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Résumé en français

Les nouveau-nés prématurés sont définis comme des enfants nés avant 37 semaines complètes
de gestation [1]. Dans le monde, environ 15 millions de nouveau-nés sont nés avant terme, ce qui
équivaut à 1 nouveau-né sur 10 [2]. En France, on dénombre 122 naissances prématurées par jour et
44 500 naissances prématurées sur l’année, ce qui représente 7,0 % des naissances [3]. La naissance
précoce interrompant le développement complet de leurs systèmes physiologiques, ces nouveau-
nés prématurés sont particulièrement fragiles et sujets à diverses complications, telles que des
affections cardio-respiratoires, immunologiques, neurologiques et digestives. Les complications
liées à la prématurité restent le principal facteur de mortalité des enfants de moins de 5 ans [2, 4]
et sont responsables de plus de la moitié de la morbidité à long terme [5].

Les soins néonatals, en particulier dans les unités de soins intensifs néonatals (USIN), sont
essentiels pour la survie et le développement des nouveau-nés prématurés et gravement malades.
Face à leur vulnérabilité, les USIN offrent à ces nouveau-nés fragiles des soins médicaux spécialisés
et continus, grâce à des systèmes spécialisés de maintien en vie, des technologies de surveillance
avancées et des interventions cliniques adaptées. Cependant, malgré les progrès en médecine néo-
natale et dans les pratiques de soins, la gestion des conditions à haut risque dans les USIN reste
confrontée à des défis importants qui sont systématiquement associés à des séjours prolongés à
l’hôpital et qui ont des répercussions sur les résultats des patients.

L’amélioration des résultats de santé des nourrissons prématurés repose sur la capacité à diag-
nostiquer et intervenir sur des conditions critiques le plus tôt possible. La détection précoce d’évé-
nements indésirables, notamment par des méthodes non invasives, reste un défi mais est devenue
une tendance essentielle dans les soins néonatals. Au cours des dernières décennies, une variété
de systèmes d’aide à la décision clinique (CDSS), qui exploitent les données massives de santé, les
informations fondées sur des preuves et l’analyse statistique ou les techniques d’intelligence arti-
ficielle, ont été développés pour augmenter les capacités de prise de décision des professionnels
médicaux dans les soins néonatals [6–9]. Notre équipe de recherche est particulièrement visible sur
ces activités [10–18].

Cependant, l’intégration de tels systèmes dans les flux de travail cliniques pose des défis im-
portants, notamment en ce qui concerne la complexité de l’acquisition et du traitement des don-
nées, le besoin d’explicabilité des modèles et la difficulté de mise en uvre dans le monde réel
[19, 20]. Relever ces défis est crucial pour le succès du déploiement des CDSS dans les USIN, où
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des quantités massives de données de surveillance peuvent être transformées en informations ex-
ploitables, améliorant ainsi les résultats à court et à long terme pour les nouveau-nés prématurés.

En particulier, cette thèse s’intéresse à un ensemble de défis méthodologiques majeurs in-
hérents au travail avec des modèles d’apprentissage automatique sur les données de surveillance
néonatale en USIN, qui sont longitudinales, continues, dépendantes du temps et souvent bruitées.
Les principaux défis souvent négligés dans ce contexte incluent :

- Dépendances temporelles et covariables évolutives : Les données longitudinales présentent
souvent des dépendances temporelles entre les observations, et les covariables (variables
prédictives) peuvent évoluer au fil du temps, ce qui limite l’application des méthodes clas-
siques d’ingénierie des caractéristiques et d’apprentissage automatique, qui supposent gé-
néralement l’indépendance.

- Données manquantes : Les données longitudinales contiennent souvent des valeurs man-
quantes en raison d’erreurs de mesure, de transmission ou du bruit, ce qui peut entraîner
des estimations biaisées si elles ne sont pas correctement traitées.

- Granularité temporelle et non-stationnarité : Les données peuvent être collectées à diffé-
rentes échelles temporelles et peuvent présenter des fortes périodes de non-stationnarité.

- Complexité du modèle et évolutivité : Le caractère longitudinal des données peut accroître la
complexité du modèle, augmentant ainsi le risque de surapprentissage et les coûts computa-
tionnels, ce qui exige des techniques efficaces de régularisation et la proposition de modèles
évolutifs.

- Interprétabilité des modèles : Il est inmportant de comprendre comment les modèles uti-
lisent les informations temporelles et comment cela affecte les prédictions, afin de s’assurer
que celles-ci soient significatives et exploitables.

En réponse à ces défis, l’objectif de cette thèse de doctorat est de proposer des nouvelles mé-
thodes de traitement et des nouveaux outils applicables au processus de prise de décision impliqué
dans l’unité de soins intensifs néonatals, d’une manière non invasive, continue et en temps pseudo-
réel. Plus particulièrement, ces travaux visent à :

• Améliorer le diagnostic et l’optimisation des thérapies pour les nourrissons prématurés en
analysant des caractéristiques dynamiques telles que la variabilité de la fréquence cardiaque
(HRV), extraites de signaux physiologiques (par exemple, des enregistrements cardio-respiratoires)
à l’aide de méthodes spécifiques et avancées de traitement des données et d’algorithmes
d’apprentissage automatique.

• Approfondir la compréhension des schémas physiologiques chez les nourrissons prématu-
rés en analysant des données longitudinales et en les corrélant avec les résultats cliniques à
travers des approches basées sur des modèles et des connaissances.

• Intégrer les modèles et algorithmes proposés dans un système d’aide à la décision clinique,
permettant des inférences en quasi-temps réel pour assister les cliniciens en fournissant des
informations opportunes et fondées sur les données.
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Cette thèse a été réalisée dans le cadre d’une étude clinique prospective nationale multi-
centrique CARESS-Premi (NCT01611740), “Contribution des analyses en temps réel des signaux
CARdio-RESpiratoires au diagnostic d’infection chez les prématurés”, et elle concerne environ 500
prématurés recrutés entre octobre 2012 et novembre 2018 à travers les USIN de trois centres hos-
pitaliers universitaires français (Rennes, Lille et Angers). Dans cette thèse, deux défis cliniques les
plus fréquentes et les plus difficiles en USIN ont été particulièrement étudiés : l’hyperbilirubinémie
néonatale (jaunisse) [21, 22] et le sepsis tardif néonatal (infection nosocomiale) [23–26].

La variabilité de la fréquence cardiaque (HRV), dérivée des signaux cardiaques, constitue un
outil clé pour évaluer la régulation du système nerveux autonome chez les nourrissons prématurés
dans diverses conditions physiologiques et pathologiques. Le diagnostic reposant sur l’ECG et la
HRV présente l’avantage d’être non-invasif et facilement disponible en continu dans le contexte
des unités de soins intensifs néonatals (USIN). Il offre des informations précieuses sur l’impact de
l’hyperbilirubinémie et du sepsis chez les nouveau-nés à un niveau plus approfondi. Des niveaux
élevés de bilirubine ont été rapportés comme ayant une influence sur la fonction autonome chez
les nouveau-nés à terme et prématurés atteints de jaunisse, modifiant les schémas de fréquence
cardiaque. Certains paramètres spécifiques de la variabilité de la fréquence cardiaque peuvent
révéler ces effets, offrant ainsi des marqueurs prédictifs potentiels pour l’hyperbilirubinémie [27–
30]. De même, le sepsis induit une inflammation systémique qui se manifeste souvent par une
régulation autonome anormale. Des études antérieures ont montré que l’analyse de la HRV peut
servir d’indicateur précoce de la progression du sepsis, fournissant des informations sur la réponse
de l’organisme à l’infection avant même l’apparition des symptômes cliniques [31–35].

Hyperbilirubinémie
néonatale

(NHB)

Évolution de la bilirubine

Estimation de la bilirubine

Det́ection du sepsis 

Déploiement d'un système d'aide à la décision clinique de pointe en USIN
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(LOS)
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FIGURE 1 : Cadre d’étude de la thèse.
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Dans ce contexte, les travaux de cette thèse concernent l’amélioration du processus de prise
de décision en unité de soins intensifs néonatals et des résultats néonatals à l’aide de méthodes
non invasives et continues, basées sur le traitement des signaux physiologiques et des algorithmes
d’apprentissage automatique, combinant des approches basées sur des modèles et des connais-
sances. Les principales contributions comprennent (Figure 1) :

1. Sur la base des travaux de notre équipe (SEPIA in LTSI - INSERM U1099), cette thèse a inté-
gré et amélioré une chaîne complète de traitement automatique des signaux, qui sert d’ou-
til fondamental tout au long de la thèse. Elle comprend plusieurs étapes clés : l’évaluation de
la qualité et le traitement des signaux ECG, la détection du complexe QRS, l’extraction et la
correction des intervalles RR, le débruitage des séries temporelles, l’analyse de la stationna-
rité et l’analyse de la variabilité de la fréquence cardiaque. Cette chaîne de traitement utilise
comme entrée les signaux de surveillance cardiaque provenant de la pratique clinique (don-
nées de vie réelle), et produit des segments stationnaires optimaux et des paramètres utiles
pour l’analyse ultérieure et le développement de modèles d’apprentissage automatique.

2. Concernant la gestion de l’hyperbilirubinémie néonatale, nous avons étudié deux aspects
importants : (a) la caractérisation de la dynamique de la bilirubine sérique totale (BST) ba-
sée sur un modèle mathématique et (b) l’estimation non invasive de la BST basée sur les
connaissances à l’aide de modèles d’apprentissage automatique à effets mixtes. Une contri-
bution majeure dans cette application a été la proposition de modèles hybrides intégrant
des modèles à effets mixtes, des modèles d’apprentissage automatique et des modèles phy-
siologiques. Ensemble, ces études visent offrir une approche globale pour relever les défis
cliniques de l’hyperbilirubinémie chez les prématurés et à ouvrir la voie à des interventions
cliniques plus efficaces et spécifiques au patient.

(a) Caractérisation des dynamiques de la bilirubine sérique totale basée sur un mo-
dèle :
Nous avons proposé et validé un modèle de décroissance exponentielle spécifique à
chaque patient pour caractériser la dynamique naturelle et à long terme des concen-
trations de bilirubine sérique totale chez les nourrissons prématurés nés entre 24 et
32 semaines de gestation. Grâce à un ajustement personnalisé, nous avons obtenu 72
modèles avec des paramètres spécifiques à chaque patient, optimisés en minimisant
l’erreur entre les niveaux mesurés de BST et les résultats du modèle, à l’aide d’une
méthode adaptative robuste aux moindres carrés. Le modèle proposé a démontré son
efficacité et sa capacité à suivre de près les niveaux observés de BST pendant des pé-
riodes néonatales prolongées, avec une racine de l’erreur quadratique moyenne allant
de 1,20 à 40,25 µmol/L, avec une médiane [écart interquartile] de 8,74 [4,89 ; 14,25]
µmol/L. De plus, lorsque l’évolution de la bilirubine d’un patient diverge du modèle
attendu de décroissance, comme indiqué par une augmentation de la racine de l’erreur
quadratique moyenne, cela peut suggérer la survenue d’événements cliniques à haut
risque tels qu’une entérocolite nécrosante et des niveaux élevés de protéine C réactive.
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Cette association indique que les capacités du modèle dépassent la simple analyse
descriptive et peuvent servir de nouveaux biomarqueurs potentiels pour la détection
précoce de comorbidités pertinentes.

(b) Estimation non invasive de la bilirubine totale basée sur des connaissances à l’aide
de modèles d’apprentissage automatique à effets mixtes :
Nous avons exploré des approches non invasives pour estimer les niveaux de TSB chez
les nourrissons prématurés, avec ou sans hyperbilirubinémie, nés entre 242/7 et 316/7

semaines de gestation. Nous avons comparé différents estimateurs d’apprentissage au-
tomatique en intégrant des effets mixtes et des représentations de connaissances phy-
siologiques. Par rapport à une forêt aléatoire standard, les modèles proposés de forêt
aléatoire à effets mixtes modifiée (MERF) ont considérablement amélioré les accords
d’estimation et réduit les biais proportionnels grâce à l’intégration explicite de connais-
sances physiologiques pertinentes. Bien que ces modèles nécessitent des données his-
toriques spécifiques à chaque patient pour leur initialisation, ils montrent un potentiel
clinique dans les USIN, où les données cliniques longitudinales sont fréquemment dis-
ponibles.

3. Concernant la détection précoce de la septicémie néonatale tardive, une première contri-
bution a été la formalisation de la chronologie clinique de la surveillance, la détection et
la confirmation de la septicémie, avec des constantes de temps estimées à partir de la lit-
térature ou directement à partir de nos données CARESS-Premi. Cette formalisation facilite
la représentation des effets causaux qui interviennent lors de la prise de décision en matière
de détection précoce du sepsis et nous a permis de proposer une approche originale dans ce
domaine. En effet, dans ce travail, nous avons évalué l’efficacité de la détection du risque de
sepsis sans tenir compte de la suspicion clinique (c’est-à-dire avant le début du traitement
et de l’intervention) lors de l’entraînement des modèles, ce qui n’est couramment pas le cas
dans la littérature.

Une deuxième contribution dans cet axe a été la constitution d’une base de données lon-
gitudinale formellement annotée de la surveillance multiparamétrique des signaux en
USIN pour la détection précoce du sepsis néonatal. Nous avons acquis les signaux de sur-
veillance continue et longitudinale ECG d’environ 450 prématurés et les avons segmentés
en blocs de 6 heures. La chaîne de traitement des signaux proposée a été appliquée sur tous
les segments de données, afin de dériver les caractéristiques HRV. Une stratégie formalisée
d’étiquetage a été conçue pour générer des pseudo-étiquettes pour chaque segment, qui in-
diquent l’état du patient (septicémie, non-septicémie ou incertain). Cette base de données
pourrait être utilisée dans d’autres recherches de notre équipe, en particulier pour l’exposi-
tion conjointe des signaux ECG et respiratoires.

Une troisième contribution dans cet axe a été la proposition et l’évaluation, sur la base
de données susmentionnée, d’une série de modèles d’apprentissage automatique, y com-
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pris la régression logistique (LR), la forêt aléatoire (RF), l’eXtreme Gradient Boosting (XG-
Boost), le perceptron multicouche (MLP), ainsi que des réseaux de neurones convolutifs peu
profonds (shallow CNN). Selon leur degré d’indépendance temporelle, les détecteurs déve-
loppés ont été catégorisés en détecteurs instantanés (indépendants du temps) et détecteurs
dépendants du temps. La meilleure performance mesurée parmi les détecteurs instantanés,
basée sur l’analyse des courbes ROC et PRC, a été obtenue par un classifieur RF, avec des va-
leurs respectives de 0,727±0,060 et 0,352±0,099. Les shallow CNN ont fourni les meilleures
performances en tant que détecteurs à court terme dépendant du temps, avec des courbes
ROC de 0,737±0,027 (en utilisant trois segments successifs) et de 0,749±0,045 (en utilisant
six segments successifs). Une analyse de sensibilité a été réalisée pour améliorer l’interpré-
tabilité des modèles. Il convient de noter que nos résultats ne sont pas comparables aux
performances élevées rapportées dans certains articles de la littérature (AUC > 0,80) et, plus
important encore, nous affirmons qu’il est impossible de faire des comparaisons directes
entre les études étant donné l’énorme hétérogénéité et la grande variabilité de nombreux
aspects tels que les définitions de la septicémie néonatale, les stratégies d’annotation, etc.
Nous proposons une critique sur la manière dont la plupart de ces travaux de la littérature
ont été construits et évalués, et nous proposons une discussion sur les défis liés à une évalua-
tion correcte des performances dans ce contexte. Deux limitations particulières sont mises
en évidence : i) l’absence d’une définition précise et normalisée de l’instant de début d’un
épisode de sepsis et ii) le potentiel très élevé de sous-estimation des faux positifs dans ces
travaux. Nous considérons que l’entrainement de modèles ML supervisés dans la plupart de
ces publications souffre de sources significatives de biais, ce qui peut expliquer leur manque
d’applicabilité clinique et de généralisation. Un effort significatif doit être fait dans ce do-
maine afin d’envisager des applications cliniques utiles à l’avenir. Cette discussion, ainsi
que les efforts réalisés dans ce travail pour l’annotation et le traitement formels et temporels
de la base de données CARESS-Premi sont pour nous une contribution supplémentaire de
ce doctorat.

4. Enfin, la dernière contribution de cette thèse concerne le développement et le déploiement
d’un prototype avancé de CDSS, dédié à la détection précoce, le diagnostic et l’intervention
dans un contexte clinique. Nous avons conçu, mis en oeuvre, déployé et évalué technique-
ment un CDSS qui intègre des chaînes de traitement du signal en quasi-temps réel et des
modèles d’intelligence artificielle en inférence, dans l’USIN du CHU de Rennes. Ce système
comprend la transmission de données, la pseudonymisation, la fusion de données, le trai-
tement des signaux et l’application des modèles en inférence. Au cours des six premiers
mois de déploiement depuis janvier 2023, le service a reçu en continu les données de mo-
nitoring de 138 nouveau-nés, traitant les données en direct et générant des estimations du
niveau de bilirubine à une résolution temporelle de 15 minutes. Malgré certaines limitations
du modèle d’inférence actuel pour l’estimation de la bilirubine, qui constituait le premier
cas d’usage intégré au système on-the-edge, une évaluation quantitative des performances
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techniques du système en termes de stabilité et de consommation des ressources a été réa-
lisée, et une configuration du système robuste et satisfaisante a été obtenue. En outre, un
rapport de cas clinique spécifique, basé sur les résultats intermédiaires dérivés du système
en quasi-temps réel, apporte des indications prometteuses quant à l’utilité et à la faisabi-
lité du système. À notre connaissance, il s’agit de la première proposition d’un CDSS com-
plet, multi-sources, quasi-temps-réel et on-the-edge, déployé en vie-réelle pour la détection
précoce d’événements à haut risque spécifiques à chaque patient. Cette démonstration de
faisabilité constitue un premier pas solide vers la mise en place d’un système de détection
précoce des événements à haut risque, en exploitant les propriétés dynamiques des données
longitudinales multivariées et multi-sources sur la plateforme proposée.

En conclusion, en s’appuyant sur le traitement des signaux physiologiques et les techniques
d’apprentissage automatique, cette thèse de doctorat a proposé différentes approches basées sur
des connaissances et des modèles pour améliorer le diagnostic et la gestion des conditions néo-
natales critiques telles que l’hyperbilirubinémie et le sepsis tardif. De plus, un CDSS on-the-edge,
en tant que preuve de concept, a été déployé et évalué de manière préliminaire dans un envi-
ronnement réel d’USIN, démontrant l’efficacité de la pipeline et des modèles proposés en temps
réel. Dans l’ensemble, les explorations de cette thèse montrent un potentiel prometteur pour l’op-
timisation de la surveillance en USIN et l’amélioration de la détection précoce des événements à
haut risque. Ces avancées pourraient grandement renforcer la prise en charge et les résultats des
nouveau-nés prématurés.
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Introduction

Preterm infants, defined as neonates born alive before 37 complete weeks of gestation [1], ac-
count for a substantial portion of the global neonatal population, with approximately 15 million
preterm births occurring annually—equivalent to 1 in 10 newborns worldwide [2]. In France, 122
preterm births are recorded daily, amounting to 44,500 annually, representing 7.0% of all births
[3]. Due to their early arrival, these newborns often face incomplete development of vital organ
systems, rendering them particularly immature and susceptible to a range of complications, in-
cluding cardio-respiratory, immunological, neurological, and digestive conditions. The complica-
tions associated with preterm birth remain the leading cause of under-5 child mortality [2, 4] and
contribute to more than half of long-term morbidity cases [5].

Neonatal care, particularly in the Neonatal intensive care units (NICU), is crucial for the sur-
vival and development of preterm and critically ill newborns. Given their vulnerability, NICU
provide these fragile newborns with continuous, specialized medical care through life-support
systems, advanced monitoring technologies and tailored clinical interventions. However, despite
advances in neonatal medicine and care practices, managing high-risk conditions in NICU remains
a complex challenge. Two of the most prevalent and difficult conditions encountered in these set-
tings are neonatal hyperbilirubinemia (jaundice) [6, 7] and neonatal sepsis [8–11]. These com-
plications are not only consistently associated with prolonged hospital stays but also significantly
impact the overall outcomes of preterm infants.

Improving health outcomes for preterm infants relies on the ability to diagnose and inter-
vene in critical conditions as early as possible. Early detection of adverse events, particularly
through non-invasive methods, remains a challenge but has become a key trend in neonatal care.
In recent years, Clinical decision support systems (CDSS)—leveraging big data, evidence-based
medicine, and advanced analytical techniques such as artificial intelligence—have emerged as
promising tools to enhance early detection and assist clinicians in making more informed, timely
decisions [12–15]. However, integrating these systems into clinical workflows presents significant
challenges, including complexities in data acquisition and processing, the need for model explain-
ability, and the difficulties of real-world implementation [16, 17]. Addressing these challenges
is crucial for the successful development and deployment of CDSS in NICU, where massive
amounts of monitoring data can be transformed into actionable insights, ultimately improving
both short- and long-term outcomes for preterm infants.
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Particularly, this dissertation is interested in a set of major methodological challenges inher-
ent to working with Machine learning (ML) models on NICU neonatal monitoring data, which are
longitudinal, continuous, time-dependent, and often noisy. Key challenges often overseen in this
context include:

• Temporal dependencies & time-varying covariates: Longitudinal data often exhibits tem-
poral dependencies between observations, and covariates (predictor variables) can change
over time, making it challenging for traditional feature engineering and machine learning
algorithms, that assume independence.

• Missing values: Longitudinal data often contain missing values due to measurement errors
or non-response rates, which can lead to biased estimates if not handled properly.

• Temporal granularity & non-stationarity: Data may be collected at varying time scales and
exhibit time-series properties like seasonality or trends, while patterns and distributions can
shift over time, requiring adaptive modeling.

• Model complexity & scalability: The complexity of longitudinal data may increase model
complexity, raising the risk of overfitting and making it computationally expensive, thus
demanding efficient regularization techniques and scalable models.

• Model interpretability: Understanding how models use temporal information and how this
affects predictions is critical to ensuring they are meaningful and actionable.

In this context, the overall objective of this Ph.D. dissertation is to develop advanced data
processing techniques and explainable machine learning models to improve the diagnosis and
management of two critical clinical challenges in the NICU: neonatal hyperbilirubinemia and
late-onset sepsis. This research aims to facilitate decision-making in NICU by leveraging non-
invasive, continuous, and near real-time monitoring systems, providing clinicians with action-
able insights to improve neonatal outcomes. Specifically, the objectives are as follows:

• To improve diagnosis and therapy optimization for preterm infants by analyzing dynamic
features such as Heart rate variability (HRV) extracted from physiological signals (e.g., cardio-
respiratory recordings), using advanced and specific data processing methods and machine
learning algorithms.

• To deepen the understanding of physiological patterns in preterm infants by analyzing
longitudinal data and correlating it with clinical outcomes using both model-based and
knowledge-based approaches.

• To integrate the proposed models and algorithms into continuous monitoring systems
and Clinical decision support systems, enabling near real-time inference to assist clinicians
by providing timely, data-driven insights.

This dissertation is organized as follows (Figure 2):
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Chapter 1 provides the clinical context of preterm birth, focusing on the challenges in manag-
ing Neonatal hyperbilirubinemia (NHB) and Late-onset sepsis (LOS) in NICU. It also introduces
the role of Clinical decision support systems (CDSS) in enhancing neonatal care through brief re-
views of existing CDSS technologies, standards for AI-based deployment, and the challenges in-
volved in integrating these systems into NICU settings.

Chapter 2 outlines the key methodologies and tools employed throughout the dissertation,
detailing the CARESS-Premi project and its data acquisition process, the proposed data process-
ing pipeline, statistical techniques, machine learning algorithms, and explainability analyses. The
methodological framework serves as the foundation for the subsequent studies.

Chapter 3 is dedicated to the first challenge of managing neonatal hyperbilirubinemia. It fo-
cuses on the model-based characterization of natural bilirubin dynamics in preterm infants dur-
ing the postnatal period by developing and validating a patient-specific exponential decay model.
It also explores the potential of the model parameters as biomarkers for detecting associated mor-
bidities.

Chapter 4 extends the discussion on NHB management by proposing a knowledge-based,
non-invasive approach to estimate bilirubin levels using modified mixed-effects random forests,
building on the physiological insights from the exponential decay model proposed in Chapter 3 to
improve accuracy.

Chapter 5 shifts focus to the challenge of early detection of neonatal Late-onset sepsis (LOS)
in preterm infants using HRV data derived from real-life monitoring data. A set of machine
learning algorithms incorporating different HRV variants are proposed and compared to detect
septic events before clinical suspicion emerges.

Chapter 6 presents the design and implementation of a quasi-real-time CDSS, integrating sig-
nal processing and machine learning models on the edge in the scope of NICU. It shows the sys-
tem’s technical performance and clinical feasibility, with preliminary results from first use cases.
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CHAPTER

1 Context

The opening chapter of this dissertation provides a comprehensive context and interest in the
management of preterm infants in Neonatal intensive care units (NICU) settings, with a focus on
the high-risk events they commonly encounter. An overview of preterm birth in terms of def-
initions and associated complications will be first presented, followed by a brief description of
the NICU, where preterm and critically ill newborns receive specialized medical care. Next, two
primary challenges in NICU as the main interests of this dissertation, neonatal hyperbilirubinemia
and neonatal sepsis, are introduced. Finally, the chapter explores the integration of clinical decision
support systems in NICU, discussing both the current challenges and the promising opportunities
in its implementation for improving neonatal care.

1.1 Preterm Birth

1.1.1 Definition

Pregnancy refers to the period during which a fetus develops within a woman’s uterus, mea-
sured by the time elapsing from the first day of the last menstrual period to the day of delivery,
known as gestation. A typical human pregnancy lasts approximately 40 weeks (9.2 months). Ac-
cording to the latest guidelines, health care providers define pregnancy as full-term when it lasts
between 39 weeks and 40 weeks and 6 days [1]. Infants born during this duration are considered
full-term infants.

Preterm birth, also known as premature birth, occurs before 37 completed weeks (259 days) of
gestation, and accordingly, all babies born alive in this case are considered preterm neonates [2].
According to a 2023 report released by the United Nations agencies and partners, a cumulative
total of 152 million vulnerable babies were born prematurely globally in the past decade from 2010
to 2020. In 2020 alone, an estimated 13.4 million live births were preterm worldwide, equivalent to
around 1 in 10 babies being born prematurely [3].

In China, over 7.5 million preterm births were recorded in 2020, making it the fourth-highest
country in terms of preterm births, following India, Pakistan, and Nigeria, with a preterm rate of
6.1% [4].

In France, according to the latest statistics from DREES (Direction de la Recherche, des Études,
de l’Evaluation et des Statistiques du Ministère de la Santé) [5], 122 preterm births occurred daily
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in 2021, amounting to 44,500 preterm births for the year. The premature birth rate stood at 7.0%,
with 11.0% of these classified as “small-for-gestational-age (less than the 10th percentile)” 1 2.

Most preterm births are caused by spontaneous preterm labor, while some are medically in-
dicated to be delivered by induced labor or cesarean section. However, the exact cause of preterm
birth is difficult to identify and it may result from multi-fold factors at the same time as labor is a
complex process [7, 8].

Standard age terminologies to describe the length of gestation and age in neonates during the
perinatal period are defined [9] (Figure 1.1):

Post-Menstrual Age (PMA)

First Day of Last Menstrual Period

Birth

Date of 
Assessment

Conception

Postnatal Age (PNA)

Corrected Age (CA)

Gestational Age (GA)

Expected date of delivery

Figure 1.1: Age terminology during the perinatal period according to the American Academy of
Pediatrics definitions.

(Adapted from [9].)

• Gestational age (GA): the time elapsed between the first day of the last menstrual period
and the day of delivery. Gestational age is usually expressed in completed weeks.

• Postnatal age (PNA): or “chronological age”, refers to the time elapsed since birth. It is
usually written in days, weeks, months or years.

• Postmenstrual age (PMA): the time elapsed between the first day of the last menstrual pe-
riod and birth (gestational age) plus the time after birth (post-natal age). It is usually de-
scribed in the number of weeks.

• Corrected age (CA): or “adjusted age”, the time elapsed between the expected date of birth
and the date of assessment. It is usually described in weeks and months and is mainly used
for premature infants under 3 years old.

1.1.2 Preterm birth associated mortality and morbidity

Preterm birth complications remain the leading driver of under-5 child mortality [3, 10] and
account for more than half the long-term morbidity [11]. In 2021, an estimated 2.3 million neonatal
deaths occurred worldwide (18 deaths per 1,000 live births), with approximately 1 million (0.9 mil-
lion) newborns dying due to direct complications from preterm birth, and millions more survivors
with disabilities that follow them and their families throughout their lives [3, 12].

1. Denominator: number of live births of singletons and twins
2. EPOPé curve [6], adjusted for gestational age and sex
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Newborns born preterm face substantially higher risks of adverse outcomes compared to those
born at term. The risks of mortality and morbidity increase with the degree of prematurity [4].
Preterm births are typically categorized into three subgroups based on accurate gestational age
(Figure 1.2). In general, the more immature the infant, the greater the need for life support. How-
ever, it is essential to emphasize that all newborns, regardless of gestational age, should receive at
least essential newborn care (level-I care) [3, 13]. More information on the levels of neonatal care is
in [14].

• Moderate to late preterm refers to infants born between 32 and less than 37 weeks of gesta-
tion, accounting for approximately 85% of all preterm births. These infants are more fragile
than full-term babies, in addition to level-I care, they may also require additional support or
special newborn care (level-II care).

• Very preterm refers to infants born between 28 and less than 32 weeks of gestation and
represents 10.5% of preterm births. These infants must benefit from additional support,
typically provided through level-II care.

• Extremely preterm refers to infants born before 28 weeks of gestation. Though they repre-
sent only 4.5% of the prematurity, these infants are highly vulnerable and should be imme-
diately transferred to intensive newborn care (level-III care) after birth.

PretermVery Preterm

9 (months)8765

(weeks)3228 3724

Extremely Preterm

41

Term

Figure 1.2: Sub-categories of preterm birth based on gestational age.

As preterm birth interrupts the newborn’s development in utero, a range of complications
arises from immature organ systems that are not yet ready to support life in the extra-uterine en-
vironment. This reflects the fragility and immaturity of critical systems, including the brain and
brainstem, lungs, immune system, kidneys, skin, eyes and gastrointestinal system [15]. Conse-
quently, preterm infants are exposed to severe conditions such as feeding difficulties, neonatal ap-
nea, Respiratory distress syndrome (RDS), Bronchopulmonary dysplasia (BPD), Patent ductus ar-
teriosus (PDA), Necrotizing enterocolitis (NEC), Hypoxic-ischaemic encephalopathy injury (HIE),
hyperbilirubinemia (jaundice), kernicterus, and neonatal sepsis. Furthermore, this population is
also at elevated risk of diverse long-term developmental challenges, including cerebral palsy, in-
tellectual disabilities, epilepsy, visual or hearing impairments, and disorders in terms of psycho-
logical development, behavior and emotion.
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1.2 Neonatal Intensive Care Units (NICU)

France was a forerunner in assisting premature infants in history, partly driven by its concerns
over a falling birth rate [16]. By the 1970s, neonatal intensive care units flourished and became an
established part of hospitals in developed countries, which helped to drastically decrease neona-
tal mortality and notably improve the quality of perinatal and neonatal care. Nowadays, as a
necessity of level-III care, NICU are critical environments equipped with advanced technology,
instruments and trained healthcare professionals. The NICU are designed to provide not only op-
timum around-the-clock care but also specialized life support and monitoring systems for the most
vulnerable patients: preterm and critically ill infants.

The length of hospitalization of infants in the NICU depends on individual variability of
health conditions and physiological competencies. As suggested in [17], thorough preparation
and discharge planning is the process of working with a family to help them successfully transi-
tion from the NICU to home. Among these, babies must achieve some physiological milestones to
demonstrate functional maturation before being discharged home, including [18, 19]:

• Antibiotics: to be off antibiotics and free from signs of infection;

• Feeding: achieve safe oral feeding to keep blood sugar level normal and support weight
gain;

• Thermoregulation: be able to regulate their body temperature independently within a nor-
mal range;

• Events: to be free from apnea and/or bradycardic events during their “car seat test” to
demonstrate cardio-respiratory stability;

• Respiratory control: be able to breathe independently and sufficiently and maintain respira-
tory stability.

Various medical supports are provided in the NICU in order to assist the tiniest newborns in
attaining physiological maturity and meeting these milestones.

Incubators, where infants are placed, serve as the main elements in the NICU. These small
and self-contained beds are enclosed by transparent, hard plastic shields, providing a specialized
and controlled environment to maintain the infants at optimal temperature and humidity levels.
Besides, incubators could serve a dual role in minimizing the risk of infections (cleaning with
disinfectant wipes [20]) and reducing exposure to excessive noise (the use of acoustical foam pieces
[21] or sound-absorbing panels [22]) or light levels (the use of incubator covers [23]) that can cause
harm [24].

Accompanied by the incubators, a range of possible devices can be integrated depending on
each newborn’s need to provide respiratory support, nutritional assistance, medication adminis-
tration, treatments, and so forth. Moreover, infants in the NICU are under continuous monitoring
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of vital signs and cardiac and respiratory activities. Monitoring of these signs enables caregivers to
keep track of the infants’ condition and initiate immediate and effective care if alarms are triggered.

1.3 Challenges in the NICU

Despite advances in neonatal care and medicine, the NICU continue to face persistent chal-
lenges that are often associated with prolonged hospital stays and significantly impact outcomes
for the tiniest patients. These challenges include prematurity and low birth weight, infections such
as sepsis and Necrotizing enterocolitis, respiratory distress syndromes such as Bronchopulmonary
dysplasia, neonatal jaundice, retinopathy of prematurity and neurological disorders, among others
[25]. This section will focus on two of these critical challenges: neonatal hyperbilirubinemia and
neonatal sepsis.

1.3.1 Neonatal hyperbilirubinemia

Hyperbilirubinemia affects 60% to 80% of newborns [26]. It is characterized by abnormally
high levels of bilirubin, a yellow pigment produced during the breakdown of red blood cells, in
the blood of newborns. Neonatal hyperbilirubinemia (NHB) can result in neonatal jaundice, a
clinical condition marked by the yellow coloration of the skin and the sclera (whites of the eyes)
in newborn babies. While most cases of jaundice are common and usually benign—bilirubin it-
self is considered to act as a powerful antioxidant [27]—the potential neurotoxicity of elevated
bilirubin levels necessitates careful monitoring of all newborns and the application of appropriate
treatments [28].

Clinical practice guidelines from worldwide organizations, including the American Academy
of Pediatrics (AAP) [28–30] in the US and the National Institute for Health and Care Excellence
(NICE) [26] in the UK, provide systematic, evidence-based and practical recommendations for the
management of neonatal hyperbilirubinemia, aiming to prevent severe hyperbilirubinemia and
its associated complications. Many other countries and regions have published guidelines that
adapted to their specific national circumstances, such as Australia [31], Canadian [32], China [33],
Israel [34], Italy [35], Norway [36], South Africa [37], Spain [38], Switzerland [39], and Turkish [40]
etc.

Bilirubin metabolism

The normal metabolism of bilirubin, as shown in Figure 1.3, can be summarized in five main
steps [41], including (1) production, (2) uptake by the hepatocyte, (3) conjugation, (4) excretion into
bile ducts, and (5) delivery to the intestine.

The predominant production of bilirubin is the breakdown of hemoglobin in senescent or
hemolyzed red blood cells. Hemoglobin is degraded by heme oxygenase, resulting in the release
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Figure 1.3: Illustration of bilirubin metabolism.

of iron and the formation of carbon monoxide and biliverdin. Biliverdin is further reduced to biliru-
bin by biliverdin reductase. In this unconjugated (or “indirect”) form, bilirubin is water-insoluble
and is mostly transported to the liver tightly bound to albumin although some are “free” and
hence able to enter the brain. Bilirubin then enters the liver and is uptaken by the hepatocytes and
subsequently conjugated with glucuronic acid via the enzyme uridine diphosphate–glucuronyl
transferase. In this state, bilirubin is soluble in water and it is called conjugated (or “direct”) biliru-
bin. Then, bilirubin is modified to an excreted bound form which enters the intestinal lumen but
can be dissociated by bacteria, thus bilirubin is reabsorbed into the circulation [41, 42].

Causes

Hyperbilirubinemia in term and preterm infants can arise from a variety of factors. Defects or
immaturity in any stage of the abovementioned bilirubin metabolism, such as increased produc-
tion of bilirubin (bilirubin production in neonates is reported to be twice as high as in adults and
this is because their blood cells have a shorter lifespan [43]), deficient hepatic uptake, impaired
conjugation or increased enterohepatic circulation of bilirubin, can cause high concentrations of
bilirubin in the blood, potentially resulting in hyperbilirubinemia [41, 44].

Additional contributing factors include breastfeeding difficulties, blood group incompatibility
(commonly Rhesus or ABO incompatibility), other causes of hemolysis, sepsis (infection), genetic

12 • Chapter 1: Context



disorders such as deficiency of an enzyme of Glucose-6-phosphate dehydrogenase (G6PD), and
metabolic conditions, all of which can exacerbate the condition.

Physiological jaundice

Most infants develop visible jaundice typically during 1-2 days after birth and it usually re-
solves within 1-2 weeks. This common and generally harmless phenomenon is known as phys-
iological jaundice. It is also proposed that the mild elevation of bilirubin may provide natural
antioxidant protection, particularly at a stage in life when other physiological antioxidant defenses
are not fully developed [45].

Physiological jaundice is caused by a normal and transient increase in unconjugated bilirubin
concentration, which involves the production, excretion, and entero-hepatic circulation of biliru-
bin, without any underlying pathological cause. During this condition, Total serum bilirubin (TSB)
concentrations undergo a rapid rise phase and then a decline to lower levels, eventually mimick-
ing adult values. This pattern is attributed to increased bilirubin production coupled with univer-
sally reduced bilirubin conjugation in newborns, and the subsequent equilibrium between biliru-
bin production and elimination leads to a leveling off or decrease in bilirubin levels over time
[30, 43, 46, 47]. However, the peak bilirubin levels, as well as the duration of rising and falling
phases, can greatly vary in newborns depending on gestational age, birth weight, and/or the pres-
ence of other pathological conditions.

Bilirubin encephalopathy

When bilirubin levels become excessively high in newborns and progress to severe hyper-
bilirubinemia (TSB levels >20 mg/dL (340 µmol/L)) and extreme hyperbilirubinemia (when TSB
>25 or 30 mg/dL (428 or 513 µmol/L)) [48], neonates are particularly vulnerable to bilirubin-
induced neurological damage due to their undeveloped blood-brain barrier. This is because el-
evated unconjugated bilirubin can penetrate the membrane by passive diffusion, increasing neu-
ronal oxidative stress and decreasing neuronal proliferation. The bilirubin neurotoxicity produces
damage to the Central nervous system (CNS) and leads to Bilirubin-induced neurologic dysfunc-
tion (BIND) through its deposition in selective brain regions including the basal ganglia, hip-
pocampus, and brainstem nuclei [49, 50].

Hyperbilirubinemia affecting the CNS can cause both short-term and long-term neurological
dysfunction. Acute bilirubin encephalopathy (ABE) often appears within the first weeks after birth
presenting with non-specific clinical symptoms, such as lethargy, hypotonia or hypertonia, poor
feeding, fever, a high-pitched cry, seizures, recurrent apnea and desaturations, and even death.
If left prolonged and untreated, ABE may ensue and progress to Chronic bilirubin encephalopa-
thy (CBE), also known as kernicterus (yellow staining in the brain). CBE is associated with irre-
versible and permanent neurological sequelae, including cerebral palsy, movement disorders such
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as athetoid palsy and dystonia, auditory neuropathy spectrum disorders such as hearing loss, ocu-
lomotor impairments, digestive dysfunction and intellectual disabilities [26, 49, 51, 52].

The exact level of bilirubin likely to cause neurotoxicity in an individual infant varies and de-
pends on the interplay of multiple factors, including acidosis, lower gestational and postnatal age
(preterm birth), the rate of serum bilirubin rise, serum albumin concentration, sepsis and signifi-
cant clinical instability within the previous 24 hours, etc. [26, 28].

Diagnosis

A very intuitive yet subjective method for the preliminary diagnosis of neonatal hyperbiliru-
binemia is the visual assessment, based on observing the yellowing of the neonatal skin and sclera.
However, the serum bilirubin level required to cause jaundice can vary depending on skin tone
and the affected body region.

The gold standard for NHB diagnosis involves collecting blood samples, typically through a
heel prick or venipuncture, and performing blood tests in the laboratory to measure Total serum
bilirubin (TSB) levels. TSB measurements are accurate and reliable, particularly crucial for diag-
nosing and managing severe hyperbilirubinemia. While this method provides precise results, it
can be painful for the infant and cause blood spoliation.

Non-invasive devices such as the Minolta JM-103 and the BiliChek provide Transcutaneous
bilirubin (TcB) measurements by emitting a flash of light onto the skin and calculating the amount
of bilirubin based on how the light is absorbed or reflected. These devices are becoming common
alternatives to TSB testing, offering reasonable estimates for healthy infants [53] and those with
significant hyperbilirubinemia [54–60].

Transcutaneous bilirubin meters are quick, painless and cost-effective tools, but their accuracy
in estimating TSB at higher bilirubin levels (greater than 15 mg/dL or 256 µmol/L [54, 61, 62]),
in preterm and low birth weight infants [63–65], across diverse races and ethnicities [57, 66], and
before, during or after phototherapy [64, 66, 67] still requires further investigation.

In clinical practice, as recommended by the NICE guidelines on jaundice in newborns under
28 days [26], TSB measurement should be used for infants with a GA of fewer than 35 weeks or
within the first 24 hours of life; TcB measurement is encouraged for infants with a GA of 35 weeks
or more and who are older than 24 hours. TSB should also be measured when bilirubin levels
meet or exceed relevant treatment thresholds for their age, and for all subsequent measurements.
Besides, if TcB measurement indicates a bilirubin level greater than 250 µmol/L (15 mg/dL accord-
ing to the AAP recommendations [29]) or the infant is under 35 weeks gestation, additional TSB
measurements should be conducted to confirm the results.
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Treatment

Phototherapy (PT) and Exchange transfusion (ET) are the standard treatments for NHB and
can prevent TSB levels from reaching dangerous thresholds.

The use of phototherapy was discovered accidentally in a premature baby ward of Rochford
Hospital in Essex, England, by Sister J. Ward, who noticed that the skin of jaundiced infants became
bleached when exposed to sunlight. This observation led pediatric pathologist Dr. R. J. Cremer [68]
to experiment with blue fluorescent lamps, successfully demonstrating a reduction in bilirubin
levels, which marked the birth of phototherapy as a treatment for neonatal jaundice [69]. The blue
light used in phototherapy, with wavelengths ranging from 350 nm to 500 nm and peaking near
455 nm, penetrates the skin well and is absorbed maximally by bilirubin, triggering photochemical
reactions that convert bilirubin into excretable isomers and breakdown products [70, 71].

The primary goal of phototherapy is to reduce TSB concentrations and prevent further in-
creases that could lead to a need for escalation of care such as exchange transfusion [28]. When
TSB concentrations approach dangerously high levels (e.g., diagnosed as ABE) or when inten-
sive phototherapy is ineffective (e.g., hemolysis is occurring), exchange transfusion should then be
provided. This procedure involves removing and replacing the infant’s blood to rapidly reduce
bilirubin levels.

Key aspects of treating hyperbilirubinemia include the timing of treatment initiation, close
monitoring and care during treatment, determining when to discontinue therapy, and checking for
possible rebound bilirubin levels. The TSB level is consistently used to guide the management of
hyperbilirubinemia in all infants.

Initiating treatment

The existing guidelines for managing NHB provide clear thresholds and recommendations to
help caregivers decide when to intervene, based on factors such as gestational age, hours since
birth, and current TSB concentrations. In addition, the presence of risk factors, including pre-
maturity, sepsis, hemolytic disease, etc., is also taken into account to adjust treatment thresholds
accordingly. To illustrate these treatment strategies, we examine two representative guidelines.

The first is the latest version of the AAP guidelines, originally published in 2004 [29], clarified
in 2009 [30] and updated in August 2022 [28]. It offers recommendations for phototherapy and ex-
change transfusion thresholds for neonates born at 35 or more weeks of gestation. Recommended
serum bilirubin thresholds for initiating phototherapy and exchange transfusion by gestational age
and age in hours after birth are shown in Figure 1.4 and Figure 1.5, respectively. The guidelines
also account for hyperbilirubinemia neurotoxicity risk factors.

Another widely practiced consensus-based guideline is from the NICE [26], which offers a
more inclusive approach, covering newborns across the entire spectrum: from preterm, full-term
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Figure 1.4: Phototherapy thresholds by gestational age and age in hours for infants with (a) no
recognized hyperbilirubinemia neurotoxicity risk factors other than gestational age and (b) any

recognized hyperbilirubinemia neurotoxicity risk factors other than gestational age.
Hyperbilirubinemia neurotoxicity risk factors include gestational age <38 weeks; albumin <3.0

g/dL; isoimmune hemolytic disease, glucose-6-phosphate dehydrogenase (G6PD) deficiency, or
other hemolytic conditions; sepsis; or any significant clinical instability in the previous 24 hours.

Bilirubin 1 mg/dL = 17.1 µmol/L.
(Adapted from [28]. Reproduced with permission from Journal Pediatrics, Vol. 150, Copyright ©2022 by

the American Academy of Pediatrics.)
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Figure 1.5: Exchange transfusion thresholds by gestational age and age in hours for infants with
(a) no recognized hyperbilirubinemia neurotoxicity risk factors other than gestational age and (b)

any recognized hyperbilirubinemia neurotoxicity risk factors other than gestational age. The
stippled lines in (b) for the first 24 hours indicate uncertainty because of the wide range of clinical

circumstances and responses to intensive phototherapy. Hyperbilirubinemia neurotoxicity risk
factors include gestational age <38 weeks; albumin <3.0 g/dL; isoimmune hemolytic disease,

glucose-6-phosphate dehydrogenase (G6PD) deficiency, or other hemolytic conditions; sepsis; or
any significant clinical instability in the previous 24 hours. Bilirubin 1 mg/dL = 17.1 µmol/L.

(Adapted from [28]. Reproduced with permission from Journal Pediatrics, Vol. 150, Copyright ©2022 by
the American Academy of Pediatrics.)
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to post-term births. For infants born at 38 or more weeks of gestation, the threshold for initiating
phototherapy is set at 350 µmol/L for those aged 96 hours or more. For infants aged less than 96
hours, the threshold decreases stepwise every 6 hours, starting from 350 µmol/L. The threshold for
performing an exchange transfusion is set at 450 µmol/L for infants aged 42 hours or more; while
the thresholds in TSB concentrations reduce by 50 µmol/L every 6 hours for those younger than 42
hours. Specific age-after-birth-based thresholds are presented in table form (Table 1.1) and graphic
form (Figure 1.6). For preterm infants, thresholds are determined using simple formulas that have
been proposed for use in pediatric textbooks for many years, as shown in Table 1.2. It specifies
two stages: for infants aged 72 hours or older, GA-sensitive thresholds are calculated using the
formula in the second column of table, denoted as threshold72h

PT for phototherapy and threshold72h
ET

for exchange transfusion. For infants younger than 72 hours of life, the thresholds are defined
by linear increases, using the formula in the third column of the table. Additionally, to better
assist healthcare professionals in determining whether a jaundiced newborn requires treatment,
the NICE guidelines provide a series of interactive Excel graphs of TSB versus age in hours, with
a separate graph for each gestational age (from 23 weeks to 37 weeks of gestation). An example
graph for infants at 32 weeks of gestation is shown in Figure 1.7.

During and discontinuing treatment

There is no unified consensus among existing guidelines regarding the frequency of serum
bilirubin monitoring, criteria for discontinuing phototherapy, or recommended intervals for check-
ing for rebound jaundice. But in general, decisions should be guided by the infant’s age, the pres-
ence of hyperbilirubinemia neurotoxicity risk factors, TSB concentrations, and the TSB trajectory.
It is suggested to repeat serum bilirubin measurements 4-6 hours after phototherapy has been ap-
plied [26] (or within 12 hours according to AAP [28]) to monitor treatment progress. Once the TSB
level is stable or falling, the interval for measurements can be extended to every 6-12 hours.

The decision to discontinue phototherapy involves balancing the desire to minimize both pho-
totherapy exposure and the separation of mothers and infants against the risk of rebound hyper-
bilirubinemia. A reasonable point to stop phototherapy is when TSB levels fall at least 50 µmol/L
(or at least 2 mg/dL suggested by AAP recommendations [28]) below the corresponding treatment
threshold. A follow-up TSB measurement is recommended 12-18 hours after stopping photother-
apy to check for possible rebound jaundice.

In extreme cases requiring exchange transfusion, continuous multiple phototherapy should
be maintained, and a TSB measurement should be taken within 2 hours post-ET, with subsequent
management according to the established treatment threshold tables and graphs.

Challenges in hyperbilirubinemia management for preterm infnats

Compared to term and near-term infants, there is less consistent and limited evidence-based
guidance for infants born prematurely; the existing guidelines are, by necessity, consensus-based.
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Table 1.1: Consensus-based bilirubin thresholds for the management of infants with
hyperbilirubinemia born ≥38 weeks of gestation, according to NICE guidelines [26].

(Adapted from [26].)

Neonatal jaundice 

104 

Existing guidelines vary in their recommendations on how frequently to monitor serum 
bilirubin, when to discontinue phototherapy and how often to monitor for rebound jaundice. 

GDG translation from evidence 

The evidence base was not adequate to inform the GDG regarding recommendations for 
monitoring of jaundice after discontinuation of phototherapy and checking for rebound. One 
good-quality study looked at discontinuation of phototherapy but used the Bhutani nomogram 
and was not relevant to UK practice. 

The RCTs reviewed in Section 7.2 generally adopted the practice of discontinuing phototherapy 
once the bilirubin levels were below the threshold value on two successive measurements. The 
GDG reached a consensus opinion. Consideration was given to the potential for rapidly rising 
bilirubin in the presence of haemolysis, and the interval between testing was determined with 
this in mind. Expert advice is that a threshold of 6 hours between tests allows safe differentiation 
between sequential results in order to measure a true rate of increase. 

The GDG recommends a serum bilirubin level be taken 12–18 hours after stopping 
phototherapy to check for rebound jaundice, because of their decision (see Section 7.1.1) to 
stop phototherapy once bilirubin levels at least 50 micromol/l below the age-appropriate 
threshold are reached. This provides for a ‘safety net’ for measurement errors and to identify the 
occasional baby with increased bilirubin production even after apparently successful 
phototherapy.  

Threshold table Consensus-based bilirubin thresholds for the management of babies of 38 weeks or 
more gestational age with hyperbilirubinaemia 

Age (hours) Bilirubin measurement (micromol/litre) 
0   > 100 > 100 
6 > 100 > 112 > 125 > 150 

12 > 100 > 125 > 150 > 200 
18 > 100 > 137 > 175 > 250 
24 > 100 > 150 > 200 > 300 
30 > 112 > 162 > 212 > 350 
36 > 125 > 175 > 225 > 400 
42 > 137 > 187 > 237 > 450 
48 > 150 > 200 > 250 > 450 
54 > 162 > 212 > 262 > 450 
60 > 175 > 225 > 275 > 450 
66 > 187 > 237 > 287 > 450 
72 > 200 > 250 > 300 > 450 
78  > 262 > 312 > 450 
84  > 275 > 325 > 450 
90  > 287 > 337 > 450 

96+  > 300 > 350 > 450 

Action 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

Repeat bilirubin 
measurement in  

6–12 hours 

Consider 
phototherapy and 
repeat bilirubin 
measurement in 

6 hours 

Start phototherapy Perform an exchange 
transfusion unless the 

bilirubin level falls 
below threshold while 
the treatment is being 

prepared 
 

 
Table 1.2: Consensus-based bilirubin thresholds for the management of infants with
hyperbilirubinemia born <38 weeks of gestation, according to NICE guidelines [26].

