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et je sais maintenant que c’est une chance énorme. Humainement, si je devais ne retenir
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d’avoir été comme un frère pour moi pendant ces trois ans, j’ai apprécié nos discussions
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Pierre-Louis, Sébastien, Jad, Célestin, Virginie, Jade, Jun, Lihu, Antoine, Guillaume,
Mathieu D., Matthieu T., Maria, Gabriela, Fernanda, Himanshu, Pierre-Antoine, Louis,
Cédric A., Cédric R., Melvine, Malo, Benoit, Raphael, Binh, Hugo et Ahmad. Je pense
aussi aux PIs de l’équipe: Thomas, Marine, Gael, Alex G., Judith et Philippe. J’ai aussi
une pensée particulière pour Olivier Grisel : ça a été un honneur d’apprendre auprès de toi.
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Abstract

Statistically controlled variable selection is a fundamental problem encountered in diverse
fields where practitioners have to assess the importance of input variables with regards to
an outcome of interest. In this context, statistical control aims at limiting the proportion
of false discoveries, meaning the proportion of selected variables that are independent
of the outcome of interest. In this thesis, we develop methods that aim at statistical
control in high-dimensional settings while retaining statistical power. We present four key
contributions in this avenue of work. First, we introduce Notip, a non-parametric method
that allows users to obtain guarantees on the proportion of true discoveries in any brain
region. This procedure improves detection sensitivity over existing methods while retaining
false discoveries control. Second, we extend the Knockoff framework by proposing KOPI,
a method that provides False Discovery Proportion (FDP) control in probability rather
than in expectancy. KOPI is naturally compatible with aggregation of multiple Knockoffs
draws, addressing the randomness of traditional Knockoff inference. Third, we develop
a diagnostic tool to identify violations of the exchangeability assumption in Knockoffs,
accompanied by a novel non-parametric Knockoff generation method that restores false
discoveries control. Finally, we introduce CoJER to enhance conformal prediction by
providing sharp control of the False Coverage Proportion (FCP) when multiple test points
are considered, ensuring more reliable uncertainty estimates. CoJER can also be used to
aggregate the confidence intervals provided by different predictive models, thus mitigating
the impact of modeling choices. Together, these contributions advance the reliability of
statistical inference in high-dimensional settings such as neuroimaging and genomic data.
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Abstract en Français

La sélection de variables sous contrôle statistique est un problème fondamental rencontré
dans divers domaines où les praticiens doivent évaluer l’importance des variables d’entrée
par rapport à un résultat d’intérêt. Dans ce contexte, le contrôle statistique vise à limiter
la proportion de fausses découvertes, c’est-à-dire la proportion de variables sélectionnées
qui sont indépendantes du résultat d’intérêt. Dans cette thèse, nous développons des
méthodes visant à assurer un contrôle statistique dans des contextes de grande dimension
tout en conservant la puissance statistique. Nous présentons quatre contributions clés
dans ce domaine de recherche. Premièrement, nous introduisons Notip, une méthode non
paramétrique qui permet aux utilisateurs d’obtenir des garanties sur la proportion de vraies
découvertes dans n’importe quelle région cérébrale. Cette procédure améliore la sensibilité
de détection par rapport aux méthodes existantes tout en conservant le contrôle des fausses
découvertes. Deuxièmement, nous étendons le cadre Knockoff en proposant KOPI, une
méthode qui fournit un contrôle de la proportion de fausses découvertes (FDP) en probabilité
plutôt qu’en espérance. KOPI est naturellement compatible avec l’agrégation de plusieurs
tirages Knockoff, ce qui permet de prendre en compte la variabilité de l’inférence Knockoff
traditionnelle. Troisièmement, nous développons un outil de diagnostic pour identifier
les violations de l’hypothèse d’échangeabilité dans Knockoffs, accompagné d’une nouvelle
méthode non paramétrique de génération de Knockoffs qui restaure le contrôle des fausses
découvertes. Enfin, nous introduisons CoJER pour améliorer la prédiction conforme en
fournissant un contrôle précis de la proportion de couverture fausse (FCP) lorsque plusieurs
points de test sont pris en compte, garantissant des estimations d’incertitude plus fiables.
CoJER peut également être utilisé pour agréger les intervalles de confiance fournis par
différents modèles prédictifs, atténuant ainsi l’impact des choix de modélisation. Ensemble,
ces contributions renforcent la fiabilité de l’inférence statistique dans des contextes de
grande dimension tels que les données de neuroimagerie et de génomique.
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11.3 Quand les Knockoffs échouent : diagnostic et correction du non-échangeabilité
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Chapter 1

Overview

This PhD thesis focuses on false discoveries control in high-dimensional inference problems.
This thesis is divided into two parts: in the first part, we introduce core concepts of
statistical testing, conformal prediction and neuroimaging data analysis. In the second
part, we present novel methods developed during this thesis. In the background part,
we first introduce the notion of statistical testing in Chapter 2 and discuss the difficult
problem of performing multiple tests at the same time. Classical multiple testing error
rates are introduced, such as the Family-wise Error Rate (FWER) and the False Discovery
Rate along with procedures that control these rates. We then move to Chapter 3; we dive
into recently developed tools of the multiple testing literature that we use throughout this
thesis. Namely, the Joint Error Rate, a general framework to control the False Discovery
Proportion and the Knockoffs procedure, a novel idea to control the False Discovery Rate.
In Chapter 4 we introduce conformal prediction, a popular framework for uncertainty
quantification in prediction problems. Using conformal p-values, we relate this framework
to the statistical testing literature. We then discuss the basics of neuroimaging data
analysis from acquisition and preprocessing to statistical analysis in Chapter 5. FMRI
data analysis is a central motivation in this thesis; most of the experimental work of this
thesis’ contributions is done on fMRI datasets.

Contributions of this thesis are organized around four papers, detailed in the following
sections:

• Blain, A., Thirion, B., and Neuvial, P. (2022). Notip: Non-parametric true
discovery proportion control for brain imaging. NeuroImage, 260:119492

• Blain, A., Thirion, B., Grisel, O., and Neuvial, P. (2023). False discovery
proportion control for aggregated knockoffs. NeurIPS 2023

• Blain, A., Thirion, B., Linhart, J., and Neuvial, P. (2024a). When knockoffs
fail: diagnosing and fixing non-exchangeability of knockoffs. arXiv preprint
arXiv:2407.06892

• Blain, A., Thirion, B., and Neuvial, P. (2024b). Tight and reliable conformal
prediction. Under review

12
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1.1 Notip: Non-parametric True Discovery Proportion con-
trol for brain imaging

Cluster-level inference procedures are widely used for brain mapping. These methods
compare the size of clusters obtained by thresholding brain maps to an upper bound
under the global null hypothesis, computed using Random Field Theory or permutations.
However, the guarantees obtained by this type of inference - i.e. at least one voxel is
truly activated in the cluster - are not informative with regards to the extent of the signal
therein. There is thus a need for methods to assess the amount of signal within clusters;
yet such methods have to take into account that clusters are defined based on the data,
which creates circularity in the inference scheme. This has motivated the use of post hoc
estimates that allow statistically valid estimation of the proportion of activated voxels in
clusters. In the context of fMRI data, the All-Resolutions Inference framework introduced
in Rosenblatt et al., 2018 provides post hoc estimates of the proportion of activated voxels.
However, this method relies on parametric threshold families, which results in conservative
inference. In Chapter 6, we propose to adapt to data characteristics and obtain tighter
false discovery control. For this we leverage randomization methods. We obtain Notip, for
Non-parametric True Discovery Proportion control: a powerful, non-parametric method
that yields statistical guarantees on the proportion of activated voxels in data-derived
clusters. Numerical experiments demonstrate substantial gains in number of detections
compared with state-of-the-art methods on 36 fMRI datasets. The conditions under which
the proposed method brings benefits are also discussed.

Published work. Blain, A., Thirion, B., and Neuvial, P. (2022). Notip: Non-parametric
true discovery proportion control for brain imaging. NeuroImage, 260:119492

1.2 False Discovery Proportion control for aggregated Knock-
offs

Controlled variable selection is an important analytical step in various scientific fields,
such as brain imaging or genomics. In these high-dimensional data settings, considering
too many variables leads to poor models and high costs, hence the need for statistical
guarantees on false positives. Knockoffs are a popular statistical tool for conditional
variable selection in high dimension. However, they control for the expected proportion of
false discoveries (FDR) and not their actual proportion (FDP). In Chapter 7 we present a
new method, KOPI, that controls the proportion of false discoveries for Knockoff-based
inference. The proposed method also relies on a new type of aggregation to address the
undesirable randomness associated with classical Knockoff inference. We demonstrate
FDP control and substantial power gains over existing Knockoff-based methods in various
simulation settings and achieve good sensitivity/specificity tradeoffs on brain imaging and
genomic data.

Published work. Blain, A., Thirion, B., Grisel, O., and Neuvial, P. (2023). False
discovery proportion control for aggregated knockoffs. NeurIPS 2023
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1.3 When Knockoffs fail: diagnosing and fixing non ex-
changeability of Knockoffs

Knockoffs are a popular statistical framework that addresses the challenging problem of
conditional variable selection in high-dimensional settings with statistical control. Such
statistical control is essential for the reliability of inference. However, knockoff guarantees
rely on an exchangeability assumption that is difficult to test in practice, and there is little
discussion in the literature on how to deal with unfulfilled hypotheses. This assumption is
related to the ability to generate data similar to the observed data. To maintain reliable
inference, we introduce a diagnostic tool based on Classifier Two-Sample Tests in Chapter
8. Using simulations and real data, we show that violations of this assumption occur in
common settings for classical Knockoffs generators, especially when the data have a strong
dependence structure. We show that the diagnostic tool correctly detects such behavior. To
fix knockoff generation, we propose a nonparametric, computationally-efficient alternative
knockoff construction, which is based on constructing a predictor of each variable based
on all others. We show empirically that the proposed approach restores error control on
simulated data.

Preprint. Blain, A., Thirion, B., Linhart, J., and Neuvial, P. (2024a). When knockoffs
fail: diagnosing and fixing non-exchangeability of knockoffs. arXiv preprint arXiv:2407.06892

1.4 Tight and reliable conformal prediction

Split conformal prediction (SCP) offers a computationally efficient way to build confidence
intervals in regression problems. Notably, most of the theory built around SCP is focused
on the single test point problem. In real-life settings, inference sets consist of multiple
points, which poses the question of coverage guarantees for many points simultaneously.
While on average, the False Coverage Proportion (FCP) remains controlled, but it can
fluctuate strongly around its mean. We show that when splitting a dataset multiple
times, classical SCP may not control the FCP for up to 65% of splits. In Chapter 9
we propose CoJER, a novel method that achieves sharp FCP control in probability for
conformal prediction, relying on knowledge of the distribution of conformal p-values under
exchangeability. We show on extensive real data experiments that CoJER provides the
announced coverage while standard SCP does not. Additionally, CoJER yields shorter in-
terval than the state-of-the-art method and only slightly larger intervals than standard SCP.

Under review. Blain, A., Thirion, B., and Neuvial, P. (2024b). Tight and reliable
conformal prediction. Under review
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Chapter 2

Statistical hypothesis testing

Summary. In this chapter, we review some fundamental concepts and methods of
statistical hypothesis testing, which is the focus of this thesis. The aim of statistical
hypothesis testing is to determine whether a certain hypothesis is sufficiently supported
by the data at hand. Performing reliable statistical hypothesis testing is essential
for drawing meaningful inferences from data, guiding decision-making, and building
predictive models. For clarity, we start by presenting the elementary case where
a single hypothesis is tested, before moving on to multiple testing procedures. In
the context of our work, many hypotheses are tested simultaneously and performing
reliable inference requires taking multiplicity into account.

Contents

2.1 Testing association between variables and outcome . . . . . . . 16

2.2 Multiple hypothesis testing . . . . . . . . . . . . . . . . . . . . . 17

2.1 Testing association between variables and outcome

The concept of statistical hypothesis testing was introduced in the early 20th century in
the seminal work of Pearson, 1900; Fisher, 1922. Statistical hypothesis testing aims at
constructing a reliable inference procedure to decide whether the data at hand supports a
given hypothesis. Denote H0 the null hypothesis and H1 the alternative hypothesis and
the data at hand X = (X1, . . . , Xn). Intuitively, the null hypothesis serves as the default
position (e.g. no effect in a study) while the alternative hypothesis proposes that there is
an effect or a difference, contradicting the null hypothesis. Then, a statistical hypothesis
test can be defined as follows:

Definition 1 (Statistical hypothesis test). A statistical hypothesis test is a decision rule
that specifies whether or not to reject the null hypothesis H0 in favor of the alternative
hypothesis H1.

This definition entails four possible scenarios, in which the null hypothesis is rejected
(or not) rightfully (or not). Possible scenarios are summarized in the table below:

H0 true H0 false

H0 not rejected , False Negative

H0 rejected False Positive ,

16
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The probability of issuing a False Positive (type-I error) is called the significance level
of the test and generally denoted α. In words, this is the probability of falsely rejecting the
null hypothesis. On the other hand, the probability of obtaining a true positive is called
the power of the test and is generally denoted 1− β. This is the probability of rightfully
rejecting the null hypothesis. There exists a trade-off between these two quantities: in
general, tests are calibrated such that they maximize power for a certain significance level
(Neyman and Pearson, 1933).

The decision rule that constitutes a hypothesis test is generally based on a quantity
derived of the data T (X1, . . . , Xn) ∈ R. This quantity is called the test statistic. A
notable type of test statistics are p-values, defined as follows:

Definition 2 (p-values). A p-value is a test statistic p(X) that satisfies:

1. p(X) ∈ [0, 1].

2. (Sub-uniformity) If H0 is true, for all t ∈ [0, 1]:

P(p(X) ≤ t) ≤ t.

Statistical hypothesis tests are oftentimes formulated as p-values thresholding: the lower
the p-value, the stronger the evidence against the null hypothesis H0. The second property
of this definition ensures that the p-value is valid : for any threshold t, sub-uniformity
guarantees that the probability of making a false positive is at most t.

While p-values are ubiquitous in many scientific fields, they suffer from numerous
misuses (Halsey et al., 2015; Sullivan and Feinn, 2012; Wasserstein and Lazar, 2016;
Greenland et al., 2016). Misuses include circularity biases – running statistical testing
procedures on data subsets which have been selected after having seen the data – and
data snooping – running many statistical tests and reporting only those who exhibit a
statistically significant result while concealing the others. A central motivation of this
thesis is to provide valid inference procedures based on p-values.

2.2 Multiple hypothesis testing

In the era of modern machine learning and data science, it is increasingly common to
test not just a single hypothesis, but rather many hypotheses simultaneously. This shift
is driven by the vast amounts of data now available, allowing researchers to explore a
multitude of relationships, patterns, and effects within a single study. However, this
abundance of data also introduces substantial challenges. When many hypotheses are
tested at once, the probability of obtaining statistically significant results purely by chance
increases, potentially leading to false discoveries. This inflation can result in misleading
conclusions, where the observed effects are not truly significant but rather artifacts of the
testing process (Bender and Lange, 2001; Noble, 2009).

Example 1. An fMRI image consists of 100, 000 (or more) voxels, each of which represents
a small volume of brain tissue. Researchers typically test the level of activity at each voxel
to determine if it is significantly different from a baseline, to detect brain activity related
to a specific task or stimulus. If each of these 100, 000 voxels is tested individually with a
significance threshold of 5% (a common choice in hypothesis testing), then even if there is
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no true signal—meaning no actual brain activity associated with the task or stimulus— 5%
of these tests will be deemed significant purely by chance. In this scenario, that amounts
to 5, 000 voxels falsely identified as showing significant activity, despite nothing actually
happening. Accounting for multiplicity is essential in all fMRI analyses (Bennett et al.,
2009; Nichols, 2012).

The most straightforward approach to recover false discoveries control is to correct
the significance level used for each test. Denoting p the number of hypotheses tested
simultaneously, we use a significance level of α/p for each test. This amounts to the
Bonferroni correction (Bonferroni, 1936):

Definition 3 (Bonferroni correction, Bonferroni, 1936). Denote (pj)j∈JpK the p-values

associated to the p tests. The Bonferroni procedure rejects the jth null hypothesis H0,j

when:

pj ≤
α

p

The Bonferroni correction ensures that the probability of making at least one false
positive is smaller than the original significance level α. This error rate is called the
Family-wise Error Rate (FWER). Note that controlling the FWER is much more
stringent than controlling the type-I error for each hypothesis – here, the probability
of making a false discovery is controlled for all tests. FWER control is satisfactory in
applications where the cost of making any false discovery is intolerable. However, this
strict control comes at the cost of statistical power since the significance threshold of the
procedure shrinks as p grows large. Depending on the type of p-value used, making a
discovery may become analytically impossible for small values of α.

To achieve better trade-offs between statistical power and type-I error control in
multiple testing, Benjamini and Hochberg, 1995 proposed an alternative procedure which
controls the expected proportion of false discoveries. First, let us define the False Discovery
Proportion (FDP) and its expected value, the False Discovery Rate (FDR):

Definition 4 (False Discovery Proportion and False Discovery Rate). Denote the set of
true null hypotheses H0. For any rejection set Ŝ ⊂ JpK:

FDP(Ŝ) =
|Ŝ ∩H0|
|Ŝ| ∨ 1

, FDR(Ŝ) = E[FDP(Ŝ)] = E

[
|Ŝ ∩H0|
|Ŝ| ∨ 1

]
.

Definition 5 (Benjamini-Hochberg procedure). Denote p(1), . . . , p(p) the sorted p-values.
The Benjamini-Hochberg procedure consists in:

1. Finding jBH ∈ max
{
j ∈ JpK | p(j) ≤ αj

p

}
2. Rejecting H0,(1), . . . ,H0,(jBH).

Property 1 (Positive Regression Dependency on Subset; PRDS, Benjamini and Yekutieli,
2001). Denote an increasing set D, i.e. a set such that if x ∈ D and y ≥ x then y ∈ D.
Then, the data X is said to be PRDS – implicitly, on the set of true nulls – if ∀j s.t. H0,j

is true:

P(X ∈ D|Xj = x) is nondecreasing in x.
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The PRDS property notably holds in the case of positively correlated variables as
shown in Benjamini and Yekutieli, 2001. Provided that the PRDS property is verified,
the Benjamini-Hochberg (BH) procedure controls the FDR. This guarantee is much less
stringent than FWER control, as α% of false discoveries are tolerated on average. The
BH procedure is extremely popular in many scientific fields. However, it suffers from
important conceptual limitations, in addition to necessitating strong hypotheses on the
data correlation structure:

FDR control is not FDP control (Korn et al., 2004; Efron, 2012; Roquain,
2015; Neuvial, 2020). The FDR is the expected proportion of false discoveries, rendering
its control difficult to interpret. In practice, users generally have access to a single dataset
on which they employ the BH procedure. For a single run of this procedure, the actual FDP
may not be close to its mean (FDR). This is especially true in high correlation settings,
where the FDR can become a poor representation of the underlying FDP distribution. As
shown in Figure 2.1, for large values of equicorrelation ρ, either no hypotheses are rejected,
or the FDP is much higher than the FDR level, with 10% of runs returning an FDP of
80% or more.

= 0 = 0.2 = 0.5 = 0.7 = 0.8
0.0
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FDP distribution for varying correlation
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Achieved FDR

Figure 2.1: FDP distribution for 1000 simulation runs and five correlation values.
We simulate n = 500 equicorrelated Gaussian samples of dimension p = 1000. We use 100
active variables for which some signal is added for half of the samples. Then, we compute
p-values with a Welch test and perform inference using the BH procedure. Each violin plot
represents the distribution of the FDP for a given correlation value ρ. Notice that the FDR
is always controlled, but is an increasingly poor representation of the FDP distribution as
ρ grows. For high values of ρ, either no hypotheses are rejected and FDP = 0, or else the
FDP is much higher than the FDR level, with 10% of runs returning an FDP of 80% or
more.

There has been much effort in the statistical community to achieve FDP control in
probability (Genovese and Wasserman, 2002, 2004; Meinshausen, 2006; Fan et al., 2012;
Goeman and Solari, 2011; Blanchard et al., 2020). While technically more challenging to
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obtain, such control gives a guarantee that is directly interpretable.

Post hoc FDP control (Goeman and Solari, 2011; Blanchard et al., 2020;
Katsevich and Ramdas, 2020). Another notable limitation of FDR controlling pro-
cedures is that they do not allow for post hoc inference: the procedure returns a set of
hypotheses Ŝ for which the FDR is controlled, but cannot give any information on an
arbitrary set S, potentially chosen by the user. FDR-controlling procedure can be misused
in this sense, as users may apply it to subset of hypotheses chosen after having seen the
data, rendering inference invalid (Kriegeskorte et al., 2009; Benjamini, 2020). As shown in
Figure 2.2, performing inference on simulated null p-values using the BH procedure on a
data-dependent subset leads to massive false positive inflation.
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Figure 2.2: Invalid selective inference using the BH procedure on simulated null
p-values. We simulate a 25× 25 2D map of null p-values drawn independently in U [0, 1].
Performing inference using the BH procedure (q = 0.1) on the complete map yields no
rejections and therefore a null FDP, which is the expected behavior. However, if inference
is performed after having selected the 10% of smallest p-values, the BH procedure rejects
62% of the selected hypotheses with a 100% FDP. This illustrates that BH procedure does
not support selective inference.



Chapter 3

Statistical control of False
Discoveries

Summary. In this chapter, we present two core techniques used for the statistical
control of False Discoveries and will be used in this thesis. First, the Joint Error Rate
(JER) framework introduced in Blanchard et al., 2020 which offers a general approach
to controlling the False Discovery Proportion (FDP) and supports post hoc inference.
The JER framework relies on knowledge – or estimation – of the joint distribution
of p-values under the null to build valid FDP upper bounds. Second, the Knockoffs
method, introduced by Barber and Candès, 2015, constructs artificial variables that
mirror the dependence structure of the original covariates, allowing for the control of
the false discovery rate (FDR) in conditional independence testing. This approach is
particularly effective in settings with highly correlated predictors.

Contents

3.1 The JER framework: a general approach to controlling the FDP 21

3.1.1 Post hoc FDP control . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.2 Joint Error Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1.3 Tighter FDP upper bounds via randomization . . . . . . . . . . 24

3.2 Knockoffs: FDR control in conditional variable selection . . . . 26
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3.2.2 Knockoff generation methods . . . . . . . . . . . . . . . . . . . . 29

3.1 The JER framework: a general approach to controlling
the FDP

3.1.1 Post hoc FDP control

A post hoc upper bound V on the number of false positives is an integer-valued function
of subsets S of hypotheses that satisfies:

P (∀S, |S ∩H0| ≤ V (S)) ≥ 1− α . (3.1)

Since FDP(S) = |S ∩H0| / |S|, obtaining a bound V satisfying (3.1) is strictly equivalent
to obtaining a post hoc upper bound on the FDP. This equivalence will be used implicitly
throughout this thesis.

21



CHAPTER 3. STATISTICAL CONTROL OF FALSE DISCOVERIES 22

As described in the seminal work of Goeman and Solari, 2011, the comparison between
ordered p-values and

(
tSimes
k

)
k=1..p

= (αk/p)k=1..p can provide post hoc FDP control using

closed testing (Marcus et al., 1976). Closed testing relies on having a valid α-level test for
any intersection of hypotheses

⋂
k∈S Hk – these are called local tests. Once local tests have

been performed, the procedure leverages set combinatorics to obtain FDP upper bounds.
In practice, computing the required quantities can be impossible due to combinatorial
complexity. To solve this issue Goeman and Solari, 2011 propose to use the Simes local
test (Simes, 1986) which allows computational shortcuts, making the bound computable in
linear time (Goeman et al., 2019).

