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École doctorale n◦626 École doctorale de l’Institut Polytechnique de Paris (EDIPP)
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Professeur, École Polytechnique (LMS) Examinateur

Arezki Boudaoud
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ABSTRACT IN ENGLISH

Intracellular dynamics is fundamental for cells to maintain homeostasis and re-
spond to environmental stimuli. Among these, mechanical forces can be a poten-
tial source of damage as they can compromise the integrity of the cell. To cope
with this risk, living organisms are endowed with mechanosensors, i.e. receptor
at the sub-cellular level able to trigger a biological pathway by a mechanical sig-
nal. In fission yeast, a mechanosensor, Wsc1 protein, perceives excessive stress
on the cell wall and activates the glucan synthesis to keep this layer reinforced.
More interestingly, Wsc1 concentration increases in the compressed region of the
cell wall forming clusters. This work investigates this mechanosensitive clustering
behaviour by advancing models and inference method for experimental data of
protein dynamics.
By setting a mathematical framework based on deterministic partial differential
equations, I describe the Wsc1 dynamics along the cell wall. In this model, I
consider two possible protein recruitment mechanisms for shaping clusters, either
from the sides due to diffusion along the cell wall and from the cytoplasm by
exocytotosis. Moreover, following chemical considerations, I suppose an affinity
between the cell wall and the protein that increases with the cell wall compres-
sion. The resulting reaction-diffusion equations obtained by this model are able
to reproduce the clustering behaviour after cell wall compression. In addition, the
model correctly predicts a longer time-scale of the dynamics in the compressed
region of the cell wall. This result is in agreement with the outcomes of FRAP
(Fluorescence Recovery After Photobleaching) experiment, whose analysis is based
on the study of time-lapse images that reflects the spatial-temporal concentration
of the molecule.
However, it is not clear yet if the protein recruitment is due to diffusion, ex-
change with cytoplasm, or both. For this reason, in my work I also develop a new
inference method for FRAP experiment capable of discerning different types of
dynamics. My analysis aims at quantifying kinetic parameters, such as diffusion
coefficient and exchange rate, by minimising the distance between the reaction-
diffusion model prediction and actual data. The specificity of my approach is the
use of dimensional reduction to efficiently perform computation without having
knowledge of the initial bleached profile. This new method is then tested and
validated on artificial data. The results show that this analysis is flexible since it
can work with imperfect data, where the signal-to-noise ratio is low, the number
of frames is reduced and the spatial window is restricted. Moreover, this ap-
proach can be potentially generalised to complex geometries, for instance curved
surface. This versatility is well-suited for studying protein dynamics in the fission
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yeast cell wall. The inference method is applied to experimental data of another
mechanosensor in the cell wall, Mtl2, yielding reasonable values of diffusion coef-
ficient. Nevertheless, it still needs to be tested on real data of Wsc1 protein.
Overall, this study offers novel methodologies for quantifying and understanding
intricate protein dynamics within cells and tissues.



ABSTRACT IN FRENCH

La dynamique intracellulaire des molécules est fondamentale pour que les cellules
maintiennent l’homéostasie et répondent aux stimuli environnementaux. Parmi
ceux-ci, les forces mécaniques peuvent constituer une source potentielle de dom-
mages en compromettant l’intégrité de la cellule. Pour faire face à ce risque,
les organismes vivants sont dotés de mécanosenseurs, des récepteurs subcellu-
laires capables de déclencher une voie de signalisation biologique par un signal
mécanique. Chez la levure à fission fissipare, un mécanosenseur, la protéine Wsc1,
peut percevoir une contrainte excessive sur la paroi cellulaire et activer la syn-
thèse de glucane pour renforcer la paroi. Notablement, la concentration de Wsc1
augmente dans la région comprimée de la paroi, formant des agrégats. Ce tra-
vail de thèse explore ce comportement de formation d’agrégat mécanosensible en
développant des modèles et des méthodes d’inférence pour les données expérimen-
tales de dynamique des protéines. En établissant un cadre mathématique basé
sur des équations aux dérivées partielles déterministes, je décris la dynamique de
Wsc1 le long de la paroi cellulaire. Dans ce modèle, je considère deux mécan-
ismes possibles de recrutement des protéines pour former des agrégats : soit par
diffusion le long de la paroi cellulaire, soit par exocytose depuis le cytoplasme.
De plus, en suivant des considérations chimiques, je suppose que l’affinité entre la
paroi et la protéine Wsc1 augmente avec la compression de la paroi. Les équations
de réaction-diffusion résultant de ce modèle reproduisent la formation d’agrégats
après compression de la paroi cellulaire. De plus, le modèle prédit une échelle
de temps plus longue pour la dynamique dans la région comprimée de la paroi
cellulaire, en accord avec les résultats de l’expérience FRAP (Fluorescence Recov-
ery After Photobleaching, redistribution de fluorescence après photoblanchiment),
dont l’analyse est basée sur l’étude des images en temps réel reflétant la concen-
tration spatio-temporelle de la molécule. Cependant, il n’est pas encore clair si le
recrutement des protéines est dû à la diffusion, à l’échange avec le cytoplasme, ou
aux deux. Pour cette raison, dans mon travail, je développe également une nou-
velle méthode d’inférence pour l’expérience FRAP capable de distinguer différents
types de dynamique. Mon analyse vise à quantifier les paramètres cinétiques, tels
que le coefficient de diffusion et le taux d’échange, en minimisant la distance en-
tre la prédiction du modèle de réaction-diffusion et les données réelles, en faisant
varier les valeurs des paramètres cinétiques. La spécificité de mon approche ré-
side dans l’utilisation de la réduction dimensionnelle pour calculer efficacement les
paramètres sans avoir connaissance du profil initial après photoblanchiment, dont
la forme n’est pas exactement contrôlée par les expérimentateurs. Cette nouvelle
méthode est ensuite testée et validée sur des données artificielles générées par des
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simulations. Les résultats montrent que cette méthode d’analyse est flexible, car
elle peut fonctionner avec des données imparfaites où le rapport signal/bruit est
faible, le nombre d’images est réduit et la fenêtre spatiale est restreinte. De plus,
cette approche peut potentiellement être généralisée à des géométries complexes,
telles que les surfaces courbées. Cette polyvalence est bien adaptée pour étudier la
dynamique des protéines dans la paroi cellulaire de la levure fissipare. La méthode
d’inférence est appliquée aux données expérimentales d’un autre mécanosenseur
dans la paroi cellulaire, Mtl2, fournissant des valeurs raisonnables de coefficient
de diffusion. Cependant, elle doit encore être testée sur des données réelles de la
protéine Wsc1.
Dans l’ensemble, cette étude propose des méthodologies novatrices pour quantifier
et comprendre la dynamique complexe des protéines au sein des cellules et des tis-
sus, adéquates pour mieux comprendre comment les forces mécaniques au niveau
subcellulaire peuvent affecter la mobilité des molécules.
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INTRODUCTION

Intracellular dynamics play a fundamental role in life by facilitating vital pro-
cesses involved in the maintenance of homeostasis or in response to environmental
stimuli like mechanical forces (Municio-Diaz et al., 2022). From the movement of
molecules and ions across membranes to vesicle trafficking, motion inside the cell
is fundamental in regulating many cellular activities (Buda et al., 2016; Martinac,
2004). Concerning proteins, dynamics is crucial for their proper functioning and
is intimately linked to their structure. From changes in a protein’s single con-
formation to the collective behavior of entire domains, the description of protein
dynamics can encompass a wide range of kinetics and timescales (Nam and Wolf-
Watz, 2023). To obtain quantitative insights into these biological phenomena,
new experimental techniques have recently been designed (Ferrand et al., 2011;
Lippincott-Schwartz et al., 2018). However, the data generated from these experi-
ments can be complex and present challenges in interpretation. Thus, a thorough
understanding of the underlying biological processes is crucial in order to advance
the development of models and protocols for data analysis.

In this work, conducted in collaboration with Minc’s Lab at the Institute
Jacques Monod, I present a study on the dynamics of a particular protein in
fission yeast cell wall (CW), Wsc1. The latter is considered from recent research
as a putative mechanosensor, i.e. a receptor at the subcellular level which is able to
translate a mechanical signal, in this case of stress or compression on the CW, into
a biological pathway. More interestingly, the protein seems to exhibit a clustering
behavior triggered by mechanical forces. This phenomenon is the focus of our in-
vestigation. By setting a mathematical model to describe the protein dynamics, I
would like to shed new light on the fundamental biological mechanisms underlying
this collective motion. Moreover, by the analysis of experimental data, I would
like to test the predictions of the model on the mobility of the proteins, which is
expected to be related to the mechanosensitive clustering capability of the protein.

The following manuscript is structured into four chapters.
The first two chapters review the literature. In particular, in the first chapter, I
present an overview of the various types of molecular movements within the cell
and examine the dynamic nature of molecular behavior, which can change in re-
sponse to external stimuli. Moreover, I present experimental techniques to study
intracellular dynamics.
In the second chapter, which also reviews the literature, I describe the importance
of mechanosensing, the ability of living organisms to perceive mechanical cues,
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and I present an example of protein dynamics that was recently discovered to be
sensitive to mechanical signals (Neeli-Venkata et al., 2021). This protein, Wsc1, is
localized on the fission yeast cell wall, and it can form clusters as the cell wall get
compressed. At the end of this chapter, I expose the motivations and challenges
of my PhD project.
The following chapters, 3 and 4, describe my three-year work focused on devel-
oping theoretical models and data analysis methods. These tools aim to help
experimentalists gain quantitative insights into protein dynamics and better un-
derstand the processes behind Wsc1 clustering. In particular, in chapter 3, I
present my research on theoretical modelling of Wsc1 dynamics, which further
develops the work from my master’s thesis (Lorenzetti, 2021). The mathematical
model is based on protein-cell-wall interaction and is able to predict the experi-
mental observations on Wsc1 clustering. However, the current analysis methods
are not able to test my model with FRAP experiments to discern different mech-
anisms of protein recruitment to form the clusters, either from lateral diffusion
along the cytoplasm, or by exchange with the cytoplasm, due to the absence of an
appropriate method to infer the kinetic parameters.
For this reason, in chapter 4, I develop a novel and versatile inference method on
FRAP experiment, which is able to discern the different molecule dynamics inside
the cell, even with significant experimental limitations. This method is tested
on artificial data, generated by simulations of the diffusion-exchange model, and
experimental data yielded by the Minc’s lab.
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CHAPTER

ONE

INTRACELLULAR DYNAMICS: THEORY AND
EXPERIMENTS

In this chapter, I review the literature to explore various types of molecular dy-
namics within the cell, ranging from passive transport, such as thermal diffusion,
to active mechanisms driven by molecular motors. Additionally, I illustrate the
variability of molecular behavior, including changes in chemical states and inter-
actions with cellular structures.
Afterward, I explain how molecular dynamics can be investigated using well-
established fluorescence experimental techniques. First, I outline how fluorescence
signals from molecules are emitted and detected by the associated instruments.
Then, I present an important application, Fluorescence Recovery After Photo-
bleaching (FRAP), a method used to measure the kinetic parameters of molecules.
At the end, I outline the key questions and the main challenges of this thesis.

1.1 Origins of motion

1.1.1 Diffusion

It was in 1827 when the Scottish botanist Robert Brown observed pollen grains
suspended in water under microscope. The scientist noted that the grains exhib-
ited a jittery and erratic movement, which he initially attributed to some form of
life activity intrinsic to the pollen. However, upon further investigation, Brown
observed that this motion was also present in inanimate particles, such as dust or
dead pollen, leading him to question the origin of this phenomenon.
The explanation for this seemingly random motion was not fully understood un-
til later, when Albert Einstein and Marian Smoluchowski provided a theoretical
framework (Góra, 2006; Piasecki, 2007; Renn, 2005). Based on Boltzmann’s ki-
netic theory, both scientists proposed that the random motion of particles was
the result of countless collisions between the particles and the thermally agitated
molecules of the solvent. This collision-based mechanism causes the particles to
move in a random manner.
Brownian motion is not limited to pollen grains observed by Brown, but it is
a universal phenomenon that applies to any type of particle, with wide-ranging
implications across various contexts. For example, it can describe cosmic ray dif-
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CHAPTER 1. INTRACELLULAR DYNAMICS: THEORY AND
EXPERIMENTS

fusion in the interstellar medium (Erlykin et al., 2003) or dispersion of pollutants
in the air (Sharan et al., 1996) or dissolving a sugar cube in a liquid (Ferrari and
Hubinger, 2008).
Similarly, Brownian motion is also present in biological systems, in particular
at the cellular level. In the cytoplasm, enzymes and other larger molecules are
continuously jostled by surrounding water molecules, facilitating the random in-
teractions needed for biochemical reactions to occur efficiently (Schavemaker et
al., 2018). Similarly, on the cell membrane, receptor proteins undergo Brownian
motion, allowing them to encounter signaling molecules to trigger the cellular re-
sponse (Radhakrishnan et al., 2012). In the nucleus, this type of motion is equally
vital. DNA, RNA, and various nuclear proteins move through the nucleoplasm
via diffusion. This random movement allows transcription factors to locate spe-
cific DNA sequences, RNA molecules to find ribosomes for translation, and other
essential processes to occur efficiently within the highly crowded nuclear environ-
ment (Récamier, 2013).
To characterize the Brownian motion of a single particle, as the simulated tra-
jectory in figure 1.1.1 (panel A), Einstein proposed a quantitative parameter, the
mean squared displacement (MSD), which is the average of the squared distances
between the initial and later time position. In the case of isotropic and homoge-
neous media, the MSD is linear with time as MSD(t) = 2dDt, where D is the
so-called diffusion coefficient and d the dimension of the system.
Instead, at the population level, the concentration of particle c defined as the
number of particle per solvent volume obeys Fick’s law:

J = −D∇c (1.1)

where J is the flux of particles, i.e. the number of particles that crosses a surface
per unit of time, and ∇ is the gradient operator. This means that whenever
a concentration difference appears, the random motion of particles will tend to
create a net flux of particles from the region of higher concentration to the region of
lower concentration. It is important to remark that this equation is not stochastic
but deterministic, since fluctuation in the concentration are irrelevant when the
number of particles considered is high. Examples of Fick’s law solutions coupled
with the continuity equation ∂tc = −∇ · J , where ∂t is the temporal derivative
and ∇· the divergence operator, are shown in figure 1.1.1 (panel B)
In special cases, D, which incorporates the interaction between the solvent and
the moving particle, can be directly linked with the rheological properties of the
system. For example, for a spherical particle through a liquid with low Reynolds
number, D is given by Stokes-Einstein’s relation (Cappelezzo et al., 2007)

D =
kBT

6πνr
(1.2)

where kB is the Boltzmann’s constant, T the absolute temperature, ν the viscosity
of the fluid and r the radius of the sphere.
In the biological context, a similar relation describes the diffusion of transmem-
brane proteins along the cell membrane (Saffman and Delbrück, 1975). Consider-
ing the lipid bilayer as a liquid sheet of viscosity νl, the surrounding environment
as a liquid of lower viscosity ηw and the protein as a cylindrical object of radius
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CHAPTER 1. INTRACELLULAR DYNAMICS: THEORY AND
EXPERIMENTS

R and height h, as described in figure 1.1.2, it yields the following formula

D =
kbT

6πνlh
log

(
νlh

νwR
− γe

)
(1.3)

where γe ≈ 0.577 is the Eulero constant. In this case, the dependence on the
radius is rather weak ∼ log( 1

R
). In more realistic modeling, where the effect of

crowding or membrane tension is accounted for, a behavior similar to the Einstein
relationship D ∼ 1

R
is found (Quemeneur et al., 2014; Javanainen et al., 2017).
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Figure 1.1.1: From single particle Brownian motion to the collective
behavior. Panel A: Example of 4 simulated Brownian motion trajectories (blue,
orange, green and red) with the same initial condition (0, 0). The end point is
marked by a circle. Panel B: Analytical solution of Fick’s law for the concentra-
tion of particles subjected to Brownian motion as function of the radial distance√
x2 + y2 sampled at different time. The spatial integral of the relative concen-

tration is normalized to 1. The initial concentration is a point-like source at (0, 0)
position. The diffusion coefficient was set to D = 1 µm2/s
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Figure 1.1.2: Transmembrane protein diffusion model. On the left: Fluid
mosaic model (Singer and Nicolson, 1972) where the membrane is depicted as
a liquid phospholipid bilayer with transmembrane protein inside. On the right:
Saffman’s model (Saffman and Delbrück, 1975) for computing the diffusion coef-
ficient of transmembrane protein; the latter is depicted as a cylinder of radius R,
height H and in contact with a liquid bilayer of viscosity νl and an external liquid
of lower viscosity νw

.
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To summarize, diffusion and random motion due to thermal agitation con-
tribute to motion of all molecules, such as proteins.

1.1.2 Active transport

Although diffusion plays a crucial role in cellular processes, this motion driven
only by thermal fluctuations can be too slow and inadequate for rapid and long-
distance transport (Ahmed and Saif, 2014). For example, vesicles transports in
neural cells, with a typical diffusion value D ∼ 1 µm2/s (Wojcieszyn et al., 1981),
would take several hours to cover a distance of ∼ 0.1 µm, the typical axon length,
if only diffusion contributed to its motion. Nevertheless, living systems are en-
dowed with a metabolism that produces energy in the form of ATP (adenosine
triphosphate) by breaking down nutrients and oxygen. Therefore, this "fuel" can
be exploited for active transport mechanisms, allowing cells to move molecules
efficiently (MacKintosh and Schmidt, 2010).
Molecular motors such as myosin, kinesin, and dynein are central to this process
(Cai et al., 2007; Li et al., 2018; Pilling et al., 2006). These molecular machines
can utilize the cytoskeleton, i.e., protein structures that constitute the cell’s inter-
nal framework, to efficiently transport vesicles, organelles, and other cellular cargo
within the cell. Because of the energy released by ATP hydrolysis, these molecu-
lar motors undergo a series of conformational changes that allow them to "walk"
along the cytoskeleton filaments. Kinesin and dynein exploit the microtubules,
rigid structures of the cytoskeleton, which enable long-range cargo transport. Ki-
nesin generally directs the cargo toward the cell’s periphery, while dynein moves
it toward the cell’s interior. Myosin motors operate along actin filaments, which
are flexible structures that allow, for example, for short-range transport.
Figure 1.1.3 illustrates how active transport in Aspergillus nidulans delivers essen-
tial materials to support cell growth at the tip (Taheri-Talesh et al., 2012). This
process relies on two key mechanisms: endocytosis, when materials are brought
into the cell by forming vesicles from the membrane, and exocytosis, when vesi-
cles fuse with the membrane to release their contents outside the cell. Dynein,
kinesin and myosin motors transport these vesicles along cytoskeleton, ensuring
that the necessary components reach the actively growing regions. These mecha-
nisms ensure the continuous supply and recycling of materials required for cellular
expansion.
In addition to molecular motors, other types of active transport rely on selective
channels of molecules that consume energy to move specific substances, such as
ions, across the cell membrane (Alberts et al., 2002). In passive transport, the
molecules pass through this channel according to gradient concentration, mov-
ing from an area of higher concentration to an area of lower concentration, or
by osmotic pressure, when the solvent molecules pass from an area of low so-
lute concentration to an area of high solute concentration. In active transport,
instead, the consumption of energy allows molecules to go against these gradi-
ents. An example of this mechanism occurs when the target molecule binds to the
channel, triggering ATP to supply energy for a conformational change that moves
molecules across the membrane (Cooper, 2009). This process allows the cell to
generate electrochemical gradients, i.e. differences in both the molecule concentra-
tion and the electrical charge across the membrane. This process can be essential
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for storing potential energy, which the cell can use to power various processes, such
as signal transmission or nutrient transport. For example, the sodium-potassium
pump actively transports sodium ions out of the cell and potassium ions into the
cell, creating an electrochemical gradient that is crucial for nerve impulses (Skou,
1998). Similarly, proton pumps in mitochondria move hydrogen ions across the
membrane, helping generate the proton concentration gradient necessary for ATP
production in cellular respiration (Wikström et al., 2015).
Overall, active transport is advantageous because motion can be directed, allowing
precise movement of cellular components, even against a concentration gradient
(Brangwynne et al., 2009). This enables cells to achieve fast transport over long
distances.

Figure 1.1.3: Active transport for exocytosis and endocytosis of vesci-
cles. An A. nidulans cell, where vesicles are transported by microtubules toward
the tip driven by kinesin molecules and along actin filaments by myoE, a type of
myosin. At the end, the versicles reach the Spitzenkorper, an organelle important
for morphogenesis. At this point, the vesicles fuse with the plasma membrane and
release their contents for cell growth in the cell wall, a polymeric layer. After-
wards, the cellular components are moved in retrograde direction by dynein where
they will be reused. Image taken from Taheri-Talesh et al., 2012

.

1.1.3 Chemical reaction and conformational changes

In addition to thermal agitation and active transport, the dynamics of molecules
within the cell is significantly influenced by chemical reactions. For instance, dif-
ferent species of molecules, a ligand and a receptor, can interact to form a complex
(Long et al., 2006). This interaction often results in a structure with altered mo-
bility, such as a different diffusion coefficient. For example, when a protein binds
to a specific target compound, as shown in Figure 1.1.4 (on the left), it may be-
come immobile (Ali et al., 2011). Another example of a chemical bond can derive
from protein-protein interactions, as depicted in 1.1.4 (on the right), which may
lead to the formation of clusters within the cell (Greenfield et al., 2009).
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These molecular interactions can arise from various forces, including electrostatic
interactions between ions or covalent bonds between atoms. Covalent bonds are
particularly strong, with a typical associated energy of 102 kBT (Frieden, 1975).
For this reason, these bonds are essential to maintaining the structural integrity
of biological molecules. For example, peptide bonds link amino acids together in
proteins through a covalent interaction between the carboxyl group of one amino
acid and the amino group of another. This type of bond forms the backbone of
proteins and ensures their stability (Berg et al., 2015). Another important cova-
lent interaction is the disulfide bond, which forms between the sulfur atoms of two
cysteine residues in proteins. Disulfide bonds play a critical role in stabilizing the
three-dimensional structure of proteins, particularly those that function outside
the cell, such as insulin (Qian et al., 2000).
In contrast, non-covalent interactions -such as hydrogen bonds or van der Waals
forces-are weaker, with an associated energy of the order of 1 kBT , and generally
less stable and more transient (Frieden, 1975). For example, in DNA, hydrogen
bonds hold the two strands of the double helix together by connecting comple-
mentary base pairs (adenine to thymine, and guanine to cytosine) (Alberts et al.,
2014). These hydrogen bonds are easily broken during DNA replication, allowing
the strands to separate temporarily so they can be copied. Once the process is fin-
ished, the strands re-form their hydrogen bonds. In antibody-antigen interactions,
instead, Van der Waals forces help the antibody bind to the antigen (Giannini et
al., 2011). When the antibody and antigen come close, weak transitory attrac-
tions form between their atoms, due to fluctuations in electron density that create
temporary dipoles. These interactions are short-lived, allowing the antibody to
release the antigen after it has been neutralized or marked for destruction.
It is crucial to note that interactions between molecules can be triggered by con-
formational changes in proteins, which are often induced by external stimuli or the
binding of an effector molecule (Nam and Wolf-Watz, 2023). In fact, proteins are
dynamic structures and their functions depend heavily on their three-dimensional
shape. When an external signal, such as a change in pH, temperature, or the
presence of a ligand, causes a protein to undergo a conformational change, it can
expose or hide active sites, alter binding affinities, or enable new interactions with
other molecules. These structural changes can modulate the protein’s function
and, in many cases, initiate or regulate key cellular processes. For example, in
signal transduction pathways, the binding of a hormone or neurotransmitter to a
cell surface receptor often triggers a conformational change in the receptor. This
alteration can activate or deactivate the receptor, which in turn initiates a cascade
of intracellular signaling events. G-protein coupled receptors (GPCRs), a family
of cell surface receptors, are a well-known example of this mechanism: When a
ligand binds to the GPCR, the receptor undergoes a conformational change that
activates associated G-proteins, leading to downstream effects such as changes in
gene expression or enzyme activity (Lebon et al., 2012). Another example of these
processes is allosteric regulation, where an effector molecule binds to a site other
than the enzyme’s active site, causing a conformational change that enhances or
inhibits the enzyme’s catalytic activity. This allows for precise control of metabolic
pathways, as enzymes can be regulated according to the needs of the cell (Monod
et al., 1965).
These conformational changes are essential not only for initiating specific functions
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but also for enabling proteins to respond dynamically to environmental changes,
maintaining homeostasis within the cell.

A B

Figure 1.1.4: Examples of chemical bonds. On the left: freely diffusing
molecules (in gray) form a bound (drawn with a double arrow) with a specific
target compound (in pink). On the right: freely diffusing molecules can form
bonds between each other and initiate a cluster.

