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RÉSUMÉ LONG EN FRANÇAIS

Contexte Général

Les transformations numériques façonnent le monde. Cela est particulièrement évident
lorsque l’on examine l’évolution des systèmes Internet des objets (IdO) [1] et la crois-
sance des systèmes numériques très complexes, tels que les Système Cyber-Physiques
(SCPs) [2]. Essentiellement, les SCPs intègrent des composants logiciels et des artefacts
associés avec les éléments physiques en utilisant un ensemble de capteurs et d’actionneurs
qui doivent communiquer constamment entre eux de manière contextuelle. Avec l’avè-
nement de l’Industrie 4.0, les SCPs modernes ont évolué pour non seulement collecter
et gérer des données, mais aussi pour soutenir des mécanismes de traçabilité qui faci-
litent la surveillance en temps réel et la traçabilité des données [2-4]. Cette traçabilité
vise à faciliter la récupération d’informations pertinentes à différents stades du traite-
ment des données et des opérations système [3, 4]. On trouve des exemples de SCPs dans
différents domaines, par exemple les systèmes de contrôle industriels [5], les entreprises
intelligentes [6], les soins de santé [7, 8], et les systèmes avioniques [9].

L’ingénierie des SCPs est souvent difficile car la capacité à automatiser efficacement
les activités dépend principalement de la qualité et de la pertinence des données et ou-
tils disponibles [10]. Développer des SCPs à partir de zéro est un défi, car les ingénieurs
doivent gérer plusieurs problèmes, notamment l’hétérogénéité des données, un environne-
ment multi-acteurs, et des contraintes de concurrence ou de temps, par exemple [11]. Un
défi clé de ce type de système que nous voulons souligner est la fragmentation de l’in-
formation parmi les différents besoins des parties prenantes, en fonction de leurs profils
et niveaux d’expertise [11, 12]. Des outils adéquats supportant la traçabilité des données
et la fédération sont nécessaires pour améliorer les processus d’ingénierie des SCPs et
surmonter ce défi.

Le Ingénierie Dirigée par les Modèles (IDM) est une approche d’ingénierie où les mo-
dèles sont utilisés comme artefact principal, ce qui peut aider à favoriser la réutilisation
des connaissances et des données dans l’automatisation des processus [13]. Il permet diffé-
rentes représentations du même système (ou d’une partie du système) via des abstractions

ii



adaptées avec des techniques et des outils pour manipuler ces abstractions [13-15]. Le IDM
offre des moyens appropriés pour relever les défis de l’ingénierie des SCPs mentionnés pré-
cédemment [10, 15-18]. Cependant, certaines limitations subsistent. Parmi les exemples,
on trouve les abstractions adaptées pour modéliser les composants physiques en abstrac-
tions informatiques [10], la conception d’outils de simulation spécifiques au domaine [15]
et le support d’outils pour la fédération automatisée [19] La thèse présentée met en avant
le défi de fédérer plusieurs modèles ou points de vue en un ensemble cohérent, ce qui né-
cessite un support d’outils sophistiqués [19, 20]. La fédération automatisée aide à intégrer
des modèles disparates, assurant la cohérence et l’interopérabilité, ce qui est crucial pour
les projets à grande échelle et multi-disciplinaires, mais reste un domaine avec un support
limité [19, 21].

L’Intelligence Artificielle (IA) apporte un ensemble d’algorithmes et de méthodes pour
automatiser des solutions à des problèmes complexes par des prédictions, des informa-
tions basées sur les données et des recommandations [22-24]. Les dernières avancées en
IA impactent tous les aspects du développement des systèmes, de la spécification à la
maintenance, affectant leur conception, test et déploiement. Parmi tous les sous-domaines
de l’IA, ce travail s’intéresse au Apprentissage Automatique (AA) et, plus précisément,
aux techniques de Apprentissage Profond (AP) [25], qui utilisent des Réseau de Neurones
Artificielss (RNAs) pour apprendre des modèles complexes et prédire des scénarios incon-
nus. Cet intérêt particulier est dû au fait que, parmi toutes les techniques étudiées sous la
bannière de l’IA, les percées récentes sont très souvent soutenues par une certaine varia-
tion de AP, même lorsqu’elles sont combinées à une autre technique de AA [26, 27]. Cette
expansion de l’IA contribue également au développement des SCPs, aidant à résoudre des
problèmes liés à la prise de décision et permettant des prédictions plus précises car l’IA
peut analyser un volume de données généré en faible latence [24]. Dans ce contexte, le AP
peut être utilisé pour améliorer les techniques traditionnelles de IDM et ainsi améliorer
le support actuel pour l’ingénierie des SCPs en fournissant les outils nécessaires pour les
défis restants.

Ces dernières années, en réponse aux défis énoncés, divers partenariats industrie-
université ont été mis en place pour améliorer la qualité du développement, de l’inté-
gration et de la maintenance de l’ingénierie des SCPs, e. g. le projet MegaM@Rt2 [28] 1

et le projet AIDOaRt [29]. 2 Le premier portait sur l’utilisation du IDM pour gérer l’in-

1. https://megamart2-ecsel.eu/ (Last Accessed in November 2024)
2. https://www.aidoart.eu/ (Last Accessed in November 2024)
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tégration des aspects de conception et d’exécution d’un système donné, démontrant les
capacités d’utilisation du IDM dans le processus d’ingénierie des SCPs et identifiant éga-
lement certaines des limitations mentionnées ci-dessus [30-32]. L’AIDOaRt est le projet
dans lequel les principales contributions de cette thèse ont été développées. Il propose de
construire un framework basé sur des modèles pour analyser les données d’exécution et de
conception afin de trouver des solutions augmentées par l’IA. Aligné avec nos objectifs,
nous pouvons trouver des exemples d’autres projets réussis traitant des projets industriels
utilisant à la fois le IDM (par exemple iDev40 [33] 3) et l’IA (par exemple AI4DI [34] 4),
ce qui montre qu’il est possible de combiner les deux, en vue de résoudre différents défis
pour l’ingénierie des SCPs.

Cette thèse vise à montrer une voie possible pour combiner IDM et AP, en abordant
un point sensible du développement des SCPs : comment assister les ingénieurs dans
la combinaison de différents modèles (i. e. différentes vues du même système) au cours
des différentes activités du processus d’ingénierie des SCPs. Nous souhaitons aider les
modélisateurs à combiner efficacement les modèles en vues de modèle, permettant ainsi à
un large éventail de parties prenantes de participer efficacement au développement et à
l’utilisation du système. Plus précisément, nous souhaitons démontrer la faisabilité de tirer
parti de la puissance de l’IA pour améliorer les activités de modélisation, en particulier
la création de vues de modèle. Ce chapitre introductif fournit les connaissances de haut
niveau nécessaires sur IDM et IA (à savoir AP en tant que sous-domaine de AA). La
section suivante montre comment nous proposons d’aborder ce problème, en présentant
la méthodologie ainsi qu’une vue d’ensemble de nos deux principales contributions.

Ingénierie Dirigée par les Modèles et Vues sur le Modèle

Créer des modèles pour faciliter la compréhension de différents systèmes est au cœur de
nombreux domaines scientifiques. L’idée est d’utiliser des abstractions pour représenter
un système (ou une partie de celui-ci) de manière à ce que la représentation (i. e. le
modèle) réponde aux questions à la place du système réel [35]. Dans cette thèse, nous nous
intéressons particulièrement à la modélisation comme une partie essentielle de l’ingénierie
des systèmes et des logiciels, notamment dans les systèmes complexes et multi-acteurs,
comme c’est le cas pour les SCPs.

IDM est une approche qui vise à appliquer des méthodologies et des outils de modé-

3. https://www.idev40.eu/ (Last Accessed in November 2024)
4. https://ai4di.eu/ (Last Accessed in November 2024)
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lisation à l’ingénierie des systèmes, en utilisant les modèles comme artefacts de premier
ordre [13]. Dans le contexte de la IDM, un système est un artefact du monde réel (par
exemple un système complexe comme un SCP) que les modèles peuvent représenter. Les
modèles sont des représentations abstraites d’un système utilisées pour planifier, analy-
ser, investiguer, et parfois générer (des parties du) le système. Pour créer ces modèles,
ils doivent suivre la structure et les règles établies par un métamodèle donné. Ces méta-
modèles définissent des langages de modélisation spécifiques permettant aux utilisateurs
de créer des modèles selon une syntaxe et une sémantique bien définies. Ces langages
sont souvent appelés Langage Dédiés (LDs) car ils sont adaptés à des domaines d’appli-
cation ou à des types de systèmes particuliers. Il est possible de convertir un modèle en
un autre en suivant un ensemble de règles exprimées dans une transformation de modèle.
Les transformations sont utiles pour affiner, traduire, rapporter ou analyser le système
modélisé.

Bien que des systèmes plus simples puissent être représentés par des modèles simples,
les systèmes complexes nécessitent souvent des modèles plus nombreux et plus complexes,
souvent écrits avec différents langages de modélisation (i. e. métamodèles). Chaque lan-
gage de modélisation a émergé pour répondre à des besoins spécifiques dans différents
domaines. Cette prolifération a augmenté l’hétérogénéité au sein de l’écosystème de mo-
délisation, créant des défis pour l’interopérabilité et l’intégration [36], ce qui a conduit
à des situations exigeant différentes stratégies de gestion des (méta)modèles [20, 37]. Un
défi majeur de gestion se pose lorsque différents acteurs avec divers niveaux d’expertise
et un large éventail de besoins créent, gèrent et utilisent des modèles écrits dans plusieurs
langages à des fins spécifiques [21]. Différentes stratégies ont été proposées pour gérer cette
hétérogénéité des modèles, par exemple en utilisant des transformations de modèles pour
réunir tous les métamodèles sous un même paradigme opérationnel [38], la composition
de (méta)modèles [39], et l’unification via des langages intermédiaires [40].

Une façon de relever ce défi est d’utiliser ce que l’on appelle la fédération de modèles [36,
41], ce qui signifie que les modèles développés par différentes équipes ou parties prenantes
doivent être liés entre eux pour offrir un mécanisme d’intégration cohésive de modèles
hétérogènes [36, 42].

Plusieurs stratégies permettent de réaliser la fédération de modèles en IDM. Ces tech-
niques visent généralement à faciliter l’intégration, la synchronisation et la gestion des
modèles issus de différents domaines ou outils, tout en maintenant leur indépendance.
La fusion de modèles, le méga-modélisme, la modélisation collaborative et le tissage de
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modèles en sont quelques exemples. La fusion de modèles combine deux ou plusieurs
modèles en un seul modèle, en résolvant les conflits et incohérences [43, 44]. Le méga-
modélisme gère des collections de modèles, définissant les relations sémantiques entre eux
et conservant une description de haut niveau de l’interaction des modèles sans en modifier
les structures internes [28, 45-47]. La modélisation collaborative soutient la fédération de
modèles en permettant à plusieurs parties prenantes de collaborer sur des modèles via
des représentations partagées et des mécanismes pour synchroniser les changements dans
des environnements distribués [48-50]. Le tissage de modèles consiste à intégrer plusieurs
modèles ou métamodèles en une représentation unifiée en établissant des liens explicites
entre leurs éléments, permettant la modularité et la réutilisabilité des modèles [51-54]. Ces
techniques peuvent être combinées entre elles pour atteindre une fédération de modèles
efficace [53, 55] et également avec d’autres techniques non-IDM, comme la combinaison
avec DevOps [54], par exemple. Il convient également de mentionner que la fédération de
modèles est l’objet d’une norme industrielle par le biais de l’“ISO/TC 184/SC 5” [56].

Enfin, nous avons les vues de modèle comme une autre stratégie pour gérer la fédéra-
tion de modèles. Essentiellement, cette approche vise à relever le défi de la fragmentation
de l’information en ne présentant que les informations pertinentes à chaque partie pre-
nante [21]. Une model view est un artefact de modélisation unique (i. e. une représentation
d’un système) composé d’éléments provenant de différents modèles. Eventuellement, elles
sont complétées par des interconnexions entre eux et des données additionnelles, soit
saisies manuellement, soit calculées automatiquement [42, 57]. En d’autres termes, une
model view représente le système sous une perspective spécifique donnée par un point de
vue [21, 57, 58].

À cet égard, différentes propositions ont émergé dans la communauté de la modé-
lisation pour implémenter le concept de fédération de modèles à travers des vues de
modèle [19, 21], mettant effectivement en œuvre les idées du paradigme de modélisation
multi-vues des logiciels et des systèmes [19, 59, 60]. Pour le cadre de cette thèse, nous
nous intéressons particulièrement à la modélisation multi-vues par des solutions basées
sur l’utilisation de vues de modèle. Nous restreignons notre analyse aux solutions qui
incluent potentiellement (i) un ou des langage(s) dédié(s) à la description de vues (points
de vue) et/ou (ii) des mécanismes de virtualisation pour les relations inter-modèles. Pour
illustrer avec quelques exemples, nous pouvons citer OpenFlexo [61], 5 VIATRA [62, 63], 6

5. https://openflexo.org/ (Last Accessed in November 2024)
6. https://eclipse.dev/viatra/ (Last Accessed in November 2024)
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et EMF Views [64]. 7 Les détails de ces solutions et d’autres complémentaires sont fournis
dans la section 4.5.1.

La technologie des vues de modèle et son application sont au cœur de cette thèse, et
nous utilisons EMF Views comme l’outil de choix pour étudier et prototyper nos contri-
butions proposées. EMF Views a été développé au sein de notre groupe de recherche
(Naomod 8) ces dernières années [42, 64, 65], et c’est l’outil utilisé dans le cadre du projet
AIDOaRt, ce qui souligne sa pertinence pratique pour l’ingénierie des SCPs. EMF Views a
déjà montré sa faisabilité dans différentes applications industrielles telles que l’intégration
de composants critiques pour des systèmes logiciels [65] et l’ingénierie d’équipements de
construction [66], par exemple. Nous fournissons tous les détails nécessaires de cet outil
dans la section 2.1.3. EMF Views a été construit avec une expressivité explicite, inspirée
par les vues de base de données et des mécanismes non intrusifs qui ne nécessitent pas
de modifications des modèles de base, appliquant effectivement des mécanismes de vir-
tualisation. Une analyse comparative entre les fonctionnalités d’EMF Views et d’autres
solutions de vues de modèle est fournie dans la section 4.5.1.

Intelligence Artificielle et Ingénierie Dirigée par les Modèles

Dans le contexte de cette thèse, l’objectif principal de l’IA est d’aider les ingénieurs
à produire des systèmes plus rapidement et avec une qualité améliorée, tout en traitant
des problèmes de plus en plus complexes [67]. Pour ce faire, elle utilise principalement
des techniques de AP [25]. Cela s’applique à de nombreuses applications, notamment la
vision, la reconnaissance et la génération de parole, le traitement du langage naturel, la
génération d’images et de vidéos, les systèmes multi-agents, la planification, la prise de
décision et l’intégration de la vision et du contrôle moteur pour la robotique [67]. Elle est
également devenue la technique de facto utilisée pour l’ingénierie logicielle [68].

Dans le contexte de la IDM, une liste non exhaustive d’applications de AA inclut
la réparation de modèles [69], la classification automatique de référentiels de métamo-
dèles [70] et l’extraction automatique de besoins pour une utilisation dans le contexte de
la IDM [71]. En effet, l’utilisation correcte de AA est un défi identifié pour les prochaines
étapes de l’évolution de la IDM [20].

Barriga et al. [72] ont identifié un large éventail de techniques de AA pour traiter
spécifiquement les activités de réparation de modèles, allant des méthodes à règles [73] aux

7. https://www.atlanmod.org/emfviews/ (Last Accessed in November 2024)
8. https://naomod.github.io/ (Last Accessed in November 2024)
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arbres de décision [74], et incluant également l’utilisation de AP via des RNAs [75]. Selon
les auteurs, bien que les méthodes basées sur des règles offrent des solutions adaptées à
des contraintes spécifiques en réparation de modèles (par exemple résolution de violations
de cardinalité) [72, 73], les arbres de décision équilibrent simplicité et efficacité, ce qui
les rend adaptés à de nombreux scénarios de réparation automatisée [72, 74, 76]. Dans le
domaine du AP, l’utilisation des RNAs permet de gérer des dépendances complexes dans
les éléments de modèle, améliorant ainsi l’adaptabilité et la scalabilité des solutions pour
la réparation de modèles.

Une architecture latente de RNA pour les problèmes de modélisation est l’utilisation
des Graph Neural Networks (GNNs) [77]. Elle s’aligne bien avec les exigences de IDM
puisque les graphes étiquetés sont des structures adaptées pour décrire les modèles dans
le contexte de la IDM [78]. Ainsi, l’adoption des GNNs pour les problèmes de IDM est
naturelle. De plus, des travaux récents montrent des utilisations intéressantes des GNNs
pour différentes finalités en IDM [79, 80]. López et Cuadrado propose la génération de
modèles structurellement réalistes via une architecture qui combine le codage de modèles
réels en opérations d’édition et la génération subséquente de nouveaux modèles synthé-
tiques similaires aux originaux. La combinaison d’un GNN et d’un Recurrent Neural
Network (RNN) est au cœur de leur approche [79]. Les GNNs sont également au cœur des
travaux de Di Rocco et al., qui les utilise pour établir un système de recommandation
permettant la création efficace de modèles, réduisant ainsi les ajustements manuels dans
des modèles complexes [80].

En plus des techniques basées sur les graphes, des modèles de langage pré-entraînés
ont été utilisés dans le contexte de la IDM avec des résultats intéressants, comme dans
les travaux de Weyssow et al. [81] pour assister la conception de métamodèles, ou dans
le travail de Hernández López et al. [82], où les auteurs ont entraîné un modèle de
langage avec un vocabulaire spécifique pour les activités de modélisation. Ces approches
illustrent la diversité des cas d’utilisation des modèles de langage dans la IDM. Les Grand
Modèle de Langages (GMLs) sont principalement appliqués dans la IDM pour fournir
des capacités avancées de recommandation et de génération de modèles. Par exemple, des
approches existantes visent à utiliser les GMLs pour proposer des recommandations de
conception [83]. Dans l’ensemble, diverses analyses de la pertinence et de la performance
des GMLs pour soutenir les activités de IDM montrent des résultats prometteurs [84, 85].
Cámara et al. montre une enquête sur les applications potentielles des GMLs pour aider
dans différentes activités de modélisation, concluant qu’ils peuvent compléter le travail des
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modélisateurs, notamment pour traiter des éléments concrets. Ils ont également présenté
certaines limitations des GMLs lorsqu’il s’agit de concepts plus abstraits. Chen et al. a
tenté de démontrer comment les GMLs peuvent automatiser entièrement la modélisation
de domaine sans intervention humaine. Ils concluent que, de manière générale, une auto-
matisation complète est peu pratique. Cependant, avec les capacités impressionnantes des
GMLs, il est utile d’explorer d’autres stratégies pour améliorer leur utilisation, comme le
Ingénierie de Prompt (IP), par exemple.

En résumé, la communauté IDM utilise de plus en plus les techniques de AA pour
traiter différents problèmes de modélisation, avec un fort intérêt pour les représentations
en graphe de modèles et les modèles de langage. Malgré cet intérêt croissant pour le AA
dans les activités de IDM, il manque encore une solution spécifique pour la création et la
maintenance des vues de modèles. La section 2.2 détaille les concepts importants autour
du AP, et la Section 3.2 traite spécifiquement de son utilisation actuelle dans la IDM, en
se concentrant sur les défis ouverts pour l’application des GMLs et des GNNs aux vues
de modèles.

Le projet AIDOaRt

Ce travail de doctorat s’inscrit dans le cadre du projet AIDOaRt (AI-augmented
Automation for DevOps : a model-based framework for continuous development at
Runtime in cyber-physical systems) [29].

L’objectif global d’AIDOaRt est de soutenir efficacement l’ingénierie des systèmes tout
au long de leur cycle de vie, depuis les exigences initiales jusqu’aux phases de test et de
déploiement, en mettant l’accent sur le développement des SCPs. L’architecture concep-
tuelle d’AIDOaRt, illustrée dans la figure i, propose d’intégrer et de traiter divers types
de données—telles que les données d’exécution (par exemple journaux de surveillance) et
les données de conception (par exemple modèles, documentation, code)—afin de créer une
représentation unifiée basée sur des modèles et stockée dans un référentiel partagé. Le pro-
jet propose d’utiliser les techniques de IDM pour fournir un cadre basé sur des modèles,
construit avec des outils permettant de collecter et d’analyser les données d’exécution et
de conception, en vue de solutions dédiées augmentées par l’Artificial Intelligence (AI).
Les outils et solutions basés sur l’AI visent à soutenir les pratiques DevOps, combinant
efficacement les opérations logicielles et informatiques pour le développement des SCPs.
En résumé, la boîte à outils augmentée par l’AI surveille, analyse et automatise les tâches
de développement et opérationnelles dans un contexte AIOps. Elle aborde des préoccu-
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Figure i – Vue d’ensemble de l’architecture conceptuelle d’AIDOaRt. Le rectangle rouge
met en évidence la position de cette thèse (Figure adaptée de [29, p. 5]).
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pations transversales comme la responsabilité et l’explicabilité, en présentant aux parties
prenantes des modèles d’exécution et de conception conformément aux principes de IDM.

Dans le contexte du projet, les partenaires fournisseurs de solutions développent les
outils mentionnés ci-dessus, qui sont ensuite testés par les fournisseurs de cas d’utilisa-
tion à travers la création de démonstrateurs. Ces cas d’utilisation impliquent l’intégration
des outils dans les processus d’ingénierie et de développement, la création des démons-
trateurs, et l’évaluation des résultats du projet en mesurant l’efficacité des outils et des
démonstrateurs. Pour le contexte d’AIDOaRt, la présente thèse fait partie des résultats
du fournisseur de solutions IMT Atlantique (IMTA). La figure i illustre la position de
notre travail dans le cadre général du projet, avec un rectangle rouge mettant en évidence
les aspects « AI pour la modélisation » du projet.

Parmi les différents défis inhérents à l’ingénierie des SCPs modernes, caractérisés par
leur complexité, leur interconnexion et leur dépendance croissante aux logiciels [10, 11],
le projet AIDOaRt porte un intérêt particulier à certains défis spécifiques. Faciliter le
développement continu, extraire de la valeur des données du système et permettre une
collaboration efficace sont au cœur du projet [29] et sont particulièrement intéressants
pour cette thèse. L’avènement de DevOps a introduit le besoin d’une continuité fluide
entre la conception des systèmes et leur exécution, nécessitant une intégration continue et
des boucles de rétroaction entre les phases de développement et d’exploitation. Les SCPs
génèrent une quantité énorme de données à la fois en exécution et en conception. L’ex-
traction d’informations significatives à partir de ces données est cruciale pour évaluer la
validité des systèmes, prévoir les problèmes potentiels et prendre des décisions d’ingénierie
éclairées. Le développement de SCPs complexes implique souvent des équipes distribuées
à travers diverses disciplines d’ingénierie. Cela nécessite des mécanismes de collaboration
efficaces, une compréhension partagée des modèles de système, et des canaux de commu-
nication rationalisés pour garantir un processus d’ingénierie fluide et productif.

Comme présenté précédemment, le IDM et l’AI ont tous deux démontré leur efficacité
dans des applications industrielles complexes [28, 33, 34]. Le projet AIDOaRt considère
le IDM et l’AI comme des forces complémentaires et synergiques pour faire progresser
l’ingénierie des SCPs complexes. Le projet exploite les forces des deux domaines pour
relever les défis liés à la gestion de la complexité des systèmes, à la facilitation du dé-
veloppement continu, à l’extraction de valeur des données des systèmes, et à la garantie
d’une collaboration efficace. Cette thèse est alignée sur les principaux objectifs du projet,
visant à tirer parti des applications de l’AI, notamment des GMLs et des GNNs, pour
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améliorer une solution de vues de modèle.

Énoncé du Problème
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Figure ii – Aperçu de la terminologie des Model Views et de son application dans un
scénario IDM

La complexité croissante de l’ingénierie des SCP a conduit au développement de nom-
breux langages de modélisation et outils spécialisés, chacun adapté à un aspect spécifique
du système [10, 12]. Les modèles développés, créés pour représenter divers sous-systèmes
ou perspectives (par exemple, logiciels, matériel, interactions utilisateurs, analyses de
sécurité), proviennent souvent de domaines variés et reposent sur des méta-modèles et
paradigmes différents [21]. En conséquence, les ingénieurs sont confrontés à des défis ma-
jeurs pour intégrer ces modèles hétérogènes en une représentation cohérente du système
global [19, 21, 59].

Parmi les différentes approches proposées pour relever ces défis, les model views se
sont imposées comme une solution prometteuse, permettant aux ingénieurs d’extraire et
de présenter des sous-ensembles spécifiques d’informations provenant de plusieurs modèles
d’une manière pertinente à leurs préoccupations particulières [64]. Cependant, le dévelop-
pement de model views reste une tâche complexe. En général, les ingénieurs doivent définir
manuellement les relations entre les modèles. Ces définitions nécessitent souvent une ex-
pertise approfondie du domaine ainsi qu’une maîtrise des transformations et des requêtes
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de modèles, rendant difficile leur automatisation ou leur généralisation à travers différents
projets. Cette complexité constitue un frein majeur à l’adoption généralisée des model
views dans la pratique, soulignant le besoin de meilleures méthodes et outils pour soute-
nir leur génération et leur maintenance automatiques. En résumé, le problème que nous
visons à traiter dans cette thèse est de mieux accompagner les ingénieurs de vues 9 en les
aidant à définir les vues et à automatiser leur construction autant que possible.

La figure ii illustre la terminologie principale des model views tout en résumant les
problèmes mentionnés ci-dessus. Différents professionnels (i. e. parties prenantes) de divers
domaines utilisent des outils de modélisation pour créer des représentations virtuelles de
systèmes complexes. Un système donné est décrit par divers modèles qui se conforment
potentiellement à différents méta-modèles. Ces modèles peuvent être créés en utilisant
différents langages de modélisation en fonction du domaine du système modélisé. Des
exemples incluent l’Unified Modeling Language (UML) pour la création de modèles lo-
giciels [86], le Business Process Model and Notation (BPMN) pour modéliser les proces-
sus métier [87], et le Systems Modeling Language (SysML™) [88] pour les modèles de
systèmes-de-systèmes.

La Description de Vuepoint est généralement un programme écrit avec un LD dédié
utilisé pour décrire comment combiner ces modèles en un artefact de modélisation unique.

Au niveau des méta-modèles, un Vuepoint détermine quels concepts et propriétés des
méta-modèles contributifs doivent être inclus ou exclus dans les vues correspondantes.
Il exprime également comment ces concepts doivent être interconnectés, i. e. avec quelles
règles de combinaison. Au niveau des modèles, une Vue combine un ensemble donné de
modèles contributifs selon ce vuepoint. Il convient de noter que, dans cette thèse, les
vuepoints et les vues fonctionnent respectivement comme des méta-modèles et modèles
virtuels. Un modèle (respectivement, méta-modèle) virtuel ne fait que pointer vers des
éléments des modèles (respectivement, méta-modèles) originaux, évitant ainsi toute du-
plication d’information inutile. Dans ce contexte, un système de model views se divise en
deux composantes principales : le Générateur de Vuepoint et le Générateur de Vue qui,
respectivement, calculeront (i. e. compileront) le vuepoint et la vue.

Gérer l’hétérogénéité des modèles sous-jacents lors de la création de ces vues est un
défi bien connu [42]. Cependant, cela repose souvent sur les connaissances des experts du
domaine pour définir à la fois les propriétés à sélectionner et les règles de combinaison

9. La partie prenante responsable de la création et de la fourniture de la vue aux autres parties
prenantes (internes ou externes). Ce sont les acteurs qui exécutent le développement des vues de modèle.
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qui lient les modèles lors du calcul de la vue. Nous visons à utiliser les techniques de AP
pour faciliter le processus d’écriture de la description du vuepoint et son calcul, aidant
ainsi les ingénieurs de vues tout au long du processus de développement des model views.

Dans ce contexte, cette thèse vise à valider les bénéfices pratiques de l’approche pro-
posée en répondant aux questions de recherche suivantes :

— QR1 : Au niveau des méta-modèles, comment les techniques de AP peuvent-elles
être appliquées pour automatiser ou assister la définition des model views ?

— QR2 : Au niveau des modèles, comment les techniques de AP peuvent-elles être
appliquées pour aider à calculer automatiquement les model views ?

— QR3 : Quels sont les bénéfices pratiques et les limites des méthodes basées sur le
AP pour soutenir la définition et l’automatisation des model views ?

La réponse à ces questions de recherche vise à explorer et identifier la faisabilité de
l’application des mécanismes de AP pour améliorer les fonctionnalités des model views au
sein des outils IDM, à évaluer empiriquement les améliorations ou limitations introduites
par leur utilisation, et à vérifier comment cela impacte leur utilisation dans un contexte
industriel, grâce au cadre AIDOaRt. En outre, il s’agira de montrer comment permettre
la participation efficace des spécialistes en AA au développement des model views, en
intégrant leur expertise de manière fluide dans les processus de modélisation.