The validity of the Simes test for independent data or positively correlated data relies
on the Simes inequality (Simes, 1986):

P
(
∃k ∈ {1, . . . ,m0} : p(k:m0) < tSimes

k

)
≤ α . (3.2)

The All-resolutions inference (ARI) method (Rosenblatt et al., 2018) provides a tighter
post hoc bound that uses the thresholds αk/h(α) instead of tSimes

k = αk/m in (3.2), where
h(α) ≤ m is the so-called Hommel value (Hommel, 1986). h(α) represents an 1− α-level
upper confidence bound on the number m0 of true null hypotheses.

3.1.2 Joint Error Rate

While Simes based closed testing provides valid post hoc FDP upper bounds, it relies
on an entirely parametric construction. Given that the Simes inequality is conservative
for positively dependent p-values (Blanchard et al., 2020), and are thus suboptimal. An
alternative construction of post hoc bounds has been introduced by Blanchard et al., 2020.
Letting RSimes

k =
{
i : pi ≤ tSimes

k

}
, Equation (3.2) can be written as:

P
(
∀k,
∣∣RSimes

k ∩H0

∣∣ ≤ k − 1
)
≥ 1− α . (3.3)

Equation (3.3) can be interpreted as the simultaneous control of all k−Family-Wise Error
Rate (FWER), where the k−FWER is the probability of obtaining at least k false positives.
Note that Equation (3.3) is exactly of the same form as Equation (3.1) but only valid for
Rk and not all S. The bound for all S is obtained by interpolation, as each set RSimes

k

yields a valid FDP upper bound over any subset S as shown in Blanchard et al., 2020:

|S ∩H0| =
∣∣∣S ∩RSimes

k ∩H0

∣∣∣+ ∣∣S ∩RSimes
k ∩H0

∣∣
≤
∣∣∣S ∩RSimes

k

∣∣∣+ ∣∣RSimes
k ∩H0

∣∣
=
∑
i∈S

1
{
pi(X) ≥ tSimes

k

}
+
∣∣RSimes

k ∩H0

∣∣
≤
∑
i∈S

1
{
pi(X) ≥ tSimes

k

}
+ k − 1

=: V Simes
k (S) ,

where the last inequality holds with probability at least 1− α by (3.3).
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The computation of V Simes
k (S) is illustrated in the top panels of Figure 3.1 for k ∈

{1, 3, 6} on a toy example with 10 p-values. Since (3.3) holds simultaneously for all k,
the minimum over k of all V Simes

k (S) is a valid upper bound on the false positives in S
(Blanchard et al., 2020). Therefore, as illustrated in the bottom panel of Figure3.1, the
final post hoc FDP upper bound is V Simes(S)/|S|, where

V Simes(S) = min
1≤k≤|S|

{∑
i∈S

1
{
pi(X) ≥ tSimes

k

}
+ k − 1

}
. (3.4)

As noted by (Blanchard et al., 2020), the bound (3.4) coincides with the bound originally
proposed by (Goeman and Solari, 2011). This can be generalized as follows by replacing
tSimes := (tSimes

k )1≤k≤m with any threshold family t := (tk)1≤k≤kmax corresponding to
Rk = {i : pi ≤ tk}.

The Joint Error Rate (JER) of the threshold family t is defined by (Blanchard et al.,
2020) as:

JER(t) = P
(
∃k ∈ {1, . . . , kmax ∧m0} : p(k:m0) < tk

)
. (3.5)

With this notation, both Equations 3.2 and 3.3 are equivalent to JER(tSimes) ≤ α. By
the interpolation argument outlined above, the bound

V t(S) = min
1≤k≤|S|∧kmax

{∑
i∈S

1 {pi(X) ≥ tk}+ k − 1

}
(3.6)

provides a valid FDP upper bound for any threshold family t such that JER(t) ≤ α (Blan-
chard et al., 2020). This bound can be calculated in O(|S|) for a given set S using
Algorithm 1 in Enjalbert-Courrech and Neuvial, 2022.
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Figure 3.1: Computation of the post hoc bound (3.6) on the number of false
positives, given a set S of 10 p-values and using a JER controlling threshold family. Top
panels: computation of k-th bound Vk(S) =

∑
i∈S 1 {pi(X) ≥ tk}+ k − 1 for 3 values of k,

with horizontal colored lines representing the associated thresholds tk. Bottom panel: The
post hoc upper bound(3.6) corresponds to the minimum of all Vk(S). In this example, the
bound guarantees that the number of false positives in S is at most 5 with probability
> 90%.

3.1.3 Tighter FDP upper bounds via randomization

The Simes inequality (3.2) ensures JER control at level at most α for the threshold family
(αk/m)k. While this control is sharp for independent p-values, it is overly conservative for
positively dependent p-values (Blanchard et al., 2020), leading to conservative FDP bounds.
The first degree of freedom that can be leveraged to obtain tighter bounds for a given α
is to choose the least conservative threshold family among a pre-defined set of families.
In the case of the Simes family, this is done by choosing the threshold family (λk/m)k
associated to the largest λ such that the following inequality (that is, JER control) holds:

P
(
∃k ∈ {1, . . . ,m0} : p(k:m0) <

λk

m

)
≤ α . (3.7)

In order to reach this goal more generally, we consider collections of threshold families
called templates since their introduction in Blanchard et al., 2020. Formally, a template
is set of functions λ 7→ (tk(λ))k such that any fixed value of λ corresponds to a threshold
family. For example, the Simes template corresponds to the choice: tk(λ) = λk/m for all
k = 1 . . .m and λ > 0.

The calibration procedure introduced in Blanchard et al., 2021, 2020 uses randomiza-
tion (see Arlot et al., 2007) to obtain samples from the joint distribution of p-values under
the null hypothesis. As the JER (3.5) is a function of this distribution, these so-called
randomized p-values allow us to select the largest possible λ such that the JER is controlled.
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Algorithm 1 describes how to compute such randomized p-values in the case of one-sample
tests, using sign-flipping (Roche et al., 2007; Arlot et al., 2007). Randomized p-values
can be obtained similarly for two-sample tests, using class label permutations instead of
sign-flipping.

Algorithm 1: Computing randomized p-values using sign-flipping. For a number
B of sign-flips, compute p-values using a one-sample t-test on the flipped data
Xflipped.

1 Function get randomized p values(X,B):
2 n, p← shape(X) // n subjects, p features

3 pval0← zeros(B, p) for b← 1 to B do
4 flip ← diag(draw random vector({−1, 1}n)) // matrix of shape (n, n)

5 Xflipped ← flip ·X
6 pval0[b]← one sample t test(Xflipped, 0) // 0 = null hypothesis

7 end
8 pval0← sort lines(pval0) // Sort each vector of randomized p-values

9 return pval0

Figure 3.2 illustrates the conservativeness of the parametric Simes template on real
data and the benefit yielded by calibration using randomized p-values curves. Choosing
λ > α in (3.4) leads to a less conservative bound. Note that, the more dependent the data,
the more the parametric Simes bound is expected to be conservative, see e.g. Blanchard
et al., 2020. Thus, calibration should be particularly useful for smooth data.
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Figure 3.2: Addressing the conservativeness of the Simes inequality by calibra-
tion. A set of 20 randomized p-value curves are computed on real data (black curves).
Two JER controlling families at level 10% are shown as colored lines. Both of them cross 2
curves (= 10% of all curves) which indeed corresponds to controlling the JER at level 10%.
The uncalibrated Simes family (in red) is conservative since it is possible to choose higher
threshold families that cross the same number of black curves. The calibrated Simes family
(in orange) is the least possible conservative threshold family that crosses at most 2 curves.

While the ARI procedure corresponds to using Simes inequality without calibration1

for JER control, calibration using the Simes template can be considered the state-of-the-art
method for this problem (Blanchard et al., 2021, 2020). The bound obtained from this
calibration procedure is equivalent to the bound considered in Andreella et al., 2020.

3.2 Knockoffs: FDR control in conditional variable selection

Traditional FDR control methods, like the Benjamini-Hochberg procedure, are effective
for marginal testing using standard p-values, but do not support conditional independence
testing. The intuition of testing for conditional independence – rather than for marginal
independence – is to check if the relationship between a covariate and the outcome remains
when controlling for the influence of all other covariates.

Example 2. Is X1 (Cholesterol Level) independent of Y (Incidence of Cardiovascular
Disease) given X2 (Age Group)? Suppose that marginal testing results suggest that

1Rigorously, the ARI bound corresponds to using Simes inequality with the Hommel value h instead of
m.
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Figure 3.3: Illustration of conditional variable selection. Given a genomic dataset
and kidney stones diagnoses (outcome), we aim at finding variables that add information
w.r.t the outcome given all other variables. This problem is challenging since genes are
highly correlated locally. Assessing the added information of specific genes given all others
is crucial to improve the understanding of disease outcomes. Details about this Manhattan
plot are available in Howles et al., 2019.

X1 ̸⊥ Y , i.e. that cholesterol level and cardiovascular disease are linked. When performing
conditional independence testing this relationship might change. For instance, among
individuals under 50, the difference in cardiovascular disease rates between those with
high and normal cholesterol might be negligible. However, among individuals aged 50 and
over, the incidence of cardiovascular disease might be significantly higher for those with
high cholesterol. This would suggest that the observed link between cholesterol levels and
cardiovascular disease is strongly influenced by age, meaning that X1 ⊥ Y |X2. In this
scenario, marginal independence testing suggests a direct link between high cholesterol
levels and the risk of cardiovascular disease. However, conditional independence testing
reveals that age plays a crucial role in this relationship, with older age groups being more
susceptible.

Formally, we test simultaneously for all j ∈ JpK:

H0,j : y ⊥ xj |x−j versus H1,j : y ̸⊥ xj |x−j .

In conditional variable selection, the objective is to assess the value of a particular
variable w.r.t. an outcome given a certain set of other variables (König et al., 2021).
This approach differs markedly from classical marginal inference, where variables are
considered individually in relation to the outcome. With conditional variable selection, we
examine whether a variable remains informative and relevant when considered alongside
other variables. This is particularly crucial when dealing with datasets characterized by
high levels of correlation among variables. Inference in the presence of correlations is
illustrated with a genomics example of Genome-Wide Association Study (GWAS) in Figure
3.3, where correlation between variables is due to a biological phenomenon called linkage
disequilibrium (Uffelmann et al., 2021).

This problem becomes difficult when there is a high level of correlation between variables
on which one aims to perform inference. In machine learning contexts, the difficulty of
identifying features that add unique predictive value when combined with others in large-
correlation contexts has been well identified (Bickel et al., 2009; Mandozzi and Bühlmann,
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2016; Goeman and Bühlmann, 2007; Javanmard and Montanari, 2014). High correlations
are ubiquitous in many application areas, for example when the features of interest are
derived from some biological measurements that inherently have complex dependencies.
For instance, in brain mapping, practitioners may want to detect brain regions that are
relevant for a given cognitive task given the rest of the brain (Weichwald et al., 2015), but
have to deal with the strong dependencies observed in these data (Chevalier et al., 2021).
In genomics, understanding which genes conditionally affect disease outcomes can lead to
more effective disease prevention and intervention strategies (Sesia et al., 2019).

In this section, we describe the core elements of Knockoff inference as defined in Candès
et al., 2018: valid Knockoff variables, statistics and inference. Then, we describe the
classical Gaussian algorithm used to build Knockoffs and possible alternatives.

3.2.1 Knockoff inference

Knockoff inference, introduced in Barber and Candès, 2015; Candès et al., 2018, leverages
noisy duplicates known as knockoff variables which serve as controls in the variable
selection process. A key challenge in this method is to ensure that these knockoff variables
maintain the same correlation structure as the original variables, while being conditionally
independent of the outcome. This is essential to enable meaningful comparisons between
the original variables and their knockoff counterparts, thereby identifying variables that
provide relevant information regarding the outcome. Knockoff variables are defined as
follows:

Definition 6 (Model-X Knockoffs, Candès et al., 2018). For the family of random variables
x = (x1, . . . , xp), Knockoffs are a new family of random variables x̃ = (x̃1, . . . , x̃p) satisfying:

1. for any S ⊂ JpK, (x, x̃)swap(S)
d
= (x, x̃)

2. x̃ ⊥ y|x
where (x, x̃)swap(S) is obtained by swapping the entries xj and x̃j for all j ∈ S.

Exchangeability is the first property of this definition. For any set of swapped
variables, the joint distribution of real and knockoff variables must remain identical to the
original one. In practice, this assumption is hard to enforce and to check especially for
high-dimensional data distributions. A reasonable intuition is that knockoffs are meant to
be used in situations where variables can easily be generated. We discuss existing work on
Knockoff generation in Section 3.2.2. Violations of this assumption can result in invalid
inference and massive false positives inflation – this is studied in depth in Chapter 8.

Statistical inference on Knockoff variables. Once valid knockoffs have been
created, conditional variable selection can be performed. To distinguish variables that
are substantially more important than their corresponding Knockoffs, a machine learning
model is employed to generate importance scores for each variable and its respective
knockoff. This step enables the identification of variables that offer valuable insights
into the outcome, as they exhibit significant disparities in importance compared to their
knockoffs. Quantitatively, this is done by computing Knockoff statistics W = (W1, . . . ,Wp)
that are defined as follows.

Definition 7 (Knockoff Statistic, Candès et al., 2018). A knockoff statistic W =
(W1, . . . ,Wp) is a measure of feature importance that satisfies:
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1. W depends only on X, X̃ and y: W = g(X, X̃,y).

2. Swapping column xj and its knockoff column x̃j switches the sign of Wj :

Wj([X, X̃]swap(S),y) =

{
Wj([X, X̃],y) if j ∈ Sc

−Wj([X, X̃],y) if j ∈ S.

The most commonly used Knockoff statistic is the Lasso-coefficient difference (LCD)
(Weinstein et al., 2020). This statistic is obtained by fitting a Lasso estimator (Tibshirani,
1996) on [X, X̃] ∈ Rn×2p, which yields β̂ ∈ R2p. Then, the Knockoff statistic can be
computed using β̂:

∀j ∈ JpK, Wj = |β̂j | − |β̂j+p|.

This coefficient summarizes the importance of the original jth variable relative to its own
Knockoff: Wj > 0 indicates that the original variable is more important for fitting y than
the Knockoff variable, meaning that the jth variable is likely relevant. Conversely, Wj < 0
indicates that the jth variable is probably irrelevant. We thus wish to select variables
corresponding to large and positive Wj . Formally, the rejection set Ŝ of the Knockoffs
method can be written Ŝ = {j : Wj > Tq}, where:

Tq = min

{
t > 0 :

1 + # {j : Wj ⩽ −t}
# {j : Wj ⩾ t} ⩽ q

}
.

This definition of Tq ensures that the FDR is controlled at level q (Candès et al., 2018).
Alternatively, inference can be performed using π-statistics, which quantify the evidence
against each variable:

πj =

{
1+|{k:Wk≤−Wj}|

p if Wj > 0

1 if Wj ≤ 0.
(3.8)

As noted by Nguyen et al., 2020, the vanilla Knockoffs procedure of Candès et al., 2018
is equivalent to using the Benjamini and Hochberg, 1995 procedure at level q on the vector
of π-statistics (πj)j∈JpK. The complete procedure is summarized in Figure 3.4.

3.2.2 Knockoff generation methods

Gaussian Knockoffs

Candès et al., 2018 have built Knockoffs that are provably exchangeable for Gaussian data.
Provided an observed X with X ∼ N (0,Σ), we sample from

X̃ | X d
= N (µ,V),

where
µ = X −XΣ−1 diag(s)

V = 2diag(s)− diag(s)Σ−1 diag(s)

With diag(s) any diagonal matrix. Then, if diag(s) is chosen such that G is positive
semidefinite, we obtain valid Knockoffs since:

[X, X̃] ∼ N (0,G), where G =

(
Σ Σ− diag(s)

Σ− diag(s) Σ

)
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Figure 3.4: Conditional variable selection via Knockoff variables. Knockoff variables
are noisy copies of the original variables that are used as controls for variable selection
(Panel a). Conditionally on the original variables, knockoffs are independent of the outcome
y. Importance scores for each variable are computed using the sensitivity estimate from
machine learning model – typically, the corresponding coefficient of a Lasso fit. The
Knockoff statistic is defined as the difference of modulus between the score associated with
the real variable and its Knockoff counterpart (Panel b). Then, π-statistics are computed
to rank variables and to perform inference (Panel c).

A major challenge is that the covariance matrix Σ is unknown in general and has to be
estimated via shrinkage procedures such as Ledoit-Wolf shrinkage (Ledoit and Wolf, 2003)
or Graphical Lasso (Friedman et al., 2008). Given a correctly estimated Σ, examples of
valid s include the equicorrelated construction sEQj = 2λmin(Σ) ∧ 1 for all j.

In practice, testing exchangeability for non-Gaussian data is challenging. In the case
of Gaussian data, since the actual covariance is not known but has to be estimated,
exchangeability depends directly on the accuracy of the covariance estimate. Even if the
data is Gaussian, its covariance matrix may be hard to estimate properly in high-dimensional
regimes (Stein et al., 1972; Fukunaga, 2013). Indeed, such covariance estimation has to
draw a difficult compromise between data fit and positive definiteness, along sparsity of the
inverse covariance estimation from the Graphical Lasso. L2 shrinkage covariance estimation
(Ledoit and Wolf, 2003) on the other hand, is known to lead to excessive bias (Belilovsky
et al., 2017). In addition to the sheer computation cost, hyperparameter setting for the
Graphical Lasso is challenging, and leads to difficult and costly parameter selection.

Existing alternatives to Gaussian Knockoffs

Other available methods to build Knockoffs include Monte-Carlo based methods (Sesia
et al., 2019; Bates et al., 2021). These procedures focus on discrete distributions as in
the case of Genome-Wide Association Studies (GWAS; Consortium et al., 2010). In the
continuous setting, the method proposed in Bates et al., 2021 is equivalent to Gaussian
Knockoffs.

Recent machine learning techniques such as deep learning have also been used to
apprehend complex data dependence structures in the context of Knockoffs. Romano et al.,
2020 propose using Deep Neural networks to build Knockoffs using a target covariance
matrix estimated from the data as in the Gaussian algorithm. Additionally, the proposed
algorithm aims at minimizing the correlation between original variables and Knockoffs to
maximize power. Using similar ideas, Zhu et al., 2021; Liu and Zheng, 2018 propose using a
Variational Auto-Encoders (VAE) to build Knockoffs as VAEs allow learning and sampling
from complex data distributions. However, in the context of high-dimensional variable
selection, the number of samples available is in most cases insufficient to properly train a
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Deep Learning model. A limitation of these approaches is that they offer no theoretical
guarantee on Knockoffs exchangeability.

In this chapter, we have explored two methods for controlling false discoveries in
high-dimensional statistical settings: the Knockoffs framework and the Joint Error Rate
(JER) framework. Through the examination of the Knockoffs method, we have learned
that while it provides FDR control by generating artificial variables that mimic the cor-
relation structure of the original covariates, this approach inherently involves a degree
of randomness due to the random generation process of knockoffs. This randomness can
lead to variability in results, which is an important concern for practitioners. Additionally,
while Knockoffs are effective at controlling the FDR, they do not directly control the False
Discovery Proportion (FDP). In certain runs of the procedure, the achieved FDP can be
much higher than the announced control (FDR). We also discussed the common use of
Gaussian Knockoffs. While efficient in many settings, this algorithm can fail in common
cases: for instance, when the covariance matrix is poorly estimated or when the data are
non-Gaussian. This is studied thoroughly in Chapter 8.

Moving forward, several questions need to be addressed. How can the randomness
inherent in the Knockoffs generation process be mitigated to ensure more stable results? Is
it possible to extend the Knockoffs framework to control the FDP directly, providing a
more precise error control? Furthermore, how can we improve the robustness of knockoffs,
particularly in non-Gaussian settings? These questions will be addressed in Chapters 7
and 8.



Chapter 4

Conformal prediction

Summary. In this chapter, we turn to conformal prediction, a method for quantifying
predictive uncertainty in supervised learning. We begin by outlining the classical
framework of prediction, highlighting the challenges associated with uncertainty
quantification in traditional predictive models. Building on this foundation, we
introduce conformal prediction, a versatile technique that provides finite-sample
guarantees for predictive intervals. We focus on Split Conformal prediction, an
extension of the classical approach that leverages data splitting to ensure computational
efficiency while maintaining rigorous coverage properties. In this thesis, we will use
Split Conformal prediction and improve upon its standard guarantees when considering
the case of multiple test points.

Contents
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4.1 Supervised learning and predictive uncertainty

The goal of supervised learning is to predict an outcome of interest Y ∈ Y given some
features X ∈ X . In this work, we focus on regression problems, meaning that Y is
continuous. Predicting Y from X amounts to building a function f called a predictor such
that f(X) ”is close to” Y . The quality of a predictor is measured using a loss function,
defined as follows:

Definition 8 (Loss function). A loss function ℓ : Y ×Y 7→ R+ is a function that quantifies
the distance between two points (y, y′) of the target space Y. A typical loss function used
in regression is the squared Euclidean distance ℓ (y, y′) = (y − y′)2.

Definition 9 (ℓ-risk). The ℓ-risk of a predictor f is the expected value of the loss between
f(X) and Y :

Rℓ(f) = E[ℓ(Y, f(X))].

Intuitively, we seek to build a predictor f that achieves optimality in the sense of
minimizing the risk Rℓ. In practice, computing E[ℓ(Y, f(X))] is impossible – we only
have access to n samples (Xi, Yi)

n
i=1 ∈ (X × Y)n. We can leverage this dataset to learn a

predictor which minimizes the empirical risk, defined as follows:

32
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Definition 10 (Empirical ℓ-risk). The ℓ-risk of a predictor f is the empirical mean of the
loss between predictions f(Xi) and true outcomes Yi:

R̂n,ℓ(f) =
1

n

n∑
i=1

ℓ (Yi, f (Xi)) .

Modern machine learning models achieve highly accurate predictions by minimizing the
empirical ℓ-risk using vast amounts of data. These advancements have enabled machine
learning systems to achieve unprecedented levels of performance across various applications,
from image recognition to natural language processing and beyond. However, as these
models are increasingly deployed in critical decision-making processes—such as healthcare,
finance, and autonomous systems—the stakes have risen dramatically. In these high-stakes
environments, the cost of incorrect predictions can be substantial, leading to potentially
severe consequences.

Thus, it is not sufficient to rely solely on the accuracy of predictions; we must also
understand the level of confidence we can have in these predictions. This is where predic-
tive uncertainty (Smith, 2013; Abdar et al., 2021) becomes crucial. By quantifying the
uncertainty associated with a prediction, we can make more informed decisions, better
manage risks, and avoid overconfidence in the model’s outputs.

Conformal prediction (Saunders et al., 1999; Vovk et al., 1999, 2005; Gammerman
and Vovk, 2007; Shafer and Vovk, 2008; Lei and Wasserman, 2014; Sadinle et al., 2019;
Foygel Barber et al., 2021) provides a mathematically grounded approach to addressing this
need for predictive uncertainty. Unlike traditional methods that offer only point estimates,
conformal prediction constructs prediction intervals or sets that are guaranteed to contain
the true outcome with a specified probability. We now turn to describing precisely Split
Conformal Prediction (SCP) which we will use in this thesis.

4.2 Split Conformal prediction

Split conformal prediction offers a simple and flexible approach to constructing reliable
prediction intervals. This method offers the desired guarantee in a model-agnostic way
at the cost of splitting the training data. The data is split into Dtrain,Dcal such that
Dtrain ∩ Dcal = ∅. For the sake of simplicity, we slightly abuse notation and assume that
n calibration samples are available and that we work in a regression framework. Define
conformity scores Si = |Yi − µ̂ (Xi)| where µ̂(x) is a point prediction of Yi given Xi = x
learnt on Dtrain.