.

To recapitulate, molecular dynamics inside the cell does not include only pas-
sive processes, such as diffusion, but it can be active and dynamic and change in
relation to external stimuli.

1.2 Experimental methods

After having shown the different dynamics molecules experienced inside the cell,
in the following section, I illustrate how it is possible to study these phenomena
by fluorescence experiments.

9



CHAPTER 1. INTRACELLULAR DYNAMICS: THEORY AND
EXPERIMENTS

1.2.1 Principle of fluorescence

Iex

Ina

Iem

Sample

A

B C

D

Figure 1.2.1: Principle of fluorescence. Panel A: in the classic Bohr model
for an atom, electrons (green dot) are excited by incoming light (blue arrow) and
make a transition to a ∆E higher energy state; as electrons relax to the ground
state, they emit a photon (green arrow) causing fluorescence. Panel B: on the
top it is shown the Jacobloski diagram for a GFP molecule, where different vibra-
tional energy levels (represented by lines) are drawn for three electronic energy
configurations, S1, S2 and S3; after excitation at wavelength around 490 nm (in
light blue), electrons first relax to lower vibrations states of the same configura-
tion state (in red) or close configuration (in yellow) and then to the ground state;
below is represented the absorption and emission spectrum, i.e. the intensity dis-
tribution as function of wavelength, highlighting the difference between emission
(in light blue) and emission (in green) peaks, known as the Stoke’s shift. Panel C:
Fluorescence image from U2OS cells where GFP reveals actin. Panel D: Incoming
light beam of intensity Iem which passes through the sample causing an emission
of fluorescent light of intensity Iem; Ina is the light intensity which is not absorbed
by the sample. Images are adapted from Ishikawa-Ankerhold et al., 2014, and
Carl Zeiss Microscopy GmbH, 2019.
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In the complex cellular milieu, where molecules engage in finely tuned interactions,
the ability to discern and track the movements of various components has become
essential for advancing biological models. To visualize these molecular dynamics,
scientists label target molecules with fluorescent dyes. The principle of fluores-
cence is illustrated in Figure 1.2.1 (panel A). When light of a specific wavelength
reaches the sample, the electrons in the fluorescent dye absorb this energy and
become excited, moving to a higher and unstable energy state. As the electrons
return to their ground state, a photon is emitted with a characteristic wavelength.
Consequently, following the exposure to an excitation light beam of the sample,
the emitted light yielded from the dyes allows for localization and quantification
of the labeled molecules in the sample. For example, in figure 1.2.1 (panel C)
actin cables of U2OS cells were marked with Green Fluorescent Protein (GFP), a
widespread fluorescent probe which emits green light.
To accurately represent the typical absorption and emission processes of a specific
dye molecule, one can utilize the Jablonski diagram, as depicted in Figure 1.2.1
(panel B) for GFP. The electronic states S0 (ground level), S1 and S2 (the first
two excited states) represent different configurations of electron positions. Within
each electronic state, there can be several vibrational energy levels. These corre-
spond to different ways in which the atoms of the molecule can move relative to
each other, such as by stretching or bending motions, while the electrons remain
in a particular electronic configuration. These intermediate states play a crucial
role in the transitions of the molecule. Indeed, in the case of GFP, the typical
wavelength absorbed is around 490 nm. The energy provided by the system dur-
ing this process makes the energy state of the system jump at the level S2 or
S3. However, because of fast relaxation (of the order of 10−12 s) of nonradiative
process, i.e. process that does not emit photons, the energy absorbed is partially
lost. Examples of these processes are vibrational relaxation and internal conver-
sion, if the system transits to a very close energy level yet with a different electron
configuration. Consequently, when the system returns to the ground state (with
a typical lifetime of 10−9 s), it emits a photon of lower energy compared to the
absorbed state, hence different wavelength. The difference between the emitted
and absorbed wavelength is called the Stoke’s shift, and it is characteristic of each
dye. In this way, the absorption spectrum does not overlap the emitted spectrum
(Figure 1.2.1, panel B, at the bottom). This is advantageous because the experi-
mental apparatus can more easily distinguish between absorbed and emitted light,
preventing the emitted light from being reabsorbed by the sample itself.
In order to calculate the intensity of light emitted by the fluorescence process, Iem
one should consider Iex, the exciting light, and Ina, the part of light that is not
absorbed by the sample, as depicted in figure 1.2.1 (panel D). The emitted light
Iem is in relation with the absorbed light Iex − Ina as

Iem = ϕ(Iex − Ina) (1.4)

where ϕ is the quantum yield, a number between 0 and 1, typical of the sample,
which takes into account the ratio between the emitted and absorbed photons.
Thanks to Beer’s law, the not-absorbed light can be expressed as a function of the
excited light

log

(
Iex
Ina

)
= εcx (1.5)
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where ε is the extinction coefficient, c is the concentration of the sample and x is
the mean path length of the light through the sample. From the last equation, it
is possible to arrive at the following relation

Iem = ϕIex(1− e−εcx) (1.6)

Hence, for small attenuation value (−εcx << 1), the emitted intensity of light due
to fluorescence is proportional to the concentration value as

Iem ≈ εIexc (1.7)

From this formula, in order to have higher emitted light, which may help for bet-
ter visualization, one should increase the excitation light. However, over repeated
high-light exposure, dyes lose their ability to fluoresce as a result of chemical alter-
ation. This effect is called photobleaching, and it limits the light intensity of the
experimental apparatus and the number of frames to acquire before the fluorescent
signal is completely off. Figure 1.2.2) shows this fading phenomenon for BY-2 cells
expressing GFP-MAP4, a protein associated with the assembly of microtubules.

GFP-MAP4

Figure 1.2.2: Photobleaching fading. In the figure, it is shown the photo-
bleaching fading effect, i.e. fluorescent signal loss, due to the damaged fluorescent
molecules by prolonged illumination. The sample is tobacco BY-2 cells expressing
microtubule-associated GFP-MAP4. Figure adapted from Hoebe et al., 2007.

In conclusion, fluorescence reflects the ability of fluorescent molecules to absorb
and re-emit light of a specific wavelength for a limited number of cycles. This
property can be exploited to quantify the dynamics of molecules in the cell.

1.2.2 Fluorescence microscopy

In the previous section, we described the process of fluorescence, but this sec-
tion instead focuses on the experimental equipment required to excite fluorescent
molecules and measure the emitted light.
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Figure 1.2.3: Widefield and Confocal microscope. Example of two common
microscopes for capturing fluorescent images. On the left: widefield microscope
endowed with a source of lamp (the arc lamp), filters to select proper wavelengths,
dichroich mirrors to reflect light on the specimen or on the detectors according
to the wavelength, objective lens and a charge couple device (CCD) as detector.
On the right, confocal microscope constituted of similar elements to the widefield
but with a laser beam as source of light, objective lens which focuses light only
on a small point on the sample, a pinhole which helps to block out-of-focus light
and photomultiplier tube (PMT) as detector. Image adapted from Mannam et al.,
2020.

For this purpose, several microscopes have been developed. Here, I describe
the two most common types: widefield and confocal (Merchant and Periasamy,
2008). As represented in Figure 1.2.3, the two instruments have in common the
following features:

• an illumination source at require wavelength: xenon lamps or mercury to
produce white light for the widefield microscope, while lasers for confocal;
the light of a peculiar wavelength can be selected by inserting filters in the
illumination path

• separation between emitted and excited light: for this purpose, the use of
dichroic mirror which discern light of different wavelengths and addresses it
to the detector or the sample.

• detection of the emitted light: this process is obtained by proper detector
such as CDD (charged-coupled device) cameras or PMT (photomultipliers
tubes) that capture light in an array where each pixel converts light pho-
tons into charge and then assembles this information into a digital image;
CCDs are preferred for high-quality imaging with good spatial resolution,
while PMTs are the choice for ultrasensitive detection of light, especially in
scenarios where single-photon detection is needed.
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The main difference between widefield and confocal lies in how they handle the
focus plane within the sample, i.e. the depth within the sample at which the
image is in sharp focus. Widefield microscopy illuminates the entire depth of the
sample at once, capturing images that include both in-focus and out-of-focus areas.
This often results in blurred images because of light from structures outside the
focal plane. In contrast, confocal microscopy employs a point-by-point scanning
mechanism, focusing specifically on one depth and one horizontal position at a
time, which limits image capture to the in-focus structures, enhancing clarity and
detail. However, widefield microscopy offers a faster imaging process as result of
its ability to capture the entire field of view in one exposure. This speed makes it
particularly suitable for live-cell imaging, time-lapse studies, and high-throughput
screenings where rapid data acquisition is essential. Despite its slower speed,
confocal microscopy is preferred when depth discrimination and higher resolution
are required, particularly to construct detailed three-dimensional images of thick
specimens.
As discussed earlier, the intensity of emitted light is proportional to the sample
concentration. However, due to optical system limitations such as diffraction of
light diffraction of light at the microscope’s objective lens, illumination from a
single point source experiences blurring. This blurring effect is described by the
Point Spread Function (PSF), which is characteristic of each optical device, as
shown in Figure 1.2.4. Typically, the PSF can be approximated by a Gaussian
function with a specific width. Consequently, the measured signal intensity Iexp at
any given pixel is the result of the convolution between the sample concentration
and the PSF.
Furthermore, the signal is affected by a background value which is not related
with the sample concentration, and technical noise, i.e. fluctuations of the signal
due to the experimental apparatus.
The background can be derived from natural fluorescence of untagged molecule
in the field of view, non-specific binding of fluorescent dyes, from scattering of
environmental light and electronic component of the detector.
The principal sources of noise, instead, arise from two primary processes. The
first is photon shot noise, which is associated with the statistical distribution of
detected photons and adheres to Poissonian statistics. The second source is read-
out noise, which originates from the electronic components of the detectors and
follows a Gaussian distribution.
To wrap up, fluoresce signal emitted by dye molecules can be quantified by the
detector of the microscope and convert it as an image. However, the experimental
device introduces errors that should be accounted for in the theoretical model of
the experimental data.
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Point-like Object

Imaging System

Point Spread Function

Figure 1.2.4: Point Spread Function. The figure illustrates how a point-
like object is transformed into a point spread function (PSF) through an imaging
system. The left panel represents the original point-like object, which is a source
of light that would ideally appear as a single bright point. After passing through
the imaging system, the point-like source is blurred into a PSF, as shown in the
right panel. The PSF describes how an imaging system spreads the light from a
point object over a region of space due to optical limitations.

1.2.3 Applications

To study the mobility properties of the molecules, it is possible to resort to fluo-
rescence microscopy, as previously explained. In this manner, the tagged molecule
is attached with a fluorescent dye and the intensity of the signal be recorded by
the experimental device.
Different applications are possible, depending on the variable of interest and on
the temporal and spacial scale. Singular particle tracking (SPT) is an experi-
mental method to compute the MSD of the trajectory of single particles inside
the cell. From this parameter, it is possible to discern different dynamics, such
as random or oriented motion. However, tracking a single molecule can be very
complex since the diffraction spots of different molecules could overlap. Another
possibility is the fluorescence correlation spectroscopy (FCS) experiment, where
the illumination is focused on a tiny spot, less than 1 µm3. Since the focal volume
is very small, the number of molecules going into and out of this area is limited and
subject to concentration fluctuations. From the analysis of this value, it is possi-
ble to extract mobility parameters. High correlation between images at different
temporal instants highlights a slow mobility, while a low correlation is related to
slower mobility.
However, if one is more interested in studying the dynamics at a larger scale
(more than 1 µm), one should resort to Fluorescent Recovery After Photobleach-
ing (FRAP). The protocol, as depicted in figure 1.2.5, consists in exploiting the
fluorescent property of a target protein molecule or labeling it with a fluorescent
tag. Then, a small area of the sample is bleached using a high-intensity laser, caus-
ing the near-total fading of the signal in that area. Afterward, the fluorescence
intensity of the damaged region of interest is monitored over time. The faster
the motion, the shorter the time the signal takes to recover within the bleached
region. So, from the analysis of the signal, it is possible to deduce the movement
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of fluorescent molecules into and out of the bleached spot.
To extract quantitative information about protein dynamics, the signal within the
initial bleached region is averaged and plotted as function of time. From the curve,
it can be extracted the characteristic time of the recovery, from which the diffusion
coefficient depending on the size and on the shape of the bleaching. For example,
if dynamics is described by diffusion and the FRAPped area is a circle of radius
r, the diffusion constant is given by

D =
r2

4τ1/2
(1.8)

where τ1/2 is the half-recovery time, i.e. the time at which the signal is equal
to IB + I∞−IB

2
, with IB the signal after initial bleaching and I∞ the signal once

it reaches a stationary state. Beyond this quantitative approach based on the
timescale of recovery, a universal method to discern dynamics of the cell, diffusion,
active transport and chemical reaction is still an object of research. Moreover,
the low signal-to-noise ratio, high photobleaching, restricted spatial and temporal
window makes it challenging to extract kinetic parameters from data. For this
reason, in chapter 4, I work on a novel inference method that can fix these issues.

High intensity irradiation

Time

Figure 1.2.5: Cartoon of FRAP experiment. Pictorial representation of
FRAP experiment, where a region of interest (ROI) is irreversibly photobleached
by a high intensity laser. Due to surrounding molecules movements, the fluorescent
signal (in green) in the bleached region recovers over time. Figure adapted from
Ishikawa-Ankerhold et al., 2014.

In conclusion, fluorescence microscopy enables monitoring of the spatiotempo-
ral evolution of a molecule’s concentration by exploiting the property of molecules
to absorb and emit light. Among the various applications of this technique, FRAP
is particularly effective in quantifying the system’s kinetic parameters. However,
data interpretation is challenging due to contamination by experimental artifacts
such as photobleaching during imaging, limited resolution, and high noise levels.

In this chapter, I have shown how molecular motion within the cell can vary
and be influenced by external factors, and I described how this behavior can be
studied experimentally. In the next chapters, I focus on a specific protein, Wsc1,
whose motion has been recently proved to be sensitive to mechanical signals.
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CHAPTER

TWO

WSC1 PROTEIN AS FISSION YEAST
MECHANOSENSOR

This chapter reviews literature to introduce the study of a protein in fission yeast,
Wsc1, a receptor capable of perceiving mechanical variations in the cell wall and
activating a response to preserve cell integrity. After discussing the ubiquitous
nature of mechanical stimuli in biology, I explain the concept of mechanosensing,
the ability of living systems to detect mechanical signals. Afterwards, I describe
models that illustrate how mechanical forces may be sensed by subcellular recep-
tors, such as membrane channels, whose opening is sensitive to membrane tension.
Next, I present mechanosensing in the cell wall of fission yeast. In particular, I
focus on the Wsc1 protein, which has been observed in recent experiments to form
clusters in the compressed region of the cell wall. Moreover, performing FRAP
experiments, researchers measured a lower protein mobility in the cluster region.
These pieces of evidence will drive my work in developing a model for protein
dynamics exhibiting a clustering behavior.

2.1 Introduction to mechanosensing

2.1.1 Mechanical forces in biology

Living systems experience a myriad of mechanical stimuli, including compressive,
shear, and tensile stresses (Mishra et al., 2022). These processes involve forces
that push or pull directly on a surface or that act parallel to the surface, caus-
ing deformations and friction, as seen when cells navigate narrow channels like
red blood cells in capillaries (Secomb et al., 2001; Skalak and Brånemark, 1969).
The stresses can occur when a surface is stretched or pulled, such as in biological
membranes under tension (Sitarska and Diz-Muñoz, 2020). These forces can de-
rive not only from the external environment, e.g. the contact with a subtract or
the fluid they are surrounded by, but also from inside the organism, for instance
an internal pre-stressed pattern due to the shape and the geometry (Hamant and
Haswell, 2017).
From the macromolecule scale up to molecular organism level, forces in biology
can span different range of magnitudes (Prabhune et al., 2017). A molecular
motor, such as myosin II, can exert a force of the order of the pN by ‘walking’
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Figure 2.1.1: Different range of mechanical forces in biology. The arrow
spans different force scales (expressed in Newton [N]) varying from pico N up to
1N. From left to right, the systems considered are: a molecular motor (at the top)
acting on microtubules (at the bottom), the action of multiple molecular motors on
spindle fibers (green) to separate the chromosomes (purple), cell junction (green)
to separate two cells, contracting muscle and the load of a leaf on an ant. The arrow
highlights the direction of the forces. This figure was adapted from (Prabhune et
al., 2017)

on cylindrical structure made of proteins, the microtubules. During cell division,
the action of multiple molecular motors on organised microtubules, the spindle
fibers, can generate a force able to segregate the chromosomes of two cells. Differ-
ently, cells within tissue can form junctions made of proteins such as E-cadherins
that are able to transmit forces of the order of 100 pN. If we look broader, the
muscle contractions can free a contractile force between micro and milli Newton
(Vesga-Castro et al., 2022). To compare these values with something more close
to everyday experience scale, leaf-cutter ants, Atta cephalotes, can load a weight
10−1/1 N which is approximately 9 times their body weight (Segre and Taylor,
2019).
Overall, mechanical forces play an important role in many biological activities, for
instance cell migration, proliferation, morphogenesis, cell polarization, cell adhe-
sion and so on. As an illustration in ‘On growth and Shape’ (Thompson., 1917) it
is shown how the shape of the cell can be set by diagram forces with many analo-
gies with the physics of bubbles. However, particular hostile physical properties
of the microenviroment can lead to many diseases (Verbruggen, 2018).
For this reason, the study of how physical forces can regulate complex living sys-
tems is a growing field.

2.1.2 Definition and examples

Mechanical forces are non-uniform and dynamic as they change in space and in
time, constituting a potential source of damage. In fungal cells, the internal tur-
gor pressure is born by a rigid layer around the membrane, the cell wall. During
growth, the balance between the cell wall tension and this internal stress sets the
shape of the organism. However, since the pressure is very high, local defects
in the cell wall composition may not withstand this force. So at certain points,
excessive stress on the cell wall can lead to cell bursting (Davì et al., 2018, 2019).
For this reason, an active response of the system to mechanical stimuli is required.
This characteristic is shared with all living systems. In P. aeruginosa, a type of
bacteria, detection of stiffer substrate rigidity promotes the transition from liv-
ing as free-floating, individual cells (called planktonic) to growing together in a
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Figure 2.1.2: Example of mechanosensor models. On the left it is shown
the operating principle of a mechanosensitive channel, representing in red arrows
the tension which causes the opening of the channel. On the right, instead, the
two-spring model where the molecular motor is colored in red. The latter applies
on average a force dependent on the equivalent elastic constant of the whole sys-
tem keq = ( 1

KECM
+ 1

CY T
)−1, with kECM/kCY T the elastic constant of the ECM/cy-

toskeleton. Instead, the biomolecular bond, responsible for the downstream signal,
opens with rate r, dependent on < F >.

dense, sticky group attached to a surface (called a biofilm) (Straub et al., 2019).
In Arabidopsis, a small flowering plant, experimental evidence demonstrates that
root network growth alters its direction in response to the detection of a physical
barrier (Monshausen and Gilroy, 2009). In animal stem cells, mechanical cues are
important to influence the cell identity and gene expression (Ferrai and Schulte,
2024).
From this perspective, mechanosensing refers to the ability of cells—or smaller
scale components—to detect mechanical cues in their microenvironment, such as
stress, strain (deformation), or other mechanical properties like substrate adhesion
(Y. e. a. Chen, 2017). These mechanical signals are then transduced into biolog-
ical pathways (mechanotransduction), i.e. a series of actions among molecules in
a cell that leads to a specific product or change within the cell, i.e. a series of
interconnected molecular events within a cell that lead to a specific outcome, such
as a sequence of chemical reactions or an electrical signal.
Numerous mechanosensing mechanisms have been investigated in recent studies
(Orr et al., 2006; Rodicio and Heinisch, 2010). The prevailing idea is the identi-
fication of putative mechanosensors at the microscopic scale, typically receptors
that are sensitive to mechanical signals. For example, mechanical forces can al-
ter the energy landscape of a protein, leading to a conformational change. The
mechanosensor then transduces the mechanical signal into a downstream chemical
signal. Ultimately, the integration of signals from multiple sensors, whether at
the subcellular level or on a more global scale (tissues, organs), orchestrates the
system response (Fruleux et al., 2019).

2.1.3 Review of mechanosensing models

In this section, I will explore key examples of biological mechanosensing systems
studied so far and discuss how the dynamics of mechanosensors can be modeled.
One of the most studied systems sensitive to mechanical signals are the mechanosen-

sitive channels (MSC), which are present along the membrane of the cell in different
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domains of life, such as bacteria, fungal cells and plants (Municio-Diaz et al., 2022).
When the membrane is stretched, the resulting tension is directly transmitted to
the channel (Martinac, 2004), facilitating its opening and thereby promoting the
flux of ions, as shown in figure 2.1.2. MSCs are crucial for managing sudden hy-
poosmotic shocks. If a large influx of water enters the cell, the resulting swelling
can rupture the cell wall (the bacterial envelope). Activating these channels helps
the organism stabilize osmotic pressure and prevent cell damage.
Different models are proposed to describe this phenomenon, depending on the scale
of interest. By examining a single mechanosensitive channel, its energy landscape
can be modelled based on its interaction with the cell membrane (Wiggins and
Phillips, 2004, 2005). When mechanical force is applied, the equilibrium confor-
mation—determined by the minimum of free energy—shifts from the closed state
to the open state. To study cooperative effects and the emergence of collective
behavior of the channels -important to temperate the answer of the system- a
lattice gas-like model can be analysed (Fernandes et al., 2017). A basic model
can be introduced by representing the membrane as a two-dimensional lattice. In
this framework, each position on the lattice can be occupied by a channel that
exists in one of two states: open or closed. The interaction between the channels
depends on their state. In this manner, the statistical-mechanics approach can be
exploited to understand under which condition the formation of clusters of chan-
nels is possible, as observed in experiments. To achieve more realistic models, it is
beneficial to consider a coarse-grained approach at the molecular scale (Paraschiv
et al., 2020), where a single channel is divided into various sub-units with distinct
chemical properties, resulting in different interaction behaviors. Although analyt-
ical studies become impractical in this scenario, simulations can be employed to
obtain results.
To describe only the downshock water and solute transport across the membrane,
a continuum model (Buda et al., 2016) can be set. In this model, the dynamics,
set in partial differential equations, is driven by the chemical potential difference
inside-outside of the cell considering the stress stiffening properties of the cell wall.
Channels are open only if volume exceeds a threshold, whose value, however, is
not easy to determine for each channel because it must consider the effect of the
interactions between them.
Another interesting mechanosensing model of study is focal adhesion, i.e. large
macromolecular assemblies that form mechanical links between the cytoskeleton
and the extracellular matrix (ECM) and drive cell locomotion. This complex can
grow anisotropically in the direction of the stress (Nicolas et al., 2004) and it is also
susceptible to the mechanical properties of the surrounding. The two-spring model
proposed by Schwarz et al. (Schwarz et al., 2006) explains how these mechanon-
sensors can be sensitive to the stiffness of the environment. Indeed, if the theory
of elasticity is applied, ECM and cytoskeloton are modelled as two springs in se-
ries, as in figure 2.1.2. The internal state of the focal adhesion is represented by
a biomolecular bond whose open probability is described by stochastic equations,
whose rates depend on the force. When a molecular motor, myosin II, exerts a
force, it feels the equivalent spring constant of the whole system, and it would
exert a lower to higher mean force during its application on a softer stiffer spring.
Then, since bond’s breaking rate, responsible for the downstream signal, depends
on the force, the information about the stiffness of the environment can be di-
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Figure 2.2.1: . Schematic and electron microscopy image of the fission
yeast cell wall structure. The left panel illustrates the cell wall composition,
highlighting the major polysaccharide components: galactomannan (9-14%), α-
glucan (28-32%), β-(1,3)-glucan, and β-(1,6)-glucan (54-60%) (Pérez et al., 2018).
The right panel shows a transmission electron microscopy image of a fission yeast
cell, with internal pressure P (turgor) which exerts force on the cell wall (indicated
by the arrows)

rectly perceived by the cell. Afterwards, focal adhesions are reinforced where the
ECM is stiffer and consequently guide the movement of the cell, as experimentally
observed.
In the latter example, chemical reactions are described by a probabilistic agent-
based model. However, for large system the deterministic treatment and con-
tinuum models are a good approximation. Ali et al. (Ali et al., 2011) propose a
method to couple mechanics with chemistry by focusing on the clustering behavior
of integrin, an allosteric transmembrane protein involved in cell adhesion. Their
main assumption is that once the protein becomes active and binds to the extra-
cellular matrix, the molecule loses its ability to diffuse along the cell membrane.
To capture this behavior, they develop reaction-diffusion equations with rates de-
pendent on the activator field, in this case the strain. This framework enables
mechanical signals to regulate integrin binding to the ECM, leading to increased
protein density in regions where force is applied.