Méthodologie et Contributions

Dans cette thèse, nous contribuons à répondre aux questions de recherche définies
(cf. section 1.2) par la conception et l’implémentation d’une solution améliorée pour
les model views, alimentée par des techniques d’apprentissage profond. Pour
mener cette recherche, nous avons suivi les principes de la Design Science Research
(DSR) [89]. Cette méthodologie est appropriée pour notre travail, car elle met l’accent sur
(i) le développement et l’amélioration d’artefacts informatiques (Information Technology
(IT)) utiles, et (ii) une validation empirique via une mise en œuvre pratique.

Pour le point (i), notre travail propose des versions améliorées d’outils de modélisation.
Plus spécifiquement, le travail propose d’utiliser à la fois des GMLs et des GNNs appliqués
à l’outil EMF Views.

Pour le point (ii), nous fournissons une validation empirique via la mise en œuvre
pratique de la solution proposée dans le contexte des cas d’usage fournis par un partenaire
industriel collaborant au projet AIDOaRt.
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En résumé, les six activités principales de la méthodologie DSR sont :

1. Identification et motivation du problème : Nous avons étudié les travaux en IDM,
avec un focus sur la fédération de modèles et plus particulièrement sur les model
views, en recherchant l’application de techniques d’AI. Cela nous a permis d’avoir
une vue d’ensemble du domaine, de concevoir notre motivation et d’identifier les
forces et limitations. De plus, nous avons identifié un cas d’usage adapté parmi
tous les partenaires du projet AIDOaRt pour l’utilisation des model views.

2. Définition des objectifs pour une solution : Nous avons identifié les besoins pour
fournir des outils de modélisation enrichis par l’AP pour la création de model views.

3. Conception et développement de l’artefact : Nous avons détaillé l’approche sur la
manière d’utiliser les GMLs dans la phase de conception des model views ainsi que
l’utilisation des GNNs pour calculer efficacement ces vues lors de leur exécution.

4. Démonstration par des cas d’usage : Nous avons implémenté les deux approches
pour l’outil EMF Views, en les illustrant avec des exemples issus de la littérature.

5. Évaluation selon des critères prédéfinis : Nous avons évalué notre solution de ma-
nière empirique en adaptant la stratégie de Technical Risk & Efficacy proposée
par Venable et al. [90]. Pour chaque contribution, une évaluation formative a été
réalisée en utilisant des exemples et des métriques adaptés.

6. Communication des résultats : Les résultats de cette thèse ont été publiés comme
décrit dans la section 1.5.

En suivant la méthodologie établie, la principale contribution de cette thèse est d’amé-
liorer les outils de modélisation existants en intégrant des techniques d’apprentissage pro-
fond. La figure iii fournit un aperçu conceptuel de l’approche proposée. Elle illustre deux
composants clés basés sur l’AP (propulsés par des GMLs et des GNNs) qui collaborent
pour construire et affiner des model views au sein d’un flux de travail en plusieurs phases,
englobant à la fois les étapes de conception et d’exécution.

Plus précisément, les GMLs assistent les ingénieurs en vues durant la phase de concep-
tion en permettant la définition des vues avec un minimum d’efforts. De plus, les GNNs
facilitent la participation des spécialistes en AA dans la définition des model views, en
identifiant les liens intermodèles et en améliorant ainsi l’expressivité et l’utilité des vues.

La partie supérieure de la figure iii est un diagramme à haut niveau montrant com-
ment les GMLs sont utilisés pendant la phase de conception pour rédiger une première
description du point de vue. Ce brouillon est ensuite raffiné via une revue humaine et
compilé en un point de vue final. L’interface en langage naturel des GMLs permet aux
ingénieurs, quel que soit leur niveau d’expertise, de contribuer en fournissant une des-
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cription textuelle de la vue sans connaissance approfondie des modèles sous-jacents. Cet
apport constitue la première contribution majeure de la thèse : une application basée sur
les GMLs pour faciliter la définition des descriptions des points de vue. Cette contribution
aide à répondre à la QR1. Elle est détaillée au chapitre 4.

Une fois la phase de conception terminée, le défi se déplace vers l’exécution, où l’iden-
tification efficace des liens intermodèles est cruciale. Ce défi peut découler des limites des
capacités de requêtage du LD utilisé ou d’une connaissance limitée des modèles par les
ingénieurs. Lorsqu’une quantité suffisante de données de modélisation héritées est dispo-
nible, nous pouvons entraîner un Neural Network (NN) pour identifier et recommander
des liens potentiels, même lorsqu’ils ne sont pas explicitement exprimés.

La partie inférieure de la figure iii met en avant le recommander de relations inter-
modèles basé sur des GNNs, qui applique des GNNs pour la prédiction de liens dans les
model views. Les GNNs sont particulièrement adaptés à cette tâche grâce à leur capacité
à gérer des données structurées en graphe, ce qui les rend idéaux pour les modèles en
IDM. Cette contribution aide à répondre à la QR2. Elle est détaillée au chapitre 5.

Comme mentionné précédemment, nous avons implémenté ces deux contributions dans
le plugin EMF Views [64]. Conformément à la méthodologie établie, le plugin EMF Views
enrichi constitue un artefact informatique significatif développé pour relever les défis iden-
tifiés. Nous l’avons utilisé dans un cas d’usage industriel comme exemple motivant, dé-
montrant ses applications et avantages pratiques (cf. 2.3). Lorsqu’appliquée à EMF Views,
l’analyse globale de ces deux contributions nous aide à répondre à la QR3, car elle permet
de vérifier ses avantages et ses limitations.
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Chapter 1

INTRODUCTION AND CONTEXT

1.1 General Context

Digital transformations drive the world. This is especially evident when we investigate
the evolution in the development of the Internet of Things (IoT) [1] systems and the growth
of very complex digital systems, such as Cyber-Physical-Systems (CPSs) [2]. Essentially,
CPSs integrates the software components and related artifacts with the physical elements
using a set of sensors and actuators that should constantly communicate with each other
in ways that change with context. With the advent of Industry 4.0, modern CPSs have
advanced not only to collect and manage data but also to support traceability mechanisms
that help real-time monitoring and data lineage [2–4]. This traceability aims to facilitate
the retrieval of relevant information across different stages of data processing and system
operations [3, 4]. Examples of CPSs exist in different domains, e. g. industrial control
systems [5], smart businees [6], health-care [7, 8], and avionic systems [9].

CPS engineering is often challenging since the ability to efficiently automate activi-
ties is primarily based on the quality and relevance of the available data and tools [10].
Developing CPSs from scratch is challenging, as engineers must handle several issues,
including data heterogeneity, multi-stakeholder environment, and concurrency or time-
based constraints, for example [11]. A key challenge of this kind of system that we want
to highlight is the fragmentation of information between the various needs of stakeholders
and their different profiles and levels of expertise [11, 12]. Proper tools are needed to sup-
port data traceability and federation to improve CPS engineering processes and overcome
this challenge.

Model-Driven Engineering (MDE) is an engineering approach in which models are
used as the primary artifact, which can help to foster knowledge and data reusing in
process automation [13]. It allows different representations of the same system (or part
of the system) through convenient abstractions with techniques and tooling to manipu-
late these abstractions [13–15]. MDE provides suitable ways of tackling the challenges of
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engineering CPSs mentioned before [10, 15–18]. However, some limitations remain, e. g.
proper abstractions to model physical components into computer abstractions [10], de-
signing domain-specific simulation tools [15], and providing tool support for automated
federation [19] to cite a few examples. The present thesis highlights the challenge of fed-
erating multiple models or viewpoints into a cohesive whole, which requires sophisticated
tool support [19, 20]. Automated federation helps integrate disparate models, ensuring
consistency and interoperability, which are crucial for large-scale and multi-disciplinary
projects but is still an area with limited support [19, 21].

The Artificial Intelligence (AI) brings a set of algorithms and methods for automating
solutions to complex problems through predictions, helpful data-driven information, and
recommendations [22–24]. The latest advancements in AI impact all aspects of system
development, from specification to maintenance, affecting their design, validation, and
deployment. Among all the sub-fields of AI, this work is interested in Machine Learning
(ML) and, more precisely, in Deep Learning (DL) techniques [25], which use Artificial
Neural Networks (ANNs) to learn complex patterns and predict unseen scenarios. This
particular interest is given by the recent fact that among all techniques studied under
the AI cover, the recent breakthroughs are very commonly backed by some variation of
DL, even when combined with some other ML technique [26, 27] This AI expansion also
contributes to the development of CPSs, helping to solve problems related to decision-
making and enabling more precise predictions because AI can analyze the volume of data
generated in low-latency [24]. Given this scenario, DL can be used to enhance traditional
MDE techniques and thus improve the current support for CPS engineering providing the
necessary tool support for remaining challenges.

In recent years, in response to the aforementioned challenges, different industrial-
academia partnerships were put in place to enhance the quality of development, inte-
gration, and maintenance of CPSs engineering, e. g. the MegaM@Rt2 project [28] 1 and
the AIDOaRt project [29]. 2 The first was about using MDE to handle the integration
of design-time and runtime aspects of a given system, demonstrating the capabilities
of using MDE in the CPS engineering process and also identifying some of the limita-
tions mentioned above [30–32]. The AIDOaRt project has given rise to this thesis’s main
contributions. It proposes developing a model-based framework to analyze runtime and
design-time data to dedicated AI-augmented solutions. Aligned with our objectives, we

1. https://megamart2-ecsel.eu/ (Last Accessed in November 2024)
2. https://www.aidoart.eu/ (Last Accessed in November 2024)
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can get examples of other successful projects handling industrial projects using both MDE
(e. g. iDev40 [33] 3) and AI(e. g. AI4DI [34] 4), so it is possible to see that there is room to
combine both, aiming to solve different challenges for CPS engineering.

This thesis aims to show a possible path to combine MDE and DL, addressing one pain
point of the CPS development: how to assist engineers when combining different models
(i. e. different views of the same system) during various activities of the CPS engineering
process. We want to help modelers effectively combine models into model views, allowing a
range of stakeholders to participate effectively in the system’s development and use. More
precisely, we want to show the feasibility of profiting from the power of AI to enhance
modeling activities, mainly the model views creation. This introductory chapter provides
the necessary high-level background on MDE and AI (namely DL as a subfield of ML).
Section 1.2 details the problem we propose to help solving. Section 1.3 shows how we
propose to address the problem. It presents the methodology and a high-level view of our
two main contributions. Finally, section 1.4 and 1.5 presents the general organization of
the thesis and the scientific output achieved during its realization.

1.1.1 Model-Driven Engineering and Model Views

Creating models to help understanding different systems is at the core of many scien-
tific domains. The idea is to use abstractions to represent a system (or part of it) so that
the representation (i. e. the model) answers questions in place of the actual system [35].
In this thesis, we are highly interested in modeling as an essential part of systems and
software engineering, mainly on complex and multi-stakeholder systems like the case of
CPSs.

MDE is an approach that intends to apply modeling methodologies and tooling to
systems engineering, using models as first-citizen artifacts [13]. In the MDE context, a
system is a real-world artifact (e. g. a complex system as a CPS) that models can represent.
The models are abstract representations of a system used to plan, analyze, investigate, and
sometimes generate (parts of) the system. To create these models, they should follow the
structure and rules established by a given metamodel. These metamodels define specific
modeling languages that allow users to create models according to well-defined syntax and
semantics. These languages are often referred to as Domain-Specific Languages (DSLs)
because they are tailored to particular application domains or types of systems. It is

3. https://www.idev40.eu/ (Last Accessed in November 2024)
4. https://ai4di.eu/ (Last Accessed in November 2024)
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possible to convert one model into another, following a set of rules expressed in a model
transformation. Transformations are helpful to refine, translate, report, or analyze the
modeled system.

Altough simpler systems can be represented by simple models, complex systems often
require more numerous and complex models, commonly written with different modeling
languages (i. e. metamodels). Each modeling language has emerged to address specific
needs across different domains. This proliferation has increased the heterogeneity within
the modeling ecosystem, creating challenges for interoperability and integration [36], which
led to situations that demand different (meta)model management strategies [20, 37]. A key
management challenge arises when different stakeholders with various levels of expertise
and a wide range of requirements create, manage, and use models written in multiple
languages for specific purposes [21]. Different strategies were proposed to handle this
model heterogeneity, e. g. using model transformations to bring all metamodels under
one operating paradigm [38], the composition of (meta)models [39] and unification using
intermediate languages [40].

One possible way to cope with this challenge is to use what is called model feder-
ation [36, 41], which means that models developed by different teams or stakeholders
should be linked to each other providing a mechanism for the cohesive integration of
heterogeneous models [36, 42].

Several strategies achieve model federation in MDE. These techniques usually aim to
facilitate integrating, synchronizing, and managing models from different domains or tools
while maintaining their independence. We have model merging, megamodeling, collabo-
rative modeling, and model weaving, to cite a few examples. Model merging combines
two or more models into one model, resolving conflicts and inconsistencies [43, 44]. Meg-
amodeling manages collections of models, defining semantic relationships between them
and keeping a high-level description of how models interact without altering their inter-
nal structures [28, 45–47]. Collaborative modeling supports model federation by enabling
multiple stakeholders to collaborate on models using shared representations and mech-
anisms to synchronize changes across distributed environments [48–50, 91, 92]. Model
weaving refers to integrating multiple models or metamodels into a unified representation
by establishing explicit links between their elements, enabling modularity and reusability
of models [51–54]. These techniques can be combined between them to achieve an effi-
cient model federation [53, 55] and also combined with other non-MDE techniques, like
the combination with DevOps [54], for example. It is also worth mentioning that model
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federation is the target of an industrial standard through the “ISO/TC 184/SC 5” [56].

Finally, we have Model views as another strategy to cope with model federation. Es-
sentially, it addresses the challenge of information fragmentation by presenting only the
relevant information to each stakeholder [21]. A model view is a single modeling artifact
(i. e. a representation of a system) compound with elements coming from different models.
Eventually, they are completed with interconnections between them and additional data,
either manually entered or automatically computed [42, 57]. In other words, a model view
represents the system from a specific perspective given a viewppoint [21, 57, 58].

On that matter, different proposals appeared in the modeling community to implement
the concept of the model federation through model views [19, 21], effectively implementing
the ideas of the multi-view software and system modeling paradigm [19, 59, 60]. For the
scope of this thesis, we are especially interested in multi-view modeling through solutions
based on model views. We narrow our analysis to solutions that potentially include (i)
dedicated language(s) for view(point) description and/or (ii) virtualization mechanisms
for inter-model relations. To illustrate with a few examples, we can cite OpenFlexo [61], 5

VIATRA [62, 63], 6 and EMF Views [64]. 7 Details of these solutions and other comple-
mentary ones can be found in section 3.1.

Model views technology and application are at the core of this thesis, and we use EMF
Views as the tool of choice to study and prototype our proposed contributions. EMF Views
has been developed in our research group (Naomod 8) in the last years [42, 64, 65], and it
is the tool used in the context of AIDOaRt project (cf. section 1.1.3), which underlines its
practical relevance for CPSs’ engineering. EMF Views have already shown its feasibility
in different industrial applications like the integration of safety-critical components for
software systems [65] and the engineering of construction equipament [66], for example.
We provide all the necessary tool details in section 2.1.3. EMF Views were built with
explicit expressiveness, inspired by database views and non-intrusive mechanisms that do
not demand changes in the base models, effectively applying virtualization mechanisms.
A comparative analysis between EMF Views and other model view solutions features are
provided in section 3.1.

5. https://openflexo.org/ (Last Accessed in November 2024)
6. https://eclipse.dev/viatra/ (Last Accessed in November 2024)
7. https://www.atlanmod.org/emfviews/ (Last Accessed in November 2024)
8. https://naomod.github.io/ (Last Accessed in November 2024)

6

https://openflexo.org/
https://eclipse.dev/viatra/
https://www.atlanmod.org/emfviews/
https://naomod.github.io/


1.1. General Context

1.1.2 Artificial Intelligence and Model-Driven Engineering

In the context of this thesis, the main goal of AI is to help engineers produce sys-
tems faster and with improved quality, handling ever more complex problems [67]. To
do so, it mainly uses DL techniques [25]. This is true for many applications, including
vision, speech recognition and generation, natural language processing, image and video
generation, multi-agent systems, planning, decision-making, and integration of vision and
motor control for robotics [67]. It also has been the de facto technique used for software
engineering [68].

On the MDE context, a non-exhaustive list of ML applications include model re-
pair [69], automatic classification of metamodel repositories [70], solving conflict in model
merging [93], and automatic requirements extraction to use in MDE context [71]. Indeed,
the correct use of ML is an identified challenge for the next steps in MDE evolution [20].

Barriga et al. [72] found a wide range of ML techniques to deal specific with model-
repair activities, from rule-based ML [73] to decision trees [74] and also the use of DL
through ANNs [75]. According to the authors, while rule-based methods provide solutions
tailored to specific constraints in model repair (e. g. resolving cardinality violations) [72,
73], decision trees balance simplicity and effectiveness, making them suitable for many
automated repair scenarios [72, 74, 76]. Particularly within DL, the use of ANNs allows
handling complex dependencies in model elements, enhancing the adaptability and scal-
ability of solutions for model repair.

A latent ANN architecture for modeling problems is the use of Graph Neural Networks
(GNNs) [77]. It aligns well with MDE requirements since labeled graphs are suitable struc-
tures to describe models in the MDE context [78]. Given that, adopting GNNs for MDE
problems is straightforward. Moreover, recent research efforts show interesting uses of
GNNs for different purposes in MDE [79, 80]. López and Cuadrado proposes the genera-
tion of structurally realistic models through an architecture that combines the encoding
of real models into edit operations and the subsequent generation of synthetic new models
similar to the original ones. The combination of a GNN and Recurrent Neural Network
(RNN) is at the core of their approach [79]. GNNs are also at the core of the work of Di
Rocco et al., which uses them to establish a recommendation system to allow the efficient
creation of models, reducing manual adjustments in complex models. [80].

Besides graph-based techniques, pre-trained language models have been used in the
MDE context with some interesting results like in the work of Weyssow et al. [81] to assist
design of metamodels or in Hernández López et al. [82] where authors trained a language
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model with specific vocabulary for modeling activities. These approaches exemplify the
diversity of use cases for language models in MDE. Large Language Models (LLMs) are
primarily applied within MDE to provide advanced model recommendation and generation
capabilities. For example, existing approaches intend to use LLMs to propose design
recommendations [83]. Overall, various analyses of the relevance and performance of LLMs
for supporting MDE activities show promising results [84, 85]. Cámara et al. shows an
investigation of the potential applications of LLMs in helping with different modeling
activities, concluding that they can complement the modeler’s work mainly when dealing
with concrete elements. They also presented some limitations of LLMs when dealing with
more abstract concepts. Chen et al. tried to show how LLMs can fully automate domain
modeling without human interaction. They conclude that, in general, full automation is
impractical. Still, with the impressive capabilities of LLMs, it is worth investigating other
strategies to improve their use, like Prompt Engineering (PE), for example.

In summary, the MDE community increasingly uses ML techniques to cope with dif-
ferent modeling problems, with a high appeal for graph representations of models and
language models. Despite this increasing interest in ML for MDE activities, it still lacks a
solution specifically for creating and maintaining model views. Section 2.2 details impor-
tant concepts around DL, and section 3.2 specifically addresses its current use on MDE,
focusing on the open challenges for applying LLMs and GNNs for model views.

1.1.3 The AIDOaRt Project

This PhD work has been realized in the context of AIDOaRt(AI-augmented Automation
for DevOps: a model-based framework for continuous development at Runtime in cyber-
physical systems) [29].

The overall idea of AIDOaRt is to efficiently support the system’s engineering through-
out its lifetime, from the initial requirements to testing and deployment, focusing on
CPSs’s development. The AIDOaRt conceptual architecture illustrated in the figure 1.1
proposes to integrate and process various data types—such as runtime data (e. g. monitor-
ing logs) and design data (e. g. models, documentation, code) to create a unified model-
based representation stored in a shared repository. The project proposes using MDE
techniques to provide a model-based framework built with tooling to gather and analyze
runtime and design-time data to dedicated AI-augmented solutions. The provided tool-
ing and AI solutions intend to support DevOps practices, efficiently combining software
and Information Technology (IT) operations for CPSs’ development. In summary, the AI-

8
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Figure 1.1 – An overview of AIDOaRt conceptual architecture. The red rectangle high-
lights where this thesis is positioned (Figure adapted from [29, p. 5]).
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augmented toolkit monitors, analyzes, and automates the development and operational
tasks in an AIOps context. It addresses cross-cutting concerns like accountability and ex-
plainability, presenting stakeholders with runtime and design models per MDE principles.

In the project context, the solutions provider partners develop the tooling as men-
tioned above, which is then tested by the use case providers through the creation of
demonstrators. These use cases involve integrating the tools into engineering and devel-
opment processes, creating the demonstrators, and evaluating the project’s outcomes by
assessing the effectiveness of both the tools and the demonstrators. For the AIDOaRt
context, the present thesis is part of the outcome of the solution provider IMT Atlantique
(IMTA). Figure 1.1 illustrates where our work is positioned in the overall project context
with a red rectangle highlighting the “AI for Modeling” aspects of the project.

Among the different challenges inherent in engineering modern CPS, which are char-
acterized by their complexity, interconnectedness, and increasing reliance on software [10,
11], the AIDOaRt project has a particular interest in some specific challenges. Facilitating
continuous development, extracting value from system data, and enabling efficient collab-
oration are at the core of the project [29] and are especially interesting for this thesis. The
advent of DevOps introduced a need for a seamless continuum between system design and
runtime, which requires continuous integration and feedback loops between development
and operational phases. CPSs generate enormous amounts of data at both runtime and
design time. Extracting meaningful insights from this data is crucial for assessing system
validity, predicting potential issues, and making informed engineering decisions. Develop-
ing complex CPSs often involves distributed teams across various engineering disciplines.
This necessitates efficient collaboration mechanisms, a shared understanding of system
models, and streamlined communication channels to ensure a smooth and productive
engineering process.

As presented before, both MDE and AI have successful stories of its use along com-
plex industrial applications [28, 33, 34]. The AIDOaRt project views MDE and AI as
complementary and synergistic forces in advancing the engineering of complex CPSs. The
project leverages the strengths of both domains to address the challenges of handling sys-
tem complexity, facilitating continuous development, extracting value from system data,
and ensuring efficient collaboration. This thesis is aligned with the main objectives of the
project, aiming to leverage AI applications, namely LLMs and GNNs, to enhance a model
view solution.
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Figure 1.2 – An overview of the Model Views terminology and its application in a MDE
scenario

The increasing complexity of the CPS engineering has led to the development of nu-
merous specialized modeling languages and tools, each tailored to a specific aspect of
the system [10, 12]. The developed models, created to represent various subsystems or
perspectives (e. g. software, hardware, user interactions, safety analysis), often come from
diverse domains and are based on different metamodels and paradigms [21]. As a re-
sult, engineers face significant challenges in integrating these heterogeneous models into
a cohesive representation of the overall system [19, 21, 59].

Among the various approaches proposed to address these challenges, model views have
emerged as a promising solution, allowing engineers to extract and present specific subsets
of information from multiple models in a way relevant to their particular concerns [64].
However, the development of model views is a non-trivial task. Usually, engineers must
manually define the relationships between models. These definitions often require deep
domain knowledge and expertise in model transformation and querying, making it difficult
to automate or generalize across different projects. This complexity presents a significant
barrier to the widespread adoption of model views in practice, underscoring the need
for better methods and tools to support their automatic generation and maintenance. In
summary, the problem we aim to target in this thesis is how to support view engineers
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better, helping them define views and automate the construction of those views as much
as possible.

Figure 1.2 depicts the main terminology around model views while summarizing the
abovementioned problems. Different professionals (i. e. stakeholders) in various domains
use modeling tools to create virtual representations of complex systems. A given system
is described by various models that potentially conform to different metamodels. These
models can be created using different modeling languages depending on the domain of
the modeled system. Examples include the Unified Modeling Language (UML) to create
software models [86], the Business Process Model and Notation (BPMN) used to model
business processes [87], and Systems Modeling Language (SysML™) [88] for systems-of-
systems models. The Viewpoint Description usually is a program written with a dedicated
DSL used to describe how to combine these models in a single modeling artifact.

At the metamodel level, a Viewpoint determines which concepts and properties from
the contributing metamodels should be included or excluded in the corresponding views. It
also expresses how these concepts should be interconnected, i. e. with which combination
rules. At the model level, a View combines a given set of contributing models according
to this viewpoint. It is worth mentioning that in this thesis, both viewpoints and views
work as virtual metamodels and models, respectively. A virtual model (respectively, meta-
model) only points to elements from the original models (respectively, metamodels), thus
preventing unnecessary information duplication. In this context, a model views system
splits into two main components: The Viewpoint Builder and the View Builder that will
respectively compute (i. e. compile) the viewpoint and the view.

Dealing with the heterogeneity of the underlying models when creating these views is
a well-known challenge [42]. Still, it often relies on the knowledge of domain experts to
define both the properties to be selected and the combination rules that link the models
when computing the view. We aim to use DL to help the process of writing the viewpoint
description and, in its computation, helping view engineers during the whole process of
model views development.

Given this scenario, this thesis aims to validate the proposed approach’s practical
benefits by answering the following research questions:

— RQ1: At the metamodel level, how can DL techniques be applied to automate or
assist in defining model views?

— RQ2: At the model level, how can DL techniques be applied to help automatically
compute model views?

12
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— RQ3: What are the practical benefits and limitations of using DL-based methods
for supporting the definition and automation of model views?

The response to these research questions intends to explore and identify the feasibility
of applying DL mechanisms to improve model views functionalities within MDE tooling,
empirically assess the performance improvement or limitations introduced by its uses, and
check how it affects their use in an industrial context, thanks to the AIDOaRt project.
Additionally, it should show how to enable the effective participation of ML specialists
in model views development, integrating their expertise seamlessly into the modeling
processes.

1.3 Methodology and Contributions
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Figure 1.3 – An overview of the thesis contributions in an integrated framework

In this thesis, we contribute to answering the established research questions (cf. sec-
tion 1.2) through the design and implementation of an enhanced model view solution
powered by deep learning techniques. To conduct this research, we have followed the
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principles of the Design Science Research (DSR) [89]. This methodology is appropriate
for our work since it emphasizes (i) the development and enhancement of purposeful IT
artifacts and (ii) empirical validation through practical implementation.

For (i), our work proposed enhanced versions of modeling tools. More specifically, the
work proposes using both LLMs and GNNs applied to the EMF Views tool.

For (ii), we provide empirical validation through practical implementation of the pro-
posed solution in the context of the use cases provided by an industrial partner collabo-
rating with the AIDOaRt project.

In summary, the six main activities of the DSR methodology are:

1. Problem identification and motivation: We investigated the MDE studies, with a
focus on the model federation and mainly model views in search for the use of AI
techniques applied to it. It helped us to have an overview of the research space,
design our motivation, and find strengths and limitations. In addition, we also
identified a suitable use case among all AIDOaRt partners for the use of model
views.

2. Objective definition for a solution: We identified the requirements for providing
DL-enhanced modeling tools for model views creation.

3. Design and development of the artifact: We detailed the approach of both how to
use LLMs in the design phase of model views development and also how to use
GNNs during runtime to compute these views effectively and with expressiveness.

4. Demonstration through use cases: We implemented both approaches for the EMF
Views tool. We demonstrated them using examples gathered from the literature.

5. Evaluation using predefined criteria: We evaluated our solution empirically adapt-
ing the proposal of Technical Risk & Efficacy strategy from Venable et al. [90]. It
means that for each contribution, we performed a formative evaluation at the end
based on selected examples and metrics appropriate for each contribution.

6. Communication of results: The results of this thesis are published as described in
section 1.5.

Following the established methodology, the thesis’s primary contribution is enhancing
pre-existing modeling tools by integrating DL techniques. Figure 1.3 provides a conceptual
overview of the proposed approach. It illustrates two key DL-based components (driven
by LLMs and GNNs) that collaborate to construct and refine model views within a multi-
phase workflow, encompassing both the design time and runtime stages.

Specifically, LLMs assist view engineers during the design phase by enabling the def-
inition of the view with minimal input. Additionally, GNNs aids ML-specialists in par-
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ticipating in model views definition, identifying inter-model links, thereby improving the
expressiveness and utility of model views.

The upper portion of Figure 1.3 is a high-level diagram illustrating how LLMs are lever-
aged during the design phase to draft the initial viewpoint description. This first draft is
refined through human review and compiled into the final viewpoint. Since LLMs’s natural
language interface allows engineers of varying expertise levels to contribute by providing
a Textual description of the View without necessarily deep knowledge of the underlying
models. This input serves as the foundation for the first major contribution of the thesis:
a LLM-powered application to aid the viewpoint description definition. Developing this
component helps to answer the RQ1. The contribution is detailed in Chapter 4.

Once the design phase concludes, the challenge shifts to runtime, where effectively
identifying inter-model links is critical. This challenge can be due to limitations in the
query capabilities of the DSL used during the design phase or by engineers’ limited famil-
iarity with the underlying models. When sufficient Legacy Modeling Data is available, we
can train a Neural Network (NN) to identify and recommend potential links, even when
not explicitly expressed during the design phase.