The hypothesis underlying split conformal prediction is that the calibration set provides
a realistic measure of the trained model’s performance. Furthermore, evaluating conformity
scores allows making no assumptions about data distributions or model characteristics,
aside from scores’ exchangeability. To obtain valid intervals, conformity scores have to be
exchangeable across the calibration set and test point. Formally, exchangeability is defined
as follows:

Assumption 1 (Conformity scores exchangeability, Vovk et al., 2005). Denote Sn+1 the
symmetric group of J1, n+ 1K. We assume that the conformity scores (S1, . . . , Sn+1) are
exchangeable, i.e. that:

∀τ ∈ Sn+1, (S1, . . . , Sn+1)
d
= (Sτ(1), . . . , Sτ(n+1))
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This assumption is less stringent than imposing that test and calibration samples are
i.i.d. – however, it is hard to check in practice and many real world applications involve
non-stationary behavior of conformity scores (Gibbs and Candes, 2021). Achieving coverage
beyond exchangeability has been the focus of much effort in the conformal prediction
community (Tibshirani et al., 2019; Gibbs and Candes, 2021; Barber et al., 2023; Cauchois
et al., 2024).

In this thesis, we focus on standard SCP. Provided that exchangeability holds, split
conformal yields the following valid interval:

Ĉα =
[
µ̂ (Xn+1)± S(⌈(n+1)(1−α)⌉)

]
.
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Figure 4.1: Illustration of the Split Conformal Prediction procedure. First, split
the dataset into three separate datasets: training, calibration and test. Fit a predictor µ̂
on the training set – then, use it to formulate predictions on the calibration set. From
these predictions, get the residuals and compute their 1 − α quantile. On the test set,
use the predictor µ̂ and build the confidence interval Ĉα =

[
µ̂ (Xn+1)± S(⌈(n+1)(1−α)⌉)

]
.

Figure from Zaffran, 2024.

This construction is detailed and thoroughly studied in Papadopoulos et al., 2002; Lei
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et al., 2018. Alternatively, this interval can also be obtained by thresholding a so-called
conformal p-value (Vovk et al., 2005; Lei et al., 2018). This p-value is denoted pn+1 and
defined as follows:

Definition 11 (Conformal p-value,Vovk et al., 2005). Given conformity scores (Si)i∈Jn+1K
the conformal p-value of test point (Xn+1, Yn+1) is defined:

pn+1 :=
1

n+ 1

(
1 +

n∑
i=1

1 {Sn+1 ≤ Si}
)

Intuitively, this p-value quantifies how unlikely the observed conformity score is – under
exchangeability. The scores computed on the calibration set serve as a reference to compute
this likelihood. When building a confidence interval, we wish to include all possible values
of y of high likelihood and exclude the values of y of low likelihood. This idea can be used
to obtain the split conformal interval Ĉα:

Remark 2. Split Conformal prediction intervals can equivalently be obtained by thresholding
the conformal p-value, i.e.:

Ĉα =
[
µ̂ (Xn+1)± S(⌈(n+1)(1−α)⌉)

]
= {pn+1 > α}

In this chapter, we have reviewed the framework of conformal prediction for assessing
predictive uncertainty in supervised learning. We began by examining the classical approach
to prediction via empirical risk minimization. We then explored conformal prediction,
focusing on its ability to provide valid prediction intervals with finite-sample guarantees.
Special attention was given to Split Conformal prediction, which offers a computationally
efficient method while preserving the coverage properties essential for practical applications.

A question that remains open in the Split Conformal framework is the ability to control
error rates when dealing with multiple points at the same time in the test set. We tackle
this problem in Chapter 9.



Chapter 5

Neuroimaging data analysis

Summary. In this chapter, we give a brief overview of modern neuroimaging data
analysis. Neuroimaging data analysis plays a major role in our understanding of
the brain, and is also used for clinical diagnosis and neurosurgery. We focus on
functional Magnetic Resonance Imaging (fMRI), a non-invasive modality which is
widely used in cognitive neuroscience to understand how brain activity relates to
functions such as memory, attention, emotion and many other domains of cognition.
We first review the basics of acquisition and preprocessing of fMRI data before moving
to statistical analysis. This is first done by obtaining statistical maps, that display
the level of activity observed for different stimuli presented to subjects. Then, these
statistical maps are combined in order to draw meaningful conclusions at the population
scale. Central to this analysis is statistical hypothesis testing, which ensures that
the interpretations drawn from the data are reliable and valid. Given the complexity
and high dimensionality of neuroimaging data, addressing the risk of false positives is
essential. This is where methods for multiple comparisons come into play, to provide
error control when numerous statistical tests are conducted simultaneously; many
existing frameworks aim at tackling this issue. Designing reliable statistical methods
for fMRI inference is one of the main motivations of this thesis, and most of the
numerical experiments of the contributions have been performed on fMRI data.
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5.1 Functional MRI data

Functional Magnetic Resonance Imaging (fMRI) is a key tool in neuroscience due to its
ability to non-invasively monitor brain activity by detecting blood oxygen level-dependent
(BOLD) signals, which reflect changes in blood flow and oxygenation linked to neural
activity (Logothetis, 2008). This capability makes fMRI a valuable resource for exploring
the human brain’s functional organization and understanding the neural mechanisms
underlying various cognitive and behavioral processes.

37



CHAPTER 5. NEUROIMAGING DATA ANALYSIS 38

In cognitive neuroscience, fMRI is widely used to investigate the neural basis of func-
tions such as memory, language, perception, and decision-making. It enables researchers to
identify the brain regions involved in specific tasks, providing insights into the functional
architecture and connectivity of the brain (Cabeza and Nyberg, 2000; Smith et al., 2009).
This information is crucial for advancing our understanding of how different brain areas
work together to support complex cognitive functions and behaviors.

In clinical applications, particularly neurosurgery, fMRI plays a critical role in pre-
operative planning. Surgeons use fMRI data to localize essential brain areas involved in
functions like speech, movement, and sensation, which helps to minimize the risk of damage
to these regions during surgery (Hirsch et al., 2000). This approach enhances surgical
outcomes by preserving critical cognitive and motor functions, making fMRI a standard
tool in modern neurosurgical practice.

Additionally, fMRI is a valuable tool in population studies, providing insights into how
brain function varies across different demographic groups, such as in aging populations or
individuals with genetic predispositions. It is also used to investigate the neural correlates of
psychiatric and neurological disorders, including depression, schizophrenia, and Alzheimer’s
disease, aiding in the identification of biomarkers and contributing to the development of
targeted treatments (Paus, 2010; Matthews et al., 2006).

Acquisition. FMRI relies on the well-established observation that increased neural
activity causes changes in metabolism and blood flow, leading to variations in the con-
centrations of oxyhaemoglobin (oxygen-carrying red blood cells) and deoxyhaemoglobin
(oxygen-depleted red blood cells). These two forms of haemoglobin have distinct magnetic
properties (diamagnetic and paramagnetic, respectively), that affect the local magnetic
field differently. The MRI scanner detects these changes, known as the “Blood Oxygen
Level Dependent” (BOLD) signal, to record brain activity.

During fMRI sessions, brain activity is measured over several minutes while participants
perform cognitive tasks, with images typically acquired every 1-3 seconds (Repetition time,
TR). A 3D brain image is composed of voxels (3D pixels), and the sequence of images
during a session provides a time series of MRI signals for each voxel, sampled at every time
repetition.

Preprocessing. Before analyzing fMRI images, preprocessing steps are necessary to
ensure the accuracy and reliability of subsequent analyses. These steps include for instance
motion correction, since small head movements by the subject during scanning can cause
significant distortions in the data. Another common preprocessing step is artifact removal,
since scanner issues, hardware malfunctions may generate artifacts that alter data. A
necessary step to enable group comparisons is spatial normalization. Spatial normalization
in fMRI is the process of aligning individual brain images to a common anatomical space
or template to compensate for anatomical variability. While not a focus of this thesis,
preprocessing is of crucial importance to obtain reliable downstream inference.
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5.2 Statistical analysis of fMRI data

5.2.1 Obtaining statistical maps

Once fMRI data have been acquired and preprocessed, statistical analysis can be performed.
One of the most commonly used statistical approaches in single subject fMRI analysis is
the General Linear Model (GLM). A simple GLM can be written:

XfMRI = Xdβ + ϵ,

where XfMRI ∈ Rt×p is the observed fMRI data reorganized as a matrix with t time steps
in rows and p voxels in columns, Xd ∈ Rt×r the design matrix containing r regressors across
t time steps (e.g., task conditions or experimental variables) and β ∈ Rr×p the matrix of
regression coefficients that relates the observed signal to the r regressors and the activity
of the p voxels of the brain. ϵ ∈ Rt×p models noise.

The β matrix can be estimated via ordinary least-squares or more complex techniques
accounting for non-i.i.d. noise. Once this matrix is computed, contrast maps are derived
using statistical testing. A contrast represents the difference between two conditions
– contrast maps aim at determining whether the beta coefficient of certain voxels are
significantly different for one type of stimulus compared to another. T -tests are commonly
used, and the resulting t-statistics can be converted to p-values or z-values. Obtaining
contrast maps completes the first-level analysis – an example of such analysis is displayed
in Figure 5.1.
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Figure 5.1: First-level analysis on 16 subjects for a motor contrast. Each of
these 16 contrast maps was computed using a GLM fitted on the fMRI images of each
subject. The maps displayed correspond to the ”left-right button press” contrast. Fig-
ure from https://nilearn.github.io/stable/auto_examples/05_glm_second_level/

plot_second_level_one_sample_test.html.

At this level of analysis, fMRI datasets are reduced to a set of volumes that represent
BOLD signal differences between user-chosen contrasts. These images are then typically
used in a second-level analysis. In this thesis, we use this type of input to draw conclusions
at the population level.

5.2.2 Population-level analysis

Population-level analysis in fMRI is used to make group-level inferences by combining
data from individual subjects. First-level contrast maps from all subjects are combined
to perform statistical tests, allowing researchers to assess whether observed effects are
consistent across the group. This approach enables the detection of group-level effects,
such as the average response to a task or differences between groups, and accounts for

https://nilearn.github.io/stable/auto_examples/05_glm_second_level/plot_second_level_one_sample_test.html
https://nilearn.github.io/stable/auto_examples/05_glm_second_level/plot_second_level_one_sample_test.html
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variability between subjects, making the results generalizable to the broader population
(Worsley and Friston, 1995; Friston et al., 1996; Penny et al., 2003; Mumford and Nichols,
2009; Poldrack et al., 2011).

In practice, say that we are interested in comparing two contrasts using the fMRI
images of n participants. Denoting X ∈ Rn×p the aggregated contrast maps, Y ∈ {−1, 1}n
the two contrasts, we seek to infer which voxels Xj are associated to the task at hand. In
words, we wish to recover the voxels that exhibit a significantly different activation when
comparing the two contrasts of interest. Let us formalise this problem using statistical
hypothesis testing – we test simultaneously for all voxels Xj whether or not they are
independent of the outcome y:

H0,j : Y ⊥ Xj versus H1,j : Y ̸⊥ Xj .

This is a severe multiple testing problem, as activation tests are performed on up to
hundreds of thousands of voxels simultaneously. Many methods have been developed to
address this inference problem using different statistical frameworks – we briefly review
them next.

Mass univariate inference. The most straightforward approach to solving this
inference problem is to compute parametric p-values for all voxels marginally. This results
in a vector of p-values which can be used for inference. Obviously, since all hypotheses are
tested simultaneously, multiplicity must be accounted for as explained in Chapter 2 using
e.g. FDR control (Genovese et al., 2002). Alternatively, using the Bonferroni correction is
also possible to obtain FWER control (Nichols and Hayasaka, 2003; Worsley, 2003).

While mass univariate approaches are theoretically grounded, they can be misused to
produce invalid inference. A first common pitfall is that selective inference is not supported:
if one were to apply e.g. the BH procedure to regions selected after having seen the data,
massive false positive inflation may ensue (Kriegeskorte et al., 2009; Nieuwenhuis et al.,
2011). This is a sizable issue since selecting brain regions (post hoc or not ? it is in general
impossible to know) is common practice in fMRI.

Under the assumption that fMRI images are smooth 3D Gaussians, Random Field
Theory (RFT; Adler, 2010) provides an elegant framework to study the distribution of
extreme values in fMRI images. This can be done at the voxel-level or at the cluster level.
RFT has been applied to fMRI images, yielding voxel-wise FWER controlling procedures
(Friston et al., 1991; Worsley et al., 1992; Worsley, 1994).

Nonparametric approaches. Nonparametric approaches estimate statistical proper-
ties using the data itself rather than relying on parametric assumptions such as Gaussianity.
Notably, permutation tests involve shuffling data labels or residuals under the null hy-
pothesis to generate the null distribution of the largest test statistic – or equivalently
smallest p-value, see e.g. Westfall and Young, 1993. This provides a robust way to control
the family-wise error rate across thousands of brain voxels without assuming normality
(Winkler et al., 2014). Permutations can also be used to obtain valid cluster-level inference
(Smith and Nichols, 2009).

Cluster-level inference. An alternative type of inference to increase statistical power
is to perform inference at cluster-level, rather than voxel-level (Poline and Mazoyer, 1993),
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because brain activation is organised in compact regions (clusters) in the brain volume.
Examples of voxel-level and cluster-level inference are shown in Figure 5.2. This type of
inference tests whether regions above a given threshold are larger than expected under the
null hypothesis, or whether the total amount of signal in these regions (Smith and Nichols,
2009) exceeds its expected value under a null distribution. However, this approach suffers
from several problems (Eklund et al., 2016) such as the arbitrary choice of cluster-forming
threshold (Woo et al., 2014), or the difficulty to establish a null distribution for cluster
size and aggregated signal. Moreover, the null hypothesis corresponding to this procedure
is global, meaning that there no signal across the whole brain in this regime. This entails
a spatial specificity paradox: rejecting the global null hypothesis amounts to declaring
that at least one voxel is activated. Therefore, when detecting larger clusters – which
should indicate stronger signal – the spatial information about the signal therein worsens.

Conditional approaches. Conditional approaches aim at establishing that certain
brain regions provide unique information on behavior. This is a hard problem as activation
in certain regions may be better explained by correlation to a nearby region recruited in
the cognitive process at hand (Weichwald et al., 2015). This is related to the conditional
independence testing framework explained in Section 3.2. Existing methods rely on
Knockoffs (Nguyen et al., 2019) or the Desparsified Lasso (Chevalier et al., 2021), a
statistical method introduced in Zhang and Zhang, 2014; Van de Geer et al., 2014 which
generalizes least-squares-based inference to high-dimensional settings. Chevalier et al.,
2021, also relies on dimension reduction through clustering and randomization to stabilize
the outcome.



CHAPTER 5. NEUROIMAGING DATA ANALYSIS 43

L R

0

0.67

1.3

2

2.7
L R

0

0.67

1.3

2

2.7

L R

0

0.67

1.3

2

2.7
L R

0

0.67

1.3

2

2.7

Parametric Test
Permutation Test

(Voxel-Level Error Control)

Permutation Test
(Cluster-Size Error Control)

Permutation Test
(Cluster-Mass Error Control)

Group left-right button press
(negative log10 p-values)

Figure 5.2: Second-level analysis combining 16 subjects for a motor con-
trast. The 16 contrast maps of Figure 5.1 are aggregated and used for statistical
testing across all subjects using contrast ”left-right button press”. Both cluster-level
and voxel-level methods are showcased, resulting in different selected voxels. Fig-
ure from https://nilearn.github.io/stable/auto_examples/05_glm_second_level/

plot_second_level_one_sample_test.html.

https://nilearn.github.io/stable/auto_examples/05_glm_second_level/plot_second_level_one_sample_test.html
https://nilearn.github.io/stable/auto_examples/05_glm_second_level/plot_second_level_one_sample_test.html


Part II

Contributions

44



Chapter 6

Notip: Non-parametric True
Discovery Proportion control for
brain imaging

Summary. Cluster-level inference procedures are widely used for brain mapping.
These methods compare the size of clusters obtained by thresholding brain maps to
an upper bound under the global null hypothesis, computed using Random Field
Theory or permutations. However, the guarantees obtained by this type of inference
- i.e. at least one voxel is truly activated in the cluster - are not informative with
regards to the strength of the signal therein. There is thus a need for methods to
assess the amount of signal within clusters; yet such methods have to take into account
that clusters are defined based on the data, which creates circularity in the inference
scheme. This has motivated the use of post hoc estimates that allow statistically
valid estimation of the proportion of activated voxels in clusters. In the context of
fMRI data, the All-Resolutions Inference framework introduced in Rosenblatt et al.,
2018 provides post hoc estimates of the proportion of activated voxels. However, this
method relies on parametric threshold families, which results in conservative inference.
In this chapter, we leverage randomization methods to adapt to data characteristics
and obtain tighter false discovery control. We obtain Notip, for Non-parametric
True Discovery Proportion control: a powerful, non-parametric method that yields
statistically valid guarantees on the proportion of activated voxels in data-derived
clusters. Numerical experiments demonstrate substantial gains in number of detections
compared with state-of-the-art methods on 36 fMRI datasets. The conditions under
which the proposed method brings benefits are also discussed.
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In this chapter, we introduce the Notip procedure, a post hoc inference method with
FDP control that adapts non-parametrically to data correlation . The use of non-parametric
procedures also renders the inference robust to mis-specification of the statistics distribution.
We study whether such a procedure can yield less conservative inference while offering
the same statistical guarantees. We perform extensive experiments on dozens of fMRI
datasets to compare the number of detections obtained by this approach with that of
existing methods.

The chapter is organized as follows. The main contribution is the Notip method
presented in Section 6.1: a nonparametric data-driven approach that relies on the JER
framework to obtain sharper post hoc FDP control. Numerical experiments and results on
fMRI data reported in Sections 6.2 and 6.3 show that substantial gains in the number
of detections are obtained from the proposed method, while controlling the FDP of
the detected regions at a fixed level. Finally, we discuss the benefits of our proposed
methodology, and outline some possible limitations.

6.1 Data-driven templates and Notip procedure

The calibrated Simes family can lead to tighter post hoc bounds, yet it still relies on the
Simes template, which is linear in k, as illustrated in Figure 3.2. Instead of only optimising
λ for a given template shape (e.g. a linear shape for the Simes template), the second degree
of freedom that can be exploited to achieve better statistical power while still controlling
the JER is to learn the template function, or, equivalently, its shape when
displayed as a graph Figure 3.2 illustrates that for small k, permuted p-value curves are
not exactly linear. This suggests that using a non-linear template shape could be relevant
for fMRI data. Several other parametric templates are considered in Andreella et al., 2020,
but the authors report that none of these attempts outperformed the Simes template. An
ideal template should approximately reproduce the shape of randomized p-values curves
computed from real data. Therefore, we propose to learn a template directly from the data.

A related idea has been explored in Meinshausen, 2006. However, since the method
proposed in that paper does not distinguish between the learning and calibration steps, it



CHAPTER 6. NOTIP: NON-PARAMETRIC TDP CONTROL 47

Null p-values

30% quantile
50% quantile

10% quantile

Null p-values

Target JER=10%
 ? largest k s.t. 
   t  below 90% 

of all curves
 

Choosing a threshold family on inference data
Computing quantile curves Using quantile curves as a template

p
-v

a
lu

e
s

JER = 60%

JER = 10%

k

JER = 20%

= set of threshold familieson training data

k k k
0

1

1 m 1 m
0

1

1 m
0

1

Figure 6.1: Learning a template from training data and using this template for
calibration on inference data. Left panel: quantiles of randomized p-value curves
are computed on training data. Middle panel: the resulting quantile curves are used as
a template (the so-called learned template). Right panel: calibration is performed on
inference data using the learned template. Notice that learned templates do not have a
parametric shape (contrary e.g. to the Simes template), but follow the shape of sorted null
p-values.

suffers from circularity biases, as noted by (Blanchard et al., 2020, Remark 5.3). Indeed,
in the JER framework, the template has to be fixed a priori.
In order to address this issue, we propose to learn a template from an fMRI dataset that
is independent from the datasets on which inference is performed. First, we compute B
randomized p-value curves on training data using Algorithm 1 and extract quantile curves
tb = (tbk)k for b = 1 . . . B, as shown in the left panel of Fig. 6.1. These quantile curves
are then viewed as a set of B sorted threshold families (middle panel), which is called a
learned template. Note that it is indeed a template in the sense of Blanchard et al.,
2020, that has been discretized over a set of B values.

After obtaining a learned template, calibration is performed on the inference data (i.e.
any inference contrast) as would be done with a parametric template. This is shown in
the right panel of Figure 6.1 and in Section 3.1. To perform calibration, we evaluate the
empirical JER of all threshold families of the learned template. Then, we select the largest
b ∈ {1, . . . B} such that JER control holds on inference data for the threshold family tb.
To avoid evaluating the JER of all threshold families, this search is done by dichotomy
in practice. The resulting method is called “Notip” for Non-parametric true discovery
proportion. As described above, Notip requires a training dataset in order to learn the
template. Note that learned templates do not have a parametric shape, but follow the
shape of randomized p-value curves.

The calibration process depends on the parameter kmax, whose choice induces the
following trade-off. On the one hand, since JER((tbk)1≤k≤K) ≤ JER((tbk)1≤k≤K′) for all
K ≤ K ′, choosing a smaller kmax allows calibration to choose a largest value of b in the
dichotomy, leading to a less conservative family. On the other hand, a larger value for
kmax leads to more thresholds considered in the min in the bound written in Equation 3.6,
and hence to a possibly tighter bound. Guidelines to choose kmax as well as an informed
default choice for fMRI data are given in Section 6.2.1.

The complete procedure is summarized in Algorithm 2, with lines 1-7 corresponding
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to the training step and lines 8-20 corresponding to the inference step. The latter step
requires the computation of the empirical JER for a given family, which is described in
Algorithm 3.

Algorithm 2: Learning template on training data and calibrating on
inference data. A template is learnt by computing permuted p-values and
extracting quantile curves. Then, this template is used to perform calibration on
inference data by choosing the least conservative family of the learned template
that empirically controls the JER.

1 Function
learn template and calibrate(Xtrain, Xinfer, Btrain, Binfer, α, kmax):

2 pvalstrain ← get randomized p values(Xtrain, Btrain)
3 // array of shape (Btrain, nvoxels) // lines of pvalstrain are sorted

4 for b← 1 to Btrain do
5 learned templates[b] ← quantiles(pvalstrain, b/Btrain)
6 end
7 pvalsinfer ← get randomized p values(Xinfer, Binfer)

8 // vector of shape (Binfer, nvoxels) for b← 1 to Btrain do

9 ĴERb ← estimate jer(pvalsinfer, learned templates[b], kmax)

10 end

11 bcalibrated ← max{b ∈ [1, Btrain] s.t. ĴERb ≤ α}
12 // Choose largest b such that JER control holds

13 if bcalibrated = 0 then
14 return Calibrated Simes
15 // No suitable learned template found

16 end
17 chosen template ← learned templates[bcalibrated]
18 return chosen template

Algorithm 3: JER estimation on randomized p-values. The empirical
JER is computed for a given template and a matrix of permuted p-values. This
computation is directly based on Equation 3.5.

1 Function estimate jer(pvals, thr, kmax):
2 (Binfer, p) ← shape(pvals)

3 ĴER← 0
4 for b′ ← 1 to Binfer do
5 for i← 1 to kmax do
6 diff[i] ← pvals[b′][i] - thr[i] // Check JER control at rank i
7 end
8 if min(diff) < 0 then

9 ĴER← ĴER+ 1/Binfer // Increment risk if JER control event

is violated
10 end

11 end

12 return ĴER

Once Algorithm 2 has been run, according to (Blanchard et al., 2020, 2021), the bound
defined in Equation 3.6 is a valid FDP upper bound. This bound can be computed on
any subset of interest S in linear time in |S| using Algorithm 1 in Enjalbert-Courrech and
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Neuvial, 2022.

