.4.7
We then extend the idea of dynamic grid refinement around the tubular neighborhood of
optimal trajectories in Chapter [d In particular, we use a hierarchy of finer and finer irregular
grids to generate the basis functions and test functions. In the two level case, we first use
two coarse grids to generate the basis functions and test functions for approximating the value
functions in two directions. Then, given a parameter n', we identify the “active” nodes in coarse
grids for both directions. These active nodes indeed correspond to the indices (7, j) which are
nf —optimal in . The coarse approximation of optimal trajectories is obtained using these
active nodes. Then, we construct the fine grids around the active nodes. The basis functions and
test functions for fine approximation will be generated by these grids. We present the complete
two level method in Algorithm [6.2] The concept of coarse-fine approximation can be extended
to the multi-level case. Given a family of successive mesh grids {G™', G}, <1<,, and a family of
real positive parameters {7 }1<i<m—1, the Adaptive m—level Max-Plus Approximation method
is presented in Algorithm
We show that using our algorithm, the number of basis functions needed to get a certain
error € is considerably reduced. Indeed, for a d—dimensional problem, under certain regularity
assumptions, we get a complexity bound of C¢ (1/ E)% arithmetic operations, for some constant
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C > 1. This should be compared with methods based on regular grids, which yield complexity
bounds of order O(1/£%?) in which a > 0 depends on regularity assumptions and on the order
of the scheme. With our adaptive method, the curse of dimensionality remains only present
in the term C?% We present the main complexity result in Theorem m To compare with
the computational complexity in Chapter [4] the use of max-plus approximations combined with
direct methods leads to a higher degree of accuracy. Indeed, under appropriate regularity as-
sumptions (in particular the assumptions we used in Chapter |5 to obtain a convergence rate of
order h for the fast marching method), the method of Chapter 4| has a computational complexity
of order O(E‘l_(d_l)(l_ﬂ)), in which the parameter 0 < § < 1 measures the “stiffness” of the
value functions near optimal trajectories. Typical instances are moderately stiff, and have a
parameter 5 = 1/2, leading to a complexity of order O(E_l_(d_l)/ 2). In contrast, we get here a

complexity of order (’)(57%), with less demanding assumptions.

1.2.2.4 Contribution of Chapter Semiconcave Dual Dynamic Programming and
Its Application to Tropical Low-Rank Approximation of N-body System

In Chapter [7} we introduce a novel algorithm for numerically finding the value function, along
with the optimal trajectory, for a class of finite horizon deterministic optimal control problems
with a fixed initial initial state. In particular, the reward function (in maximization case) is
only required to be semiconcave with respect to the state x.

We look for a tight approximation of the value function along the optimal trajectories starting
from a given initial point xzo. We start with a (arbitrary) feasible trajectory for the control
problem, and construct an initial upper approximate for the value function. At every iteration
step, for the maximization problem, after a discretization in time, we approximate the value
function, in a given time horizon, by a minimum of quadratic “basis” functions (see definition
in ) However, the evolutionary semigroup associated with the maximization problem is
max-plus linear instead of min-plus linear. To propagate the basis functions to the next time
horizon, we solve a dual problem of the maximization problem (see the formulation of the dual
problem in ([7.19))). We then construct a new upper approximation of the value function based
on the dual problem. The trajectory is then updated to an optimal trajectory derived from the
current approximate value function. Thus, in every iteration, we add one more basis functions
for the approximation. We present our new algorithm in Algorithm

We also present a slight variant of the algorithm in Algorithm which involves two loops
in time: a backward-in-time loop for updating the approximate value function, and a forward-
in-time loop for updating the trajectory. We show that our algorithm can be compared to, and
can be thought of as an extension of, the (S)DDP method, in particular to handle situations
involving the semiconcavity condition on the running reward. Indeed, it can be explained by
adding a quadratic terms of “regularization” for the semiconcavity of the value function and
of the running rewards. Following the SDDP method’s approach, in every iteration, we indeed
solve a new dual problem in the form of . We should the equivalence of this algorithm as
the one in the approximation point of view in Proposition [7.3.6]

We show that our method converges to the global maximum under certain regularity assump-
tions. This is based on the property that the small time propagation preserves the semiconcavity,
which we present in Proposition Moreover, denoting vt the approximate value function
obtained from our algorithm in iteration step m, we establish in Proposition that this
approximation is monotone with respect to the iterative step, and is upper and lower bounded.
We present the convergence result in Theorem

As an application, we employ our algorithm to construct a tropical low-rank tensor ap-
proximation, which can be thought of as a tropical analogue of the classical low-rank tensor
decomposition (see in (7.59)), for a N-body system. The action functional of this system con-
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sists of individual potential energy and kinetic energy, and the Coulomb interaction energy. We
interpret this system using the framework of optimal control and Hamilton-Jacobi equation,
based on the principle of least action (see in ([7.61])). We present numerical benchmarks to
determine the optimal trajectory and the grand state of each individual in Section [7.5.4
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2.1 Introduction

2.1.1 Théorie du Controle Optimal Déterministe

Le concept de théorie du contréle optimal implique la recherche d’une stratégie optimale pour
optimiser une certaine fonction objective, ou cette fonction objective dépend de la trajectoire
des variables de controle et d’état dans le temps. Dans les cas déterministes a temps con-
tinu, I’évolution de I’état est déterminée par une équation différentielle ordinaire, et I’objectif
implique une intégrale d’une certaine fonction de ’état et du contrdle dans le temps. La for-
mulation de l'objectif fonctionnel est tres souple. Par exemple, on peut chercher a optimiser
une intégrale sur un horizon temporel fixe, ou jusqu’a un horizon temporel ou ’état controlé
atteint pour la premiere fois une certaine cible, ou sur un horizon temporel infini, pour lequel
un taux d’actualisation est généralement utilisé. La dynamique et 1’objectif fonctionnel peuvent
également dépendre du temps .

Dans divers contextes, 'optimum d’un probléme de contréle dépend de I’état initial du
systeme. Il est donc naturel de considérer la fonction de valeur qui est un mappage de ’espace
d’état du probleme vers R. La fonction de valeur fait alors correspondre un état initial & la
valeur optimale du probléme de controle associé a cet état. Une approche étroitement liée au
concept de fonction de valeur pour ’analyse du probléme de contréle optimal est le principe
de programmation dynamique, qui a été formulé pour la premiere fois par Richard Bellman
dans [BCC57|. Elle affirme que le contrdle optimal du probléme restera un controle optimal a
tous les états successifs le long de la trajectoire optimale. Commengons par considérer que la
fonction de valeur est suffisamment lisse, c’est-a-dire différentiable partout. Par le principe de la
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programmation dynamique, on obtient que la fonction de valeur est une solution d’une équation
différentielle partielle non linéaire, I’équation dite de Hamilton-Jacobi-Bellman, de la forme:

F(z,v(z),Vu(z)) =0 . (2.1)

L’équation fournit en effet une condition d’optimalité suffisante et nécessaire pour le
probleme de controle. En outre, une fois que est résolue, elle permet de calculer un
controle optimal boucle fermée, ce qui signifie que le contrdle optimal est exprimé en tant que
fonction de I’état. Dans les applications pratiques, cela permet d’obtenir une solution robuste
aux perturbations du systéme.

Le principe de programmation dynamique et I’équation HJB constituent des outils puissants
pour résoudre les problemes de controle optimal. Cependant, 'hypothese selon laquelle la fonc-
tion de valeur est partout différentiable est trop restrictive. Au début des années 1980, Crandall
CL83; (CEL84]. Des résultats d’unicité
pour I’équation du premier ordre sont également établis. Depuis lors, un large éventail
de problémes de contrdle optimal déterministe a été relié aux équations HJB de la forme ([1.1)
dans le sens de la viscosité : sous certaines hypotheses de régularité, la fonction de valeur d’un
probléeme de contrdle optimal déterministe est I'unique solution de viscosité de I’équation HJB
associée.

et Lions ont introduit la notion de solution de viscosité

Pour les problemes de contrble optimal, il est naturel et important de considérer les con-
traintes d’état, car elles apparaissent souvent dans les applications pratiques. Dans ces con-
textes, 1’état du systéme doit rester dans la fermeture d'un certain domaine ouvert Q. Pour ces
problémes, certaines hypotheses de controlabilité sur la dynamique et sur les limites des con-
traintes d’état sont nécessaires. En outre, la caractérisation des fonctions de valeur au moyen
des équations HJB devrait également étre abordée dans le sens des contraintes d’état. Parmi les
premiers efforts sur les problemes de contrdle optimal sous contrainte d’état, nous mentionnons
les travaux de Soner [Son86aj; [Son86b|. Dans ces travaux, Soner a introduit ce que 'on appelle
la condition de qualification du pointage vers l'intérieur (IPQ), qui exige en effet qu’en tout
point de la frontiere de €2, il existe un champ du systeme pointant vers 'intérieur du domaine §2.
En supposant cette condition, ainsi que d’autres hypotheses régulieres sur €2, typiquement qu’il
est compact avec C? de frontiere, la fonction de valeur est bornée et uniformément continue sur
Q. De plus, la notion de solution de viscosité contrainte est également proposée, qui est définie
comme une sous-solution de viscosité sur € et une supersolution de viscosité sur 2. La propriété
selon laquelle la fonction de valeur est une supersolution de viscosité sur {2 impose une condition
limite. La fonction de valeur du probleme sous contrainte d’état peut alors étre caractérisée
comme l'unique solution de viscosité sous contrainte de I’équation HJB. Par la suite, comme la
condition IPQ peut ne pas étre valable dans certaines situations, Frankowska et ses collegues ont
introduit une autre hypothése de controlabilité dans une série de travaux [Fra93; FV00; FPO00],
connue sous le nom de condition de qualification du pointage vers lextérieur (OPQ). Cette
condition exige que chaque point de la frontiere de €2 puisse étre atteint par une trajectoire
provenant d’un point situé a l'intérieur de €2. Dans ce cadre, la fonction de valeur du probleme
de contrdle est caractérisée comme 'unique solution semi-continue inférieure de 1’équation HJB
associée. Nous devons également mentionner les travaux récents de [BFZ10; BFZ11] qui ont
caractérisé la fonction de valeur des problémes a contraintes d’état sans aucune hypothese de
controlabilité. Dans cette theése, nous considérerons en particulier le probléme du temps de sortie
(dans Chapter . Dans ce probléeme, en plus de la limite de la contrainte d’état, la condition
limite pour I’ensemble cible doit étre bien définie. Nous nous référons également a |[CL90| pour
référence.
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2.1.2 Approximation numérique : Méthodes basées sur la grille

Jusqu’a de rares cas, les problémes de controle optimal et les équations HJB ne peuvent étre
résolus qu’approximativement a ’aide de méthodes numériques. Divers schémas numériques ont
été proposés pour ces problémes depuis les travaux pionniers de |[CL84; |Cap83; Fal87|. Tout
d’abord, I’équation HJB étant elle-méme une équation aux dérivées partielles non linéaire, elle
peut étre approchée numériquement a l'aide de schémas de différences finies, qui font partie
des approches les plus courantes pour la résolution numérique des EDP. Dans les schémas de
différences finies, ’espace d’état est discrétisé a ’aide d’une grille et les EDP sont résolues en ap-
proximant les dérivées partielles a ’aide des valeurs sur les nceuds de la grille. Ces méthodes sont
appelées schémas de différences finies backward ou forward, en fonction des noeuds utilisés pour
I’approximation. Cependant, comme 1’objectif principal est d’approximer la fonction de valeur
d’un probleme de contréle optimal, la convergence de ces schémas numériques doit également
étre comprise dans le contexte des solutions de viscosité. Par essence, la convergence des
schémas numériques nécessite de satisfaire trois conditions : monotonicité, cohérence et stabilité
(voir [BS91]). Pour atteindre cette convergence, une technique connue sous le nom de correc-
tion upwind est généralement employée. Cette correction permet de sélectionner les points de
grille voisins appropriés pour I'approximation des dérivées. Une autre méthode numérique clas-
sique utilisée pour approximer les EDP HJB est le schéma Semi-Lagrangien. Ce schéma est né
avec I'idée d’approximer le probleme de controle optimal continu par un probleme de controle
en temps discret [Cap83; DI84; Fal87; FF14]. On peut d’abord appliquer une discrétisation
temporelle d’Euler a la dynamique, avec un pas de temps At. Ensuite, la fonction de coft,
généralement représentée sous la forme d’une intégrale, est approximée a l’aide de la somme de
type trapézoidal. Il en résulte un probleme de contréle optimal en temps discret, et I’équation
de programmation dynamique associée a ce probléme en temps discret sert d’approximation a
I’équation HJB. Avec des hypothéses de régularité suffisantes, on peut s’attendre a un taux de
convergence de I'ordre de At. Cependant, il est important de noter que cette méthode n’implique
qu’une semi-discrétisation en temps et qu’elle est définie sur I’ensemble de I'espace d’état, ce qui
la rend impraticable pour une mise en ceuvre directe. Une discrétisation supplémentaire dans
I’espace est nécessaire pour permettre des calculs pratiques. Considérons une grille réguliere avec
un pas de maille Ax pour discrétiser ’espace d’état, le schéma entierement discrétisé implique
I’application du schéma semi-lagrangien aux nceuds de la grille. En outre, lorsque le point de
I’étape suivante, dérivé de la dynamique, ne se trouve pas dans la grille, ce qui est souvent le
cas, la valeur a ce nceud est calculée par interpolation sur la base de ses noeuds voisins. Un
résultat de convergence est obtenu lorsque At et % tendent tous deux vers 0. Une propriété
intéressante du schéma entierement discrétisé est qu’il peut étre considéré comme une équation
de programmation dynamique d’un probléme de contréle optimal stochastique [KDO01]. Dans ce
contexte, les noeuds de la grille peuvent étre interprétés comme ’espace d’état, et les parametres
d’interpolation comme les probabilités de transition d’une chaine de Markov controlée. Comme
nous le verrons dans Chapter [5] nous utilisons cette propriété pour démontrer un résultat de
convergence amélioré.

2.1.3 Vers l’atténuation de la malédiction de la dimensionnalité

Suite a la discussion précédente, on peut penser que les recherches sur la caractérisation de
la fonction de valeur en tant que solution unique de viscosité de 1’équation HJB, ainsi que
I’approximation de la solution a ’aide de schémas numériques, sont assez completes. Cependant,
une difficulté majeure qui empéche cette approche d’étre utilisée dans des applications réelles est
le fameux curse-of-dimensionality, qui a été exprimé pour la premiere fois par Richard Bellman
dans [BCC57] :
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o 7..what casts the pall over our victory celebration? It is the curse of dimensionality, a
malediction that has plagued the scientist from the earliest days.”

En effet, I'équation HJB est formulée dans la méme dimension que l'espace d’état, qui a
généralement une dimension tres élevée dans les applications réelles. Si 'on met de coté les
problémes liés a la régularité de la fonction de valeur, la résolution d’EDP de haute dimension
est un probleme difficile en soi et constitue un domaine d’étude. Apres discrétisation, la taille
des systémes (non linéaires) a résoudre est exponentielle en fonction de la dimension, ce qui
rend le calcul numérique irréalisable, méme sur les ordinateurs modernes. En outre, la lecture,
I’écriture et le stockage des nocuds de la grille ainsi que de la solution constituent en soi un
probleme en raison de leur taille considérable. En pratique, le calcul numérique n’est possible
que dans une dimension d < 4 sur les ordinateurs modernes. Atténuer la malédiction de la di-
mensionnalité est la motivation premiere de toutes les recherches menées dans le cadre de cette
these. Une difficulté supplémentaire réside dans le fait que la résolution de I’équation discrétisée
nécessite une procédure itérative. A chaque itération, un calcul est exécuté a chaque noeud de
la grille, et ce processus est répété jusqu’a convergence. Ces itérations sont assez cofliteuses.
Une méthode d’accélération intéressante, connue sous le nom de méthode de “fast-marching”
(FMM), et également appelée méthode single pass, a été proposée a 1’origine par Sethian [Set96]
et par Tsitsiklis [Tsi95], puis étudiée plus avant, par exemple dans [SVO1; SV03; |CFOT7}; [For09;
CCV14; Mirl19]. Ces méthodes visent a réduire effort de calcul et a obtenir une solution ap-
proximative de telle sorte qu’en chaque point de la grille de discrétisation, la valeur soit calculée
au maximum k fois, ou k est une limite non liée a la maille de discrétisation. Cette approche a
été initialement introduite pour résoudre le probleme de la propagation des fronts, puis étendue
a des équations de Hamilton-Jacobi stationnaires plus générales. Elle tire parti de la propriété
selon laquelle I’évolution de la région située derriere un ”front de propagation” est monotone et
croissante, ce que 'on appelle la propriété de "causalité”. Selon le choix des opérateurs de mise
a jour, qui correspondent aux schémas de discrétisation utilisés, on peut distinguer la méthode
de fast-marching par différences finies et la méthode de fast-marching par semi-lagrangienne.
En particulier, pour I'opérateur de mise a jour, la taille du voisinage de chaque nceud doit étre
ajustée en conséquence.

L’un des intéréts de la méthode de fast-marching réside dans sa complexité de calcul. En
général, la méthode de fast-marching mise en oeuvre dans une grille a d—dimension avec M
points nécessite un nombre d’opérations arithmétiques de l'ordre de KM log(M ), dans laquelle
la constante K4 € [2d, DY dépend du type de voisinage discret qui est considéré (et D est le
diametre maximal des voisinages). Pour atteindre efficacement cette limite de complexité, il
convient d’adapter une structure de données particuliere. Pour la méthode classique de fast-
marching, les données des nceuds sont normalement stockées a ’aide de deux types de structures
de données : Une matrice compléte a d—dimension (ou tenseur), qui contient les informations de
I’ensemble de la grille de discrétisation et les fonctions de valeur calculées a chaque étape ; Une
liste chainée dynamique, qui contient les informations des nceuds de la bande étroite utilisant la
fonction de valeur. Nous donnons plus de détails sur la structure de données pour la méthode
de marche rapide dans Chapter 4] ou nous introduisons une nouvelle structure de données pour
notre méthode, dans laquelle la grille est construite dynamiquement autour de la trajectoire
optimale.

2.1.4 Méthodes numériques Max-plus

Comme indiqué précédemment, le schéma aux différences finies et le schéma semi-lagrangien
entierement discrétisé conduisent tous deux a des équations qui peuvent étre interprétées comme
des équations de programmation dynamique pour des problemes de controle optimal stochas-
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tique avec des espaces de temps et d’état discrets. Plus récemment, des schémas de discrétisation
basés sur le max-plus ont été développés pour résoudre les équations HJB du premier or-
dre. Ces schémas reposent sur une représentation de la fonction de valeur discrétisée sur une
base max-plus, ce qui conduit & un probleme de contréle optimal déterministe en temps dis-
cret. D’une maniere générale, ces méthodes tirent parti de la linéarité maz-plus du semigroupe
d’évolution de 'EDP HJB, le soi-disant semigroupe de Lax-Oleinik. Aprés une discrétisation
temporelle, cela permet d’approximer la fonction de valeur pour un horizon temporel donné,
par une somme supérieure de ”fonctions de base” appropriées, par exemple des formes quadra-
tiques. Ces suprémes sont propagés par ’action du semigroupe de Lax-Oleinik entre deux pas
de temps successifs. En particulier, dans les travaux de Fleming et McEneaney [FMO00], il est
démontré que toute fonction semi-convexe peut étre représentée comme la combinaison linéaire
max-plus de fonctions quadratiques centrées sur un sous-ensemble dense et dénombrable. En-
suite, en supposant que la fonction de valeur est semi-convexe, ils en font une approximation a
un horizon donné en utilisant la combinaison linéaire max-plus de fonctions quadratiques. La
propagation entre deux pas de temps successifs est effectuée en appliquant un opérateur linéaire
max-plus sur les coeflicients de la combinaison linéaire max-plus. Cette approximation peut étre
interprétée comme une équation de programmation dynamique pour un probléme de controle
optimal déterministe a temps discret.

Dans [AGLOS8|, une forme similaire d’approximation pour la fonction de valeur a été pro-
posée. Pour établir les équations récursives des coefficients scalaires, les auteurs ont introduit
une famille de "fonctions de test”. Le calcul itératif de ces coefficients scalaires dans ce cas im-
plique l'application d’un opérateur non linéaire. Cet opérateur peut étre considéré comme une
projection sur ’espace des fonctions de base, puis une projection sur I’espace des fonctions de
test. Ce schéma d’approximation peut étre interprété comme une équation de programmation
dynamique d’'un jeu déterministe & somme nulle & deux joueurs. En outre, les auteurs four-
nissent un résultat de convergence avec des estimations d’erreur détaillées et démontrent que les
complexités de calcul de leurs approches restent comparables a celles des méthodes classiques
basées sur une grille. Dans Chapter [6] nous combinerons ces approximations max-plus avec des
méthodes directes, ce qui conduira a un degré de précision plus élevé.

Une fagon de surmonter la malédiction de la dimensionnalité est de supposer une certaine
structure du probleme de contrdle. C’est en particulier ce qui a été proposé par la méthode
de McEneaney sans malédiction de la dimensionnalité dans [McEO07]. Dans ce travail, McE-
neaney considere problemes de controle optimal avec commutation & horizon infini, pour lesquels
I’hamiltonien est exprimé comme un maximum d’un nombre fini d’hamiltoniens ”plus simples”.
Chacun de ces hamiltoniens est une forme linéaire quadratique issue d’un probleme de controle
optimal linéaire quadratique. L’auteur démontre que la complexité présente une croissance cu-
bique en dimension (de 1’état) (voir aussi [McE09]). Cette complexité est toutefois limitée par
un nombre exponentiel dans le nombre de pas de temps, que ’on appelle le "raccourcissement de
la complexité”. Plusieurs méthodes d’”élagage” sont alors proposées pour améliorer cette limite
de complexité, par exemple dans |[GMQ11}; |Qul4b].

2.1.5 Concentration sur les trajectoires optimales

Un autre moyen efficace de surmonter la malédiction de la dimensionnalité consiste a remplacer
le probleme général de la résolution de I’équation HJ et de 'approximation de la fonction de
valeur dans ’ensemble de ’espace d’état par le calcul d’une ou de plusieurs trajectoires optimales
avec un état initial fixe. Ce dernier probleme peut étre résolu, sous certaines hypotheses de
convexité, par I'approche du principe du maximum de Pontryagin [RZ98; RZ99; |Tré05|, ou
par des méthodes directes[Tré05; |Bon+06|. Dans la méme inspiration, en temps discret, on
peut utiliser la méthode de programmation dynamique duale stochastique (SDDP), qui a été
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introduite pour la premiere fois dans [PP91]. Il est con¢u pour résoudre des problémes de controle
déterministes ou stochastiques avec une structure spécifique ou les cofits sont conjointement
convexes par rapport a ’état et au controle, dans le cas de la minimisation, et ou la dynamique
est linéaire par rapport a I’état et au controle. Cette structure spéciale garantit que la fonction
de valeur est convexe & chaque horizon temporel. Ainsi, la fonction de valeur est approximée
par un supremum fini de cartes affines (c’est-a-dire une carte convexe affine par morceaux), et la
fonction de valeur approximée, ainsi que les trajectoires optimales a partir de I’état initial fixe,
peuvent alors étre calculées efficacement a I'aide de solveurs de programmation linéaire. Nous
nous référons a [Shall; GLP15] pour la convergence du SDDP. Dans les cas ou les hypothéses
sur les cofits et la dynamique ne sont pas satisfaites, c’est-a-dire en ’absence de convexité,
la méthode SDDP ne conduit généralement qu’a un optimum local. Dans Chapter [7] nous
développons une nouvelle méthode numérique, qui peut étre considérée comme une extension
de la méthode SDDP aux problémes semi-concaves.

Plus récemment, d’autres méthodes consistent a exploiter la structure du probléme, en par-
ticulier pour réduire ’ensemble des trajectoires possibles parmi lesquelles 'optimisation est
effectuée. Par exemple, dans [AFS19; AFS20], les auteurs ont introduit une discrétisation struc-
turée en arbre, en tirant parti de la continuité Lipschitz de la fonction de valeur. Dans [BGZ22],
les auteurs ont introduit une discrétisation adaptative dans ’espace de controle, qui s’est avérée
efficace lorsque la dimension de ’espace de controle est faible.

La concentration sur les trajectoires optimales est 1’idée initiale de nos travaux dans Chap-
ter @, Chapter [6] et Chapter [7]

2.1.6 Développement récent des méthodes numériques

Le développement de méthodes numériques efficaces pour résoudre les équations HJB reste un
sujet de recherche important, en particulier avec plusieurs études récentes visant a surmonter la
malédiction de la dimensionnalité. Une méthode récente, introduite dans [DO16|, est basée sur
la formule de Hopf. Cette méthode se concentre sur 1’équation HJ dont 'hamiltonien ne dépend
que du gradient de la fonction de valeur. Au lieu de la discrétisation, les auteurs proposent une
méthode pour résoudre ’équation HJ en combinant la formule de Hopf avec ’approche itérative
de Bregman divisée (|JGO09]). Les auteurs montrent également que leur méthode a une limite
de complexité qui est polynomiale dans la dimension. Les techniques d’apprentissage profond et
de réseaux neuronaux sont également appliquées pour résoudre 1’équation HJB et pour trouver
une loi de controle par rétroaction, par exemple dans [Kan+21; DDM23; [ BPW23].

D’autres méthodes récentes sont basées sur la décomposition tensorielle. Parmi elles, on peut
citer les I'approximation de 1’équation HJB en utilisant I'approximation du produit tensoriel
hiérarchique de faible rang avec la méthode de Monte-Carlo proposée dans [0SS22|. En outre,
dans [DKK21], les auteurs ont introduit une approximation de train tensoriel pour la fonction de
valeur du probleme de contrdle. Le systéme non linéaire résultant est ensuite résolu a l’aide d’une
méthode itérative de Newton. Le développement d’un analogue tropical de I’approximation
tensorielle de faible rang pour la fonction de valeur afin de résoudre I’équation HJB est 1'une
des motivations des études présentées dans Chapter [7}

2.2 Contributions

Dans cette these, nous développons de nouvelles méthodes numériques pour résoudre les probléemes
de contrdle optimal déterministe et les équations de Hamilton-Jacobi-Bellman du premier ordre
associées. En outre, nous analysons la convergence, la complexité de calcul et les propriétés de
régularité de ces méthodes. Notre objectif principal est de lutter contre la malédiction de la
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dimensionnalité et de I'atténuer. Une idée commune pour relever ce défi est de se concentrer
sur l'identification d’une ou plusieurs trajectoires optimales avec des conditions initiales et/ou
finales fixes.

2.2.1 Reésumé et organisation

e Dans Chapter [3| nous donnons des informations essentielles sur la théorie du contrdle
optimal déterministe et les méthodes numériques qui seront utilisées dans le reste de cette
these.

o Dans Chapter [4 nous nous concentrons sur un probléme particulier et fondamental, le
probleme du temps minimum. Nous présentons notre nouvel algorithme, qui tient compte
a la fois des aspects continus et de I'approximation numérique. Nous montrons la con-
vergence et nous établissons une limite de complexité de calcul avec une certaine limite
d’erreur. Nous présentons des tests numériques jusqu’a la dimension 7, confirmant la
rapidité de la méthode.

e Dans Chapter 5| nous analysons un schéma semi-lagrangien particulier pour le probleme du
temps minimum et ’équation eikonale associée. Nous prouvons une propriété de régularité
pour la fonction de valeur discrétisée. Nous établissons le taux de convergence du schéma
semi-discrétisé et du schéma entierement discrétisé. En particulier, nous appliquons le
résultat pour dériver une condition suffisante pour la limite de complexité idéale de Chap-

ter [l

« Dans Chapter[6] nous considérons des problémes généraux de controle optimal déterministe
a horizon fini. Tout d’abord, nous combinons les méthodes directes avec la méthode des
éléments finis max-plus, ce qui permet d’obtenir un algorithme plus précis. Ensuite, nous
adaptons I'idée de Chapter [4] & ce contexte, ce qui permet d’obtenir la limite de complexité
idéale avec une condition assouplie.

o Dans Chapter [7} nous introduisons une nouvelle méthode pour approximer le probléme
avec un état initial fixe. Cette méthode s’inspire et peut étre considérée comme une
généralisation de l'algorithme de programmation dynamique duale (stochastique) adapté
aux problemes semiconcaves. Nous montrons que notre méthode converge vers I'optimum
global sous certaines hypotheses de régularité. Nous présentons des benchmarks numériques
sur des problemes a N —corps.

2.2.2 Contribution des chapitres

Nous présentons maintenant en détail les chapitres qui contiennent des travaux originaux et qui
constituent les contributions de cette these.

2.2.2.1 Contribution de Chapter A multilevel Fast Marching Method For the
Minimum Time Problem

Dans Chapter [4 nous introduisons un nouvel algorithme pour approximer les solutions d’une
classe I’EDP de Hamilton-Jacobi stationnaires découlant de problemes de contrdle optimal en
temps minimum. En particulier, nous nous concentrons sur la recherche du temps de parcours
minimum entre deux ensembles donnés g et g5t dans un domaine donné €2, ainsi que sur les
trajectoires optimales.

A cette fin, nous traitons deux probléemes, I'un impliquant la direction temporelle habituelle
appelée "arrivée a Kgs” et autre impliquant la direction inverse appelée "départ de Kq..”. Nous
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caractérisons les fonctions de valeur vgs, vsq de ces deux problémes en utilisant deux équations
HJB contraintes par ’état dans leurs directions respectives. Nous caractérisons ensuite les points
géodésiques en utilisant vgs et vsq, dans Proposition et Lemma De plus, sur la base
de ces deux fonctions de valeur, nous définissons un sous-domaine ouvert O, de €2,

Op = {2z € (Q\ (Ksre UKast)) | Fo(z) < ;gg{fv(y) +0r ) (2.2)

oll () = ves () +v54(2) —vss (2)v5q(x). Nous montrons I’équivalence entre le sous-domaine O,
et les points géodésiques — dans Lemma [£.3.14 et Lemma Sur la base de ces propriétés,
nous établissons dans Theorem @ que, si nous réduisons l'espace d’état de 2 a O,, alors
pour chaque = dans I’ensemble des points d—géodésiques avec § < 7, les nouvelles fonctions de
valeur vl (z) et v (x) sont égales & vss () et vsq(x), respectivement.

Notre nouvel algorithme tire parti des propriétés susmentionnées. Nous nous appuyons sur
des approximations de grilles imbriquées et recherchons les trajectoires optimales en utilisant les
approximations de grilles grossieres pour réduire I’espace de recherche dans les grilles fines. Plus
précisément, apres une approximation grossiere dans la grille grossiére, deux fonctions de valeur
approximative v, vf{i sont calculées dans les noeuds de la grille. Nous sélectionnons ensuite les
neeuds actifs a I’aide d’une formule d’approximation dérivée de , ol v est remplacé par v et
1 par un parametre ng. Les noeuds actifs peuvent étre considérés comme des points de voisinage
autour de la trajectoire optimale. La grille fine est construite dynamiquement ”autour” de ces
neceuds actifs. Ensuite, les calculs des fonctions de valeur approximative vé@, vfd ne sont effectués
que sur les nceuds de la grille fine sélectionnés. Nous donnons dans Algorithm [4.2]les détails de la
méthode a deux niveaux (2LFMM). Ensuite, nous prouvons dans Theorem la convergence
de la méthode de marche rapide a deux niveaux, en affirmant que si ngy est suffisamment grand,
I’estimation de ’erreur est aussi bonne que celle obtenue en discrétisant directement 1’ensemble
du domaine avec la grille fine. Le concept d’approximation grossiere-fine peut étre étendu au
cas multi-niveaux. Etant donné une famille de maillages successifs Hy < Hy... < Hy = h, et
une famille de parametres positifs réels {n1,n2,...,7v-1}, la méthode de marche rapide multi-
niveaux (MLFMM) est présentée dans Algorithm et le résultat de la convergence est présenté
dans Theorem [£.4.4l

Nous fournissons une limite de complexité de calcul par rapport a 'erreur €, afin de montrer
I’amélioration de notre algorithme par rapport a d’autres méthodes basées sur la grille. Pour
commencer, nous limitons la complexité spatiale de 2LFMM par le volume des voisinages tubu-
laires autour des trajectoires optimales dans Proposition Plus précisément, étant donné
un pas de maille grossiere H, un pas de maille fine h et le parametre ny, la complexité spatiale
peut étre exprimée comme suit

~ B(d—1)
CopalH ) = O(C* (1 + P20 (23)
ou (3 est la "rigidité” de la fonction de valeur autour des trajectoires optimales, voir Assump-
tion Cette complexité spatiale implique en effet des nceuds dans la grille grossiere, inclus
dans une boule d’'un volume de O(1), et des nceuds dans la grille fine, inclus dans un voisinage
tubulaire de la trajectoire optimale d’un volume de O((nz)?@~1). La méme analyse que dans
le cas a deux niveaux fonctionne également pour le cas a N —niveaux, pour lequel la complexité
spatiale est déduite d’une hiérarchie de voisinage tubulaire. On peut observer que la limite de
complexité dans , ainsi que celle pour le cas N —level, est une fonction de la famille des pas
de maille grossiers lorsque h est fixé. Ensuite, les pas de maille sont choisis de maniere & ce que
la limite de complexité atteigne son minimum. De plus, une fois les pas de maille choisis, la
complexité devient une fonction du nombre de niveaux N. Ainsi, N est a nouveau choisi pour
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minimiser la complexité. Nous présentons dans Theorem le résultat principal de cette lim-

ite de complexité. En résumé, pour notre méthode a plusieurs niveaux, le nombre d’opérations
~ _1+(d=1)(1=8)
arithmétiques est de 1'ordre de O(C% g ), o C' > 1 est une constante dépendant des

caractéristiques du probleme et 0 < v < 1 est le taux de convergence de la méthode classique

de marche rapide. Ainsi, en considérant la dépendance dans ¢ seulement, nous réduisons la
~_d_ o~ _1Hd-1)(1-18) . . N ;
limite de complexité de O(e™ 7) a O(e g ). Dans les situations typiques ou la fonction

de valeur est lisse avec un hessien non dégénéré dans le voisinage d’une trajectoire optimale,
on a f = 1/2. Dans des cas exceptionnels, avec une géométrie de type L;—, on peut obtenir
B = 1. Observez que la limite de complexité se réduit a G(Cda_l) lorsque v = 8 = 1. Ainsi, en
considérant uniquement la dépendance de ¢, la limite de complexité devient 6(5‘1) et est donc
du méme ordre que pour les problemes unidimensionnels.

Pour mettre en ceuvre numériquement 1’algorithme, nous introduisons une structure de
données dédiée, une "table de hachage”, pour stocker les grilles successives contraintes (constru-
ites dynamiquement), pour chaque niveau. Chaque fois qu'un nouveau nceud est sélectionné,
nous calculons son emplacement par une fonction de hachage, puis nous stockons les informations
nécessaires au calcul dans cet emplacement, voir les détails dans Section £.4.4, Nous présentons
des tests numériques jusqu’a la dimension 7, et nous analysons la complexité effective de notre
algorithme multiniveau.

2.2.2.2 Contribution de Chapter Convergence and Error Estimates of a Semi-
Lagrangian Scheme for the Eikonal Equation

Dans Chapter[5] nous considérons un schéma semi-lagrangien particulier pour résoudre numériquement
I’équation d’Eikonal découlant du probléme du temps minimum pour atteindre un ensemble cible
IC, dans lequel le pas de temps varie en fonction de I’état. L’objectif est d’établir une condition
suffisante pour atteindre un taux de convergence d’ordre 1 a la fois pour le schéma semi-discrétisé
et le schéma entierement discrétisé, ou dans le cas du schéma semi-discrétisé, le taux de conver-
gence est exprimé en termes de pas de temps, tandis que pour le dernier, il est en termes de pas
de temps et de pas de maille. Ce résultat est également appliqué pour dériver des conditions
suffisantes pour atteindre un taux de convergence de 1 pour la méthode de marche rapide de
type semi-lagrangien. A notre connaissance, c’est la premiere fois qu'un tel taux de convergence
est établi. Nous appliquons ensuite ce résultat pour obtenir la limite de complexité idéale de la
méthode proposée dans Chapter [

Nous considérons d’abord le schéma semi-discrétisé. Nous représentons la solution du systéme
discrétisé comme la fonction de valeur d’un probléme de contrdle optimal déterministe en temps
discret. Le premier résultat principal est présenté dans Proposition dans lequel nous mon-
trons que sous des hypotheéses semiconcaves particuliéres sur la dynamique et sur la fonction
de distance a ’ensemble cible (voir les détails dans Assumption , nous obtenons que la
fonction de valeur en temps discret est semiconcave, c¢’est-a-dire

'z + 2) — 20" (2) + o (@ — 2) < O|2|?, for every z,z € RT\ K . (2.4)

FEsquisse de la preuve de Proposition [5.3.4] Nous dérivons cette propriété en considérant les
problemes de controle optimal en temps discret avec les états initiaux = + z, z — z et x, respec-
tivement. Soit y* la trajectoire optimale pour le probleme avec I’état initial . Nous construisons
des trajectoires réalisables, désignées par y et y~ pour les problémes avec des états initiaux
x + z et x — 2z, de la maniére suivante : y* et y~ suivent initialement la méme trajectoire de
controle que pour y* ; si y* atteint d’abord K, alors y™ et y~ continuent le long d’une ligne
droite jusqu’a K. Sinon, si ¥~ atteint K en premier, alors y* et y~ continuent en ligne droite
jusqu’a K, y* répéte deux fois le contrdle de la trajectoire y* jusqu’a ce que y* atteigne K.
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Ensuite, yT suit une trajectoire en ligne droite. est ensuite déduite en calculant les cofits
des trajectoires y—,y™ et y*, respectivement. O
Pour le taux de convergence, un coté, & savoir v — v”, est plus facile & borner par le haut
puisque ’ensemble discret des trajectoires est un sous-ensemble de ’ensemble continu. Dans
'autre sens, la limitation de v — v fait appel & des techniques de viscosité et & la semiconcavité
de v". Nous présentons ce résultat comme le deuxiéme résultat principal dans Theorem m
Nous considérons ensuite le schéma entierement discrétisé, et nous commencons par con-
sidérer un simple opérateur d’interpolation P; (linéaire par morceaux) I;. Notre objectif est
d’établir une borne supérieure sur ||w” — v"||oo, ot w" est la solution du schéma entiérement
discrétisé. Pour la borne supérieure de w”—v", nous utilisons le fait que I'opérateur d’interpolation
et 'opérateur de Bellman associés au probleme de controle déterministe en temps discret ne sont

pas coliteux, l'opérateur de Bellman présentant un taux de contraction de (1 — %) De plus,

lorsque v présente une semiconcavité, le supremum sur z de (I;[v"] — v")(z) est borné par
Ch?. Pour la borne supérieure de v" — w”, nous représentons d’abord la solution du systeme
entierement discrétisé comme la fonction de valeur d’un probleme de contréle stochastique. En-
suite, nous montrons que, sous des hypothéses semi-convexes sur la dynamique et sur la fonction
de distance a ’ensemble cible (voir les détails dans Assumption , nous pouvons dériver une
erreur de 'ordre de h est. Ce résultat est présenté dans Proposition qui se résume comme
suit,
sup (v — w)(z) < Ch . (2.5)
zeR?
Sketch of Proof. Nous considérons une chaine de Markov controlée avec un état initial x. Pour
toute stratégie ¢”, nous construisons une trajectoire déterministe qui suit le méme controle
que celui associé & o dans le cas stochastique. Cette trajectoire est en effet une trajectoire
réalisable pour le systéme discret déterministe. Nous dérivons ensuite en calculant les
cotits du probléme de controle stochastique avec la stratégie o”, et du probléme déterministe
avec la trajectoire construite, qui est principalement basée sur deux propriétés : (i) les états
du processus de Markov ont la propriété que ’espérance de £x11 — &k est ha, et la covariance
est limitée par h? (voir (5.69)) ; (ii) une propriété liée a I'espérance des fonctions semi-convexes
(voir Lemma [5.4.3)). O
Nous appliquons ensuite le résultat de convergence du schéma entiérement discrétisé pour
montrer que les méthodes de marche rapide, utilisant des opérateurs de mise a jour dérivés d’une
discrétisation de type semi-lagrangien, ont un taux de convergence d’ordre h sous les hypotheses
que nous avons introduites, ou h représente la grille de maillage. En conséquence, la complexité
de calcul de la méthode de marche rapide & plusieurs niveaux introduite dans Chapter 4] dépend
uniquement de 3, la rigidité de la trajectoire optimale.

2.2.2.3 Contribution de Chapter |§|: An Adaptive Multi-Level Max-Plus Method
for Deterministic Optimal Control Problems

Dans Chapter [6, nous considérons des problémes de controle optimal déterministe a horizon fini
qui impliquent & la fois des cotits initiaux et finaux. Tout d’abord, nous combinons les approxi-
mations max-plus avec des méthodes directes, ce qui conduit a une méthode numérique avec un
degré de précision plus élevé. Ensuite, nous étendons I'idée du raffinement dynamique de la grille
autour du voisinage tubulaire des trajectoires optimales, qui a été introduite dans Chapter [4
Nous caractérisons les conditions d’optimalité en considérant une paire ’EDP HJB associées
a deux problémes de controle optimal : I'un impliquant une dynamique vers I’avant avec un état
initial fixe et un état final libre, et 'autre impliquant une dynamique vers ’arriére avec un
état final fixe et un état initial libre. Nous adaptons la méthode des éléments finis max-plus
pour approximer les deux fonctions de valeur vl, et fuid, pour chaque ¢t € {0,6,...,T}. Plus
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précisément, si l'on considére d’abord v!,, et compte tenu d’une famille finie de fonctions de
base {w; }1<i<p, vl est approximé par une combinaison linéaire max-plus des fonctions de base
a coefficients {7} 1<i<p. les fonctions de base & coefficients {\;*"}1<ic,. L'équation récursive
des scalaires entre deux pas de temps successifs est obtenue en introduisant un ensemble de
fonctions de test {z;}1<j<q (voir les détails dans Proposition [6.3.1)). Notre premier travail est
basé sur 'observation que la propagation en petit temps des fonctions de base conduit & un
nouveau probleme de controle optimal,

0
(24, S%[w;]) = max {zj(x(())) + /0 0(x(s),u(s))ds + wl(x(é))} . (2.6)

Nous montrons dans Proposition[6.3.2]et Lemmal[6.3.3]que, sous certaines hypothéses de régularité
sur f et £ (voir les détails dans Assumption , en choisissant des fonctions de base forte-
ment concaves et des fonctions de test w;, z; (par exemple des fonctions quadratiques), dans un
horizon temporel donné ¢ < 4, le probléme est en fait un programme concave par rapport
a la trajectoire (z(-),u(-)). Cette propriété peut s’expliquer par la "propagation” de la forte
concavité des cofits initiaux et/ou terminaux dans (1.6 sur un petit horizon temporel. Cela
implique que le probléme peut étre résolu exactement, ou avec une erreur négligeable par
rapport a J, en employant une méthode directe. Nous proposons d’approximer ce probléme par
une méthode directe. L’algorithme complet est présenté dans Algorithm [6.1] L’estimation de
Ierreur est également présentée dans Theorem qui est alors une conséquence directe des
résultats de [Lak07].

Apres avoir obtenu 'approximation des deux fonctions de valeur, nous appliquons une ap-
proche similaire & celle utilisée dans Chapter [ pour approximer la trajectoire optimale. Dans ce
cas, la valeur du probléme est représentée (approximativement) par les scalaires AL,, A}, dans
deux directions, c’est-a-dire

v~ sup {)\f’t + /\;-’d’t + <w§’>,uﬁd>} , Vtelo,T]. (2.7)

1<i,j<p !

Nous sélectionnons ensuite des ensembles d’indices ¢ et j qui sont n—optimaux dans .
Ces indices correspondent en effet aux voisinages dans R? de certaines trajectoires optimales
duales pour v{, et vid, respectivement. Les trajectoires optimales (primaires) peuvent alors étre
identifiées sur la base de ces ensembles d’indices, voir Theorem [6.4.7}

Nous étendons ensuite 1'idée du raffinement dynamique de la grille autour du voisinage
tubulaire des trajectoires optimales dans Chapter [d En particulier, nous utilisons une hiérarchie
de grilles irrégulieres de plus en plus fines pour générer les fonctions de base et les fonctions de
test. Dans le cas a deux niveaux, nous utilisons d’abord deux grilles grossiéres pour générer les
fonctions de base et les fonctions d’essai pour 'approximation des fonctions de valeur dans deux
directions. Ensuite, étant donné un parametre n, nous identifions les nceuds actifs” dans les
grilles grossieres pour les deux directions. Ces noeuds actifs correspondent en effet aux indices
(1,7) qui sont nf —optimaux dans . L’approximation grossiére des trajectoires optimales est
obtenue a 'aide de ces noeuds actifs. comme dans (6.54]). Ensuite, nous construisons les grilles
fines autour des nceuds actifs. (voir dans (6.56)). Les fonctions de base et les fonctions de test
pour l'approximation fine seront générées par ces grilles. Nous présentons la méthode complete
a deux niveaux dans Algorithm Le concept d’approximation grossiére et fine peut étre
étendu au cas multi-niveaux. Etant donné une famille de grilles successives {G‘Hl, GHZ}KKm,
et une famille de parametres positifs réels {n;}1<;j<m—1, la méthode d’approximation adaptative
Max-Plus & m-niveaux est présentée dans Algorithm [6.3]

Nous montrons qu’en utilisant notre algorithme, le nombre de fonctions de base nécessaires
pour obtenir une certaine erreur € est considérablement réduit. En effet, pour un probléme &
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d—dimension, sous certaines hypotheses de régularité, nous obtenons une limite de complexité de
Cd(l / 8)% opérations arithmétiques, pour une certaine constante C' > 1. Ceci doit étre comparé
aux méthodes basées sur des grilles régulieres, qui donnent des limites de complexité d’ordre
O(1/£%?) dans lesquelles a > 0 dépend des hypothéses de régularité et de I'ordre du schéma.
Avec notre méthode adaptative, la malédiction de la dimensionnalité n’est présente que dans le
terme C?. Nous présentons le principal résultat de complexité dans Theorem Par rapport
a la complexité de calcul dans Chapter [ 'utilisation d’approximations max-plus combinées
a des méthodes directes permet d’obtenir un degré de précision plus élevé. En effet, sous des
hypotheses de régularité appropriées (en particulier les hypotheéses que nous avons utilisées
dans Chapter [5| pour obtenir un taux de convergence d’ordre h pour la méthode de marche
rapide), la méthode de Chapter [4| présente une complexité de calcul d’ordre (’)(a_l_u_l)(l_ﬂ)),
dans laquelle le parametre 0 < 8 < 1 mesure la rigidité” des fonctions de valeur pres des
trajectoires optimales. Les cas typiques sont modérément rigides et ont un parametre 5 =1/2,
ce qui conduit & une complexité d’ordre O(e~1=(@=1)/2) En revanche, nous obtenons ici une

complexité d’ordre O(e_%), avec des hypotheéses moins exigeantes.

2.2.2.4 Contribution de Chapter |7} Semiconcave Dual Dynamic Programming and
Its Application to Tropical Low-Rank Approximation of N-body System

Dans Chapter[7], nous introduisons un nouvel algorithme pour trouver numériquement la fonction
de valeur, ainsi que la trajectoire optimale, pour une classe de problémes de contréle optimal
déterministe a horizon fini avec un état initial fixe. En particulier, la fonction de récompense
(dans le cas de la maximisation) doit seulement étre semiconcave par rapport a l'état x.

Nous cherchons une approximation serrée de la fonction de valeur le long des trajectoires
optimales & partir d’un point initial donné xy. Nous commencgons par une trajectoire réalisable
(arbitraire) pour le probleme de contrdle, et construisons une approximation supérieure ini-
tiale pour la fonction de valeur. A chaque pas d’itération, pour le probléme de maximisation,
apres une discrétisation dans le temps, nous approximons la fonction de valeur, dans un hori-
zon temporel donné, par un minimum de fonctions quadratiques ”de base” (voir la définition
dans ) Cependant, le semigroupe évolutionnaire associé au probléeme de maximisation est
max-plus linéaire au lieu de min-plus linéaire. Pour propager les fonctions de base a 1’horizon
temporel suivant, nous résolvons un probléme dual du probléme de maximisation (voir la for-
mulation du probleme dual dans ) Nous construisons ensuite une nouvelle approximation
supérieure de la fonction de valeur basée sur le probleme dual. La trajectoire est alors en-
suite mise a jour vers une trajectoire optimale dérivée de la fonction de valeur approximative
actuelle. Ainsi, & chaque itération, nous ajoutons une fonction de base supplémentaire pour
I'approximation. Nous présentons notre nouvel algorithme dans Algorithm [7.1]

Nous présentons également une légere variante de I'algorithme dans Algorithm qui im-
plique deux boucles dans le temps : une boucle en arriére dans le temps pour la mise a jour
de la fonction de valeur approximative, et une boucle en avant dans le temps pour la mise a
jour de la trajectoire. Nous montrons que notre algorithme peut étre comparé a la méthode
(S)DDP et peut étre considéré comme une extension de celle-ci, en particulier pour traiter les
situations impliquant la condition de semiconcavité sur la récompense courante. En effet, il
peut étre expliqué par 'ajout d’un terme quadratique de "régularisation” pour la semiconcavité
de la fonction de valeur et des récompenses en cours d’exécution. En suivant ’approche de la
méthode SDDP, & chaque itération, nous résolvons en effet un nouveau probléme dual sous la
forme de . Nous devrions démontrer I’équivalence de cet algorithme avec celui du point
de vue de 'approximation dans Proposition [7.3.6]

Nous montrons que notre méthode converge vers le maximum global sous certaines hy-
potheses de régularité. Ceci est basé sur la propriété que la propagation en petit temps préserve



2.2. CONTRIBUTIONS 33

la semiconcavité, que nous présentons dans Proposition De plus, en dénotant vﬁ;lh la fonc-
tion de valeur approximative obtenue par notre algorithme au pas d’itération m, nous établissons
dans Proposition [7.4.7) que cette approximation est monotone par rapport au pas d’itération,
et qu’elle est bornée par le haut et par le bas. Nous présentons le résultat de convergence
dans Theorem

En guise d’application, nous utilisons notre algorithme pour construire une approximation
tensorielle tropicale de faible rang, qui peut étre considérée comme un analogue tropical de la
décomposition tensorielle classique de faible rang (voir in ), pour un systéme a N corps. La
fonctionnelle d’action de ce systéme se compose de ’énergie potentielle et de I’énergie cinétique
individuelles, ainsi que de I’énergie d’interaction de Coulomb. Nous interprétons ce systeme
dans le cadre du contréle optimal et de ’équation de Hamilton-Jacobi, sur la base du principe
de moindre action (voir in ([7.61])). Nous présentons des reperes numériques pour déterminer la
trajectoire optimale et le grand état de chaque individu dans Section [7.5.4]
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Preliminaries
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In this preliminary chapter, we introduce four main concepts - deterministic optimal control,
the Semi-Lagrangian scheme for HJB equations, the fast marching method and tropical-based
numerical methods. The first three concepts form the foundation of part I of this thesis, the last
concept is for the part II of this thesis.
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3.1 Optimal Control Problem and Hamilton-Jacobi-Bellman Equa-
tion

The purpose of this section is to provide a concise introduction to deterministic optimal control
problems, and it’s relevance with the concept of viscosity solution of a class of nonlinear partial
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differential equations of the form
F(z,v(z),Vu(z)) =0 . (3.1)

This equation is commonly known as the Hamilton-Jacobi-Bellman equation, and is derived
from the dynamic programming principle, which was first formulated by Richard Bellman in
1950’s. The material of this chapter is mainly based on the reference books of Fleming and
Soner [FS06], and of Bardi and Capuzzo-Dolcetta [BCO§].