(Adapted from [26].)

Birth to 72 hours of life72 hours or older

PNA	in	hours	×
thresholds!"#$% − 40	µmol/L

72	hours
+ 40	µmol/LGA	in	weeks	×	10 − 100Phototherapy thresholds 

(µmol/L)

PNA	in	hours	×
thresholds&"#$% − 80	µmol/L

72	hours
+ 80	µmol/LGA	in	weeks	×10Exchange transfusion 

thresholds (µmol/L)
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Guidance summary 

29 Figure 1.6: Consensus-based bilirubin thresholds for the management of infants with
hyperbilirubinemia born ≥38 weeks of gestation, according to NICE guidelines [26].

(Adapted from [26].)

Preterm birth (gestational age under 38 weeks) is one of the risk factors leading to significant hy-
perbilirubinemia [26]. Indeed, hyperbilirubinemia tends to be more prevalent and severe, and its
course is more protracted in preterm infants than in infants born term due to their underdeveloped
organs and corresponding functions and higher susceptibility to complications [27, 72].

Moreover, the risk of bilirubin-induced neurotoxicity is higher in preterm infants compared
to those born term [51, 72, 73]. Several large cohort studies have demonstrated an association
between peak TSB levels during the neonatal period (mainly within the first 14 days of life) and
adverse neurodevelopmental outcomes at a corrected age of 18 to 30 months (around 2 years). In a
cohort study of 1,338 preterm infants (831 babies were available for follow-up) with GA <32 weeks
and/or BW <1,500 grams in the Netherlands, Van de Bor et al. [74] found a direct link between TSB
levels and abnormal neurological outcomes in these preterm infants when they reached 2 years of
old. This association remained evident at 5 years of age in those who had suffered intracranial
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Guidance summary 

23 

 

Figure 1.7: Consensus-based bilirubin thresholds for the management of infants with
hyperbilirubinemia born at 32 weeks of gestation, according to NICE guidelines [26].

(Adapted from [26].)

hemorrhage [74]. Similarly, Oh et al. [75] reported a higher risk of the composite outcome of death
or neurodevelopmental impairment (odds ratio: 1.068) and hearing impairment (odds ratio: 1.138)
in a cohort of 2,575 infants with follow-up data, drawn from an Amerian cohort of 3,246 extremely
low birth weight survivors (401–1,000 grams). A recent multi-center cohort study involving more
than 12,000 extremely preterm infants (born between 22 to 28 weeks of gestation, with a median
[IQR] birth weight of 920 [750; 1,105] grams) in Canada [76] further supported these findings.
Solis-Garcia et al. portrayed normative total peak bilirubin distributions and provided evidence
that preterm infants in the highest GA-specific quartile for peak TSB levels had greater odds of
neurodevelopmental and hearing impairments. While chronic bilirubin encephalopathy including
kernicterus, is currently a rare event in premature neonates, these findings suggest that even subtle
elevations in TSB may potentially play a role in abnormal neurodevelopmental outcomes observed
in this population [77].
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To sum up, improving bilirubin monitoring and management in preterm infants remains a
critical issue and an urgent need. This dissertation approaches these challenges from two perspec-
tives.

Firstly, it is essential to examine the evolution of bilirubin levels in preterm infants, not only
pre-phototherapy but also post-treatment, to gain a more comprehensive understanding of long-
term bilirubin dynamics. Characterizing these dynamics will provide valuable insights into the
natural progression and potential complications associated with hyperbilirubinemia in this vul-
nerable population. By analyzing the bilirubin trends over time, healthcare providers can develop
more accurate and individualized treatment protocols.

Secondly, there is a need to validate and implement more non-invasive approaches for man-
aging TSB. Leveraging the advanced monitoring resources and extensive longitudinal data avail-
able in NICU, these approaches should be evaluated in the context of massive longitudinal clin-
ical data. This goal is to identify more effective methods for future integration into on-the-edge
clinical decision support systems. Such systems, once deployed, may enhance real-time clinical
decision-making, enabling timely and effective interventions for preterm infants at risk of severe
hyperbilirubinemia and its associated complications.

By focusing on these two areas, we may improve the management of hyperbilirubinemia in
preterm infants, ultimately reducing the incidence of bilirubin-induced neurotoxicity and improv-
ing overall outcomes.

1.3.2 Neonatal sepsis

Sepsis refers to a dysregulated host response to infection leading to life-threatening organ dys-
function [78]. Specifically, neonatal sepsis is a generalized inflammatory reaction associated with
a serious infection in infants under 28 days of age [79, 80]. It is often caused by bacterial, fungal,
or viral bloodstream infections. Neonatal sepsis continues to remain a leading cause of neonatal
morbidity and mortality, particularly in low- and middle-income countries and regions [81, 82].
Statistically, the incidence varies from 1 to 4 cases per 1,000 live births in high-income countries,
but as high as 49-170 cases in low- and middle-income countries with a case fatality rate up to 24%
[83]. Survivors of neonatal sepsis are at increased risk for adverse neurodevelopmental outcomes
including cerebral palsy, hearing loss, visual impairment and cognitive delays, etc. Moreover, the
incidence of sepsis is significantly higher in preterm infants, as well as those with very low birth
weight (<1000 grams). Compared to term infants, sepsis in preterm infants is up to 1000-fold more
common and is associated with higher rates of mortality and life-long neurodevelopmental dis-
abilities [84, 85].
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Categories and causes

Neonatal sepsis is divided into two categories: Early-onset sepsis (EOS) and Late-onset sepsis
(LOS). EOS refers to sepsis presenting within the first 72 hours of life (some experts use 7 days),
while LOS is defined as sepsis occurring at or after 72 hours of life [85].

EOS is primarily caused by pathogens transmitted vertically from the mother during delivery,
such as Group B Streptococcus and Escherichia coli. In addition to prematurity and low birth
weight, other key risk factors for EOS include chorioamnionitis, intrapartum fever and premature
rupture of membranes [86].

LOS, in contrast, is often acquired postnatally and is linked to nosocomial risk factors, such
as contaminated medical devices (e.g., catheters), the hospital environment, or healthcare workers.
According to a multi-center survey [87], 21% of Very low birth weight (VLBW) infants who sur-
vived beyond 72 hours experienced at least one episode of sepsis. In Extremely low birth weight
(ELBW) infants, nearly two-thirds had more than one episode of suspected or culture-proven LOS
during hospitalization [88]. Common causative agents include coagulase-negative staphylococci,
Staphylococcus aureus, Gram-negative bacteria (such as Klebsiella and Pseudomonas, etc.), and
Candida species [89]. In extremely preterm infants (below 32 weeks gestation), the risk of LOS
extends beyond the first month of life due to prolonged hospital stays and frequent invasive pro-
cedures. Pathophysiologically, the immature immune system is the major contributing factor to
increased neonatal susceptibility to sepsis.

The clinical manifestations of neonatal sepsis, whatever EOS or LOS, are often non-specific.
Neonates may present with lethargy, temperature instability, poor feeding, apnea, bradycardia,
respiratory distress, pneumonia, etc. In particular, the symptoms of LOS tend to be more insidious
and non-specific than those of EOS, making early diagnosis rather challenging.

Diagnosis

Early detection is critical, yet no single test can definitively rule in or rule out sepsis. The
standard diagnosis of LOS often involves a combination of clinical assessment, laboratory testing
and microbiological cultures.

The gold standard for confirming the presence of sepsis is identifying the causative pathogen
through blood culture. However, it is invasive, time-consuming, and presents variations in pre-
dictive value [90, 91]. Blood exploitation in neonates raises concerns about small blood volume,
and obtaining definitive culture results can take days (median [IQR] delay = 21 [13-32] hours [92]).
Besides, blood cultures carry the risk of producing misleading results as they are prone to false
negatives due to low sensitivity and concurrent antibiotic therapy, as well as false positives due to
contamination during culture procedures.

Biomarkers play a valuable role in early diagnosis of sepsis, risk stratification, and guiding
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the duration of antibiotic therapy. C-reactive protein (CRP) is an acute-phase reactant that rises in
response to inflammation. Although widely used, CRP levels take 6 to 10 hours to rise and 24 to 48
hours to peak after the onset of infection [93], limiting its utility for early diagnosis. Moreover, CRP
is non-specific and can be elevated in other inflammatory conditions, making it more useful when
used in combination with other tests or for monitoring response to treatment. Procalcitonin (PCT)
is more specific to bacterial infections and rises earlier than CRP (within 4–6 hours of infection) and
peaks in around 18 to 24 hours [93, 94]. Hence, PCT is considered an early to intermediate-rising
biomarker [95]. Other emerging biomarkers, such as Interleukins (IL-6, IL-8) are pro-inflammatory
cytokines that rise very early in sepsis, potentially allowing for faster diagnosis [96, 97]. However,
both IL-6 and IL-8 have a short half-life and might be affected by non-infection factors, so it is sug-
gested to combine them with later, more specific biomarkers (e.g., CRP) to increase their diagnostic
properties [98, 99].

Researchers have also attempted to develop and validate so-called sepsis scores by incorpo-
rating different combinations of inflammatory response parameters, laboratory assessments, and
physical examination findings, but no single score has proven consistently reliable [82].

Treatment

The treatment of neonatal sepsis, especially LOS, involves prompt initiation of empirical an-
tibiotic therapy to combat suspected bacterial infections. Evidence strongly suggests that prompt
initiation of appropriate antibiotic therapy is linked to reduced mortality rates and the risk of se-
vere complications, especially for preterm neonates [100–102]. It has been reported that each hour
of delay in initiating antibiotic therapy was associated with an increased mortality of 7.6% [103].
Consideration of early-onset or late-onset presentation and exposures (community versus hospi-
talized status at the time of symptom onset) affects antimicrobial choice [82]. Common empirical
regimens include vancomycin for Gram-positive organisms and gentamicin or third-generation
cephalosporins for Gram-negative bacteria. Once pathogen sensitivities are confirmed, definitive
antibiotic treatments are tailored accordingly.

In addition to antimicrobial therapy, supportive care plays a critical role, including fluid re-
suscitation, inotropic support for septic shock, and respiratory support if needed. Monitoring and
correcting metabolic imbalances, managing complications like acute kidney injury, and providing
antifungal therapy for fungal infections are crucial in more severe cases. Finally, carefully monitor-
ing drug levels and organ function ensures safety and efficacy, and long-term follow-up is needed
to assess and address any developmental outcomes.

Currently, several practical and, where possible, evidence-based approaches to the preven-
tion and management of infants with suspected or proven neonatal sepsis have been reported and
widely used. While these guidelines vary by country and region, they generally share common
principles. Key guidelines include the clinical report for the management of EOS [104], those spe-
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cific to neonates born <35 weeks gestation [105] and ≥35 weeks gestation [106] (published by the
American Committee on Fetus and Newborn [104]), [107] and the guidelines on neonatal infec-
tion aim to reduce delays in recognizing and treating infection and prevent unnecessary use of
antibiotics [108] (published by National Institute for Health and Care Excellence (NICE)).

Challenges in LOS management in preterm infants

Despite the reduced burden of neonatal sepsis because of widespread prenatal screening and
intrapartum antibiotic administration, missed opportunities for diagnosis and intervention still
exist [82]. Prompt and accurate detection and diagnosis are critical for initiating early treatment
and improving overall outcomes ultimately.

The most significant challenge in neonatal sepsis management is early detection. The difficulty
arises from its non-specific clinical presentation, the limitations of current diagnostic tools, and
the vulnerable physiology of neonates. The standard diagnosis method, a positive blood culture,
presents several risks. Blood exploitation in neonates raises concerns about small blood volume,
and definitive culture results can take days (median [IQR] delay = 21 [13-32] hours [92]). There
is also a risk of misleading results from blood cultures, as it is prone to false negatives due to
low sensitivity and concurrent antibiotic treatment, as well as false positives due to contamination
during the culture process.

Meanwhile, given the rapid progression of infection in this vulnerable population (the course
can be fulminant and lead to death within a few hours [109]), clinicians are often compelled to
empirically administer antibiotics to infants with risk factors and/or signs of suspected sepsis.
Unfortunately, this aggressive and indiscriminate use of antibiotics would expose infants to the
risks of antibiotic resistance, unnecessary medication-related adverse outcomes, and also increased
healthcare costs [110–113]. Thus, again, the ability to recognize the condition as soon as possible is
important, so that targeted and prompt treatment can be started early in the course of infection to
prevent further deterioration [101, 102]. At the same time, the development of strategies to reduce
antibiotic use and minimize adverse effects, focusing on optimizing the duration of therapy, should
be the next frontier for antibiotic stewardship in NICU [82].

All this emphasizes the need for improved diagnostic methods, close clinical monitoring,
and timely intervention to reduce morbidity and mortality associated with sepsis. The use of
non-invasive and non-culture-based diagnostics and sepsis scores to predict and diagnose septic
neonates are areas of active investigation. Moreover, monitoring and assessing long-term outcomes
of neonatal sepsis as neonates age remains a notable healthcare challenge [82].
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1.4 Clinical Decision Support Systems in NICU

Clinical decision support systems (CDSS), as a subset of clinical informatics, can be defined
as “software that is designed to be a direct aid to clinical decision-making in which the characteristics of an
individual patient are matched to a computerized clinical knowledge base, and patient-specific assessments
or recommendations are then presented to the clinician and/or the patient for a decision.” [114]. In such a
system, according to Osheroff [115], recipients of the information may include patients, clinicians,
and others involved in patient care services; the information provided may include general clinical
knowledge and guidance, intelligently processed patient data, or a mix of both; and the format in
which the information is delivered may be selected from a rich set of options, including data and
order entry aids, filtered data displays, reference messages, alerts, etc. Although definitions vary,
the purpose of CDSS is to make it easier for healthcare teams to diagnose, treat, prevent, cure, or
mitigate disease and thus improve the overall outcome.

In the following subsections, we introduce the conceptual framework as well as the infrastruc-
ture of a CDSS in general. Then we present the features of decision-making in the context of NICU
followed by a brief overview of the existing CDSS in NICU. Next, some standards and recommen-
dations for the development and deployment of CDSS are demonstrated. Finally, we conclude
with the current challenges with potential benefits and risks related to the CDSS in NICU.

1.4.1 Conceptual framework and infrastructure for CDSS

Most CDSS implementation frameworks incorporate three key components [116–118], as shown
in Figure 1.8: i) patient data, structured or unstructured data, from one or several sources, ii) a
knowledge-based (scientific evidence) or non-knowledge-based inference mechanism (e.g., an al-
gorithm, a prediction rule, Bayesian networks, machine learning) and iii) a user interaction system.

The patient data includes specific data related to the patient for which the decision will be
made. In most cases, the Hospital Information System (HIS) or Electronic health records (EHR)
are the main source, where abundant data are integrated through communications with associated
systems, including multiple monitoring devices and sensors, radiology, laboratories, pharmacies,
scheduling, etc. Clinical data are presented as both structured (e.g., information such as vital signs
and diagnosis codes exist within predefined fields) and unstructured data (e.g., information con-
tained within the clinician notes and imaging reports).

Traditional inference mechanisms are knowledge-based and use guidelines and protocols as
the basis for decision-making. The domain knowledge and evidence are codified in order to be
efficiently and unambiguously executed. A basic strategy is rule-based reasoning, for instance,
if bilirubin levels surpass a quantitative threshold for a given postnatal age, then phototherapy is
advised. The knowledge base needs to be updated when new findings are produced. Therefore, the
knowledge-based CDSS must be adaptive for adding, deleting and modifying rules. Alternatively,
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Figure 1.8: Key components of a clinical decision support system. Patient data are from one or
several sources and presented in structured or unstructured data formats, they can be gathered
through the Electronic health records (EHR) or Hospital Information System (HIS) and directly
communicated with multiple devices/sensors. The inference engine draws conclusions through

scientific evidence and guidelines (knowledge-based) or complex pattern recognition and
analysis (non-knowledge-based). User(s) interact with the input (if any) and output through the

user interface.
(Adapted from [117, 118].)

a non-knowledge-based (in the sense that physiological knowledge is not explicitly represented
into the model) inference mechanism uses methods such as Machine learning (ML) to generate
conclusions from complex patterns that are presented as input to these models. A representative
collection is well-known as ML-based or AI-based CDSS. These systems are particularly effective
when large amounts of data and multiple variables are used for risk stratification or prediction
[118].

The ways in which users interact with CDSS and implement CDSS recommendations differ
widely depending on the infrastructure installed in the hospitals. The interface can be a standalone
installation limited to a single hospital, connected to the local EHR, or web-based and accessible
to all. It is critical to have a clear User interface (UI) that is more than just aesthetically pleasing:
it should be simple, clear to understand and avoid a lot of data displays or cognitive overload.
The UI must be customized to the end user’s task depending on their roles from clinicians and
caregivers to support staff (case manager, billing). Overall, workflow integration, flexibility, and
adaptability of the UI are required [118].

The availability, adaptability, and scalability of CDSS tools, along with their effective imple-
mentation, are directly influenced by the infrastructure and design. Early CDSS are standalone
units and not integrated into HIS and EHR, making the process labor-intensive, time-consuming
and prone to transcription errors. Then with the development of informatics technologies, the
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CDSS are integrated with external systems such as EHR and take the data in EHR as input, making
it easier for users and capable of running several CDSS. However, such a merged architecture may
pose difficulty in portability since the local instances of EHR are often customized and specific
to institutional demands. A more advanced and flexible architecture are service-oriented model
as categorized in [118], in which the CDSS are physically separated from the HIS and EHR while
“integrated” with them through standardized, service-based interfaces. Here, the handshake be-
tween systems is achieved through an interface that uses formal ontologies and vocabularies to
encode and represent clinical data and recommendations. This field of medical device interoper-
ability is particularly active both in the research and industrial contexts and its description is out of
the scope of this manuscript. The major challenges are usually not technical but related to aspects
such as intellectual property protection from different medical device manufacturers or regulatory
constraints.

Overall, it is clear that architecture, or infrastructure, is essential to the development of a
scalable, EHR-independent platform that can operate in a variety of settings. Platform indepen-
dence can be achieved by leveraging the capabilities of data representation, exchange, and storage
standards, including terminology standards (SNOMED, LOINC and RxNorm) [119], information
model standards (HL7 [120]) and standards for creating, representing and implementing CDSS
interventions [121].

1.4.2 Decison-making in NICU

The processes and medical rules followed within NICU are complicated and more complex
and frequent data records are produced due to the dynamic, heterogeneous, and real-time envi-
ronment of the NICU [122]. In fact, making decisions in the NICU is a difficult task and it re-
volves around addressing a myriad of crucial aspects. It ranges from determining medical inter-
ventions and treatment plans to optimizing monitoring parameters and, indeed, devising overall
high-quality and patient-specific care strategies. This multifaceted decision-making process not
only affects the quality of newborn care delivery but may also impose psychological burdens on
parents and exert financial costs for the broader healthcare system. Most deployed decision sup-
port systems incorporating threshold-based alert mechanisms appear far insufficient to encompass
the nuanced complexities of neonatal health. These basic alarms often lead to false positives and
fail to detect subtle yet critical changes that may indicate a deterioration in an infant’s condition.

Achieving the delicate balance demanded to meet the diverse needs of newborns requires
clinical expertise and a sharp grasp of real-time data. Gratefully, the last decades have witnessed a
surge in technological advancement in artificial intelligence and an era of big data, especially in the
medical and healthcare sectors. At the intersection of healthcare and technology, CDSS, especially
AI-based CDSS emerge as powerful tools in the management of complex medical conditions. They
are designed to assist healthcare providers in making informed decisions and ensuring the best
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possible outcomes for patients by improving the quality of patient care, lowering medical errors,
and enhancing overall health delivery.

On the other hand, preterm infants in the NICU share the characteristics of “big data”, i.e.,
“high volume, high velocity and high variety” [123], as they generate extensive and high-dimensional
data through continuous monitoring. In the context of NICU, the “volume” refers to the massive
size of the dataset, and “velocity” refers to the rapid growth of data. “Variaty” refers to the het-
erogeneous data, which partly comes from continuous monitoring of physiological signals and
patients’ vital signs, such as heart rate, respiration rate and oxygen saturation [124]. The clini-
cal information collected in Electronic health records (EHR) is another major data source, which
covers patient admission information, nutrition status, medication management, laboratory test
results, and additional tests like Electroencephalogram (EEG) and magnetic resonance imaging
(MRI). Moreover, NICU infants have medical records that start at birth and thus provide a com-
plete and high-fidelity picture of their clinical state [125]. Such a wealth of healthcare data offers an
opportunity for Artificial Intelligence and Machine learning applications to flourish in this field.

As a consequence, these conditions hit it off perfectly and the AI-based CDSS hold significant
promise within the context of NICU. We present a brief review of the studies of CDSS in the NICU
in the following section.

1.4.3 CDSS in NICU: a brief review

A variety of CDSS applications have been developed and to assist in in neonatal care with dif-
ferent objectives, such as hyperbilirubinemia management, medication management, optimizing
nutrition, risk estimators for morbidity, mortality, and sepsis [118]. Broadly, these tools leverage
data, evidence-based information and statistical analysis or machine learning algorithms to aug-
ment the decision-making capabilities of medical professionals in routine care, risk stratification,
outcome prediction and treatment plan optimization and personalization toward the unique needs
of each neonate.

Neonatal pharmacokinetic and pharmacodynamic present unique challenges due to large
variability in their conditions and metabolism functions that necessitate precise medication ad-
ministration. Simulations, based on 564 gentamicin concentrations among 339 patients with a
mean gestational age of 35 weeks (52% preterm births), have shown the utility of a Bayesian CDSS
[126] in personalizing gentamicin therapies concerning regimen initiation and response to mea-
sured drug concentrations for newborns. Another model-based dosing approach named Neo-
Vanco [127] has been developed and assessed to individualize empiric vancomycin dosing that
improves the achievement of target exposure levels in neonates.

Many studies have also reported the effectiveness of ML-based CDSS on antibiotic steward-
ship [128]. One case is the development of a CDSS based on a supervised learning module to assist
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antimicrobial stewardship pharmacists in identifying and reporting potentially inappropriate pre-
scriptions by extracting expert rules for multiple types of antimicrobial alerts [129, 130]. These rules
can extend the knowledge base of the baseline system and thus enhance the overall antimicrobial
management programs. A recent study [131] developed and evaluated the ability of a ML-CDSS
based on categorical boosting to assist clinicians in selecting optimal β-lactam antibiotic doses. The
prediction accuracy of all five drugs was >80.0% in the real-world validation.

In hyperbilirubinemia management, many CDSS tools based on guidelines or machine learn-
ing techniques have been employed to improve the overall outcomes of jaundiced infants. A
widely used web-based BiliTool [132] and its EHR-integrated version [133] follow AAP guide-
lines. Another web-based Premie BiliRecs [134, 135] was reported to improve adherence to pho-
totherapy guidelines in preterm infants without increased adverse events. Besides, an influence
diagram-based CDSS [136] was developed to assist clinicians with making decisions in admission
and treatment for jaundice neonates. The use of this CDSS has included a profound change in daily
medical practice and avoided aggressive therapies.

Neonatal sepsis including early-onset (EOS) and late-onset sepsis (LOS) is another formidable
challenge in NICU. Rich efforts have been made to augment decision-making regarding the risk
stratification of EOS [137, 138], early detection of LOS that based on machine learning algorithms
using EHR data [139, 140] and HRV [141], etc. A famous monitoring system HeRO [142], based
on the study by Griffin et al. [143], is proposed to evaluate the risk of sepsis in real-time by re-
ceiving and processing ECG data monitored in existing NICU bedside monitors. It is reported to
successfully decrease the mortality rate of the HeRO group by 22% than the controls [144].

In fields of diagnosis, risk assessment and outcome prediction, the CDSS especially AI- or
ML-based approaches have been diversely used.

An AI-assisted detection of Patent ductus arteriosus (PDA) from neonatal phonocardiogram
was proposed in [145]. It pre-processes and segments the heart sounds and extracts features to be
input into a boosted decision tree classifier to estimate the probability of PDA. The evaluation of the
proposed system was conducted on a large clinical dataset of heart sounds from 265 term and late-
preterm newborns recorded within the first six days of life, and an AUROC of 78% was obtained.
The performance for PDA detection compares favorably with the level of accuracy achieved by an
experienced neonatologist.

Extubation failure is another ongoing problem in NICU. Mikhno et al. proposed a prediction
algorithm to differentiate between patients with successful extubation and those with failed extu-
bation [146]. Their algorithm was a logistic regression model using six features as input, and the
performance had an AUROC of 87.1% with a sensitivity of 70.1% and a specificity of 90%. The use
of light and routinely recorded variables allows for the possibility of developing a real-time CDSS.

CDSS were also employed in neonatal encephalopathy detection and severity grading. Temko
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et al. developed an automated neonatal seizure detection system based on Support vector ma-
chine (SVM) classifiers receiving multi-channel EEG as input [147]. This system was validated on
both large clinical datasets [148] and randomized datasets [147], achieving a mean Area under the
receiver operating characteristic curve (AUROC) of over 95.4%. Raurale et al. [149] proposed a
system combining a quadratic time-frequency distribution with a convolutional neural network
CNN that classifies four EEG grades of Hypoxic-ischaemic encephalopathy injury (HIE). The sys-
tem achieves an accuracy of 88.9% on the development dataset and 69.5% on a large unseen test
dataset.

There are a range of CDSS targeting mortality risk assessment. For instance, novel real-time
models using Decision Tree (DT) and ANN were developed [150]. The models met the criteria for
clinically useful results (>60% sensitivity, >90% specificity) for individual patients, opening the
potential for a prototype of the CDSS framework to be implemented with the ability to generate
intelligent alerts and warnings from medical events as they occur, such as when the risk estimation
for a patient changes significantly.

In summary, CDSS in the NICU are advanced tools designed to assist healthcare profession-
als in making more informed and timely decisions regarding the care of critically ill newborns.
These systems integrate patient data, such as vital signs, lab results, electrophysiological signals,
and medical history, with evidence-based guidelines and machine learning algorithms to provide
real-time recommendations and alerts. These tools aim to enhance diagnostic accuracy, optimize
treatment plans, and reduce the risk of human error by offering insights that may not be imme-
diately apparent to clinicians. Ultimately, these systems support the delivery of personalized and
precise neonatal care, improving outcomes for vulnerable infants.

1.4.4 Standards and priorities in AI-based CDSS deployment

Despite the potential of CDSS to improve patient care and patient safety significantly, their
successful deployment has been limited. At all stages of the development and deployment of a
new CDSS, several factors need to be considered to increase the likelihood of its integration into
healthcare services and thus make it a successful deployment.

Firstly, regarding the model development, it is best performed by an interdisciplinary team
of stakeholders, including clinicians and other potential end users, data scientists, clinical infor-
maticians, and implementation scientists [124]. The minimum information about clinical artificial
intelligence modeling criterion [151] suggests considerations specific to AI.

The second point refers to the standards of the data entry and decision algorithms [152]. Some
CDSS that are not fully computerized require users to manually enter patient data, which is time-
consuming, labor-intensive and prone to transcription errors or even disruptive to the delivery of
patient care. Manual data entry can be minimized by integrating CDSS with HIS and EHR. Another
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major point is keeping the CDSS decision-making algorithms up-to-date as patient management
changes from time to time [152]. The system can be designed to retrain itself automatically and
periodically, or it can be designed as a plug-in to facilitate updates.

Thirdly, the human-computer interaction, including data acquisition and the manner of infor-
mation requests from the system, should be clear, simple, and easily accessible while secure [152].
The UI should be user-friendly, intuitive and offer easy access to information. To respond to emer-
gency situations that often arise in the NICU, the CDSS should be designed to use the least amount
of clinician time possible; this includes time to log in to the system and time to acquire the infor-
mation desired [153]. In addition, it would be more convenient for clinicians if information could
be obtained from mobile CDSS or CDSS with many terminals, rather than from a single terminal
that may be located a long distance away [153].

Lastly, the CDSS must fit into the clinician’s workflow and provide them with useful informa-
tion. The format and type of system output depend on the clinician’s needs. Each clinician has
different work habits and therefore may require different functionality. This makes the develop-
ment of an effective CDSS more complex, but it is important for a successful deployment [152].
Achieving this involves the necessity of close cooperation with the users at every step in the de-
ployment of the CDSS. Besides, Desirable attributes of CDSS include smart information and smart
alerts, which involve a subtle balance between too many and too few. It is important that the CDSS
be able to anticipate the need for information and deliver it in real-time without clinicians needing
to explicitly ask for it [154].

A recent editorial [155] identified important priorities that must be incorporated into CDSS in
order to be accepted and integrated into the routine clinical workflow:

• Black box are unacceptable.
A great portion of AI algorithms are “black box” which decisions are made by algorithms
that lack interpretability, such as deep learning networks. In the clinical context, trans-
parency and clinician trust in the models are paramount. Thus, the reasoning behind the
AI-based CDSS should be transparent in order for the clinician to comprehend the rationale
behind the decision.

• Time is scarce resource.
CDSS should be efficient in terms of time requirements and must blend seamlessly into the
workflow of busy clinical environments.

• Complexity and lack of usability thwart use.
CDSS tools should be intuitively constructed and simple to use so that no major training is
required for their use, which emphasizes again the importance of good human-computer
interaction design.

• Relevance and insight are essential.
A CDSS should reflect an understanding of the pertinent domain and answer clinically rel-
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evant questions.

• Delivery of knowledge and information must be respectful.
Advice and suggested decisions should be provided in a way that recognizes the expertise
of the user to augment—but not replace—decision-making. In other words, CDSS should
be designed with perceived usefulness [156], informing and assisting but not to replace clin-
icians.

• Scientific foundation must be strong.
A CDSS should be built on the basis of rigorous, peer-reviewed scientific evidence to estab-
lish its safety, validity, reproducibility, usability and reliability.

1.4.5 Challenges of AI-based CDSS in NICU

While AI-based CDSS hold great promise for enhancing care in the NICU, their implementa-
tion is not without challenges. Major difficulties concern the development, implementation and
credibility.

First, one essential challenge lies in the relative lack of large, high-resolution, high-quality
datasets, which are required in the development and generalization of AI models. Though massive
data are generated every second in NICU, neonatal can be sparse or inconsistent resulting in low
data availability and poor data quality. Imbalanced datasets also pose difficulties in ML approaches
and appropriate balancing strategies should be well applied to the raw datasets before being used
as input to learning models. When using smaller datasets, sophisticated and advanced AI methods
may offer no advantage or merely a slight advantage over simpler and classical Machine learning
or shallow neural networks.

Another limitation lies in the lack of the integration of real-time CDSS into the complex and dy-
namic environment of the NICU, where patient conditions can change rapidly, requiring real-time
updates and highly accurate predictions. Applications and frameworks for real-time physiologi-
cal data analyses are already gaining ground [118]. A few examples include Artemis [157], Baby
Steps [158], Etiometry [159, 160] and iNICU [161, 162]. However, it is important to examine and
deploy new temporal data mining approaches and system architectures. Significant adaptations of
developed models may need to be incorporated into existing neonatal care protocols and systems,
including training healthcare professionals to interpret and act upon model outputs effectively.
Future work should explore strategies to streamline the deployment of these models in clinical
settings, such as developing more efficient algorithms and ensuring interoperability with current
healthcare technologies. Meanwhile, robust infrastructure, such as multi-agent systems, services,
and sensors, should be established to provide integrated real-time solutions for NICU [122].

Additionally, there are concerns about the explainability and interpretability of AI-driven rec-
ommendations, as healthcare providers may find it difficult to trust or understand the rationale
behind the decisions made by these systems. The results derive from the “black box”, which flies
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in the face of traditional clinical decision-making that relies on reasoning and judgments based on
knowledge and experiences. In order to improve credibility and acceptance, the methods need
to be easy to readily explainable, interpretable and transparent [163]. It is suggested to consider
the simpler, more applicable, and transparent model over the more complicated one when models
perform similarly [124]. Moreover, more analysis such as interpretability analysis and sensitivity
analysis should be incorporated to characterize and improve the decision explainability.

Focusing on the areas of concern of this dissertation, machine learning has the potential to
transform preterm infant monitoring by analyzing large datasets from Electronic health records
(EHR), vital sign data, and other sources of information. However, this field is still in its infancy,
facing several challenges [164–166]:

• Data scarcity: Preterm infants are a vulnerable population with limited data availability
compared to adult patients or healthy term-born babies.

• Complexity of physiological signals: Vital signs from preterm infants can be noisy and un-
reliable due to their immature physiology and the need for life-sustaining interventions.

• Limited understanding of disease mechanisms: The pathophysiology of, for example, LOS
in preterm infants is not yet fully understood, making it challenging to develop effective
machine learning models.

• High stakes: Any errors or misclassifications can have severe consequences, emphasizing
the importance of rigorous model development and validation.

• Limited data quality: Develop standardized datasets with high-quality vital sign data and
EHR.

• Limited model interpretability: Provide transparent explanations of the decision-making
process behind machine learning models.

• Lack of model validation in diverse populations: Test models on different preterm infant
cohorts, considering factors like gestational age, birth weight, and comorbidities.

Particularly, this dissertation is interested in a set of major methodological challenges inherent
to working with Machine learning (ML) models on NICU neonatal monitoring data, which are
longitudinal, continuous, time-dependent, and often noisy. Key challenges often overseen in this
context include:

• Temporal dependencies & time-varying covariates:
Longitudinal data often exhibits temporal dependencies between observations, and covari-
ates (predictor variables) can change over time, making it challenging for traditional feature
engineering and machine learning algorithms, that assume independence.

• Missing values:
Longitudinal data often contain missing values due to measurement errors or non-response
rates, which can lead to biased estimates if not handled properly.
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• Temporal granularity & non-stationarity:
Data may be collected at varying time scales and exhibit time-series properties like sea-
sonality or trends, while patterns and distributions can shift over time, requiring adaptive
modeling.

• Model complexity & scalability:
The complexity of longitudinal data may increase model complexity, raising the risk of over-
fitting and making it computationally expensive, thus demanding efficient regularization
techniques and scalable models.

• Model interpretability:
Understanding how models use temporal information and how this affects predictions is
critical to ensuring they are meaningful and actionable.

1.5 Conclusion

Preterm infants are a vulnerable population due to their overall immaturity, and they suf-
fer various high-risk and life-threatening conditions during their first days and weeks of life. The
NICU play a critical role in ensuring their survival and improving long-term outcomes. Among the
major challenges faced by preterm infants, neonatal hyperbilirubinemia and neonatal sepsis were
highlighted as significant concerns due to their high prevalence and potential for adverse compli-
cations and outcomes. On the other hand, as advances in neonatal care continue to evolve and
massive amounts of healthcare monitoring data are generated, Clinical decision support systems
(CDSS) in NICU are emerging as valuable tools for enhancing clinical decision-making and im-
proving outcomes. These systems offer the potential to assist healthcare providers in coping with
clinical challenges by integrating data and providing evidence-based recommendations. However,
a number of major challenges persist in this field. By acknowledging these challenges and limita-
tions, we can work towards developing more effective machine learning solutions for preterm
infant monitoring, ultimately improving patient outcomes and reducing morbidity and mortal-
ity rates. This framework sets the stage for exploring solutions to these challenges in subsequent
chapters.
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CHAPTER

2 Methods and Tools

This dissertation is conducted in the context of a prospective clinical project of CARESS-Premi
that aims to develop computer-assisted diagnostic tools to help clinicians improve neonatal care
and outcomes in the Neonatal intensive care units (NICU) settings. Based on the CARESS-Premi
project, a database was established, which was used for all subsequent studies presented in the dis-
sertation. In this chapter, we begin with an introduction to the CARESS-Premi project, in which the
clinical protocols, data acquisition system and general information of the CARESS-Premi database
are mentioned. Then we introduce a proposed complete data processing pipeline from raw sig-
nal detection to feature extraction, which serves as a fundamental methodological framework that
runs across multiple studies in the dissertation. The following sections present the statistical tech-
niques, machine learning algorithms and explainability analyses, which were applied in different
studies throughout the dissertation.

2.1 The CARESS-Premi Project

In this section, we introduce the CARESS-Premi clinical protocol and describe a cloud-based
system that was employed for data acquisition and transmission in the project. The overview and
some illustrations of the CARESS-Premi database are then presented.

2.1.1 The CARESS-Premi study

The CARESS-Premi clinical study, “Contribution of Real Time Analyses of CARdio-RESpiratory
Signals to the Diagnosis of Infection in PREterM Infants”, is a prospective national multi-center ob-
servational cohort study with blinded analysis by healthcare staff. This study was registered on
Clinicaltrials.gov (NCT01611740), it concerns approximately 500 preterm infants recruited between
October 2012 and November 2018 across the Neonatal intensive care units (NICU) in three French
hospitals: the University Hospital Centers of Rennes (CHU Rennes), Lille and Angers. The local
ethics committee (CPP Ouest V Rennes) approved the study (protocol number: 11/14-803) and the
informed parental consent of the associated children was obtained.

The project was proposed with the fundamental perspective of developing new computer-
assisted diagnostic tools, i.e., Clinical decision support systems (CDSS), to help caregivers in the
early diagnosis and intervention of nosocomial infection, both non-invasively and continuously,
at the bedside of preterm infants. Achieving this could lead to a reduction in the need for blood
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sampling for the diagnosis of infection, pain for the vulnerable population, duration of hospital-
ization, risks of related complications and neurodevelopmental damages, and overall healthcare
costs. Furthermore, this could open the possibility of creating such CDSS which can be adapted to
telemedicine practice.

The project aims to create innovative tools in a combination of available clinical data and
multi-signal analysis, including cardiac cycle duration variability, respiratory cycle amplitude and
duration variability, Photoplethysmography signals and their relationships. These advanced tools
would be integrated into a continuous monitoring system, and preliminarily evaluated in a real-
time clinical context. Furthermore, by obtaining longitudinal physiological data correlated to clin-
ical status and multiple underlying physiological processes in an unselected cohort, this system
seeks to enhance our understanding of perinatal health status and development, ultimately im-
proving the preterm infants’ outcomes and the quality of neonatal care.

The inclusion in the study was prospective with all preterm newborns arriving in the depart-
ments potentially included in the protocol before 4 days of postnatal age.

The inclusion criteria for the study subjects were:

✓ a preterm birth between 24 and 32 weeks of gestation;

✓ a birth weight >500 grams;

✓ a postnatal age >3 days;

✓ a postmenstrual age <34 weeks;

✓ parental information and collection of non-opposition.

The exclusion criteria included:

x a malformation syndrome;

x a severe neurological lesion (grade 4 Intraventricular hemorrhage (IVH), cavitary periven-
tricular leukomalacia, post-perinatal ischemia).

During the follow-ups, the data collection involves three parts: i) Clinical data (not specific
to the study) were collected from patient records every 6 hours in a relational event database,
such as parameters and configurations of ventilatory supports, temperature, blood pressure, pain-
comfort scores, medical treatments and so forth. The quality of the data collection was ensured
by a dedicated clinical research nurse at each center. ii) Laboratory data collection was performed
in the hospital’s electronic database. iii) The collection of cardio-respiratory signals was prospec-
tive. All included infants were continuously monitored for their cardio-respiratory status from
the beginning to the end of the inclusion periods (IntelliVue MP40 Philips Medical System, Eind-
hoven, Netherlands). Signals, including Electrocardiogram (ECG), transthoracic impedance ven-
tilation and plethysmography, were acquired from monitoring systems, de-identified, transferred
and stored progressively using a prototype cloud-based system named ASCENT developed by the
team (SEPIA of LTSI - INSERM U1099), which is introduced as follows.
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2.1.2 Cloud-based anonymized system for clinical experimentation (ASCENT)

In Neonatal intensive care units (NICU), preterm infants are connected to monitoring devices
that continuously monitor and acquire a comprehensive set of clinical data. These data include
not only cardio-respiratory signals such as ECG and transthoracic impedance ventilation but also
various types of alarms and textual data.

Cardio-respiratory monitors are typically linked to a central station that can store data seg-
ments. Most of these systems generate low-resolution, partially-sampled signal segments which
are stored on closed, vendor-specific formats and databases, making their exploitation difficult for
massive signal processing and analysis. Our team (SEPIA in LTSI - INSERM U1099) has developed
a stand-alone application called SYNAPSE, capable of connecting to these monitors and imple-
menting vendor-specific communication protocols to acquire the sensed main clinical data with the
highest possible resolution. The SYNAPSE application can execute on a dedicated server station,
enabling real-time data acquisition from up to eight monitors simultaneously. Another version of
SYNAPSE has been developed for embedded systems and has been deployed using Raspberry Pi
modules connected to each monitor. In the context of clinical research protocols, SYNAPSE appli-
cations run continuously, acquiring all the available data from preterm infants, from their arrival
at the NICU until their discharge. All the data acquired by the SYNAPSE applications are stored
locally as a set of files containing 30-minute segments of all signals and associated clinical data.

Aiming to facilitate the sensing, storage, transfer and centralized data analytics of longitudi-
nal clinical data, acquired from heterogeneous medical devices from multiple hospitals, a system
named ASCENT (Anonymised System for Clinical experimENTation) was thus proposed in the
context of clinical research protocols, in our case, the CARESS-Premi protocol. As demonstrated in
Figure 2.1, the system relies on four main components: 1) the AscentLive component, 2) the web
server component, 3) the data server component and 4) the data analytics component. The “As-
centLive” is a light client application for secured, de-identified and asynchronous data transfer,
also developed by LTSI - INSERM U1099. The web server component offers user authentication
and is the main interface of the ASCENT system. The data server component handles data storage
and file management issues. The data analytics component is able to call protocol-specific work-
flows, defined by several scripts, in order to process the raw data, perform feature extraction and
apply machine-learning methods, contributing to the objectives of each clinical protocol handled
by the ASCENT system.

Figure 2.1 illustrates the general architecture of ASCENT system. The left panel of the architec-
ture presents the infrastructure in the clinical space. One or more clinical centers can be involved
in patient inclusion. Data acquisition from the monitors is performed for each patient using the
SYNAPSE applications that store the data locally. Then local anonymization and encryption of the
raw data are performed by the “AscentLive” applications. Subsequently, a clinical investigator up-
loads the acquired data to the web server in the private cloud space, after secure authentication on
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Figure 2.1: General architecture of could-based ASCENT system.

the ASCENT server. The investigator can also initiate a data transfer procedure to the private cloud
by connecting to the ASCENT web interface using a standard web browser via HTTPS protocol.
Data processing and analysis are performed on the servers in a distributed fashion using the clus-
ter facilities in the private cloud space (right panel). The analysis results are available to specific
authenticated users, depending on their specific rights, via a standard web HTTPS connection.

2.1.3 The CARESS-Premi database

Thanks to the ASCENT system (Section 2.1.2), the data acquisition and retrieval for the CARESS-
Premi study was made possible. Through the collaborative efforts of clinical and research teams,
the database was finalized by July 2021. We introduce the CARESS-Premi database from three as-
pects: data composition and volume, data compilation process, and presenting some snippets of
the monitoring signals.
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Data composition and volume

Within the framework of the CARESS-Premi clinical project, as of the end of data collection
(February 2021), a database containing 519 patients was established, including 414 patients hospi-
talized at the Rennes clinical center (dominant center), 42 patients and 63 patients at the Lille and
Angers centers, respectively.

In the entire database, 9 (or 11) major deviations from the patient selection criteria were re-
viewed and verified, resulting in a total of 510 evaluable subjects in the database. These deviations
are as follows:

x 3 with malformation syndromes: right ventricular hypoplasia, diaphragmatic hernia and
Prader-Willi Syndrome;

x 5 with severe neurological lesions: grade 4 IVH, hypoxic-ischemic encephalopathy and
periventricular leukomalacia;

x 1 with mixed conditions: septal agenesis;

- 2 late neurological lesions (could be excluded from specific studies as appropriate).

Regarding the data volume, the CARESS-Premi database consists of two main partitions: tab-
ular data for clinical information and time series data for physiological signals.

For tabular data, an Excel file with 10 sheets was created, covering basic demographic infor-
mation of 519 patients, 4,760 observations on respiratory data, 560 observations about transfusion
information, 2,209 observations about jaundice, 1,739 observations about pain management, 7,090
observations about skin-to-skin information, 363 observations about CRP >5 mg/L, 454 observa-
tions about clinical events, 233 observations about antibiotics and a supplementary table for other
information, totaling more than 200,000 rows and 1.8 million entries.

For the time series data, although some of the initially enrolled patients had missing monitor-
ing signals or data in bad formats before the acquisition and processing system (ASCENT) was sta-
bilized, a massive amount of data was obtained. Numerically, during the CARESS-Premi project,
there were over 2,600 times of data submissions uploaded from the ASCENT by the involved clini-
cal investigator, totaling more than 2.6 million compressed binary files (each containing 30 minutes
of electrophysiological signals) and occupying approximately 1 TB of storage space. If we add this
up, it is equivalent to about 30 years of monitoring signals, which averages out to about 20 days of
signal acquisition per patient.

Data compilation

In the CARESS-Premi project, the cardio-respiratory data segments were continuously col-
lected from multiple clinical sites (details refer to Section 2.1.2), and these 30-minute data segments
were processed, compressed and saved as zipped binary files (with the file extension of bin.gz). In
order to make use of the raw data for further analysis, a compilation procedure was designed to
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extract the raw electrophysiological signal from binary files and compile it into a Hierarchical data
format (HDF5) file (with the file extension of .h5).

Each of the 30-minute binary files includes five channels of recordings: ECG signals from leads
I, II and III with a sampling frequency of 500 Hz, a plethysmographic recording with a sampling
frequency of 125 Hz, and a transthoracic impedance estimation of respiratory activity with a sam-
pling frequency of 62.5 Hz.

For extraction of certain data segments, a study-specific metadata file in .csv format is pre-
pared. The metadata is usually extracted from the study’s electronic health records, i.e., the tabu-
lar data described in Section 2.1.3. Each line of the metadata file should correspond to a targeted
event observation, such as bilirubin measurement and sepsis annotation, as well as relevant clinical
information such as PNA and birth weight required for the study.

The compilation process is demonstrated in Figure 2.2. For each interested clinical event (Tar-
getedEvent), one .h5 file is created. The patient ID (PatientID) and timestamp (EventDateTime) of
this event are used as references to query, sort and select all raw signal files across all monitoring
channels in the database. Then, using the event instant as an anchor, the associated signal with a
predefined duration before and after (customized lengths) the event is thus selected and saved as
a dataset in this .h5 file under the Signal group. The Metadata group is also added to the .h5 file to
annotate this extraction and document the information from the metadata file. The structure of the
final .h5 file is shown in the middle left panel of Figure 2.2. In addition, a complied metadata .h5
file summarizing all targeted events available in the database for each patient is generated, with
the structure shown in the middle right panel of Figure 2.2.

Monitoring signals

Shown in Figure 2.3 are signal snippets from two random patients in the database, giving ex-
amples of how the monitored waveforms in five channels look like, displayed in two resolutions:
24-second and 6-second windows. The first three columns present the 3-lead ECG signals in micro-
volts, and it can be noticed that the monitoring waveform was recorded in only one channel (one
ECG lead) at a time. During the example intervals, the valid channel for the first patient (patient
01017) is ECG-III, while it is channel ECG-II for the second patient (patient 01413). Moreover, effec-
tive leads providing reliable data or channels actively connected to the babies by the caregivers can
alternate between the leads during such long-term and continuous monitoring. This variability can
be influenced by unpredictable, sporadic technical or human interference such as interventions by
medical personnel to reposition or adjust electrodes, parental interactions (e.g., skin-to-skin con-
tact and feeding), or infant movement, etc. The other two columns display plethysmographic
recordings and respiratory activity estimations in Ohms via transthoracic impedance estimation of
respiratory activity.

In the dissertation, we particularly focus on the ECG signals of very preterm infants (GA be-
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Figure 2.2: Data compilation process of CARESS-Premi database.

tween 24 and 32 weeks), aiming to analyze the variations in the length and amplitude of the cardiac
cycle and their potential to improve the diagnostic performance in different neonatal conditions in
daily clinical practice in the NICU scenarios.
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2.2 Cardiac Signal Processing Pipeline

This section is dedicated to proposing an automatic processing chain integrating raw ECG sig-
nal processing, QRS detection, time-series denoising, stationary analysis and HRV analysis. This
pipeline accepts cardiac monitoring signals from real clinical practice and produces optimal sta-
tionary segments and utile parameters for analysis while greatly reducing the labor and time in-
volved. An overall workflow of the proposed processing chain is described in Figure 2.4. Apart
from the first (details refer to Section 2.1.3) and last stages (depends on the studies, see Section 2.3
and Section 2.4), the main body of cardiac signal processing consists of five major steps:

1. Evaluation of ECG signal quality and selection of the good channel;

2. Detection of QRS complex and extraction of RR series;

3. Correction of artifacts in obtained RR sequences;

4. Analysis of time series stationarity;

5. Analysis of HRV characteristics.

Data 
Compilation

Signal Quality 
Evaluation &           

Channel Selection

QRS Detection &                         
RR Series 
Extraction

RR Series 
Correction

Stationary 
Analysis

HRV           
Analysis

Statistical Analysis 
&                    

Machine Learning

CARESS-Premi 
database

Raw 3-lead
ECG signals

Best lead
of ECG signals

RR interval 
series

HRV
features

Computer-assisted 
tools

Stationary
Sequences

Denoised RR 
series

Figure 2.4: Illustration of different stages of the proposed cardiac signal processing chain.

It should be highlighted that we integrate many strategies for enhancing signal quality and
robustness into the pipeline. These successive steps are essential for long-term monitoring in the
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NICU. In this context, infants undergo various ventilation supports they need, frequent changes in
body position, spontaneous movements and routine care, which could result in numerous and het-
erogeneous sources of artifacts and interferences as well as a particularly low Signal-to-noise ratio
(SNR). They are even more critical in a population of premature infants that have very complicated
while low cardiovascular variability with respect to adults.

The following sections describe each block of the workflow.

2.2.1 Signal quality evaluation and channel selection

In the specific case of real-life data, signal pre-processing of raw ECG recordings turns out
to be necessary. The signals monitored in the protocol are continuous and inevitably noisy, and
monitoring may last from days to months, depending on the hospitalization of the subjects in
question. Consequently, during routine monitoring, the raw ECG waveforms may be alternately
recorded among different ECG leads as presented in Section 2.1.3; besides, the raw signals are with
various artifacts. Based on this, we divided the treatment of a raw ECG signal segment includes
two steps, the first is to evaluate the signal quality of all the channels, and the second step is based
on the quality indices to select the good channel with valid recording. In some segments, the signal
quality of all channels may be unacceptable; there may also be some segments that happen to cover
the moment of channel switching, so both channels contain valid data (as depicted in Figure 2.5).
Ultimately, only the segments with signal quality exceeding a predetermined threshold can be
passed to the next processing stage, which ensures data quality from the beginning.

Available Available Not connected 
Not connected 

Available 
Not connected 

Not connected 
Available

Not connected 

Figure 2.5: Example of a 4-hour 3-lead ECG recording with channel switching.

Noise detection

By observing the raw signals, we classify the noises into three types: impulses, saturation
edges and flat segments. We design a simple yet effective time-domain signal processing approach
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based mainly on sample derivatives (first and second order) and median filters. It is known that the
derivatives represent the rate of change of the signal, and are often used to detect abrupt changes
(impulses and edges) and enhance edges and fine details. The median filter is a classic filter used
for signal smoothing and high-frequency noise reduction by replacing each value in the window
with the median value. It is particularly effective at detecting impulse noise, which appears as
sudden spikes or drops in the signal, and its feature to preserve the edges and details of the signals
is quite useful in our case.

To detect and locate the noises, a set of threshold-based methods are proposed for detecting
each type of noise. For clarity, we first define variables:

- d1: the first derivatives of the signal;

- d2: the second derivatives of the signal;

- med_d1: the median-filtered version of the first derivatives of the signal;

- minD: the minimum duration (in samples) of a segment considered as a flat segment, default
is 250.