2.2 Mechanosensing in fission yeast

2.2.1 Fission yeast as model organism

After having highlighted the importance of studying mechanosensing in living
system and having shown some examples, in this section I explain the choice of
investing these phenomena in our model organism S. Pombe, also called fission
yeast. As I explain in section 2.1.2, these mechanisms are vital during morpho-
genesis to ensure the homeostasis of the organism during its expansion (Davì et
al., 2018), i.e. a self-regulating process to maintain the mechanical integrity of
the cell wall (CW). Fission yeast is a unicellular fungus with a rod-like shape.
It is endowed with a stereotypical tip growth, and it elongates from 7 to 14 µm
with a constant diameter of about 4 µm (Davì and Minc, 2015). Experimental-
ists chose this model organism for mechanosensing studies for different reasons.
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Firstly, differently from animal cells, the source of forces is limited and restricted
to turgor pressure and external constrains, hence reducing the possible source of
stress (Hamant and Haswell, 2017). Then, genetically it is easy to manipulate;
hence one can produce mutants with defective functions that we are interested in
to analyze. Furthermore, only two mechanosensors have been found so far, hence
with a low-number of particle species in possible models. Yet above all, it allows
for sub-resolution imaging techniques which are able to study the dynamics of the
cell-wall thickness (Davì et al., 2019).

2.2.2 Cell wall

Fission yeast, as a fungal cell, is endowed with a stiff polymeric rigid layer encasing
the membrane, the cell wall. The CW is made of reticulated polysaccharides,
e.g. glucan, chitin and mannans, and proteins (in figure 2.2.1 it is shown the
composition for the fission yeast). It plays a structural role similar to the actin
cortex in animal cells, but it withstands significantly higher internal pressure,
called turgor pressure. The balance with this force determines the shape of the
fission yeast cell (Davì et al., 2018). CW has a high Young’s modulus (of about 10
MPa) since it must cope with the elevated turgor pressure, which reaches values
of about 106 Pa. The CW thickness, which is about 100 nm, varies during its
growth, due to the strain caused by its own expansion. This thinning is perceived
by the cell and then properly compensated with a glucan production increase
to reinforce the cell wall itself. Thanks to this positive feedback, it is possible
to observe fluctuations of cell wall thickness overtime without reaching too low
values which would lead to cell lysis, i.e. the cell wall rupture. This ensures the
mechanical homeostasis of the cell wall. Mutants which are defective in performing
this response, have lower probability to survive.
Cell wall is usually described by continuum mechanics-based mathematical models
(Julien, 2015). The most accepted description is given by the Lockhart’s model,
in which CW acts as a viscoelastoplastic material (Fruleux et al., 2019). Above
a certain threshold of stress, it can irreversabily deform, yet below that value it
behaves like an elastic material.

2.2.3 Mechanosensors in fission yeast cell wall

Mechanosensing in fission yeast is crucial for maintaining cell integrity, especially
during growth, when the cell wall risks excessive thinning during its expansion.
To avoid damages, it is fundamental for the cell to be endowed with mechanosen-
sors along the cell wall capable of activating the cell wall synthesis to reinforce
this layer (figure 2.2.2, left panel). Research by Cruz et al. (Cruz et al., 2013)
identified two putative mechanosensors in fission yeast involved in this process:
Wsc1 and Mtl2. Using genetic techniques to cultivate yeast cells lacking Wsc1
or Mtl2, the study analyzed how these modified cells responded to environmental
stresses, such as osmotic shock or antifungal drugs affecting the integrity of the
cell wall. Without Wsc1 or Mtl2, cells exhibited lower glucan synthesis production
and decreased viability under cell wall stress conditions compared to wild type.
The higher sensitivity to environmental changes underscores the role of Wsc1 and
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Figure 2.2.2: Wsc1 and Mtl2 protein as mechanosensors. The left panel
shows a mechanosensor in the cell wall (in pink), such as Wsc1 or Mtl2 protein,
that after a mechanical stimulus (stress or strain), stimulates the glucan synthesis
to reinforce the cell wall. On the right panel instead, it is exposed the structure of
the Wsc1 and Mtl2 protein. Wsc1 is composed by the head (in orange) which is a
cystein-riched domain (CRD), also called Wsc domain, then the serine-threonine
riched (STR) domain which behaves like a nanospring, the transmembrane domain
(TMD) and the cytoplasmic tail. Mtl2 protein shares the same structure but with
an N -glycosylated asparagine as head group (in yellow).

Mtl2 in detecting and responding to potentially dangerous mechanical stimuli on
the cell wall.
Wsc1 and Mtl2 belong to two major families of single-pass transmembrane pro-
teins, respectively, the Wsc (Wall Stress Component) and MID-type (Mating-
Induced Death) families, which are conserved among yeasts. Experiments have
confirmed that these proteins activate the Cell Wall Integrity (CWI) pathway.
This pathway is triggered by a signaling cascade initiated by surface receptors
and promotes the expression of genes for cell wall synthesis and repair, strength-
ening the cell wall and enhancing resistance to environmental stress (Municio-Diaz
et al., 2022).
The WSC and MID sensors share a similar structure (figure 2.2.2, right panel):
a cytoplasmic C-terminal tail for downstream signaling, a single transmembrane
domain (TMD), an O-mannosylated serine/threonine-rich (STR) region and a
head group. Within the WSC family, the head group includes a conserved WSC
cysteine-rich domain, while in the MID family, an N -glycosylated asparagine head
group is present. These WSC cysteine-rich domains are part of the C-type lectin
family, allowing them to bind carbohydrates via multiple weak interactions (Kock
et al., 2015; Oide et al., 2019; Wawra et al., 2019). Atomic force microscopy
studies derived from S. cerevisiae Wsc1 and Mid2 STR regions have shown that
these domains behave like nanosprings, expanding linearly in response to applied
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Wsc1-GFPMtl2-GFP

Figure 2.2.3: Wsc1 and Mtl2 protein distribution in fission yeast. Fluo-
rescence microscopy images showing the localization of Mtl2-GFP and Wsc1-GFP
in fission yeast cells. While Mtl2 concentration is homogeneous around the cell,
Wsc1 concentration is more peaked at the cell tip. Figure adapted from Cruz
et al., 2013.

force (Dupres et al., 2009). Studies on mutants with defects in this domain sug-
gest that the STR region is essential for the effective transmission of mechanical
signals downstream.
In fission yeast, Wsc1 and Mtl2 show distinct localization patterns within the cell
(Cruz et al., 2013), as shown in fluorescent microscopy images in figure 2.2.3. Wsc1
is concentrated at the cell tips, whereas Mtl2 is distributed more homogeneously
throughout the cell wall. This differential localization suggests specialized roles for
each sensor. Wsc1’s concentration at the cell tips enables it to detect and respond
to intense, localized stress associated with cell growth, making it ideal for reinforc-
ing cell wall biosynthesis under extreme conditions. Mtl2’s broader distribution,
on the other hand, allows it to sense and respond to a range of environmental
stresses, providing a generalized protective mechanism across the cell (Cruz et al.,
2013).

2.3 Wsc1 clustering behavior

Besides its capability to activate the glucan synthesis and reinforce the cell wall
under stress condition, recent experiments in Wsc1 show that the protein is able
to form clusters in the compressed region of the cell wall (Kock et al., 2015;
Neeli-Venkata et al., 2021). This behavior, which is also common to other surface
receptors, such as integrin in focal adhesion (see section 2.1.3), could be useful
for the cell to enhance the capacity of large-force-detection and reduce noise sen-
sitivity to single-molecules fluctuations (Municio-Diaz et al., 2022; Neeli-Venkata
et al., 2021).
In this work, I want to understand what drives this phenomenon.
In particular, my study considers the experimental outcomes from the Minc’s lab,
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Figure 2.3.1: Wsc1-GFP Enrichment at Cell-Cell Contacts in Mi-
crochannels. Yeast cells expressing Wsc1-GFP were observed growing aligned
within microchannels. The left panel presents time-lapse fluorescence images show-
ing the initial formation of cell contact (0’) followed by clustering of Wsc1-GFP
signal at the contact site at later time points (24’ and 53’), indicated by yellow ar-
rows. The right panel illustrates the Wsc1-GFP signal enrichment (ratio between
the Wsc1 signal in A.U. and a reference signal value at the cell side) over time
(in minutes) at the contact site for three different cells (marked by three different
colors for the curve). Image taken from Neeli-Venkata et al., 2021.

which are exposed in the article by Neeli-Venkata et al. (Neeli-Venkata et al.,
2021). In this work, experimentalists were able to cultivate cells in microchannels,
as seen in figure 2.3.1 (left panel). As cells grow and are in contact, the internal
pressure that causes the cell to expand exerts a compressive force on the neighbor
cell. Following this mechanical stimulus on the cell wall, a clear cluster of the
protein appears, as proved by the fluorescent signal enrichment (figure 2.3.1, right
panel). Moreover, when the neighbor cell pressure is reduced by laser ablation,
the cluster disappears with the same timescale. Hence, not only can the Wsc1
cluster form, but they are also reversible once stress is released. The same result
of cluster formation and disassembly is observed with tip-to-tip contact in mating
cells, i.e. cells that are preparing to fuse.
By labeling two transmembrane proteins in contacting cells with fluorescent mark-
ers (Wsc1-GFP and Psy-mcherry) at their cytoplasmic tails and measuring the dis-
tance between their signals (figure 2.3.2, top-left and top-right panel), researchers
could track both the signal intensity of Wsc1 and the thickness of the cell wall
during compression (figure 2.3.2 bottom panel). This plot reveals a clear trend
between these two quantities. Indeed, the higher the compression of the cell wall,
the higher the signal from Wsc1 is.
Further investigations by Neeli-Venkata et al. were conducted on various mutants,
defective in structural components of the protein or on other possible auxiliary
molecules in this process. From this study, it emerges that Mtl2 protein does
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Figure 2.3.2: Wsc1-GFP signal and cell wall thickness. On the top-left
and top-right panel, it is shown the experimental technique to measure the cell
wall thickness. By labeling two transmembrane proteins -Wsc1 with GFP and
Psy1 with mCherry fluorescent molecules-in two cells in contact, it was possible
to measure the distance between the two apposed cell wall. On the right panel, it
is plotted the Wsc1-GFP signal as a function of the cell wall thinning relative to
the thickness at rest (150 nm) supposing the thickness to be half of the distance
of two apposed cell walls. The different colors represent three different phase
acquisitions: during growth (compression), after laser ablation (relaxation) and
during mating. The squares are bins of 10 individual measurements, with error
bars representing standard deviations. Figures adapted from Neeli-Venkata et al.,
2021
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Figure 2.3.3: Wsc1 protein FRAP experiment. On the left panel, it is shown
different images for FRAP experiment with Wsc1-GFP protein on free cells tips
at different time t = −30 s, t = 0 s, t = 30 s, t = 210 s, with laser photobleaching,
at t = 0 s. On the right, the average signal inside the bleached region is plotted as
function of time. The error bar represents the mean and standard deviation (SD)
for 28 free cells tip (in dark gray) and 27 compressed cells tips (light gray). The two
dotted curves correspond respectively to a single exponential fit of experimental
data, yielding an average half-recovery time of τ1/2 = 188.7 ± 117 s(mean ± SD)
for free cell tip and τ1/2 = 457.3± 479 (mean ± SD) for compressed cell tip. The
scale bar represents 2 µm. The figure is adapted from Neeli-Venkata et al., 2021.
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not play a substantial role in the clustering mechanism since defective mutants
on this protein conserve the cluster formation capability. In mutants with defects
in the cytoplasmic tail, the clustering capability was preserved, even if there is
no downstream chemical signals for the cell wall synthesis. This suggests that
clustering is independent of this signaling process. Furthermore, by significantly
inhibiting the exchange with the cytoplasm mechanism, the protein distribution
becomes more homogeneous around the cell, but it retains the clustering capabil-
ity. This result may suggest that the clustering behavior is independent on the
polarity mechanism, which maintains the Wsc1 concentration peaked at the cell
tip. Remarkably, from these experiments, it appears that the most interactive re-
gion responsible for clustering is the Cysteine-Rich Domain (CRD), since defective
mutants of this protein component do not exhibit the clustering behavior. Follow-
ing author’s consideration, CRD may bind to polysaccharides in the cell wall at
a rate dependent on mechanical stress or strain. This increasing interaction may
trap the molecules and reduce its diffusivity, causing the formation of a cluster.
To test this reduced-mobility hypothesis, researchers performed FRAP experi-
ments (Figure 2.3.3, panel A). As a result, regions under compression exhibited
slower diffusion, as indicated by a longer recovery time for this protein. This is
proved by Figure 2.3.3 (panel B), where the recovery curve in the compressed
region shows an extended half-recovery time.

In conclusion, sensing mechanical cues from its microenvironment is vital for
the cell. For this reason, living organisms are endowed with receptors at the sub-
cellular scale, called mechanosensors, which are able to perceive mechanical cues
and activate a system response. One such mechanosensor in the fission yeast cell
wall is Wsc1. In particular, this protein exhibits mechanosensitive clustering be-
havior, i.e., it increases its concentration in the compressed region of the cell wall.
Interestingly, the head the protein embedded in the cell wall is essential to conserve
this clustering behavior and from chemical considerations, this component of the
protein may interact with the cell wall molecules. Moreover, FRAP experiments
highlighted a slower dynamics of this protein in the compressed region.

2.4 Questions and challenges in this thesis

The focus of my work is to develop and test mathematical models with experi-
mental data in order to understand the causes of the Wsc1 clustering behavior
which is sensitive to mechanical cues.
In particular, I would like to investigate the possible interaction between the pro-
tein and the cell wall. Indeed, if compression may increase the polysaccharides’
concentration around the protein and consequently enhance the protein-cell-wall
binding, I wonder if this increased interaction is able to trigger the clustering be-
havior observed in the experiments.
Several challenges arise in this endeavor, primarily due to the complexity of the
cellular environment. Cells are crowded, dynamic systems where numerous in-
teracting factors can influence molecular motion, making it difficult to pinpoint
which actors are essential to the process and which may be unnecessary. For
example, Wsc1 may be transported from the cytoplasm to the cell wall, diffuse
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along this layer and activate mechanosensing signal pathways. As seen from ex-
periments, not all these processes are fundamental for clustering. For this reason,
it is essential to disentangle the different molecular mechanisms and quantify each
contribution. In this study, I would like to keep a parsimonious approach building
a minimal-ingredient model which is consistent with the experimental results on
Wsc1 exposed in section 2.3.
However, data used to test the models are often imperfect, subject to measurement
errors, experimental bias and other limitations. Time-lapse videos from FRAP ex-
periment on Wsc1 are particularly noisy, with a low spatial resolution compared
to the cell size and with a significant photobleaching during imaging. Therefore,
classical analysis based on the mere information about the characteristic time of
recovery are not sufficient to discern the different dynamics inside the cell. Hence,
besides modeling in this project I develop a flexible inference method which could
potentially well-fit the experimental conditions for Wsc1 and gain more informa-
tion about its dynamics.
In the next two chapters, I first present a model able to reproduce the clustering
behavior and justify a slower dynamics timescale in the compressed region of the
cell wall. Afterwards, I present an inference method for FRAP experiment able
to estimate all the parameters of the model.
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MODELLING WSC1 MECHANOSENSITIVE
CLUSTERING

In this chapter, I present a mathematical model for the clustering behavior of
mechanosensitive proteins, specifically for Wsc1 but adaptable to other systems as
well. To achieve this, I will translate experimental observations into a set of partial
differential equations (PDEs) that describe the evolution of protein concentrations.
In particular, I would like to test the hypothesis suggested in the Neeli-Venkata’s
article (Neeli-Venkata et al., 2021) for which the interaction between the protein
and the cell wall is enhanced by compression and leads to clustering. Initially,
I will outline the problem’s geometry, the various particle species involved, the
relevant chemical reaction rates and the different mechanisms of protein recruit-
ment. Subsequently, I will analyze the resulting reaction-diffusion equations and
compare the predictions with experimental data. In particular, I focus on the
relation between the different parameters, e.g. concentration, diffusion, and cell
wall thickness.

3.1 Building the model

3.1.1 Geometry of the system

Firstly, it is essential to address the spatial domain of the system. Specifically,
the protein Wsc1 is a cylindrical transmembrane protein with part of its domain
embedded in the cell wall. Therefore, I can use the cell wall as a reference for
the protein position and I can describe the protein concentration evolution with
respect to this layer. In particular, we focus on the cell tip, which is the region
where most of the Wsc1 experiments occur. Within this area, the cell wall layer
can be approximated as a 2-dimensional curved surface (Abenza et al., 2015), as-
suming that the dynamics in the direction orthogonal to the cell wall is negligible.
This approximation is reasonable given that the cell wall is sufficiently thin (∼ 100
nm) relative to the cell tip radius (∼ µm).
However, to maintain computation simpler and analytically tractable, I develop
the model in a 1D flat geometry. This approximation can be fit with experiments
where the cell tip is flattened by contact forces and the concentrations vary mostly
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along one direction. Nevertheless, beyond these scenarios, too simple geometry
approximation can lead to an overestimation or underestimation of dynamical
parameters. For instance, diffusion on a 2D curved surface tends to be underesti-
mated when modeled as a 2D flat surface. Nevertheless, it is fair to assume that
such scaling factors are not critical for understanding the clustering behavior.
Consequently, the investigation of more complex and realistic geometries will be
reserved for future works.
For notation, I indicate the x-axes direction tangential to the cell wall and I
suppose that the spatial domain is sufficiently big to consider the infinite space
approximation, where dynamics does not feel the effect of the boundaries.

3.1.2 Assumptions on protein dynamics

In this section, I describe the assumptions on Wsc1 dynamics.
Following the experimental consideration that the head of Wsc domain can interact
with the polysaccharides of the CW, I suppose that the proteins can be found
in two possible states: bound or unbound to the CW. Denoting with cu/b the
concentration of bound/unbound proteins, the total density of Wsc1 proteins is
given by ctot(x) = cu(x)+ cb(x). The exchange of particles between the two states
is defined by the following chemical reaction

U
kon

koff
B (3.1)

In this case, kon is the binding rate, by which unbound particles get bound to the
cell wall, while koff is the constant which regulates the inverse process.
Moreover, since the link with cell wall components is supposed to be weaker,
unbound proteins are free to move laterally along the cell wall with a lateral
diffusion constant D, while bound proteins are trapped by the polysaccharides
network and do not diffuse. Coherently with the previous section, I neglect all
other degrees of freedom, e.g. rotational diffusion.
Furthermore, I account for an homogeneous influx of proteins from the cytoplasm
with an intensity α (representing exocytosis). This corresponds to the assumption
that cytoplasmic concentration is constant near the cell surface. Conversely, I
assume that unbound proteins are recycled via endocytosis at a rate of β per
protein.
The combined effects of these factors are illustrated in the model shown in Figure
3.1.1, where the unbound proteins (in pink) can laterally diffuse along the CW
and be exchanged with the cytoplasm, while bound proteins (brown) are fixed.

3.1.3 Mechanosensitive binding

Although the dynamics of Wsc1 are not described in the direction orthogonal to
the cell wall, the information about the thickness of the cell wall can be incorpo-
rated into a spatial field, defined as the compression profile. In this model, the
compression profile is represented by the function h(x) : R → [0, H], which quan-
tifies the variation of cell wall thickness at each point x ∈ R in space, relative to
a CW thickness at rest H. At the same time, I can define the relative thinning of
the CW as hr(x) = h(x)

H
.
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Figure 3.1.1: Protein model. Schematic representation of the 1D Wsc1 model.
Different colors of protein heads (i.e. the Wsc domain) represent the two different
states, bound and unbound to the cell wall, brown and pink respectively. The
unbound proteins can diffuse along the cell wall (x-axis) and being exchanged
with the cytoplasm with the cytoplasm with an incoming flux α and dissociation
rate β. H represents the cell wall thickness at rest, and h(x) is the compression
profile at each point of the cell wall. In the compressed region, the polysaccharides
molecules (in green) get more packed around the protein head. The transition rate
between the two states is regulated by the binding constant kon = k0on+κhr(x) and
unbinding constant koff , where hr = h

H
is the relative thinning, k0on is the binding

rate when there is no compression and κ the increase due to compression.

I assume that hr(x) is prescribed, and it does not vary with time. This corre-
sponds to the static situation where external or internal forces impose a constant
thickness of the cell wall.
After having defined the compression profile, I need to model how this mechanical
parameter can alter the protein dynamics. Qualitatively, as compression occurs,
polysaccharides in the cell wall get more packed around the protein’s head as
depicted in figure 3.1.1, thereby increasing their interactions. Conversely, the re-
verse reaction rate, from the bound to the unbound state, does not depend on the
polysaccharides’ concentration, if we model it as a ligand-receptor like reaction
(Long et al., 2006). Therefore, in my framework I suppose that kon is a functional
kon[hr(x)] : hr(x) −→ R+, which depends on the compression profile. It is worthy
to remark that in the latter definition, I implicitly assume that local variation of
CW relative thinning hr(x), implies a local variation of the binding rate kon(x).
Furthermore, once I fix the compression, kon is a function of space. So if the com-
pression profile is uniform, kon is a constant parameter which depends only on the
level of compression. On the contrary, koff does not depend on thickness of the
cell wall.
Most of the following calculations require only that kon is a parameter independent
on the variable cu, the unbound protein concentration, and cb, the bound proteins
concentration, in order to have linear PDE (partial differential equations). How-
ever, to directly show the compression profile hr(x) effect on protein dynamics, I
consider an explicit relation between kon and h(x). To be as simple as possible, I
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set a linear relation as follows

kon[h(x)] = k0on + κhr(x) (3.2)

In this equation, k0on is the binding rate when no compression is applied and
κ > 0 quantifies the increase rate when I compress completely the cell wall. The
latter parameter must be positive, since I assume that the interaction with the
cell wall increases with compression. The relationship between the binding rate
and the compression profile may be more complex, potentially involving nonlinear
saturation effects. Alternative models can be explored in future works.

3.1.4 Constitutive equations

Finally, the PDE must describe lateral diffusion along the CW in one dimension
of the unbound proteins, with the additional contribution of the chemical reac-
tion which regulates the exchange of particles between the unbound state and the
bound state, which do not diffuse; the binding rate of the chemical reaction is de-
termined by the compression profile. Moreover, the cytoplasm acts as a reservoir
from which proteins can be exchanged.
So, with the assumptions previously mentioned, I get the following reaction-
diffusion equations to describe the dynamics{

∂cu
∂t

= D ∂2

∂x2 cu − (k0on + κhr(x))cu + koffcb + α− βcu
∂cb
∂t

= (k0on + κhr(x))cu − koffcb
(3.3)

where D is the lateral diffusion constant of the unbound proteins, kon = k0on + κhr
and koff the binding and unbinding rate from the cell wall, α the incoming flux from
the cytoplasm by exocytosis and β the protein loss rate by endocytosis. Equations
3.3 are linear PDE, since D, kon, koff , α and β do not depend on cu and cb . The
dependence on hr(x), which is a given compression profile, is included in kon(x).
On the right-hand side of the first equation, it is clear to distinguish the three
contributions to the unbound protein dynamics: the effect of diffusion (first term),
chemical reaction (second and third term) and exchange with the cytoplasm (forth
and fifth term). While for the second equation for the bound proteins, only the
chemical reaction term is present.
Summing the two equations, it is possible to observe the global behavior of the
total protein concentration ctot = cu + cb, I obtain

∂ctot
∂t

= D
∂2

∂x2
cu + α− βcu (3.4)

So the evolution of ctot depends on the unbound protein concentration cu. If
in the extreme case cu = 0 and α = 0, i.e. there is no unbound concentration no
source rate, then the total protein concentration remains constant in space and
time.
To recapitulate, all parameters of the model are reported in table 3.1.1.

3.1.5 Remarks on the validity of the model

Before going on, it is important to highlight the assumptions of the previously
presented model, and the experimental consideration for this choices. Indeed, the
following processes have not been taken into account :
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Symbol Description
H Cell wall thickness at rest
h Cell wall compression profile
hr Cell wall relative thinning
kon Cell-wall-Wsc1 binding rate
koff Cell-wall-Wsc1 unbinding rate
k0on Cell-wall-Wsc1 binding rate with no compression
κ Increasing binding factor related to cell wall compression
κr Relative increasing binding factor related to cell wall compression
D Wsc1 unbound protein lateral diffusion coefficient
α Source rate income from the cytoplasm
β Dissociation rate from the cell wall to the cytoplasm

cu, cb, ctot Unbound, bound, and total protein concentration

Table 3.1.1: Parameters of the model

• The downstream signal in principle could activate the glucan synthesis. This
mechanism is not essential for the formation of clusters, as proved experi-
mentally with defective mutants in the cytoplasm tail of fission yeast (Neeli-
Venkata et al., 2021) which were able to cluster even without triggering the
downstream pathway. However, the cell wall thickness due to this feedback
mechanism could vary of about 10% for a scale time of ∼ 10 min (Davì
et al., 2018) which is comparable with the clustering behavior. This is in
contrast with the assumption of a static compression profile. For this rea-
son, for a more realistic model and more accurate predictions, these possible
fluctuations of the cell wall thickness due to the cell wall synthesis can be
important and should be considered.