3.1.1 Deterministic Optimal Control Problem

An optimal control problem can be described as finding an optimal strategy u(-) € U, where
U ={u:[0,+00) = U C R™ such that u(-) is measurable}, that optimize a certain objective
functional, where the objective functional depends on the strategy u(-) and the states of the
system y(-), and the state y : [0, +00) — Q C RY is governed by a dynamical system. We call
U the control space and () the state space. We consider the following deterministic optimal
control problems, in which the evolution of the system is determined by an ordinary differential
equation,

{.zxs) = f(y(s).u(s). Vs>0, (3.2)

where f: QxU — R? is called the dynamics. Let us denote by y,(; s) the solution of (3.2)). In

this chapter, we consider the infinite horizon discounted control problem, with a discount rate
A > 0. More precisely, the objective functional has the form

J(z,u(-)) = /OOO ef)‘sf(yu(ﬂz;s),u(s))ds , (3.3)

and we consider a minimization problem, i.e., our objective is to minimize J(z,u(-)) over all
u(-) € U. In that case we call £ the running cost. Notice that the objective functional J may
have a different form. For instance, the objective functional can be replaced by the integral until
a time horizon 7, at which the controlled state v, (z; 7) first reaches a certain target . This is
the one we explore in Chapter [4] in the particular case of a minimum time problem, such that
£ = 1. Another variant involves a fixed time horizon, for instance T, together with a finial cost
#(y(T)). This is the one we consider in Chapter [6] without the discount rate. Moreover, the
dynamics and running cost may depend on time. In that case, one may consider a new state
z = (y,t) € Q x [0,+00) and the dynamics of the new state Z = (f(¢,y,u), 1), then treat it as
for the previous form.

3.1.2 Dynamic Programming Principle and Hamilton-Jacobi-Bellman Equa-
tion

In this section, we always take Q = R?. In the optimal control problem, we observe that the
minimum value of the cost functional depends on the initial state z. Thus, we shall define the
value function v : R — R as follows:

v(x) = u(u)léu J(x,u(")) . (3.4)

We first assume that v(z) > —oo, and that the infimum in (3.4) is achieved in some u%(-). The
dynamic programming principle asserts that, as Bellman said, the optimal control u} remains
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an optimal control for any successive states y,: (x;t). Namely, consider an arbitrary ¢t > 0, we
can rewrite the optimality condition as

o() = /0 (s (15), w3 (5))ds + / " N0y (3 8), 5 (5))ds (3.5)

By a simple change of variable, i.e., let 7 = s — ¢, we have the second part of the sum in (3.5]) is
equal to

o
e M / e MUYy (v, 7 + 1), ul (T +1))ds . (3.6)
0

Using the dynamic programming principle, we deduce that (3.5)) is equivalent to

v(x) = /Ot e*)‘sﬂ(yu; (x;8),ur(s))ds + e*’\tv(yu; (x;t)) , (3.7)

that is the integral part in (3.6|) is equal to the value function with initial state y,x (x;t). In the
general case, that is when the optimal control ) is not necessarily achieved, we replace (3.7)) by

t
v(z) = inf {/ el (g (23 s),u(s))ds+e_)‘tv(yu(:n;t))} . (3.8)
u(-)eld LJo

The dynamic programming principle provides a tool for analyzing the optimality conditions of
the control problem. To derive the equation that the value function should satisfy, let us begin
by assuming that v is differentiable at all points 2 € R%. Then, taking the limit as t — 0 in ,
we obtain that the value function is a solution of the following partial differential equation, the
so called Hamilton-Jacobi-Bellman (HJB) equation

Mv(z) + H(x,Vo(z)) =0, (3.9a)
where Vv denotes the gradient of v w.r.t. x, and the Hamiltonian H is given by:

H(z,p) =sup{—p- f(z,u) — l(z,u)} ,z,pe R?. (3.9b)
uelU
The HJB equation (3.9) provides a sufficient and necessary optimality condition for the control
problem. Indeed, once (3.9)) is solved, one can get the optimal control as a maximizer of the
Hamiltonian,
u*(z) = Argmin o {—Vu(x) - f(z,u) — (z,u)} . (3.10)

Notice that in (3.10]), the optimal control is expressed as a function of the state z. It is also
called a feedback optimal control, or closed-loop optimal control, which has desirable advantages
in real applications, for instance the solution is robust against system perturbations.

3.1.3 Viscosity solutions

The dynamic programming principle and HJB equation provide powerful tools addressing the
optimal control problems, as long as equation holds everywhere for the value function v.
However, the assumption that v be everywhere differentiable is too restrictive. Furthermore, if
we relax this condition and consider only that is satisfied almost everywhere, there may
be other solutions than the value function. Thus, a good formulation of weak solution of
is needed to relate it with the value function of the control problem.

In the early 1980s, Crandall and Lions introduced the notion of wiscosity solution in pa-
pers [CL83} |CEL84], an uniqueness result for the first order equations was also provided. The

3. MULTILEVEL F.M.



3. MULTILEVEL F.M.

38 CHAPTER 3. PRELIMINARIES

value function of a large class of optimal control problems is then characterized as the unique
solution of the associated HJB equation in the viscosity sense.

Following |CL83; (CEL84|, we briefly introduce the notion of viscosity solution. We assume
that v is continuous and bounded in R?, which is a mild condition typically satisfied under
general assumptions on f and £. Let us define, respectively, the superdifferential of v at x as

VTo(z) = {peR?|limsup vly) —v(@) =p-(y =) <0y, (3.11a)
Yy—T ‘y - JJ’
and the subdifferential of v at = as
Vo(z) = {q e RY | limint YW Z0@) —a- =2) o 0} . (3.11b)
i e

Then viscosity solutions are defined as follows.
Definition 3.1.1. Let v be continuous and bounded from R? to R, then
e Vv is a wviscosity subsolution of if
() + H(z,p) <0, VzeRY Vpe V(). (3.12a)
e Vv is a wviscosity supersolution of if
M(z) + H(z,p) >0, YVrxeRY Vqge Vo). (3.12Db)
e Vv is a viscosity solution of if it is a viscosity subsolution and viscosity supersolution
of .
Notice that when v is differentiable at x, we have V*tv(z) = V- v(z) = {Vu(x)}. In partic-
ular if v is differentiable everywhere in R, the notion of viscosity solution is consistent with the

notion of classical solution. There is another equivalent definition of viscosity solution in terms
of test functions as follows.

Definition 3.1.2. Let v be continuous and bounded from R? to R, then

o v is a wviscosity subsolution of (3.9) if for every test function ¢ € C'(R? R), and for all
local maximum points zg € R? of the function v — ¢, we have

Av(zo) + H(Vo(zo),p) <0 . (3.13a)

v is a viscosity supersolution of (3.9) if for every test function ¢ € C*(R? R), and for all
local minimum points zg € R? of the function v — ¢, we have

Av(zg) + H(Vo(zo),p) =0 . (3.13b)

e v is a viscosity solution of (3.9) if it is a viscosity subsolution and viscosity supersolution
of (B9).
We refer to |[CEL84] for the proof of the equivalence between Definition and Defini-
tion Additionally, we cite the following lemma as an intuition of this equivalence.
Lemma 3.1.3. Let v be continuous and bounded from R? to R. We have

(i) p € V*tu(zg) if and only if there exists ¢ € CH(RY,R) such that x is a local mazimum
point of v — ¢, and p = Vo(xg).

(i) ¢ € V™ v(xo) if and only if there exists ¢ € C'(R?, R) such that xq is a local minimum
point of v — ¢, and ¢ = Vo(xp).

The concept of viscosity solution bridges the gap between the regularity of the value function
and the HJB equation. More precisely, under general assumptions on f and /¢, the value function
v of the optimal control problem is the unique viscosity solution of the HJB equation.
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3.1.4 State Constrained Control Problem and HJB equation

For the optimal control problem, it is natural to consider that the state of the system is required
to remain within the closure Q of a certain open domain €, which is also often the case in
practical applications. In that case, in addition to the dynamics of the system (3.2), we put an
additional constraint for the optimal control problem,

y(s) €Q, Vs > 0. (3.14)

In that case, the continuity of the value function is not easily obtained, and the notion of state
constrained HJB equation together with the state constrained viscosity solution are needed.

Soner introduced in [Son86a; [Son86b| a controllability condition in the dynamics and in the
boundary of the state space to establish the uniform continuity of the value function. Namely,
the followings assumptions on 2 and f are needed.

Assumption (A1l)Let 0f2 denote the boundary of €,
(i) 09 is compact.
(ii) 09 is of class C2.
(iii) There exists a positive constant C' such that, for every = € 99, there exists u € U,
flz,u) -n(z) < -C<0, (3.15)
where n(z) denotes the exterior normal vector to Q at z.

The points and in Assumption can be relaxed under specific conditions. The
point in Assumption also called the ‘nward pointing qualification condition, indeed
require that at every point of the boundary of €2, there exists a field of the system pointing
inward the domain €2. Under Assumption the value function is bounded and uniformly
continuous on €, and it is obtained as the constrained viscosity solution of the HJB equation
defined as follows.

Definition 3.1.4. A bounded uniformly continuous function v on € is a constrained viscosity
solution of (3.9) on Q if it is a viscosity subsolution on € and a viscosity supersolution on €.

The property that v is a viscosity supersolution on € imposes a boundary condition. Using

the definition of viscosity subsolution and supersolution in (3.12a)) and (3.12b)) (or in (3.13a))

and (3.13b])), the value function of the state constrained problem can be characterized as the
following state constrained HJB equation:

{Av(x) +H(z,Vo(z)) =0, z€Q, (3.16)

Mv(z) + H(z,Vo(z)) 20, x€o.

The uniqueness result is also established under Assumption and general assumptions on f
and £.

It is worth noting when addressing the exit time problem, that in addition to the boundary
condition due to the state constraint, a boundary condition due to the target set should be
defined. This is the case we explore in Chapter 4, We also refer to [CLI0] for reference.

3. MULTILEVEL F.M.
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3.2 Classical Numerical Methods for HJB Equations

Up to rare cases, optimal control problems and HJB equations can only be solved approximately
using numerical methods. We should mention that the HJB equation is itself a nonlinear partial
differential equation, thus it can be approximated using finite difference scheme, which is among
the most common approach for numerically solving PDEs. The purpose of this chapter is to
present another classical numerical scheme for approximating the HJB equations, the so called
Semi-Lagrangian schemes. This scheme somehow arises by applying the dynamic programming
principle to a discrete time optimal control problem obtained after an Euler time-discretization
of the dynamics. The material of this chapter is mainly based on the reference paper of Capuzzo-
Dolcetta and Ishii [DI84], and of the reference book of Falcone and Ferretti [FF14].

3.2.1 Discrete Time Optimal Control Problem

In this section, we intend to approximate the optimal control problem presented in Section
by a discrete time optimal control problem. Let us consider the Euler approximation scheme in
time, with step At, of the dynamical system (3.2)), that is,

h ) h =
{y (k+1) = y"(k) + Atf(y" (k), u(kAt)), VEk=0,12,..., (3.17)

y"(0) =

Here, h stands for the discretization. Moreover, we consider a subset U" of U, containing the
controls that take piecewise constant values, that is

U .= {u el | u(s) = u(kAt), for all s € [kAL, (k+ 1)At] } . (3.18)

Given a u(-) € U", the solution of the system (3.17) is denoted by y*(x;k), k =0,1,2,.... We
shall also consider a discrete cost functional, defined as follows,

Jh(z,u()) == At fja Ay (2 k), u(kAY)) (3.19)
k=0

Notice that can be thought of as a rectangular approximation of the integral function
in the continuous cost functional (3.3)), for which y(t) is defined by y(t) = yl(x; k) for every
t € [kAt, (k + 1)At). Similarly as in continuous case, the minimum over all u(-) € U" of the
discrete cost functional depends on the initial state . We shall define the discrete value
function v : R — R as follows:

WM(x) = in M, u(t)) . .
(0) = inf " u()) (3.20)

3.2.2 Semi-Lagrangian Scheme

We apply the dynamic programming principle to the discrete time problem constructed in Sec-
tion this leads to the following equation

of'(x) + max {~(1=2A0" (2 + Atf(z,u)  Atl(z,u)} =0, (3.21)
ue

for every € R?. The existence, uniqueness and regularity property of the discretized equa-

tion ([3.21) are well studied, for which we refer to the book of [FF14]. In a nutshell, under general

regular assumptions on ¢ and f, we have that the value function of the discrete optimal control
problem is the unique solution of the equation ({3.21)).



3.2. CLASSICAL NUMERICAL METHODS FOR HJB EQUATIONS 41

The discrete equation can be thought of as an approximation of the HJB equation .
This approximation is commonly referred to as the Semi-Lagrangian scheme, with only a semi-
discretization in time. One advantage of this scheme, compared to finite difference schemes, is
that the time step can be chosen independently of the space discretization (as will be detailed
later). Indeed, if admits a classical solution, that is v € C', the convergence of v" to v
as h — 0 is relatively intuitive. However, as the essential purpose is to approximate the value
function of the optimal control problem, the convergence should be understood in the viscosity
sense. We present the convergence result below.

Proposition 3.2.1. Let us denote

liminf v"(y) = v(z), limsup v"(z) = v(x) . (3.22)

h—=0,y—z h—0,y—x

Under general assumptions on ¢ and f, v is a viscosity supersolution of the HJB equation (3.9),
o(x) is a viscosity subsolution of the HIB equation (3.9). Thus, {v"} converges uniformly to the
viscosity solution of (3.9) on any compact subset of R as h — 0.

As part of our interests to solve the optimal control problem, we also propose a method to
approximate the optimal trajectory and the feedback optimal control. Indeed, once (3.17)) is
solved, one can compute a discrete optimal control w.r.t. every x € R? as follows:

u"* () € Argmax, ey {—(1 = MAD (2 + Atf(w,w) - Atf(z,u)} . (3.23)

Starting from the initial sate x, one can iteratively find the approximate optimal trajectory y/*,
that is,
(k4 1) =y (k) + Atf(y"" (k) u* (y"* (k k=0,1,2
{y (k+1) =y"" (k) + Atf(y™"(k), u™"(y"" (k))), (3.24)
Yy (0) =z .
Then, one can approximate the optimal control process of the continuous problem as follows:

ul*(s) = uh’*(yh’*(LKtJ))v s €[0,00) , (3.25)

where |a] denotes the greatest integer smaller or equal to a. The control process u/»* constructed
in can thought of as a piecewise constant approximation of the optimal control.

The approximation scheme provides a method for approximating the value function.
However, it only involves a semi-discretization in time, and is defined in all x € R?, making it
impractical to be implemented. Thus, for practical computations, we need to further discretize
the state space. For easy expression, we make the following assumption

Assumption (A2)There exists a bounded polyhedral domain X C R? such that,
x4+ Atf(zx,u) e X, VeeXandVueU, (3.26)

with At small enough.

We should note that when there is a state constraint, as in the case we discussed in Sec-
tion the state space Q can act as X, and Assumption may be replaced by a weaker
condition. This typically occurs under sufficiently regular assumptions on the boundary of 2.
We refer to the book of [FF14] for further studies. We also explore the numerical approximation
in the case of state constrained problems, as in Chapter [ and Chapter [f

Consider now a regular triangular discretization of X with diameter Az, and denote it
by X". Let us construct an approximation of the value function, w”, obtained as follows:

3. MULTILEVEL F.M.
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we apply the Semi-Lagrangian scheme to all the grid nodes z; € X", while when the
point (x; + Atf(x;,u)) is not in the grid X", we compute the value of w”(z; + Atf(z;,u)) by
an interpolation of the values of it’s neighborhood nodes. We assume given an interpolation
operator I[-] to be used in when z; € X", then consider the following fully discretized
Semi-Lagrangian scheme. Define 2" : X* — R by

2" (@) + max {~(1 = XAOI[M (2 + Atf(2i,w) = Atlas,u)} =0, YaeX", (3.27a)

then w” is obtained by
wh = I[2" . (3.27b)

Let us now go into more details by considering a simple interpolation operator, denoted by
I, which is the P; (piecewise linear) interpolation operator in the simplices of the triangular.
For every z € X, let Y'(z) = {Yk}k=12,.. 4+1 denote the set of vertices of the simplex that
contains x. Then we have

LEM@) = > Masu)2" () (3.28a)

€Y (z))

where the coefficients A(z; yi) depend on x and y, and are uniquely determined by the following

condition:
0 < A(w;ye) < 1, for every g ,

Z AMz;yk) = 1 and Z Mz yr)yy = @ . (3.28b)
Yk €Y () YY" (x)

We observe that, in the formulation (3.28b)), the coefficients {\z(z;yx)} can be interpreted as
the transition probabilities of a controlled Markov chain. In this interpolation, the state space
is defined as the set of nodes in X", and the transition probability from the node z; to the
node y; under the dynamics f(x;, u) is M(@; + A f(x;, w); yx). One interest of this property arises
when considering the Semi-Lagrangian scheme as a stochastic control problems. Moreover, we
use this property to demonstrate a convergence result in Chapter [5

3.2.3 A Glance of Convergence Analysis

We already give the convergence result of the semi-discretization scheme. In this section, we
will provide some convergence rate estimates for both the semi-discretization scheme and the
fully discretized scheme.

A first convergence rate estimate for the semi-discretization scheme, which typically occurs
under mild assumptions on v, is stated as follows:

lo = "]l < C1L(AD) (3.29)

where C' is a constant depending on various regularity bounds of ¢ and f but not on At. For
the fully discretized scheme, the following estimate holds in the sense of sup-norm over X
Ax
h h
— < Co(—), 3.30
" = oo x < Ca(57) (3.30)
which typically happens by showing the Lipschitz continuity of v". Thus, combining ([3.29)
and (3.30), we have the following result.

Proposition 3.2.2. Under general assumptions on £ and f, w" convergences uniformly to v on
x as At — 0 and % — 0, and the following estimate holds:

Az

o = wloe.x < CLAD? +Ca(F3) -

(3.31)
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The estimate in can be improved, for instance, under semi-concavity assumptions.
However, improving the estimate in is challenging, since it typically requires regularity
conditions on v". For the interest of the readers, we refer to |[Fer02] for some improvement of
such an estimate under a strong convexity assumption on the Hamiltonian. In Chapter [5], we
also improve this estimate using the connection between the fully discretized scheme and the
controlled Markov process.

3.2.4 Curse-of-dimensionality

Following the previous discussion, we can think that the theoretical studies of the dynamic pro-
gramming principle approach for solving optimal control problems is rather complete, ranging
from characterization of the value function as the unique viscosity solution of HJB equation,
to the approximation of the equation using semi-discretization schemes and fully discretized
schemes. However, one major difficulty that prevents this approach to be used in real applica-
tions is the well known curse-of-dimensionality, which was first expressed by Richard Bellman
in [BCC57]:

o 7..what casts the pall over our victory celebration? It is the curse of dimensionality, a
malediction that has plagued the scientist from the earliest days.”

Indeed, as we can see in , the HJB equation is formulated in the same dimension as
the state space, which typically has a very high dimension in real applications. Setting aside
the problems related to the regularity of the value function, solving high dimensional PDEs is
a challenging problem in itself and constitutes a field of study. As for the Semi-Lagrangian
scheme, even in the favorable cases where holds with an order of At, one can only expect
the total error estimate of the fully discretized scheme is in the order of (At + %). Therefore,

by choosing At = (A.CU)%, one can obtain an error estimate equal to O((Am)%) In other words,
to achieve an error less or equal to € > 0, one would need to take Az = O(¢?), thus resulting in
a computational complexity of O((%)M). In practice, numerical computation is feasible only in
a dimension d < 4 in modern computers. We should note that this computational complexity
estimate explains on of the interests of the studies in high order schemes. Indeed, if the order
of convergence can be improved, for instance from (Ax)% to (Ax), this can lead to a significant
reduction in complexity or enables the handling of dimensions that are twice as large. Mitigating
the curse of dimensionality is the primary motivation driving all the researches in the subsequent
chapters.

3.3 The Fast Marching Method

In this section, we present a numerical method known as the Fast Marching Method (FMM),
introducued in [Tsi95; |Set96]. This method was originally proposed for solving the isotropic
etkonal equation which is of the form

c@)|T(@)l =1, =eR!\Q,
T(x) =0, x € 09 ,

where || - || denotes the Euclidean norm and ¢ > 0 for every x. The equation arises from
the monotone front propagation problem, where the front of interface evolves monotonically
along its normal direction with speed ¢(x). In particular, the viscosity solution T of also
represents the value function of a minimum time problem, and the level set {z € R? | T'(x) =t}
of T models the interface at time ¢. In this case, the value function is monotone non-decreasing
in the direction of propagation. This section is based on a series of works in [Tsi95; [Set96; [SVO03;
CF07} For09; CCV14; [Mir18; Mirl9]

(3.32)
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3.3.1 Minimum Time Problem and Eikonal Equation

In this section we introduce the eikonal equation by showing it’s connection with a particular
optimal control problem, the minimum time problem. Consider a compact set Qg C R%. Our
objective is to find the minimum time necessary to travel from a point 2 € R%\ €y to the
boundary of g, with regular speed function ¢ : RY — Rsq. Here, regularity means that ¢
is Lipschitz continuous, bounded and strictly positive. The control represents the direction of
motion. More precisely, let S; be the unit sphere in RY, ie., S = {z € R% |jz|| = 1}. We
consider an optimal control problem such that the set of controls is in the unit sphere, that is
U={u:R — Sy :u() is measurable}, and the evolution of the system is determined by the
following equation

1(s) = c(y)u(s), Vs>0,
{y< ) = clyuls) )
y(0) ==z .
Let us denote y,(x; s) the solution of (3.33). The objective functional has the form
J(u(-),z) =inf{r >0 | yu(z;7) € Qo} . (3.34)
The value function 7' : R? — R is defined by
T(z) = inf J(u(-),z), VzecR?. (3.35)

aceU

Then, restricted to R% \ Qq, T is a viscosity solution of the following stationary Hamilton-Jacobi-
Bellman equation

ueU (3.36)
T(ZL‘) =0, x €0 .

Notice that the maximum of the first equation of (3.36)) is achieved at

{max{—(VT(:v) ‘u)e(z) =13 =0, zeRY\Qq,

u* () = Argmax,cs, {~VT(x) - u} = —% , (3.37)

thus (3.36)) can be written as in (3.32)).

3.3.2 Finite Difference Fast Marching Method

To simplify the notion, we will present the results in dimension d = 2. The first fast marching
method, initially introduced in [Tsi95; Set96], is based on the finite difference scheme for the
equation (3.32)). Assuming we discretize the whole domain by a grid X h and then discretize the
equation by finite difference scheme, the classical method to solve the resulting equation involves
preforming iterative computations. At each iteration, the approximate solution is improved
everywhere in the grid nodes of X”. The fast marching method, which can be viewed as an
acceleration of theses iterative steps, visits the nodes of X" in a special ordering and computes
the approximate value function in just one iteration. This special ordering, constructed by fast
marching method, is such that the value function is monotone non-increasing in the direction of
propagation. This construction is done by dividing the nodes into three groups (as illustrated

in Section [3.3.2)),

e FAR, which contains the nodes that have not been searched yet;

e ACCEPTED, which contains the nodes at which the value function has been already com-
puted and settled — by the monotone property, in the subsequent search, we do not need
to update the value function at those nodes;
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e NARROWBAND, which contains the nodes ”around” the front — at each step, the value
function is updated only at these nodes.

Let us consider, for simplicity, a grid of N x N nodes, X" = {(z;,y;)}1<i j<n, with Az as
the discretization step in both the x and y axes. For an element (x,y) € R?, let us denote T}, T,
the partial derivatives of T" with respect to = and y, respectively. Then, equation (3.32) can be
written as follows

2 2 1

T, +1T, @) (3.38)
We then use a first order finite difference on the grid nodes to approximate the partial derivatives
T, and T,. However, as mentioned in Section @ it is important to note that the convergence
of the numerical approximation for HJB equation should be understood in the viscosity sense.
Therefore, we need to apply an up-wind finite difference scheme. Let us use T;; and ¢;; to
represent the values of 7" and c at the grid points (x;,y;), respectively. Then, the up-wind finite
difference scheme for is given as follows:

(Alx)z(max {(Ti,j —Ti1)" —(Tig, — Ti,j)_} )2

) X N (3.39)
T (Az)? (max {(Tm‘ —Tij1)" —=(Tijp1 = Tiy) }) = % ,
where we denote (a)™ := max(a,0) and (a)” := min(a,0). Moreover, we define the set of

neighborhood nodes of = (z;, ;) in the first order finite difference scheme as follows:

Nrp(z) = {(it+1,95), (®i-1,95)s (@i, Yj+1), (Tis yj-1) } - (3.40)

Then, a sketch of finite difference fast marching method is presented as follows,

Initialization. The algorithm starts by labeling only nodes in Qg N X" as ACCEPTED, and
the value of these nodes are set to 0. Moreover, we set the nodes that are in the neighborhood
of the ACCEPTED nodes, as defined in , and that are not accepted to NARROWBAND. The
value of the initial NARROWBAND nodes are set to 2% . The remaining nodes are set to FAR,

c(x)
and the value of FAR nodes are set to +oo.
Main Loop. The main loop of the fast marching method consists of the following steps

3. MULTILEVEL F.M.
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e Select the node in NARROWBAND with the smallest value, denoted by x*. Add z* into
the set of ACCEPTED nodes.

o Add the neighborhood nodes of z*, Npp(z*), that are in the set FAR to NARROWBAND.

o Update values of the nodes in Npp(z*) that are in the NARROWBAND set using equa-

tion (3.39).

Then main loop stops when NARROWBAND is empty.
An interesting property of the fast marching method is that NARROWBAND can be thought
of as an approximation of the interface front.

3.3.3 Semi-Lagrangian Fast Marching Method

Under enough regularity assumptions, the Semi-Lagrangian scheme is known to be more accurate
than finite difference scheme, thus it is natural to adapt the fast marching method using Semi-
Lagrangian discretization. A basic tool in the studies of the minimum time problem is the
change of variable

v(z) =1—e 1@ (3.41)

which was first used by Kruzkov [Kru75]. The function v(x) is bounded and Lipschitz continuous.
The minimum time is recovered by T'(x) = —log(1 — v(x)). Notice that the Kruzkov transform
is monotone, thus when we focus on approximating v, it will not change the order constructed
by the fast marching method. Moreover, this approach can deal with the cases in which ¢ = 0,
for instance when obstacles are present. In these cases the value v remains bounded by 1. By
doing so, we change the system (3.36) to

(3.42)

v(z) + r;lgg{({—(VU(:L‘) ‘u)e(z) =13 =0, zeRY\Qq,
v(z) =0, x €00 .

We follow the discretization steps as in Section [3.2.2] and, in particular, we take the time step
At = h. Given an interpolation operator I, a fully discretized scheme is given as follows:

() = min {(1 = WI[) (s + he(e)u) + h} . Yo € X"\ Q. (3.43)

Pzy) =0, reX"NnQo,

and w" = I[z"]. Notice that an efficient method to compute the minimum in is to
set h(z) = %, in which the time step varies with respect to the state. Then, by using a
piecewise linear interpolation operator, the minimum can be computed within a sphere with
radius Axz. However, though most of the numerical experiments reveal accurate results, the
convergence requires further verification. As we can see from Section [3.2.3] in general, the fully
discretized Semi-Lagrangian scheme converges when both At and % tend to 0. This is one of
the motivations of Chapter For the moment, let us take h(z) = %, and use a piecewise

linear interpolation operator that uses the following neighborhood of nodes of z = (z;,y;)

Nsp(xz) = Npp U{(@it1,Yj+1), (@it1,Yj—-1), (@i—1,Yj+1), (Tim1,yj—1) } - (3.44)

The Semi-Lagrangian fast marching is then a slight modification of the one proposed in Sec-
tion [3:3:2] We follow the same steps as in the finite difference case, except that when updating
the value function in the grid nodes, we use (3.43|) with the neighborhood Ngp(-) replaced by
Nsr(+).
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3.3.4 Computational Complexity and Data Structure

Let us focus on the computational complexity of the fast marching method. Denote M = N x N
the number of nodes in the grid. In both Semi-Lagrangian and finite difference cases, during each
iteration of the main loop, we add one node to the set ACCEPTED. Thus, the loop can be repeated
at most M times. At each iteration, we need to select the point that has the minimum value
among the NARROWBAND nodes. To efficiently select this node, the nodes of NARROWBAND
should be arranged and ordered by their values using a particular data structure, the binary
heap. This arrangement ensures that the minimum value resides at the root of the heap and
thus selecting the node with the minimum value has complexity O(1). Moreover, adding a
new node to the NARROWBAND has complexity bound O(log(M)), as there are at most M
nodes in NARROWBAND set. The number of new nodes added to the NARROWBAND depends
on the size of the neighborhood, which is 4 for the finite difference discretization according to
the definition in (3.40]), and 8 for the Semi-Lagrangian discretization according to the definition
in . In summary, for two dimensional fast marching method, the computational complexity
is O(M log(M)). This complexity can be straightforwardly extended to d—dimensional cases,
which gives O(K M log(M)) with M still be the number of nodes, and the constant K, € [2d, D9
depends on the type of discrete neighborhood that is considered (and D is the maximal diameter
of neighborhoods).

The implementation efficiency of fast marching method relies on the data structure used to
store the grid nodes, as discussed above. The data of the classical fast marching method are
normally stored using two types of structures:

o a full d—dimensional table (or tensor), which contains all the values of the current ap-
proximate value function on the whole discretization grid (the values are updated at each

step);

e a binary heap (min-heap), which contains the information on the NARROWBAND nodes
with the current approximate value function.

These particular data structures align with the theoretical complexity estimates mentioned ear-
lier. In Chapter [4] we also explore in details the data structure of fast marching method.

3.3.5 Causality, Anisotropicity and Extension

One crucial assumption that ensures the fast marching techniques work is the so-called causality
property, which indeed requires that when applying the update operator to a node, the computa-
tion depends only on the nodes with values less than or equal to this node. This assumption also
appears in Dijkstra’s Algorithm in the discrete case, which is then automatically satisfied when
the costs are nonnegative. However, this assumption is quite restrictive when solving general dis-
cretized HJB equations. Indeed the causality property naturally holds for usual discretizations
of isotropic equations. This is due to the physical interpolation of isotropic front propagation
problems, which shows that the characteristic curves of the equation coincide with the gradient
lines of its solution. In anisotropic cases, this is not true. Several studies intended to overcome
this difficulty. In particular, in [SV03} V1a06], the authors extended the fast-marching method
to handle some amount of anisotropicity by increasing the sets of neighborhood points for every
node in the grid. Considering now the speed function ¢(x, u), so depends on the direction of the
motion. The authors define a coefficient to measure the anisotropy as follows

. me‘txm’u c(x,u) ‘ (3.45)
ming ,, ¢(z, u)

3. MULTILEVEL F.M.
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During computations, the neighborhood of one node is defined by a large set of nodes, which,
essentially, contains the nodes of simplices that are at most a distance of vh from the given
node. As a consequence, the author show that their methods could handle a certain class of
equations, but the larger neighborhood increases the computational complexity. More recently,
in [Mirl14; Mirl8; Mir19], the author extended the fast marching method to some 2 — D and
3 — D elliptic anisotropic cases, as well as other types of degenerate anelliptic cases related to
curvature penalization. His method is based on discretization using adaptive stencil adapted to
the Hamiltonian and associated Voronoi’s first reduction of quadratic forms. The computational
complexity of the algorithm in [Mir14; Mirl8; Mir19] is O(M In M + M In k), where k represents
the maximum anisotropic ratio. Other works intending to generalize the fast marching method
include [CFM11; For09; FLGO8]. Up to some of the special cases as mentioned above, the
anisotropy remains a major difficulty that prevents the generalization of fast marching.

3.4 Max-Plus Based Numerical Methods

In this chapter, we introduce a class of numerical methods for solving deterministic optimal
control problems based on the max-plus algebra or tropical algebra. To be consistent with
most of the initial references, we will focus on the following finite horizon undiscounted control
problem

max /O " ly(s), u(s))ds + d(y(T)) - (3.46)

where the maximum is taken over the trajectories (y(-),u(-)) satisfying the constraint
and y(-) € Qu(-) € U. We will not go into the details of the state constraint, for which we
can adapt the method of Section This class of numerical methods are inspired by the
max-plus linearity of the dynamic programming equation of the control problem, and has shown
advantages in solving problems under specific regularity conditions. The context of this chapter is
mainly based on the reference papers of Fleming and McEneaney [FMO00], of Akian, Gaubert and
Lakhoua [AGLOS], of McEneaney [MDGO8b| and on the reference book of McEneaney [McEO06].

3.4.1 Max-Plus Semifield

The max-plus semifield is set Rpax := R U {—00} equipped with two operations: for every
a? b E Rma)o
a® b:= max{a,b} ,

(3.47)
a®b:=a+b,

with —oo as the 0 element, that is a ® —oo = a for all @ € Ry,,x, and with 0 as the unit element,
that is a ® 0 = a for all a € Ryax. @ and ® are often referred as tropical addition and tropical
multiplication, respectively. One can then define the classical algebraic computations in Ry .y,
for instance the matrix computations, exponentiation, scalar products, integrals, . ...

Every non-zero element = in Ry, has an inverse —z for ®. However, @ is not invertible.
This results in a key property of max-plus algebra, that is, a system of linear equations, even
when the number of equations coincides with the number of degrees of freedom, and when the
system is nonsingular, may have no solution. Thus, in order to solve max-plus linear systems,
the notion of residuation should be used.

Definition 3.4.1. For every ordered sets (S5,<), (7,<) and map f: S — T , we say that f is
residuated if there exists a map f# : T — S such that

f(s) <tes< fH(t). (3.48)
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The map f is residuated if and only if, for all t € T, {s € S| f(s) < t} has a maximum element
in S. The residuated map is then defined by

() :=max{s € S| g(s) <t} . (3.49)

Let us denote by Ry the complete idempotent semiring obtained by extending R, with
+00, Riax = R U {+00}. Any max-plus linear operator M : RY = — R has a residuated
map. Thus, to solve a max-plus linear system

Mz=b, (3.50)

we consider the maximal subsolution of the inequality Mz < b, which is given by

M#b = max{z | Mz < b} . (3.51)
In usual notations, it is given by
(M#b); = 1@13( M;;j+0b), Yjie{l,2,....q}. (3.52)
(2

Then M7 is the residuated map of M.
3.4.2 Max-Plus Variational Formulation and Approximation of HJB Equa-
tion

For the optimal control problem proposed in (3.46)), let us consider the value function v defined
as follows, for every (z,t) € Q x [0,T],

v(z,t) = sup {/ Uy s))ds + ¢(y ())} , (3.53)

u(-)eU

under the same constraint as the control problem. Then, v is the viscosity solution of the
following Hamilton-Jacobi-Bellman equation

ov
——H t)e Q2 x[0,T
T (x,Vv) = (x,t) € 2 x[0,T] , (3.542)
(Z',O):(ﬁ(.’IJ), er,
where the Hamiltonian is defined by
H(z,p) = sup{p- f(z,u) + £(z,u)} . (3.54b)
ueU

Let us denote by S* the Laz Oleinik semigroup of Equation (3.54), i.e., the evolution semigroup
of this PDE, meaning that for all 0 < t < 7, S is the map sending the initial cost function ¢
to the value function v(-,1):

S| :=v(-,t) , (3.55)

so that the semigroup property S = S o 82 Moreover, the map S* is maz-plus linear,
meaning that, for all scalar A € Ry,ax and functions ¢1, ¢ : 2 — Rpyax, we have

S'let @ ¢%] = S'[¢'] @ S'[¢7]

Sh@d] = Ao | (3:56)

where for any functions ¢! and ¢?, A ® ¢! is the function z € X +— X+ ¢'(z) and ¢' @ ¢? is the
function x € Q ~ sup(¢'(x), ¢*(x)), in the usual sense.

3. MULTILEVEL F.M.
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The max-plus numerical methods to solve (3.54)) take advantage of the max-plus linearity of
St. Let us first discretize the time horizon by % steps. For a given time horizon ¢t € {0,46,...,T},
the value function v* is approximated by a max-plus linear combination of a family of finitely

many “basic functions”, {w; }1<i<p, with the coefficients, {\!}1<i<p € RE ., that is

ot~ bl = 1<E?<p{)\§ Qwi} ¢ x> fg?é’{)\fz +w;(x)} . (3.57)
Natural choices of the family of basis functions are the Lipschitz functions of the form w;(z) :=
—c||z — x;]|1, and the quadratic functions of the form w;(z) = —§|lz — al|3. Indeed, let W be
a complete Ry ac-semimodule of functions w :  — Ryax, meaning that W is stable under the
operation of taking the supremum of an arbitrary family of functions, and by the addition of a
constant. The semimodule W is chosen in such a way that v' € W for all t € [0,7]. The family
of quadratic functions with Hessian ¢ generates, in max-plus sense, the complete semimodule
of lower-semicontinuous c—semiconvex functions. In many applications, the value function v’ is
known to be c—semiconvex for all ¢ € [0, T for some constant ¢ > 0, and then W can be taken as
the set of c—semiconvex functions, which is a complete module. Let us also denote W, C W the
semimodule generated by the finite family of basis functions {w;}1<;<p. The following Figure
is a sketch of the approximation of a semiconvex function by the maximum of quadratics.

=5 X1 + {1, x)

/M

Figure 3.1: Approximation of a c—semiconvex function by maximum of quadratics.

After approximating the value function at a certain time horizon ¢, we need to propagate
the approximation of the value function. By the semigroup property, we have

vt+5:56[vt], Vt=0,0,...,T -9,
(3.58)

W0 = ¢.

We expect that the approximation of v**? has a similar form as , using the same
family of basis functions {w;}1<i<, together with a family of scalars {\:7°}1<;<,, with ! being
approximated by . Replacing v* and v by such approximations, and using the max-plus
linearity of S°, the propagation in should satisfy

i — max {/\E-i-é +wi($)}
P

(3.59)

= S (w) = max N+ S}, veea.

Xt

3.4.3 The Max-Plus Basis Method of Fleming and McEneaney

In [FM00|, Fleming and McEneaney propose a recursive update for A! by applying a max-plus
linear operator at each time step. This method is adapted to problems that exhibit a specific
structure: the lagrangian ¢ is quadratic with respect to u and the dynamics f is linear with
respect to u. This approach use a semiconvex duality representation of semiconvex functions.
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Definition 3.4.2. Let R > 0 and v : Bpr — Ryax be a ¢ —semiconvex, L—Lipschitz function on
Bpg. The ¢—semiconvex dualities of v, ¥ : X — R, are defined as follows

v(x) = sup {—;Hx — ﬁc||2 + @(i)} = Df(@)(a:), z € Bg, (3.60)
2eX
and for every & € X,

0(3) = xiEIgR{2||LE—§3||2 +v(:c)} = D,(v)(3) . (3.61)

Then if ¢ > ¢/, 9 is uniquely defined on Bp,, with Dg > R+ £, and v = D#D.(v).

In other words, any semiconvex function ¢ can be represented as the max-plus linear combi-
nation of quadratic functions centered at a dense countable subset. Consider the right hand side
of the approximation in (3.59)), and let us denote W, : R — W the max-plus linear operator
such that

Wh()\) = EBléigp{)\i (%9 w,} , for all A € Rrp;lax . (362)
Then, the scalars A! can be inductively computed as follows

{Wh)\o = ¢ )

3.63
WA = SOW AL, Ve {0,6,...,T} . (38.63)

The above formula can be expressed using an operator A : RE__ — RP__ apply to A\, with
entries

Ay = inf {—wj(@) + $°[wi(z)}, foralli,je{1,2,...,p}. (3.64)
In usual notation, we have
t+5 _ Y -
A= lrgjaé){Aw + )\J} , forallie{1,2,...,p}. (3.65)

The recursive equation may be interpolated as the dynamic programming equation of a
deterministic optimal control problem, with finite state spaces {1,2,...,p}, and to each state
i€ {1,2,...,p} there is one possible action j € {1,2,...,p}. Given the state j and action 4, the
reward is A; ;.

3.4.4 The Max-Plus Finite Element Method of Akian, Gaubert and Lakhoua

A more involved approximation method was introduced in [AGLO08]. The authors also introduce
Z, a complete Rpax-semimodule of test functions z : © — Rpyax. Let us define the max-plus
scalar product of u € W and v € Z by

(u,v) = igg{u(x) +o(x)} . (3.66)

If the space of test functions Z is large enough, then (3.58)) is equivalent to:
(2,010 = (2, 8%['])), Vte{0,6,T -6},
(2,0%) = (2,4),

Let us now consider Z;, C Z, a semimodule generated by a finite family of test functions
{zj}1<j<q, and, instead of requiring (3.67) to hold for all z € Z, we only require that it holds

Vze Z, { (3.67)

3. MULTILEVEL F.M.



3. MULTILEVEL F.M.

52 CHAPTER 3. PRELIMINARIES

for generators, leading to a finite system of equations. Therefore, the approximation v*+%" and
v? should satisfy:
t+d,h S7,.th
25,0 TNy = (z;, 8]y, Vite{0,6,T -6},
vie{1,2,...,q}, {“ . ) = {2 ST) { J (3.68)
(2j,v") = (2, ¢1) -
Let us denote Z; : W — R1 . such that
(Zp(w)); = (z,w), VI<j<q. (3.69)

Notice that the transpose off Z}, Z}, has a similar definition as W}, in (3.62)). Then, the scalars
can be inductively computed as follows

NS — (ZEW)H(Z:SSW Y, Yt € {0,6,..., T} . '
The above formula can be expressed as using the linear operators Mj, := Z;W) and Kj :=
Z,’:S‘SW}L applied to \!, with entries:
(Mp)ji = (zj, wi) , (3.71a)
(Kn)ji = (25, S wi) - (3.71b)

The matrices My, and Kj may be thought of as max-plus analogues of the mass and stiffness
matrices arising in the finite element method. In usual notations, we have

A auin LM+ e () M) (3.72)

1<i<q

The recursive equation may be interpreted as the dynamic programming equation of a
deterministic zero-sum two player game, with finite state space {1,2,...,p}. Then, to each state
i€ {1,2,...,p}, there is one possible action j € {1,2,...,q} for the first player and one possible
action k € {1,2,...,p} for the second player. Given the state i and the actions j, k, the cost of
the first player, which is the reward of the second player, is (—(Mp) i + (Kn)jk)-

Notice that in the recursive equation , we assume that the matrices My and K} are
exactly known. Hence this method is also called the “ideal” max-plus finite element method.
Indeed, computing M}, is relatively easy, given that the basis functions and test functions are
chosen to be “nice” concave functions, for instance quadratic functions. As a result, the scalar
product in can be computed using standard optimization methods, and in some cases,
it can be solved analytically. Computing K} involves to solve the small time propagation of
the basis functions, thus typically it can only be solved approximately. The method with K}
replaced by an approximation is called the “effective” max-plus finite element method.

One way to approximate @D is to use the HJB equation. Indeed, the equation
suggests approximating @ as follows,

(Kn)js = (K} 7= sup {z5(a) +wi(e) + 0 (2, V(@) (3.73)

Indeed, can be thought of as a perturbation of the optimization problem associated
with the computation of (Mj);;. Observing also ¢ is small, we then further approximate the
approximation in by first computing the scalar product (z;, w;). Denote O, ; the set where
the optimum pf z;(z) + w;(x) is obtained, an computational efficient way to approximate K}, is
given as follows,

(Kn)ji = (K7)ji = (2, wi) + sup {H(x, Vwi(w))} - (3.74)
zeUj
In Chapter [0, we show that, under certain assumptions with small enough ¢, the small time
propagation is itself a concave optimization problem. Thus it can be solved exactly, or with a
negligible error, by direct methods.
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3.4.5 A Glance of Convergence Analysis and Error Estimate

For the max-plus finite element method, the error consists of two part: the approximation error
for approximating the small time propagation, and the projection error resulting from different
choices of finite elements. Under certain technical assumptions, the approximation error is as
follows,
1 1 62 2 2 3
[1Kh = Kpllo < Ck6°,  ||Kp — Kjlloo < Cg62 . (3.75)

The projection error depends on the choices of basis functions and test functions. To clarify, let
us define X" as a grid that discretizes X. The basis and test functions are generated based on
the points of the grid X". The projection error is characterized by the maximal radius of the
Voronoi cells of the space X divided by the points of X", denoted by Az. Under mild regularity
assumptions, meaning that v* is c—semiconvex and L—Lipschitz continuous for every ¢, and by
choosing quadratic basis functions with Hessian ¢ and L—Lipschitz test functions, we can obtain
the following error bound when K, is approximate by K }L

Az

lof =7l < C1(6+ =

) - (3.76a)
Moreover, we can obtain the following error bound when K}, is approximate by IN(,%
T T Az
v — 0" [loo < Ca(Vo + <) (3.76b)

The error estimate in (3.76) shows that the computational complexities of these methods remain
comparable to those of classical grid-based methods.
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Abstract. We introduce a new numerical method to approximate the solutions of a class
of stationary Hamilton-Jacobi (HJ) partial differential equations arising from minimum time
optimal control problems. We rely on several grid approximations, and look for the optimal
trajectories by using the coarse grid approximations to reduce the search space in fine grids.
This may be thought of as an infinitesimal version of the “highway hierarchy” method which
has been developed to solve shortest path problems (with discrete time and discrete state). We
obtain, for each level, an approximate value function on a sub-domain of the state space. We
show that the sequence obtained in this way does converge to the viscosity solution of the HJ
equation. Moreover, for our multi-level algorithm, if 0 < v < 1 is the convergence rate of
the classical numerical scheme, then the number of arithmetic operations needed to obtain an
error in O(e) is in O(e~?), with § < %, to be compared with 6(5_%) for ordinary grid-based
methods. Here d is the dimension of the problem, and 6 depends on d,y and on the “stiffness” of
the value function around optimal trajectories, and the notation 9] ignores logarithmic factors.
When v = 1 and the stiffness is high, 6 is equal to 1, meaning that the theoretical complexity
is in 6(5_1). We describe such special cases. In more general cases such that v = 1, 8 equals
(d + 1)/2, although in practice 6 is rather independent of d and much smaller (< 1.7). We
illustrate the approach by solving HJ equations of eikonal type up to dimension 7.

4.1 Introduction

4.1.1 Motivation and context

We consider a class of optimal control problems, consisting of finding the minimum traveling
time between two given sets in a given domain. Such optimal control problems are associated
to a stationary Hamilton-Jacobi (HJ) equation via the Bellman dynamic programming principle
(see for instance [F'S06]). In particular, the value function is characterized as the solution of
the associated HJ equation in the viscosity sense [CL83; (CEL84; [FS06]. Problems with state
constraints can be addressed with the notion of constrained viscosity solution [Son86a; Son86b].

Various classes of numerical methods have be proposed to solve this problem. The Finite
difference schemes are based on a direct discretization of the HJ equation (see for example
[CL84]). The Semi-Lagrangian schemes, as in |[Fal87; FF14], arise by applying the Bellman
dynamic programming principle to the discrete time optimal control problem obtained after an
Euler time discretization of the dynamics. In both cases, the discretized system of equations can
be interpreted as the dynamic programming equation of a stochastic optimal control problem
[KDO1] with discrete time and state space. More recently, max-plus based discretization schemes
have been developed in [FMO00; McEO06; McEO7; AGLO8|. These methods take advantage of the
max-plus linearity of the Lax-Oleinik evolution operator of the HJ equation. They are based
on a max-plus basis representation of the discretized value function, leading to a discrete time
deterministic optimal control problem.

Once a discretization is done, traditional numerical methods apply iterative steps to solve
the discretized stationary HJ equation, for instance value iteration or policy iteration. At each
step, the value function is computed in the whole discretization grid. In the particular case of the
shortest path problem (with discrete time and state space), with a nonnegative cost function, one
can obtain the solution of the stationary dynamic programming equation by Dijkstra’s algorithm.
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The fast marching method originally introduced by Sethian in [Set96] and by Tsitsiklis in |Tsi95],
then further developed for instance in [mirebeau2014efficient; SV01; CF07; CFM11; CCV14;
Mirl4; Mirl8; |Mir19], is based on that observation. It provides a Dijkstra-type algorithm for
a monotone finite difference or semi-lagrangian discretization of the HJ equation of a shortest
path problem with continuous time and state. It is called "single pass” because at every point
of the discretization grid, the value is computed at most &k times, where k is a bound not
related to the discretization mesh. Such an approach was initially introduced to solve the front
propagation problem, then extended to more general stationary Hamilton-Jacobi equations. It
takes advantage of the property that the evolution of the region behind a “propagation front”
is monotonely increasing, the so called the “causality” property. In general, the fast marching
method implemented in a d-dimensional grid with M points requires a number of arithmetic
operations in the order of KyM log M, in which the constant Ky € [2d, D] depends on the type
of discrete neighborhood that is considered (and D is the maximal diameter of neighborhoods).