The detection strategy, with specific parameters for preterm infants, is as follows:

• Impulse detection: Impulse← abs(d2 ≥ 5).
Large changes in the d2 exceeding a threshold of 5 is considered an impulse. If multiple
impulses are detected close together, the segments between them are also marked as noises.

• Edge detection: Edge← abs(d1 ≥ 5) & abs(med_d1) ≤ 0.005.
Noises classified as edges are detected where the first derivative (d2) is large, but the median-
filtered derivative (med_d1) is small. This indicates a sharp change followed by a flat seg-
ment, typical of saturation or disconnection.

• Flat detection: Flat← abs(d1 = 0) & abs(med_d1) = 0, when flat duration ≥ minD.
Flat segments are identified where both the d1 and med_d1 are zero, only if the flat segments
last longer than minD. There are segments where the signals show no variation, indicat-
ing possible disconnection, lead failure, or other issues where the ECG signal is not being
properly recorded. The parameter minD helps to keep some short yet non-problematic flat
segments that could occur naturally in the signal of extremely preterm newborns sampled
at 500 Hz and after the derivatives and median filtering.

Note that there may be overlapping sections of the detected noises due to some morphological
similarities among the three types of noise. Figure 2.6 shows an example of the noise location and
removal, where the edge-type of noise is infrequently marked since it overlaps with the impulses
sometimes. Furthermore, all the noise detection criteria are set for millivolts, so a unit conversion
should be performed first if this is not the case.

After detection, we calculate the number of noisy samples and the percentages of each type
of the three noises relative to the total length of the original signal segment. At the same time, the
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Figure 2.6: Illustration of the noise detection on an ECG segment with three types of noises.

noisy segments in the original signal are removed by replacing them with Not-a-Number (NaN)
values.

Signal variability assessment - selection of the best channel

The signal quality indicators derived from the previous step are utilized for assessing the
signal variability in all channels and thus choosing the best lead of ECG for further analysis, we
develop three indices based on the results of noise detection.

Firstly, the index of the percentage of flat segments is used to determine whether a channel is
“empty”. Typically, during a certain duration of monitoring, at most one channel is connected to
the infant and thus effectively records the ECG signal, while the other two channels are “empty”
channels containing flat and zero-amplitude waveforms. Therefore, we first exclude the “empty”
channels with a very high value of flat percentages, normally it will be 100%.

Then, we assess signal Signal-to-noise ratio (SNR) in each channel using an index based on the
number of NaN values, a combination of the noises detected using the method described above.
This index calculates the percentage of NaN values in the processed signal segment relative to the
original signal length. A higher index value denotes a low SNR, which is undesired.

A third index measures how much a signal deviated from its baseline over time by calculating
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the nested rolling standard deviation of a Z-score normalized signal, and we use it to quantify
the signal variability. It first calculates the means and standard deviations within all windows
with a predetermined length of 30 seconds and normalizes the signals in all the windows by Z-
score normalization. Then the standard deviation of the Z-score normalized signal is calculated.
Lastly, the final standard deviation, derived from the rolling standard deviation of the Z-score
normalized signal, is used for evaluating the variability, or stability, of a signal. A low standard
deviation indicates that the signal is relatively stable, while a high standard deviation suggests that
the signal is more volatile and less stable, as compared in Figure 2.7.
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Standard deviation (SD) of the rolling SD of Z-score normalized ECG: 0.3173

Standard deviation (SD) of the rolling SD of Z-score normalized ECG: 0.0616

Figure 2.7: Comparison of the ECG variability with the nested rolling standard deviation.

The second and third measures are designed to choose the optimal one when more than one
channel contains waveforms, i.e., a segment with channel switching. Together, these three indices
served as criteria for selecting the best channel from a 3-lead ECG recording, i.e., the channel with
the lowest flat percentage, NaN percentage, and standard deviation of rolling Z-score. Addition-
ally, some limiting thresholds are set to reject a very poor quality signal, even if it is the “best” of
the three leads, or to reject cases where all channels are “empty”, which may happen when the
patient is not connected to any of the electrodes corresponding to the leads.

2.2.2 QRS detection and RR interval extraction

Detecting the QRS complex is typically the first analysis in ECG signal processing, serving
as the basis for identifying cardiac cycles and estimating cardiac markers such as heart rate, or
for enabling further ECG segmentation and analysis. Figure 2.8 shows an illustration of normal
cardiac cycles recorded in an ECG signal. The QRS complex is the most prominent deflection in
the ECG signal, representing the electrical depolarization of the ventricles. The upward deviation
of the QRS complex is the R wave, and the duration between two adjacent R waves is defined
as the RR intervals (RRI). The heart rate (HR), the number of heart pulsations per minute, can be
calculated from an ECG signal by dividing 60 by the duration of the RRI. This frequency is faster
in preterm babies than in adults, due to the physiological evolution of the heart during the first
weeks of life.
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Figure 2.8: Illustration of normal cardiac cycles and the QRS complex.

Numerous methods have been proposed for detecting QRS complexes over several decades.
The main proposed approaches include filtering and non-linear transformations [1], hybrid fuzzyneu-
ral networks [2], Stockwell transformatoion [3], wavelet analysis [4–7] and convolutional neural
networks [8, 9]. Among those, our team previously proposed and evaluated a QRS detector imple-
mented with a robust multi-feature probabilistic method, which consists of extracting a set of pa-
rameters and validating a detection by Bayesian filtering. This Multi-Feature Probabilistic Detector
(MFPD) was adapted to the specific characteristics of the newborn electrophysiology, previously
proposed and evaluated by our team [10].

We thus employ this MFPD QRS detector for the studies in the dissertation. Before being input
into the detector, the selected ECG signals are first resampled to 1,000 Hz to match the frequency at
which the detector parameters were optimized. The detector then detects and locates the R wave
in the signal, and the RR interval series is obtained by calculating the time difference between two
adjacent R waves. Figure 2.9 illustrates how to convert the detected R waves from an ECG signal
into associated RR series. And Figure 2.10 shows a complete workflow from an ECG segment to
the QRS detection and finally the extraction of RR interval series.

For clarification, we use the term “RR interval sequence” to refer to a numerically indexed
sequence of RRI (e.g., 1,2,3⋯), and the term “RR or RRI series” to refer to a series of RR intervals
that are indexed in time but not evenly spaced. Furthermore, when we talk about an “RR signal”,
it is a resampled version of the RR series and is, therefore, a uniformly spaced time series.

2.2.3 RR series correction

Limited by the SNR of the raw ECG signal and/or the accuracy of the QRS detector, the
obtained RR interval sequences may inevitably have some anomalies or errors, which are well-
known challenges affecting the HRV parameters. We develop a multi-step approach using logic
rules based on pathological and rhythmic corrections to automatically correct (interpolating based
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Figure 2.9: Illustration of the conversion from detected R waves to RR interval series.

on neighboring intervals) and/or reject (removing from the original RR sequences) artifacts and
errors (including false positive and false negative detection of R waves).

Before defining different RR interval patterns, we first create a sliding-window view of the raw
RR series with a size of 5 samples, this is an appropriate span to observe possible mistakes in the
central R wave detection. Then a median filter is applied to the 5-sample segments of RR sequences
in order to obtain a baseline trend in the given RR series. We also calculate two different sums on
the sliding windows: sumA (the sum of the second and third RR intervals) and sumB (the sum of
the second, third and fourth intervals). These three sets of values combined with the empirical soft
thresholds are used as constraints to help determine which pattern the detection error belongs to.
Different patterns have different identification rules and correction methods.

Correction patterns and rules

We classify various artifacts and erroneous detection patterns in R-wave detection into 10
categories, which, although we do not claim to enumerate all patterns, have been systematically
expanded to include the major patterns that usually occur. Logic rules with specific thresholds
corresponding to each of the patterns are developed to identify the detection error and correct it
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Figure 2.10: Workflow of ECG signal processing and RR interval series extraction.

by either replacing or interpolating. Besides, an intuitive scheme of each pattern is presented in
order to demonstrate how it looks in an ECG signal, in which a “|” represents an R wave, a “!” is
for false detection of the R wave, a “.” is for missed detection of the R wave and “__” stands for a
normal length of one cardiac cycle.

1. Pattern_anyHigh: any extremely high value (RR interval).
Scheme: __|__|__..........__|__|__|__ (more than 10 missed R waves)
When one RR interval’s value is greater than 10 times the median RR interval, we consider
it as a bad detection and simply replace it with the global median RR interval in the given
RR series.

2. Pattern_J0: when missing too many R waves.
Scheme: __|__|___....many....___|__|__|__ (more than 1 missed R wave)
If the QRS detector misses multiple consecutive R waves, this is reflected in the ECG signal
as a very long distance between two adjacent detected R waves (as illustrated in the scheme),
which results in a very high RR interval value. A set of logic rules is designed to identify
such long RR intervals, and the average of the neighboring RR intervals within a 5-sample
window centered around the detected erroneous RR interval is used to replace this false
detection.

3. Pattern_J: when missing several R waves, it is considered a valid detection.
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Scheme: __|__|_...several..._|__|__|__ (more than 1 missed R wave)
This pattern includes six subcategories recognizing the number of successive missed R waves
ranging from 2 to 7. We divide the large RR interval by the number of missingness and use
the derived average value to interpolate the original RR interval, by doing this, the overall
length of the RR signal (in time rather than in index) remains unchanged. use the average
We average the identified large RR intervals that fit this pattern by dividing them by the
number of missed values and use the average to interpolate on the original RR intervals. By
doing this, the overall length of the RR signal (in time, not in index) remains unchanged,
which avoids the phase problem.

4. Pattern_K: 1 false detection + 1 missed detection.
Scheme: __|_!_.__|__|__|__|__ (when the mean is around the baseline)
This pattern defines the cases as a combination of one false detection and one missed detec-
tion of R waves. It can only be classified into this category when the mean value of these
two intervals, a short/long interval derived from the false detection and a long/short one
due to the missed detection, is around the baseline RR interval that was initially calculated.
Naturally, this pattern is corrected by replacing them with the mean value.

5. Pattern_L: (1 false detection + 1 missed detection) × 2.
Scheme: __|_!_._!_.__|__|__ (when the mean is around the baseline)
Similar to the previous pattern, this pattern identifies one false detection followed by one
missed detection, but this combination is repeated twice. The sum of the two false RR inter-
vals and the following long interval (due to the missed R waves), i.e., the sumB, is divided
by three and used to interpolate in between.

6. Pattern_M: 1 false detection + 1 missed detection + 1 false detection.
Scheme: __|_!_._!___|__|__ (when the sumB is around twice the baseline)
One missed detection between two false detections of R waves is also a common pattern,
resulting in three short intervals. In this case, the sum of these three detected RR intervals,
i.e., the sumB, should be approximately twice the baseline interval. We then correct this
pattern by replacing the first two intervals with half the abovementioned sumB and setting
the last one to NaN value, which ensures the phase alignment.

7. Pattern_N: 1 missed detection + 1 false detection + 1 missed detection.
Scheme: __|__._!_.__|__|__ (when the sumA is around three times the baseline)
If there is only one R wave is detected during a long duration, this offers two relatively
longer RR intervals, and if the sum (sumA) is as long as approximately thrice the baseline,
then it can be classified as this pattern. To correct it, one-third of sumA is repeated three
times in between two good intervals at the beginning and end of this pattern, as a replace-
ment of the two longer intervals caused by this pattern.

8. Pattern_O: 1 false detection.
Scheme: __|_!_|__|__ (when the sumA is around the baseline)
This is a simple pattern where one R wave is wrongly detected between two normal R waves,
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leading to two short intervals. The sum of the short intervals (sumA) in this case should be
around the baseline interval. Thus, we correct the first short interval caused by the false
detection with the value of sumA and set another short interval as NaN value.

9. Pattern_Q0: consequent segments with many missed detection.
Scheme: __|_...many..._|_...many..._|_...many..._|__
When encountering consequent missed detection of many R waves (more than 6 or 8 R
waves), very long RR intervals are derived. When the R waves fail to be detected and this
occurs consecutively, many long RR intervals will occur. This pattern is an extension of
Pattern_J0 when the long missingness happens two or three times. We calculate the average
value of two good RR intervals (one before and one after the long missingness) and directly
replace the abnormally long intervals with the average. In this kind of poor detection, we
treat it with simple replacement without considering the phase alignment. So the corrected
RR series can be shorter than the original RR series if this pattern of detection exists.

10. Pattern_Q: consequent segments with several missed detection.
Scheme: __|_.several._|_.several._|_.several._|__
This pattern includes similar cases as in Pattern_Q0 but with less missingness, which is
feasible to be interpolated. It includes a total of 27 detailed subcategories recognizing dif-
ferent combinations of the number of successive missed R waves ranging from 1 to 5 and
the number of such missingness episodes (2 or 3). Once the number of missed detections is
identified, use the number to divide the corresponding long intervals and then interpolate
the raw RR series with the average intervals.

Correction procedure

By using the rules and patterns listed above as building blocks, we develop a universal pro-
cedure to correct the raw RR series, as shown in Algorithm 1. It should be noticed that, instead of
using the RRI series, we take the original output of the QRS detection, i.e., the list of indexes where
R waves are located on an ECG signal (R_index_on_ECG), as the input of the correction procedure.
The repeated Pattern_J0 and Pattern_J in the end is for correcting the abnormal segments that are
covered by the other patterns, for instance, consequent long RRI would contaminate the baseline
which hindered the detection of the following long RRs. Besides, the step-by-step correction is
performed twice, the first time is to correct the raw R_index_on_ECG (forward correction) and the
second round takes the corrected series as a starting point, but in a backward manner.

To better demonstrate the efficiency of the proposed correction methods, we take an instance
of raw RR series that was exported from a Philips Data Warehouse Connect included in a real-time
monitoring system (this system will be introduced in Chapter 6). As it is real-life, uncleaned data,
this RR series possesses almost all the patterns listed above, both the forward correction (upper
panel) and backward (lower panel) correction are shown in Figure 2.11. It is quite clear that, from
a zoom-out point of view, major artifacts are successfully rejected throughout the procedure.
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Procedure 1 Procedure of RR correction.
Input: Raw R_index_on_ECG
Output: Corrected R_index_on_ECG

1: Temp← R_index_on_ECG, Count = 2, isReverse = False
2: for Count > 0 do
3: if isReverse then
4: Temp← Temp in reversed order
5: else
6: Do nothing
7: end if
8: Calculate baseline, sumA, sumB
9: Apply Pattern_J0; Update Temp, calculate baseline, sumA, sumB

10: Apply Pattern_anyHigh; Update Temp, calculate baseline, sumA, sumB
11: Apply Pattern_J; Update Temp, calculate baseline, sumA, sumB
12: Apply Pattern_K
13: Apply Pattern_L
14: Apply Pattern_M; Update Temp, calculate baseline, sumA, sumB
15: Apply Pattern_N; Update Temp, calculate baseline, sumA, sumB
16: Apply Pattern_O; Update Temp, calculate baseline, sumA, sumB
17: Apply Pattern_Q0; Update Temp, calculate baseline, sumA, sumB
18: Apply Pattern_Q; Update Temp, calculate baseline, sumA, sumB
19: Apply Pattern_J0; Update Temp, calculate baseline, sumA, sumB
20: Apply Pattern_J; Update Temp, calculate baseline, sumA, sumB
21: Count = Count− 1, isReverse = True
22: end for
23: Corrected R_index_on_ECG ← Temp
24: return Corrected R_index_on_ECG

Nevertheless, there are some caveats in the rule-based correction approach. We correct false
positive (wrong) and related false negative (missed) detection due to artifacts but not ectopic R
waves due to arrhythmia or quasi-continuous jitters. Importantly, there are undoubtedly many
more erroneous patterns that we have not yet included, depending on the population, patient care
setting, database, etc. Thus, this correction is not a perfect approach, but it is still useful when
detecting and thus accordingly correcting the most common artifacts and errors.

2.2.4 Stationarity analysis

Changes over time in the mean and variance of the corrected RR series are estimated and
signal stationarity is tested. It is conducted by i) dividing the available RR series into shorter
subsegments of 20 intervals, ii) calculating the mean on each subsegment, and iii) determining the
variance of these mean values [11]. A low variance suggests the time series is relatively stationary.
This stationary index can be used to select the best segment in terms of stationarity and lack of
artifacts.
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Figure 2.11: Example of proposed RR correction approach applied on a noisy RR series. Upper
panel: the forward correction from raw RR series to a corrected result (pink). Lower panel: the
backward correction takes the reversed forward-corrected RR series as input and performs a

second round of correction, the corrected RR series is shown in purple.

2.2.5 HRV analysis

The instantaneous frequency of cardiac electrical and contractile activity, i.e., instantaneous
heart rate, is largely regulated by the Autonomic nervous system (ANS). This neuro-modulation
leads to Heart rate variability (HRV), defined by the fluctuation in the time intervals between con-
secutive heartbeats, i.e., RR intervals [12]. Therefore, HRV analysis is an interesting tool for study-
ing cardiac function and the state of the autonomic nervous system in general, particularly the
balance between sympathetic and parasympathetic (vagus) activities. In general, it is believed that
an increase in sympathetic tone leads to a decrease in HRV, while an increase in parasympathetic
activity leads to an increase in HRV. An optimal level of HRV is associated with health and self-
regulatory capacity, and adaptability or resilience [13]. The analysis of HRV can be classified into
three categories: time-domain, frequency-domain and non-linear metrics.
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Time-domain parameters

Time-domain indices quantify the temporal patterns of HRV observed during monitoring pe-
riods.

• Mean (ms): Mean RR interval in a given RR interval series.

• Median (ms): Median RR interval in a given RR interval series.

• Std (ms): Standard deviation of RR intervals in a given RR series.

Std = σ =

√
1

N − 1

N

∑
i=1

(RRi − RR)2 (2.1)

where N is the number of RR intervals, RRi is the i-th RR interval, RR is the mean of the RR
intervals.
It is a global index of HRV reflecting all the long-term components responsible for the vari-
ability in the recording period.

• Skewness (ms): It measures the asymmetry of the distribution of RR intervals.

Skewness =
1

(N − 1)
· 1

σ3 ·
N

∑
i=1

(RRi − RR)3 (2.2)

• Kurtosis (ms): It is the standardized fourth central moment of the samples and measures
the “tailedness” of the distribution of RR intervals.

Kurtosis =
1

(N − 1)
· 1

σ4 ·
N

∑
i=1

(RRi − RR)4 (2.3)

• IDR (ms): Interdecile range of a given RR interval series. It measures the statistical disper-
sion, representing the range between the 90th and 10th percentiles of the RR intervals.

• Rmssd (ms): Root mean square of successive RR interval differences.

RMSSD =

√
1

N − 1

N−1

∑
i=1

(RRi+1 − RRi)2 (2.4)

where N is the number of RR intervals, RRi is the i-th RR interval.
It corresponds to the beat-to-beat variance in HR and is the primary time-domain measure
used to estimate the parasympathetic nerves mediated changes reflected in HRV [14, 15].

• pDec (%): Percentage of decelerated RR intervals. It is defined as the percentage of RR
intervals larger than the mean RR interval of the past 50 successive intervals and this feature
aims at explicitly extracting variations in HRV arising from decelerations [16].

• stdDec (ms): Standard deviation of the decelerated RR intervals that contribute to pDec. It
captures the magnitude of decelerations [16].

• SAA (n.u.): Sample asymmetry analysis. It captures asymmetry in the histogram of RR
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intervals and allows separate quantification of the contribution of accelerations and deceler-
ations.

SAA =
β · (RRi −med) · I(RRi ≥ med)
α · (med− RRi) · I(RRi < med)

(2.5)

where RRi represents the individual RR intervals, med is the median of the RR intervals, α

and β are weighting of deviations for HR accelerations (RR intervals less than the median)
and decelerations (greater than or equal to the median), respectively, the default value is 2,
I(·) is an indicator function that equals 1 if the condition inside is true, and 0 otherwise, (·)
represents the mean value over the intervals [17].

• AC (ms): Acceleration capacity. It is calculated as the average acceleration response with
a segment length of 20 RR samples based on the phase-rectified signal averaging (PRSA)
technique that detects quasi-periodic oscillations in time series data [18].

• DC (ms): Deceleration capacity. It is the average deceleration response derived from the
PRSA method. While DC is considered to reflect parasympathetic control of the sinus rhythm,
the meaning of AC remains unclear [18].

Among these, the Rmssd, SAA, AC and DC are derived from the differences between consecu-
tive RR intervals, and thus they primarily index high-frequency HR oscillations, remaining largely
unaffected by long-term trends [13]. The SAA, pDec and stdDec are measurements specifically
designed to capture neonatal HRV. Other indices such as the Triangular index (integral of the den-
sity of the RR interval histogram divided by its height) and pNN50 (percentage of successive RR
intervals that differ by more than 50 ms) are not included in this dissertation. Indeed, these indices
are rarely represented in neonatal literature and do not provide additional information compared
to the main indices described above.

Frequency-domain parameters

Frequency-domain values determine the absolute or relative signal energy within specific fre-
quency bands, which characterize the sympathovagal influences on the heart rhythm [19]. Differ-
ent from the recommended spectral components for adults [19], newborns exhibit HRV fluctua-
tions over a wide frequency range [20, 21]:

- High-frequency band between 0.2 and 2 Hz;

- Low-frequency band between 0.02 and 0.2 Hz;

- Very-low-frequency band between 0 and 0.02 Hz.

To better estimate the power spectral density (PSD) of the RR interval series, we first imple-
ment an interpolation on the RR series that creates a uniformly spaced time series sampled at 1,000
Hz, then down-sample the RR signal to 4 Hz. We use an autoregressive (AR) model with the Burg
method to estimate the AR coefficients of the resampled RR signal by minimizing forward and
backward prediction errors based on the reflection coefficient approach and Levinson recursion,
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with an AR model order of 16 [22, 23]. Note that the mean of the RR signal is subtracted, as a sim-
ple form of detrending, before the estimation. The frequency analysis is implemented in Python
using the Spectrum library [24]. After obtaining the PSD estimation, we calculate five frequency-
domain parameters in the frequency bands given above:

• LF (ms2): Power spectral density in the low-frequency band.
The LF component is modulated by both the sympathetic and parasympathetic nervous
systems. Its interpretation has been more controversial and reflects combined changes in
sympathetic and parasympathetic activity.

• LFnu (n.u.): Normalized power spectral density in the low-frequency band.

LFnu =
LF

LF + HF
(2.6)

The normalized value allows direct comparison of the frequency-domain measurements of
different subjects despite wide variation in specific band power and total power among
healthy, age-matched individuals [25].

• HF (ms2): Power spectral density in the high-frequency band.
The HF component reflects parasympathetic activity and is generally called the respiratory
band because it corresponds to the HR variations related to the respiratory cycle.

• HFnu (n.u.): Power spectral density in the high-frequency band.

HFnu =
HF

LF + HF
(2.7)

• LFHF (n.u.): Ratio of low-frequency power (LF) to the high-frequency power (HF).

LFHF =
LF
HF

(2.8)

It assesses the ratio between sympathetic and parasympathetic nervous systems activity [15].
A low LFHF ratio reflects parasympathetic dominance while a high ratio indicates sympa-
thetic dominance [13].

Non-linear parameters

The non-linear analysis allows us to measure the complexity and unpredictability of the given
RR interval series using mathematical techniques derived from chaos theory, fractal approaches,
or information theory, etc.

Poincaré plot analysis of an RR series is the representation of all successive RR intervals as
a function of the preceding RR intervals. This method can be described as follows: two adjacent
RR intervals represent a point on the plot, the first RR interval (RRi) represents the x coordinate,
and the second RR interval RRi+1 represents the y coordinate [26]. By fitting all the points on the
Poincaré plot into an ellipse, we can obtain some quantitative parameters from it [13].
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• SD1 (ms): Standard deviation of the distance of each point from the y = x axis, specifying
the width of the ellipse.
It measures short-term HRV and correlates with high-frequency power. Mathematically,
SD1 is identical to Rmssd [27].

• SD2 (ms): Standard deviation of the distance of each point from the y = x + RRi, specifying
the length of the ellipse.
It measures both the short- and long-term HRV and correlates with low-frequency power.

Sample entropy, a modified version of approximate entropy, is a less biased and more reli-
able measure of signal regularity and complexity by quantifying the self-similarity of a time series
[28, 29]. It is calculated as the negative natural logarithm of the conditional probability that two se-
quences similar to each other for m points, within a tolerance (r), remain similar when the sequence
length is increased to m+1.

• SampEn (n.u.): Sample entropy.

SampEn(m, r, N) = − ln
(

Am+1(r)
Bm(r)

)
(2.9)

where N is the length of the RR series, m is the embedding dimension indicating the length
of sequences to be compared, r is the tolerance level (usually a fraction of the standard devi-
ation of the given series), B is the number of pairs of sequences of length m that are within
a distance r of each other and A is the number of pairs of sequences of length m+1 that are
within a distance r of each other.

A higher SampEn indicates great complexity or high irregularity, while a lower SampEn value
indicates more self-similarity and predictability in the series, commonly associated with disease.
In the case of neonates, the parameters have been optimized to m = 3 and r = 0.25 [30].

Detrended fluctuation analysis (DFA) extracts the correlations between successive RR inter-
vals over different time scales for measuring the fractal properties of the given series [31]. The
process involves dividing the RR interval series into segments, detrending each segment, and cal-
culating the root-mean-square fluctuation of the integrated and detrended time series. This is done
over various segment lengths to determine the scaling exponent α. A Gaussian white noise (com-
pletely uncorrelated values) will yield an α ≈ 0.5, in contrast, a Brownian noise signal (strongly
correlated series) will approach α ≈ 1.5, and series with α ≈ 1 display more fractal-like dynamics
(1/ f ) [31]. We evaluated the fractal scaling exponent from two distinct ranges [25, 32, 33]:

• α1 (n.u.): Short-range scaling exponent evaluated from 4 to 40 heartbeats.

• α2 (n.u.): Long-range scaling exponent evaluated from 40 to 1000 heartbeats.

α1 and α1 provide different scopes into the balance between sympathetic and parasympathetic ac-
tivity in the ANS. The short-range correlations extracted using DFA reflect the baroreceptor reflex,
while long-term correlations reflect the regulatory mechanisms that limit fluctuation of the beat cy-
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cle. A healthy ANS exhibits complex, fractal-like characteristics in RR fluctuations [34], reflecting
adaptability to internal and external stressors.

2.3 Statistical Techniques

2.3.1 Correlation analysis - parallel relationship

Correlation measures the degree of association between two variables, indicating the extent
to which the variables change concurrently, and usually, linearly. Note that this association is
parallel, thus it does not necessarily imply a cause-and-effect relationship. The variables exhibit
simultaneous variation without a distinction between independent and dependent variables, i.e.,
it is not about predicting Y from X.

Correlation coefficients, often denoted r or ρ, together with a p-value, quantify the degree
and direction of correlation. The coefficient is a number ranging in [−1,+1], where the sign indi-
cates the direction of a relationship (negative or positive), and the larger the absolute value is, the
stronger the correlation between the variables, and a correlation of 0 represents no linear relation-
ship between variables, i.e., irrelevant. And the corresponding p-value provides information on
whether the conclusions drawn from the data are meaningful, i.e., the correlation coefficient can
be interpreted only if the p-value is significant [35].

Pearson correlation coefficient (Pearson’s r)

The Pearson product-moment correlation coefficient [36], or Pearson correlation coefficient, is
the most familiar measure of association. It is obtained by taking the ratio of the covariance of the
two variables in question, normalized to the square root of their variances. Mathematically, it can
be expressed as a division between the covariance of the two variables and the product of their
standard deviations.

rX,Y = corr(X, Y) =
covX, Y

σXσY
=

E[ X Y ]−E[ X ]E[Y ]√
E [ X2 ]− (E[ X ])

2 ·
√

E [Y2 ]− (E[Y ])
2

(2.10)

where E is the expectation.

Spearman’s rank correlation coefficient (Spearman’s ρ)

Spearman rank correlation coefficient [37] is a non-parametric measure of rank correlation,
where rank refers to the relative position label of the observations within the variable: 1st, 2nd, 3rd,
etc. It assesses how well two variables are monotonically related, i.e., as one variable increases, the
other variable tends to increase, even if their relationship is not linear. Spearman’s coefficient is
appropriate for both continuous and discrete ordinal variables. Moreover, Spearman’s correlation
coefficient is a more robust method than Pearson’s, i.e., more sensitive to non-linear relationships
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[38]. The calculation of Spearmans’s ρ follows the definition of Pearson’s r (Equation 2.10) but it
uses ranked variables rather than the raw data.

Shown in Figure 2.12 are some examples of scatter plots with different values of correlation
coefficients, and both Pearson’s r and Spearman’s ρ are annotated for comparison. All results are
calculated using the SciPy [39] library in Python.

a b c

d e f

Figure 2.12: Examples of scatter plots with different correlation coefficients (r and ρ). (a) A linear
increase. (b) A linear decrease. (c) A Gaussian white noise. (d) An arc-tangent function. (e) A

logarithmic decrease. (f) A linear increase with some white noise. ** p-value << 0.01.

2.3.2 Regression analysis - dependent relationship

Regression analysis is a fundamental statistical technique used to model the relationship be-
tween a dependent variable and one or more independent variables. The primary goal of regres-
sion is to predict the dependent variable based on the values of the independent variables, while
also understanding the strength and nature of these relationships. It should be noted that it is
paramount to check whether there is a significant correlation between the variables before per-
forming any linear regression, as correlation is a prerequisite of statistically meaningful regression
results, that is, there is no regression without correlation.

A general formulation of a regression model, which proposes that Y i is a function (regression
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function) of X i and β with ei representing an additive error term, can be written as:

Y i = f (X i; β) + ei (2.11)

The goal is to estimate the function f (X i; β) that most closely fits the data. In order to conduct
a regression analysis, the form of the function f (·) must be first specified, and different forms of
tools are thereby used to estimate the parameters β, such as least squares [40], which estimates
parameters β that minimize the sum of squared residuals.

n

∑
i=1

( f (X i; β)− yi)
2 → min

β
(2.12)

It is also important to note that there must be adequate data to estimate a regression model in order
to obtain a determined and only solution.

Regression models/functions can be broadly categorized into linear and non-linear types.
Linear regression assumes that the relationship between the variables is linear, while non-linear
regression is used when this relationship is more complex and cannot be adequately captured by
a straight line.

Linear regression

Linear regression is one of the simplest and most commonly used types of regression, in which
one finds the line (or a more complex linear combination, but need not be linear in the independent
variables) that most closely fits the data according to a specific mathematical criterion. given a data
set {yi, xi1, ..., xik}n

i=1 of n random variables, a linear regression models the relationship between the
dependent variable y and the vector of independent variables x using a linear equation:

yi = β0 + β1xi1 + ... + βkxik + ϵi = xT
i β + ε, i = 1, ..., n (2.13)

where xi (xi1, ..., xik) are independent variables, β (β0, β1, ..., βk) are linear coefficients to be esti-
mated and ε is the error term.

Linear regression models are often fitted using the Ordinary least squares (OLS) by the princi-
ple of least squares: minimizing the sum of the squares of the discrepancies or residual, ri = yi− ŷi,
between the observed dependent variable (yi) and the output of the linear function of the indepen-
dent variables (ŷi = xT

i β̂). OLS seeks to find the coefficients β that minimize the sum of squared
residuals (SSR):

SSR =
n

∑
i=1

r2
i =

n

∑
i=1

(ŷi − yi)
2 → min

β
(2.14)

The simplest example of linear regression is to model a linear regression for n two-dimensional
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sample points with only one independent variable xi and one dependent variable yi:

yi = β0 + β1xi + ε i, i = 1, ..., n (2.15)

This is a straight line in a Cartesian coordinate system, in which the intercept (β0) is such that the
line passes through the center of mass (x, y) of the data points and the slope (β1) indicates the
degree of dependence of yi on xi.

Non-linear regression

Non-linear regression, on the other hand, is used when the model function has a non-linear
combination in the parameters. The model, f (·) in Equation 2.11, can take various forms, such as
exponential, logarithmic, polynomial, or more complex functional forms. The goal, similar to linear
regression, is to estimate the parameters such that the model fits the data as closely as possible.
The least squares analysis can also be used to solve non-linear regression problems by non-linear
least squares. By choosing initial values for the parameters, the algorithm refines the parameter
iteratively, and at each iteration, the system is approximated by a linear one, and thus the core
calculation is similar in both linear and non-linear cases. Since the parameters are obtained by
successive approximation, and thus non-linear regression generally does not have a closed-form
solution.

Robust non-linear least square method

In reality, we are coping with data from real life, and data is thus often contaminated by out-
liers or extreme measurements. In this case, the least-squares solution can become significantly
biased to avoid very high residuals on outliers.

One of the well-known robust estimators is the L1-estimator, which minimizes the sum of the
absolute values of the residuals. The only disadvantage of the L1-estimator is the function is non-
differentiable everywhere, which is particularly troublesome for efficient non-linear optimization.

Based on this, researchers [41, 42] proposed an approach incorporating differentiable features
and robustness in the estimation process. They introduced a scalar-valued, sub-linear function
ρ(·), where “sub-linear” means its growth should be slower than linear, in order to reduce the
influence of outlier residuals and contribute to the robustness of the solution, and the function ρ(·)
is referred as a loss function.

There are several options for the loss function, we can choose according to the specific problem
to be solved for the degree of robustness requirements. Here we list three representative functions:

• Linear function which gives a standard least squares: ρ(z) = z

• Smooth approximation to absolute value loss, “soft L1 loss”: ρ(z) = 2(
√

1 + z− 1)
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This function is relatively mild and gives approximately absolute value loss for large resid-
uals.

• Cauchy loss: ρ(z) = ln(1 + z)
This one is strongly sub-linear and gives significant attenuation for outliers.

Furthermore, the value of the soft margin used to differentiate between inliers (significant data
points) and outliers (less significant or noisy data points) is 1.0 by default, which is an unweighted
threshold. To generalize, a scaling parameter C for the loss function ρ(·) was introduced and
evaluated as:

ρ̂(r2
i ) = C2ρ

(( ri

C

)2
)

(2.16)

C scales the residuals ri before passing them into the ρ(·) function, the larger the C, the smaller the
adjusted residuals ri

C , leading to a less sensitivity the loss function is to outliers (larger residuals).
When residuals are small, ρ̂(r2

i ) ≈ ρ(r2
i ) ≈ r2

i holds for any ρ(z) defined above. Therefore, in robust
regression, C serves as a parameter that controls the trade-off between sensitivity to outliers and
the overall fit. By adjusting C, it can influence the degree to which the loss function penalizes larger
residuals (potential outliers), affecting the robustness of the regression model.

Overall, a robustified bound-constrained non-linear least-squares optimization problem can
be formulated as:

n

∑
i=1

ρ(r2
i ) =

n

∑
i=1

ρ
(
( f (xi; β)− yi)

2
)
→ min

β

Subject to lb ≤ β ≤ ub

(2.17)

where ri is the residuals, ρ(·) the loss function controlled by scaling parameter C, lb and ub are the
lower and upper bounds for the estimated parameters, respectively. The bounds are set to ensure
the estimated parameters are within reasonable ranges and sometimes help converge more quickly
to the optimal solution.

In brief, robust non-linear regression is designed to fit a non-linear model that describes the
majority of data, and the robustness is improved by giving the data different weights thereby
reducing the influence of outliers on the solution, through the loss function ρ(z). The whole idea
of robust non-linear least squares is implemented in the SciPy [39] Python library.

2.3.3 Consistency analysis - agreements and differences

Consistency analysis is a statistical method used to evaluate the agreement or reliability be-
tween different sets of measurements, observations, or ratings. Consistency analysis functions in
three major aspects:

1. Comparison of methods:
To compare different methods of measurement or analysis to ensure they produce similar
results. This can be critical when validating a new measurement technique against a gold

2.3. Statistical Techniques • 79



standard.

2. Reliability and reproducibility:
To ensure that measurements or evaluations are reliable, reproducible, and can be trusted
across different conditions or evaluators. Without consistency, conclusions drawn from data
may be questionable.

3. Inter-rater and intra-rater reliability:
To assess how consistently different raters (inter-rater reliability) or the same rater at dif-
ferent times (intra-rater reliability) score the same observations in studies involving human
evaluators (e.g., clinicians, judges).

Several methods are developed to conduct consistency analysis, such as Bland-Altman anal-
ysis, Intraclass correlation coefficient (ICC) and Cohen’s kappa, etc. We will focus on the Bland-
Altam analysis in the following section.

Bland-Altman analysis

The Bland-Altman (B&A) analysis is a method to assess the agreement between two different
instruments or two measurement techniques [35, 43, 44]. This approach helps identify any sys-
tematic bias between the methods and assesses the consistency of the measurements across their
range.

Given two measurement methods M1 and M2, the B&A analysis involves calculating several
statistics:

• Difference: the differences between the results of M1 and M2;

• Mean: the averages of the results of M1 and M2;

• Mean difference (bias): the mean of the differences, representing the systematic bias be-
tween the two methods, e.g., one method systematically obtains higher or lower observa-
tions than the other;

• Limits of agreement (LoA): the LoA are typically set at Mean difference ±1.96× standard
deviation (SD) of the Difference.
These limits indicate the range within which 95% of the differences between the two meth-
ods are expected to fall. These limits provide a threshold for acceptable agreement: if most
data points fall within these limits, the two methods are considered to agree sufficiently.

Graphically, the B&A plot was introduced by Bland and Altman [43] to visualize the differ-
ences against the means as a scatter plot, which is the most common way to plot, providing a
clear and intuitive representation of the agreement for easier comparison. The y-axis of such a plot
shows the difference between the two paired measurements (M1 −M2) and the x-axis represents
the average of these measures ((M1 + M2)/2). The horizontal dashed lines indicate the ±1.96 SD.

We illustrate this with example data points as shown in Figure 2.13a. The bias (mean dif-
ference) of −27.17 units is presented by the gap between the horizontal solid line and the zero
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differences (y-axis is zero). This negative bias seems caused by the measurements over 200 units,
while for lower observations, the data derived from the two methods are closer to each other (scat-
ters are around zero differences when the mean is lower than 200 units). The agreement limits are
from −94.24 to 39.91 units.

It is also possible to plot the differences as percentages or ratios, and one can use the first
method or the second one, instead of the mean of both methods. The option of plotting the dif-
ferences as percentages is useful when there is an increase in variability of the differences as the
magnitude of the measurement increases. As shown in Figure 2.13b, for our example samples, the
bias (mean difference) is −17.40%, almost constant for all the measured concentrations, with the
exception of very low values. The agreement limits are from −91.9% to 57.1%.

a

b

Figure 2.13: Illustration of Bland and Altman plots with representation of bias and limits of
agreement (dotted line), from −1.96 SD to +1.96 SD. (a) B&A plot of unit values: differences

between method M1 and M2 against the mean of the two measurements. The bias is −27.17 units
and the LoA is 67.07 units. (b) Relative B&A plot of percentage values: differences expressed as
percentages between method M1 and M2 against the mean of the two measurements. The bias is

−17.40% and the LoA is 67.07 units.
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The B&A plot simply quantifies the bias and a range of agreement, within which 95% of the
differences between one measurement and the other are included. It does not indicate whether
the agreement is sufficient or suitable for using one method (M1) or the other (M2) indifferently.
To interpret the results, i.e., whether the agreement is too wide or sufficiently narrow, depends
on a priori the limits of maximum acceptable differences (limits of agreement expected), based on
specific studies and purposes that provide biologically and analytically relevant criteria. We use
the B&A analysis to obtain the statistics to see if these limits are exceeded the expected LoA, or not.

Apart from the information plots themselves, we can also integrate correlation analysis (Sec-
tion 2.3.1) and linear regression analysis (Section 2.3.2) into the consistency analysis. For example,
fitting a regression line of the differences on the B&A plots could help in detecting a proportional
difference [45].

2.3.4 Outlier detection

Identifying outliers in data is a critical step in many statistical analyses and research endeav-
ors, as outliers can significantly influence the results and interpretations of a study. Outliers can
distort parameter estimates in statistical models, leading to biased results, which is also a justifi-
cation for the significance of robustness, as we discussed in Section 2.3.2. In data science, whether
to develop statistical models or machine learning models, identifying and handling outliers is a
always crucial step in data cleaning, before performing any analysis.

In the dissertation, we test different approaches to detect outliers from the studied dataset.
If considering the nature of the variable involved, the outlier detection methods can be classified
into four branches: univariate methods, bivariate methods, multivariate methods and mixed or
specialized methods.

Univariate methods

Univariate methods refer to methods that involve only one variable or one feature from a
dataset without considering relationships with other variables. Basic statistical methods such as
Z-score and Interquartile range (IQR) are often used for detecting outliers univariately.

The Z-score measures how many standard deviations a data point is from the mean of the
dataset, for a data point x, the Z-score is

Z =
x− µ

σ
(2.18)

where µ is the mean and σ is the standard deviation of the data. Typically, data points with a
Z-score greater than 3 or less than −3 are considered outliers. This is an easy way but with the
assumption that the data follows a normal distribution, which is quite strict, especially for small
datasets.
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The IQR measures the statistical dispersion in a dataset and is calculated as the difference
between the first quartile (Q1, 25th percentile) and the third quartile (Q3, 75th percentile): IQR =

Q3− Q1. Outliers are defined as data points that fall below Q1− 1.5× IQR or above Q3 + 1.5×
IQR. This method does not assume a particular distribution and is more robust to skewed data
than the Z-score method.

The IQR is also included in a box plot (or box-and-whisker plot), which is a graphical repre-
sentation of data. A box plot visualizes the distribution of a dataset by displaying its minimum,
Q1, median (second quartile, Q2), Q3 and maximum. The whiskers in the box plot extend to the
smallest and largest values within 1.5 times the IQR from Q1 and Q3, respectively. The same prin-
ciple is used to identify outliers in the box plots as the IQR method, that is, all data points outside
the whiskers are outliers. Both the IQR and box plot methods are non-parametric, which do not
assume any specific data distribution.

Multivariate methods

As datasets become increasingly complex, often featuring multiple variables variables and
high-dimensional features, the limitations of univariate outlier detection methods become appar-
ent. While univariate approaches are useful for detecting outliers in single variables, they fall
short of capturing the intricate relationships between variables in multivariate datasets. We dis-
cuss four/three methods to identify outliers in a multivariate manner.

PCA-based outlier detection

We propose a method on the basis of Principal component analysis (PCA) to identify outliers
using a Gaussian distribution model. PCA is a dimensionality reduction technique that transforms
a dataset with many variables into a smaller set of uncorrelated variables known as principal com-
ponents (PC), which captures the most variance in the data [46]. By reducing the data to the first
P principal components (PC1,..., PCP, P is normally much less than the original number of dimen-
sions), this algorithm simplifies the multivariate data into a P-dimensional space. In this trans-
formed new orthogonal space, the mean vector and the covariance matrix are calculated for the
selected P principal components, which are used to model a multivariate normal distribution.

To detect outliers, we assume that the data points follow a multivariate normal distribution
in this transformed space. The probability density function (PDF) of the multivariate normal dis-
tribution is evaluated for each data point in the transformed PCA space. The samples with a PDF
value below a predefined threshold are identified as outliers.

This method capitalizes on the concentration of most data points within a certain range and
identifies those that fall far outside this range as anomalies or outliers. However, it has some
limitations as it is based on the assumption of normality and is somehow sensitive to threshold
choice.
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Mahalanobis-Chi-Square method

Unlike Euclidean distance, Mahalanobis distance accounts for correlations between variables.
It effectively measures the distance of a data point from the mean of a distribution, taking into
account the covariance among variables. It is defined as:

D2 = (x− µ)TΣ−1(x− µ) (2.19)

where x is the data point, µ is the mean vector of the distribution, Σ is the covariance matrix of the
variables and Σ−1 is the reverse of the covariance matrix.

A Chi-square distribution with degrees of freedom equal to the number of variables (dimen-
sions) in the dataset is then used to compare with the squared Mahalanobis distance (D2) [47].
To identify outliers, critical values from the Chi-square distribution for a given significance level
(α) and degrees of freedom serve as a set of thresholds. Data points with squared Mahalanobis
distance (D2) exceeding this critical value (thresholds) are considered outliers.

K-Means (normal clusters versus abnormal clusters)

K-Means clustering [48] is a for partitioning data into clusters based on similarity. It assigns
data points to clusters such that the variance within each cluster is minimized. When setting the K
as 2, one for inliers and another for outliers, K-Means can be used as a good approach to identifying
abnormal samples. The idea is that the cluster that captures the majority of the data points is
considered the inlier cluster, in which the samples are closely grouped around the cluster centroid,
representing the implicit typical pattern of the dataset. A cluster that has very few data points or
unusually high variance might be considered abnormal. Data points that belong to these clusters
but are far from the centroid are likely to be outliers.

Specialized method

Angle-Based Outlier Detection (ABOD) [49] is a technique used to identify outliers in a dataset
by leveraging the geometric properties between data points, particularly in high-dimensional spaces.
ABOD detects outliers by examining the distribution of angles formed between a given data point
and its neighbors. The variance of its weighted cosine scores to all neighbors can be considered as
the outlying score.

In detail, for each data point in the dataset, two sets of vectors are first calculated: data point-
to-neighbors vectors and neighbor-to-neighbor vectors for all pairs of neighbors. The identification
of the neighbors could be performed using k-nearest neighbors algorithm. Then the associated an-
gles can be derived by applying dot product and arccosine to the vectors. The variance of the angles
is regarded as the outlying score and is used to measure the typical angle distribution around each
data point. Accordingly, high variance indicates that the data point and its neighbors have a sig-
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nificantly different angular distribution compared to the majority of the data points, suggesting
that the point is an outlier. Finally, a threshold is used to classify points as outliers based on their
ABOD scores. The threshold can be set based on the statistical properties of the score distribution
or empirical validation.

ABOD is shown to be effective in high-dimensional data where traditional distance-based
methods might struggle. And since it focuses on angles rather than absolute distances, it is also
less sensitive to feature scaling.

As for handling the detected outliers, the most direct way is to exclude them from further
analysis, this is an efficient option when it does not introduce any selection bias on the dataset
but with a cost of losing potential valuable information. Other strategies for dealing with outliers,
which can preserve the integrity of the datasets, include transforming data (e.g., scaling) to reduce
the influence of outliers without removing them and others or using robust methods that are less
sensitive to outliers, etc.

2.4 Machine Learning Algorithms

Machine learning (ML) is a branch of Artificial Intelligence (AI) [50] concerning the devel-
opment and studying of statistical and non-statistical-based algorithms that can learn from data,
identify patterns and generalize to new, unseen data, enabling them to make decisions without ex-
plicit programming [51] and facilitating automation and decision-making processes across various
industries. During training, a learning algorithm iteratively adjusts the model’s internal parame-
ters to minimize errors in its predictions [52].

ML algorithms can be broadly categorized into the following types based on different learn-
ing paradigms based on the nature of the “signal” (feature) or “feedback” (label) provided to the
learning system [53]:

• Supervised Learning
The algorithm learns from labeled data, where the input-output pairs are given. The goal is
to learn a general rule that maps inputs to outputs. Supervised learning has two primary
objectives: one is to classify data points to predefined classes or categories using developed
models (classification), and the other is to predict continuous outcomes based on input fea-
tures (regression).

• Unsupervised Learning
The algorithm works with unlabeled data and tries to identify the underlying patterns or
structures in its inputs. Common tasks include clustering and dimensionality reduction.

• Semi-supervised Learning
This approach combines both labeled and unlabeled data for training, leveraging a small
amount of labeled data along with a large amount of unlabeled data. This type of algo-
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rithm is useful in tasks such as protein sequence classification and web content classification,
where labeling data is expensive or time-consuming.

• Reinforcement Learning
The algorithm learns by interacting with a dynamic environment and performing actions by
an agent, receiving feedback in the form of rewards or penalties, and aiming to determine the
optimal actions to take in a specific context to maximize the cumulative reward over time. It
is often used in subjects of robotics, autonomous vehicles and game AI (e.g., AlphaGo).

Each algorithm has its strengths and limitations and no single algorithm works for all prob-
lems [54], so the choice of algorithm depends on factors such as the nature of the data, the problem
at hand, and the desired trade-off between interpretability and performance.

In clinical settings, ML techniques are increasingly being used to solve tricky and complex
issues clinicians have posed. In the next sections, we give an overview of those that have been em-
ployed in this dissertation or that have most often been used in recent research aimed at improving
neonatal care.

2.4.1 Supervised learning algorithms

Some common supervised learning algorithms are briefly introduced in this section, some are
developed for only classification tasks or regression tasks whilst some are able to handle both.

Naïve Bayes (NB)

Naïve Bayes (NB) is a simple probabilistic classifier based on Bayes’ Theorem, which assumes
independence between features. The algorithm is called "naïve" because it makes the assumption
that all features (or input variables) are independent of each other, which is rarely true in real-
world data. Despite this strong and often unrealistic assumption, NB works effectively in tasks
such as text classification and spam filtering [55].

The algorithm calculates the posterior probability of a class given the features by combining
the prior probability of the class and the likelihood of observing the features under that class. It
selects the class with the highest posterior probability as the predicted output. There are several
variants of NB, depending on how the likelihood is computed, including Gaussian Naïve Bayes
for continuous data, Multinomial Naïve Bayes for discrete or count data (commonly used in text
classification), and Bernoulli Naïve Bayes, which is ideal for binary features.

Due to its simplicity, Naïve Bayes is highly scalable and works well with large datasets, al-
though its performance can be limited when feature independence is not a reasonable assumption.
On the flip side, although NB is known as a decent classifier, it is known to be a bad estimator [56].
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Logistic regression (LR)

The Logistic Regression (LR) [57] is a linear classification model and is also known in the
literature as logit regression, maximum-entropy classification (MaxEnt) or the log-linear classifier.
The LR estimates the probability that a given input belongs to a particular category by fitting data
to a logistic function (also known as the sigmoid function) with regularization. This function maps
any real-valued number into a value between 0 and 1, making it ideal for binary classification tasks
and can also be extended to multi-class settings.

Decision tree (DT)

Decision Tree (DT) is a tree-like model where decisions are made by splitting the data into
subsets based on feature values, forming a hierarchy of rules. Data scaling or normalization is not
required in tree-based algorithms. In a Decision Tree, each internal node represents a feature (or
attribute) on which the data is split, and each branch represents an outcome of the decision based
on that feature. The terminal nodes, known as leaves, represent the final decision or output (either
a class label in classification or a value in regression).

Commonly used decision tree algorithms include ID3, C4.5 and CART. These three algorithms
use different methods to select the optimal splitting attributes, with the goal of ensuring that the
samples in each branch node of the decision tree are as similar as possible in terms of class. This
aims to increase the “purity” of each node as the tree is split further. ID3 [58] splits the nodes
based on information gain (entropy) and handles only categorical data for classification tasks. As
an extension of ID3, C4.5 [59] handles both categorical and continuous data and uses the gain ratio
for splitting and supports pruning to prevent over-fitting. The CART [60] generates binary trees
(i.e., each node has two children) regardless of the number of classes, making it simpler and more
structured. CART suits for both classification (binary and multi-class) and regression tasks, and
it uses Gini impurity (for classification) or variance reduction (for regression) to find the optimal
splits.

Decision trees are easy to interpret and visualize, making them popular for understanding
decision-making processes. However, they can be prone to over-fitting, especially with complex
data, which is often mitigated by pruning or using ensemble techniques like random forest.

Random forest (RF)

Ensemble methods combine the predictions of several base estimators built with a given learn-
ing algorithm in order to improve generalizability and robustness over a single estimator. Two
very representative ensemble methods are Random Forest (RF) (Bagging strategy) and eXtreme
Gradient Boosting (XGBoost) (Boosting strategy).

Random Forest (RF) [61] is a powerful ensemble supervised machine learning algorithm,
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which integrates multiple base learners, i.e., decision trees or Classification and negression tree
(CART) in specific, to improve accuracy and robustness [60]. RF follows the same principle as in a
single CART, using the Gini index as a measure of purity to control the growth and division of the
trees.