• Yeast morphogenesis, i.e., cell growth. Indeed, due to cell expansion, the CW
surface is stretched in the tangential direction with a strain rate ∼ 10−3 s−1

(Davì et al., 2018; Odermatt et al., 2021). This lateral strain factor could
be absorbed in the loss term β, as it corresponds to a dilution of protein
concentration. Therefore, when analyzing experiments during interphase, it
should be considered that β = βcyt+βgrowth, where βgrowth ∼ 0.001 s−1 is due
to growth only, and βcyt is due to exchange with the cytoplasm only. How-
ever, from FRAP experiments (Neeli-Venkata et al., 2021), the characteristic
time of the dynamics is of the order of 102 s, which is slightly greater than

1
βgrowth

. Therefore, this dilution effect due to growth is not so significant.

• Protein-protein interactions. Despite the possibility for Wsc1 to form dis-
fulde bridges, a type of covalent bond, as claimed by Kock et al. (Kock et al.,
2015), this interaction does not seem to play an important role in clustering.
A simple argumentation given in the article (Neeli-Venkata et al., 2021),
is that as long as stress is released, clusters disappear within few minutes.
This is not compatible with the idea that the aggregations were formed due
to covalent interaction, since it is expected to be stronger and more stable.
However, it is not to be excluded that other types of interactions between
proteins that are weaker exist or the presence of an enzyme that breaks
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disulfide bonds in the absence of mechanical stress. Since there is no evi-
dence and chemical motivation for this scenario, the case of protein-protein
interaction is explored only in the appendix C. Currently, it is not known if
this effect is important and future research can address this question.

• The experimental density distribution of Wsc1 is polarized, as it is more
concentrated at the cell tips, even in the absence of applied forces. For
now, I will disregard this effect to simplify the derivation. A more detailed
model, which assumes a heterogeneous influx from the cytoplasm to the
cell wall and explains this polarization pattern, is examined in Appendix A.
However, although this aspect may be important for accurate predictions, it
is not essential for clustering behavior, as confirmed from experiments with
mutant yeast, where Wsc1 could cluster even in the absence of the polarizing
machinery (Neeli-Venkata et al., 2021).

After these considerations, since I want to build the most parsimonious model
able to explain the clustering behavior of Wsc1, I neglect all these processes.
More realistic and sophisticated descriptions will be possible in the future.
For now, I also assume the system to be strain-sensitive, meaning it senses the
compression of the cell wall, and not the stress. Although stress and strain can be
related by a proportionality constant when considering the elastic regime of the
cell wall (Weber et al., 2015), this proportionality can be inhomogeneous along the
cell wall, making stress solicitation different from compression. Since I have data
relating particle concentration to relative thinning, the strain-sensitive assumption
is more convenient. However, future data mapping the concentration of Wsc1, the
cell wall thickness and stress around the cell could verify if this hypothesis is
correct.

3.2 Model Predictions

3.2.1 Stationary solution

In this section, I study the stationary concentration of the protein, i.e. the concen-
tration profile value at which the system relaxes after an initial compression profile.
By comparing this profile with the stationary distribution obtained without com-
pression, I can understand if protein density increases or not after mechanical
strain. If the model correctly predicts clustering, I expect the in compressed re-
gion of the cell wall, the stationary concentration is higher.
In the stationary regime, 3.3 takes the form{

D ∂2

∂x2 c
∗
u − (k0on + κhr(x))c

∗
u + koffcb + α− βc∗u = 0

(k0on + κhr(x))c
∗
u − koffc

∗
b = 0

(3.5)

where c∗u, c∗b and c∗tot = c∗u + c∗b, are the stationary solution which satisfies this
problem. The final results of equations 3.5 yields the following relation:{

c∗u = α
β

c∗b(x) =
α
β
k0on+κhr(x)

koff

(3.6)
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As it is remarked by the notation, while c∗u is homogeneous, c∗b(x) instead is hetero-
geneous since it depends on the compression profile. Indeed, in the region where
the relative thinning of the CW is higher, the binding rate increases and therefore
a higher concentration of bound proteins is expected. Conversely, c∗u is kept con-
stant along the cell wall thanks to diffusion and exchange with the cytoplasm by
which proteins are recruited.
If I sum the two contributions given by the two species, I obtain

c∗tot(x) =
α

β

(
1 +

k0on + κhr(x)

koff

)
(3.7)

Comparing this concentration with a reference value c0, defined as the stationary
concentration obtained when no compression is applied, it yields

c∗tot(x)

c0
= 1 + κrhr(x) (3.8)

where κr = κ
k0on+koff

is the relative increasing binding rate compared to the total
reaction rate with no strain.

Since compressed region have higher affinity with the cell wall and consequently
k0on + κhr(x) increases, the total concentration is higher. Therefore, the model
correctly predicts the formation of clusters in correspondence to the compressed
area of the cell wall.
It is important to note that this stationary concentration is achieved regardless
of the initial conditions. Therefore, if the compression is first applied and then
released, the cluster disappears, as experimentally observed, as the stationary
concentration value returns to c0.
If I choose as compression profile a Gaussian curve centered on zero, variance equal
to σ, and integral in space equal to

√
2πσ2, I obtain the following concentration

profile

c̄tot
c̄0

= 1 + κre
−−x2

2σ2 (3.9)

As shown in figure 3.2.1, the stationary density follows the profile of the compres-
sion as expected from relation 3.8, remarking the fact that the compressed region
and the cluster region have the same characteristic size.
It is important to emphasize that the clustering behavior remains valid if either
diffusion or exchange with the cytoplasm is neglected. So the two protein re-
cruitment mechanisms are redundant. So, from the simple analysis of stationary
concentration is not possible to discern the two mechanisms of protein recruit-
ments.
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Figure 3.2.1: Predicted clustering. On the right, it is shown the Wsc1 protein
density profile at stationary state after the application of a Gaussian compression
profile hr = e−

x2

2σ2 , plotted on the left. The relation is given in the linear case by
relation 3.9. The different colors represent the different population concentration,
unbound (normalized with respect to the strain-free stationary state α

β
, bound

(normalised with respect to αk0on
βkoff

) and the total concentration (normalised with
respect to c0)

3.2.2 Relative increasing rate quantification

This section deals with quantification of κr, which expresses the binding rate in-
crease as the cell wall is compressed. For this purpose, we examine data from
Neeli-Venkata’s article (Neeli-Venkata et al., 2021), where the Wsc1-GFP fluores-
cence signal I at the cell tip is yielded after background subtraction and normal-
ization with a reference signal value at the cell side. In the Neeli Venkata’s article
(Neeli-Venkata et al., 2021), I is reported as function of the CW relative thinning
hr. Supposing the signal proportional to the concentration value, equation 3.8 can
be rewritten in terms of these experimental measurements as

I(hr) = A+Bhr (3.10)

where A and B are respectively the intercept and the slope of the line, and they
must satisfy the relation κr = B

A
. To vary the thickness of the cell wall, three

different processes are exploited:

• compression, when CW and enrichment is monitored as fission yeast is grow-
ing during its interphase pushes against the upper or lower cell, causing
compression of the cell wall

• relaxation (or decompression), obtained by laser ablation of the neighbor
cell, which consequently relaxes back and does not exert any forces on the
close cell anymore.

• mating, i.e. when CW becomes thinner due to cell-cell contact before fusion
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Figure 3.2.2: Linear relation between the fluorescent signal and the cell
wall compression. In the panel, it is shown the scatter plot of the experimental
data of fluorescent signal tagging Wsc1 protein as function of the relative cell wall
compression. The results of the linear fit are reported in the legend. Error bars
are neglected, since the technical noise is supposed to be smaller than biological
dispersion.

However, in my analysis, I concentrated solely on compression processes, dis-
carding mating and decompression. Indeed, mating involves chemical digestion of
the cell wall, which could alter hugely the composition of this layer. Therefore, this
is not an elastic deformation, and it is not clear whether cell wall density changes.
Instead, decompression is obtained after a strong perturbation, like laser ablation,
which requires a rapid CW mechanical equilibrium rearrangement. Consequently,
data obtained during compression are closer to the stationary state than during
mating and decompression processes.
After fitting data with a straight line, I obtain a relative increase binding rate of
about κr ≈ 3.3. This means that for a half-compression of the cell wall, I obtain
a concentration enrichment factor of c∗tot

c0
≈ 2.7.

This result, obtained purely by fitting the data, assumes only a linear relationship
between Wsc1 concentration and cell wall compression and does not require the
whole model presented in this chapter to be valid. However, the binding/unbinding
dynamics provides an interpretation of this value as the result of the underlying
interactions between molecules. In fact, the proportionality factor between the
relative increase in protein density with compression is the relationship between
the increasing binding rate constant κ and the total binding rate in the absence
of compression k0on + koff .
I finally remark that in order to test whether a linear relationship is sufficient to
explain data even up to 0.5 of relative compression, further studies that open the
possibility of non-linear effects in the Wsc1-cell wall interaction are needed.
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3.2.3 Quasi-steady-approximation

Despite the simplifying assumptions regarding Wsc1 dynamics, the partial dif-
ferential equations 3.3 encompass numerous dynamical parameters, including kon,
koff , D, α, and β. This complexity poses significant problems for obtaining analyt-
ical solutions for studying the system’s behavior following an initial perturbation.
To address this challenge, I explore potential approximations to reduce the num-
ber of parameters. Afterwards, I assess whether the predictions made under these
assumptions align with experimental observations.
First of all, to each contribution in equation 3.3, we can associate a typical relax-
ation time, which is the scale time necessary to reach equilibrium for the single
process. For the chemical reaction, the typical timescale to get to the equilib-
rium is of the order of ton/off ∼ 1

koff
, for diffusion tD ∼ L2

D
, where L is the typical

size of the system and for the exchange with the cytoplasm is tα/β ∼ 1
β
. If these

time scales differ by order of magnitudes, we can apply the so called quasi-steady
approximation (Goussis, 2012). This method consists in considering the fastest
dynamics at the stationary state, while the system evolves according to the re-
maining slower processes. In the Fourier space solution, as in appendix B, this
is equivalent to considering the faster mode to be released. This approximation
allows writing explicit relation between variables and makes calculations simpler.

3.2.3.1 Chemical-Reaction-limited region

In this section, I study the quasi-steady-approximation by which the chemical re-
action process is slower than diffusion and exchange-rate. Notice that if diffusion
gets to the stationary state with concentration of unbound protein c∗u = α

β
homo-

geneous, also the exchange rate is at the equilibrium or the contrary. So this limit
is verified whether tD << ton/off or tα/β << ton/off . In this case, PDE 3.3 can be
written as {

cu = α
β

∂cb
∂t

= (k0on + κh(x))cu − cbkoff
(3.11)

It is straightforward to verify that the total concentration dynamics evolves ac-
cording to

∂ctot
∂t

=
α

β
(koff + k0on + κh(x))− koffctot (3.12)

Henceforth, the total concentration relaxation time is 1
koff

and it does not depend
on the mechanics. This is not coherent with FRAP experiment, where it was
measured a slower recovery time in the compression region of the cell wall.

3.2.3.2 Diffusion-Exchange-limited regime

In this section, I study the quasi-steady-approximation when the chemical re-
action is faster than diffusion/exchange, i.e. tD >> ton/off and tα/β >> ton/off .
By this assumption, chemical reaction can be considered at the stationary state,
transforming equations 3.3 into{

∂cu
∂t

= D ∂2

∂x2 cu + α− βcu

0 = (k0on + κhr(x))cu − koffcb
(3.13)
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If I consider the global dynamics of ctot, I obtain an exchange-diffusion-advection
equation as follows

∂ctot
∂t

=
∂

∂x

[
Deff [h(x)]

∂ctot
∂x

]
− ∂

∂x
[ctotveff [h(x)]] + α− βeff [h(x)]ctot (3.14)

where 
Deff [h(x)] =

koff
k0on+κhr+koff

D

veff [h(x)] = − ∂
∂x

(
koff

k0on+κhr+koff

)
D

βeff [h(x)] =
koff

k0on+κh(x)+koff
D

(3.15)

can be defined respectively as the effective diffusion coefficient, velocity field and
dissociation rate. It is worthy to notice that in the region that are compressed, the
apparent diffusion coefficient and dissociation rate is slower since Deff ∼ 1

k0on+κhr

and βeff ∼ 1
k0on+κhr

. This is due to the fact the mobile particles’ fraction, i.e. cu
ctot

is lower since more proteins are pushed towards the bound state, and therefore it
yields a slower global mobility. Differently, the velocity field is present in the zone
where there is a variation of the CW thickness, since veff ∼ ∂xκhr. If I suppose a
compressed region at the center, by considering the sign of veff , it is clear that the
advective fluxes pull proteins from the sides to the center, favoring clustering. If
the compression profile is homogeneous, instead, there is no velocity field. In this
special case, denoting with hr the relative thinning, I obtain a simpler equation

∂ctot
∂t

= Deff
∂2

∂x2
ctot + α− βeffctot (3.16)

with {
Deff = koff

k0on+κh̄r+koff
D

βeff = koff
k0on+κh̄r+koff

β
(3.17)

If now I confront these parameters with their values at h̄r = 0, D0 and β0, I obtain
the following relation {

Deff

D0
= 1

1+κrhr
βeff

β0
= 1

1+κrhr

(3.18)

with κr which is the same computed value of section 3.2.2. This specific relation
with hr(x) is possible only because I suppose a linear relation with kon = k0on+κhr.
A summary of the model qualitative prediction after cell wall compression is shown
in table 3.2.1.
However, even if kon[h(x)] is not known, as long as it does not depend on the
protein concentration (so PDEs 3.3 are linear) in the diffusion-exchange limited
regime it must be verified the following relation{

Deff

D0
= c0

c∗tot
βeff

β0
= c0

c∗tot

(3.19)

This condition shows that the mobility, which is related to the parameters Deff

and βeff , is reduced where there is clustering, i.e. when the density c∗tot is higher
at the stationary state. This could explain a lower mobility in the region where
there is compression. This is confirmed in FRAP experiments (Neeli-Venkata et
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al., 2021). Moreover, in section 3.2.2, I obtain that for a relative compression
of hr = 0.5, the relative concentration increase is c∗tot

c0
= 3. This means that for

the same CW thickness value the effective mobility, Deff and γeff , are decreased
by a factor 3 compared the rest state according to relation 3.19. This is consis-
tent with the experimental results for the diffusion value (Neeli-Venkata et al.,
2021). However, in their analysis, the researchers neglect the exchange process
with the cytoplasm. Therefore, a new analysis that can differentiate between the
two recruitment mechanisms should be conducted.

Symbol Description Prediction
c∗u Unbound concentration at stationary state No change
c∗b Bound concentration at stationary state Increase
c∗tot Total concentration at stationary state Increase
Deff Effective diffusion constant Decrease
βeff Effective exchange rate Decrease

Table 3.2.1: Model predictions after cell wall compression

3.3 Comparison with the literature
This section provides a comparative analysis of my work against other clustering
mechanisms discussed in the literature. Since my mathematical framework is for
general particle dynamics, I do not restrict this analysis to the mechanosensing
context, such as focal adhesion integrin protein (see chapter 2), but I also consider
other clustering behaviors, e.g. for chemotaxis membrane receptors in E. Coli
(Recouvreux and Lenne, 2016) and other non-biological systems.
The main result of my work is that clustering is obtained considering a combi-
nation of heterogeneous protein binding with the substrate, in my case the Wsc1
with the CW, with a protein recruitment process, lateral diffusion and/or exchange
with a reservoir. This output is coherent with kinetic trapping models (Sánchez
and Wio, 1997; Viljoen and Uebing, 1997), i.e. system of freely diffusing particles
that can be trapped in specific absorbing sites of the domain.
It is important to remark that in my model the clustering is triggered by the
activator field, in my case the compression profile, which makes the binding rate
non-homogeneous and the consequent concentration increase follows the spatial
field. This is in contrast with other clustering proteins, where cluster can arise
only at a certain distance between each other (Greenfield et al., 2009) and only
for a given critical size (Ali et al., 2011; Das et al., 2018; F. Zhang et al., 2024).
This difference can be attributed to the omission of protein-protein attractive and
self-repulsive interactions, which may promote the fusion of adjacent clusters but
also disfavor the formation of excessively large clusters.
Moreover, compared to mechanosensitive integrin clustering models (Besser and
Safran, 2006), an initial nucleation is not required. Hence, stochastic fluctuations
do not seem to play a role. Another characteristic of my model is that it does not
require feedback loop neither from inside the cell, for example building a prefer-
ential microtubules pathway which affects the incoming source rate (Muller et al.,
2016), neither from cascade reactions in the membrane (Welf et al., 2012).
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Moreover, the fact that only one protein species in two possible states is involved,
avoid reproducing more complex behavior, where region of depletion can form
within the region of the cluster (Ali et al., 2011).
Another striking regard concerns the mobility of the protein in the clusters. In-
deed, where the protein forms clusters, the mobility is reduced. It was also already
proved that there is a reduced diffusion in the region of the trapping binding sites
(Ali et al., 2011; Sánchez and Wio, 1997; Viljoen and Uebing, 1997). My work
confirms this behavior and extends this concept to any possible mechanism of
mobility, e.g. the exchange with the cytoplasm. In general, if we had considered
other protein mobility mechanisms that are present only for the free-state popula-
tion, e.g. advection fluxes, the collective mobility would be affected as the fraction
between the bound-unbound concentration is altered.

3.4 Conclusion
In this work, I propose a simple model to reproduce a protein clustering behavior
triggered by CW compression. The model takes into account two states of the
protein, unbound or bound to the CW. Only for the former, I consider lateral
diffusion along the cell wall and exchange of proteins with the cytoplasm. Fur-
thermore, I assume that the binding rate is enhanced by compression. With these
assumptions, the model reproduces the concentration enrichment of the protein in
the compressed regions of the CW, as observed in experiments.
Moreover, assuming that chemical reactions reach equilibrium quickly, the model
predicts for the global behavior of the protein an effective diffusion coefficient and
exchange rate that is reduced by compression. This decrease is inversely propor-
tional to the cell wall thinning. Data analysis from FRAP experiments confirms
that in the cluster regions, the dynamics occur on a longer timescale, consistent
with the predictions of my model.
However, from the FRAP characteristic recovery time value only, it is not possible
to determine whether the protein recruitment is due to diffusion, exchange with
the cytoplasm or both. For this reason, I work in the next chapter on developing a
new inference method for FRAP capable of discerning different types of dynamics.
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CHAPTER

FOUR

A NOVEL INFERENCE METHOD FOR FRAP

This chapter aims to provide a novel inference method for the FRAP experiment
that is able to estimate diffusion, reaction, and exchange parameters from imper-
fect data where the signal-to-noise ratio is low, the spatial observational window
is restricted, and photobleaching during imaging is not negligible. These condi-
tions are typical for Wsc1 FRAP experiments. For this purpose, I attach the draft
of a future paper, written in collaboration with my supervisors, A. Boudaoud1

and A. Fruleux2, and experimentalists, C. Municio-Diaz3,4 and N. Minc3,4. The
experiments were conducted by C. Municio-Diaz, while the data analysis and the-
oretical work were performed by me under the supervision of A. Boudaoud and A.
Fruleux. A summary of the content is given of the content is given in section 4.2,
motivations for this work in section 4.3, results of the inference method in section
4.4 and the conclusion in section 4.5. The theory and experimental protocols are
found in Section 4.6, while supplementary figures are found in Appendix D. Before
submitting the paper, an implementation of the inference method is expected to
be finished as a Fiji plugin, HiFRAP. At this time, this macro is not finalized. So
the results of the analysis here are obtained by python scripts, except for subsec-
tion 4.4.7, where a demo version of HiFRAP was used. Before delving into the
article, I first introduce the inverse problem: the challenge of estimating kinetic
parameters from sampling data. This discussion provides some context useful for
understanding the novel problem addressed in this chapter.

4.1 Introduction to the inverse problem

4.1.1 Problem formulation

In chapter 3, I developed a mathematical model able to predict protein dynam-
ics. This means that, knowing the initial condition, I am able to reproduce the
spatial-temporal concentration evolution of the proteins. However, the result is
dependent on the choice of the parameters, such as the diffusion coefficient value
and exchange rate with the cytoplasm. In the absence of a molecular model for

1LadhyX, CNRS, École Polytechnique
2LPTMS, CNRS, Univeristé Paris Saclay
3Université Paris-Cité, CNRS, Institut Jacques Monod
4Equipe Labellisée LIGUE Contre le Cancer, 75013 Paris, France
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Wsc1 protein, able to predict the exact interactions in the cellular environment,
these parameters are not known a priori.
For this reason, in this chapter I focus on a data-driven approach: from sam-
pling the spatial temporal concentration, I want to infer the parameters of the
model. This scenario is known as the inverse problem or parameter identifica-
tion (G. Zhang et al., 2023), i.e. estimating the underlying model parameters
from observed data. Solution of this problem are applied in different contexts:
geophysical and medical imaging, computational photography and computational
microscopy (Ongie et al., 2020). In this setting the concentration c(x, t) is not
directly measured, but indirectly with the fluorescent signal I(x, t), by means of
the experimental device. Henceforth, the model prediction should be affected by
the parameters describing the experimental signal acquisition. This issue is dealt
in section 4.6.3. I define M as the operator that maps the model parameters θ
to the data vector Y⃗ DATA. The goal is to construct the inverse function, M−1,
such that from the observed data, it is possible to infer with an estimation θest
the true parameter of the system θtrue. However, the inverse operator, contrary
to the direct operator, is not always well-defined since it is not guaranteed that a
solution exists, and it is unique.

4.1.2 Experimental data are noisy

As it is explained in section 1.2, data collected by the experimental device includes
a certain degree of uncertainty due to stochastic noise. For this reason, the inverse
function M−1(Y⃗ DATA) is inherently stochastic. This means that the output of this
operation, θest is not deterministic but rather follows a probability distribution.
However, to impose a useful inference method, i.e. a method from which it is
possible extract information on θtrue, the following criteria are required (Ronceray,
2024)

• consistency: in the limit of infinite sampling, i.e. with an infinite number
of points, the estimated value should coincide with the true value (unbiased
estimation)

• control: the error on the estimated parameter can be estimated from data

• efficiency: the error should converge fast to the true value

• robustness: the error should remain small even with imperfect data, such as
outliers.

These criteria henceforth will be leading the choice of the inference method.

4.1.3 Variational method

To address the stochasticity of the experimental data with the previous criteria,
it is common to resort to variational methods (Vogel, 2002). Specifically, solving
the inverse problem can be approached by reducing it to a minimization problem.
This method involves finding the parameters that minimize a distance measure d
between the observed data Y⃗ DATA and the noiseless model predictions Y⃗ TH . The
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objective function for this minimization problem is a distance d between data and
the observed value and θest is obtained as solution to

min
θ
d(Y⃗ DATA, Y⃗ TH(θ)) (4.1)

An example possible choice for the function d is the sum of the square of resid-
uals ||Y⃗ DATA − Y⃗ TH ||2 (Johnson and Faunt, 1992), where the notation || · || refers
to the sum of the squares of the elements of the vector. This formulation is known
as the least squares method.

However, for complex models where the number of parameters is equal to or
exceeds the number of data points, the problem is typically ill-posed. In such
cases, the least squares solution may not be unique, leading to multiple potential
parameter sets that fit the data equally well. To address this issue, additional
constraints or regularization terms are introduced to stabilize the solution and
ensure that it is well-posed. One common approach is to add a penalty term
to the objective function. This penalty term can take the form of regularization
that constrains the solution space, often by incorporating prior knowledge or pref-
erences about the parameters. A regularized minimization problem is generally
formulated as:

min
p
d(Y⃗ DATA, Y⃗ TH) + p(θ) (4.2)

where p(θ) is the regularization function, such as, L1 Regularization (Lasso),
which promotes sparsity in the parameter estimates or L2 Regularization (or
Tikhonov), which smoothly suppresses the less relevant parameters (Aggarwal
et al., 2020). By incorporating such regularization terms, the inverse problem can
be made more tractable, possibly ensuring that the solution is unique and stable
even when the model complexity is high or the data is limited.