Although the fast-marching is a fast, single pass, method, it remains a grid-based method,
and hence still suffers from the ”curse of dimensionality”. Indeed, the number of the grid nodes
grows exponential with the dimension d, making the reading, writing, storing and computation
untractable even on modern computers. Several types of discretizations or representations have
been developed recently to overcome the curse of dimensionality for HJ equations. One may cite
the sparse grids approximations of Bokanowski, Garcke, Griebel and Klompmaker [Bok+13|, or
of Kang and Wilcox [KW17], the tensor decompositions of Dolgov, Kalise and Kunisch [DKK21]
or of Oster, Sallandt and Schneider [OSS22|, the deep learning techniques applied by Nakamura-
Zimmerer, Gong, and Kang [NGK21| or by Darbon and Meng [DM21]. In the case of structured
problems, one may also cite the max-plus or tropical numerical method of McEneaney [McEQ6;
McEOQ7], see also [MDGO08a; Qul3; |Qulda; Dowl§| for further developments, and the Hopf
formula of Darbon and Osher [DO16|, see also [Cho+19; Kir+18}; [YD21a].

Another way to overcome the curse of dimensionality is to replace the general problem of
solving the HJ equation by the one of computing the optimal trajectories between two given
points. The latter problem can be solved, under some convexity assumptions, by the Pontryagin
Maximum Principle approach [RZ98; |RZ99; BZ99|, which is normally done by searching for the
zero of a certain shooting function (the dimensionality of the systems to be solved for such a
shooting method is normally 2d). Another method is the stochastic dual dynamic programming
(SDDP) |[PP91; |Shall; |GLP15], in which the value function is approximated by a finite supre-
mum of affine maps, and thus can be computed efficiently by linear programming solvers. In
the absence of convexity assumptions, these methods may only lead to a local minimum. In
that case, more recent methods consist in exploiting the structure of the problem, in order to
reduce the set of possible trajectories among which the optimization is done. For instance, Alla,
Falcone and Saluzzi [AFS19] (see also [AFS20]) introduced a tree structure discretization, taking
advantage of the Lipschitz continuity of the value function. Also, Bokanowski, Gammoudi, and
Zidani [BGZ22| introduced an adaptive discretization in the control space, which has shown to
be efficient when the dimension of control space is low.

4.1.2 Contribution

In this chapter, we intend to find the optimal trajectories between two given sets, for the minimal
time problem. We develop an adaptive multi-level and causal discretization of the state space,
leading to a new algorithm.

Our method is inspired by the recent development of the "Highway Hierarchies” algo-
rithm [Del+06; SS12] for the (discrete) shortest path problems. The latter algorithm accelerates
the Dijkstra’s algorithm, to compute the shortest path between any two given points. It first
performs a pre-processing computing “highways” in which the optimal paths should go through,

SCHEME.
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then computing the shortest path between two given points using such highways. The highways
are themselves computed using a partial application of the Dijkstra’s algorithm. By doing so,
one can find the exact shortest path, as by using Dijkstra’s algorithm, but in a much shorter
time. However, the original highway hierarchy method is difficult to implement in the case of
a discretized HJ equation, even when this equation is associated to a shortest path problem.
Indeed regularity properties may prevent the existence of highways in an exact sense. Also the
computation and storage complexity of the pre-processing procedure (computing highways) is
equivalent to the one of Dijkstra’s algorithm, making the highway hierarchy method being more
suitable to problems in which numerous queries have to be solved quickly, on a fixed graph (a
typical use case is GPS path planning). We shall mention the works in [PCO08; |(CCV14], which
draw upon somehow similar inspiration of the present work, that is to extend the acceleration
methods for Dijkstra’s algorithm to continuous case.

Our approach combines the idea of highway hierarchy with the one of multi-level grids, in
order to reduce the search space. Indeed, we compute (approximate) “highways” by using a
coarse grid. Then, we perform a fast marching in a finer grid, restricted to a neigborhood
of the highways. This method is iterated, with finer and finer grids, and smaller and smaller
neighborhoods, untill the desired accuracy is reached.

We show that, by using our algorithm, the final approximation error is as good as the one
obtained by discretizing directly the whole domain with the finest grid. Moreover, the number
of elementary operations and the size of the memory needed to get an error of € are considerably
reduced. Indeed, recall that the number of arithmetic operations of conventional grid-based

~ d
methods is in the order of O(¢ 7 Kj), where d is the dimension of the problem, 0 < v < 1 is
the convergence rate of the classical fast marching method, Ky € [2d, L% for some constant L
depending on the diameter of discrete neighborhoods, and O(z) ignores the logarithmic factors.

For our multi-level method, with suitable parameters, the number of arithmetic operations is
~ _14+@-1)(1-1p)
in the order of O(C% v ), where C' > 1 is a constant depending on the problem

characteristics, and 0 < 8 < 1 measures the “stiffness” of the value function around optimal tra-

jectories. Then, our complexity bound reduces to 6(Cd5*1) when v = 8 = 1. Hence, considering
~ _d ~  _14+d=-1)(1A-9B)
the dependence in € only, we reduce the complexity bound from O(¢~7) to O(e v

Moreover, under some regularity assumptions, the complexity bound becomes 5(5_1) and is
thus of same order as for one-dimensional problems.

This chapter is organized as follows: In Section we give some preliminary results on
the HJ equation and the minimum time optimal control problem. In Section we present
our original idea from the continuous point of view, and give some results which will be useful
to prove the correctness of our algorithm. In Section we present our algorithm, from the
discretization method to the implementation. We also describe a specific data storage structure,
with hashing techniques, which is essential to implement our algorithm in an efficient way. In
Section we give the computational complexity of our new algorithm, by providing error
bound. Finally, in Section we present numerical tests, for problems of dimension 2 to 7.

4.2 Hamilton-Jacobi equation for the Minimum Time Problem

4.2.1 The Minimum Time Problem

Let Q be an open, bounded domain in R?. Let S; be the unit sphere in R% ie., S; =
{z € R%|z|| = 1} where || - || denotes the Euclidean norm. Let A = {a : Rsq — S :
a(-) is measurable} denote the set of controls, every o € A is then the unit vector determining
the direction of motion. We denote by f the speed function, and assume the following basic
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regularity properties:

Assumption (A3)
(i) f:Qx S; — Rsg is continuous.
(ii) f is bounded on Q x Sy, i.e.,, IMf > 0 s.t. || f(z, a)|| < My, Vo € Q,Va € S;.

(iii) There exists constants Lg, Ly, > 0 such that |f(z,a) — f(z',a)| < Lyjz — 2'|,\Va €
S1,Vr, 2" € Qand |f(z,a) — f(z,0)] < Lygla— o[,V € Q,Ya,a’ € Si.

It is worth noting that the original fast marching method presented in [T5195; Set96] focuses
on cases where f(x,a) = f(z), meaning the speed function does not depend on the direction, a
property known as “isotropy”. Furthermore, Assumption applies to both Riemannian and
Finslerian geometry but excludes sub-Riemannian systems and, more broadly, the dynamics of
nonholonomic systems.

Let Kgc and Kqst be two disjoint compact subsets of Q (called the source and the destination
resp.). Our goal is to find the minimum time necessary to travel from g to Kgst, and the
optimal trajectories between K. and Kgst, together with the optimal control .

We intend to solve the following optimal control problem:

inf 7>0
yt) = fy(t), a(t))a(t), VE € [0,7] ,
s.t. y(O) Ksrca ( ) S ICdst ’
y(t) €Q, a(t) e A, Vte [0,7] .

4.2.2 HJ Equation for the Minimum Time Problem.

A well known sufficient and necessary optimality condition for the above problem is given by the
Hamilton-Jacobi-Bellman equation, which is deduced from the dynamic programming principle.
Indeed, one can consider the following controlled dynamical system:

(4.2)

We denote by y,(z; t) the solution of the above dynamical system (4.2) with o € A and y,(z;s) €
Q) for all 0 < s < t. More precisely, we restrict the set of control trajectories so that the state y
stays inside the domain €, i.e., we consider the following set of controls:

Agz i={a €A | ya(z;s) €Q, forall s >0} , (4.3)

and we further assume Ag ; # 0. In other words, the structure of the control set Aq , is adapted
to the state constraint “ y € 2 7. Let us define the cost functional by:

Jsa(a(-),z) =inf{r > 0 | yo(2;7) € Kast } , (4.4)
”,q” means arrival to destination. The value function Thq : Q + R U {+oc} is defined by

Tia(x) = inf Jsq(al(:),z) . (4.5)

OéE.Any
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Then, restricted to Q\ Ky, informally Tbq is a solution of the following state constrained
Hamilton-Jacobi-Bellman equation:

— (i {(VEa(e) - @)f (5,00} +1) =0, 2 €0\ Ka

- (;réisri{(VTed(a:) ca)f(z,a)}+1) >0, x e o, (4.6)

Tsq(x) =0 z € 0Kt -

In order to relate the minimum time function and the HJB equation, we use the following defi-
nition for the viscosity solution of the following state constrained HJ equation with continuous
hamiltonian F : R? x R x R* — R, open bounded domain @ C R, and “target” 9,0 C 90:

Fo(:L‘,U(ZL'),DU(IL‘)) =0, r€0,
Fo(z,u(z), Du(x)) =20, z€00\ (6,0), SC(Fy, 0,0:,0)
u(z) =0, z € 0,0 .

When there is no target set, that is 9,0 = (), the following definition corresponds to the one
introduced first by Soner in [Son86a] (see also [BCO8§|), the case with a nonempty closed target
set 0;O is inspired by the results of [CL90].

Definition 4.2.1 (compare with [Son86a; BC08; CL90]). Let u: O — R be continuous.

(i) The function w is a viscosity subsolution of (SC(Fy, O, 0,0)) if for every test function
Y € C1(O), for all local maximum points xg € O of the function u — 1), we have:

F(xzg,u(xo), D(x0)) <0 ifzge O,
u(xo) <0 it xg € 0,0 .

(ii) The function w is a viscosity supersolution of (SC(Fp, O, 0;0)) if for every test function
¥ € C1(O), for all local minimum points z¢9 € O of the function u — v, we have:

F(xg,u(xo), Dip(z9)) =20 if xg € O ,
u(zg) =20 otherwise.

(iii) The function u is a viscosity solution of (SC(Fp,O,0;0))) if and only if it is a viscosity
subsolution and supersolution of (SC(Fp, O, 9,0)).

A basic method in the studies of the above system (see [V1a06], |[Bar89], [BC08| Chapter-IV])
is the change of variable:

vsq(x) =1 — e Tal@) (4.7)

which was first used by Kruzkov [Kru75|. By doing so, vsq(z) is automatically bounded and
Lipschitz continuous. Once vsq is computed, we can directly get the minimum time for z by
Tsq(z) = —log(1l — vsq(x)).

In fact, consider a new control problem associated to the dynamical system , and the
discounted cost functional defined by

/

-

Lq(a(-), ) = inf {/ etdt | 720, yo(z;7) € lCdSt} , (4.8)
0

for o € Aq .. Then, the value function v of the control problem given by

v(z) = inf Jog(a(-),z) (4.9)

aEAQ@
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coincides with vsq in (4.7). Let now
F(z,r,p) =—min{p- f(z,0)a+1—-71} . (4.10)
a€eSy

This Hamiltonian corresponds to the new control problem , and the restriction of
the value function vsq to Q\ Kgst is a viscosity solution of the state constrained HJ equation
SC(F,Q\ Kast, Oqst)-

The uniqueness of the solution of Equation SC(F,Q\ Kgst, 0Kqst) in the viscosity sense and
the equality of this solution with the value function need not hold if the boundary condition is
not well defined. When the target set is empty, Soner [Son86a; Son86b] introduced sufficient
conditions for the uniqueness of the viscosity solution of (SC(Fp,O,0;O)|) and the equality
with the corresponding value function. One of these conditions involves the dynamics of the
controlled process on 90, see [Son86a, (A3)], which is automatically satisfied when F is as in
, and f satisfies Assumption with O instead of €). Similar conditions are proposed
in [CL90]. We state below the result of [CL90| with the remaining conditions, and for a general
open bounded domain O, instead of €2, as we shall need such a result in the sequel.

Theorem 4.2.2 (Corollary of |[CL90, Th. IX.1, IX.3 and X.2], see also [Son86a|). Let O be an
open domain of R?, let 8,0 C 0O be compact, and assume that 0O \ 8,0 is of class C*. Let F
be as in with [ satisfying Assumption with O instead of ). Then the comparison
principle holds for SC(F,Q,30), i.e., any viscosity subsolution is upper bounded by any vis-
cosity supersolution. In particular, the viscosity solution is unique. Moreover, it coincides with
the value function vsq in of the optimal control problem with dynamics and criteria
, in which Q and Kgs are replaced by O and 0,0, respectively.

We should also mention the recent works of [BFZ10; |BFZ11; HWZ18| which characterized
the value function of the state constrained problems without any controllability assumptions.

Once SC(F,Q\ Kgst, OKqst) is solved, one can easily get the value of the original minimum
time problem by computing the minimum of vsq(x) over Kg.. We shall denote the set of
minimum points by Xy, i.e.,

Xgre = Argmin, e vsq() . (4.11)

Since vsq is continuous (by Theorem |4.2.2)) and K is compact, we get that Xy, is a nonempty
compact set.

4.2.3 HJ Equation in Reverse Direction.

We shall also use another equivalent optimality condition characterization for the minimum time
problem (4.1), obtained by applying the dynamic programming principle in a reverse direction.
Let us consider the following controlled dynamical system:

{f/(t) = —f(G), at))a(t), vt =0,
§0) = .
We denote by g4 (z; t) the solution of the above dynamical system (4.12]) with &(t) = a(r—t) € A,

for all t € [0, 7]. Then automatically §(t) = y(7 —¢) with y as in (4.2). Let us denote the state
constrained control trajectories for this new problem by Agq ., i.e.,

(4.12)

Aq. ={ac A| ja(r;s) €Q, for all s > 0} . (4.13)
Consider the following cost functional:

Jsé(d(')vx) = inf{T P 0 ’ g&(JI; 7-) € ICsrc} , (414)

S.L. SCHEME.
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where ”g,” means from source, and the value function is given by

Te:(z) = inf Js(a(),r) € RU{+oo} . (4.15)

QEAQ

Then, the restriction of Ty to Q \ Ky is a viscosity solution of the following state constrained
HJ equation:

— (min{—(VTw(z) &) f(z,@)} +1) =0, z€Q\Kee,

a€eS

— (Héisltl{—(VTss(l‘)-d)f(l’,d)}-i—l) >0, x € 0N, (4.16)
a 1

Tss(z) =0, T € Oqrc .

Using the same change of variable technique, we have vg; () = 1— e T=(@) and we transform
the above system into the state constrained HJ equation SC(F*,Q\ Kge, Osc), where
F*(xz,r,p) = F(x,r,—p). Notice that SC(F*, Q\ Kgc, 0 qc) is also associated to a new optimal
control problem, for which the dynamics is given by and the value function is given by

Vs () = inf inf {/ e7tdt| 7> 0, ga(z;7) € Ksrc} . (4.17)
0

O?EAQ@

By doing so, to solve the original minimum time problem (4.1)), one can also solve the
equation SC(F*,Q\ Ky, Oqc) to get vgs, and then compute the minimum of vgs (x) over Kgg.
We shall also denote by Xg¢ the set of minimum points, i.e.,

Xase = Argmin, e, ves () (4.18)

Again, as for Xgc, we get that Xyg is a nonempty compact set.

4.3 Reducing the State Space of the Continuous Space Problem

The above two equivalent characterizations of the minimum time between g and Kgg give
us an inspiration to formulate optimal trajectories between Kg and Kyt by using the value
functions from the two directions. In this section, we shall show how to reduce the state space 2
of the original minimum time problem, using vss and vsq, while preserving optimal trajectories.

4.3.1 The Optimal Trajectory

We first give the definition of an optimal trajectory:

Definition 4.3.1. For every z € Q, We say that y.«(z;-) : [0,7] = Q is an optimal trajectory
with associated optimal control a* for Problem (4.24.8]}4.9)), if the minimum in (4.9)) is achieved
in a*. We denote by I'} the set of geodesic points starting from z, i.e.,

'Y = {ya-(x;t) | t € [0, 7], o optimal } .

Remark 4.3.2. We can use the same method to define the optimal trajectory for the problem
in reverse direction as defined in Section Moreover, we denote I'l = {ga~(z;t) | t €
[0,7], & optimal } the set of geodesic points starting from z in the reverse direction.

Proposition 4.3.3. We have
UzeXST'C{F;} = U-Tedet{f;} ’
and if the latter set is nonempty, then

inf = inf .
o wal@) = Inf v (2)
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Proof. Let Yo+ (Zsre;+) : [0,7%] = € be an optimal trajectory for the problem , with
Tsre € Kgre and the optimal control a*. Let us denote Zqst := Yo+ (Tsre; 7°) € Kqst. Consider the
problem in reverse direction starting at xgs, and the control &* such that a*(s) = o*(7* — s),
Vs € [0,7*]. Then, the associated state at time s is Ja=(Zdst; ) = Yo+ (Tsre; 7° — ). In particular
Uar (Tast; T°) = Zsre € Ksre, and the trajectory ga«(zqst; ) arrives in g at time 7%, By definition
of the value function, we have:

*

.
Vs (Tgst) < / e ’ds = v5q(Tsre) s (4.19)
0

with equality if and only if &* is optimal.
Let us assume that Ugea, {I';} is nonempty, and take zgc € A, such that I';  is
nonempty, we get

Us%($dst) < U%d(l’src) = . Hel’f; U%d($src) . (420)
If the above inequality is strict, then there exists a trajectory (not necessary optimal) §a (Zqst; -)
starting from z4¢ and arriving in zl,. € Kgc at time 7 < 7*. Then, the reverse trajectory
Yoo (2,0; -) is starting from z’, . and arrives in z4q at time 7/, and we get vsq(zl,) =1—e 7 <

Usd(Zsre) Which is impossible. This shows the equality in and that &* is optimal, so I';
is nonempty. Also, if x4y ¢ Xast, by the same construction applied to =}, € Xy, we get a
contradiction, showing that xqs € Xgst. Hence Uxexdst{f‘;} is nonempty, and Yo+ (Tsre; s) =
Jar (Tast; 75 — 8) € Ugeay, (L% }. Since this holds for all optimal trajectories y,+ starting in any
Tore € Xape, we deduce that Ugex, (T} C Upex, {T:}. By symmetry, we obtain the equality,
so the first equality of the proposition. Moreover, by the equality in , we also get the

second equality of the proposition. O

Remark 4.3.4. Note that in Proposition [4.3.3] all the sets I';, with 2 € X may be empty, which
would imply that all the sets I'; with © € Xys are empty. In that case, we need to replace the
sets I'; and I'; by d-geodesic sets.

From now on, we set I = Upex, {T%} = Uper, {T5}, and call it the set of geodesic points
from Kg to Kgge. When I' is nonempty, using Proposition [4.3.3] we shall denote by v* the
following value:

v* = inf wq(x) = inf ve(x) .
€L src 7d ( ) €L st s ( )
Once v* is obtained, we can directly get the minimum time by 7* = —log(1 — v*).

Lemma 4.3.5. Assume I'* is non-empty. Then, we have

v* = inf {vss (y) + v2a(y) — ve> (Y)v2a(y)} (4.21)
ye

and the infimum is attained for every x € I'*. Moreover, if there exists an optimal trajectory
between any two points of 2, then x is optimal in (4.21)), that is (ves () +vsq(x) —ves (2)v5q(x)) =
v*, if and only if x € T'*.

Proof. Fix x € Q. By definition of the value function, we have:

’

T T
Ves(z) = inf / etdty, vsq(w) = inf / e tdt
>0,a€Aq 5 0 m'>0,0'€Aq 0

& (#57)ERsre Yo (27 )€K g

S.L. SCHEME.
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For any 7 > 0 and & € .,Zlgw s.t. ga(xz;7) € Kgpe, denote zge = Ja(z;7) € Kgpe. Then, by the
simple change of variable s = 7 —t and «a(s) = &(7 —t), we have a € Aq ;... and yo(Tse; 7) = .

This implies
-
Vs> ($) - T>O,:Esrc€’€isrr1cf7a€.AQ . {/(; e_SdS} ’ (422)

Ya(zsre;T)=2

Moreover, for 7/ > 0 and o’ € Aq, s.t. yo(; 7)€ Kast, we denote g = yor (237 ) € Kast, SO

that
T/
vsq(x) = inf / e tdty . (4.23)
m'>0,2q54 €L s’ €AQ 2 | JO

/
Yot (37 )=m gt

Let 7> 0, Zge € Kae, @ € Aq ... be such that yo(zee;7) = 2 and 7/ > 0, 244 € Kast, & € Aq
be such that yu(z;7 ) = zqs. Concatenating o stopped at time 7 and ¢ € [r,00) — o/(t — 7),
we obtain o’ € Agq ;. such that Y, (Zse; T+ 7') = xgs and the trajectory from zg. to zqs is
going through x at time 7. Then,

/

T T T+7/
/ e *ds + e_T/ e tdt = / e *ds = v* . (4.24)
0 0 0

where the last inequality comes from the second equality in Proposition

For any A\, u € [0, 1], rewriting A+ — Ap = A+ (1 — AN)p or p+ (1 — p)A, we see that the
map [0,1]> — R, (A, ) — X+ u — A is nondecreasing in each of its variables (separately),
and thus commutes with the infimum operation in each variable. Using this property, and that
0< Jie®ds<land1l— [je *ds=e T, forall T >0, and taking the infimum in (4.24)), first

over 7 and then over 7/, we deduce:

Ve () + v3q(2) — ves (T)s5q(x) = 0*
Since the above inequality is an equality for x € Xyg or & € Xy, we deduce .

If x € T, there exist Zgc € Kgre, Tast € Kast and a € Agq s, such that yo(Tee; 7°) = Tast
and Yo (Tse; 7) = x for some 0 < 7 < 7%, Taking 7/ = 7 — 7, we get an equality in (4.24]),
and using the nondecreasing property with respect to 7 and 7/, we deduce the reverse inequality
v* 2 v () + v3a(r) — v (2)v5a(2), so the equality.

Let now z € Q be optimal in ([£.21), that is satisfy (ves(z) + vsa(2) — ves (z)vsa(z)) = V™.
Assuming that there exists an optimal trajectory for each of the two minimum time problems
starting from any point, there exist 7 > 0, Zgc € Kgre, @ € Aq z.,. such that yo(sc; 7) =  and
7' >0, 245t € Kast, @' € Aq such that yo(z; ’7'/) = Zgst, Which are optimal in the above infimum
and (4.23). So again concatenating a stopped at time 7 = Ty (z) and ¢ € [r,00)
o/(t — 1), we obtain o € Aq ... and a trajectory from zg. to zqs going through = at time 7
and arriving at x4y at time 7+ 7/. Using ([(£.24)), we get v* = (vss (@) + v3a(2) — ves () v2a(2)) =

/
TFT e~%ds, so o’ is optimal, which shows x € T'*. O

For easy expression, for every x € Q and v = (vss, v5q), we denote

Fo(x) = ves(x) + v3q(x) — ves () vsg(T) (4.25)

4.3.2 Reduction of The State Space

Let us now consider the open subdomain O, of €2, determined by a parameter 7 > 0, and defined
as follows:

Op ={z € (Q\ (Ksre UKast)) | Fo(z) < ;gg{fv(y) +0k ) (4.26)
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By Assumption we observe that vy, vsq are continuous in ), so does F,, thus the
infimum in (4.26]) is achieved by an element y € 2, and by Lemma it is equal to v* + n.
This also implies that O, is an open set. Since n > 0, we also have that O, is always nonempty.

Proposition 4.3.6. Under Assumption|(A3), and assuming that T* is nonempty, we have
Xsrc - (8077) N (a’Csrc)u det - (aon) N (8’Cdst)’ and I'™ C @n Vﬁ >0.

Proof. Let us first notice that, since F, is continuous, we have O, 2 {z € (Q\ (Kge U Kast)) |
Fo(x) < infyco{Fu(y) + n}. Moreover, since Kg and Kqg are disjoint compact subsets of €2,
then 00, 2 {x € 00U Ogc U 0K gt | Fo(x) < infyeo{Fu(y) +n}.

By the dynamic programming principle, and since the cost in is 1 (so positive), and
Ksre and Kggt are disjoint, we have

vsq(z) > yegllcfsrc v5d(y) ,

for all z in the interior of Ky (any trajectory starting in x need to go through 0Kg.). This
implies that I'* does not intersects the interior of Ky, and similarly I'* does not intersects
the interior of Kgg, so I'" C (2\ (Kge UK4st)). Moreover, Xge € Kge N T* C 0K and
det c ’Cdst nr- - a’Cdst- L -

Now for all x € I'*, we have F,(z) = v* = infyeﬁ Fu(y), so z € Oy, showing that I'* C O,,.
Let us now take x € X;.. We already shown that Xg. € 0K, and we also have Xy C I', so
Fu(x) = v*. All together, this implies that The same argument holds for Xgg. O

To apply the comparison principle (Theorem |4.2.2)), we need to work with a domain with a
C! boundary. To this end, we assume the following assumption

Assumption (A4)Assume that I'* is nonempty and that I'* C .

Then, for every u > 0, we select a function F* : Q — R, that is C%, and that approximates
F,ie.,

17 = Folloo < a1 - (4.27)
Let us also consider a domain O}, deduced from F}' and defined as follows:
O# ={z € (2\ (Ksrec UKast)) | Fi(z) < ;gg{fv(y) +n} (4.28)

with p < 1. We notice that (92‘_ u C 0, C Oﬁ i with arbitrary small y. Moreover (9# C Q, forn
and p small enough. Then, O} can be compared with Oy, and it is the strict sublevel set of the
C? function. It can then be seen as a regularization of O,. So, for almost all  (small enough)
and p small enough, (OO) \ (Kqst U Kare) is C' (Corollary of Morse-Sard Theorem, see [Mor39;
Sard2|).

We shall see that Of is a smooth neighborhood of optimal trajectories, and we intend to
reduce the state space of our optimal control problem from 2 to the closure C’Tﬁ of Of. More
precisely, starting with the problem in direction “to destination”, we consider a new optimal
control problem with the same dynamics and cost functional as in Problem , but we
restrict the controls so that the state y(s) stays inside the domain 0%, Vs > 0.

The reduction of the state space leads to a new set of controls:

Apz = {a € Al yalz;s) € Of, for all s >0} . (4.29)

Let v,(z) denote the value function of the optimal control problem when the set of controls is
Ay Consider a new state constrained HJ equation: SC(F, Ok, (00)) N (0Kqst)), we have the
following result:

S.L. SCHEME.
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Proposition 4.3.7 (Corollary of Theorem 4.2.2)). The value function vl of the control problem
in Oy is the unique viscosity solution of SC(F, Ok, (00K) N (0K ast))-

Remark 4.3.8. The same reduction works for the problem in the reverse direction, which is the
problem in the direction "from source”. We deno@é@ the value function of this problem with
the set of controls be A, , :={& € A| ja(z;s) € O, for all s > 0}.

By the above construction of O}, we have the following relation between the value function
of the original problem and the value function of the reduced problem:

Proposition 4.3.9. If I'™ is not empty, then I'* C (’Tﬁf, and for all x € T'*, we have:
s (2) = vl (2), vsa(z) =vl4(2) -

Proof. T* C (97# is a straightforward result of Proposition m Then, we have vgs(x) <
ves (), v>a(z) < vly(w) forallz € OF, since OF C Q. Then, we also have ves () = v (), vsa(2) =
vl (x) for all z € I'™*, since there exists optimal trajectories from z € I'* staying in I'* and
I Cof. O
4.3.3 J-optimal trajectories and the value function

The above results express properties of exact optimal trajectories. We will also consider ap-
proximate, §—optimal, trajectories. We first give the definition of the d—optimal trajectory.

Definition 4.3.10. For every x € 2, we say y,s(x;-) : [0,7] = Q is a §—optimal trajectory with
associated d-optimal control af : [0,7] — S! for the problem (4.2}l4.8/4.9)) if :

Yoo (2;7) € Kggy  and / e tdt < vsg(z) +6 .
0

We denote by T the set of §—geodesic points starting from z, i.e.,
1% = {y.s(z;t) | t €[0,7], a® : [0,7] = S* d-optimal } .

We define analogously §-optimal trajectories for the problem in reverse direction, and denote by
% the set of d-geodesic points starting from z in the reverse direction.

Following the same argument as in Proposition [£.3.3] we have the following result:

Proposition 4.3.11. Let us denote

XS = {2 € Oy | vsa(x) < V* + 6}, X%y = {x € O g | ves () < V* + 6},

src

then we have:
U(S’E[O,é} UIEXST;(;/ {Fg} = U6’6[0,5] Uxe){g_t(;/ {Fi } (4.30)

O

Let us denote the set in ([@.30) by I, and call it the set of §—geodesic points from Ky to
K st. In what follows, we intend to deduce the relationship between I'® and our n—neighborhood,
O,. Let us start with a property of the §—optimal trajectories.
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Lemma 4.3.12. Let y,s(x;-) : [0,70] — Q be a 6—optimal trajectory of Problem (4.2[4.84.9)

with associated §-optimal control o and §-optimal time Tg. Assume vsq(z) < 1, i.e., the

minimum time from x to Kgs @ T < +00. For every z = y,s(x;t,), let us define a control
o 10,70 —t,] — Sy such that o/(s) = (s +t,),¥s € [0,70 —t,]. Then, the associated tra-
jectory starting in z with control o, yur(2;-) : [0,70 —t,] — Q, is at least (e'=5)-optimal for the

problem (4.204.814.9) with initial state z.

)
Proof. By definition, we have y,s(z;73) € Kas, and [3* e~tdt < vsq(z) + 8. Then, considering
the control o/ defined above, we have yq/(2; 70 — t,) € Ky and

d—t, ts
eftz/ e *ds < vsq(x) —/ e ’ds+6 .
0 0

By dynamic programming equation, we have

tz
vsq(x) </ e *ds 4+ e usq(2)
0
which implies
Tg—tz
/ e *ds < vsq(2) + €76 .
0
We deduce the result from the definition of (e':§)-optimal trajectories. O

Remark 4.3.13. One can deduce the same result for the d—optimal trajectory of the problem
in reverse direction. In fact, for the minimum time problem, our definition of the d—optimal
trajectory implies Tg — 75 < ez §, where Tg and 7, denote the d—optimal time and the true
optimal time respectively.

Lemma 4.3.14. For everyn > 6 > 0, we have I° C O, .

Proof. Let y s (Tsre;+) : [0, 7] — Q denote a 6’ —optimal trajectory for the problem | )
with Zge € X979 and & < 4§, then we have zggt := Yos (Tsre; T) € Kast, and

src

.
/ e %ds < vsq(Tsre) + 6 <VFHS .
0

It is sufficient to show that y s (Zsc;ts) € O, for every t, € [0,7].

For an arbitrary ¢, € [0,7], let us denote x := y s (Tsrc; tz). Let o : [0,7 —t;] — Si be a
control such that o/ (s) = o' (s+t,), Vs € [0,7—t,]. Then, we have that the associated trajectory
starting at @ with control o/, yu/(z;-) : [0,7 — 5] — Q satisfies yo/(;5) = Yo (Tore; 5 + tz), for
every s € [0,7 —t;]. Then,

/OT e *ds=1-— (1 — /Otx efsds) (1 — /OT_tx e*sds) .

By the definition of v.q, and since yq/ (; 7 — ty) = zgst € Kast, we have vsq(x) < OTftz e %ds.
Similarly, using the simple change of variable s = t, — s’, we have vgs (x) < (;:x e %ds. Then we

deduce: " t
1-— (1 - /0 efsd(S) (1 —/0 efsds)

21— (1= v (2)(1 = v:a(2)) = v () +v24(7) = Vs> (2)02a(2)
and so
Vs> () + 054(7) — ves (2)vsq(z) < 0" 40 .

Using Lemma and n > §, we obtain that z = y,s(Tge;ty) € O, for all ¢, € [0,7]. Since
this is true for all 0 < §’ < §, we obtain I C O,. d

S.L. SCHEME.
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Lemma 4.3.15. For every § > 0, we have 0, C ot

Proof. Take a x € O,, it is sufficient to show that there exists at least one (n + ¢ )—optimal
trajectory from g to Kggy that passes through z.

Suppose there exist an optimal trajectory from x to g, and an optimal trajectory from
x to Kggt, then, concatenating the reverse trajectory of the optimal trajectory from x to Ky,
with the optimal trajectory from x to Kgqst, we obtain an n—optimal trajectory from one point
of Kgre to Kgst (by definition).

Otherwise, one can consider a %l—optimal trajectory from z to Kee, Yo, (x;-) 1 [0,71] = ©Q,
and a %—Optimal trajectory from x to Kast, Ja,(2;-) : [0,72] — €. Then we have:

T1+72 T1 T2
/ e °ds = / e °ds+e ™ / e °ds
0 0 0

o) 5 (1= @) (nae) + )
< Vs () + v5q(7) — v (T)vsq(x) + ((;/ + (;/) <o +(n+0d) .

Thus, concatenating as above the two optimal trajectories, we obtain a (n+ ¢")—optimal trajec-
tory from yq, (;71) € Kgre t0 Kyst- O

The above two lemmas entail that the sets of §—geodesic points I'® and O, constitute equiv-
alent families of neighborhoods of the optimal trajectory, and, in particular, @n contains at least
all —optimal trajectories for every 6 < n. Moreover, the sets O,, and O} are also equivalent
families of neighborhoods of the optimal trajectory, since Oﬁ;, p C O, C (’)f; 4, for arbitrary small
1. Based on these properties, we have the following result regarding the value functions.

Theorem 4.3.16. For every § <, for every x € T'°, we have:
vl (2) = ves (2), vl4(2) = vsa(T) -

Proof. We have vg, () < v (), vsa(z) < vly(x) for all z € OF, since Of C Q.

Now, let § < 1. We have I'Y C (’)75,‘ for p small enough, using Lemma Then, to show
the reverse inequalities vs: (z) > v (7), vsq(x) = v]y(z) for € T, it is sufficient to show that
for all € > 0, there exist e-optimal trajectories from x € I'® staying in 077’;

Let s (Tore; *) : (0,797 = Q, be a §'-optimal trajectory from zge to Ky, with & € [0, 4],
ZTere € Xs‘ig‘sl and y s (xsrC;T‘sl) = 2ast € Kast, and the associated & —optimal control af. Let
r = Yo (Tereits), for t, € [O,T‘y}. Let ¢ > 0 and consider a e-optimal trajectory from x
to Kqs with time length 7/. So we have vsq(z) < (1 — e ™) < wsq(z) + €. Replacing the
trajectory y s (z;-) : (0,70 — t,] — Q by the e-optimal trajectory from z to Kgs, we have
(1—e ™) <wsq(z)+e<1— e (T —ta) + €. Then, we obtain a trajectory from xg. to Kqs with
time t, + 7’ such that vsq(zge) < (1 —e_(tf+7/)) <1 —6_7—6/ +e e < vsq(Tsre) +0+€. Then, this
trajectory is in Fg/;f C I'%*¢. For e small enough we have § + ¢ < 1, so [t  OF, for y small
enough. We deduce that the e-optimal trajectory from x to gt is included in (97#, which implies
that v’ (z) < vsa(x) + €. Since it is true for all € small enough, we deduce v”,(z) < vsq(z) and
so the equality.

By same arguments, we have vl (1) = vss (). O

Based on the above results, if we are only interested to find v* and optimal trajectories
between Kg and Kqst, we can focus on solving the reduced problem in the subdomain Of, i.e.,
solving the system SC(F, Oy, (004) N (0Kast))-
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4.4 'The Multi-level Fast-Marching Algorithm

We now introduce the multi-level fast-marching algorithm, to solve the initial minimum time
problem proposed in (4.1)), and, in particular, to find a good approximation of v*.

4.4.1 Classical Fast Marching Method

We first briefly recall the classical fast marching method introduced by Sethian [Set96] and
Tsitsiklis [Ts195], and which is one of the most effective numerical methods to solve the eikonal
equation. It was first introduced to deal with the front propagation problem, then extended to
general static HJ equations. Its initial idea takes advantage of the property that the evolution
of the domain encircled by the front is monotone non-decreasing, thus one is allowed to only
focus on the computation around the front at each iteration. Then, it is a single-pass method
which is faster than standard iterative algorithms. Generally, it has computational complexity
(number of arithmetic operations) in the order of KyM log(M) in a d-dimensional grid with M
points (see for instance [Set96; (CF07]). The constant K, is the maximal number of nodes of
the discrete neighborhoods that are considered, so it depends on d and satisfies K, € [2d, Ld]
where L is the maximal diameter of discrete neighborhoods. For instance Ky = 3% for a local
semilagrangian discretization, whereas Ky = 2d for a first order finite difference discretization.

To be more precise, assume that we discretize the whole domain Q using a mesh grid X, and
approximate the value function by the solution of a discrete equation of the form

V(z)=UV)(x), Ve e X . (4.31)

Classical operators U in are based on finite difference (for instance [KDO1]) or semi-
lagrangian discretizations (for instance [FF14]) of the system SC(F,Q\ K4st, OK4st). Note that
(4.31)) includes the boundary conditions. For our discounted problem , the operator
U is monotone and contracting. The usual iterative methods compute the unique fixed point of
U. In fast marching method, U/ is also called the update operator. The fast marching algorithm
visits the nodes of X in a special ordering and computes the approximate value function in just
one iteration. The special ordering is such that the value function is monotone non-decreasing in
the direction of propagation. This construction is done by dividing the nodes into three groups
(see figure below): FAR, which contains the nodes that have not been searched yet; ACCEPTED,
which contains the nodes at which the value function has been already computed and settled
(by the monotone non-decreasing property of the front propagation, in the subsequent search,
we do not need to update the value function of those nodes, see for instance [SV03]); and
NARROWBAND, which contains the nodes "around” the front (we only need to update the value
function at these nodes).

SCHEME.
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At each step, the node in NARROWBAND with the smallest value is added into the set of
ACCEPTED nodes, and then the NARROWBAND and the value function over NARROWBAND are
updated, using the value of the last accepted node. The computation is done by appying an
update operator Y. Sufficient conditions on the update operator U for the convergence of the
fast marching algorithm are that ¢ is not only monotone, but also causal (see for instance [Set96;
CFO07)).

A generic partial fast marching algorithm is given in Algorithm (compare with [Set96f
CF07]). We call it partial because the search stops when all the nodes of the ending set END are
accepted. Then, the approximate value function may only be computed in END. The usual fast
marching algorithm is obtained with END equal to the mesh grid X. Moreover, for an eikonal
equation, the starting set START plays the role of the target (intersected with X). If we only
need to solve Problem , then we can apply Algorithm with an update operator adapted
to SC(F, Q\ Kgst, Oqst) with F' as in and the sets START and END equal to Kgg; N X and
Ksre N X respectively. Similarly, we can apply Algorithm with an update operator adapted
to the reverse HJ equation SC(F*,Q\ Kgre, Oqc) (with F* as in Section , which implies
that the sets START and END are equal to Ky N X and Kggy N X respectively.

4.4.2 Two Level Fast Marching Method

Our method combines coarse and fine grids discretizations, in order to obtain at a low cost, the
value function on a subdomain of €2 around optimal trajectories. We start by describing our
algorithm with only two levels of grid.

4.4.2.1 Computation in the Coarse Grid

We denote by X a coarse grid with constant mesh step H on €, and by 2 a node in this grid.
We perform the two following steps, in the coarse grid:

(i) Do the partial fast marching search in the coarse grid X in both forward and backward
directions, to solve Problem (4.1)) as above.

(ii) Select and store the active nodes (see Definition 4.4.1)) based on the two approximate value
functions, as follows.
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Algorithm 4.1 Partial Fast Marching Method.
Input: A mesh grid X; An update operator U. Two sets of nodes: START and END.
Output: Approximate value function V' and ACCEPTED set.
Initialization: Set V(z) = +o00,Vx € X. Set all nodes as FAR.
1: Add START to ACCEPTED, add all neighborhood nodes to NARROWBAND.
2: Compute the initial value V(x) of the nodes in NARROWBAND.
3: while (NARROWBAND is not empty and END is not accepted) do
4: Select z* having the minimum value V(z*) among the NARROWBAND nodes.

5: Move z* from NARROWBAND to ACCEPTED.

6: for All nodes y not in ACCEPTED, such that U(V)(y) depends on z* do
(£ Viy) =UV)(y)

8: if y is not in NARROWBAND then

9: Move y from FAR to NARROWBAND.

10: end if

11: end for

12: end while

The first step in coarse grid consists in applying Algorithm to each direction, that is a
partial fast marching search, with mesh grid X, and an update operator adapted to HJ equation
SC(F,Q\ Kast, 0ast) or SC(F,Q\ Kgre, Msre) and the appropriate sets START and END. In
particular, for a given parameter 7, let us denote KL, = Kgc + B(0,7), K, = Kast + B(0,7).
For the direction “from source”, that is to solve the equation SC(F’,Q \ Kere, Oqrc), the set
START is defined as KqeN X, and the set END is defined as ngSt NX*. For the other direction,

the set START is defined as Kqs, N X and the set END is defined as K7, N X,
This yields to the functions VSI;"’I and Vﬁ’l that are numerical approximations of the value
functions vs» and vsq on the sets of accepted nodes AZ and Afd, respectively. Indeed, VSI;I’I
(resp. ng’l) is a function defined on all X7 which coincides on the set of accepted nodes A
(resp. ALL) with the unique fixed point of the update operator, that is the solution VI (resp.
Vfé ) of the discretized equation; elsewhere it may be lower bounded by Vg (resp. Vg ), or 400.
Under some regularity conditions on Problem , we have the following error bounds up to a

certain order v in H:
e = sup [V () - v (2) | < Con H,

rzeXH

efh= sup [[VIi(x) —vsa(2)]| < CsaHT,
zeXH

(4.32)

which lead to the same bounds for V3" and Vfé’l for the sup-norms restricted to AZ and to
Afld respectively. When holds, we get that Fyu,1 is an approximation of F, on the set
AN Ai{j of accepted nodes for both directions, which should be an approximation of the set
of geodesic points. We thus construct an approximation of O, as follows.

Definition 4.4.1. For a given parameter ng > 0, we say that a node 2z € X¥ is active if
v € AE N AH and
.FvH,l(.%'H) < min Fynra (yH) +ng . (4.33)
yHEXH

We denote by Of the set of all active nodes for the parameter 7.

The selection of active nodes in step (ii) above is based on the criterion (4.33)).

SCHEME.
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4.4.2.2 Computation in the Fine Grid

Let us denote by X" a grid discretizing Q with a constant mesh step h < H. For the computation
in the fine grid, we again have two steps:

(i) Construct the fine grid, by keeping only the nodes of X" that are in a neighborhood of
the set of active nodes of the coarse grid.

(ii) Do a fast marching search in one direction in this fine grid.

More precisely, we select the fine grid nodes as follows:

GZ ={z" e XM |32 ¢ Of 2" = 2| oo < max(H — h,h)} . (4.34)
® e
¢ ° IL'h

H

Figure 4.1: Constructing the fine neighborhood GZ given two active nodes z'* in the coarse

grid.

Remark 4.4.2. As we shall see in Section [4.5] we may need to consider mesh steps H and h with
h close to H, in particular such that h > %H . In this case, the bound in is equal to h. In
general, this bound is more efficient numerically, although any bound in [H/2, H] would work
theoretically.

To solve the original minimum time problem, the computation will only be done in the
selected fine grid nodes, which means that a full fast marching algorithm Algorithm is
applied in the restricted fine grid GZ, with the update operator of one direction HJ equation
(for instance with target set Kqs). We will denote by VJQQ the approximation of the value
function vsq generated by the above 2-level algorithm on Gf‘].

The complete algorithm is shown in Algorithm

4.4.2.3 Convergence of Algorithm

In order to show the convergence of Algorithm [4.2] we first show that the computation in the fine
grid is equivalent to the approximation of the value function of a new optimal control problem,
with a restricted state space.

For this purpose, one shall first construct a continuous extension O,J;I I of O,I;I and GZ. Let
us extend the approximate value function Vsiq 1 and Vﬁ’l from the nodes of X to the whole
domain Q by a linear interpolation, and denote them by VA, Vfé’l respectively. Then, Of g
defined as follows

O ={z € (Q\ (Kac UKast)) | Fyua(x) < min, Fyua (@) +nu} (4.35)

x
Note however that another method may consists in constructing the region O,J;I T in the same way
as Gg , but without the constraint € X". Nevertheless, 0{7{’1 can be thought of as a continuous
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Algorithm 4.2 Two-Level Fast-Marching Method (2LFMM)

Input: Two grids X" and X with mesh steps h < H respectively. The parameter ng > 0.
Input: Two update operators Usq and Uss adapted to both directions HJ equations.
Input: Target sets: Kgrc, Kast-

Output: The fine grid FINE and approximate value function V:ﬁf on FINE.

1:

10:
11:
12:
13:
14:
15:
16:

Apply Algorithm with Input grid X*, update operator Usq, START = Kgs N X and
ExD = K7 N XH and output Vj’l and Afd.

src

Apply Algorithm with Input grid X, update operator Uss, START = Kge N X and
END = ICg:t N XH and output V4 and AE.
for Every node z in AZ N AL do
if Fyra(g) < mingmexn ]:VH,l(iL'H) +ng then
Set 2 as ACTIVE.
end if
end for
Set FINE to emptyset.
for Every node 2% in the ACTIVE set do
for Every 2" € X" satisfying ||2" — 27||.c < max{H — h,h} do
if 2" does not exist in set FINE then
Add z" in the set FINE.
end if
end for
end for

Apply Algorithm [4.1] with Input grid FINE, update operator Usq, START = Kgst N FINE and
END = Ky N FINE, and output ijf.

4. S.L. SCHEME.
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version of the set Of of active nodes in coarse grid. We shall relate Of’f to the domain O,
defined in — the notation “I” stands for “interpolation”. Notice that one can also do a
regularization of Of 1 as in . Thus, in the following we shall do as if 0O\ (Kge UKgst) is
of class C'. We then consider the continuous optimal control problem with new state

space Of ’I, and the following new set of controls which is adapted to the new state constraint:

Ay ={a € Al ya(z;s) € O foralls >0} . (4.36)

Denote by v " the value function of this new state constrained problem. By Theorem it
is the unique solution of the new state constrained HJ equation SC(F, O, (90) N (0K qst)).-

In our two level fast marching algorithm, we indeed use the grid GZ to discretize 051 ’I, then Vﬁi’z

is an approximation of v} 1, Then, if 0117{ g big enough to contain the true optimal trajectories,
E

by the results of Section [4.3 v/% 1 coincides with vsq on the optimal trajectories. Then, V;ﬁf
is an approximation of vsq on optimal trajectories. In the following result, we denote (as for
h = H) by VI the solution of the discretization of the HJ equation SC(F,, 0Kqs) (associated
to Problem ) on the grid X", or equivalently the unique fixed point of U, that is the
output of Algorithm with input grid X", update operator Usq, START = Kggs N X" and END
= X",

Theorem 4.4.3 (Convergence of the Two-Level Fast-Marching Method).

(i) Assume (4.32)) holds with v < 1, and denote C, := Cgs +Clsq and Ly, := Ly, + Ly, where
L, and L,,, are the Lipschitz constants of vs» and vsq, respectively. Then, there exists
a constant Cy > 0 depending on C, and L,, such that for every &' > 6 > 0, for every
ng = CyHY + ¢, O,I]{’I contains the set Oy O I'°, that is the set of §—geodesic points for

the continuous problem (4.24.814.9). In particular, taking ng > 2C,H" and §' = "2 we
have

F§C0mCO#’I.
2

(ii) Assume that the constants Css, Csq in (4.32) are uniform w.r.t. the state constraint (that
is of Q). Taking ng and 8" = ng /2 as in (i), we have, for every § < ny /2 and x € XhAre,

V52 (2) — vsa(z)| < Csah? .
Thus, V;HQ(m) converges towards vsq(z) as h — 0.
Proof. Let us prove Point . Using (#.32), for any 7 € X, we have:
|\ Fyu (@) = Fo(a™)| < CLHY (4.37)

where C,, = Css + C5q. Moreover, using the Lipschitz continuity of vs» and vs4, and denoting
Ly = Ly, + Ly,,, we obtain, for any x € Q and 2% € X* such that ||z — 2| < H,

\Fyu (™) — Fy(x)| < CLHY + L,H . (4.38)
Applying ([#.37) and X¥ c Q, we get
. H v .
nin Fyu(z?)+CyHY > min Folz) . (4.39)

Assume that z is in a d-dimensional polytope with vertices in X and that Vfd“ and VSI;I’I are

linear or affine on this polytope. One can show, using that both functions VJZ’I and VSI;I’I take
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their values in [0, 1], that the maximum (and minimum) of Fy #,r on this polytope is attained
on the vertices, so on points of X (although in some cases the function is concave). Using this

property with (4.38)), we obtain

Folx) = Fyur(x) — (CyHY + L,H) .

Let us assume now that z € Q\ (Kge U Kast) \ 051 = Then, we deduce from the previous
inequalities:
Fo(x) > min_ Fyu(2?) +ng — (C,HY + L,H)

zHeXH

> mig)l]:v(x) +ng — (2C,H” + L,H) .
TE

Thus, if we take 7z > 2C,H” + L,H + &, we obtain 2 ¢ Og. This shows that Oy C Of"" and

thus Og C O,I;I’I Since v < 1, we can take nyg > CpH" + ¢', with an appropriate constant C;,
and also ny > 2C,H"Y with ¢’ = g /2, that is the result of Point .
As for Point , taking ng and ¢ = ng/2 as in , we first notice that for every x €

Of’l N X", we have

VI () — o0 ()] < Chah? . (4.40)

Indeed this is (4.32)), when the state is constrained to stay in Of T and the grid has mesh step

h. Since Ony C O#’I C Q, we have for every € Ony ,
2 2

wsa(@) < ol (@) <wi3 () - (4.41)

nH

By Theorem [4.3.16 we have that for every § < ny/2 and x € 'Y C Oung, vsq(x) = v,3 (2).
2

Thus we get an equality in (£.41). Replacing v]f = by vsq in (4.40]), we obtain the result of
Point (). O

4.4.3 Multi-level Fast Marching Method

The computation in two level coarse fine grid can be extended to the multi-level case. In a
nutshell, we construct finer and finer grids, considering the fine grid of the previous step as the
coarse grid of the current step, and defining the next fine grid by selecting the actives nodes of
this coarse grid.

4.4.3.1 Computation in Multi-level Grids

Consider a N-level family of grids with successive mesh steps: Hy > Ho > ... > Hy_1 > Hy =
h, denoted X i, fori=1,...,N. Given a family of real positive parameters {n1,72,...,78_1},
the computation works as follows:

Level-1: In first level, the computations are the same as in coarse grid of the two level
method (Section , with mesh step H equal to H; and active nodes selected using the
parameter 1 equal to 1. At the end of level-1, we get a set of active nodes: Oﬁl.