The ensemble strategy of random forest adopts a parallel method: the Bagging [62]. Different
sub-training sets are obtained from the entire training data through multiple sampling with re-
placement (bootstrap). Several base learners (CART) with “certain accuracy” are obtained through
parallel training and remain independent. If it is a classification task, the output of the RF comes
from the majority vote of each tree in the forest; if it is a regression task, the output is the average
results of all ensemble decision trees.

Its advantages over a single decision tree and other ML algorithms involve the introduction
of two types of randomness:

• Random selection of training samples.
The training samples used for each decision tree in a random forest are selected using the
bootstrap resampling method. While the samples chosen for training each tree are the same
size as the original training set, they are not identical due to the randomness introduced
by the bootstrap procedure. This randomness creates a certain degree of variance in the
information learned by each tree, while still maintaining consistency and overlap among
them, thereby promoting diversity within the model.

• Random selection of training features.
In each decision tree (CART), only a random subset of features is selected from the original
feature set for training. When splitting nodes, the algorithm considers only this randomly
chosen subset to determine the optimal split. This randomness in feature selection helps
reduce the correlation between individual trees, which enhances the overall generalization
performance of the algorithm.

The introduction of these two forms of randomness effectively minimizes model variance. As
a result, RFs achieve a high level of resistance to over-fitting and exhibit strong generalization capa-
bilities without requiring additional pruning, and are well-suited for processing high-dimensional
datasets. Also, due to the parallel generation of trees, the computational complexity of training a
RF is on par with that of training a single DT model, underscoring its efficiency as an ensemble
algorithm.

Many hyper-parameters of RF are shared across both classification and regression tasks, with
some specific to each task. The key hyper-parameters of Random Forest includes:

— Shared hyper-parameters:

• n_estimators: The number of trees in a forest.
Increasing this generally improves performance but also raises computational cost. How-
ever, the performance improvements will diminish after reaching a certain number of trees.
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• max_features: The number of features to consider when splitting a node.
This can be set to “sqrt”, “log2”, or a fraction, controlling the randomness in each tree. Lower
values reduce variance but may increase bias.

• max_depth: The maximum depth of each tree.
Limiting this parameter helps prevent over-fitting by controlling tree complexity.

• min_samples_split: The minimum number of samples required to split a node.
Higher values limit tree growth and help reduce over-fitting.

• min_samples_leaf: The minimum number of samples required at a leaf node.
This prevents trees from growing too deep and helps generalize better.

— Classification-specific hyper-parameters:

• criterion: The function used to measure the quality of a split.
For classification, common options are “gini” (Gini impurity) or “entropy” (information
gain), determining how splits are evaluated to improve class purity.

• class_weight: Weights associated with classes in imbalanced datasets.
This parameter adjusts the model to handle imbalanced datasets by giving more importance
to minority classes.

— Regression-specific hyper-parameters:

• criterion: The function used to measure the quality of a split.
For regression, this is typical “mse” (mean squared error) or “mae” (mean absolute error),
determining how splits are evaluated to reduce prediction errors.

• min_impurity_decrease: A node is split if the impurity decrease is greater than this value.
This helps control the granularity of tree splits and makes split criteria more finely.

Extreme gradient boosting (XGBoost)

Different from the Bagging strategy for RF, the underlying foundation of eXtreme Gradient
Boosting (XGBoost) [63] is the Boosting strategy, i.e., each base learner is generated in a sequen-
tial fashion with strong dependencies on each other. With multiple optimizations on the GBDT
algorithm [64], its speed and efficiency have reached the extreme, making it a flexible and efficient
XGBoost algorithm, which is also where the name “eXtreme Gradient Boosting” comes from.

XGBoost combines multiple weak learners (typically DTs) to create a strong learner. Each tree
in the model is trained sequentially, and the objective is to correct the errors made by the previous
trees by minimizing the residuals. XGBoost includes L1 (Lasso) and L2 (Ridge) regularization
terms to prevent over-fitting, making it more robust than standard gradient boosting algorithms.

XGBoost is widely used in tasks like classification, regression and ranking due to its flexibility
and performance, and is known for its performance, scalability, and ability to handle large datasets
with high accuracy. It has become a preferred algorithm in tasks requiring high accuracy and
computational efficiency, such as financial modeling, customer behavior prediction, and medical
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diagnoses. It has been particularly successful in winning numerous machine learning competitions
due to its versatility, speed, and precision.

Multilayer perception (MLP)

Multilayer perceptron (MLP) [65] is a type of Artificial neural networks (ANN) used for both
classification and regression tasks. It is a fundamental deep learning model that consists of multi-
ple layers of nodes, or “neurons”, where each neuron mimics a biological neuron by applying an
activation function to the weighted sum of inputs.

The MLP consists of an input layer, an output layer and one or more hidden layers in be-
tween. The input layer receives the input data, with one neuron for each feature. The hidden
layers perform computations by applying weights and biases to the inputs, followed by activation
functions. The activation functions, such as ReLu, sigmoid or tanh, introduce non-linearity to help
capture complex patterns in the data. The model’s learning capacity increases with the number
of hidden layers and neurons. The output layer produces the final output. For classification, the
output typically represents class probabilities, while for regression, it provides continuous values.
The MLP features a feedforward architecture, where information flows in one direction—from the
input layer, through hidden layers, to the output layer—without any cycles.

The training of MLP uses a backpropagation algorithm, which adjusts the model’s weights by
minimizing the difference between predicted and actual outputs, typically using gradient descent.
This process allows MLPs to learn and refine their predictions over time. Additionally, MLPs have
the ability to approximate any continuous function, thanks to their “universal approximation”
property, making them versatile for a wide range of machine learning tasks.

Shallow convolutional neural networks (Shallow CNN)

Shallow Convolutional neural networks (CNN) are a type of neural network designed primar-
ily for processing grid-like data, such as images. Unlike deep CNN, which consists of many lay-
ers of convolutional operations and complex architectures, shallow CNN have a simpler network
structure and fewer network parameters. Some variants of shallow CNN have been proposed
mainly targeting image classification tasks, including a shallow network that combines CNN with
Support vector machine (SVM) [66], a shallow CNN with logarithmic filter groups [67], and a
novel shallow CNN with only 4 layers with small size of convolution kernel to accelerate training
convergence and improve the accuracy[68], etc.

The architecture of shallow CNN typically consists of a few convolutional layers followed by
pooling layers and a final fully connected layer. The convolutional layers apply filters to extract
features from the input data while pooling layers reduce dimensionality and retain important in-
formation. The fully connected layer interprets the features extracted by the convolutional layers
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and makes the final predictions. For network training, shallow CNN are trained using backpropa-
gation and optimization algorithms like stochastic gradient descent. They adjust weights to mini-
mize the loss function, which measures the difference between predicted and actual values.

Shallow CNN are often used for tasks where the complexity of deep networks is not neces-
sary, such as basic image classification, object detection in simpler contexts, and feature extraction
in the preliminary stages of more complex pipelines. While shallow CNN may not perform as
well as deeper networks on complex tasks, they provide a good starting point for understanding
convolutional neural networks and can be effective for simpler applications. In fact, with the ad-
vantage of convolutional filters, shallow CNN can also efficiently capture local patterns and trends
in time series data with task-specific convolutional kernels. In Chapter 5, where shallow CNN are
employed, we will further describe the shallow CNN that are designed for sepsis early detection.

Mixed-effects random forest (MERF)

Mixed-Effects Random Forest (MERF) represents an advanced extension of traditional random
forests, designed to handle complex hierarchical and multi-level data structures. This approach
integrates the strengths of RF with mixed-effects models to account for both fixed and random
effects in data. In supervised learning, MERFs are particularly valuable when dealing with data
that exhibit inherent hierarchical or nested relationships, such as repeated measurements, clustered
data, or data with multiple levels of variability, where complex dependencies and interactions have
arisen. By incorporating both fixed effects, which capture systematic patterns across the entire
dataset, and random effects, which account for variability at different levels (such as within clusters
or groups), MERFs can provide more nuanced and accurate predictions.

The very initial origin of mixed-effects models is Linear mixed-effects model (LMM) [69], a sta-
tistical model that incorporates fixed and random effects to accurately represent non-independent
data structures. LMM offers an alternative to traditional analysis of variance (ANOVA) that often
assumes that observations within each group are independent. This assumption, however, may
not hold in cases of non-independent data, such as nested, hierarchical, longitudinal, or clustered
datasets. Non-independent data occurs when the variability between outcomes is influenced by
correlations within or between groups. For instance, when studying healthcare methods involv-
ing multiple hospital systems, there are multiple levels of variables to consider, such as individual
patients within different departments of hospitals and hospitals within larger health networks. In
such cases, a solution to modeling hierarchical data is using Linear mixed-effects models, allowing
us to understand the important effects between and within levels while incorporating the correc-
tions for standard errors for non-independence embedded in the data structure [70, 71].

Using a similar idea of mixed effects but not limited to simple linear models or paramet-
ric statistical models, Hajjem et al. [72] adapted Regression Tree (RT) algorithms, i.e., CART, for
clustered data with continuous outcomes using a mixed-effects approach. Their Mixed-Effects Re-
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gression Tree (MERT) algorithm demonstrated significant improvements over standard trees in
simulations, particularly when random effects are non-negligible. The key concept of MERT is to
dissociate the fixed from the random effects. Essentially, it involves iterative calls to a standard RT
algorithm within the Expectation-Maximization (EM) framework [73, 74]. In each iteration, a stan-
dard RT is constructed from transformed response data, with the current estimate of the random
effect component subtracted from the original response. Independently, Sela and Simonoff [75]
proposed a similar method, known as Random Effects Expectation-Maximization (RE–EM) trees.

One step further, Hajjem et al. proposed a generalization of RFs to clustered data consisting of
replacing the RT within each iteration of their MERT algorithm with a forest of trees, and named
this method as Mixed-Effects Random Forest (MERF) [72]. The MERF was defined as follows:

yi = f (Xi) + biZi + ϵi,

bi ∼ N(0, D) = N(0, σ2
b ), ϵi ∼ N(0, Ri) = N(0, σ2

e Imi), i = 1, ..., m
(2.20)

where yi is a (mi × 1) vector of responses for the mi observations in cluster i; Xi is the fixed-effects
covariate matrix of size (mi× p); Zi is the random-effects covariate matrix of size (mi× q), where q is
the number of random effects; bi is a scalar of (q× 1) representing the linear coefficients of random
effects and it should be estimated for each cluster i and the covariance matrix of bi is D; and ϵi is
the (mi × 1) vector of errors and its covariance matrix is Ri. Importantly, the non-linear function
f (·) is estimated using a standard Random Forest using the information in Xi. The random part,
Zibi, is assumed linear. The total observations number is N = ∑m

i=1 mi. Other assumptions in the
MERF algorithm are that bi and ϵi are independent and normally distributed and that the between
cluster observations are independent.

The MERF is implemented under the framework of the maximum likelihood Expectation-
Maximization (EM) algorithm, which was originally applied for LMM [69]. The main difference
lies in the fact that the linear regression step used for the fixed effects is replaced by the application
of the Random Forest algorithm. Briefly, the method consists of the application of the following
steps:

1. Set r = 0. Let b̂i(0) = 0, D̂0 = Iq and σ̂2
e(0) = 1.

2. Set r = r + 1. Update y∗i(r), f̂ (Xi)(r) and b̂i(r).

(a) y∗i(r) = yi − Zi b̂i(r−1), i = 1, ..., m;

(b) Estimate f̂ (Xi)(r) using the RF algorithm [61], with Xi as the inputs and y∗i(r) as the
target;

(c) Compute b̂i(r) as detailed in [76].

3. Update σ̂2
e(r) and D̂(r) analytically, as detailed in [76].

4. Keep iterating by repeating steps 2 and 3 until convergence.

The convergence of the algorithm is evaluated by computing at each iteration a Generalized log-
likelihood (GLL) criterion [76].
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To predict the response for a new observation j within a known cluster i used in fitting the
MERF model, we combine its population-averaged RF prediction, f̂ (Xij), with the predicted ran-
dom effect for that cluster, Zi b̂i. However, if the new observation belongs to a cluster not present
in the original training data, the prediction relies solely on the population-averaged RF prediction,
f̂ (Xij), since no cluster-specific random effects are available. Hence,

• For a known cluster: Prediction = f̂ (Xij) + Zi b̂i.

• For a unknown cluster: Prediction = f̂ (Xij).

2.4.2 Hyper-parameter optimization

Hyper-parameter optimization is a critical step in ML that involves selecting the best set of
hyper-parameters for a model to improve its performance and generalization ability. Unlike model
parameters, which are learned from the training data, hyper-parameters are set before the training
process begins and influence how the learning algorithm performs. Depending on the algorithms,
hyper-parameters are different, varying from the learning rate, the number of hidden layers in a
neural network, or the number of trees in a random forest.

The most widely used method to conduct hyper-parameter optimization is grid search. This
method involves specifying a range of values for each hyper-parameter (hyper-parameter space)
and exhaustively evaluating all possible combinations (in the training data). Although thorough, it
can be computationally expensive, especially with large datasets and numerous hyper-parameters.

Random search is a lighter alternative to grid search. Instead of testing all possible combina-
tions, random search samples combinations randomly from specified hyper-parameter space. It
is often more efficient than grid search and can yield comparable results with less computational
cost.

Successive halving [77] is yet another method to find the optimal hyper-parameter combina-
tions. It is an iterative selection process where all candidates (the parameter combinations) are
evaluated with a small amount of resources at the first iteration. Only some of these candidates are
selected for the next iteration, which will be allocated more resources. Only a subset of candidates
that consistently rank among the top-scoring candidates across all iterations can “survive” until
the last iteration. Each iteration is allocated an increasing amount of resources per candidate.

Bayesian optimization uses probabilistic models to guide the search for optimal hyper-parameters
[78, 79]. It builds a model of the objective function and uses it to choose promising hyper-parameter
values, balancing exploration and exploitation.

Evolutionary algorithms, inspired by natural evolution, can be used to optimize hyper-parameters
through processes such as mutation, crossover, and selection [80]. They are particularly effective
in complex search spaces and can adaptively search for suitable hyper-parameter settings.
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In summary, effective hyper-parameter optimization can significantly enhance model perfor-
mance by finding the best configurations for learning algorithms. It helps in reducing over-fitting
or under-fitting and ensures that models are well-tuned to the data they are trained on.

2.4.3 Model performance evaluation

Model evaluation strategies

When evaluating machine learning models, it is crucial to ensure that the model generalizes
well to new, unseen data. Several techniques are commonly used to estimate how well a model is
likely to perform on future data. These include train-test split, cross-validation, and Monte Carlo
cross-validation (also known as repeated random sub-sampling).

The train-test split is the most straightforward technique for evaluating a model. In this ap-
proach, the dataset is divided into two distinct sets: a training set and a testing set. Typically,
70%-80% of the data is used for training the model, and the remaining 20%-30% is used to test
its performance. This method is quick and easy to implement but has limitations. Since only one
subset of the data is used for testing, the results can be highly dependent on how the data is split.
If the split is unrepresentative, the model’s performance may be overestimated or underestimated.
Moreover, in small datasets, this method can waste valuable data by leaving a large portion unused
during training.

Cross-validation is a more robust technique than the train-test split. It involves splitting the
dataset into multiple subsets (or folds) and repeatedly training and testing the model on different
portions of the data. One of the most common forms is k-fold cross-validation. It splits the dataset
into k equal-sized folds, trains the model on (k− 1) folds, tests it on the remaining fold, and repeats
the process k times, averaging the results to provide a more reliable performance estimate. This
method ensures that every data point is used for both training and testing, and it provides a more
stable estimate of the model’s performance. However, cross-validation can be computationally ex-
pensive, especially for large datasets or complex models. Besides, stratified k-fold cross-validation
is a variant often used when the dataset is imbalanced. It ensures that each fold has approximately
the same class distribution as the original dataset, making the evaluation more representative.

Monte Carlo cross-validation, also known as repeated random sub-sampling, is another method
for evaluating models. Unlike k-fold cross-validation, Monte Carlo cross-validation randomly
splits the dataset into training and testing sets multiple times, and for each split, the model is
trained and evaluated. This process is repeated n times, and the model’s performance is aver-
aged across all repetitions. This approach provides flexibility in how the data is split (e.g., using
different train-test ratios for each iteration) and allows for more repetitions compared to k-fold
cross-validation. However, it may result in an overlap between training and testing sets in differ-
ent iterations, which can lead to a slightly biased result.
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Choosing between these methods depends on the dataset size, the model’s complexity, and the
resources available. Cross-validation is generally preferred for more reliable results, while Monte
Carlo cross-validation provides flexibility and randomness, and the train-test split is used when
computational resources or time is very limited.

In addition to model evaluation strategies, different metrics are used for quantifying the per-
formance of the model itself. We divide the metrics according to the specific needs of different
tasks and problems.

Classification evaluation metrics

For classification tasks, where the goal is to predict categorical outcomes, the results can be
summarized in a confusion matrix. The confusion matrix is especially useful when the dataset
has more than two classes as it clearly visualizes the distribution of predictions across multiple
classes. Figure 2.14 illustrates a confusion matrix of a binary classification problem by providing
a detailed breakdown of the model’s correct and incorrect predictions across all classes. The true
positive (TP) and true negative (TN) are the numbers of instances correctly classified as positive
and negative, respectively; while the false positive (FP) indicates the actual negative instances
incorrectly predicted as positive, also known as a “Type I error”; and false negative (FN) is the
number of instances incorrectly predicted as negative, also known as a “Type II error”.
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Figure 2.14: Confusion matrix for a binary classifier. TP: true positive. FP: false positive. FN: false
negative. TN: true negative.

Several important performance metrics can be derived directly from the confusion matrix, in-
cluding accuracy (Acc), sensitivity (or recall or True positive rate (TPR)), specificity (True negative
rate (TNR)), False positive rate (FPR), precision (Positive predictive value (PPV)), F1-score and
Balanced accuracy (BAcc):

Accuracy (Acc) =
TP + TN

TP + TN + FP + FN
(2.21a)
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Sensitivity (Se, Recall) = TPR =
TP

TP + FN
(2.21b)

Specificity (Sp) = TNR =
TN

TN + FP
(2.21c)

FPR = 1− Sp =
FP

FP + TN
(2.21d)

Precision = PPV =
TP

TP + FP
(2.21e)

F1 = 2× Precision× Recall
Precision + Recall

(2.21f)

BAcc =
Se + Sp

2
(2.21g)

While useful for balanced datasets, the Accuracy can be misleading in imbalanced data scenarios,
as it may favor the majority class. In contrast, other metrics mentioned above are more informative
for imbalanced data. These metrics focus on the performance of the model in correctly identifying
the minority class and managing trade-offs between false positives and false negatives, offering
a more nuanced evaluation of model performance when one class significantly outnumbers the
other.

In addition, measures derived from two curves are also commonly used as performance met-
rics. The first is the Area under the receiver operating characteristic curve (AUROC) and it is
particularly useful when classes are balanced. The Receiver operating characteristic curve (ROC)
itself plots the True positive rate against the False positive rate at various thresholds. The area
under this curve (AUROC) is a single value that summarizes the performance of the classifier. The
AUROC value ranges from 0 to 1: a value of 0.5 indicates a classifier that performs no better than
random guessing; a value of 1 indicates a perfect classifier that separates classes with no errors.
The closer the AUROC is to 1, the better the model is at distinguishing between the classes.

Another metric, Area under the precision-recall curve (AUPRC), which is more suitable for
evaluating models on imbalanced datasets. The Precision-recall curve (PRC) plots precision on
the y-axis and recall on the x-axis, showing how they change across different thresholds. The
AUPRC captures the area under this curve, providing a summary of model performance. Unlike
AUROC which has a baseline of 0.5 (random guess), the baseline of AUPRC is determined by the
proportion of positive instances in the dataset. In other words, the baseline AUPRC corresponds to
the precision achieved by a random classifier, which is equivalent to the prevalence of the positive
class in the test data. Baseline AUPRC is typically low when the dataset is highly imbalanced (i.e.,
the positive class is rare). When comparing the performance, instead of directly comparing the
absolute values of AUPRC, it should be compared against this baseline to assess how much better
it performs than random guessing. The farther the AUPRC is above the baseline, the better the
model is at distinguishing the positive class from the negative class.
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Regression evaluation metrics

Regression models, which predict continuous outcomes, are evaluated using different metrics
that focus on the accuracy of the predictions relative to the true values. Mean squared error (MSE)
measures the average squared difference between predicted and actual values. It penalizes larger
errors more significantly due to the squaring, making it sensitive to outliers. Root-mean-square
error (RMSE) is the square root of MSE, giving error values in the same units as the target variable,
which makes it easier to interpret. Mean absolute error (MAE) measures the average absolute
difference between predicted and actual values. It gives equal weight to all errors, making it less
sensitive to outliers compared to MSE. The R-squared (R2) metric, also known as the coefficient
of determination, indicates how well the model’s predictions explain the variability of the target
variable. It ranges from 0 to 1, where 1 indicates perfect predictions.

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2 (2.22a)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (2.22b)

MAE =
1
n

n

∑
i=1
|yi − ŷi| (2.22c)

R2 = 1− ∑n
i=1 (yi − ŷi)

2

∑n
i=1 (yi − yi)

2 (2.22d)

2.5 Interpretability and Explainability Analyses

As machine learning systems become increasingly sophisticated and their applications more
critical, understanding how these models arrive at their predictions or decisions is essential for
ensuring trust, accountability, and fairness.

EXplainable artificial intelligence (XAI) is a crucial area of research and practice in ML and AI
that focuses on making complex models more interpretable and understandable.

Explainability refers to the ability of an ML or AI model to provide transparent and under-
standable insights into its decision-making process. The objective here is thus to make the internal
workings of the model comprehensible to humans, so they can understand why the model made
a particular prediction or recommendation. Explainability involves providing information about
how the model arrived at its conclusions.

Model interpretability is the first step towards model explainability. Interpretability refers
specifically to the ability of an ML or AI model to provide insights into its internal workings with-
out necessarily providing a detailed explanation. In other words, interpretability focuses on un-
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derstanding how the model works at a high level, rather than delving deep into the specifics of
each decision. Interpretability is often achieved through two families of techniques:

• Model visualization: Visualizing the model’s architecture or behavior to understand its over-
all structure and relationships. Attention maps are one common example of this technique.

• Feature importance analysis: Identifying which input features are most important for the
model’s predictions.

While interpretability provides a general understanding of how an AI system works, explain-
ability goes further by providing detailed insights into specific decisions or outcomes. This section
introduces various techniques and methodologies used to enhance the model interpretability.

2.5.1 Variable importance

Variable importance (VI) is a key concept in interpretability and explainability analyses, partic-
ularly in complex models such as machine learning algorithms, where understanding the contribu-
tion of each input variable to the model’s predictions is essential. The goal of Variable importance
analysis is to quantify the relative influence of each input feature on the model’s output, providing
insights into how the model makes decisions. Understanding which variables are most important
can significantly enhance the transparency of the model and support interpretation. This is par-
ticularly valuable in fields such as healthcare, finance, and policy-making, where explainability
is crucial for validating model outputs and ensuring trust. Moreover, identifying the most influ-
ential variables enables feature selection, model simplification, and improved generalizability by
reducing model complexity without significant loss of predictive power.

In practice, variable importance can be measured in several ways depending on the type of
model. For linear models, the magnitude and sign of the coefficients provide direct insight into
the importance of each variable. A larger absolute value of a coefficient indicates a stronger influ-
ence on the target variable, with positive or negative signs indicating the direction of the effect.
For example, in a linear regression model, a large positive coefficient means that an increase in the
corresponding variable will strongly increase the predicted outcome, while a large negative coef-
ficient suggests a strong inverse relationship. In contrast, for non-linear models such as decision
trees, random forests, or neural networks, variable importance is typically assessed through differ-
ent techniques, as these models do not rely on linear relationships. Methods like Gini importance
(used in decision trees) or permutation importance (where the values of a feature are shuffled to
assess the impact on model performance) are commonly applied. These techniques estimate how
much each feature contributes to reducing prediction error or improving model accuracy, even
when complex interactions between variables are present.

We use the Random Forest (RF) algorithm, which is primarily used in this dissertation, as a
starting point to introduce two RF built-in variable importance estimation methods based on mean
decreased Out-of-bag (OOB) accuracy and mean decreased Gini impurity. Moreover, we will also
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briefly introduce permutation variable importance that provides a model-agnostic approach to
estimate the features’ contributions to the model performance.

Mean decreased out-of-bag accuracy

The importance of individual features can be determined by calculating the average decrease
in the accuracy of Out-of-bag samples. The RF classifier or regressor is trained using bootstrap
aggregation, where each new tree is fit from a bootstrap sample of the training observations, and
this leads to a collection of Out-of-bag samples that were not used for model training. Considering
the number of a bootstrap sample is N, the probability that a sample is not be sampled is

(
1− 1

N

)N ,
and when N → ∞, we have:

lim
N→∞

(
1− 1

N

)N

≈ 1
e
≈ 0.368 (2.23)

Thus, the OOB samples comprise approximately one-third of the overall training samples. The
OOB error is the average error for each calculated using predictions from the trees that do not
contain in their respective bootstrap sample. This allows the RF to be fit and validated whilst
being trained [81]. The OOB error is often considered an unbiased estimate of the random forest
generalization error, which approximates the k-fold cross-validation [61] that requires extensive
computation, and it can be used to compute the importance of individual feature variables. The
importance of a feature in an Random Forest (RF) is calculated as follows:

1. For each decision tree in the forest, use the corresponding OOB samples to compute its OOB
error, denoted errOOB1;

2. Randomly add noise interference to feature/variable X in OOB sample (i.e., randomly change
the sample’s value at feature X), and again compute its OOB error, denoted as errOOB2;

3. Let there be Ntree decision trees in the RF, then the VI of feature X can be expressed as:

VI =
1

Ntree
∑ (errOOB2 − errOOB1) (2.24)

Measuring the variable importance in this way is considered from the point of view of the change
in prediction accuracy: if the OOB accuracy of a feature changes substantially when a random noise
perturbation is added to the feature, it means that the feature has a large impact on the prediction
results, indicating a high feature importance.

Mean decreased Gini impurity

In tree-based ML models, the relative rank (i.e., depth) of a feature used as a decision node
can be used to assess the relative importance of that feature with respect to the predictability of the
target variable. This method relies on the Gini impurity criterion, which is used in the construction
of decision trees of a random forest. Each time a feature is used to split a node, it reduces the
impurity of that node. The sum of these reductions averaged across all trees in the forest, i.e.,
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Mean decrease in impurity (MDI), indicates the feature’s importance [82]. Features that result in
large decreases in Gini impurity are considered more important because they help to create purer
splits, leading to more accurate predictions.

In an RF, features that appear closer to the top of the decision trees influence the prediction for
a larger portion of the input data. Therefore, the expected proportion of samples affected by these
features can be used to estimate their relative importance. In implementation, the importance is
further refined by combining the fraction of samples influenced by a feature with the reduction in
impurity achieved by splitting on that feature, resulting in a normalized measure of its predictive
power. The advantage of this method is computationally fast since the computation of importance
can be done using only the intermediate values obtained during the random forest training (during
the growth of each subtree in the forest). The implementation of RF feature importance in scikit-
learn library [83] is MDI-based.

Permutation importance

Even though impurity-based feature importance (MDI) computed on tree-based models is one
of the most commonly used methods, it suffers from two drawbacks that can lead to misleading
conclusions. First, they are computed on statistics derived from the training dataset and hence do
not necessarily provide insight into which features are most important to make good predictions
on the held-out test set. Secondly, they tend to overemphasize features with high cardinality—
those with many unique values.

Permutation feature importance [61] is a model-agnostic technique and can be used as an
alternative to impurity-based feature importance that does not suffer from these flaws. Unlike
impurity-based methods, which rely on the internal structure of tree-based models, permutation
importance assesses the contribution of features by directly measuring their impact on model per-
formance.

The key idea behind this method is to shuffle the values of a specific feature and observe the
resulting change in the model’s accuracy or another performance metric. If a feature is important,
permuting its values will disrupt the relationship between the feature and the target variable, lead-
ing to a significant drop in model performance. Conversely, if a feature has little or no impact on
predictions, the model’s accuracy will remain largely unaffected by the permutation. By calculat-
ing the decrease in performance for each feature, permutation importance provides a ranking that
reflects the contribution of each variable to the model’s predictive power.

Although this method can overcome some biases related to feature cardinality or the specific
mechanics of tree-based algorithms, it does have some limitations. Permutation importance re-
quires multiple evaluations of the model by shuffling each feature and recalculating performance
metrics. This can be computationally intensive, especially for large datasets or complex models
with many features. It relies on the model’s predictive accuracy, so if the model has poor perfor-
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mance or is overfitted, permutation importance scores may be unreliable or misleading. Besides,
when facing highly collinear features, permuting one feature might not significantly affect per-
formance because the model can still get the same information from a correlated feature to make
predictions, thus downplaying the actual contribution of the shuffled feature.

In summary, the assessment of variable importance is essential for understanding the contri-
bution of each feature to a model’s predictive performance. Each method has its strengths and
limitations, and selecting the appropriate technique depends on the model and the specific goals
of the analysis. For tree-based models like Random Forest, impurity-based measures may provide
useful insights, while permutation importance offers a more general approach suitable for a wide
range of models.

2.5.2 Sensitivity analysis

Sensitivity analysis is a crucial tool applied to multi-parametric mathematical models used to
understand and assess the relative influence of each model parameter or model input, and their
interrelation, on the output of the model [84]. It examines how the variation in the input parameters
of a model impacts the outcome, thus helping to identify which inputs are the most influential. In
essence, sensitivity analysis allows us to determine how sensitive the model’s results are to changes
in assumptions, data inputs, or parameters. By systematically varying input parameters, either
individually or collectively, sensitivity analysis can reveal the extent to which uncertainty in the
model’s inputs contributes to uncertainty in its predictions. This process is particularly valuable in
models with multiple uncertain parameters, as it can help prioritize parameters and inputs where
data accuracy is most critical. Unfortunately, these analyses are very rarely applied in the context
of ML.

The use of sensitivity analyses enhances the interpretability of models by ensuring that con-
clusions drawn from them are not overly reliant on uncertain or poorly understood inputs. This
makes it a critical step in model validation, decision-making, and risk assessment, particularly in
complex systems where model outcomes drive important real-world decisions.

Several methods exist for conducting sensitivity analysis, ranging from local methods, which
involve changing one parameter at a time, to global methods, which explore the entire parameter
space simultaneously. Local sensitivity analysis is often more straightforward but may overlook
interactions between parameters, while global sensitivity analysis, though more computationally
intensive, provides a more comprehensive understanding of parameter interactions and non-linear
effects.

The screening methods are designed to give a coarse (not exploring the entire input space) and
a computationally inexpensive assessment of the relative importance of input parameters [85, 86].
The Morris method is one of the most widely used screening techniques. We proposed an original
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application of Morris screening methods in the context of the analysis of ML models, as presented
in our published work [87] and following chapters.

Morris screening method

The Morris screening method [88] is a “one-step-at-a-time” (OAT) method in which only one
input parameter is assigned with new values in each analysis. The key idea of the method is the
estimation of Elementary Effects (EE) over multiple random sampling for each input parameter,
allowing for the identification of influential parameters and possible interaction effects between
parameters. Once the key parameters are identified through screening, if necessary, more refined
global sensitivity analysis methods can be applied to these factors for deeper insights.

For a model M with K parameters, where x = [x1, x2, ..., xK] is a vector of input with the K
parameters and y =M(x) is the model output evaluated at point x, the Morris method explores
a sampled parameter space, a K-dimensional unit hypercube, with predefined supports for each
parameter, subsequently divided into a uniform grid of points of p levels at which the model can be
evaluated. On this evenly-spaced grid, the method then generates several random trajectories (R)
allowing the parameter “jump” in the hypercube with a minimum step of 1

p−1 . The randomized
trajectory design matrix is given in [88]. Each trajectory (r) evaluate the model (K + 1) times.
From the starting point, which is a set of parameters randomly selected in the parameter space,
each parameter will be varied or perturbed in turn and, particularly, in the form of a relay. That is
to say that during this process, it does not return to the original starting point after perturbation but
continues perturbing another dimension from the perturbed point, allowing efficient exploration
of parameter space in given levels.

The estimation of Elementary Effects (EE) is associated with a given trajectory r in the param-
eter space, and it measures the changes in the output of the model y =M(x) when perturbing one
parameter at a time. The EE of parameter k is defined as follows:

EEk =
M(x1, x2, ..., xk + ∆, ..., xK)−M(x1, x2, ..., xk, ..., xK)

∆
(2.25)

where ∆ is the “grid jump” represents a predefined variation such that x + ∆ is still in the specified
domain of parameter space; ∆ is a value in [ 1

p−1 , 2
p−1 , ..., 1− 1

p−1 ].

Consider that an nR number of elementary effects (or replicates), associated with the k’th pa-
rameter have been sampled from the finite distribution of EEk, which can be noted as EE(r)

k , r ∈
[1, R]. Two essential statistical indicators of EEk from the sampled trajectories can be calculated.
The first is the absolute mean [85] that represents the linear effect of the variable xk on the model
output y, defined as

µ∗k =
1

nR

nR

∑
r=1
|EEr

k| (2.26)
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The second is the standard deviation of the EEk from all trajectories and it indicates the presence
of non-linearity and/or interactions between parameter k and other parameters.

σk =

√
1

nR

nR

∑
r=1

(EEr
k − µk)

2 (2.27)

A qualitative analysis can be performed by plotting the µ∗k and σk of EEk for each parameter
on the µ∗ − σ plane (as shown in Figure 2.15). As suggested by Morris [88], there are four possible
categories of parameter importance:

• Parameters with non-influential overall effects on the model output: relatively low values of
both µ∗k and σk. The ones are often clustered closer to the origin with a pronounced boundary.

• Parameters with linear and/or additive but non-interacting effects: relatively large value of
µ∗k and relatively small value of σk.

• Parameters with non-linear and/or interacting effects: relatively small value of µ∗k and rela-
tively large value of σk.

• Parameters with less influential effects: moderate values for both µ∗k and σk.

𝜇∗

𝜎 +2×SEMInfluential
(Non-linear &/ interacting)

Less 
Influential

Non-influential

Influential
(non-interacting)

Figure 2.15: Illustration of qualitative analysis on parameter influence based on Elementary
Effects of the Morris method. Each input parameter (feature) is represented as a point on the

µ∗ − σ plane, whose relative position offers information on the type of effect the parameter has on
the output of the model in question. SEM: standard error of the mean.

By examining the µ∗ of EEk, we can estimate relative importance ranking among parameters
and, in turn, make a deeper exploration of the most influential parameters on the model predic-
tion outcomes or screen out non-influential ones for model compactness. Meanwhile, the analysis
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of σ gives an indication of the interactions between the inputs, which offers an identification of
simultaneous variations between parameters.

2.6 Conclusion

In conclusion, this chapter has outlined the key methodologies and tools employed through-
out the dissertation, starting with an overview of the CARESS-Premi project and its data acqui-
sition process. The proposed data processing pipeline has been detailed, providing the founda-
tion for subsequent analyses. Additionally, we have introduced the statistical techniques, machine
learning algorithms, and interpretability analyses that underpin the research studies presented in
the following chapters, establishing a comprehensive framework for the investigation of neonatal
care in the NICU setting.
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D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald,
A. H. Ribeiro, F. Pedregosa, P. van Mulbregt, and SciPy 1.0 Contributors, “SciPy 1.0: Fundamental
algorithms for scientific computing in Python,” Nature Methods, vol. 17, pp. 261–272, 2020.

[40] R. L. Plackett, “Studies in the History of Probability and Statistics. XXIX: The discovery of the
method of least squares,” Biometrika, vol. 59, no. 2, pp. 239–251, 1972.

[41] B. Triggs, P. F. McLauchlan, R. I. Hartley, and A. W. Fitzgibbon, “Bundle adjustment—a mod-
ern synthesis,” in Vision Algorithms: Theory and Practice: International Workshop on Vision
Algorithms Corfu, Greece, September 21–22, 1999 Proceedings. Springer, 2000, pp. 298–372.

[42] K. W. Vugrin, L. P. Swiler, R. M. Roberts, N. J. Stucky-Mack, and S. P. Sullivan, “Confidence region
estimation techniques for nonlinear regression in groundwater flow: Three case studies,” Water
Resources Research, vol. 43, no. 3, 2007.

[43] D. G. Altman and J. M. Bland, “Measurement in medicine: The analysis of method comparison
studies,” Journal of the Royal Statistical Society Series D: The Statistician, vol. 32, no. 3, pp. 307–
317, 1983.

[44] J. Martin Bland and DouglasG. Altman, “Statistical methods for assessing agreement between two
methods of clinical measurement,” The Lancet, vol. 327, no. 8476, pp. 307–310, 1986.

[45] K. M. Ho, “Using linear regression to assess dose-dependent bias on a Bland-Altman plot,” Journal
of Emergency and Critical Care Medicine, vol. 2, no. 8, 2018.

[46] H. Abdi and L. J. Williams, “Principal component analysis,” Wiley interdisciplinary reviews:
computational statistics, vol. 2, no. 4, pp. 433–459, 2010.

[47] M. Geun Kim, “Multivariate outliers and decompositions of mahalanobis distance,”
Communications in statistics-theory and methods, vol. 29, no. 7, pp. 1511–1526, 2000.

[48] A. Ahmad and L. Dey, “A k-mean clustering algorithm for mixed numeric and categorical data,”
Data & Knowledge Engineering, vol. 63, no. 2, pp. 503–527, 2007.

[49] H.-P. Kriegel, M. Schubert, and A. Zimek, “Angle-based outlier detection in high-dimensional
data,” in Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery
and data mining, 2008, pp. 444–452.

108 • Chapter 2: Methods and Tools



[50] J. M. Helm, A. M. Swiergosz, H. S. Haeberle, J. M. Karnuta, J. L. Schaffer, V. E. Krebs, A. I. Spitzer,
and P. N. Ramkumar, “Machine learning and artificial intelligence: definitions, applications, and
future directions,” Current reviews in musculoskeletal medicine, vol. 13, pp. 69–76, 2020.

[51] A. L. Samuel, “Some studies in machine learning using the game of checkers,” IBM Journal of
research and development, vol. 3, no. 3, pp. 210–229, 1959.

[52] A. Burkov, The hundred-page machine learning book. Andriy Burkov Quebec City, QC, Canada,
2019, vol. 1.

[53] S. J. Russell and P. Norvig, Artificial intelligence: a modern approach. Pearson, 2016.

[54] M. I. Jordan and T. M. Mitchell, “Machine learning: Trends, perspectives, and prospects,” Science,
vol. 349, no. 6245, pp. 255–260, 2015.

[55] H. Zhang, “The optimality of naive Bayes,” American Association for Artificial Intelligence, vol. 1,
no. 2, p. 3, 2004.

[56] E. Frank, L. Trigg, G. Holmes, and I. H. Witten, “Naive Bayes for regression,” Machine Learning,
vol. 41, pp. 5–25, 2000.

[57] S. Dreiseitl and L. Ohno-Machado, “Logistic regression and artificial neural network classification
models: a methodology review,” Journal of biomedical informatics, vol. 35, no. 5-6, pp. 352–359,
2002.

[58] J. R. Quinlan, “Induction of decision trees,” Machine learning, vol. 1, pp. 81–106, 1986.

[59] ——, C4. 5: programs for machine learning. Elsevier, 2014.

[60] L. Breiman, Classification and regression trees. Routledge, 2017.

[61] ——, “Random forests,” Machine learning, vol. 45, pp. 5–32, 2001.

[62] ——, “Bagging predictors,” Machine learning, vol. 24, pp. 123–140, 1996.

[63] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,” in Proceedings of the 22nd
acm sigkdd international conference on knowledge discovery and data mining, 2016, pp. 785–794.

[64] J. H. Friedman, “Greedy function approximation: a gradient boosting machine,” Annals of
statistics, pp. 1189–1232, 2001.

[65] S. Haykin, Neural networks: a comprehensive foundation. Prentice Hall PTR, 1994.

[66] A. F. Agarap, “An architecture combining convolutional neural network (CNN) and support vector
machine (SVM) for image classification,” arXiv preprint arXiv:1712.03541, 2017.

Bibliography • 109



[67] T. K. Lee, W. J. Baddar, S. T. Kim, and Y. M. Ro, “Convolution with logarithmic filter groups for effi-
cient shallow cnn,” in MultiMedia Modeling: 24th International Conference, MMM 2018, Bangkok,
Thailand, February 5-7, 2018, Proceedings, Part I 24. Springer, 2018, pp. 117–129.

[68] F. Lei, X. Liu, Q. Dai, and B. W.-K. Ling, “Shallow convolutional neural network for image classifi-
cation,” SN Applied Sciences, vol. 2, no. 1, p. 97, 2020.

[69] H. Wu and J.-T. Zhang, Nonparametric regression methods for longitudinal data analysis:
mixed-effects modeling approaches. John Wiley & Sons, 2006.

[70] H. J. Seltman, “Experimental design and analysis,” https://stats.oarc.ucla.edu/other/mult-pkg/
introduction-to-linear-mixed-models/, p. 357–378, 2012, Accessed: 2024-09-18.

[71] UCLA: Statistical Consulting Group, “Introduction to linear mixed models,” https://stats.oarc.
ucla.edu/sas/modules/introduction-to-the-features-of-sas/, 2021, Accessed: 2024-09-18.

[72] A. Hajjem, F. Bellavance, and D. Larocque, “Mixed effects regression trees for clustered data,”
Statistics & probability letters, vol. 81, no. 4, pp. 451–459, 2011.

[73] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood from incomplete data via the
EM algorithm,” Journal of the royal statistical society: series B (methodological), vol. 39, no. 1, pp.
1–22, 1977.

[74] G. J. McLachlan and T. Krishnan, The EM algorithm and extensions. John Wiley & Sons, 2007.

[75] R. J. Sela and J. S. Simonoff, “RE-EM trees: a data mining approach for longitudinal and clustered
data,” Machine learning, vol. 86, pp. 169–207, 2012.

[76] A. Hajjem, F. Bellavance, and D. Larocque, “Mixed-effects random forest for clustered data,”
Journal of Statistical Computation and Simulation, vol. 84, no. 6, pp. 1313–1328, 2014.

[77] K. Jamieson and A. Talwalkar, “Non-stochastic best arm identification and hyperparameter opti-
mization,” in Artificial intelligence and statistics. PMLR, 2016, pp. 240–248.

[78] J. Bergstra, D. Yamins, and D. Cox, “Making a science of model search: Hyperparameter optimiza-
tion in hundreds of dimensions for vision architectures,” in International conference on machine
learning. PMLR, 2013, pp. 115–123.

[79] B. Komer, J. Bergstra, and C. Eliasmith, “Hyperopt-Sklearn: Automatic hyperparameter configura-
tion for scikit-learn.” in Scipy, 2014, pp. 32–37.

[80] T. Bäck and H.-P. Schwefel, “An overview of evolutionary algorithms for parameter optimization,”
Evolutionary computation, vol. 1, no. 1, pp. 1–23, 1993.

[81] T. Hastie, R. Tibshirani, J. H. Friedman, and J. H. Friedman, The elements of statistical learning:
data mining, inference, and prediction. Springer, 2009, vol. 2.

110 • Chapter 2: Methods and Tools

https://stats.oarc.ucla.edu/other/mult-pkg/introduction-to-linear-mixed-models/
https://stats.oarc.ucla.edu/other/mult-pkg/introduction-to-linear-mixed-models/
https://stats.oarc.ucla.edu/sas/modules/introduction-to-the-features-of-sas/
https://stats.oarc.ucla.edu/sas/modules/introduction-to-the-features-of-sas/


[82] G. Louppe, “Understanding random forests: From theory to practice,” arXiv preprint
arXiv:1407.7502, 2014.

[83] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pret-
tenhofer, R. Weiss, V. Dubourg et al., “Scikit-learn: Machine learning in Python,” the Journal of
machine Learning research, vol. 12, pp. 2825–2830, 2011.

[84] A. Saltelli, S. Tarantola, and F. Campolongo, “Sensitivity analysis as an ingredient of modeling,”
Statistical science, pp. 377–395, 2000.

[85] F. Campolongo, J. Cariboni, and A. Saltelli, “An effective screening design for sensitivity analysis
of large models,” Environmental modelling & software, vol. 22, no. 10, pp. 1509–1518, 2007.

[86] F. Campolongo, A. Saltelli, and J. Cariboni, “From screening to quantitative sensitivity analysis. a
unified approach,” Computer physics communications, vol. 182, no. 4, pp. 978–988, 2011.

[87] M. Chen and A. Hernández, “Towards an explainable model for sepsis detection based on sensi-
tivity analysis,” IRBM, vol. 43, no. 1, pp. 75–86, 2022.

[88] M. D. Morris, “Factorial sampling plans for preliminary computational experiments,”
Technometrics, vol. 33, no. 2, pp. 161–174, 1991.

Bibliography • 111





CHAPTER

3 Model-based Characterization of
Bilirubin Dynamics in Preterm In-
fants

Neonatal
Hyperbilirubinemia Model-based dynamics 

characterization

Bilirubin Evolution Bilirubin Estimation
Knowledge-based

non-invasive models

Hyperbilirubinemia in preterm infants, as introduced in Section 1.3.1, remains a significant
clinical challenge in NICU settings. This condition, if left untreated, can lead to severe neuro-
developmental disorders such as kernicterus [1–4]. The monitoring and management of neonatal
hyperbilirubinemia is particularly complex in preterm infants due to their physiological immatu-
rity and the highly variable bilirubin dynamics.

In the following two chapters, we investigate two aspects of the management of neonatal
hyperbilirubinemia (NHB), concerning model-based characterization of total serum bilirubin dy-
namics and knowledge-based non-invasive estimation of TSB using mixed-effects machine learn-
ing models. Together, these studies aim to offer a comprehensive approach to tackling the clinical
challenges of hyperbilirubinemia in preterm infants and to pave the way for more effective and
patient-specific clinical interventions.

This chapter, strongly based on our publication [5], presents the first aspect, on the validation
of a patient-specific exponential decay model to characterize the natural and long-term dynam-
ics of total serum bilirubin (TSB) concentrations in preterm infants born between 24 to 32 weeks
of gestation, and to study the model parameters as potential biomarkers for detecting associated
morbidities.

We first present a literature review of studies describing the evolution of bilirubin levels dur-
ing the early postnatal period in term and preterm infants. Then we propose the study data and
methodology concerning a deterministic mathematical approach that describes bilirubin kinetics
over the initial weeks of life, which is an unprecedented long-term view of TSB evolution in this
vulnerable population. In addition, the potential of the proposed model and its parameters as new
indicators of high-risk clinical events in the NICU settings are also explored.
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3.1 Introduction

Total serum bilirubin (TSB) or Transcutaneous bilirubin (TcB) levels reflect the balance be-
tween bilirubin production and its elimination. It is of great importance to understand the natural
course of the TSB evolution during the first weeks of life in preterm infants since this tiniest pop-
ulation is at higher risk of hyperbilirubinemia and its complications such as Bilirubin-induced
neurologic dysfunction (BIND), Necrotizing enterocolitis (NEC), infections, etc. A comprehensive
understanding of bilirubin dynamics in the neonatal period is of significant value in distinguishing
between normal and abnormal conditions. Furthermore, it plays a pivotal role in optimizing care
and eventually enhancing the outcomes of newborns during their critical early weeks.

In the literature, rich studies have been dedicated to describing the TSB or TcB evolution in
the early postnatal period, i.e., within the first 72 or 96 hours of life [6–8].

An early study by Bhutani et al. [6] developed a predictive percentile-based bilirubin nomo-
gram from hour-specific pre-discharge and post-discharge TSB values of 2,840 healthy term and
near-term newborns, with mean Gestational age (GA) of 38.7±1.3 weeks and birth weight of
3,318±457 grams, measured between 18 and 72 hours of postnatal age. The nomogram was as-
sessed for its ability to predict the risk of subsequent clinically significant hyperbilirubinemia
as high risk (≥95th percentile), intermediate-risk (40th–95th percentiles), and low-risk (<40th per-
centiles) (Figure 3.1). This work was the foundation for a wide range of national guidelines for
managing NHB including the widely practiced AAP recommendations [2, 9].

DeLuca et al. [7] conducted a systematic review to study a mathematical model of bilirubin
kinetics describing the natural course of physiologic jaundice and the rate of rise (ROR) of TcB
levels. Among the included subjects, i.e., healthy neonates with at least 35 weeks of gestational
age, the ROR of TcB described by a quadratic equation showed a general decrease with increasing
postnatal age until reaching a plateau at about 96 hours of life. Their results suggested that a higher
bilirubin ROR indicates a relatively high risk for subsequent hyperbilirubinemia in neonates and
should lead to close monitoring and additional care.

Similarly while more globally, Kaplan et al. [8] carried out a more extensive review on a
global sample of 20 TcB nomograms from 19 worldwide studies targeting newborns ≥35 weeks
of gestation. From the reviewed nomograms, the authors approximated the natural history of hy-
perbilirubinemia during the first 5 days of life in apparently normal and predominantly breastfed
neonates and thereby depicted a TcB nomogram (as shown in Figure 3.2) that reflects the natu-
ral history of early NHB. It shows an increase in TcB during the first 3 postnatal days, and the
TcB levels peaked or plateaued between the 3rd and 4th days. The TcB trajectories in the proposed
nomogram validated the evolution patterns of TSB and TcB in previous studies [10, 11].

In addition to the studies that have mainly focused on full-term and late-preterm infants,
recent works [12–15], as a complement, have filled the gap of less attention paid to the evolutionary
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Figure 3.1: Nomogram for designation of risk in 2,840 well newborns at 36 or more gestational
weeks with a birth weight of 2,000 grams or more or 35 or more gestational weeks and birth

weight of 2,500 grams or more based on the hour-specific serum bilirubin values. The high-risk
zone is designated by the 95th percentile track. The intermediate-risk zone is subdivided into

upper- and lower-risk zones by the 75th percentile track. The low-risk zone has been electively
and statistically defined by the 40th percentile track. Dotted extensions are based on <300 TSB
values/epoch. This nomogram should not be used to represent the natural history of NHB.
(Adapted from [6, 9]. Reproduced with permission from Journal Pediatrics, Vol. 103, Page(s) 6-14,

Copyright ©1999 by the AAP.)

pattern of bilirubin concentrations in preterm infants <35 gestational weeks and/or those with low
birth weight, who are at high risk for subsequent hyperbilirubinemia.

Maisels et al. [12] introduced recommendations to manage and treat hyperbilirubinemia in
preterm infants born at <35 weeks’ gestation to be complementary of the guidelines for the man-
agement of hyperbilirubinemia in the neonates ≥35 weeks gestation. However, it is largely based
on expert opinion rather than solid evidence potentially resulting in increased use of phototherapy
in this population [16].

Hahn et al. [13] examined the natural course of hour-specific TSB levels during the first 72
hours of life before the initiation of phototherapy in 483 Very low birth weight (VLBW) preterm
newborns and modeled the dynamics against postnatal age as a square root curve (r=0.843, p
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Figure 3.2: Nomogram constructed from pooled transcutaneous bilirubin readings. The
nomogram was derived from 20 nomograms from 12 different countries, depicting the

approximate natural history of post-natal bilirubinemia in normal, predominantly breastfed
newborns ≥35 weeks of gestation.

(Adapted from [8]. Copyright ©2021. Reproduced with permission from Springer Nature.)

<0.001). They also evaluated the ROR of TSB and confirmed that it could be an indicator for both
initiating timing and duration of phototherapy, that is, the subgroup displayed rapidly rising TSB
levels ≥95th percentile (>0.25 mg/dL/h) had received significant earlier and longer phototherapy
than a subgroup of “slow risers” (mean ROR <0.25 mg/dL/h). Besides, TSB appeared to rise more
rapidly in infants of low gestational age, low birth weight and low 5-minute Apgar scores.