6.2 Experiments

6.2.1 Choice of kmax

The post hoc bound (3.6) is valid for any value of the parameter kmax, provided that this
parameter is chosen a priori and not after data analysis (Blanchard et al., 2020). While
some guidelines are given in the Discussion of Blanchard et al., 2020, the choice of kmax

remains an open question. Equation 3.6 may be written as follows:

V (S) = min
1≤k≤|S|∧kmax

Vk(S) , (6.1)

where Vk(S) =
∑

i∈S 1 {pi(X) ≥ tk}+ k − 1. Each Vk(S) is itself an upper bound on the
number of false positives in S. The choice of kmax implies a tradeoff. On the one hand, large
values of kmax can seem advantageous because the minimum in (6.1) is taken on a larger
set of values of k. On the other hand, when the thresholds tk are obtained by calibration —
as in Blanchard et al., 2020 or in the present chapter, a smaller kmax leads to larger values
of (tk) for a given k, and thus to a tighter bound Vk. Noting that Vk(S) ≥ k− 1, the values
of k such that k > q|S| will yield Vk(S)/|S| ≥ q for any S. Therefore, these values of k are
useless for obtaining a FDP bound less than q. This motivates a choice of kmax of the form

kmax = qmax|Smax| , (6.2)

where qmax is the maximum proportion of false positives that can be tolerated by users
and |Smax| is the size of the largest set of voxels of interest.

In practice, the regions of interest are those in which a high proportion of activated
voxels can be guaranteed. To be conservative, we set qmax = 0.5, which simply means that
we are not interested in guaranteeing that the FDP is less than q for q ≥ 0.5. In the case
of fMRI, one is generally interested in sparse activation extent, as widespread effects are
by definition not informative on the specific involvement of brain regions in the contrast of
interest. As a default choice, we observe that most fMRI contrasts studied in the literature
lead to less of 5% of the image domain to be declared activate, which amounts to setting
|Smax| = 0.05m.

Finally, a reasonable choice seems to be kmax = 0.5 ∗ 0.05m = 0.025m. In the context
of the experiments we described where m ≃ 50, 000, we settle for simplicity on using
kmax = 0.02m = 1, 000. This is the default value of kmax in the implementation we propose.
To illustrate the effect of the choice of kmax we display the variation of the number of
detections of all three methods on 36 fMRI datasets across 9 different inference settings
for varying kmax in Figure 6.2. Except for extremely small or large values of kmax Notip is
at worst slightly sub-optimal and kmax = 0.02m is a safe default.

As noted in Blanchard et al., 2020, no choice of kmax uniformly outperforms others.
For example, the above choice, which is motivated by the prior : ”|Smax| = 0.05m”, may
be poorly adapted in situations where very large regions are considered.
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Figure 6.2: Comparison of the number of detections between learned template
and calibrated Simes for various kmax values with 5% error bands in log-log scale.
Notice that the chosen kmax largely influences the maximum size of the FDP controlling
region for the learned template.



CHAPTER 6. NOTIP: NON-PARAMETRIC TDP CONTROL 51

6.2.2 Data

FMRI data

To investigate the potential gain in number of detections yielded by using data-driven
templates, we performed experiments on an fMRI dataset, collection 1952 (Varoquaux et al.,
2018) of the Neurovault database (http://neurovault.org/collections/1952). This
dataset is an aggregation of 20 different fMRI studies, consisting of statistical maps obtained
at the individual level for a large set of contrasts. These images have been preprocessed
using the procedure described in Varoquaux et al., 2018. In particular, they have been
spatially normalized to MNI space using SPM12 software, and resampled to 3mm isotropic
resolution. In the present case, the inference question concerns one-sample tests in group
analyses, i.e. identifying what brain regions show a significant increase of activity for the
contrast of interest, as opposed to the baseline, across participants. The group-level statis-
tic and associated p-value are obtained through a one-sample t-test on the individual z-maps.

Collection 1952 only contains elementary ’versus baseline’ contrasts, with a massive
amount of non-specific signal. In order to obtain meaningful inference examples, we paired
them with control contrasts. A typical interesting contrast pair is ”words vs baseline” vs
”face vs baseline”; by subtracting these two contrasts, we obtain the more relevant ”words
vs face” contrast, which aims at uncovering brain regions with significantly higher or lower
signal for word images than for face images stimuli.

To obtain consistent results, we excluded contrasts with too few subjects and/or trivial
signal. The resulting list of 36 contrast pairs is given in Table 6.6.

In order to use data-driven templates on fMRI data, we have to choose a training set
beforehand, on which we learn a template once and for all. The variability of the Notip
method with regards to the choice of the training set is studied in Section 4.3. For the rest
of the experiments, we use a single training set. Although learning a different template
for each contrast pair would produce statistically valid inference, the computational cost
would be high and this would lead to a loss in generality (i.e. the user would have to learn
a template per inference contrast pair, instead of doing it once). For these experiments, we
choose for training data a pair of contrasts with 113 subjects and 51199 voxels smoothed
using FWHM (full width at half-maximum) = 4mm and at least 2% of active voxels (with
probability ≥ 95% according to ARI). This is the pair of contrasts with the lowest propor-
tion of active voxels that we could find among contrast pairs with at least 100 subjects.
This choice is referred to as the optimal template in the rest of the chapter. This template
is learnt using Btrain = 10, 000 permutations and we choose kmax = 1, 000 ≃ ⌊m/50⌋ for
reasons detailed in Section 6.2.1. Note that we also apply the same choice of kmax when
using the Simes template, so that both templates are compared on a fair basis.

Synthetic data

For some of the experiments described below, we have generated simulated data using the
pyrft package: https://github.com/sjdavenport/pyrft. This package allows generates
smooth noisy random fields that resemble fMRI data. In this controlled setup, the ground
truth is known. An example of such simulated data can be found in Section 6.5.4. The
simulation setting is the following, with π0 the proportion of null voxels: α = 0.05, π0 =
0.9, FWHM = 4mm, ntrain = 100, ninfer = 50, q = 0.1, Btrain = Binfer = 1000.

http://neurovault.org/collections/1952
https://github.com/sjdavenport/pyrft
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Code to reproduce the experiments

Data manipulation is mostly performed through Nilearn v0.9.0, nibabel v.3.1.1. The
proposed statistical methods are implemented in the sanssouci package: https://github.
com/pneuvial/sanssouci.python. The experiments presented in this section can be
reproduced using the code at: https://github.com/alexblnn/Notip. This repository
contains a script per experiment.

The analysis we performed on this data can be divided into 6 main experiments that
are detailed in the rest of this section.

6.2.3 Variation of the number of detections for different template types

To compare different choices of templates and investigate whether data-driven templates
yield a gain in number of detections over existing methods, we compute the size of the
largest possible region that satisfies a target error control for each choice of template on
the 36 chosen contrast pairs. This is typically the type of inference that users aim for
when applying FDR controlling procedures such as the Benjamini-Hochberg procedure.
We denote by St the largest region (i.e. subset of voxels) such that its FDP upper bound
is smaller than some user-defined value q ∈ [0, 1], called the FDP budget. It corresponds
to the maximum FDP that one is willing to tolerate in a given region. Formally, we solve
the following optimisation problem for any template t:

|St| = max
S
|S| s.t.

V t
α(S)

|S| ≤ q , (6.3)

where V t
α(S)/|S| is the upper bound on the FDP at risk level α computed on S using the

template t. By construction of the bound (3.6), the solution of (6.3) is a p-value level set,
of the form {i/pi ≤ τ} for some τ (Blanchard et al., 2020, Section 7.4). As such, |St| can
be obtained in linear time in m using Algorithm 1 in Enjalbert-Courrech and Neuvial,
2022.

Then, we compute the relative size difference of St for all possible pairs of methods.
Formally, the variation of the number of detections between the learned template
(i.e., the Notip procedure) and the calibrated Simes template is defined as:

|SLearned| − |SSimes|
|SSimes|

The calibration procedure on any a priori fixed template controls the JER (Blanchard
et al., 2020, 2021). Therefore, it makes sense to compare the number of detections obtained
by different template choices (i.e. ARI, calibrated Simes and learned template) for a given
error control 1− α. We compare the number of detections for several values of q, the FDP
budget, for a given risk α = 5%.

We also perform the same experiment on the simulated data described in Section 6.2.2.
In this case, since the ground truth is known, we can compare the empirical True Positive
Rate (TPR) of all three methods. This quantity represents the proportion of true signal
recovered by the template t for the region St defined in (6.3). Formally, we defined the
TPR in St as the ratio of the lower bound on the true positives in St to the number of

https://github.com/pneuvial/sanssouci.python
https://github.com/pneuvial/sanssouci.python
https://github.com/alexblnn/Notip


CHAPTER 6. NOTIP: NON-PARAMETRIC TDP CONTROL 53

truly activated voxels in St:

TPR(St) =
|St| − V t

α(St)

|H1|
.

Where |H1| corresponds to the number of truly activated voxels. As such, TPR(St) is an
empirical measure of power for the template t.

6.2.4 Comparison with FDR control

The above experiment on the number of detections leads to a natural comparison based
on the “BH region”, that is the region obtained using the BH procedure that controls
the FDR ( = expected FDP). More precisely, we compare the size of the BH region to the
size of FDP controlling regions. Conversely, we also compute FDP upper bounds on the
BH region. This illustrates the difference between FDR control and FDP control with a
concrete example.

6.2.5 Variation of the number of detections for low sample sizes

Because of the high cost of acquisition, many fMRI datasets comprise few subjects. This
may lead to unstable behavior and limited statistical power. To study the impact of sample
size on the inference procedure both at training and inference step, we perform two dual
experiments. First, we compute the number of detections for the three possible methods
as in Section 6.2.3 , with the difference that the template is learned using ntrain = 10
subjects instead of ntrain = 113. Second, we use the standard template with 113 subjects
but this time infer on 25 pairs of fMRI contrasts with any number of subjects ninfer,
varying from ninfer = 8 to ninfer = 200.

6.2.6 Sensitivity to the choice of training data

Since Notip requires learning a template on training data before performing inference, the
choice of such data and its impact on the performance of the method is an important
question. To assess this sensitivity quantitatively, we fix an fMRI contrast pair for inference.
Then, we compare the number of detections for each template choice -as described in
Section 6.2.3- using the 36 different fMRI contrast pairs as 36 different training sets for
the Notip method. It should be noted that ARI and calibrated Simes do not depend on
the chosen training set; their number of detections is computed once and for all. These 36
fMRI contrast pairs differ in several ways such as the number of subjects, the nature of the
contrasts, the fMRI study or quantity of signal. This allows us to evaluate the robustness
of Notip to poorly matched training and inference data. In this experiment, we also include
the optimal template choice we used for all other experiments (i.e. least amount of signal
and maximum number of subjects).

6.2.7 Influence of data smoothness

Another potential source of mismatch is the smoothing done in preprocessing of fMRI data.
To assess the consequences on performance of a potential smoothing mismatch between
training and inference data, we consider the case where the smoothing parameter FWHM
is different in the training and inference data, using FHWM = 4mm for the training data
and FWHM = 8mm for the inference data.
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6.2.8 Using Notip on a single dataset

When learning a template on separate data is inconvenient, or to avoid the computational
cost of learning the template, a natural idea is to use Notip on a single dataset. In such a
setting, circularity biases may appear as in Meinshausen, 2006. The workaround that we
propose to retain valid FDP control is to perform two independent rounds of randomization
- one for training and one for inference. While this approach is formally not covered by the
theoretical framework of Blanchard et al., 2020, we have performed experiments to assess
its FDP control and power on the simulated data described in Section 6.2.2.

6.3 Results

6.3.1 Variation of the number of detections for different template types

A comparison of the number of detections obtained for the three possible methods at
hand, i.e. ARI, calibrated Simes and Notip is displayed in Figure 6.3. To obtain this
figure, we used 36 pairs of fMRI contrasts. The number ninfer of subjects ranged from 25
to 120 across inference contrast pairs.
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Figure 6.3: Comparison of the number of detections between ARI, calibrated
Simes and learned templates across 36 pairs of fMRI contrasts from Neurovault
collection 1952. After learning the template on a single contrast pair (see section 6.2), we
perform inference on all 36 pairs. For each contrast pair, we compute the largest possible
region that satisfies FDP≤ q for q ∈ {0.05, 0.1, 0.2} with risk level α = 0.05.

In Figure 6.3, we notice that learned templates yield a substantial gain in detections
compared to both other template choices for all target FDPs. On average, learned
templates offer a ∼ 40% increase in detections compared to the ARI method and a
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∼ 20% increase compared to calibrated Simes. Gains in number of detections can vary
largely across contrast pairs. This is essentially due to variance contained in the data, as
all three methods exhibit similar TPR variability on simulated data (see Section 6.5.2). A
concrete example of inference on fMRI data is shown in Figure 6.4.
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Figure 6.4: Comparison of the number of detections between ARI, calibrated
Simes and learned template on fMRI data. For a pair of fMRI contrasts ”look
negative cue” vs ”look negative rating” we compute the largest possible region such that
FDP ≤ 0.1 with risk level α = 0.05 for the three possible templates: ARI, calibrated Simes
template and learned template. Notice that the number of detections is markedly higher
(+ 77 %) using the learned template compared to the calibrated Simes template.

We have also performed the same experiment on simulated data. In this setting, we
can report the actual TPR of the methods instead of region sizes. The empirical FDP for
these simulations are reported in Figure 6.13.
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Figure 6.5: TPR comparison for a FDP budget q = 0.1 at risk level α = 0.05. We
run 100 simulations and report the TPR. Notice that Notip offers substantial gains in TPR
compared to both ARI (100 % on average) and calibrated Simes (50 % on average).

Figure 6.5 illustrates the TPR gains achieved using Notip on simulated data compared
to both ARI to both ARI (100 % on average) and calibrated Simes (50 % on average).
Overall, simulations support the fact that Notip offers substantial performance gains
compared to both ARI and calibrated Simes.
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6.3.2 Comparison with FDR control
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Figure 6.6: Comparison of the number of detections between learned template
and the BH procedure on fMRI data. For a pair of fMRI contrasts ”look negative
cue” vs ”look negative rating” we compute the largest possible region such that FDP ≤ 0.1
at risk level α = 0.05 for the learned template and the largest possible region such that
FDR ≤ 0.1 using the BH procedure. BH region size: 13814 voxels. Learned template
region size: 5762 voxels.

Since FDR control is a much weaker guarantee than FDP control, it is expected that the BH
procedure yields substantially more detections compared to FDP controlling procedures,
as seen in Figure 6.6. However, FDP being the targeted guarantee, it is interesting to
compute FDP upper bounds on the FDR controlling region yielded by BH. Concretely, we
are trying to obtain a bound on the FDP of a region that only has a guarantee on its FDR.
Table 6.1 shows the FDP upper bounds computed on the FDR controlling region using all
three possible methods.

ARI Calibrated Simes Notip
FDP Upper bound 61% 45% 25%

Table 6.1: FDP upper bounds on the FDR controlling region obtained using the
BH procedure (at level q = 10%). Notice that Notip yields smaller FDP bounds than
ARI and calibrated Simes . This upper bound remains higher than the FDR guarantee
(10%), which is more permissive by design.

Notip leads to a less conservative FDP upper bound than ARI and calibrated Simes.
However, at risk level α = 5%, Notip is only able to guarantee that the FDP is less than
25% while the FDR is controlled at level 10%. This illustrates the difference between FDR
control and FDP control, the latter being less permissive by design. Additionally, the
guarantee offered by Notip is post hoc – such analysis would not be valid if we inverted
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the roles of BH and Notip. While the BH procedure guarantees that the expected FDP
is below 10%, Notip guarantees explicitly that the actual FDP is below 25% with high
probability (≥ 95%). It should be noted that on a single inference run, a guarantee on the
expected FDP has no clear interpretation, whereas the guarantee on the actual FDP is
directly interpretable.

6.3.3 Variation of the number of detections for low sample sizes

The above results demonstrate that data-driven templates yield consistent gains in number
of detections over existing methods that offer the same guarantees. In this section we
investigate whether these gains subsist in sub-optimal conditions. Namely, when the
template is learned on very few subjects or if inference is done on experiments with few
subjects. The first point is illustrated in Figure 6.7.
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Figure 6.7: Comparison of the number of detections between ARI, calibrated
Simes and a learned template using a subsampled training set. Here, the template
is learned using ntrain = 10 subjects instead of ntrain = 113 subjects. Learned templates
still perform better than the calibrated Simes template on average, but subsampling the
training set leads to a sub-optimal number of detections , compared with Figure 6.3.

Unstable performance may occur when inferring on data with few subjects, even if the
template is learned on a large number of subjects (ntrain = 113 here). This is illustrated in
Figure 6.8: gains in number of detections remain consistent- yet more variable for smaller
sample sizes - across datasets with different number of subjects. As noted in Button et al.,
2013, high variance is unavoidable when inferring on small datasets (e.g. ninfer ≤ 25). For
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a single dataset comprising 17 subjects, the learned template performs substantially worse
than calibrated Simes.
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Figure 6.8: Comparison of the number of detections between learned template
and calibrated Simes for many contrast pairs with a different numbers of
subjects. The gains in number of detections remain consistent across datasets with
different number of subjects. However, for a single dataset comprising 17 subjects, the
learned template performs substantially worse than calibrated Simes.

6.3.4 Sensitivity to the choice of training data

Figure 6.9 displays the variation of the number of detections made by Notip compared
to ARI and calibrated Simes using 36 different training sets. All training contrast pairs
except one yield more detections than calibrated Simes, with gains ranging from 10%
to 80%. This shows that the Notip procedure is robust to poorly matched training and
inference data, since contrast pairs considered for training vary along many dimensions:
number of subjects, nature of contrasts, fMRI study, quantity of signal... In the worst
possible case, Notip performs marginally worse than calibrated Simes. Also note that the
optimal template used in all other experiments (corresponding to the template learned
from the training data with minimal signal and maximum number of subjects as described
in Section 6.2.2) outperforms all other choices.
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Figure 6.9: Variation of the number of detections using many training sets. For a
fixed contrast pair ”look negative cue” vs ”look negative rating” and 36 different training
contrast pairs, we compute the largest possible regions that ensure FDP ≤ 0.1 at risk level
α = 0.05. Note that for all training contrast pairs except one, Notip performs better than
calibrated Simes, with gains ranging from 10 % to 80 % for the optimal template choice
described in Section 4.1. In the worst case, Notip performs slightly worse than calibrated
Simes.

6.3.5 Influence of data smoothness

We have seen in Figure 6.9 that Notip is robust to mismatches of training and inference data
across different dimensions (number of subjects, quantity of signal...). We now examine
the robustness of Notip with regards to a mismatch of the smoothing parameter between
training and inference data.
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Figure 6.10: An example of mismatch between the smoothing factors of training
and inference data. After learning the template on a single contrast pair (see Section
6.2) with smoothing full width at half maximum (FWHM) 4mm, we perform inference on
all 36 pairs smoothed with FWHM 8mm. For each contrast pair, we compute the largest
possible region that satisfies FDP control at level 0.1 with risk level α = 0.05. The learned
template still performs marginally better than calibrated Simes in this case, but gains are
substantially lower in this regime.

Figure 6.10 shows that the smoothing parameter of the training data and the inference
data should be matched for optimal performance. Otherwise performance gains relative
to the calibrated Simes method are reduced, albeit still positive.

6.3.6 Using Notip on a single dataset

To assess whether using Notip with the same dataset for training and inference controls
the FDP, and whether it yields performance gains compared to ARI and calibrated Simes,
we performed 1000 simulations. For each of these runs, we report the empirical FDP and
TPR of all three methods.
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Figure 6.11: False Discovery Proportion achieved for a FDP budget q = 0.1 with
risk level α = 0.05 using Notip on a single dataset. We run 1000 simulations and
report the empirical FDP for each one. Notice that Notip (single dataset) controls the
FDP at level α = 0.05 since FDP control is violated for 5 runs, i.e. 0.5% < 5% of all
simuations. As expected, ARI and calibrated Simes also control the FDP.

Notice that as seen in Figure 6.11, Notip (single dataset) indeed controls the FDP, as
only 5 points are above the red line - i.e. the FDP was above the budget q = 0.1 in 0.5%
of experiments (< α = 5%). As expected, ARI and calibrated Simes control the FDP more
conservatively.
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Figure 6.12: TPR comparison for an FDP budget q = 0.1 with risk level α = 0.05
using Notip on a single dataset. We run 1000 simulations and report the empirical
TPR for each one. Notice that Notip (single dataset) offers substantial performance gains
compared to both ARI (100 % on average) and calibrated Simes (50 % on average).

As seen in Figure 6.12, Notip (single dataset) yields substantial performance gains
compared to ARI and calibrated Simes: 50% on average compared to calibrated Simes,
and 100% on average compared to ARI. These gains are comparable to those obtained
using the classical Notip method on simulated data (see Figure 6.5).

6.4 Discussion

In this chapter, we have proposed the Notip procedure, that allows users to obtain statis-
tical guarantees on the proportion of truly activated voxels in any given cluster. There are
at least two ways to perform inference on fMRI data using this procedure. First, one can
threshold a statistical map to obtain the largest possible region that satisfies a requested
FDP control. Second, users can also obtain an upper bound on the FDP, or, equiva-
lently, a lower bound on the TDP in any cluster of interest (see an example in Section 6.5.3).

This type of analysis is meant to mitigate the arbitrariness of cluster-forming thresholds
in cluster-level inference, which remains a popular framework. The underlying observation
is that estimates computed on these clusters may be plagued by circularity.

We have introduced a data-driven approach to obtain valid post hoc FDP control, thus
achieving this goal. Moreover, controlling the FDP is a substantially more informative
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guarantee than controlling the FDR, its expected value. We show that our procedure
yields a higher number of detections than existing methods that offer the same statistical
guarantees, namely ARI and calibrated Simes. We could go further by applying a step-down
procedure as described in Blanchard et al., 2020, but the gains are expected to be marginal
(Enjalbert-Courrech and Neuvial, 2022). Also, a noticeable feature of the proposed inference
method is that it doesn’t require valid p-values to maintain error guarantee.

The gains in detections are maintained across practically all possible training sets, even
in cases of poor matching between the training and inference datasets, as seen in Figure 6.9.
Figure 6.10 also illustrates the robustness of Notip, this time in the case of a poor match
of smoothing parameters between the training and inference data. In this case, the gain in
detections obtained by using the learned template is reduced, albeit still non-negligible
(30% compared to ARI and 9% compared to calibrated Simes). We found that choosing
training contrast pairs that contain a large number of subjects and low signal is optimal for
performance. This is coherent with intuition since a large number of subjects and minimal
signal allow a more stable and accurate estimation of the distribution of p-values under the
null. Therefore, when selecting a template, it is useful to rely on a large-sample dataset
with small signal magnitude.

In practice, learning a template ex ante can be inconvenient or simply impossible, for
instance when users only have a single dataset at hand. We have shown numerically that it
is possible (though not formally supported by the theory) to use Notip on a single dataset.
This simplifies the procedure and removes the cumbersome choice of an external dataset to
learn the template.

Notip comes with an additional computational cost compared to classical calibration
using the Simes template, since we have to learn the template before inference. Generally,
this additional cost is acceptable in practice since template learning and inference have the
same computation complexity.

We have used 10, 000 permutations for better resolution when learning the template
instead of the typical 1, 000 permutations used at the inference step. Learning a template us-
ing Btrain = 10, 000 permutations with a standard laptop (on a single thread) takes around
7 minutes, while inferring on a contrast pair (using Binfer = 1, 000 takes around 45 sec-
onds). This can be trivially parallelized, as natively done in the implementation we propose.

A current limitation of the proposed method is that it only handles one-sample or two-
sample designs. This method could be extended to multivariate linear models in future work.

The idea of learning templates is not specific to fMRI data and could also be used on
other types of data on which the calibration procedure is useful such as genomics (Enjalbert-
Courrech and Neuvial, 2022).