Level-l with 1 <[ < N: In level-l, we already know the set of active nodes in level-(I — 1),

enote __ . € 1rst construc (] ne gri set Ol level-i asS 1n . s al 1S:
denoted Ofi"'. We first construct the "fine grid” set of level-l as in (4.34), that i

Gl = (ot e XM | 3o e Ot ot — ™| oo < max(Hiy — Hy, HY)Y . (4.42)

S.L. SCHEME.
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Then, we perform the fast marching in both directions in the grid Ggl_ - This leads to the

approximations vH l’l, ij”l and Fy 1 of vgs, v59 and F, on grid GZt . We then select the

m—1°
active nodes in level-I, by using the parameter 7, as follows:

Ogl = {le S GnI{l,1 | fVHl,l(le) < min fVHl,l(:L‘Hl) +m } . (4.43)

H H;
1
zleGy,” |

Level-N: In the last level, we only construct the final fine grid:

GZIW1 = {2zl e X" | F2n-1 ¢ O%lel 2 — N1 < max(Hy_1 — h,h)} . (4.44)

Then, we only do the fast marching search in one direction in the grid G'wa , and obtain the

approximation VJZ’N of v54 on grid GZN_l'

This is detailed in Algorithm [£.3] Some possible grids generated by our algorithm are shown
in the following Figure

Soe

—

(a) Level-0 (b) Active Nodes (c) Fine grid (d) Level-1 (e) Level-2

Figure 4.2: Sketch of MLFMM.

Algorithm 4.3 Multi-Level Fast-Marching Method (MLFMM)

Input: The mesh steps, grids, and selection parameters: H;, X n;, for I € {1,2,...,N}.
Input: Update operators Usq and Ugs adapted to both directions HJ equations and levels.
Input: Target sets: Kgrc, Kast-

Output: The final fine grid FINE and approximate value function VJHN on FINE.

1: Set COARSE-GRID to X1,

2: forl=1to N —1do

3: Do the partial fast marching search in COARSE-GRID in both directions.

Select the ACTIVE nodes from the ACCEPTED nodes using 7;.

Select the FINE nodes based on the ACTIVE nodes, and mesh step Hj,1.

Let FINE in current level be the new COARSE-GRID.

7: end for

8: Do the partial fast marching search in only one direction in FINE.

In Algorithm (-3 Line-3 of Algorithm [.3] corresponds to lines-1 and 2 in Algorithm [.2]

line-4 of Algorithm corresponds to lines-3 to 7 in Algorithm line-5 of Algorithm
corresponds to line-8 to line-15 in Algorithm

4.4.3.2 Convergence of Algorithm

In each level-l with [ < N, we have the approximate value functions Vslj”l and Vfdﬁ’l of vgs and
vsq on the grid of level I. Then, we can apply the same constructions as in Section [4.4.2.3] for
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the coarse grid X . This leads to the following continuous version of the set of active nodes in
level-I:

OTII{zJ ={z € (Q\ (Ksre UKast)) | Fym1(x) < min Fyma (@) +n} .

T EGW 1

We also have sets A, , of controls adapted to the optimal control problems of the form (4.2}}4.8]}4.9)
with state space equal to the set O};{“I , and the corresponding value function v d , which, by The-
orem is the unique solution of the new state constrained HJ equation SC(F, OH“ (8OHZ’ n

(8/Cdst)) We can also consider the HJ equations in the direction "from source”, SC ( OHl’ (80517[ n

.1

(0Ksrc)), and the corresponding value function vgt”. We obtain the following convergence result

for Algorithm [£-3]
Theorem 4.4.4 (Convergence of the Multi-level Fast-Marching Method). Assume ( - holds

for all H > 0, with v < 1 and some constants Cgs, Csq that are uniform w.r.t. the state constraint
(that is 2).

(i) There exists constants C; > 0 and k > 0 such that, if for every l € {1,...,N — 1},
m = Cy(H;)" and Hi/Hj4+1 > K, then for all 6 < L, the set ng,l contains On, O T, that
is the set of 6-geodesic points for the continuous mmimum time problem.

(ii) Taking n; as proposed in , then for everyl € {1,2,...,N—1},0 < %, andx € XHiinrd
we have

Vi @) = vaa(@)] < Coa(Hia), [V (@) = v ()] < Coo (Hia )

Thus, V;}HN@?) converges towards v»d( ) as h — 0.

Proof. When [ = 1, Points . ) and (i) of Theorem 4] follow from the corresponding points
in Theorem |4.4.3} Om C OHl’ , and for every T € HH2 NI with § < UE

V22 () — v»d(iv)! < C»dHfZ, [VE22(2) — vss (2)| < O Hy (4.45)

Assume now that Points . and (i) of Theorem [4.4.4] “ hold for [ = k — 1, with an arbitrary

k > 2. We first prove Point (| . ) for l =k, that is On, C Onk . Let us denote as before by Vg’“,
2

ij’“ the solutions in the grid X% of the discretized equation in two directions, respectively.
From (4.32)), we obtain (4.37)), which in the case H = Hj, writes

sup || Fym (2) — Fo(2)[| < C4(Hg)? (4.46)
zeXHk

Moreover, we notice that, for every x € Gnk ,CX Hk  we have
VIR (@) = Vi), V() 2 Vi (@) (4.47)

Hence,

FyHy, k() > .FVHk( x) = Fy(x) — C (I{k)’Y (4.48)
which is similar to ([.39) for H = Hy,. Consider a point z € Q\ (Kge U Kast) \ On,f then, by

definition of On,f’ , we have

Fymer(x) = mln FyHyk (ka) + Nk

2H Hy,
ke
Gy

> min_ F,(z%) 4y, — C,(Hy)Y (4.49)

ke X He
> min F () + nx — Cy (Hy)?
e

4. S.L. SCHEME.
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Assume also that x € On, . Let us denote
2

B () = {a € XM | |lo — 2" < Hy } (4.50)

and assume further that B (z) C I for some § < 1. Using Lemma4.3.15 and the Lipschitz
continuity of F,, we get this property as soon as ny + 2L,Hp < nip_1. Since we assumed that
Point () holds for I = k — 1, and Bx(z) ¢ X"k NI, we have

1Py o (2110 = Fo ()| < Oy (Hy)

for all 2fx € BHr(z). Then, by the same arguments as in the proof of Theorem us-
ing (4.49)), we obtain

Fom. () < max  Foou, k(!
VHkI( )\kaGBHk(I) kak( )

< Fo(z) + Cy(Hy)" + LyHy,

< min]:v(y) + % + ny(Hk)’y + Lka
yeQ 2

< Fymr(@) = 2+ (20, (Hy)" + Ly Hy)

(4.51)

If ny, satisfies also ny, > 4C,(Hy)Y + 2L, Hj,, we get a contradiction. Since v < 1, this condition
is satisfied as soon as n, > C;(H})" with some appropriate constants Cy,. If 1, also satisfies

ne < Gy (Hy)?Y for some constant Cy > Cy), we get that the above condition ny, + 2L, Hy, < nj—1

holds as soon as Hy < 1 and O”gjL” < (HI’}: )7. Under these conditions, we deduce that for all

§ < = we have I C Om C Ol !,

By the same argument as in the proof of Point of Theorem we deduce Point
of Theorem for | = k from Point of Theorem for the same [ = k. The result
of Theorem H.4.4] follows from the induction on [. O

4.4.4 The Data Structure

In this section, we describe a dedicated data structure, which will allow us to store the successive
neighborhoods, and implement the algorithm, in an efficient way.

Recall that for the classical fast-marching method, the data are normally stored using two
types of structures [BCZ10]: a full d-dimensional table (or tensor), which contains all the val-
ues of the current approximate value function on the whole discretization grid (the values are
updated at each step); a dynamical linked list, which contains the information on the narrow
band nodes with the current approximate value function.

To implement efficiently our algorithms, we need to store the successive (constrained) grids
Ggi ., for every I € {2,..., N}, in an efficient way. A d-dimensional full table would be too
expensive for the storage, since the complexity would be in the order of (%)d, which is impossible
to implement for a small mesh step h in high dimension. Moreover, the aim of our algorithm is
to reduce the number of nodes in order to reduce the computational complexity, but this gain
would be lost if we used a full table storage. We propose here a different storage of the grids
G{Zi ,» in order to get a storage complexity in the order of the cardinality of these grids.

To implement our algorithm, we need to perform three type of operations, when constructing

the fine grid anﬁ , from the active nodes, that is the elements of ngll:

1. Check if one node zft already exists in the grid;
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2. Add one node z into the existing grid;

3. Check the neighborhood information of one node zft-1 or 2.

We need to fulfil two goals. On the one hand, we want to keep the computational complexity
for the operations ”search” (the above steps 1 and 3) and ”insert” (the above step 2) to be as
low as possible, ideally in O(1) time, since we need to do these operations at least once for every
node of a grid. On the other hand, we want the memory used to store the grid at depth [ not
to exceed the size of the neighborhood of the “small” set O,I,fl:ll, interpolated in the fine grid of
step H;, avoiding to store nodes outside this neighborhood.

We used a "hash-table”, to efficiently implement our algorithm. Suppose we are in the d-
dimensional case. For the level-l grid we have approximately M; nodes to store. For each node
zl e G,I]{l_l, we store three types of data in the hash table:

1. A d-dimensional vector of "int” type, which corresponds to its position in R or equivalently
its corresponding indices in the full d-dimensional table.

2. A 7double’ type data, which corresponds to its value function.
3. Two "boolean” type data, for the fast matching search and selection of the active nodes.

We then use the position of a node, z! € R, as the “key” for the hash table to compute
the corresponding slot by a hash function h(scl). If several nodes have the same slot, i.e., a
“collision” occurs, we need to attach to this slot the above data for each of these nodes. So we
attach to a slot a vector, the entries of which are the above data for each node associated to
this slot, see Figure The simple hash function we used is as follows:

d
h(z') = (Y afM;) mod 237 . (4.52)
k=1

where Mg,i € {1,2,...,d} is a random integer in [1,2M;], and M; is the predicted number of
nodes in level-l (which will be detailed later). In fact, the hash function intends to reduce the
”collisions”, and numerical experiments show that this function could handle most of the cases
well. In some particular case, it can be optimized using other hashing methods, for example the
multiplication method or the universal hashing method [Cor+09)].

h
noo‘oo‘oﬂ/
no.ooo‘of’f——“

Ty 2
T oo.o*e
o000 000000 4

eeocc000c00e0 /'
0000000000 h(al,,)

h
T i Xi+1
TIRNNT o
o0 0000 .{/ Y
sl — A
| ‘ T Al |

Figure 4.3: The hash table to store fine grid nodes.
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4.5 Computational Complexity

In previous section, we already proved that our algorithm computes an approximation of the
value of Problem , and of the set of its geodesic points, with an error depending on the mesh
step of the finest grid. In this section, we analyze the space complexity and the computational
complexity of our algorithm, and characterize the optimal parameters to tune the algorithm. In
this section, we always use the following assumption:

Assumption (A5)The domain ) is convex and there exist constants /s f such that:
0<f<flz,a) < f<oo, foralz€eQanda e A .

We will also assume that holds for some «v > 0 and for all mesh sizes H > 0, so that
the conclusions of Theorem and Theorem hold. Consider first the two-level case, and
suppose we want to get a numerical approximation of the value of Problem with an error
bounded by some given € > 0, and a minimal total complexity. Three parameters should be
fixed before the computation:

(i) The mesh step of the fine grid h;
(ii) The mesh step of the coarse grid H;

(iii) The parameter ng to select the active nodes in coarse grid.

The parameter h need to be small enough so that Csqh? < ¢ (using (4.32)). The parameter
1 is used to ensure that the subdomain O# T does contain the true optimal trajectories, so it
should be large enough as a function of H, see Theorem [.4.3] but we also want it to be as small
as possible to reduce the complexity. Using the optimal values of h and 7y, the total complexity
becomes a function of H, when € (or h) is fixed. Then, one need to choose the optimal value of
the parameter H regarding this total complexity.

In order to be able to estimate the total complexity, we shall also use the following assumption
on the neighborhood of optimal trajectories:

Assumption (A6)The set of geodesic points I'* consists of a finite number of optimal paths
between Kg. and Kqsi. Moreover, for every x € O,), there exists 2* € I'* such that :

lz — &*|| < Cpn”
where 0 < 8 < 1, and Cjp is a positive constant.

Remark 4.5.1. The above constant 8 depends on the geometry of the level sets of the value
function. In typical situations in which the value function is smooth with a nondegenerate
Hessian in the neighborhood of an optimal trajectory, one has = 1/2. However, in general
situations, it can take all the possible values in (0, 1]. Indeed, consider for instance the minimum
time between two discs in a 2-dimensional space with f(x,a) = 1/|a||,, where || - ||, is the LP
norm, with p € [1,00]. This is equivalent to a problem with a dynamics independent of state
and a direction chosen from the unit L? sphere instead of the L? sphere. Then, one can show
that for p # oo, the straight line is the unique optimal path, and that the value function satisfies
Assumption with 8 = 1/p € (0,1]. However, if p = oo, the number of optimal paths is
infinite, so Assumption is not satisfied.

Let us denote by D the maximum Euclidean distance between the points in g and Kygt, i.€.
D =sup{|lz—yl|| | z € Ksre, ¥ € Kast}, and by Dq the diameter of Q, i.e. D = sup{||lz—y| | z,y €
Q}. For any positive functions f, g : R? — R of p real parameters, the notation g(z) = O(f(z))
will mean g(xz) = O(f(x)(log(f(z)))?) for some integer ¢, that is |g(z)| < Cf(z)|log(f(x))|? for
some constant C' > 0. We have the folowing estimate of the space complexity.
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Proposition 4.5.2. Assume that H < D, and that ng satisfies the condition of Theorem [{.4.3
and ng < D. There exists a constant C > 0 depending on Dq, D, f and f, B, v, Cg, C and
L, (see Theorem , such that the space complexity Copo(H, h) of the two level fast marching
algorithm with coarse grid mesh step H, fine grid mesh step h and parameter ng is as follows:

CopnlH.1) = O(C b+ 7Ty (1.53)

Proof. Up to a multiplicative factor, in the order of d (so which enters in the O part) the space
complexity is equal to the total number of nodes of the coarse and fine grids.

We first show that up to a multiplicative factor, the first term in (4.53)), (%)d, is the number
of accepted nodes in the coarse-grid. To do so, we exploit the monotone property of the fast-
marching update operator. Recall that in the coarse grid, we incorporate dynamically new
nodes by partial fast-marching, starting from Kge N X7 (resp. Kgst N X H ) until Kqge N X H
(resp. Kee N X)) is accepted.

Let us first consider the algorithm starting from Kg. In this step, let us denote ac£ . the
last accepted node in Ky, then we have for all the nodes = € Ag that have been accepted,
V(2 < VH(:cdSt) Then, using ([4.32)), we obtain vs: () < vs»(azd ) F2C HY < ’Uss($ést)+

2Cs> D7, which gives the following inclusion, when D and T. S»(xécst) are small enough:

AL C{z e Q| ve(z) < vs»(xgst) +2C-H}
Cl{zeQ|Tu(x) < ng(mdst) log(1 — 2Cs:De T, >(xcfist))} )

Let o € Q, recall that Ty (x) is the minimum time traveling from z to Ky, then we have for

some xsrc € Ksre,
i Ts> (2) . —
o —abell < [ et < FL(a) (4.54)
Moreover, we have for some x4 . € Kqe,
PR L M N
Ts%(mdst> < dst f = < ? ’ (455)

since we can take a control « proportional to xécst —a ., so that the traJectory given by -

follows the straight line from xJ . to :z:é;t (with variable speed). Combine ([£.54) and (4.55), we
have for the set of accepted nodes:

AL C{a |||z — L] < (fD/f) — flog(l — 2Cs-De fD/f) for some zl, € Kee} -

Thus, all the nodes we visit are included in a d-dimensional ball with radius R, where R is a
constant depending on D, f, [, Cs» and v, when D is small enough. Otherwise, since Q has

a diameter equal to Dgq, one can take R = Dgq. Then, the total number of nodes that are
accepted in the coarse grid is bounded by (%)d, in which C//R is a positive constant in the order
of (vg)/%, where vy is the volume of unit ball in R?, and satisfying C/R < 2, so we can take

C/R = 2. The same result can be obtained for the search starting from ICdst
. .. . . B(d 1)
We now show that, still up to a multiplicative factor, the second term in , 7,

is the number of nodes of the fine-grid. Consider a node z" € GZ. By deﬁmtlon there exists
H e Of such that [|z" — 2%|| < H. Denote Cy, = Cs + Csq, and L, = Ly, + Ly, (the sum

S.L. SCHEME.
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of the Lipschitz constants of vsq and vss). Then, using similar arguments as in the proof of
Theorem [£.4.3] we obtain:

Fo(a") < Fo(z™) + Ly|ja" — 27|
f‘

w(2) + C HY + L,H

<
<
< min F,(y"?) + g + C,HY + L,H
yHEX

min F,(y) +ng + CyH? +2L,H .
yGQ
This entails that 2" € Opyten, with ey = CyH" 4+ 2L,H. Since v < 1, s0 e is of order H7,
and ny > C,H" by assumption, then using Assumption we deduce that for some positive
constant C’, depending on 3, v, Cg, C, and L, there exists z* € I'* such that

" — 2" < C'(nm)” (4.56)

We assume now that I'* consists of a single optimal path from zge € Kge t0 Tast € Kast-
Indeed, the proof for the case of a finite number of paths is similar and leads to a constant factor
in the complexity, which is equal to the number of paths. Up to a change of variables, we get a
parametrization of I'* as the image of a one-to-one map ¢ : t € [0, Dp] — ¢(t) € I'*, with unit
speed ||¢'(t)|| = 1, where Dr is a positive constant. Let us denote in the following by dp«(x,y)
the distance between two points z,y € I'* along this path, that is dp«(z,y) = |t — s| if x = ¢(t)
and y = ¢(s), with ¢, s € [0, Dr]. Since the speed of ¢ is one, we have ||z — y|| < dp«(zx,y), and
so D < Dr. Moreover, by the same arguments as above, we have Dr < fD/f.

Let us divide I'*, taking equidistant points xg, x1, T2, ...,tN, TNy+1 € [ between To = Tere and
TN+4+1 = Tdst, with N = {DF/(C/(UH)B)J, so that dp* (xk7$k+1> == DF/(N + 1) § C’(??H)B Vk €
{0,1,2,...,N}. Set '}, := {Zsrc, 1, 22, ..., N, Tast - Then, by , we have for every z!* € G’g,
there exists a point x € I'}j;; such that :

3, 3
< 50 (nu)”
Let us denote BY(x, r) the d-dimensional open ball with center z and radius r (for the Euclidian
norm). Taking, A := 3C'(ny)? + %, we deduce:

U Bd(:r,g) U Bi(x,A) .

zeGh zely

lz" — 2|

Moreover, since the mesh step of GZ is h, all balls centered in x € GZ with radius % are disjoint,

which entails:
h g

Vol(Ude—) |Gh]( ),

zeOh

where vy denotes the volume of the unit ball in dimension d, and ]Gm denotes the cardinality
of G,};, which is also the number of nodes in the fine grid. Thus, we have:

Vol (UIGO:71 BY(x, %)) _ Vol (Umerzis BY(x, A))
(5)%va h (5)%va

Since ny > C,H”, h < H and 3,7 < 1, we get that A < C”(ng)® for some constant C”
depending on C,,, C", B and . Then,

h
Gyl =

(2C" (ng)?)*!
hd '
where D’ depends on Dr, D and C’. This leads to the bound of the proposition. O

h /
Gl <D
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Remark 4.5.3. For the fast marching method with semi-lagrangian scheme, the computational
complexity Ceomp satisfies Ceomp = O(BdCSPa). Then, the same holds for the two-level or multi-
level fast marching methods. In particular for the two-level fast marching method Ccomp has
same estimation as Cgp, in Proposition m

The same analysis as in two level case also works for the N—level case, for which we have
the following result:

Proposition 4.5.4. Assume that Hy < D, and that, forl =1,..., N —1, n; satisfies the condi-

tion of Theorem|4.4.4), andn, < D. Then, the total computational complezity Ceomp(H1, Ha, ..., Hy)

of the multi-level fast marching algorithm with N -levels, with grid mesh steps Hy > Hy >,...,>
HN_1 ) HN =his

5 1 (n)P=1 ()Pl (nyv—1)P Y
Coomn({H =0(c? , (4.57
comp({H1}1<1<n) < ((H1)d + () + () +o 4+ X )) (4.57)
with C' as in Proposition[4.5.4. Moreover, the space complexity has a similar formula. O

Minimizing the formula in Proposition [£.5.2] and Proposition [£.5.4] we obtain the following
result of the computational complexity.
Theorem 4.5.5. Assumed > 2, and let v := y3(1—1) < 1. Lete > 0, and choose h = (Cw_la)%.
Then, there exist some constant Cy, depending on the same parameters as in Proposition[{.5.3,
such that, in order to obtain an error bound on the value of Problem less or equal to €
small enough, one can use one of the following methods:

(i) The two-level fast marching method with ny = CpH"Y, and H = hv%l. In this case, the

d

total computational complexity is Ceomp(H, h) = O((Cp,)*(£)70FD).
1—ut
(ii) The N—level fast marching method with iy = CpH;' and H = h'=~ , forl=1,...,N —1.
~ 1—-v d
In this case, the total computational complexity is O(N(Cp,)% ()T 7).
(iii) The N —level fast marching method with N = L% log(1)], andm = C,H] and H; = hv, for

l=1,...,N—1. Then, the total computational complexity reduces to 6((Cm)d(%)(1_y)%) =

6((Cm)d(l)m). When v = 8 = 1, it reduces to 6((Cm)d%)

€

Proof. For , using together with Theorem m which applies since ny = C, H7, we
get that the error on the value obtained by the two-level fast marching method is less or equal
to C;hY = €. Note that in order to apply Theorem [£.4.3] np needs to satisfy ny > Cy, H". Then,
to get a minimal computational complexity, one need to take ny = C;H" as in the theorem.
We obtain the following total computational complexity:

Ceomp(H, h) = O((CYHH4 4 p=dg7Pd=1))) | (4.58)

for some new constant ¢’ = C'max(1,C,)”. When h is fixed, this is a function of H which gets
its minimum value for

_da
vB(d —1)

since it is decreasing before this point and then increasing. Then, the minimal computational
complexity bound is obtained by substituting the value of H of (4.59)) in (4.58]). The formula of

H= Clhi(wzmd)d—w with Cp = ( )(vlﬂ-ll)d—vﬁ , (4.59)

S.L. SCHEME.
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H in ([£.59) is as in (i), up to the multiplicative factor C; > 0. One can show that 1 < C; < Cy
with Cy depending only on v(. Hence, substituing this value of H instead of the one of (4.59))
in ([4.58)), gives the same bound up to the multiplicative factor C¢. So in both cases, using

1
h = (Cy e)7, we obtain a computational complexity bound as in (i), for some constant Cp,

depending on the same parameters as in Proposition [£.5.2]

For , using this time together with Theorem and that n, = C1H], we get
that the error on the value obtained by the multi-level fast marching method is less or equal to
Cyh7 =¢. Asin , we apply the formula of Proposition with 7, = C;H,', which gives

Ceomp({Hib1c12n) = O((C)((HL) ™ 4 (HL) D (Hy) ™ 4+ (Hy-1)P"Dh~1) | (4.60)

for the same constant C’ as above. This is again a function of Hy, Hs,...,Hy_1 when h
is fixed. We deduce the optimal mesh steps {Hi, Ho,...,Hy_1} by taking the minimum of
Ceomp({Hi }1<i<n) with respect to Hi, Ha, ..., Hy_1, and then simplifying the formula by elim-
inating the constants. We can indeed proceed by induction on N, and use iterative formula
similar to (4.59). We then obtain the formula for H; as in . Substituting these values of the
H; into (4.60]), for a general d > 2, we obtain the following bound on the total computational

complexity
1—

Coomp({Hibrcten) = O(N(C')(3 )T (1.61)

1
Now using h = (C;'e)7, we get the formula of ().
For , let us first do as if v = 1. In that case, passing to the limit when v goes to 1 in
previous formula, we obtain the new formula for the H; given in . We also obtain a new

formula for the total complexity in ([#.61]) of the form O(N(C )d(%)%) The minimum of this

formula with respect to N is obtained for N = dlog(3) which with h = (Cy 15)%, leads to a

formula of IV in the order of the one of . Let us now substitute the values of H; into the
complexity formula (4.60), we obtain the total computational complexity (for i small enough)

~ 1.a =21 ~ 1.4 .1
_ Nd -\ = S\ (1-v)d) _ NnNd-\=-\(1-v)d
CoomplFihiacn) = O((CY(F X (A1) =O(N@Y(FGI™") . (e
Now taking N = L% log(2)] and using again h = (C’,Y_ls)%, we get the formula of (fii). O

Remark 4.5.6. In Point of Theorem we can replace N by any formula of the form
N = |rlog(3)], with a constant £ > 0. In that case, the number of levels and the parameters H;
(the intermediate mesh steps) only depend on the final mesh step h and the dimension. However,
the conditions on the parameters 7; depend on the parameters v and C,, of the problem to be
solved and thus are difficult to estimate in practice. Moreover, it may happen that the upper
bound C, is too large, making the theoretical complexity too large in practice even when 73 = 1.

Remark 4.5.7. In Theorem [£.5.5] the theoretical complexity bound highly depends on the value
of vB. For the first constant v, which is the convergence rate of the fast marching method, the
usual finite differences or semilagrangian schemes satisfy v = % However, it may be equal to
1, which typically occurs under a semiconcavity assumption (see for instance [CF96; FF14]).
Higher order schemes (in time step) may also be used, under some additional regularity on the
value function, see for instance [FF98; Bok+15| and lead to v > 1.

Recall that the second constant 3, defined in Assumption determines the growth of
the neighborhood O, of the optimal trajectories, as a function of 7. This exponent depends on
the geometry of the level sets of the value function. We provide some examples for which § =1

in Section [4.B| In particular, one can find examples such that v = g = 1.
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4.6 Numerical Experiments

In this section, we present numerical tests, showing the improvement of our algorithm, compared
with the original fast-marching method of Sethian et al. [Set96; SVO01], using the same update
operator. Both algorithms were implemented in C++, and executed on a single core of a Quad
Core IntelCore 17 at 2.3Gh with 16Gb of RAM.

Note that, as said in Remark the constant C,, in the formula of the parameters 1, of
the multi-level fast marching method is difficult to estimate. Then, for a given problem, first
several tests of the algorithm are done for large values of the mesh steps (or on the first levels of
the multi-level method) with some initial guess of the constant C,,, assuming that v = 1. This is
not too expensive, so we do not count it in the total CPU time of the multi-level fast marching
method.

4.6.1 The tested problems

In the numerical tests, we shall consider the following particular problems in several dimensions
d.

Problem 1 (Euclidean distance in a box). We start with the easiest case: a constant speed
f(z,a) = 11in Q = (0,1)%. The sets Kge and Kgg are the Euclidean balls with radius 0.1,
centered at (0.2,...,0.2) and (0.8, ...,0.8) respectively.

Problem 2 (Discontinuous speed field). The domain €2 and the sets Kgc, Kgst are the same as
in Problem [I} The speed function is discontinuous, with the form:

f(a:,a) =

0.3, z¢€(04,0.6)%
1, elsewhere.

Thus, the speed is reduced in a box centered in the domain. In this case, optimal trajectories
must “avoid” the box, so there are Z(g) = d(d—1) optimal trajectories from Kg. and Kgst, which
are obtained by symmetry arguments.

Problem 3 (The Poincaré Model). Consider the minimum time problem in the open unit Euclid-

ian ball Q = Bd(O 1). The sets Kg and Kgg are the Euclidean balls with radius f’ centered

at (% %) and (%28 IR 07%) respectively. This speed function f is given as follows:
fla,a) =1~ ||

This particular choice of vector field corresponds to the Poincaré model of the hyperbolic ge-
ometry, that is, the optimal trajectories of our minimum time problem between two points are
geodesics or “straight lines” in the hyperbolic sense.

Problem 4. Consider Q) = Bd((), 1), the open unit Euclidian ball, and let Kg and Kgg be the
closed balls with radius r/2 and centers (1 —r,0,...,0) and (—1+7,0,...,0), respectively, with
0<r< % For every = = (x1,x9,...,24) € Q and a € A, the speed is given as follows:

flz,0) =1+2% - Zx . (4.63)

We prove in Example [2] of Section that this problem satisfies § = 1.

Problem 5. We address the problem with same domain and speed as in Problem {4} but with the
same source and destination sets as in Problem [Bl

4. S.L. SCHEME.
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4.6.2 Comparison between ordinary and multi-level fast-marching methods

We next provide detailed results comparing the performances of the classical and multi-level fast
marching methods in the special case of Problem([I]} Detailed results concerning Problems are
given in Section [£.C] showing a similar gain in performance. In the higher dimension cases, the
classical fast marching method cannot be executed in a reasonable time. So we fix a time budget
of 1 hour, that is we show the results of these algorithms when they finish in less than 1 hour
only. Figure [£.4] shows the CPU time and the memory allocation for Problem [I] in dimensions
range from 2 to 6, with grid meshes equal to % and ﬁ. In all the dimensions in which both
methods can be executed in less than one hour, we observe that the multi-level fast marching
method with finest mesh step h yields the same relative error as the classical fast marching
method with mesh step h, but with considerably reduced CPU times and memory requirements.
Moreover, when the dimension is greater than 4, the classical fast marching method could not
be executed in a time budget of 1 hour. In all, the multi-level method appears to be much less

sensitive to the curse-of-dimensionality.

1400 5000 -
—+—Classical F.M. with h=1,/50 —+— Classical F.M. with h=1/50
1200 —+—Multilevel F.M. with h=1/50 . —+—Multilevel F.M. with h=1/50
—— Classical F.M. with h=1/100 g 4000 — Classical F.M. with h=1,/100
1000 — Multilevel F.M. with h=1/100 < — Multilevel F.M. with h=1/100 >
w =1
= =]
2 800 2 3000
& £
5, 600 = 2000
S s
* =}
400 ~ g
= 1000 -
200
0 ! 0
2 3 4 5 6 2 3 4 5 6

dimension dimension

Figure 4.4: Problem |1} CPU time (left) and memory allocation (right) as a function of the
dimension, for a fixed finest mesh step h.

To better compare the multi-level method with the classical method, we test the algorithms
with several (finest) mesh steps (which are proportional to the predictable error up to some
exponent 1/7), when the dimension is fixed to be 3, see Figure We consider both the 2-level
algorithm and the multi-level algorithm. In the multi-level case, the number of levels is adjusted
to be (almost) optimal for different mesh steps and dimensions.

4.6.3 Effective complexity of the multi-level fast-marching method

We next analyse the experimental complexity of the multi-level fast marching method in the
light of the theoretical estimates of Theorem For this purpose, we tested the multi-level
fast marching method on Problems [TH5 with an almost optimal number of levels, and several
dimensions and final mesh steps. For all these cases, we compute the (logarithm of) CPU time
and shall plot it as a function of the dimension, or of the final mesh step.

If the number of levels is choosen optimal as in Theorem [4.5.5] we can expect a complexity
~ 14+(d—1)(1—~8)
in the order of O(C?(1) v ), depending on the model characteristics, to be compared

da
with (%)3 for the usual fast marching method. This means that the logarithm of CPU time
should be of the form

1 1 1
log(CPU time) ~ sp + s2 log(ﬁ) + (s1+ s3 log(ﬁ))d = 50 + s1d + (s2 + s3d) log(ﬁ) . (4.64)
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(a) CPU time as a function of (b) Memory allocation as a function of +
Figure 4.5: Problem [1] CPU time and memory allocation for several values of the finest mesh
step h, in dimension 3.

where s; = log(C), s2 = 78 € (0,1] and s3 = 1 — vB. To check if such an estimation of
complexity holds, we shall execute the multi-level fastmarching method on all the problems for
several values of h and d, and compute the logarithm of the CPU time as a function of the
dimension and then as a function of log(1/h). However, choosing an optimal number of levels
may be difficult to implement due to the small differences between the mesh steps. So, the
results will not always fit with the above theoretical prediction.

We first present tests done for dimension 2 to 6 and finest mesh step % and ﬁ, for which
we compute the (logarithm of) CPU time. We show in Figure the graph of the logarithm
of CPU time as a function of the dimension (when finest mesh step is fixed), for which the
form suggests a slope of the form s; + s3 log(%). We also give the precise values of these
functions in Table where we compute the slope by linear regression. If the slope satisfies
this formula, then one can get an estimation of s3 and then of v using several values of h. Here,
we have only two values of h, which gives a rough estimation of s3, also given in Table This
gives an estimation of v3 € [0.71,0.88], so close to 1. Another possibility is that v8 = 1 and
that the number of levels is not optimal, which implies that the logarithm of the CPU time is

not affine in the dimension.
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(a) log(CPU time) w.r.t. dimension when h = &.  (b) log(CPU time) w.r.t. dimension when h = 115.

Figure 4.6: Growth of CPU time w.r.t. dimensions.
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Table 4.1: Values and slope of log(CPU time) w.r.t. dimension.

CHAPTER 4. MULTILEVEL FAST-MARCHING

log(CPU Time) w.r.t. dimension, h= % log(CPU Time) w.r.t. dimension, h= 1%0
Dimension: 2 3 4 5 6 slope 2 3 4 5 6 slope s3
Problem || -1.44  0.26 1.56 2.20 264 | 0.778 | -0.98 0.62 1.71 248 3.12 | 0.827 | 0.16
Problem [2 -1.30  0.32 1.74 250 289 | 0.847 | -1.12 0.71 231 2.75 3.48 | 0.905 | 0.20
Problem|3| | -1.38  0.02 148 2.09 283 | 0904 | -1.09 056 1.68 2.60 3.39 | 0.941 | 0.12
Problem{| | -1.47 -0.05 0.96 1.28 214 | 0.719 | -1.11 046 1.43 1.83 2.86 | 0.760 | 0.13
Problem 5| | -1.42  0.10 1.25 187 235 | 0.737 | -1.07 046 1.62 230 2.98 | 0.824 | 0.29

We next present tests done for dimension 4 and several values of finest mesh step going from
1/20 to 1/320, for which we compute the (logarithm of) CPU time. We present in Figure
the graphs of the CPU time as a function of %, in both linear scales and log-log scales. We also
compute the precise values of the logarithm of the CPU time as a function of the logarithm of
% in Table where we compute the slope by linear regression. The form of the CPU
time suggests a slope so 4 s3d with s3 = 1 — s and sg = 3. So the value of this slope for d =1
is 1 and the value of the slope for d = 4 allows one to compute a second rough estimation of s3,
that we also give in Table [£.2] The results match with the ones of Table [£.I] and so again the
estimation of v € [0.76,0.86] is close to 1, or suggest that v5 = 1 but that the number of levels

is not optimal.
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(a) CPU time w.r.t. mesh step, linear scale. (b) CPU time w.r.t. mesh step, log-log scale.

Figure 4.7: Growth of CPU time w.r.t. mesh steps in dimension 4.

Table 4.2: Values of log(CPU) time w.r.t. log(%).

log(CPU time) w.r.t. log(%), d=4
log(%): 1.3 1.6 1.9 2.2 2.5 | slope s3
Problem |1 0.48 1.39 177 2.06 243 1.52 0.17
Problem |2 0.56 1.52 2.01 245 2386 1.73 0.24
Problem |3 0.37 1.16 1.57 1.86 2.23 1.46 0.15
Problem{| | -0.54 0.50 1.08 1.60 2.05 1.41 0.14
Problem |5 0.33 1.21 163 190 2.28 1.52 0.17

4.A Update Operator for Fast Marching Method

We consider the problem with direction “to destination”, and a semi-lagrangian discretization

of the HJ equation associated to our first optimal control problem (4.2l4.8)l4.9), and describe
the associated update operator of the fast marching method. The first update operator in
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Section [4.A.1]is based on the work of [CF07], which is shown to be efficient for isotropic case. We
also provide a further update operator in Section [d.A.2]to treat certain amount of anisotropicity,
which can be seen as a variant of the ordered upwind method proposed in |[SVO01] adapted to
our case. We should mention that the anisotropicity is a major difficulty for the generalization
of fast marching method, but it is beyond the scope of this work. There are many other schemes
which are more efficient for certain type of anisotropy (see for instance [FLGOS8; Cri09; CFM11;
Mirl4; [Mirl19]) and, in principle, could be adapted to our algorithm by simply changing the
update operator.
Consider the following semi-lagrangian type discretization of :

h = min —Lvh T a L €N
o (@) = {(1 gl b )+f(x7a)}, €0\ Ka |

a€ESy
(@) =1, T (4.65)
Uﬁd(m) =0, T € Kast -

This is a time discretization of the optimal control problem, in which the time step is h/ f(x, @),
so depends on state and control. Note that the second equation can be restricted to the elements
 of a h-neighborhood of Q (that is Q4 B%(0, h)), since the first equation involves only points at
a distance h of € Q\ Kqst. Assume now given a discrete subset X of R? (or of Q + B4(0, h)),
for instance the nodes of a regular grid. Denote V4 the approximate value function for v;q on
X, and apply the above equations toall z € X. When 2 € X N (Q\ Kqst), the points
Z + ha are not necessarily in X, so we need to get the value of vfd(x + ha) by an interpolation
of the value of its neighborhood nodes. We assume given an interpolation operator to be used
in when z € X N (2\ Kgs). This interpolation may depend on z (that is on the equation
to approximate), and will be denoted by I”[-]. However the value I*[Vsq4](z") depends only on
the values of Vsq4(y) with y € X in a neighborhood of 2’ (which does not depend on z). We then
consider the following fully discretized semi-lagrangian scheme:

h h _
Vea(as) = mip {(1 o) I Wealai £ ho) + f(%a)} 7€ XN @O\ Kagt) |
Via(zi) =1 5 d XNQ (4.66)
V;d(xz) =0 re X m’CdSt .

4.A.1 Isotropic Case

Computing the minimum of the right hand side of the first equation in is not trivial,
especially when the dimension is high. Moreover, generally, in the d dimensional case, we need
at least the value in d+1 nodes of the grid, in order to compute the interpolation in one node. We
describe here one possible way to define an interpolation operator and to compute the minimum
of the right hand side of the first equation in , within a regular grid with space mesh step
equal to time step i.e., Ax; = h,Vi € {1,2,...,d}.

Let x = (21,9, ...,24) denote a point of X. Roughly speaking, the d—dimensional space is
“partitioned” into 2¢ orthants. We consider only the open orthants, since their boundaries are
negligible. The values of the interpolation I*[V.q](z + ha) with o € Sy are defined (differently)
for a0 in each orthant, and the minimum value in each orthant is first computed. Then, the
minimum will be obtained by further taking the minimum among the values in all orthants.
Denote by ey, ..., eq the vectors of the canonical base of R%. We compute the minimum in the
positive orthant using d+1 nodes: 2! := x+he;,l € {1,...,d},and x4 := z+h(e;+ea+---+eq).
The minimum in other orthants will be computed using the same method.

4. S.L. SCHEME.
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The interpolated value function in x + ha with « in the positive orthant of the sphere 57,
denoted by vj’dl, will be given by the linear interpolation of Viq(z!), Vaq(2?),..., Voq(z?) and
V(z41), which is equal to

d
vi (@ + ha) = Zakmd %d(x+1)d_zi 1 Voale (Z —1) . (4.67)

We then use (01,02,...,04-1), 0x € (0,75), to represent a vector a € S belonging to the positive
orthant, that is

aq = cos(61), e = sin(6y) cos(0z2), ..., aq = sin(6q) sin(fz) - - -sin(fg—1) - (4.68)

This allows one to rewrite (4.67)) as a function of (61,62, ...,604_1). By doing so, one can consider
the result of the optimization in the first equation of (4.66)), restricted to the positive orthant,
as an approximate value of Vsq(x), denoted by Vil,, and given by:

Vi) =, min {02+ ho) + ) (4.69)
Notice that the minimum in equation is easier to compute by taking the minimum first on
041, then 04_o, until 6;. Indeed, we notice in , that only the last two entries of « contain
04—1. Thus, the minimum of over f4_1 can be computed separately. Moreover, in the
isotropic case, meaning f(z,a) = f(x),Va € Sy, the minimal 634 is independent of 61, ...604_o,
due to the special form of (4.68)) and (4.67). The iterative computation over 64_o to 6 will be
the same.
Then, the update operator is as follows:

UWoa)(a) =, min  Viy(z) - (4.70)

Proposition 4.A.1. One step update using the above operator needs O(d x 2¢) arithmetic
operations.

4.A.2 Anisotropic Case: Order Upwind Method

Now we describe an update operator to treat a certain amount of anistropicity by adapting
the method in |SVO01], which essentially increases the size of neighborhood in each step of
computation.

Let now X be a triangular mesh of  + B4(0, h) (that is the vertices of a simplicial complex

covering this set) with diameter h. We denote T := % > 1, and observe that this constant can
be interpreted as a measure of anisotropicity. Let x € X. For any given I-uple (z1,x9,...,21)
of nodes of X with I < d+ 1, we define

1 1

Tp =y piwi, for pe A i={p; 20,Y pi=1}.
i=1 i=1
Let us denote d(p) := ||z, — 2| and «, := Hfsi%in’ which are the distance and the direction

from x to x,. Denote [I] = {1,2,...,I} and (z;);c[) the I-uple. Let Viq(w; (2:);[r]) denote the
approximate value of V.q(x) given by

Vaa(ws (w1)icin) = ;ggl,{(l— oW ) (ZmV»d ) f(‘ff’z)} . (4.71)
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This is similar to the minimization in the first equation of (4.66]), restricted to the elements «
of S1 that are of form «,,.
Let us consider the set N(x) of neighborhood nodes of x, defined as follows:

N(z) :={z; € X | 3z}, € X, 3% € [z, 2], such that z; ~ z}, and ||Z — x| < Th} ,

where, for z,y € X, x ~ y means that « and y are adjacent. Then, we can consider a new
update operator for the value function defined by

U'(Voa)(x) = min Vaq (2 (2i)ie(r) (4.72)

where the minimization holds over all I-uples (;);c[s of elements of N(z) such that z; ~ xa,
ooy xr—1 ~xrand |I| <d+ 1.

4.B Examples with § =1

For simplicity, we describe our examples in R? and denote B(0,1) the open Euclidian ball with
center 0 and radius 1.

Ezample 1. Consider the minimum time problem with Q = B(0, 1), g and Kqs are the closed
balls with radius r/2 and centers (1 —r,0) and (—1 + r,0), respectively, with 0 < 7 < 3. The
speed function is as follows:

F(@,9)0) = (laf )™ (4.73)
For this example, there exists a unique optimal trajectory follows a straight line with y = 0.
Moreover, the dynamics with a speed as in is equivalent to a dynamics with constant speed
and a direction a chosen in the unit L' sphere instead of the L? sphere. One can also deduce that
the distance between the optimal trajectory and a d—optimal trajectory is A = O(J). Indeed,
in this case, the original minimum time problem can be approximated by a true shortest path
problem.

Ezample 2. Consider the example of Problem 4| in dimension2. Recall that Q = B(0,1), and
that Kg and Kgg are the closed balls with radius r/2 and centers (1 — r,0) and (—1 4 7,0),
respectively, with 0 < r < %, and that the speed is

fl(z,y),a) =1+ z? — . (4.74)

One can easily notice that the optimal trajectory between Kg.. and Kgg follows again a straight
line with y = 0. Moreover, if a —optimal trajectory is at a distance A of the optimal trajectory,
then it goes through a point of the form (z, £A), by symmetry. Without loss of generality, let
us consider a d-optimal trajectory which is optimal from K. to (x,A), and from (z, A) to Kgyst.
We take the optimal trajectory from Kg. to (z,A) and from (x,A) to Kgs, because it gives
the maximum A, which is then the maximum distance from the optimal trajectory, for which
the d-optimal trajectory of the minimum time problem can reach. One can then characterize
the optimal trajectory from Kg. to (z,A) and from (z,A) to Kqst, for instance by Pontryagin
Maximum Principle, then deduce the travel time of this trajectory which is the sum of the
minimum time from Kg. to (z,A) and from (z, A) to Kgs. Using the fact that this trajectory
is d-optimal, we deduce A = O(4), showing that g = 1.

4.C Detailed Numerical Data

4.C.1 Detailed Numerical Data for Problem

The exact solution is the Euclidean distance, denoted by v*. The relative error, CPU time
and memory allocation of our data structure for the classical fast-marching method and for the

SCHEME.
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h__ %
multi-level method are shown in Table The relative error is defined as error := %,
where v" is the approximate value computed by a numerical scheme with (finest) mesh step h.

We also give the CPU time and the memory allocation needed for the fine grid mesh changes

Table 4.3: Problem |1} CPU times and Memory Allocation as a function of the relative error
and of the dimension.

Multi-level F.M. (Algorithm 4.3
2-level | 3-level | 4-level | 5-level [ 6-level
dimension-2

Classical F.M.

h= & CPU Time(s) 0.113 0.0343 | 0.031 - - -
error: 2.71% | Memory(MB) 6.4 6.4 6.0 - - -
h= CPU Time(s) 0.381 0.122 | 0.103 - - -
error: 1.42% | Memory(MB) 8.1 8.3 8.3 — - -
dimension-3
h=% CPU Time(s) 7.78 179 | 1.53 1.45 - -
error : 3.85% | Memory(MB) 34.1 21.7 20.9 19.7 — -
h= 1k CPU Time(s) 74.69 8.41 6.17 5.21 - -
error: 2.12% | Memory(MB) 182.2 57.8 47.9 43.6 - -
dimension-4
h= % CPU Time(s) 497.03 53.6 | 398 | 36.73 - -
error: 4.49% | Memory(MB) 1167.4 194.2 131.7 146.7 - -
h = ﬁ CPU Time(s) - 364.84 | 220.32 121.45 77.32 50.91
error: 2.34% Memory(MB) - 1198.1 673.3 644.5 663.2 593.1

dimension-5

h = % CPU Time(s) - - 473.59 235.32 180.48 158.27
error: 5.49% | Memory(MB) — — 1105.9 947.9 781.4 1025
h = ﬁ CPU Time(s) - - - 1031.18 465.96 303.92
error: 2.89% | Memory(MB) - - - 1679.4 | 1863.68 | 2109.2

dimension-6

h = % CPU Time(s) - - - 1260.37 683.36 434.36
error: 7.12% | Memory(MB) - - - 2764.8 3686.4 3543.3
h= L CPU Time(s) - - - - 2485.79 | 1329.56
error: 3.94% | Memory(MB) - - - - 5939.2 4765.4

from 20 to 320 in Table in which the relative error are exactly the same for both algorithms
with same mesh step.

4.C.2 Detailed Numerical Data for Problem

We give in Figure [4.8|the numerical results for the classical fast marching method and our multi-
level method to compare with the Problem [2l This shows the gain in performance persists in
the presence of multiple optimal trajectories.

We also test our algorithm with different error estimation in dimension-3 and dimension-4
cases, with the level be different for different dimension and error bound. We give the result
of CPU time and memory allocation needed for the fine grid mesh changes from 20 to 320 in
Figure [4.9

The detailed numerical results for Problem [2], with respect to different dimensions, are in
Table L5

We also compared, with the dimension to be fixed at 3 and 4, the CPU time and Memory
Allocation for different relative error in Table [4.6]

4.C.3 Detailed Numerical Data for Problem

The numerical results with respect to different dimensions are shown in Figure
For different error estimation in dimension-3 and dimension-4, the results are shown in

Figure
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CPU Time(s)

Table 4.4: Problem |1l CPU times and Memory Allocation for different precisions.

dimension-3 dimension-4
CPU Time(s) Memory(MB) | CPU Time(s) Memory(MB)
h= >
Classical F.M. 0.465 7.3 11.486 56.1
2-level F.M. 0.225 7.7 4.81 25.9
3-level F.M. 0.185 7.8 2.99 28.2
h= 4o
Classical F.M. 3.869 20.4 225.502 695.2
3-level F.M. 1.168 14.2 28.94 104.9
4-level F.M. 0.913 16.8 24.68 107.9
=L
Classical F.M. 35.776 104.3 4241.85 9431.1
4-level F.M. 4.358 34.7 102.42 409.1
5-level F.M. 3.961 26.4 59.23 491.5
— T
h= 1
Classical F.M. 258.67 724.8 -
5-level F.M. 14.22 62.2 203.82 1116.2
6-level F.F. 10.8 73.8 115.41 846.5
_ 1
h= 35
Classical F.M. 2328.57 5734.4 —
5-level F.M. 55.17 194.4 1095.63 2068.5
6-level F.M. 31.84 227.0 438.37 1658.9
7-level F.M. 23.31 316.6 267.61 1470.1
3500 5000 -
—+— Classical F.M. with h=1/50 —+— Classical F.M. with h=1/50
3000 —+=Multilevel F.M. with h=1/50 —+= Multilevel F.M. with h=1/50
—Classical F.M. with h=1/100 o 4000 —— Classical F.M. with h=1/100
2500 — Multilevel F.M. with h=1/100 =3 — Multilevel F.M. with h=1/100
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Figure 4.8: Problem [2| CPU time (left) and memory allocation (right) as a function of the

dimension, for a fixed precision.
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Figure 4.9: Problem [2. CPU time and memory needed to get certain error bound.
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Table 4.5: Problem [2| Varying the dimension.