Jegathesan et al. [14] generated hour-specific pre-treatment TSB percentile-based nomograms
among 6,143 pre-treatment TSB measures from 2,549 infants which was expected to inform how
bilirubin is described in preterm newborns born at 290/7-356/7 gestational weeks. In the main nomo-
gram contributed by overall infants in the study, similar patterns of ROR were observed: the ROR
of TSB declined with advancing hours after birth (Figure 3.3a). Further nomograms were devel-
oped by gestational age groups (290/7-326/7 and 330/7-356/7 weeks’ gestation) and by subsequent
receipt of phototherapy. One of their results indicated that infants born at 29-32 weeks’ gestation
had a significantly lower but earlier peak in mean pre-treatment TSB levels, compared to the rel-
atively mature infant group born at 33-35 weeks of gestation. As for the phototherapy recipients,
within the first 72 hours, they had a higher mean peak in TSB concentrations (145.7 µmol/L versus
132.1 µmol/L; p <0.01) that occurred significantly earlier (38.3 hours versus 50.8 hours; p <0.01).

Following the above study, Jegathesan and his team moved a step further to generate percentile-
based pre-phototherapy TSB levels in a cohort of 642 extremely preterm infants born at 240/7-286/7

weeks’ gestation [15] (Figure 3.3b). In addition, they compared 24-hour pre-phototherapy TSB
percentiles with existing consensus-based phototherapy guidelines [12] and pointed out the high
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frequency of phototherapy use and provided a contemporary understanding of pre-phototherapy
TSB levels in extremely preterm infants.

a

b

Figure 3.3: Hour-specific pre-treatment total serum bilirubin percentile-based curves among (a)
preterm infants born at 290/7-356/7 weeks’ gestation (n=2,549), and (b) extremely preterm infants
born at 240/7-286/7 weeks’ gestation (n=642). Pre-treatment TSB levels refer to TSB levels prior to

phototherapy among those administered phototherapy and any TSB levels among those not
administered phototherapy.

((a) Adapted from [14]. Copyright ©2021 Karger Publishers, Basel, Switzerland.
(b) Adapted from [15]. Reproduced with permission from Springer Nature. Copyright ©2022 Springer

Nature.)

However, despite increased research efforts in the cohorts of preterm infants, there remains
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a paucity of evidence on the long-course natural evolution of bilirubin, especially after treatment,
in preterm and extremely preterm infants, who are more likely to face potentially life-threatening
conditions such as rebound hyperbilirubinemia, infection and adverse neurological dysfunctions,
etc. Continuous and prolonged TSB monitoring is recommended for all preterm infants, as there
have been reports of a late-onset increase in TSB up to 110 hours old and related delayed hyper-
bilirubinemia [14, 17]. Thus, studying how natural bilirubin levels in premature infants evolve and
develop as they age over an extended neonatal period (e.g., weeks after birth), will provide impor-
tant and comprehensive new perspectives into understanding the long-term bilirubin dynamics.

On the other hand, in the context of precision medicine, the focus on individualized diag-
nosis and medical interventions has led to growing interest among healthcare professionals and
researchers in patient-specific modeling. Patient-specific modeling facilitates personalized charac-
terization of bilirubin dynamics in preterm infants, who exhibit significant variability regarding the
level of immaturity and many other relevant clinical factors. By accounting for these individual
differences, patient-specific models can optimize the diagnosis and interventions. Furthermore,
the integration of patient-specific modeling into clinical practice may foster understanding and
managing the complexities of neonatal hyperbilirubinemia, thereby providing more targeted care
and support.

Physiologically and naturally, the ability of preterm infants to metabolize and excrete bilirubin
matures as aging after birth. After the period of physiological neonatal jaundice (details refer
to Section 1.3.1), as the liver matures, its ability to metabolize bilirubin improves, leading to a
progressive reduction in the accumulation of bilirubin in the blood, i.e., TSB.

An important aspect of the metabolic pathway of bilirubin excretion is the bilirubin conju-
gating capacity of the liver, mediated by hepatic bilirubin UDP-glucuronosyltransferase activity
[18, 19]. It was reported that during the perinatal period (Figure 3.4a), this enzyme activity is
observed to gradually but significantly increase, in fetuses, premature and full-term infants born
between 30 and 40 weeks of gestation and survived less than 7 days of life, from 0.1% to 1.0% of
the values found in the adult liver. After birth, the activity begins to increase at an exponential rate
until it reaches the adult value by 14 weeks of age, after which it remains constant until adulthood.
Figure 3.4b further demonstrated that the transferase activity increases after birth in premature
infants who survived for 8 days to 28 days of life.

Based on the above, in this study, we thus focus on a population of preterm infants and hy-
pothesize that the natural dynamics of TSB concentrations from three postnatal days could be
quantified and modeled through an exponential decay. Furthermore, the parameters of such a
model, once fitted to reflect the TSB dynamics at the individual level, might be used to character-
ize the maturation and functionality of the bilirubin conjugation pathway.

The primary objective of this study is to investigate the characteristics of the age-related dy-
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Figure 3.4: (a) Developmental pattern in human hepatic bilirubin UDP-glucuronosyltransferase
activities. The enzyme activities were plotted against weeks of gestation and weeks after birth on

a semi-logarithmic scale. (b) Effect of premature birth on the development of human hepatic
bilirubin UDP-glucuronosyltransferase activities. The enzyme activities were plotted against

weeks of gestation and weeks after birth on a semi-logarithmic scale. Preterm delivery,
irrespective of gestational age, evokes an early increase in transferase activities, equal in rate to

the normal postnatal increase. The number shown beside the symbols represents the age (days) at
which death occurred.

(Adapted from [18].)

namics of TSB levels during the early postnatal period, aiming to track and anticipate developmen-
tal patterns in this population. Our secondary objective is to validate the parameters of models as
potential biomarkers for detecting relevant comorbidities when bilirubin evolutionary trends di-
verge from expected decays. Studying how natural bilirubin levels in premature infants evolve
and develop over the first few days to weeks after birth as they age will provide important and
comprehensive new perspectives into understanding the long-term bilirubin dynamics.
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3.2 Materials and Methods

3.2.1 Population and inclusion criteria

Within the database carried out by the CARESS-Premi clinical study (details refer to Sec-
tion 2.1.3), the dominant center—University Hospital Center of Rennes (CHU Rennes)—consisting of
414 patients is considered in this study. Among those, 373 infants who have undergone bilirubin-
related conditions during the follow-ups are therefore eligible for analysis.

In the first stage, infants with fewer than 4 measurements are excluded. This exclusion is based
on the consideration that a reasonable number of samples is required to fit a robust model. Then,
we examine three conditions within the included population and consider them for exclusion. The
first category comprises patients with infrequent monitoring and those with adjacent TSB measure-
ments taken more than 10 days apart. This exclusion was necessary since sparse sampling might
fail to capture possible intermediate abnormal fluctuations in TSB levels, leading to inaccurate or
overly optimistic representation of the bilirubin decay in the modeling fitting process. The other
two categories are Exchange transfusion (ET) recipients under NICE guidelines, and Phototherapy
(PT) recipients as documented in the database. Patients exhibiting infrequent TSB monitoring were
directly excluded from the population. For ET and PT recipients, patients with at least 4 remaining
measurements after removal of samples taken during treatment were retained for further analy-
sis. These exclusions ensure that the models effectively characterize the natural evolution of TSB
levels, unaffected by treatments that may alter TSB dynamics.

No blood sample was specifically collected for the study; instead, blood samples used to de-
termine total serum bilirubin levels were collected for routine clinical care and adhered to standard
care criteria.

In addition to the Postnatal age (PNA) and TSB measurements, relevant clinical characteristics
including demographic, maternal, laboratory tests such as C-reactive protein (CRP), treatments,
and short-term outcome data were extracted from the CARESS-Premi database. Necrotizing en-
terocolitis (NEC) was defined as a grade II-a or higher according to the modified Bell’s staging
criteria [20].

The Z-scored birth weights (BW) were additionally calculated according to the sex-specific
Fenton 2013 preterm growth charts developed by meta-analyses of about 4 million births from six
countries [21]. It represents the difference between the observed BW and the expected BW for the
subject’s gestational age and sex, considering the variability in growth. A Z-scored BW of zero
indicates that the neonate’s BW is equivalent to the mean weights of the reference population at
the same GA and sex, suggesting an appropriate growth for her/his GA. A Z-scored BW below−2
or −3 typically signifies a neonate who is classified as “Small for Gestational Age”, while a z-score
above +2 or +3 indicates a neonate as “Large for Gestational Age”.
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3.2.2 General TSB decay models

An overall physiological downward trend in Total serum bilirubin (TSB) levels after birth, fol-
lowing physiological neonatal jaundice and some fluctuations due to various events, is observed
among premature newborns [18, 19, 22]. To characterize the decay trend, we first compared two
general models: a linear regression model and a basic exponential decay model. These mathe-
matical models were fitted to all available TSB measurements from all relevant infants, sorted by
postnatal age (PNA), without accounting for individual variability.

A simple linear regression model assumes that the TSB levels decrease linearly over time,
expressed as:

TSB(t) = A + Bt + ϵ (3.1)

where t is the PNA in days when the corresponding TSB level (µmol/L) was measured, A is the
intercept, B is the slope, and ϵ is the error term capturing deviations of the fitted line from raw
samples.

A basic exponential decay model posits that the TSB levels exponentially decline over time,
with the rate of decay proportional to the current value of TSB, formulated as:

TSB(t) = A× exp(−Bt) + C + ϵ (3.2)

where t is the PNA in days when the corresponding TSB level (µmol/L) was measured, A repre-
sents the initial TSB level, B is the decay factor indicating the rate of decline, C is the constant term
representing the baseline level that TSB asymptotically approaches, and ϵ is the error term. Note
that the negative sign before the parameter B guarantees the decay rather than the increase of the
function.

The linear regression is conducted using the Ordinary least squares (OLS) method imple-
mented in statsmodels library [23] in Python; and the general exponential decay model is fitted
using the non-linear OLS method implemented in SciPy [24] library in Python.

3.2.3 Patient-specific TSB exponential decay model

Recognizing the need to accommodate inter-individual variability in TSB dynamics among
premature infants, we further proposed a mathematically deterministic function to model patient-
specific exponential decay patterns. The model, namely, g(·), accounts for individual differences
by fitting the evolution of TSB levels to each infant individually, adjusting for the infant’s GA and

3.2. Materials and Methods • 121



PNA. For each subject i, the patient-specific TSB exponential decay model is given by:

TSBi(t) = g(pi(t); Si) + ϵi

= g(pi(t); Ai, Bi, Ci, GAi, Tci) + ϵi

= Ai × exp (−Bi [pi(t) + GAi + Tci]) + Ci + ϵi

(3.3)

where pi(t) refers to a sequence of PNA (days) as the independent variable, TSBi(t) is the TSB
concentrations (µmol/L) observed at pi corresponding time t as the dependent variable, and ϵi the
associated modeling error. The parameters set Si is specific to each infant (i), including five param-
eters: Ai, Bi, Ci, GAi and Tci. Parameters Ai, Bi and Ci determine the fitting curve’s morphology
and control how it evolves over time. In addition, for the purpose of personalizing the model-
ing of TSB dynamics across patients, we introduced two other parameters acting as time-shifting
terms in the model: GAi and Tci, denoting the GA at birth (in days) and the time correction factor,
respectively.

Within the mathematical expression of the exponential decay, there are five parameters (Si),
where GAi is a known constant and the remaining four (Ai, Bi, Ci and Tci) are assigned during
regression process of a robust non-linear least squared method [24, 25] in a patient-specific manner.

The regression (or curve fitting) process is equivalent to an optimization problem where we
search Si as the solution:

n

∑
i=1

(g(pi(t); Si)− TSBi)
2 → min

Si
(3.4)

To improve the identifiability of the problem, the parameters are carefully constrained with
lower and upper bounds: A ∈ [0, 200], B ∈ [0, 1.5], C ∈ [0,+∞) and Tc ∈ (−∞,+∞). Reasonable
initial guesses for the parameters are provided based on prior knowledge and preliminary data
analysis: Ai = 100, Bi = 0.1, Ci = 50 and Tci = −GAi, where GAi is the gestational age of patient i.

The robustness in the regression is achieved by assigning the samples with different weights,
and this is configured by a loss function of a smooth approximation of L1 normalization controlled
by a scaling parameter (refer to Section 2.3.2 for details on robust non-linear least squares). In
addition, we have designed an adaptive robustness strategy to adjust the scaling parameter of
the loss function, ensuring the efficiency and stability of the optimization process. This adaptive
strategy assigns a unique factor to each subject based on a combination of the number of TSB
measurements, the TSB value span, and its monotonicity, thereby facilitating a better adaptation
of the proposed model to various physiological characteristics in different patients. The larger
the value of the adaptive factor, the more robust the optimization process is, that is, the less it is
affected by large deviations in the data.

Throughout the fitting process, parameters are iteratively adjusted within the specified bound-
aries to minimize the sum of squared residuals between the estimated and observed TSB values,
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as stated in Equation 3.4. A parameter set (Si) that achieves the lowest sum of squared residuals
is eventually identified as the model parameters for a given patient i. As a result of modeling,
distinct parameter sets are defined (or fitted) for each patient individually, leading to a parameter
collection (A, B, C, GA and Tc) that contains personalized parameters (Ai, Bi, Ci, GAi and Tci) from
every patient i.

3.2.4 Model analyses: from patient-specific models to clinical outcomes

With developed patient-specific TSB exponential decay models, further analyses were con-
ducted.

First, the distribution of the model parameters was examined. Histograms were created to
visualize the range and central tendencies of these parameters across the modeling population,
providing insights into the variability, consistency and their contributions to overall model perfor-
mance. The fitting error was evaluated by Root-mean-square error (RMSE) of the estimated and
observed TSB levels for each patient:

RMSEi =

√
1
Ti

Ti

∑
t=1

(ŷi(t)− yi(t))2

=

√
1
Ti
(ŷi − yi)

2

=

√
1
Ti

ϵ2
i

(3.5)

where ŷi and yi denote the observed and estimated TSB levels for patient i at t (PNA) days, respec-
tively; Ti is the number of TSB observations of patient i.

Next, we examined the association between the RMSE of the models and the occurrence of
high-risk clinical events, such as NEC and CRP, aiming to determine whether the models were
indicative of underlying clinical complications.

Finally, a median model was constructed using the median values of the parameters obtained
from patient-specific models. A local sensitivity analysis was performed on this median model to
investigate the impact of individual parameters on the model trajectory. This was implemented
by varying each parameter one-at-a-time within its defined range and observing the effects on the
model.
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3.3 Results

3.3.1 Population and TSB measurements

The inclusion criteria of the study population are shown in the flowchart in Figure 3.5. A
total of 373 eligible subjects contributed 2,208 total serum bilirubin (TSB) measurements during
follow-ups. Of these, 85 infants with fewer than 4 measurements were excluded in the first stage.
The remaining 288 infants, born between 242/7 and 316/7 weeks’ gestation, were thus included, ag-
gregating 2,011 TSB measurements in total. The data distribution of TSB measurements (µmol/L)
against corresponding PNA (days) for this population is presented as beige scatter points in Fig-
ure 3.6, with histograms in beige above and to the right providing the distribution of PNA and
TSB levels, respectively. In the histograms, the long tail in the PNA distribution suggests that
most repeated measurements were taken in the early periods after birth. The positive skewness of
the bilirubin distribution indicates that though some infants present elevated bilirubin levels, the
general population tends to have progressively lower bilirubin levels over time.

Patients with bilirubin-related conditions
N = 373

Patients with infrequent monitoring/treatment episodes
N = 216

• Infrequent monitoring of patients (adjacent sample intervals exceed 10 days)
• ET recipients & sample size < 4 after removing ET-related samples
• PT recipients & sample size < 4 after removing PT-related samples

Patients for model fitting
N = 72

Patients with < 4 TSB measurements
N = 85

Patients included (with ≥ 4 TSBs)
N = 288

Figure 3.5: Study population inclusion criteria. TSB: total serum bilirubin. ET: exchange
transfusion. PT: phototherapy.

Moreover, 32 infants were monitored infrequently, 3 were exchange transfusion recipients un-
der NICE guidelines and 273 were phototherapy recipients as documented in the database. The
data distribution for the 256 infants, after first excluding those who were not frequently monitored,
is shown as blue data points in Figure 3.6, with histograms (in blue) of PNA and TSB levels on the
top and right, respectively. The data presents a negative correlation (r=0.33) between PNA and
corresponding TSB values. Of these three exceptions, some patients overlapped, so a total of 216
patients were excluded, leaving a subgroup of 72 patients for further analysis.

A total of 421 TSB samples from 72 patients were retained for modeling. The distribution of
these data in the PNA-TSB plane is represented by orange points and histograms in Figure 3.7,
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where all samples from the same patient are connected by orange lines. It also presents a negative
correlation (r = 0.26) between PNA and corresponding TSB values. Statistically, the number of
TSB measurements per infant is between 4 and 20 times with a median [IQR] of 5 [4; 6] samples.
The initial bilirubin levels to be fit range from 128.6 µmol/L to 210 µmol/L with a mean (standard
deviation [SD]) of 128.6 (31.1) µmol/L, and they were recorded at a median [IQR] PNA of 4.3 [2.0;
7.0] days. The last recorded TSB levels vary from 6 to 196 µmol/L with a mean (SD) of 70.8 (44.6)
µmol/L, and they were acquired between 6.4 to 51.5 days after birth with a median [IQR] of 12.7
[9.7; 17.0] days.

Table 3.1 summarizes the general characteristics with descriptive statistics of the included 288
patients and the subgroup of 72 patients who were involved in patient-specific modeling. No
significant difference was shown between the two populations.

3.3.2 General TSB decay models

Apart from the data distributions, both Figure 3.6 and Figure 3.7 also depict the results of
general TSB decay models. Two general TSB decay models were respectively fitted to samples of
two populations: N=288 and N=72 infants. In Figure 3.6, the exponential decay model achieved
a marginally lower fitting error than the linear model (RMSE=45.82 µmol/L versus RMSE=44.81
µmol/L). In Figure 3.7, a subgroup of measurements, after excluding most of the unnatural values,
two general models achieved similar trends and differences in fitting errors (RMSE=43.60 µmol/L
versus RMSE=41.49 µmol/L) as in Figure 3.6.

Overall, bilirubin levels tend to decrease as postnatal age increases, but it is evident that the
general models are not sufficient to accurately characterize the downward trend given significant
large inter-individual variability. A great amount of data points notably deviated from the general
curves, highlighting the necessity for more personalized modeling approaches.

3.3.3 Patient-specific models analyses

Patient-specific TSB exponential decay model

Patient-specific models were developed for 72 infants using selected TSB samples. For a given
patient i, the function, as described in Equation 3.3, was personalized by finding the optimal set of
parameters Ai, Bi, Ci and Tci that minimize the error between model output and the observations.

Histograms shown in Figure 3.8 depict the distributions of these parameters. Within prede-
fined boundaries, the distribution of parameter A has a mean (SD) of 120.90 (27.54), comfortably
within the limits (Figure 3.8a). Parameter B exhibits a median [IQR] of 0.11 [0.06; 0.21], clustering
towards the lower limit (Figure 3.8b). Parameter C extends up to 171, but nearly three-quarters
of the values are concentrated at the lower boundary of 0 (Figure 3.8c). Parameter Tc ranges from
−264.7 to −51.4, with a mean (SD) of −194.9 (42.0) (Figure 3.8d). The mean (SD) RMSE of 72
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Table 3.1: General characteristics of the included population and the subgroup used in
patient-specific modeling.

Characteristics
Included Patients

N=288

Modeled Patients

N=72
P-value

Initial

conditions

Multiple pregnancy, n (%) 87 (30.2%) 15 (20.8%) 0.152

Hypertension in pregnancy, n (%) 54 (18.8%) 18 (25.0%) 0.307

Preterm labor, n (%) 192 (66.7%) 48 (66.7%) 1.000

Chorioamnionitis, n (%) 19 (6.60%) 4 (5.56%) 0.957

Corticosteroids, n (%) 268 (93.1%) 67 (93.1%) 1.000

Delivery route, n (%) 0.506

Vaginal delivery 121 (42.0%) 34 (47.2%)

C-section 167 (58.0%) 38 (52.8%)

GA at birth (weeks), mean (SD); median 28.1 (1.74); 28.1 27.8 (1.72); 27.8 0.218

Birth weight (g), mean (SD); median 1082 (295); 1050 1009 (260); 960 0.051

Birth weight Z-score†, mean (SD); median −0.03 (0.80); 0.05 −0.10 (0.87); 0.14 0.767

Gender (male), n (%) 160 (55.6%) 36 (50.0%) 0.475

Apgar (1-min score), median [IQR] 6.00 [3.00; 8.00] 6.00 [2.00; 8.00] 0.715

Intubation at birth, n (%) 62 (21.5%) 11 (15.3%) 0.310

PDA on PNA = 4 days, n (%) 139 (48.3%) 40 (55.6%) 0.330

Outcomes

Neurologic impairment, n (%) 76 (26.4%) 17 (23.6%) 0.741

Respiratory support stopped before 34 PMA weeks, n (%) 77 (26.7%) 15 (20.8%) 0.381

Death, n (%) 16 (5.56%) 4 (5.56%) 1.000

PNA at death (days), median [IQR] 35.0 [19.5; 69.6] 43.3 [20.0; 98.4] 0.813

PMA at death (weeks), median [IQR] 33.2 [28.7; 36.6] 31.9 [27.8; 40.2] 0.813

Interruption of follow-up, n (%) 2 (0.69%) 0 (0.00%) 1.000

Length of follow-up (days), mean (SD); median 30.0 (16.1); 27.2 32.9 (15.0); 28.3 0.106

Phototherapy, n (%) 273 (94.8%) 62 (86.1%) 0.020

†Z-scored birth weight based on gestational age according to Fenton’s 2013 preterm growth chart [21].

Features are divided into initial conditions and outcomes according to the acquisition time before or after PNA = 4
days.

The statistics were reported as counts (percentage) for categorical variables and as mean (SD); median or median
[IQR] for continuous variables, as appropriate. Categorical variables were compared using the chi-square test and
continuous variables using the Mann-Whitney U test, as appropriate.

The significance level was set to 0.05 and adjusted by Bonferroni correction, thus in this case, p-value <0.0025 was
considered significant.

GA: gestational age. PDA: patent ductus arteriosus. PNA: postnatal age. PMA: postmenstrual age. SD: standard
deviation. IQR: interquartile range.
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All samples (288 patients)
Samples excluding infrequent
monitored patients (256 patients)
General Model for included samples

Figure 3.6: Total serum bilirubin (TSB) levels in µmol/L relative to postnatal age (PNA) in days
for the included population (N=288) and a subgroup after excluding infrequently monitored
patients (N=256). General models of linear regression (solid blue line) and exponential decay
(dashed blue curve). The correlation between TSB in µmol/L and PNA in days was assessed

using Pearson’s correlation coefficient.
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Figure 3.7: TSB measurements in µmol/L relative to PNA in days for the fitted population
(N=72), in which all samples from the same patient are connected by light orange lines. General

models of linear regression (solid orange line) and exponential decay (dashed orange curve). The
median model (solid green curve) from patient-specific models. The correlation between TSB in

µmol/L and TSB in days was assessed using Pearson’s correlation coefficient.
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models is 10.62 (7.69) µmol/L, with a median [IQR] of 8.74 [4.89; 14.25] µmol/L, as shown in Fig-
ure 3.8e.

Moreover, Figure 3.8f presents both the counts and values of elevated C-reactive protein (CRP)
levels (defined by CRP >5 mg/L) across different RMSE values, solely considering CRP results
obtained post-phototherapy and before the last TSB measurements. Despite the limited sample
size, a clear trend emerges: lower RMSE values correspond to fewer instances and lower maximum
values of elevated CRP levels, whereas higher RMSE values are associated with an increase in both
occurrences and higher maximum values of elevated CRP.

ba

d e f

c

Figure 3.8: Histograms of parameters and fitting errors of patient-specific models among 72
patients. (a) Parameter A. (b) Parameter B. (c) Parameter C. (d) Parameter Tc. (e) RMSE. (f)

Relationship between RMSE and counts of CRP greater than 5 mg/L (blue step plot) and
maximum CRP values (red scatter plot), respectively.

Figure 3.9 illustrates 9 well-fitted instances of patient-specific models exhibiting various curve
morphologies ordered by increasing decay rates. Of these, models for Patients 1173, 1178, and
1243 shown in Figure 3.9c, Figure 3.9g and Figure 3.9h were marked with significantly high CRP
levels between the two samples when their bilirubin levels were not frequently monitored, whereas
Patients 1188 (Figure 3.9e) and 1162 (Figure 3.9i) experienced elevated CRP days after the cessation
of TSB monitoring. All patient-specific models of 72 patients are presented in Appendix Figure A.1
to Figure A.8.
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Figure 3.9: Nine representative instances of patient-specific models (blue solid curves) exhibiting
various curve morphologies on the PNA-TSB plane, ordered by increasing rates of decay. (a)

Patient 1140. (b) Patient 1159. (c) Patient 1173. (d) Patient 1400. (e) Patient 1188. (f) Patient 1349.
(g) Patient 1178. (h) Patient 1243. (i) Patient 1162. The x-axes are Postnatal age (PNA) in days; the

y-axes are Total serum bilirubin (TSB) in µmol/L. Blue shades indicate phototherapy durations
and TSB measurements performed during PT are marked in blue. Annotations in light blue next

to blue dashed vertical lines are C-reactive protein (CRP) values measured on corresponding
PNA. Horizontal dashed lines are GA-specific thresholds for treatments according to NICE

guidelines: PT (light grey) and ET (dark grey).
ET: exchange transfusion. PT: phototherapy. NEC: necrotizing enterocolitis.
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From patient-specific models to clinical outcomes

Figure 3.10 presents instances of great variability in terms of TSB trends, modeling errors, and
clinical outcomes. Patient 1102 (Figure 3.10a) is an extremely preterm infant born at 256/7 weeks
of gestation with a birth weight of 620 grams. Both 1-minute and 5-minute Apgar scores were
1, indicating a critically low health status and poor adaptation. This baby was diagnosed with
NEC on day 31 of life, five days after the last bilirubin measurement. The remaining five models
depict infants who experienced recurrent hyperbilirubinemia after 2 weeks of life, with TSB levels
exceeding the phototherapy thresholds recommended by the NICE guidelines. These models have
the highest fitting errors evaluated by RMSE: four of them have the top four RMSE values and one
model ranks seventh in RMSE among the 72 patient-specific models.

The TSB of Patient 1336 (Figure 3.10b) fluctuated around the phototherapy threshold, peaking
at 194 µmol/L around day 18. The patient had grade i-a enterocolitis from days 9 to 16, without
inflammation or elevated CRP documented, corresponding to a rising TSB episode.

Patient 1317 (Figure 3.10c) shows a notable upward trend in TSB levels post-phototherapy,
peaking on day 14. This infant had a persistent Patent ductus arteriosus (PDA) that worsened
progressively during the first two weeks and ended with surgical intervention on day 17. TSB
monitoring ceased afterward, but the infant developed a late-onset infection on day 19 and died of
septic shock the same day.

Similarly, Patient 1271 (Figure 3.10d) was born at 252/7 weeks of gestation with 755 grams
of birth weight. A significant PDA was developed from day 2, which was surgically closed on
day 15. Besides, a localized grade 4 Intraventricular hemorrhage (IVH) on day 3 which resolved
progressively on subsequent ultrasound scans.

Figure 3.10e presents a complex case of Patient 1412, whose bilirubin levels dropped below 100
µmol/L post-phototherapy by day 11. However, a TSB rebound occurred on day 13, coinciding
with an extreme CRP level of 287.7 mg/L and a NEC diagnosis. Then a second hyperbilirubinemia
rebound was observed around day 38 of life.

Patient 1373 (Figure 3.10f) underwent a notable decline in TSB levels after day 5, followed by
a drastic rebound, with TSB fluctuating below the PT threshold. The infant developed cholestasis
starting on day 5 (conjugated bilirubin 57 µmol/L), reaching a maximum on day 12 (conjugated
bilirubin 173 µmol/L). Etiological investigations remained inconclusive, and the cholestasis even-
tually resolved. Subsequently, the infant developed grade i-a enterocolitis on day 17, with elevated
CRP (45.3 mg/L) and a positive blood culture.
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Figure 3.10: Patient-specific models with variability in terms of bilirubin trends, modeling errors
(RMSE) and clinical outcomes. (a) Patient 1102. (b) Patient 1336. (c) Patient 1317. (d) Patient 1271.
(e) Patient 1412. (f) Patient 1373. The x-axes are Postnatal age (PNA) in days; the y-axes are Total

serum bilirubin (TSB) in µmol/L. Blue shades indicate phototherapy durations and TSB
measurements performed during PT are marked in blue. Annotations in light blue next to blue

vertical dashed lines are CRP values measured on corresponding PNAs. Horizontal dashed lines
are GA-specific thresholds for treatments according to NICE guidelines: PT (light grey) and ET

(dark grey). Red vertical dashed lines mark NEC diagnosis.
ET: exchange transfusion. PT: phototherapy. CRP: C-reactive protein. NEC: necrotizing

enterocolitis.
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Local sensitivity analysis of patient-specific model parameters

The median model, depicted by the green curve in Figure 3.7, is constructed using the me-
dian values from the parameter collection derived from 72 patient-specific models, and it can be
instantiated as:

Median model : 118.3388× exp (−0.1142 [p(t) + 196− 201.9616]) + 0 (3.6)

By systematically varying each parameter within a certain range, we were able to observe and
qualify the resulting changes in the patient-specific model’s behavior. The results reveal distinct
patterns in their effects.

In Figure 3.11, a series of curves represent models fitted with varying values of parameter
A, ranging from 0 to 400. As the values of A increases, the curve shifts rightward and upward.
Figure 3.12 shows the effect of the parameter B, the decay factor that controls the rate of decrease
in the exponential function. The decay rate sharply rises as parameter B increases from 0 to 0.3.
Figure 3.13 demonstrates how the curve is elevated as parameter C varies from−100 to 200. Lastly,
Figure 3.14 depicts the local sensitivity analysis of parameter Tc, which controls the time shift
within the support range of −215 to −150 days. The curve shifts further rightward as Tc becomes
more negative. The influence of GA in the model behaves similarly to Tc, as both parameters
occupy the same position in the proposed Equation 3.3.

3.4 Discussion

In this study, we proposed and quantitatively evaluated a patient-specific exponential decay
model for characterizing the dynamics of Total serum bilirubin (TSB) levels with age (PNA) in a
population of very preterm infants during the first weeks of life, as formalized in Equation 3.3. To
the best of our knowledge, this is the first study focusing on the natural history of TSB levels over
such a long-term course in preterm infants born at 24-32 weeks of gestation.

The downward trend captured by the proposed exponential decay model is strongly associ-
ated with bilirubin metabolism. Preterm infants typically exhibit high bilirubin levels after birth,
which is commonly referred to as physiological neonatal jaundice. Interventions such as pho-
totherapy are often administered to manage TSB levels. With treatment, TSB levels usually fall
below critical thresholds and start to drop at a high rate of decline. As the infants age, their
metabolic systems become more developed and refined, progressively achieving an equilibrium
between bilirubin production and elimination. This process is characterized by a decelerating rate
of decay and a relatively smooth tail, as depicted in the median evolutionary model (green curve
in Figure 3.7). We propose that the evolution of these physiological phenomena can be effectively
captured by specific model parameters.
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Figure 3.11: Local sensitivity analysis of parameters A on the median model.
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Figure 3.12: Local sensitivity analysis of parameters B on the median model.
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Figure 3.13: Local sensitivity analysis of parameters C on the median model.
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Figure 3.14: Local sensitivity analysis of parameters Tc on the median model.
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The local sensitivity analysis of the median model elucidates the specific effects of each pa-
rameter on the model, detailing how changes in parameter values sculpt the model. Parameter A
in the proposed model controls the initial concentration of bilirubin at the start of the modeled time
period. It is linked to which is influenced by bilirubin production (e.g., red blood cell breakdown)
and elimination (e.g., the ability of the liver to process bilirubin), as shown in the first steps of Fig-
ure 1.3. Parameter B represents the rate of enzymatic and transport processes involved in bilirubin
metabolism. It characterizes the rate at which bilirubin levels decline over time, reflecting the effi-
ciency of key clearance mechanisms, including hepatic conjugation and biliary excretion. Parame-
ter C represents the asymptotic bilirubin concentration as time progresses, indicating a residual or
baseline level, and it corresponds to the minimum bilirubin level that the infant can achieve, which
depends on metabolic and excretion capabilities. Parameter GA acts as a constant representing the
gestational age at birth (in days), affecting the maturity of the liver and other metabolic systems,
which in turn influence bilirubin metabolism and clearance. Parameter Tc adjusts for individual
variations in time-dependent bilirubin metabolism, used to capture personalized temporal shifts
in bilirubin dynamics such as delayed liver function maturation, allowing the model to account
for inter-individual variability in metabolic response. Unlike the other three parameters that func-
tion independently, we explicitly decompose the time-shift term in the proposed model into two
components: time correction factor (Tc) and gestational age (GA) at birth. This decomposition
enhances the explainability.

GA at birth is a key indicator of neonatal maturity, and its crucial impact has been consistently
evidenced in the literature. It is reported [26] that including GA in their assessment model for
estimating the risk of significant hyperbilirubinemia in infants significantly improved predictive
accuracy. Several reports have also noted that GA (and BW) plays a decisive role in the initiation
and duration of phototherapy [27, 28]. The importance of GA is further corroborated by the NICE
[1] and most national guidelines, which strictly differentiate treatment thresholds for phototherapy
and exchange transfusion in neonates based on gestational age.

In addition to GA, we explicitly incorporated another term, parameter Tc, as part of the “time-
shifter” in the model to account for varying maturity levels among neonates of the same gestational
age. The results show that Tc values are all negative, this is because the values of GA are typically
in hundreds of days, requiring Tc to act as a compensatory factor to bring the integrated time-shift
term into the normal range.

By formulating a patient-specific function that describes postnatal age-based TSB levels as an
exponential decay model, this study provides a more comprehensive description of the postnatal
bilirubin decline in preterm infants with a gestational age of 24-32 weeks. On the one hand, the
patient-specific model and its associated parameters reflect the similarities and variations of the
natural development of bilirubin metabolism among the considered population. On the other
hand, we demonstrated the predictive ability of the proposed model by monitoring deviations of
actual bilirubin levels from the fitted natural bilirubin trends, with RMSE serving as one indicator
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to quantify these deviations. We illustrated this by annotating elevated CRP levels on the fitted
models as shown in Figure 3.9 and Figure 3.10. The discrepancies between measured TSB levels
and the expected TSB trend identified by the proposed model could offer a valuable tool for disease
detection, phenotyping, and prediction in the NICU. If a newly measured TSB level deviates from
the expected decay, it could alert caregivers and prompt them to check for possible comorbidities
such as infections, NEC, or other complications in the infant. A potential application could be a
clinical decision support system based on interpretable models for optimizing NICU monitoring
and detecting high-risk events.

Additionally, as shown in Figure 3.9 and Figure 3.10, the lack of TSB measurements around
elevated CRP levels exposes us to the risk of overlooking critical information. Therefore, it may be
necessary to increase both the frequency and the duration of TSB monitoring. This would facili-
tate better observation of bilirubin dynamics and suspicious complications reflected by unnatural
fluctuations in bilirubin. In clinical practice, TSB can be obtained through micro-sampling during
other required biological monitoring without additional blood spoliation.

Nevertheless, this study has several limitations. First, the model-fitting phase excluded pa-
tients with fewer than 4 TSB measurements. We observed significant differences in 5 of the 13
initial conditions and 4 of the 8 outcomes between the included and excluded populations, as
detailed in Appendix Table A.1. This exclusion might introduce selection bias and limit the gener-
alization of the proposed model. Second, due to the limited sample size, we could only perform
our analysis of the association between the proposed model and clinical events through qualitative
assessments of a small number of cases. Future research could be dedicated to more systematic and
extensive data collection and focus on quantitative analyses based on a richer database to evaluate
the utility and performance of the model and the feasibility of using bilirubin levels as a potential
indicator of high-risk clinical events in the NICU. Lastly, the CARESS-Premi clinical protocol only
enrolled patient data from three days after birth. Consequently, the TSB evolution models pro-
posed in this study lack information for the first three days. However, there is a large literature on
the hourly trends of TSB in preterm infants within the first 72 or 96 hours after birth [13, 29], and
what our research presented plays a role as an extension and supplement to these previous studies,
i.e., when combined, a comprehensive pattern of TSB development from birth to the several weeks
postnatally could be portrayed.

3.5 Conclusion

In this chapter, we developed and validated a patient-specific exponential decay model to
characterize the natural and long-course dynamics of total serum bilirubin concentrations in preterm
infants born between 24 to 32 weeks of gestation. Our approach originally leverages a determin-
istic mathematical model to describe bilirubin kinetics over the initial weeks of like, providing an
unprecedented long-term view of TSB evolution in this vulnerable population.
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Through personalized model parameter fitting, we obtained 72 patient-specific models, opti-
mized by minimizing the error between measured TSB and model output using an adaptive ro-
bust least-squared method. The proposed model demonstrated its effectiveness and capability to
closely track observed TSB levels during extended neonatal periods, with an RMSE ranging from
1.20 µmol/L to 40.25 µmol/L, with a median [IQR] of 8.74 [4.89; 14.25] µmol/L. The natural course
of TSB evolution follows the proposed exponential decay trend, with variations in the parame-
ters between models reflecting individual differences in bilirubin metabolism and developmental
patterns in the studied population.

Furthermore, when the bilirubin evolutionary trend of a given patient diverges from the ex-
pected decay pattern, as indicated by an increased RMSE, it might suggest the occurrence of high-
risk clinical events such as necrotizing enterocolitis and elevated C-reactive protein levels. This
association indicates that the model’s capabilities extend beyond mere descriptive analytics and
may serve as a new digital tool for the early detection of relevant comorbidities. Furthermore,
the analysis of the obtained patient-specific model parameters might be useful for clinical phe-
notyping, in order to better characterize this population and improve diagnostic and therapeutic
strategies.

Moving forward, the integration of this model into a model-based clinical decision support
system holds significant promise for enhancing NICU monitoring optimization and facilitating
high-risk event detection. This advancement could greatly improve the management and out-
comes for preterm infants.

In the next chapter, this proposed exponential decay model, with physiological insights, will
be embedded and evaluated in knowledge-based estimators, facilitating non-invasive bilirubin
estimations in the context of longitudinal clinical data in the NICU setting.
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This chapter is dedicated to another aspect of Neonatal hyperbilirubinemia (NHB) manage-
ment, developing and more about evaluating the effectiveness of novel, knowledge-based, non-
invasive methods for estimating bilirubin levels. In the context of longitudinal clinical data, ap-
proaches that leverage advanced monitoring resources and massive monitoring signals available
in the NICU appear as promising tools for improving the care of neonates who suffer from signifi-
cant hyperbilirubinemia. The exponential decay model proposed in Chapter 3 is also incorporated
in this chapter to offer additional physiological insights that may empower the performance in
bilirubin estimations.

Therefore, in this study, we propose novel TSB estimators based on Mixed-Effects Random
Forest (MERF) that incorporate specific physiological insights as additional mixed-effects terms.
The performance gains of these models when compared to standard Random Forest models are
then assessed.

4.1 Introduction

Hyperbilirubinemia, characterized by elevated levels of bilirubin in the blood, is particularly
prevalent and significant in preterm infants due to their greater degree of immaturity, underdevel-
oped hepatic function and higher susceptibility to complications [1–3]. If not managed properly,
high bilirubin levels can induce irreversible neurotoxicity, leading to severe neurological damage
such as kernicterus [4–6], and it is associated with adverse neurodevelopmental outcomes as re-
viewed in Section 1.3.1.

Regular Total serum bilirubin (TSB) monitoring is crucial for timely interventions such as pho-
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totherapy and exchange transfusion. However, this typically involves frequent blood sampling,
which is invasive and painful for these tiniest babies and repetitive procedures can lead to com-
plications such as anemia, infection and osteomyelitis [7]. Non-invasive methods for estimating
bilirubin levels are thus gaining more attention. These methods should be developed with the
aim of optimizing the timing of blood sampling and ultimately minimizing blood exploitation and
associated risks. Transcutaneous bilirubin (TcB) measurements have been widely used as a non-
invasive alternative despite slight discrepancies compared to serum levels [3, 8].

On the other hand, fortunately, modern Neonatal intensive care units (NICU) are equipped
with advanced monitoring resources, generating continuous data from admitted preterm babies,
particularly ECG recordings. This continuous monitoring presents a promising opportunity to de-
velop new tools in this subject. Research has shown that hyperbilirubinemia influences the activ-
ity of the Autonomic nervous system (ANS), especially through parasympathetic predominance,
manifested by alterations in Heart rate variability (HRV) in jaundiced term and preterm neonates
[9–12]. Since these preterm newborns are continuously monitored, including continuous acquisi-
tions of ECG signals, we hypothesize that the joint analysis of HRV, from the monitoring ECG, and
basic clinical information could be used to estimate bilirubin levels using signal processing and
machine learning models.

The selection of the appropriate machine learning algorithm is a challenge in this field, charac-
terized by longitudinal, time-dependent and noisy data. Indeed, longitudinal data exhibits tempo-
ral dependencies between observations, which can be challenging for traditional machine learning
algorithms that assume independence. Covariates may change over time, necessitating their inclu-
sion in the model. Moreover, these time-varying data often lack stationarity, potentially affecting
model performance if not addressed. Lastly, processing longitudinal data may result in low model
interpretability, if the selected model does not allow for the understanding of how it uses informa-
tion from different time points and how this affects predictions.

Therefore, in this study, we proposed novel TSB estimators, based on mixed-effects random
forests, incorporating specific physiological insights as additional mixed-effects terms. We evalu-
ated the proposed models and we compared them to a standard random forest. It should be noted
that in this study, we are not claiming to propose better alternative tools to TSB or TcB measure-
ments. Instead, we aim to study the effectiveness of mixed-effects-based machine learning models
in this context by comparing their performance in multiple aspects with those obtained from stan-
dard machine learning approaches.
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4.2 Database

4.2.1 Study population

This study is based on the CARESS-Premi project, as described in Section 2.1.3, as an ancil-
lary study proposed to estimate TSB levels using general clinical characteristics and longitudinal
cardio-respiratory data. Here, a subset of the whole CARESS-Premi cohort admitted to the main
clinical center (Rennes) was considered. The inclusion in this study covered the infants whose
TSB levels had been measured at least once during follow-ups. TSB measurements taken after 34
weeks of postmenstrual age were dropped due to the clinical protocol requirements. Bilirubin lev-
els higher than 400 µmol/L were excluded as well. This is based on the consideration that this kind
of extremely high bilirubin level may be due to very complicated conditions associated with both
immaturities with pathologies of the very premature infants and may not accurately reflect the
typical clinical scenarios we aim to study, so it was therefore regarded as an exception. As a rou-
tine, during the stay in the NICU, infants were continuously monitored for their cardio-respiratory
status, and the monitoring signals were de-identified and stored.

4.2.2 Data selection

In real medical and clinical settings, monitoring signals such as ECG are continuously mon-
itored and collected, whereas bilirubin levels in infants are only measured sparsely due to the
invasive nature of the blood sampling procedure. A data selection phase was thus implemented
to align two data sources with very different sampling resolutions, thereby constructing a dataset
suitable for subsequent analyses.

This data selection process involves a series of queries to the database and the synchronization
of clinical events and associated clinical data with the monitoring signals. Figure 4.1 presents an
illustration of the process. Additional information regarding the data structure in the CARESS-
Premi database is introduced in Section 2.1.3.

During one selection, for instance, we first specified an instant (timestamp) at which TSB levels
were measured from a patient based on the metadata file. Meanwhile, we queried all raw data files
corresponding to this patient across all monitoring channels and sorted them chronologically. Sub-
sequently, using the instant (TSB measurement timestamp) as an anchor, we extracted a predefined
length of raw ECG recordings centered on this TSB measurement, specifically in our case a 4-hour
segment (two hours before and two hours after the instant). Finally, the selected raw signals and
metadata (such as postnatal age and postmenstrual age) related to a single bilirubin measurement
for one patient were organized and stored in a newly created hierarchical data format file (HDF5).

This selection process was applied to all TSB measurements for all included infants. Yet, due
to technical issues and other factors, some raw electrophysiological recordings were missing from
the database. If data were unavailable around the anchor timestamp of TSB observations, this
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would result in unsuccessful data selection and a certain of data loss. As a result, we obtained a
set of 4-hour data segments, which are used for further processing and analysis.

CARESSPREMI _submission1_patientID1_channel1_date1_time1 .bin.gz
CARESSPREMI _submission2_patientID1_channel2_date2_time2 .bin.gz

CARESSPREMI _submission3_patientID2_channel1_date3_time3 .bin.gz
CARESSPREMI _submission4_patientID3_channel1_date4_time4 .bin.gz

CARESSPREMI _submission#_patientID#_channel#_date#_time# .bin.gz

.
.
.

Raw monitoring signals

PatientID1, test_date_time1, bilirubin1, PMA1, PNA1
PatientID1, test_date_time2, bilirubin2, PMA2, PNA2
PatientID2, test_date_time3, bilirubin3, PMA3, PNA3
PatientID3, test_date_time4, bilirubin4, PMA4, PNA4

…
PatientID#, test_date_time#, bilirubin#, PMA#, PNA#

…

Metadata file
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Figure 4.1: Data selection process including raw monitoring signal query, data synchronization
and HDF5 file creation.

4.3 Signal Processing and Feature Engineering

The data processing generally follows our pipeline as introduced in Section 2.2, integrating
ECG signal processing, time-series denoising, and feature engineering. A global representation of
the data processing workflow is shown in Figure 4.2. The following sections describe each block
of the workflow.

4.3.1 ECG signal processing and time-series denoising

Raw 3-channel ECG signals acquired based on each measurement, sampled at 500 Hz of fre-
quency, were initially segmented into successive 15-minute windows with a 20% window overlap.
We then chose the good lead of ECG from the multi-channel recordings using the algorithm de-
scribed in Section 2.2.1. Each 15-minute ECG segment was pre-processed in order to detect cardiac
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Figure 4.2: Data processing workflow for bilirubin estimation.

beats (QRS complex) using a robust multi-feature probabilistic real-time QRS detector adapted to
the specific characteristics of the newborn electrophysiology, previously proposed and evaluated
by our SEPIA team [13]. Once the QRS detection has been finalized, the successive cardiac cycle
lengths, i.e., the time intervals elapsed between consecutive heartbeats, were calculated to build
the so-called RR series.

Next, a multi-step approach using logic rules based on pathological and rhythmic corrections
(details refer to Section 2.2.3) was used to automatically reject and correct artifacts and errors.
Changes over time in the mean and variance of the corrected RR series were then estimated and
signal stationarity was analyzed on each of the 15-minute segments (details refer to Section 2.2.4).
By the fact that the events of interest are infrequent and present relatively slow dynamics, we
assume that any segment of the 4-hour recordings we located could represent the physiological
characteristics related to this event, i.e., TSB concentration. The signal quality and stationary were
also taken into account. Therefore, only the most stationary segment in each 4-hour corrected RR
series was selected for further analysis.

4.3.2 Feature extraction

Heart rate variability (HRV) features describing cardiovascular functions modulated by the
Autonomic nervous system (ANS) were extracted from the most stationary RR series. Refer to
HRV parameters in Section 2.2.5 for detailed descriptions.

The time domain analysis consists of the extraction of the mean (Mean), the median (Median),
the standard deviation (Std), and the skewness (Skewness) as well as kurtosis (Kurtosis) of the RR
series, which offers an initial indication of the global variability. And the square root of the mean
squared differences of the successive RR (Rmssd), deceleration capacity (DC) and acceleration ca-
pacity (AC) based on the phase-rectified signal averaging method, the inter-decile range between
10th and 90th percentile (IDR), percentage deceleration of RR intervals (pDec), the standard devia-
tion of RR corresponding to pDec (stdDec) and sample asymmetry of RR histogram (SampAsym),
were also calculated.

The frequency domain analysis includes the integration of low-frequency (LF, 0.02-0.2 Hz) and
high-frequency (HF, 0.2-2 Hz) ranges of the power spectrum obtained by autoregressive modeling
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of the 4 Hz resampled RR series. Both features in normalized units (LFnu and HFnu, respectively)
and the LF/HF ratio (LFHF) were also calculated. Very low-frequency variations (0-0.02 Hz) are
not considered for the analysis of these short-duration segments.

Classical non-linear analysis such as SD1 and SD2 from the Poincaré plot, sample entropy
(SampEn), and detrended fluctuation analysis (coefficients α1 and α2) were included in this study.

In total, we extracted 22 HRV parameters including 12 features in the time domain, 5 in the
frequency domain, and another 5 non-linear features.

4.3.3 Outlier exclusion

We are coping with real-life data that contains various sources of noise, which can contami-
nate and distort the data. Additionally, after feature extraction, an outlier exclusion was hereby
implemented to detect outliers in the feature space. We used a Chi-square test (α=0.05) on the
Mahalanobis distance to identify the outliers in a multi-dimensional manner using (details refer to
Section 2.3.4). These outliers are then excluded from the dataset.

4.4 Machine Learning Models for Clinical Longitudinal Data An-
alytics

Machine learning models are widely used in the field of healthcare. In the particular case of
healthcare data acquired during a monitoring process, a number of specific challenges arise, which
are associated with [14]: i) the time-dependent (longitudinal) aspect of these data, often exhibiting
temporal dependencies between observations; ii) time-varying covariates that may change over
time, making it essential to account for these changes in the model; iii) noises and missing values
due to measurement errors or non-response rates, which can lead to biased estimates if not handled
properly and iv) time-series non-stationarity. These aspects can be particularly challenging for
traditional machine learning algorithms that assume independence.

In the following sections, we describe and propose a set of models that are progressively
adapted to the particular characteristics of these monitoring data, taking into account potential
mixed effects and including an explicit representation of the physiological knowledge related to
the dynamics of TSB.

4.4.1 Baseline random forest (RF)

A standard RF regressor was employed for TSB estimation in the form of

y = f (X) + ϵ (4.1)
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where y is the TSB levels to estimate, X is the features comprising 22 HRV parameters and 2 age
indicators (PMA and PNA), and ϵ is the estimation error.

However, like other machine learning approaches, the RF algorithm assumes that observations
are independently sampled from a population. Analyzing longitudinal data without accounting
for the inherent correlations between observations might result in biased inferences due to under-
estimated standard errors in linear models [15, 16].

4.4.2 Mixed-effects random forest (MERF)

The Mixed-Effects Random Forest (MERF), which originated from linear mixed-effects mod-
els, has been augmented to more effectively manage clustered and longitudinal data with repeated
measurements within clusters/subjects by adding linear random effects into the models. Hajjem
et al. [17] proposed the MERF in 2014, integrating a powerful and robust ensemble learning algo-
rithm, formulated as

y = f (X) + biZ + ϵ (4.2)

where y is TSB measurements, X is a matrix of fixed-effects features, f (·) denotes a non-linear
function, i.e., a standard RF regressor, Z is a matrix of random effects covariates specific to each
subject capturing inter-subject variability, bi ∼ N(0, σ2

b) = N(0, D) are random effect coefficients,
should be estimated for each patient i and are assumed to be drawn from the same distribution
where D is learned from the data, for each patient i (the cluster index), and ϵ ∼ N(0, σ2

e ) = N(0, Ri)

represents individual error. The covariance matrix of bi is D, the covariance matrix of ϵ is Ri and
σ2

e is the variance of ϵi that is assumed to be white noise. An illustration of the model structure is
shown in Figure 4.3.

Figure 4.3: Mixed-effects random forest (MERF) model for bilirubin estimation.