We have achieved the goal of obtaining valid post hoc FDP control - rather than FDR
control, or even weaker guarantees on clusters - while maintaining a satisfactory number of
detections. This allows users in the brain imaging community to use more reliable inference
methods that provide robust guarantees, avoiding circularity biases. The efforts to build
such methods appear to us as important goal for the brain imaging field. The Python code
used in this chapter is available at https://github.com/alexblnn/Notip. This code relies
on the sanssouci package available at https://github.com/pneuvial/sanssouci.python.

https://github.com/alexblnn/Notip
https://github.com/pneuvial/sanssouci.python
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6.5 Additional experimental results

6.5.1 FDP control on simulated data

In section 4.2 we report the empirical TPR for experiments on simulated data, for which
the ground truth is known. We also compute the FDP for each simulation run to verify
that, as expected, Notip indeed controls the FDP.
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Figure 6.13: False Discovery Proportion achieved for a FDP budget q = 0.1 with
risk level α = 0.05. We run 100 simulations and report the empirical FDP for each one.
All three methods control the FDP, but Notip is less conservative than ARI and Calibrated
Simes.

6.5.2 Variability of Notip

We have observed relatively high variability in number of detections when comparing Notip
to ARI and calibrated Simes in Figure 6.3. One may wonder whether this variability is
inherent to the Notip procedure or stems from the data. To assess this, we report the
empirical TPR of each method (rather than the 3 pairwise comparisons) on simulated data,
in the same setup as in Figure 6.5.
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Figure 6.14: TPR comparison for an FDP budget q = 0.1 with risk level α = 0.05.
We run 100 simulations and report the empirical TPR for each one. Notice that the
variability of performance is similar for all three methods.

Figure 6.14 indicates that all three methods exhibit similar performance variability on
simulated data. This suggests that the variability observed in Figure 6.3 is due to the data
itself rather than to the Notip method.

6.5.3 TDP lower bounds on clusters

Throughout the chapter, we chose to focus on FDP upper bounds - and thus on FDP
controlling regions - to make Notip comparable with other methods that control the FDR
or the FWER. Since Notip is a post hoc method, it can also be used for inference on
data-driven clusters. In this setting, it is natural to formulate the results in terms of
TDP lower bounds (obtained as 1 - FDP upper bounds), since users generally want a
positive guarantee when inferring on clusters. This is illustrated in Table 6.2. Notice
that Notip is able to offer less conservative guarantees on the TDP in all clusters than
both ARI and calibrated Simes. In Table 6.3 we retain 3 clusters among the 9 found in
Table 6.2 for further study, i.e. changing the cluster-forming threshold to assess its impact
on performances of all three methods. In Tables 6.4 (z > 2.5) and 6.5 (z > 3.5), notice
that the same clusters are detected with varying sizes. The TDP guarantees remain less
conservative using Notip than both ARI and calibrated Simes when the cluster-forming
threshold is either lowered to 2.5 or upped to 3.5.
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6.5.4 An example of simulated data

Here is an example of simulated data computed in 2D for clarity. We use 3D images in
the experiments to mimick fMRI data. Here, we use a 10× 10 2D grid and generate the
ground truth, a binary mask that defines the signal. Then, we generate ninfer null images
and ninfer images that comprise signal. Substracting these two sets of images results in
a list of ninfer one-sample images, as in fMRI experiments. In Figure 6.15 an example
of simulated ground truth is displayed, while Figure 6.16 shows an example of simulated
one-sample image. Figure 6.16 is a noisy version of the ground truth shown in Figure 6.15.
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Figure 6.15: Simulated ground truth. This binary mask locates the simulated signal on
a 2D 10× 10 grid. Signal locations have been drawn randomly and account for (1− π0)%
of the image, the rest of the image being null data.
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Figure 6.16: A simulation draw. This 2D 10× 10 grid represents a draw of one-sample
image comprising signal at locations determined by the binary mask shown in Figure 6.15.
This is a typical example of input data in experiments on simulated data; the goal is then
to recover the binary mask using inference methods such as Notip, ARI or calibrated Simes.
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True Discovery Proportion
Cluster ID X Y Z Peak Stat Cluster Size (mm3) ARI Calibrated Simes Notip

1 -33.0 -94.0 -17.0 5.63 7695 0.17 0.24 0.26
1a -45.0 -79.0 -26.0 4.56
1b -48.0 -61.0 -26.0 4.13
1c -51.0 -64.0 -35.0 4.08

2 66.0 2.0 16.0 5.47 14877 0.20 0.33 0.45
2a 69.0 -22.0 10.0 4.67
2b 69.0 -10.0 13.0 4.59
2c 69.0 -28.0 13.0 4.43

3 -12.0 -82.0 -8.0 5.40 14445 0.27 0.38 0.50
3a 30.0 -73.0 -8.0 4.96
3b -24.0 -61.0 -11.0 4.91
3c 30.0 -46.0 -11.0 4.64

4 -6.0 11.0 52.0 5.30 5238 0.14 0.25 0.29
4a 6.0 8.0 55.0 4.19

5 45.0 14.0 25.0 5.27 4563 0.24 0.30 0.30
5a 48.0 29.0 13.0 3.36

6 12.0 -43.0 -26.0 5.08 12555 0.05 0.17 0.35
6a 0.0 -64.0 -14.0 4.43
6b 3.0 -55.0 -11.0 4.26
6c 3.0 -16.0 -32.0 4.23

7 39.0 -73.0 4.0 5.00 6075 0.04 0.09 0.17
7a 39.0 -64.0 16.0 4.44
7b 30.0 -82.0 10.0 4.42
7c 27.0 -67.0 34.0 3.63

8 -63.0 -34.0 16.0 4.95 25812 0.30 0.48 0.66
8a -63.0 -10.0 13.0 4.90
8b -27.0 -19.0 4.0 4.85
8c -57.0 -19.0 7.0 4.68

9 36.0 -94.0 -8.0 4.75 6507 0.08 0.15 0.17
9a 48.0 -70.0 -32.0 3.96
9b 45.0 -70.0 -23.0 3.92
9c 33.0 -82.0 -29.0 3.77

Table 6.2: Cluster localization (z > 3), size, peak statistic and TDP lower
bound at risk level α = 5% using the three possible templates (ARI, Calibrated
Simes and Notip) on contrast pair ’look negative cue vs look negative rating’. Cluster
subpeaks are also reported when relevant. This table can be generated using script
https://github.com/alexblnn/Notip/blob/master/scripts/table_2.py.

https://github.com/alexblnn/Notip/blob/master/scripts/table_2.py
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True Discovery Proportion
Cluster ID X Y Z Peak Stat Cluster Size (mm3) ARI Calibrated Simes Notip

1 66.0 2.0 16.0 5.47 14877 0.20 0.33 0.45
1a 69.0 -22.0 10.0 4.67
1b 69.0 -10.0 13.0 4.59
1c 69.0 -28.0 13.0 4.43

2 -12.0 -82.0 -8.0 5.40 14445 0.27 0.38 0.50
2a 30.0 -73.0 -8.0 4.96
2b -24.0 -61.0 -11.0 4.91
2c 30.0 -46.0 -11.0 4.64

3 -63.0 -34.0 16.0 4.95 25812 0.30 0.48 0.66
3a -63.0 -10.0 13.0 4.90
3b -27.0 -19.0 4.0 4.85
3c -57.0 -19.0 7.0 4.68

Table 6.3: Cluster localization (z > 3), size, peak statistic and TDP lower bound
at risk level α = 5% using the three possible templates (ARI, Calibrated Simes and
Notip) on contrast pair ’look negative cue vs look negative rating’. Cluster subpeaks are
also reported when relevant. Notice that we retained 3 clusters (originally of indices 2, 3
and 8 of Table 6.5.3).

True Discovery Proportion
Cluster ID X Y Z Peak Stat Cluster Size (mm3) ARI Calibrated Simes Notip

1 66.0 2.0 16.0 5.47 28593 0.13 0.18 0.29
1a 69.0 -22.0 10.0 4.67
1b 69.0 -10.0 13.0 4.59
1c 69.0 -28.0 13.0 4.43

2 -12.0 -82.0 -8.0 5.40 23355 0.19 0.23 0.35
2a 30.0 -73.0 -8.0 4.96
2b -24.0 -61.0 -11.0 4.91
2c 30.0 -46.0 -11.0 4.64

3 -63.0 -34.0 16.0 4.95 43092 0.19 0.25 0.42
3a -63.0 -10.0 13.0 4.90
3b -27.0 -19.0 4.0 4.85
3c -57.0 -19.0 7.0 4.68

Table 6.4: Cluster localization (z > 2.5), size, peak statistic and TDP lower
bound at risk level α = 5% using the three possible templates (ARI, Calibrated Simes
and Notip) on contrast pair ’look negative cue vs look negative rating’. Cluster subpeaks
are also reported when relevant.
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True Discovery Proportion
Cluster ID X Y Z Peak Stat Cluster Size (mm3) ARI Calibrated Simes Notip

1 66.0 2.0 16.0 5.47 7425 0.38 0.48 0.69
1a 69.0 -22.0 10.0 4.67
1b 69.0 -10.0 13.0 4.59
1c 69.0 -28.0 13.0 4.43

2 -12.0 -82.0 -8.0 5.40 8397 0.46 0.53 0.73
2a 30.0 -73.0 -8.0 4.96
2b -24.0 -61.0 -11.0 4.91
2c 30.0 -46.0 -11.0 4.64

3 -63.0 -34.0 16.0 4.95 9585 0.46 0.55 0.76
3a -63.0 -10.0 13.0 4.90
3b -57.0 -19.0 7.0 4.68
3c -60.0 -49.0 25.0 4.59

Table 6.5: Cluster localization (z > 3.5), size, peak statistic and TDP lower
bound at risk level α = 5% using the three possible templates (ARI, Calibrated Simes
and Notip) on contrast pair ’look negative cue vs look negative rating’. Cluster subpeaks
are also reported when relevant.
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Study Contrast 1 Contrast 2 nsubjects

HCP shapes vs baseline faces vs baseline 66
HCP right hand vs baseline right foot vs baseline 67
HCP right foot vs baseline left foot vs baseline 66
HCP left hand vs baseline right foot vs baseline 67
HCP left hand vs baseline left foot vs baseline 66
HCP tool vs baseline face vs baseline 68
HCP face vs baseline body vs baseline 68
HCP tool vs baseline body vs baseline 68
HCP body vs baseline place vs baseline 68
amalric2012mathematicians equation vs baseline number vs baseline 29
amalric2012mathematicians house vs baseline word vs baseline 37
amalric2012mathematicians house vs baseline body vs baseline 27
amalric2012mathematicians equation vs baseline word vs baseline 29
amalric2012mathematicians visual calculation vs baseline auditory sentences vs baseline 27
amalric2012mathematicians auditory right motor vs baseline visual calculation vs baseline 25
cauvet2009muslang c16 music vs baseline c02 music vs baseline 35
cauvet2009muslang c16 language vs baseline c01 language vs baseline 35
cauvet2009muslang c02 language vs baseline c16 language vs baseline 35
cauvet2009muslang c04 language vs baseline c16 language vs baseline 35
amalric2012mathematicians face vs baseline scramble vs baseline 85
ds107 scramble vs baseline objects vs baseline 44
ds107 consonant vs baseline scramble vs baseline 47
ds107 consonant vs baseline objects vs baseline 44
ds108 reapp negative rating vs baseline reapp negative cue vs baseline 32
ds108 look negative stim vs baseline look negative rating vs baseline 34
ds108 reapp negative stim vs baseline reapp negative rating vs baseline 34
ds109 false photo story vs baseline false photo question vs baseline 36
ds109 false belief story vs baseline false photo story vs baseline 36
ds109 false belief question vs baseline false photo question vs baseline 36
ds109 false belief story vs baseline false belief question vs baseline 36
ds109 false belief question vs baseline false photo story vs baseline 36
pinel2007fast visual right motor vs baseline vertical checkerboard vs baseline 113
pinel2007fast auditory right motor vs baseline visual right motor vs baseline 121
ds107 scramble vs baseline face vs baseline 85
amalric2012mathematicians house vs baseline scramble vs baseline 85
ds107 words vs baseline face vs baseline 100

Table 6.6: 36 pairs of fMRI contrasts used for experiments. These contrasts images
have been downloaded from Neurovault 1952 collection.



Chapter 7

False Discovery Proportion control
for aggregated Knockoffs

Summary. Controlled variable selection is an important analytical step in various
scientific fields, such as brain imaging or genomics. In these high-dimensional data
settings, considering too many variables leads to poor models and high costs, hence the
need for statistical guarantees on false positives. Knockoffs are a popular statistical
tool for conditional variable selection in high dimension. However, they control for the
expected proportion of false discoveries (FDR) and not their actual proportion (FDP).
We present a new method, KOPI, that controls the proportion of false discoveries for
Knockoff-based inference. The proposed method also relies on a new type of aggregation
to address the undesirable randomness associated with classical Knockoff inference.
We demonstrate FDP control and substantial power gains over existing Knockoff-based
methods in various simulation settings and achieve good sensitivity/specificity tradeoffs
on brain imaging and genomic data.
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7.1 Background

A major caveat of the Knockoffs procedure described in Section 3.2 is the random nature
of the Knockoffs generation process: for two runs of the Knockoffs procedure on the same
data, different Knockoffs will be built and subsequently different variables may be selected.
This undesirable behavior hinders reproducibility. A second caveat is that False Discovery
Rate (FDR) control does not imply False Discovery Proportion (FDP) control as shown in
Figure 2.1. This leads to potentially unreliable inference: single runs of the method can
produce a much higher proportion of False Discoveries than the chosen FDR level.

In this chapter, we propose a novel Knockoff-based inference procedure that addresses
both concerns while offering power gains over existing methods, for no significant com-
putation cost. The chapter is organized as follows. We first discuss existing work on
Knockoffs aggregation before moving on to the main contribution. Using the symmetry of
knockoffs under the null hypothesis, we construct explicit upper bounds on the JER of
these statistics, leading to FDP control. We then use the calibration principle of Blanchard
et al., 2020, to obtain sharper bounds. Finally, we obtain a robust version of this method
using harmonic mean aggregation of the π statistics across multiple Knockoffs draws.

We demonstrate empirical power gains in various simulation settings and show the
practical benefits of the proposed method for conditionally important region identification
on fMRI and genomic datasets.

7.2 Related work

There has been much effort in the statistical community to achieve derandomized Knockoff-
based inference. Ren et al., 2021, introduced the idea of running Model-X Knockoffs
(Candès et al., 2018) multiple times and computing for each the proportion of runs for
which it was selected. Gimenez and Zou, 2019, explore the idea of sampling multiple
Knockoffs simultaneously. This induces a massive computational cost, which is prohibitive
compared to methods that can support parallel computing. Nguyen et al., 2020, introduced
an aggregation method that relies on viewing Model-X Knockoffs as a Benjamini-Hochberg
(BH) procedure (Benjamini and Hochberg, 1995) on so-called intermediate p-values. Such
p-values can be computed on different Knockoff runs and aggregated using quantile
aggregation (Meinshausen et al., 2009) – then, BH is performed on the aggregated p-values
to select variables. This approach relies on the heavy assumption that Knockoff statistics
are i.i.d. under the null. Additionally, it is penalized by the conservativeness of the quantile
aggregation scheme. Alternative aggregation schemes such as the harmonic mean (Wilson,
2019) can be used but do not yield valid p-values.

Ren and Barber, 2022, introduced an alternative aggregation procedure where Model-X
Knockoffs are viewed as an e-BH procedure (Wang and Ramdas, 2022) on well-defined
e-values (Vovk and Wang, 2021). Since the mean of two e-values remains an e-value,
aggregation is done by averaging e-values across different Knockoffs draws. Then, e-BH
is performed on the aggregated e-values to select variables. FDR control on aggregated
Knockoffs is achieved without any additional assumption compared to Model-X Knockoffs.
However, this method requires the difficult setting of a hyperparameter related to the
chosen risk level, which highly impacts power in practice. Other recent developments in
Knockoffs include the conditional calibration framework of Luo et al. (2022) which aims at
improving the power of Knockoffs-based methods.

There have been a few attempts at controlling other type 1 errors than the FDR using
Knockoffs. Janson and Su, 2016, achieves k-FWER control and proposes that FDP control
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can be obtained by using a procedure that leverages joint k-FWER control. Recently, Li
et al., 2022, introduced such a procedure to reach FDP control based on the k-FWER
control introduced in Janson and Su, 2016. In summary, the KOPI approach is the first
one that aims at controlling the FDP of knockoffs-based inference for any aggregation
scheme, leading to both accurate FDP control and increased sensitivity.

7.3 Main contribution: FDP control for aggregated Knock-
offs

7.3.1 Joint distribution of π statistics under the null

To obtain FDP control, we rely on JER control as explained in Section 3.1. The JER
associated to the π-statistics is written with the usual notations:

JER(t) = P
(
∃j ∈ Jkmax ∧ p0K : π(j:H0) < tj

)
.

In the remainder of this section, we show how to obtain JER control for π statistics.
Notice in Equation 3.5 that the JER of a given threshold family only depends on the joint
null distribution of the π statistics. As for earlier FDR control (Barber and Candès, 2015)
or k-FWER control (Janson and Su, 2016) results, the key idea to obtain JER control for
π statistics is to prove that the relevant part of this distribution is in fact known, thanks
to the properties of knockoff statistics. We use the same notation as in Janson and Su,
2016. Letting Zj = | {k ∈ JpK : Wk ≤ −Wj} | and χj = sign(Wj), the π statistics (πj)j=JpK
are given by:

πj =
1 + Zj

p
1{χj=1} + 1{χj=−1}.

For a given W, let σ(W) be a permutation of JpK that sorts W by decreasing modulus:
σ(W) = (σ1, . . . , σp) such that |Wσ1 | ≥ |Wσ2 | · · · ≥ |Wσp |. We start by proving that the Z
statistics can be expressed as a function of the vector of χ statistics:

Lemma 1. For j ∈ JpK such that χσj = 1, Zσj =
∑j−1

k=1 1{χσk
=−1}.

Proof of Lemma 1. Since χσj = 1, we have:

Zσj = |
{
k ∈ JpK : Wσk

≤ −Wσj

}
|

= |
{
k ∈ JpK : Wσk

< 0 and Wσk
≤ −Wσj

}
|

= |
{
k ∈ JpK : Wσk

< 0 and |Wσk
| ≤ |Wσj |

}
|

= | {k ∈ JpK : Wσk
< 0 and k ≤ j} |

=

j−1∑
k=1

1{χσk
=−1}.

Lemma 1 implies that the distribution of order statistics of π|σ(W) is entirely determined
by that of χ|σ(W). To formalize this, we introduce π0 statistics.
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Definition 12 (π0 statistics). Let χ0 = (χ0
j )1≤j≤p be a collection of p i.i.d. Rademacher

random variables, that is, for all j, P(χ0
j = 1) = P(χ0

j = −1) = 1/2. The associated π0

statistics are defined for j ∈ JpK by

π0
j =

1 + Z0
j

p
1{χ0

j=1} + 1{χ0
j=−1}, where Z0

j =

j−1∑
k=1

1{χ0
k=−1}. (7.1)

Theorem 3. Let t be a threshold family of length kmax. Then, for π0 = (π0
j )j∈JpK as in

(7.1),

JER (t) ≤ JER0 (t) := P
(
∃k ∈ JkmaxK : π0

(k) < tk

)
. (7.2)

Proof of Theorem 3. Let k ∈ JkmaxK. Since tk ≤ 1, we have π(k:H0) < tk if and only if
Nk ≥ k, where

Nk =

∣∣∣∣{j ∈ H0, χj = 1 and
1 + Zj

p
< tk

}∣∣∣∣ .
With the notation of Definition 12, we define the random variable

N0
k =

∣∣∣∣∣
{
j ∈ H0, χ

0
j = 1 and

1 + Z0
j

p
< tk

}∣∣∣∣∣ .
If H0 = JpK, then Lemma 1 implies that conditional on σ(W), Nk and N0

k have the
same distribution. Indeed, the vectors (Wj)j/χj=1 and (Zj)j/χj=1 have the same ordering,
and conditional on σ(W), (χj)j∈H0 are jointly independent and uniformly distributed
on {−1, 1} (Lemma 2.1 in Janson and Su, 2016; Barber and Candès, 2015). Using the
same argument as in the proof of Lemma 3.1 in Janson and Su (2016), in the case where
H0 ⊊ JpK, false null χj will insert −1’s into the process on the nulls, implying that Nk is
stochastically dominated by N0

k . Noting that N0
k ≥ k if and only if π0

(k) < tk, we obtain
that

P
(
∃k ∈ Jkmax ∧ p0K, π(k:H0) < tk|σ(W)

)
≤ P

(
∃k ∈ Jkmax ∧ p0K, π0

(k) < tk

)
≤ P

(
∃k ∈ JkmaxK, π0

(k) < tk

)
.

Taking the expectation with respect to σ(W) yields the desired result.

Theorem 3 is related to Lemma 3.1 of Janson and Su (2016) and Lemma 3.1 of Li et al.
(2022), that rely on the sign-flip property of Knockoff statistics under the null (Barber and
Candès, 2015). The interest of Theorem 3 is that the upper bound JER0 (t) only depends
on the π0 statistics and the threshold family t, and not on the original data. Therefore, it
can be estimated with arbitrary precision for any given t using Monte-Carlo simulation, as
explained in the next section and described in Algorithm 4:
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Algorithm 4: Sampling from the joint distribution of π statistics under
the null according to Theorem 3.

1 Input: B the number of MC draws; p the number of variables
2 Output: Π0 ∈ [0, 1]B×p a matrix of π0 statistics
3 Π0 ← zeros(B, p)
4 for b ∈ [1, B] do
5 χ← draw random vector({−1, 1}p) // Draw signs

6 Z = 0 // Initialize count

7 for j ∈ [1, p] do
8 if χ[j] < 0 then
9 Π0[b][j]← 1

10 Z ← Z + 1 // Increment Z

11 end
12 else

13 Π0[b][j]← 1+Z
p

14 end

15 end

16 end
17 Π0 ← sort lines(Π0) // Sort samples

18 Return Π0

7.3.2 Joint Error Rate control for π statistics via calibration

To approximate the JER upper bound derived in Theorem 3, we draw B Monte-Carlo
samples using Algorithm 4. This yields a set of B vectors of π0 statistics denoted by
π0
b ∈ Rp for each b ∈ JBK. This allows us to evaluate the empirical JER, which estimates

the upper bound of interest.

Definition 13 (Empirical JER). For B vectors of π0 statistics and a threshold family t,
the empirical JER is defined as:

ĴER
0

B(t) =
1

B

B∑
b=1

1
{
∃k ∈ JkmaxK : π0

b(k) < tk

}
, (7.3)

where for each b ∈ JBK, π0
b(1) ≤ · · · ≤ π0

b(p).

Since ĴER
0

B(t) can be made arbitrarily close (by choosing B large enough) to ĴER
0
(t)

for any given threshold family t, it remains to choose t such that ĴER
0
(t) ≤ α in order to

ensure JER control. To this end, we consider a sorted set of candidate threshold families
called a template:

Definition 14 (Template; Blanchard et al., 2020). A template is a component-wise non-
decreasing function T : [0, 1] 7→ Rp that maps a parameter λ ∈ [0, 1] to a threshold family
T(λ) ∈ Rp.

This definition is naturally extended to the case of templates containing a finite number
of threshold families. The template corresponding to B′ threshold families is then denoted
by (T (b′/B′))b′∈JB′K.

Once a template is specified, the calibration procedure (Blanchard et al., 2020) can be
performed; this consists in finding the least conservative threshold family t amongst the
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template that controls the empirical JER at level α. Formally, we consider the threshold
family defined tBα = T(λB(α)), where

λB(α) =
1

B′ max

{
b′ ∈ JB′K s.t. ĴER

0

B

(
T

(
b′

B′

))
≤ α

}
.