. Multi-level F.M.
Classical F-M. 7 [ 3-level | 4-level [ 5-level | 6-level
dimension-3
h= o CPU Time(s) 8.06 2.20 1.88 1.66 - -
error: 4.19% | Memory(MB) 34.1 20.2 19.7 19.8 - -
h= L CPU Time(s) 75.80 17.08 | 13.14 9.36 - -
error: 2.22% | Memory(MB) 182.2 79.9 73.7 47.6 - -
dimension-4
h= CPU Time(s) 504.5 115.84 | 84.44 55.29 - -
error: 5.13% | Memory(MB) 1167.4 230.2 191.9 165.1 — —

h = ﬁ CPU Time(s) - 854.8 585.26 305.55 238.26 206.04
error: 2.67% | Memory(MB) - 1351.7 | 1321.9 892.1 823.1 795.3
dimension-5

h= % CPU Time(s) - - 1731.27 | 974.32 | 478.48 | 318.66
error: 5.87% | Memory(MB) - - 2107.1 1291.7 1149.8 979.6
h= 1o CPU Time(s) - - - 3254.27 | 1245.71 | 567.98
error: 3.31% | Memory(MB) - - - 3771.89 | 2487.32 | 2392.48
dimension-6
h= % CPU Time(s) - - - 3051.47 | 2135.35 | 979.37
error: 7.21% | Memory(MB) — - - 3771.89 | 2487.32 | 2217.39
h= g5 CPU Time(s) - - - - - 3021.91
error: 4.10% | Memory(MB) - - - - — 4189.6
Table 4.6: Problem |2l Varying the step size.
dimension-3 dimension-4
CPU Time(s) Memory(MB) | CPU Time(s) Memory(MB)
h=o
Classical F.M. 0.453 7.3 11.374 56.1
2-level F.M. 0.279 8.1 7.63 26.1
3-level F.M. 0.237 8.9 3.62 28.9
h=g5
Classical F.M. 3.974 20.4 223.707 695.2
3-level F.M. 1.655 17.6 41.546 172.5
4-level F.M. 1.197 17.8 33.405 175.6
=
Classical F.M. 36.897 104.3 4238.29 9431.1
4-level F.M. 6.371 41.3 245.169 956.5
5-level F.M. 5.631 38.4 102.52 899.7
—
Classical F.M. 261.34 724.7 -
5-level F.M. 29.36 170.4 551.19 1812.5
6-level F.F. 22.30 124.5 279.85 1516.29
h= 55
Classical F.M. 2335.71 5734.4 -
5-level F.M. 131.42 493.7 -
6-level F.M. 70.85 437.4 1426.5 3983.4
7-level F.M. 55.64 445.6 726.9 2765.1
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Figure 4.10: Problem [3| CPU time (left) and memory allocation (right) as a function of the
dimension, for a fixed precision.
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Figure 4.11: Problem |3} CPU time and memory needed to get certain error bound.
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The detailed numerical data for Problem [3| with respect to different dimensions, are in
Table

Table 4.7: Problem [3| Varying the dimension.

Multi-level F.M.
2-Tevel [ 3-level | 4-level [ 5-level | 6-level
dimension-2

Classical F.M.

h— L CPU Time(s) 0.109 0.041 - - - -
T 50 Memory(MB) 6.4 6.4 - - - -
L _ 1| CPU Time(s) 0.394 0.081 - - - -
~ 100 | Memory(MB) 8.1 8.1 — — —
dimension-3
, _ 1 | CPU Time(s) 8.14 1.25 1.04 - - -
T 50 Memory(MB) 34.1 23.1 18.7 - - -
. _ 1| CPU Time(s) 7479 8.00 583 | 3.04 = -
~ 100 | Memory(MB) 182.1 84.5 62.0 39.9 — -
dimension-4
he L CPU Time(s 507.2 48.77 32.29 30.18 - -
50 Memory(MB

1276.3 177.4 148.6 153.8 - -
- 307.8 175.2 117.4 69.81 47.85

- 1217.4 670.1 521.6 540.9 497.6
dimension-5
CPU Time(s) - - 427.9 220.8 159.3 122.1

50 Memory(MB) - - 1447.2 | 1102.4 925.9 872.4
) —

)

)
)
CPU Time(s)
100 | Memory(MB)

CPU Time(s 1171.4 | 495.7 397.8
100 | Memory(MB - - - 2115.7 | 1414.3 | 1374.9
dimension-6
CPU Time(s) - - - 1974.9 | 924.6 | 674.9
50 | Memory(MB) — - — 2713.4 | 2249.5 | 2074.9

CPU Time(s) - - - - - 2494.2
100 | Memory(MB) - - - - - 5924.2

The result with fixed dimensions and various mesh steps are given in Table

4.C.4 Detailed Numerical Data for Problem

The following Figure [£.12] shows the CPU time and memory needed to get certain accuracy with
respect to different dimensions.
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800 —— Classical F.M. with h=1/100 — —— Classical F.M. with h=1/100
—— Multilevel F.M. with h=1/100 g 5000 - —— Multilevel F.M. with h=1/100
— o
& S
5 600 £ 4000 - .
ﬁ Vi .:é 7
= / < 3000 - ’
% 400 /l ‘?
;g £ 2000
200} ! -
/ 1000 - -
4 - o
l/ _.,""— —"—’-
0 + . ) 0 . .
2 3 4 5 6 7 2 3 4 5 6 7

dimension dimension

Figure 4.12: Problem 4] CPU time (left) and memory allocation (right) as a function of the
dimension, for a fixed precision.

We also fix the dimension as 3 and 4, and vary the step size, the results are shown in Fig.

The detailed numerical data for Problem [4] with respect to different dimensions are in Ta-
ble
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dimension-3 dimension-4
CPU Time(s) Memory(MB) | CPU Time(s) Memory(MB)
— 1
h= 25
Classical F.M. 0.571 7.1 11.26 55.9
2-level F.M. 0.281 8.6 2.77 28.4
3-level F.M. 0.209 8.2 2.37 23.6
— I
h= 15
Classical F.M. 3.96 20.2 221.3 695.4
3-level F.M. 0.974 15.5 17.31 82.3
4-level F.M. 0.875 15.2 14.34 23.6
— 1
h= g
Classical F.M. 37.81 105.9 4298.77 9496.5
4-level F.M. 3.63 27.7 66.43 421.9
5-level F.M. 2.72 24.6 37.21 404.9
T
h = 160
Classical F.M. 262.78 729.7 -
5-level F.M. 12.71 71.4 122.71 776.4
6-level F.F. 9.26 62.9 72.72 721.5
— T
— 320
Classical F.M. 2479.76 5757.4 -
5-level F.M. 27.51 169.5 906.43 2776.4
6-level F.M. 20.31 165.4 309.44 1257.4
7-level F.M. 16.34 176.8 169.92 1201.5
2500 6000
*
/
2000 . // 5000 —+—Classical F.M.
—+—Classical F.M. ,/' é 2-Level F.M.
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Figure 4.13: Problem 4. CPU time and memory needed to get certain error bound.



S.L. SCHEME.

4.

98 CHAPTER 4. MULTILEVEL FAST-MARCHING

Table 4.9: Problem 4l Varying the dimension.

. Multi-level F.M.
Classical F.M. 2-Tevel | 3-level | 4-level | 5-level [ 6-level
dimension-3
h— L CPU Time(s) 7.82 0.47 - - - -
T 50 Memory (MB) 33.9 21.7 - - - -
w_ 1| CPU Time(s) 71.12 3.24 2.87 = = -
~ 100 | Memory(MB) 182.2 73.8 53.9 - - -
dimension-4
h— L CPU Time(s) 498.2 15.56 13.61 9.08 - -
T 50 Memory(MB) 1172.6 134.7 148.8 128.3 - —
h— L CPU Time(s) - 89.06 55.73 40.27 26.89 -
— 100 Memory(MB) — 1021.4 1121.9 706.8 512.7 —
dimension-5
h— L CPU Time(s) - 43.79 29.07 24.27 19.27 -
50 Memory (MB) - 737.5 596.7 494.9 636.2 -
b= L CPU Time(s) — — 629.61 223.77 113.04 67.1
~ 100 | Memory(MB) - - 3429.8 | 1785.7 1527.6 1327.9
dimension-6
,_ 1 | CPU Time(s) = = = 388.04 | 173.45 | 108.6
T 50 Memory (MB) — — — 2084.6 | 2072.8 | 2427.9
h— L CPU Time(s) - - - - 396.37 226.85
~ 100 | Memory(MB) - - - - 4241.5 | 3927.6
dimension-7
h— L CPU Time(s) - - - - 725.83 375.45
~ 50 Memory(MB) — — - - 3628.6 3738.2
h— L CPU Time(s) - — - - 1426.22 | 975.38
~ 100 | Memory(MB) - - - - 5228.9 6787.8

The results with fixed dimensions and various mesh steps are in Table

4.C.5 Detailed Numerical Data for Problem

The results with respect to different dimensions are shown in Figure [£.14]

1000 3500 -
—+— Classical F.M. with h=1/50 —+= Classical F.M. with h=1/50
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o = |
£ 400 . 1500
o &
£ 1000
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500
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dimension dimension

Figure 4.14: Problem |5 CPU time (left) and memory allocation (right) as a function of the
dimension, for a fixed precision.

We again fix the dimension as 3 and 4, and vary the step size. The results are shown in

Figure
The detailed numerical data for Problem [5] with respect to different dimensions are in Ta-

ble A1l

The result with fixed dimension and various step size is given in Table [£.12]
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Table 4.10: Problem 4l Varying the step size.

dimension-3 dimension-4
CPU Time(s) Memory(MB) | CPU Time(s) Memory(MB)
— 1
h =35
Classical F.M. 0.432 7.1 11.354 55.9
2-level F.M. 0.148 8.3 0.512 24.5
3-level F.M. 0.062 8.2 0.294 22.5
— 1
h= 45
Classical F.M. 3.978 20.2 219.076 694.9
3-level F.M. 0.395 15.8 4.72 70.2
4-level F.M. 0.289 14.7 3.17 70.9
— 1
h = g5
Classical F.M. 36.492 104.1 4236.27 9487.2
4-level F.M. 1.684 28.1 27.94 792.2
5-level F.M. 1.372 34.2 21.09 473.9
T
h= 14
Classical F.M. 260.36 724.7 -
5-level F.M. 5.081 99.8 72.63 1392.5
6-level F.F. 4.781 76.9 47.05 935.1
— T
— 320
Classical F.M. 2443.21 5754.2 -
5-level F.M. 25.15 337.9 749.85 3376.2
6-level F.M. 16.83 365.3 201.30 2072.8
7-level F.M. 13.77 305.5 101.69 1527.7
2500 6000
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i 7
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Figure 4.15: Problem [5, CPU time and

(b) Memory allocation for different +

memory for certain error bound.

350

99

4. S.L. SCHEME.



100 CHAPTER 4. MULTILEVEL FAST-MARCHING

Table 4.11: Problem [5 Varying the dimension.

S.L. SCHEME.

4.

. Multi-level F.M.
Classical F.M. 2-level | 3-level | 4-level | 5-level [ 6-level
dimension-3
L _ 1 | CPU Time(s) 8.16 1.27 - = - =
T 50 Memory(MB) 34.3 21.8 - - - -
. _ 1| CPU Time(s) 77.21 3.49 2.92 - - -
= 700 | Memory(MB) 183.2 578 | 446 - - -
dimension-4
he L CPU Time(s) 500.7 27.39 21.49 17.85 - -
=50 | Memory(MB) 1167.9 137.2 | 1127 | 107.4 - -
h— L CPU Time(s) - 201.11 140.71 98.75 60.21 41.25
— 100 Memory(MB) — 1091.2 560.8 498.4 490.7 445.7
dimension-5
he L CPU Time(s) - - 356.46 | 192.45 140.25 117.89
~ 50 Memory(MB) — — 1205.8 902.4 820.9 798.8
h— L CPU Time(s) - - - 627.85 299.37 200.59
~ 100 Memory(MB) - - - 1508.9 | 1489.2.32 | 1478.3
dimension-6
h— L CPU Time(s) — — - 792.85 407.85 225.09
~ 50 Memory(MB) — - — 1927.6 1972.4 1785.4
. _ 1 | CPU Time(s) - - - - 2049.75 | 969.28
T 50 Memory(MB) - - - - 3921.6 3378.5
Table 4.12: Problem [5 Varying the step size.
dimension-3 dimension-4
CPU Time(s) Memory(MB) | CPU Time(s) Memory(MB)
h=a5
Classical F.M. 0.483 7.3 11.984 57.1
2-level F.M. 0.215 7.8 2.95 20.3
3-level F.M. 0.177 7.8 2.14 24.5
h=15
Classical F.M. 3.874 20.8 227.371 699.4
3-level F.M. 1.109 18.7 19.68 89.2
4-level F.M. 0.925 15.8 16.38 87.9
h=gg
Classical F.M. 37.771 105.6 4276.81 9550.8
4-level F.M. 3.605 27.8 67.41 399.2
5-level F.M. 2.619 22.4 42.94 371.4
h= g
Classical F.M. 264.37 725.8
5-level F.M. 10.65 67.2 130.88 879.24
6-level F.F. 8.34 57.9 80.03 665.21
h= 35
Classical F.M. 2435.91 5734.4
5-level F.M. 29.38 178.4 974.85 2215.6
6-level F.M. 19.39 175.3 327.5 1486.7
7-level F.M. 17.23 154.8 191.3 1241.6
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Abstract. We present a modification of the semi-lagrangian scheme focusing on solving the
general eikonal equation that arises from the front propagation and minimum time problem with
a given target. We show that the discrete-time value function associated with our discretization
scheme is semiconcave under certain regularity assumptions on the dynamics and the target
set. We show a convergence rate of order 1 for both the semi-lagrangian scheme and a fully
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discretized semi-lagrangian scheme, in terms of the time step for the first scheme and of the
mesh step for the latter one. We also establish convergence results under a particular state
constraint. We apply our results to analyze the convergence rate and computational complexity
of the fast-marching method, and of the multi-level fast-marching method recently introduced
by the authors.

5.1 Introduction

5.1.1 Motivation and Context

This chapter discusses a numerical approach for solving a general eikonal equation, which is
also a static first order Hamilton-Jacobi(HJ) Partial Differential Equation(PDE) arising in front
propagation and minimum time problems. The value function for such problems is character-
ized as the solution of the associated HJ equation in the viscosity sense [CL83; CEL84; FS06).
Problems with state constraints can be addressed with the notion of constrained viscosity solu-
tion [Son86a; Son86b].

One class of numerical methods for solving HJ equations involves Semi-Lagrangian schemes,
as in |Fal87; FF14], which arise by applying the Bellman dynamic programming principle to
the discrete time optimal control problem obtained after an Euler time-discretization of the
dynamics. The convergence of such a scheme should be understood in viscosity sense. Moreover,
a convergence rate of order 1/2 of the time step is established under mild condition on the
problems, and of order 1 is established typically under a semiconcavity condition [DI84], or a
bounded variational condition [Fal87]. The Semi-Lagrangian scheme originally involves a semi-
discretization in time. For practical computation, a further discretization in the state space
is needed, which is often referred to the fully discretized scheme. After a space discretization
(using a grid), the usual system of equations can be interpreted as the dynamic programming
equation of a stochastic optimal control problem [KDO01]| with discrete time and state space. One
can solve the discretized system by applying value iteration until convergence. Each iteration
consists in updating the value function at nodes in a given grid by solving the corresponding
discrete HJ equation. The convergence result of fully discretized scheme is often obtained as
both the time step and the space step over time step tend to 0. Several works intend to show
the convergence and the convergence rate of such schemes are proposed, for which we mention
the works of Bardi and Falcone [BF90|, of Falcone and Ferretti [FF94|, of Griine |Grii97], of
Bokanowski, Megdich and Zidani[BMZ10].

The fast-marching method was originally introduced in [Tsi95] and [Set96] as an acceleration
method in the case of monotone and causal discretizations of the eikonal equation. The method
takes advantage of the property that the evolution of the region behind a “propagation front”
is monotonically non-decreasing, allowing one to focus only on the computation around the
front at each iteration. Specifically, the value function is computed by visiting the grid nodes
in a special order, which is chosen so that the value function is monotone non-decreasing in
the direction of propagation. Owing to this property, the fast-marching method is known as a
“single pass” method. At every point of the discretization grid, the value function is updated at
most k times, where k is a constant not related to the discretization mesh. The computational
complexity of the fast-marching method is shown to be O(K M log(M)) in terms of arithmetic
operations, where M is the number of grid nodes and K is a constant that depends on the
type of discretization neighborhood. Thus, considering for instance a d-dimensional grid with
mesh step h, the computational complexity is 5((%)‘1), where O ignores the logarithm factors.
Moreover, under a “causality” condition, the fast-marching method computes the same solution
as the one obtained by the standard value iteration method. In some previous workson the
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fast marching method, by Sethian and Vladimirsky [SV03|, Cristiani and Falcone [CF07],
Carlini, Falcone, Forcadel and Monneau [Car+08] and Mirebeau [Mirl4], the authors proved the
convergence of their methods when the mesh step h goes to 0 without an explicit convergence
rate. More recently, Shum, Morris, and Khajepour [SMK16], and Mirebeau [Mir19], established
a convergence rate of order h3. Though, most of numerical experiments in the above works
reveal an actual convergence rate of order h. One of the purposes of the present chapter is to
establish sufficient conditions for achieving a convergence rate of order 1.

One major difficulty which occurs with nonnegative cost functions for general problems comes
from the “anisotropy”. Indeed the “causality” property naturally holds for usual discretizations
of isotropic equations, but it is hardly extended to anisotropic cases. Several studies intended to
overcome this difficulty. In particular, in [SV03}; V1a06], the authors extended the fast-marching
method to handle some amount of anisotropicity by increasing the sets of neighborhood points for
every node in the grid. However their methods could only deal with a certain class of equations,
and the larger neighborhood increases the computational complexity. In[Cri09], the authors
proposed a method called buffered fast marching method which is suitable for both general
Hamilton-Jacobi-Bellman equations and Hamilton-Jacobi-Isaacs equations. They introduce an
iterative step in the set “buffer”, which contains the nodes pre-selected from the set “narrow
bound” before adding to the set “accepted”. The authors showed that this method is as effective
as fast marching method in most experiments. But this method is technically not a single pass
one, because the iterative procedure depends on the mesh step, and in fact in the worst case
the computational complexity is even greater than the one of value iterative method. In [Mirl4;
Mirl8; Mirl9], Mirebeau extended the fast marching method to some 2-D and 3-D elliptic
anisotropic cases, and other types of degenerate anelliptic cases related to curvature penalization.
His method is based on discretization using adaptive stencil adapted to the Hamiltonian and
associated Voronoi’s first reduction of quadratic forms. The computational complexity of the
algorithm in [Mir14; Mirl8; Mir19] is O(M In M + M In k), where k is the maximum anisotropic
ratio. Other works intending to generalize the fast marching method include [CFM11; For09;
FLGOS]|.

As we can see from the computational complexity, the fast-marching method still suffers
from the “curse of dimensionality”. Indeed, the size of nonlinear systems to be solved is ex-
ponential in the dimension d, making the numerical computation untractable even on modern
computers. Several types of discretizations or representations have been developed recently to
overcome the curse of dimensionality for HJ equations. One may cite the sparse grids approx-
imations in [Bok+13; KW17], the tensor decompositions in [DKK21}; OSS22| the deep learning
techniques in [DM21].In the case of structured problems, one may also cite the max-plus or
tropical numerical method in [McEO07; Qul3; Dowl8|, and the Hopf formula in [DO16].

Another way to overcome the curse of dimensionality is to focus on finding one (or sev-
eral) particular optimal trajectories. The latter problem can be solved, under some convexity
assumptions, by the Pontryagin Maximum Principle approach [RZ98; RZ99; BZ99], or the
stochastic dual dynamic programming (SDDP) [PP91; |Shall} GLP15|. In the absence of con-
vexity assumptions, these methods may only lead to a local minimum. In that case, more recent
methods consist in exploiting the structure of the problem, in order to reduce the set of pos-
sible trajectories among which the optimization is done, see for instance |[AFS19; AFS20] and
[BGZ22|. In [AGL23a], we introduced a multi-level fast-marching method, which focuses on
the neighborhood of optimal trajectories. Under some assumptions on the convergence rate of
the fast-marching method (without or with a particular state constraint) and on the stiffness
of the value function, we obtained that this method has a complexity of the same order as for
one-dimensional problems. So one of the aims of the present work is to give sufficient conditions
on the problem allowing to apply the results of [AGL23a].

5. MULTILEVEL MP
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5.1.2 Contribution

We present a semi-lagrangian scheme for solving the eikonal equation arising from the min-
imum time problem of reaching a target set K, in which the time step varies depending on
the state. We show that the solution of the discretized system corresponds to the value func-
tion of a discrete-time deterministic control problem. Moreover, we show that, under certain
regularity assumptions on the dynamics and the target set IC, the discrete value function is
semiconcave. This result leads to a convergence rate of order 1 concerning the time step for the
semi-Lagrangian scheme, which involves a semi-discretization in time. Furthermore, we consider
a fully discretized scheme, involving discretizing the state space using a mesh grid. We show that
the solution of the fully discretized system is the value function of a controlled Markov problem.
We show that, under further regularity assumptions on the dynamics and the target set I, the
error between the solution of the fully discretized system and the solution of the semi-discretized
system is of the order of 1 with respect to the mesh step, using particular interpolation opera-
tors. This result yields a convergence rate of order 1 for the fully discretized scheme, in terms
of both time step and mesh step. We also establish that the convergence results hold under a
particular state constraint introduced in [AGL23a|, which forces trajectories to stay in a tubular
neighborhood of optimal trajectories.

As a consequence of the above results, we show a convergence rate of order 1 for the
fast-marching method, which uses update operators derived from the (fully discretized) semi-
lagrangian type discretization of the corresponding eikonal equation, for instance in the works
of [SV03; |CF07; SMK16; Mirl9]. As a result, the computational complexity of the fast-marching
method, as a function of the error bound ¢, is in the order of O((C' 1)d), where C > 0 is a constant
that will be detailed. Moreover, we also show the computational complexity of the multi-level
fast-marching method introduced in [AGL23a| is in the order of 6(C’d(%)1+(d_1)(1_5)), where
C’" > 0 is a constant, and 0 < 8 < 1 measures the “stiffness” of the value function around the
optimal trajectory. Thus, for the problems with 5 = 1, the ideal complexity bound in |[AGL23a]
is achieved, meaning that the complexity becomes 6(%) and is of the same order as for one
dimensional problems.

This chapter is organized as follows: In Section [5.2] we provide preliminary results on the
HJ equation and the minimum time optimal control problem. In Section we then estab-
lish a discrete time optimal control problem associated with the discretization scheme. An
improved convergence result is obtained using the semiconcavity property of the discrete time
value function, which is obtained under semiconcave assumptions on the dynamics and target
set. In Section we present a fully discretized scheme. We represent the solution of the fully
discretized system as the value function of a controlled Markov problem. We then show the
convergence rate under particular interpolation operators. As an application we analyze the
computational complexity of a fast-marching method with update operator derived from the
fully discretized scheme. In Section we demonstrate convergence results within a particular
state constraint, and then apply the results to analyze the computational complexity of the
multi-level fast-marching method.
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5.2 Preliminaries

5.2.1 The Eikonal Equation

Let K be a compact set in R?. Let S; be the unit sphere in R?, ie., S; = {z € RY, |jz]| = 1}
where || - || denotes the Euclidean norm. We consider an eikonal equation of the form:

€Sy (51)

— (min{(VT(z)-a)f(z,a)} +1) =0, z€R\K,
T(z) =0, x € 0K,

where f is the speed function, and we assume the following basic regularity properties:

Assumption (A7)
(i) f:R%x S;+— Ry is continuous.
(ii) f is bounded, i.e., IM; > 0 s.t. |f(z, )| < My, Vo € R4, Va € 9.

(iii) There exists constants Lf,Ls, > 0 such that |f(z,a) — f(z',a)| < L|lz — 2'|,Va €
Sy, Va2’ € R% and |f(z,a) — f(:z:,o/)| < Lyola— O/\,Vaz € R% Va,a' € 5y.

The function T : R¢ — R represents the minimum time required for a point 2 € R?\ K to
reach IC, while traveling with a state-dependent speed given by the function f. Such an eikonal
equation is typically associated with the front propagation problem, which involves the evolution
of the boundary of a domain, denoted by I'y, as described by T'. In particular, the boundary of
the domain €; can be defined as Ty = 9 = {z € R? | T(z) = t}, where the initial condition is
Qg = K. Notice that, given Assumption we have )y C Qs forall t,s > 0.

5.2.2 Minimum Time Optimal Control Problem

The above equation also arises from the minimum time problem. A basic technique in the
study of this problem (see for instance [V1a06|, [Bar89], [BC08, Chapter-IV]) is the change of
variable:

v(z)=1—eT@ (5.2)

which was first used by Kruzkov [Kru75]. By doing so, v(z) is automatically bounded and
Lipschitz continuous. Once v is computed, we can directly get the value of T'(x) by T'(x) =

—log(1 — v(x)).
Let us consider a control problem associated to the dynamical system:

(5.3)

where a € A := {a : R5g — S1, «f-) is measurable}. Every a € A is then the unit vec-
tor determining the direction of motion. We denote by yq(z;t) the solution of the dynamical
system ((5.3)), and define the discounted cost functional by:

J(a(+),z) = inf {/ e tdt | 7> 0, yo(z;7) € IC} , (5.4)
0
for « € A. Then, the value function v of the control problem given by

o(z) = inf J(a(), ) (5.5)

5. MULTILEVEL MP
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coincides with v in (5.2). Let now
F(z,r,p) = —min{p- f(z,0)a+1—r} . (5.6)
acA
This Hamiltonian corresponds to the control problem (5.35.415.5). Then, under Assump-

tion restricted to R\ K, v is the unique viscosity solution of the following Hamilton-
Jacobi-Bellman equation (see for instance [F'S06]):

{F<x,v(x>,Dv<w>> =0, zeRI\K, (5.7)

v(z) =0, x € 0K .

In the following, we will focus on the numerical approximation of system ({5.7)).

5.3 The Semi-Lagrangian Scheme: Convexity Properties And
Convergence Analysis.

In this section, we propose a semi-lagrangian type discretization of the system . We analyze
the convergence of the discretized value function to the viscosity solution of , and we give the
convergence rate. An improved convergence rate is also obtained by exploiting the semiconcavity
property of the discretized value function, which occurs under further regularity assumptions of
the dynamics and the target set.

5.3.1 The Semi-lagrangian Scheme for the Minimum Time Problem

Consider the following semi-lagrangian type discretization of the system ([5.7)):

"(z) = min —Lvhx o _ T d
@) = i (= e i)+ 7o) s eI

v (x) =0, ek,

(5.8)

where h > 0 is a fixed parameter. This is a direct discretization in time of system , in
which the time step is h/f(x, @), depending on state and control. The convergence of a similar
discretization system, for which the time step is constant, has been studied for instance in [BF90;
FGLI4], and the method of proof can be straighforwardly adapted to our system , keeping
in mind that has a unique viscosity solution v.

Proposition 5.3.1. Let us denote v(z) = hlim inf v"(y), andv(z) = limsup v"(y). Make As-

—0, y—z h—0, y—=x
sumption |(A7), then T (v resp.) is a viscosity subsolution (supersolution resp.) of (5.7). Thus,
{v"} converge uniformly to v on any compact subset of R% as h — 0. Ol

In the following, we denote f and J the upper and lower bounds for f, respectively, i.e.,
0<f<flwa)<f<oo, forallze R and a € A .

Then, we have the following result for the convergence rate.

Proposition 5.3.2. Suppose that Assumption |(A7) holds. Then, for every 0 < h < there

1
f}

exists a constant Cy /o > 0 depending on Ly, L., f such that

0" — vl < Oy joh? . 5.9
/
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Proof. The proof for Proposition is a slight modification of the original method in [CL84].
Therefore, we will only provide a brief sketch of the proof here, with the purpose of facilitating
further analysis.

Let us denote by Q = R%\ K, and define the following series of auxiliary functions. For every
1>¢e >0, for every x € Q, we set 0-(x) = —|Z|%. For every 0 < h < %, for every (z,y) € Q x £,
we set o(z,y) = v"(z) —v(y) + 0-(x —y). As both v" and v are bounded, for every ¢ > 0, there
exists a point (z1,y1) € Q2 x Q which is an approximate maximizer of ¢ up to a margin (, i.e.,

o(x1,y1) >  sup  (e(z,y) =) .
(z,y)EQXQ

Let us choose a function £ € C5°(£2 x ), such that &(x1,y1) = 1, and £ € [0, 1], |DE| < 1. For
every 1 > ¢ > 0, for every (z,y) € Q x Q, let ¥(z,y) = p(z,y) + (&(x,y). Let (zg,yo) be the
point where 9 reaches its maximum, i.e,

Y(zo,yo0) = Y(x,y), forall (z,y) € 2 x Q. (5.10)

Then, automatically y — —(z0,y) = v(y) — (v"(x0) +0:(r0—y) +{&(w0, y)) reaches its minimum
at yo. By definition of viscosity solution, letting y — (v2 (z0) + 0:(20 — y) + C&(20,%)) be a test
function, we have:

v(yo) — ((DOe(z0 — yo) - & — (Dy&(z0,0)) - ") f(yo, ) =1 >0, (5.11)

for some a* € Sy. Since v" is the solution of system ([5.8)), we have

v (20) < {(1 — W)vh(ago + ha*) + f(x:a)} . (5.12)
Take z = x¢ + ha™,y = yg in , we get
v(xo 4+ ha*) < vM(xz0) + (DO:(z0 — o) - )b + &%a*hQ +Ca*h . (5.13)
Combining and , we get %
h h oo 2 . N ‘ :
v (o) < (1—m)((ma(wo—yo)-a )+ za’h+Ca’) f(zo,07) +1. (5.14) §
Combining and , we have i

2L¢|z0 — yol? n 2|lz0 —yolh | 2fh

(o) — v(yo) < 5 =5 + 2] . (5.15)
5 € €
Let us choose z = y = xg in (5.10)), then we obtain
w0 — yo| < (Lv + Q)e> (5.16)

where L, is the Lipschitz constant for v. Substituting ([5.16|) into ((5.15)), we have
h 2 2 2fh =
v (x0) — v(yo) < 2Lf(Ly + ¢)7e” +2(Ly + )b + — +20f . (5.17)
Take ¢ = hi, we get

V"(20) — v(yo) < (2L(Ly + €)% + 2F)h7 +2(Ly + Oh +2CF . (5.18)
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Let us now choose = = y in (5.10|), we obtain that

Zo — a2
V' (z) = (x) < v (w0) — ) + C(Eo.0) — ) - L B0 (5a9)

Thus, combining (5.18)) and (5.19)), and take ( — 0, we obtain that

v"(x) = v(z) < (2LyL% + 2f)hz . (5.20)

To show v(z) —v"(z) < (2LsL2 + 2?)h%, it is enough to take o(z,y) = v(z) — v"(y) +0.(z —y).
We conclude the estimate in Proposition with /9 = 2LfL12, +2f. O

5.3.2 Discrete Time Control Problem and Its Value Function

We first represent the solution of the discretized system ([5.8)) as the value function of a discretized

version of the control problem (5.3[[5.4]f5.5]).

Consider the following discrete dynamical system,

{yh(k—i-l) = y"(k) + hay, VE=0,1,2,... , (5.20)
y'(0) ==, '
where oy, € Sy, for every k = 0,1,2,... . Let us simply denote o the sequence of controls

{o}k=0,12,..., and denote yzh (x;k), k=0,1,2,..., the solution of the above system ([5.21)) with
control a”. Moreover, let

N(z,a") =inf{N e N, | yzh(x;N) e} (5.22)

Consider the following discrete cost functional:

N(z,a™)
h
Jh o x) = l———))) . 5.23
(o) ,;0 <f(y " (2 k), H fyh h(w;l),az)))) (5:23)
The associated value function is given by
o) = inf JMh x) (5.24)

aheAh

where A" is a subset of A containing the controls which take constant values in the interval
[k, k + 1], for every k = 0,1,2,..., i.e. A" = {{ax}rs0 | ar € S1, Yk =0,1,2,... } . Then, the
value function of this discrete optimal control problem is the solution of system (See for
instance [F'S06; BCO08|).

Note that an equivalent formulation of the discrete cost functional in (5.23)) is given by

N(z,a™)

h
etz =1- ] (1 — f(yg,,@;k),ak)) : (5.25)

k=0

The equality follows from an elementary computation. We will use this formulation of v" in the
following.
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5.3.3 Improved Convergence Rate Under A Semiconcavity Assumption

Let us denote dic(x) := infyex ||ly — x|, for every z € RY, the distance function from z to the
target set L. We shall make the following further assumptions on the target set K and speed
function f.

Assumption (A8)
1) There exists a constant M > 0 such that
f

1 1 1
—2 < Mylz)?, ¥ R, Va € 8. 5.26
flx+z0a)  f(r,a) +f(37—z,a) flzl, Vo, 2z € R, Va € 5y (5.26)

(ii) There exists a constant M; > 0 such that

dic(z + 2) + dic(z — 2) — 2dc(z) < My|z|%, Vo, z e RT\ K . (5.27)

The assumption stated in (fif) in Assumption is a semiconcavity property of the inverse of
the speed function. In the following, we provide some criteria to check in Assumption
This condition appeared in [CS95] and [CS04], it is a semiconcavity condition for the distance
function dx in R*\ K. The authors of [CS95] provided the following sufficient condition to check
(5.27)):

Lemma 5.3.3 (Corollary of [CS95, Prop. 3.2]). If there exists r > 0 such that

Vo e K, 3xg € K : x € Bé(xg,7¢) C K , (5.28)
then (5.27) holds. In particular, if OK is of class C1', then (5.27) holds. O

Proposition 5.3.4 (Semiconcavity of discrete value function). Suppose that Assumption|(A7)
and Assumption [(A8) hold. Then, we have that

(@ + 2) — 20" (z) + 0"z — 2) < Cyl2|%, for every x,z € RT\ K, (5.29)

5. MULTILEVEL MP

where C,, is a constant depends on My, Mt,f,i.

Proof. Let us denote o = {aj 5,0 1,05 ,...,a} y } the discrete optimal control for which
the infimum in is obtained, and let us simply denote N, = N(z,a}). For the problem
starting from (x + z) (x — z resp. ), let us consider a control o/, , (co/,_, resp. ) as following:
o, (al_, resp. ) takes the same control as o until one of the three trajectories y. (x;-),

yz/ (x + z;-) and ygl (x — z;-) reaches K. Then, we will show (5.29) by discussing two cases.
Ttz T—z

Case 1. VN < N, yg,+ (r+2z;N) ¢ K and yZ’. (x — z;N) ¢ K. In this case, the optimal
trajectory for the problem gt;rting from z will first reach K. Then, for the problem starting from
x+z (r— z resp. ), we take the control following the shortest distance path, in euclidean sense,
from yz,ﬁz (x + 2z; Ng) (yz; z(a; — 2;Ny) resp. ) to K. Let Ny, N_ denote the steps for which

yz/ (x+2z;N4), yZ, (r—2z; N_) € K. For easy expression, we simply denote y? . = yl. (z;m),
Ttz T—2z ’ T

h — b . h o h . — — A —
TS ya;+z(x—|—z,m), (AR ya;ﬁ(m—@m) form =0,1,2,... and ay =}, ,,a_ =a)__.
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Following (/5.25]), we have:
(x4 2) — 20" () + 0 (x — 2)
<AIMag, 24 2)+ T o,z — 2) — 2J"(a, x)}

s h N h Nz h
< {(1_153(1_f(z~/h,0¢)))+<1_H(l_w))_2(1_,£[0(1_*)))}

+ k=0 y—,k’ f(yil’]p (%

N. N_
v, . (1~ 1ot ) (1~ 7t a)

e " -
IO e | T ) T )

k=0 v k=0 Flyl oo Flyp o)

e )
<0 ?) {,;) Fh g az) " FO" g az) Qf(yﬁ,kyaz)
h Ney h Na_ h
1— =)V S L
" ( f) {k;:\fz f(yff_,kaa—ﬁ-) " k:z]:\[z f(y}_l7k,06_) }:|

(5.30)
We use the fact that in first NV, steps, three dynamics take the same control . Let us first

focus on the first part inside of [ |, denoted by A;. Let A := f(yhl an T f(yhl o~ 2f(yh1 o)
+,k% — k% z, k%

then:
1 1 1
Ay = _9 +
f(yo}cL,k + (y—]f-,k - ygﬁk)? o) f(yg7k7 a;) f(yl;,k - (y.}ﬁ,k - yg};,k)a Oz;;)
1 1
+ ~ ” 5.31
T o0d) T — 6 — o) al) (5:31)
L
< Mylylh =yl P+ Tglyi,k —2y0 + "l

By the above construction of oy and o, we notice that |y£’rk—y2k| = zand |yﬁ‘rk—2y;‘k+y’1k| =
0, for all k € {0,1,2,..., N, }. Thus Ay < M¢z% Then we have:

Na
x h N
A< Myl S (1= 2Nk < My Flof? | (5.32)
e |
For the second part inside of [ ] in (5.30]), denoted by Ag, we notice that at the end of N, step,
yif,Nz e K, yiNz = yg}j’Nz + z, yE,Nz = y;L;Nz — z. Then, by (5.27)), we have:

die(yl n,) +de(y! n,) < Mz . (5-33)
Thus, by the above construction of ay and a_, we have:
M,
Ay < 7t|z|2 : (5.34)

Combine (5.32) and (5.34)), we deduce (5.29) with Cy = M;f + %
Case 2. IN_ < N, such that yZ, (x —z; N_) € K. In this case, the optimal trajectory for

the discrete problem starting from x — z will first reach K. Then, for the problem starting from
x + z, let us consider a control o/, , as follows:

Wk s ke{0,1,2,...,N_};
ke {N_,(N-+1),...,(2N, — N_)} ; (5.35)

/ _Ja* _
Yotzk = | o (No+F5=))

following Euclidean shortest path, (2N, — N_) <k < Ny,
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with yg, (x+2z; Ny) € K. We first assume Ny > (2N, — N_), then the result will automatically
Ttz

holds as it is in a weaker situation when Ny < (2N, — N_). We also take the same simplified
notations as in Case 1., and we omit the same computations. Then, following (5.25)), we have:

V(x4 2) — 20" () + oM (z — 2)
<HMMay, 24+ 2)+ T o,z — 2) — 20k, x)}

hon N—< h h h )
< (1= 2N —9
( f) {kz:%) f(yi,k,ai)Jrf(yﬁ,k,a;Z) flyl e az) H
A E G Y G| )
kE=(N_+1) f(yi,]wa-i-) k=(N_+1) f(yg,kva;) 2N, —N_+1 f(yi,k’a-i-)

(5.36)
The first part inside of [ | follows the same computation as in Case 1. Let us now focus on

the second part inside of [ ], denoted by Af. Based on the above construction of «_, we have

y" N =yl N —z Since y" y € K, we have di(y ) < z. Since of is the optimal control
for the problem starting from z, then we have:

gaj V2. = V1] < A (e ) <A (5.37)
k:(N7+1) f(yzitl,kfl’ O[:;) i i ’
which implies
Nz 7
Syt —yheal < ?M : (5.38)
k=(N_+1) L
Based on the above construction of a,, we have y_}ﬁ N = yz ~_ 1+ 2. Moreover, for every
je{1,2,..., (N, — N_)}, we have:
h h h h 7
max{|y} v y2j-1) — Yo (v )l V4 (v 425) — Yo (v_4i |} < (? +1)[2] . (5.39)
Then, by the Lipschitz continuity of f, and the fact that ay (v_425-1) = @y (N_125) = ¥ N1 %
we have: =
>
Ny—N_ &)
h % =
A < F Z (’f(yi,(N,—i—Qj—l)aa-i-) - f(yg,(N,ﬂ)aOé;)\ + ’f(yi,(N,+2j)aa+) - f(yQ(N,-&-j)?a;)‘) é
I =1
2L f  f 3
< f{; (F+ 1l
- (5.40)
For the third part inside of [ ], denoted by A%, we first notice that
!
y—}&L-,(2NZ—N,) - ?/Q,NI = yQ,Nz - yE,N_ < (? + 1)z . (5.41)
Then, by (5.27)), and the fact that y;L’Nx e, yE7N7 € K, we have:
!
dic(Y} on,—n ) < Mt(? + 122 (5.42)
Then, B
M,
Al < ft(jz +1)%2)? . (5.43)
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Combine (5.40) and (5.43), we deduce (5.29)) with Cy = M, f + 2Lff(§ +1)+ %(% +1).

[y L L
Since another possible case, that is 3N, < N, such that yZ, (r+2z; Ny) € K, is symmetric
x+z
as Case 2., we conclude (5.29)) with C' = max{C1, C>}. d

The semiconcavity property of the discrete value function leads to an improved convergence
rate, which we state as the main result of this section below.

Theorem 5.3.5. Suppose that Assumption [(A7) and Assumption [(A8) hold. Then, for every
0<h< %, there exists a constant Cy depends on My, My, L, Lf,f,i such that

v = vlso < Cih . (5.44)
Proof. Let us first show that v — v® < Ch. Since A" C A, we always have

h : : h h
v(z) —v"(z) érelAJ(a:,oz) a’lrelAhJ (x,a")

< inf J(z,a") — inf J(z, ")
aheAh aheAh

< sup (J(xaah)_‘]h(‘rvah)) .
aheAr

For a given o, let us denote T(z, ah) the travel time of the continuous control problem starting
from z, i.e, y,n(z, 7(x,a")) € K, then we have:

NNz h L
1)(1') _ vh(x) < (J(:c,a) _ Jh(x,a)) < ’e—T(:t:,ah) —e Zk:O f(z,ozk)‘ < ﬁh . (5_45)
To show v" — v < Ch, we use the same definition of auxiliary functions as the in proof

of Proposition m Then, similarly as in the proof of Proposition let y — (v(z0) +
Oc(xo — y) + C&(x0,y)) be the test function, we have:

v(yo) — (DO=(z0 — yo) - " = (Dy& (w0, y0)) - @) f(yo, ") =1 20, (5.46)
for some a* € S1. Moreover, let us consider a function
9(x) = v"(zo + ) — v"(x0) + (DOe(20 — yo) + (Dab(0,90)) - @ -
Then we have ¢¥(0) = 0, and
I+ 2) — 20(z) + 9(x — 2) = V" (xo + 2 + 2) — 20" (20 + 2) + V" (20 + = — 2), < Cy|2|%,
by Proposition Moreover, by the definition of v, we have

V(x) = (20 + ,90) — P (20, Y0) + Oc(w0 — yo) — O (z0 + = — yo)
+ DO:(z0 — yo)x + C(§(w0, yo) — §(w0 + 2, y0) + Dé(z0,%0) - 7) -

Since v get it’s maximum at (zg,yp), we then have lim SUP 2|0 79‘(7“7) = lim sup‘x|_>0("¢(a:0 +
x,Y0) — ¥ (o, y0) < 0, which implies ¥(z) < %MQ
Let us now take x = ha*, then

Cy
v (w0 + ha*) < v (x0) + (DO:(w0 — y0) + (D2 (20, %0)) - ha* + 7h2 : (5.47)
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Since v" is the solution of system (5.8)), we have:

h . h ’Uh T o h

oHan) < {1~ gy + )+ ) (5.48)
Combining ([5.47)) and ( , we have
V(o) < (1—f(x:’a*))(vh(mo)—i-(DGa(xo—yo)—|—CD$§(x0,yg))~ha*—|—62’vh2)+f(x(:lm , (5.49)

which implies

__h
f(ﬂfo,a*)

Combining ([5.46)) and ( , we have:

o"(z0) — v(yo) < (1 — %)(Demo o) + CDut(0,90)) - @ + U f(, ")
f(zo, a*) 2

— ((DO:(w0 — yo) - ™ — (Dy&(z0,90)) - ™) f (o, *)

_ _ (5.51)
< (flao,a") — S, 200y HooZwolly Coy o

< 2L ¢|xo — yol? 2|960 - y0|h
= g2 g2

v"(wo) < (1— )(DOc(x0 — yo) + ¢Dxé(z0,%0)) - & + %h)f(%’m a®)+1.  (5.50)

fh+2§f

Take z = y = xo for p(z,y), we obtain |z — yo| < (L, + ¢)e?. Thus, for (5.51)) we have

" (a0) ~ vly) < (2Ly(Ly + € 4+ 2Ly + Oh+ LTH) +2F¢ (55)
Take now ¢ = A7 in , we then have
V" (w0) ~ v(yo) < (2Ly(Ly+ € + 2Ly + )+ LTI+ 27 (55)

Take = = y for ¢(x,y) and use the fact that 1 (zg,y0) = ¥(x,x), we have
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Z0 — ual2
(z) — () < (0" (w0) — ) + C(E o w0) — €ra) - OB (550

Thus, combining (5.53) and (5.54)), we have

V(@) (x) < (2Ly(Ly + O +2(Lo + O+ LT+ (]~ 1)C (5.55)
Then, taking ¢ — 0 in , we have:
v"(z) —v(z) < (2LfL2 + 2L, + %f)h : (5.56)

Combining ([5.45) and (5.56), we conclude that (5.44) holds with Cy = Inax{ T 2L¢L2+2L, +
S F}. m
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5.4 Convergence of A Fully Discretized Scheme, Application to
Convergence Rate Analysis of Fast-Marching Method

In this section, we first present a fully discretized semi-lagrangian scheme of the system .
We demonstrate the convergence rate of the scheme using particular interpolation operators.
We then apply this result to show the convergence rate of a fast-marching method, for which
the update operator is obtained by the presented scheme.

We should note that in previous works of the fast-marching method, in [SV03; | CFO07} |Car+08;
Mirl4], the authors prove the convergence of their methods when the mesh step goes to 0 without
an explicit convergence rate, wheares in [SMK16} |[Mir19| the authors establish a convergence rate
of order % Though, most of numerical experiments in the aforementioned works demonstrate
an actual convergence rate of order 1.

5.4.1 A Fully Discretized Scheme and A First Convergence Analysis

To get the numerical approximation of , we also need to discretize the space. Assume now
given a grid X" discretizing 0 with mesh step h, that is the minimum distance between two
distinct points is h. Let us denote w” the approximate value function for v obtained by applying
the semi-lagrangian scheme to all grid nodes x € X", while when the points = + ha are
not in the grid X", we compute the value of w"(x 4+ ha) by an interpolation of the value of
it’s neighborhood nodes. We assume given an interpolation operator to be used in when
x € X" This interpolation may depend on z (this is the index of the equation), and will be
denoted by I*[-]. However the value I*[w"](2’) depends only on the values w”(y) with y € X"
in a neighborhood of z/. We then consider the following fully discretization semi-lagrangian
scheme, define 2" : X* — R by

"(z) = min __h 2[2M(z + ha _h x h
@) = min { (1 = ) P @+ ho) + 7} @ e XK

MMx) =0, reXhnK .

(5.57)

We begin by considering a regular triangular mesh, and a simple interpolation operator,
denoted by I;, which is the P; (piecewise linear) interpolation operator on the simplices of the
triangular grid. More precisely, for a fixed z € R?, let Y"(x) = {y}r—1..4+1 denote the set of
vertices of the simplex that contains x. We then define

L") = > Ay () (5.58a)
yreY " (z)

where the coefficients A(z; yi) depend on x and y, and are uniquely determined by the following
condition

0 < Mz yx) < 1, for every y

€Y () Ye€EY ™ (2)

Let S{L denote the space of continuous and piecewise linear functions on the triangulation X"
We then have w” = I1[z"] € S'. Denote T" : RR? — RR? the operator defined as follows, for
every x € IRd,

hyh ‘= min —Lvhx a L x d
Th o) () = {a ey (+h)+ﬂ%®}, eRI\ K,

T"v"(z) := 0, reK.

(5.59)
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The solution v" of the semi-lagrangian scheme ([5.8)) is a fixed point of T". Denote R : RR

RX", then w = I [2"] is indeed a fixed point of (I} o Ry o T"). Moreover, the following property
holds:

Lemma 5.4.1. For every w',w? € St,
h
I(Iy 0 Ry o T")[w'] = (I 0 Ry o T")[w?] oo < (1 - ?)Ilw1 —w?[|o - (5.60)

Moreover, denote t{w] = sup, w(zx), we have

H(L o Ry o TMw!] — (I 0 By o T")[w?]] < (1 — };)t[wl —w? (5.61)

Sketch of Proof. For (5.60), by (5.59), we first notice that T" is a contraction mapping with
contracting rate (1— %) Moreover, I;0R; is monotone and additively homogeneous (it commutes

with the addition of a constant function), so it is nonexpansive, see |[CT80|. Thus, I; o Ry oT" is
a contraction mapping with contracting rate (1 — %) The similar analysis also applies to .
O

This result is extended to e-monotone interpolation operators in [Bok+15].

In the following, we intend to bound the sup-norm between w” and v. We begin by bounding

w — v in one direction.

Proposition 5.4.2. Assume Assumption|(A7) and Assumption|(A8), taking I* be I, for every
0<h< %, there exists a constant depending on Ly, L., f and C, in Proposition|5.5.4 such that

sup (w" — v)(x) < Cy, b . (5.62)
zER?

Proof. We first notice that the semiconcavity of v in Proposition implies

sup (I 0 R[] — o")(z) < 2

D 5 h? . (5.63)
S

o
Moreover, let w” and v" be the fixed points of (I3 o Ry o T") and T", respectively. Us- =
ing Lemma [5.4.1] we have é
3]
=
sup (wh — Uh)(m) = sup (wh — (1o Rl)[vh] + (I 0 Rl)[vh] — vh)(az) z
z€R? rER §
= sup (Lo Ry o Th[w"] — (I o Ry o T™)[v"] + (I1 0 Ry)[v"] — v") () ~
zeER
h
< (1 - =) sup (W —o")(z) + sup (I1 o Ry)[o"] — o) (2) .
zeR? zERA
(5.64)
Combining ([5.63)) and (5.64]), we have
sup (w" — ") (z) < Cvfh . (5.65)
zER4 2
Moreover, based on the proof of Theorem we have
Cy—
sup (v — v)(z) < (2L L2 + 2L, + R (5.66)
zER4

Combining (5.65) and (5.66), we conclude the result in (5.62) with Cy, = (2L;L2 + 2L, +
Cuf). O
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5.4.2 Controlled Markov Problem and Its Value Function

In order to show the error bound in the other direction, we will first reformulate the fully
discretized system as a dynamic programming equation of a stochastic optimal control
problem. We notice that, in the formulation (5.58b]), the coefficients {\x(z;yx)} can be inter-
preted as the transition probabilities of a controlled Markov chain, for which the state space is
the set of nodes in X”. More precisely, we first rewrite the system as follows:

h h

h . h h
z'(z;) = min (1 — —— Mz +ahyye) 2" (yp) + ——p, x; € X"\ K,
() a€S {( f(xiaa))ykey%-i-ah) | <" () f(a:i,a)} \
Mxy) =0, eXhnik .

(5.67)
Let us consider a Markov decision process on the state space X", with controls in S; and
transition probability given by

Mz + ahyy), ifye Yh(a?i + ah) ,

] (5.68)
0, otherwise .