The MERF is implemented under the framework of the Expectation-Maximization (EM) algo-
rithm, which was originally used for linear mixed-effects models [18], and then adapted by Hajjem
et al. [19] by replacing the non-linear function with a standard RF. The algorithm iterates until
convergence, jointly learning random effect coefficients (D), error priors (σ2

e ) and the RF ( f (X)),
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evaluating the Generalized log-likelihood (GLL) criterion at each iteration. Refer to Section 2.4.1
for more information on the algorithms.

4.4.3 Modified mixed-effects random forest (mMERF)

In the bilirubin characterization study as presented in Chapter 3, we observed that the natural
evolution of TSB levels with PNA in the neonatal period of preterm infants follows an exponen-
tial decay pattern rather than any linear dynamics. Thus, inspired by the key idea of MERF that
assumes the random effects are linear, we propose to make a modification to the MERF structure
by replacing its linear term with a non-linear term while maintaining the optimization process
untouched.

To capture this non-linear relationship explicitly, we proposed a Modified Mixed-Effects Ran-
dom Forest (mMERF) model in form of:

y = f (X) + b1i(Z1i) + b2i(g(Z2i)) + ϵ (4.3)

where y represents TSB measurements, f (X) is a standard RF model, b1i and b2i are coefficients for
two random effects specific to patient i: Z1 (PMA) and Z2 (PNA), and g(·) is an exponential decay
function characterizing the overall bilirubin dynamics:

g(Z2i(t)) = A× exp(−B · Z2i(t)+ GA + Tc) + C (4.4)

where Z2i(t) are the PNA in days when bilirubin levels were measured, coefficients A (118.34),
B (0.1142), C (0), Tc (-201.96), GA (196.00) are the median values obtained from 72 patient-specific
TSB decay models recently proposed in [20]. Figure 4.4 illustrates the model structure.

Figure 4.4: Modified Mixed-Effects Random Forest (mMERF) model for bilirubin estimation.
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4.4.4 Model development

Models were learned using a feature set of extracted HRV and clinical indicators, with ob-
served TSB levels as targets. Data were shuffled and split into a training set (80%) for learning and
a test set (20%) for validating without differentiating subjects.

In order to evaluate the added value of the proposed random-effects factors, we developed
different mixed-effects-based variants:

• RFbase: a standard RF was learned and used as a baseline model (Equation 4.1).

• Based on the MERF structure, two models were proposed:

- MERF0: a pure MERF with no extra random effects but only assigning clusters (infants)
for samples (Equation 4.2 with a sole Z = 1);

- MERF2: a MERF with two random effects to capture patient-level variability (Equa-
tion 4.2 with Z1 = PMA and Z2 = PNA).

• mMERF: a modified MERF was trained with a linear random effect of PMA and a non-linear
random effect of PNA according to Equation 4.3.

Optimal hyper-parameters for baseline RF and RFs embedded in (m)MERFs were identified
via Bayesian optimization (implemented by Python library of Hyperopt-Sklearn [21]) within prede-
fined parameter spaces (details refer to Table 4.1). The maximum number of EM iterations to train
(m)MERF models was set to 200. We utilized open-source Python packages of scikit-learn [22] and
MERF [17] for the modeling process.

4.4.5 Model evaluation

Evaluating standard RF regressors involves using the trained model in inference mode to
make predictions on the unseen test set, as a common way in machine learning models. For the
fitted (m)MERF estimators, the way to make predictions depends on whether the patients/clusters
to which the new samples in the test set have been seen during training, and work as follows:

• For new observations from patients seen during training (“known” patients), predictions
comprise a population-averaged RF estimation with additional random-effects corrections;

• For samples from patients not seen during training (“unknown” patients), the estimator
reverts to a standard RF learned by only fixed effects.

To compare the estimation performances, several metrics focusing on different aspects of the
models were used. For comparing the correlation between the observed TSB levels and the esti-
mated levels, we calculated the Pearson correlation and the Root-mean-square error (RMSE).

For evaluating the agreement between the observed TSB levels and the estimated levels, the
Bland-Altman (B&A) analysis [23–25] was employed. The analysis calculates the mean difference
(bias, differences between actual TSB and estimated TSB) and the Limits of agreement (LoA) to
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determine the presence of estimation bias and to evaluate the consistency between the real TSB
measurements and developed models’ TSB estimations across the measurement range. The LoA
is defined as the mean difference ±1.96 times the standard deviation of the differences, represent-
ing the range within which 95% of the differences between the measurements are expected to lie,
assuming a normal distribution of the differences. The B&A plots were created to visualize the
differences against the means, providing clear and intuitive results for easier comparison.

In addition, based on the B&A plots, we calculated the correlation between the differences and
the means of differences and applied linear regression to fit a bias line to quantify the consistency
and discrepancies [26].

4.5 Results

4.5.1 Data

Initially, 2,280 bilirubin samples from 374 preterm infants were eligible. After applying the
inclusion and exclusion procedures and the following data selection process, a dataset consisting
of raw monitoring signals and clinical information linking to 1,652 TSB measurements from 326
preterm infants was built for this study. The mean gestational age (GA) of this population was 283/7

weeks (from 242/7 to 316/7 weeks). Their birth weights ranged from 520 to 1,955 grams with a mean
of 1, 132± 316 grams and the mean Z-scored birth weight [27] was −0.04± 0.78. In terms of TSB
measurements, a total of 1,652 valid concentrations from the included infants were documented.

After feature engineering and outliers removal, 1,477 data samples from 319 infants eventually
remained for model training and validation. The median number of TSB observations per patient
was 4 (ranging from 1 to 22), and the mean TSB concentration was 118± 50 µmol/L.

A visualization of the data distribution across the analyzed population sorted by increasing
PNA (in days) is illustrated in Figure 4.5, where the dots represent TSB measurements and the dif-
ferent color tones exhibit TSB levels (darker color for higher values). It is noticed from the number
of scatters in each infant (each vertical set of scatters) that the more premature the newborn, the
more frequent the blood tests to monitor bilirubin levels. As the gestational age increases, i.e., from
extremely preterm to very preterm, the fewer the documented TSB measurements. Besides, from
the color distribution in the scatter plot, we can see that most high TSB values are concentrated in
the first days after birth (lower area of the plot), approximately the first 10 days of age. The overall
trend of TSB concentrations decreases with increasing postnatal age, which is consistent with the
perspective we presented in Chapter 3. Figure 4.6 displays the box plots of HRV parameters.

Regarding the machine learning data split, the training set comprised 1,181 samples covering
308 infants, and the test set included 296 samples, with 170 infants also presented in the training
set and 11 infants being new to the models.
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Figure 4.5: Distribution of data used for bilirubin estimation.
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Figure 4.6: Box plots of HRV features used for bilirubin estimation.
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4.5.2 Model comparison

Developed models

The first model was a standard random forest regressor (RFbase). The hyper-parameters of
this model were optimized in the training set (details refer to Table 4.1), including 80 estimators
(decision trees in the forest), None for the maximum features to consider when looking for the best
split, 7 for the maximum depth of the trees, 2 samples for the minimum number required to be at
a leaf node and 10 samples for the minimum number needed to split an internal node, and 0.05 for
the threshold of decreased impurity of a split node, while the rest were set as default.

Table 4.1: Hyper-parameter space and the optimal choices for random forest estimator.

Hyper-parameter Optimization Space Optimal Choice

n_estimators 50, 60, 70, 80, 90, 100 80

max_features 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, None None

max_depth 3, 4, 5, 6, 7, 8, 9, 10, None 7

min_samples_leaf 1, 2, 3, 4, 5, 6 2

min_samples_split 2, 4, 6, 8, 10, 12 2

min_impurity_decrease 0, 0.01, 0.02, 0.05 0.05

criterion Default ’squared_error’

bootstrap Default True

This set of hyper-parameters was also assigned to all the embedded random forest models
as part of the (m)MERF variants for better comparison. As a result, we obtained four groups of
models:

1. Baseline random forest model: RFbase;

2. Basic mixed-effects random forest model and its embedded random forest term: MERF0 and
RFMERF0 ;

3. Mixed-effects random forest model with 2 random effects and its embedded random forest
term: MERF2 and RFMERF2 ;

4. Modified mixed-effects random forest model and its embedded random forest term: mMERF
and RFmMERF.

Training statistics of the (m)MERF models

Shown in Figure 4.7 are the training processes of the three mixed-effects-based models: MERF0,
MERF2 and mMERF. Each subplot illustrates the Generalized log-likelihood (GLL), estimations of
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Figure 4.7: Evolution of the training statistics during 200 iterations for (a) the MERF0 model, (b)
the MERF2 model and the (c) mMERF model.
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σb and σ2
e , the evolution and distribution of random coefficient B and the validation loss over 200

iterations.

Figure 4.7a depicts a relatively poor convergence of the MERF0 model that the random effect
was configured with a vector of ones, compared to subplots (b) and (c), which is indicated by the
highest magnitude and jittered trace of GLL as well as the highest validation loss until the end
of the iteration. And the “B_hat” as well as the distribution of “b_is” present the widest ranges.
Curves in different colors of “B_hat” are different random coefficients for each cluster (infant),
showing some initial fluctuations but generally stabilized around different values. Figure 4.7b
shows the training process of the MERF2 model, which includes two linear random effects: PMA
and PNA in days. It had a slower but more robust convergence trajectory of GLL from around
50 iterations. And the random effects “B_hat” were estimated within a narrower value range of
around [-5, 5]. Lastly, Figure 4.7c illustrates the mMERF model with a linear and a non-linear ran-
dom effect (see Equation 4.3). During the first 20 iterations, there is a rapid decrease in GLL and
evident changes in the estimated covariates of both σb and σ2

e and the validation loss. Afterward,
the values stabilize with low-amplitude fluctuations around stable means, indicating the quick
convergence of the algorithm. A more compact “B_hat” dispersion that is caused by greater mag-
nitudes of two random effect factors illustrates similar global behaviors on the lines with the first
two. Stabilization at different values reflects the models’ adaptation to the individual differences
among infants, accounting for variability in their data.

Model performances

Table 4.2 summarizes the overall models’ performances and Figure 4.9 and Figure 4.10 display
the B&A plots for the performances of the developed models in the test set and training set, respec-
tively. In general, from RFbase to MERF0, MERF2 and finally the mMERF, the model performances
improved as the expansion of the model structure and the increase of incorporated information.

As shown by the correlations and RMSE between the real and estimated TSB levels, the base-
line model RFbase had a correlation of 0.53 and an RMSE of 42.41 µmol/L while the proposed three
models achieved higher correlations (above 0.80) and lower errors (around 30 µmol/L). Figure 4.8
shows the distribution of the real and estimated bilirubin concentrations. As part of the (m)MERFs,
RFMERF0 , RFMERF2 and RFmMERF had even poorer performance compared to the RFbase which is rea-
sonable.

Regarding the results of Bland-Altman analysis, the RFbase had the best mean difference while
the proposed three models slightly overestimated the bilirubin levels indicated by negative mean
differences. We used a percentage of LoA relative to the LoA of RFbase model to compare different
models, and a positive ∆LoA means a wider range of agreements suggesting poor consistency
while a negative ∆LoA indicates improvement in consistency. Thus, as shown in Table 4.2, all
the mixed-effects-based models, MERF0, MERF2 and mMERF, enhanced the agreements through
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Figure 4.8: Actual TSB measurements against model-estimated TSB levels in the test set. (a) RFbase

model, (b) MERF0 model, (c) MERF2 model and (d) mMERF model.
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Table 4.2: Performance of the bilirubin estimation models in the test set.

Group Model Corr.†
RMSE mDiff

LoA ∆LoA
Corr. Linear

(µmol/L) (µmol/L) diff‡ bias⋆

1 RFbase 0.53 42.41 0.82 83.10 / 0.61 0.76

2
RFMERF0 0.51 43.64 6.74 84.51 +1.70% 0.63 0.81

MERF0 0.80 30.12 −2.19 58.88 −29.15% 0.41 0.29

3
RFMERF2 0.50 44.00 7.65 84.92 +2.19% 0.64 0.83

MERF2 0.83 28.40 −1.53 55.58 −33.12% 0.42 0.27

4
RFmMERF 0.49 44.62 8.49 85.87 +3.33% 0.59 0.77

mMERF 0.83 28.20 −1.43 55.21 −33.56% 0.39 0.24

mDiff: Mean difference between the observed and model-estimated bilirubin levels.

LoA: 95% limits of agreements in the Bland-Altman plots.

∆LoA: Changes in LoA relative to the baseline model RFbase.
†Pearson correlation between the observed and model-estimated bilirubin levels.
‡Pearson correlation between the mean and differences of observed and model-estimated bilirubin
levels of samples from “known” patients.
⋆The slope in linear regression of samples from “known” patients based on the Bland-Altman plots.

narrowing LoA by 29.15%, 33.12% and 33.56%, respectively in the test data (41.36%, 49.83% and
52.90% in the training data). RFMERF0 , RFMERF2 and RFmMERF largely underestimated the bilirubin
levels (higher mean differences) and produced poorer agreements (wider LoA and positive ∆LoA).

Moreover, we calculated the correlation between the means and differences of observed and
model-estimated TSB levels and, if correlated (statistically significant), performed a linear regres-
sion of these two variables to quantify the proportional bias of the estimators. The results show
that, compared to RFbase that obtained a correlation of 0.61 and slope of the linear bias of 0.76, the
proposed MERF0, MERF2 and mMERF models reduced the correlation to around 0.40 and greatly
attenuated the undesirable bias by decreasing the linear regression slopes for the samples from
“known” babies in the test set from 0.76 to 0.29, 0.27 and 0.24, respectively (from 0.53 to 0.18,
0.15 and 0.13 in the training set, respectively). Concerning RFMERF0 , RFMERF2 and RFmMERF models,
they presented similar or marginally higher correlation and proportional bias to the RFbase model,
suggesting even poorer performance.

In summary, as shown by both the values in Table 4.2 and the visual representations in Fig-
ure 4.9, the standard model RFbase exhibited wider dispersion and noticeable proportional bias
in both the training and test data; in contrast, the three proposed mixed-effects models—MERF0,
MERF2 and mMERF—demonstrated significant improvements in estimation accuracy. This en-
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hancement is rather evident in the Bland-Altman plots displayed as percentages, provided in Ap-
pendix Figure A.9 for the training data and Figure A.10 for the test data. By plotting the differences
as percentages, it becomes clear that the variability of the bias decreases as TSB measurements in-
crease, and that the degree of dispersion in the differences is greatly diminished in the mMERF
model compared to the RFbase model. This suggests that the proposed models greatly improved
TSB estimations, particularly for higher concentrations.

4.6 Discussion

This study concerns the assessment of the added value of novel mixed-effects-based models
in estimating TSB levels in preterm infants when incorporating physiological insights. Classical
machine learning has been widely used in developing prediction models with longitudinal data in
healthcare, assisting in the prevention, diagnosis, and prognosis anticipation across various condi-
tions and scenarios. Among these methods, Random Forest (RF) is one of the state-of-the-art and
representative non-parametric ML approaches adept at handling both classification and regression
tasks. It is capable of working with predictors of various scales or distributions and is suited for
applications in high-dimensional settings, which exactly cater to the features of biomedical data.

Yet, as with many ML algorithms, RF analyzes data without considering the dependency
among observations in longitudinal data, which could lead to great biases [16]. In contrast, meth-
ods designed to align with the inherent data structure and appropriately address the correlations
arising from repeated measurements have been shown to deliver superior prediction performance
[28]. This is where Mixed-Effects Random Forest (MERF) comes into play. MERF combines the
strengths of random forests with mixed-effects models, thereby incorporating the ability to handle
longitudinal data’s hierarchical structure so that it can effectively manage the correlation within
repeated measures and gain more reliable predictions.

In this study on bilirubin estimation using monitoring signals, though the task is fundamen-
tally a regression problem, we observed how the samples distributed as shown in Figure 4.5 and
this led us to build models that can learn across the population, but, at the same time, can account
for the idiosyncrasies of each infant. We hypothesized that incorporating mixed effects that capture
inter-patient characteristics into machine learning could significantly enhance model performance.

We developed MERF models with different combinations of random effects and compared
their contributions added in TSB estimation when taking a standard RF model as a baseline. The
results show incremental improvements from RFbase to MERF0 and MERF2, and subsequently to the
mMERF model regarding higher correlations, greater agreements and less proportional bias, sug-
gesting their advantages in analyzing longitudinal clinical data with patient-level repeated mea-
surements.

The training trajectories of “B_hat” and the distributions of “bis” in Figure 4.7 reveal interest-
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Figure 4.9: Bland-Altman plots of the mean against the differences between observed (yi) and
estimated (ŷi) TSB levels for samples of “known” patients (blue) and samples of “unknown”

patients (beige) in the test set. (a) RFbase model. (b) MERF0 model. (c) MERF2 model. (d) mMERF
model. The r and p on the upper right of each subplot indicate the Pearson correlations and

associated p-values between the real TSB levels and the model-estimated TSB values.
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Figure 4.10: Bland-Altman plots of the mean against the differences between observed (yi) and
estimated (ŷi) TSB levels in the training set. (a) RFbase model. (b) MERF0 model. (c) MERF2 model.

(d) mMERF model. The r and p on the upper right of each subplot indicate the Pearson
correlations and associated p-values between the real TSB levels and the model-estimated TSB

values.
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ing information about the random effects on patient-specific variability. The MERF0 model was
configured with white noise random effect coefficients by only telling the model which patients
the training samples belong to, which significantly increased estimation accuracy. Building on
this, we further included two important clinical features known to be related to bilirubin levels
into the MERF2 model as two random effects: PMA and PNA, in order to integrate personalized
prior knowledge about their impact on bilirubin dynamics. Due to the different scales of PMA and
PNA values, the distributions of their random effect coefficients show different ranges (histograms
in Figure 4.7b), but overall they are much more concentrated than the distribution of “bis” for the
MERF0 model (Figure 4.7a). This can be explained by the fact that when more key information is
explicitly integrated into the random effect terms, the corresponding random effect covariates can
only capture less hidden information, which is manifested as smaller variances of “bis” and nar-
rower distributions. To further refine the model, we then proposed the mMERF model that replaces
the second random effect of PNA with an exponential decay function of PNA, which breaks the
limitation of MERF models that only consider linear random effects. Through this modification,
an even quicker and robust convergence with lower validation loss can be seen in Figure 4.7c. This
adjustment acknowledges the complex, nonlinear nature of bilirubin dynamics over time despite
that a median model of 72 infants’ bilirubin dynamics (Equation 3.6), rather than patient-specific
models, was used. In this case, although the estimation performance is not evidently improved,
the distribution of the random effects covariates is more compact. We assume that when more
powerful, complicated and indicative insights are incorporated as random effect terms in MERF
models, they will contribute more and possibly gradually dominate the output. In fact, the gradu-
ally decreasing performance of the random forests embedded in the (m)MERFs listed in Table 4.2,
denoted as RFMERF0 , RFMERF2 and RFMERF, offers us a glimpse into the subtle dynamic balance be-
tween the contributions of RF and random effect terms in a MERF model.

From the MERF2 to the mMERF model, the big difference lies in the second random effect. In
mMERF, instead of simply using the PNA corresponding to each TSB concentration measured, we
included a mathematical deterministic model of the bilirubin evolution with PNA, as fully elabo-
rated in Chapter 3. We expect this nonlinear effect in mMERF may reflect the complex nature of
bilirubin changes, where the influence of factors such as postnatal age was proved not uniformly
linear [29]. The results turned out to be somewhat disappointing, with the incorporation of such
a function having only a negligible added value on the estimation of bilirubin levels, which was
no different from the MERF models. We consider two potential aspects that might have affected
the outcome. First, the exponential decay model used to represent bilirubin dynamics describes
the natural course of bilirubin levels. As presented in Section 3.2.1, we excluded bilirubin mea-
surements taken under conditions that could affect the natural evolution of bilirubin in neonates.
However, in this study, we did not apply such strict exclusion criteria and instead evaluated all
bilirubin levels using a set of non-invasive HRV and clinical features. This inconsistency might
have resulted in the minimal improvement in bilirubin estimation seen with the addition of the
nonlinear function. Second, while we have emphasized the importance of inter-subject variability
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in longitudinal data, we did not incorporate patient-specific bilirubin evolution models, such as
those modeled in Chapter 3. Instead, we used a general function composed of the median values
of parameters from individualized evolution models. Due to the limited sample sizes in this study,
it was challenging to have sufficient samples for each infant in the training set to properly fit a
patient-specific exponential decay function. Consequently, we did not go further into this step.
However, it is conceivable that once with adequate data, such an idea could promisingly enhance
the performance of bilirubin level estimation non-invasively.

It should be noted that in this study, we do not claim to propose better alternative tools to TSB
or TcB measurements. Instead, we aim to study the effectiveness of mixed-effects-based machine
learning models in this context by comparing their performance in multiple aspects with those ob-
tained from standard machine learning approaches. Even though, by observing the results of all
the developed models (either RF or MERF), it can be noticed that, although better performances
were obtained by incorporating different informative components into the models, there are still
non-negligible estimation errors and proportional biases between model-estimated and the mea-
sured TSB levels. This drives us to wonder whether there is a strong enough association between
changes in HRV and TSB levels of TSB to support the use of HRV parameters as main predic-
tors for non-invasive estimation of bilirubin. Several studies have shown the relationship between
hyperbilirubinemia and cardio-respiratory activities. For instance, the non-linear indices of HRV
were proved associated with a decreased sympathetic activity and/or increased parasympathetic
activity in full-term jaundiced newborns [9]. Also, as the first attempt to explore the potential link
based on analyzing 24-hour Holter recordings, Ozdemir et al. have found significant differences
in several HRV features in a population of full-term neonates with severe unconjugated hyper-
bilirubinemia, including higher RMSSD and HF and lower LF/HF ratio [11]. Research in preterm
lambs suggested the correlation between moderate and sustained hyperbilirubinemia and altered
cardio-respiratory function indicated by both respiratory rate variability and heart rate variability
[10, 12]. However, whether a consistent association is also valid in preterm human infants and
whether HRV analysis can effectively reflect changes in both normal and abnormal bilirubin con-
centrations of bilirubin still needs further investigation.

Some limitations of this study should be mentioned, as well as the prospects for future re-
search directions that arise from them. Firstly, while the (m)MERF models showed greater consis-
tency and less bias in bilirubin estimation for “known” patients, there is no significant difference
in performance over the baseline RFbase model when encountering “unknown” patients in the test
set (see orange scatters and lines in Figure 4.9). This is due to the inherent nature of mixed-effects
models, which require patient-specific historical data to initialize the random coefficients. As men-
tioned above, limited by the small sample size, the “new” patients split in the test set but not
seen in the training set failed to have corresponding random effect corrections when generating an
estimation. Further improvements could involve more systematic and extensive data collection to
build larger datasets. This would also facilitate more nuanced and personalized modeling to better
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accommodate the heterogeneity present in longitudinal data observed in bilirubin monitoring.

Another point is about the exploration of random effects. As mentioned in the former discus-
sion, the random effects in the proposed models might not be the optimal choices. Incorporating
additional physiological insights, including patient-specific random effects, such as replacing g(·)
with gi(·) (Equation 4.4), may benefit to better encompass other bilirubin-related individual char-
acteristics. This could improve the model’s ability to accurately capture the individualized patterns
of bilirubin dynamics. Apart from this, we would also like to mention the non-linear random ef-
fect but in a more methodological aspect. We conducted our studies based on an open-source
Python package of MERF developed by Ahlem Hajjem, Francois Bellavance, and Denis Larocque
[17]. One key assumption of the MERF model is that the random effect is linear and thus the MERF
package was implemented in a way that the underlying EM algorithm alternatively optimizes the
non-linear fixed effects model (an RF) and the linear random effect covariates (bi). In this study, we
adopted a “lazy” way to realize our non-linear random effect by applying the exponential decay
function before starting the optimization process. But a more elegant approach that could adapt to
individualized non-linear random effects is to modify the EM algorithm, rewriting the underlying
optimization steps and specific implementations, which is quite ambitious yet feasible.

A third limitation concerns the difficulty of converting such proposed models into On-the-
edge (OTE) applications. The proposed models do not operate in real-time; they require historical
data for each patient to learn and adjust the random coefficients effectively. This dependency on
pre-existing data limits their immediate applicability to new patients who do not have sufficient
historical records. Since, unfortunately, this is the inherent nature of a MERF structure, rather than
optimizing the MERF models, further studies might involve exploring other advanced algorithms
capable of quick adaptation or hybrid approaches that combine pre-trained models with real-time
learning capabilities. Additionally, as an overall challenge, the integration of such models into
existing neonatal care protocols and systems may require significant adaptations such as robust
infrastructure to support real-time data processing and model updating. We will discuss this in
Chapter 6.

4.7 Conclusion

In this chapter, we explored non-invasive approaches for estimating total bilirubin concen-
trations in preterm infants with/without hyperbilirubinemia born at 242/7 to 316/7 gestational
weeks. A particular effort has been made to evolve a classical ML regressor into new structures
adding specific terms to account for the longitudinal and problem-specific nature of the observed
variables. This is conducted by developing original mixed-effects-based machine learning mod-
els through a set of heart rate variability and clinical features, especially incorporating personal-
ized and knowledge-based random effects. The proposed mixed effects-based (m)MERF models
(MERF2 and mMERF) greatly improved the agreements and reduced the proportional bias thanks
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to the explicit integration of meaningful physiological knowledge. This underscores the impor-
tance of considering data dependency and individual disparities in prediction modeling toward
longitudinal clinical data in similar biomedical scenarios.

Although these models require patient-specific historical data for initialization and the model
performance is still far from being compatible with an actual clinical application, with larger
datasets and broader validation, this study proposes the continued optimization and integration of
such advanced models into NICU monitoring systems, which may enhance real-time TSB estima-
tion and optimize interventions for hyperbilirubinemia. Prospectively, the combination of a robust
and adaptive platform that supports the deployment of such models into clinical decision sup-
port systems will hold promise to offer an optimistic step towards personalized and less invasive
neonatal care.
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CHAPTER

5 Early Detection of Neonatal Late-
onset Sepsis in Preterm Infants Us-
ing Heart Rate Variability from
Real-life Monitoring Data

This chapter considers another major challenge in the NICU: neonatal Late-onset sepsis (LOS)
management. In line with the goals of the CARESS-Premi project, this work focuses on develop-
ing new computer-assisted diagnostic tools to support caregivers in the early detection and timely
intervention of neonatal sepsis in preterm infants. This chapter explores the use of Heart rate
variability (HRV) data from real-life monitoring data to enhance the precision and speed of sep-
sis detection, employing non-invasive, continuous bedside monitoring. This chapter begins with
literature reviews covering previous studies on neonatal LOS, the use of HRV analysis in sepsis
detection, and the progression of infections coupled with clinical intervention. Following this, the
study population and expert classification of clinical events are introduced, which form the basis
for annotating the dataset. Then, we detail the dataset construction process, from signal process-
ing, and feature extraction to sample labeling. Subsequently, machine learning model development
and evaluation methodologies for LOS detection are outlined. Finally, results are presented, along
with discussions on several aspects of such a challenging topic—neonatal sepsis detection and its
clinical application.

5.1 Introduction

5.1.1 Neonatal late-onset sepsis

As presented in the previous chapters (Section 1.3.2), neonatal Late-onset sepsis (LOS), de-
fined as sepsis occurring after 72 hours of life, remains a critical global public health concern and
is one of the leading causes of neonatal morbidity and mortality [1]. Preterm infants are particu-
larly vulnerable to LOS due to their underdeveloped immune systems, longer hospital stays, and
exposure to invasive procedures necessary for routine care. This heightened susceptibility often
results in prolonged hospitalizations, higher healthcare costs, and an increased risk of long-term
neurodevelopmental impairments.
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Prompt diagnosis and the initiation of appropriate antibiotic therapy can significantly reduce
mortality and morbidity [2, 3]. Given the rapid deterioration of infection in the preterm popula-
tion, clinicians are often compelled to empirically administer antibiotics to those with risk factors
or signs of suspected sepsis. However, this approach, sometimes aggressive and indiscriminate,
carries the risk of overuse of antibiotics, which can lead to the development of antibiotic resistance,
adverse drug-related consequences, and further healthcare costs [4–7].

Therefore, the early and accurate recognition of LOS is crucial to guide appropriate antibiotic
treatments and improve clinical outcomes in this vulnerable population. However, the LOS early
recognition is particularly challenging due to the non-specific and subtle clinical presentations in
preterm infants [1]. Despite being the gold standard in traditional diagnostic tools, blood cultures
are invasive, time-consuming, and can show variability in predictive accuracy, particularly in the
early stages of infection [8].

As a result, there is a pressing need for non-invasive, timely, and reliable diagnostic methods
to facilitate the detection of LOS as early as possible. One such promising approach is Heart rate
variability (HRV) analysis, which has gained attention for its potential role in early sepsis detection.
The following section provides a review of current literature on HRV analysis, highlighting its
applications and effectiveness in identifying sepsis in neonates.

5.1.2 HRV analysis in sepsis early detection

Heart rate (HR) is a widely used physiological parameter in clinical practice and pediatric
early warning systems [9] as an early marker of sepsis-related deterioration. However, there is a
lack of consensus among warning scores on what constitutes an abnormal heart rate in pediatric
patients [10]. This inconsistency has prompted the exploration of novel and more comprehensive
methods, such as Heart rate variability (HRV) analysis.

HRV, a measure of the variation in time intervals between heartbeats (RR intervals), reflects
the autonomic nervous system’s regulation of cardiovascular function. In sepsis, changes in HRV
are linked to autonomic dysfunction caused by systemic inflammation. Studies across neonatal,
pediatric, and adult populations have shown promising results in using HRV analysis for sepsis
management, including early detection and outcome prediction. Particularly, benefiting from con-
tinuous non-invasive cardiac monitoring is often a standard procedure in the NICU, studies have
explored the use of HRV analysis as a diagnostic and prognostic tool for neonatal sepsis.

Pioneering work in this domain was conducted by Griffin, Moorman and their colleagues,
who introduced a novel and proprietary measure known as Heart rate characteristics (HRC), to
evaluate HRV in infants at risk of sepsis. The main subjects were neonates admitted in the NICU at
the University of Virginia. Their research indicated that abnormal HRC, characterized by reduced
variability, transient decelerations and increased non-stationarity, 12 to 24 hours preceded the on-
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set of neonatal sepsis [11–20]. A key finding from Griffin and colleagues’ research is that HRC
measurements, which involve continuous monitoring and analysis, provide independent and com-
plementary information to conventional demographics (gestational age, birth weight, and days of
age) [13], invasive and time-consuming laboratory tests and vital sign assessments [17] regarding
the prediction of neonatal sepsis and death.

Griffin et al. proposed an HRC index that incorporates various statistics and measures: HR
changes (standard deviation), asymmetry of histograms of RR intervals (sample asymmetry [21]),
and repeating patterns of RR intervals (sample entropy [14]). They suggested that this HRC index
could be used as an indicator of the risk level of developing adverse events including sepsis and
death. Compared with infants with low-risk HRC index, infants with high-risk HRC indexes had
5- to 6-fold increased risk for an adverse event in the next day and 3-fold increased risk in the next
week [15, 18]. A randomized trial enrolled 3,003 Very low birth weight (VLBW) infants across 9
NICUs conducted by Moorman et al. [22] showed that there was a trend toward increased days
alive and ventilator-free for those infants whose HRC monitoring was displayed. A secondary
analysis of clinical and HRC data from the same population further reported that the continuous
HRC monitoring is associated with lower septicemia-associated mortality in VLBW infants, and
this might be attributed to the earlier detection in the earlier course of sepsis [23]. Another ret-
rospective case-control study [24] compared the highest HRC indexes in the 48 hours preceding
blood culture sampling in LOS cases to the highest HRC indexes at the same postnatal days in con-
trols, and found that an increase of HRC index >2 has a significant correlation with the diagnosis
of LOS, supporting the utility of HRC monitoring to assist early detection of LOS.

Overall, in a series of studies on the usefulness of HRC analysis for early diagnosis of neonatal
infections, most indicate that HRV analysis can diagnose sepsis 12 to 24 hours before traditional
clinical methods, while one observed changes in HRC as early as 3 to 4 days before the onset of
sepsis [14]. These studies reported satisfactory sensitivity for HRV analysis in the early diagnosis
of sepsis, although specificity is somewhat compromised [25]. However, works from Griffin et
al. have received marked criticism in the literature, particularly on the limited generalizability,
over-fitting, lack of transparency in feature selection, limited consideration of clinical context (like
gestational age, birth weight, and comorbidities), the lack of clear explanation for why certain
features were important and, most importantly, the limited evaluation of model performance in
real-world settings [26]. Furthermore, it remains unclear what exactly is being measured that far
in advance (especially 3 to 4 days) of the clinical diagnosis of infection and whether altered HRV
provides an early warning or an early detection of the presence of infection [25].

More recently, extended analyses of Heart rate variability, apart from the HRC, have been con-
ducted in this field [27]. Classical HRV features from three domains are extracted and analyzed:
time domain, frequency domain and the non-linear domain. Detailed calculations and indications
of common HRV parameters are described in Section 2.2.5. Looking at specific Heart rate variabil-
ity parameters, concerning time-domain indices, the septic neonates turn out to have lower mean
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RR intervals [28], i.e., higher heart rate, and higher root-mean-square of successive RR interval dif-
ferences (RMSSD) [29]. The percentage of decelerated RR intervals (pDec) decreases significantly
in LOS infants in comparison with the controls prior to sepsis [30]. Frequency domain analysis is a
powerful tool to examine the autonomic contribution to HRV. A decreased normalized HF (high-
frequency power) was also found preceding the sepsis onsets [30]. In terms of the non-linear do-
main, it is reported that the lower approximate entropy, sample entropy and lower long-range frac-
tal exponent (α2), i.e., uncorrelated randomness and complexity of the heart rate, are significantly
associated with LOS sepsis [31, 32]. Greater SD2 than SD1 derived from Poincare analysis were
also reported in extremely low birth weight septic neonates as compared with healthy neonates
[28]. However, the acceleration capacity (AC) and sample asymmetry analysis (SAA) seem to have
opposite indications in two different studies. In [33], the study setting was case-control states in
septic infants, and both AC and SAA showed a decrease before the sepsis moments. While in [32],
they used a case-control patient setting and differentiated the sepsis and non-sepsis at a patient
level, and they observed that the early prediction of LOS was related to the increased SAA and
AC. The visibility graph analysis of inter-beat time series has been also reported as a potential
complementary tool for neonatal sepsis detection [34].

In conclusion, research during the last 20 years has shown that HRV analysis can be potentially
useful for predicting LOS in preterm newborns. Although specific clinical features are still lacking,
the underlying mechanisms associated with these findings are related to the lack of Autonomic
nervous system development and cardiovascular instability in this population. However, serious
limitations remain around this subject. Many studies on HRV-based prediction of LOS are based
on small sample sizes, which can limit the generalizability of their findings [26]. Also, HRV signals
are the results of a formally complex and multifactorial set of intertwined pathophysiological func-
tions that are very difficult to separate. These aspects might explain the lack of repeatability and
specificity in most of these studies and warrant further research in this field. We further analyze
in this work the utility of HRV in this context, by taking into account the causal timeline of sepsis
progression. The following section presents an original formalization of the causal events leading
to the clinical detection of a sepsis event. This formalization has been performed in order to better
apprehend the complexity of this problem and to propose novel analysis approaches.

5.1.3 Casual timeline of sepsis progression

The original diagram shown in Figure 5.1 presents a detailed timeline of the progression from
the onset of infection to the clinical suspicion and confirmation of late-onset sepsis in neonates,
built from an analysis of the literature and iterative discussion sessions with a NICU expert. It
highlights the temporal relationship between physiological changes, such as early Autonomic ner-
vous system (ANS) responses and Heart rate variability (HRV) alterations, alongside biochemical
markers like C-reactive protein (CRP) elevation, all of which are critical in identifying the onset of
infection and guiding timely clinical intervention.
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Unfortunately, an early, direct observation of the onset of an infection event is not possible. In
Figure 5.1, after the (unobservable) onset of infection, one of the first physiological effects is the
response of the autonomic nervous system, typically occurring within the first hour, signaling the
body’s initial reaction to the infection. Approximately 6 to 8 hours later, CRP levels begin to rise,
providing a widely recognized biochemical marker for inflammation and potential infection [35].

During NICU monitoring, clinical teams observe preterm infants for signs of sepsis using a
combination of clinical assessments, laboratory tests, and device-based physiological monitoring.
Based on these multiple and heterogeneous markers, a decision is taken between two scenarios,
to either perform a blood sampling, in order to measure CRP and perform blood culture (branch
1 in Figure 5.1), or to directly apply antibiotics immediately without further evaluation (branch 2
in Figure 5.1). The time at which this decision is taken is typically used as the timing for clinical
suspicion for sepsis. In the first scenario, blood sampling is conducted prior to the administration
of antibiotics. CRP levels are then measured to confirm whether they exceed the critical threshold
of 5 mg/L. If CRP >5 mg/L is observed, antibiotics are then administered, and this process usually
takes 1 to 3 hours after blood sampling is documented. Summarized from the database used in this
study, the overall time from clinical suspicion to confirmation of sepsis through CRP is approxi-
mately 3.57 hours, with a final confirmation based on blood culture results occurring within 12.94
hours. In the second scenario, antibiotics are administered before blood sampling. Blood is drawn
afterward to measure CRP levels and confirm the presence of infection. The time from the start of
antibiotics to the final confirmation of sepsis is approximately 22.24 hours, based on the available
dataset. In some cases, even if a blood sample is taken, no significant CRP elevation is observed.
The clinical surveillance continues and further blood sampling might be performed afterwards.

As already discussed, there is thus currently a major clinical need to provide an indirect, early
and robust marker of infection, and use it in a clinical decision support system (CDSS) to assist
clinicians in the monitoring and therapeutic strategies. One of the major hypotheses in this field is
that the early autonomic alternations described above might be manifested by changes in HRV and
that the analysis of HRV might be thus used as an observation window to the onset of sepsis. The
attempts of building CDSS based on HRV analysis are built on this hypothesis. However, many
factors explain the current lack of performance and generalization of current solutions:

• Limited understanding of early signs of infection:
Although the early autonomic response to infection is a well-accepted hypothesis, many
other physiological factors are involved. Research is currently very active on this subject.

• Variability in clinical practice:
Clinicians may have different practices and protocols for monitoring preterm babies, making
it difficult to homogenize multi-centric data collections and annotations.

• Lack of standardized definitions:
There is no universally accepted definition of neonatal infection.

• Complexity of LOS diagnosis:
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As described in Figure 5.1, infection diagnosis requires considering multiple factors includ-
ing clinical signs, laboratory test results, and physiological monitoring data. These factors
are related to different underlying physiological processes and occur at different timings or
even different time scales.

• High false positive rate:
The risk of false positives (i.e., detecting infection when it is not present) is particularly high
due to the complexity of the diagnosis and the variability in clinical practice.

As a consequence of the factors listed above, a precise definition of infection and, therefore, a
precise definition of the beginning of an infection event is thus a mathematically formal complex
task, without any concrete solution today. Since the definition of these annotations (infection state
or timing of beginning of infection) will be used as the main target to create ML approaches, su-
pervised model training in this field suffers from significant sources of bias. Indeed, many sepsis
prediction models perform well when trained with treatment-related information, but they often
fail to provide clinicians with new insights, as much of their predictive power comes from the clin-
ical suspicion itself, which already plays a major role in distinguishing between patients’ health
states [36].

In this study, we defined the clinical suspicion time by whichever occurs first, either antibi-
otic administration or CRP>5 mg/L. This approach helps minimize the risk of “label leakage”
when annotating the data. Furthermore, a significant effort was directed to perform a multi-expert
clinical event classification and annotation of each event, as well as the translation of each of the
annotated events into a detailed labeling process, used for ML training. These crucial points are
described in the following sections.

5.1.4 Proposed approach

In this study, we aim to develop a non-invasive, computer-assisted diagnostic tool for early
detecting LOS in preterm infants, leveraging continuous ECG data routinely collected in NICU.
By applying advanced signal processing techniques and machine learning algorithms to real-life
monitoring data, we seek to identify specific HRV patterns that precede the clinical diagnosis of
sepsis. The study also aims to assess the effectiveness of HRV analysis derived from real-time mon-
itoring in enhancing diagnostic accuracy and timeliness, ultimately contributing to more informed
and timely clinical interventions.

In the following sections, we first describe the clinical trial used in the study, including the
study population and the clinical classification of sepsis-related events. Then detailed strategies
for constructing the database are presented. This includes the processing chain from the acquisi-
tion of ECG signals to the computation of HRV features and the implementation of a novel labeling
strategy. We then outline the methodology for developing and evaluating machine learning mod-
els for sepsis detection, which involves generating multiple variants of the feature sets and ML
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models. Then, we present the performance of all proposed ML models in detecting sepsis, as well
as specific HRV patterns observed around the onset of sepsis in our dataset. Finally, we provide
a comprehensive discussion of our results, situating them within the broader context of existing
literature and exploring their wider implications.

5.2 Study Population and Clinical Events Classification

5.2.1 Study population (Patient-level)

The data used in this study is derived from a prospective multi-center clinical study CARESS-
Premi, as introduced in Section 2.1.1. The CARESS-Premi database collected continuous cardio-
respiratory monitoring signals, general clinical records and available biological tests during en-
rolled infants’ hospitalization. This study considered the entire database and included all eligible
patients at the three clinical centers (Rennes, Lille and Angers).

519 patients
(CARESS-Premi)

9 infants met the criteria of exclusion from the beginning
(severe neurological lesion and/or malformation syndrome) 

5 infants transferred from other establishments or started 
registration beyond 3 days after birth

2 infants with minor deviations from the inclusion criteria
(GA was 236/7 weeks; inclusion on day 4)

3 infants with additional minor deviations with justification
(technical issue: no sign or ECG, or early exit from NICU)

505 patients

500 patients

6 infants without proper registration or with incompatible
scope of data due to ward change

40 infants with less than 96 hours of follow-up 
(overlaps with the above exclusions)

461 patients

Retrieve data for 
analysis

Figure 5.2: Study population inclusion and exclusion for late-onset neonatal sepsis.

Within the CARESS-Premi cohort, some patients who met the non-inclusion criteria and/or
encountered deviations were excluded from the study, including infants with neurological impair-
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ments, congenital malformations, administrative issues, technical issues with data collection after
day 3, or who were lost to follow-up, etc. Besides, infants with a confirmed and only episode of
sepsis within 72 hours after birth were considered to have early-onset sepsis and were therefore
excluded, as were infants with less than 96 hours of follow-up. Others were excluded from the
study due to short follow-ups. As a result, 461 infants remained for analysis. Figure 5.2 shows the
flow chart of study population inclusion and exclusion.

5.2.2 Multi-expert clinical event classification (Event-level)

Clinical classification of Late-onset sepsis (LOS) events was in accordance with the NEO-
KISS (Neonatal Nosocomial Infection Surveillance System) protocol [37] for nosocomial infection
surveillance for preterm infants was employed. To confirm or reject suspicious events as sepsis
episodes, a multi-expert blind analysis and consensus classification approach was conducted. It
involved an initial blind analysis by three neonatologists, followed by a collaborative consensus-
seeking procedure and, if necessary, further review of patient health records to resolve disagree-
ments. Finally, all suspected sepsis events were classified into 8 sub-categories in total.

In this study, we combined “clinical sepsis”, “pneumonia”, “urinary tract infection”, “ente-
rocolitis”, “laboratory-confirmed bloodstream infection (LCBI)” and “LCBI with Coagulase Nega-
tive Staphylococci (CNS) as the sole pathogen”, and qualified them as positive events (EVT_pos)
of late-onset neonatal sepsis.

In contrast, suspected events classified by the multi-expert blind analysis as “isolated inflam-
mation” and “no systemic infection, no inflammation” were considered negative events (EVT_neg)
that should be excluded from the study since these episodes may have been contaminated by in-
fection but could not be identified as sepsis.

In the CARESS-Premi cohort, 454 suspicious events from 287 patients were identified and doc-
umented. After consensus reached by multiple experts, the categories and number of the sepsis-
relevant events are as follows:

• EVT_pos (confirmed sepsis events):

+ Clinical Sepsis (172 events)

+ Pneumonia (24 events)

+ Urinary Tract Infection (16 events)

+ Enterocolitis (33 events)

+ Laboratory-Confirmed Bloodstream Infection (LCBI) (14 events)

+ LCBI with Coagulase Negative Staphylococci (CNS) as the sole pathogen (40 events)

• EVT_neg (denied/rejected sepsis events):

- Isolated Inflammation (85 events)

- No Systemic Infection, No Inflammation (70 events)
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To simplify terminology in this study, we refer to septic patients as those diagnosed with at
least one confirmed sepsis event during the follow-up period; whereas non-septic patients were
those who never had any confirmed sepsis events.

Note that this more formal, standardized and thorough definition of sepsis events is not the
same definition used in previous works by our team [34].

5.3 Dataset Construction

Figure 5.3 illustrates the workflow of constructing the dataset for the study. It includes three
branches: signal processing, clinical data matching (metadata), and label generation.

PseudoLabel.txt Time 
Matching

Label for 
current 

segment

segment.h5
ECG Channel 
Detection & 

Quality 
Estimation

QRS
Detection

RR Intervals 
Calculation RR Correction Stationarity 

Analysis HRV Analysis Output.csv

Beat
Indexes

Best
ECG Lead

Corrected 
RR

RR 
Series

Quality 
Indexes

HRV 
Parameters

MetaData.csv ID Matching GA in weeks
PNA in days

Pseudo-Label

Demography

HRV + Segment Quality

Figure 5.3: Illustration of data preparation for early sepsis detection: signal, metadata,
pseudo-label.

5.3.1 Signal preparation and data processing (Sample-level)

With the benefits of the ASCENT system (details refer to Section 2.1.2) proposed by our team,
we retrieved all available monitoring signals and clinical records during the follow-up of each
eligible infant for this study.

For all concerned infants, signals were queried and compiled in consecutive, non-overlapping
6-hour segments from postnatal day 3 to the end of follow-up. This was done by specifying a
metadata file containing timestamps for each patient at 6-hour intervals from day 3 of birth to the
end of follow-up as anchor points. A detailed description of data extraction and compilation refers
to Section 2.1.3. The compiled data in HDF5 format has three types of electrophysiological, while
in this study, we focus on only ECG signals for extracting interested HRV parameters.

Regarding ECG signal processing and feature extraction, we employed the proposed pipeline
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for real-life monitoring signals, as thoroughly presented in Section 2.2. In brief, it can be divided
into three steps: 1) signal pre-processing for raw ECG signals, 2) RR series calculation and correc-
tion, and 3) HRV analysis.

The raw 3-lead ECG signals were obtained with a sampling frequency of 500 Hz. We first
implemented algorithms that detect all valid channels for each segment and remove the noisy
parts. The rolling standard deviations of the normalized signals were then calculated to assess the
stability of the time series, which was used as a measure of signal quality. The best denoised ECG
channel was then chosen for further analysis. See detailed approaches in Section 2.2.1.

An improved QRS detector with filter coefficients specifically adapted for newborns, as pro-
posed in [38], was utilized to identify the R-peaks from ECG waveforms, followed by simple cal-
culation of difference to obtain RR intervals (refer to Section 2.2.2). Next, we developed a rule-
based RR correction algorithm to match and correct the R-peaks that were wrongly detected by
the QRS detector, especially in cases where the waveforms were noisy and complicated (refer to
Section 2.2.3).

From the corrected RR series, we calculated all the HRV parameters described in Section 2.2.5.
The time domain analysis consists of the extraction of the mean (Mean), the standard deviation
(Std), the median (Median), the skewness (Skewness) and the kurtosis (Kurtosis), and the inter-
decile range (IDR) of the RR series, which provide an initial indication of the global variability.
Another common feature, the square root of the mean squared differences of the successive RR
intervals (Rmssd), was also computed, and it reflects short-term beat-to-beat variations and quan-
tifies more specifically the parasympathetic modulation of the autonomic nervous system [39].
Acceleration capacity (AC) and deceleration capacity (DC) were included, and they are based on
the phase-rectified signal averaging method which is much more robust to non-stationarity [40].
Furthermore, we extracted some features specifically designed to capture neonatal HRV, such as
sample asymmetry of the RR intervals histogram (SampAsy) [14], percentage of the RR intervals
longer than the mean RR of the previous certain intervals (pDec) and its standard deviation (std-
Dec) [41].

The frequency domain analysis estimated the power spectrum integrating the low-frequency
(LF: 0.02-0.2 Hz) and high-frequency band (HF: 0.2-2 Hz) obtained by autoregressive modeling of
the 4 Hz resampled RR series. The normalized units of the features (LFnu and HFnu) as well as
the ratio of LF and HF power (LFHF) that reflects sympatho-vagal balance were also calculated.

Regarding non-linear measurements of HRV, sample entropy (SampEn), configured with a
window length of 3 intervals and a tolerance of 0.25, was calculated to quantify the regularity and
predictability of the given RR series [12]. Poincaré plot analysis [42] was performed to capture the
short- and long-term variability represented by the width (SD1) and length (SD2) of the ellipse in
the plot. Another two coefficients derived from a self-similarity parameter that characterizes the
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long-range fractal correlation properties of the signal were obtained through detrended fluctuation
analysis [43]. We evaluated the fractal scaling exponent from 4 to 40 beats (α1) and from 40 to 1000
beats (α2) [44].

Accordingly, we retrieved all the raw data of the 461 eligible patients available in the database
and compiled them in 6-hour segments, the data points at time t represent the 6-hour epoch af-
ter, i.e., [t, t+6] hours. Of these, monitoring signals of some patients were not properly acquired
and/or uploaded before the stabilization of the ASCENT system (refer to Section 2.1.2), resulting
in a certain loss on the valid population for the study. In addition, during the employment of the
proposed signal processing pipeline, some segments or patients were rejected by our data process-
ing chain due to poor data quality, in which a set of strategies were integrated to guarantee the
Signal-to-noise ratio (SNR). These screenings left 400 infants remaining. On the other hand, there
were also some data segments that were not able to be labeled due to missing clinical records. It
should be underlined that, although at the patient level, some patients were eligible for further
analysis, from the perspective of each patient’s follow-up timeline, not all data segments from day
3 to the end of follow-up were successfully processed and thus used to constitute the final data set,
since some data segments may be removed due to unavailability of the original signals or due to
low SNR during processing, resulting in data discontinuity in the timeline.

Meanwhile, in addition to HRV features, demographic information such as Gestational age
(GA) and Postnatal age (PNA) from the Electronic health records (EHR) (MetaVision, iMDsoft, Tel
Aviv, Israel) were collected as part of the feature set as they proved critical determinants of the
neonatal host response to sepsis [45].

The branch of creating pseudo-labels is detailed in the following section.

5.3.2 Pseudo-labeling strategy

Considering the six-hour granularity of the retrieved raw ECG and the derived HRV char-
acteristics, we proposed a logical rule-based labeling strategy to generate corresponding pseudo
labels for data samples on a six-hour basis. The labels are divided into three categories:

• “1” represents positive samples, used for samples in septic condition;

• “0” represents negative samples, used for non-septic conditions;

• “-1” corresponds to samples in which the infant’s condition is uncertain, and thus these
samples will be discarded and used neither as cases nor as controls.

As the clinical classifications (Section 5.2.2) only specified the dates of suspected events (EVT_pos
and EVT_neg), we should further identify detailed time for the following labeling process. So, the
events were first identified by the date of their occurrence, as only one event could occur on any
given day. Then, the specific time of the events could be precisely defined by the date and time of
antibiotic administration or blood culture and C-reactive protein (CRP) collection, depending on
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the purpose. Based on clinical perspectives, we defined the specific onset time of sepsis events as
the earliest among antibiotic administration, CRP results higher than 5 mg/L and positive blood
cultures (often recorded as the time performing blood sampling).

To better generate the labels, the clinical records in the CARESS-Premi database were queried,
cleaned, merged, and screened at the patient level to identify the starting and ending dates and
times (if present) of relevant events. These events include follow-up, antibiotic treatment (ATB),
CRP higher than 5 mg/L (CRP5), positive blood cultures (posBC), and the classified infection
events with clinical annotations (EVT_pos and EVT_neg, as described in Section 5.2.2). Missing
dates or times were imputed by reasonable inference based on the clinical records, for instance,
the missing end dates of CRP5 were imputed by the dates when the maximum CRP results were
measured. Personalized event timelines including interventions and clinical findings mentioned
above were generated.