As observed by Blain et al. (2022), optimal power is reached when the candidate families
match the shape of the distribution of the null statistics. We define a template based
on the distribution of the π0 statistics appearing in Theorem 3. In practice, we draw B′

samples from this distribution independently from the B Monte Carlo samples to avoid
circularity biases. Since a template has to be component-wise non-decreasing, i.e. the set
of candidate threshold families has to be sorted, we extract empirical quantiles from these
B′ sorted vectors. This yields a template T0 composed of B′ candidate curves that match
quantiles of the distribution of π0 statistics. The b′

B′ -quantile curve defines the threshold
family T0 (b′/B′). To prove that this procedure yields JER control, we start by proving a
useful Lemma:

Lemma 2. For any threshold family t, we have

JER0 (t)− ĴER
0

B(t) = OP (1/
√
B)

Proof of Lemma 2. Let ZB(t) =
√
B
(
JER0 (t)− ĴER

0

B(t)
)
. By the Central Limit Theo-

rem, we have

ZB(t)
d−−−−→

B→∞
Z(t),

where Z(t) is a centered Gaussian random variable with variance σ2(t) = JER0 (t)(1 −
JER0 (t)). As such, for any M > 0, we have

P (|ZB(t)| ≥M) −−−−→
B→∞

P (|Z(t)| ≥M) .

Since JER0 (t) ≤ 1, we have σ2(t) ≤ 1/4 for any t, so that Z(t) is stochastically domi-
nated by N (0, 1/4), which does not depend on the threshold family t. As such, we have
P (|Z(t)| ≥M) = 2P (Z(t) ≥M) ≤ 2Φ(2M), where Φ denotes the tail function of the
standard normal distribution. Since Φ(x) tends to 0 as x → +∞, we have proved that
ZB(t) = OP (1).

We then obtain the main result:

Theorem 4 (JER control for π-statistics). Consider the threshold family defined by
tBα = T0(λB(α)). Then, as B → +∞,

JER(tBα ) ≤ α+OP (1/
√
B).

Proof. We treat the case where tBα is well defined for all B, i.e. that there exists a threshold
family amongst T0 controls the empirical JER0 for B draws. If this is not the case for
some B, then tBα is set to the null family and the result holds.

By Theorem 3 we have for all t that JER (t) ≤ JER0 (t). We can write:

JER0 (t) = ĴER
0

B(t) +
(
JER0 (t)− ĴER

0

B(t)
)

= ĴER
0

B(t) +OP (1/
√
B)

by Lemma 2. Applying the above to t = tBα yields the desired result since ĴER
0

B(t
B
α ) ≤ α

by definition.
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The number B of Monte-Carlo samples in Theorem 4 can be chosen arbitrarily large to
obtain JER control, leading to valid FDP bounds via Equation 3.6.

7.3.3 False Discovery Proportion control for aggregated Knockoffs

In the previous section we have seen how to reach FDP control via Knockoffs. As explained
above, aggregation is needed to mitigate the randomness of the Knockoff generation process.
Therefore, we aim to extend the previous result to the case of aggregated Knockoffs. Let
us first define aggregation:

Definition 15. For D draws of Knockoffs, an aggregation procedure is a function f :
RD 7→ R that maps a vector of (πd)d∈JDK statistics to an aggregated statistic π.

In practice, since we have p variables, aggregation is performed for each variable, i.e.:

∀j ∈ JpK, f(π1
j , . . . , π

D
j ) = πj .

Then, inference is performed on the vector of aggregated statistics (π1, . . . , πp).
For a fixed aggregation scheme f , we can naturally extend the calibration procedure of

the preceding section. Instead of drawing a single B × p matrix of π0 statistics containing
π0
b ∈ Rp for each b ∈ JBK, we draw D such matrices. Given d ∈ JDK, each matrix contains

π0,d
b ∈ Rp for each JBK.
Then, for each b ∈ JBK, we perform aggregation: π0

b = f
(
(π0,d

b )d∈JDK

)
. The JER in

the aggregated case is defined as:

JER(t) = P
(
∃j ∈ Jkmax ∧ p0K : π(j:H0) < tj

)
.

We obtain the aggregated template following the same procedure, i.e. drawing D templates
and aggregating them. For each b′ ∈ JB′K, the aggregated threshold family is written:

T

(
b′

B′

)
= f

((
Td

(
b′

B′

))
d∈JDK

)
.

We can then write the empirical JER in the aggregated case as:

ĴER

(
T

(
b′

B′

))
=

1

B

B∑
b=1

1

{
∃j ∈ JkmaxK : π0

b(j) < Tj

(
b′

B′

)}
.

Calibration can be performed in the same way as in the non-aggregated case. Note that
we perform calibration after aggregating; therefore, JER control is ensured directly on
aggregated statistics and is not a result of aggregating JER controlling families. Importantly,
this approach holds without additional assumptions on the aggregation scheme f . We
consider the threshold family t

B
α = T(λB(α)), where

λB(α) =
1

B′ max

{
b′ ∈ JB′K s.t. ĴER

0

B

(
T

(
b′

B′

))
≤ α

}
.

With T
0
a template composed of B′ candidate curves that match quantiles of the

distribution of π0 statistics, we obtain the following result:

Theorem 5 (JER control for aggregated π-statistics). Consider the threshold family

defined by t
B
α = T

0
(λB(α)). Then, as B → +∞,

JER(t
B
α ) ≤ α+OP (1/

√
B).
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Proof. The proof is identical to that of Theorem 4 using the empirical aggregated JER.

The calibrated aggregated threshold family yields valid FDP upper bounds via Equation
3.6. The proposed KOPI (Knockoffs - π) method therefore achieves FDP control on
aggregated Knockoffs.

7.4 Experiments

Methods considered. In our implementation of KOPI, we rely on the harmonic mean
(Wilson, 2019) as the aggregation scheme f . Additionally, we set kmax = ⌊p/50⌋ following
the approach of Blain et al., 2022. We also consider both state-of-the-art Knockoffs
aggregation schemes: AKO (Aggregation of Multiple Knockoffs, Nguyen et al., 2020) and
e-values based aggregation (Ren and Barber, 2022). Additionally, we consider Vanilla
Knockoffs, i.e. Candès et al., 2018 and FDP control via Closed Testing (Li et al., 2022).
In simulated data experiments, we generate Knockoffs assuming a Gaussian distribution
for X, with all variables centered. For methods that support aggregation, we use D = 50
Knockoff draws.

7.4.1 Simulated data

Setup. At each simulation run, we generate Gaussian data X ∈ Rn×p with a Toeplitz
correlation matrix corresponding to a first-order auto-regressive model with parameter ρ,
i.e. Σi,j = ρ|i−j|.

Then, we draw the true support β∗ ∈ {0, 1}p. The number of non-null coefficients of
β∗ is controlled by the sparsity parameter sp, i.e. sp = ∥β∗∥0/p. The target variable y is
built using a linear model:

y = Xβ∗ + σϵ,

with σ controlling the amplitude of the noise: σ = ∥Xβ∗∥2/(SNR∥ϵ∥2), SNR being the
signal-to-noise ratio. We choose the central setting n = 500, p = 500, ρ = 0.5, sp =
0.1, SNR = 2. For each parameter, we explore a range of possible values to benchmark the
methods across varied settings.

To select variables using FDP upper bounds, we retain the largest possible set of
variables S such that V (S) ≤ q|S| (Algorithm 6).



CHAPTER 7. KOPI: FDP CONTROL FOR AGGREGATED KNOCKOFFS 81

Algorithm 5: Performing calibration on π-statistics. First, we use Theorem
3 to build a suitable template and estimate the JER of each candidate threshold
family. Then, we perform calibration to select the least conservative possible
threshold family that controls the JER at a given level α.

1 Input: α the desired FDP coverage; B the number of MC draws for JER
estimation; B′ the number of candidate threshold families

2 Output: tα the calibrated threshold family at level α
3 Π0 ← draw null π(B, p) // Algorithm 4

4 Π
′
0 ← draw null π(B′, p)

5 for b′ ∈ [1, B′] do
6 T[b′]← quantiles(Π

′
0,

b′

B′ ) // Build template

7 ĴERb′ ← empirical jer(Π0,T[b′]) // Apply Algorithm 3 for each family

8 end

9 b′cal ← max{b′ ∈ [1, B′] s.t. ĴERb′ ≤ α} // Perform calibration

10 tα ← T[b′cal]
11 Return tα

Algorithm 6: Performing inference via Knockoffs and calibration. We
compute the largest possible region that satisfies the required FDP level q using the
JER controlling family computed via Algorithm 5. The bound V tα is computed
from π using Equation 3.6.

1 Input: X the input data; y the target variable; q the maximum tolerable FDP; tα
the calibrated threshold family at level α

2 Output: Ŝ the selected variables
3 n, p← shape(X) // n samples, p variables

4 X̃← sample Knockoffs(X)

5 W← LCD(X, X̃,y) // Compute W
6 π ← compute proportion(W) // Equation (3.8)

7 Ŝ ← max
S
{|S| s.t.

V tα(S)

|S| ≤ q} // Find largest admissible region

8 // V tα(S) depends on π

9 Return Ŝ

For each of the N simulations and each method, we compute the empirical FDP and
True Positive Proportion (TPP):

F̂DP (S) =
|S ∩H0|
|S| and T̂PP (S) =

|S ∩H1|
|H1|

.

If the FDP is controlled at level α, |{k ∈ JNK : F̂DP (Sk) > q}| ∼ B(N,α). Then, we can
compute error bands on the α-level using std (B(N,α)/N) =

√
α(1− α)/N . The second

row of Fig. 7.1 represents the empirical power achieved by each method, which corresponds
to the average of TPPs defined above for N runs i.e. Power =

∑N
k=1 T̂PP (Sk)/N. Fig. 7.1

shows that across all different settings, KOPI retains FDP control. We can also see that
FDR control does not imply FDP control, as Vanilla Knockoffs are consistently outside of
FDP bound coverage intervals. However, the two existing aggregation schemes (AKO and
e-values) that formally guarantee FDR control are generally conservative and achieve FDP
control empirically. This is consistent with the findings of Ren and Barber, 2022. The
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Figure 7.1: FDP bound coverage at level α and empirical Power for 50 simulation
runs and five different methods: Vanilla Knockoffs, aggregated Knockoffs using e-
values, aggregated Knockoffs using quantile-aggregation, KOPI and Knockoff inference via
Closed Testing. We use D = 50 Knockoffs draws and the following simulation settings:
α = 0.1, q = 0.1, p = 500. Each column represents a varying parameter with the first row
displaying FDP coverage and the second row displaying power. The red line and associated
error bands represent the acceptable limits for FDP bound coverage. KOPI consistently
outperforms all other methods while retaining FDP control.

Closed Testing procedure of Li et al., 2022, achieves FDP control as announced but suffers
from a lack of power.

Interestingly, KOPI achieves FDP control while offering power gains compared to
FDR-controlling Knockoffs aggregation methods. Yet FDP control is a much stronger
guarantee than FDR control, as discussed previously. These gains are especially noticeable
in challenging inference settings where most methods exhibit a clear decrease in power or
even catastrophic behavior (i.e. zero power).

Moreover, Fig. 7.3 shows that when using q = 0.05 rather than q = 0.1 as in Fig. 7.1,
the robustness of KOPI with regards to difficult inference settings is even more salient.
More precisely, for q = 0.05, AKO and Closed Testing are always powerless. E-values
aggregation yields good power in easier settings such as ρ ≤ 0.6, SNR ≥ 2.5 or n > 750
but exhibits catastrophic behavior in harder settings. Overall, apart from KOPI, only
Vanilla Knockoffs exhibit non-zero power, but this method fails to control the FDP as it
is intended to control FDR. KOPI preserves FDP control in all settings while yielding
superior power compared to all other methods.

7.4.2 Brain data application

The goal of human brain mapping is to associate cognitive tasks with relevant brain regions.
This problem is tackled using functional Magnetic Resonance Imaging (fMRI), which
consists in recording the blood oxygenation level dependent signal via an MRI scanner.
The importance of conditional inference for this problem has been outlined in Weichwald
et al., 2015. We use the Human Connectome Project (HCP900) dataset that contains brain
images of healthy young adults performing different tasks while inside an MRI scanner.
Details about this dataset and empirical results can be found in Section 7.6.2.

While these results demonstrate the face validity of the approach, FDP control and
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Figure 7.2: Empirical FDP and power on semi-simulated data for 42 contrast
pairs. We use 7 HCP contrasts C0: ”Motor Hand”, C1: ”Motor Foot”, C2: ”Gambling”,
C3: ”Relational”, C4: ”Emotion”, C5: ”Social”, C6: ”Working Memory”. We consider all
42 possible train/test pairs: the train contrast is used to obtain a ground truth, while the
test contrast is used to generate the response. Inference is performed using the 5 methods
considered in the chapter and the empirical FDP is reported in the left box plot, while
power is reported in the right box plot. Notice (right figure) that KOPI yields superior
power compared to all other Knockoffs-based methods while controlling the FDP (left
Fig.).

power cannot be evaluated. Therefore, following Nguyen et al., 2022, we consider an
additional experiment that consists in using semi-simulated data. We consider a first fMRI
dataset (X1,y1) on which we perform inference using a Lasso estimator; this yields β∗

1 ∈ Rp

that we will use as our ground truth. Then, we consider a separate fMRI dataset (X2,y2)
for data generation. The point of using a separate dataset is to avoid circularity between
the ground truth definition and the inference procedure. Concretely, we discard the original
response vector y2 for this dataset and build a simulated response ysim

2 using a linear model,
with the same notation as previously (we set σ so that SNR = 4): ysim

2 = X2β
∗
1 + σϵ.

Then, inference is performed using Knockoffs-based methods on (X2,y
sim
2 ). Since we

consider β∗
1 as the ground truth, the FDP and TPP can be computed for each method. As

can be seen in Fig. 7.2, KOPI is the most powerful method among those that control the
FDP.

7.4.3 Genomic data application

Lymphomatic leukemia mutation classification

Differential gene expression studies aim at identifying genes whose activity differs sig-
nificantly between two (or more) populations, based on a sample of measurements from
individuals from these populations. The activity of a gene is usually quantified by its level
of expression in the cell. We consider a microarray data set studied in Bourgon et al., 2010,
that consists of expression measurements for biological samples from n = 79 individuals
with B-cell acute lymphoblastic leukemia (ALL): 37 of these individuals harbor a specific
mutation called BCR/ABL, while the remaining 42 do not. Our goal here is to identify,
from this sample, genes for which there is a difference in the mean expression level between
the mutated and non-mutated populations. We focus on the p = 90 genes on chromosome
7 whose individual standard deviation is above 0.5.

The genes selected by different Knockoffs-based methods are summarized in Table 7.1.
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Stability selection criteria analogous to Luo et al., 2022; Ren et al., 2021 are displayed. Note
that the selection made by KOPI is more robust than that of Vanilla Knockoffs: 4 genes
are selected in nearly all runs by KOPI, while none are selected as frequently by Vanilla
Knockoffs. Conversely, KOPI only selects 2 genes in less than 50% of all runs compared to
18 for Vanilla Knockoffs. This confirms that error control guarantees of KOPI, together
with the stability brought by aggregation, lead to avoiding most spurious/non-reproducible
detections. Besides KOPI and Vanilla Knockoffs, all other methods are powerless in all
runs.

KOPI Vanilla KO e-values Closed Testing AKO

Selected in >90% of runs 4 0 0 0 0

Selected in >50% of runs 6 6 0 0 0

Spurious detections (<50% of runs) 2 18 0 0 0

Table 7.1: Stability selection criteria for 5 Knockoffs-based methods on ”Lym-
phomatic leukemia mutation” genomic data. Note that KOPI displays a very stable
selection set across all runs with 4 genes present in > 90% of runs. KOPI also avoids most
spurious discoveries, as only 2 genes are selected less than 50% of the time, compared to 18
genes using Vanilla Knockoffs. The 6 genes selected more than 50% of the time by KOPI
and Vanilla Knockoffs are the same. All other Knockoffs-based methods are powerless in
all runs.

Colon vs Kidney classification

We also considered an additional genomic dataset to reproduce these results with a larger
number of samples. The dataset we used is part of GEMLeR (Gene Expression Machine
Learning Repository, Stiglic and Kokol, 2010), a collection of gene expression datasets that
can be used to benchmark ML methods on genomics data.

We chose the ”Colon vs Kidney” dataset: this is a binary classification dataset where
the goal is to distinguish cancerous tissue from two different organs (Colon and Kidney)
using gene expression data. This dataset comprises 546 samples and 10936 genes. To make
the problem tractable for Knockoffs-based methods we perform dimensionality reduction to
select the 546 genes that have the largest variance. Then, we run all Knockoffs-based
methods 50 times and report the selected genes.

KOPI Vanilla KO e-values Closed Testing AKO

Selected in >90% of runs 21 0 0 0 0

Selected in >50% of runs 22 25 0 0 0

Spurious detections (<50% of runs) 7 34 20 0 0

Table 7.2: Stability selection criteria for 5 Knockoffs-based methods on ”Colon
vs Kidney” genomic data. Note that KOPI displays a very stable selection set across all
runs with 21 genes present in > 90% of runs. KOPI also avoids most spurious discoveries,
as only 7 genes are selected less than 50% of the time, compared to 34 genes using Vanilla
Knockoffs and 20 using e-values. All other Knockoffs-based methods are powerless in all
runs.

The genes selected by different Knockoffs-based methods are summarized in Table 7.2.
Stability selection criteria analogous to Luo et al., 2022; Ren et al., 2021 are displayed.
Note that the selection made by KOPI is more robust than that of Vanilla Knockoffs: 21
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genes are selected in nearly all runs by KOPI, while none are selected as frequently by
Vanilla Knockoffs. Conversely, KOPI only selects 7 genes in less than 50% of all runs
compared to 34 for Vanilla Knockoffs and 20 for e-values aggregation.

7.5 Discussion

In this chpater, we have proposed a novel method that reaches FDP control on aggregated
Knockoffs. It combines the benefits of aggregation, i.e. improving the stability of the
inference, in addition to providing a probabilistic control of the FDP, rather than controlling
only its expectation, the FDR.

Simulation results support that KOPI indeed controls the FDP. Furthermore, while
FDP control is a stricter guarantee than FDR control, KOPI actually offers power gains
compared to state-of-the-art aggregation-based Knockoffs methods.

This sensitivity gain is a direct benefit from the JER approach and its adaptivity to
arbitrary aggregation schemes. While the latter has been formulated and used so far in
mass univariate settings (Blain et al., 2022), the present work presents a first use of this
approach in the context of multiple regression.

Moreover, KOPI does not require any assumption on the data at hand or on the law of
Knockoff statistics under the null.

The computation time of the proposed approach is comparable to existing aggregation
schemes for Knockoffs: sampling π statistics under the null using Algorithm 4 can be done
once and for all for a given value of p. JER estimation via Algorithm 3 and calibration can
be performed via binary search of complexity O(log(B′)). Finding the rejection set Ŝ after
performing calibration is done in linear time via Enjalbert-Courrech and Neuvial, 2022. In
practice, the computation time is the same as for classical knockoff aggregation (Ren et al.,
2021) and is in minutes for the brain imaging datasets considered. Avenues for future
work include a theoretical analysis of the False Negative Proportion (FNP) (Genovese and
Wasserman, 2002) of KOPI and developing a step-down version of the method to further
improve power.

We provide a Python package containing the code for KOPI available at https:

//github.com/alexblnn/KOPI.

https://github.com/alexblnn/KOPI
https://github.com/alexblnn/KOPI
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7.6 Additional simulation results

7.6.1 A harder inference setup

We evaluated the performance of all five methods in the more challenging setting q = 0.05
instead of using q = 0.1. The results are presented in Fig. 7.3. In this setting, AKO and
Closed Testing are always powerless and aggregation via e-values suffers from a lack of
power in most cases. Vanilla Knockoffs exhibit satisfactory power but consistently fail to
control the FDP. KOPI preserves FDP control and yields acceptable power.
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Figure 7.3: FDP bound coverage at level α and empirical Power for 50 simulation
runs and five different methods. The five methods are Vanilla Knockoffs, aggregated
Knockoffs using e-values, aggregated Knockoffs using quantile-aggregation, KOPI and
Knockoff inference via Closed Testing. We use 50 Knockoffs draws and the following
simulation setting α = 0.1, q = 0.05, p = 500. Each row represents a varying parameter
with the left panel displaying FDP coverage and the right panel displaying power. The red
line and associated error bands represent the acceptable limits for FDP bound coverage.
Notice that KOPI consistently outperforms all other methods while retaining FDP control.

Impact of aggregation scheme choice

While the theoretical guarantees we obtain hold for all choices of aggregation schemes, these
hyperparameter impacts the power of KOPI. To assess this, we use the same simulated data
setup as in Figure 7.1 to compare four aggregation schemes: arithmetic mean, geometric
mean, harmonic mean and quantile aggregation.
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Importantly, we first check that the FDP is controlled for all types of aggregation and
in all settings considered by reporting the bound non-coverage. We use three settings of
varying difficulty, parametrized by the correlation level ρ and use α = 0.1, q = 0.1:

Harmonic Arithmetic Geometric Quantile aggregation

ρ = 0.5 10% 0% 2% 10%

ρ = 0.6 2% 0% 0% 4%

ρ = 0.7 2% 0% 0% 0%

Table 7.3: FDP control of KOPI for four aggregation schemes and three different
correlation levels. Note that FDP control is maintained in all scenarios which is coherent
with the result obtained in Theorem 5.

The FDP is indeed controlled in all cases since non-coverage never exceeds the chosen
level α = 10% as seen in Table 7.3. This is coherent with the theoretical guarantees we
obtain in Theorem 5. We now report the average power to benchmark aggregation schemes:

Harmonic Arithmetic Geometric Quantile aggregation

ρ = 0.5 0.91 0.77 0.87 0.90

ρ = 0.6 0.83 0.58 0.77 0.83

ρ = 0.7 0.72 0.39 0.61 0.72

Table 7.4: Empirical power of KOPI for four aggregation schemes and three
different correlation levels. Note that harmonic mean aggregation consistently outper-
forms arithmetic aggregation and geometric aggregation. Quantile aggregation performs
similarly to harmonic aggregation.

Note that harmonic mean aggregation outperforms arithmetic and geometric mean
consistently and performs similarly to quantile aggregation as seen in Table 7.4.

7.6.2 Details and results on HCP data

HCP dataset

We use the HCP900 task-evoked fMRI dataset (Van Essen et al., 2012), in which we take
the masked 2mm resolution z-statistics maps of the 778 subjects from 7 tasks to solve
binary regression problems, namely predicting which condition is associated with the brain
image: emotion (emotional face vs shape outline), gambling (reward vs loss), language
(story vs math), motor hand (left vs right hand), motor foot (left vs right foot), relational
(relational vs match) and social (mental interaction vs random interaction).

We consider the fixed-effect maps (average across right-left and left-right phase encoding
schemes) for each condition, yielding one image per subject per condition (which corresponds
to two images per subject for each classification problem). Then, for each problem, the
number of samples available is 1556 (= 2 × 778) and the number of voxels is 156 374
after gray-matter masking. Dimension reduction was carried out using Ward parcellation
scheme to 1k clusters, which is known to yield spatially homogeneous regions (Thirion
et al., 2014). The signal is then averaged per cluster, yielding a reduced design matrix X
for the problem.
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Brain data are non-Gaussian

In the synthetic data experiments we used the Gaussian Knockoff generation process
described in Candès et al., 2018. However, fMRI brain maps can be heavily non-Gaussian.
In turn, Gaussian Knockoffs cannot satisfy the Knockoffs exchangeability assumption and
any statistical control on False Discoveries is rendered spurious.

0.0 0.2 0.4 0.6 0.8 1.0
p-value

0

100

200

300

400

500

600

700

800

Fr
eq

ue
nc

y

D'Agostino-Pearson normality test, motor contrast

Figure 7.4: D’Agostino-Pearson normality test for a motor contrast. We perform
a normality test for each cluster amongst the 1000 present for the motor foot contrast. The
distribution of the normality test p-values indicates strong non-normality in fMRI data.