The lower part of Figure 1.3 highlights the GNN-powered inter-model relations recom-
mender, which applies GNNs for link prediction in model views. GNNs are particularly
well-suited for this task due to their ability to handle graph-structured data, making them
ideal for models in the MDE. Developing this component helps to answer the RQ2. The
contribution is detailed in Chapter 5.

As stated before, we have implemented both contributions within the EMF Views
plugin [64]. Following the established methodology, the enhanced EMF Views plugin is
a significant IT artifact developed to meet the identified challenges. We use it through
an industrial use case as a motivational example, demonstrating its practical application
and benefits (cf. 2.3). When applied to the EMF Views, the overall analysis of these two
contributions helps us to answer the RQ3 since it allows us to verify its benefits and
limitations.

1.4 Outline of the Thesis

We initially provide the background in the context of this thesis, together with a
running example gathered from the AIDOaRt partner in Chapter 2. It is complemented
with a state-of-the art on model view solutions and on the use of DL in MDE context in
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Chapter 3, The contributions of this thesis are then presented in Chapters 4, and 5.
Chapter 4 presents the provided facilities for the use of LLMs in the EMF Views tool

to help in the design of the view without deep knowledge of the involved metamodels.
Chapter 5 show the applicability of GNNs to find inter-model links when considering this
problem as a link prediction problem.

In the end, we conclude the thesis in Chapter 6 with a discussion on the achieved
results, recalling the research questions. Possible future research directions close the
manuscript in Chapter 7.
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Chapter 2

BACKGROUND

This chapter describes and presents the terminology and context of the main topics of
the thesis, namely Model Views and Deep Learning. It aims to cover the necessary
background the reader needs to understand this thesis’ contributions.

The section 2.1 starts with an introduction to MDE concepts in sub-section 2.1.1,
including concepts around model transformations and weaving models. This helps to
explain the model views concepts introduced and explained in sub-section 2.1.2. We also
describe the tool of interest for this work that implements model views for EMF-compliant
models, the EMF Views, in the sub-section 2.1.3.

In section 2.2, we introduce the main concepts around DL as a subset of ML. We
start by introducing NNs in sub-section 2.2.1 that we considered essential for this thesis,
focusing on their applications through the use of GNNs and LLMs in the subsections 2.2.2
and 2.2.3, respectively.

Finally, section 2.3 presents an industrial use case for EMF Views that motivates the
work, and section 2.4 summarizes and concludes the chapter.

2.1 Model Views
Model Views are abstractions used during system development to describe a specific

perspective over the system [19, 21, 59, 60]. They generally focus on selecting specific
elements from the models and hiding irrelevant details during the system’s analysis or
execution. At the same time, a model view can also include new virtual elements, non-
existing in the original models, which can also help represent the system from a specific
viewpoint [21, 64].

In practice, model views are an instrument for handling the complexity of models,
making it easier to understand, analyze, and manipulate the parts of the model that
interest a particular stakeholder or for a specific task. This is a critical aspect of using
model views, as it helps separate concerns, as different stakeholders or engineering tasks
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may require different information.
This section starts with a brief introduction on MDE context to state the concepts

and the terminology used in the rest of the thesis, followed by definitions around model
views and the presentation of the EMF Views tool.

2.1.1 Context

The term “model” is among the most overused words in various scientific fields [94],
from philosophy to mathematics, including different applications and different mean-
ings [45, 95]. Essentially, we call a model a representation of an actual entity (e. g. an
object, a system, a person, or a group) used to understand it better, simulate some situ-
ation, validate different assumptions, or make predictions about the matter [96].

In this thesis, we use the definition of models commonly shared in MDE community. A
model is a set of abstract elements describing (part of) some system. It captures essential
information while omitting unnecessary details [13, 97–100]. Generally, these model ele-
ments can be (semi-)formally defined (e. g. in [101]) or more broadly defined as postulates,
and data presented visually in material form, in mathematical terms, or as a computer
program that shares important characteristics with its real-world counterpart [96]. Mod-
els can be used from simple communication between stakeholders up to the actual model
transformation in system implementation or other relevant artifacts (e. g. source code,
documentation, and reports) [97] and also for analysis, estimation, simulation, and test-
ing. Still, they are always intentionally created for some specific purpose, to execute some
particular task [97].

We can primarily divide the different engineering approaches that deal with this kind
of model into two big groups: Model-Driven-star (MD*) and Model-Based-star (MB*)
approaches.

MD* refers to the approaches that use models as first-citizen artifacts and use them to
drive indeed the rest of the engineering process [13], which means that creating, develop-
ing, and studying a given system is made through the models. MD* approaches emphasize
automating development tasks through model transformations(cf. sub-section 2.1.1.3),
code generation, and model validation to improve productivity and consistency [13]. Tak-
ing Software Engineering (SE) as an example, the Model-Driven Development (MDD) is
a development paradigm that uses models as the primary artifacts for software develop-
ment, automatizing the implementation and automatically generating as many as possible
artifacts (e. g. code, documentation, logs, traces) from the models [97, 102]. Within Model-
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Driven Software Engineering (MDSE) frameworks, we can go even beyond the generation
of the implementation and use models to handle different SE activities [13], such as model-
driven reverse engineering [103] and model-driven requirements engineering [104].

MB* approaches also use models to represent the system as first-citizen artifacts,
playing a critical role in the engineering process [15]. MB* uses models to understand
and manage system complexity, often as representations for analysis, simulation, and
validation [15]. However, they are not necessarily used to generate the whole system’s
implementation and are frequently used as communication tools and blueprints [13]. MB*
practices provide suitable ways of tackling the complexity of engineering CPSs [15, 16]. For
the SE example, we can consider the Model-Based Software Development (MBSD), where
models are used for different communication purposes and to create diagram sketches of
the systems being developed [105].

In summary, Model-Based Engineering (MBE) is a broader concept encompassing
all MB* approaches and treating models as central to system specification and verifica-
tion. MDE plays a similar role encompassing MD* engineering activities where models
are the key artifacts of the development and support their complete transformation into
executable systems, aiming for an end-to-end model-driven process.

In the early 2000s, the Object Management Group (OMG™) established the approach
of Model-Driven Architecture (MDA™) to provide users with tooling for model manage-
ment to solve integration issues that complex systems could raise [106]. Towards that pur-
pose, they define a unified approach to specify IT systems implementing the MDE/MBE
through a set of well-defined standards [106].

Successful examples of engineering guided by models (either MDE or MBE) can be
seen in a wide range of scientific and industrial domains [28, 29, 32, 66, 107–111]. Recent
examples include models for blockchain and smart contracts [112], embedded systems [113]
and e-government [114]. For this thesis, we used MDE as a general umbrella term. Still,
our contributions also apply broader to MBE. Whenever the distinction is necessary to
highlight some essential aspects of the system being developed, as in the AIDOaRt use
case description (cf. section 2.3), we use more specific terminology.

The first generation of MDE tools primarily focused on code generation based on high-
level abstract descriptions. Since then, the target scope of MDE has changed. It proved
to be helpful in all stages of the systems’ lifecycle: early design [115], modernization [116],
and refactoring [117] being just a set of example uses for MDE techniques and tooling.
Using models as purposeful abstractions of systems is also increasingly important for

19



Part I, Chapter 2 – Background

modern industrial applications, e. g. in CPSs and digital twins [118–120].

2.1.1.1 Model-Driven Engineering Terminology and Standards

This section presents the main terminology and some standards for MDE processes
together with illustrative examples. It helps us have a common vocabulary when discussing
the rest of the thesis.

System Generally, a system refers to a real-world entity or artifact composed of regu-
larly interacting or interdependent groups of items [121]. These systems can range from
physical to software and include other engineered items. In the MDE context, the sys-
tem is the target of analysis, design, and development, where models represent different
aspects of the system’s structure, behavior, or functionality [13, 97, 98].

Models Models are abstract representations of systems that serve various purposes,
such as understanding, analyzing, or simulating the system before it is fully built or
deployed [13]. Specific modeling languages are used to define and construct these models,
and they can be of two types:

— General Purpose Languages (GPLs): languages that can be used to model a wide
range of aspects of the same system. An example of this kind of language is the
SysML™, used to model a broad range of systems and systems-of-systems. Systems
modeled using SysML™ may include hardware, software, information, processes,
personnel, and facilities [88].

— DSLs: languages tailored to a specific application domain, enabling experts to cre-
ate a system using the concepts they are familiar with [122]. To cite a couple of
examples, we have Dsl4gar as a DSL for modeling gaming rules to be applied
to non-playful environments [123] and SEMKIS-DSL as a specific DSL to specify
dataset requirements and expected skills for NNs [124]. The professional who de-
fines a DSL is often called a language engineer, and the language user who defines
models using the DSL is referred to as a domain expert [125].

As an illustrative example, we introduce two models in the following, both representing
two different aspects of the same example system:

1. Java model: Figure 2.1 shows an object diagram that partially represents the
structural hierarchy of a Java program. For this example, we choose to exemplify
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:Package

name= "com"

:Package

name= "java"

:Package

name= "petstore"

:Package

name= "captcha"

:Package

name= "controller"

:ClassDeclaration

name= "CaptchaValidateFilter"

:MethodDeclaration

name= "isCaptchaCorrect"

:Modifier

visibility= private

Figure 2.1 – Excerpt of a Java model for a pet store e-commerce application as an object
diagram

:Component

name= "Controller"
qualifiedName= "components:Controller"
isAbstract = false

:Component

name= "Captcha"
qualifiedName= "components:Captcha"
isAbstract = false

:Usage

name= "Captcha"
qualifiedName= "components:controller:Captcha"

Figure 2.2 – Excerpt of a UML model for the captcha components in web application as
an object diagram
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it with a web application for a pet store e-commerce. 1 It includes three top-level
packages: com, java, and petstore. The petstore package includes two sub-packages:
captcha and controller. Within the controller package resides a class, CaptchaVal-
idateFilter, which has a single method named isCaptchaCorrect. This method is
marked with a private visibility modifier.

2. UML model: Figure 2.2 shows an object diagram represents a system’s compo-
nents and their dependencies, showcasing two concrete component objects: Con-
troller (components:Controller) and Captcha (components:Captcha), both marked
as non-abstract. The Controller component depends on the Captcha component,
as represented by a Usage object. These components partially represent the same
web application used for the Java model, i. e. a pet store e-commerce application.
Still, it depicts it at a higher level (e. g. a captcha validator web component). 2

Metamodels A metamodel is a model that defines the structure and constraints of other
models, acting as a “model of model,” specifying what elements models can contain and
the relationships between them [13]. Formally, a metamodel is an explicit specification
of an abstraction [126], strongly related to the concept of ontology [127]. Creating a
metamodel consists of the definition of concepts (or classes) that contains properties of a
certain type. Classes are related to each other through relations. In complement, semantic
rules and constraints can also be included in the metamodel, such as multiplicities and
containment references [13, 126, 128].

As examples of metamodels, we present in the sequence both metamodels of the two
models given before, which means the Java metamodel and the UML metamodel.

Figure 2.3 shows an excerpt of the Java metamodel as a class diagram. 3 The Java
metamodel defines all the entities that can be written in Java. From our previous example:
Packages, Classes, Methods, and Modifiers. The UML metamodel illustrated in figure
2.4 4 is adapted from the Eclipse MDT project. 5 This UML metamodel excerpt defines the

1. The presented illustrative example is simplified. The full version of this model is accessible at
http://bit.ly/4eHXDuY (Last Accessed in November 2024)

2. Similarly, this example is also simplified. The full version of this UML model is accessible at https:
//bit.ly/3OqHhw1 (Last Accessed in November 2024)

3. It is a simplified version of the metamodel from the MoDisco project. The complete diagram and
complementary information are accessible at the MoDisco documentation page on https://bit.ly/
4fBQ7Dd (Last Accessed in November 2024).

4. Similarly with the Java metamodel, the complete diagram is accessible in the official project repos-
itory at https://bit.ly/3V23PY2 (Last Accessed in November 2024)

5. https://projects.eclipse.org/projects/modeling.mdt.uml2 (Last Accessed in November
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Package

+ name: String

ClassDeclaration

+ name: String
BodyDeclaration

MethodDeclaration

+ name: String

Modifier

+ visibility: Visibility

<<enumeration>>
Visibility

none
private
protected
public

subPackages

classes

*

methods

*

modifier

1

Figure 2.3 – Excerpt of a Java metamodel as a class diagram. It defines the structure of
the model of Figure 2.1

Component Dependency
clientDependency

PackagebleElement

+ name: String

+ qualifiedName: String

UsageNamedElement
supplier

Classifier

+ isAbstract: Boolean

Figure 2.4 – Excerpt of a UML metamodel as a class diagram. It defines the structure of
the model of Figure 2.2
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relationships between components, dependencies, and usages in a given software system.
Component inherits from Classifier, which includes the isAbstract attribute, and from
NamedElement, which represents general named entities. Component instances can have
a clientDependency relationship with a Dependency instance, which itself connects to
a Usage instance through the supplier relationship. Both Dependency and Usage are
specialized types of PackageableElement, which define common attributes like name and
qualifiedName.

Metamodels define DSLs, ensuring they are well-structured in the formal modeling
foundations. When defining a DSL through metamodeling, the produced metamodel is
seen as the abstract syntax of the language [129]. For a given DSL, the abstract syntax
is complemented by its corresponding concrete syntax, which specifies a representation
for the elements to be used by the domain expert (e. g. providing graphical or textual
symbols). In this thesis context, the term language (or modeling language) can often be
used interchangeably with metamodel. Also, it is worth mentioning that the main focus of
our contributions is on abstract syntax (i. e. metamodels, models) and does not consider
the concrete syntaxes associated with the handled languages (either graphical or textual).

Model validation Model validation checks whether a model conforms to the rules de-
fined in its metamodel. This is essential for ensuring that models are well-formed and
meet the constraints imposed by the domain they represent. Metamodels usually govern
language constraints, and additional arbitrary constraints can be specified for more in-
tricate validation of model artifacts [128, 130, 131]. Advanced validation methods can be
done through static analysis [132] and formal verification [133], for instance.

2.1.1.2 Modeling Languages

Among the languages for metamodel definition (i. e. meta-metamodel), we can high-
light the OMG™’s Meta-Object Facility (MOF™), 6 which provides standard concepts
for defining metamodels.

Developed by the Eclipse Modeling Project, 7 the Ecore is the meta-metamodel used
to define the Ecore metamodel (i. e. Ecore is a self-defined metamodel, meaning that it
defines its structure using the concepts it provides). Ecore is a practical implementation

2024)
6. http://www.omg.org/mof/ (Last Accessed in November 2024)
7. https://eclipse.dev/modeling/ (Last Accessed in November 2024)
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of Essential MOF (EMOF) (simplified subset of MOF™) but tailored for the use and
integration within Eclipse-based environments. It is at the core of the Eclipse Modeling
Framework (EMF). EMF is a modeling and code generation framework that enables
developers to define and automatically generate code for data models. All models and
metamodels used along the thesis are EMF-compliant.

In addition to Ecore and other MOF™-based languages, there are some non-MOF™
alternatives like JetBrains Meta Programming System (MPS) 8 and the Microsoft Mod-
eling SDK for Visual Studio. 9 MPS is a language workbench for defining custom DSLs
using a projectional editing mechanism, interacting directly with the abstract syntax tree
(AST). The Microsoft Modeling SDK offers MDE support in “.NET”, similar to EMF, but
designed for Microsoft technologies and development tools integration. Both technologies
represent alternatives to MOF™-based languages. Although this thesis’s contributions
may be portable to them, the inner details of this portability are not discussed.

2.1.1.3 Model Transformations

Model transformations are a core concept in MDE, enabling the generation of one
or more target models from one or more input models [13]. Model transformations are
defined at the metamodel level, with no explicit references to their instances. They are
then applied to models conforming to these metamodels.

While general-purpose programming languages like Java or Python can define model
transformations, DSLs such as Atlas Transformation Language (ATL)[134] 10 and Epsilon
Transformation Language (ETL)[135] 11 are commonly used due to their tailored features
for this task. Usually, these transformations are expressed as a set of transformation
rules. Transformation rules specify how elements in source models map to semantically
equivalent elements in target models.

Particularly for this thesis context, the model transformations’ ability to systematically
convert one model to another forms a particular type of view: views concerning two
existing models and connections between semantically equivalent elements from these
models. It is straightforward why some model view solutions implement the view concept
backed by transformations (cf. section 3.1 for details). We use model transformations as
a complementary example in our LLM-application (cf. Chapter 4 and the upper part of

8. https://www.jetbrains.com/mps/ (Last Accessed in November 2024)
9. https://bit.ly/3ZhtAG6 (Last Accessed in November 2024)

10. https://eclipse.dev/atl/ (Last Accessed in November 2024)
11. https://eclipse.dev/epsilon/ (Last Accessed in November 2024)
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Figure 1.3).

2.1.1.4 Weaving Models

In a standard MDE project, numerous models can be used and transformed between
them. Since each model represents a different aspect of a system, different metamod-
els often describe them, which introduces complexity in maintaining consistency across
them. Maintaining consistency across these models introduces complexity, and establish-
ing relationships between them becomes necessary [51, 52]. Weaving models capture these
relationships, dependencies, or mappings between elements from different models [53, 54].
They conform to a weaving metamodel, specifying the types of relationships that can be
represented. Following the “everything is a model” principle in MDE [13], weaving models
can also operate at the metamodel level, linking elements of different metamodels.

Weaving models serve as enablers for model transformations by defining the connec-
tions and mappings transformations rely on [136]. They can guide transformations to
preserve relationships between models.

In multi-view system modeling [19, 59], weaving models integrate viewpoints into a
coherent system model [59, 60]. Model view solutions, such as EMF Views (cf. 2.1.3),
often rely on weaving models for managing viewpoints and views. Our contribution (cf.
Chapter 5) aims to partially automate the generation of weaving models, as illustrated in
the lower part of Figure 1.3.

2.1.1.5 Overview

Figure 2.5 presents a concise overview of all modeling concepts presented in this the-
sis, together with the role played by the model views. The figure highlights how MDE
addresses engineering challenges along two dimensions: conceptualization (columns) and
implementation (rows). MDE’s core process flows from application models to running sys-
tems via model transformations, enabling model reuse across platforms. Realization relies
on a specific platform within a domain, and models are defined by a modeling language
(i. e. metamodels) governed by a metamodeling language (e. g. Ecore or MOF™-compliant
languages). Transformations are carried out through transformation rules written in a
transformation language. The system is built through a top-down approach in a standard
pipeline, using prescriptive models to define scope and implementation. At the same time,
abstraction works bottom-up to produce descriptive models of systems [13] and model

26



2.1. Model Views

Models

Transformation /
Code generation

Artifacts (e.g., code)

Modeling languages/
Metamodels

Transformation
definition

Platform

Meta-modeling
language

Transformation
language

conforms to

based on

uses

pipeline/lifecycle

M
od

el
in

g
Au

to
m

at
io

n
R

ea
liz

at
io

n

Virtual model/
View

Virtual metamodel/
Viewpoint

Application Domain Meta-level

Figure 2.5 – Overview of modeling concepts and the role of view-modeling (Figure adapted
from [13, p. 10])
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views that can handle their complexity, abstracting specific perspectives and focusing on
particular tasks.

2.1.2 Definitions and Example

System

Metamodels

Models View

Viewpoint

Model

Virtual model

Legend:

conforms to

represents

based on

conforms to

based on

A
B

C
ABC

a
b

c

abc

Figure 2.6 – Main concepts of model views

Essentially, a model view is a specific representation of a system, tailored to focus on a
particular aspect, or viewpoint, depending on the stakeholders’ concerns [21, 57, 59, 60]. It
addresses the complexity of modern systems by separating concerns, which is challenging
within MDE [37]. The system information is extracted from one or more contributing
models (also called base models), which might be augmented with additional metadata
or connections to represent specific needs. This separation is essential to managing the
various dimensions of a system’s design, analysis, and evolution in complex domains like
CPSs or large-scale enterprise systems [21, 59, 60].

2.1.2.1 Model Views Concepts

View-based modeling dates back to the 1990s and became more prevalent with object-
oriented frameworks and standards like UML. The industrial standard “ISO/IEC/IEEE
42010” [58] defines that the system’s architectural descriptions should be organized around
a set of views, each corresponding to a different stakeholder concern. There are two main
methods for organizing these views:

1. Synthetic Approach: Multiple system views are created and later integrated,
explicitly specifying relationships between elements in different views.
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2. Projective Approach: Views are automatically computed from one or more con-
tributing models, often through model transformations or queries. This approach
is particularly beneficial in reducing manual effort and maintaining consistency
across views.

Within MDE, projective model views are notably implemented through combinations
of metamodeling, model transformations, and queries over models [21]. Figure 2.6 illus-
trates model views concepts and terminology within MDE context. A given system can
be described by various models that potentially conform to different metamodels (i. e. ex-
pressed in different modeling languages). At the metamodel level, a viewpoint determines
which concepts and properties from the contributing metamodels should be included or
excluded in the corresponding views. It also expresses how these concepts should be in-
terconnected, i. e. with which rules. At the model level, a view combines a given set of
contributing models conforming to this viewpoint. The following provides a textual ex-
planation of this terminology that will be used in the rest of the thesis.

Viewpoint A Viewpoint describes a combination, partitioning and/or restriction of
concerns from which systems can be observed. It involves a collection of concepts coming
from one or more metamodels, eventually complemented by new interconnections between
them and newly added features.

View A View is a representation of a specific system from the perspective of a given
viewpoint. It consists of a set of elements coming from one or more base models, eventually
complemented with some interconnections and additional data, either manually entered
or computed automatically (e. g. via one or more model transformations).

Virtual model A Virtual Model (respectively, metamodel) only points to elements from
the original models (respectively, metamodels), thus preventing unnecessary information
duplication.

2.1.2.2 Example

As a straightforward example of a model view, we describe a possible view connecting
the Java and the UML models earlier described. We want to get a view that includes
all the information of a Java Package and all information of the UML Component when
they share the same name. This view is illustrated in Figure 2.7 as an object diagram.
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:Package

name= "captcha"

:Component

name= "Captcha"
qualifiedName= "components:Captcha"
isAbstract = false

Figure 2.7 – View example connecting Java and UML with a virtual association.

Respectively, Figure 2.8 presents a simplified viewpoint responsible for defining the virtual
association.

Component

Package

+ name: String
componentsForPackage

Figure 2.8 – Viewpoint example connecting Java and UML metamodels. The view illus-
trated in Figure 2.7 conforms to this viewpoint.

Being a view defined as a virtual model, it should be able to work as any other model.
To illustrate it, Figure 2.9 shows an actual version of the example view that is created
using the EMF Views tool (cf. section 2.1.3 for details). When opened in a standard
model explorer (e. g. the MoDisco 12 explorer in the figure), the view should behave like
any other model. Our previously presented diagrams omit some information from the
original (meta)models to show them better in the manuscript. To create the actual view
in EMF Views, we used the complete versions of their Ecore versions, which is why the
explorer screenshot shows some information that was not mentioned before.

2.1.3 EMF Views solution

Our contributions currently target the EMF Views solution [42, 64]. The tool was first
introduced by Bruneliere et al. [64]. The authors intended to provide a mechanism for
combining models into cross-domain perspectives so stakeholders can have relevant views
of the system being developed. Its development took place within the Naomod research
group 13 and it is part of a MDE toolset 14 for dealing with complex engineering systems.
A key motivation behind EMF Views was to create a generic, expressive, non-intrusive,
interoperable, modifiable, and scalable solution. The work is a direct evolution of earlier

12. https://eclipse.dev/MoDisco/ (Last Accessed in November 2024)
13. https://naomod.github.io/ (Last Accessed in November 2024)
14. https://www.atlanmod.org/ (Last Accessed in November 2024)
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Package class and attributes coming from
Java metamodel

Component class and attributes coming
from UML metamodel

Figure 2.9 – Screnshoot of MoDisco model explorer presenting the example view.

attempts at model combinations using other strategies and mechanisms [52, 137]. EMF
Views is distributed as an open-source Eclipse component. 15

EMF Views follows the projective approach. Both viewpoints and views are mani-
fested as virtual metamodels and models. Figure 2.10 illustrates its internal virtualization
mechanism. A model view is composed mainly of elements proxied from the contributing
models, with additional associations created between them that only exist in the view.
Links between model elements are stored in a separate weaving model. This approach is
non-intrusive and transparent, as it does not modify the original models and treats views
like regular models.

EMF Views is built-in with the ViewPoint Definition Language (VPDL). Using the
well-known SELECT-PROJECT-JOIN operators from relational algebra, the VPDL was
inspired by database views. Formally, VPDL is a textual Structured Query Language
(SQL)-like DSL for writing model view definitions. A VPDL file expresses a viewpoint,
i. e. it defines the concepts and properties from the contributing metamodels that need to
be selected, associated, or queried (and how). Then, EMF Views take this file as input to
build corresponding model views on given sets of contributing models. When working in

15. https://www.atlanmod.org/emfviews/ (Last Accessed in November 2024)
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Model View

Contributing model a

Contributing model b

a1

b2

a1

b2

<proxy>

<proxy>

Association

a2

b1

Figure 2.10 – High-level illustration of EMF Views virtualization mechanisms

the EMF environment, the EMF Views provide the necessary tooling to combine existing
models in a single visualization.

1 create view chain as
2

3 select java.Model.*,
4 java.Package.*,
5 UML.Component.*,
6 java.Package join UML.Component as componentForPackage,
7

8 from ’http://www.eclipse.org/MoDisco/Java/0.2.incubation/java’ as java,
9 ’http://www.eclipse.org/uml2/5.0.0/UML’ as UML,

10

11 where s.name = t.name.toLowerCase() for componentForPackage

Listing 2.1 – Example of a VPDL file combining a Java model and UML model

Listing 2.1 shows an example of a VPDL file that creates a viewpoint (and correspond-
ing view) over our previously presented example metamodels, namely the Java metamodel
and a UML metamodel. This VPDL file is essentially what we need to develop our exam-
ple view (cf. section 2.1.2.2) within EMF Views. The code in the listing 2.1 contains all the
elementary elements for a VPDL file. The line 1 is where the name of the view is defined.
The name in this illustrative example is “chain”. Lines 3–5 show the SELECT block, where
the engineer can define which elements of each contributing model will appear in the final
view. In our example, the metaclass Package is selected from the Java metamodel, and
the metaclass Component comes from the UML metamodel. The character * means we
want to select all attributes for the given metaclass. The line 6 is the JOIN block of the
language and defines the combination between the two selected classes, giving it a mean-
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2.1. Model Views

ingful name as componentForPackage. The lines 8 and 9 define the involved metamodels,
given by their Uniform Resource Identifiers (URIs). Finally, the line 11 defines how the
combination specified by the JOIN will be computed in the view. Following our example,
we are comparing the name of the Java Package and the UML Component so that each
Package will have a potential associated Component. The VPDL code is responsible for
creating the internal weaving model(s) as described in details in the sub-section 2.1.3.1
The tool documentation 16 shows the information on how to use VPDL and run the given
example. This example was adapted from one of the EMF Views tutorials. 17 The screen-
shot previously presented in Figure 2.9 presents the actual computed view in the MoDisco
model explorer.

2.1.3.1 Standard View Definition within EMF Views
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Figure 2.11 – Detailed overview of a view creation in EMF Views. Figure adapted
from [138, p. 100]

Figure 2.11 details how this two-step approach works within EMF Views. It provides
an overview of the design and runtime stages for creating viewpoints and views of a set of
(meta)models. A View Engineer is responsible for creating a VPDL 18 file and defining
the viewpoint. It has to be done after a careful analysis of the requirements and study of

16. https://www.atlanmod.org/emfviews/manual/user.html (Last Accessed in November 2024)
17. https://github.com/atlanmod/emfviews/tree/master/examples/traceability-demo (Last

Accessed in November 2024)
18. EMF Views support other manners to create it, but we will focus on VPDL
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Part I, Chapter 2 – Background

the underlying models, often with the participation of a domain expert. At Design Time,
the Viewpoint Builder uses the metamodels 19 as a reference for building a Viewpoint
using virtualization. The Weaving Model plays a central role in this process by proxying
parts of the metamodels to the Viewpoint (cf. Figure 2.10 for details). At Runtime the
View Builder operates on the models to (semi-)automatically generate a specific view. 20

The Weaving Model again enables the selection and linkage of relevant elements and their
computation. A View User interacts with the resulting views at runtime.

Since the building mechanism is used at both levels, a weaving metamodel was de-
veloped to describe the relations between the elements (both metamodel elements and
model elements). Figure 2.12 shows the EMF Views weaving metamodel described in the
following. 21

WeavingModel The WeavingModel serves as the root element. It contains two key
elements: the contributing models and virtual links. Virtual links represent modifica-
tions made to the models that only appear in the view, not the actual models. The
WeavingModel includes a whitelist flag that changes how filters work. It indicates
whether the view includes all elements from contributing models or only the specified
ones. By default, the view includes all elements (i. e. “whitelist = true”).

ContributingModel A ContributingModel is any model included in the view. It holds
the actual elements targeted by virtual links. The URI attribute always refers to the
metamodel’s namespace URI for viewpoints and the view’s weaving models.