In the following section, I will illustrate how inference method techniques can
be applied to experimental data from FRAP in order to infer dynamical parameters
for a reaction-diffusion model in the case of imperfect experimental condition, with
noisy data, restricted spatial window and low number of frames.

4.2 Abstract of the article

Fluorescence recovery after photobleaching (FRAP) is broadly used to investigate
the dynamics of molecules in cells and tissues, notably to quantify diffusion co-
efficients. FRAP is based on spatiotemporal imaging of fluorescent molecules of
following initial bleaching of fluorescence in a region of the sample. Although a
large number of methods have been developed to infer kinetic parameters from
experiments, it is still a challenge to fully characterize molecular dynamics from
noisy experiments in which diffusion is coupled to other molecular processes or the
initial bleaching profile is not perfectly prescribed. To address this challenge, we
have developed HiFRAP to quantify reaction (or exchange)-diffusion kinetic pa-
rameters from FRAP with imperfect experimental conditions. HiFRAP is based
on the variable projection method and is implemented as a Fiji plugin. To the
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best of our knowledge, HiFRAP offers features that have not been combined to-
gether: making no assumption on the initial bleaching profile, which does not
need to be known; accounting for bleaching during imaging and for limitation of
the optical setup by diffraction; inferring several kinetic parameters from a single
experiment, providing errors on parameter estimation, and testing model good-
ness. Our approach is applicable to other dynamical processes described by linear
partial differential equations, which could be useful beyond FRAP, in experiments
where the concentrations fields are monitored over space and time.

4.3 Review on FRAP inference methods

Cells and tissues are the place of permanent transport and transformation of mat-
ter. At cellular level, trafficking, binding and unbinding, or diffusion, are essential
in the self-organisation of the cell, for instance. At multicellular level, diffusion,
directed transport, and consumption of morphogens are key to set morphogen
distributions and provide positional information during organism development.
Several methods have been developed to assess such molecular dynamics, includ-
ing fluorescence recovery after photobleaching (FRAP), fluorescence spectroscopy,
or single-particle tracking (Y. Chen et al., 2006). Among these, FRAP appears
as the most widely used method (Y. Chen et al., 2006; Ishikawa-Ankerhold et al.,
2014; Jacobson et al., 1987; Lorén et al., 2015; Reits and Neefjes, 2001), likely
because the microscopy setup is technically less demanding.

FRAP is designed to study the dynamics of fluorescent molecules, by moni-
toring the response to an initial perturbation. Molecules are first photobleached
by strong and short light pulses in a region of the sample, often circle- or square-
shaped. Fluorescence is then followed over space and time, by time-lapse imaging
with a microscope. Typically, fluorescence (partially) recovers its initial level,
and the pattern of recovery is informative on the underlying dynamics. When
molecules only undergo diffusion, the timescale of fluorescence recovery is a func-
tion of the diffusion coefficient and of the size and shape of the initially bleached
(or FRAPped) region (Ishikawa-Ankerhold et al., 2014; Lorén et al., 2015; Reits
and Neefjes, 2001). Accordingly, FRAP is routinely used to determine diffusion
coefficients. When molecules only undergo binding and unbinding to immobile
cellular substrates, then the timescale of fluorescence recovery is the inverse of
the binding rate (Ishikawa-Ankerhold et al., 2014; Lorén et al., 2015; Reits and
Neefjes, 2001). Here, we consider more complex situations where several molecular
processes are coupled.

At cellular level, FRAP has also been used to investigate protein synthe-
sis (Kourtis and Tavernarakis, 2017), dynamics of molecular condensates (Taylor et
al., 2019), mechanosensing (Neeli-Venkata et al., 2021), transport of mRNA (Cio-
canel et al., 2017), or cell adhesion (Erami et al., 2016; Hardin, 2011). At tissue
level, FRAP has been used to assess diffusion of morphogens (Recouvreux et al.,
2024) or expansion of the extra-cellular matrix (Lamiré et al., 2020). FRAP is
also used in material science, for instance to characterise pharmaceutical com-
pound (Deschout et al., 2014; Lorén et al., 2015). Despite the practical impor-
tance of FRAP, a universal method to analyse and interpret FRAP data is still
lacking (Lorén et al., 2015). Here, we contribute to tackling this issue.
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The classical method to determine diffusion coefficient is based on the theo-
retical calculation of average concentration in the bleached region and fits to the
recovery curve of fluorescence in that region (Axelrod et al., 1976; Kang et al.,
2012). Although the classical method is easy to implement, it assumes the initial
bleaching profile to be perfectly known, it does not use the information available
in spatial variations, and it is difficult to distinguish diffusion from other pro-
cesses based on this method (Axelrod et al., 1976). These limitations prompted
the development of more sophisticated methods. Methods that do not require the
knowledge of the bleaching profile are based on the decomposition of fluorescence
level into Fourier modes and fit the temporal decay of mode amplitude to theo-
retical solutions, in linear (Elowitz et al., 1999; Zarabadi and Pawliszyn, 2015),
in axisymmetric geometry (Jönsson et al., 2008), or without assumptions on ge-
ometry (Berk et al., 1993). Methods that use all spatial information to improve
precision use fits of the spatiotemporal concentration field to analytical (Deschout
et al., 2010) or numerical (Blumenthal et al., 2015; Papáček et al., 2013) of the dif-
fusion equation, the former being restricted to rectangular initial bleaching profile
and the latter allowing initial bleaching profile of arbitrary shape. Other studies
built methods to account for the effect of boundary conditions on diffusion (Taylor
et al., 2019), for diffusion on curved surfaces (Bläßle et al., 2018; Klaus, 2016), or
for anomalous diffusion (Geiger, 2021; Yuste et al., 2014).

Several studies have addressed the use of FRAP to determine the kinetic pa-
rameters of chemical reactions, binding/unbinding dynamics, or exchanges be-
tween compartments, which all formally amount to chemical kinetics. In general,
these studies directly deduce constants from average pre-bleaching fluorescence
and recovery time of average fluorescence in the bleached area (Kourtis and Tav-
ernarakis, 2017; Lele et al., 2006; McNally, 2008; Tsibidis, 2009), possibly account-
ing for rapid diffusion before the reactions take place. However, there are discrep-
ancies between values of kinetic parameters according to the model used (Mueller
et al., 2010) and it is difficult to disentangle reactions from diffusion (Sprague and
McNally, 2005).

An another line of investigation has accounted for the coupling between reac-
tions and diffusion. It is possible to solve numerically reaction-diffusion in complex
realistic geometries to simulate FRAP and investigate changes in qualitative be-
haviour according to parameters (Cowan and Loew, 2023). To obtain kinetic
parameters, one option is to use fluorescence recovery in the bleached area or in
the region of interest and to fit analytical recovery curves of several experiments
with varying sizes of bleached region, which provides enough information to derive
several parameters (Goehring et al., 2010; Kang and Kenworthy, 2008; Kang et al.,
2010). Another option is to use all spatial information and fit the spatiotemporal
concentration field (fluorescence level) to analytical (Ciocanel et al., 2024; Geiger,
2021) or numerical (Montero Llopis et al., 2012; Röding et al., 2019; Tolentino
et al., 2008; Wu et al., 2008) solutions of reaction-diffusion equations (for one or
two species, according to the problem of interest). We note that these methods
are constrained by the need to know the initial condition, i.e. of the profile of
fluorescence following initial bleaching. Using Fourier coefficients of the fluores-
cence field (Berkovich et al., 2011) like in some of the methods to infer diffusivity
already mentioned, it was possible to get rid of this constraint, at the price of
averaging several experiments together to average out noise. Here we aim at going
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beyond limitations by noise and the knowledge of the bleached profile. Indeed,
the bleached profile is difficult to control experimentally (Berk et al., 1993) and
discrepancies with the assumed profile generally lead to a misestimation of kinetic
parameters (Goehring et al., 2010; Kang et al., 2012).

A few studies accounted for other couplings, such as advection (directed trans-
port) and diffusion (Axelrod et al., 1976), advection-reaction (Saito et al., 2022),
or advection-reaction-diffusion (Ciocanel et al., 2017), with similar limitations to
those previously discussed. Here we limit ourselves to reaction-diffusion, but we
note that our method is generalisable to any processes described by linear partial
differential equations. In addition, we account for photobleaching during imaging,
i.e. the bleaching of fluorophores due to their excitation for time-lapse imaging,
following a few studies that inferred the rate of photobleaching during imaging
from experimental data (Jönsson et al., 2008; Papáček et al., 2013; Röding et al.,
2019).

Altogether, we aim at building a method to infer from FRAP the kinetic pa-
rameters of a process described by a reaction-diffusion equation from single exper-
iments. We assume that experiments are noisy, that the initial bleaching profile
is unknown, and that photobleaching occurs during imaging. We also account for
diffraction-limited resolution of the optical setup. In the following, we formulate
the problem and propose a systematic method to minimise the cost function. We
validate and optimise the approach on synthetic data. Finally, we present the
implementation of the approach as an ImageJ macro and illustrate it with exper-
imental data on the Mtl2 membrane-localised protein in fission yeast (Cruz et al.,
2013).

4.4 Results and Discussion

4.4.1 General framework in the case of pure diffusion

FRAP experiments involve imaging at regular intervals a region of interest con-
taining the initially bleached (FRAPped) domain. The quantity of light emitted
from the sample is proportional to the local concentration of fluorescent molecules,
as long as saturation of detectors is avoided. However, imaging the sample also
results in photobleaching, so that fluorescence is attenuated by a constant factor
after each image, an effect that we call intrinsic bleaching in the following. The
optical setup results in the spatial smoothing of the light pattern due to diffrac-
tion, which is characterised by the point-spread function of the microscope. The
recorded signal results from three contributions. The first contribution is propor-
tional to the concentration of fluorescent molecules, provided appropriate tuning
of excitation laser and detector gain; it contains a noisy part due to the statisti-
cal fluctuations of the number of these molecules in a small volume. The second
contribution originates in technical noise, mostly associated with the detector.
The third contribution is a background homogeneous signal associated with the
detector. Accordingly, the recorded signal is a smoothed version of the field of
fluorophore concentration, combined with noise and shifted by a background in-
tensity. In HiFRAP, we account for point-spread function, photobleaching during
imaging due to imaging, background intensity, and noise. The time-lapse data are
assumed to be a temporal sequence of square images. The signal to be analysed
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is sampled nt times after every time interval ∆t, over nx×nx square pixels of side
length ∆x.

For the sake of simplicity, we introduce and validate HiFRAP assuming that
the underlying dynamics is set by diffusion only. We generalise our approach to
reaction-diffusion in Section 4.4.6. We illustrate our approach in 2 dimensions, al-
though it is also applicable to other dimensions. The concentration of fluorophores
c(x, y, t) is a function of spatial coordinates (x, y) and of time t. It is a solution
of the diffusion equation

∂tc = Dtrue∇2c, (4.3)

where Dtrue is the true diffusion coefficient, ∂t is the partial derivative and with
respect to time and ∇2 the Laplace operator. Our goal is to provide the best
estimate Dest of the diffusion coefficient.

When photobleaching during imaging is not negligible, homogeneous regions
of the sample (far from the FRAPped domain) show fluorescence decaying by a
factor ρi = exp(−εti/∆t), where ε is the decay rate per image, ti is time, and ∆t
is the time interval between two consecutive images. Accordingly, the theoreti-
cal solution of the diffusion equation (4.3), c(x, y, ti) should be multiplied by this
factor ρi. Photobleaching, however does not affect the background intensity. The
background value is supposed to be perfectly known from the average signal of a
sample-free area while the decay rate per image ε can be estimated either indepen-
dently from the dynamical parameters in considering a control area distinct from
the bleached (FRAPed) one as explained in section 4.4.7, or inferred altogether
with the dynamical parameters as discussed in section 4.4.6.

Figure 4.4.1A shows an example of synthetic dataset generated by solving
numerically the diffusion equation (4.3); concentration is spatially smoothed to
mimic the effect of diffraction and account for the point-spread function, see Sec-
tion 4.6.6 for details. The region of interest is a square of side length L and the
FRAPped domain is a square of side length ℓ = L/3 by setting the concentration
of fluorophores is set to 0 at t = 0. The first row shows the simulated spatial
profile of fluorophore concentration, which becomes smoother and converges to
the initial density over time, as could be expected. The second row shows a
microscope-like time-lapse imaging, obtained from the simulated (true) concen-
tration field by adding an uncorrelated Gaussian random variable corresponding
to technical noise and applying a Gaussian spatial filtering corresponding to the
point-spread function of the optical setup, see Section 4.6.6. In the following, we
use such synthetic data to test our method and estimate the precision of estimated
diffusion coefficient, Dest, with respect to its true value, Dtrue.

4.4.2 A method to infer parameters from FRAP experi-
ments

HiFRAP estimates kinetic parameters such as diffusion coefficient independently
of any assumptions on the initial bleaching pattern. We use the Ntot = nx ×
nx × nt measurements of the FRAP time-lapse imaging. Because the amount of
information contained in our data is finite while initial conditions are fields and
belong to a space of infinite dimension, an infinity of initial conditions may give
rise to the same measured data. Nevertheless, using singular value decomposition
(SVD), we found that only a small number of degrees of freedom of the initial
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Figure 4.4.1: Inferring the diffusion coefficient from simulated FRAP.
A. A square region of interest of side length L is tracked and a central square region
of side length ℓ = L/3 is FRAPped at t = 0. From top to bottom: concentration of
fluorophores as predicted numerically, microscope-like synthetic data accounting
for diffraction and technical noise, compressed synthetic data, concentration field
fitted by HiFRAP, and residuals of the fit. From left to right: snapshots from
t = 0 to t = 2tD, where tD = ℓ2

16Dtrue
is taken as a unit of time. Gray- and

color-scales indicate the concentration or signal intensity normalised by the drop
in concentration ∆I at t = 0 in the FRAPped square. Dark (blue) to bright (red)
indicate low to high concentration or signal. The number of pixels is nx × nx =
121 × 121, the number of time frames is nt = 15, and the amplitude of noise is
η
∆I

= 0.25. For other parameters, default values are given in Section 4.6.6. B.
Modified cost function C (normalised by noise amplitude η) as a function of fitting
diffusion coefficient D (normalized by its true value Dtrue), with a magnification of
the neighbourhood of the minimum of C in the inset. The cost function is minimal
at Dest, which is close to Dtrue, up to an estimated error ∆Dest. The decay rate
per image due to photobleaching is set to ε = 0.
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pattern affects subsequent measurements. We used this property to fit a theoretical
model to data by minimising a cost function related to the differences between
observed dataset and theoretical solution. The model is built from the solution for
(4.3) and accounts for the point-spread function (see Section 4.4.1 for more details).
Optimisation is implemented in two steps: first fitting initial conditions and then
estimating kinetic parameters (illustrated here with the diffusion coefficient).

In practice, the SVD is computationally expensive when directly used for
datasets of size Ntot of the order of 105 to 107 because it is applied to matrices
of size Ntot ×Ntot. To enable an interactive Fiji plugin, we reduced the computa-
tional cost by compressing the data. This is performed with the discrete Fourier
transform and enables reducing the dataset size to N = nq × nq × nt. We found
that nq in the range 5-9 is sufficient to obtain good estimates of kinetic param-
eters, as shown in Section 4.4.4, so that the compressed dataset has a size N of
the order of 103 to 104. The compressed general solution to the diffusion equa-
tion (or to any linear partial differential equation such as reaction-diffusion, for
given kinetic parameter) as a matrix G of size N ×N multiplying the compressed
initial condition (at t = 0), which has size nq × nq. The SVD decomposition is
applied to the matrix G, which yields ad-hoc modes, associated each to a singular
value, and we neglect modes with a singular value smaller than a threshold related
to machine precision. This allows to describe solutions for all initial conditions
without unnecessary details (below machine precision). By using a least square
minimisation of the difference between theoretical solution and observed data, we
determine the best initial condition for given kinetic parameters (here diffusion
coefficient D). The cost function is then given by the sum of squared residuals
(difference between observed data and theoretical solution with the best initial
condition) normalized by the effective degrees of freedom, see Section 4.6.2. We
then minimize the cost function with respect to the kinetic parameters. In the
case of diffusion only, minimisation with respect to D is performed using Brent’s
method (Brent, 2013). This numerical method requires a well-defined initial search
interval to identify within this range a solution (see section 4.6.2 for details). Panel
A of Figure D.9 illustrates how the diffusion value changes with each minimiza-
tion step. The results highlight that a search interval spanning several orders
of magnitude can lead the algorithm to converge at local minima, far from the
true value. This is further evident in the cost function plot shown in Panel B of
Figure D.9, where the diffusion value is approximately D ∼ 103Dtrue. For this
reason, to choose a good search interval, we evaluate the cost function on a grid
Dgrid = [0, 10−2, 10−1, 1, 10, 102] ℓ

2

T
, where ℓ is the FRAPped domain side length

and T is the total acquisition time. The chosen interval [a, b] (with a, b ∈ Dgrid)
is the smallest interval such that Dmin ∈ [a, b], where Dmin is the minimum value
of the cost function along this grid (Dmin = a only if Dmin = 0 and Dmin = b only
if Dmin = 104 ℓ

2

T
). Notice that for the latter value of diffusion the recovery time

would be much smaller of the time step (tD ∼ 10−2∆t), hence the time resolution
would not be sufficient to have a good estimation. The cost function minimisation
of multiple kinetic parameters is described afterwards in section 4.4.6.

HiFRAP is illustrated with synthetic data in Figure 4.4.1. In panel A, the two
first rows are the true concentration of fluorophores and the simulated microscope-
like images. For our analysis, we compress the microscope-like images (third row)
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to which we fit the model (fourth row), obtaining relatively small residuals (fifth
row). In panel B, we plotted the cost function (after optimizing the initial con-
dition) as function of the fitting parameter D for the diffusion coefficient. The
estimated diffusion coefficient Dest is defined as the value of D that minimizes the
cost. We use the curvature of the cost function (inset in panel B) and noise ampli-
tude to estimate the uncertainty ∆Dest on the diffusion coefficient, see Section 4.6.2
for details. Here, the relative uncertainty ∆Dest/Dest = 0.01 is small. Finally, we
test the validity of the model by examining whether residuals are normally dis-
tributed, which is implemented using the Shapiro-Wilk and Kolmogorov-Smirnov
tests (Berger and Zhou, 2014; Shapiro and Wilk, 1965), see Section 4.6.2. Here
we find a pvalue from Shapiro and Kolmogorov test of 0.37 and 0.81 respectively,
showing that diffusion model is a good model for these data, as could be expected.

4.4.3 Validation on synthetic data

To extensively test the validity of the inference method, we applied HiFRAP
to a collection of 200 synthetic datasets for each of 6 values of noise, with ex-
actly the same parameters as those in Figure 4.4.1 but with different realisations
of noise. For each synthetic dataset, we estimated the coefficient Dest and its
error ∆Dest. For the collection, we computed the average estimate ⟨Dest⟩ (the
brackets ⟨ ⟩ stand for average over the collection) and the empirical error over
∆Demp =

√
nds

nds−1
⟨(Dest −Dtrue)2⟩ (nds stands for the number of datasets), which

assesses the statistical difference between estimated parameter and true parameter.
The graphs in Appendix D (Figure D.8), where the average estimated diffusion
value ⟨Dest⟩ and the empirical error ∆Demp are plotted as function of the number
of datasets nds, confirm that nds = 200 is sufficient to reach the convergence of
these two parameters.
In Figure 4.4.2, we plotted the estimated diffusion coefficient Dest and estimated
uncertainty ∆Dest as a function of noise strength. Panel A shows that the distri-
bution Dest is well centered around its true value Dtrue. The standard deviation
of this distribution increases with the noise amplitude η and the coefficient of
variation ∆Demp/Dest reaches values comparable to 1 for noise strengths such
that η/∆I ∼ 10−2

√
Ntot ≃ 4, where ∆I is the amplitude of the drop in inten-

sity following initial photobleaching. For such high noise, the distribution appears
bimodal with a few estimates Dest gathering around Dest = 0, for which the esti-
mation has clearly failed. This inefficacy is due to an incorrect choice of the initial
search interval that does not include the true value, as well as the cost function
being more jagged and less smooth under high noise conditions, as shown in Figure
D.1 (Appendix D), making it more prone to getting trapped in local minima. In
section 4.4.5, I present a more robust method for the choice of this search interval
in order to avoid outliers around Dest = 0. Panel B shows that the estimated
error ∆Dest agrees well with the empirical error ∆Demp, validating the estimation
of error from a single dataset. Outliers in the distribution of ∆Dest appear for
high noise, consistent with the misestimation of diffusion coefficient at such noise
levels. Overall, HiFRAP provides good estimates of the diffusion coefficient and
of its error from a single experiment.
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Figure 4.4.2: Validation of HiFRAP on a collection of synthetic data. A
Estimated diffusion coefficient Dest and B estimated uncertainty ∆Dest and empir-
ical error ∆Demp. The quantities are all normalised by the true diffusion constant
Dtrue and plotted as a function of the normalised noise amplitude η/(∆I

√
Ntot),

where η is noise amplitude, ∆I is the drop-off intensity upon initial photobleach-
ing, and Ntot dataset size (number pixels multiplied by number of time frames).
The highest value of normalised noise corresponds to a noise to signal ratio of about
4.7. Violins represent distributions of Dest and ∆Dest while the ticks highlight av-
erage and extreme values. The dashed gray line in A represents the reference
value Dest/Dtrue = 1, while the dashed blue line in B corresponds to ∆Demp. The
number of realisations is 200 for each value of noise strength and the decay rate
per image due to photobleaching is set to ε = 0. Where an asterisk is present, the
computation of the error was not possible for 7 out of 200 datasets.

4.4.4 Optimisation of experimental and analysis parameters

To optimize the estimates of kinetic parameters (here the diffusion coefficient),
we aim at tuning accessible parameters in experiments — side length of FRAPed
region ℓ, number of time frames nt, and delay between frames ∆t— and in analysis
— number of modes nq kept for the compression. We implicitly assume the space
resolution, ∆x, to be constrained by the microscope used and the side length of
the region of interest, L, to be constrained by the size of the system and its spatial
variations — the region of interest should be as big as possible while sufficiently
homogeneous. The bleaching size ℓ and the number of modes nq influence the
amount of useful spatial information. To be optimal, ℓ should be large enough for
the perturbation in fluorescence associated with FRAP to be of significant weight
compared to noise, whereas ℓ comparable to L leads to a loss of spatial information
associated with the boundaries of the FRAPed region. We found that the error
on estimation of the diffusion coefficient is minimal around ℓ ∼ L/3 in the case of
a square FRAPped region. Concerning the number of modes kept in the discrete
Fourier transform, fair estimates are reached for nq ≥ 5 (Figure D.3). Accordingly,
we took ℓ = L/3 and nq = 9 in all our analyses, except when specified otherwise.

The time resolution of experiments may be constrained by the sample im-
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aged, for instance when there is phototoxicity. Here we only consider constraints
due to the optical setup, which are mostly associated with photobleaching during
imaging. The intensity of the observed signal decays with the number of images
acquired, proportionally to e−ε(nt−1), so that the signal quickly vanishes when nt

increases beyond 1/ε+1. We therefore choose nt = 1/ε+1. Concerning the choice
of the time step ∆t between two images, we note that the temporal decay rate
due to photobleaching is ε/∆t, while the relaxation (to equilibrium) rate due to
diffusion is the inverse of the diffusion time tD = ℓ2/D/16 — defined as the time
at which the standard deviation of the position of a Brownian particle reaches half
the side length of the FRAPed region. If the decay due to photobleaching is high,
then fluorescence disappears before it is observed diffusion is not observed, whereas
if the decay rate due to photobleaching is low, most of the images are taken after
diffusion has homogenised concentrations and these images are not informative.
As a consequence, we expect the optimal delay between images to correspond to
ε/∆t ∼ 1/tD. To further test this conclusion, we plotted in Figure 4.4.3 the nor-
malized empirical error ∆Demp/Demp as function of dimensionless delay ∆t/(tDε).
As expected, the plot shows that the error ∆Demp has a minimum. This minimum
occurs when ∆t ∼ 10tDε, a value that we used in the remainder of this study.
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Figure 4.4.3: Optimization of imaging time step ∆t. The empirical error
∆Demp, normalised by the true diffusion coefficientDtrue, is represented as function
of relaxation time ∆t/ε due to photobleaching associated with imaging, normalized
by the diffusive timescale tD = ℓ2/Dtrue/16. Empirical error was computed as
∆Demp =

√
nds

nds−1
⟨(Dest −Dtrue)2⟩ from estimated values Dest and true value Dtrue

of the diffusion coefficient from nds = 200 number of datasets. Estimated error
on the empirical error approximated as the error on the square root of the second
moment (Rao, 1973).