The labeling strategy was formalized as follows, where “|”, “!” and “&” denote or, not and
and, respectively:

• Label = 1 : EVT_pos | (! EVT_neg & ATB & CRP5)

• Label = −1 : (! EVT_pos & EVT_neg) | (! EVT_pos & ! EVT_neg & ((ATB & ! CRP5) | (! ATB & CRP5)))

• Label = 0 : Others.

We considered a 6-hour data segment to be positive (“1”) when it was on the day been an-
notated as a confirmed sepsis event (EVT_pos), or when both the ATB and CRP5 were registered
and at the same time it was not on the same day of an annotated denied sepsis. Uncertain samples
(“-1”) will be excluded from the analysis because they have neither been diagnosed/classified with
sepsis nor could be used as control samples due to the presence of certain suspected symptoms.
The data segments in two conditions were labeled as “-1”: when the segments were on the day
when it was classified as denied sepsis events (EVT_neg); and when antibiotic treatment (ATB)
and the CRP5 were not administered simultaneously. Samples in the remaining conditions were
labeled as “0” and used as control samples.

Shown in Figure 5.4 and Figure 5.5 are some examples of the labeling results. This strategy in-
tegrates the neonatal caregivers’ clinical expertise into the labeling procedure, i.e., the documented
moments of their initial clinical suspicions and immediate interventions. When they have an early
and accurate “gut feeling” of the babies developing sepsis, our corresponding labels will be equally
timely and potentially predictive.

5.3.3 Post-processing on the labels

The proposed labeling strategy was designed to take full account of the onsets and ends of
suspicious septic events. The logical rules work in a in-place manner, meaning that the label of
each 6-hour segment is determined solely by the values of the corresponding elements at the same
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Figure 5.4: Visualization of the proposed pseudo-labeling strategy (1/2).
(a) Patient 2040 was labeled as all “-1”. (b) Patient 3018 had one suspicious event but was denied
having sepsis (EVT_neg) and the associated segments were labeled as “-1”. (c) Patient 1076 had
no suspicious events during the follow-up and all data segments were labeled as “0” (controls).
(d) Patient 1244 had two suspicious events but was denied having sepsis because of the absent

CRP5 during the antibiotic treatments. Each major vertical grid denotes 24 hours, in which each
minor grid denotes a 6-hour epoch composited by [t, t+6] hours.
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Figure 5.5: Visualization of the proposed pseudo-labeling strategy (2/2).
(a) Patient 1063 had one confirmed septic event (EVT_pos) and had three types of labels during

follow-up. (b) Patient 1106 had one confirmed sepsis and one rejected sepsis. (c) Patient 1113 had
two confirmed septic events. (d) Patient 1075 had a relatively shorter monitoring duration with
one confirmed sepsis event at the beginning of follow-up. Each major vertical grid denotes 24

hours, in which each minor grid denotes a 6-hour epoch composited by [t, t+6] hours.
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index (time segment) in EVT_pos, EVT_neg, ATB and CRP5 without knowing any time-relevant
information, such as the labels of previous or subsequent data segments.

However, in practice, the pre-defined granularity of signal segments was not that fine (6 hours)
and the inconsistently recorded resolution of different clinical events, for instance, the suspicious
septic events were annotated with dates while the ATB and CPR5 were recorded with specific dates
and times. These factors may lead to wrong labeling as the strategy focuses on local information
without a global perspective.

By observation, the post-processing considered two patterns of mislabeling:

• Mislabeling “-1” as “1” with a pattern as: -1 -1 -1 -1 -1 -1 -1 1 1 -1 -1 -1 -1 -1 -1 -1
This usually happens when both ATB and CRP5 are documented, but the associated event
is retrospectively classified as non-sepsis by experts.

• Mislabeling “1” as “-1” with a pattern as: 1 1 1 1 1 1 1 -1 -1 1 1 1 1 1 1 1
This often occurs when a confirmed sepsis event is accompanied by asynchronous antibiotic
treatment (ATB) and high CRP results (CRP5), or when there is a short absence of ATB or
CRP5 between consecutive confirmed sepsis events.

Figure 5.6 shows examples of the mislabeling of the pseudo-labeling strategy and signifies
the necessity to perform post-processing to correct the labels to the greatest extent. According to
the logical rules of the labeling strategy, the first pointed red sequence of the 2 data segments was
labeled as “1” (in red) because of the overlap between the clinical events of ATB and CRP5. Yet,
from a clinical perspective, these two segments should be labeled as “-1” (in black) since it was part
of a negative sepsis event that was suspected on 2013-09-18. On the contrary, the second pointed
sequence of 6 data segments was labeled as “-1” (in black) due to the delay in ATB administration
relative to the positive results of CRP5, and it should be labeled as “1” (in red) as they were both
associated with the sepsis event on 2013-09-19. Besides, the third segment of 3 black dots is a
special case that can be assigned as both black (“-1”) or red (“1”).

Therefore, we implemented a simple set of rules that match the two mislabeling patterns men-
tioned above to locate the wrong labels and then correct them. This was conducted in a patient-
by-patient and event-by-event manner to post-process pseudo-labels from a more comprehensive
time-series perspective.
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5.3.4 Dataset overview

In brief, the final composition of the constructed dataset depends on the intersection of data
availability at three levels: patient-level (Section 5.2.1), event-level (Section 5.2.2) and sample-level
(Section 5.3.1), as revealed in Figure 5.7. Through all steps in the dataset construction process, we
obtained the processed features with pseudo labels for 399 infants, accounting for 189 confirmed
sepsis episodes and 33,355 samples (each represents one 6-hour segment).

Event-level
Confirmed sepsis 
& Rejected sepsis

Sample-level
Data availability & 

Signal quality

Data Eligible for Analysis

Patient-level
Inclusion criteria & 
Exclusion criteria

Figure 5.7: Dataset construction based on data availability at the patient, event and sample levels.

At the patient level, as shown in Figure 5.8, 5 patients (in gray) had all valid data segments
labeled as “-1” that should be removed from the analysis because the samples cannot be considered
as positive (sepsis) nor negative (non-sepsis); 243 patients (in green) can be regarded as non-septic
patients (controls) because all their data segments were labeled as “0”. A total of 151 patients
were identified as septic patients as they had data segments labeled as “1”, and it consisted of 143
patients with both mixed labels, 3 patients with only positive labels and 5 without uncertain labels.
Altogether, 394 patients were eventually included for analysis.

At the event level, different from the common way performed in the previous studies that
only included the first proven Late-onset sepsis episodes [29, 32, 34], all confirmed LOS events
were considered in this study. Within 189 included septic patients, the mean number of confirmed
sepsis events was 1.25, ranging from 1 to 3.

From the sample level, where one sample refers to the extracted features with a pseudo label
derived from one 6-hour segment of raw ECG, a total of 33,355 samples were obtained from the
included 394 patients. After removing the unconfirmed samples labeled as “-1” (6,562 samples),
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P=5

P=3

P=143

P=243

P=5

Total: P=399

Patients with non-sepsis samples (“0”)

Patients with sepsis samples (“1”)

Patients with unsure samples (“-1”)

Total for analysis: P=394

Figure 5.8: Composition of the included population: at the patient level.

there were 3,169 positive samples (“1”) and 23,624 control samples (“0”), with a class ratio of 1:7.5
in general. The median number of available samples per patient is 59 (ranging from 3 to 215
samples) equivalent to 354 hours (15 days) of monitoring segments.

5.4 Machine Learning Models Development and Evaluation

5.4.1 Overall strategy of ML models training and evaluation

Aligning the extracted features (Section 5.3.1) and the corresponding labels (Section 5.3.2) in
time constituted the dataset for supervised learning of classification. We adopted the Monte Carlo
cross-validation (refer to Section 2.4.3 for more information) to develop and evaluate the ML mod-
els. We designed a two-stage Monte Carlo experimental procedure containing the “preliminary”
Monte Carlo first to find the optimal set of hyper-parameters for machine learning algorithms and
the “ultimate” one to train a set of models with the optimized hyper-parameters and then estimate
the performance and generalizability of the proposed models.

As shown in Figure 5.9, the dataset was first split into a train set (80%) and test set (20%) on
the patient level, and a random down-sampling was conducted to the majority class (class labeled
“0”) for balancing the class ratio to 1:1. Next, two branches were depending on the stages, for
preliminary stage a grid search within a 5-fold cross-validation framework was performed on the
balanced train data for optimizing the hyper-parameters of models; while for the ultimate stage
the hyper-parameters for building models were fixed to the optimized ones. In both cases, models
were then fitted on the whole balanced train set and validated on the left-out test set.

5.4.2 Machine learning algorithms

The detection of neonatal late-onset sepsis in this study was implemented as a binary classi-
fication task, distinguishing each data segment as either septic (“1”) or non-septic (“0”) using ex-
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Figure 5.9: Two-stage Monte Carlo procedure for hyper-parameters optimization, ML model
training and evaluation.

tracted HRV features and basic clinical information. A series of classic supervised machine learning
algorithms for classification were employed, including Naïve Bayes (NB), Logistic Regression (LR),
Random Forest (RF), eXtreme Gradient Boosting (XGBoost), and Multilayer perceptron (MLP). Re-
fer to Section 2.4 for more information. Additionally, our team has long-term (more than 20 years)
experience in the design, implementation and application of recurrent or convolutional neural net-
works for the analysis of time series [46, 47]. Thus, we designed a shallow Convolutional neural
networks (CNN) with special structures to achieve sepsis detection in our case.

Based on the length and the eventual phase distortion of the original data used for model
training and evaluation, these algorithms can be divided into instantaneous (time-independent)
detectors and time-dependent detectors.

Time-independent (Instantaneous) detectors

The instantaneous detectors indicate that when deciding whether the current segment of data
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(s) is labeled as “1” or “0”, only the current information (HRV parameters, GA and PNA derived
from the segment in question) is used for analysis, formulated as Equation 5.1, where s denotes the
index of data segment, X denotes the HRV features,M(·) stands for models and L̂ are predicted
labels. In this case, the samples are independent of time, and randomly disrupting the order of the
samples will not affect the training of the classifier model. So there is no past or future information
involved when making decisions, which enables the on-the-edge deployment and inference in a
pseudo-real-time manner. Most detectors in the literature in this field are defined in this manner.

X(s) = HRV(s)

L̂(s) =M(X(s) + GA(s) + PNA(s)), s > 0
(5.1)

Time-dependent detectors

We use time-dependent detectors to refer to models that require historical data to determine
the class of the current segment. Specifically, there are several variants according to how the fea-
tures are transformed and combined: ∆X(n) and ConcatX(n).

The ∆X(n) represents calculating the differences between the HRV features of the current seg-
ment and of the previous segment with a step of n, as formulated in Equation 5.2a. We computed
∆X(1) and ∆X(2) in this study. Besides, another variant ∆re f X(r) is to use the first (earliest) sam-
ple labeled “0” for each patient as a reference to calculate the difference, so the difference reflects
the relative HRV characteristics of the current state compared to the control state. As we are using
longitudinal and continuously monitored data, the time span of the reference sample r could be
very different from segment to segment as well as from patient to patient. Equation 5.2b presents
the formulation. It should be noted that the differencing operation ∆ does not change the feature
dimension. Note that this type of approach was used in one of the previous works from our team
[34].

Another type of variant is ConcatX(n), which concatenates the HRV features of preceding
successive segments with a length of n, leading to an increase in feature dimension by n times
(Equation 5.2c). We limited the length n to less than 6, which is equivalent to using at most 36
hours in the past to make classification.

∆X(n) = HRV(s)− HRV(s− n), n ∈ {1, 2}, s > n

L̂(s) =M(∆X(n) + GA(s) + PNA(s)), s > n
(5.2a)

∆re f X(r) = HRV(s)− HRV(r), r = min{t ∈ [0, s) | L(t) ̸= 1}
L̂(s) =M(∆re f X(r) + GA(s) + PNA(s)), s > r

(5.2b)
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ConcatX(n) = [HRV(s), ..., HRV(s− n)], 0 < n < 6

GA(n) = [GA(s), ..., GA(s− n)], 0 < n < 6

PNA(n) = [PNA(s), ..., PNA(s− n)], 0 < n < 6

L̂(s) =M(ConcatX(n) + GA(n) + PNA(n)), 0 < n < 6

(5.2c)

In this study, we target detecting the onsets and the presence of sepsis events by developing
models that can discriminate the septic status from non-septic status. Thus, for the labels, we
continue to use the original label of the current segment as the label for the new HRV variants. But,
some constraints are proposed. Each sample (6-hour data segment) has its original label (“1” for
sepsis and “0” for non-sepsis), and different state transition patterns will inevitably occur when
multiple data segments are combined. There are four transition patterns from the first (the earliest)
to the last (the current) segment in the context of a variant: “0” to “0”, “0” to “1”, “1” to “0” and
“1” to “1”. Specifically, the “0”–“0” pattern represents a stable non-septic state and the associated
samples can be used as the negative class for training a classifier, and patterns “0”–“1” and “1”–“1”
show a transition from non-sepsis to sepsis and a continuation of sepsis condition, suggesting the
onset and presence of sepsis events, respectively, these samples are thus regarded as the positive
class. However, the state transition from “1” to “0” indicates an end of a sepsis episode, However,
a state transition from “1” to “0” indicates the end of the sepsis episode, it consists of implicit
information about septic states while it is labeled as “0” (using the original label of the current
sample). Using this sample to train a classifier will completely confuse the model’s distinction
between sepsis and non-sepsis. Therefore, data with this transition pattern were excluded.

Time-dependent Transition Patterns: (0 to 0) & (0 to 1) & (1 to 1)HRV Variant, Label

…0001111110000000111X(s)=HRV(s), L(s)Eq.5.1

…000010111111111101000000000000101111/ΔΧ(1)=HRV(s)-HRV(s-1), L(s)Eq. 5.2a

…0010101111111101010000000000101011//ΔΧ(2)=HRV(s)-HRV(s-2), L(s)Eq. 5.2a

…000000010101010101000000000000////ΔrefΧ=HRV(s)-HRV(r), L(s)Eq. 5.2b

…000110110111111111111011001000000000000000100110111//ConcatX(3)=[HRV(s), HRV(s-1), HRV(s-2)], L(s)Eq. 5.2c

Figure 5.10: Illustration of the transition patterns and labels considered in the time-dependent
models trained using historical data. The first two columns represent the corresponding feature
manipulation equations; the next colored grids (red: labeled as “1”, green: labeled as “0”, gray:

excluded patterns) represent the transition patterns when performing different feature
transformations.

Figure 5.10 illustrates examples of the generation of HRV variants. By manipulating the ex-
tracted HRV features, including performing differences between the current segments and the
previous segments (∆X(1), ∆X(2) and ∆re f X) and concatenating with the successive segments
(ConcatX(3), taking n = 3 as an instance), we obtained various values and dimensions of the HRV
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features. In all cases, the labels of the newly generated samples are the original labels of the current
segment (L(s)).

In addition to classical machine learning approaches, we proposed shallow CNN for LOS
detection in order to take advantage of the convolution operator along our time series-derived
structured data.

In our shallow CNN, unlike usually applying 1-dimensional convolution operations for time-
series data, we instead regarded our data as “images” and employed 2-dimensional convolution
operators in order to better explore the implicit information between successive data segments
rather than in feature spaces. To achieve this, imitating a common CNN that takes 3-dimensional
tensors as inputs (the height, width and the number of channels of an image), we constructed
data matrices by considering the time axis as an extra dimension and shifting over the original
feature vectors through a sliding window, equivalent to the ConcatX(n) operation as described in
Equation 5.2c. Then we composed the required three dimensions of input tensors by the number
of features, the length of the concatenating window (3 or 6) and the channel set to 1.

As for the kernels in both convolutional and pooling layers, they were adapted as 1-dimensional
kernels to fully exploit the information in the time axis without mixing up between features. Fig-
ure 5.11 and Figure 5.12 demonstrate the architectures of the proposed shallow CNN with 1-layer
convolution and 2-layer convolution, respectively.

1-layer CNN
Data concatenating length: 3 segments (derived from 18 hours of ECG)

(24 x 3) (24 x 3 x n1) (24 x 2 x n1)

Convolution
Kernel=(3x1)

Padding=(1,0)
n1=16 channels

Max-Pooling
Kernel=(2x1)
Stride=(1,1)

(n2)

OUTPUT

INPUT

Fully-Connected
Linear transformation

n2 channels

Co
nv

ol
ut

io
n

Ba
tc

h-
No

rm
Re

LU

…

(2 x 1)

Time

Feature

(3x1) (2x1)

Figure 5.11: Architecture of a shallow CNN with one convolutional layer used in this study.
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(24 x 6) (24 x 6 x n1) (24 x 6 x n2)

Convolution
Kernel=(5x1)

Padding=(2,0)
n1=16 channels

Convolution
Kernel=(3x1)

Padding=(1,0)
n2=24 channels

Max-Pooling
Kernel=(2x1)
Stride=(2,1)

(24 x 3 x n2) (n3)

OUTPUT

INPUT

Fully-Connected
Linear transformation

n3 channels

Co
nv

ol
ut

io
n

Ba
tc

h-
No

rm
Re

LU

Drop Out
p=0.5

Drop Out
p=0.5

Co
nv

ol
ut

io
n

Ba
tc

h-
No

rm
Re

LU

… (2 x 1)

Time

Feature

2-layer CNN
Data concatenating length: 6 segments (derived from 36 hours of ECG)

(3x1) (2x1)(5x1)

Figure 5.12: Architecture of a shallow CNN with two convolutional layers used in this study.

In the shallow CNN with 1 convolution layer, we used the tensor-version of ConcatX(3) as
input, which includes information derived from a total of 18 hours of raw ECG given that the res-
olution of our data segments was 6 hours. As displayed in Figure 5.11, the inputted data is first
processed by a combo of convolution, batch-normalization [48] and non-linear transformation by
an activation function (ReLU), then a max-pooling is performed, followed by a linear transforma-
tion via a fully-connected layer. The output is the probabilities of two classes: “1” for sepsis and
“0” for non-sepsis. And the 2-layer shallow CNN, as illustrated in Figure 5.12 takes a “wider”
input tensor which was derived from a concatenation of the current data and 5 more preceding
segments, representing 36 hours of ECG signals. This greater input makes it possible to perform
two convolutional operations to dig more underlying information that maps to the septic or non-
septic status. So, two shallow CNN were thus developed (1-layer and 2-layer).

In summary, we developed and compared a number of detectors to facilitate the early detec-
tion of LOS in preterm infants based on different ML algorithms and different feature variants,
including original feature sets (HRV+GA+PNA that were derived in Section 5.3.1) and the HRV
variants described above. Using the original feature sets, we trained instantaneous detectors with
NB, LR, RF, XGBoost and MLP algorithms. Moreover, we further developed both, RF and MLP
models with four HRV variants: ∆X(1), ∆X(2) and ∆re f X and ConcatX(3) to assess the impact
of incorporating historical information on sepsis detection. And two shallow CNN were trained
with ConcatX(3) and ConcatX(6) variants. Besides, it should also be noted that the manipulations
(variants) on the feature sets may introduce a certain loss regarding available sample numbers,
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just as these strike-out samples demonstrated in Figure 5.10. Thus, from a fair perspective, mod-
els trained by different variants cannot be directly compared because their training data amounts
would be different. All algorithms were implemented in Python with scikit-learn [49] and PyTorch
[50] libraries.

5.4.3 Model evaluation metrics

Several metrics were used to measure the ability to detect sepsis of the proposed classifiers.
First is Area under the receiver operating characteristic curve (AUROC), which is a comprehensive
metric that quantifies the ability of a classifier to distinguish between positive and negative sam-
ples at various decision thresholds. It ranges from 0 to 1, where 0.5 approximates a random guess
and a higher AUROC indicates better discrimination performance. Area under the precision-recall
curve (AUPRC) was also utilized to evaluate the performance in settings with imbalanced class
distributions. It measures the trade-off between precision and recall offering insights into the clas-
sifier’s ability to identify positive instances accurately while minimizing false positives. Note that
the baseline of AUPRC depends on the actual proportion of positive instances in the dataset, which
is often low in medical scenarios (rare events). Sensitivity (Se, recall, TPR) and Specificity (Sp, TNR)
were also calculated. Besides, Balanced accuracy (BAcc) provides an overall performance metric
by considering both sensitivity and specificity, and it calculates the average of both, offering a bal-
anced view of the classification across both positive and negative classes. More information about
the metrics calculation is given in Section 2.4.3.

5.4.4 Sensitivity analysis

Sensitivity analysis was performed to study the contributions and interactions of extracted
HRV features and clinical information to sepsis detection. The Morris screening method [51], as
described in Section 2.5.2, was adopted to analyze single classifiers (detectors).

5.5 Results

We present the results concerning three major aspects: 1) the performance of various models
and their variants that were developed for sepsis detection, 2) sensitivity analysis of selected best-
performing models, and 3) the behavior and trends of extracted HRV parameters before and during
the onset of sepsis (in a subset of the population with sufficient available data).

5.5.1 Sepsis detection performance of the ML models

We evaluated the model performance of detecting the presence of Late-onset sepsis for all the
Machine learning algorithms combined with different variants of the feature set, as elaborated in
Section 5.4.2. All the reported results were obtained by the “ultimate” Monte Carlo cross-validation
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(10 folds) when fixing the hyper-parameters as the optimal sets searched during the “preliminary”
process (refer to Section 5.4.1 for the strategy description).

Firstly, the results of time-independent detectors based on five ML algorithms are presented
in Table 5.1. In these instantaneous detectors, decisions were made solely based on the current
segments without considering any past information. In terms of AUROC, all models except Naïve
Bayes achieved performances above 0.70, among which RF and MLP have an AUROC of approxi-
mately 0.73±0.06. The baseline of AUPRC was 0.123±0.024 in the test data, which is equivalent to
the proportion of positive samples (labeled as “1”). The RF and MLP, again, obtained the highest
AUPRC of about 0.352±0.099 and 0.340±0.128, respectively. Regarding sensitivity, specificity and
their average values, (i.e., Balanced accuracy), MLP and RF performed relatively well.

The Receiver operating characteristic curve (ROC) and Precision-recall curve (PRC) of instan-
taneous RF and MLP models were plotted in Figure 5.13 and Figure 5.14, respectively. For RF
models, their AUROC values ranged from 0.65 to 0.85 with a mean AUROC of 0.727±0.060 across
all models as shown in Figure 5.13a. Model #3 achieved the highest AUROC of 0.85. The red dots
indicate threshold points along the overall ROC with corresponding False positive rate (FPR) and
False negative rate (FNR) values. As the FPR increases, the FNR decreases, reflecting the trade-off
between correctly identifying sepsis cases and avoiding false positives. For example, at a low FPR
of 0.10, the FNR is 0.62, while when tolerating a higher FPR of 0.30, the FNR drops to 0.36, cap-
turing more true positive cases at the cost of more false positives. From a clinical perspective, a
threshold with an FPR of 0.40 and an FNR of 0.27 offers a balance between detecting true positives
and managing false positives, but for critical cases, a lower FNR may be more important. Regard-
ing the PRC shown in Figure 5.13b, these curves highlight the trade-off between precision (true
positives among predicted positives) and recall (true positives among all actual positives), which
is especially important for rare event detection or imbalanced datasets like sepsis detection. The
average precision (AP) values of the 10 realizations range from 0.19 to 0.49, with a mean perfor-
mance of 0.352±0.099 way better than the chance level. These results show that while the random
forest models can detect sepsis effectively, there is significant variation in how well they balance
precision and recall. For example, at higher recall levels (above 0.6), many models experience a
drop in precision, meaning more false positives are introduced.

Shown in Figure 5.14 are the ROC and PRC for MLP models. In general, MLP models achieved
similar average performance to RF models. When comparing the key thresholds, there are subtle
differences. At lower FPR values (e.g., 0.10 to 0.30), both models exhibit similar TPR trends, but as
the FPR increases beyond 0.30, RF models tend to maintain slightly better TPR compared to MLP
models, as indicated by slightly lower FNR values at most threshold points. At higher FPR values
(e.g., 0.50 to 0.80), the two models converge in performance, showing very similar FNR values.
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Next, a set of ∆ variants of models based on the best-performing algorithms (RF and MLP)
and simple LR were further trained and assessed. The results are shown in Table 5.2. As men-
tioned in Section 5.4.2, three variants on the HRV values were compared: ∆X(1), ∆X(2) and
∆re f X(r). Generally, the ∆X(1) and ∆X(2) variants appeared with no added values, or even lower
performance, for sepsis detection when compared to their counterparts with the original feature
set. The ∆re f X(r), on the other hand, contained the information from a rather longer time ago
by utilizing the relative HRV values by subtracting the first non-sepsis segment from the current
segment. Roughly, the ∆re f X(r) variants gained better specificity (TNR) at the cost of long-term
time dependency and low AUROC, AUPRC and TPR. Across different ∆ variants shown in this
results table, RF achieved the overall best performance in most metrics.

The remaining set of models was trained with the ConcatX(n) variants, simply stacking
multiple preceding data segments and directly using them as the input. Shown in Table 5.3
are the performances of LR, RF and MLP, which were developed with features extracted from
three preceding 6-hour segments (ConcatX(3)), while the two shallow CNN were developed using
ConcatX(3) and ConcatX(6) features. Generally, it seems that with more historical information fed
to the models, greater overall performance could be observed. Compared to the results presented
in Table 5.1 and Table 5.2, LR, RF and MLP all got satisfactory results, with AUROC of about
0.72 and AUPRC (baseline: 0.12) of 0.32, 0.34 and 0.35, respectively. Moreover, the proposed two
shallow CNNs achieved the highest performance: the 1-layer CNN with ConcatX(3) as the input
had an AUROC of 0.737±0.027 and an AUPRC of 0.383±0.061 (baseline: 0.130±0.023); and the
2-layer CNN with ConcatX(6) as the input obtained an AUROC of 0.749±0.045 and an AUPRC of
0.378±0.109 (baseline: 0.129±0.015) but with greater variance between cross-validation. In terms of
the rest metrics, 1-layer CNN with ConcatX(3) variant had the best sensitivity (recall, True positive
rate) of 0.676±0.072, and the 2-layer CNN with ConcatX(6) variant had the best specificity (True
negative rate) of 0.815±0.065. Overall, the shallow CNNs obtained the best Balanced accuracy
(BAcc) of 0.667±0.021 and 0.678±0.049, respectively.

Figure 5.15 and Figure 5.16 show the receiver operating characteristic curves and precision-
recall curves of the 1-layer CNN and 2-layer CNN model, respectively. Apart from achieving
one of the best overall performances, the 1-layer CNN models also demonstrate the most robust
performance in terms of both AUROC and AUPRC. This is evidenced by the smaller standard
deviations across 10 different realizations, as indicated by the colored lines in Figure 5.15a and
Figure 5.15b.
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a

b

Figure 5.13: Performance of an instantaneous random forest detector in Monte Carlo
cross-validation. (a) Receiver operating characteristic curves (ROC) in 10 realizations. The thick
blue line indicates the mean ROC curve across all models, with an average AUC of 0.727±0.060.
The dashed black line shows the performance of a random guess (AUC=0.5). Red dots indicate
threshold points along the overall ROC curve, with corresponding FPR (false positive rate) and

FNR (false negative rate) values labeled for reference. (b) Precision-Recall curves (PRC) in 10
realizations. The thick blue line indicates the mean PRC curve across all models, with an average

AUC of 0.352±0.099. The dashed black line shows the chance level (AP=0.123±0.024).
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a

b

Figure 5.14: Performance of an instantaneous multilayer perceptron detector in Monte Carlo
cross-validation. (a) Receiver operating characteristic curves (ROC) in 10 realizations. The thick
blue line indicates the mean ROC curve across all models, with an average AUC of 0.725±0.063.
The dashed black line shows the performance of a random guess (AUC=0.5). Red dots indicate
threshold points along the overall ROC curve, with corresponding FPR (false positive rate) and

FNR (false negative rate) values labeled for reference. (b) Precision-Recall curves (PRC) in 10
realizations. The thick blue line indicates the mean PRC curve across all models, with an average

AUC of 0.340±0.128. The dashed black line shows the chance level (AP=0.123±0.024).
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5.5.2 Sensitivity analysis

The Morris sensitivity analysis of the developed sepsis detection models provides insights into
the relative importance and their interactions among various features.

Shown in Figure 5.17 is the sensitivity analysis of an RF instantaneous detector (#3 realization
of 10 times of Monte Carlo validation). The left panel illustrates the feature importance (solid bars)
stacked with feature interactions (hatched bars) in the model, while the right panel of the figure
further displays each feature on the µ∗ − σ plane. Different features were presented in different
color palettes: redish for ages, purplish for time-domain HRV, yellowish for frequency-domain
HRV and greenish for non-linear HRV.

Seeing from the bar plot, the most influential features in the RF model are Postnatal age (PNA),
Gestational age (GA), mean, pDec (percentage of deceleration), median of RR intervals and DC
(decelerate capacity), reflecting their strongest ability to influence predictions both independently
and through interactions with other features. This can also be observed on the right panel of the
figure, in which these features are positioned toward the upper right. The second tier of influential
features are skewness, the non-linear HRV parameters including SampleEn (sample entropy), α2
and α1 from detrended fluctuation analysis, and two frequency-domain HRV related to LF (low-
frequency power). They exhibit moderate importance with relatively higher interaction effects.
Most of the remaining features are clustered in the lower-left corner of the right panel as shown
in the scatter plot, indicating their limited effects on the model’s overall detection for the onset of
LOS.

5.5.3 Changes in HRV around the sepsis onsets

The dynamics of all extracted features within 5 days before and after the onset of confirmed
sepsis (denoted by “T0”) are visualized in Figure 5.18 and Figure 5.19. These trends were generated
from a selected subset of the overall database, consisting of 84 sepsis episodes from 73 patients. To
ensure a representative analysis of the transition from pre-sepsis to sepsis, only episodes with
sufficient duration covering both the septic states and the preceding control states were included.
Overall, the plots show noticeable shifts in several HRV features as the patients transition from the
pre-sepsis (in green, denoted by “Label=0”) to the sepsis state (in red, denoted by “Label=1”). The
wider error bars in the two ends of the plots were due to the lack of data.

In terms of time-domain HRV features shown in Figure 5.18, both the mean and median HRV
(first two subplots in Figure 5.18) show relatively stable values in the control period. However,
starting from 6 hours before the onsets of sepsis (T0), a drop in their values is observed, followed
by an evident elevation 6 hours after sepsis onsets. Similar but more persistent, the skewness (row
2, col 1) presents a drastic decrease from 6 hours before the sepsis onset until 30 hours after the
onset time, then it raises gradually to the normal level. AC (row 3, col 2) and DC (row 3, col 2) show
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a

b

Figure 5.15: Performance of time-dependent 1-layer shallow CNN detector in Monte Carlo
cross-validation. (a) Receiver operating characteristic curves (ROC) in 10 realizations. The thick
blue line indicates the mean ROC curve across all models, with an average AUC of 0.736±0.027.
The dashed black line shows the performance of a random guess (AUC=0.5). Red dots indicate
threshold points along the overall ROC curve, with corresponding FPR (false positive rate) and

FNR (false negative rate) values labeled for reference. (b) Precision-Recall curves (PRC) in 10
realizations. The thick blue line indicates the mean PRC curve across all models, with an average

AUC of 0.383±0.061. The dashed black line shows the chance level (AP=0.130±0.023).
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a

b

Figure 5.16: Performance of time-dependent 2-layer shallow CNN detector in Monte Carlo
cross-validation. (a) Receiver operating characteristic curves (ROC) in 10 realizations. The thick
blue line indicates the mean ROC curve across all models, with an average AUC of 0.748±0.045.
The dashed black line shows the performance of a random guess (AUC=0.5). Red dots indicate
threshold points along the overall ROC curve, with corresponding FPR (false positive rate) and

FNR (false negative rate) values labeled for reference. (b) Precision-Recall curves (PRC) in 10
realizations. The thick blue line indicates the mean PRC curve across all models, with an average

AUC of 0.378±0.109. The dashed black line shows the chance level (AP=0.129±0.015).
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Figure 5.17: Sensitivity analysis of an RF instantaneous detector (#3 realization of Monte Carlo
validation). The left panel illustrates the feature importance (µ∗, solid bars) stacked with feature
interactions (σ, hatched bars) in the model, while the right panel of the figure further displays
each feature in scatter on the µ∗ − σ plane. Different features were presented in different color
palettes: redish for ages, purplish for time-domain HRV, yellowish for frequency-domain HRV

and greenish for non-linear HRV.
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similar decreases in advance and it lasts until 12 hours after the onset of sepsis. On the contrary,
before the sepsis onsets, the value of the percentage of deceleration (pDec, raw 4, col 1) shows a
decreasing trend and bottoms out at around 6 hours before the onsets and then keeps increasing
until 30 hours in sepsis states. Another obvious dynamic is observed from sample asymmetry (row
4, col 3), at approximately 24 hours before sepsis, the value starts to rise and peaks at 6 hours prior
to the onsets, then it drops steadily until 24 hours of sepsis to a lower level.

The transition trends of frequency-domain and non-linear HRV features are shown in Fig-
ure 5.19. Both LF (low-frequency power, row 1, col 1) and normalized LF (row 1, col 2) present a
decrease from 6 hours before sepsis onset to around 12-18 hours after. Sample entropy (row 3, col
2) shows an upward trend from the onset of sepsis till 18 hours later. α2 (row 4, col 1) is observed
with a significant drop 18 hours preceding sepsis onset and starts to increase until approximately
24 hours after being diagnosed with sepsis.

Moreover, it is known that gestational age plays a crucial role in the context of neonatal care
as it directly influences the physiological development of neonates’ vital systems and may lead to
variable pathological courses. To get closer to the HRV dynamics without mixing with possible
interaction with different GA, we further present the HRV transition trends by stratifying the se-
lected population into GA≤28 weeks (54 extremely preterm infants) and GA>28 weeks (19 very
preterm infants), as shown in Figure 5.20 and Figure 5.21. Generally, despite the differences in
patient numbers of the two age groups, the heart rate variability in the older group (lines in light
green and light red) exhibits more dynamic and evident alterations along the observation duration,
while the variability measured in the younger group (lines in green and red) is much more subtle.
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5.6 Discussion

In this study, we developed several non-invasive and near real-time ML detectors to discrimi-
nate between time intervals when premature infants were in the LOS state versus the control state.
Different components of our approach are directly aimed at integrating proposed ML models into
clinical care. As in all ML works, these data preparation, database querying, signal processing,
feature extraction and constitution of the corpus for training and testing represented a significant
part of the work.

By leveraging real-life monitoring ECG signals routinely collected from NICU in multiple clin-
ical centers, we extracted informative HRV parameters and basic clinical information using signal
processing techniques. This approach allowed us to capture subtle physiological changes associ-
ated with sepsis, facilitating timely and accurate detection in clinical settings.

The raw signal was retrieved from routine NICU monitoring, starting from day 3 of life and
continuing throughout the entire hospitalization in the NICU. This led to a longitudinal dataset
that captured dynamic physiological changes over time, providing valuable insights into early
detection of neonatal LOS.

Through a well-crafted labeling strategy based on a multi-expert clinical classification of neona-
tal sepsis, we annotated the time series intervals every 6 hours as “1” (sepsis), “0” (non-sepsis) or
“-1” (uncertain, were excluded from analysis). Various ML classifiers with different feature set
variants were developed and evaluated under a Monte Carlo cross-validation scheme. The best-
performing instantaneous model was the RF trained with 22 extracted Heart rate variability (HRV)
features and two age indicators, Gestational age (GA) and Postnatal age (PNA). Furthermore, the
shallow CNN demonstrated improved performance when detecting sepsis by utilizing data from
the previous 18 hours (three consecutive 6-hour segments), highlighting that incorporating tem-
poral information enhances detection accuracy, though at the cost of increased time dependency,
making the model less suitable for real-time detection.

The overall observed performances for detecting sepsis in this study are not optimal yet and
appear to be lower than findings in other studies [29, 30, 32, 34], but show the potential of using
routine monitoring signals to detect LOS in a near real-time manner. In fact, it is important to note
that comparisons between studies are complicated, and we claim that it is impossible to compare,
due to discrepancies in cohort selection, sepsis definitions, data processing, labeling strategies, and
model performance evaluation criteria. These differences lead to wide variability and huge hetero-
geneity in the performances in the literature. Nevertheless, each study, including ours, provides
valuable insights from different perspectives, contributing to advancing early detection methods
for LOS.
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5.6.1 Different definitions of neonatal sepsis and its onset moment

Unlike pediatric and adult sepsis, there is still no commonly agreed definition for neonatal
sepsis [52–55]. While widely recognized criteria like the Vermont Oxford Network criteria [56],
NEO-KISS [37] and European Medicines Agency definition [57] are commonly applied, the absence
of a standardized definition poses challenges. This lack of consensus has led to variations in how
the onset of LOS is identified and managed across different studies.

Some studies have defined the onset of LOS as the time when the administration of antibiotics
begins [34], while others use the time a blood culture is drawn as registered in the patient records
[58, 59]. Although these are convenient and straightforward markers reflecting the clinician’s sus-
picion of infection, they introduce subjectivity as the timing of antibiotic administration or blood
draw for blood cultures relies a lot on clinical judgment, the perceived urgency of the patient’s
condition, logistical factors like the availability of resources and so on.

The CRASH moment (Cultures, Resuscitation, and Antibiotics Started Here), introduced by
Griffin and Moorman [11], provides a more structured approach to defining sepsis onset. CRASH
captures the moment when clinicians initiate a set of critical interventions: collecting cultures to
identify pathogens, starting resuscitation to stabilize the neonate, and administering antibiotics as
an empirical treatment even before culture results are available. Adopted in subsequent studies on
neonatal sepsis [32, 33], the CRASH serves as a practical clinical anchor for defining the onset of
LOS in preterm infants. However, despite its utility, the reproducibility and the synchronization
of these interventions (and, thus, of the CRASH moment) is very limited. For instance, antibiotics
may be administered before or after cultures are taken; resuscitation may be initiated based on
the infant’s condition; different sites may have very different strategies for blood sampling, with
different mean times between the blood sampling and the biological results and these mean times
may even vary within the same center because of very different causes... All these factors introduce
inaccuracies when using CRASH as a precise onset marker.

In our study, we sought to use a consensus-based, formalized approach to define the onset
of sepsis to alleviate the above limitations. All suspicious sepsis events were firstly classified ret-
rospectively through a three-expert consensus procedure following the NEO-KISS protocol [37],
ensuring systematic classification. We then defined the onset of a sepsis episode as the earlier one
between the initiation time of antibiotic treatment and the time of C-reactive protein>5 mg/L or
positive blood culture (often documented as the time of performing blood sampling). This method
takes the very first response of experienced and professional clinicians at the sepsis onset moments.
We consider that this method might provide more clinically meaningful results since it minimizes
the sources of variance in the annotations, as described above. However, this definition is certainly
more challenging as a target for an Machine learning method.

Concerning the pseudo-labeling strategies in this study, we designed an in-place logic rule
to assign labels to each sample (a 6-hour data segment) based on the event classification from
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multi-expert consensus, the simultaneous presence of antibiotic therapy and CRP >5 mg/L of the
current data segment. At this stage, we would like to learn detectors that can infer whether or
not the patient will develop LOS at the current moment in time, thus, the models were trained on
data without shifting the labels earlier. Importantly, to minimize the risk of training ML models on
false-positive or false-negative LOS episodes, we applied a labeling strategy that sets strict criteria
for septic states and control states, any data that was not conclusively sure to be septic or non-septic
were additionally labeled as “-1” and excluded from the analysis. By excluding uncertain samples,
the developed models avoid ambiguous situations that might confuse the learning process, leading
to improved precision and reduced noise in the training data theoretically.

Generally, in studies targeting the early detection of sepsis, the common labeling manner is
“ahead labeling”, meaning that a certain number of samples leading up to the identified onsets (t0)
are labeled as positive (sepsis) in advance. For instance, the PhysioNet/Computing in Cardiology
Challenge 2019 called for the challenge of early prediction of sepsis from clinical data [60, 61],
they labeled the hourly data for septic patients from 6 hours before identified sepsis onsets as “1”.
Some other studies advanced the positive labels before sepsis onsets ranging from 3 to 48 hours
[34, 59], or considered the positive window length (number of hours before onset in LOS patients
as positive samples) as a model hyper-parameter and optimized it with cross-validation [30, 32].
This strategy attempts to capture subtle, early physiological changes that occur before clinical signs
of sepsis are evident enough to arouse clinical suspicion and intervention. It aligns with the goal
of early detection, potentially improving the model’s sensitivity. Yet, it should be minded that
ahead-labeling may introduce bias into the model, making it more likely to label earlier samples
as sepsis-positive even if they do not have enough evidence to suggest an imminent infection.
This might lower model specificity, possibly resulting in antibiotic abuse and increased strain on
healthcare resources.

5.6.2 Different types of data sources and predictors

In current literature, the proposed algorithms for LOS detection were based on a variety of
data sources, including demographic data, vital signs (e.g., heart rate, blood pressure), clinical
variables, laboratory tests, Electronic health records (EHR), signal data (e.g., ECG), etc., leading
to different types of predictors (features) that were used for developing the LOS early detection
models.

Many research on LOS detection through ML algorithms includes the use of data available
in EHR. Some researchers have used all recorded variables in EHR, including invasive laboratory
results, medications and so on, to train diagnostic models [62–64]. While EHR provides a wealth of
information, they present several challenges such as data sparsity, a high ratio of missing values,
high dimensionality and inherent data biases. To avoid these issues, some studies have narrowed
the feature sets to include only routinely monitored vital signs directly from bedside monitors, or
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EHR data with relatively high-resolution recordings. Using high-resolution vital signs (e.g., 0.5
Hz or 1 Hz) such as heart rate, respiratory rate and oxygen saturation has shown promise in early
detecting LOS [32, 58, 65]. However, these intermediate variables are often recorded as discrete
snapshots and may overlook subtle physiological changes that occur over time.

A more comprehensive approach involves using raw physiological waveform data that are
continuously monitored throughout the hospitalization in NICU settings. This data allows for a
more detailed and continuous analysis of the patient’s disease progression status, capturing subtle
changes that might be missed with traditional EHR-based data. In this study, we took advantage
of continuous ECG data, which is routinely collected in modern, increasingly digitalized NICU
environment. However, real-world data are often prone to noise and inconsistencies, underscoring
the importance of robust data pre-processing steps such as denoising and validating data quality.
In our study, we applied a comprehensive data processing pipeline to ensure the integrity and
reliability of the ECG data and extracted HRV features before model development, as this step is
crucial to achieving accurate sepsis detection in clinical practice.

Additionally, longitudinal analysis of other physiological data streams, such as respiratory
signals, may offer further diagnostic value for predicting LOS. Recent studies have explored multi-
modal sepsis prediction models based on various signal “channels”. The integration of ECG for
cardiac activity, chest impedance waveforms for respiratory activity and motion data for the esti-
mate of infant movement, together with basic clinical information, appeared to be a promising tool
to facilitate early detection of neonatal LOS. Joshi et al. [33] analyzed 49 infants with culture-proven
LOS by extracting features in 3-hour time intervals including HRV, respiration and ECG-derived
estimates of movement, predicting sepsis using a Naïve Bayesian model. Their results demon-
strated an increased propensity toward pathological heart rate decelerations, increased respiratory
instability and a decrease in spontaneous infant activity (lethargy) in the hours leading up to the
clinical suspicion of sepsis. Similarly, Cabrera-Quiros et al. [29] used a combination of HRV, res-
piration and body motion features extracted every 1-hour interval in both sepsis and age-matched
control infants to develop three ML models (Logistic Regression, Naïve Bayes and Nearst mean
classifier), achieving a mean accuracy of 0.79±0.12 and a precision rate of 0.82±0.18 at three hours
before sepsis onset.

Further, Peng et al. [30] enriched the variety of informative features to 60 HRV, 35 respiration
features, and 35 motion features, extracted every hour for the 24 hours before the onset of sepsis.
Using multiple ML algorithms, they reported that the XGBoost classifier trained with all extracted
features (together with gestational age and birth weight) achieved the best performance, with an
AUROC of 0.88±0.09 during the six hours preceding LOS onset. Subsequently, Yang et al. [32] ex-
panded on the work in [30] by using second-by-second vital signs to develop 7 AI models for LOS
risk prediction. With the same idea of HRV, they calculated a series of features based on heart rate,
respiratory rate and oxygen saturation. Their best-performing model, XGBoost classifier, reached
an AUROC of 0.875±0.072 in 7-fold cross-validation for predicting LOS during the 6 hours be-
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fore sepsis moments. An additional contribution of this study was the proposition of a multi-level
alarm strategy, which may facilitate patient stratification management in clinical use and minimize
alarm fatigue, making the model more applicable for clinical use.

In terms of the generalization of HRV in clinical practice, although ECG monitoring is widely
available, HRV analysis has yet to be integrated into routine practice, largely due to proprietary
software, hardware requirements and significant upfront costs. Additionally, healthcare profes-
sionals need proper training to interpret HRV data and understand its implications for sepsis di-
agnosis and prognosis, which poses further barriers to adoption [10]. In the context of neonates,
particularly preterm infants, additional complexities arise when analyzing HRV signals. Artifacts
in the data must be managed, requiring robust post-processing capabilities for accurate interpreta-
tion. Moreover, abnormal HRV patterns can result from factors beyond sepsis, such as gestational
age or other underlying medical conditions [66], and these influences must be carefully considered
during analysis to avoid misinterpretation [10].

5.6.3 Clinical utility of sepsis early detection models

The clinical utility goes beyond raw performance, and strong results do not always imply
real-world usability. For the clinicians to correctly interpret the model performance, we reported
several evaluation metrics. In the ML literature, it is widely recognized that the commonly used
AUROC metric, despite its comprehensiveness, tends to give an overly optimistic assessment of
model performance in class-imbalanced datasets. This is because AUROC is disproportionately
influenced by a large number of true negative predictions [67]. However, most clinical studies
based on ML techniques continue to report AUROC as the primary metric for evaluating their
overall discriminatory performance on snapshots of the full time-series dataset [59]. This raises
concerns that the enthusiasm generated by such conventional evaluation metrics might mislead
clinicians into incorrectly applying machine learning models in practice [59, 68].

In response, thus, we further annotated the FPR and FNR by varying the classification thresh-
olds across the overall ROCs, ensuring clinicians better grasp the trade-off between different types
of classification errors. For example, by setting a tolerance for FPR, they could assess whether the
corresponding FNR is clinically acceptable. Such an analysis provides a clearer understanding of
the model’s practical relevance and its potential implications in real-world settings. Moreover, we
also highlighted the results measured by Area under the precision-recall curve (AUPRC) that could
overcome the optimism of AUROC [69], as it only focuses on the positive samples and will not be
affected by the majority class of true negatives in disease detection. AUPRC summarizes the per-
formance of a classifier across different thresholds by plotting precision against recall at varying
thresholds. Our best time-independent RF detector achieved 0.35±0.10 of AUPRC with a baseline
(random guess) of 0.12±0.02; and the shallow CNN detectors obtained approximately 0.38±0.10 of
AUPRC with a baseline of 0.13±0.02. Although the values appear modest, the increased difference
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from the baseline indicates a good performance. We could not directly compare the results with
other studies as it was rarely reported in the literature.

Another critical aspect of the clinical utility concerns the process of model development and
evaluation itself. Recent work has underscored the importance of properly framing the develop-
ment and evaluation of models to assess their actual potential for clinical impact, as strong per-
formance does not necessarily equate to clinically usable [70]. Some proposed ML algorithms can
be biased when trained on variables that implicitly carry prior clinical knowledge. For example,
including laboratory measurements in the sepsis prediction model may introduce bias, as the clin-
ician’s decision to order such tests or draw blood often reflects a pre-existing suspicion of disease
[62–64].

Kamran et al. [36] further explored this issue by evaluating the discriminative ability of the
widely implemented Epic sepsis model (Epic Systems Corporation, Verona, Wisconsin) in United
States hospitals. They analyzed data from adult inpatients at the University of Michigan’s aca-
demic medical center between October 2018 and December 2020 and compared the model’s per-
formance when making predictions before sepsis criteria were met and before clinical recognition
(i.e., any treatment and diagnostic orders such as intravenous fluids, antibiotics, lactate measure-
ment and blood culture were placed). The study revealed that the model had an AUROC of 0.62
(95% CI, 0.61 to 0.63) when calculating with predictions before sepsis criteria were met, but its per-
formance dropped to an AUROC of 0.47 (95% CI, 0.46 to 0.48) when predictions were restricted
to before any clinical indication was taken—essentially no better than random. This decline indi-
cated that the model’s apparent success was largely due to predictions made after clinicians had
already identified and begun treating sepsis, raising questions about its ability to detect sepsis
independently of clinical recognition.

A similar evaluation on a national-scale database in the United States was carried out by
Beaulieu-Jones et al. [71]. They reported that ML models trained solely on clinician-initiated ad-
ministrative data performed nearly as well as those trained on richer, more detailed EHR data.
These findings suggest that many current ML models seem merely “looking over the shoulders of
clinicians”, offering little beyond what is already known through clinical expertise and judgment.
In contrast, truly impactful ML models should “stand on the shoulders of clinicians”, providing
new insights and predictive power that clinicians alone cannot achieve.

These evaluations prompt researchers and healthcare professionals to rethink the genuine clin-
ical utility of AI models, which remains a critical challenge. A model that largely relies on human
intuition may lead to risks of overestimating its real-world applicability and can also result in mis-
leading results when applied in different clinical settings where the timing and context of inter-
ventions vary. Moreover, a model that mimics clinical intuition but fails to offer novel, actionable
insights risks contributing to alert fatigue rather than enhancing patient care [72]. As noted in [71],
“Machine learning can help clinicians make individualized patient predictions only if researchers demon-
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strate models that contribute novel insights, rather than simply predicting the next step a clinician will
take.” Therefore, clarifying the problem framework on which the model is built [70], ensuring it
provides genuine added value, and avoiding over-reliance on data already influenced by clinical
decisions are critical for ensuring the meaningful application of AI in healthcare.

5.6.4 Limitations and perspectives

This study has the following limitations and areas for improvement. One limitation lies in
the data preparation and signal pre-processing. This study marks the first large-scale manipula-
tion of the prospective, multi-center CARESS-Premi database, which contains about 30 years of
accumulated monitoring signals, with an average of 20 days of signal acquisition per patient. In-
stead of focusing solely on sepsis-relevant episodes and patients, we processed all available raw
signals throughout the entire follow-up periods of all enrolled patients. Given the volume of high-
resolution data, e.g., ECG signals sampled at 500 Hz, we segmented the continuous signals into
6-hour windows for further processing. This process was driven by practical considerations of
computational resources and limited time, but it resulted in a relatively low temporal resolution
for sepsis detection, as models were trained on features extracted every 6 hours.

Although the use of 6-hour windows is consistent with previous studies [13, 17], it may be too
coarse to capture the rapid changes that typically occur during the progression of sepsis. Sepsis can
deteriorate quickly, and critical physiological changes may go undetected with this long window
size. Recent studies have opted for finer-grained approaches, analyzing data in 3-hour [33], 1-hour
[22, 29, 32, 58], 30-minute windows [34, 73], or even shorter time segments [65] to capture more
dynamic fluctuations in vital signs or HRV parameters, which are crucial for early detection of
sepsis. So in future work, adopting a finer temporal resolution, e.g., reducing the window size to
1 hour or less, may help enhance sepsis detection by capturing rapid, subtle changes in patient
condition more accurately.