ConcreteElement A ConcreteElement is an element within a contributing model. For
viewpoints, its path attribute is the fully qualified name of the element (excluding the
metamodel name, which is defined by the ContributingModel container). For views, the
path is the URI returned by the EMF Application Programming Interface (API) method
“Resource.getURIFragment”. Concrete elements have two subtypes: ConcreteConcept
and ConcreteAssociation. This distinction is important because virtual associations,
for example, can only connect associations, not any element.

19. e. g. the Java metamodel and UML metamodel from the example view. Represented as “A”, “B”
and “C” in the figure

20. e. g. the Java and UML models for the pet-store e-commerce example. They are represented in the
figure as “a”, “b” and “c”

21. A complete Ecore version of the weaving metamodel can be obtained at https://bit.ly/3YWig0R
(Last Accessed in November 2024)
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Figure 2.12 – Excerpt of the metamodel of weaving model as a class diagram. Figure
from [138, p. 103]
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VirtualLink VirtualLink is a parent class for all modifications to the model. Every
modification has a name attribute, which becomes the name of the virtual feature—except
for the Filter class, where the name is ignored.

Filter A Filter determines whether elements from contributing models are included
or excluded, depending on the WeavingModel’s whitelist flag. Filters can only refer to
ConcreteElements.

VirtualAssociation A VirtualAssociation is a relationship that exists only in the
view. It connects a source and a target, either concrete or virtual concepts. This allows
the creation of an association between a class from the contributing metamodel and a
virtual class that only exists in the view. The lowerBound and upperBound properties
set the association’s cardinality, similar to how it works in Ecore metamodels. If the
composition flag is true, the virtual association is a containment. A virtual association
can have one opposite association (virtual or not), defined by the opposite reference.

VirtualConcept A VirtualConcept exists only in the view. It can be a subclass or
superclass of other concepts, whether virtual or not.

VirtualProperty A VirtualProperty is a property that exists only in the view. It
must be linked to a parent concept, either virtual or real. Its optional flag determines
the property’s cardinality. The type attribute defines the property’s primitive type.

2.2 Deep Learning
In today’s digital transformation landscape, AI technology applications are ubiquitous

in many businesses and industries [67]. Since the middle of the XX century, it has evolved,
and it has impacted different aspects of how we deal with our data and systems [10, 24,
67].

ML can be described as the use of well-crafted algorithms, often based on statistical
techniques, that enable the computer to learn some patterns in the data and then gen-
eralize it to unseen data [22]. The application of ML can vary from a good guesser that
can help build recommendation systems to precise predictors for precision-dependant sys-
tems. In summary, ML is a broad field of AI where algorithms learn from data to make
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2.2. Deep Learning

predictions without being explicitly programmed. It includes techniques like linear regres-
sion [139], decision trees [140], and Support Vector Machines (SVM) [141] to mention
some examples.

DL is a class of ML algorithms that has gained attention and much traction in the last
decade [142], assuming the role of the main ML technique for a wide range of applications.
It focuses on using NNs, especially the ones with many layers, also called deep neural
networks. While all DL is ML, not all ML involves DL, even with some overlap in the
terminology of both study fields.

For this background chapter of the thesis, we decided to focus primarily on DL since
it is foundational for the two ML applications we investigate in our contributions, GNNs
and LLMs. The sub-section 2.2.1 introduces the main concepts around the development
and use of NNs, while the following sub-sections 2.2.2 and 2.2.3 presents respectively the
background and the current landscape for the application of GNNs and LLMs.

2.2.1 Neural Networks

For a fundamental definition, we can state that any ML algorithm operates on the
same principle. Given a task T evaluated by some performance measure P , the goal is to
improve P on T based on a set of experiences E [143]. In other words, ML algorithms are
designed to enhance their performance on a specific task by learning from past experiences.
A predefined criterion measures the algorithm’s success, and the objective is to maximize
this performance as it gains more experience [143].

Deep learning is a class of algorithms used to learn representations of data (i. e. em-
beddings) using multiple computational layers, allowing multiple abstraction levels. It can
discover intricate structures in large datasets, indicating how a machine should change
its internal parameters, which are used in the next layer to re-compute the data repre-
sentation, achieving some understanding of the analyzed data [25]. The composition of
layers creates a network [25]. Deep networks have been developed in recent years with
breakthrough results in many areas, from speech recognition to genomics [27], and also
with applications in software engineering [68]. In addition, the introduction of transfer
learning [144] and pre-trained models such as transformers has significantly accelerated
progress in numerous fields, including Natural Language Processing (NLP) and vision
tasks.

ANN (usually referred to simply as Neural Networks (NNs) in the Computer Science
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(CS) context) are the main algorithm 22 for DL. Because of their ability to reproduce
and model non-linear processes, NNs can be used on a wide range of applications, from
data classification to content generation (i. e. any task T ). What we generalized as the
experience E from the fundamental definition can be called in the NN context as the
training data, which includes both a set of the input data (i. e. the data we intend to use
as the source of the process) and the set of output data or examples (i. e. the expected
outcome of the process the network is learning). The network’s success is measured by
how accurately it performs the task T compared to the training data. Depending on the
nature of T , different metrics are often used to evaluate the network’s performance P

(e. g. accuracy, precision, recall, or more task-specific metrics like Intersection over Union
(IoU) for object detection [145]).

Conceptually, a NN 23 loosely tries to mimic a biological brain, which means that its
minor units (usually called neurons) are connected by edges that pass some information
between them in a simulation of the process of a brain synapse. This mimicking process is
achieved with artificial neurons that receive some input, perform a weighted operation on
it, and then pass their results throughout the network to other neurons through a function.
It is important to note that the analogy with a biological brain is just a conceptual
approximation, and nowadays, it works to explain the concepts around NNs and not to
develop this kind of system.

Technically, each neuron in a NN receives a signal input and sends the output of a
non-linear function to the next neuron. Each signal is a real number, and the strength
of the signal is given by its weight. In practical uses, the neurons are organized in groups
forming layers of neurons, the input signal is a vector of real numbers, and the output is
given by applying the activation function, such as the commonly used ReLU [146]. The
following layer receives some aggregation (e. g. sum) of the outputs as its inputs. NNs
with two or more layers are called deep neural networks [22, 25]. Advanced optimizers like
Adam [147] and techniques like batch normalization [148] are now standard practices to
face issues such as vanishing gradients in deep networks.

The training of a NN starts with the definition of a loss function with a paired cost
function. Learning occurs by executing the pass of a set of inputs throughout all the layers

22. The ML community usually uses the word “models” to refer to the algorithms. To avoid confusion
with the definition of models on MDE scenario, we preferred to use “algorithms” instead everywhere
possible, excluding the cases where the distinction is noticeable. Different NN structures are referred to
as architectures

23. from now on, ANN and NN will be used interchangeably, with preference for the second term.
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2.2. Deep Learning

of the NN and adjusting the weights to minimize the loss function. The primary algorithm
used to minimize it is the gradient descent through backpropagation [149]. Backpropaga-
tion aims to update the weights so that the NN makes better predictions. Supervised
learning is the type of learning where the NN receives both the inputs and expected out-
puts during the training. The loss function is defined as the deviation of the actual value
(i. e. the training data) from the predicted value (i. e. the output of the network).
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Figure 2.13 – Example of a fully connected feed-forward neural network 24

NNs have evolved into a broad family of algorithms and were applied in a vast number
of applications in different domains. The variations of each type of NN can be called NN
architectures, and they are defined by adjustments to the network topology and its hyper-
parameters. The most straightforward architectures have static components such as the
number of neurons (i. e. units), number of layers, neurons’ weights, and standard feed-
forward topology. Some other types can have dynamic components that evolve during
training, so specific algorithms are also necessary to guide these changes [150]. Another
significant variation that affects the performance of a NN is the type of hardware used
for the training/inference process, mainly when switching from Central processing units
(CPUs) to Graphics processing units (GPUs), and even further with hardware accelerators
like Tensor processing units (TPUs) [151], which are optimized for large-scale computa-
tion.

24. Example figure adapted from https://tikz.net/neural_networks/ (Last Accessed in November
2024)
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Part I, Chapter 2 – Background

Figure 2.13 illustrates an example of a fully connected feed-forward neural network
composed of five layers of neurons. The first layer is the input layer, labeled as a(0), where
each neuron a

(0)
i represents an input feature of the data (i. e. the superscript indicates the

number of the layer and the subscript indicate the index of the neuron on the given layer).
In this example, the input layer has four neurons corresponding to four different input
features (i. e. input signals). The middle section represents the hidden layers. In this
example, there are three hidden layers, each one with five neurons. The layer on the right
side is the output layer, labeled as a(3). This layer contains three neurons representing
a task’s possible output or class label. In a fully connected neural network like this,
every neuron in each layer is connected to all neurons in the subsequent layer. The lines
between the neurons represent these connections, and the strength of these connections is
determined by the weights of the network (not presented in the figure), which are learned
during training. This type of architecture is typically used for tasks like classification or
regression, where the network processes the input features through the hidden layers to
produce a set of outputs.

Varying the architecture of the NN has given us some particular types of networks
widely used in various applications. In the following, we provide a non-exhaustive sum-
mary of the most well-known types, mainly when related to the two main NN types we
use in the thesis, LLMs and GNNs.

Convolutional Neural Networks (CNNs) are designed explicitly for processing spatial
data, such as images. Unlike feed-forward networks, CNNs use convolutional layers to scan
and identify local patterns within the input using grid-like strategies to select parts of the
input data [152]. This makes them more efficient for image recognition, object detection,
and other computer vision tasks where spatial information is crucial. The essential pieces
and strategies used in CNNs also inspired the development of GNNs, which extend the
convolution operation to irregular domains like graphs (cf. sub-section 2.2.2 for details
about GNNs).

RNNs differ from feed-forward neural networks as they have built-in memory, allowing
them to process data sequences. They are well-suited for tasks like NLP and time series
prediction. They can learn patterns in sequences by connecting the output from one
time step to the input of the next, remembering previous information (the recurrence in
the namesake) [153]. RNNs form the backbone of the transformer architecture together
with the Long/Short Term Memorys (LSTMs). With its self-attention mechanisms, the
transformer architecture is the base of the most used LLMs [154].
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LSTMs are an improved form of RNNs, designed to better capture long-range depen-
dencies in sequential data [153]. They do so by incorporating a set of gates (input, forget,
and output gates) that control the flow of information, enabling the model to “remember”
or “forget” specific parts of the data [155]. This capability makes LSTMs particularly effec-
tive for tasks involving long-term dependencies, such as time-series forecasting, language
modeling, and machine translation [156].

Generative Adversarial Networks (GANs) introduced by Goodfellow et al. [157], are
a different class of neural networks that consist of two competing networks: a generator
and a discriminator. The generator aims to create data similar to a given training set,
while the discriminator tries to distinguish between the real data and the data generated
by the generator. Through this adversarial process, both networks improve over time, and
GANs have been used in various applications such as image synthesis, style transfer, and
even drug discovery [158].

The most transformative architecture in recent years has been the transformer, intro-
duced by Vaswani et al. [154]. Transformers have become the foundation for LLMs such as
BERT [159] and GPT [160]. Unlike RNNs and LSTM, transformers rely on self-attention
mechanisms, which allow them to model dependencies between distant elements in a se-
quence without the need for recurrence. This parallelization makes transformers highly
efficient for large-scale data processing, and their ability to capture intricate relationships
in the data has led to state-of-the-art results in various domains, including NLP, code
synthesis and even system design [161]. Given their versatility, transformers have become
a dominant architecture for LLMs, a core technology explored in this thesis.

While many other NN architectures have been developed, such as Autoencoders [162]
and Boltzmann Machines [163], these are outside the scope of this thesis.

Figure 2.14 loosely illustrates an evolution of NNs, highlighting the main architec-
tures considered in the thesis. The basic architectures (e. g. feed-forward) were initially
present by McCulloch and Pitts [164]. The development of the backpropagation algo-
rithm for training neural networks allows the creation of architectures appropriate for
working with more intricate data types. LeNet was the structure that introduced the
concepts of CNNs [165], which had a breakthrough moment later with AlexNet [152] and
ResNet [166], bringing high-level performance to deal with grid-like data (e. g. images).
In a parallel branch of evolution, we had the proposal of GNNs [77] adapted to work with
graph data. Inspired by the CNN architecture and the convolutional approach, the Graph
Convolutional Network (GCN) extended the concept to enable better performance when
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Figure 2.14 – Loose illustration of NNs evolution along time
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dealing with graph-like data. The advances in graph data and its consequent increase in
different applications have led to a new branch of research, creating various architectures.
We highlighted the Graph Sample and Aggregate (GraphSAGE) [167] on the figure since
we use it in our contribution (cf. section 2.2.2.2). As mentioned before, the origin of LLMs
is somehow attached to the general evolution of architectures that deal with sequential
data, like RNNs and LSTMs. The combination of them with the attention mechanism
developed by Vaswani et al. enabled the development of the first language models like
BERT [159]. The Generative Pre-trained Transformer (GPT) architecture evolved from
it, creating a family of LLMs, from GPT-2 [168] to GPT-3 [160] and finally GPT-4 [169]. 25

2.2.2 Graph Neural Networks

Natural phenomena, complex systems, and datasets can be represented as graphs.
These are mathematical structures composed of objects, often referred to as nodes, that are
sometimes connected by relationships known as edges. Graphs are also commonly referred
to as networks and play a crucial role in the study of discrete mathematics and graph
theory. Examples include social networks, citation networks in academic research, and
interactions within biological systems such as protein-protein interaction networks [170].

In the context of graphs, the primary components are:
— Nodes (vertices) representing individual entities.
— Edges (links) that represent relationships or interactions between nodes.

The formal definition of a graph used in this thesis is as follows [171].

Definition. A graph G = (V, E) consists of a set of nodes V connected by edges in the
set E, where each node v ∈ V and each edge e ∈ E.

Graph elements like nodes and edges can have associated features (e. g. labels or
attributes). These are often represented with mapping functions ϕ(v) : V → A and
φ(e) : E → R, where A and R denote node and edge features, respectively.

Graphs can be further classified based on the types of nodes and edges, leading to two
major categories:

Definition. A homogeneous graph is a graph where all nodes and edges have the same
type, i.e., |A| = |R| = 1.

25. Internal details of GPT-4 are not fully disclosed by OpenAI until the date of this thesis writing,
but it is assumed to be a direct evolution from GPT-3
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Definition. A heterogeneous graph is a graph where multiple types of nodes and edges
exist, i.e., |A| + |R| > 2.

The ability to represent both simple and complex relationships makes graphs a power-
ful tool for working with real-world data. Classical algorithms for graph-based problems,
such as PageRank [172], have been widely used before the advent of DL approaches,
providing foundational methods for analyzing graph structures.

Some common graph-based tasks include:
— Node Classification: Predicting the label of a node based on its attributes and

the graph structure, for instance, identifying communities in social networks [173].
— Graph Classification: Classifying entire graphs is an essential task in areas such

as molecular chemistry, where the graph structure of a molecule determines its
properties [174].

— Node Clustering: Grouping similar nodes, often applied to wireless sensor net-
works for efficient organization [175].

— Link Prediction: Predicting missing or future edges between nodes, useful in
fields like criminal network analysis to discover hidden connections [176].

— Influence Maximization: Finding the most influential nodes in a network, par-
ticularly for marketing in social networks [177].

However, classical algorithms for these tasks often struggle with generalization, scal-
ability, and adapting to complex, heterogeneous data. The rise of node representation
learning and GNNs have addressed many of these limitations.

Node representation learning, or graph embedding, is the process of transforming nodes
into fixed-size vector representations, capturing the structure and features of the graph.
This representation can be used for various downstream tasks, including the classical ones
mentioned earlier. Traditional methods like DeepWalk [178] and node2vec [179] pioneered
this field.

GNNs are a class of NNs designed to directly process data represented as graphs [77].
Unlike traditional NNs, suited for structured data like images or sequences, GNNs excel
in tasks involving graph-structured data, where the node relationships are crucial.

These models have demonstrated notable success in various domains, such as social
network analysis, molecule property prediction, and knowledge graph completion [180,
181]. Given the inherent graph-like structure of many problems in software engineering
(e. g. dependency graphs, control flow graphs), GNNs are promising for applications such
as program analysis, software fault localization, and code summarization [182, 183].
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GNNs addresses the shortcomings of traditional methods by learning node represen-
tations through an iterative process of message passing and aggregation. Information is
propagated between nodes based on their connectivity during message passing, allowing
GNNs to capture both local and global graph structure [77]. Popular architectures include
the GCN [180], which simplifies graph learning by using convolution-like operations, and
the Graph Attention Network (GAT) [184], which incorporates attention mechanisms to
weigh the importance of neighboring nodes.

2.2.2.1 Transductive vs. Inductive Learning in GNNs

One of the key distinctions in GNNs is between transductive and inductive learning
paradigms. 26 In transductive learning, the model learns from a fixed graph during training,
meaning that node embeddings are computed for the specific nodes and edges in the
training graph. Consequently, this approach requires re-training if new nodes or edges
are introduced, as the model has not learned a generalizable function that can infer
embeddings for unseen parts of the graph [180]. In contrast, inductive learning allows the
model to generalize to unseen graphs or nodes, as it learns a function that can compute
embeddings for any node based on its local neighborhood structure and features. Inductive
learning is useful when working with dynamic graphs, where the structure may evolve, or
when the goal is to predict the properties of entirely new graphs.

2.2.2.2 Heterogeneous Graph Neural Networks (HGNNs)

Heterogeneous Graph Neural Networkss (HGNNs) extend the capabilities of standard
GNNs to handle heterogeneous graphs. These models consider the semantics of node and
edge types during message passing, resulting in more meaningful node representations for
complex networks, such as citation networks or knowledge graphs. The message passing
process in HGNNs is often based on meta-paths or relation-specific mechanisms, where
messages are propagated along specific types of edges, capturing richer contextual infor-
mation.

While GNNs and HGNNs have made significant strides, challenges remain, such as
scaling to large graphs and learning robust representations in noisy or incomplete data
environments [181].

26. This difference can be generalized to other ML algorithms. Still, we focused only on GNNs for
simplicity
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An important GNN architecture for the context of this thesis is the GraphSAGE, the
example architecture used in one of our contributions(cf. chapter 5). We use it below as
an example of architecture to explain part of the inner details of GNNs.

Formally, GraphSAGE is an inductive framework for learning node embeddings on
large graphs [167]. This inductive capability is achieved by sampling a fixed-size neigh-
borhood of nodes and applying an aggregation function over these neighbors’ features.
Several aggregation functions, including mean and pooling aggregators, can be used in
GraphSAGE, allowing flexibility in capturing different levels of neighborhood information.
The embedding for a node v is computed by aggregating the features of its neighboring
nodes and combining them with the node’s features. Formally, the GraphSAGE update
rule for a node v at layer k is given by the equation 2.1.

h(k)
v = σ

(
W (k) · AGGREGATE

(
{h(k−1)

u , ∀u ∈ N (v)}
)

+ W
(k)
self · h(k−1)

v

)
(2.1)

N (v) denotes the neighbors of node v, h(k)
v is the embedding of node v at layer k, W (k)

and W
(k)
self are trainable weight matrices, and σ is a non-linear activation function as usual

for NNs.
Because models are suitable to be represented by graphs, our contribution (cf. Chapter

5) presents a potential way to apply the use of HGNNs for MDE.

2.2.3 Large Language Models

LLMs are NNs created with the transformer architecture [154], pre-trained on massive
textual content corpora coming from the internet and other sources. They are tailored
for text completion, generation, and natural language understanding. Together with other
foundation models, they are studied as part of what is called Generative AI [185]. Essen-
tially, given textual inputs, i. e. the prompts, they generate corresponding text outputs
probabilistically, producing high-quality text that often mimics human-like writing.

Base LLM models are initially trained to predict the next word based on large text
datasets, using context to generate the most likely subsequent token. For example, a sim-
ple prompt like “What is the capital of France” may result in predictions related to French
cities, population statistics, or trivia, as the model’s output reflects its general training
data. In contrast, an instruction-tuned LLM has undergone additional fine-tuning, specif-
ically to follow user instructions [186]. This distinction significantly improves the model’s
ability to respond to questions. Using the same example, a tuned model is much more
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likely to output the specific answer, “The capital of France is Paris.” Instruction tuning in-
volves supervised fine-tuning, where LLMs are trained on a corpus of inputs and expected
outputs (instructions), followed by reinforcement learning steps such as Reinforcement
Learning from Human Feedback (RLHF) [187], to refine and improve response quality
further.

LLMs have seen rapid development over recent years, evolving from simple text-to-
text language models like T5 [186] to architectures like GPT-3 [160], which are capable
of not only generating human-like text but also performing reasoning, translation, sum-
marization, and many other complex natural language processing tasks.

Research continues to push the boundaries of LLM capabilities [185]. One area of
exploration is how these models adapt to specialized tasks through instruction-tuning and
transfer learning, as they can now handle domain-specific tasks like legal text generation
or software code completion [188]. On the other hand, recent advancements have shown
that as models scale in parameters and training data, they exhibit emergent abilities,
capabilities that were not explicitly programmed or predicted [189]. Models like GPT-4,
with hundreds of billions of parameters, 27 demonstrate advanced reasoning, arithmetic,
and even coding skills without specific task training [169].

2.2.3.1 Prompt Engineering

Prompts are the primary means of interacting with LLMs. PE has emerged as a crit-
ical technique to maximize the performance of LLMs by systematically designing inputs
that guide the model’s outputs towards desired results [190]. Prompt design is crucial be-
cause it allows users to shape the model’s responses without retraining them, improving
efficiency and accessibility. PE involves empirical exploration, where the model’s perfor-
mance can vary across tasks, and it often relies on well-known heuristics and iteration to
optimize results. For instance, incorporating clear task instructions, role-based directions,
and specific formatting cues are common approaches in the ChatGPT 28 interface. 29

Two key PE techniques highly relevant to our contributions are Few-shot Learning [191]
and Chain-of-Toughts (CoT) prompting [192]. Few-shot learning enables the model to
learn from a handful of high-quality demonstrations (examples of input-output pairs),

27. OpenAI does not disclose exact number and inner details
28. ChatGPT is the popular user interface provided by OpenAI to access their flagship LLMs through

a chat-like interaction
29. https://platform.openai.com/docs/guides/prompt-engineering/ (Last Accessed in Novem-

ber 2024)
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improving results compared to a Zero-shot approach where no examples are provided. CoT
prompting, on the other hand, introduces a sequential reasoning process by structuring the
prompt into a series of smaller steps, which helps the model break down complex tasks
into manageable subcomponents, leading to more reliable and interpretable outcomes.
Many other prompt techniques have been studied for different purposes [193]. Still, they
are not directly used in the scope of this thesis, even posing potential improvements for
future work (cf. Chapter 7).

2.2.3.2 Tool-augmentation through the use of LangChain

LLMs are increasingly integrated with external tools and systems to enhance their
functionality and utility. Frameworks such as LangChain [194], 30 Llamaindex, 31 and
DSpy 32 provide the necessary infrastructure to develop composable applications pow-
ered by LLMs. LangChain, in particular, offers an open-source approach to composing
multiple LLM calls in a structured manner, effectively applying the composite design pat-
tern [195]. This allows developers to link together different components, such as prompt
templates, model outputs, and third-party tools, creating a rich ecosystem for building
intelligent applications. The use of such tool-augmentation frameworks opens new op-
portunities for enabling LLMs to interact with dynamic datasets, APIs, and real-world
systems [196, 197].

In conclusion, the rapid evolution of LLMs has positioned them as critical components
in the broader landscape of AI, with profound implications across multiple industries and
applications. Our contribution (cf. Chapter 4) presents a step further on their use for
MDE.

2.3 Application of Model Views in the Industrial Use
Case 33

In this section, we present a collaboration between industrial and academic partners
of the AIDOaRt project towards a model-based approach for CPS engineering at Volvo

30. https://www.langchain.com/ (Last Accessed in November 2024)
31. https://www.llamaindex.ai/ (Last Accessed in November 2024)
32. https://dspy-docs.vercel.app/ (Last Accessed in November 2024)
33. Content partially published at J. Cederbladh et al., “Towards Automating Model-Based Systems

Engineering in Industry - An Experience Report,” in 2024 IEEE International Systems Conference
(SysCon), Apr. 2024, pp. 1–8. doi:10.1109/SysCon61195.2024.10553610.
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Construction Equipment (VCE). VCE is a leader in developing and producing solutions
in the construction equipment domain. In particular, they are pursuing the electrification
of their machines to move towards a more sustainable future. Relying on the experience
of VCE engineers in terms of interoperability, adaptability, and automation of the design
activities, we elicited a set of challenges and issues for a practical industrial use case.

To potentially handle these challenges, we propose an approach considering a com-
bination of prescriptive modeling, model transformations, AI-augmented model views,
modeling process mining, and AI-based modeling recommendations. This section first in-
troduces the general use case and the identified challenges tied to the AIDOaRt goals.
Then, we quickly explain the overall solution, mainly focusing on the EMF Views role
and the potential use of its AI-augmented features. Details on the other performed im-
plementations and overall evaluation can be checked on the original paper by Cederbladh
et al. [66].

2.3.1 Introduction to the VCE use case

Figure 2.15 – Improving the automation of the VCE engineering process as envisioned in
AIDOaRt.

With increased customer and regulatory emphasis on sustainability, VCE is on a trans-
formation journey focusing on electrifying its construction machines, including battery-
electric and fuel-cell technologies. Maintaining quality is paramount even during the tran-
sition period, with fast prototyping and short lead times. This requires the application
of new technologies, not only in the final product but also during development. Through
the AIDOaRt project collaboration, VCE provided an industrial use case in the form of
a Dumper System (DS). 34

Figure 2.15a shows a high-level tool landscape and their inter-dependencies (lines)
as currently used in practice for the software and system engineering of VCE products

34. https://www.volvoce.com/united-states/en-us/products/articulated-haulers/a60h/
(Last Accessed in November 2024)
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and their variants, like the DS mentioned above. The engineering process starts with
office tools, e. g., Visio and Excel by Microsoft, which are extended with useful plugins
(e. g., architecture description palettes with variability aspects) to produce requirements
and architectural definitions. Then, VCE experts manually inspect the resulting artifacts
as guidance for coding software components and specifying simulation models of physical
components of their products. Variants offered by VCE product lines are finally configured
via change management tools.

Figure 2.15b shows the expected improvement from a tool landscape perspective
thanks to the AIDOaRt project collaboration. New contributions brought by the AIDOaRt
consortium (wavy boxes) are considered to foster the automation of the engineering pro-
cess. Model-Based System Engineering (MBSE) 35 techniques and practices are explicitly
introduced, with modeling tools pivotal in transforming descriptive engineering artifacts
produced by office tools into models. The objective is to pave the way for integrating
MBSE, AI/ML, and DevOps techniques and practices. Transforming current descriptive
artifacts to a prescriptive model-based representation is a suitable step toward relieving
and improving many bottlenecks in current processes.

2.3.2 Identified Challenges

We identify key challenges for a model-based approach to architecture descriptions
from an industrial perspective.:

CH1: Managing interoperability and traceability in the system develop-
ment process: CPS engineering is a multidisciplinary process and usually requires the
integration of DSLs and tools. Thus, interoperability is a major concern, and it can be
realized by weaving techniques applied to artifacts produced at each stage of the system
lifecycle. In this respect, traceability is another key indicator that tests the quality of the
produced artifacts throughout the development process, i. e. from the requirements gath-
ering to the actual development. This challenge directly relates to the general motivation
for our contributions (cf. section 1.2).

CH2: Promote the adoption of modeling practices in an industrial context:
Adopting modeling practices within the industry is a common long-term challenge in the
modeling community. Thus, it is naturally also reflected in this case study. To promote

35. This section uses MBSE instead of MDE in respect to the internal use by VCE and other AIDOaRt
partners. Indeed, models at VCE do not necessarily drive the full process, and they use models for different
purposes
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modeling in the VCE context, the proposed solution architecture needs to demonstrate
the added value of modeling in this case. Specifically related to the use of model view
solutions, we expect that our answers to the RQ3 (cf. section 1.2) can contribute to
identifying how the use of DL can contribute to increasing its adoption.

CH3: Supporting automation through the combination of MBSE practices
and AI-based tools: VCE engineers manually specify the system components through
loosely integrated tools. Even though the engineering process is conducted correctly,
MBSE practices can ease the burden of manual specification by offering a plethora of
utilities. Furthermore, modeling activities can be automatized by employing AI-based al-
gorithms. Therefore, adopting MBSE practices can improve the whole process by reducing
the manual effort required by the VCE engineers. The correct application of AI techniques
to improve MBSE practices and tools permeates both of our main contributions. Still, for
this identified challenge, we highlight our approach to (partially) automate the view cre-
ation process using DL as described in Chapter 4 and directly related with our RQ1 (cf.
section 1.2).

CH4: Handling legacy artifacts: Legacy artifacts created by VCE engineers are
valuable assets and play an essential role in specifying new CPSs, mainly since the current
engineering methods, processes, and workflows rely on past expertise. On the one hand,
a novel system must support the integration of legacy artifacts and the development of
critical components. On the other hand, to be acceptable, new engineering practices must
not disrupt well-established routines. Therefore, a flexible solution that integrates legacy
and new approaches and artifacts is needed. Precisely on the use of model views, the
contribution described in Chapter 5 directly relates to using legacy artifacts for training
an DL algorithm. It is directly used to help in the answer for RQ2 (cf. section 1.2) and,
even though it is not directly associated with the integration of this legacy information
for the use of engineers, it is an efficient way on how to reason on the legacy data for new
purposes.