4.4.5 Benchmarking of HiFRAP

To test the efficiency of HiFRAP, we compared it to existing methods to obtain
diffusion coefficient. Beforehand, we stress the versatility of our method because
it makes no assumption on FRAP patterns nor on boundary conditions. This is
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Figure 4.4.4: Benchmarking of HiFRAP. Empirical error ∆Demp as func-
tion of the noise strength η, the noise amplitude, normalised in terms of signal
drop upon bleaching ∆I and dataset size Ntot = n2

xnt (nx the number of pixels
per axis in the region of interest and nt the number of images). The lines and
relaxation-time-based (green), temporal-fit-based (orange), and HiFRAP (blue)
methods. Empirical error was computed as ∆Demp =

√
nds

nds−1
⟨(Dest −Dtrue)2⟩

from estimated values Dest and true value Dtrue of the diffusion coefficient from
nds = 200 number of datasets. Estimated error on the empirical error approxi-
mated as the error on the square root of the second moment (Rao, 1973).

illustrated in Figure D.4 (SI), where the region FRAPped is axisymmetric with a
Gaussian profile, X-shaped, or E-shaped. Nevertheless, for the comparison with
other methods, we had to assume the bleaching pattern to be known, in this case
a square bleaching profile.
We have chosen to compare our method with two different approaches, inspired
by classical methods in literature (Goehring et al., 2010; Kang et al., 2012). Both
are based on spotting the bleaching profile first by fitting the post-bleach frame,
and afterwards the diffusion coefficient is estimated by the analysis of the recovery
curve, i.e. the spatial average curve inside the bleached region.
In our implantation to model the bleaching profile we used a square FRAPped
profile, which accounts for smooth edges due to the PSF effect, as illustrated in
(Goehring et al., 2010). From the fitting with post-bleach profile, it is possible
to estimate the position of FRAPPed region, the side length, the depth and the
smoothness. These parameters are then used to estimated the diffusion coefficient.
In second step the two approaches differ. In the first one, referred as relaxation-
time based method, the diffusion coefficient is obtained by estimating the half-
recovery time of the recovery τ1/2, which is the time at the system recovers half of
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the signal.(Kang et al., 2012). The diffusion coefficient is then estimated thanks to
an analytic relation with the estimated bleaching size ℓest and half-recovery time
τ1/2 obtained by solving PDE, yielding for a square bleaching Dest = 0.92 ℓ2

16τ1/2
.

In the second approach instead, referred as temporal fit, the diffusion coefficient,
it is obtained by fitting directly the recovery curve with its theoretical expression
yielded by solving the PDE with the parameters of the FRAPped profile, side
length, depth and smoothness previously, obtained. The final formula is found in
the Goehring’s article (Goehring et al., 2010).

The comparison between empirical errors of diffusion coefficient for the three
methods is shown in Figure 4.4.4 for different amplitudes of noise. The errors
are computed for 200 FRAP experiments for each noise strength. As could be
expected, the discrepancy from estimate to real value increases with the noise
strength. HiFRAP, which relies on a spatial-temporal fit, is considerably better
than the two others, despite it does not make any assumption on the FRAPped
bleaching profile. However, for strong noise for which HiFRAP sometimes fails to
estimate the right diffusion coefficient as reported in Section 4.4.3, local minima
appear in the cost function spectrum far from the true diffusion value. For this
reason, a potential efficient method to minimise the cost function may consist in a
two-step minimisation. First, the benchmarking method based on a temporal fit
(Goehring et al., 2010) is applied to obtain a good initial diffusion value Dbench.
Then, the cost function can be minimised by HiFRAP considering as initial brack-
eting [Dbench/5, 5Dbench]. In Appendix D (Figure D.10) I report the distribution
of the estimated value with this double minisation procedure, as a function of
the noise strength. Contrary to the results in section 4.4.3 where the distribution
shows outliers around D ≈ 0, here the estimated value is more robust.

4.4.6 Generalizing HiFRAP

Our method can be generalized to infer kinetic parameters of more complex dy-
namics. Besides diffusion, molecules may be synthesised, degraded, or undergo
other chemical reactions. In addition, membrane-localised proteins or lipids may
be exocytosed or endocytosed. As long as the changes in concentration are not too
large, the dynamics of one chemical species can be modelled by a linear diffusion-
reaction reaction,

∂c

∂t
= Dtrue

∂2c

∂x2
+ αtrue − βtruec, (4.4)

where αtrue and βtrue represent source strength and relaxation rate, respectively,
both assumed to be constant. The interpretation of these reaction terms depends
on context. For instance, αtrue may correspond to a synthesis rate and βtrue to a
degradation rate. In the case of a membrane-localised molecule, αtrue and βtrue
may correspond to the rates of exocytosis and endocytosis, respectively, of this
molecule.

To extend HiFRAP to reaction-diffusion, we followed the same approach as
in Section 4.4.2 with the difference that the cost to minimize now depends on
multiple parameters. We therefore used the Nelder-Mead algorithm (Nelder and
Mead, 1965) for multidimensional minimisation (see Section 4.6.5 for details) to
minimise the cost function with respect to D and β and/or ε, while for α, the
minimum can be computed analytically. This method requires an initial point to
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start the minimisation. The choice of this parameter influences the minimisation
procedure as is seen in plot D.9 (panel C), where for different starting points the
minimisation forD and β converges at different values. Therefore, for this method,
it is fundamental to set a proper starting point at the correct scale. Moreover,
we add range constraints to ensure that the parameters remain within physically
meaningful bounds during the minimization process. The parameter values are
reported in the captions of Figures 4.4.5 and 4.4.6.

Afterwards, we extended Section 4.4.4 to optimize the imaging time step.
Equation (4.4) involves two characteristic times, the diffusion time, tD ≈ ℓ2/(16Dtrue),
and the relaxation time tβ = log(2)/β. The typical recovery time tr for the com-
bined dynamics is expected to be 1/tr = 1/tD + 1/tβ. Accordingly, the optimal
time step is ∆t = εtr/10.
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Figure 4.4.5: HiFRAP for estimating diffusion and reaction rates know-
ing the pre-FRAP concentration field and the rate of photobleaching
during imaging. A Contour plot of the cost function (log10[C/η2], with η the
amplitude of the noise) as function of the normalized fitting parameters D/Dtrue

and β/βtrue, where the cost has first been minimized with respect to the source
term α. The colorscale is given on the right, with blue and yellow corresponding
to low and high cost, respectively. The light blue point is at the minimum of
the cost function; its coordinates give the estimates Dest and βest. B Estimated
dynamical parameters Dest and βest as function of the relaxation-to-diffusion time
ratio tβ/tD. Violinplots show the distribution of the estimates and error bars
stands for the maximum, the average and the minimum of the distribution. The
dashed gray line represents the reference value at which the estimated parameter
is equal to the true parameter of the system. Here, the stationary concentration
cs = αtrueβtrue is assumed to be known from the average pre-FRAP concentra-
tion field, so that αest = csβest. The rate of photobleaching during imaging, ε is
supposed to be known from a control area. The number of dataset analysed is
200. As initial starting point for the minimisation, we chose D0 = 0.2ℓ2/T and
β0 = 1/T , where ℓ is the FRAPped area side length and T is the total acquisition
time. As experimentalists can tune the time step to have the total recovery time
tγ = 1/tβ + 1/tβ at the optimal scale (tγ ∼ 10−1T ), we constrained the diffusion
constant and the dissociation rate to be D < 4L2/T and β < 15/T such that
tγ > 10−2T . Furthermore, the theoretical solution exists only for non-negative
values of diffusion, so we set D ≥ 0, while the dissociation rate tβ > −1/T since
the negative value can arise when the empirical error ∆βemp ∼ βtrue which corre-
sponds to a diffusion-dominant system.
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Figure 4.4.5 shows the results of our method applied to (4.4). We generated
artificial data with the same square FRAP profile, as described in section 4.6.6. As
first scenario, we consider the case in which the stationary solution cs is perfectly
known a priori. This value may derive from prebleaching images with a sufficient
number of pixels. As described in section 4.6.5, if cs is known, the cost function
depends only on two parameters, α and β. In panel A, we show an example of this
cost function to minimize. The estimate on α may be obtained a posteriori from
the relation αest = csβest. To explore the efficiency of our method, we would a priori
need to vary Dtrue, αtrue and βtrue. However changing the ratio αtrue/βtrue only
changes the stationary concentration without perturbations and so does not affect
the uncertainty of the different estimates Changing the recovery time does not
significantly affect the accuracy of the method since we adapt the time resolution
of the experiment accordingly. Keeping αtrue/βtrue and tr constant, we therefore
varied the ratio tβ/tD in figure 4.4.5. As could be expected (Ciocanel et al., 2024),
the uncertainty on the diffusion coefficient becomes high when the fluorophore
dynamics is dominated by relaxation and, reciprocally, the uncertainty on the
relaxation coefficient becomes high when the dynamics is dominated by diffusion.
Finally, we note that, like in the pure diffusion case, the curvature of the cost
function yields a good estimate of the error on parameters, see Figure (D.2).

When the values of rate of photobleaching during imaging and stationary con-
centration are unknown, it is necessary to estimate them together with the kinetic
parameters using optimisation in 4-dimensional space. 4.4.6 shows the results of
our method in this case. Our estimates remain fairly good. The errors on dif-
fusion and relaxation coefficients behave like in the previous case. The errors on
the source strength and intrinsic bleaching rate increase when the fluorophore dy-
namics is dominated by diffusion, similar to the relaxation rate because all three
parameters effectively relate to reactions.

4.4.7 HiFRAP applied to experimental data

We implemented HiFRAP as an ImageJ Macro and we illustrated its function
with experiments in fission yeast. We considered a putative mechanosensitive
transmembrane protein, Mtl2, which is homogeneously distributed around the
cell (Cruz et al., 2013). Details about sample preparation and experimental setup
are reported in section 4.6.7. Given that Mtl2 has very low cytoplasmic concen-
tration, we assumed that over the timescale of experiments Mtl2 diffuses along
the surface of the cell, and we aimed at testing this assumption and estimating
the diffusion coefficient.

We implemented different modelling and experimental options in HiFRAP:
diffusion or reaction-diffusion, pre-FRAP profile known or not, photobleaching
during determined from a control area or optimised based on a region of interest.
To use HiFRAP, it is necessary to select a region of interest (ROI) which includes
the bleached area and its surroundings. Here, the ROI should be far enough from
cell edges (as viewed from the top) to avoid the effects of cell curvature on sig-
nal intensity. It is also important to precisely quantify the photobleaching during
imaging and the background intensity. Although this can be done using the infer-
ence method (see Section 4.4.6), it is better precise to make these estimates inde-
pendently from the kinetics of fluorophores. We thus select two control areas, one

58



CHAPTER 4. A NOVEL INFERENCE METHOD FOR FRAP

E
st

im
at

ed
 D

iff
us

io
n 

[D
es

t/D
tru

e]

E
st

im
at

ed
 D

is
so

ci
at

io
n 

R
at

e 
[β

es
t/β

tru
e]

Dissociation-Diffusion Time Ratio [tβ /tD] Dissociation-Diffusion Time Ratio [tβ /tD]

E
st

im
at

ed
 P

ho
to

bl
ea

ch
in

g 
[ε

es
t/ε

tru
e]

Es
tim

at
ed

 S
ou

rc
e 

R
at

e 
[α

es
t/α

tru
e]

Dissociation-Diffusion Time Ratio [tβ /tD]Dissociation-Diffusion Time Ratio [tβ /tD]

Figure 4.4.6: HiFRAP applied to diffusion-reaction when pre-FRAP
concentration field and rate of photobleaching during imaging are un-
known. Distribution on for the estimated parameter (normalized by the true
values) of 200 datasets simulating reaction diffusion dynamics, as function of the
relaxation-to-diffusion time ratio tβ/tD. Violin plots are for the diffusion coefficient
Dest, the relaxation rate βest, the source rate αest and the rate of photobleaching
during imaging ε. The error bars stand for the maximum, the average and the
minimum of the distribution. The dashed gray line represents the reference value
at which the estimated parameters is equal to the true value of the system. As an
initial starting point for the minimisation, we chose D0 = 0.2ℓ2/T , β0 = 1/T and
ε0 = 2/T where ℓ is the FRAPped area side-width and T is the total acquisition
time. As experimentalists can tune the time step to have the total recovery time
tγ = 1/tβ + 1/tβ at the optimal scale (tγ ∼ 10−1T ), we constrained the diffusion
constant and the dissociation rate to be D < 4L2/T and β < 15/T such that
tγ > 10−2T . Furthermore, the theoretical solution exists only for non-negative
values of diffusion, so we set D ≥ 0, while the dissociation rate tβ > −1/T since
the negative value can arise when the empirical error ∆βemp ∼ βtrue which corre-
sponds to a diffusion-dominant system. Moreover, I constrain ε to be in the scale
of the temporal window (1/5/T < ε < 5/T ), as photobleaching during imaging is
visibly detectable by experimentalists through signal fading over time.
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Figure 4.4.7: Inferring the diffusion coefficient from experimental data.
A Fluorescent microscopy image of a yeast cell expressing Mlt2-GFP. The cell
was bleached in a region close to the cell centre. Three regions were selected
with FiJi. The square is the region of interest (containing the bleached region)
whose side length is L = 1.23 µm; the top rectangle is used to estimate intrinsic
bleaching associated with imaging, while the bottom rectangle is used to estimate
background signal intensity. B From experimental signal to fit; 2-dimensional data
shown at 4 time points (time is in seconds). From top to bottom: experimental
data inside the region (sidelength L = 1.23 µm) with FRAP at t = 0; compressed
experimental data; fit to compressed experimental data; residuals of the fit. The
grayscale and colorscale are shown on the right. C Corresponding cost function
C (in units of the squared signal intensity) as a function of fitting parameter D
for the diffusion coefficient; the insert is a zoom-in on the cost’s minimum.

free of fluorophores to get background intensity and one containing fluorophores
far from the FRAPped region to get the rate of photobleaching during imaging.
The background intensity is obtained as the spatiotemporal average of the signal
intensity over the first control area. The intrinsic bleaching rate ε is obtained from
an exponential least-square fit of the decay of the spatial average of the signal in
the second control area. In Figure 4.4.7A we show the three regions selected to
estimate the diffusion coefficient of Mtl2, where we tried to maximise the areas
if selected regions within constraints previously mentioned. Figure 4.4.7B show
gives an example of signal analysed, its compression, fit, and fit residuals. We
estimated the diffusion coefficient and its uncertainty from the minimum and the
curvature of the cost function in Figure 4.4.7C.

The parameters of the experiments were chosen as follows, based on sec-
tion 4.4.4. The size of the region of interest (ROI) being limited by cell width; we
chose to use square ROIs of side length ∼ 1.5µm and FRAPped square regions
of side length ℓ ∼ 0.5µm. In practice, we found that the FRAP was imper-
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fect; the reduction in signal intensity was inhomogeneous and did not occur over
a perfect square, see t = 0 in Figure 4.4.7B. This may be caused by different
factors such as the smallness of the FRAPped region, laser imprecision, or fluc-
tuations in fluorophore concentration. To adjust the imaging time step ∆t, we
first estimated the order of magnitude of the diffusion coefficient and of photo-
bleaching rate per image by applying HiFRAP to a preliminary experiment. We
found ε ∼ 10−2 and Dest ∼ 104 µm2s−1. Then, to optimize our analysis we chose
∆t = 5/8εℓ2/D ∼ 10 s, and nt = 1/ε ≃ 100. Finally, to limit computational cost,
we set nq = 5 modes for the compression. The initial diffusion value grid, used
to determine the initial search interval as explained in section 4.4.2, was set to
Dgrid = [0, 10−4, 10−3, 10−2, 10−1, 1, 10, 102, 103, 104] ℓ

2

T
, with ℓ ≈ 0.5 µm, T ≈ 700

s the total acquisition time and ℓ2

T
≈ 0.3 10−4 µm2/s.

We FRAPped once each of 18 cells, see Table D.0.1 and figure D.7 in SI. We
found an average value of the diffusion coefficient, ⟨Dest⟩ = 2.3 10−5µm2s−1, lower
than diffusion coefficients of proteins in cell membranes (Jacobson et al., 1987),
but in agreement with the order of magnitude 10−4 − 10−2µm2s−1 for membrane-
localised proteins in yeast or in fission yeast (Bianchi et al., 2018; Ganguly et al.,
2009; Neeli-Venkata et al., 2021; Ries et al., 2008; Valdez-Taubas and Pelham,
2003), likely owing to the presence of a cell wall (Martinière et al., 2012). Overall
the purely-diffusive model is validated by the goodness of the fit in almost all cases
(the p-value of rejection is smaller than 0.05 only twice out of 18, see Table D.0.1 in
SI). The empirical error, or the standard deviation of the diffusion coefficient over
all experiments ∆Demp = 2.2 10−4µm2s−1 , is much greater than the estimated
error in single experiments ⟨∆Dest⟩ = 0.2 10−4 µm2s−1. This reflects biological
cell-to-cell variability in diffusion, which has already been observed in cultured
animal cells based on single particle tracking (Wieser et al., 2009).

4.5 Conclusion

We have developed HiFRAP, a method to infer reaction (or exchange)-diffusion ki-
netic parameters from FRAP with imperfect conditions, and we have implemented
it as a Fiji plugin. HiFRAP uses a whole time-lapse sequence and the variable
projection approach to derive kinetic parameters, errors on these parameters, and
a test of model validity — for instance whether pure diffusion is a good model for
the data.

HiFRAP combines all useful features that have been developed separately in
previous work. HiFRAP makes it possible to infer several parameters from a sin-
gle FRAP experiment (Axelrod et al., 1976; Berkovich et al., 2011; Ciocanel et
al., 2017; Cowan and Loew, 2023; Goehring et al., 2010; Kang and Kenworthy,
2008; Kang et al., 2010; Montero Llopis et al., 2012; Röding et al., 2019; Saito
et al., 2022; Tolentino et al., 2008; Wu et al., 2008), as long as system dynam-
ics is sufficiently sensitive to these parameters (Ciocanel et al., 2024). We make
no assumption on the bleaching profile (Berk et al., 1993; Berkovich et al., 2011;
Blumenthal et al., 2015; Elowitz et al., 1999; Jönsson et al., 2008; Röding et al.,
2019; Zarabadi and Pawliszyn, 2015); it is thus therefore well-suited to experi-
mental conditions in which it is unfeasible to bleach uniformly the target region.
HiFRAP accounts for intrinsic photobleaching associated with repeated imaging,
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either based on a control region or on inference of photobleaching rate (Jönsson
et al., 2008; Papáček et al., 2013; Röding et al., 2019). Finally, HiFRAP integrates
three features that do not seem to have been implemented before: errors on pa-
rameter estimation for a single experiment; diffraction in the microscopy setup —
though the precise characteristics of the point-spread function are not required as
long as its width is larger than pixel size; test of model goodness. We ran HiFRAP
against a classical benchmark and found that HiFRAP provides significantly lower
errors except for very noisy data.

Nevertheless, HiFRAP has a few limitations. As stated above, it fails for ex-
cessive amplitudes of noise, in which case the classical approach is more robust
because it assumes the initial bleaching profile to be well-known. A limitation
common to HiFRAP and other methods is that the same dynamics (diffusion, or
reaction-diffusion) is implicitly assumed to hold outside the observational window.
This is not necessarily true, as, for instance, there may exchange of molecules at the
boundaries (Taylor et al., 2019). This issue needs to be addressed experimentally,
making sure that FRAP is operated well inside into a region with homogeneous
dynamics. Most available methods do not explicitly deal with noise. We were
led to make the simplifying assumption that noise is homogeneous and station-
ary, which is not necessarily true (Hillsley et al., 2024; Röding et al., 2019). For
example, the amplitude of the shot noise associated with photon counting is pro-
portional to the square root of the signal. Such spatiotemporal variation of noise
would likely affect error estimation but not parameter estimation.

In principle HiFRAP can be adapted to FRAP variants, involving for in-
stance continuous photobleaching of a region or photoconversion of a fluorophore
(Ishikawa-Ankerhold et al., 2014)), and to the FRAP analysis of other types of
dynamics, such as advection by active transport (Ciocanel et al., 2017; Saito et al.,
2022), sub-diffusion (Geiger, 2021; Yuste et al., 2014), multiple-species (Ciocanel
et al., 2017, 2024; Röding et al., 2019), and non-flat geometries (Bläßle et al.,
2018; Klaus, 2016). HiFRAP assumes linearity of underlying partial differential
equations (PDEs), but this is not a strong limitations as the dynamics becomes
quickly linear upon return of the system to its equilibrium state.

Our method is actually not restricted to FRAP and could be used for inference
of parameters for any linear PDE based on the effects of a perturbation on the
system. We can therefore expect applicability of our method to capillary isoelectric
focusing (Liu et al., 2006) or to optogenetics (Ferenczi et al., 2019). Overall, our
approach can be considered as a good alternative to machine learning approaches
since it does not require training (Karnakov et al., 2024).

4.6 Theory and methods

4.6.1 Data sampling and compression

We consider a spatiotemporal signal collected at discrete positions (X(1), X(2))
such thatX(1) = X(2) = [0,∆x, ..., (nx−1)∆x] and times T = [0,∆t, ..., (nt−1)∆t],
where ∆x is spatial mesh size and ∆t is the time interval between two 2D images,
nx × nx is the number of pixels and nt the number time frames. We arrange
the measurements into a unique vector {IDATA

k }Ntot
k=1 composed of Ntot = n2

xnt

elements, where the index k = a+ bnx+ cn
2
x is associated to the space-time triplet
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(x
(1)
k , x

(2)
k , tk) = (X

(1)
a , X

(2)
b , Tc), X

(p)
a and Tc being the a-th component of vectors

X
(p)
a and Tc, respectively. We assume that this empirical data corresponds to a

theoretical spatiotemporal signal c(x, y, t) that can be sampled into a theoretical
data vector through the sampling operator S : c(x, t) 7→ {ITH

k }Ntot
k=1 , defined such

as ITH
a+bnx+cn2

x
= c(X

(1)
a , X

(2)
b , Tc).

To save data storage space and computational time, we compress these vectors
into smaller made of N elements (N < Ntot), defining the compression operator
C : {IDATA/TH

k }Ntot
k=1 7→ {Y DATA/TH

i }Ni=1. In practice, we chose to compress in the
space domain because nx × nx is in general much greater than nt: We keep nq

spatial Fourier coefficient per axis, so that N = n2
qnt. Accordingly, we define the

compression operator as

C : Y
DATA/TH
i =

N∑
k,l=1

Fi,kI
DATA/TH
k δti/∆t,tk/∆t (4.5)

where δi,k is Kronecker’s delta and the Fourier matrix Fi,j = F̃ (q
(p)
1 , x

(p)
1 )F̃ (q

(p)
2 , x

(p)
2 )

with

F̃ (q
(p)
i , x

(p)
i ) =

1√
N


1√
2
cos(q

(p)
i x

(p)
i ) if q(p)i < 0

1 if q(p)i = 0
1√
2
sin(q

(p)
i x

(p)
i ) if q(p)i > 0

(4.6)

where the index i = a + bnq + cn2
q is associated to the triplet (q

(1)
i , q

(2)
i , ti) =

(Q
(1)
a , Q

(2)
b , Tc), where Q(1) = Q(2) = π∆x

nx−1
[−nq−1

2
, ..., 0, ..., nq−1

2
]

Results in Figure D.3 shows that as long as nq ≥ 3, compression affects neither
the accuracy —how close the mean of the distribution of the estimated parameter
is to the true value — nor the precision of the estimation — the variance of the
estimated parameter distribution. nq ≥ 5 is sufficient to reach 80% of the precision
that would be obtained with no compression.

4.6.2 Inferring dynamical parameters

We aim at estimating the vector θ⃗ = {θ1, ..., θn} of the parameters of a linear PDE
from an empirical signal {Y DATA

i }Ni=1. We consider system dynamics upon a linear
perturbation w(x). The theoretical, noiseless solution to the PDE takes the form

Y TH
i {θ⃗, w} =

∫
R2

Gi(θ⃗, y)w(y)dy + hi(θ⃗), (4.7)

where the linear operator G and the shift vector h are specific of the PDE. As we
will see later, it is also possible to include in Gi the effect of any linear operation
on the signal, such as spatial filtering by the optical setup.