To build non-Gaussian Knockoffs, we use a linear variant of the Sequential Conditional
Independent Pairs (SCIP) algorithm of Candès et al., 2018:

Algorithm 7: Generating Non-Gaussian Knockoffs using the Sequential Condi-
tional Independent Pairs algorithm of Candès et al., 2018.

1 for j ∈ [1, p] do
2 Fit a Lasso model on (X−j, Xj)

3 Compute the residual ϵj = Xj −X−jβ̂j

4 end
5 for j ∈ [1, p] do

6 Sample X̃j from X−jβ̂j + ϵρ(j) // ρ is a random ordering of [1, p]

7 end

8 Return X̃1:p
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Additional results

The results corresponding to 7 contrasts of the HCP dataset are presented in Figs 7.5 –
Fig 7.11: foot contrast of the HCP motor task in Fig 7.5, hand contrast of the HCP motor
task in Fig 7.6, relational versus match contrast of the HCP relational task in Fig 7.7,
gain vs loss contrast of the HCP gambling task in Fig 7.8, 2-back vs 0-back contrast of
the HCP working memory task in Fig 7.9, face vs shape contrast of the HCP Emotional
task in Fig 7.10, interacting vs non-interacting contrast of the HCP social task in Fig 7.11.
These maps display the support of the conditional association test, with a sign that shows
whether a region has an upward or downward impact on the decision function.

Overall, many Knockoff-based methods are powerless on all contrasts considered. Only
KOPI, Vanilla Knockoffs and e-values aggregation consistently display non trivial solutions.
This corresponds to the behavior observed in hard simulation settings in Fig. 7.1, i.e. low
SNR and high correlation for instance.
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Figure 7.5: Brain mapping on motor contrast using Knockoffs-based methods.
Among the five methods considered in this chapter –Vanilla Knockoffs, aggregated Knockoffs
using e-values, aggregated Knockoffs using quantile-aggregation (AKO), KOPI and Knockoff
inference via Closed Testing– only Vanilla Knockoffs, e-values and KOPI yield discoveries,
plotted above. All other methods are powerless. We use 50 Knockoffs draws and α = 0.1
and q = 0.2. Each figure represents the region returned by a given method. Vanilla
Knockoffs yield 17 regions, KOPI: 24 regions and e-values: 18 regions.
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Figure 7.6: Brain mapping on motor hand contrast using Knockoffs-based meth-
ods. Among the five methods considered in this chapter –Vanilla Knockoffs, aggregated
Knockoffs using e-values, aggregated Knockoffs using quantile-aggregation (AKO), KOPI
and Knockoff inference via Closed Testing– only Vanilla Knockoffs, e-values and KOPI
yield discoveries, plotted above. All other methods are powerless. We use 50 Knockoffs
draws and α = 0.1 and q = 0.2. Each figure represents the region returned by a given
method. Vanilla Knockoffs yield 11 regions, KOPI, 10 regions and e-values 11 regions.
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Figure 7.7: Brain mapping on the HCP Relational task using Knockoffs-based
methods. Among the five methods considered in this chapter –Vanilla Knockoffs, aggre-
gated Knockoffs using e-values, aggregated Knockoffs using quantile-aggregation (AKO),
KOPI and Knockoff inference via Closed Testing– only Vanilla Knockoffs and KOPI yield
discoveries, plotted above. All other methods are powerless. We use 50 Knockoffs draws,
α = 0.1 and q = 0.2. Each figure represents the region returned by a given method. Vanilla
Knockoffs yield 58 regions and KOPI, 24 regions.



CHAPTER 7. KOPI: FDP CONTROL FOR AGGREGATED KNOCKOFFS 93

support, positive weightssupport, negative weights

x=1

L R

z=-1

L R

y=16

KOPI, q = 0.2 | GAMBLING

x=1

L R

z=-1

L R

y=16

KO, q = 0.2 | GAMBLING

x=1

L R

z=-1

L R

y=16

e-values, q = 0.2 | GAMBLING

x=1

L R

z=-1

L R

y=16

AKO, q = 0.2 | GAMBLING

Figure 7.8: Brain mapping on HCP gambling task using Knockoffs-based methods.
Among the five methods considered in this chapter –Vanilla Knockoffs, aggregated Knockoffs
using e-values, aggregated Knockoffs using quantile-aggregation (AKO), KOPI and Knockoff
inference via Closed Testing– only Vanilla Knockoffs, KOPI and e-values aggregation yield
discoveries, plotted above. All other methods are powerless. We use 50 Knockoffs draws,
α = 0.1 and q = 0.2. Each figure represents the region returned by a given method. Vanilla
Knockoffs yield 57 regions, KOPI 57 regions, e-values aggregation, 19 regions.
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Figure 7.9: Brain mapping on HCP working memory task using Knockoffs-
based methods. Among the five methods considered in this chapter –Vanilla Knockoffs,
aggregated Knockoffs using e-values, aggregated Knockoffs using quantile-aggregation
(AKO), KOPI and Knockoff inference via Closed Testing– only Vanilla Knockoffs yields
discoveries, plotted above. All other methods are powerless. We use 50 Knockoffs draws,
α = 0.1 and q = 0.2. Each figure represents the region returned by a given method. Vanilla
Knockoffs yield 8 regions.
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Figure 7.10: Brain mapping on HCP emotional task using Knockoffs-based meth-
ods. Among the five methods considered in this chapter –Vanilla Knockoffs, aggregated
Knockoffs using e-values, aggregated Knockoffs using quantile-aggregation (AKO), KOPI
and Knockoff inference via Closed Testing– only Vanilla Knockoffs, KOPI and e-values
aggregation yield discoveries, plotted above. All other methods are powerless. We use 50
Knockoffs draws, α = 0.1 and q = 0.2. Each figure represents the region returned by a
given method. Vanilla Knockoffs yield 22 regions, KOPI: 37 regions, e-values aggregation:
20 regions.
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Figure 7.11: Brain mapping on HCP social task using Knockoffs-based methods.
Among the five methods considered in this chapter –Vanilla Knockoffs, aggregated Knockoffs
using e-values, aggregated Knockoffs using quantile-aggregation (AKO), KOPI and Knockoff
inference via Closed Testing– only Vanilla Knockoffs and KOPI yield discoveries, plotted
above. All other methods are powerless. We use 50 Knockoffs draws, α = 0.1 and q = 0.2.
Each figure represents the region returned by a given method. Vanilla Knockoffs yield 32
regions, KOPI: 27 regions.



Chapter 8

When Knockoffs fail: diagnosing
and fixing non-exchangeability of
Knockoffs

Summary. Knockoffs are a popular statistical framework that addresses the chal-
lenging problem of conditional variable selection in high-dimensional settings with
statistical control. Such statistical control is essential for the reliability of inference.
However, knockoff guarantees rely on an exchangeability assumption that is difficult
to test in practice, and there is little discussion in the literature on how to deal with
unfulfilled hypotheses. This assumption is related to the ability to generate data
similar to the observed data. To maintain reliable inference, we introduce a diagnostic
tool based on Classifier Two-Sample Tests. Using simulations and real data, we show
that violations of this assumption occur in common settings for classical Knockoffs
generators, especially when the data have a strong dependence structure. We show
that the diagnostic tool correctly detects such behavior. To fix knockoff generation,
we propose an alternative knockoff construction, which is based on constructing a
predictor of each variable based on all others. We also propose a computationally-
efficient variant of this algorithm, at the expense of theoretical guarantees. We show
empirically that the proposed approach restores error control on simulated data.

Contents

8.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

8.2 An efficient Non-parametric Knockoff generation algorithm . . 98

8.3 When Knockoffs fail: diagnosing non-exchangeability . . . . . . 99

8.4 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . 103

8.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

8.1 Background

Error control of the Knockoffs procedure explained in Section 3.2 relies on a critical
assumption called exchangeability. For exchangeability to hold, the joint distribution of
the data must remain unchanged when an original variable is exchanged for its knockoff
counterpart. While Knockoffs have shown promise in many applications, this assumption
of exchangeability requires careful consideration and assessment, as its validity impacts

97
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the reliability of the entire variable selection process. While the generative processes could
ideally be known or derived from first principles, for many practical problems, they are
unknown or intractable ; current practice then relies on learning the joint distributions of
the observations in order to draw knockoffs from an appropriately perturbed model.

The most popular knockoff generation procedure involves a Gaussian assumption, and
thus relies on the knowledge or the accurate estimation of the covariance structure of the
covariates, which leads to two potential issues: i) the violation of the Gaussian hypothe-
ses and ii) inaccuracies in the covariance estimation. This worsens with the number of
variables p as the problem becomes harder, especially in high-dimensional regimes where
the number of samples n is comparatively small. Some alternative Knockoff generation
methods avoid the problem of covariance estimation via e.g. Deep Learning (Romano et al.,
2020). However, such methods also suffer from high-dimensional regimes as deep neural
networks require massive amounts of data to be properly trained, especially in large feature
spaces. Overall, methods that require a large sample size n and a small number of variables
p may not be adapted to the Knockoffs framework, which is designed for high-dimensional
variable selection. Domain-specific procedures have been developed to tackle some of these
issues. For instance, in the field of genomics where variables of interest may be discrete,
Knockoffs can be built using Hidden Markov Models (HMM) (Rabiner and Juang, 1986),
as demonstrated in the work of Sesia et al., 2019. The Gaussian procedure and existing
alternatives are described in 3.2.2.

The aim of this chapter is twofold: First, we propose an effective diagnostic tool that
allows practitioners to examine knockoffs along the original data for potential violations.
Based on this, we highlight common cases of non-exchangeability when using Gaussian
knockoffs and associated error control violations. We describe their consequences, typically
a failure to control the false discovery rate at the nominal level. We propose an efficient
non-parametric algorithm for constructing knockoffs which comes with theoretical guaran-
tees. We show through simulations that this procedure restores error control in all cases
considered.

8.2 An efficient Non-parametric Knockoff generation algo-
rithm

We propose an alternative method to build Knockoffs by learning to predict Xj from X−j ,
based on the Sequential Conditional Independent Pairs algorithm of Candès et al., 2018:

Algorithm 8: Sequential Conditional Independent Pairs, (SCIP; Candès et al.,
2018)

1 j = 1
2 while j ≤ p do

3 Sample X̃j from L
(
Xj | X−j , X̃1:j−1

)
4 j = j + 1

5 end

This algorithm builds provably valid Knockoffs (Candès et al., 2018) without any
parametric assumption. However, as explained by the authors, it is hard to run in practice
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for two reasons. First, we don’t have knowledge of all the conditional distributions in prac-
tice. Second, the sequential nature of the algorithm requires computing a new conditional
distribution at each step, making computations potentially intractable.

To make this algorithm usable in practice, we propose using a machine learning model
f to learn the conditional distributions. A related idea is exploited to quantify variable
importance in Random Forests in Chamma et al., 2023. For each variable, f predicts Xj

from X−j , X̃1:j−1. Typically, using a Lasso model is a good default choice. In practice,
we set λ = λmax/100 with λmax = 1

n

∥∥X−j
TXj

∥∥
∞. The j-th fitted predictor is denoted

fj . Then, the residual ϵ̂j = Xj − fj(X−j) is computed. At step j, Knockoffs are built by
drawing a residual at random: X̃j is chosen as fj(X−j, X̃1:j−1) + ϵ̂σ(j) with σ(j) a random
element of JjK. Under the assumption that X is Gaussian and that all residuals ϵj are

identically distributed, this indeed amounts to sampling from L
(
Xj | X−j , X̃1:j−1

)
. This

approach is described in Algorithm 9.

Algorithm 9: Sequential generation of non-parametric Knockoffs by learning to
predict Xj from (X−j, X̃1:j−1) using a model f .

Input : f
1 for j ∈ [1, p] do

2 Fit a prediction model fj on ((X−j, X̃1:j−1), Xj) // Typically a Lasso

model

3 Compute the residual ϵ̂j = Xj − fj((X−j, X̃1:j−1))

4 Sample X̃j = fj((X−j, X̃1:j−1)) + ϵ̂σ(j)
5 end

6 Return X̃1:p

In practice, this Algorithm is computationally costly to run. Fitting the models
fj cannot be parallelized as each fit depends on previously built Knockoffs. To make
computations tractable, we propose a modified version of this Algorithm, in which samples

are drawn from L (Xj | X−j) instead of L
(
Xj | X−j , X̃1:j−1

)
. In practice, this allows us

to fit all models fj in parallel. Once this is done for all variables, Knockoffs are built by
shuffling the residuals: X̃j is chosen as fj(X−j) + ϵ̂τ(j) with τ a permutation of JpK.

In words, we remove conditioning on previously built Knockoff variables to make the
algorithm easily parallelizable. While this method does not yield theoretically valid Knock-
offs, we show empirically that in high-dimensional problems, it outputs very close results
to the theoretically grounded sequential approach. The proposed approach is described in
Algorithm 10.

The important point is that these approaches circumvents the difficult problem of
covariance estimation in high-dimensional settings. Note that using a Lasso model is
suitable in regimes where n ≃ p – if n ≫ p selecting a more expressive model such as
random forests (Breiman, 2001) or gradient boosting trees (Chen et al., 2015) is necessary
to retain control.

8.3 When Knockoffs fail: diagnosing non-exchangeability

A direct consequence of non-exchangeability is that Knockoff statistics of null variables
{Xj for j ∈ H0} are no longer symmetrical – yet this property is key to achieving error
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Algorithm 10: Parallel generation of Non-parametric Knockoffs by learning to
predict Xj from X−j using a model f .

Input : f
1 for j ∈ [1, p] do
2 Fit a prediction model fj on (X−j, Xj) // Typically a Lasso model

3 Compute the residual ϵ̂j = Xj − fj(X−j)

4 end
5 for j ∈ [1, p] do

6 Sample X̃j = fj(X−j) + ϵ̂τ(j) // τ is a permutation of JpK
7 end

8 Return X̃1:p

control via valid Knockoffs as in Candès et al., 2018. Said otherwise, non-exchangeability
can make Knockoff importance scores non comparable with real variable importance scores
which leads to bias in Knockoff statistics. This is illustrated in Figure 8.1 using a simulated
data setup described in Section 8.4.

On the left panel, we display the inverse Cumulative Distribution Function (CDF) of
Knockoff statistics of null variables, where Knockoffs come from an oracle, with known
covariance. On the central panel, we display the inverse CDF in the same setup but with
a covariance estimate that relies on the Graphical Lasso. On the right panel, we display
the inverse CDF of statistics obtained using non-parametric Knockoffs built from the
data. Knockoff statistics of oracle Knockoffs are nearly perfectly symmetric, as seen on the
left panel. Notice that Knockoff statistics of null variables using data-derived Gaussian
Knockoffs are not symmetric: they are skewed towards positive values, signalling that real
and Knockoff importance scores are not comparable. Non-parametric Knockoffs nearly
recover exact symmetry of null Knockoffs statistics.
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Figure 8.1: Inverse CDFs of Knockoff statistics of null variables for oracle and
data-derived Knockoffs. On the left panel, we display Knockoff statistics of null variables
in an oracle simulation setup where perfectly valid Knockoffs have been built – i.e., using
the true covariance of the data, computed using a massive amount of samples. Notice
that the inverse CDF is almost symmetrical, which ensures validity of the inference. On
the central panel, we display Knockoff statistics of null variables in the same setup but
with a covariance estimate that relies on the Graphical Lasso. Notice that null Knockoffs
statistics are not symmetrical: they are skewed towards positive values, signalling that
real and Knockoff importance scores are not comparable. On the right panel, we display
Knockoff statistics of null variables using non-parametric Knockoffs. Notice that symmetry
is recovered, which ensures reliable inference. We use n = 500 samples and p = 500
variables.
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In the remainder of this section, we will focus on diagnosing this problem before
assessing its consequences on error control in practice.

A sufficient condition for non-exchangeability. Clearly, Knockoffs exchangeability
does not hold if x is non-Gaussian while x̃ is Gaussian. One can simply take S = JpK;

then (x, x̃)swap(S) = (x̃,x)
d
̸= (x, x̃). More broadly, any Knockoff generation procedure that

relies on unfulfilled assumptions on variable distribution or dependence structure fails to
replicate the distribution of x. This leads to a natural sufficient condition to diagnose
non-exchangeability: if there exists a classifier that is able to accurately distinguish samples
from x versus samples from x̃, then x̃ ̸= x in distribution and exchangeability is violated.
This idea is related to the C2ST (Classifier Two-Sample Testing) literature (Gretton et al.,
2012; Lopez-Paz and Oquab, 2016).

Classifier Two-Sample Testing for Knockoffs. Formally, we wish to test the

null hypothesis H0 : x̃
d
= x given n samples of each distribution. Following Section 3 of

Lopez-Paz and Oquab, 2016, we proceed by constructing the dataset

D =
{(

xi, 0
)}n

i=1
∪
{(

x̃i, 1
)}n

i=1
=:
{(

zi, li
)}2n

i=1
.

Then, the 2n samples of D are shuffled at random and and split into disjoint training
and testing subsets Dtr and Dte , where D = Dtr ∪ Dte and nte := |Dte |. Note that
in practice, this split is performed several times to mitigate randomness, as in classical
cross-validation.

Definition 16 (C2ST statistic, Lopez-Paz and Oquab, 2016). Given Dtr and Dte , where
D = Dtr ∪ Dte with nte := |Dte | and a binary classifier g : Rp → {0, 1} trained on Dtr

the C2ST statistic t̂ is defined as the classification accuracy on Dte :

t̂ =
1

nte

∑
(zi,li)∈Dte

1
[
g
(
zi
)
= li

]
Intuitively, if x̃

d
= x, the test accuracy t̂ should remain near 0.5, corresponding to

chance-level. Conversely, if x̃
d
̸= x and that the binary classifier is able to unveil distri-

butional differences between the two samples, the test classification accuracy t̂ should be
greater than chance-level. The procedure is summarized in Figure 8.2.

Exchangeability violation by improper sample pairing. Note that the C2ST
diagnostic tool only tests that Knockoffs are indeed sampled from the same distribution
as the original data. In practice, to have valid Knockoffs, a consistent pairing between
original and Knockoffs samples is also needed. Said otherwise, knowing how to sample
from the original data distribution is not enough to build valid Knockoffs. We illustrate
this point via a simple experiment in the same simulation setup described in Section 8.4.
The experiment consists in shuffling 50% of the sample pairings of valid Knockoffs. The
middle panel reports the FDP for each simulation run in both scenarios (shuffled and
non-shuffled). The left and right sketches schematically illustrate shuffling sample pairings
in 2D. Note that the C2ST diagnostic is invariant to this shuffling.

As seen in Figure 8.3, FDR control is lost when shuffling 50% of the sample pairings of
valid Knockoffs. This shows that, beyond equality of the distributions, a proper sample
pairing is needed to obtain valid Knockoffs. To test this in practice, one may compute the
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Figure 8.2: Using a Classifier Two-Sample Test to diagnose exchangeability
problems in Knockoffs. We input both input data and Knockoffs to a binary classifier
with two different labels – the goal is to check whether a classifier can distinguish between
real variables and Knockoff variables. If the classifier’s accuracy is substantially above
chance level, exchangeability is violated since the joint distributions of input data and
Knockoffs are not equal.

Well-paired 
Knockoffs

0.00

0.05

0.10

0.15

0.20

Fa
ls

e
 D

is
co

v
e
ry

 P
ro

p
o
rt

io
n

Knockoffs performance with different pairings
(n= 500, p= 500)

Target FDR

         50% 
Random pairing

Original samples

Generated samples

Knockoffs pairing

Well-paired Knockoffs 50% of Random pairing

Original samples

Generated samples
Knockoffs pairing
Random pairing

Figure 8.3: Exchangeability violation by improper sample pairing. In the left
boxplot, we build valid Knockoffs via the Gaussian algorithm and perform inference as
in (Candès et al., 2018). In the right boxplot, we use the same Knockoffs but shuffle 50%
of the sample pairings before inference. We repeat this experiment 10 times. Note that,
coherently with theory, the FDR is indeed controlled in the left boxplot. However, in the
right boxplot, error control is lost due to improper sample pairings. The left and right
sketches schematically illustrate shuffling sample pairings in 2D.
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optimal assignment between real samples and Knockoff samples e.g. via the Hungarian
algorithm (Kuhn, 1955). If the resulting assignment doesn’t match the original one, then
Knockoffs cannot be exchangeable.

8.4 Experimental results

We aim at showing the practical consequences of exchangeability violations on error control
and diagnosis via C2ST statistics.

Simulated data setup. To assess the consequences of varying degrees of non-
exchangeability with Gaussian Knockoffs, we design a simulation setup in which we control
the difficulty to produce valid Knockoffs. At each simulation run, we first generate i.i.d.
Gaussian data with a tensor structure X ∈ Rn×a×b×c with a × b × c = p. The idea is
to generate n samples in a 3D feature space of dimensions (a, b, c). Then, we apply an
isotropic smoothing kernel of width w across these three dimensions, mimicking a smooth
three-dimensional structure, and flatten the data to obtain X ∈ Rn×p.

Then, we draw the true support β∗ ∈ {0, 1}p. The number of non-null coefficients of
β∗ is controlled by the sparsity parameter sp, i.e. sp = ∥β∗∥0/p. The target variable y is
built using a linear model:

y = Xβ∗ + σϵ,

where σ = ∥Xβ∗∥2/(SNR∥ϵ∥2) controls the amplitude of the noise, SNR being the signal-
to-noise ratio. We choose the setting n = 500, p = 500, sp = 0.1, SNR = 2. To obtain
p = 500, we use (a, b, c) = (10, 10, 5). Note that using w = 0 is equivalent to sampling i.i.d.
Gaussians since no smoothing is applied in this case. We vary the kernel width w in the
interval [0, 1.25] to parametrize the difficulty of the problem. This parameter is closely
related to the level of correlation observed in the data; as the kernel width increases, the
data becomes increasingly correlated.

In all settings, we use the Graphical Lasso for covariance estimation (Friedman et al.,
2008). For each of N simulations, we compute the empirical FDP of the Vanilla Knockoff
selection set S and the C2ST statistic averaged across 5-fold cross-validation:

F̂DP (S) =
|S ∩H0|
|S| , t̂ =

1

nte

∑
(zi,li)∈Dte

1
[
g
(
zi
)
= li

]
.

We first benchmark all existing methods for building Knockoffs for continuous data
enumerated in Section 3.2.2 using w = 0.5. This value yields local correlations levels that
are comparable to those observed in fMRI data.

The left panel of Figure 8.4 shows that all methods except Gaussian and non-parametric
Knockoffs fail when p grows larger (using n = p). Amongst the state-of-the-art methods,
Gaussian Knockoffs are the best candidate as they maintain a C2ST accuracy of at most
0.6. The proposed approach maintains chance-level accuracy in all settings. Note that the
data at hand is Gaussian – therefore, the non-exchangeability of Gaussian Knockoffs is
necessarily due to the problem of covariance estimation. In contrast, the proposed non-
parametric approach circumvents this difficult estimation problem by relying on regressions.

The right panel of Figure 8.4 shows that increasing the number of samples n for a
fixed p does not fix the problem, as all methods apart from Non-parametric Knockoffs
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Figure 8.4: C2ST diagnostic metric for varying number of variables and samples.
In the left panel, the number of variables p grows and n = p at each point. Note that,
when p > 100 the C2ST accuracy is clearly above chance level for all methods apart from
Gaussian Knockoffs and Non-parametric Knockoffs, signaling non-exchangeability in this
regime. In the right panel, the number of variables is kept constant with p set to 500. The
number of samples varies from 100 to 2000. Apart from Non-parametric Knockoffs, all
other methods fail to produce valid Knockoffs, even for large values of n.

fail to provide valid Knockoffs. Interestingly, C2ST accuracy rises as n grows larger for
all methods apart from Non-parametric Knockoffs. Intuitively, one might expect that as
n grows larger, producing valid Knockoffs becomes easier and therefore that the C2ST
accuracy should decrease. A possible interpretation of this result is the presence of two
competing effects: while learning features of the underlying joint distribution of the data
is indeed easier when n grows, the number of training samples accessible to the classifier
also grows as it is equal to 2n. Therefore, the discriminating power of the classifier also
improves when n grows larger. From now on, we discard the VAE and Deep approaches
because of their poor empirical performance.