To cope with these challenges, we proposed integrating solutions from several part-
ners with external (open-source) Computer Aided Software Engineering (CASE) tools.
The proposed approach notably aims at leveraging MBSE and AI/ML capabilities for i)
capitalizing on legacy engineering data, ii) supporting the structural modeling of CPS
architectures and its variants via the SysML™ [88] and AutomationML [198] standards,
and iii) allowing modeling recommendations via ML and process mining techniques. Our
initial findings show that our approach can help improve design operations’ automation,
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which is part of the typical VCE workflow. The following section presents an overview of
the proposed approach, focusing on its use of model views.

2.3.3 Overview of the Approach

The use case concerns the need to provide system modeling capabilities to industrial
practitioners playing the role of domain experts. Existing office tools, like Visio and Excel,
provide descriptive system modeling capabilities. The current practice at VCE leverages
Visio documents for graphical representation and Excel sheets for variant descriptions,
both documenting product lines with components and their variants. Office tools’ avail-
ability of industrial-grade APIs provides generic automation capabilities, resulting in com-
plex implementations of customization plugins and poor automation results. To overcome
this, the approach proposed by AIDOaRt partners to VCE aims to enable prescriptive
system modeling capabilities.

Figure 2.16 – The solution architecture for VCE challenges as part of the larger AIDOaRt
framework

Figure 2.16 depicts a solution architecture detailing the generic support for the land-
scape sketched in Figure 2.15b. It integrates partners’ solutions, as offered to the whole
AIDOaRt consortium, with open-source tools and newly developed components, like
model transformations.

In the presented use case, EMF Views supports Multi-view Modeling, conceived as an
engineering activity independent from specific modeling languages. This way, it can be
applied to federate any EMF-based models involved in the CPS engineering process. Cur-
rently, it is used to federate SysML™ and AutomationML (AML) models into integrated
views that VCE engineers can navigate and query depending on their needs.
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Figure 2.17 – VPDL snippet for creating a simple view relating a SysML™ (UML-profiled)
model and an AML (CAEX) model with EMF Views (Screenshot).

Figure 2.17 shows an example of such a view definition as expressed using the VPDL.
In the present view, we want the elements of type CAEXFile to appear with all their
properties. The SELECT part also declares the new inter-model associations to be added
to the view (JOIN). In our example, we want to create a new association named problem-
aticBlock between the SysML™ Block/Classes and the AML InternalElements. Thanks
to this, the VCE engineers can more easily get an overall vision of the system under study
and make design decisions accordingly without referring to legacy data from Excel sheets.

2.3.4 Initial results

Using standard modeling languages paves the way for further connection to down-
stream activities. In particular, using system modeling languages such as SysML™ or
AML enables domain experts to unify artifacts via shared models. Using EMF Views on
the described context is a potential way to address specific challenges CH1 and CH2. It
improves interoperability via standardized means of representing data.

Initial results have been extracted from the AIDOaRt hackathons 36 and initial evalu-
ation from VCE engineers [66] showing show promising results. However, AI-based tech-
niques are more globally relevant for industrial practitioners when modeling their CPSs,
which means that a AI-augmentation of the used tools can be helpful. Several components
are already partially automated, and the contributions presented in this thesis go further
in this direction, mainly within the challenges described in the following section.

36. Descriptions and details of the Hackatons were published on Linkedinhttps://www.linkedin.com/
newsletters/hackathon-challenges-6985181015648444416/ (Last Accessed in November 2024)
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2.3.5 Challenges and Opportunities on the Use of Model Views

Beyond choosing modeling languages, engineering complex CPSs involves creating,
transforming, and using multiple models describing various complementary system as-
pects [11]. As shown earlier, model views approaches provide unification mechanisms to
federate and manipulate such heterogeneous models in a more transparent way [21]. Once
built, model views can be used to uniformly navigate, query, and transform the aggre-
gated data from the various contributing models. In the context of AIDOaRt, we propose
to rely on EMF Views as a scalable and computationally efficient approach to create and
handle model views [42].

The identified challenges (CH1–CH4) highlight the need for advanced approaches to
address interoperability, promote modeling adoption, support automation, and manage
legacy artifacts in the engineering of industrial CPS. These challenges align with the
overall objectives of this thesis. We argue that integrating AI-augmented model views
enables scalable and adaptive handling of multi-model interactions, addressing complexity
challenges and enhancing efficiency in CPS engineering workflows.

2.4 Summary
The presented background chapter provides a basis for understanding the contribu-

tion chapters. We first introduced and briefly explained core concepts surrounding MDE,
focusing on model views as a mechanism for handling the complexity of models by ab-
stracting specific perspectives relevant to particular stakeholders or tasks. We also detailed
the EMF Views tool as an implementation supporting model views within EMF alongside
an industrial case study demonstrating practical challenges and motivating the need for
AI-augmented model view solutions.

In the DL section, we focused on the basic concepts behind NNs and details on LLMs
and GNNs, which will be used respectively on Chapters 4 and 5. We argue that the DL’s
ability to learn complex patterns enables it to automate parts of model view creation,
potentially helping how views are defined and managed in engineering complex systems
such as CPSs.

In the next chapter, we provide the state-of-the-art on both model views approaches
aligned with our research and the primary research efforts and open challenges when
applying DL techniques within MDE.
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STATE OF THE ART

This chapter complements our background presented in Chapter 2 with the state-of-
the-art study on the two main topics discussed. Firstly, the section 3.1 presents a mapping
study of notable model view solutions that can be interesting to put our contribution in
context. It is complemented by the state-of-the-art research on the use of DL for MDE(also
broadly MBE) tasks, highlighting the challenges and opportunities of its use.

3.1 Model View Approaches
Various approaches have been proposed within MDE to support the definition, man-

agement, and manipulation of model views. These approaches mainly differ in handling
heterogeneity, non-intrusiveness, and the dynamic evolution of models. From the work of
Bruneliere et al. and Cicchetti et al., we can have an extensive overview of the current
scenario of model view approaches [19, 21]. Based on their work and an updated search of
the most recent developments in the area, we analyzed model view approaches that align
with the contributions described in this thesis, putting them in context with the current
scenario. We checked approaches that provide tool support, mainly within the EMF. We
are especially interested in three aspects of each approach:

— Language aspects: We are interested in the viewtype and query languages that
define the model views. While the first defines which elements are allowed to be
included in a given viewpoint of the system, 1 the second is used to reason on the
models and compute the elements presented in the final view. For the scope of the
thesis, we search for explicit view definitions, mainly through the use of DSLs or
annotations.

— Virtualization mechanism for computing the views: The Viewtype/View manifesta-
tion can be materialized, e. g. with the copy/duplication of base models’ elements,

1. For simplicity, the relation viewtype/viewpoint can be seen similarly as the relation metamodel/-
model [21]
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or they can be virtual, relying on proxies to the existing (meta)model elements.
While we pay attention to approaches with materialized views, we focus primarily
on tools that provide virtualization mechanisms.

— Relationships definition: The definition of relationships between elements across
views (i. e. inter-model relationships) is performed using constraint languages like
Object Constraint Language (OCL), weaving models, trace models, or through
model transformations. These correspondences act as contracts that must hold
across views, enabling automated checks for consistency.

Our interest in these specific aspects is due to better aligning with our proposed
contributions. In the following subsection, we explore existing solutions that align with
these aspects, describing their capabilities and relevance to the challenges tackled in this
thesis.

3.1.1 Existing solutions

OpenFlexo project was created by the company “Openflexo SCIC” aiming to make dig-
ital tools more accessible, and bridge the gap between various business areas and IT [61].
At its core, OpenFlexo utilizes the internal Federation Modeling Language (FML) to pro-
vide model federation, creating a virtual view gathering data from different data sources,
including spreadsheets, SysML™ diagrams, and PDF documents [61], for example. These
data sources are often managed by their respective tools, reflecting diverse organizational
practices and converted to behave as homogeneous models in the OpenFlexo context.
OpenFlexo employs technological adapters to establish communication (i. e. inter-model
relations) among these models, and they offer synchronization mechanisms between the
view and their base models. Openflexo has proven to be efficient, in combination with
other tools, in engineering critical systems [199].

Eclipse Epsilon framework is a family of modeling languages and tools that work with
EMF and other models. Epsilon Decoration [200] uses annotations to extend models with
additional information that defines views, keeping them lightweight and manageable. It
allows developers to apply overlays to base models, introducing annotations that make
particular concerns visible without altering the underlying model. There is no explicit
viewpoint definition (i. e. viewtype). The view is neither materialized nor virtual since it
is not explicitly defined. Since it is built on the Epsilon framework, the provided query
mechanisms for Epsilon models also apply to the views, which allows for weak inter-model
relationships, even those that are not explicitly defined.

56



3.1. Model View Approaches

ModelJoin is used as part of the Vitruvius framework 2 for view-based (software) de-
velopment. Vitruvius was developed by the Dependability of Software-intensive Systems
research group (DSiS) at the Karlsruhe Institute of Technology (KIT). ModelJoin [201]
leverages a human-readable textual DSL to define editable views across heterogeneous
models (i. e. models that conform to different metamodels). It allows users to define cor-
respondences (i. e. inter-model relationships) and projections over different metamodels,
making it possible to work across diverse modeling languages without breaking the separa-
tion of concerns inherent in each language. Since the views are essentially models created
using the defined DSL, their manifestation is materialized.

Viatra is a framework that incorporates the result of a long-running research project
mainly supported by the incQUERYLabs 3 and various industrial and academic partners.
Essentially, Viatra focuses on reactive, event-driven model transformations [62]. The heart
of Viatra’s reactive behavior lies in the Viatra 3 Event-driven Virtual Machine (EVM) [63].
View mechanisms are provided through the Viatra Viewers component [202]. 4 Viatra
Viewers [62, 63, 203] is built over the EMF-IncQuery used to support model querying. By
focusing on incremental query evaluation, VIATRA Viewers help create views that can
efficiently react to changes in the base models. It is efficient for dynamic environments
where model consistency is essential. It achieves this by combining internal languages (e. g.
Java and Xtend) and defining partially evaluated model queries. To provide inter-model
relations, Viatra uses a specific trace model to store this information in a model. The view
manifestation is virtual, and the links between the models are stored using the dedicated
trace model. Viatra technologies were successfully incorporated into different modeling
tools and applied in various applications [204].

Sirius [205] 5 is a workbench tool that allows users to create graphical modeling solu-
tions over EMF models. Sirius is developed by the companies Obeo 6 and Thales. 7 With
Sirius, developers can explicitly define viewpoints over domain-specific models, providing
customizable visual representations for different stakeholders. Views are defined using a
View Specification Model (VSM) that allows the definition through diagrams, tables, or
trees. It can be complemented using Acceleo Query Language (AQL) for complex query

2. https://github.com/vitruv-tools/ (Last Accessed in November 2024)
3. https://incquery.io/ (Last Accessed in November 2024)
4. https://eclipse.dev/viatra/documentation/addons.html#!#viewers (Last Accessed in

November 2024)
5. https://eclipse.dev/sirius/ (Last Accessed in November 2024)
6. https://www.obeosoft.com/en/ (Last Accessed in November 2024)
7. https://www.thalesgroup.com/en (Last Accessed in November 2024)
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computations. The manifestation of the view is virtual.
EMF-Syncer is the main result of a research effort conducted at the University of

Leicester [206]. EMF-Syncer [207] enables the creation of editable view models from pro-
gram snapshots at runtime without materializing them. The focus is using MDE tools
for legacy systems [206]. The tool uses both DSL and annotations to define the synchro-
nization policy, which dictates how program snapshots are represented as views. Using a
virtualization mechanism, EMF-Syncer employs lightweight proxies instead of duplicating
model elements. The relationships between models’ elements are established using syn-
chronization policies and implicit feature mappings. Additionally, EMF-Syncer utilizes a
“store of synced links” for incremental propagation, functioning similarly to a weaving
model to maintain relationships during synchronization.

Heterogeneous Matching and Consistency management Suite (HMCS) [208] is a pro-
totype for organizing heterogeneous models as a network of models through a virtual
correspondence model. This process is created and automated through DSL. The view is
materialized in the form of the correspondence model. The inter-model relationships are
explicitly defined and automatically computed, depending on the use case.

Other important examples that similarly provide model views but are less aligned
with our select criterion may include: Vitruvius platform [209], Triple Graph Grammars
(TGG) [210], Orthographic Software Modelling (OSM) [211, 212], Architecture Analysis
and Design Language (AADL) [211, 213] and blended modeling [214, 215]. In general,
model views are one of the potential ways to achieve model federation [36, 41], i. e. linking
heterogeneous models developed by different stakeholders providing integration mecha-
nisms. As briefly explained in the introduction (cf. 1.1), it is worth noting that it is not
the only way to do so, with other potential approaches [28, 43–54, 216], altough they fall
outside the thesis scope.

3.1.2 Comparison with EMF Views

Compared to the presented approaches, we can highlight the following characteristics
of EMF Views (cf. section 2.1.3):

— Synchronization from model to views: EMF Views ensures synchronization between
views and base models by sharing the same instances through proxies. Modification
propagation back to the original models exists, even when limited.

— Scalability: EMF Views’ virtualization avoids duplicating elements, resulting in
better scalability, especially when handling large models [42].
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— Flexibility: EMF Views utilizes the same model virtualization mechanism for both
viewpoints and views through weaving models.

The systematic literature review of multi-view modeling approaches by Cicchetti et
al. highlights EMF Views as one of the most prominent approaches [19]. They note that
EMF Views offers a unique perspective by using the same model virtualization framework
for both viewpoints and views, distinguishing it from other approaches.

EMF Views have significantly contributed to model view approaches in the current
MDE scenario. The versatility of EMF Views in both academic and industrial settings [42,
64, 65] facilitates our adoption of it to the specific needs of our research. While EMF
Views offer significant advantages, the application of model view approaches still faces
challenges, particularly when addressing the complexities of defining and maintaining
views for dynamic and evolving systems. The following section explores these challenges
in greater depth, opening the way for our contributions.

3.1.3 Challenges in Model View Solutions

Despite its benefits, model view solutions present challenges to be addressed by the
MDE community. Both Bruneliere et al. and Cicchetti et al. [19, 21] reunited a sound
number of challenges to be addressed, from which we derive two challenges aligned with
the thesis objectives and research questions:

— Limited Automation Support: The scarcity of tool support per each view approach
and the subsequent shortage of automation is a highlighted problem [19]. Lack of
expressiveness of view definitions and the necessary learning curve to learn how to
define them can hinder adoption in industry-scale systems.

— Systematic definition of inter-model relations: The links between models often de-
mand manual definition, i. e. the user should use some special kind of construct
(e. g. matching-rules) to establish them. There is no proposition towards the au-
tomatic inference of these links. This automatic inference can be a step further in
dealing with view maintenance problems pointed out in [21].

To the best of our knowledge, different DL techniques have been used to deal with
MDE problems (cf. section 3.2), but not directly related to model views, neither to multi-
view modeling problems in general. We intend to show a potential path towards this
direction with our contributions.
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3.2 Deep Learning for MDE

To contextualize our contributions, we discuss the related work and state-of-the-art
on the applications of both GNNs and LLMs applied to MDE. We start briefly discussing
some challenges on the MDE, with potential AI automated solutions. Altough we consider
the use of traditional AI for context, the main focus is namely on the use of ML and DL.

3.2.1 Traditional AI Techniques for MDE

Traditional AI techniques have been applied in MDE to automate relation discovery
and optimize model transformations [217]. These approaches often rely on heuristic search
and evolutionary algorithms to efficiently explore possible model configurations. For in-
stance, Burdusel et al. propose a method for automatically generating search operators
that maintain model consistency during search-based model engineering, eliminating the
need for meta-learning or expert knowledge [218]. Similarly, John et al. introduce an op-
timization framework based on evolutionary algorithms, focusing on mutation operator
properties [219].

In the context of model transformations, Model Transformations by Example (MTBE)
has been extensively studied as a user-friendly approach for deriving transformation rules
from inter-model mappings [220, 221]. Traditional AI techniques have been leveraged for
MTBE, including search-based methods [222] and genetic-programming [223], demon-
strating their effectiveness in automating transformation rule generation.

While these approaches have achieved success in MDE, recent advancements in ML,
particularly in DL, offer new opportunities for learning-based automation in model-driven
processes.

3.2.2 Machine Learning for MDE

ML has widely supported different SE activities [68], recently including LLM-based
agents [224]. Intelligent Modeling Assistants (IMAs) have recently attracted the interest
of the MDE community aiming to support the crucial necessity for automation. AI/ML
has already been identified as a relevant way of addressing several challenges in this
direction [20]. We can cite some strategies to support modeling activities in a high-level
analysis. Burgueño et al. [225] proposed an architecture based on NLP for the auto-
completion of partial models. Given a set of textual documents related to the initial model,
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relevant terms are extracted to train a contextual model using several NLP techniques.
NEMO [226] supports the completion of BPMN models by exploiting the LSTM strat-

egy. The approach encodes the modeling operations using a sequence-to-sequence decoder
to predict the next modeling operation.

Weyssow et al. present a learning-based approach that exploits RoBERTa, a pre-
trained neural network, to suggest relevant modeling language constructs [81]. The latter
are first encoded as structured trees, then the RoBERTa model predicts the missing
elements and provides the modeler with insightful domain concepts.

Model consistency management is a fundamental issue in MDE and thus creates the
need for relevant model repair techniques [227]. As they require a smart automation, such
techniques are natural candidates for AI applications [72]. Different approaches propose
the use of rule-based ML [73], decision trees [74], or Reinforcemnt Learning (RL) [69,
228], to find the best sequence of actions for repairing a given model and reaching a
sufficient quality level. Groner et al. propose the use of different ML techniques which
are not based on NN to predict the execution time of ATL transformations [229]. In the
following, we explore in more depth some specific applications more aligned with the
challenges addressed in this thesis.

3.2.3 Learning Constraints and Transformations

Dang and Cabot [230] describes the InferOCL tool dedicated to the automatic inference
of OCL constraints for conceptual models and metamodels based on examples. Their
objective is to increase the precision of domain descriptions.

On the MTBE, Burgueño et al. recently proposed a generic NN architecture to support
the automated inference of model-to-model and model-to-text transformations [231]. Their
objective is notably to limit potential implementation errors. Since transformations can
implement views, we pay particular attention to these approaches.

3.2.4 Graph Neural Networks for MDE

López and Cuadrado [79] focus on achieving structural realism by utilizing a deep
auto-regressive architecture combining a GNN and a RNN. Their evaluation demonstrates
that they are superior to existing generators in terms of structural realism, consistency,
diversity, and scalability in generating new models.

In parallel, Di Rocco et al. [80] develop and experiment with the MORGAN tool, a
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GNN-based recommender system designed to assist modelers in specifying metamodels
and models. The MORGAN tool is part of the use case described in subsection 2.3.

3.2.5 Large Language Models for MDE

Due to their capabilities, LLMs have been primarily applied in SE to code-related
tasks [232, 233]. This notably includes code generation, repair, completion, debugging,
and testing. Besides code, LLMs have also been applied to deal with SE processes [234,
235] for instance.

Closer to our context, there is a long history of solutions for dealing with text-to-SQL
generation [236]. These notably include the use of ML techniques such as in the TaBERT
Language Model (LM) pre-trained on (semi-)structured tables [237] for example.

A more recent solution investigates the use of LLMs and PE (precisely few-shot
prompting) to explore the text-to-SQL capabilities of the GPT-family models [238]. Also
quite recently, a specialized LLM (cf. Codex) has been used to generate OCL code Abukha-
laf et al., and a general purpose LLM (GPT-4) to perform the same task [240]. The LLMs
could directly generate relevant code in both cases. Although the precise information of
the datasets used for trained closed-source models like the GPT ones does not exist, a
cursory search on GitHub can reveal the amount of public code available 8 To use the
EMF Views VPDL as an example, the existing public code base (for both OCL and SQL)
is very significantly larger. As a result, we cannot expect an off-the-shelf LLM to generate
VPDL code as it can already generate SQL or OCL (for example).

On the model views side, we can see the proposed solution for partially automated
view creation based on existing source code [206], but without using any explicit ML.
Similarly, the VIATRA framework also allows the creation of view-like artifacts without
providing an explicit textual definition [62]. More recently, López et al. presented the
Text2VQL that allows the definition of VIATRA Query Language (VQL) queries through
natural language specifications.

3.2.6 Engineering of LLM-powered applications

Designing systems that integrate LLMs involve careful consideration of various ar-
chitectural components since the pure use of an LLM may not be enough to deal with

8. ∼6 k OCL files and ∼163 k SQL files. Searched on October 2024 with the query: https://github.
com/search?q=path%3A.LANGUAGE_EXTENSION+context&type=code.
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complex tasks [242]. According to the taxonomy proposed by Händler, besides the agentic
approaches, a goal-driven development for LLM-based systems can include task decom-
position and orchestration [243]. Given the importance of PE for LLM-based systems,
the prompt evaluation is an essential step in designing this kind of application, which
leads to the development of different evaluation strategies and tooling for PE, e. g. the
tool proposed by Arawjo et al. [244]. Tool augmentation appears as an essential role in
the design of LLM-powered systems in recent development [196, 197, 245], although we
identified no patterns for its design and use, due to the freshness of this study area.

The use of LangChain as the framework of choice for LLM-based systems and the
orchestration of its components can be found in a wide range of applications that go from
health-care [246] to the development of educational resources [247], being especially good
to the development of Chatbot applications [248]. Besides this variety of applications,
LangChain maintainers also maintain an updated webpage where they implement a va-
riety of LLM approaches (including PE strategies and also including other components)
from different papers (including pre-prints) using the framework, which contributes to its
versatility in dealing with different applications. 9

To the best of our knowledge, no research directly applies LangChain (or even its
conceptual ideas) to solving model-view problems.

3.3 Summary

This chapter showed multiple approaches to implementing model views, underscoring
the current challenges and demand for automated solutions that allow engineers to adopt
and use them effectively.

The chapter concludes with a mapping study that reviews current applications of DL
(mainly GNNs and LLMs) in MDE, putting our research efforts in context. Altough DL
(and broadly ML) has been used to solve different MDE challenges, the application of both
LLMs and GNNs to the particular case of model views seems to remain an underexplored
area of research.

Given this scenario, the following chapters will help us discuss the answers to our
research questions previously presented in section 1.2. Chapter 4 will introduce a LLM-
based application that shows the feasibility of using LLMs to help with model views

9. https://python.langchain.com/docs/additional_resources/arxiv_references/ (Last Ac-
cessed in November 2024).
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in the metamodel level (i. e. the viewpoint), partially automating its definition. This is
directly related to the RQ1 (cf. section 1.2) and also led us a step further in overcoming
the challenge CH3 identified in our motivation use case on AIDOaRt (cf. section 2.3).
Chapter 5 looks to the potential automation of the view computation on model level (i. e.
the view) through the use of GNNs. This will help us in answering the RQ2 (cf. section
1.2) and a potential approach to use legacy artifacts as identified in AIDOaRt context (cf.
CH4 on section 2.3). The discussions on both contribution chapters, together with the
overall view on Chapter 6, intend to give us the necessary clues in answering the RQ3.
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Chapter 4

LLM-POWERED APPLICATION TO AID

VIEWPOINT DESCRIPTION

4.1 Introduction
Previous Chapters already discussed a pain point in developing complex systems: the

separation of concerns and the fragmentation of information among stakeholders [28,
29]. As discussed, model view solutions are suitable for combining and navigating such
heterogeneous models more transparently [21].

There are several more or less automated ways of creating model views (cf. section
3.1). They often rely on the model view definition via a DSL and/or query language.
However, when manually writing these model view definitions, it can be challenging to
identify the language elements to be selected, associated, or queried. This is notably
true when the concerned modeling languages are large or semantically distant. Thus,
automatically generating model view definitions is challenging since it requires a certain
level of understanding and reasoning on the input metamodels (i. e. modeling languages).

As a potential solution, different ML approaches have already been proposed to im-
prove the support for model management operations [81, 228, 249, 250]. In particular,
LLMs, such as BERT [159] and GPT-3 [160], have demonstrated their capability in code
generation [251, 252]. In the MDE community, LLMs have also been used for automating
complex modeling tasks [84] and providing recommendations [83].

In this Chapter, we detailed an in-context LLM-based approach to assist engineers in
writing model-view definitions. In particular, we automatically generate drafts of model-
view definitions by providing as input only minimal information on the modeling languages
to be combined. We want to achieve this by using off-the-shelf LLMs: we do not want to
perform any costly additional training on the LLM, even if the LLM has not been trained
initially on the model-view definition language. Thus, we query the LLM with punctual
questions about the structure of the view, and we combine the LLM answers to generate
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the model view definition programmatically. The approach is completely in-context, i. e. it
relies exclusively on PE techniques to improve reasoning capabilities [253], composability,
and to enable tool-augmentation [254].

We developed a first implementation of our approach as an LLM-powered application
enhancing the capabilities of the EMF Views model-view solution [64]. To this end, we
leveraged the LangChain open-source framework for developing applications powered by
LLMs [255]. We validated our approach by applying it to a selected set of model views.
These model views, coming from the literature and open resources, are initially specified
in the VPDL of EMF Views or as ATL model-to-model transformations. We evaluate the
relevance of the generated model view definitions by comparing them with the original
ones developed by humans. The results we obtained already show the feasibility and
applicability of our approach.

This Chapter 1is structured as follows. Section 4.2 motivates our work via a running
example. Then, section 4.3 presents the proposed approach, while section 4.4 describes
its current implementation. Section 4.5 explains the experiments we performed and the
results of our assessment. Finally, section 4.7 concludes the chapter.

4.2 Running Example

This section presents our running example for the rest of the Chapter 4, a simple
model view called Book-Publication. It comes from the EMF Views user guide 2 where it
is used to explain EMF Views and VPDL. We selected this running example because its
contributing metamodels are very simple, but the view definition contains not-so-trivial
associations.

Figure 4.1 shows the book and publication metamodels, in graphical and textual
format (in PlantUML 3). Books have titles and authornames and contain Chapters
that have their own title and nbPages. Publications are more general than books,
and contain a title, an author, a publisher and a publication year.

1. Content partially published at J. W. Pontes Miranda, H. Bruneliere, M. Tisi, and G. Sunyé, "To-
wards an In-Context LLM-Based Approach for Automating the Definition of Model Views," in Proceed-
ings of the 17th ACM SIGPLAN Int. Conf. Software Language Eng. (SLE’24), Pasadena, CA, USA, Oct.
2024, pp. 1-14.doi:10.1145/3687997.3695650.

2. https://www.atlanmod.org/emfviews/manual/user.html (Last Accessed in November 2024)
3. https://plantuml.com/ (Last Accessed in November 2024)
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@startuml
class Book {
    title: EString
    authorName: EString
}
class Chapter {
    title: EString
    nbPages: EInt
}
Book *--> "chapters *"
Chapter
@enduml

@startuml
class Publication {
    title: EString
    author: EString
    publisher: EString
    year: EInt
}
@enduml

a) b)

Figure 4.1 – Running example’s metamodels in graphical and PlantUML format: a) book
and b) publication

1 create view publicationsAndBooks as
2 select publication.Publication.*,
3 book.Book.*,
4 book.Chapter.title,
5 publication.Publication join book.Chapter as firstChapter,
6 publication.Publication join book.Chapter as bookChapters
7 from ’http://publication’ as publication,
8 ’http://book’ as book
9 where s.title = t.eContainer().title and

10 t = t.eContainer().chapters.first() for firstChapter,
11 s.title = t.eContainer().title for bookChapters

Listing 4.1 – Example of a standard VPDL file

Listing 4.1 shows our view expressed in the VPDL language. The select part is used to
define which concepts and properties from the book and publication metamodels have to
appear in the view, i. e. Publications and Books with all their properties (*), Chapters
with only their title. It also introduces new inter-model relations, i. e. the firstChapter
and bookChapters relations between the Publication concept from the publication
metamodel and the Chapter concept from the book metamodels. The from part allows
users to declare the contributing metamodels, i. e. book and publication. Finally, the
where part contains OCL-like expressions specifying matching rules for the new inter-
model relations, i. e. for firstChapter and bookChapters. Using firstChapter, an OCL
rule checks the inclusion of the first chapter of a book in the corresponding publication.
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Note that the variables s and t denote the source and target element of the association
(respectively).

To summarize, a VPDL file includes the three main parts of a model-view definition:
— A list of concepts and properties to be selected from the contributing metamodels

(in the select part).
— A list of new relations to be created between the contributing metamodels (also in

the select part).
— Queries describing how to compute these new relations on contributing models (in

the where part).
Our objective is to be able to automatically generate such a model view definition by

providing only limited input information. To this end, Listing 4.2 shows a possible user
prompt we could consider for our running example.

1 """
2 These two metamodels represent collections of books , but they have

a different level of detail .
3 While the book metamodel details each chapter , the publication has

more information about the publisher and publishing date.
4 I want to select all the information regarding publications , but I

also wish to access the book chapters through the publication .
5 """

Listing 4.2 – Possible simple user prompt for generating a corresponding model view
specification.