We consider experimental/technical noise, defined as the residual ei = Y DATA
i −

Y TH
i (θ⃗true, wtrue), where θtrue and wtrue are the true parameters and intial condi-

tion. We assume that ei is delta correlated, i.e. ⟨eiej⟩ = δi,jη
2, where δi,j is the

Kronecker delta and η, the unknown noise amplitude. Under these hypotheses,
we can estimate the vector θ⃗ resorting to the least squares method which consists
in minimizing the function

∑N
i=1(Y

DATA
i − Y TH

i (θ, w))2 with respect to w and θ⃗.
Since relation 4.7 for the theoretical signal is linear with respect w, we apply the
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variable projection method approach (Golub and Pereyra, 1973) by which we first
minimise with respect to w and then with respect to θ⃗. Minimising with respect
to w yields

min
w

N∑
i=1

[Y DATA − hi(θ)−
∫

R2

Gi(θ⃗, y)w(y)dy]
2 =

N∑
i=1

N∑
j=1

[Pi,j(θ)(Y
DATA
j − hj(θ⃗))]

2.

(4.8)
where P is the orthogonal projector associated with the kernel matrix

Ki,j =

∫
R2

dyGi(θ⃗, y)Gj(θ⃗, y). (4.9)

The projector can be estimated using the singular values decomposition (Koyano
et al., 2018)

Pi,j(θ⃗) =

√
λ(θ⃗)

Σi(θ⃗) + λ(θ⃗)
Uj,i(θ⃗) (4.10)

where U:,i is the matrix containing the i-th eigenvector of the kernel matrix K
and Σi the associated eigenvalue. In this equation, the prefactor of Ui,j acts as
low-pass filter applied to the eigenvalues of the kernel matrix K. We preferred
this continuous filter over a sharp Heaviside filter in order to obtain a smoother
cost function. The true projector is obtained when λ → 0. To avoid numerical
instability appearing when computing very small quantities, we choose λ = NΣ0ϵ,
where Σ0 is the first eigenvalue and ϵ is the machine precision (Press et al., 2007).
This yields typical values of λ(θ⃗) in the range 10−11-10−12, so that the error in
computing the cost function is negligible. Moreover, because the average contri-
bution of the noise

∑N
j=1(Pi,j(θ⃗)ej)

2 ∼ η2
∑N

j=1 Pj,j(θ⃗) scales with the trace of the
projector, we normalise the sum of residuals in Equation 4.8 by

∑N
j=0(Pj,j)

2 to
obtain an unbiased estimation on θ⃗. We therefore obtain the estimation of the
parameter vector as

θ⃗est = argmin
θ⃗

∑N
i=0[
∑N

j=0 Pi,j(θ⃗)(Y
DATA
j − fj(θ⃗))]

2∑N
j=0(Pj,j(θ⃗))2

. (4.11)

For numerical minimization, we chose Brent’s method (a combination of the in-
verse parabolic interpolation and the golden section search method) for a single
parameter and Nelder-Mead simplex method multidimensional minimization for
multiple parameters, because these two methods do not require the computa-
tion of the gradient. A short description of these methods is reported in ta-
ble 4.6.1. In practice, we used the scipy built-in function for scalar function
scipy.optimize.minimize_scalar(method=‘bounded’) for 1 parameter and
minimize(method=‘Nelder-Mead’) for multiparametric minimisation, where for
this method an adaptive choice of the simplex parameters depending on the dimen-
sionality of the problem was used (Gao and Han, 2012). However, both methods
depend on the initial parameters of the optimisation. For Brent’s method, a search
interval—defined as the range within which the minimum is sought—must be pro-
vided. As described in Section 4.4.2, this choice affects the final estimation. In
contrast, for the Nelder-Mead method, an initial value for the kinetic parameters is
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necessary to define the vertex of the initial simplex. As discussed in Section 4.4.6,
this initial parameter choice influences the final solution. Moreover, to avoid non-
physical parameter values, e.g., negative diffusion values, the minimization was
constrained within specified boundaries.

The covariance matrix of the estimated parameters can be estimated from the
quadratic approximation of the cost function as

⟨(θ⃗est − ⟨θ⃗est⟩)⊗ (θ⃗est − ⟨θ⃗est⟩)⟩
2∑N

i=0(Pi,i)2
H−1C(θ⃗est), (4.12)

where H is the Hessian of the cost function with respect to θ⃗. The Hessian
matrix was computed numerically by fitting the cost function with a paraboloid
of the form:

P(θ) =
1

2
θ⃗THθ⃗ + b⃗Tp θ⃗ + cp, (4.13)

where H is a matrix with n × n parameters (n is the vector length of θ⃗ which
contains the kinetic parameters to estimate), b⃗p is a vector of n parameters and cp
is a scalar parameter. For this purpose, the cost function was sampled at multiple
points around the minimum. In particular, we evaluate the cost function on lin-
early spaced arrays with 11 points in the range [θesti (1−∆Θ), θesti (1 +∆Θ)], with
Θ = 0.05 (typical relative error in the parameters) generated for each parameter θi,
varying only the i-th parameter while keeping θj = θestj for all j ̸= i. Furthermore,
if n > 1 the cost function was sampled along circular paths around the estimated
parameters as θi = (1+∆Θcosϕ)θesti , θj = (1+∆Θsinϕ)θestj and θk = θestk for all
θi and θj couples and k ̸= i, j. The angle ϕ linearly spans the range [0, 2π] with 21
points. This sampling allows for smoothing the cost function and get information
about the second and mixed derivatives. Afterwards, all the coefficients of the
paraboloid were obtained by solving the linear least-squares problem. From these
coefficients, the Hessian matrix was directly derived as Hij = Hi,j.

Finally, if the hypothesis that the model represents well the data is correct,
then the residuals approximately correspond to the projection of the noise vector,
i.e. ri =

∑
j Pi,j(θest)(Y

DATA
j −fj(θ⃗est)) =

∑
j Pi,j(θest)(Y

TH
j (θ⃗true)+ej−fj(θ⃗est)) ≈∑

j Pi,j(θest)ej for Σi < λ. Since e⃗ is uncorrelated noise, {ri}Σi<λ should be nor-
mally distributed. Therefore, we can check the hypothesis that the model is com-
patible with data by applying the Shapiro-Wilk normality (more sensitive) or the
Kolmogorov-Smirnov test {ri}Σi<λ, the null hypothesis being that residuals are
normally distributed. These tests were implemented using the SciPy package,
specifically with the functions scipy.stats.shapiro and scipy.stats.kstest. As it can
be seen in Figure D.6, we obtain a pvalue smaller than 0.05 only for 5% of simu-
lations with both tests as expected when artificial data correspond to the model
tested.

4.6.3 Modelling signal acquisition

Here we aim at accounting for two experimental features: photobleaching during
imaging associated with imaging and diffraction in the optical setup. When the
sample is imaged, photobleaching occurs at a rate ε per image. Diffraction implies
that the detectors collect the true signal convolved by the point-spread function,
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Table 4.6.1: Overview of the optimization method, their description and the
number of parameters to minimize

Method Description Nr. Par.

Inverse
Parabolic
Interpola-
tion

This method consists of minimizing the function by it-
erative quadratic approximation of its local behaviour.
It fits a parabola through three points on the function
and computes the abscissa where the minimum of the
parabola occurs. This is repeated with updated triplets
until convergence. It can rapidly find the solution if the
function is parabolic near the minimum but may fail if
points are nearly collinear or if the interval is not re-
duced sufficiently.

1

Golden
Section
Search

This method minimizes the cost function by reducing
the search interval at each step. Starting with the ini-
tial boundaries, it evaluates the function at two internal
points and discards the worst-performing side, keeping
the minimum bracketed. To choose the two internal
points, the method resorts to the golden ratio rule, for
which the ratio between the distance of the two inter-
nal points respectively from the two extrema should be
equal to

√
5−1
2

≈ 0.618. While it is slower, it guaran-
tees convergence even for non-smooth, irregular, or non-
parabolic functions, making it useful when other meth-
ods fail.

1

Brent’s
Method

Brent’s method combines the robustness of golden sec-
tion search with the speed of inverse parabolic interpola-
tion. Starting within an initial interval, it uses parabolic
interpolation when the function is smooth and switches
to golden section search when that step fails. Failures
are detected when the new point lies outside the interval,
the step size is not reducing sufficiently, or the points are
nearly collinear. This makes it effective for both smooth
and irregular functions.

1

Nelder-
Mead
Method

Nelder-Mead is a simplex-based optimization method
that iteratively evaluates the cost function on a set of
n + 1 vertices. At each step, the points are updated
towards the direction of the minimum by applying re-
flection, expansion, contraction, or shrinkage operations
on the simplex. The parameters of these operations can
be efficiently adapted to the dimensionality of the prob-
lem (Gao and Han, 2012). In general, Nelder-Mead
method is effective when derivatives are not available,
but it can be rather slow compared to other method,
such as Newton-Gradient.

≥ 2

assumed to be a Gaussian of width µ as a point-spread function. The sampling
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operator can then be expressed as

S : c(x, t) → ITH
k = A exp

[
−ε tk

∆t

] ∫
R2

dx̃g(x̃− xk, µ
2)c(x̃, tk) + Ib, (4.14)

where the scaling parameter A can be set to 1 if the unit of intensity is arbitrary,
the two-dimensional point-spread function is given by

g(x, µ2) =
1√
2πµ2

exp

[
−(x(1))2 + (x(2))2

2µ2

]
, (4.15)

and Ib is the background signal.

4.6.4 Inference in the case of pure diffusion

Here we apply the variable projection method to the signal {Y DATA
i }Ni=1 in the case

of a purely diffusive model. The only kinetic parameter to infer is D, the diffusion
coefficient. rate of photobleaching during imaging ε and background signal Ib can
be estimated separately from a control area from the sample and from a sample-
free area, respectively. The analytical solution of diffusion PDE 4.3 with a generic
initial condition c(y, 0) can be expressed as

c(x, t) =

∫
R2

dyg(x− y, 2Dt)c(y, 0) (4.16)

with g defined as in Equation 4.15. If we apply the sampling operator S to
c(x, t) and the compress the resulting vector {ITH

i }Ni=1, we obtain the theoretical
compressed signal as

Y TH
i =

N∑
k=0

{
Fi,k exp(−εti)

∫
R2

dyg(xk − y, 2Dtk + 2µ2)c(y, 0) + Fi,kIb

}
(4.17)

By comparison with Equation (4.7), we identify the kernel matrix Gi(x, y) =∑
k exp(−εti)g(xk− y, 2Dtk+µ

2), and the shift vector hi =
∑

k Fi,kIb and w(y) =
c(y, 0). In practice, we set the width of the PSF, µ, to ∆x. Indeed, we found
that the average and the variance of the estimated parameter distribution are
not affected by this choice as long as the true value of the system µtrue ≳ 1, see
Figure D.5. Eventually, we obtain the kernel matrix from Equation (4.9) as

Ki,j =
Ntot∑
k,l=0

Fi,kFj,le
−ε(tk+tl)g(xk − yk, 2D(tk + tl) + µ2), (4.18)

from which it is possible to compute the projector P from Equation (4.10) and
minimised the cost function (Equation 4.11) to infer the diffusion coefficient Dest.
If the rate of photobleaching during imaging, ε, is not known from a control area,
then the cost function should be minimised with respect to both D and ε.
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4.6.5 Inference in the case of reaction-diffusion

Now we consider the underlying model to be a linear reaction-diffusion PDE (Equa-
tion 4.4). Following the same approach as in the previous section, the theoretical
compressed signal takes the form

Y TH
i =

Ntot∑
k=1

{Fi,ke
−εtk

((
α/β − e−βtk

)
+∫

R2

dy
(
g(xk − y, 2Dtk + µ2)(c(y, 0)− α/β)

)
+ Fi,kIb} (4.19)

By comparison with Equation (4.7), we identify Y TH
i and we obtain the kernel

from Equation (4.9)

Ki,j =
Ntot∑
i,j=1

Fi,kFj,ke
−(ε+β)(tk+tl)g(xk − xl, 2D(tk + tl) + µ2) (4.20)

and

fi(α, β) =
Ntot∑
k=1

{
Fi,kα/β(1− e−βti)e−εti + Fi,kIb

}
. (4.21)

We note that fi(α, β) can be defined at β = 0 by continuity using limβ→0(1 −
exp(−βti))/β = ti.

Finally, the cost function defined in Equation (4.11) can be minimised with
respect to the kinetic parameters D, α and β. Since α is a linear parameter, the
solution that minimise the cost for any fixed D and β, denoted as αmin, can be
obtained analytically with the projector 4.10 as

αmin =

∑N
i,j,j′ Pi,j f̃jPi,j′Y

DATA
j′∑N

i,j,j′ Pi,j f̃jPi,j′ f̃j′
(4.22)

where f̃i = f
α
. So, the cost in equation (4.11) is computed directly at αmin and

minimise numerically with respect to D and β with the Nelder-Mead’s method,
yielding the final estimations Dest, βest and α = αmin(Dest, αest).

In the simpler case in which the stationary protein concentration cs = αtrue/βtrue
is perfectly known, then the theoretical compressed signal takes the form

Y TH
i =

Ntot∑
k,l=1

{
Fi,ke

−εtk

(
cs +

∫
R2

dy
(
g(xk − y, 2Dtk + µ2)(c(y, 0)− cs)

)
+

)
+ Fi,kIb

}
.

(4.23)
The kernel Ki,j keeps the same form as in Equation (4.20) and the shift vector
becomes hi =

∑Ntot

k=1 Fi,k(cs exp(−εtk) + Ib) and w(y) = c(y, 0) − cs. In this case
the cost function (Equation 4.11) should be minimised with respect to D and β
only since it is independent on α.

In either of the preceding two cases and in the absence of a control area to
estimate photobleaching during imaging, the cost function needs to be minimised
with respect to ε (in addition to D, β, and possibly α).
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nx Number of pixels per axis
nt Number of time frames (of 2D images)
∆x Pixel size
∆t Time interval between two frames

c(x, t) Concentration field (function of space and time)
IDATA
k Raw data vector
ITH
k Noiseless theoretical data vector

Y DATA
i Preprocessed (compressed) data vector
Y TH
i Noiseless theoretical preprocessed data vector
S Sampling operator, maps concentration field onto raw data vector
C Compression operator, maps raw data vector onto preprocessed vector
F Spatial Fourier transform matrix
nq Number of spatial modes kept per axis after compression

Table 4.6.2: Notations for sampling and preprocessing

θ⃗ Vector of kinetic parameters to be inferred
θ⃗true Vector of true values of kinetic parameters
θ⃗est Vector of estimated kinetic parameters
w Spatial perturbation

Gw + h The linear operator G and the shift vector h
ei Noisy part of the preprocessed vector
η Amplitude of the noise
K Kernel operator
P Orthogonal projector matrix associated with kernel operator
U,Σ Eigenvectors and eigenvalues of the kernel matrix
λ Threshold on eigenvalues

Table 4.6.3: Notations for inference

4.6.6 Artificial Data

Artificial concentration fields c(x, t) were obtained by solving analytically the
reaction-diffusion equation (4.4) (or the diffusion equation 4.3), with known pa-
rameters Dtrue, αtrue, βtrue, and µtrue. The initial condition describes a square
FRAPped profile,

c(x, y, 0) =

{
cs −∆c if |x− L

2
| < ℓ

2
and |y − L

2
| < ℓ

2

cs else,
(4.24)

where ∆c/cs is the proportion of bleached fluorophores and ℓ is the square side
length. photobleaching during imaging is readily accounted for by multiplying the
solution by an exponentially decaying function with rate εtrue. The theoretical
data vector takes the form

IDATA
k = Ae−εtruetk

(
cs −∆Ie−βtruetk

1

2
ψ(x

(1)
k )ψ(x

(2)
k )

)
, (4.25)
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Ib Background signal
µ Width of point-spread function
ε Rate of photobleaching during imaging
D Diffusion coefficient
α Source rate
β Loss or exchange rate

Table 4.6.4: Parameters of signal acquisition model and of PDE

with

ψ(x
(p)
k ) = erf

(
x
(p)
k − ℓ

2√
4Dtruetk + 2µtruex2

)
− erf

(
x
(p)
k + ℓ

2√
4Dtruetk + 2µ2

true

)
,

where the error function is defined as erf(x(p)) = 2√
π

∫ x(p)

0
e−t2dt. The reference

concentration cs is fixed for pure diffusion, whereas for reaction-diffusion, cs =
αtrue/βtrue. The same procedure was applied for a Gaussian bleaching profile, X-
shape and E-shape (obtained by translation, rotation, extension and superposition
of of square bleaching profile)

To obtain a realistic dataset we add noise to the deterministic solution,

IDATA
k = ITH

k + ηNk, (4.26)

where η is noise amplitude and Nk is sampled from a Gaussian random variable
of mean zero and standard deviation 1. Finally, we compress the simulated vector
4.25 using the compression operator C (Equation 4.5).

Unless specified otherwise, we used the following default values: nx = 121,
nt = 16, ℓ/(nx∆x) = 3, µtrue/∆x = 1, η/∆c = 0.25, εtrue = 1/(nt − 1), ∆c/cs =
0.5, nq = 9, Dtrue = 13.33∆x2

∆t
, αtrue

βtrueA
= 1, βest=0 (for diffusion-only simulations)

and βtrue∆t = 0.0696 (for diffusion-exchange simulations) with ∆x = 1, ∆t = 1,
A = 1 in arbitrary units.

4.6.7 Experiments

The Schizosaccharomyces pombe strain mtl2-GFP: ura4+ (identifier RN21, (Neeli-
Venkata et al., 2021)) was used for experimental validation of the method. Stan-
dard fission yeast methods and media were used (Forsburg & Rhind, 2006). The
cells were grown in YE5S liquid culture overnight at 25degC, diluted in fresh
medium and grown to an optical density (OD600) between 0.4 and 0.6 before
live-imaging. Cells were imaged on EMM (minimal media) 2%-agarose pads at
room temperature (22-25°C); EMM shows reduced background noise in compar-
ison with YE5S agarose pads. Cells were imaged at their bottom surface, close
to the coverslip. Images were acquired with a 100× oil-immersion objective (CFI
Plan Apo DM 100×/1.4 NA, Nikon) on an inverted spinning-disk confocal mi-
croscope equipped with a motorized stage and an automatic focus (Ti-Eclipse,
Nikon, Japan), a Yokogawa CSUX1FW spinning unit, a Prime BSI camera (Tele-
dyne Photometrics,USA) and an iLas2 module (GATACA Systems, France) for
FRAP. During FRAP, a 0.4 µ m square ROI was bleached with the 491nm laser

70



CHAPTER 4. A NOVEL INFERENCE METHOD FOR FRAP

at 20-60 % power and 30 repetitions and the fluorescence recovery was monitored
for a time interval ranging from 7 − 10 s according to the experiment (see table
D.0.1).
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CHAPTER

FIVE

GENERAL CONCLUSION

5.1 Summary of the results

In this work, I presented a model and an inference methodology designed for the
analysis and interpretation of experimental data. Specifically, in chapter 3, I es-
tablished a theoretical framework to explain Wsc1 clustering in the compressed
region of the cell wall. The dynamics of the model is set by reaction-diffusion
equations incorporating both mobile and immobile species. The mobile species
are characterized by their capacity to diffuse and be recruited from an external
source, whereas the immobile species remains static. The model predicts that
the introduction of a local activator field, which promotes the transition towards
the immobile state, results in an increase in the total concentration within the
system. The distribution of this concentration mirrors the profile of the activator
field. In the regions where the activator field is more intense, there is a higher
total concentration. Conversely, in areas with a weaker activator field, the total
concentration remains lower. Additionally, I showed that in the limit in which the
timescale of chemical reaction is shorter compared to diffusion and exchange with
the reservoir, the two-species dynamics can be reduced into an effective reaction-
diffusion equation of one single species, the total concentration. The dynamics
in this case is ruled by two parameters, the effective diffusion constant and the
effective exchange rate. These parameters decrease as the activator field increases.
Indeed, in the more crowded regions the molecules transition more frequently into
the immobile state, yielding a reduction of the effective mobility for the whole
population.
This model is a good candidate to describe the fission yeast mechanosensor, the
Wsc1 protein. In this context, the activator field can be represented by the thin-
ning of the cell wall. Compression of this layer is supposed to enhance the binding
affinity between the protein and the cell wall. In this way, proteins could get
more frequently trapped and immobile by the surrounding environment. This hy-
pothesis is supported by the potential presence of weaker interactions between the
protein and the cell wall polysaccharides, which may become more pronounced
in compressed regions due to increased molecular packing in tinier space. The
mechanosensitive reaction-diffusion model for Wsc1 is consistent with FRAP ex-
periment outcomes, which show that Wsc1 has a slower dynamics in the com-
pressed regions of the cell wall. However, current data analysis does not distin-
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guish between the two mechanisms of protein mobility: lateral diffusion along the
cell wall and exchange with the cytoplasm.
To address this issue, chapter 4 introduces a novel inference method, HiFRAP,
capable of estimating all diffusion-reaction parameters from a single time-lapse
from FRAP experiment. For Wsc1 proteins, HiFRAP could quantify recovery due
to cytoplasmic exchange rate with the cytoplasm and diffusion constant along the
cell wall. Compared to existing methods, HiFRAP offers greater versatility. It
does not rely on the initial shape of the bleaching, making it applicable in cases
where the bleaching shape is unknown. This is particularly relevant for small cells,
such as fission yeast, where protein fluctuations and optical limitations complicate
precise control over bleaching shape. Additionally, HiFRAP addresses experimen-
tal artifacts, such the point spread function and intrinsic photobleaching, In Wsc1
dynamics, this effect is particularly relevant, since the signal is almost completely
loss after only 20 frames.
Furthermore, HiFRAP provides error in the estimation of the parameters. This
feature could help assess the validity of the reaction-diffusion model and discern
whether variability among individuals is due to biological differences or experi-
mental noise.

Beyond the application to Wsc1 protein, the binding sensitive reaction-diffusion
model and HiFRAP can be utilized to gain quantitative insights into molecular
dynamics within cells, revealing interactions between cellular components that are
affected by external stimuli.

5.2 Perspectives
In this section, I discuss feasible developments of my work and possible issues that
could drive future research.

5.2.1 Application of HiFRAP to Wsc1

Although an inference method has been developed, its application to the experi-
mental data for Wsc1 has not yet been performed. Before proceeding with its use,
several key issues must be addressed.
First, the HiFRAP method is only applicable if data are collected for at least three
Fourier modes per axis. This requirement imposes a significant limitation: if data
are collected on only one cross-sectional plane and a two-dimensional model is
desired, the application of HiFRAP is not feasible. To overcome this limitation,
two potential solutions can be considered.
One solution involves capturing a top-down view of the cell tip, rather than a
cross-sectional view, during FRAP imaging (Dodgson et al., 2013). However, in-
tegrating cell wall thinning measurements with such a field of view would only be
possible using a 3D scanning with a confocal microscope, which might slow down
the process of image acquisition.

An alternative, and perhaps simpler, approach is to consider a quasi-one-
dimensional dynamical system. If one dimension of the bleaching region is sig-
nificantly larger than the other, it is possible to reduce the complexity of the
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model by focusing on one-dimensional dynamics. In this case, HiFRAP can be
implemented directly in a one-dimensional framework, providing the necessary re-
sults without the complexities of a two-dimensional analysis.

Furthermore, if more realistic models for Wsc1 dynamics are developed, for ex-
ample taking care of the real curved dome shaped of the organism or heterogenous
exoytosis process, this may be easily incorporated in the FRAP inference method
as long as PDE remains linear. In this case, it would be sufficient to adapt the
Green’s function and the shift term computed in section 4.6.2.

5.2.2 Comparative studies with other mechanosensors

A comparative analysis of mechanosensors, particularly Wsc1 and other similar
proteins, presents a valuable opportunity to enhance our understanding of how dif-
ferent protein structures contribute to mechanosensitive clustering dynamics. For
example, researchers in Minc’s Lab are currently cloning other fungal mechanosen-
sors, such as Wsc2, Wsc3, and Wsc4 from S. cerevisiae into S. pombe. All of these
proteins possess a cysteine-rich domain, a key structural feature that may facilitate
interaction with the polysaccharides of the cell wall. In contrast, Mtl2, another
mechanosensor in fission yeast, lacks this cysteine-rich domain. By comparing mo-
bility parameters, such as the diffusion constant and cytoplasmic exchange rates,
between these proteins at different cell wall thinning, will gain insights into the
contribution of specific structural components. In particular, we would like to
understand not only if cystein-riched domain is so essential for clustering but also
how it is related to the mobility of the proteins.