P11 =y | & = zi,ap = ) = {
Here, & denotes the state at time step k and a4 denotes the control at time step k. Given a pure
strategy, that is a map o’ which to any history Hy = (&, 0, .. .,&k—1, @k_1,&k) associates a
control ag, we can define a probability space (€2, F,P) and processes ({x)r>0 of states and (o )k>0
of controls satisfying (5.68)), and ay = o"(Hy). Let us denote N"(c") = min{n € N; | &, € K},
that is a stopping time adapted to the Markov decision process with strategy ¢”. By this
formulation, we have the following property for the process (&x)r>o:

E[¢i1 — & | & =z, 00 = o] = ha, Yz € X" a € S; and k < N*(o") (5.69a)
and
Tr(Var[€ps1 — & | & = 2,00, = a]) < b, Vo € X" a € S; and k < N"(o") . (5.69b)

Let B " denote the expectation given a initial condition = and a strategy o”. Consider the
following cost functional:

Nh(crh) h
h _ ot _ _ R
W(o" x) =E9 [1 k];[o (1 f(§k,ak)>] : (5.70)

Then the solution of (5.67)) is indeed the value function of the above controlled Markov problem
(see for instance [KDO1]), that is,

2Mz) = inf W(o", x) . (5.71)

5.4.3 Convergence Rate Analysis Under A Semiconvexity Assumption

To get the convergence rate for the fully discretized scheme, we shall make the following further
assumptions for the target set X and the speed function f.

Assumption (A9)
(i) There exists a constant —M} > 0 such that

1 1 1
flx+ z,a) _2f(x a) t f(z—za) Z MJ/‘|Z|2’ Vz,z € RY, Vo € 1. (5.72)
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(ii) There exists a constant —M, > 0 such that
dic(x + 2) + dc(x — 2) — 2dic(x) = M!|z|%, V&,z e R4\ K . (5.73)

The assumptions stated in . ) and (i) in Assumption [(A9)|can be thought of the semicon-
vexity properties of the speed function and of the distance functlon dic in R?\ IC respectively.
In particular, if f is of class C? and 0K is of class C2, one can check that both Assumption m
and Assumption hold.

We first state the following technical lemma, which is needed to prove our main result

Lemma 5.4.3. Assume g : RY — R is a-semiconvex and let X be a d—dimensional random
variable, then we have

g(BLX]) - Blg(X)] < aTr(Var[X]) . (5.74)
Proof. Since g(x) is G—semiconvex, we have g(z) + @||z||? is convex, then

Elg(X) + ]| X|?) > g(B[X]) + o [E[X]|* . (5.75)
(5.74)) is then deduced using E||X||> — ||E[X]||? = Tr(Var[X]). O

Proposition 5.4.4. Suppose Assumption [(A7) and Assumption |(A9) hold, taking I* be Iy,
there exists a constant Cy, depending on Ly, f, 1, M}, M such that, for every 0 < h < %,

sup (v — w")(z) < Cuyh . (5.76)
zER

Proof. Let us denote ¢” a strategy for the stochastic control problem. Let (Q, F,P), (&), (o)
and N"(c") be defined as above. Now, when w € € is fixed together with (o (W) ok N (o7

the associated control, consider a deterministic trajectory {5k}k:1,2,-.. such that:
So=2, &1 =&+ hag(w) , (5.77)

and if &, ¢ K for all n < N(o"), we then take the controls following the straight line from
ho(a y to K. Let us denote N™Mw,o") = min{n € N} | & € K}. By this construction,

{f_k}ogngh(th) is indeed a solution of the discrete system (5.21)), i.e., & satisfies &, = yl (x, k)
for every k € {0,1..., N"(w,o")}. Thus, we have

o (z) < Ml x) . (5.78)

Since this holds for almost all w € €2, we have
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o (z) < ES [T (M, 2)] - (5.79)
Let us simply denote N*(o") by N and N*(w, ") by N in the following. We have

O'h 1 h
vh(x) — wh(:r) < Egc ( H fkaak))> N (1 B H (1 B f(fkaak')))]

k=0 k=0

al h
{kl;[o €k,ak))_k:0(1_ f(fk,ak))}

tves {10 ) - d

—=

<EZ |lgey

(5.80)

=

H 0= o)~ L0 =50
h N h
S LI =l 1

[e=]
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First notice that

g _ _ k .
EZ [f(fk,ak) F (& an) |E<(NAN)

1 1 B )
= EU E — — B k) _ < N N k < N N
T [ [f(gk;—l + hOék_l,O[k) f(gk‘—l + gk _ gk—laoék;) | gk‘ 1 1< ( A )] | < ( A )

+ M}||cov[ér — &kl

(5.81)
where the last inequality is deduced by (5.69a) and Lemma Thus, by induction and
by (5.69b)), we have

h 1 1 _
< E7 = — k< (NAN
[f(fk—l +hag_1,01)  f(&k—1 + hag_1, ax) | ( )

1 1 _
E7" lf(_ - |k <(NAN)| < kM2 (5.82)

gkvak) f(gkaak)

Let us focus on the first part of the sum in ([5.80), for which we have
N N h
E7" |15 1— -
NN kl:[()( f(fka o) kl;[o f &k, ak))

N h
z:: ( €k,ak) f(ék,ak))H (5.83)
gen(l— };)N M kM}hQI

O'h
<E7" {]l

h
< hES
k=1

< P(lﬁgN)QM}fzh ;
where @ (&) is a random variable and @y (&) < (1 — %)N . For the second part in ([5.80)), the
first part of the sum is bounded by the same form as computed in ([5.83)). As for the remaining
part, we notice that, by a similar computation as in (5.81]),

EBS" [de(&) — de(&) |k < (N AN)| < kMR, (5.84)

Then, we have

N N h
EI {HN<N{ 1_[0 fk ag) ))(1 _kzlj_V[H (1 - f(fmak)))}]

-
oh h
<5 tvey { Py (7f(§k,ak)> }]

< 1,50 f>N}(d;c<5N> dn(@))] (555
<By 1N<N<1;>N}NMzh2]
e T

<SPAyony)— 7 Lh.



5.4. CONVERGENCE OF A FULLY DISCRETIZED SCHEME, APPLICATION TO CONVERGENCE RAT

Combing ([5.83)) and (/5.85]), we have

V=l S P(Ly ) 2M PR+ P(Ly ) (M T + ]\J{t/)h @M)F + ]\]{t)h . (5.86)

Combining with the result in Theorem [5.3.5, we have v(z) —w"(z) < ( T + 2Mff + = )h O

The following theorem is then a direct consequence of Proposition[5.4.2]and Proposition [5.4.4]
which we state as the main result of this subsection.

Theorem 5.4.5. Suppose that Assumption ), Assumption|(A8) and Assumption (A9) hold,
taking I* be linear interpolation operator Il, there exists a constant Cy, depends on Ly, Ly, f, /s
Cy, M}, M; such that, for every 0 < h < L

sup ||w'(z) — v(x)|| < Cuh . (5.87)

zERY

5.4.4 A Particular Piecewise Linear Interpolation Operator

In this section, we will give a specific piecewise linear interpolation operator that leads to an
efficient implementation, particularly for the isotropic eikonal equation. Notice that computing
the minimum in is not trivial, especially when the dimension is high. Moreover, generally,
in the d dimensional case, we need at least the value in d 4+ 1 nodes of the grid, in order
to compute the interpolation in one node. We describe here one possible way to define an
interpolation operator and to compute the minimum in , within a regular grid with space
mesh step equal to time step ie., Az; = h,Vi € {1,2,...,d}. This interpolation operator is
based on the work of |[CF07], in which the convergence is shown in the isotropic case.

Let x = (x1,x2,...,24) denote a point of X. Roughly speaking, the d—dimensional space is
“partitioned” into 2¢ orthants. We consider only the open orthants, since their boundaries are
negligible. Let us denote by V the approximate value functionin the grid point € X. The
values of the interpolation I*[V](z + ha) with o € Sy are defined (differently) for « in each
orthant, and the minimum value in each orthant is first computed. Then, the minimum will be
obtained by further taking the minimum among the values in all orthants.

Denote by eq, . .., eq the vectors of the canonical basis of R%. We compute the minimum in the
positive orthant using d+1 nodes: z! := z4he;, 1 € {1,...,d}, and 2,1 := z+h(e;+ea+- - -+eq).
The minimum in other orthants will be computed using the same method.

The interpolated value function in x 4+ ha with « in the positive orthant of the sphere 57,
denoted by v®!, will be given by the linear interpolation of V(x!), V(z?), ..., V(2%) and V(24 1),
which is equal to
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Yz + ha) = ZakV (x“)le 1V (zdj —1) . (5.88)

We then use (01,62, ...,04-1), Or € (0, 5), to represent a vector a € Sy belonging to the positive
orthant, that is

ay = cos(61), e = sin(0y) cos(02), ..., aq = sin(fy) sin(62) - - - sin(fy—1) . (5.89)

This allows one to rewrite ((5.88)) as a function of (01,62, ...,04_1). By doing so, one can consider
the result of the optimization in the first equation of (5.57)), with w” replaced by V' and I replaced
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by I*, restricted to the positive orthant, as an approximate value of V(z), denoted by V!, and
given by:

1 . h s,1 h

Vi(z) = o, i {(1 " ) Yoot (z + ha) + M}
Notice that the minimum in equation is easier to compute by taking the minimum first on
041, then 04_o, until 8;. Indeed, we notice in , that only the last two entries of a contain
04—1. Thus, the minimum of over f4_1 can be computed separately. Moreover, in the
isotropic case, meaning f(z,a) = f(x),Va € Sy, the minimal 634 is independent of 61, ...04_o,
due to the special form of (5.89) and (5.88). The iteratively computation over 645 to #; will
be the same.

(5.90)

Then, the fully discretized scheme, using the interpolation operator described as above, is
as follows:

ke{1,2,...,24} (5.91)

{V(xz) = min  V¥a), xzieX'n(RI\K),
Vix;) =0, ZEl'EXhﬂIC .

Proposition 5.4.6. Suppose that Assumption |(A7), Assumption |(A8) and _Assumption (A9)
hold, taking I* as in (5.91)), there exists a constant Cy depends on Ly, L, f, f, Cy, M]’c, M
such that, for every 0 < h < %

sup ||V (z) —v(x)| < Cyh . (5.92)
zEXh

Sketch of Proof. We first observe that by replacing I; with the interpolation operator defined
in , the property in holds. Then, following a similar analysis, Proposition m
holds with w” replaced by V. Moreover, by the definition , the value at = + ha is a
convex combination of the values at the points of the simplex that contains x 4+ ha. Thus, this
interpolation can also be explained as a stochastic control problem, similar to (5.67)) and (5.68)),
but with A(-) depending also on x;. The property also holds for this controlled process,
and as a result, Proposition holds. The conclusion of the result follows. [l

5.4.5 The Fast-Marching Method and Its Convergence Analysis

We briefly recall the fast marching method introduced by Sethian [Set96] and Tsitsiklis [Tsi95],
which is one of the most effective numerical methods to solve the eikonal equation. Its initial
idea takes advantage of the property that the evolution of the domain encircled by the front is
monotone non-decreasing, thus one is allowed to only focus on the computation around the front
at each iteration. Generally, it has computational complexity (number of arithmetic operations)
in the order of K;M log(M) in a d-dimensional grid with M points (see for instance [Set96;
CF07]), where the constant K; depends on the discretization scheme.

The fast marching method is searching the nodes of X according to a special ordering
and computes the approximate value function in just one iteration. The special ordering is
constructed in such a way that the value function is monotone non-decreasing in the direction
of propagation. This construction is done by dividing the nodes into three groups (see below
figure): FAR, which contains the nodes that have not been searched yet; ACCEPTED, which
contains the nodes at which the value function has been already computed and settled — by the
monotone property, in the subsequent search, we do not need to update the value function of
those nodes; and NARROWBAND, which contains the nodes ”around” the front — at each step,
the value function is updated only at these nodes.
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At each step, the node in NARROWBAND with the smallest value is added into the set of
ACCEPTED nodes, and then the NARROWBAND and the value function over NARROWBAND
are updated, using the value of the last accepted node. The computation is done by appying
an update operator U : (R U {+00})* — (R U {+00})¥, which is based on the discretization
scheme. The classical update operators are based on finite-difference (see for instance [Set96])
or semi-lagrangian discretizations (see for instance [CF07]). Sufficient conditions on the update
operator U for the convergence of the fast marching algorithm are that the approximate value
function on X is the unique fixed point of U satisfying the boundary conditions, and that I/ is
monotone and causal [Set96].

A generic partial fast marching algorithm is given in Algorithm[5.1] We call it partial because
the search stops when all the nodes of the ending set END are accepted. The usual fast marching

algorithm is obtained with END equal to the mesh grid X and START equal to the nodes in target
set.

Algorithm 5.1 Partial Fast Marching Method (compare with [Set96; |CF07]).
Input: Mesh grid X; Update operator Y. Two set of nodes: START and END.
Output: Approximate value function V' and ACCEPTED set.

Initialization: Set V(z) = 4+00,Vx € X. Set all nodes as FAR.

1: Add START to ACCEPTED, add all neighborhood nodes to NARROWBAND.

2: Compute the initial value V(x) of the nodes in NARROWBAND.

3: while (NARROWBAND is not empty and END is not accepted) do

4: Select z* having the minimum value V' (z*) among the NARROWBAND nodes.
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5: Move z* from NARROWBAND to ACCEPTED.

6: for All nodes y not in ACCEPTED, such that U(V)(y) depends on z* do
(£ Vi(y) =UV)(y)

8: if y then is not in NARROWBAND

9: Move y from FAR to NARROWBAND.
10: end if
11: end for

12: end while

Let us now consider the fast-marching method with a particular update operator as described
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in (5.91). Le., we set the input update operator in Algorithm as follows:

UTV)(z) = ke{g%d} VF(x) (5.93)

where V* is defined similarly as in (5.90)). Then, we have the following result:
Theorem 5.4.7. Under Assumption|(A7) and Assumption |(A8), we have

sup ||V (z) —v(2)[| < Cvh , (5.94)
rzeX

where Cy is a constant depends on C,, C1 and the diameter of the grid X .

Sketch of Proof. Tt is enough to notice that the interpolation operator is the same as (5.91)), as
the result is concluded by Proposition O

Corollary 5.4.8. In order to get an error bound on the value of the problem (5.1]) less of equal
e, we shall take the mesh grid h = (Cy)~'e. Then, the total computational complexity of the

fast-marching method is O~((2C’V€*1)d).

Proof. The choice of the mesh step h is determined based on the error estimates in . This
results in the presence of O((Cpe™1)%) nodes in the grid. Moreover, one step update using the
update operator needs O(d x 24) arithmetic operations, and the fast-marching method
needs a number of update steps in the order of O(M log(M)) to operate on a grid with M nodes.
Then result is then concluded. O

5.5 Convergence Under a Particular Sate Constraint, Applica-
tion to Computational Complexity of The Multilevel Fast-
Marching Method

In the recent work [AGL23a|, the authors introduced a multilevel fast-marching method. We
determine the computational complexity of this method as a function of the convergence rate of
the original fast-marching method, and of the ”stiffness” of the value function. In this section,
we demonstrate that the convergence rate is equal to one for both the original problem and the
problem with a particular state constraint. As a result, we can achieve the ideal complexity
bound stated in [AGL23a] when the “stiffness”, 3, is equal to 1.

5.5.1 A Particular State Constraint of the Minimum Time Problem

We first briefly describe a particular state constraint problem introduced in [AGL23a]. To
simplify the explanation, we begin by considering the problem without any state constraints.
We aim to solve the following minimum time problem:

y(t) = fy(t), alt))a(t), YVt € [0, 7] ,
inf 7>0 s.t. R y(0) € Kgre, y(7) € Kast (5.95)
a(t) e A, Vt € [0,7] ,

where g and Kyt are two disjoint compact subsets of R4 (called the source and the destination
resp.). One way to solve the above problem ([5.95]) is to consider the set Kyt as the “target”
set IC in Section [5.2.2] and using the same change of variable technique to get the new control
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problem. Denote vs4 the value function of such a control problem, the associated HJB equation
is as follows:

(5.96)

F(z,vsq(z), Dusq(x)) =0, z¢€ R? \ Kast »
Uad(l') = 0, x € 8det .

Once (5.96) is solved, one can easily get the value of the problem ([5.95)) by computing the mini-

mum of v,4(x) over K. We shall denote the set of minimum points by X := Argmin, i vsq(2).
An alternative approach to solving problem ([5.95)) is to treat the set K as the "target” set
K in Section while replacing the dynamics (5.3|) by:

(5.97)

Denote vgs the value function of this control problem, the associated HJB equation is then as
follows:

{F*(x, Uss(7), Dvs (2)) =0, =z € R \ Ksre, (5.98)

’US»(ZL‘) = O, HARS aICSI‘C )

where F*(x,r,p) = F(z,r,—p). By doing so, to solve the problem ([5.95)), one can also solve the
equation (5.98) to get vss, and then compute the minimum of vgs(s) over Kgst. We shall also
denote the set of minimum points by Xgs; := Argmin, e, s (7). Then, we have the following
result:

Lemma 5.5.1 (Corollary of [AGL23al, Prop. 3.3]). v* :=inf ek, vsa(z) = infrex,,. vss ().

Let us now describe the new state constraint problem presented in [AGL23a] that aims to
solve problem ([5.95)). For every z € R? and v = (vss, v54), we denote

Fo(z) = ves(z) + v3q(x) — ves (z)v34(T) (5.99)

Moreover, for every p > 0, we select a function F* : R? — R, that is C%, and that approximates
F,ie.,
IF5 = Folloo < - (5.100)

Then, we consider a domain, determined by a parameter n > 0, and defined as follows

5. MULTILEVEL MP

Of = {z € R\ (Ksre UKast)) | Fh(2) < yienu_\fd{fu(y) +0} ), (5.101)

with u < 7. We intend to reduce the state space of the original problem (5.95) to the closure
O} of O} More precisely, let us first consider the problem with target Kqst. We shall consider

a new state constraint problem so that the state y(s) stays within the domain Oiﬁ,‘, for every
s 2 0. This leads to a new set of controls:

Apz = {a € Al yalz;s) € Of, for all s >0} . (5.102)

Let us denote vj(z) the value function of this state constraint problem. The associated HJB
equation has the following form:

, re Oy,
, @ €00\ st (5.103)
vl(z) =0, x € OKgst -
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5.5.2 Convergence Rate of The Semi-Lagrangian Scheme Under State Con-
straint

In this section, we will show the convergence rate of the semi-lagrangian type discretization of

the system ([5.103)), that is,

h h —
ol (z) = gélSIi {(1 — f(a;,a))vibd(x + ha) + M} , 1 €0\ Kast »
o) =1 v @ UKy, 1Y

Ugd(x) =0, T € Kast -
We start by considering the J—optimal trajectory.
Definition 5.5.2. For every x € R?, we say that y,s(z;) : [0,7] — R? is a d-optimal trajectory
with associated d-optimal control a® : [0, 7] — Sy for the problem with target Kgg; if :

Yos (2;7) € Kgst  and / e tdt <wsq(z)+9 .
0

We denote by I') the set of —geodesic points starting from z, i.e., I = {y,s(x;t) |t € [0,7], a® :
[0,7] — S! 6-optimal }. We define analogously d-optimal trajectories for the problem in reverse
direction, and denote by Fi the set of J-geodesic points starting from z in the reverse direction.

Then, for the trajectories that are §—optimal in the both alternative directions, we have the
following result.

Lemma 5.5.3 (Corollary of [AGL23a, Prop. 3.11]). Denote
XS ={x € 0Ky | vsa(z) V" + 6}, X%, = {x € O gy | ves () < 0* + 6},
we have: .
Usre[0,6) UxEXS‘STZ‘S, {F(sx} = Usrelo,9] UIEX(‘;?&/ {Fg } (5105)

Let us denote I the set in (5.105)), and call it the set of 0—geodesic points from s to K gs.
Indeed, the set T and Of defined in ([5.101)) constitute equivalent families of neighborhoods of
the optimal trajectory. In particular, we have the following result

Lemma 5.5.4 (Corollary of [AGL23a, Lemma 3.14, Lemma 3.15]). For every n > 6 > 0, for
every &' > 0, we have I'0 C Oy C 79" for p small enough.

Based on the above property, we have the convergence result of the semi-lagrangian scheme ((5.104])

as follows.

Theorem 5.5.5. Suppose Assumption|(A7), Assumption and Assumption hold (with
K replace by Kgst).

(i) There exists a constant Cy, depends on My, My, f, f such that, for every 0 < < (n—h),
for every x € T and z € R? such that [x — z,2 + 2] CT?,

ol (x + 2) — 200 (@) + ol (2 — 2) < CLl2))? . (5.106)

ii) There exists a constant C| depends on My, My, M’., M|, L,, f, f such that, for every
1 f f t s
0<d<(n—nh) andx€F5,foreveryO<h<%,

sup [[vf(z) = vsa(@)]| < Cth - (5.107)
zel
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5.5.3 The Multilevel Fast-Marching Method and Its Computational Com-
plexity

We begin by describing the algorithm with two levels of grids. Firstly, a coarse grid is used
to approximate OF by applying the fast-marching search in both directions, which solve equa-
tions and with relaxed accuracy and error requirements. Then, a finer grid is
used to discretize the approximation of O#, and to solve the corresponding state constraint
equation (5.103]).

Let X" denote a grid with a constant mesh step of H. The first step consists in apply-
ing Algorithm to solve equations and . This involves performing a partial
fast-marching method with mesh grid X, an update operator that is adapted to the HJ equa-
tion or , as well as the appropriate sets START and END. This yields numerical
approximations VA and V,ﬁ of the value functions vss and wvsq, on the sets of accepted nodes
A and Aﬁ{i, respectively. Then we select and denote by OTIIJ the set of active nodes, which is
determined by a parameter 7y, as follows:

off = {x e XU | Fyu(z™) < min Fu(y?) +nH} . (5.108)
As for the computation in the fine grid, we denote by X" a grid with a constant mesh step
of h. We select and denote the fine grid nodes as follows:

Gh={ah e X" |3 € OFf : ||a" — aM||oe < max(H — h,h)} . (5.109)

Then, the computation will only be done in the selected fine grid nodes, which means that a full
fast marching algorithm Algorithm is applied in the restricted fine grid GZ, with the update
operator of one direction HJ equation (for instance with target set Kqst).

The computation in two levels of grids can be extended to the multilevel case. We construct
finer and finer grids, considering the fine grid of the previous step as the coarse grid of the
current step, and defining the next fine grid by selecting the actives nodes of this coarse grid.
The algorithm is detailed in Algorithm and some possible grids generated by our algorithm
are shown in the following Figure [5.1]

et
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e

(a) Level-0 (b) Active Nodes (c) Fine grid (d) Level-1 (e) Level-2

Figure 5.1: Sketch of MLFM.

In |[AGL23a], the computational complexity of Algorithm is shown to be dependent
on two factors: -, which is the convergence rate of the fast-marching method, and £, which
measures the “stiffness” of the value function around the optimal trajectories. In Section
and Section [5.5.2] we demonstrate that v = 1 for both the original problem and the problem
with a particular state constraint O}. As a consequence, the computational complexity is solely
a function of 8. In some particular problems, we can find that g = 1, leading to the ideal
computational complexity.

We state in the following the improved computational complexity for Algorithm as the
main result of this section.
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Algorithm 5.2 Two-Level Fast-Marching Method (2LFM)

Input: The mesh steps, grids and selection parameters: H;, Xt n;, for | € {1,2,...,N}.

Input: Two update operators Usq and Uy adapted to both directions HJ equations.

Input: Target sets: Kgpc, Kast-

Output: The final fine grid FINE and approximate value function V;HN on FINE.

1: Set COARSE-GRID to X 1.

2: for I=1to N —1) do

3: Apply Algorithm with Input grid COARSE-GRID, update operator Usq, START = Kqe N X
and END = Ky N X1 and output Vfé’ and Af(j.

4: Apply Algorithm with Input grid COARSE-GRID, update operator Uss, START = K. N X T
and END = Kag N X1, and output V! and A5,

5 for (Every node z' in A% n Afz) do

6 if (Fya, pmy < mings, e xm {Fyu (z) +ni}) then
7: Set zf* as ACTIVE.

8 end if

9: end for

10: Set FINE to be emptyset.

11: for (Every node z!t in the ACTIVE set) do
12: for (Every xflit1 € XHi+1 satisfying ||of+1 — 21| < max{(H; — H;11), Hi41}) do
13: if zH1+1 does not exist in set FINE then

14: Add zH+1 in the set FINE.

15: end if

16: end for

17: end for

18: Set the new COARSE-GRID to be the current FINE.

19: end for

20: Apply Algorithm with Input grid FINE, update operator Usq, START = Kgs N FINE and END
= Kqe N FINE, and output V,hc{N.
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Theorem 5.5.6 (Corollary of [AGL23a, Th. 4.4, Th. 5.4]). Suppose Assumption As-

sumption Assumption hold (with both K replaced by K and K replaced by ICgst),
and d > 2, then we have

(i) There exists a constant Cy, > 0 such that, by setting n = C,H; for everyl € {1,2,...,N —
1}, we have V;}HN({L‘) = VIy(z), for every z € GZN_l NT° and § < ny—1. Consequently,
V,ZSN converges towards vsq(x) as h — 0.

(ii) In order to obtain an error bound on the value of the problem ([5.95)) less or equal €, we shall
take h = C;ls, N = Ldlog(%)J, nm as in and H; = h%, forNevery le{1,2,...,N}.

Then, the total computational complexity of Algorithm is O((Cpp) (L) 1Hd-D=A)),
When 8 = 1, it reduces to O((Cp,)?L).

5. MULTILEVEL MP
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Chapter

An Adaptive Multi-Level Max-Plus
Method for Deterministic Optimal
Control Problems

X3k k

A shorter version of this chapter, showing the first idea, has been published in the proceedings of
the IFAC World Congress 2023 [AGL23b).
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Abstract. We introduce a new numerical method to approximate the solution of a finite
horizon deterministic optimal control problem. We exploit two Hamilton-Jacobi-Bellman PDE;,
arising by considering the dynamics in forward and backward time. This allows us to compute a
neighborhood of the set of optimal trajectories, in order to reduce the search space. The solutions
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of both PDE are successively approximated by max-plus linear combinations of appropriate basis
functions, using a hierarchy of finer and finer grids. We show that the sequence of approximate
value functions obtained in this way does converge to the viscosity solution of the HJB equation
in a neighborhood of optimal trajectories. Then, under certain regularity assumptions, we show
that the number of arithmetic operations needed to compute an approximate optimal solution
of a d-dimensional problem, up to a precision ¢, is bounded by O(C%(1/¢)), for some constant
C > 1, whereas ordinary grid-based methods have a complexity in O(1/£%?) for some constant
a>0.

6.1 Introduction

6.1.1 Motivation and Context

We are interested here in the numerical solution of finite horizon deterministic optimal control
problems. Such problems are associated to Hamilton-Jacobi-Bellman (HJB) equations via the
Bellman dynamic programming principle (see for instance [FS06]). The value function, for this
class of optimal control problems, has been characterized as the solution of a HJB PDE, in
the viscosity sense (|CL83]). Several classes of numerical methods have been proposed to solve
such PDEs. Among them, we mention the finite difference schemes introduced in [CL84], which
involve a direct discretization of the HJB equation, and the semi-lagrangian schemes, studied in
particular in ([Fal87|, |[FF14]), which rely on applying the dynamic programming principle to a
discrete time control problem derived from an Fuler discretization in time of the dynamics. In
both cases, the discretized system can be interpreted as the dynamic programming equation of
a stochastic optimal control problem.

More recently, max-plus based discretization schemes have been developed to solve the first
order HJB equations. In a broad sense, these methods take advantage of the max-plus linearity
of the evolution semigroup of the HJB PDE, the so called Laz-Oleinik semigroup. After a time
discretization, this allows one to approximate the value function for a given time horizon, by
a supremum of appropriate basis functions, for instance quadratic forms. Such suprema are
propagated by the action of the Lax-Oleinik semigroup, between two successive time steps. In
particular, in [FMOO], the authors approximated the value function at a given time horizon by
the max-plus linear combination of “basis functions” together with scalars. The computation of
the scalars was carried out inductively by applying a max-plus linear operator at each time step.
This scheme can be interpreted as a dynamic programming equation of a discrete deterministic
optimal control problem. Alternatively in [AGLO0S8|, a similar form of approximation for the
value function was proposed. To derive the recursive equations for the scalars, the authors
introduced a family of “test” functions. The inductive computation of the scalars in this case
involved applying a nonlinear operator, which can be though of a projection on the space of
basis functions and then on the space of tests functions. This scheme can be interpreted as a
dynamic programming equation of a deterministic zero-sum two player game.

Both of the aforementioned methods exhibit advantages in solving various classes of control
problems and the associated HJB equations under specific regularity conditions. Neverthe-
less, their computational complexities remain comparable to those of classical grid-based meth-
ods (see also the further development in [Lak07; GMQ11]), and thus suffer from the curse-of-
dimensionality, that is the size of nonlinear systems to be solved is exponential in the dimension
d. In [McEO07], McEneaney introduced a curse-of-dimensionality free method to solve infinite
horizon switched optimal control problem, for which the Hamiltonian is expressed as a max-
imum of finite many “simpler” Hamiltonians. Each of the Hamiltonians is a linear/quadratic
form originating from a linear quadratic optimal control problem. The author demonstrates that
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the complexity exhibits cubic growth in dimension (of the state)(see also [McE09]). This com-
plexity, however, is bounded by a number that is exponential in the number of iterations, which
is referred to as the “curse of complexity”. Several “pruning” methods are proposed to improve
such complexity bound, for instance, in [MDGO8b |Sri+10; GMQ11; |(Qul4b|. Other approaches
that use the max-plus linearity of HJB PDEs also demonstrate an advantage on mitigating the
curse-of-dimensionality, among them we cite the work of Dower and McEneaney [DM11; DM15],
of Darbon, Dower and Meng [DDM23|, of Yegorov and Dower [YD21b].

Other approaches to reduce curse-of-dimensionality is to focus on finding one (or sev-
eral) optimal trajectories. We mention, for instance, the Pontryagin Maximum Principle ap-
proach [RZ99; BT13], the stochastic dual dynamic programming (SDDP) [Shall} |GLP15].
More recent developments, using the property (or structure) of the optimal trajectories, in-
clude the computation of the value function at one given point by constructing the grid from the
possible trajectories and reducing the set of trajectories using Lipschitz continuity properties,
together with the low dimensionality of the control set, like in [AFS19], [AFS20], and [BGZ22|.
In [AGL23a], we introduced a multi-level fast-marching method, which focus on the neighbor-
hood of optimal trajectories, and such neighborhood is approximated by a hierarchy of levels of
grids. The present chapter is adapting somehow similar ideas and analysis as in [AGL23a].

6.1.2 Contribution

Here, we address the curse-of-dimensionality issue with another approach. The main idea is to
consider a hierarchy of finer and finer irregular grids, concentrated around optimal trajectories,
thus allowing us to dynamically reduce the search space, while increasing the precision. This is
achieved by considering a pair of HJB PDE, associated to two optimal control problems: one
with a forward dynamics, fixed initial state and free final state, and a dual one, with a backward
dynamics, fixed final state and free initial state. The value functions of these two PDE allow
us to compute a family of nested neighborhoods of optimal trajectories. Then, we adaptively
add new basis functions, from one grid level to the next one, to refine the approximation. These
new basis functions are chosen to be concentrated near the optimal trajectories of the control
problem, and the refined neighborhood of optimal trajectories is computed from the solutions
of the two HJB PDE in the coarser grid.

We show that using our algorithm, the number of basis functions needed to get a certain
error ¢ is considerably reduced. Indeed, for a d-dimensional problem, under certain regularity
assumptions, we get a complexity bound of C%(1/ 6)% arithmetic operations, for some constant
C > 1. This should be compared with methods based on regular grids, which yield complexity
bounds of order O(1/£%%) in which a > 0 depends on regularity assumptions and on the order of
the scheme (see for instance [BCO08]). With our adaptative method, the curse of dimensionality
remains only present in the term C9.

The present work extends the idea of dynamic grid refinement around tubular neighborhood
of optimal trajectories, originally introduced in [AGL23a| to solve semi-Lagrangian discretiza-
tions of special, minimal time, problems. By comparison, the main novelty here is the use
of max-plus approximations combined with direct methods, which leads to a higher degree of
accuracy. Indeed, under appropriate regularity assumptions, the method of [AGL23a] has a
computional complexity of order @(e~1~(@=1(1=8)) "in which the parameter 0 < 3 < 1 measures
the “stiffness” of the value functions near optimal trajectories. Typical instances are moderately
stiff, and have a parameter § = 1/2, leading to a complexity of order O(e_l_(d_l)/ ). In con-
trast, we get here a complexity of order (’)(57%), with less demanding assumptions. The present
method also allows one to address finite horizon problems with more general cost and dynamics
structure.

6. DDP, TENSORS.
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This chapter is organized as follows: In Section we give some preliminary results con-
cerning the HJB equations and the finite horizon deterministic optimal control problems. We
introduce the main technique of restricting the state space to a neighborhood of the optimal
trajectory. In Section we present the Max-Plus finite element method, and propose a novel
approach that involves combining this method with the direct method to achieve a higher de-
gree of accuracy. In Section we give our new algorithm and demonstrate its convergence.
The complexity estimates of the algorithm, under certain regularity conditions, is given in Sec-
tion Finally in Section we present some numerical tests, confirming the theoretical
estimation of the complexity. A shorter version of the present work, showing the first idea, has
been presented in the proceedings of the IFAC World Congress 2023 [AGL23b|.

6.2 Optimal control problem, hjb equation, characterization of
optimal trajectories

6.2.1 The Optimal Control Problem.

We consider the finite horizon deterministic optimal control problem
T
max { [ ttats). uls))ds + onfa(0)) + ¢T<a:<T>>} , (6.12)

where the maximum is taken over the set of trajectories (z(s),u(s)) satisfying:

{ZB(S) = f(,ZL'(S),U(S)) )

z(s) € X, u(s) e U, (6.1b)

for all s € [0,7]. Let us denote v* the maximum in (6.1). Here, X C R? assumed to be
bounded, is the state space and U C R™ is the control space. The functions ¢g, ¢ : X — R
are the initial and final cost respectively. The function ¢ yields the running cost and f denotes
the dynamics. We make the following regularity assumptions:

Assumption (A10)
i. f:X xU — R?is bounded and Lipschitz continuous with respect to z, i.e.,

dMy > 0,s.t. ||f(z,u)|| < My, Ve e X,ue U,
JLf > 0,s.t. || f(z,u) — f(@',u)|| < Lfl|lx — 2|, Vo,2’ € X,ue U .

ii. £: X xU — R is bounded and Lipschitz continuous with respect to z, i.e.,
My > 0, s.t. [l(x,u)| < My, Ve € X,u e U,

3L, > 0,s.t. [l(z,u) — (2", u)| < Lelz — 2’|, Vo,2' € X,ueU .

6.2.2 Optimality Conditions in Terms of HJB Equations

A well known sufficient and necessary optimality condition for the above problem is given by the
Hamilton-Jacobi-Bellman equation, which is deduced from the dynamic programming principle.
Indeed, we consider the value function vsq, defined as follows, for any (x,t) € X x [0,T]:

vsq(x,t) = sup {/tT 0(x(s),u(s))ds + qﬁT(a;(T))} , (6.2)
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under the constraint (6.1b)) with the initial state z(t) = z. Here, the symbol ”;4” indicates that
(x,t) is the source, so that the corresponding HJIB PDE is of a backward nature. Indeed, vsq is
known to be the viscosity solution of the following HJB equation (see for instance [F'S06|):

(9'1)»(1 —
— ot — H(m,Vv»d) = 07 (.’L’,t) € X x [O’T] ’ (63)
vsa(z, T) = ¢r(x), reX,

where H(z,p) = sup,cy{p - f(z,u) + £(z,u)} is the Hamiltonian of the problem. Once (6.3
is solved, one can easily obtain the value of the original problem (6.1a) by further taking the
maximum over X, i.e.,

vt = 1;16%%({@(3:) + v3q(z,0)} . (6.4)

We shall also use another, equivalent, optimality condition for problem (6.1al), obtained by
applying the dynamic programming principle in the reverse direction. This leads us to consider
the value function v, for any (z,t) € X x [0,T], such that

v+ (7, 1) = sup {/Ot {(x(s), u(s))ds + ¢0($(0))} : (6.5)

under the same constraint (6.1b]), but with the final state z(t) = . The notation ”s” indicates
that (x,t) is now the destination. Then, vg, is known to be the viscosity solution of the following
HJB equation, in forward time:

81139
— H(x,—Vuvs) =0, ,t)e X x (0,17,
Y (x,—Vugs) (x,t) € X x [0,T] (6.6)
0 (2,0) = o(a), reX.
Once is solved, we can then get the maximum in (6.1)) by
v* = max{ér(z) + vor (5, 7)) (6.7)

6.3 Propagation by Lax-Oleinik Semi-Groups and Max-Plus Ap-
proximation

In this section, we first briefly recall the “max-plus finite element method” introduced in [AGLOS|
to solve the optimal control problem above, which is based on an approximation of the value
function as a supremum of elementary “basis functions”. Next, we will introduce a new method
to solve the small time propagation problem of the basis functions used in the scheme. This
method will lead to a higher degree of accuracy and will be a crucial step for our new algorithm.

In this section, we aim to approximate the value function v;q defined in , and to solve
the associated HJB PDE (6.3 in a backward nature. Notice that the results and properties
presented in this section hold, mutatis mutandis, for value function vgs defined in and the
evolution operator of the dual equation .

6.3.1 Max-Plus Variational Formulation

We denote by S%, the Lax Oleinik semigroup of (6.3)), i.e., the evolution semigroup of this PDE,
meaning that, for all 0 < ¢t < T, S%, is the map sending the final cost function ¢r(-) to the
value function vsq(-,T — t), so that the semi-group property Sttt = S o §% ig satisfied. In
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addition, the map S%, is maz-plus linear, meaning that for all A\ € R and for all functions nglT
and ¢ : X — R, we have:

Stalsup(or, ¢7)] = sup(Sialor], Stalét]) |

6.8
Stald+or] = A+ Stylor] (68)

where for any function ¢ on X, A+¢ is the function z € X — A+¢(z). Indeed, the property
can be interpreted as the linearity in the sense of the max-plus semifield, which is the set
Rpmax = R U {—o0} equipped with the addition a @ b := max(a,b) and the multiplication
a®b:=a+b, with —oo as the zero and 0 as the unit. We refer the reader to [FMO00], [AGLOS],
and [YD21b| for more information.

6.3.2 Max-Plus Approximation Method

We will briefly describe the approximation method based on the max-plus linearity introduced
in [AGLOS], which may be thought of as a max-plus analogue of the finite element methods.
Let us discretize the time horizon by N = % steps. Denote v} = vsq(-,t). By the semigroup
property we have:
olgd = S%[vtyl, VE=46,26,...,T, ol =¢r . (6.9)

Denote Ryax := Riax U {+00} the complete semiring extending Ryax, and let W be a complete
Rmax-semimodule of functions w : X — Rpay, meaning that W is stable under taking the
supremum of an arbitrary family of functions, and by the addition of a constant, see [McEOG;
CGQO4] for background. We choose this semimodule W in such a way that vi; € W for
all t > 0. In many applications, the value function v' is known to be c-semiconcave for all
t € [0,7T], and then W can be taken to be the set of c-semiconcave functions, which is a
complete module, see [McE06; AGLO08|. We also choose Z, a complete R ax-semimodule of test
functions z : X — Rpyax. If the space of test functions Z is large enough, is equivalent to:

(z,053°) = (2, S0 al) W, (z,07) = (2, 67) V2 € Z, (6.10)

where the max-plus scalar product of u € W and v € Z is defined by (u,v) = sup,cx(u(z) +
v()) € Rpax-

Note that in the system , the unknown value functions are elements of W, therefore
having an infinite number of degrees of freedom, and that there are infinitely many equations
(one for each element z € Z). Hence, we need to discretize this system. To do so, we consider
W C W, a semimodule generated by a finite family of basis functions {w;}1<i<p- The value
function vid at time t is approximated by vi’g € Wh, that is:

vi’(]f’ = sup {)\f +wi} x> max{)\f +w;(z)} , (6.11)

1<i<p 1<i<p

where {\!}1<i<p is a family of scalars. We then consider Z" C Z, a semimodule generated by a
finite family of test functions {z;}1<j<q, and, instead of requiring (6.10) to hold for all z € Z,
we only require that it holds for generators, leading to a finite system of equations. Therefore,

the approximation viaé’h and vfd should satisfy:

(25, 057" = (25, S4[050]), (25, 0%4) = (25, b7), V) . (6.12)

It is a key property of max-plus algebra that a system of linear equations, even when the
number of equations coincides with the number of degrees of freedom, and when the system
is “nonsingular”, may have no solution, so that the notion of solution must be replaced by a
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notion of maximal subsolution which is always well posed. In particular, (6.12) may not have

—d,h

a solution. Hence, we define v’ .q  and vzd to be the maximal solution of the following system

of inequalities:
8,h B .
(25, 05™) < (2, SSalh]), (2, 00) < (2, 01), Vi (6.13)

Let us denote Wp, : RP ..+ WV the max-plus linear operator such that Wy (\) = ®1<icp{ i Ow;},
and Z; : W — RZ, with (Z;(w)); = (zj,w),V1 < j < ¢. Recall that, for every ordered sets
S, T and order preserving map g : S — T, the residuated map ¢# is defined as g#(t) = max{s €
S | g(s) < t}, when it exists. Max-plus linear operators have a residuated map. Moreover,
by [CGQI6, Th. 1], for all max-plus linear operators B : U — X, C' : X — ) over complete
semimodules X, Y, U, the operator H% := Bo (CoB)#oC(C is a projector, and we have, for all

xEX:
1% (z) = max{y € imB | Cy < Cz} . (6.14)

Then, the approximations vi’g can be expressed as follows.

P ox andvi’g EW,, t=0,0,...,T,
such that vﬁd = Wy, with vt M, > 6, and vT solutions of (6.13 . We have,

Proposition 6.3.1 (|JAGLO08|). Consider the mazimal \' € RP

vidah = Sﬁé’[vig] where Sfﬁl = Hg}th 083, (6.15a)
and
N0 = (ZE W) (2SS WiR Y, Yt = 6,26,...,T (6.15b)
A =wWhor . '
The above formula can be expressed using the linear operators Mj, := Z;W), and Kj, =
Z;:Sdeh, with entries:
(Mn)ji = (zj,wi) ,  (Kn)j = (25, Squwi) - (6.16)

The matrices M and K} may be thought of as max-plus analogues of the mass and stiffness
matrices arising in the finite element method, see [AGLO8|. Computing (M});; is a convex
programming problem, which can be solved by standard optimization methods (sometimes the
solution can even be computed analytically). The main difficulty here is to compute (K});,;. An
approximation method proposed in [AGLOS§| is to use the Hamiltonian of the problem, that is,
when w; is differentiable,

(Kn)ji ~ (Kpp)(j,i) = j.g)[z (z](x) + w;(x) + 0H (x, sz(x))) , (6.17a)

or, when w; is nondifferentiable but z; is differentiable,

(Kn)ji~ (Kpn)(,1) = sup (zj(x) + wi(z) + 0H (z, —vzj(x))) . (6.17b)

Both the approximation in (6.17a]) and (6.17b]) introduce an error O(6%) or (’)(5%), depending
the properties of z; and w;. In the following, we will propose a new approximation method for a

small enough time horizon J to get a high degree of accuracy, and thus avoid this approximation
error

6. DDP, TENSORS.
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6.3.3 Small Time Propagation of Basis Functions

As mentioned above, a key point to get an effective max-plus method is to compute K}, which
is equivalent to evaluate every scalar product (z;, Sfdwi). This small time propagation of the
basis functions leads to a new optimal control problem:

(2, 8°[wi]) =
max{zj +/ §))ds + wi(w (5))} , (6.18)

over the set of trajectories (z(s), u(s)) satisfying (6.1b]). This problem is similar to the original
one, but with two new essential properties: first, the time horizon ¢ is small, and second, the
initial and final costs, z; and w;, are “nice” concave functions, e.g., strongly concave quadratic
forms. Then, the strong convexity of the initial or terminal cost “propagates” over a small
horizon, which entails that is actually a convex infinite dimensional optimization problem,
which, after an appropriate discretization, using a so-called direct method in optimal control (see
e.g. [Bon+17| for background on direct methods in optimal control.), can be reduced to a convex
finite dimensional optimization problem, which can be solved globally by convex optimization
methods. This is explained in [AGLO05], in a simple case, for which is approximated by
one step semi-lagrangian type discretization. The idea of applying direct methods was recently
used in [BB20|, in which the authors used a gradient descent to do one step computation of a
discrete MDP with a finite set of controls. Based on those observations, we have the following
result:

Proposition 6.3.2. Assume the functions z;, w; are strongly concave, then there exists a §>0
such that, for every § < 0, (z;,S%[w;]) can be computed exactly, or with an error negligible
compared with the projection error, by a direct method.

To implement efficiently our algorithm, we need to know in advance the lower bound of 4,
which depends on the properties of f and ¢. Thus, inspired by |[AGLO05|, we shall make the
following assumption:

Assumption (A11)
i. X C RY U C R™ are convex sets.
ii. f is affine w.r.t.  and u.

. L€ C¥X xU,R) and ¢ is strongly concave w.r.t. u, i.e., there exists a positive constant
o > 0 such that ||2 8u2 &1l = . Moreover, there exist positive constants Cpp > 0 and Cyy > 0

such that ng | < Cypyp and HamauH Cyu, for every (z,u) € X x U.

Lemma 6.3.3. Assume Assumption|(A11), take w;, z; € C?(RY, R) be strongly concave functions

with ||%236“2’Z Il, az] | =5 >0, denote A = % and B = 85. Assume further

all Al = 2Czu || AllllBIl = Caall BII* 2 0, (6.19)

then Proposition 4 holds with 6 = 6(a, B, Cyz, ||All, | B]), with

8aBA| BI?
(al|All* + Cua[| BII?) (al| All* + Caa || BII* + 28] A BII?)

8(ex, B, Caa, || AllL 1Bl = (6.20)
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Proof. Let us denote

J&@OMWDZZ@®»+A%@@%M$M&

over the set of trajectories (z(s),u(s)) satisfying (6.1b]). Then, it is sufficient to show that up
to t = 6, JL, is concave w.r.t. (z(-),u(-)). Let us consider two trajectories (z1(-),u1(-)) and
(z2(+),u2(+)), we need to show that

TR0, Y2 ) () () + T (a(), () > 0. (6.21)
We first notice that, under the Assumption we have
z1(8) — Z2(s) = A(z1(s) — xa(s)) + B(ui(s) — ua(s)) , (6.22)

for every s > 0. Moreover, we have

TR, M ) L (T () () + T (20, wa()

= [« 520) - (@ 0) + wa0)] (623
4 Uot (B2, ) %(B(ml(s), wr(s))ds + Lxs(s), uz(s)))>ds] .
For the first part inside of [ ], denoted by Aj, by the strong concavity of w we have
A1 = 2 (210) = 22(0) ) (6.24)

4

For the second part inside of [ |, denoted by As, for easy expression let us denote Au(s) =
ui(s) —ua(s), Az(s) = z1(s) — x2(s). We first notice that

£ (5), M ) = S (0 (s), a () + U (s), wa(s)
= 2 (202 0), Y2 ) (T ), (5)) — (T2 ), a(s)

T+ 22

a

U2 ) 0(9) — (), w1 (5)) + 62 (9), ua(s)) — banls). () o
6.25
> o S0y L(AXr O (D12 ) () - G 2D
(CRHyr O BT ) () — e FE )
> Y au(s)]? — ) Aa(s)* — 2 A (s) 1 Au(s)]
Moreover, for arbitrary 0 < 61 < a and 0 < 6, we have
[0 me Cxu
T1Au(s)|? = == Aa(s) |2 = =l Ax(s) || Au(s)]
> jl((OIZIBHil) |AAz(s) + BAu(s)|?
1 (a—0)]Al?
oA ( HBl||2 + Crp + 02)2A2(5)T (AAz(s) + BAu(s)) (6.26)
+ (01| Au(s)|* + 02| Ax(s)|?

(a — 61) || Al

=gt Cat BB + Cr)l| Az () |Au()]])

6. DDP, TENSORS.
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For the part inside of [ | of (6.26]), we recognize a quadratic form in the variables ||Az(s)|| and
||Au(s)||. This quadratic form will keep a constant sign if its discriminant is negative, and this
is the case in particular if we take 8, = 0y = %a. Moreover, we observe that

|Az(s)||? = |AAz(s) + BAu(s)|)?, (||Az(s)]?) = 2Az(s)T (AAz(s) + BAu(s)) . (6.27)
Thus, taking 61 and 02 as proposed above, combining with , we have
t (6% C{L‘:E Cxu
ey <Z||Au<s>u2 - THM(S)IIQ - 2 Aa(s)] [ Au(s) )ds
! a—01)||A]? + (Cow + 02) || B|?

4HB||2 SIA[B]2
o (a—=01)||A|* + (Cox + 62)|| BJI? 2 _ 1 Az(0)]12
> 4”B”2t 1 [ atsisl? - STATTE (IAz(t)]? ~ |Az(0)])
(a —6) 2 (@ = O)IAI+ (Cor +O)IBIP (o
> By 18e(0) — Az(O)] STATIEN (1A (0)]2 — | Az(0)[?) -
(6.28)
Combining (6.24]) and ( -, we have
<”“"1 2T, 2 ) 2 (e (1w () + e (), ua()
L (a=0)  (@=0)IAP + (Cor+ 0B o
4<(B MIE 2IATI2F NAz(O)] 62
oa—0 a—0)||Al?2 + (Cype + 62)||B|? )
- A a0l A1)

We again recognize a quadratic form in the variables Az(0) and Axz(t). This quadratic form
will keep positive, for every non zero Az (0) and Ax(t), if we have:

(@ =01) (o= 0)[IA]* + (Coa + 6| B|I?

1Bt EE =0 (6:30)

e (a—60) (a=61)  (a—O)AI + (Cua + 02) | B

2( — 04 2 a — U o — U1 + zz T 02

ATy y

S T e 2[A][1BJ? : o)

(0= 00) o= 0)A + (Cos + OIBIP, _
BE 2 A2
Combing ((6.30) and (| -7 we have
_ 2

(e = 01| A]I* + (Caz + 02)||BH2)((a — 0)[IA[]* + (Caw + 62)[| BII* + 28] Al BII?)

Since the propagation of basis functions in two directions are symmetric, take #; and 65 in
particular equal to 5, we deduce

8aBA| B
(@l AlI? + (2C2z + )| B[I*)(al|AlI* + (2C2z + ) | B]1* + 4ﬁ||AIIH?6II§))3)’

S(O" B, Cras HAHv ”BH) =

O]

We shall take the time step § < 0, then each element (K}) ji can be approximated by using
direct methods computing the scalar product (z;, S [w;]).
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6.3.4 Improved Max-Plus Finite Element Method and Error Estimation

In this section, we will always make the following assumption on the value functions vgs and
Usd-

Assumption (A12)The functions v, vid are L,-Lipschitz continuous, a;-semiconvex and axo-
semiconcave w.r.t. = for every t € [0,T].