Another limitation concerns the framing of the problem, the importance of framing was thor-
oughly discussed in [70]. A common and useful manner adopted in almost all the studies on early
sepsis detection is to play tricks on advancing positive labels to expected time windows before the
defined onset, approaching the task as a binary classification task, so that the “classifications” for
time windows before defined sepsis onsets would be equivalent to “predictions” for the clinical
onsets. In contrast, in this study, as a starting point, we mainly focused on “sepsis detection” at the
current moment, rather than anticipating future onset. This approach aims to determine whether
an infant is currently at risk of developing sepsis, without projecting forward to future time points.
While this framing allows us to model real-time sepsis detection, it potentially limits the model’s
predictive power in providing early warnings that could enable more timely interventions. Future
work may benefit from combining real-time detection with predictive models to better balance im-
mediate clinical needs with forward-looking risk predictions. This hybrid approach could improve
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both the accuracy and utility of sepsis detection in NICU settings.

Within the framework of the CARESS-Premi project, our future research will extend beyond
ECG signals to include chest impedance (respiratory signals) and plethysmography signals, which
are already available in the dataset. These additional data streams offer a rich source of multi-
modal physiological information, which may significantly enhance the accuracy of sepsis detection
and early intervention models. By integrating multi-dimensional data, we will aim to develop
models that combine continuous cardio-respiratory monitoring with advanced machine learning
algorithms to improve early detection of sepsis and other critical conditions in neonates.

Moreover, a key focus moving forward will be on the dissemination, implementation, and
validation of these predictive models across broader clinical settings [74]. Ensuring that models
built on continuous cardiopulmonary data are tested in diverse, real-world environments is cru-
cial for demonstrating their reliability and effectiveness. These efforts will include collaboration
with healthcare professionals to streamline the interpretation of such data, along with refining the
models based on real-time feedback from clinical applications. Ultimately, this work will aim to
standardize the use of continuous monitoring data in the NICU and expand the applicability of
our models to other conditions that benefit from early detection through real-time physiological
monitoring.

5.7 Conclusion

In this chapter, we targeted a rather challenging issue of early detection of late-onset sepsis
in preterm infants in the NICU setting. This topic has been largely studied in previous research,
however, it remains a critical challenge. Here, we explored a non-invasive, computer-assisted ap-
proach to the early detection of neonatal LOS in preterm infants using HRV data derived from
real-life monitoring in the NICU. Through the application of advanced signal processing tech-
niques and machine learning models, we aimed to detect the presence of LOS and identify specific
HRV patterns that precede clinical diagnosis, offering a tool to enhance the timeliness and accuracy
of sepsis detection.

This study was conducted on a large multi-center cohort, after applying a series of inclusion
and exclusion criteria, approximately 400 patients were included in the final analysis. A casual
clinical timeline of infection was first formalized with time constants estimated from the litera-
ture, clinical expertise, or directly from our CARESS-Premi database. This formalization eases the
representation of the causal effects that are involved during the LOS decision-making and allows
us to propose an original approach in this field. By processing real-life, continuous, lasting-for-
weeks, high-resolution monitoring ECG signals with an advanced signal processing chain, we ex-
tracted several HRV parameters that proved to be interesting for neonatal sepsis detection. On the
other hand, we proposed a specific labeling strategy for longitudinal data with intertwined clinical
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events. These procedures facilitated the dataset construction for machine learning model develop-
ment. In terms of the ML algorithm, we not only used classic supervised learning for classification
but also cleverly utilized the advantages of convolutional networks in processing time series to
develop shallow CNN models. Results demonstrated that machine learning models trained on
non-invasive HRV features and clinical information extracted from real-life monitoring data can
effectively assist in the early detection of neonatal LOS. While the models achieved only modest
accuracy, this study highlights the feasibility of leveraging HRV data for real-world applications in
neonatal sepsis detection. Despite some limitations as discussed above, this work contributes to the
ongoing development of predictive models in neonatal care, paving the way for more informed,
data-driven, bedside clinical decisions in the management of neonatal sepsis.
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CHAPTER

6 Deployment of an On-the-Edge
Clinical Decision Support System
in Neonatal Intensive Care Units

In recent decades, Clinical decision support systems (CDSS) have emerged as valuable tech-
nologies for managing complex medical conditions. A range of CDSS applications are focused on
neonatal care, including the management of hyperbilirubinemia, medication, nutrition optimiza-
tion, and risk estimation for morbidity, mortality, and sepsis [1], such as Artemis [2], Baby Steps
[3], Etiometry [4, 5] and iNICU [6, 7]. With the progress in research and the evolution of technical
resources within NICU, establishing an AI-based clinical decision support systems that facilitate
early intervention for preterm neonates is challenging yet promising.

However, although the development and deployment of CDSS integrated into hospitals and
intensive care units gained increasing attention, there are rare cases of on-the-edge CDSS that have
been validated technically and clinically in real-life medical scenarios. Given the surge in med-
ical data, resource limitations, and the need for real-time, low-latency, and bandwidth-efficient
processing, working on the edge is becoming an original and appealing direction.

In this chapter, we propose to design, implement, deploy, and technically evaluate a CDSS
that integrates a signal processing chain and machine learning inference models on the edge in the
scope of neonatology, taking the NICU in the University Hospital Center of Rennes (CHU Rennes) as a
pilot, allowing for quasi-real-time processing and fusion of high-resolution monitoring time series
and data in the Hospital Information System (HIS). After the architecture concepts, preliminary
results of the proposed system concerning the technical performance are presented, followed by
a simple use case of the baseline model developed in Chapter 4 to validate the clinical feasibility
of the proposed system. Afterward, some implications for the early detection of neonatal sepsis,
related to Chapter 5, based on the proposed system are presented in the form of a case report.

6.1 Introduction

Developing Clinical decision support systems (CDSS) that facilitate personalized medicine re-
quires the use and linking of massive data from different sources. The temporal evolution of phys-
iological data, which is the basis of clinical reasoning in intensive care units, is not yet commonly
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included in data warehouses, although this appears essential in the medium term. The proposed
system was recently introduced to the market with the aim of easily providing information on a
daily basis, but also as a data source service for research, particularly in the field of learning meth-
ods on massive data (artificial intelligence). The data warehouse system (Patient Information Cen-
ter iX, Data Warehouse Connect, Philips Medical Systems, Andover, MA) has been used in a few
clinical studies [8–11]. The system enables the creation and utilization of comprehensive databases
that integrate all monitoring data, in particular physiological signals, with sampling adapted for
signal processing. It also allows the incorporation of monitoring parameters and data from con-
nected peripheral devices (e.g., ventilation, perfusion systems, etc.). By leveraging the requested
data warehouse system, it becomes possible to associate immediate clinical use with the develop-
ment of personalized medicine solutions, such as the management of neonatal hyperbilirubinemia
and neonatal sepsis, as discussed and developed in previous chapters.

However, any proposed CDSS must undergo technical validation in real-world conditions
over a sufficient period of time before progressing to clinical validation through a multi-center
randomized controlled study.

The on-the-edge CDSS, we propose, is derived from the concept of “edge computing”, which
deploys computing resources on the edge side near data sources and operates on “instant data”
that are generated in real-time. Edge-based solutions provide the framework for reduced latency
for time-dependent solutions, such as vital sign monitoring, and they offer added security during
data transmission compared to traditional computing systems [12]. While there has been an im-
pressive exploration of edge computing in smart healthcare systems, much of the focus has been
on wearable devices, smartphone-based sensors and ambient applications [12]. There is, however,
a notable gap in the development and deployment of edge-based CDSS integrated into hospital
and ICU environments, where the collection and storage of critical medical data dominate the
healthcare system in both volume and importance. Given the enormous amount of medical data
generated every second, resource constraints, and the need for real-time data processing with low
latency and reduced network bandwidth, working on the edge offers an attractive and innovative
solution.

To achieve this, a robust technological architecture is required, based on the Data Warehouse
Connect (Philips), capable of storing, analyzing and presenting high-resolution physiological data
from monitoring monitors. Specifically, such a system should support: i) the recovery of suffi-
ciently sampled signals from patient monitors, ii) the secure storage of data on a hospital clinical
server, iii) integration with proposed clinical decision support systems, iv) secure interfacing with
research infrastructures (LTSI - INSERM U1099), and v) the accessibility for both the clinical and
research teams to analyze and evaluate the collected and stored data after anonymization.
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6.2 System Architecture

Before detailing our proposed system, it is essential to first introduce the monitoring environ-
ment in neonatal intensive care settings.

6.2.1 Monitoring environment in NICU

The proposed system is designed to integrate seamlessly into the existing infrastructure at the
NICU within CHU Rennes, where the installed patient monitoring and data management solution
are from Philips (Eindhoven, Netherlands). As shown in Figure 6.1, the medical data flow in
this setup can be summarized as three main stages: data acquisition, aggregation and storage &
distribution.

At the patient’s bedside, monitors (IntelliVue MP40) and integration solutions (IntelliBridge
System) capture and transmit vital monitoring data. This data is then sent to the Patient Informa-
tion Center iX (PIC iX) system, a core part of the Philips enterprise monitoring ecosystem, which
manages real-time patient monitoring and provides a comprehensive view of patient conditions
by integrating data from both Philips and non-Philips devices.

Data Warehouse Connect (DWC) is a licensed feature of the PIC iX system that allows storage
of high-resolution data from Philips patient monitoring devices, telemetry devices, and third-party
devices connected to the IntelliBridge family of products.

Acquisition Aggregation Storage & 
distribution

Ø Data sources

(IntelliVue monitor, IntelliBridge)

Ø Data type 

Ø (signals, numerical values, alerts, 

arrhythmia information, etc.)

Ø Central station PICiX in the NICU Ø Storage in the HIS of the CHU Rennes

Ø Continuous high-resolution capture (500 Hz)

Ø High-quality diagnostic bandwidth (0.05–150Hz)

Ø Web interface for replay, search, extraction

Philips Environment DWC

Figure 6.1: Integration into the infrastructure in the NICU.

6.2.2 Proposed on-the-edge CDSS architecture

The proposed on-the-edge CDSS architecture consists of three main components, as illustrated
in Figure 6.2:

1. NICU bedside monitors connected to Philips’ Data Warehouse Connect (DWC);
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2. Electronic health records (EHR) system acquiring data from other devices and the Hospital
Information System (HIS);

3. A Virtual machine (VM) deployed into a restricted network for holding our CDSS.

The data flow within the proposed system follows two parallel pathways, indicated by the
blue and yellow arrows in Figure 6.2. In the first pathway, as a standard care routine for neonates
from birth to nearly discharge, high-resolution time series continuously monitored by bedside
monitors, along with structured data (e.g., instant heart rates, annotations, alerts, etc.) computed
by the monitors’ built-in algorithms, are stored on the DWC server. The DWC writes this monitor-
ing data to a Philips-implemented custom SQL agent every 5 seconds. This SQL agent is configured
to automatically export the data from the previous 20 to the previous 5 minutes every 15 minutes,
with a 5-minute delay due to transmission and storage time consumed from the bedside monitors
to the DWC and the SQL database.

Simultaneously, the second pathway involves various medical devices that continuously col-
lect clinical metadata, such as patient demographics, respiratory support data, nutritional support,
laboratory test results and clinical events. All information is managed by the HIS (MetaVision,
iMDsoft, Tel Aviv, Israel) and stored in the EHR, with updates recorded at a lower resolution (1
data point per minute). This metadata is selectively exported every 10 minutes.

Both data streams undergo pseudonymization using a common ID before the data segments
are copied to a shared mount point (IN).

The processing unit, as shown on the right side of Figure 6.2, is activated on a first-in-first-out
(FIFO) basis once a new batch of data arrives at the IN (i.e., every 15 minutes). It allows quasi-
real-time processing of high-resolution time series using ML algorithms encapsulated within a
VM. Once processed, the data segments are erased to free up storage, and the output is written to
another shared point (OUT) at the end of the workflow. The results stored in OUT are designed to
be returned to caregivers in the electronic health record through the HL7 communication protocol
or via a dedicated decision support system [13]. These results, presented as numerical data and
waveforms, provide essential insights to help caregivers adjust clinical interventions promptly.

6.2.3 Data specification for IN and OUT

IN format

At the IN mount point, the metadata exported by the EHR varies in format and content de-
pending on the specific study. In our use case, the metadata of all available patients is compiled
in a table with columns for patient ID (denoted as IEP, the hospital episode identifier provided by
CHU Rennes), Postmenstrual age (PMA), Postnatal age (PNA) and Gestational age (GA). The IEP
serves as a unique identifier linking to the signals data exported from the DWC. In cases where the
IEP is not immediately available from the hospital, a temporary Study ID provided by the DWC
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Figure 6.2: Architecture of the proposed on-the-edge system for quasi-real-time clinical decision
support in NICU.

(the Philips side) is used. The IEP is set as None for the patient until the hospital provides it via
metadata in subsequent data exports.

The files exported by the DWC are organized in folders named with patient IDs. Within each
patient-specific folder, files are named using a combination of the patient ID, timestamp and file
attributes, i.e., PatientID_YYYYMMDDhhmmssms_<attribute>.<filetype>.

The structured data includes numeric values (stored as “numerics.csv”), cardiac annotations
(“annotations.csv”) and patient identification (“patient.id”). Raw signals in MIT data format (“.dat”)
are also exported, but only once every 1 hour on request for the current version. A detailed
overview of the naming convention is listed in Table 6.1, and an example of the file organization
within the IN mount point is shown in Figure 6.3.

OUT format

For each patient, all results are grouped in an independent folder named after the patient
ID. The folder contains “X.csv” (representing the input features for machine learning models) and
“Y.csv” (representing the output of the model) both named with timestamps corresponding to the
monitoring time. In addition, log files that document the execution status of the entire system are
also saved in the OUT folder. An example of the file structure in the OUT mount point is provided
in Figure 6.4.
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Table 6.1: Naming convention of the files in the IN mount point.

Section Description

PatientID
IEP (hospital episode identifier, 9 digits)

StudyID (a sequential anonymous ID generated by DWC system)

YYYYMMDDhhmmssms

This is the timestamp of the start of the record:

YYYY = year

MM = month

DD = day of month

hh = hour of the day

mm = minutes

ss = seconds

ms = milliseconds to 7 digits

e.g. If start timestamp in the database was 2022-03-18 07:26:47.9950100,

the presentation in the file name will be 202203180726479950100.

Attribute

Optional string representing the following possible content:

numerics = numeric values

annot = string values e.g. ventilator mode, ECG beat labels

<wave label>= short label of the waveform, e.g., II, Resp, Pleth, EEG, etc.

Filetype

File extensions, identifying the following possible content:

.hea = header text file of a segment of waveforms

.clock = reference clock text file for a given .hea file

.dat = waveform binary files

.CSV = numeric and text values recorded at patient bedside

.id = patient identification, first name and last name
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Metadata

A Patient Folder

The IN

Figure 6.3: File organization in the IN mount point of the system.

The OUT

X.csv

Y.csv

Figure 6.4: File organization in the OUT mount point of the system.
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TEMP format

We also configure an additional TEMP folder to store intermediate results as backups. Each
processed patient has a unique “.csv” file that includes associated metadata and extracted HRV
parameters arranged in chronological order. These intermediate results might be useful for further
offline analysis and model development.

6.2.4 Core processing unit

The system’s core processing unit operates within a VM environment. A simplified diagram of
the processing engine is presented in Figure 6.5, showcasing three key components: i) data fusion,
ii) data processing, and iii) model inference. These components interact with two mount points
for input and output: IN and OUT. A more detailed workflow of the actual implementation is
illustrated in Figure 6.6.

The main process runs in a non-stop loop (while True) to perform a thorough scan of IN folder
to summarize the incoming metadata and patient folders. Using a for loop, the core processing unit
processes the data in the IN patient by patient, i.e., folder by folder. All processing activities are
recorded in a series of log files during this execution.

Data Fusion Signal Processing

Instant HR RR Series
Calculation

RR
Correction

Stationarity
Analysis

HRV
Analysis

Metadata GA & PNA

IN OUT

TEMP

ML Model 
(.pkl file)

Patient IDs

Annotations

VM

Inference

Figure 6.5: Simplified diagram of the core data processing unit.
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The first step involves fusing data from two sources—DWC and EHR—by matching patient
IDs and synchronizing timestamps. Before data can proceed to the next module, a readiness check
ensures that all four necessary files, as described in the IN format section, have arrived in the
patient folder, and none are empty. Each file should be named by a matching patient ID and a
corresponding timestamp. The metadata file is parsed first to search for the relevant patient ID,
and if found, the age information (PNA and GA) is selected and calibrated with the timestamp
recorded in the filename for synchronization.

The next step is the signal processing pipeline that transforms multi-source structured data
into clinically relevant features. In this first version of the deployment, instead of detecting cardiac
beats (QRS complexes) from raw ECG signals, we directly exploit the instantaneous heart rates
generated by Philips monitors to construct the RR interval series. A multi-step approach of logic
rules based on pathology and rhythm correction is then applied to automatically detect and cor-
rect possible artifacts and errors in the RR series (as detailed in Section 2.2.3). Then alterations
of the mean and variance of the corrected series over time are estimated, and signal stationarity
is analyzed (detailed in Section 2.2.4). Afterward, a set of Heart rate variability (HRV) features,
characterizing cardiovascular functions modulated by the autonomic nervous system, is extracted
from the segments (as detailed in Section 2.2.5 ). These include:

• Twelve time-domain features:
Mean, Median, Std, Rmssd, Skewness, Kurtosis, DC (deceleration capacity) and AC (accel-
eration capacity), the interdecile range between 10th and 90th percentile (IDR), percentage
deceleration of RR intervals (pDec), the standard deviation of RR corresponding to pDec
(stdDec) and sample asymmetry of RR histogram (SampAsym).

• Five frequency-domain features:
Power in the low-frequency spectral band (LF, 0.02-0.2 Hz), normalized LF (LFnu), power in
the high-frequency band (HF, 0.2-2 Hz), normalized HF (HFnu); and LF/HF ratio.

• Five non-linear features:
SD1 and SD2 from the Poincaré plot, sample entropy (SampEn), and α1, α2 from the de-
trended fluctuation analysis.

During the data fusion and processing stages, a temporary file is created as a buffer to store
all calculated intermediate results. This file is written into the TEMP folder.

The final stage concerns machine learning model inference. A previously trained ML estimator
is activated in inference mode to generate predictions. Depending on specific tasks, the model takes
extracted features as input (“X.csv”) and inference the predictions to output (“Y.csv”), which are
directly made available to clinicians. Importantly, the inference component/instance is designed
as a plug-and-play plugin, compatible with any ML model in the PICKLE format (.pkl), allowing
for easy generalization of the system for other inference applications.

During parsing and processing, any files with incorrect formats or erroneous data are auto-
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matically erased from the IN, ensuring the system’s robustness. It is also worth mentioning that
we configured additional data quality validation checks throughout the processing chain to guar-
antee high Signal-to-noise ratio (SNR) and data reliability, especially given the complexity and
heterogeneity of the data from real-life, long-term monitoring in the NICU.

6.3 System Performance: Preliminary technical validation

The technical objective of this study is to validate the feasibility and stability of the proposed
architecture. To this end, we conducted a pilot study under real conditions over a sufficient period
of time. The infrastructure was installed at CHU Rennes in collaboration with Philips and our
laboratory (LTSI - INSERM U1099).

The system was successfully deployed and implemented at CHU Rennes since January 2023.
As of June 2023 (preliminary testing of system working performance), the system has been con-
tinuously running for several months, constantly receiving data from a total of 138 authorized
neonates born within the first six months of 2023 during their NICU stay. The median [IQR] GA of
the neonates is 35.5 [30.3; 39.4] weeks, and their median [IQR] birth weight is 2,240 [1,341; 3,211]
grams.

As an initial use case, we embedded a baseline Random Forest regressor (RFbase), previously
trained for bilirubin level estimation (refer to Chapter 4), as the inference model into the system.
The system processes live data, generating bilirubin estimations (continuous variables) for each
infant with a 15-minute time resolution, while minimizing computation time and memory usage.

Table 6.2: Technical performance of the proposed on-the-edge CDSS.

Memory Usage∗ Execution Time† System Latency†

Max. 206.4 MB 5.56 s 29.4 min

Min. 168.5 MB 0.04 s 20.1 min

Mean 187.0 MB 2.36 s 26.5 min

Std. 8.84 MB 0.45 s 1.95 min

Median 187.5 MB 2.40 s 26.8 min

⋆Statistics are calculated from June 9, 2023 to June 19, 2023.
†Statistics are calculated for the 24 hours from the noon of June 18, 2023 to the noon of June 19, 2023.

Table Table 6.2 summarizes the system’s technical performance that is measured in given peri-
ods, focusing on memory usage, execution time, and system latency. As shown, the proposed VM-
based system exhibits a low memory footprint, consuming merely 187.0±8.84 MB during execu-
tion. Execution time refers to the time taken for one patient’s qualified data segment to completely
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undergo quasi-real-time processing, starting from the data’s arrival at the IN folder, through the
processing pipeline, and ending with the output of the results, followed by memory release. Dur-
ing a 24-hour period, a total of 3,293 data segments were qualified and processed, with an average
execution time of 2.36±0.45 seconds.

System latency encompasses various parts, including acquisition delay (time taken for bedside
monitor data to be transmitted to the DWC), database query delay (an inherent 20-minute delay
due to the SQL agent configuration), transmission delay (from the SQL database to the IN mount
point), processing delay (execution time), and waiting time (time spent waiting for resources
within the system to be processed or responded to). The minimum overall latency observed in
the considered period was 20.1 minutes, indicating the possibility of the whole processing being
finalized immediately after the data arrival when subtracting the inherent 20 minutes.

Figure 6.7 visualizes the execution time and latency over a 24-hour time span. The x-axis rep-
resents the timeline, divided into 15-minute intervals, and the y-axis shows the response time in
seconds for each data batch. In general, the majority of data segments processed and output to the
OUT (represented by red scatter points) exhibit processing times between 2 and 3 seconds. Ob-
serving the timeline, the data arrives every 15 minutes as configured, and each data transmission
and processing cycle is normally completed within 5 minutes. This indicates that the system has
sufficient capacity to handle higher concurrency and throughput, which may accommodate more
resource-intensive processing tasks in future deployments.
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6.4 Case Report: Implications on early detection of neonatal sep-
sis from the on-the-edge system

As a proof-of-concept, the proposed on-the-edge clinical decision support system aims to in-
tegrate real-time clinical monitoring signals from DWC and electronic health information from the
HIS and generate useful results through a VM-based processing engine that could benefit the op-
timization of neonatal outcomes. Regarding the detection of LOS, we have not deployed yet any
inference model, but the VM keeps generating HRV features that are provided to the clinician.
Here we present a brief case report showing the interest of proving such complementary informa-
tion. Although we have not yet closed the loop on the entire system (returning the results to the
HIS for all caregivers in the NICU to share), as a pilot study, the clinician responsible for the project
has direct access to the IN and OUT mount points and the TEMP folder. Interesting implications
are observed from the preliminary results.

Figure 6.8: A clinical example of a delay between heart rate changes, blood sampling and
antibiotics starting in an infant with clinically proven infection shown by MetaVision (the HIS

installed in CHU Rennes).

Figure 6.8 displays a clinical example of the delay between heart rate changes, blood sampling
and antibiotics starting in a preterm infant born on 23 March 2024 at 2:17 with a gestational age of
295/7 weeks and a birth weight of 1,245 grams. The first upper panel shows the changes in SpO2

(blue) and heart rates (red) since birth, where a first desaturation occurred at 19:44 on his 3.73 days
of life and first bradycardia at 20:27 can be observed. Three hours later, the neonatologist decided
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to take a first blood sampling used for CRP and blood cultures for this newborn at 23:30 on the
same day. And in another two hours, the first antibiotics were administrated for this newborn in
the early morning of the next day.

The deployed on-the-edge CDSS keeps running and generates results of the quasi-real-time
physiological data processing that are stored in the OUT mount point and the TEMP folder. By
visualizing the heart rate variability parameters derived every 15 minutes of the same newborn, as
shown in Figure 6.9, we could observe that this event was associated with an advanced increase
in Std, Kurtosis, Rmssd, SD2 and Median; an advanced decrease in Skewness, α1 and Sample
Entropy. Other HRV features not shown here had coherent variations. The neonatologists involved
are well-trained and experienced, and they often intervene in suspected newborns before obtaining
positive blood culture results for proven infections. However, these progressive changes in HRV
appeared approximately 3 to 7 hours before blood collection (clinical suspicion) and before positive
coagulase-negative staphylococcal blood cultures (clinical confirmation), suggesting that HRV may
provide an earlier indication of sepsis prior to any clinical action are taken.

It is worth mentioning that all the results are produced in a quasi-real-time manner, suggesting
the feasibility and meaningfulness of both the proposed on-the-edge system and the intermediate
clinical results derived from the system, which is quite inspiring.

6.5 Discussion

To our knowledge, this is the first description of a multi-source, on-the-edge CDSS deployed
in a NICU scenario. The quantitative technical performance evaluation of this prototype demon-
strates the feasibility of the system’s deployment in real-time hospital environments. This VM-
based architecture highlights the features of usability, adaptability, and scalability, as well as its
ability to be implemented effectively. Furthermore, the system’s flexibility is enhanced by the abil-
ity to easily generalize the pipeline through simple model replacement using the “.pkl” format for
inference. The integration of our previously published signal processing chain and ML models
[14, 15] can be performed in this way.

In this implementation, we took advantage of existing instantaneous heart rate data from
bedside monitors for subsequent HRV analysis. In further studies, we might also integrate our
real-time signal processing methods into the feature-extraction phase. However, translating these
algorithms into routine clinical practice demands close collaboration with medical device manu-
facturers to facilitate real-time execution on the bedside monitors, with rapid processing of raw
physiological signals. Recent interactions between LTSI - INSERM U1099, CHU Rennes and Philips
are going in this sense, targeting for implementation of research-level algorithms into the bedside
monitors, through a specific application programming interface (API). On the other hand, when in-
tegrated into vendor-neutral systems, real-time signal extraction from patient monitors is required,
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and the model must be robust to variations in the format of raw signals from different vendors,
adding an additional interoperability step that might be particularly time-consuming. These chal-
lenges can pose significant barriers to large-scale deployment and may result in a performance
decrease.

For this pilot study, hence, we leveraged the numerical data from Philips monitors to establish
a proof-of-concept of a CDSS that incorporates a quasi-real-time processing engine and ML in
inference mode for improving medical care in NICU settings. In fact, a recent study suggests
that using numerical data of vital signs can achieve performance nearly equivalent to that of raw
physiological signals in early detection of neonatal sepsis, with advantages in terms of storage
consumption and computational efficiency, and without the need to develop specialized signal
processing algorithms [16]. Nevertheless, our system is capable of obtaining raw ECG waveforms
at the IN mount point by a frequency of every 1 hour. This transmission frequency can be increased
by our Philips partners as demanded. In future development, we may consider including the
high-resolution raw signals (500 Hz of sampling frequency) and applying our robust real-time
QRS detector [17] on the signals, as described above. We might also integrate real-time respiratory
signal processing, as performed in other works from our team.

One major limitation of the proposed system is related to the inference model embedded in the
current version, which was trained on a different database (CARESS-Premi) without fine-tuning.
Thus, its generalization and performance in estimating hyperbilirubinemia are limited. Further
evaluation of the model’s generalization and adaptation to this particular application is necessary,
and prospective evaluations on clinical performance are thus warranted (protocol currently run-
ning). The important aspect to keep in mind here is that the model can be very easily modified
through an updated PICKLE file, without altering the architecture of the proposed system.

Additionally, due to regulatory aspects and limited time, we did not finalize the last part of
this architecture, which is to return the results generated by the system to the HIS. This full imple-
mentation would enable caregivers to directly access the results in real-time via the existing infras-
tructure in the hospital, potentially improving intervention strategies. Furthermore, the inclusion
of alert and intervention mechanisms, such as advising phototherapy when estimated bilirubin
levels exceed certain thresholds, would complete the close-loop system from OUT to the Hospital
Information System (HIS), further enhancing clinical decision-making.

6.6 Conclusion

This chapter constructs an infrastructure in the NICU of a pilot clinical center (CHU Rennes)
that can collect, store, exploit, analyze and present high-resolution physiological data from bedside
monitors and the EHR system. The proposed system consisting of data transmission, pseudonymiza-
tion, data fusion, processing and inference was deployed at the University Hospital of Rennes in
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Jan 2023. Despite some limitations of the bilirubin estimation ML inference model itself, which was
the first use case embedded into the on-the-edge system, a quantitative assessment of the techni-
cal performance of the system in terms of stability and resource consumption was achieved and a
robust and satisfactory system configuration was obtained. A specific clinical case report based on
the intermediate results derived from the system in a quasi-real-time manner provides inspiring
implications on the system’s usefulness and feasibility. The preliminary results greatly boost the
confidence for future optimization and generalization of such infrastructure in a real NICU context.
To our knowledge, this is the first description of a multi-source, on-the-edge CDSS deployed in a
NICU scenario for patient-specific early detection of high-risk events. This proof-of-concept is a
solid first step to initiate concrete on-the-edge clinical applications in the proposed platform, which
can accommodate AI methods for patient-specific early detection of high-risk events by exploiting
the dynamical properties of multivariate and multi-source longitudinal health data.
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Conclusions and perspectives

6.7 Conclusions

Neonatal intensive care units (NICU) are specialized services in hospitals that provide inten-
sive care to newborn babies who are born prematurely, critically ill, or require close monitoring
and treatment. These units are equipped with advanced life-support equipment and staffed by
experienced neonatologists, nurses, and other healthcare professionals. NICU are a real hub of
activity, generating massive amounts of data on a daily basis. From electronic health records to
vital sign monitors and their alarms, imaging studies, and laboratory results, the sheer volume of
information can be overwhelming for healthcare professionals. These data are often fragmented
across different systems and formats, making it challenging for clinicians to access, analyze, and
integrate the information they need. The result is a significant burden on healthcare professionals’
time and attention, as they struggle to make sense of this complex data landscape. With so much at
stake—from patient outcomes to quality improvement initiatives—effective management of these
massive amounts of data is crucial. This data pressure demands innovative solutions to manage
and analyze this information. Machine learning (ML) and on-the-edge processing are two power-
ful technologies that can help healthcare professionals cope with these massive amounts of data
and be able to personalize monitoring and treatment.

In this context, this dissertation has explored the proposal, the development and the applica-
tion of advanced data processing techniques and interpretable machine learning models to tackle
two critical challenges in neonatal care: Neonatal hyperbilirubinemia (NHB) and Late-onset sepsis
(LOS) in preterm infants. By integrating real-life monitoring data with non-invasive approaches,
we aimed to improve early diagnosis and facilitate clinical decision-making, fostering more per-
sonalized and effective neonatal care in the NICU.

As a main building block, the first contribution of this work was the integration and improve-
ment of an automated cardiac signal processing pipeline tailored for NICU environments (Chap-
ter 2) based on the previous work of our team SEPIA of LTSI - INSERM U1099. The proposed
pipeline processes real-world ECG data from preterm infants, significantly reducing manual labor
while ensuring high-quality, clinically relevant outputs. It includes several critical steps: ECG sig-
nal quality evaluation, QRS complex detection, RR interval extraction, RR correction, stationarity
analysis, and heart rate variability analysis. This end-to-end solution is designed to handle noisy
and artifact-prone signals common in NICU settings, particularly for preterm infants with low yet
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complex cardiovascular variability. By integrating these components, the pipeline enables more
reliable long-term monitoring and produces utile parameters for further analysis and machine
learning model development, while greatly reducing the labor and time included. This pipeline
served as a fundamental tool used throughout the dissertation.

For the management of Neonatal hyperbilirubinemia (NHB), we investigated two important
aspects: A) model-based characterization of Total serum bilirubin (TSB) dynamics, and B) knowledge-
based non-invasive estimation of TSB using mixed-effects machine learning models. Together,
these studies aimed to offer a comprehensive approach to tackling the clinical challenges of hyper-
bilirubinemia in preterm infants and to pave the way for more effective and patient-specific clinical
interventions.

A) Model-based characterization of TSB dynamics (Chapter 3)
Another contribution of this work was the proposal and validation of a patient-specific exponential
decay model to characterize the natural and long-term dynamics of TSB concentrations in preterm
infants born between 24 and 32 weeks of gestation. Through personalized model parameter fit-
ting, we obtained 72 models with patient-specific parameters optimized by minimizing the error
between measured TSB and model output using an adaptive robust least-squared method. The
proposed model demonstrated its effectiveness and capability to closely track observed TSB lev-
els during extended neonatal periods, with an RMSE ranging from 1.20 to 40.25 µmol/L, with a
median [IQR] of 8.74 [4.89; 14.25] µmol/L. Furthermore, when the bilirubin evolutionary trend
of a given patient diverges from the expected decay pattern, as indicated by an increased RMSE,
it might suggest the occurrence of high-risk clinical events such as necrotizing enterocolitis and
elevated C-reactive protein levels. This association indicates that the model’s capabilities extend
beyond mere descriptive analytics and may serve as a new digital tool for the early detection of
relevant comorbidities. This contribution has been published in an international journal.

B) Knowledge-based TSB estimation using mixed-effects ML models (Chapter 4)
We explored non-invasive approaches for estimating TSB levels in preterm infants with/without
hyperbilirubinemia born at 242/7 to 316/7 gestational weeks. The main methodological problems in
this context were related to the correct integration of the longitudinal aspect of these data into the
ML process and the integration of explicit models of the underlying physiology. We proposed and
compared different hybrid machine learning estimators with the incorporation of mixed effects and
physiological knowledge representation. When compared to a standard Random Forest (RF), the
proposed modified Mixed-Effects Random Forest (MERF) models greatly improved the estimation
agreements and reduced the proportional bias thanks to the explicit integration of meaningful
physiological knowledge. Although the proposed hybrid models require patient-specific historical
data for their initialization and the model performance is still far from being compatible with an
actual clinical application, they show clinical potential in the NICU where longitudinal clinical
data are commonly seen. This contribution has been published in an international conference.
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Another major challenge in the NICU is the early detection of neonatal Late-onset sepsis (LOS)
(Chapter 5). One first contribution to this axis was the formalization of the clinical timeline, with
time constants estimated from the literature, clinical expertise, or directly from our CARESS-Premi
dataset. This formalization eases the representation of the causal effects that are involved during
the LOS decision-making and allows us to propose an original approach in this field. Indeed, in
this work, we evaluated the efficiency of sepsis risk detection that is made without taking clinical
suspicion (i.e., before treatment and intervention begin) into account when training models, which
may be a lack of investigation in the literature.

A second contribution to this axis was the constitution of a formally annotated real-life lon-
gitudinal database of multi-parametric signal monitoring in NICU for LOS early detection. We
retrieved continuous and longitudinal monitoring ECG signals of around 450 preterm infants and
segmented them into 6-hour blocks. The proposed signal processing pipeline was performed for
all data segments to derive interested HRV features. A labeling strategy was designed to generate
pseudo labels for each segment that indicate the patient status (sepsis, non-sepsis or uncertain).
This database might be used in further research in our team, in particular for the joint exploitation
of ECG and respiratory signals.

A third contribution in this axis was the proposal and evaluation of the above-mentioned
database of a range of machine learning models, including Logistic Regression (LR), Random For-
est (RF), eXtreme Gradient Boosting (XGBoost), Multilayer perceptron (MLP) as well as an original
shallow Convolutional neural networks (Shallow CNN). According to the degree of time indepen-
dence, the proposed detectors could be categorized as instantaneous detectors (time-independent)
and time-dependent detectors. The highest AUROC and AUPRC among instantaneous detec-
tors was achieved by an RF classifier, which were 0.727±0.060 and 0.352±0.099, respectively;
while the shallow CNNs obtained the best performance in a short-term time-dependent manner:
0.737±0.027 of AUROC (used three successive data segments) and 0.749±0.045 of AUROC (used
six successive data segments). It is admitted that our results were not comparable to the high-
performance levels shown in some papers in the literature (AUROC > 0.80). However, and more
importantly, we claim that it is impossible to make direct comparisons between the studies since
there are huge heterogeneity and wide variability in many aspects such as the definitions of neona-
tal sepsis, the annotation strategies, etc. We also criticized the way in which most of these works
from the literature were built and evaluated, and we proposed a thorough discussion on the chal-
lenges related to a correct performance evaluation in this context. Two particular limitations are
highlighted: i) the lack of a precise, standardized definition of neonatal LOS and ii) the very high
potential of underestimation of false positives in these works. We consider that supervised ML
model training in most of these publications suffers from significant sources of bias, which may
explain their lack of clinical applicability and generalization, and thus a significant effort should
be made in this field to foresee useful clinical applications in the future. This discussion, as well as
the efforts performed in this work for the formal, time-sensitive annotation and processing of the
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CARESS-Premi database, are for us an additional contribution to this dissertation.

The final contribution of this work was the proposal of a proof-of-concept CDSS that facili-
tates early detection, diagnosis and intervention in a clinical context (Chapter 6). We designed,
implemented, deployed, and technically evaluated a CDSS that integrates quasi-real-time signal
processing chains and ML models on the edge in a NICU setting. The proposed system consisting
of data transmission, pseudonymization, data fusion, processing, and inference was deployed at
CHU Rennes since Jan 2023. During the first six months of deployment, the service continuously
received monitoring signal data from 138 neonates, processing live data and generating bilirubin
level estimations at a temporal resolution of 15 minutes. A quantitative assessment of the techni-
cal performance of the system in terms of stability and resource consumption was achieved and
a robust and satisfactory system configuration was obtained. In addition, a specific clinical case
report on the predictive properties of HRV before the clinical suspicion of sepsis, based on inter-
mediate results obtained by the system in a near real-time manner, provides inspiring implications
on the practicality and feasibility of the system. To our knowledge, this is the first description of a
multi-source, on-the-edge CDSS deployed in a NICU scenario for patient-specific early detection of
high-risk events. This proof-of-concept is a solid first step to initiate concrete on-the-edge clinical
applications by exploiting the dynamical properties of multivariate and multi-source longitudinal
health data in the proposed platform. This contribution has been published in an international
conference.

In conclusion, by leveraging physiological signal processing and machine learning techniques,
this dissertation proposed different knowledge-based and model-based approaches for improv-
ing the diagnosis and management of critical neonatal conditions such as hyperbilirubinemia and
late-onset sepsis. Moreover, an on-the-edge CDSS, as a proof-of-concept, was successfully de-
ployed and preliminarily evaluated in a real-life NICU setting, demonstrating the effectiveness of
the proposed pipeline and models working in real-time. Overall, the contributions in this disserta-
tion show significant promise for optimizing NICU monitoring and improving early detection of
high-risk events. These advancements could greatly reinforce the management and outcomes for
preterm infants.

6.8 Perspectives

This dissertation has laid a solid foundation for improving neonatal care using data-driven
methods, but it also opens avenues for further research and development.

On top of all, event detection remains both clinically complicated and methodologically chal-
lenging due to the lack of universally accepted definitions, annotations, and all difficulties dis-
cussed throughout the dissertation. If we zoom out to see the big picture, large efforts should be
made to enhance the Gold Standards on event detection in the NICU, such as:
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• Establish comprehensive and standardized clinical definitions.

• Develop collaborative frameworks that integrate expertise from multiple centers to create
robust and consistent annotations.

• Enhance the interpretability of event detection algorithms, ensuring their alignment with
clinical practices and patient outcomes.

Specific to this dissertation, there are some actionable aspects for improving the proposed
model personalization in performance. By taking our non-invasive bilirubin estimation as a start-
ing point, we could focus on several aspects to achieve this:

• Hybrid TSB estimation models:

- Introduce different coefficients of random effects (b1iZ1 + b2ig(Z2)) to better capture
inter-patient variability;

- Refine the EM process in MERF learning to improve model robustness and parameter
optimization.

• Personalized the non-linear term in random effects:
Transition from a global function g(·) to patient-specific functions gi(·), allowing for greater
adaptability and precision in predictions.

• Extensive data collection:
Broaden the dataset by including diverse patient populations and expanding to multi-center
studies, ensuring the models’ validity and reliability across various clinical settings.

Last but not the least, the on-the-edge clinical decision support systems developed in this
dissertation provides a promising framework for real-time neonatal care. To maximize its potential,
future work should focus on the completion and enrichment of the on-the-edge CDSS:

• Closing the loop of the proposed system architecture:
Integrate/push the CDSS outputs with Hospital Information System (HIS) to enable seam-
less feedback and clinical workflow integration.

• Integrating new models in inference mode:
Deploy advanced models, such as hybrid mathematical and machine learning models, for
a wider range of clinical applications, including sepsis detection and bilirubin monitoring.
This helps to share the system infrastructure with team members and collaborators to facili-
tate model deployment and usage across different NICU.

• Multi-center prospective clinical evaluation:

- Address the challenges of unbiased validation in real-world settings by conducting
prospective clinical trials across multiple centers;

- Align these trials with emerging regulatory standards, such as the EU AI Act, to ensure
compliance and scalability for clinical adoption, for example, leverage initiatives like
the ANR EXPERT project to validate the CDSS on a larger scale.
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These perspectives outlined above highlight both the scientific and translational potential of
this dissertation. By addressing the challenges and advancing the proposed directions, we believe
that this work can contribute notably to the field of neonatal care, fostering the development of
more personalized, effective, and clinically meaningful interventions for preterm infants in NICUs.
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Figure A.1: Patient-specific total serum bilirubin exponential decay models on the PNA-TSB
plane, ordered by increasing fitting errors (RMSE from 1.20 to 3.04 µmol/L).

The x-axes are postnatal age (PNA) in days; the y-axes are total serum bilirubin (TSB) in µmol/L.
Modeled exponential decay curves are plotted as blue solid curves and TSB measurements are

orange scatter points. Blue shades indicate phototherapy durations and TSB measurements
performed during PT are marked in blue. Annotations in light blue next to blue dashed vertical
lines are C-reactive protein (CRP) values measured on corresponding PNAs. Horizontal dashed
lines are GA-specific thresholds for treatments according to NICE guidelines: PT (light grey) and

ET (dark grey).
ET: exchange transfusion. PT: phototherapy. NEC: necrotizing enterocolitis.
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Figure A.2: Patient-specific total serum bilirubin exponential decay models on the PNA-TSB
plane, ordered by increasing fitting errors (RMSE from 3.82 to 4.75 µmol/L).

The x-axes are postnatal age (PNA) in days; the y-axes are total serum bilirubin (TSB) in µmol/L.
Modeled exponential decay curves are plotted as blue solid curves and TSB measurements are

orange scatter points. Blue shades indicate phototherapy durations and TSB measurements
performed during PT are marked in blue. Annotations in light blue next to blue dashed vertical
lines are C-reactive protein (CRP) values measured on corresponding PNAs. Horizontal dashed
lines are GA-specific thresholds for treatments according to NICE guidelines: PT (light grey) and

ET (dark grey).
ET: exchange transfusion. PT: phototherapy. NEC: necrotizing enterocolitis.
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Figure A.3: Patient-specific total serum bilirubin exponential decay models on the PNA-TSB
plane, ordered by increasing fitting errors (RMSE from 4.94 to 6.94 µmol/L).

The x-axes are postnatal age (PNA) in days; the y-axes are total serum bilirubin (TSB) in µmol/L.
Modeled exponential decay curves are plotted as blue solid curves and TSB measurements are

orange scatter points. Blue shades indicate phototherapy durations and TSB measurements
performed during PT are marked in blue. Annotations in light blue next to blue dashed vertical
lines are C-reactive protein (CRP) values measured on corresponding PNAs. Horizontal dashed
lines are GA-specific thresholds for treatments according to NICE guidelines: PT (light grey) and

ET (dark grey).
ET: exchange transfusion. PT: phototherapy. NEC: necrotizing enterocolitis.
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Figure A.4: Patient-specific total serum bilirubin exponential decay models on the PNA-TSB
plane, ordered by increasing fitting errors (RMSE from 6.94 to 8.71 µmol/L).

The x-axes are postnatal age (PNA) in days; the y-axes are total serum bilirubin (TSB) in µmol/L.
Modeled exponential decay curves are plotted as blue solid curves and TSB measurements are

orange scatter points. Blue shades indicate phototherapy durations and TSB measurements
performed during PT are marked in blue. Annotations in light blue next to blue dashed vertical
lines are C-reactive protein (CRP) values measured on corresponding PNAs. Horizontal dashed
lines are GA-specific thresholds for treatments according to NICE guidelines: PT (light grey) and

ET (dark grey).
ET: exchange transfusion. PT: phototherapy. NEC: necrotizing enterocolitis.
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Figure A.5: Patient-specific total serum bilirubin exponential decay models on the PNA-TSB
plane, ordered by increasing fitting errors (RMSE from 8.77 to 10.92 µmol/L).

The x-axes are postnatal age (PNA) in days; the y-axes are total serum bilirubin (TSB) in µmol/L.
Modeled exponential decay curves are plotted as blue solid curves and TSB measurements are

orange scatter points. Blue shades indicate phototherapy durations and TSB measurements
performed during PT are marked in blue. Annotations in light blue next to blue dashed vertical
lines are C-reactive protein (CRP) values measured on corresponding PNAs. Horizontal dashed
lines are GA-specific thresholds for treatments according to NICE guidelines: PT (light grey) and

ET (dark grey).
ET: exchange transfusion. PT: phototherapy. NEC: necrotizing enterocolitis.
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Figure A.6: Patient-specific total serum bilirubin exponential decay models on the PNA-TSB
plane, ordered by increasing fitting errors (RMSE from 11.41 to 14.10 µmol/L).

The x-axes are postnatal age (PNA) in days; the y-axes are total serum bilirubin (TSB) in µmol/L.
Modeled exponential decay curves are plotted as blue solid curves and TSB measurements are

orange scatter points. Blue shades indicate phototherapy durations and TSB measurements
performed during PT are marked in blue. Annotations in light blue next to blue dashed vertical
lines are C-reactive protein (CRP) values measured on corresponding PNAs. Horizontal dashed
lines are GA-specific thresholds for treatments according to NICE guidelines: PT (light grey) and

ET (dark grey).
ET: exchange transfusion. PT: phototherapy. NEC: necrotizing enterocolitis.
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Figure A.7: Patient-specific total serum bilirubin exponential decay models on the PNA-TSB
plane, ordered by increasing fitting errors (RMSE from 14.72 to 17.98 µmol/L).

The x-axes are postnatal age (PNA) in days; the y-axes are total serum bilirubin (TSB) in µmol/L.
Modeled exponential decay curves are plotted as blue solid curves and TSB measurements are

orange scatter points. Blue shades indicate phototherapy durations and TSB measurements
performed during PT are marked in blue. Annotations in light blue next to blue dashed vertical
lines are C-reactive protein (CRP) values measured on corresponding PNAs. Horizontal dashed
lines are GA-specific thresholds for treatments according to NICE guidelines: PT (light grey) and

ET (dark grey).
ET: exchange transfusion. PT: phototherapy. NEC: necrotizing enterocolitis.
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Figure A.8: Patient-specific total serum bilirubin exponential decay models on the PNA-TSB
plane, ordered by increasing fitting errors (RMSE from 20.11 to 40.25 µmol/L).

The x-axes are postnatal age (PNA) in days; the y-axes are total serum bilirubin (TSB) in µmol/L.
Modeled exponential decay curves are plotted as blue solid curves and TSB measurements are

orange scatter points. Blue shades indicate phototherapy durations and TSB measurements
performed during PT are marked in blue. Annotations in light blue next to blue dashed vertical
lines are C-reactive protein (CRP) values measured on corresponding PNAs. Horizontal dashed
lines are GA-specific thresholds for treatments according to NICE guidelines: PT (light grey) and

ET (dark grey).
ET: exchange transfusion. PT: phototherapy. NEC: necrotizing enterocolitis.
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Figure A.9: Relative Bland-Altman plots of the mean against the differences between observed
(yi) and estimated (ŷi) TSB levels in percentage values in the training set. (a) RFbase model. (b)
MERF0 model. (c) MERF2 model. (d) mMERF model. The r and p on the upper right of each

subplot indicate the Pearson correlations and associated p-values between the real TSB levels and
the model-estimated TSB values.
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Figure A.10: Relative Bland-Altman plots of the mean against the differences between observed
(yi) and estimated (ŷi) TSB levels in percentage values for both samples of “known” patients
(blue) and samples of “unknown” patients (beige) in the test set. (a) RFbase model. (b) MERF0

model. (c) MERF2 model. (d) mMERF model. The r and p on the upper right of each subplot
indicate the Pearson correlations and associated p-values between the real TSB levels and the

model-estimated TSB values.
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Titre : Traitement de données massives et apprentissage automatique explicable dans les
unités de soins intensifs néonatals

Mot clés : Prématurité, unités de soins intensifs néonatals, hyperbilirubinémie, sepsis, varia-
bilité cardiaque, traitement des signaux physiologiques, apprentissage automatique, système
d’aide à la décision clinique

Résumé : Les nouveaux-nés prématurés sont
vulnérables à des complications comme l’hy-
perbilirubinémie néonatale et le sepsis tardif
(LOS), posant des défis importants dans les uni-
tés de soins intensifs néonatals (USIN). Mal-
gré les avancées en matière de soins, la détec-
tion précoce et la gestion efficace de ces affec-
tions restent complexes. Cette thèse, basée sur
l’étude CARESS-Premi (NCT01611740), vise à
développer des techniques avancées de trai-
tement des données et des modèles interpré-
tables d’apprentissage automatique afin d’amé-
liorer la prise de décision en USIN, via des sys-
tèmes de surveillance non invasifs, continus et
en temps réel.

Les principales contributions comprennent :
(i) une chaîne optimisée de traitement des si-
gnaux pour l’analyse ECG en conditions réelles,
adaptée aux USIN ; (ii) un modèle mathéma-

tique patient-spécifique pour la caractérisation
de la dynamique postnatale de la bilirubine, avec
des paramètres comme biomarqueurs poten-
tiels pour détecter les comorbidités associées ;
(iii) une estimation non invasive de la bilirubine
utilisant des modèles d’apprentissage automa-
tique à effets mixtes intégrant l’analyse de la va-
riabilité de la fréquence cardiaque (HRV) et des
informations physiologiques ; (iv) des modèles
pour la détection précoce du LOS via l’analyse
de la HRV; (v) la conception, le déploiement et
l’évaluation préliminaire d’un système d’aide à la
décision clinique (CDSS) on-the-edge, intégrant
du traitement des signaux en quasi-temps réel
et des modèles d’inférence dans un contexte
USIN. Ces résultats démontrent le potentiel du
traitement avancé des signaux physiologiques
combiné à l’apprentissage automatique pour op-
timiser les soins néonatals.

Title: Massive data processing and explainable machine learning in neonatal intensive care
units

Keywords: Preterm, neonatal intensive care units, hyperbilirubinemia, sepsis, heart rate vari-
ability, physiological signal processing, machine learning, clinical decision support system

Abstract: Preterm infants are highly vul-
nerable to complications such as neonatal hy-
perbilirubinemia and late-onset sepsis (LOS),
which pose significant challenges in Neonatal
Intensive Care Units (NICU). Despite advance-
ments in neonatal care, early detection and ef-
fective management of these conditions remain
difficult. Based on the CARESS-Premi project
(NCT01611740), the dissertation aims to de-
velop advanced data processing techniques and
interpretable machine learning (ML) models to
enhance NICU decision-making and neonatal
outcomes, by leveraging non-invasive, continu-
ous and real-time monitoring systems.

The main contributions include: (i) an op-
timized automatic signal processing pipeline
for real-life ECG analysis tailored to NICU;

(ii) a patient-specific mathematical model for
postnatal bilirubin dynamics characterization in
preterm infants, with model parameters serving
as potential biomarkers for detecting associated
comorbidities; (iii) the knowledge-based non-
invasive bilirubin estimation using mixed-effects
ML integrating heart rate variability (HRV) analy-
sis and physiological insights; (iv) ML models for
LOS early detection using HRV analysis, prov-
ing timely alerts before clinical suspicion; (v) the
design, deployment and preliminary evaluation
of an on-the-edge clinical decision support sys-
tem (CDSS) integrating quasi-real-time signal
processing and ML models in a NICU setting.
These results demonstrate the potential of com-
bining advanced physiological signal processing
with ML to optimize neonatal care.
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