As a result, Listing 4.3 shows a model view definition draft, which can be generated
automatically from the previous prompt using our framework.

1 create view PublicationAndBook as
2 select Book.Book.*,
3 Book.Chapter.*,
4 Publication.Publication.*,
5 Book.Book join Publication.Publication as BookToPublication,
6 Book.Chapter join Publication.Publication as ChapterToPublication,
7

8 from ’http://book’ as Book,
9 http://publication’ as Publication

10

11 where \‘Combine Book and Publication based on the title and authorName/author
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↪→ attributes. This allows linking books to their corresponding publications
↪→ .\‘

12 for BookToPublication
13 \‘Combine Chapter and Publication by associating chapters with their parent book

↪→ ’s publication. This allows accessing chapters through the publication of
↪→ the book they belong to.\‘

14 for ChapterToPublication

Listing 4.3 – Possible VPDL file resulting from the generation made with the prompt in
Listing 4.2.

As visible in Listing 4.3, the approach aims at generating a draft of the create,
select, and from parts of the model view definition. Moreover, it gives a natural language
description of the content of the expressions to develop in the where part. We want
to generate a syntactically correct draft of the model view definition. We also want to
guarantee correct references to classes and properties of the original metamodels.

While the generated draft may contain semantic inconsistencies, it provides a valid,
practical starting point for the engineer who will write the model-view definition. It par-
tially relieves the developer from identifying which classes and properties of the original
metamodels should be included in the view and which classes should be connected by
inter-model associations. The queries (where part) are left to the developers. Still, the
provided textual guidance can help them be more efficient when writing queries.

4.3 Approach

4.3.1 A Note on Fine-tuning and RAG

The performance of off-the-shelf LLM on a given task strongly depends on how much
the task is covered by their training dataset [256]. To extend the application of LLM to
tasks that require additional task-specific knowledge, the two most common techniques
are fine-tuning and Retrieval-Augmented Generation (RAG).

Fine-tuning enhances an LLM, already pre-trained on a vast and diverse corpus of
text, by additional training on new task-specific content. It refines the LLM model with
specialized datasets relevant to the targeted task [186]. RAG enhances the standard LLM
response for specific contextual data. It allows the injection of such data for the targeted
task by indexing it in a vector database and making it directly accessible by the LLM [257].
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Both techniques show promising results. Still, fine-tuning demands a large dataset
of examples and high computational resources [257]. While more accessible, RAG ap-
plications still need a reasonably large dataset and an infrastructure for the retrieval
process [258]. The availability of public datasets is a well-known problem in MDE, mainly
when related withML tasks [259]. A few examples are publicly available, especially for
view definition. Thus, in the presented approach, we do not use any of these techniques,
and we study a solution that works directly on off-the-shelf LLM. Users only provide mini-
mal information as input, e. g., the metamodels contributing to the view, to automatically
obtain a draft of a corresponding model view definition (cf. section 4.2).

4.3.2 Overview of the Proposed Approach

Figure 4.2 provides an overview of our proposed approach.

Raw
OutputPrompt

PlantUML
metamodels

Parsed
Output

Prompt
Template

Ecore
metamodels

User's View
Description

convert

llm_call parse

Legend:

Process
Artifact

generate_prompt

Model View
Specification

Iterate for
{SELECT, JOIN, WHERE}

generate

Figure 4.2 – Overview of the proposed approach

In EMF Views, the contributing metamodels are serialized in Ecore using the XML
Metadata Interchange (XMI) format. However, their training makes off-the-shelf LLM
more efficient for human-readable textual formats. Thus, we decided to use PlantUML
class diagrams as the representation format for metamodels. It is a popular format sup-
posedly included in LLM training sets and whose usage for LLM was already experimented
in [84]. To this end, the first step converts Ecore Metamodels into equivalent PlantUML
class diagrams. As an illustration, Figure 4.1 shows the two contributing metamodels of
our running example (i. e. book and publication) converted to PlantUML.

Then, the PlantUML metamodels are injected with the user-provided prompt-like View
Description into a specific PE created to solve a particular part of the decomposed prob-
lem. For our model view definition problem, we considered three complementary sub-
problems. These sub-problems directly correspond to the main parts of the definition as
introduced in section 4.2: SELECT, JOIN (associate), and WHERE (query). As a consequence,
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in our case, we need to have three different well-crafted PE resulting in the LLM calling
chain to be executed three times.

The performed actions are similar for each PE. First, a Prompt is generated from the
concerned Prompt Template. The LLM is then directly called with this Prompt provided
as input. As a result, it produces a corresponding textual Raw Ouptut. This Raw Ouptut
is parsed to validate it and produce the textual Parsed Output in the expected format.
This Parsed Output can be stored and, when required, reused as a complementary input
to another iteration of the whole chain of actions. In our context, the validation process
carried out by the parse operation is performed by specialized tools that deal with EMF
models (e. g., PyEcore or the Java EMF API). If the output is not validated, the LLM is
asked for a new solution. This is an example of tool augmentation to enhance the output
quality.

Finally, the Parsed Outputs resulting from the different iterations (three in our case)
are combined to generate the content of the target Model Views Specification (definition)
textual file in the VPDL language in our case. For this final step, we do not use the
LLM (since we do not assume it to be familiar with the VPDL syntax) but a standard
code generator. In any case, the final resulting file is meant to be manually checked and
eventually revised by the user before being provided as input to the Model View solution.

4.3.3 Focus on Prompt Templates

As presented earlier, Prompt Templates are critical artifacts of the proposed approach
and related process. Listing 4.4 shows one of these templates, corresponding to our ap-
proach’s JOIN (associate) iteration. This example notably illustrates how such templates
are structured and what information they contain.

1 """
2 You are now a PlantUML analyst that find relations between classes

from two metamodels .
3

4 # TASK
5 Your task is to analyze the input metamodel and the view

description and define a list of relations between the metamodels ’
classes .

6 The classes are always combined in pairs , being one coming from
the first metamodel and the other coming from the second metamodel
.
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7 Classes can be combined when they represent the same domain object
or when they are complementary classes , which means that one can

be extended with the attributes of the other.
8

9 Other possible reason for combinations is when the view
description includes explicit attribbutes from one metamodel that
should appear in the other.

10

11 Your answer should be a valid JSON list of dictionaries where each
dictionary entry represents a relation .

12 It should be a list even when it contains just one relation .
13 Each relation always contains precisely one class coming from each

metamodel .
14 In your response , the classes are always in order: the first class

comes from the first metamodel , and the second class comes from
the second metamodel .

15

16 # OUTPUT DATA FORMAT
17 { format_instructions }
18

19 # RULES
20 When generating the JSON response , you should follow these rules:
21 - Only use class names that exist in the metamodels . Never include

classes that are not in the metamodels
22 - The relation ’s name can be any string , but it should be unique

and meaningful for each relation .
23

24 # STEP BY STEP PROCESS
25 1. Identify all the classes from the first metamodel .
26 2. Identify all the classes from the second metamodel .
27 3. Given the metamodels and their classes , combine the elements in

pairs when the selected classes represent the same domain object
in each metamodel .

28 4. Given the metamodels and their classes , combine the elements in
pairs when some selected class in the second metamodel can be

complemented by some chosen class on the first metamodel and vice -
versa.

29 5. Analyse the view description to find out other potential
relations .

30 6. Ensure that the classes are combined in pairs , one from each
metamodel .
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31 7. Ensure that the relation ’s name is unique and meaningful .
32 8. Ensure that all the classes exist in the PlantUML metamodels .
33 9. Create the JSON array with the combination pairs.
34 10. Provide the answer .
35

36 # EXAMPLE
37 Given the following metamodels and view description :
38 View description : "The view should conatins the name , and email

from the Customer and also the name of the item bought by they ."
39 Metamodel 1:
40 @startuml
41

42 class Customer {{
43 +int id
44 + String name
45 + String email
46 + String deliveryAddress
47 }}
48

49 @enduml
50 Metamodel 2:
51 @startuml
52

53 class Item {{
54 +int id
55 + String name
56 + String category
57 }}
58

59 class Order {{
60 +int orderId
61 + String orderNumber
62 +Date orderDate
63 +Date creationDate
64 + String currentOrderStatus
65 + String customerName
66 }}
67

68 @enduml
69

70 The result Relations should be:
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71 {{
72 " relations ": [
73 {{
74 "name ": " itemBoughtByCustomer ",
75 " classes ": [
76 " Customer ",
77 "Item"
78 ]
79 }}
80 ]
81 }}
82

83

84 You can think step -by -step , but your final answer should contain
only the valid JSON and nothing else. Exclude any explanation or
delimiter from the final response .

85

86 # INPUT
87 View description : { view_description }
88 Metamodel 1: { meta_1 }
89 Metamodel 2: { meta_2 }
90 """

Listing 4.4 – Python f-string used as prompt template in the JOIN step

We implement the CoT approach to design the templates and corresponding prompts,
using few-shot examples for the format instructions. As presented in Listing 4.4, our
templates follow a structure that contains a role definition (line 2), the task definition
(line 4), the task downstream explanation (lines 5 to 9), the desired output format (line
17, to be replaced at runtime by the explanations on the expected JSON-like format), and
finally, the step-by-step execution of the task (directly implementing the CoT approach).

Building a relevant prompt template is an empirical process that involves several
attempts based on try-and-error calls to the LLM until reaching the target results. How-
ever, it is possible to benefit from the PE best practices coming from academia [190],
LLM provider guidelines, or recently developed frameworks like ReAct [260]. 4

4. The Appendix A includes all other prompts used in our experiments.
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4.4 Implementation

We created a prototype implementation to validate our proposed approach to produce
model-view definitions as VPDL files for the EMF Views model-view solution. Globally,
the current implementation relies on the combination of the LangChain framework for
chaining our actions, with the PyEcore library 5 to handle EMF models, and the GPT
LLM as made available through the OpenAI API. 6 The prototype source code is available
on GitHub. 7

Figure 4.3 shows an overview of the current technical implementation of our approach.
To start this, the LangChain package displays the main composable components of the
framework that are relevant in our case:

— PromptTemplate: A runnable component that dynamically manages prompt struc-
tures by incorporating multiple documents and variables to generate prompt con-
tent.

— LLMModel: A runnable component configuring an LLM’s properties, including its
temperature, that influences the creativity and variance of the outputs.

— OutputParser: A runnable component that handles the parsing and validation of
model outputs, thus ensuring adherence to the required formats and supporting
retry strategies for self-reflection.

— Tool: Any external piece of software.
— Chain: The interface for invoking a sequence of runnable components, each respon-

sible for a specific task, and calling tools when necessary.
As described in section 4.3, we created a specific prompt template for each iteration

of the process we follow in our approach. These are the primary inputs for creating
LangChain PromptTemplate instances. These instances are then in charge of injecting the
format instructions in JSON Schema (the default format used in LangChain), converting
the Ecore metamodels into their PlantUML equivalents, and calling the LLM. Figure 4.4
shows a screenshot of the LangSmith tool, the companion tracing tool of LangChain used
to capture all the occurrences of this chain. The full trace can be checked online. 8

The LLMPoweredViews package displays the model view-specific components we de-

5. https://github.com/pyecore (Last Accessed in November 2024)
6. https://platform.openai.com/docs/models (Last Accessed in November 2024)
7. https://github.com/NaoMod/Towards-an-In-context-LLM-based-Approach-for-Model-Views

(Last Accessed in November 2024)
8. https://smith.langchain.com/public/716a3e84-d344-42e8-bf82-5b337a8b7d9b/r (Last Ac-

cessed in November 2024)
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veloped to refine and complement the LangChain ones:
— VPDLGenerator: The integration Chain component in charge of collecting the re-

quired inputs (i. e. the metamodel paths and View description) and chaining all
the necessary Runnable and Tool components.

— EcoreLoader: A component for loading Ecore metamodels to be used in Prompt
Templates.

— EcoreOutputParser: An OutputParser for checking that classes and attributes
returned by the LLM Raw Outputs are present in the input Ecore metamodels.
In practice, it parses these outputs and repeatedly calls the LLM again until the
Parsed Outputs are not valid.

— VPDLText: A Tool component for generating the final target Model View Specifi-
cation, as a VPDL textual file, from the Parsed Outputs produced by SELECT,
JOIN, and WHERE iterations in our approach.

EcoreLoader and EcoreOutputParser use handlers from the PyEcore package. The
objective is to enable the components from the LLMPoweredViews package (and coded in
Python) to handle the input Ecore metamodels properly.

Regarding LLMs, we currently use GPT-4o in our implementation as we generally ob-
served better performances than GPT-3.5. However, our approach and its implementation
(thanks to LangChain) are flexible, allowing choosing between different OpenAI models
and possibly other LLMs.

4.5 Evaluation
To evaluate our implementation, we defined a dedicated benchmark using actual

model-view definitions from the literature (section 4.5.1) and open-source model-to-model
transformations (section 4.5.2). Regarding LLM parameters, we opted for a default tem-
perature of 0 to be as close as possible to a deterministic behavior (and thus results). In
practice, the evaluation was performed using LangSmith, 9 a DevOps platform dedicated
to the tracing and assessment of LLM-based applications built with LangChain.

To better assess our results, we compare them with the ones obtained via a baseline
solution for LLM-based generation of model views. In this baseline solution, we used
ChatGPT (the ready-to-use version of the OpenAI LLM encapsulated in a chat interface)
to produce the views in well-known languages (Query/View/Transformation (QVT) for

9. https://www.langchain.com/langsmith (Last Accessed in November 2024)
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views, ATL for transformations). To this end, we consider two simple prompts tailored
for ChatGPT that include the same inputs used in our experiments (cf. Listing 4.5 and
Listing 4.6 respectively).

1 """
2 Given the view description and the following PlantUML metamodels ,

please provide the definition of view written in QVT.
3

4 View description : { view_description }
5 Metamodel 1: { meta_1 }
6 Metamodel 2: { meta_2 }
7 """

Listing 4.5 – Simple prompt for generating views in QVT

1 """
2 Given the transformation description and the following PlantUML

metamodels , please give me the ATL code for the transformations .
3

4 Transformation description : { transformation_description }
5 Metamodel 1: { meta_1 }
6 Metamodel 2: { meta_2 }
7 """

Listing 4.6 – Simple prompt for generating views as ATL transformations

Since ChatGPT is a general-purpose application trained and fine-tuned for human-
machine interaction, our prompts included some conversational constructs (e. g. “please”
and “give me”) together with our minimal inputs. The detailed prompts and results of a
simple query in the ChatGPT platform were stored in the same repository as our source
code. This collection acts as an experiment journal containing the pair prompt/completion
and a link to access the recorded chat. 10

4.5.1 Reproducing Existing Model Views

Table 4.1 shows the four model views we considered in the first part of our evalua-
tion. They have been selected for their heterogeneity in terms of contributing modeling

10. The links are maintained by OpenAI. It is impossible to ensure how long they will keep it.
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languages (i. e. metamodels) and their varying levels of complexity in terms of mappings.

Table 4.1 – Evaluated Model Views in VPDL
ID Model View Description Metamodel

1
Metamodel
2

Source

V1 “The Book metamodel details each
chapter, while the Publication has
more information about the pub-
lisher and publishing date. . . [3
lines]”

Book Publication EMF Views
manual

V2 “The considered view combines a
Runtime Log model (that conforms
to a simple trace metamodel), a
Source Code model. . . [4 lines]”

contentfwk ReqIF Example
view in [64]

V3 “The views allow us to follow the
evolution of an engineering system.
It shows different versions of the
same system modeled. . . [3 lines]”

caex ecoreXES Example
view in [66]

V4 “The view aggregates all the mod-
els seen so far. This allows the sys-
tem engineer to transparently point
to the relevant information (spread
in different models). . . [11 lines]”

Traceability B Example
coming
with EMF
Views 11

For each model view, Table 4.1 displays an identifier (ID), a high-level description,
the name of the two contributing metamodels, and its source (from literature or other
sources). Note that we did not write the model-view textual descriptions. Instead, we
directly extracted small explanations of the desired output from the source document
(e. g. research article or documentation).

Concerning model-views 3 and 4 in particular, we slightly adapted the descriptions
from the sources since these model-views initially concerned more than two contributing
metamodels. We also restricted the evaluation of these views to two metamodels. Indeed,
our current implementation supports only two contributing metamodels. This restriction
is due to the context window size of the publicly available GPT-4o LLM, which prevented
us from considering numerous large metamodels within a single model view.

Overall, for model views in VPDL, the performed experiments aimed at evaluating:
— How effectively our approach automatically identifies possible relations between

classes from two contributing metamodels – JOIN (associate).
— How accurately our approach automatically identifies relevant attributes for each

class of a given relation – SELECT.
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— Which level of quality and understandability are exhibited by the automatically
generated model view definition – SELECT, JOIN (associate), WHERE (query).

4.5.2 Inferring Semantic Equivalence

In a second experimentation, we focus on a specific but significant kind of view: the
views concerning two existing models (conforming to different metamodels) and connec-
tions between semantically equivalent elements from these models. The SELECT part of
such a view is trivial since we always select all classes and attributes of the corresponding
metamodels. We aim to leverage the LLM to infer the JOIN, i. e. the identification of the
semantically equivalent classes in the two contributing metamodels.

To this end, we consider a set of model-to-model transformations in ATL from existing
work (cf. 2.1.1.3). We want to build a view that contains the full source model, the full
target model, and the inter-model relation between corresponding elements in the two
models (i. e., instances of source patterns and target patterns of the same rule application).

Table 4.2 shows the five model-to-model transformations we considered in our evalua-
tion, in addition to the previously presented model views. They have been selected from
the ATL Transformations Zoo 12 considering their diversity in terms of contributing mod-
eling languages and the domains they cover. Again, the descriptions are textual snippets
directly extracted from the transformation documentation.

4.5.3 Obtained Results

Table 4.3 and Table 4.4 show the quantitative results of our evaluation using a 1-shot
prompt template for the model views in VPDL from Table 4.1. They display the detailed
results for the predicted relations (JOIN) and the predicted attributes (SELECT), respec-
tively. The Our approach columns indicate the means of three consecutive executions
of the evaluation by using precisely the same inputs and configuration. The ChatGPT
columns indicate the results of a single execution of our baseline solution for comparison
purposes.

Similarly, Table 4.6 shows the corresponding results for the model views as ATL trans-
formations from Table 4.2. However, as explained, this only concerns the case’s predicted
relations (JOIN).

12. https://eclipse.dev/atl/atlTransformations/ (Last Accessed in November 2024)
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Table 4.2 – Evaluated Model Views as Model-to-Model Transformations in ATL
ID Transformation Description Metamodel

1
Metamodel
2

T1 “The BibTeXML to DocBook example de-
scribes a transformation of a BibTeXML
model to a DocBook-composed. . . [5
lines]”

BibTeX DocBook

T2 “The Class to Relational example de-
scribes the simplified transformation of
a class model to a relational database
schema.[1 line]”

Class Relational

T3 “The “Families to Persons” transforma-
tion describes a simple. . . [2 lines]”

Families Persons

T4 “RSS is a format for syndicating news and
the content of news-like sites. Atom is an
XML-based file format intend. . . [4 lines]”

ATOM RSS

T5 “This transformation presents a basic ex-
ample where a tree is transformed into a
list. . . [2 lines]”

List Tree

Table 4.3 – Quantitative evaluation - VPDL matching relations between classes using
1-shot prompt templates

ID Ref. Our approach Baseline solution (ChatGPT)
Precision Recall Syntactic

Correct-
ness

Precision Recall Syntactic
Correct-
ness

V1 2 0.50 0.50 100 % 0.00 0.00 0 %
V2 1 0.02 0.50 100 % N/A N/A 0 %
V3 1 0.00 0.00 100 % 0.16 1.00 0 %
V4 1 0.00 0.00 100 % N/A N/A 0 %

Table 4.4 – Quantitative evaluation - VPDL matching properties using 1-shot prompt
templates

ID Ref. Our approach Baseline solution (ChatGPT)
Precision Recall Syntactic

Correct-
ness

Precision Recall Syntactic
Correct-
ness

V1 8 0.58 0.58 100 % 0.66 1.00 0 %
V2 8 0.38 0.38 100 % N/A N/A 0 %
V3 52 0.07 0.07 100 % 0.00 0.00 0 %
V4 12 0.54 0.54 100 % N/A N/A 0 %
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Table 4.5 – Qualitative evaluation
ID Match Rules Human judge LLM judge
V1 Yes Good 3
V2 Yes Satisfactory 2.5
V3 No Good 2
V4 No Inadequate 2

Table 4.6 – Quantitative evaluation - ATL matching relations between classes using 1-shot
prompt templates

ID Ref. Our approach Baseline solution (ChatGPT)
Precision Recall Syntactic

Correct-
ness

Precision Recall Syntactic
Correct-
ness

T1 16 0.05 0.08 100 % 0.11 0.12 0 %
T2 6 0.30 0.38 100 % 0.33 0.33 0 %
T3 2 0.50 1.00 100 % 0.00 0.00 0 %
T4 3 0.00 0.00 100 % 0.5 0.33 0 %
T5 2 0.00 0.00 100 % 0.5 1.00 0 %

Table 4.7 – LLM as judge experiment

ID Human judge LLM Judge
T1 Satisfactory 3.00
T2 Satisfactory 3.00
T3 Satisfactory 2.33
T4 Satisfactory 2.67
T5 Satisfactory 2.00
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Overall, Quantitative Evaluation concerns the fully automated evaluation performed
thanks to standard algorithms provided by the LangChain ecosystem and corresponding
customized functions:

— Reference (Ref.): The number of considered relations between classes and selected
properties in the VPDL case, and of considered relations between classes in the
ATL case. This represents our expected results.

— Precision: A standard metric providing the ratio of relevant items retrieved/pre-
dicted/matched based on the total number of retrieved items. It measures the
accuracy of the retrieved items.

— Recall: The ratio of relevant items retrieved based on the reference’s total number
of relevant items. It measures the completeness of the retrieval.

— Syntactic Correctness: The percentage of correct generated code from a syntactic
point of view.

For the baseline solution, we considered a rough approximation since it was necessary
to make some assumptions. By default, the code generated by ChatGPT was not VPDL
or QVT code. Instead, it used a language hallucinated by ChatGPT. Some results are
indicated as non-available (N/A) when the generated code was almost entirely irrelevant.

Qualitative Evaluation concerns the one-to-one comparison between the final outputs
of our approach and the expected outputs (i. e. the reference model views). This is a
manual evaluation of the overall quality of the obtained results by experts in the VPDL
and ATL languages. Table 4.5 shows our qualitative analysis for the model views in VPDL
from Table 4.1:

— Matched Rules: The overall quality (manually assessed) of the generated textual
explanation for each identified relation. It can be Good (the engineer directly un-
derstands the semantics of the relation), Satisfactory (it requires her some effort),
or Inadequate (it is very or too difficult for her) – WHERE (query).

— Human Judge: The overall quality (manually assessed) of the generated output,
i. e. a VPDL file or a set of ATL relations. We use the same classification as from
the previous metric – SELECT, JOIN (associate), WHERE (query).

— LLM Judge: The overall quality (LLM assessed) of the whole generated output, i. e.
a VPDL file or a set of ATL relations. Using the same setup, the LLM receives an
extra prompt to give a score from 1 to 10 concerning the generated output. 1 means
that transforming the output into the reference demands considerable effort, and
10 means that this transformation is easy. Although not a standard practice yet,
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the use of LLM-as-judge becomes more common [261] – SELECT, JOIN (associate),
WHERE (query).

Table 4.7 shows similar metrics to assess the quality of the results for the model views
expressed as ATL transformations from Table 4.2. In this ATL case, only the Human
Judge and LLM Judge were considered. Indeed, it is not trivial to go from the list of
predicted relations to the final ATL code used as reference.

4.5.4 Analysis of the Results

Concerning the Quantitative Evaluation, the Precision and Recall vary from 0.00 (no
relevant prediction) to 0.58 (a decent number of relevant predictions) depending on the
cases. Overall, our approach performs better when trying to predict selected properties
(SELECT) than when trying to predict potential relations (JOIN). This seems logical since
identifying semantic relations between concepts is a more challenging task. Still, for the
relations (JOIN), our approach is currently more efficient in the ATL case than in the
VPDL one. This could be explained by the fact that the LLM is, by default, more knowl-
edgeable about the notion of model-to-model transformation (and ATL consequently)
than about the idea of model views (and VPDL). This is coherent with our choice of
using an in-context approach to avoid performing a pre-training phase (for both VPDL
and ATL).

Our approach does not currently perform systematically better in terms of precision
and recall than the baseline solution. However, it always succeeded in providing an out-
put that was at least suitable in terms of syntax. This is already valuable from a user
perspective, compared to the baseline solution, which was sometimes unable to provide
actually exploitable code. Indeed, using standard ChatGPT requires the engineer to have
solid PE expertise to improve the results and avoid hallucinations. Our approach’s main
objective is to completely hide this complexity from the regular engineer.

Concerning the Qualitative Evaluation, the Matched Rules and Human Judge metrics
reveal that a majority of the obtained outputs are satisfactory from the perspective of the
engineer. While still requiring human intervention, the generated drafts of model view
definitions appear to be relevant starting points. The LLM Judge scores, that globally
range from 2 to 3, provide a complementary perspective on the possibility of transforming
relatively easily the obtained outputs into the reference code. This indicates that, while
not always very close to the expected output, the desired model view definitions can be
derived by considering a reasonable number of modifications.
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To summarize, our results so far demonstrate that our approach already automatically
generates exploitable model view definitions. In this sense, it appears relevant compared
to a baseline solution relying on standard ChatGPT. While still improvable, the obtained
results show the feasibility and applicability of the proposed approach and its current
implementation.

4.6 Example of Improved User Prompt
The results of any LLM-based application are strongly related to the quality of its

prompts. In our proposed approach, we ensure some quality of the main prompts (i. e.
the Prompt Templates). In addition to the main prompts, user instructions can strongly
affect the final result. For fairness purposes, the experiments presented in Section 4.5
considered only the most straightforward prompts copying views descriptions from its
original papers/websites.

This section will show how the user prompt may affect the tool’s final output. To do so,
we again use the book/publication as the running example. Listing 4.7 shows an enhanced
potential prompt to be used as input in our prototype. Different from the one used before,
this one was crafted based on some trial and error attempts. Although we performed
some experiments using another LLM (e. g. ChatGPT) and asking for improvements on
the given user prompt, the best results were obtained through direct interaction with the
tool.

1 """
2 You ’re working with two metamodels : one for Publication , which

contains general information like the publisher and release
date , and one for Book , which provides details about books and
their chapters .

3 Your goal is to combine this information into a single output so
that you can access both publication details and specific
chapter information together .

4 To do this , you ’ll retrieve all relevant fields from the
Publication data and link them to the Book data by connecting
the chapters to the publication based on matching titles .

5 You ’ll need to find both the first chapter of each book and all
its chapters , allowing you to view both summary and detailed
book information related to the publication .

6 """
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Listing 4.7 – Python f-string with the user prompt for Book/Publication that achieved
better results

Tables 4.8 and 4.9 are structured similarly to the ones presented in our evaluation also
using the same identifier. We can see that the improved prompt indeed affected our results
positively, primarily related to the precision and recall of the selected attributes. Using
the same enhanced user prompt in our baseline comparison with ChatGPT did not affect
the result significantly. For completeness, the listing 4.8 presents the final VPDL draft
generated by the complete execution of our prototype using the enhanced user prompt.

Table 4.8 – Quantitative evaluation - VPDL matching relations using improved user
prompt

ID Ref. Our approach Baseline solution (ChatGPT)
Precision Recall Syntactic

Correct-
ness

Precision Recall Syntactic
Correct-
ness

V1 2 0.50 0.50 100 % 0.00 0.00 0 %

Table 4.9 – Quantitative evaluation - VPDL matching properties using improved user
prompt

ID Ref. Our approach Baseline solution (ChatGPT)
Precision Recall Syntactic

Correct-
ness

Precision Recall Syntactic
Correct-
ness

V1 8 1.00 1.00 100 % 0.50 0.50 0 %

1 create view bookView as
2

3 select select Book.Book.*,
4 Book.Chapter.*,
5 Publication.Publication.*,
6 Book.Book join Publication.Publication as

↪→ BookPublicationTitleRelation,
7 Book.Chapter join Publication.Publication as

↪→ ChapterPublicationTitleRelation,,
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8

9 from ’http://publication’ as publication,
10 ’http://book’ as book,
11

12 where ‘Combine Book and Publication by matching the Book’s title with the
↪→ Publication’s title to link general publication information with book
↪→ details.‘

13 for BookPublicationTitleRelation
14 ‘Combine Chapter and Publication by matching the Chapter’s title with the

↪→ Publication’s title to connect chapter details with the publication’s
↪→ general information.‘

15 for ChapterPublicationTitleRelation

Listing 4.8 – Generated VPDL file resulting from the generation made with the prompt
in Listing 4.7.