Let G, G be two finite subsets of R%. After a time discretization of N = % steps, in order

to compute the approximation of value function, we shall take the basis functions generated
by the points of G = {&1,%2,...,%,}, and take the tests functions generated by the points of

G = {x1,22,...,24}. Under Assumption |(A12)| natural choices for basis functions and test
functions to approximate the value functions are the quadratic functions of the form w;,(x) :=
— £l — &3 , for every & € G, and z,, = — ||z — z;|3, for every z; € G.

The matrix M}, is computed by solving a convex programming problem. The entries of matrix
K}, are approximated, under Assumption by using direct methods. This means that we
replace the infinite dimensional convex programming problem by a finite dimensional one,
in particular using a further discretization in time. An approximation can then be obtained up
to a precision € < d. The complete algorithm works as in Algorithm

Algorithm 6.1 Max-Plus Approximation Method

Input: Mesh grid: G and G, parameter for quadratic basis /test functions: ¢, time step: § < s,
precision of direct method € < 4.
Output: Vi € {0,4,..., T}, set of scalars {\}1<i<p.

1: Discretize time horizon by N = % steps.

2: Choose quadratic basis functions {w;}; . generate by G.

3: Choose quadratic test functions {2;}.,ec generated by G.

4: Compute (Mp,);i = (zj,ws), ¥ (4,4) € {1,...,q} x {1,...,p}.

5. Approximate (Kp);i = (2}, Sw;]) by direct method up to an error ¢, V (j,4) € {1,...,q} x
{1,...,p}.

6: Initialize X = W[ ¢r.

7. for t =T, T-9,...,6 do

s A= MK,

9: end for

Let us denote by ﬁi‘d the approximate value function obtained using quadratic basis functions
together with scalars computed in Algorithm [6.1 We then have the following result.

Theorem 6.3.4. Make Assumption |[(A10), Assumption |(A11), Assumption [(A12). Denote
X=X —1—B(O,L—C’1). Assume a1 < ¢, ag < ¢ and € = Coh?, § < 6. Take G,G such that

X C Conv(G) and X C Conv(G), where Conv(-) denotes the convex hull of a subset of R
Then, there exists a constant C' > 0 depending on ¢ — a1, ¢ — ag and Cy such that:

Che , (6.34)

||,Dild(t7 ) - U9d(t7 )”oo < s

where h is the maximum radius of the Voronoi cells of the space X divided by the points of G
or G.

Sketch of Proof. Under Assumption we are allowed to use a direct method with § < &
and get a propagation error less than e. By [Lak07, Coro. 66], the projection error is bounded

6. DDP, TENSORS.
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by Ch?, for some constant C; depending on ¢ — a; and ¢ — ap. Then, by [AGLOS] (or [Lak07]),
the total error is bounded as in with C' = C71 + Cs. O
Remark 6.3.5. When the value function is only known to be semiconvex (or semiconcave, re-
spectively), we shall employ quadratic basis functions and Lipschitz test functions (Lipschitz
basis functions and quadratic tests functions, respectively). In such cases, the maximal time
step to use in the direct method is g (by the proof of ), and the error is then in the order
of h in (6.34). We refer to [Lak07] for a more detailed analysis of the error estimation of the

max-plus finite element method.

6.4 Characterization and Max-plus approximation of optimal
trajectories

In Section the optimality conditions of problem are characterized by the HJB equation
in two directions. In this section, we will show that the optimal trajectories of problem can
be characterized by two value functions, which are the solutions of the associated HJB equations.
Then, combining with the max-plus approximation method in , the optimal trajectories will
be approximated using the scalars computed at every time step for the value functions.

6.4.1 Optimal and j—optimal Trajectories

The two value functions v_, and v,, allow us to determine the points belonging to optimal
trajectories:

Definition 6.4.1. We say that 2*(-) is an optimal trajectory of the optimal control problem (6.1
if there exists a control «*(-) such that (z*(-),u*(-)) achieves the maximum in (6.1al), under the
constraint (6.1b)). Moreover, we denote, for all ¢ € [0, 7],

Iy ={«*(t) | z*(-) is an optimal trajectory } , (6.35)
and I = UtE[O,T}PI.
Then, we have the following result:

Proposition 6.4.2. Assume I'* is non-empty, then

v* = sup{ves (z,t) + vsa(z, t)}, VYVt €1[0,7T] . (6.36)
zeX
Moreover, for all t € [0,T], the above supremum is achieved for some x € I'y. Conversely, for
allt € [0,T] and x € T}, the above supremum is achieved at point x.

Proof. The equality follows in a straightforward way from the definition of the value
functions vsq,vss in (6.2) and . Moreover, since there exists an optimal trajectory x*(-),
then the supremum in is achieved at z*(t) € '}, for all ¢ € [0,7]. Conversely, for all
x € I'f, there exists an optimal trajectory x* such that x*(¢) = z, and the supremum in
is achieved at x = z*(t). O

For all t € [0,T], let us define the map F! : X — R by
Fi(x) = ves (z,1) +vsq(z, 1) (6.37)

Consider for every ¢t € [0,T], the subdomain (’)f7 C X, depending on a parameter n > 0, and
defined as follows

O, ={z e X | Fi(z) > sup Foly) —n} - (6.38)
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In fact, Of7 can be thought of as a n—neighborhood of I';, which is the optimal trajectory at time
t. We intend to reduce the (state,time)-space X x [0, T] of our optimal control problem to such
an 7—neighborhood {(z,t) | z € O}}. Le., for all s € [0, T], we replace the constraint (6.1b) by

{jz(s) = f(z(s),u(s)) ,

z(s) € 05, u(s) e U . (6.39)

For any (z,t) € X x [0,T], let us denote v}, vy the value functions of the optimal control
problems in backward and forward directions under the new constraint respectively, i.e.,
the value of and under the constraint respectively. Moreover, we denote Sé;"
and Sﬁ’g the propagation semi-group for the two functions, respectively. Denote v; the maximum

of (6.1al) under the new constraint (6.39)). Then we have

Proposition 6.4.3. vy = v* .

Proof. The inequality v* > vy is straightforward since Op C X for all s € [0,T]. To show the

reverse inequality, let us take an optimal trajectory x*(-) for the original problem. Then, by the

result of Proposition we have z*(s) € Op,Vs € [0,T]. Thus vy > v* since v* is exactly the
value of the integral in (6.1a)) following the optimal trajectory z*(-) . O

We shall also consider approximate, d—optimal, trajectories.

Definition 6.4.4. We say that z9(.) is a d-optimal trajectory of the optimal control problem
(6.1a)) if there exists a control u®(-) such that

/OT 02 (s),u°(s))ds + ¢o(2°(0)) + (22 (T)) = v* =4, (6.40)
under the constraint . Moreover, we denote, for all t € [0,T7,
T4 = {2°(t) | #°() is a d-optimal trajectory} , (6.41)
and T's = Uyejo -

We begin by showing the connection between the d—optimal trajectories, I's, and our
n—neighborhood O,

Proposition 6.4.5. The set of §-optimal trajectories and (’)}t7 constitute two equivalent families
of meighborhoods of optimal trajectories, in the sense that for every n > 0 and §' > 0, for every
t e 0,7,

O, clys, T,CO . (6.42)

Proof. For the first inclusion, let us consider a x € O,. It is sufficient to show that there exists
at least a n + d—optimal trajectory for the problem passing through x at time t. We can
consider a %—optimal trajectory xss(-) : [0,¢] — X for the problem in direction “from source”,
with final state z¢(t) = z, together with a %l—optimal trajectory xsq(+) : [t,T] — X for the
problem in direction “to destination”, with initial state x5q(t) = z. Thus, concatenating the
two trajectories, we obtain a 1 + ¢’ —optimal trajectories for the problem .

For the second inclusion, consider an arbitrary n—optimal trajectory z"(-) : [0,7] — X
together with the control u”(-) : [0,T] — U. For every t € [0,T], let us denote xy = 2"(t) € T,

By the definition of the value function, we have

t T
ves (21, 1) > /0 0(27(s), " (s))ds + do(2"(0)), wsa(a”,t) > /t 0(2"(s), u"(s))ds + dr(2"(T)).

6. DDP, TENSORS.
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Thus, we have

Fo(a) = ve (2, £) + vaa(af 1) > / ((z"(s),u"(s))ds + ¢o(¢"(0)) + o7 (z"(T)) = v" =7 .

The result in (6.42) is then concluded. O

Based on this property, we have the following result regarding the value function

Theorem 6.4.6. For everyt € [0,T] and 6 < 1, for every x € T, we have
vl (2, t) = ves (2, 1), vIy(z,t) = vsq(z, 1) .

Proof. Let us first show the equality of v, and vg;. For an arbitrary t € [0, T], vls (x,t) < ves (2, 1)
is straightforward since (’)f; C X, for every s € [0,t]. To show the reverse inequality, let us
consider a d-optimal trajectory 2°(-) : [0,7] — X together with the control u%(-) : [0,7] — U
of problem (6.1)), and denote z¢ = 2°(¢). One can deduce (argue by contradiction) that z°(-),
restricted in [¢t,T], is a d-optimal trajectory for the problem in backward direction, for which
the value function is given by vsq with initial state (;Uf 1), ie.,

/z 5(s))ds + d(2*(T)) = vsa(ad,t) — & . (6.43)

Then, replacing 2°(-) restricted in [0, ] by a e-optimal trajectory for the forward problem with
final state (x,t), we get a (n + €)-optimal trajectory for the problem (6.1)). Since this holds
for every t € [0,T], and by (/6.42] - for € small enough, we deduce that F5 . C (9%, for every
t €10, 7). Thus

vl (z,t) = ves(x,t) —e, YVt €[0,T]. (6.44)

Since ) holds for arbitrary small €, we deduce vds (x,t) > vss (,t) for all ¢ € [0,T] and so
the equahty
By the same arguments we have v,(z,t) = vsq(z, t). O

Theorem indeed tells us that, to solve the problem (/6.1]), only the n—neighborhood at
every time t, OZ, around the optimal trajectory is relevant. In the following, we will focus on
solving the problem ([6.1]) using an approximation of such a neighborhood.

6.4.2 Max-Plus Approximation of the Optimal Trajectories

Using the max-plus formulation of v,4, we notice that (6.4) can be written as v* = (¢g, S, [¢7]).
Conversely, (6.7) can be written as v* = (S [¢o], ¢7). Based on this observation, the optimality
condition characterized in Proposition can be written as

v = sup Fy(x) = (S5, [¢o], Sialr]) , ¥t € (0,77 (6.45)
zeX
Let us assume that we have a set of basis functions {w;}1<i<p together with a set of scalar
{)\T’t}l@gp to approximate v’,, and we use the same set of basis functions together with a set
of scalar {\;¥"}1<;<, to approximate vl 4, i.e., for every ¢t € {0,6,...,T} and for every z € X:

v (@) & v (w) = max X7+ wi(@)}

t,h ,
va(@) & ol (@) = max N7+ wi()}

(6.46)
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Then, an approximation for F! can be obtained by:

FiaFly= sup NP+ N w +w;) (6.47)

1<i,j<p
Consequently, an approximation of (6.45)) is achieved by

v* & sup Fo(z) = sup (AT H AV 4 (wi,w;y)}, V€ [0,T7 . (6.48)
zeX 1<i,j<p

For a given 7, let us denote by Ofy,h C X the approximation of (’)f7 defined as follows:

Opn = A{z € X | Foule) > max{Fu(y) —n} }, vt € [0,1]. (6.49)

To efficiently find Ot > we first notice that the r.h.s. in can be computed using (6.48)
as a function of the scalars M = maxyex M ;(y) = <wz, wj> which can be computed easily
(even analytically) when the ba81s functions w; and w; are chosen. Let us denote /\/;fh (i,7) =
P )\;d’ + M ; and let Ngh = max; jer Ny (i, j), for every ¢ € [0,T]. Then, we first select
the couples (i, ) as follows:

Ty = A{(i,§) € I | N (i, ) > Nt —n} (6.50)

Based on Z*

.o e select Af] 5, C X as follows:

nh ={re X |3(,j) € Ifﬂh, M () > M5 —n} . (6.51)

The set At , can be compared with Ot
we have the following result:

o and regarded as an approximation of Og. Moreover,

Theorem 6.4.7. There em’sts an 7 depending on h and & such that, for all n > 11 and t €

{0,6,...,T}, .Af%h contains F , that is the set of 4—geodesic points for problem (6.1al) at time
t.

Proof. Fix a time step 6, and a time t € {0,4,...,T}. We first notice that O! mh C A

shown in Proposition the value function in a é- geodesm pomt T € I‘ satlsﬁes ft( )
SUPye x Fly)— 5. We know that the approximations vl and v>d have certain error bounds (for
the sup-norm) 529, eﬁd resp., depending on h and J, but not on t:

h
08" = vh lloo < el Iulg — vialloo < ela -

Denote e" = &l + Eﬁd, we have for every y € X:

(Foly) — ") < Fuuly) < (Fily) +") .
Consider now ' ¢ A}, so that 2’ ¢ O ,. Then
Fi(a') < Flu(a') + " < Sg}g{(fgh (y) — ") +&"}
< sup{F(y) + (26" = ")} .
yex

Thus, if we take 1" big enough such that (2¢" +§ — ") < 0, we have 2/ ¢ Ff. In particular,
taking 6 = %, the result of Theorem m follows. O
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6.5 Adaptive Max-Plus Approximation Method

In Section we observed that to solve the optimal control problem , we only need to focus
on a neighborhood of the optimal trajectory if we could approximately know it in advance. This
also works when we intend to find an approximation of the value function. In this section, we will
propose an adaptive max-plus approximation method to solve problem . The general idea
is to begin with a small set of basis functions and test functions, then adaptively add more basis
functions and test functions to improve the approximation of the two value functions v_, and
v,,, within a suitable neighborhood of the optimal trajectories derived from the approximate
value functions.

6.5.1 Adaptive Two-level Max-Plus Method

In Section we show how to approximate the optimal trajectories using the approximation
of a pair of HJB equations. In this section, we propose a two-level approximation method,
considering a coarse approximation for the optimal trajectories and a fine approximation in the
domain containing the optimal trajectories, which is deduced from the coarse approximation.

Let us start with discretizing the time horizon by N = % steps. Our algorithm consists of
three main steps:

Step 1. Coarse Approzimation. Denote GH := {28 . ,:i‘fH} and G .= {2l i .. ,xg{}
be two finite subsets of R%. Let [I]" := {1,...,p"} be the index set of G and I := {1,...,¢"}
be the index set of G¥. We fix some sets of basis functions {wif}fcff can and test functions

{z,m}yrcqn, and apply Algorithm to approximate the value functions in two directions.

This leads to an approximation of the two value functions ves and vsq, by the maps vﬁ;H and
Ui’f , which are tropical linear combination of the basis functions {wgn},n an together with

the scalars {)\f’t}ie[l]H and {)\fd’t}ie[l]H, for every t € {0,9,...,T}, respectively.

Step 2. Optimal Trajectory Approximation. We admit the same notation as in Section
for the approximation of optimal trajectories. For a given parameter nf (will be detailed later),
we first select the couples (i,i") as follows,

Tha = A{(0,1") € (D7) | Nju (i, ") > N7 =™} (6.52)
Let us also denote

(154 = {i € (17| 30’ € (1) such that N (i, i) > N3 — 0™},

(6.53)
(154, = {i" € (™ | 3i € 1 such that Ny (i,7) > N3 — T},

where the notation “A” stands for active. Then, based on Z:; we can approximate the

H,H’
optimal trajectories using Af% g C X defined as follows,

Al g =A{r € X |3(i,§) € Thu gy, Mij(x) > M5 —n'} . (6.54)

By doing so, at the end of this step, we obtain an approximation for (’)ﬁ,, where the restriction
of the value functions vgs, vsq in the domain Of] are approximated using the max-plus linear

combination of the scalars {\;” ’t}l. et and {)\fd’t}i enA - together with the basis functions
-, H >dq.H

, respectively. Let us denote

t

d S
WaH | . AH A an WaH | AH A

{ @ }xf{EGH,ZE[IE;yH { Ly }CE{JEGHJE[I]id,H

X; = ¢ )
f te{oygm’T}{AnH,H}> (6.55)
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and call it the fine region in coarse approximation.
Step 3. Fine Approzimation. In this section, we first consider again two finite subsets of R?,
Gh = #hoah ,:%Zh} and G = {zh,2h, ... ,th}, with p" > pf and ¢" > ¢". Then, we select

the active points, denoted by CA{’Z‘ and Gfﬁl respectively, in G" and G" as following,
Gh={2he@"|Tic e T}[I]tAH such that ||#" — 27 ||oc < max{H,H —h} } ,

Gh.={zheG"|Tic er” T}[I]tAH such that ||z — 21||oo < max{H,H —h} },
{o0,...,

(6.56)

where H, h are the maximum radius of the Voronoi cells of the space X divided by the points
of G and G respectively.

We then add new set of basis functions: {wjﬁ}x? eGh and the new set of test functions
{th}xher to approximate the two value functions. In this step, the approximation of the
value function will be only done in the fine region in coarse approximation. l.e., we apply
Algorithm [6.1] with the new set of basis functions and test functions, and when compute the
small time propagation, we restriction the trajectory in A’ i H for every time t. The complete
algorithm works as in Algorithm [6.2]

Algorithm 6.2 Adaptive Two Level Max-Plus Approximation Method

Input: Mesh grids for coarse approximation GH and GH , mesh grids for fine approximation
G" and G". Parameter for quadratic basis/test functions: ¢, time step: § < 4.
Output: V¢ € {0,6,..., T}, set of scalars {\}1<i<p.

Discretize time horizon by N = % steps.
2: Choose quadratic basis functions Base generated by GH.
Choose quadratic test functions Test generated by GH.
4: Approximate vss and vsq using Algorithm with Base and Test.
Set [I]* as an index set for Base;
6: Compute M, for all 4,7’ € ([1]7)2.
fort=0,9,...,7 do
8: Compute /\/;fH (i,i"), for all (i,4") € ([I]*)2.
Compute N b

10: Select [I] ' and [I} L asin

end for
12: Select active points G* and Gy as in (6.56).
Base = Base U {wii}iieé’;\;
14: Test = Test U {zmi}rier;
Approximate vgs or vsq using Algorithm with Base and Test;

For every t € [0,9,...,T], let us denote vé’f and ’Ui’j the approximation using Algorithm
and denote vé»h, Ni’g the approximation of vl,, v, using Algorithm with the sets of basis

functions and test functions obtained from G" and G" respectively.

6.5.2 Adaptive Multi-Level Max-Plus Method.

The above approximation steps can be repeated, for instance, m times. To define the repeated
steps, we need a family of parameters {7;};=12, . m—1 to select the active scalars for both di-
rections, and to select the approximation of optimal trajectories, based on the previous two
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directions’ approximations. We also need a family of pairs of mesh grids {GHZ, Gy e to
generate the basis functions and test functions for both directions. We assume these parameters
are fixed in advance, the computation works as follows

Level-1. In the first level, we do the same as in coarse approximation of two-level case, with
GH and GH replaced by GH1 and GH respectively.

Level—(l + 1) with 1 < I < m. In every level—(l 4+ 1), we shall do iteratively the opti-
mal trajectory approximation and fine approximation as in the two-level case. Let us denote
{)\f’t}ie[ 1 and {/\;’d’t}ie[ 7, the two set of scalars obtained at level—I for the approximate value

functions in two directions at time ¢ € {0,6,...,T}. Notice that [I]; is also the index set of
Hl = {1’1 , T ,...:):ﬁ%ll}, where the basis functions at level [ is generated from. When [ = 1,
GH1 _ GH1
A - .

Denote M;kjl ‘= MaXyex Ml i) = (w, W, Hl,>, for every i,j € [I];. For every t €

{0,6,...,T}, denote N/(i,j) = )\“t + >\>d’ + /\/ljjl, for every i,5 € [I];, and let ./\/f* =

max; je)t N{(i, 7). Then, given n;, the actwe scalars in this level is selected as follow,

154 = {i e (11} | 3¢ € [1)} such that N}(i,i') > N* = n}

¢
o : ) (6.57)

(14 = {i" € [1]} | 3i € [1]} such that N}(i,7') > A" =} .

The grids to generate basis functions and test functions in the level [ 4+ 1 are selected as follows,

denote Ajy1 = max{H;, H — H;+1}, where Hj, H; ;1 are the maximum radius of the Voronoi

cells of the space X divided by the points of Gt and GHi+1 respectively,

~H . A .
Gy = @l e G| te[ou T}[I];Al st 8 — 30| < Ara}

Hiv  _ p~Hip Hiq t,A Hip _ aH (6.58)
G, ={z €ed | U [0 st ||l T M oo < A1} -

telo,...,T] vail

The basis functions and test functions for the approximation in level—(I 4 1) are generated by
{w HH_I} S e and {z Hl+1} St g Indeed, for every 1 < 1 < m, given the parameter
m, we can also deﬁne the approx1mat10n of the optimal trajectory in level—I. Namely, for every
t €{0,0,...,T}, we select the couples (i,4") as follows,

It = A{0,1) € ()2 | NLGL i) > NP5 — ) (6.59)

sl

Then, based on Ifn,l? we can approximate the optimal trajectories using Afn,l C X defined as
follows,

-Aml ={zxe X |33, € Itl 1 Mij(w) > M — i} (6.60)

By doing so, at the end of each level—[{’s computation, we obtain an approximation for Om’
where the restriction of the value function vgs, vsq in the domain Ot m are approximated using

i€l and {74} together with the
N

nA and {w Hl} e

max-plus linear combination of the scalars {A3"*} ielns,

basis functions {w Hl} Hl LA respectlvely

eG, M A€ A€l
We then apply Algorlthm - w1th the new basis test functlons and test functions, in both
directions. The computation in every time step ¢ are also restricted at Aml The complete
m—level Max-plus approximation method is given in Algorithm [6.3}
We count, in Algorithm [6.3] each time’s computation of one level I, that is the first two main
steps in two-level case. For each level I € {1,2,...,m} of Algorithm [6.3] let v i Uif " with
t € {0,9,...,T}, be the approximations of v, and ’U»d computed until [, i.e., in the pseudocode

when | = [. For all l € {1,2,...,m}, and ¢t € {0,0,...,T}, let us denote by bl and vifl,
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Algorithm 6.3 Adaptive m—level Max-Plus Approximation Method

Input: Mesh grids {G'", GH1}1<i<m- Set of parameters {1 }1<i<m—1. Parameter for basis/test
functions: c. time step § < 9.
Output: For every time ¢, set of scalars {/\E’ﬁ}iemm, {)‘;ﬁd}ie[l}m-

10:

12:

14:

16:

18:

20:

Discretize time horizon by N = % steps.

. Choose basis functions Base generated by GH1.

Choose test functions Test generated by GH1.

Approximate vgs, vsq using Algorithm with Base and Test.
Set [I] as an index set for Base.

for =1 tom do

Base = Base U {wgz,} _.m-
K A

Test = Test U {Za;i}mieGHl.
Approximate vgs, Usq usi?lg Algorithm with Base and Test.
if [ <m then
Set [I] as an index set for Base;
Compute M; ;, for all (i,j) € ([1])2.
for t =0,9,...,7 do
Compute N(i, j), for all (i,7) € ([I]?).
Compute ./\/lt’*.
Select [I ]Zfl and [I ]i’ﬁl as in (6.57).
end for
Select active points C;’Z“’l and Gil“ as in (6.58).
end if
end for
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the approximations of v!, and v}, using Algorithm with the sets of basis functions and

test functions obtained from the discretization grids Gt and GH”i, respectively. Due to the

TR . . ~t,H; ~t,H . . t,H; t,H, .
initialization, the functions 053", 04" coincide with vgs™, vy " for [ = 1. In next section, we

will show the convergence using the relation between vt and ot
6.5.3 Convergence and error analysis.

Let us begin by showing the convergence results of the two-level max-plus method. We first give
some technical tools to show the convergence.

Definition 6.5.1. If v : X — R is a c—semiconvex function on X, we define it’s dual v : XoR
as follows, for every x € X,

o(#) = inf {;Hx _ &P+ v(a;)} — DP(v)(3) . (6.61)

If v is a c—semiconcave function on X, we define it’s dual 9 : X — R as follows, for every z € X,
b(3) = Pk = DF (v)( 6.62
0(2) = sup g — gl = 2[|° + v(2) o := DI (v)(2) - (6.62)
zeX
This can be seen as a generalization of the Legendre-Fenchel transform. We refer to [FMOO;
CGQO04; McEO06| the studies of such dualities.
Lemma 6.5.2. (see [McE006])
(i) Assume v is (c — &)—semiconvex on X, with ¢ > ¢ > 0, then © = D’(v) is unique.
(i) Assume v is (¢ — €)—semiconcave on X, with ¢ > & > 0, then & = D¥(v) is unique.

Moreover, semiconcave and semiconvex functions have the following regularity property

(see |CS04; |Lak07]).

Lemma 6.5.3. Let f : X — R be c—semiconcave and c—semiconvez. Then f € CY1(X) and
V f is Lipschitz continuous with Lipschitz constant c.

For a given time horizon ¢, the approximation formula (6.48]) for the optimal value of our
problem can be interpreted using the duality defined in Definition More precisely, we have

v* = sup{vl, (z) +viy(x)}

reX
~ sup {vl,(z) = cllz — 2[* + A"}

reX 32X 7 (6.63)
= sup{D¥ (vl )(&) + D(vlq) ()} -

zeX

Here, & corresponds to j in the expression , which is the center of basis function for
approximating fuﬁd. Moreover, we have a similar formula for approximating the optimal value,
that is

v* & sup{D}(ve (&)) + DF (v5a)(2)} - (6.64)

zeX

In , Z corresponds to 7 in the expression , which is the center of basis function
for approximating vf,. In our algorithm proposed in Section the active nodes are
indeed selected in a neighborhood of Z in which the maximum in and are achieved.
Moreover, by a similar argument as in Theorem we have the following result for the coarse
approximation in the two-level method.
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Lemma 6.5.4 (Corollary of Theorem [6.4.7)). There exists an 7 > 0 depending on H and &
such that, for alln™ > n" and t € {0,6,...,T}, AZH 5 contains (’);H/?

H H
Let us denote v, | vgd the value function for the control problems with the state constraint
replaced by Of] H o We also assume that there is no propagation error, meaning that both S;i [w]

and Sfd [w] can be computed exactly for every basis function w. By the construction of the two-
level method in Section we have the following result, which represents the computation
steps.

Proposition 6.5.5. Under Assumptzon ), take quadratic basis functions and test functzons
centered at the points ofG and GA, respectwely, with Hessian c. For everyt =0,9,...,T — 6,
we have

véj(s’z =D¥o Ré‘fg o Dz o Di o RGZ oD¥ o S;l owvh? (6.65a)

D# o RGh o Db o Db o RGh o D o Sfd o Ut+§2 , (6.65b)
where RG’}; TRY IRGZ, Réfk ' RX 5 REA denote the restrictions.

Lets us simply denote P/%? the operator in (6.65a)) such that o0 = ph? o §o %, o v, and
? the operator in (6.65b) such that vﬁd = Pfd2 08,0 vij

Remark 6.5.6. Further refinement is required for the error estimates of the two-level and multi-
level methods. Indeed, in [Lak07], error estimates are established as if we take the restriction
in a grid discretizing a domain X = (X + B(0, L—c“)), where L, is the Lipschitz constant for the
value function. Here, we restrict further the grid such that it covers a neighborhood of the nodes
in which the optimal of and , which can be thought of the optimal trajectories for
the dual problems corresponding to the dual value functions. We expect that the error estimates
in [Lak07] still hold at certain neighborhood of the original problems. We present the following
proposition, as a conjecture, and as a light to the computational complexity analysis.

Proposition 6.5.7.

(i) For every l € {1,2,...,m}, there exists an n; depending on H; and & such that for all
n
m = i, and t € {0,6,...,T}, XH'1 contains FTZ, that is the L —geodesic points for

problem (6.1al) at time t.

(i) Taking m as proposed in (i), then for every l € {2,...,m + 1}, t € {0,0,...,T} and

T € F , we have
ol (@) = vl (2)] < Co(H)?, [0y () = vlg(2)] < Cha(HL)? (6.66)

Thus, {vim}, {v9 ™} converge to v, v, respectively as Hy, — 0.

6.6 Computational Complexity

In this section, we analyze the computational complexity of our algorithm, and give the optimal
parameters to turn the algorithm. The efficiency of our algorithm is highly dependent on the
property of (the neighborhood of) optimal trajectories, for which we always make the following
assumption in this section:
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Assumption (A13) The set of geodesic points I'* is nonempty, and it consists of a finite number,
K, of optimal trajectories for the problem . Moreover, there exists a positive constant H > 0
such that

I+ BY0,H) C X . (6.67)

Let us start with evaluating the neighborhood of optimal trajectories:

Proposition 6.6.1. For everyt € [0,T] and for every x € (9%, there exists a z* € I'} such that:
lz — 2|l < Ca(m)”
where Cg > 0 and B > 0 are constants independent of x, t and 7.

In Proposition the exponent 3 determines the growth of the neighborhood O, of
the optimal trajectories, as a function of 7. This exponent depends on the geometry of the
value function. We shall see in Proposition that for typical instances, taking § = 1/2 is
admissible.

Based on Proposition and the property that Of] wy C A2H7 g C Oén’ﬁ ; are approxi-
mations of (’)ZH, we obtain the following general space complexity result:

Proposition 6.6.2. Given the sets of parameters {m}i=12,. m and {H;}i=12, . m+1, the num-
ber of discretization points generated by the adaptative maz-plus approximation method can be
bounded as follows:

) me1 B(d-1)
s E1) = O () + 52 (M) (6.65)

=2

Sketch of Proof. The summand (%l)d is the number of discretization points needed in the

(nz—l)ﬁ(d*”)
(Hi)?
corresponds to the number of points in the level-I’s grid, which is a "tubular” neighborhood
around the optimal trajectory: at each time step, we only approximate the value functions
using the points in a ball with radius (1;_1)? around the optimal trajectory. (This idea of
using tubular neighborhoods of optimal paths to obtain complexity estimates originates from
our recent work |[AGL23a], dealing with a minimal time optimal control problem.) O

To obtain a complexity bound showing an attenuation of the curse of dimensionality, we
certainly do not want the value function to be too “flat” near optimal trajectories. Indeed, this
would result in a large neighborhood O, and since this neighborhood is used to reduce the
search space and define the new grid in Algorithm the size of the new grid would not be
so much reduced. Therefore, in addition to Assumption we shall also make the following
convexity assumption, around the optimal trajectories.

first level’s grid, for which we discretized using mesh step H;. Each summand (

Assumption (A14)There exists a constant 77 such that, for every optimal trajectory zj(-),
ke {l,...,K}, and every t € [0,T], the value functions v!, and v}, are p—strongly concave in
Bi(x;(t),n) N X.

Proposition 6.6.3. Under Assumption|(A13) and Assumption|(A14), for every n < (%)%, we
can take 3 = % in Proposition |6.6. 1),

Proof. Without loss of generality, we assume first there exists an unique optimal trajectory z*(-).
For all t € [0,7T] and n < (%)%, by Assumption |(A14)| we have

d/ * —
O, € B z*(t),)NX .
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Moreover, the function F! is 2u—strongly concave on B%(x}(t),7) N X. Let us now consider a

z € O, and denote z*(t) by xf. For all s € [0,1], the point sz + (1 — s)zf € Bi(zf,n) N X.
Then, by the strong concavity property, we have

Filse + (1= )a]) + plsa + (1 - )z7)?

> 5 {sFH@) + pa?) + (= 9)(Fie) + uai )}

By a simple computation we obtain that if s > 0, then ||z — z}|| < (m)%, and passing to

the limit in s, we deduce that ||z — z}| < (%)% O

To make sure our active region X does contain all I'y, with ¢t = 0,4, ...,T, we need to take
m big enough, as discussed in Proposition[6.5.7] This result also holds for each level of the grids.
Equation indeed give us an upper bound for choosing the parameters 7;, depending on
the parameters H;. Let us plug this relationship between 7; and H; into , and use the

result of Proposition under the Assumption [(A13)[and Assumption |[(A14)| we have

Cspa({Hl}l:I,...,m+1)

<o((H) '+ Cd,lmil () ) ) (6.69)
=2

As for the computational complexity, our aim is to establish an ideal complexity bound
within an oracle Turing machine model. In this model, the time to solve a convex optimal
control problem, in a small horizon, by calling a direct method (calling the oracle), is counted
as one unit. This ideal complexity bound can be subsequently refined to get an effective bound
in the ordinary Turing model of computation, recalling that e-approximate solutions of well
conditioned convex programming problems can be obtained in polynomial time by the ellipsoid
or interior point methods. Using such an ideal model of computation is justified, since the only
source of curse of dimensionality is the growth of the grid size, and since the execution time in
this model is essentially the size of the largest grid.

Suppose now we want to have a final error in the order of ¢, then we need to take H, 11 =
O(sé). Once H,,41 is fixed, Cyp, is a convex function w.r.t. {H;};—1, . We also notice that,
up to a multiplicative factor, the computational complexity, in our oracle model, is the same as
space complexity. Then, we have the following main result for the computational complexity of
our algorithm:

Theorem 6.6.4. Under Assumption |(A11), Assumption |(A12), Assumption |(A13), Assump-
tion [(A14), assume further d > 2 and let v := (1 — %) < 1. Take p, = C(H,)* for every
l=1,2...,m. In order to get a error O(e) :

1—!

(i) We shall take Hpypy1 = C’(e)%, and Hy = (Hpyy1) =" for alll € {1,2,...,m}. In this
case, the total computational complexity of our m-level method, expressed in the oracle

1-v d
model, is bounded by O((C")4(m + 1)(2)7=7F12) | for some constant C'.
(ii) Set m = [$|dlog(e)| — 1], and take H; = (Hm+1)#ﬂ, then the total computational com-
plexity reduces to O((C’)d(%)%), for some constant C'.

Proof. For , using the result of Proposition the error of the algorithm is less or equal
to C(Hpmy1)? = €. Let us start with only two level of the grids, that is m = 1. In that case, the
computational complexity, deduced from , is

Ceomp(H1, Hy) = O((Ca)*(H1) ™% + (H1)~“(H2)*™") (6.70)
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for some constant Cy. When Hs is fixed, this is a function of Hy which gets its minimum for

’ _d . ’ d 1
Hy = (Cy)(H)T1 with Gy = (5—)% . (6.71)

Then, for the (m + 1) level case, the total computational complexity derived from re-
mains dependent on Hy, Ho, ..., H,,, when H,,; is fixed. To deduce the optimal values of
{Hl}le{l,...,m}a we proceed by an induction on m, and use the iterative formula similar to .
We then obtain the formula for every H; as in (). By substituting these values of H; and
Hyp1=C (a)% into , we obtain the computational complexity bound in ().

For , we begin by considering when v = 1. In that case, pass to the limit when v
approaches to 1 for the formula of H; as given in , we obtain the formula of H; presented
in . This process also yields a new computational complexity bound, attained by taking the
limit of the formula presented in , that is,

Ccomp({Hl}l:I,...,m+1) = O((Cl)d(m + 1)(%)ﬁ) . (672)

This function is dependent on the value of m, and achieves its minimum concerning m when
m = 3dlog(1) — 1, leads to the formula of m (in the order of) the one in (). Now, let us
substitute the values of H; and into , yielding the following expression

L)t 3t )
=0

Hpyq = Hm1

Ccomp({Hl}l:I...,m+1) =0 ((C,)d(

) ) (6.73)
_ \d —d_ (1-v)d

= 1 i — .
(€ m+ ()™ (7))

Take m as in and using H,,41 = C (5)%, we obtain the formula of complexity in (ii). O

6.7 Implementation and Numerical Experiments

In this section, we present some numerical tests, showing the efficiency of our algorithm. We
also compare the results with the Max-plus finite element method in [AGLO08|. The algorithms
are implemented in C++, and executed on a single core of Quad Core IntelCore 17 at 2.3GHz
with 16Gb of RAM.

Notice that for the efficient implementation of our algorithm, it is essential to dynamically
construct and store information of the successive grid nodes. To accomplish this, we use a
“hash-table” date structure, which has space complexity in the same order as the grid nodes and
computational complexity of O(1) for both searching information and inserting new grid nodes.
Detailed information on a similar hash-table technique for storing dynamically constructed grid
nodes can be found in the recent work of authors in [AGL23a].

6.7.1 Effective complexity of the multi-level max-plus method.

We applied our algorithm to several simple examples, in which the value function is known,
so that the final approximation error can be computed exactly: the linear-quadratic control
problems.

Consider the problem (6.1a) with U = R% and X = [-5,5]¢, the initial and final cost
functions are ¢o(z) = —5(z — x0)?, ¢r(xr) = —5(x — z7)? with z9 = (=3,...,-3) and 27 =

(3,...,3). The time horizon is T = 5 and is discretized with the time step § = 0.5. We choose
quadratic basis functions and test functions with ¢ = 10, centered at the points of regular grids.



6.7. IMPLEMENTATION AND NUMERICAL EXPERIMENTS 153

We vary the quadratic running costs and linear dynamics, and compare the results with the
solution of Riccati equations. The computation times are approximately the same for different
linear-quadratic problems. To summarize, within a time budget of 7 hours, we can reach dimen-
sion 6 with finial mesh step of h = 0.2 or dimension 5 with h = 0.05, whereas for classical grid
based methods the computational complexity is O(50°) and O(200°) respectively. To compare,
with the mesh step fixed at A = 0.2, the max-plus finite element method takes approximately
400 seconds for dimension 2, and approximately 3 hours for dimension 3.

To analysis the experimental complexity of the multi-level max-plus method in the light
of the theoretical estimates of Theorem we tested and compared the method on several
dimensions and final mesh steps, with an almost optimal number of levels. Recall that if the
number of levels is chosen optimal as in Theorem we can expect a complexity in the order
of O(C%(#)). This means that the logarithm of CPU time should be of the form

log(CPU time) & log(C)d + log(%) . (6.74)
To verify the validity of this complexity estimation, we will run our algorithm in various di-
mensions and with different final mesh steps. We will then compute the logarithm of the CPU
time as a function of the dimension and also as a function of log(%), where h represents the
mesh step. However, choosing an optimal number of levels may be difficult to implement due to
small differences between the mesh steps. As a result, the obtained results may not always align
perfectly with the theoretical predictions. Nevertheless, we have observed a nearly accurate
match between the experimental complexity and the theoretical one.

We first present the tests for dimension ranging from 2 to 5, with several final mesh steps,
for which we compute both the CPU time and logarithm of the CPU time as a function of
dimension. We show in Figure the graphs of these two functions (with several final mesh
steps). The theoretical estimation suggests a slope of the log(C) for the logarithm of CPU time
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Figure 6.1: Growth of CPU time w.r.t. dimensions.

as a function of the dimension, which does not change for different mesh steps. We give the
precise values of the logarithm of CPU time as a function of dimension in Table where we
compute the slope by linear regression. The estimated slopes are nearly the same for different
mesh step, whereas the difference may be due to the number of levels not being exact optimal
for different mesh steps.

Next, we present tests by varying the value of the final mesh steps, for which we compute
the (logarithm of) CPU time. The graph of CPU time as a function of % is shown in both linear
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Table 6.1: Values and slope of log(CPU time) w.r.t. dimension.

log(CPU Time) w.r.t. dimension

Dimension 2 3 4 5 slope
Final mesh step 0.5 | 3.01 4.43 5.83 7.40 | 1.458
Final mesh step 0.25 | 4.02 5.17 6.52 8.21 | 1.391
Final mesh step 0.1 | 4.80 6.19 7.60 9.09 | 1.429
Final mesh step 0.05 | 5.56 6.90 8.32 10.04 | 1.488

and log-log scales in Figure We also give the precise values of the logarithm of CPU time
as a function of log(%) in Table With slopes computed by linear regression. The theoretical
estimation indicates a slope of 1 for the logarithm of the CPU time as a function of log(%)
for all dimensions, whereas we observed again a nearly accurate match from the experimental

estimated slope.
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Figure 6.2: Growth of CPU time w.r.t mesh steps

Table 6.2: Values and slope of log(CPU time) w.r.t. log(3).

log(CPU Time) w.r.t. log(})
log(+) 3.00 3.69 4.61 5.30 | slope
Dimension 2 | 3.01 4.02 4.80 5.56 | 1.072
Dimension 3 | 4.43 5.17 6.19 6.90 | 1.080
Dimension 4 | 5.83 6.52 7.60 8.32 | 1.093
Dimension 5 | 7.40 8.21 9.09 10.04 | 1.122
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the optimal trajectory, for a class of Hamilton-Jacobi-Bellman equations arising from finite hori-
zon deterministic optimal (maximization) control problems. In particular the reward function
is only semiconcave with respect to the state. We rely on approximating the value function
at a given time horizon by a min-plus linear combination of quadratic basis functions. These
basis functions are then propagated by solving a dual problem. We show the convergence of our
algorithm to the global optimum of the control problem. We apply our algorithm to obtain a
min-plus low-rank tensor approximation of an N-body system.
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7.1 Introduction

7.1.1 Motivation and Context

In this chapter, we consider the numerical approximation of the value function in a deterministic
optimal control problem. One of the well-known optimality conditions for this type of control
problem is provided by the dynamic programming approach (see for instance [FS06; BCOg]).
According to this approach, the value function of the optimal control problem is characterized
as the viscosity solution of a first order Hamilton-Jacobi-Bellman (HJB) equation (see|CL83;
CELS&4)).

In general, whether in continuous time or discrete time cases, one significant advantage of
the dynamic programming principle approach, compared to other approaches such as Pontrya-
gin’s mazimum principe (PMP) [RZ98; [RZ99], is its ability to find the global optimum of the
problem. It achieves the global optimum with only mild regularity assumptions without neces-
sitating stringent requirement of convexity. Moreover, it allows one to synthetize a feedback
optimal control, leading to a solution robust against system perturbations. However, it entails
solving either a nonlinear recurrence or fixed point equation, or the Hamilton-Jacobi-Bellman
equation, which is a fully nonlinear partial differential equations over the state space. Conse-
quently, as it is well known, it suffers from the curse-of-dimensionality. In essence, when the
state space is continuous, classical grid based methods like finite difference scheme (for instance
in [CL84]) and semi-lagrangian scheme (for instance in [FF14]) require constructing a discretized
grid with the same dimension as the state space. Thus, the computational complexity of these
schemes are exponential in dimension. Moreover, for a dimension d > 5, the memory allocation
required to store information about the nodes, and the storage and retrieval of the value function
become infeasible on modern computers due to its enormous size. On the other hand, however,
it’s important to note that even in low dimensions (in terms of state space), the numerical ap-
proximation of the continuous time control problem and HJB equation remains a challenging
task. The regularity of the value function, which in most cases is only Lipschitz continuous,
requires that the convergence of the numerical scheme should be understood in the viscosity
sense. Additionally, each step of computation at the grid node involves an optimization prob-
lem over the control space, which is generally entailing a non-convex optimization problem. The
aforementioned difficulties limit the practical applications of the dynamic programming principle
approach, even through the theoretical studies are rather complete.

One way to overcome the curse-of-dimensionality is to replace the general problem of solving
the HJ equation and approximating the value function in the entire state space with the compu-
tation of only one or several optimal trajectories with a fixed initial state. The latter problem
can be solved, in particular in discrete time setting, using the stochastic dual dynamic program-
ming (SDDP) method, which was first introduced in [PP91] (see also the further developments
in [Shall} GLP15; ZAS19; Gui20; |Gui2l1]). It is designed to solve deterministic or stochastic
control problems with a specific structure where the costs are jointly convex with respect to
state and control, in the sense of minimization, and the dynamics are linear with respect to
both state and control. Such a special structure guarantees that the value function is convex
at every time horizon. Thus, the value function is approximated by a finite supremum of affine
maps (that is, a piecewise affine convex map), and the approximated value function, together
with the optimal trajectories starting from a fixed initial state, can then be computed efficiently
using linear programming solvers. We refer to [Shall; | GLP15| for the convergence of SDDP. In
cases where the assumptions on costs and dynamics are not satisfied, meaning there is a lack
of convexity, the SDDP method typically only leads to a local optimum. In such situations, we
mention more recent works that somehow involve exploiting the structure of optimal trajectories
to approximate the value function. In [AFS19; | AFS20|, the authors introduced a tree-structured
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discretization starting from a given initial state. They then prune the tree to a neighborhood
around the optimal trajectory using the Lipschitz continuity of the value function. In [BGZ22],
the authors introduced an adaptive discretization in the control space, which has been shown
to be efficient when the dimension of the control space is low. In Chapter [l and Chapter [6]
or [AGL23a; /AGL23b|, a multi-level discretization method was introduced, using a coarse dis-
cretization to refine a tubular neighborhood around the optimal trajectory, then employing a
finer discretization within this tubular neighborhood.

More recently, max-plus (or tropical) based methods have been developed to solve optimal
control problems and HJB equations, for instance, in [FM00; McE06; |AGLO8; McE07; Qul4b;
Dow18; |ACT20; DDM23]. These methods take advantage of the max-plus linearity of the evolu-
tion semigroup of the HJB PDE [Mas87|, the so called Lax-Oleinik semigroup. In a broad sense,
following a discretization in time, the value function in a given time horizon of a maximiza-
tion problem is approximated by a max-plus linear combination of basis functions. Then the
basis functions are propagated over time steps using the max-plus linearity of the propagation
semigroup. The max-plus based methods have shown advantages in solving classes of control
problems and the associated HJB equations under specific regularity conditions.

7.1.2 Contribution

Here, our goal is to approximate the value function of a deterministic optimal control problem
with a fixed initial state, together with the optimal trajectory. We consider a maximization
problem, in the case that the reward function is known to be only semiconcave with respect to the
state. Recall that a function defined on a convex set X of R%, ¢ : X — R, is c—semiconcave with
¢ > 0 if the map z — ¢(z) — §[|z||3 is concave on X. Seminconcavity is a useful generalization
of concavity, especially for the value function of an optimal control problem (see for instance
in [CF91; |CS04]). Our method combines the concept of approximating semiconcave functions
with tropical linear combination of quadratic basis functions, and the idea of dual dynamic
programming method to propagate the basis functions, leading to a new algorithm.

In more details, instead of approximating the value function of a maximization problem by
a max-plus linear combination of basis functions, which appears naturally in max-plus based
methods, we employ a min-plus linear combination of basis functions to approximate from above
the value function at a certain time horizon. Moreover, we only look for a tight approximation
around the optimal trajectories. More precisely, we start with a (arbitrary) feasible trajectory for
the control problem, and construct an initial upper approximate for the value function. In every
iteration, we start with a rank k approximation for the value function, that is a min-plus linear
combination of &k basis functions. Since the evolutionary semigroup associated with maximization
problem is only max-plus linear not min-plus linear, we then propagate the basis functions
by solving a dual problem of the propagation, which gives us a new upper approximation.
The trajectory is then updated to the optimal trajectory of the current approximate value
function. This method is inspired by, and can be thought of as a generalization of the (Stochastic)
Dual Dynamic Programming algorithm. We show that under certain regularity assumptions, in
particular the reward function is only required to be semiconcave with respect to the state, our
method converges towards the global maximum. We then apply our algorithm to find a tropical
low-rank approximation of a N-body system.

The chapter is organized as follows. In Section we give preliminary results on optimal
control problems, in both continuous and discrete cases. We also give results on HJB equation,
max-plus approximation method and the (deterministic) DDP method. In Section we
describe our algorithm, and give a comparison with the DDP method. In Section [7.4], we
show the convergence of our algorithm to the global optimum. In Section we apply our
algorithm to obtain a tropical low-rank tensor approximation of a N-body system, and we give
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the numerical results finding the ground state of this system.

7.2 Preliminaries

7.2.1 Optimal Control Problem, Hamilton-Jacobi-Bellman Equation

We are interested in solving the following finite horizon deterministic optimal control problem,

max{/ Uz s))ds + ¢(x(T ))} (7.1a)

over the set of trajectories (z(s),u(s)) satisfying

i(s) = fz(s),u(s)) ,
{m(s) €X, u(s)eU, (7.1b)
for all s € [0, 7], with the initial condition
#o) == (7.1¢)

Here, X C R, assumed to be bounded, is the state space and U C R™ is the control space.
We assume that both X and U are convex sets. The final reward ¢ : X — R is concave. The
Lagrangian (or running reward) £ : X x U — R, the dynamics f : X x U — R? are given
functions, and we assume the following basic regularity properties.

Assumption (A15)
i. f:X xU — R?is bounded and Lipschitz continuous with respect to z, i.e.,

IMy > 0,s.t. || f(z,u)|| < My, Ve e X,ue U,
Ly > 0,s.t. || f(z,u) — f(a',u)|| < Le(||lz — 2’ ||) Vo, ' € X,Vu e U .

ii. £: X xU — R is bounded and Lipschitz continuous with respect to z, i.e.,

AM, > 0,s.t. |[l(z,u)|]| < My, Ve € X,ue U,
Ly > 0, s.t. ||l(z,u) — (2", u)|| < Le(||z — 2'||), Vz,2" € X,Vu e U .

A well known sufficient and necessary optimality condition for the above problem is given by
the Hamilton-Jacobi-Bellman (HJB) equation, which is derived from the dynamic programming
principle. Indeed, let us consider the value function v associated to any (z,t) € X x [0,T], where
v(x,t) is the supremum of ftT {(x(s),u(s))ds + ¢(x(T)) under the constraint (7.1b)), for every
s € [t,T], and with the initial condition x(t) = . Then, v is known to be the viscosity solution
of the following HJB equation (see for instance [F'S06]),

ov

5 H(xz,Vv) = (x,t) € X x[0,T7, (7.2)
v(z,T) = ¢(x), reX,
where
H(z,p) = Slelp{p [l u) + (2, u)} (7.2b)

is the Hamiltonian of the problem.
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7.2.2 Propagation by Lax-Oleinik Semi-group and Max-plus Approximation

Recall that the maz-plus semifield is the set Ryax := R U {—o00} equipped with the addition
a® b := max(a,b) and the multiplication a ® b := a + b, with —oo as the zero and 0 as the unit.
In the following, we denote by v! = v(-,t) the value function of the optimal control problem ([7.1))
at time ¢t € [0,7T], and S* the Laz Oleinik semigroup (or the evolution semigroup) of equation
(7.2), that is, for all 0 <t < T, ST=t is the map sending the final cost function ¢(-) to the value
function v’:

vt = ST-¢], vtel0,T], (7.3)

such that the semi-group property Stz = S% o §¥2 is satisfied. In addition, the map S is
maz-plus linear (see [Mas87]), meaning that for all scalars A € Ryax and for all functions ¢!,
%+ X — Rpax, we have:
S'let @ ¢°] = S'[¢'] @ 5'[¢7]
S'Ned' =108,

where for any functions ¢! and ¢?, A ® ¢! is the function 2 € X + X\ + ¢!(z) and ¢' @ ¢? is
the function z € X + sup(¢'(x), ¢%(z)), in the usual sense (see for instance [FMO00], [AGLOS|,
[YD21b]). Indeed, the property can be interpreted as the linearity in the sense of the
max-plus semifield, and linear operators over max-plus semifield have been widely studied, for
instance in [McE06; KM97].