5.2.3 Faster optimisation algorithms

In Chapter 4, I discussed one of the main limitations of our algorithm: its ex-
ecution speed. The bottleneck arises primarily due to the use of singular value
decomposition for evaluating the cost function, which can become very slow or
even infeasible for large matrices encountered in the study of two-dimensional
systems. This issue is further accentuated in three-dimensional systems, where
the matrix size increases significantly. To address this challenge, we resorted to
data compression transformations. So instead of working with the entire data
set information, I keep just few modes, that are generally less noisy and contains
most of the signal. This approach has proven to be relatively efficient, yielding
good results in terms of accuracy and precision. However, even with these opti-
mizations, the computation time remains in the order of minutes. So to further
improve the speed, another possible approach is defining effective initial param-
eters x as a solution to a linear system. Indeed, the minimization 4.8 may be
rewritten ||Y⃗ DATA −Mv⃗est||2, where v⃗est solves the problem Mv⃗est = Y⃗ TH , with
M = K + λ1, where K is the kernel 4.9, λ the penalty parameter and 1 is the
identity matrix. The solution of this problem may be found with efficient algo-
rithms, such as the prescribed conjugate gradient method (Baxter, 2002), which
may exploit the property of the matrix M , which for example shift invariant in
space.
This technique may hopefully reduce the computation time to the order of seconds,
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enabling the processing of larger datasets and maybe a faster real-time analysis.

5.2.4 More robust inference method

As we remarked in chapter 4.4.5, the inference method fails for too strong noise
amplitudes or if the number of parameters to infer is too high. This issue is less
present in other methods, as inference is performed with more a priori informa-
tion, such as the initial shape of the bleaching. So, one strategy to overcome this
problem may be to add additional constraints to restrict the space of solutions
and facilitate optimization.
For example, a feasible hypothesis would be considering the fact that the FRAP
bleaching process cannot increase the intensity of fluorescent molecules. This
means that the stationary concentration minus the initial profile, cs −w, must be
positive. So, it is possible to consider algorithms that consider the desired solution
of a linear problem with nonnegative constraints (Vogel, 2002).
Another hypothesis to facilitate the algorithm would be to assume a restricted
space for bleaching. Even if our approach is more general as I make any hypoth-
esis on the fact that the area that I analyze contains all the bleached molecules,
this situation is easily in reach in experimental condition. One way to consider
this assumption would be to integrate the kernel in equation 4.9 into a smaller
space (Albert and Rath, 2020).
Another improvement would be given by a better noise modeling. Indeed, lin-
ear least-squares estimation in 4.11 is unbiased, even in the presence of non-
homogeneous noise, but it achieves minimal sampling variance compared to other
estimators only if the errors on each data point have the same amplitude. Since,
the amplitude noise in FRAP can be considered as the sum of two contributions, a
uniform background noise, aBG plus square root of signal dependent bI

√
Ii, linear

least square estimator is not the estimator with the lowest sampling error and
alternatives should be considered. To tackle this problem, it would be possible to
write a proper weighted contribution data point, Y DATA

i = IDATA
i (for simplicity

I omit the effect of compression), in the cost function as
∑

iWi(Y
DATA
i − Y TH

i )2,
with Wi =

1
aBG+bIY

TH
i

(Röding et al., 2019). The factor aBG may be estimated
from a priori calibration, looking to how the signal varies with intensities for a
homogeneous stationary concentration. However, since Y TH at the denominator
contains the initial profile parameters w , the minimization problem 4.8 is non-
linear and the variable projection method cannot be applied. To remedy such a
difficulty, one may solve the non linear problem by iteration (Shen et al., 2011).
Starting with a weighting vector Wi ≈ 1

aBG+bIY
DATA
i

, a first estimate of the dy-
namical vector can be performed by cost function minimization 4.11. Once the
first solution Y TH(θ(1)est) is computed, the weighting vector can be updated, and
a new optimization will yield θ(2)est. We can continue this process until the value of
θest converges.

5.2.5 Closing reflections

Cells exhibit an incredibly dynamic organization, where molecular crowding, membrane-
bound compartments, and cytoskeleton elements create a highly complex and non-
equilibrium system. These conditions often give rise to emergent behaviors, such
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as collective dynamics and novel modes of molecular transport. Such behaviors
are not easily captured by classical models, e.g. diffusion-reaction, making this a
rich area for further investigation.
Advances in experimental techniques now allow us to track these intricate pro-
cesses in unprecedented detail. However, the amount of volume and complexity
of the data generated present significant challenges for interpretation. Moreover,
the experimental devices come with numerous settings, whose variations could af-
fect the results. Therefore, developing new theoretical models is fundamental to
provide new lenses to observe phenomena and make comparisons between exper-
iments obtained with different experimental conditions. This study may enable
us to uncover more in-depth insights into the fundamental principles governing
intricate motion of molecules inside the cell.
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APPENDIX

A

HETEROGENEOUS EXOCYTOSIS

In this Appendix, I would like to generalize the model in chapter 3, when the
incoming flux is heterogeneous. This heterogeneity can be due to the directed
motion of the vesicles. I define a(x) : x→ a(x) the local source rate coming from
the cytoplasm for a given position of the cell wall x. In this way, I can rewrite
equations 3.3 {

∂cu
∂t

= D ∂2

∂x2 cu − kon(x)cu + koffcb + a(x)− βcu
∂cb
∂t

= kon(x)cu − koffcb
(A.1)

where for sake of simplicity I include the cell wall thinning dependence in kon(x).
To look for stationary solution, I impose that{

0 = D ∂2

∂x2 c
∗
u − kon(x)c

∗
u + koffcb + a(x)− βc∗u

0 = kon(x)c
∗
u − koffc

∗
b

(A.2)

The solution of the second equation is straightforward and gives

c∗b =
kon
koff

c∗u (A.3)

Substituting this result in the first equation, it yields

0 =
∂2

∂x2
c∗u + a(x)− βc∗u (A.4)

To solve this equation, I can resort to Fourier transform. For a generic spatial
function f(x), we can express its Fourier components (denoted with the hat) as
f̂ = 1

2π

∫
dxe−iqxf(x). In this new space, equation A.2 gets simpler

0 = −q2ĉu(q) + â(q)− βĉu(q) (A.5)

yielding ĉu(q) = â(q)
Dq2+β

. Getting back to real space, I arrive at the final solution

c∗u = α

∫ ∞

−∞
dqeiqx

â(q)

Dq2 + β
(A.6)

In the case of homogeneous source rate α, â = αδ(q), where δ(q) is the Dirac
delta. It is worthy to remark that only in the homogeneous case the diffusion flux
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is zero, since ∂xc∗u = 0. Conversely, in the heterogeneous case the diffusion flux is
not zero, hence the system is never at equilibrium. However, the stationary state
is reached when the contribution due to the exchange rate compensates for the
diffusion fluxes.
If we look at the total concentration, here again it is possible to define the con-
centration enrichment as c∗tot(x)

c0(x)
, where in this case the concentration when no

compression is applied depends on the space position as

c0(x) =

∫ ∞

−∞
dqeiqx

â(q)

Dq2 + β
(1 +

k0on
koff

) (A.7)

It yields the same final result as before

c∗tot
c0(x)

= 1 + κrhr (A.8)

So the clustering behavior is maintained.
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APPENDIX

B

FOURIER SOLUTION TO REACTION-DIFFUSION
EQUATIONS

In this Appendix, my objective is to provide a solution to PDE 3.3 in the Fourier
space. To simplify the calculation, I assume that the relative thinning is homo-
geneous. In this simple case, kon, i.e. the activation rate, does not depend on
x anymore and it is fixed by the compression value which is now constant in
space. In this situation, if the domain of interest sufficiently big, I can rewrite the
concentration as

cu/b(x) =

∫ ∞

−∞
eiqxĉu/b(q)dq (B.1)

where ĉU/B(q) is the Fourier transform. In the Fourier space 3.3 gets

∂

∂t

(
ĉu
ĉb

)
=

(
−kon −Dq2 − β koff

+kon −koff

)(
ĉu
ĉb

)
+

(
αδ(q)
0

)
(B.2)

The solution of this equation have two contributions A1 ∼ eλ+t and A2 ∼ eλ−t,
where λ+/− are eigenvalues of the previous matrix, which have the form{

λ+ = 1
2
(
√

(ktot +Dq2 + β)2 − 4(Dq2 + β)koff − (ktot +Dq2 + β)

λ− = −1
2
(
√

(ktot + (Dq2 + β))2 − 4(Dq2 + β)koff − (ktot +Dq2 + β)
(B.3)

with ktot = kon + koff .
Now it is interesting to consider the limit in which θ = Dq2+β

koff
<< 1. In this case

in the zero-order approximation the eigenvalues gets{
λ+ = − koff

kon+koff
(Dq2 + β) +O(θ2)

λ− = −ktot +O(θ)
(B.4)

The two modes λ− and λ+ relaxes back to equilibrium for different timescales.
Indeed, λ−, which represents the chemical reaction, is much faster, while λ+, which
represents the diffusion-exchange dynamics is slower. So first the chemical reaction
reaches the equilibrium, without the effect of diffusion, then, the system evolves
according to diffusion and exchange with the cytoplasm. On the other hand if
θ = Dq2+β

koff
>> 1, the eigenvalues are{

λ+ = −koff +O(θ−2)

λ− = −(Dq2 + β) +O(θ−1)
(B.5)
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EQUATIONS

So in this case, I have λ− which is the fast mode representing the diffusion-exchange
dynamics. Hence, in this approximation, the system achieves the diffusion-exchange
equilibrium first and then at a different time scale, the chemical-reaction one.
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APPENDIX

C

WEAK PROTEIN-PROTEIN INTERACTION

In this appendix, I study protein clustering dynamics in the context of reaction-
diffusion equations with protein-protein interaction. More specifically, I suppose
that the compression of the cell wall affects the protein conformation and favor
protein-protein binding, as suggested by Kock (Kock et al., 2015). For notation
simplicity, I suppose that the weak interactions with the cell wall do not contribute
into getting the protein in the immobile state. The presence of both phenomena
can be studied in future works.
In this case, the chemical reaction introduced in chapter 3 assumes the following
form

U+U
γon−−⇀↽−−
γoff

B (C.1)

In this scenario two proteins can form a bound with an association rate γon and
dissociation rate γoff . The generalization of this interaction modelling to more
complex links, such as multimer weak bounds, is straightforward and it is not
proved here.
Supposing that the presence of a stress or compression on the cell wall affects the
protein structure and favors the binding rate with a linear relation, γon can be
expressed as

γon = γ0on + γ̄onhr(x) (C.2)

with γ0 ≥ 0, the association rate when no stress is applied and γ̄on > 0 the binding
increase a relative thinning equal to 1. With this assumption, the corresponding
PDE gets {

∂cu
∂t

= D ∂2

∂x2 cu − (γ0on + γhr(x))c
2
u + γoffcb + α− βcu

∂c2b
∂t

= (γ0on + γhr(x))c
2
u − γoffcb

(C.3)

The main difference with PDE 3.3 is that PDE C.3 is non-linear due to a
quadratic term in cu. Using the same procedure as chapter 3, it is easy to show
that at the stationary state c

∗
u = α

β

c∗b =
(

α
β

)2
γ0
on+γ̄onhr

γoff

(C.4)
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So total the concentration ratio with the stress-free state is

c∗tot
c0

(x) = (1 + γrhr(x)) (C.5)

where γr = γ̄on
γ0
on+γoff

≥ 0. So, in correspondence to the compressed region of the
cell wall, the protein concentration increases.
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APPENDIX

D

SUPPLEMENTARY FIGURES

In this Appendix, it is reported the supplementary figures of article draft discussed
in chapter 4.

Dest

C
os

t F
un

ct
io

n 
[C

/η
2 ]

Diffusion value [D/Dtrue]

Figure D.1: Example of a jagged cost function with multiple local minima ob-
tained for a large value of noise, η

∆I
√
Ntot

= 0.008264, where η is the typical noise
amplitude, ∆I the drop in signal upon FRAP and Ntot the total number of points.
The estimated value, Dest, is incorrect, since the algorithm stops in a local mini-
mum which is not the global minimum.
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Figure D.2: Comparison between empirical error (measured over all realisation
of noise) and estimated error (measured from single realisations) when inferring
diffusion coefficient D and exchange coefficient β. From top to bottom: error on
D, error on β, and correlation between D and β. Where an asterisk is present,
the computation of the error was not possible for 1 out of 200 datasets
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Figure D.3: Effect of compression. Panel on the top: time necessary to min-
imise numerically the cost function C(D) as in figure 4.4.1 (panel B), with D the
diffusion value, as a function of the number of elements kept after compression
N = n2

qnt, with nq the number of modes per axis. Results are obtained only from
one execution. Panel on the bottom: violin plot for 200 simulations which shows
the estimated parameter distribution Dest (normalised with the true value Dtrue)
as function of the number of modes kept per axis after compression, nq
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Figure D.4: Panel A: Simulation of different diffusive dynamics with differ-
ent bleaching shapes. The results are shown at different time (normalised by
tD = (L/3)2

16D
, where L is the observation window size). The colorbar represents the

intensity signal value normalised with respect to the typical signal drop-off ∆I.
Pannel B: Violinplot of the estimated parameter distribution Dest (normalised
with the true value Dtrue)for different bleaching shape. The dashed gray line rep-
resents the reference value Dest/Dtrue = 1.

86



APPENDIX D. SUPPLEMENTARY FIGURES

PSF width  [μ/Δx]

E
st

im
at

ed
 p

ar
am

et
er

 [D
es

t/D
tru

e]

Figure D.5: Independence on the point-spread-function width: violinplot of the
estimated parameter distribution Dest (normalised with the true value Dtrue) for
different Point-Spread-Function width µ (normalised with the pixel size ∆x). The
dashed gray line represents the reference value Dest/Dtrue = 1.
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Figure D.6: Shapiro and Kolmogorov test: the bar represents the percentage of
times we obtain a Shapiro or Kolmogorov p-value greater than 0.05 after fitting
data with the estimated diffusion value
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Experiment ∆t[s] Dest [µm2/s] ∆Dest [µm2/s] SW p-value KS p-value ε

1 8 0.92× 10−4 3.33× 10−6 0.14 0.10 0.00774
2 8 2.28× 10−4 1.55× 10−5 0.7809 0.820 0.0068
3 8 1.41× 10−4 1.14× 10−5 0.36 0.88 0.00549
4 8 8.01× 10−4 1.09× 10−4 0.13 0.30 0.00619
5 8 1.02× 10−4 5.57× 10−6 0.26 0.72 0.0059
6 8 4.69× 10−5 3.62× 10−6 0.13 0.94 0.00593
7 8 1.30× 10−4 5.90× 10−6 0.79 0.14 0.00568
8 8 1.19× 10−4 7.85× 10−6 0.0061 0.4817 0.00659
9 8 3.05× 10−4 1.78× 10−5 0.525 0.90 0.005122
10 10 1.25× 10−4 9.55× 10−5 0.087 0.157 0.005106
11 10 4.40× 10−4 3.18× 10−5 0.19 0.19 0.00606
12 10 4.49× 10−4 3.18× 10−5 0.18 0.18 0.00602
13 10 3.94× 10−4 2.89× 10−5 0.0074 0.40 0.00372
14 10 1.08× 10−4 1.16× 10−5 0.88 0.99 0.003842
15 7 1.79× 10−4 0.91× 10−5 0.24 0.31 0.0025
16 7 2.87× 10−4 1.41× 10−5 0.212 0.99 0.003588
17 7 2.84× 10−4 1.41× 10−5 0.82 0.72 0.00253
18 7 4.84× 10−5 7.86× 10−6 0.14 0.67 0.00191

Table D.0.1: Experimental data: interval between images, estimated diffusion
coefficient and error, p-values of the Shapiro-Wilk normality and the Kolmogorov-
Smirnov tests.
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pkol
value /⟨pkol

value⟩Dest /⟨Dest⟩ ΔDest /⟨ΔDest⟩ psh
value /⟨psh

value⟩ ε/⟨ε⟩

(2 ± 2) ⋅ 10−4μm2 /s

(0.2 ± 0.2) ⋅ 10−4 μm2/s

0.3 ± 0.3
0.5 ± 0.3

(0.5 ± 0.1) ⋅ 10−2

Figure D.7: Distributions of experimental results from table D.0.1 displayed
as box plots. From the left to the right: estimated diffusion, estimated error,
pvalue from shapiro test, pvalue from kolomogorov test, estimated photobleaching
from the control area. Data are normalised with respect to the average of the
distribution. The average value is reported above each boxplot with the same
colour.
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Figure D.8: Convergence of the average estimated value and the empirical error.
On the left, it is shown the average estimated diffusion value ⟨Dest⟩ (normalised
as ∆⟨Dest⟩/∆Demp, with ∆⟨Dest⟩ = ⟨Dest⟩−Dtrue, Dtrue the true diffusion value of
the system and ∆Demp, the empirical error computed as in section 4.4.2 for all 200
datasets) as a function of the number of simulations considered nds. The multiple
colours refer to different amplitudes of the noise η, whose value is normalised with
the typical signal drop-off ∆I and the total number of points

√
Ntot per dataset.

On the right, the figure represents the empirical error, ∆Demp, computed as a
function of the number of simulations considered. The different colours represent
different noise strengths, as on the left panel.
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Figure D.9: Result of one-parameter (diffusion only) and two-parameter (diffu-
sion and dissociation rate) minimisation methods for different initial parameters.
Panel A: diffusion value (normalised with the true parameter of the system Dtrue)
at different cost function evaluation steps during its minimization by the Brent’s
method. The different colours represent different initial search interval [a, b]. The
first function evaluations are at D0 = b− 0.618(b− a) and D1 = a+ 0.618(b− a),
given by the golden rule as explained in table 4.6.1. Panel B: cost function (nor-
malised with the amplitude of the noise η) for different diffusion value. Panel C:
diffusion and dissociation rate value (normalised with the true parameter of the
system Dtrue and βtrue) at different cost function evaluation during its minimiza-
tion by the Nelder-Mead’s method. The different colours represent different initial
starting points.
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Figure D.10: HiFRAP combined with a benchmarking method. Violinplot of the
estimated parameter distribution Dest/Dtrue for different noise strength (the typi-
cal amplitude η is normalised with respect to the square root of the total number
of point

√
Ntot and the typical signal drop-off ∆I). The estimated diffusion value

Dest is obtained running HiFRAP minimisation in the interval [Dbench/5, 5Dbench],
where Dbench is obtained from the benchmarking method based on a temporal
fit (Goehring et al., 2010). The dashed gray line represents the reference value
Dest/Dtrue = 1.
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Title : Modelling And Data Analysis of Protein Dynamics applied to a Fission Yeast Mechanosensor 
Keywords : Proteins, inference, mecanosensing, reaction-diffusion, biomechanics, modelling 
Abstract : Intracellular dynamics is fundamental for cells to maintain homeostasis and respond to environmental stimuli. Among 
these, mechanical forces can be a potential source of damage as they can compromise the integrity of the cell. To cope with this risk, 
living organisms are endowed with mechanosensors, i.e. receptor at the sub-cellular level able to trigger a biological pathway by a 
mechanical signal. In fission yeast, a mechanosensor, Wsc1 protein, perceives excessive stress on the cell wall and activates the glucan 
synthesis to keep this layer reinforced. More interestingly, Wsc1 concentration increases in the compressed region of the cell wall 
forming clusters. This work investigates this mechanosensitive clustering behaviour advancing models and inference method for 
experimental data of protein dynamics. 
By setting a mathematical framework based on deterministic partial differential equations, I describe the Wsc1 dynamics along the cell 
wall. In this model, I consider two possible protein recruitment mechanisms for shaping clusters, either from the sides due to diffusion 
along the cell wall and from the cytoplasm by exocytotosis. Moreover, following chemical considerations, I suppose an affinity 
between the cell wall and the protein that increases with the cell wall compression. The resulting reaction-diffusion equations obtained 
by this model are able to reproduce the clustering behaviour after cell wall compression. In addition, the model correctly predicts a 
longer time-scale of the dynamics in the compressed region of the cell wall. This result is in agreement with the outcomes of FRAP 
(Fluorescence Recovery After Photobleaching) experiment, whose analysis is based on the study of time-lapse images that reflects the 
spatial-temporal concentration of the molecule. However, it is not clear yet if the protein recruitment is due to diffusion, exchange with 
cytoplasm, or both. For this reason, in my work I also develop a new inference method for FRAP experiment capable of discerning 
different types of dynamics. My analysis aims at quantifying the dynamical parameters, such as diffusion coefficient and exchange 
rate, by minimising the distance between the reaction-diffusion model prediction and actual data. The specificity of my approach is the 
use of dimensional reduction to efficiently perform computation without having knowledge of the initial bleached profile. This new 
method is then tested and validated on artificial data. The results show that this analysis is flexible since it can work with imperfect 
data, where the signal-to-noise ratio is low, the number of frames is reduced and the spatial window is restricted. Moreover, this 
approach can be potentially generalised to complex geometries, for instance curved surface. This versatility is well-suited for studying 
protein dynamics in the fission yeast cell wall. The inference method is applied to experimental data of another mechanosensor in the 
cell wall, Mtl2, yielding reasonable values of diffusion coefficient. Nevertheless, it still needs to be tested on real data of Wsc1 protein. 
Overall, this study offers novel methodologies for quantifying and understanding intricate protein dynamics within cells and tissues. 

Title: Modélisation et Analyse de Données de la Dynamique des Protéines appliquées à un Mécanosenseur de la Levure Fissipare 
Keywords: Protéines, inférence, mécanosensation, réaction-diffusion, biomécanique, modélisation 
Abstract: La dynamique intracellulaire des molécules est fondamentale pour que les cellules maintiennent l’homéostasie et répondent 
aux stimuli environnementaux. Parmi ceux-ci, les forces mécaniques peuvent constituer une source potentielle de dommages en 
compromettant l’intégrité de la cellule. Pour faire face à ce risque, les organismes vivants sont dotés de mécanosenseurs, des récepteurs 
subcellulaires capables de déclencher une voie de signalisation biologique par un signal mécanique. Chez la levure à fission fissipare, 
un mécanosenseur, la protéine Wsc1, peut percevoir une contrainte excessive sur la paroi cellulaire et activer la synthèse de glucane 
pour renforcer la paroi. Notablement, la concentration de Wsc1 augmente dans la région comprimée de la paroi, formant des agrégats. 
Ce travail de thèse explore ce comportement de formation d’agrégat mécanosensible en développant des modèles et des méthodes 
d’inférence pour les données expérimentales de dynamique des protéines.
En établissant un cadre mathématique basé sur des équations aux dérivées partielles déterministes, je décris la dynamique de Wsc1 le 
long de la paroi cellulaire. Dans ce modèle, je considère deux mécanismes possibles de recrutement des protéines pour former des 
agrégats : soit par diffusion le long de la paroi cellulaire, soit par exocytose depuis le cytoplasme. De plus, en suivant des 
considérations chimiques, je suppose que l’affinité entre la paroi et la protéine Wsc1 augmente avec la compression de la paroi. Les 
équations de réaction-diffusion résultant de ce modèle reproduisent la formation d’agrégats après compression de la paroi cellulaire. 
De plus, le modèle prédit une échelle de temps plus longue pour la dynamique dans la région comprimée de la paroi cellulaire, en 
accord avec les résultats de l’expérience FRAP (Fluorescence Recovery After Photobleaching, redistribution de fluorescence après 
photoblanchiment), dont l’analyse est basée sur l’étude des images en temps réel reflétant la concentration spatio-temporelle de la 
molécule. Cependant, il n’est pas encore clair si le recrutement des protéines est dû à la diffusion, à l’échange avec le cytoplasme, ou 
aux deux. Pour cette raison, dans mon travail, je développe également une nouvelle méthode d’inférence pour l’expérience FRAP 
capable de distinguer différents types de dynamique. Mon analyse vise à quantifier les paramètres cinétiques, tels que le coefficient de 
diffusion et le taux d’échange, en minimisant la distance entre la prédiction du modèle de réaction-diffusion et les données réelles. La 
spécificité de mon approche réside dans l’utilisation de la réduction dimensionnelle pour calculer efficacement les paramètres sans 
avoir connaissance du profil initial après photoblanchiment. Cette nouvelle méthode est ensuite testée et validée sur des données 
artificielles. Les résultats montrent que cette méthode d’analyse est flexible, car elle peut fonctionner avec des données imparfaites où 
le rapport signal/bruit est faible, le nombre d’images est réduit et la fenêtre spatiale est restreinte. De plus, cette approche peut 
potentiellement être généralisée à des géométries complexes, telles que les surfaces courbées. Cette polyvalence est bien adaptée pour 
étudier la dynamique des protéines dans la paroi cellulaire de la levure fissipare. La méthode d’inférence est appliquée aux données 
expérimentales d’un autre mécanosenseur dans la paroi cellulaire, Mtl2, fournissant des valeurs raisonnables de coefficient de 
diffusion. Cependant, elle doit encore être testée sur des données réelles de la protéine Wsc1.
Dans l’ensemble, cette étude propose des méthodologies novatrices pour quantifier et comprendre la dynamique complexe des 
protéines au sein des cellules et des tissus.
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