4.7 Conclusions
In this Chapter, we presented an in-context LLM-based approach intended to support

engineers in writing their model view definitions by providing only limited information
as input. The main objective is to prevent them from starting from scratch when dealing
with such a task, independently from the modeling languages contributing to the view.
To achieve this, we proposed adopting state-of-the-art PE techniques in our MDE context
and combining them accordingly. The current implementation of our approach notably
relies on the LangChain integration framework, GPT LLM, PyEcore library, and newly
defined EMF Views-specific components. We validated the proposed approach and imple-
mentation by considering different model views, specified as VPDL files or ATL model-to-
model transformations. The results we obtained already demonstrate the feasibility and
applicability of our approach.
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LangChain

<<DataType>>
Document

+filePath: String [1]
+contents: String [1..*]

«interface»
Chain

Runnable

Tool

runnables

1..* chain

1

PromptTemplate

+ template: String [1]
+ documents: Document [1..*]
+ variables: String[*]

+ generate_prompt()
+ convert()

LLMModel

+ modelName: String[1]
+ temperature: Float[1]

+ llm_call()

OutputParser

+ format: String [1]

+ parse()

LLMPoweredViews

VPDLGenerator

+ metamodelPaths: String [1..*]
+ viewDescription: String [1]

ECoreOutputParser VPDLText

+ generate()

EcoreLoader

+ ECoreFile: Document[1]

Use

Use

PyEcore

EMFHandler

+ ecoreFilePath: String[1]

+ checkAttrbutes()
+ checkClasses()
+ loadEcoreFile()

Use

Use

Figure 4.3 – Overview of the technical implementation of our proposed approach.

88



4.7. Conclusions

Figure 4.4 – Interface of the LangSmith tool in the context of our implementation.
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Chapter 5

GNN-POWERED INTER-MODEL

RELATIONS RECOMMENDER

5.1 Introduction

In this Chapter, 1 we propose an DL-backed approach for computing model views that
require the inference of inter-model links. In complement with what we have shown in
Chapter 4 to help with the design phase of the view development, our objective is to
simplify the view engineer’s work as much as possible. It considers the demand of view
computation during the runtime. To be coherent, we also want to hide implementation
details so the view engineers do not need to write any ML code. To realize our approach
during runtime, we rely on the link prediction capabilities of GNNs. Unlike previous
research efforts (cf. section 3.2), we rely on HGNNs, the particular class of GNNs with
native support for graphs whose nodes and edges have different types (cf. 2.2.2 for complete
details). As a result, we extended the EMF Views [42] and its VPDL to integrate HGNNs.
The engineer only needs to indicate 1) the relations to learning, 2) the parts of the models
involved in the learning process, and 3) a relevant set of sample links. A declarative
description of the architecture and configuration for the corresponding HGNNs is then
automatically generated and can be manually updated. These HGNNs are transparently
trained and finally used to infer inter-model links integrated into model views. We built
a prototype of our approach and applied it to two sample case studies. We measured a
promising accuracy in the inference of inter-model links.

The remainder of this Chapter is structured as follows. Section 5.2 introduces a running
example. Then, section 5.3 presents the proposed approach, and section 5.4 describes its
current implementation. Section 5.5 explains the evaluation we have performed. Finally,
section 5.6 concludes the chapter summarizing our work.

1. Content partially published at J. Miranda, H. Bruneliere, M. Tisi, and G. Sunyé, “Integrating
the Support for Machine Learning of Inter-Model Relations in Model Views,” The Journal of Object
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5.2 Running Example
This Section introduces the running example that will help us explain the proposed

approach in detail. To be consistent, we first refresh the main concepts of link prediction
using HGNNs (cf. Chapter 2 for complementary details). As initially established, our work
focuses on the EMF Views model-view solution [42, 64] that uses the VPDL to specify
viewpoints and build corresponding views (cf. Chapter 2 for details).

The systematic definition of how to relate concepts from different metamodels can
be challenging. Even though we partially solved the problem of counting on LLMs to
discover potential combinations, we still have the problem of defining the combination
rules, mainly during runtime. Up to our current knowledge [19, 21], the related work
focuses on the manual definition of rules for inter-model relations, i. e., matching rules (cf.
section 3.1 for details). Sometimes, achieving these links with standard matching rules
can be hard or even impossible. We intend to address scenarios where the engineers do
not establish matching rules but infer inter-model relations from previous examples. To
this end, we propose to rely on the link prediction capabilities of the HGNNs.

5.2.1 Link Prediction

As already mentioned in the background chapter (cf. section 2.2), (H)GNNs as infer-
ence machines can be used for various downstream tasks, e. g. node predictions, graph
predictions, and link predictions. Our focus is on link prediction. Given a graph G, the
link prediction task can be defined as computing the likelihood of observing a link in G

between any two nodes vx and vy in V . Various techniques have been proposed to tackle
link prediction, e. g., for similarity scores between nodes in social networks [262, 263] or
recommendation systems [264]. Being those above vx and vy in V , the likelihood of a
link between vx and vy can be given by a parameterized function fθ(vx, vy). Considering
that the embeddings uvx and uvy , fθ can operate directly with these numerical vectors, so
fθ(vx, vy) ≈ fθ(uvx , uvy). In this scenario, the role of the HGNNs is to apply the message
passing and aggregation layers on the embedding vectors to capture more complicated
information based on node and edge types [265].

We argue that inferring inter-model links between contributing models of a view can
be reduced to a link prediction task. In the following, we show that HGNNs can be used
to learn a joint representation of the models and infer their links.

Technology, vol. 23, pp. 1–14, Jul. 2024, doi: 10.5381/jot.2024.23.3.a4
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5.2.2 Example Details

We now introduce a running example to illustrate our proposed approach. We consid-
ered two simple but significantly large models with real-world inter-model links that we
could use for training.

In our example, a Users model contains personal information on users that can be
extracted from a social network. A Movies model contains information about movies that
can be extracted from a film database. We want to automatically compute a model view
containing users, movies, and links connecting each user with the movies they probably
watched.

If we were building this view without any information on the movies actually watched
by our users, we would embed some logical formula to estimate these links in the view.
For instance, we could suppose that every user watched all movies tagged with the user’s
occupation (because we are all interested in movies that involve our job!). Of course such
estimation formula may be arbitrarily complex (supposing that the viewpoint definition
language contains a Turing complete expression language) and may take into account any
information in the contributing models (i. e., the user profiles and movie database).

Let us suppose that we also have another large dataset, similarly structured, describing
other users, but also including information about the movies each user watched. Now, we
can try to automatically exploit this historical dataset better to estimate the inter-model
links between our users and movies.

In practice, from the historical dataset, we want to automatically learn a mathematical
relation between each user and the movies they watched. Then, we want this relation to
be automatically applied in the view we are building to compute new inter-model links
between our users and the movies they probably watched. Note that we are not interested
in explaining the logic of the learned relation but only in obtaining as accurate inter-
model links as possible for all users. We use HGNNs, transparently integrating them in
the viewpoint definition language.

In our experimentation, we build our models using data from the well-known Movie-
Lens dataset [266]. Given that the movie recommendation problem already has reasonable
solutions using various techniques [267–269], our work is not about competing with these
solutions. Indeed, later, we show that the estimation we obtained in this case study is
accurate. However, our focus is not on obtaining a good estimation for links, as this is
strongly dependent on the considered use case, the quality of the dataset, and the topol-
ogy and parametrization of the HGNNs. Our contribution lies in integrating HGNNs in
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the view definition language, aiming at increasing the usability of this technology by non-
experts in ML. In particular, view engineers do not have to write any Python code, but
only declarative specifications, to execute the training and inference of the HGNN.

Moreover, dealing with recommendations is only one possible application of our DL-
backed model view approach.

Movies

Movie

id : EInt
title : EString

Genre

id : EInt
value : EString

Tag

name : EString

Users

User

id : EInt
name : EString
age : EInt

Occupation

value : EString

ZipCode

value : EString

[0..*] tags

[1..*] genres

[0..1] occupation

[0..1] address

[0..1] occupation

[0..1] address

[0..*] movies[0..*] users

[1..*] genres

[0..*] tags

Figure 5.1 – Excerpts of the Users and Movies metamodels

Figure 5.1 shows excerpts of the two initial metamodels for this example (expressed
in EMF Ecore). This metamodel represents Users, that are identified by an id, have a
name and an age. Each Movie is identified by an id, has a title, and is also associated
with a list of Genres and a list of Tags. A User may have watched several Movies, and a
Movie may have been watched by several Users.

Movie

id : EInt
title : EString

User

id : EInt
name : EString

[0..*] watched

Figure 5.2 – UsersAndMovies viewpoint metamodel

Figure 5.2 shows the desired viewpoint metamodel. We want to obtain a view that
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includes ids and names of Users, ids and titles of Movies, and a relation watched that
lists for each user the movies they (probably) watched.

1 create view usersMovies as
2

3 select Users.User[id, name],
4 Movies.Movie.*,
5 Users.User join Movies.Movie
6 as watched
7

8 from ’http://paper/movies’ as Movies,
9 ’http://paper/users’ as Users

10

11 where "t.tags->exists(tag | tag.name = s.occupation.value)" for watched

Listing 5.1 – VPDL file for defining a viewpoint for the running case using an OCL-like
matching rule

Before our extension, VPDL allowed only to express logical formulas for estimating
inter-model links, called matching rules. Listing 5.1 shows a possible definition in standard
VPDL for such a view, with a simple matching rule.

To recap, the select part in VPDL is used to define which concepts and properties
from which metamodel(s) will appear in the view (* means all properties). It also in-
troduces new inter-model relations, i. e. the watched relation between User and Movie
elements in our case. The from part allows users to declare the concerned metamodels,
i. e. Movies and Users in our running example. Finally, the where part contains OCL-like
expressions specifying matching rules for new inter-model relations, i. e. for watched in
our case. In the example, we write a trivial rule that checks that among the tags of the
movie (indicated as t, i. e. target of the possible link), there exists one whose name is equal
to the value of the occupation for the user (indicated as s, i. e. source of the possible
link). These OCL-like expressions are then automatically converted by EMF Views into
an Epsilon Comparison Language (ECL) 2 matching rule that is used for computing the
model view. It is worth mentioning that the letters "s" and "t" come from the syntax em-
ployed in EMF Views ( inspired by the standard practice in ATL), where "s" denotes the
Source and "t" denotes the Target of a relation. These variables are not defined directly
in VPDL. Instead, they are defined in the generated ECL file.

2. https://www.eclipse.org/epsilon/doc/ecl/ (Last Accessed in November 2024)
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As we said, this matching rule does not represent a real-world estimation. Moreover,
the example already highlights important problems:

— A more realistic matching rule would require using a statistical programming li-
brary not available in VPDL.

— Engineers would have to use external tools to assess the rule’s validity against
real-world data.

In the following, we show our proposal to extend VPDL to define an automatic learn-
ing process for such matching rules from previous examples, effectively bypassing these
problems.

5.3 Approach

5.3.1 Overview

GNN
properties

View engineer

Viewpoint
definition

View
definition

ML Specialist

Trained
HGNN

Model

Virtual model

Legend:

File

Training
models

Create/Edit

Input/Output

Model View

View
Learning

View
Builder

Component

EMF Views

Figure 5.3 – Overview of the proposed approach

In the previous EMF Views approach (cf. the lower part of Figure 5.3), the view
engineer has to provide two artifacts: a Viewpoint definition at the metamodel level and a
View definition at the model level. These two artifacts can be partially generated from the
VPDL specification. Then, the View Builder takes these two artifacts as inputs and builds
a virtual model that materializes the specified Model View. In our extended approach (cf.
the upper part of Figure 5.3), we complement EMF Views with a new View Learning
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component to support the View Builder base component. A set of assignments for GNN
properties is computed from the Viewpoint definition. It describes the architecture of the
GNN and the hyperparameters for link prediction, including training and embedding. A
ML Specialist can edit the value of these properties, e. g. to fine-tune the learning step.
Training models are also required, including existing links used as examples for learning.
Such existing models can come from different sources, e. g. they can be collected from
legacy projects. Then, the View Learning component takes these two artifacts as inputs
and generates a trained HGNN. The set of inter-model links are computed by the View
Builder component using the trained HGNN, before constructing the corresponding view.

Note that the EMF Views already support delegating the computation of inter-model
links to external tools since the links can be stored in a weaving model (cf. Shapter
2.1.1.4 for details). Hence, our proposed approach could reuse the standard structure of
the Viewpoint definition and the standard View Builder component from EMF Views
with no modifications. Moreover, the approach aims at decoupling the contributions of
the View engineer and the ML specialist. Thus, the ML specialist can support the engineer
by working on improving the accuracy and relevance of the inferred links without affecting
the original Viewpoint definition and View definition made by the View engineer. Overall,
we intend to make the use of DL as transparent as possible from the View engineer
perspective. This way, they can focus solely on the modeling aspects while delegating ML
integration and execution to our approach (and possible ML-specific optimizations to the
ML specialist).

5.3.2 Extended ViewPoint Definition Language

We rely on the standard EMF Views for partially generating the Viewpoint definition
and View definition from a specification in VPDL. Then, the View definition is manually
completed to point to the actual resources, i. e., the contributing models. Additionally,
our approach exploits our VPDL extension for generating default GNN architectures and
hyperparameters (based on previous experiments) for the learning process.

1 create view watched as
2

3 select Users.User[id, name],
4 Movies.Movie.*,
5 Users.User join Movies.Movie
6 as watched
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7

8 from ’http://paper/movies’ as Movies,
9 ’http://paper/users’ as Users

10

11 where "{s.id}<~s.movies~>{t.id, t.genres.value}"
12 for watched

Listing 5.2 – Extended VPDL for the running case using DL.

Listing 5.2 shows a snippet of our viewpoint specification in Extended VPDL for our
running example. In this new version, the create and from parts remain unchanged. How-
ever, the where part no longer contains an OCL-like expression but a specific expression
indicating, for each inter-model relation, the properties of the two models and the training
relation to be considered for learning. It contains:

— A set of navigation paths starting from the source of the relation s, indicating the
properties that should be considered for characterizing the source element. In our
case, {s.id} indicates that the learning system will only use the id of the user
(and not the name, age, etc.).

— A set of navigation paths starting from the target of the relation t, indicating the
properties that should be considered for characterizing the target element. In our
case, {t.id, t.genres.value} indicates that the learning system will use the id
of the movie and the list of its genres. Note that the navigation expression can
navigate the model to access attributes of other model elements, e. g. Genre.

— A navigation path indicating an existing relation used as the source of examples.
This path is always represented between the two previous sets, with a specific
arrow notation. In our case, <∼s.movies∼> indicates that the learning system
will consider the movies relation as the set of examples to learn from (in the
direction starting from s).

5.3.3 View Learning Component

Figure 5.4 shows how the new View Learning component is organized internally. This
component realizes the bridge between EMF models and ML heterogeneous graphs. We
create one heterogeneous graph per relation to learn. This graph is a bipartite graph that
contains only connections between nodes from the source and target models. The bipartite
graph that corresponds to a given relation is constructed in the following way:
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Figure 5.4 – Structure of View Learning and Inference

1. Embedding vectors (i. e. numerical representation in a lower dimension) for nodes
are built by retrieving only the attributes involved in learning that relation (as
indicated in VPDL) and by pre-processing them according to the GNN Properties.

2. An edge between two nodes is added if that relation in the training models connects
those nodes.

In a second step, the component reads the GNN properties to instantiate a separate
HGNN for each relation and performs training and inference. As shown in Listing 5.3, the
GNN properties are serialized in a JSON file split into information blocks containing all
necessary parameters for the HGNN definition, embedding, and training. We opted for
the JSON format to allow for a straightforward modification of these parameters by the
ML specialist.

The core elements of the HGNN, detailing its message-passing mechanisms and ag-
gregation operations, are encapsulated by the ARCHITECTURE label. Each key within this
block corresponds to a single aspect of the HGNN’s configuration: The OPERATOR key
denotes the type of layer used for aggregation, while CONVOLUTIONS indicates the layer
count. The ACTIVATION key specifies the activation function employed between layers,
and the key HIDDEN_CHANNELS represents a numerical value determining the feature di-
mensions within hidden layers. Furthermore, the CLASSIFIER key indicates the function
utilized to compute the final likelihood score for graph edges (i. e. edge decoder).

The usual hyper-parameters for standard NN tasks as encapsulated by the TRAINING_PARAMETERS
block, including epochs (EPOCHS key), learning rate (LEARNING_RATE key), and specific
parameters for the link prediction task (e. g. addition of negative edges during train-
ing and strategies for edge splitting in training-test-validation). Additionally, this block

3. A LINKS_PATH property can be added when inter-model links are serialized in separate files.
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1 {
2 " watched " : {
3 "ARCHITECTURE" : {
4 "OPERATOR" : "SAGEConv" ,
5 "CONVOLUTIONS" : 2 ,
6 "ACTIVATION" : " r e l u " ,
7 "HIDDEN_CHANNELS" : 64 ,
8 "CLASSIFIER" : " dot_product "
9 } ,

10 "TRAINING_PARAMETERS" : {
11 "EPOCHS" : 2 ,
12 "LEARNING_RATE" : 0 . 001 ,
13 "ADD_NEGATIVE_TRAINING" : f a l s e ,
14 "NEG_SAMPLING_RATIO" : 2 . 0 ,
15 "TRAINING_SPLIT" : 0 . 1 ,
16 "VALIDATION_SPLIT" : 0 . 1 ,
17 "SOURCE_MODEL_PATH" : " u s e r s . xmi " ,
18 "TARGET_MODEL_PATH" : " movies . xmi " 3

19 } ,
20 "EMBEDDINGS" : {
21 " s . id " : " id " ,
22 " t . id " : " id " ,
23 " t . genres . va lue " : "enum"
24 }
25 }
26 }

Listing 5.3 – GNN properties JSON file
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encompasses the file paths for the View Learning component, namely the serialized mod-
els utilized during training. In case training links are stored in an independent file, this
can be given too in an additional property (LINKS_PATH). Since we consider the inter-
model link identification as a link prediction problem, it makes sense to split the graph
into links (i. e. the training/validation sets are split based on the links). Being so, the
keys ADD_NEGATIVE_TRAINING and NEG_SAMPLING_RATIO are related to different strate-
gies during this split, specifically regarding the inclusion or not of negative edges and the
ratio for its inclusion. TRAINING_SPLIT and VALIDATION_SPLIT, as the name suggests,
define how the links are split into training and validation sets, respectively. The user
gives the paths to the models used for training through the keys SOURCE_MODEL_PATH and
TARGET_MODEL_PATH.

The EMBEDDINGS block lists the properties specified for that relation in VPDL. For each
one of them, we select their corresponding encoding scheme. For encoding, we currently
support the following:

— id - Encoded as a lookup table for the element/node;
— enum - Encoded as a set of a fixed list. The strategy used is one-hot encoding;
— string - Uses a pre-trained language model to represent strings numerically. The

user can indicate which model to use from the SentenceTransformers [270] library. 4

The current implementation is limited to the use of the SentenceTransformers
library. However, the use of other libraries, including MDE-specialized language
models [82], are also possible with few adaptations;

— number - The value is cast to a float representation.

The definition of optimal default parameters is a problem that depends on various
factors: the task you are working on, the characteristics of your graph data, the GNN
model’s architecture being used, etc. Our work does not explicitly discuss the definition
of criteria for these default parameters. However, our approach is designed to simplify the
modeler’s work and leave these parameterization tasks to the ML specialist. Indeed, the
ML specialist is more likely to have the necessary domain knowledge to make informed
decisions.

It is also worth mentioning that some parameters, such as dataset split (e. g., 80 %
for training and 20 % for validation) and the initial learning rate (often set to 0.001), are
somewhat standardized within the ML community.

4. https://www.sbert.net/docs/pretrained_models.html (Last Accessed in November 2024)
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5.4 Implementation
This section describes the implementation of a prototype supporting the proposed

approach. This prototype is open-source and publicly available. 5 We notably used the
EMF as a basis of EMF Views and its View Builder component, and Xtext 6 for the
modification of VPDL. The View Learning component, mapping EMF models in a Python
context and allowing different HGNN architectures, requires the use of the PyEcore 7 and
PyTorch Geometric 8 Python libraries, respectively.

Trained HGNN

my_view.vpdl

user_movies.csvgnn_properties.json

writes

view_learning.py

movies.xmiusers.xmi

Movies.ecoreUsers.ecore

c2 c2

links_inference.py

reads

writes

reads

watched.xmi

writes

my_view.eview

refs
refsrefs

viewpoint.eviewpoint
writes

refs

refs

reads

reads reads

reads reads

refs

viewpoint_weaving.xmi

refs

view_weaving.xmi

refs refs

View
Learning

View
Builder

users.xmi movies.xmi

Figure 5.5 – Main files in the prototype, applied to the running example (c2=conforms-to;
refs=references)

Figure 5.5 shows the essential files and their organization in the implemented proto-
type, applied to the running case. Users.ecore (the source of the link) and Movies.ecore
(the target of the link) are the two metamodels considered in our viewpoint. Users.xmi and
Movies.xmi are the two models that conform to the two previously mentioned metamod-
els (respectively) and that contain the actual data to build the target view. In practice,

5. https://github.com/NaoMod/Support-ML-Relations-Model-Views (Last Accessed in November
2024)

6. https://www.eclipse.org/Xtext/ (Last Accessed in November 2024)
7. https://github.com/pyecore (Last Accessed in November 2024)
8. https://pytorch-geometric.readthedocs.io/ (Last Accessed in November 2024)
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the view engineer writes in my_view.vpdl the VPDL specification of her viewpoint. The
viewpoint.eviewpoint descriptor file is automatically generated from the VPDL specifica-
tion. It contains pointers to the contributing metamodels and the EMF Views internal
weaving model at the viewpoint-level [42]. The my_view.eview descriptor file is also au-
tomatically generated. It contains pointers to the corresponding viewpoint descriptor file,
the contributing models, and the EMF Views internal weaving model at the view level. In
parallel, the ML specialist checks and adapts accordingly the gnn_properties.json comple-
mentary JSON file provided by default. Once done, they also provide the user_movies.csv
inter-model relation file that is used by the view_learning.py Python code to build and
train a proper HGNN.model. In addition, this Python code also produces a performance
evaluation chart (cf. section 5.5). Finally, the relation_inference.py Python code uses this
trained ML model to generate the watched.xmi inter-model links file. This newly gener-
ated file can be ultimately used in the target view. To summarize, the View Learning
component in our extended approach is implemented in these two view_learning.py and
relation_inference.py Python files.

5.4.1 Limitations

On the VPDL side, we support the inference of several inter-model relations, each
learned by accessing an arbitrary set of properties of the training dataset.

For GNN properties, we currently support only a specific set of values in the ARCHITECTURE
section:

— The OPERATOR is either “SAGEConv” or “HANConv”;
— The number of CONVOLUTION layers is fixed to 2;
— The ACTIVATION function is either “relu” or “tanh”;
— The CLASSIFIER is systematically “dot-product”.

The CSV file containing relations from previous models is considered as existing infor-
mation adapted from legacy projects. All these elements will be progressively improved
in the following versions of our prototype (cf. Chapter 7 for a complete and detailed list
of future perspectives).
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5.5 Evaluation

To evaluate our approach, we consider three main aspects: 1) the efficiency of the
HGNN for link prediction on real-world models, 2) how our approach compares to tra-
ditional solutions in terms of the number of Lines of Code (LoC) necessary to obtain an
identical result, and 3) the ability to learn pre-determined attribute-based matching rules.
For 1) and 2), we apply our solution to the running example depicted in section 5.2.2.
For 3), we consider simple views on randomly generated models conforming to minimal
metamodels and containing different relations.

5.5.1 Evaluation on the Running Example: Prediction Accuracy

To evaluate that our solution works efficiently enough for the running example, we
created instances of the Users and the Movies metamodels (see Figure 5.1), using data
from the MovieLens dataset provided by the GroupLens research lab [266]. The first
column of Table 5.1 presents the figures from the ml-latest-small dataset, 9 including the
time spent for training the HGNN.

MovieLens AB
nodes 610 Users, 9742 Movies 1000 As, 300 Bs
edges 100 863 5000
training time 58 s ∼50 s

Table 5.1 – Dataset and training figures for MovieLens and AB

The evaluation metrics selected for the problem are the Receiver Operating Character-
istic (ROC) curve and the respective area under the curve (AUC_ROC). The AUC_ROC
measures the ability of a GNN to distinguish between different classes by plotting the true
positive rate against the false positive rate [271]. A value close to one denotes a good link
prediction accuracy.

Figure 5.6 shows the resulting ROC curve for the watched relation described in the
section 5.4, for different values of the threshold. We can observe an AUC_ROC >= 0.9,
denoting good accuracy for this example.

9. https://grouplens.org/datasets/movielens/latest/ (Last Accessed in November 2024)
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Figure 5.6 – ROC curve for the running example

5.5.2 Evaluation on the Running Example: LOC

With our approach, view engineers can now specify our example model view via concise
statements in the extended VPDL and possibly modify a JSON file to fine-tune the DL
configuration. Indeed, our running case only involves 39 LOC, consisting of 9 lines of
VPDL code and 30 lines of a partially generated JSON configuration file.

We asked a proficient Python/PyTorch programmer to write an equivalent program
with the same input files. This resulted in 385 10 lines of Python code (excluding blank
lines and comments). As we stated, our approach’s main objective is to hide the use of
DL code as much as possible so that engineers can focus on their modeling activities.

5.5.3 Learning Different Matching Rules

We consider a different example from our running one to evaluate this metric. Fig-
ure 5.7 shows the two metamodels (also in Ecore), each containing one metaclass. The
metamodel named Left has a class A with one numerical attribute a and one string at-
tribute s besides its identifier. The metamodel named Right has only a class B with three
numerical attributes b, c and d, and one string attribute s. Finally, a relation called allBs
relates class A to class B. This example is named the AB example.

In this experiment, we evaluate the capacity of our tool to learn given matching rules
on the Left and Right metamodels. We start defining three matching rules:

— A.a = B.b, i. e. two elements are related if they have the same numerical attribute

10. Available in the project repository
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Left

A

id : EInt
a : EFloat = 0.0
s : EString

Right

B

id : EInt
b : EFloat = 0.0
c : EFloat = 0.0
d : EFloat = 0.0
s : EString

[0..*] allBs

Figure 5.7 – Metamodels for the AB example

— A.a = B.c ∗ B.d, i. e. two elements are related based on a simple mathematical
operator (integer multiplication)

— A.s.contains(B.s), i. e. two elements are related based on a simple string operator
(containment).

Note that these matching rules do not consider the structural aspects of the model.
We evaluated the capability of the HGNN to learn from attribute values per node type.
Given one of the three matching rules, the sample models are generated with random
values. Still, the generator guarantees that all instances of A have at least a matching
element of type B for that matching rule. Finally, the generator connects a random ratio
of matching elements, leaving many missing links, i. e. connections that should exist but
were not created. Once the data set is created, we follow the same approach explained in
the previous sections.

Figure 5.8 shows one ROC curve per matching rule. These curves show promising
results (0.85 <= AUC_ROC <= 0.94) considering the small amount of data we used
(5000 connections for 4000 nodes). They show that, by using standard hyperparameters
for HGNN definition and training, our tool can learn simple matching rules on attribute
values.

5.5.4 Summary of the Results

The ROC curves in Figures 5.8 and 5.6 show a promising efficiency in terms of relation
inference. Aiming to show the improved stakeholders’ productivity while working in a
model views environment, the section 5.5.2 presented some figures on LoC written by
them, highlighting our contribution to simplifying and expediting tasks with model views,
mainly related on the definition of inter-model relations. In the AB example, the results
are helpful for the user despite the relatively small size of the data set. The AUC_ROC
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Figure 5.8 – ROC curves for different AB relations: A.a = B.b at the top, A.a = B.c∗B.d
in the middle, and A.s.contains(B.s) at the bottom
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values obtained in our experiments indicate the ability of our approach to learn structural
relations between model elements accurately for at least one case (running example)
and to learn attribute-based relations significantly better than random-guesser in other
cases (AB example). The approach relies on the expertise of ML specialists to optimally
parameterize the architecture and learning process of the HGNN for the given task.

5.6 Conclusions

In this chapter, we proposed an approach for automatically inferring inter-model links
in the context of model views. This approach relies on DL techniques, particularly on
HGNNs. Its objective is to support view engineers in specifying viewpoints and corre-
sponding views when inter-model links can be inferred from existing examples. The pro-
posed approach intends to lower the barrier of using DL in the context of model views. It
also facilitates collaboration with ML specialists who can help the view engineer improve
the link prediction accuracy.

To this end, we refined and extended the existing VPDL model view specification
language from EMF Views to properly integrate the automated generation and use of
view-dedicated HGNNs. In practice, we implemented our approach by combining the EMF
Views solution with two Python libraries, PyEcore and PyTorch Geometric, dedicated to
model handling and HGNNs, respectively. Based on this implementation, we conducted a
first set of experiments that showed promising results concerning the automated inference
of inter-model links, reducing the number of DL code to be written by engineers.