The max-plus based approximation methods are recently developed to solve the problem .
This kind of methods takes advantage of the max-plus linearity of S*. For a given time horizon
t € [0,T], the value function v? is approximated by a max-plus linear combination of a family
of “basic functions”, {w;}1<i<p, together with a set of scalars, {\!}1<i<p, that is

(7.4)

¢ N .
(S 1<?<pwz)\’ DX 52%{& + w;(x)} . (7.5)

Natural choices of the family of basis functions are the Lipschitz functions of the form w;(x) :=
—c||z — ;]|1, and the quadratic functions of the form w;(z) = —§||z — al|}. Indeed, denote
Rmax := Rpax U {+00} the complete semiring extending Ry,ax, and let W be a complete Ryyax-
semimodule of functions w : X — Ryax, meaning that W is stable under taking the supremum
of an arbitrary family of functions, and by the addition of a constant, see [McE0G6; [CGQ04] for
background. The semimodule W is chosen in such a way that v* € W for all t € [0,T]. The
family of quadratic functions with Hessian ¢ generates, in the sense of max-plus, the semimodule
of lower-semicontinuous c—semiconconvex functions. In many applications, the value function v
is known to be semiconcave for all ¢ € [0, 7], and then W can be taken as the set of semiconcave
functions, which is a complete module (see for instance [McE06; |[AGLOS8]). The computation of
the scalars is achieved through an iterative process.

7.2.3 (Deterministic) Markov Decision Process

A notable property of the max-plus representation of the value function in (7.2)) is that, it leads
to a discrete time deterministic optimal control problem, or a deterministic Markov decision pro-
cesses. After a time discretization by, for instance, N = % steps, the system (7.2)) is represented
as follows:

vt = S0, Vit=T-6T-25,...,0,
(7.6)

vl =¢ .

To numerically solve the system ((7.6]), we need also to approximate the small time propagation
S%. This is indeed a similar optimal control problem as in (7.1]), only here the time horizon ¢ is
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small. Let us consider, for every function ¢ : X — R, a semi-lagrangian type approximation for
S% that is
SOlp] =~ S0[¢] : x € X s sup {00(z,u) + @z +df(z,u))} . (7.7)
uelU
Sg is indeed the Bellman operator of the following discrete-time finite-horizon deterministic
optimal control problem:

N—-1
max »_ 0l(zp, up) + (an)
k=0
Tyl = Tk + 5f(a;k,uk), Vk, (7'8)

st.qxp € X,u, €U, VEk,
xg € X is given.

The problem is also referred to as a multistage optimization problem or a deterministic
Markov decision problem (MDP). In this context, given a state xp and decision uy at step k, a
deterministic state zp,1 in the next step is reached. One intends to maximize the sum of the
rewards 04(x, uy) induced by the controls, starting from a given state zy during a time horizon
N, together with the final reward ¢(xy). The problem can be solved by iteratively solving
the following Bellman equation,

Vn=29,
{VN— — 9
e =Sp[V"], YVE=N-1,N—-2,...,0.
In , Vi, the value function at step k, can be thought of an approximation of v*® in .
Moreover, the value of the problem is equal to Vp(zo).
Combing the approximation method of the value function in , and the discrete approx-
imation system in , we have the following recursive equation of the scalars:

O wid= & SHwINT, Yi=T-§T-26....,0. (7.10)

1<i<p 1<i<p

Techniques to solve system ((7.10) include applying a max-plus linear operator to A! at every
time step (see in [FMOO]), or applying a nonlinear operator, obtained by introducing a new
family of “test” functions (see in [AGLOS]).

7.2.4 (Deterministic) Dual Dynamic Programming

In the aforementioned max-plus based approximation method, the basis functions (or test func-
tions) are typically generated by a grid, which is obtained through a discretization of the
state space. Another class of algorithms, known as the Stochatic Dual Dynamic Program-
ming (SDDP), solve the problems of the form that do not involve a discretization in space.
These algorithms are designed to identify one or several optimal trajectories of the problem.
For the scope of our discussion, we are only interested in a deterministic version (DDP in the
following).

The DDP is originally presented to solve the problems of the form , in the particular
cases in which (see in [GLP15]),

(i) the running reward ¢ is jointly concave w.r.t. both z and wu;
(ii) the dynamic f is linear w.r.t. both z and wu;

(iii) the final reward ¢ is concave w.r.t. x.
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The algorithm is initialized by drawing a trial (or arbitrary) trajectory :132 of the problem ,
and an upper approximation Vko for the value function Vi, obtained by a linear cut in x%, for
every k =0,1,...,N. Then, at each iteration step m, the DDP performs a loop to first update
the approximation of value function, then update the trajectory.

In every iteration step m, one first sets ;' = xo. Then, for every k =1,2,..., N, one solves
the sub-problem which have the following form:

max 64(x,u) + VT o+ 5 f (x,u)) .
@ mH (7.11)
st.x=ay

This is indeed a convex programming problem. Denote 6} the value of the problem (7.11)), 5"
the Lagrangian multiplier of the constraint z = z7* and ufn the maximizer. Then, the updated
approximate value function at step m is obtained as follows

Vi () i= min{VE_, (2), 0 + (B, @ — )} . (7.120)
The new trajectory is obtained as follows:
oy = a4+ 5 f (2, ulb) (7.12b)

Notice that the DDP algorithm presented above involves only one loop in time to update
both the value function and trajectory. Alternatively, a different approach involves two separate
loops: a backward-in-time loop for value function updates, followed by a forward-in-time loop to
update the trajectory. Then, the trajectory can be computed using the updated value function,

i.e., the computation of ufn, used in ([7.12b), employs V;; instead of Vk"_ﬁl in (|7.11]).

7.3 Semiconcave Dual Dynamic Programming

In this section, we introduce a numerical approximation method addressing the problems of the
form , or of the form , which is essentially a discretized form of . This method is
inspired by the Dual Dynamic Programming method, which is only known to converge when /¢
is jointly concave w.r.t x and u, and f is linear w.r.t z and u (see for instance |[GLP15|). Here,
we address certain amount of non-convexity w.r.t x by approximating the value function from
above using quadratic basis functions instead of affine basis functions.

In this section, we always make the following assumption:

Assumption (A16)
(i) f is affine with respect to both x and w.

(ii) ¢ € C*(X x U,R) and / is strongly concave with respect to u, i.e., there exists a constant
ayp > 0 such that g—zé < —ayly, for the Loewner order of symmetric matrices, where I is
the d x d identity matrix.

(iii) There exist constants 3y, C' > 0 such that —fg,1; < g—;ﬁ < Bely, and Ha?guﬂ < C.

(iv) There exist a constants Ly and 7 > 0 such that the final reward ¢ is a Sp-semiconcave
and Lp-Lipschitz continuous function.

Moreover, we consider the problem ([7.1]) with a fixed initial condition z(0) = z¢ only.
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7.3.1 Min-Plus Upper Approximation

Let us start by discretizing the time horizon by N = % steps. Let St and v! be defined as in
Section Recall that, by the semigroup property we have

vt = S0, Vit =T—06,T—25,...,0,
vl =¢ .

Recall that the min-plus semifield is the set Rpyin, := R U {400} equipped with the addition
a ® b := min(a, b) and the multiplication a ® b := a + b, with +oc as the zero and 0 as the unit.
We intend to solve the system by approximating the value function from above using a
min-plus linear combination of quadratic basis functions. More precisely, given a sequence of
positive constant {c'};—g s 7, we define, for every t € {0,,d,...,T}, the set of basis functions
W, as follows

(7.13)

t
W, = {02||;p_a\|2+b|(a,b)eX><R} : (7.14)

Our objective is to find an upper approximation v“" of the value function v?, for every ¢t €
{0,6,...,T}, by a min-plus linear combination of a family of finitely many quadratic basis
functions {w!}1<i<, such that w! € W, for every 1 < i < r. The approximation v*" takes the

form
ot Sobh = inf {w!}, Vt=0,6,...,T . (7.15)

1<igr
However, for the maximization problem , St is only max-plus linear but generally not
min-plus linear. Therefore the basis functions cannot be directly propagated using . In
the following, we propose a recursive propagation method for the basis function, intending to
provide at least a tight approximation in the set pf geodesic points I'* = {(z,t) | x = 2*(¢),t =
0,0,20,...,T}, where z*(-) : [0,7] — X is an optimal trajectory of the control problem ([7.1))
with the fixed initial condition z(0) = xo.

7.3.2 Propagation of Basis Functions By Dual Dynamic Programming

We first adapt the same approximation method for the small time propagation S°[v**°] as
in (7.7)), namely, for every z € X and t =T,T7 — 0,...,9:

SO H](z) &~ S [0 (z) = 21618{(56(3:, w) + 0!z 4+ 6 f (2, u)} . (7.16)

By approximating v**9 in (7.16)) using v**%" which has the formula (7.15]), we obtain
SEV" ) (2) S sup{66(a,u) + inf {w*(a + 8f (v, u))}} | (7.17)
~ueU I<isr
For every = € X, (7.17)) is indeed itself a constrained optimization problem, for which the

supremum is taken over u € U. Let J(z) denote the supremum of the right hand side of (7.17]).
An equivalent formulation of this sub-problem is expressed as follows:

J(x) = max s,

(7.18)
s.t. s < 0l(z,u) +wo(z +6f(x,u)), VI <i<r.
The dual problem of (7.18)) can be formulated as:
J*(z) = m}%nmgx {Z AL(60(z,u) + wit (x4 5 f (x, u)))} ,
=1 (7.19)

T
s.t. /\520, V1<i<r and Zx\le.
i=1
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Remark 7.3.1. It always holds, according to the weak duality theorem, that J(z) < J*(x).

The formulation gives again an upper approximation of the value function at the time
step t. Moreover, one can notice that if ¢ is approximated by a quadratic function from above,
then J*(x) will remain as an upper quadratic approximation of the value function at the time
step . An effective way to select such an upper approximation from the family of our basis
functions is to compute the optimal control u and the multiplier A w.r.t. the constraint
in using a fixed x, and then construct a function that is a tight approximation in (or
around) x.

This concept motivates us to use a recursive approach to select the basis functions: at each
iteration, we add one new basis function at each time step, which is constructed by solving
and approximating at the “previous” optimal trajectory, and then updating the optimal
trajectory.

7.3.3 The Semiconcave Dual Dynamic Programming Method

In this section, we present our methods, for both initialization and iterative steps.

7.3.3.1 Initialization Step

Assuming Assumption we can find a “simple”, not necessary tight, quadratic upper
approximation for £ and ¢. Then, replacing ¢ by such an approximation, we can easily solve
along with the optimal trajectory, for instance, by integrating the Riccati differential equation.
Let v, for every t = 0,4,...,T, denote the approximate value function, and 2°(-) denote the
optimal trajectory for this system. Then, for every ¢t = 0,6,...,T, we construct the initial basis
functions, denoted by w! € W, as follows, for all z € X:

t
C
wi (@) =7 lo = 2 (®)]13

+ 5gi’t (1)) (= — 2°(1)) (7.20a)
+0(2(1))
and we set the initial optimal trajectory as
zi(t) = 29() . (7.20b)
By doing so, we have an upper approximation for v*, such that
vi(z) < vi’h’(a}) =wh(z), Vt=0,6,...,T . (7.20¢)
7.3.3.2 Iterative Step
At the iterative step m + 1, for every t = 0,9,...,T, we start with a rank m approximation of
the value function at v**°, obtained in step m, that is
o0 Soltoh = inf {w!t}, Vt=0,6,...,T, (7.21)

1<i<m

with wa € Wigs, forevery i = 1,2,...,m. We first set 2}, 1(0) = x¢. For every t =0,4,...,T,
we solve the sub-problem (7.19)) with r = m, where we fix 2 as xz}, ,(¢), and denote the optimal
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multiplier A and optimal control u by )\m+1 ()\2:<+1,2‘)i:1,...,m and uf;::rl, respectively. Then, we

fix A and u as )\m 41 and um 1 respectively, and approximate £(z,-) as follows
t t C¢ 2
{(z, Um*+1) S £m+1( “m*+1) 9 e = zn (D2

ol , " .
+ o (@ (0, (2 = 2l (1) (7.22)
t,%
+ (g1 (1), Uy ) -
By doing so, for u = uf; 1 fixed, we have an upper quadratic approximation for £, which is tight
at 3,1 (t), that is
t,%
Uz, uy, ) < Emﬂ(x Um+1) Vee X, (7.23a)
and
* t,* t,*
€($m+1(t) m—‘rl) Em—i—l( m—i—l(t) m+1) . (723b)
With this approximation, we construct the new basis function, at the iteration step m + 1 and
at time step t, as follows:

why = Z)‘Z;lz((%mﬂ( fn*+1) + w40, m—l—l))) . (7.24)
=1

Remark 7.3.2. One can notice that, by our construction, we shall need to set ¢; = dcy + ci45.
This implies a consistent increase in the Hessian of the basis functions by a constant value with
each successive time step. We will give the details in the next section of fixing such parameters.

Finally, the new upper approximation of v! at iterative step m +1 and time step ¢ is updated
as follows

U:,’,Z_l = inf{vl" wl 3= inf {wl}. (7.25a)

1<i<m+1
The new optimal trajectory is updated as follows

* * t,*

L1 (E40) = @50 (8) + 0f (2711 (), Uy ) - (7.25b)

We repeat the processes until reaching the final time step 7'. The complete algorithm is presented
in Algorithm Here we use a fixed number r of iteration steps.

Algorithm 7.1 Semiconcave Dual Dynamic Programming (1)

1: Discretize time horizon by N = % steps.

2: Find an upper quadratic approximation for £ and ¢, solve the approximate system.
3: Set the initial trajectory, z;(0), and the initial approximation, vi’h, as in ([7.20)).

4: for m=1,...,r—1 do

5: Set @’fn+1(0) = x9.

6: for t=0,6,...,7 do

7: Fix x as x}, ¢ (t ) solve the subproblem ((7.19)) to get the optimal uf;::rl and )\i};*l
8: Fix u and )\ as umJrl )‘m-&-l’ approximate Z by -

9: Construct the new basis function by (7.24).

10: Construct the new approximation Uf,’ffH of v by (7.254).

11: Update the trajectory by .

12: end for

13: end for

Remark 7.3.3. In Algorithm The construction of our approximation indicates that it is only
tight for the points in optimal trajectories. Moreover, we indeed update the optimal trajectories
using the value function at previous iteration step. Thus, it requires only one loop in time.
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7.3.3.3 A variant of the Semiconcave DDP

In the following, we introduce a slightly variant of Algorithm [7.1] which involves two loops in
time: a backward-in-time loop for updating the approximate value function, and a forward-in-
time loop for updating the trajectory. This can be compared with most of the variants of the
DDP, where the trajectory is updated using the freshly updated approximate value function at
every iteration step.

We adapt the same initialization step as in Section For the iterative step, to obtain
the basis function as well as the approximate value function at iteration step m + 1, we do a
backward-in-time loop. At every time step, we apply the same computation as in Section[7.3.3.2]
while using the optimal trajectory obtained in the previous step m, denoted by 57* ().

More precisely, for every t = T,T — §,...,d, we solve the sup- problem with r = m,
where we fix a: as z) (t). Denote as before the optimal multiplier by )\m 11 and the optlmal

control u by um +1- Then we fix Ao i1 and um 1, and approximate £(z,-) by

[ ~t,% Cy ok
é(l’ uerl) < £m+1(x um+1> EH‘I. - xm(t)H%

O @), @) (+ — 2500) (7.26)

GO R

The construction of the new basis function is then as follows:
~1,% ~t+9 ~1,%
m+1 Z )‘m+1 z( m+1( m—i—l) +w t+ ( + 5f( m—i—l))) ) (727)

and the new approximate value function at time ¢ is

~t,h . ~t.h -~ o . .
O = f (O @)} = it {af} (7.28)

Then, to find the new approximate optimal trajectory at step m—+ 1, we do a forward-in-time
loop. Le., we begin with Z;,,,(0) = xo, for every t = 0,4,...,T — §, we recursively get the new
optimal control in step m + 1 by

Uy, 1 (t) = arg rggg{ﬁ(ii‘nﬂ(t), w)

T (@ (1) + 6 (i (1), 1))} -

The optimal trajectory in step m + 1 is computed by

Trpg1(t+0) =T 1 (1) + 0 f(Tr01 (1), U1 (1)), (7.29b)

The complete algorithm is presented in Algorithm In this implementation, a fixed
number of iteration steps 7 is used in order to obtain a rank r approximation of v’. Another
reasonable approach to determining the iteration step is to stop when the (relative) difference
between the current approximation and the approximation in the previous step is small enough.

(7.29a)

Remark 7.3.4. As mentioned previously, computing the optimal ug* in the iteration of Algo-
rithm is equivalent to solving a maximization problem. Assuming Assumption and
when ¢ is small, the objective function is concave and the feasible set U is also concave. Thus,
this problem can be solved using standard optimization method, and sometimes can even be
computed analytically. Computing the optimal )\It,’* is equivalent to solving a convex program-
ming problem, which can be efficiently approached using a solver, for instance CPLEX.
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Algorithm 7.2 Semiconcave Dual Dynamic Programming (2)

1: Discretize time horizon by N = % steps.

2: Find an upper quadratic approximation for ¢ and ¢, solve the approximate system.

3: Set the initial trajectory, z;(0), and the initial approximation, vi’h, as in ([7.20)).

4: for m=1,...,r—1 do

5 for t=T,T—6,...,6 do

6: Fix x as z7,(t), solve the subproblem to get the optimal ﬂﬁ;;l and 5\2;_1.
7: Fix v and X as uf,’;:rl and )\f?’;l, approximate ¢ by (7.26).

8: Construct the new basis function by .

9: Construct the new approximate 17?&1 of vt by .

10: end for

11: Set },,(0) = zo.

12: for t=0,6,...,7 do

13: Compute new optimal control u?, ,(t) by (7.29al).
14 Update the trajectory z, (¢t + &) by (7.29b).

15: end for

16: end for

7.3.4 Comparison with Deterministic DDP

In this section, we compare our algorithm with the conventional DDP method. We aim to show
that our approach can be thought of as an extension of DDP, in particular to handle situations
involving the semiconcavity condition on the running reward.

We adapt the same initialization step as in Section As for the iterative step, let us
follow the lines of Section to solve the problem of the form , where £ is only known
to be semiconcave w.r.t. x. At the iteration step m, the major difficulty involves to solve the
following subproblem for every £k =0,1,2,...,N — 1:

max {5€($,u) + kaifl(w + 6 f(, u))}

T,

(7.30)
st.x=ua) .

In this case, both £(-, u) and the value function are only known to be semiconcave. Thus, instead
of solving the problem ([7.30]), we consider a new subproblem as follows

max {65(1: u) + Vi a4 0 f (z,u) — Ct:cz}
z,u ’ k+1 ’ 2 (7.31)
st.ox=a",

with ¢ = kd. Let us denote ;" the value of problem (7.31), A", the Lagrangian multiplier of
the constraint x = x}*, that is
ke = 0p(27') (7.32a)

where Oy denotes the supdifferential of ¢ and

o(x) = max {5€(a:, u) + Vk"izl(x +f(z,u)) — C;ﬁ} ) (7.32Db)

Denote also by u¥, the maximizer. Then, we construct the new approximate value function as

follows

V™ (x) = min{V;" "} (z), %xQ NPT — )+ 07} (7.33)
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Ct .2

It’s worth noting that the term —<x* in takes a role similar to the “regularization”
for the concavity of the original maximization problem. Moreover, by construction, the map
T — $a? + (Al @ — a") + 0" belongs to the set of basis functions defined in (7.14), for every
m = 1 2,...,r. Thus, we are indeed using the basis functions belonging to W; to approximate
the value function at time ¢t = kJ.

In the following, we will show that the construction of the approximate value function

in ([7.33)) is identically to ([7.25a)). Let us denote

o' (z,u) = 0l(z,u) + Vit (v + 0 f(z,u)) — %xz . (7.34)

Then we have the following result.

Proposition 7.3.5. Under Assumption (A16), denote B = %, there exist § > 0 depending on
ay and B, such that, for every 6 < 6, for every k € {1,2,...,N} and for everym € {1,2,...,r},
@pt is concave w.r.t. u.

Proof. By construction in (7.33)), we have that for every m € {1,2,...,r} and k € {1,2,..., N},
mey _ s (G2 i i i
Vi (x) = 12%13%{ 5T+ (Nez> T — x)) + 05}
Thus, it is enough to show that, for every ¢ € {1,2,...m}

O, u) ==00(x,u) + “5 |z + 6 £ (2, u)||?
@- G 5 (7.35)
+ Neg1.00T +0f(z,u) — Thoy1) + 0 — 57

is concave w.r.t. u, since mlmmlzatlon preserves the concavity. Since p};(z,-) is C?,and U is a
convex set, by Assumption [(A16), we have

%y (ac u) 0%t 9 T
T 58 (x,u) + ) Ct+5B B

< 6(—aly + 6c sBTB) .

(7.36)

Thus, taking 0 = the result follows. O

(87
ceysl| Bl
Proposition 7.3.6. Under assumption Assumption taking 6 < 0 as in Proposz'tz'on
for every m € {1,...,r}, for every k € {0,1,..., N} such that t = kd, we have

c
(@) = 5o + (Al o — 2ff) + 6" (7.37)
Proof. For every k € {0,1,..., N}, denote w!,(x) = %332 + (A @ — a") + 0 with t = k.
Since both w!, and @, are quadratic functions with Hessian ¢, i.e., wl,, @f, € Wy, it is enough
to show that, for one particular x = x}
owt owt .
= . 7.38
(o) = 2 (o) (7.38)

When m = 1, (7.38)) holds by our initialization step. Assume that for every m < m and
for every ¢t € {0,6,...,T}, (7.38) holds. First, by the construction in (7.31) and (7.32)), for
t€{0,9,...,T — 0} we have

wh (@) = b, (2) and

m+1)

C — —
m+1(mk . (mmH)Q + HITH

2 k
—max{&f( 7+ 4) + min {UA)EJ”S( LS f (e mH,u))}}.

zeU 1<i<m

(7.39)
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By Proposition the maximum over u € U is uniquely achieved in ([7.39). Moreover,
following the same formulations as in (|7.18]) and 1 , we obtain that wh (z) = b, (2),
since 12}?6 = war‘S, for every 1 < ¢ < m, and E%ll(mznﬂ, )= f(m?“, -), as indicated in ([7.23)).

Let us denote
@ (x) = max {56(:5, u) + min {uﬁf*‘s(:c + 5f(xk,u)}} :

zelU 1<i<m
We have ot
W .= — — —
S () = e AT (7.40)
Combining the construction of )\fo in (7.32)), we then have
8,(lAjlf7-|—1 m+1 8(157]? m+1
67; (zp ) = W(w?* ) - (7.41)

Notice again that ¥/t = wH‘S, for every 1 < ¢ < m and that by our approximation in (|7.22)),
g i i y y pPp

auth - s i 5 owt. -
m+1 (m+1 ol (,.m+1 m41 (.m+1 m41 (.m+1
we have —g-= (2", 1) = (2", ). Thus —2 (7)) = —g2t (2 ™).
The result of Proposition [7.3.6]is then concluded by an induction on m. O

7.4 Convergence Analysis

In this section, we will show the convergence of our algorithms. In particular, we will show
the convergence to the global maximum of Problem or . We start by showing some
regularity and monotone properties of our approximation.

To simplify the analysis of the convergence, we shall add the following assumption.

Assumption (A17)The domain is invariant by the discretized dynamics in time § > 0 small
enough, that is, for all w € U and for all x € X, x + 6 f(z,u) € X.

Assumption can be though of as a controllability assumption on the discrete system.
Such assumption appears for the convergence analysis of numerical schemes for state constrained
problems (see |FF14; AGLOS]).

For every V : X — R, and § as in Assumption let us denote J : X x U — R such
that

J(x,u) = ol(z,u) + V(e +f(z,u)) . (7.42)

Moreover, we denote A = % and B = % in the following.

Proposition 7.4.1. Let V@ X — Rpax be a By —semiconvave function. Undgr Assump-
tion there exists & > 0 depending on oy and B such that, for every 6 < 9, for every
x € X, the function J(x,-) : U = Rpax is strongly concave w.r.t. u.

Proof. For every uj,us € U, for an arbitrary A € [0, 1], for we have
J(x, dug + (1 — Nug) — (A (z,u1) + (1 = N)J(z,uz))
= 0(l(x, Mug + (1 — Nug) — (M(x,u1) + (1 — N)l(z,uz2)))
+V(z+of(z, Aur + (1 —Nug)) — AV(z+0f(z,u1)) + (1 = NV(z+df(z,u2)))

(7.43)
> 59N = N — ol — DA = WIS (1) — )P
> )\(1 N )\) 6(054 - 526VHBH2) ||U1 o u2”2 )

Thus, the result is concluded by taking 6 < %.
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Corollary 7.4.2. For every x € X, the maximum of J(z,u) over u € U is uniquely achieved at
some u,; € U.

Proposition 7.4.3. Let V : X — R be a Sy —semiconvave function, assume Assumption|(A16)

Assumption and § < & as in Proposition and Assumption |(A17). Let us define the
map U : X — U such that, for every r € X:

U(z) = Argmax, o J(x,u) . (7.44)
Then, there exists a constant Ly such that U is Ly Lipschitz continuous, that is,
U (1) = U(zo) || < Lag||z1 — 22| - (7.45)

Proof. For simplicity, we do as if V € C? on X. Then, J is C? on X x U, by Assumption
and Assumption |[(A17)l By Corollary for every x € X, J(x,u) achieves it’s maximum at

u, € U such that
gi(m,um) =0 . (7.46)

Then by implicit function theorem, the map U is continuously differentiable (C!) and thus on
any compact subset of X, it is Lipschitz continuous. Moreover, we have

ou 0%J\-1 02J
o~ (2) puos (747
By Assumption |(A16), we have, if V' is Sy —semiconcave, then
82‘]< sonly+ 02 (2L T82V3f< 5+ 02 B|*)I (7.48)
oz S oplg + u wv\(_aé + "By Il B*)1a - )

2
Moreover, %

<
positive since § < ¢ as in Proposition
We then conclude that U is Lipschitz continuous with the Lipschitz constant

C§ + C6%. Thus, we have H%{H < #j&w, where the denominator is

C(1+ )

Ly=—-/-—"—. 7.49
o — 98BI (7:49)
O

Proposition 7.4.4. Let V : X — R be fBy—semiconvave. Denote A = , B = %. Un-

der Assumption|(A16), Assumption and with § < § as in Proposition and Assump-
tion|(A17), there exist a constant By, depending on By, Be,6,A,B, C and Ly, such that SZ[V] 18
B, —semiconcave.

Proof. For the semiconcavity of S$[V], it is enough to show that
ShlVI@ +h) + SV — h) = 25,[V](@) < By IR, (7.50)

for every z € X and h € R? such that [v — h,z +h] C X. Let us denote by u* an optimal
control at x + h, and u* an optimal control at x — h, that is, u% and u* satisfy

SoV](z + h) = 8b(x + hyul) + V(e +h+3f(z + hyub)) ,

5 (7.51)
SplV](x —h) =0l(x — h,u™) + V(x —h+6f(x — h,u’)) .
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We first notice that, for some 2/, € [z, + h], 2 € [z — h, x], we have

Uz +h,ul) +4(x — hut) — (U(z,ul) + £(z,ur))

ot 02 ot o0

T T T T *

e mCe +)+2h gz W v )h = o (@, —)+2h g2 (T U (7.52)
CHhHHUJr—U—HJrﬁeHhHQ

(2C Ly + Bo)|IR))?

N

NN

where C' is a bound on the norm of -2 Errm za . By a similar computation, we also have

Vie+h+of(x+h,ul))+ V(e —h+df(x—hu’))

- (V(z+of(x,ul))+V(x+6f(x,ul)))
VOl Blllluf —wZ||(L + I AID 2] + By (1 + 8[| Al
V(LS| AN (L + 8l Al + 26 Lo BIDIR[* -

7.53
< (7.53)
<

B
B

Combining (7.52) and (7.53)), and using the fact that u*, u* are two admissible controls for the
problem at z, we have

SplVI(z + h) + Sp[V](z — h) — 257 [V](x)
=0(x+hul )+ V(e+h+0f(x+hul))
+ 60z —h,u* )+ V(z —h+0f(x— h,ut))

-2 ma[}({éé(a:, )+ V(x+d(z,u)}
<Oz + hyuh) + 0x — hyut) — (£(a,ul) + £(z,ut)))

+V(@+h+of(x+hul))+V(e—h+df(x—hul))
— (V(z+of(x,ul)) + V(z+df(x,ur)))
< (6(2C Ly + Be) + B (1 + 6|l Al (1 + S| All + 26 Lo || BI) || ]I -

Thus, the result is concluded with 3{, = 6(2C Ly + B¢) + fv (1+0|| A||) (14 0||A|| +20 Ly || B|). O

Using similar arguments as for Proposition [7.4.4] we can prove the following result.

Proposition 7.4.5. Let V : X — R be Ly—Lipschitz continuous. Denote A = , B =

%. Under Assumption |(A16), Assumption |(A17) and with § < § as in Proposition and
Assumption|(A17), there exist a constant Li, depending on Ly ,8,A,B, and Ly, such that Sg[V]

is L, -Liptschitz continuous.

For every t = {0,6,...,T}, let us denote v} the approximate value function of the prob-
lem (7.1]) with S approximated by Sfl, that is indeed the value function of ([7.8]) at step k = %.
Then we have the following regularity properties for v}.

Corollary 7.4.6. Under Assumption (A16)|, Assumption and with § < § as in Proposi-
tion and Assumption !A17!|7 there exist constants L!, 8¢ > 0 for t = 0,6,...,T, such that,
LT = Ly and B! = pr and for every t = 0,6,...,T, v§ is B —semiconcave and Lf Lipschitz
continuous on X.

For every t € {0,0,...,T}, recall that the approximate value function v’/ for every m €
{1,2,...,r},is constructed using (7.25a)). We have the following regularity and monotone prop-
erties regarding the approximate value functions.
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Proposition 7.4.7. For everyt = 0,0,...,T, the sequence {U;lbh}me{172m7r} 18 monotone non-
decreasing and lower bounded by v§, in the sense that for every x € X,

vh(z) < vp(e) <o) < <o) (7.55)
Moreover, we have, for allt =0,0,..., T and m=1,...,r,
o) = St |(x) Ve e X, (7.56)

and v& is LY Lipschitz continuous on X.

Proof. The result can be deduced from the equivalence with the usual deterministic DDP algo-
rithm shown in Section [7.3.4]

By the construction of the algorithm in , we have that the sequence of approximations
{vEMY meq1 2.4} is non-increasing.

To show that v? < vt
t=0,6,...,T, v* < vi’%n. Assume that for m > 1, for every t = 0,6,...,T, we have v* < v
that is,

we proceed by induction forward in m. First, we notice that for every

th
m

wi=t, VIi<i<m. (7.57)

7

Then, following the construction in (7.22)) and by the property (7.23), we have w!, . ; > v*, which
is deduced by the construction in ([7.24)). Thus, the result is deduced further by (7.25a)). O

Proposition 7.4.8. Under Assumption for every t € {0,9,...,T}, Let W denote the
set of ep-semiconvex functions in X, then for every ¢ € W, we have

1Sh1e] — S'[@llloe < Ché,  VEE[0,T7, (7.58)

Sketch of Proof. It is enough to notice that the approximation in is a semi-Lagrangian
type discretization in time for our control problem. Thus the convergence follows from the
convergence of the semi-lagrangian scheme. (Il

The following theorem shows that our algorithm converges to the true value function in the
final generated trajectory.

Theorem 7.4.9. Under Assumption Assumption and assuming 6 < 6, and X
compact, we have, for every t € {0,0,...,T},

(i) The sequence of functions vZ’h converges uniformly to a function v on X as k — 0,

with v > vs.

(ii) The sequence z(t) converges to a point z* € X as k — oo, such that Vb (@) = vk (zh*).
Moreover, (x%*)1—o.... is an optimal trajectory of the discrete time control problem ([7.8)).

Sketch of Proof. The proof follows some of the arguments as in |[GLP15; |ACT20|. By Propo-
sition the sequence of functions {v,i’h, k > 0} is equicontinuous, bounded and monotone
on the compact set X. Therefore, the convergence of {vZ’h} is deduced from the Arzela-Ascoli

theorem. Moreover, by Proposition again, the limit satisfies b > vk. Moreover, since
S9 is continuous for the uniform convergence, we also get that oM (@) > S’g[viJr(s’h] (x), for all
x e X.

For , since X is compact, the sequence of trajectories (x}(t))t=0,.. 7 admits limit points
when k goes to infinity. Let (xt’*)t:075,..,7T be such a limit point. Since U is also compact, one
can assume also that the corresponding subsequences of controls (uz*)t:0757_,,,;p converges towards

(u**)¢—0.. 7. Then, by continuity of the dynamics f, the discrete trajectory {xt’*}te{o@_“’T} is
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a feasible trajectory for the discrete control problem obtained by taking the control u>* at time
t.

By definition of {vg"}, we have vil'y (w41 (1)) < why (2, () = SHlop™") (@i () =
0l(x 4 (1), uiil) + v,?d’h(az’,gﬂ(t) +0f(zf (1), u',;il)) Passing to the limit in the subsequence
when £ goes to infinity, we obtain that vi’h(a:t’*) <S8 [vi+6’h](a:t’*), and that u>* is the unique
optimal control in the expression of S’g[vi+5’h] (z%*). Recall that the functional inside
the max is strongly concave w.r.t u when 6§ < 0, as shown in Proposition consequently,
the optimal control is uniquely achieved. Since U*T’h(:nT’*) = ¢(27*), we deduce by backward
induction on ¢ that o2 (zt*) < vi(z*) for all t = 0,...,T. Since the other inequality holds, we
get the equality. In particular v (zq) = v)(xp). Now going forward and using the uniqueness of
the optimal control, we deduce that z%* is the unique optimal trajectory of the discrete optimal
control problem starting at xg. This shows in particular that the limit point (xt’*)y:(),“_,T is
unique and thus that the sequence (2} (t)):=0s,.. 7 converges towards this unique trajectory. O

Remark 7.4.10. We proved the convergence of our algorithm towards a value function which
coincides with the true value function on some limit of the generated trajectory. We also show
that this limit of the generated trajectory is the optimal trajectory of discrete time control
problem. Then, using Proposition the convergence to the global maximum is automatic.

7.5 Application to Tropical Low-Rank Approximation of a N-
Body System

In this section, we apply the approximation method introduced in Section to solve N-body
optimal control problems. In particular, we show that the approximation of the value function
provided by semiconcave dual dynamic programming can be interpreted as a tropical (min-plus)
analogue of a low rank approximation of a tensor. We illustrate the method by an application
to a collision avoidance problem.

7.5.1 Min-Plus Low-Rank Approximation

Consider a function F' : R™ — Ryy;,. We intend to approximate F using a family of functions
{Fk}k:m,_“m, where F* : R™ — Ry, for every k, by a min-plus addition such that, for every
r = (x1,22,...,24) € R" .
F(r) = min F , 7.59a
(z) = min F*(z) (7.59a)
Each function F'* consists of a family of univariate functions {Fik}i:1,27,,,7n, where F‘f R — Rpyin
for every 4, by min-plus multiplication such that:

PRy, a) =Y FF(x), VE=1,2,...,r. (7.59b)
=1

The function F*, being the sum of functions in each variable, is analogous to a rank one ten-
sor. Then, (7.59)) provides an approximation of F' by a tropical analogue of a “rank r tensor
decomposition”, see e.g. [OR20] for background. More generally, we will consider a function F'
defined on a Cartesian product (R%)", and look for an approximation of the same form, where
now every x; belongs to R

7.5.2 Optimal Control of A N-Body System

Consider a system consisting of N elementary dynamical subsystems in interaction, and denote
¢:(s) € R the position of the state at time ¢ for every elementary subsystem i € {1,2,..., N}.
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Denote by V; : R — R an individual potential energy function for subsystem i, and 7} : R — R
such that T;(§(s)) := 3&¢(s)M;i&(s) an individual kinetic energy at time s. Moreover, we
denote by W : RV*4 5 R, a potential energy representing the interaction betweeen all the
elementary subsystems. We look for a trajectory £(s), for s € [0,¢] minimizing the following
action functional, under suitable initial and terminal conditions:

i N
FE() = / (3 (Vil&i(s)) + Tu(&i(s))) + W(E(s)) ) ds - (7.60)
i=1

Observe that the Lagrangian appearing in the action is the sum of the kinetic and potential
energy, instead of their difference, as in classical mechanics. Lagrangians of the form ,
in which the potential is typically coercive (tending to co as ||£|| — o0), are the most natural
ones in applications to optimal control. In particular, thanks to coercivity of the potential, the
minimization problem is well defined over an arbitrary horizon ¢t. Indeed, we shall give a concrete
illustration, solving a collision avoidance problem for N-bodies, below. In contrast, in classical
mechanics, we recall that the trajectory of a conservative dynamical system is a minimizer of the
action only for a sufficiently small time horizon [GTO07]; so, the methods we present here apply
only to mechanical problems over a small time horizon. We refer however the reader to [MD15]
for the application of tropical methods to mechanical systems, in situations in which the action
is not least.

Since our control problem evolves to minimize the action functional . This can be
interpreted using the framework of optimal control problem as in , and the corresponding HJ
equation. Since our control problem is formulated as a maximization problem, we consider
the lagrangian as the opposite of the action functional. More precisely, in the formulation of our
control problem , we take

:€:(£17)§N) UZS,
N
= (X (V&) + Té)) + W(©) (761)

=1
f@u) =u,
¢=0.
We characterize the minimum of the action functional at time ¢ by v, which is the viscosity
solution of the HJ equation (7.2).

7.5.3 Low-Rank Approximation of The N-Body System

We consider a particular interaction energy, the Coulomb potential, that is

W= Y —, (7.62)
(<igien | — ]

where w > 0 is a constant. The physical interpretation of is that each element must
maintain a certain distance from one another. When two elements are sufficiently far apart, the
interaction energy between them will have negligible effect on the individual system. We observe
that the Lagrangian of the N-body system has naturally a low rank structure, as it involves a sum
of local kinetic and potential energies, Y;(Vi(&) + T3(&;)). However, the interaction term W (x)
coupling the different elementary subsystems, violates the low rank structure. We circumvent
this issue with the present semiconcave SDDP method, which generates an approximation of the
value function as an infimum of decomposable quadratic functions (given by sums of quadratic
terms in each variable), thus ultimately generating a low-rank tensor approximation of the value
function.
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Figure 7.1: Trajectory of 3-body system with initial states (5,4), (0, —5), (—10,0).

7.5.4 Numerical Results

In this section, we apply our algorithm to an N-body system described in Section , solving
a collision avoidance problem. Our objective is to approximate the value function, identify the
optimal trajectory, and determine the ground state for each element, with the initial positions
of the elements are fixed, and the final cost ¢ = 0.

Three Body System. We first test the algorithm on on three-body systems in dimension 2,
resulting in optimal control problems in dimension 6. For each elementary dynamical subsystem,
we take the same individual potential energy V;(&) = 1]/&|* and individual kinetic energy
Ti(&) = %H&Hz The interaction energy is taken to be the Coulomb potential as in (7.62) with
w = 1. The state space for each body is taken to be R? and the control space is also R?. The
time horizon is 5 and is discretized by § = 0.05. The iteration step is fixed to be 50. Below, we
present the trajectories of the three bodies and the evolution of individual trajectory over time,
with different fixed initial states. The algorithms are implemented in MATLAB, and executed
on a single core of Quad Core IntelCore 17 at 2.3GHz with 16Gb of RAM.

Notice that if W = 0, meaning that there is no interaction, the trajectory of each elementary
subsystem converges to (0,0) in a straight line. With the Coulomb potential, we expect that the
trajectory of each elementary subsystem still follows the straight line, as the distance between
each element is large. However, the trajectory will not convergence to (0,0), but a new ground
state that maximizes (in the framework of our optimal control problem) the total energy of
the system. Below we present the pictures of trajectories of the system, and the evolution
of individual trajectory of each elementary subsystem with respect to time, showing that the
evolution of trajectories when the elements are close.

Four Body System. We then test our algorithm on the systems with four bodies, keeping the
data the same as in the three-body system, resulting in an optimal control problem in dimension
8. In this case, we fixed the iteration step to be 100, ensuring numerical convergence for arbitrary
initial states. Below, we present the trajectories of the four bodies and the evolution of individual
trajectory over time, with different fixed initial states.
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Figure 7.2: Trajectory of 3-body system with initial states (20, 20), (25,15), (15, 25).
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Conclusion and Perspectives

* %k

We tackle here some perspectives and further developments of the work presented in this PhD
dissertation.

In Chapter [4] we showed that our algorithm involves dynamically constructing the hierarchy
of finer and finer grids in tubular neighborhoods around optimal trajectories. We established a
computational complexity bound with respect to certain error bound by counting the number
of grid nodes in such a tubular neighborhood. However, the general computational complexity
depends on the set of parameters {7 }1<;<n. The conditions on the parameters 7; depend on
the parameter v and C., of the problem to be solved which are difficult to estimate in practice.
Moreover, it may happen that the lower bound C, is too large, making the theoretical complexity
too large in practice even when 8 = 1. Indeed, in our numerical experiments, for a given
problem, first several tests of the algorithm are done for large values of the mesh steps (or on
the first levels of the multi-level method) with some initial guess of the constant C, assuming
v = 1. In practice we observe that a slight adjustment of this constant can have a substantial
impact on the computation time, while the outcomes of the approximation remain relatively
consistent. One interesting question is to identify the conditions on the parameter 7; in an
implementation efficient way.

Another open problem is to investigate the adaptability of our algorithm in Chapter {4 to
anisotropic front propagation problem. As previously mentioned, fast marching techniques work
as long as the “causality” property holds in the discretization, thus preventing the generalization
of fast marching method to more general anisotropic front propagation problems. However, one
can notice that the causality property always holds in the optimal trajectories. Since the initial
concept of our algorithm is to identify the optimal trajectory and to restrict the search space
within a tubular neighborhood of the optimal trajectory, we would like to analyze the causality
property around the optimal trajectories, and to show the possibility to handle a certain amount
of anisotropy within our algorithm.

In Chapter [5, we analyzed the convergence rate of a Semi-Lagrangian scheme for eikonal
equation, in both semi-discretized case and fully discretized cases. We formulated the semi-
discretized equation as the dynamic programming equation of a deterministic optimal control
problem, and showed that the discrete value function is semiconcave. A convergence rate is
obtained using this property. We then represented the fully-discretized equation as the dynamic
programming equation of a stochastic optimal control problem, and showed the convergence rate
using the properties of the corresponding Markov process. We intend to extend such techniques
to encompass a broader range of optimal control problems with exit time, and to the associated
Hamilton-Jacobi-Bellman equations. Indeed, in the proof of the minimum time problem case, we
used the fact that the running cost is equal to 1, and the dynamics are upper and lower bounded,
so that certain controllability assumptions are automatically satisfied. For more general exit time
problems, we shall need controllability assumptions, in particular in the boundary of target sets.

In Chapter [6] we considered finite horizon deterministic optimal control problems. We
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first showed that, after approximating the value function in a given time horizon by a max-
plus linear combination of basis functions, the small time propagation of the coefficients of the
basis function is indeed a convex programming problem. We then proposed further discretizing
the time horizon, and solving this problem using direct methods. Alternative approaches can
be used to tackle this small time propagation problem, for instance the Pontryagin Maximum
Principle (PMP), given that we have already established the convexity property for this problem
under certain regularity assumptions. This provides the possibility to combine the dynamic
programming approach with PMP to address some control problems from a numerical point
of view, as these two numerical approaches are typically considered belonging to two separate
worlds. In the second part of Chapter [6] we extended the idea of dynamic grid refinement around
the tubular neighborhood of optimal trajectories of Chapter [df However, the error estimates
under mild regularity assumptions need to be further refined. We intend to explore properties
of the semiconcave duality of the value function. In our algorithm of Chapter [6] we indeed
identify and construct the grid around the optimal trajectories of a semiconcave dual problem
of the original one. We aim to identify a max-plus linear propagation operator associated with
this dual problem, and subsequently do the convergence analysis and error estimates within the
framework of the dual problem.

In Chapter [7, we introduced a novel algorithm for numerically finding the value function,
along with the optimal trajectory, for a class of finite horizon deterministic optimal control
problems with a fixed initial state. In particular, the reward function is only required to be
semiconcave with respect to the state x. This method can be thought of as an extension of the
(S)DDP method. We applied this method to solve a particular N—body system. We first notice
that when the time horizon is long, the trajectory of the proposed N —body problem converges
to the turnpike of the system, which gives the minimizer of the non-convex function, in that way
the N—body problem appears as a dynamic version of non-convex global optimization problem.
Thus, the work presented in Chapter [7] indeed proposes a novel framework to find the global
maximum of semiconcave functions. We shall analyze the computational complexity and the
convergence rate of the algorithm with respect to a certain error estimation. Moreover, a major
motivation of this work is to find a tropical low-rank tensor approximation, which can be thought
of as a tropical analogue of the classical low rank tensor decomposition used to approximate
continuous functions. Consider generally a function F : R? — Rpin. In min-plus case, we intend
to approximate F' by a min-plus addition of a family of functions {F*}z—1 o ., F*: R% = Ry

1Ly

for every k, that iS, for every r = ({L’l,:lig, . ,a:d) ceR 5
F(z) ~ min Fk x 7.63a
( ) 1gk}<r ( ) ’ ( )

where each function F* consists of min-plus multiplication of a family of univariate functions
{Fik}i:m,...,d, Fik : R — Ry for every i:

d
F¥ay,. . mg) =Y FF(xi), VE=1,2,...,r . (7.63b)

)

It should be interesting to employ the tropical low-rank tensor approximation method to directly
approximate the value function, and then solve problems that exhibit specific structures.
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Résumé : Dans cette thése, nous développons de
nouvelles méthodes numériques pour résoudre
des problémes de controle optimal déterministe
et les équations d’Hamilton-Jacobi-Bellman (HJB)
du premier ordre associées. L'objectif principal
est d’atténuer la malédiction de la dimension.
Une idée commune a tous nos travaux est de se
concentrer sur le calcul d’'une ou plusieurs tra-
jectoires optimales avec des conditions initiales
et/ou finales fixées.

Dans la premiére partie, nous abordons les
problemes de temps minimum et la résolution
des équations eikonales. Nous introduisons une
méthode “fast marching” multi-niveaux, qui s’ap-
puie sur des grilles imbriquées, permettant
de rechercher les trajectoires optimales dans
un voisinage tubulaire obtenu au moyen d’ap-
proximations dans des grilles grossiéres. Nous
établissons la convergence et la complexité de
notre algorithme. En outre, nous analysons un
schéma Semi-Lagrangien pour les équations ei-
konales. Nous montrons la semiconcavité de
la solution sous certaines conditions. Nous en
déduisons un taux de convergence d’ordre 1

Titre : Hierarchies d’autoroutes pour les équations d’Hamilton-Jacobi-Bellman (HJB)
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pour les schémas semi-discrétisés et entierement
discrétisés, le taux étant mesuré en terme de
pas de temps pour le premier schéma et de pas
en espace pour le second. Nous appliquons ces
résultats pour obtenir le taux de convergence de
la méthode “fast marching” et la complexité de
notre méthode “fast marching” multi-niveaux.
Dans la deuxiéeme partie, nous explorons
les méthodes numériques tropicales pour les
problemes en horizon fini. Dans un premier tra-
vail, nous combinons les méthodes directes avec
la méthode des éléments finis max-plus, ce qui
conduit a une plus grande précision. Ensuite,
nous combinons les concepts de la premiére par-
tie avec la méthode numérique tropicale afin d’ob-
tenir la meilleure borne de complexité sous des
conditions plus générales. Dans un deuxiéme tra-
vail, nous introduisons un nouvel algorithme pour
approximer numériquement la valeur en un état
initial fixé, ainsi que la trajectoire optimale corres-
pondante. Cet algorithme peut étre vu comme une
combinaison de la méthode numérique tropicale
et de la méthode de programmation dynamique
stochastique duale. Nous montrons que notre al-
gorithme converge vers I'optimum global, dans le
cas de probléemes semi-concaves.

Abstract : In this thesis, we develop new numeri-
cal methods to solve deterministic optimal control
problems and the associated first order Hamilton-
Jacobi-Bellman (HJB) equations. Our primary aim
is to mitigate the curse of dimensionality. One
common idea in all our work is to focus on identi-
fying one or several optimal trajectories with fixed
initial and/or final conditions.

In the first part, we address minimum time pro-
blems and solve eikonal equations. We introduce
a multilevel fast marching method, relying on nes-
ted grid approximations to search for optimal tra-
jectories within a tubular neighborhood obtained
from coarse grid approximations. We establish
the convergence and computational complexity of
our algorithm. Furthermore, we analyze a Semi-
Lagrangian scheme for eikonal equations. We de-
monstrate semiconcavity of the solution under
certain conditions. This allows us to establish a
convergence rate of order 1 for both the semi-
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discretized and fully discretized schemes, with
the rate being in terms of the time step for the
former and the mesh step for the latter. We apply
these results to get convergence rate of the fast
marching method and complexity of our multile-
vel fast marching method.

In the second part, we explore tropical numeri-
cal methods for finite horizon problems. In a first
work, we combine direct methods with the max-
plus finite element method to achieve higher ac-
curacy. Then, we combine the concepts of the first
part with the tropical method to derive the best
complexity bound under broader conditions. In a
second work, we introduce a novel algorithm to
numerically approximate the value at a fixed ini-
tial state, along with the optimal trajectory. This
can be thought of as a combination of tropical nu-
merical method and stochastic dual dynamic pro-
gramming (SDDP) method. We show that our al-
gorithm converges to the global optimum, in the
case of semiconcave problems.
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