The related work (cf. section 2.2.2) shows that GNNs appear to be particularly adapted
to such scenarios where additional data must be inferred from existing models, notably
related to their structural aspects. Compared to these research efforts, we are addressing a
more limited problem, computing the probability of the existence of a particular link. This
allows us to use HGNNs, a solution that showed high performance in this specific problem.
More aligned with our proposed approach, we can complement the related works Chapter
with the ones looking into preserving the consistency and synchronization of a given
model view. Guerra et al. propose a formal approach for specifying the relations between
modeling languages through the use of a pattern-based language for inter-modeling with a
focus on model-to-model transformations, model matching, and model traceability [272].
Although their approach is not explicit about model views, their definition of inter-model
links can be considered a potential mechanism for computing views based on patterns.
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Quite differently, the ModelJoin solution [201] proposes to rely on a metamodel generator
and higher-order transformations to compute these links on the fly. To the best of our
knowledge, AI(namely HGNN) techniques have not yet been directly used in such a model
view context.
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Chapter 6

CONCLUSION

In this chapter, we summarize and wrap up the thesis’s primary objective: help en-
gineers creating model views supported by AI-augmented solutions, mainly through the
use of DL techniques. To do so, we sum up the targeted problem, recall our corresponding
research questions, and answer each before concluding with the thesis’s overall contribu-
tions.

Model view solutions are designed to assist engineers in understanding and working
with complex systems, such as CPSs. They provide mechanisms for model federation, i. e.
a straightforward approach to combining, filtering, and augmenting original models to
address specific objectives. However, creating these views involves significant challenges.

First, the process is labor-intensive at design time (i. e. when engineers analyze the
problem to define the views). It demands expertise in view creation mechanisms and a
deep understanding of the contributing models, which can be time-consuming and error-
prone. Second, at runtime (i. e. during the computation of view elements after the views
are defined), complex problems often necessitate specialized mechanisms to derive the
final view. For example, establishing links between contributing models (i. e. inter-model
relations) can be particularly challenging when no clear matching strategy exists.

Given that model views are a critical component of MDE (also MBE) workflows, this
thesis aims to address these challenges and simplify the creation of model views. The
adoption of widespread DL techniques (namely LLMs and GNNs) aligns with recent ad-
vancements in the MDE community, where these techniques are increasingly used to tackle
complex problems (cf. section 3.2). We expect the proposed improvements will facilitate
adopting and effectively using model view solutions for CPS projects, such as those in the
AIDOaRt context [29] that demonstrate the need for AI-augmented model view solutions.
For instance, the VCE use case that demands it for efficient and automated methods to
address information fragmentation and heterogeneity within their MBSE toolbox (cf. 2.3).

As a solution, we proposed a twofold approach to enhance the usability and automation
of model views by leveraging DL techniques during design time and runtime. Given the
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effectiveness of DL in addressing various SE and MDE challenges, we adapted well-known
techniques to meet the specific needs described above. Our approach relies on applications
of NNs, the de facto standard in the ML community for DL.

Firstly, we used LLMs (i. e. NNs based on the transformer architecture, primarily
oriented toward textual tasks) for automated view specifications. Our contribution (cf.
Chapter 4) provides an in-context approach to using off-the-shelf LLMs for this task. and
HGNNs for inter-model link computation. We demonstrated its feasibility and discussed
the benefits of PE, tool-augmentation, and problem decomposition in applying LLMs to
a particular MDE problems. Following our established methodology, this implementation
can help us answer the RQ1 (cf. section 1.2).

Considering the model view solutions that based the description
of the viewpoint and view (even partially) on textual DSLs, the
use of LLMs is a good strategy since this DL technique is espe-
cially relevant dealing with text and code. It is highly adapted to
deal with information at the metamodel level. Additionally, the off-
the-shelf LLMs can include long textual information with textual
serialization of the metamodels involved in the view creation. Our
prototype using EMF Views demonstrates that evaluating LLMs
alone is insufficient. Complementary assessments involving PE and
tool augmentation are also essential.

Answer to RQ1

The second contribution (cf. Chapter 5) addresses the particular runtime challenge of
automating the computation of inter-model relations in model views. We enhanced the
definition language (i. e. VPDL) to enable an efficient use of HGNNs (i. e. NNs designed
for heterogeneous graph data) to infer these links through link prediction capabilities. We
demonstrated an efficient solution when the language definition lacks expressiveness by
adapting a well-known ML problem to the MDE domain. Supported by the research on
related work (cf. Chapter 3) and by our prototype and evaluation, we can answer the
RQ2 (cf. section 1.2).
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Different model federation techniques rely on underlying techniques
that store links between model elements. This is also the case for
some model view solutions, e. g. EMF Views that rely on weaving
models to cope with this. On the model level, DL techniques can
be handy in dealing with the problem of finding the links between
models (i. e. link prediction). This is especially true when consider-
ing their heterogeneous structures. We showed that using HGNNs
gives promising results. Our implementation also helps ML special-
ists effectively participate in the MDE workflows when using model
views. Given the probabilistic nature of DL algorithms, these spe-
cialists’ contributions may help achieve better results.

Answer to RQ2

Both contributions were implemented within EMF Views, a model view solution de-
signed for creating model views over EMF-compatible models. This allowed us to validate
benefits and limitations through the evaluation of the prototypes [90], based on selected
examples and metrics, helping in answering RQ3 (cf. 1.2). The examples were selected
mainly from the literature but also combined with experiments using data collected from
AIDOaRt partners (cf. section 2.3.5 for a better description of the data).

Technically, for the first contribution, we applied and extended LangChain tooling
together with PyEcore to handle EMF models and use LLMs to draft VPDL code (the
EMF Views DSL for view definition). For the second contribution, we used PyTorch
Geometric to implement HGNN algorithms (e. g. GraphSAGE) and applied their link
prediction capabilities in EMF views examples. We extended the VPDL language to enable
view engineers to use HGNNs (also homogeneous GNN) when needed effectively.
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We consider that our prototypes and their respective evaluation
provided in the contributions chapters (4 and 5) form a step fur-
ther in showing how to use DL to improve model view solutions, an
already identified challenge in adoption this kind of tooling by MDE
practitioners. Although it demands developing (and consequently
integrating) specialized tools in an already complex workflow and
lacks reliable datasets (both for training and evaluation), we believe
that its advantages are worth the effort. From the main advantages
of relying on DL (and even broader ML), we can highlight i) the
potential application on edge cases (e. g. finding links when match-
ing rules are not expressive enough) and ii) the efficiency in its
application to ease the model views creation (e. g. to reason over
metamodels when the engineers do not have enough resources to
understand them deeply).

Answer to RQ3

The novelty of this thesis lies in its dual approach, which applies DL techniques to
model view problems both at design time and runtime. Traditional model view solu-
tions focus on manual methods or rule-based systems. By integrating LLMs and GNNs,
this work not only automates significant parts of the model view specification and link
inference processes but also broadens the applicability of DL in MDE in general. Addition-
ally, our implementations facilitate the involvement of ML specialists in the model views
pipeline, enabling multi-stakeholder participation. In a broader sense, our contributions
also validate the utility of AI-augmented model views in support of the CPS development.
To the best of our knowledge (cf. Chapter 3), this is among the first works to leverage
these techniques for model view challenges, positioning it as a novel contribution. Fur-
thermore, other strategies for model federation (e. g. model merging, megamodeling, etc.),
even being different ways of providing federation, can potentially benefit from extensions
and adaptations of our approaches. A discussion on the open challenges and future per-
spectives for our work is given in Chapter 7.
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Chapter 7

FUTURE PERSPECTIVES

This chapter addresses the limitations identified in our work and proposes potential
solutions for each, opening questions and providing narrowed and global future perspec-
tives. Our discussion emphasizes the application of LLMs and HGNNs within MDE while
acknowledging challenges in developing sustainable DL solutions in this field.

7.1 Future Work

Considering that we have a twofold contribution, we can also split our future work into
two parts: one to cover the potential improvements on using LLMs at the design time of
model views and another to investigate the possible improvements of our use of (H)GNNs
at runtime.

7.1.1 Using LLMs for Model Views

Evaluation and Benchmark Datasets To overcome the lack of datasets for evaluat-
ing our LLM-based approach, broader model view datasets are necessary. Currently, we
rely on examples within the EMF Views and ATL transformation domains, which limits
generalizability across other MDE applications. In practice, we could experiment with our
approach and implementation on a more extensive dataset encompassing diverse modeling
contexts. Such datasets would benefit benchmarking efforts and support reproducibility.
We can grab inspiration to deal with it from research efforts like the ModelSet [259] and
the ModelXGlue [273], for example.

Exploring Additional Prompting Techniques The work on the prompt templates
themselves could be continued without altering the rest of the approach and implemen-
tation (cf. Chapter 4). As we have observed, PE is an empirical discipline often requiring
many trial-and-error iterations. Refining our prompt templates allows us to explore nu-
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merous strategies to enhance results. For instance, prompt templates could be tailored to
better capture the semantics of the target metamodels by incorporating domain-specific
terminology and changing structured representations (e. g., leveraging tabular formats or
JSON-like syntax for metamodel serialization instead of PlantUML). Additionally, iter-
ative prompt tuning [274] could be applied, where feedback from intermediate outputs
is used to refine the prompts during execution dynamically. Complementary to this, ex-
ploring other PE techniques, beyond the current use of CoT and few-shot prompting,
offers different ways for potential improvement [193, 275–278]. Also, during the prompt-
ing process, RAG [257, 279] could be integrated to include partial models and external
knowledge bases of model specifications. Similarly, self-consistency decoding [280] could
be investigated to address the variability of LLMs’s outputs, ensuring the generation of
robust and reliable model view specifications. All these enhancements could be system-
atically studied and evaluated to identify their impact on automating and improving the
creation of model views.

Improving with LLM-Based Agent Architectures To improve our architecture,
we can shift from a single LLM-agent system (cf. section 4.3) to a multi-agent paradigm.
This involves specialized agents focusing on distinct tasks, like model querying and seman-
tic mapping, improving efficiency and accuracy in describing model views. For example,
one agent could focus on model querying for data extraction from the metamodels, po-
tentially using fine-tuned LLMs [241]. Another agent could handle semantic mapping
ensuring that the extracted data aligns accurately with the user intendeds. To do so, we
can get inspiration on other ML reserach that deals direct with the mapping between het-
erogeneous enviromments [281]. Additional agents could be designed to assist with specific
subtasks such as consistency checking, model validation, or generating explanations for
the inferred results to be incorporated into the draft given to the EMF Views user. These
specialized agents could collaborate and exchange intermediate outputs to refine their
results iteratively, leveraging Multi-Agent Collaboration (MAC) principles [282], strategy
that is rapidly gaining traction in the AI/LLM communities [283]. Moreover, the inter-
action between agents could be augmented with advanced coordination mechanisms, such
as using a controller or orchestrator agent that dynamically assigns tasks and manages
dependencies among the agents. Such a multi-agent approach could be systematically
studied to assess its impact on improving the automation and reliability of model view
description generation. Since our current prototype is implemented using LangChain, the
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implementation of a MAC though the use of LangGraph 1 is a straightforward first step
for prototyping.

Integrating Human-in-the-Loop In addition to improving the quality of the results,
a direct benefit of a multi-agent approach could be better integration of the human in
the loop [284]. Indeed, our current approach is voluntarily designed to allow engineers to
provide only the initial inputs (i. e. the Ecore metamodels and a relatively small description
of the desired view). It then works as a black box until the model view definition is
generated as output. In a possible alternative version of our approach, we could i) collect
intermediate inputs from the engineers (e. g. in chat mode) and ii) consider these inputs
for the different internal iterations regarding the three main parts of the view. Thanks to
such a more interactive approach, we may obtain comprehensive model view definitions
that better correspond to the engineers’ wills.

Enhancing Tooling Integration The current implementation of our LLM-based ap-
plication could be upgraded regarding provided tooling features. Notably, we could work
on improving the direct integration with EMF Views inside Eclipse. In the current ver-
sion, the generated model view specifications in VPDL must be manually copied in the
EMF Views/Eclipse environment. Automating this step would enhance productivity and
usability. To address this, we could design and implement a seamless interface between
our Python-based implementation and the Eclipse workbench hosting EMF Views. Such
integration could be achieved by developing a dedicated plugin (e. g. extension point)
that acts as a bridge between the two environments using the EMF APIs, providing e. g.
automatic import of VPDL drafts or live updates. This evolution would bridge the gap
between our research prototype and a production-ready solution.

7.1.2 Using GNNs for Model Views

Improving Evaluation Metrics On the evaluation aspect, our approach can bene-
fit from incorporating a comprehensive analysis of the main HGNN default parameters,
including possible integration with other ML automation techniques (i. e. AutoML) for
hyperparameter optimization. Another improvement for future work includes evaluating
different examples from the MDE domain, including when these models have a higher
semantic gap between them, distinct from our examples. In a different direction, future

1. https://www.langchain.com/langgraph (Last Accessed in November 2024)
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work can also include using different DL techniques to complement other aspects of the
definition and use of model views, enabling comparisons between the use of GNNs and
other potential approaches.

Evaluating the Learning Capacity of GNNs We showcased the expressiveness of
our language and approach by implementing a few model views with different inter-model
relations. However, additional experiments are still required to systematically assess which
matching rules could be effectively replaced by a trained HGNN. Moreover, we plan to
experiment with our approach more generally in the context of inferring matching rules
within model transformations since they are also valuable for model views development,
as we demonstrated in the LLM contribution (cf. sub-section 4.5.2). Indeed, during the
work of this thesis we already started to create a prototype in this direction. 2 Finally, the
perspective of a view dataset/benchmark mentioned before in sub-section 7.1.1 can also
be helpful for the HGNN experiments.

Designing a DSL for GNNs Our Extended VPDL and its companion files represent
the initial version provided with our implementation. While these components enable basic
functionality, there is significant room for improvement in terms of usability, expressive-
ness, and integration. The next step is to develop a dedicated DSL for GNN properties,
replacing the presented JSON file (cf. section 5.3), and integrate it more smoothly with
VPDL. Such a DSL could feature a declarative syntax that allows users to specify GNN
architectures, link prediction configurations, and training parameters in a concise and
human-readable format. Additionally, the DSL could include, for example, annotations
that could be used to link specific GNN configurations to view elements or metamodel
components, ensuring a seamless flow between the DSL for GNN properties and the over-
all model view specification process. To achieve these goals, a study of existing work
related to DSLs for supporting ML activities [124, 285, 286] can guide our future im-
plementations. Furthermore, to ensure the integration of this new DSL with VPDL, we
could explore mechanisms for interoperability, such as embedding GNN-specific constructs
directly within the VPDL syntax or providing a seamless mapping between the two lan-
guages. Overall, developing a dedicated DSL for GNN properties represents a significant
step forward in enhancing the usability and adaptability of our approach.

2. https://github.com/jameswpm/transformations-emf-views (Last Accessed in November 2024)
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Supporting Additional (H)GNN Architectures While the current GNN properties
allow us to effectively address the running and synthetic examples used for evaluation,
more options to describe GNNs and training processes could help with edge cases. For
example, while we support the aggregation function selection, we do not support standard
internal parameters for each function, e. g. learning additive bias, application of linear
transformation after activation layers, normalization of output, etc.. These values can
vary among different aggregation functions. Such parameters can exhibit considerable
variability depending on the specific function or task requirements, highlighting the need
for a more comprehensive and flexible configuration approach. By introducing them in the
description of GNN architectures, we could support a broader range of use cases, including
edge cases that might fall outside the capabilities of our current implementation.

Improving the inference capability of the approach HGNN performance could be
optimized through offline hyper-parameter tuning or exploring alternative architectures.
We may allow users to choose among threshold selection strategies (e. g., based on the
provided AUC_ROC metric or adding new complementary metrics [287]). These improve-
ments will sometimes require further extending VPDL. For instance, we may want to sup-
port the user’s meta-path specification to guide the discovery of complex relations [288].
Meta-paths are sequences of node and edge types that define meaningful relationships
within heterogeneous graphs. Additionally, experimenting with alternative DL strategies,
such as incorporating attention mechanisms or leveraging message-passing strategies tai-
lored to specific data structures, could open up new possibilities for improving inference
quality. This would require adjustments not only to the VPDL syntax but also to the
runtime mechanisms responsible for parsing and interpreting these specifications.

7.2 Global Perspectives

This section considers broader perspectives potentially applicable to our contributions
and other DL applications to model views and MDE in general. This analysis is important
given the potential improvements brought by this combination to develop complex systems
like CPSs.

It is worth mentioning that this thesis can be broadly classified into the called “AI/ML
for SE”, considering MDE as a SE paradigm [289], which means use AI to solve MDE
problems. However, recent research efforts appeared in the trend of “SE for AI/ML.” [290]
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and so “MDE for AI.” [291], using model-based techniques in the the engineering of AI-
powered solutions. In the descriptions below, we consider both research streams as poten-
tial extensions and further discussions over our contributions.

Testing our approaches and implementations with other languages Our imple-
mentations consider model views created for EMF Views as the main case study. Con-
sequently, our tests were limited to using VPDL as the main DSL for view definition.
Although we also conducted preliminary experiments with partial solutions using ATL
(cf. section 4.5), the diversity of DSLs employed for creating model views, as highlighted
in related work (cf. section 3.1), suggests broader applicability. To address this diversity,
extending or adapting our solutions to support other model views contexts is a promising
direction. This could involve tailoring our approach to work with other DSLs, exploring
languages that offer distinct mechanisms for model querying and different views mani-
festation. Furthermore, we see potential applications of our approach beyond modeling
languages. For instance, similar patterns could be leveraged in general-purpose query lan-
guages such as GraphQL, where concepts like filtering, selection, and transformation align
with core aspects of model views.

Exploring synergies between GNNs and LLMs Our contributions in the current
state are split between using LLMs for the design phase and HGNNs for the runtime, re-
spectively, leveraging textual and graph representation of models. Recent initiatives [292]
proposed the use of GNNs to enhance pre-trained LLMs using grounded knowledge, im-
proving RAG applications. In complement, the use of graph-based strategies to comple-
ment LLMs [293] is also trending, mainly through the use of Knowledge Graphs (KGs).
We showed the capabilities of LLMs in understanding the base models used in model
views in combination with GNNs to execute link prediction, so it is a natural way to con-
tinue our work combining these techniques. For example, one first step in this direction is
to change our LLM-application to generate the VPDL already including our defined new
syntax for the GNN-powered recommender. This will enable the automation between the
design and runtime EMF Views workflow.

Improving Scalability and Performance Some optimization techniques could be
applied to enhance the scalability of our approaches. For LLMs, the use of self-hosted
models can enable strategies such as pruning [294], quantization [295], or knowledge dis-
tillation [296] to improve inference time, enabling their deployment in resource-constrained
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environments (especially important for CPSs). For GNNs, parameter reduction tech-
niques, such as dimensionality reduction of node embeddings, could significantly lower
computational overhead while maintaining model accuracy [297]. In addition to optimiz-
ing individual components, they could be coupled with caching mechanisms to reduce
redundant computations when the same or similar model views are queried repeatedly.
Future work could also investigate adaptive sampling techniques for large-scale industrial
applications, such as those addressed by AIDOaRt. Moreover, profiling and benchmark-
ing the runtime performance of our approach under increasing data loads could guide
targeted optimizations, such as hybrid processing strategies that combine on-device and
cloud-based computation. Finally, reusing the strategy applied by Bruneliere et al. in-
creasing the model size will enable us to test our approach up to large-scale models [42].

Considering Safety, Bias, and Ethical Problems As LLMs become more pervasive,
their ethical implications have garnered attention, especially concerning bias and safety
issues [298]. LLMs can unintentionally perpetuate stereotypes or generate harmful content,
depending on their training data and the team that trained it [299]. Research efforts focus
on mitigating these risks through better data curation, fine-tuning, and RL strategies,
but challenges remain. In the context of model views, as proposed in our contribution, as
LLMs are used to generate or suggest model viewpoints, the biases could inadvertently
lead to skewed or incomplete model views, negatively impacting decision-making, model
analysis, and system design. LLMs also pose risks when used for misinformation, spam
generation, or even malicious purposes, calling for the establishment of robust guardrails
and governance frameworks for their deployment [185, 189]. We could adopt strategies
such as bias detection and mitigation techniques tailored to model view generation to cope
with these risks. These techniques might involve better data curation and incorporating
RL strategies that reward the generation of diverse, balanced, and ethically sound model
views. Moreover, we can introduce manual review stages in the model view generation
process to ensure that harmful or biased outputs are identified and rectified before they
impact engineering processes.
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Appendix A

PROMPTS USED FOR LLM EXPERIMENTS

A.1 Introduction

This appendix intends to present the extra prompts used in our LLM-based application
described in Chapter 4. Firstly, we present the two other prompts used in our provided
tool, which means both the prompts used for the SELECT block and the WHERE block of
the VPDL file. They complement the one used for the JOIN block already presented in the
referred chapter. These prompts are given as-is to the EMF Views user. It is unnecessary to
make any extra edits to perform likely the results presented in the evaluation (cf. Section
4.5). We also present the prompt used to perform the evaluation within the LLM-as-judge
strategy.

A.2 Extra prompts

The listing A.1 presents the prompt template for the SELECT block. Similarly, the
listing A.2 presents the prompt for the WHERE block. Their structure and phrasing are
also based on the CoT PE strategy, already explored and explained in the Chapter 4. As
explained in our contribution chapter (cf. Chapter 4), they complement our approach’s
implementation and are already adapted to be used in a LangChain workflow.

1 """
2 You specialize in reason on PlantUML metamodels , especially

selecting and filtering each class ’s attributes .
3

4 Given two metamodels and a list of relations containing classes ’
pairs , your task is to select a set of attributes for the
metamodels ’ classes .

5

6 An attribute should be selected if it is unique among the two
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classes in a relation or if it is a collection that contains
one of the classes in the relation .

7

8 For the input relations list , you may assume the following
template :

9

10 {{
11 " relations ": [
12 {{
13 "name ": " relationName ",
14 " classes ": [" class_name_from_first_metamodel ", "

class_name_from_second_metamodel "]
15 }}
16 ]
17 }}
18

19

20 { format_instructions }
21

22 When generating the response , you should follow these rules:
23 Only use class and attribute names that actually exist in the

metamodels . Don ’t make them up.
24

25 The step -by -step process is as follows :
26

27 1. For each relation , select the classes to be analyzed . The
classes are always combined in pairs , in order , and contain one

class from each metamodel .
28 2. For each class , select the attributes that should appear in the

final response to meet the user ’s needs.
29 3. If the class has some container , the container class and the

attribute that collected the class should also appear in the
list.

30 3. Create the JSON array with the selected attributes for each
metamodel .

31 4. Provide the final answer .
32

33 Your final answer should contain only the valid JSON and nothing
else. Exclude any explanation or delimiter from the final
response .

34
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35 View description : { view_description }
36 Metamodel 1: { meta_1 }
37 Metamodel 2: { meta_2 }
38 List of relations : { relations }
39 Select elements :
40 """

Listing A.1 – Python f-string used as prompt template in the SELECT step

1 """
2 You specialize in reason on PlantUML metamodels , especially

combining and merging them.
3

4 Given two metamodels , a list of relations containing classes ’
pairs , and a view description , your task is to define how to
combine the given classes .

5

6 It means you must define the combination rules to combine classes
from both metamodels .

7

8 For the input relations list , you may assume the following
template :

9

10 {{
11 " relations ": [
12 {{
13 "name ": " relationName ",
14 " classes ": [" class_name_from_first_metamodel ", "

class_name_from_second_metamodel "]
15 }}
16 ]
17 }}
18

19 { format_instructions }
20

21 When generating the response text you should follow these rules:
22 Only use class and attribute names that actually exist in the

metamodels . Don ’t make them up.
23 The combination_rule should be a string explaining how the classes

can be connected according to the domain ’s semantics . It means
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explaining what kind of comparisons can be used to connect the
classes in the relation .

24

25 The step -by -step process is as follows :
26

27 1. Select the metamodels to be analyzed for each relation in the
list of relations .

28 2. For each pair of metamodel classes , analyze the domain
considering the view description and elaborate a possible
combination to relate both classes .

29 3. Create the JSON array with the combination rule for the
relation . The combination rule is a list that constains the
name of the first metaclass , the combination explanation and
the name of the second metaclass .

30 4. Create the JSON array with one rule per relation .
31 5. Provide the final answer .
32

33 Exclude any explanation or delimiter from the final response .
34

35 View description : { view_description }
36 Metamodel 1: { meta_1 }
37 Metamodel 2: { meta_2 }
38 List of relations : { relations }
39 Combination rules:
40 """

Listing A.2 – Python f-string used as prompt template in the WHERE step

The prompt presented in the listing A.3 is the prompt used to run the LLM-as-judge
Evaluator as explained in the Section 4.5 presented here for completeness. It is a direct
adaptation of the prompt provided by LangChain as an example for evaluation 1.

1 """
2 [ Instruction ]
3 Please act as an impartial judge and evaluate the quality of the

response provided by an AI assistant to the user question
displayed below. For this evaluation , you should primarily
consider the following criteria :

4 helpfulness : How much effort would someone who knows the domain

1. https://docs.smith.langchain.com/evaluation/tutorials/evaluation
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and the VPDL languange need to make to get the prediction to
match the reference ? The less effort needed , the higher the
score.

5 [ Ground truth]
6 {{ vpdl_example }}
7

8 Begin your evaluation by providing a short explanation . Be as
objective as possible . After providing your explanation , you
must rate the response on a scale of 1 to 10 by strictly
following this format : "[[ rating ]]", for example : " Rating :
[[5]]".

9

10 [ Question ]
11 {{ view_description }}
12

13 [The Start of Assistant ’s Answer ]
14 {{ vpdl_draft }}
15

16 [The End of Assistant ’s Answer ]
17 """

Listing A.3 – Python f-string used as prompt template for the evaluator
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CS Computer Science. 37
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DSR Design Science Research. xiv, xvi, 14

ECL Epsilon Comparison Language. 94

EMF Eclipse Modeling Framework. 25, 32, 34, 52, 54–57, 72, 76, 101, 113, 117

EMOF Essential MOF. 25

ETL Epsilon Transformation Language. 25

EVM Event-driven Virtual Machine. 57

FML Federation Modeling Language. 56

GAN Generative Adversarial Network. 41
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LM Language Model. 62
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MAC Multi-Agent Collaboration. 116, 117

MBE Model-Based Engineering. 19, 55, 111

MBSD Model-Based Software Development. 19

MBSE Model-Based System Engineering. 50, 51, 111
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OMG™ Object Management Group. 19, 24

OSM Orthographic Software Modelling. 58
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QVT Query/View/Transformation. 77, 83

RAG Retrieval-Augmented Generation. 70, 71, 116, 120

RL Reinforcemnt Learning. 61, 121
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VQL VIATRA Query Language. 62
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Titre : Fédération de Modèles Hétérogènes avec des Vues sur les Modèles Assistées par
l’Apprentissage Automatique

Mot clés : Ingénierie dirigée par les modèles, Vues sur les modèles, Grands modèles de

langage, Ingénierie des prompts, Réseaux de neurones en graphes, Apprentissage profond

Résumé : L’Ingénierie Dirigée par les Mo-
dèles (IDM) promeut les modèles comme un
élément clé pour répondre à la complexité
croissante du cycle de vie des systèmes lo-
giciel. L’ingénierie de systèmes avec l’IDM im-
plique divers modèles représentant différentes
aspects du système. Cette hétérogénéité né-
cessite des capacités de fédération de mo-
dèles pour intégrer des points de vue spé-
cifiques à de multiples domaines. Les solu-
tions de Vues sur les Modèles (Model Views)
répondent à ce défi mais manquent encore
de support à l’automatisation. Cette thèse ex-
plore l’intégration de l’Apprentissage Automa-
tique (AA), notamment les Réseaux de Neu-
rones en Graphes (GNN) et Grands Modèles

de Langage (LLM), pour améliorer la définition
et construction de telles vues. La solution pro-
posée introduit une approche en deux volets
dans la solution technique EMF Views. Cela
a permis d’automatiser partiellement la défi-
nition des vues sur modèles à la conception,
et de calculer dynamiquement les liens inter-
modèles à l’exécution. Nos résultats indiquent
que l’application de techniques d’apprentis-
sage profond (DL), dans ce contexte spéci-
fique de l’IDM, permet déjà d’atteindre un pre-
mier niveau d’automatisation intéressant. Plus
globalement, cet effort de recherche contribue
au développement actuel de solutions plus in-
telligentes pour l’IDM.

Title: Federation of Heterogeneous Models with Machine Learning-Assisted Model Views

Keywords: Model-driven engineering, Model views, Large language models, Prompt engineer-

ing, Graph Neural Networks, Deep Learning

Abstract: Model-driven engineering (MDE)
promotes models as a key element in address-
ing the increasing complexity of the software
systems’ lifecycle. Engineering systems with
MDE involves various models representing dif-
ferent system aspects. This heterogeneity re-
quires model federation capabilities to inte-
grate viewpoints specific to multiple domains.
Model View solutions address this challenge
but still lack more automation support. This
thesis explores the integration of Machine
Learning (ML), notably Graph Neural Net-
works (GNNs) and Large Language Models

(LLMs), in order to improve the definition and
building of such views. The proposed solution
introduces a twofold approach within the EMF
Views technical solution. This allowed to par-
tially automate the definition of model views at
design time, and to dynamically compute inter-
model links at runtime. Our results indicate
that the application of Deep Learning (DL)
techniques, in this particular MDE context, al-
ready allows to achieve a first relevant level
of automation. More globally, this research ef-
fort contributes to the ongoing development of
more intelligent MDE solutions.
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