The left panel of Figure 8.5 shows that, for Gaussian Knockoffs, the FDR is controlled
only in the easiest settings, i.e. w ∈ [0, 0.5]. For w > 0.5 the achieved FDR is substantially
above the target FDR, and it grows as the smoothing increases. The C2ST accuracy is
clearly above chance level for w > 0.5. By contrast, non-parametric Knockoffs maintain
FDR control in all settings, while the C2ST accuracy remains near chance level.

Semi-simulated data setup. We now turn to evaluating the proposed approach
and diagnostic tool on real data. Following Blain et al., 2023; Nguyen et al., 2022, we
use semi-simulated data to evaluate the proposed method with observed X. We use a
simulated response y to be able to compute the FDP. We consider a first functional
Magnetic Resonance Imaging (fMRI) dataset (X1,y1) on which we perform inference
using a Lasso estimator; this yields β∗

1 ∈ Rp that we will use as our ground truth. Then,
we consider a separate fMRI dataset (X2,y2) for data generation. The point of using
a separate dataset is to avoid circularity between the ground truth definition and the
inference procedure. Concretely, we discard the original response vector y2 for this dataset
and build a simulated response ysim

2 using a linear model:

ysim
2 = X2β

∗
1 + σϵ,

where we set σ so that SNR = 4. We consider 7 binary classifications problems like
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Figure 8.5: FDP and C2ST diagnostic metric for varying smoothing. We use
the 3D smoothing kernel width to parametrize the correlation present in the data, which
in turn tunes the difficulty to produce valid Knockoffs. We run 20 simulations for each
kernel width. For Gaussian Knockoffs, the FDR is controlled only in the easiest settings,
i.e. w ∈ [0, 0.5]. Note that using w = 0.5 represents a common setting encountered on real
data: it indeed yields local correlations levels that are comparable to those observed in
fMRI data. For w > 0.5 the achieved FDR is substantially above the target FDR, and it
grows as the smoothing increases. Note that the C2ST accuracy is clearly above chance
level for w > 0.5, signaling non-exchangeability in this regime. Non-parametric Knockoffs –
defined in Section 8.2 – preserve error control in all regimes, which is consistent with C2ST
accuracy remaining near chance level.

”gambling” (rewards vs loss) taken from the HCP dataset. For each of these classification
problems, the dataset consists in 778× 2 = 1556 samples and 1000 features. These features
are obtained by averaging fMRI signals within a Ward parcellation scheme, which is known
to yield spatially homogeneous regions (Thirion et al., 2014).

As we use 7 datasets of HCP, we obtain 42 = 7× 6 possible pairs. Since we consider
β∗
1 as the ground truth, the FDP can be computed. Figure 8.6 shows False Discovery

Proportion levels for 42 semi-simulated fMRI datasets based on HCP data for 5 different
Knockoff-based inference methods, using either Gaussian Knockoffs or non-parametric
Knockoffs1. All methods – see Blain et al., 2023 for a detailed comparison – exhibit
problematic False Discoveries proportions using default Gaussian Knockoffs (left panel)
and Graphical Lasso-based covariance learning. The expeted behavior is recovered using
non-parametric Knockoffs (right panel). As one could expect, the C2ST metric obtains
high discrimination power (0.95 prediction accuracy) for the Gaussian Knockoffs (signalling
non-exchangeability), but is at chance (accuracy of 0.51) for non-parametric Knockoffs.
Regarding the pairing condition, the Hungarian algorithm signals that both Gaussian and
Non-parametric Knockoffs are optimally paired with original variables.

Computation time of non-parametric Knockoffs. We perform benchmarks to
evaluate the computation time needed for the proposed Non-parametric Knockoffs algorithm
compared to the Gaussian algorithm. We use the simulation setup described in Section 8.3
and vary the number of variables p. For all values of p, we use n = p samples. We first

1In Figure 8.6 we display the result using parallel Knockoffs. AR Knockoffs yield similar results.
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Figure 8.6: Empirical FDP on semi-simulated data for 42 contrast pairs using
Gaussian vs Non-parametric Knockoffs. We use 7 HCP contrasts C0: ”Motor Hand”,
C1: ”Motor Foot”, C2: ”Gambling”, C3: ”Relational”, C4: ”Emotion”, C5: ”Social”, C6:
”Working Memory”. We consider all 42 possible train/test pairs: the train contrast is
used to obtain a ground truth, while the test contrast is used to generate the response.
Inference is performed using the 5 methods considered in the chapter and the empirical
FDP is reported. Notice that error control of all methods is violated using default Gaussian
Knockoffs (left panel) and recovered using Non-parametric Knockoffs (right panel). The
C2ST metric is coherent in both cases, with an average accuracy of 0.95 for the Gaussian
Knockoffs (signalling non-exchangeability) and 0.51 for the non-parametric Knockoffs.
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Figure 8.7: Non-parametric and Gaussian Knockoffs computation time. We
use either one CPU or 40 CPUs and report the computation time for various problem
dimensions in log-log scale. Note that using non-parametric (Parallel) Knockoffs on a single
CPU yields around a 3× speedup across all problem dimensions compared to Gaussian
Knockoffs. Using 40 CPUs, a 5× speedup is achieved for problems under 1000 variables,
and a 10× to 15× speedup for problems of up to 2000 variables.

consider using a single CPU and then consider using 40 CPUs. For the Gaussian approach,
parallelization is done in the Graphical Lasso covariance estimator via the njobs argument
in scikit-learn (Pedregosa et al., 2011). Note that profiling the code when using a single
CPU shows that most of the computation time is spent in covariance estimation. For the
Non-parametric approach, the 40 CPUs are used to train Lasso models that predict Xj

from X−j in parallel.
Note that using non-parametric parallel Knockoffs on a single CPU yields around a 3×

speedup across all problem dimensions compared to Gaussian Knockoffs. Using 40 CPUs,
a 5× speedup is achieved for problems under 1000 variables, and a 10× to 15× speedup
for problems of up to 2000 variables. The auto-regressive algorithm is slower than both
Gaussian Knockoffs and the parallel version.

8.5 Discussion

Knockoffs are a powerful and efficient method for controlled variable selection. This infer-
ence procedure allows performing conditional variable selection in one round of inference,
without considering each variable individually as in Conditional Randomization Tests
approaches.

The statistical guarantees provided by this method rely on the ability to construct
valid Knockoffs - namely, Knockoffs and original variables must be exchangeable so that
false positives can be provably controlled. However, constructing valid Knockoffs based
only on the available observations is not trivial.

The difficulty of this problem is particularly salient in contexts where i) the data at
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hand has a strong dependence structure and ii) when the number of variables p is large.
Note that these are common characteristics of high-dimensional variable selection problems
where Knockoffs are relevant, such as fMRI brain mapping or genomic data analyses.
In fact, i) and ii) often go together in practice: high dimension is associated with high
correlation among measurements. These characteristics make the estimation of the joint
distribution of the data increasingly difficult, whether done through covariance estimation
(as in the Gaussian algorithm) or via deep learning based techniques. Our first contribution
in this context is to show that existing generation procedures are unable to produce valid
Knockoffs in such settings.

This chapter also provides insight into the consequences of exchangeability violations:
experiments on both real and simulated data show the important impact of departures
from exchangeability on the reliability of Knockoff-based methods. These issues can lead
to instability in error control for all Knockoff-based methods. To address this challenge in
real-world scenarios, we have introduced a diagnostic tool that provides practitioners with
the means to identify exchangeability problems. This tool relies on two parts: a classifier
two-sample test which aims at detecting distributional differences between original and
Knockoff variables, and a procedure that controls the proper pairing between original
observations and their knockoff. Note that having a perfect generative model is not enough
to obtain valid Knockoffs, as this does not yield samples paired with the original data. We
therefore have two necessary (but not sufficient) conditions, for exchangeability.

As part of our efforts to mitigate the exchangeability problems associated with non-
Gaussian data or poor covariance estimation, we propose an efficient alternative approach
for constructing non-parametric Knockoffs. We prove theoretically that this approach pro-
duces valid Knockoffs, provided that the number of samples is large enough. Experiments
on simulated data indicate that the Knockoffs we obtain are valid. However, the proposed
approach has some limitations. In particular, a sufficient condition for exchangeability is
still lacking, so that one may indeed encounter situations where supposedly valid Knockoffs
lead to biased FDR guarantees. Another limitation in the non-parametric Knockoff estima-
tion procedure is that the hypothesis that the learner is Bayes optimal leaves open the
question of which learner to choose; this choice is obviously important in practice, both for
the validity of the Knockoff inference and for the power of the method.

The code for the proposed diagnostic tool and alternative non-parametric Knockoffs
algorithm is available at https://github.com/alexblnn/KnockoffsDiagnostics. Note
that this algorithm is also less costly in terms of computing time than the Gaussian
algorithm. Using a single CPU, a 3× speedup is achieved compared to the original
algorithm. When leveraging 40 parallel CPUs, a 15× speedup is achieved on fMRI data
and other large problems. Details about this benchmark are available in Section 8.4.

https://github.com/alexblnn/KnockoffsDiagnostics


Chapter 9

Tight and reliable conformal
prediction

Summary. Split Conformal Prediction (SCP) provides a computationally efficient way
to construct confidence intervals in prediction problems. Notably, most of the theory
built around SCP is focused on the single test point setting. In real-life, inference
sets consist of multiple points, which raises the question of coverage guarantees for
many points simultaneously. While on average, the False Coverage Proportion (FCP)
remains controlled, it can fluctuate strongly around its mean, the False Coverage Rate
(FCR). We observe that when a dataset is split multiple times, classical SCP may not
control the FCP in a majority of the splits. We propose CoJER, a novel method that
achieves sharp FCP control in probability for conformal prediction, based on a recent
characterization of the distribution of conformal p-values. We show through extensive
real data experiments that CoJER provides FCP control while standard SCP does
not. Furthermore, CoJER yields shorter intervals than the state-of-the-art method for
FCP control and only slightly larger intervals than standard SCP.

9.1 Conformal prediction for multiple test points

In most practical applications, the test set for which we want to obtain confidence intervals
contains many points. Say that we have m test points (Xn+1, Yn+1) , . . . , (Xn+m, Yn+m).

Performing split conformal prediction yields m confidence intervals C(α) =
(
Ĉi,α

)
i∈JmK

with Ĉi,α =
[
µ̂ (Xn+i)± S(⌈(n+1)(1−α)⌉)

]
. The marginal guarantee holds, i.e.:

∀i ∈ JmK, P
{
Yn+i ∈ Ĉi,α (Xn+i)

}
≥ 1− α.

To quantify coverage on the set of m points using intervals I = (Ii)i∈JmK, we define the
False Coverage Proportion (FCP) and False Coverage Rate (FCR):

FCP(I) := 1

m

m∑
i=1

1 {Yn+i /∈ Ii} , FCR(I) := E[FCP(I)].

Clearly, FCR control holds at level α for standard split conformal prediction:

FCR(C(α)) = 1

m

m∑
i=1

P
{
Yn+i /∈ Ĉi,α

}
≤ α.
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Interestingly, this doesn’t guarantee that FCP(C(α)) ≤ α with high probability as
noted by Gazin et al., 2024. This is analogous to the distinction between False Discoveries
Proportion control and False Discovery Rate control highlighted in Figure 2.1.

To ensure precise control, we want to build FCP upper bounds that hold with high
probability. For any pre-specified level δ > 0, this amounts to building

(
FCPα,δ

)
α∈[0,1]

such that:

P
(
∀α ∈ [0, 1], FCP(C(α)) ≤ FCPα,δ

)
≥ 1− δ. (9.1)

9.2 Sharp FCP control for conformal prediction

9.2.1 FCP control and conformal p-values

In this work, we intend to obtain JER control for conformal p-values and derive FCP
bounds from this control. We first recall a close link between FCP control and the empirical
Cumulative Distribution Function (CDF) of conformal p-values. Note that the FCP also
solely depends on the joint distribution of the conformal p-values.

Proposition 1 (Empirical CDF of p-values and FCP, Gazin et al., 2024). Denote by F̂m

the empirical CDF of the joint distribution of (p1, . . . , pm). For any α ∈ [0, 1] denote C(α)
the split conformal intervals. Then:

FCP(C(α)) = F̂m(α).

Using this technical remark, we can obtain a tight link between FCP control and JER
control.

Proposition 2 (FCP and JER). Let t be an arbitrary threshold family. Denote j0(α) =
min{j ∈ JmK : α ≤ tj}. Then:

P
(
∃α ∈ [0, 1], FCP(C(α)) > j0(α)

m

)
≤ JER(t).

Proof. First, we note that JER(t) may be written in function of F̂m:

JER(t) = P
(
∃j ∈ JmK : p(j) < tj

)
= P

(
∃j ∈ JmK :

m∑
i=1

1 {pi ≤ tj} ≥ j

)

= P
(
∃j ∈ JmK : F̂m(tj) ≥

j

m

)
.

To conclude, we note that if for some α ∈ [0, 1] we have FCP(C(α)) ≥ j0(α)/m, then by
definition of j0(α) combined with Proposition 1, j := j0(α) ∈ JmK is such that F̂m(tj) ≥
F̂m(α) = FCP(C(α)) ≥ j/m.

Proposition 2 implies that bounds of the form (9.1) may be obtained directly from JER
controlling families.

Corollary 6. Assume that t controls the JER at level δ > 0. Denote j(α, δ) = min{j ∈
JmK : α ≤ tj}. Then

P
(
∀α ∈ [0, 1], FCP(C(α)) ≤ j(α, δ)

m

)
≥ 1− δ.
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9.2.2 Building a JER controlling family

In practice, we need to build a JER controlling family t to compute FCP bounds. We
follow the approach of Blain et al., 2023, which uses similar ideas to reach False Discoveries
control in for Knockoff (Candès et al., 2018) inference. Firstly, we need to be able to
estimate the JER of any threshold family t. To this end, samples from the joint distribution
of ordered conformal p-values are needed. We rely on the main result of Gazin et al., 2024
which characterizes this distribution precisely.

Theorem 7 (Joint distribution of conformal p-values, Gazin et al., 2024). For any vector

U = (U1, . . . , Un) ∈ [0, 1]n, define the discrete distribution PU on
{

ℓ
n+1 , ℓ ∈ Jn+ 1K

}
as:

PU ({ℓ/(n+ 1)}) = U(ℓ) − U(ℓ−1), ℓ ∈ Jn+ 1K,

where 0 = U(0) ≤ U(1) ≤ · · · ≤ U(n) ≤ U(n+1) = 1. Then, conformal p-values follow the
distribution Pn,m:

Pn,m = D (qi, i ∈ JmK) , where

{
(q1, . . . , qm | U)

i.i.d.∼ PU ;

and U = (U1, . . . , Un)
i.i.d.∼ Unif([0, 1]).

The approach of Gazin et al., 2024 consists in using this distribution to obtain a
Dvoretzky–Kiefer–Wolfowitz–Massart like inequality (DKWM; Massart, 1990). The orig-
inal DWKM inequality only holds under independence and therefore cannot be used in
this context. The inequality obtained bounds the gap between the empirical CDF and
the true CDF with high probability. FCP bounds can in turn be obtained using the CDF
formulation of Proposition 1.

For the approach we propose, we derive a straightforward algorithm to sample from
the joint distribution of conformal p-values from this Theorem.

Algorithm 11: Sampling from the joint distribution of conformal p-values
using Theorem 7.

1 Input: B the number of MC draws; n the number of calibration points; m the
number of test points

2 Output: Π0 ∈ [0, 1]B×m a matrix of simulated p-values
3 Π0 ← zeros(B,m)
4 for b ∈ [1, B] do
5 Sample [u1, . . . , un] from U([0, 1])n
6 Sample [q1, . . . , qm] from PU // PU ({ℓ/(n+ 1)}) = U(ℓ) − U(ℓ−1), ℓ ∈ Jn+ 1K
7 Π0[b]← [q1, . . . , qm]

8 end
9 Return Π0

We draw B Monte-Carlo samples using Algorithm 11. This yields a set of B vectors of
conformal p-values denoted by pb ∈ Rp for each b ∈ JBK. This allows us to evaluate the
empirical JER, which estimates the actual JER. Using the same procedure and notation
as in Chapter 7 we obtain the following result:
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Theorem 8 (JER control for conformal p-values). Consider the threshold family defined
by tBδ = T0(λB(δ)). Then, as B → +∞,

JER(tBδ ) ≤ δ +OP (1/
√
B).

The number B of Monte-Carlo samples in Theorem 8 can be chosen arbitrarily large to
obtain JER control, leading to valid FCP bounds via Corollary 6. Algorithm 5 describes
all the steps needed to compute tBδ . The proof of this result is the same as Theorem 4.
This bound is fully nonparametric and therefore expected to yield tighter intervals than
Gazin et al., 2024’s approach. We call the resulting approach CoJER (Conformal - JER).

9.3 Aggregated conformal prediction

While conformal prediction coverage guarantees are distribution free, the confidence interval
output by the method can strongly depend on the chosen model µ̂ in practice. Mitigating
the consequences of such modeling decisions motivates the use of aggregation schemes to
obtain more stable and generalizable confidence intervals.

Say that we have K models µ̂1, . . . , µ̂K fitted on Dtrain. The goal of aggregation is to
build a valid confidence interval Ĉα that takes into account the information provided by
each model. Aggregating schemes for conformal prediction have been introduced in Lei
et al., 2018; Barber et al., 2021. Lei et al., 2018 propose a Bonferroni-type construction,
where the confidence interval of each of the K models is built at level α/K. An union
bound argument shows that the intersection of these intervals is valid at level α, therefore
yielding FCR control at level α.

Barber et al., 2021, propose a method that relies on a p-value aggregation result which
states that twice the arithmetic mean of valid p-values is a valid p-value – see e.g. (Vovk
and Wang, 2020). This results in a FCR controlling procedure.

Therefore, existing solutions require the construction of valid aggregated p-values. Using
the exact same notation and procedure as the aggregated case of Chapter 7, we develop a
nonparametric aggregation procedure that does not require valid aggregated p-values. We
obtain the following result:

Theorem 9 (JER control for aggregated conformal p-values). Consider the threshold

family defined by t
B
δ = T

0
(λB(δ)). Then, as B → +∞,

JER(t
B
δ ) ≤ δ +OP (1/

√
B).

Proof. The proof is identical to that of Theorem 8 using the empirical aggregated JER.

The calibrated aggregated threshold family yields valid FCP upper bounds via Corollary
6. We therefore achieve a fully nonparametric aggregation scheme for conformal prediction,
along with guarantees on the FCP.

9.4 Experiments

Setup. We use 17 OpenML (Vanschoren et al., 2014) datasets from Grinsztajn et al.
(2022). Each dataset is randomly split (nsplit = 30 times) into a train, calibration and
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test set. The latter is of size m and denoted by Ds
test. We fit 5 regression models on

the training sets1: Random Forest (RF) (Breiman, 2001), Multi-Layer Perceptron (MLP)
(Hinton, 1990), Support Vector Regression (SVR) (Platt et al., 1999) K-Nearest Neighbors
(KNN; Cover and Hart, 1967) and Lasso (Tibshirani, 1996).

FCP control. We consider three methods for comparison: classical Split Conformal
Prediction, the method proposed by Gazin et al., 2024 to obtain FCP control via DKW-type
bounds (Massart, 1990) and the proposed approach. We use α = 0.1 for all methods.
For FCP controlling methods, we set δ = 0.1 and use SCP with the largest level α′ such
that FCPα′,δ ≤ α. For each dataset, we compute for each split the empirical FCP for
each model and conformal prediction method. Formally, for a given data set, denoting by

Cs =
(
Ĉs
i

)
i∈Ds

test

the confidence intervals obtained for the s-th split for a given method,

the associated empirical FCP is given by:

FCP(Cs) = 1

m

∑
i∈Ds

test

1
{
Yi /∈ Ĉsi

}
.

Then for each dataset, we compute the associated empirical coverage as the proportion
of splits for which the FCP control event holds:

FCPcoverage =
1

nsplits

nsplits∑
s=1

1 {FCP(Cs) < α} .

We also compute the interval length of each method for each dataset. We report the
relative length to the shortest interval found amongst all methods, averaged across all
splits for each dataset. This allows having a comparable metric for interval informativeness
across all datasets.

The left panel of Figure 9.1 shows that across all models and datasets, standard Split
Conformal does not guarantee FCP control at level α – this is consistent with theory, as
Split Conformal prediction only guarantees FCR control. Strikingly, the proportion of
splits for which FCP ≤ α for Split Conformal can be as low as 35% for certain models and
datasets. Both the proposed method and the method of Gazin et al., 2024 control the FCP
as expected. Concretely, this means that for all datasets, the proportion of splits for which
FCP ≤ α is indeed superior to 1− δ.

The right panel of Figure 9.1 shows that SCP yields the shortest intervals in all set-
tings. This is expected, as FCR control is less stringent than FCP control, leading to
shorter intervals. Amongst the two FCP controlling methods, the proposed method is less
conservative than the method of Gazin et al., 2024. On average across all models and
datasets, the proposed method yields intervals that are only ∼ 15% larger than standard
SCP. In worst-case scenarios, the proposed method yields intervals ∼ 25% larger than SCP,
while intervals obtained using the method of Gazin et al., 2024 are ∼ 80% larger than
SCP intervals. Overall, the proposed method yields sharp FCP control at a modest cost in
terms of interval length compared to SCP.

1All experiments were performed using 40 CPUs, Intel(R) Xeon(R) CPU E5-2660 v2 @ 2.20GHz
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Figure 9.1: Coverage and relative interval length using 4 models and 17 datasets.
We use 17 OpenML (Vanschoren et al., 2014) datasets from Grinsztajn et al. (2022). Each
dataset is split (30 times) into a train, calibration and test set. We fit 5 regression models
on the training sets: Random Forest (RF), Multi-Layer Perceptron (MLP), Support Vector
Regression (SVR), K-Nearest Neighbors (KNN) and Lasso. Calibration sets are used to
compute SCP intervals and conformal p-values. For each method and dataset, we report
the FCP coverage, i.e. the proportion of test splits for which the event FCP ≤ α was
realised. We also report the interval length, relative to the smallest valid interval found
amongst all methods. Notice that standard SCP does not guarantee FCP control at level
α: for certain datasets and models, FCP event coverage can be as low as 30%. Both the
proposed approach and Gazin et al., 2024 obtain FCP control. However, the proposed
approach is much less conservative.

Aggregation. We use the five regression models mentioned above and consider three
aggregation methods for comparison: the method based on the arithmetic mean of p-value
functions proposed by Barber et al., 2021 labeled CV+, the Bonferroni-like construction of
Lei et al., 2018 and the proposed method. For the proposed method, we use the harmonic
mean as the aggregation scheme.

As in the first experiment, we compute the FCP coverage of each method and the
relative interval length. The left panel of Figure 9.2 shows that all three methods control
the FCP at level δ = 0.1. While CoJER offers a theoretical guarantee on this control, this
is not the case for CV+ and Bonferroni. These two methods likely control the FCP due
to excessive conservativeness, as the FCP event is controlled 100% of the time for most
datasets using CV+ and Bonferroni intersection.

The right panel of Figure 9.2 shows that CoJER yields the most informative intervals
across all datasets. The intervals yielded by the CV+ procedure are ∼ 75% larger on
average than those of CoJER. The Bonferroni-intersection intervals are ∼ 20% larger
on average than those of CoJER. Overall, these experiments show that the proposed
nonparametric aggregation scheme achieves sharp FCP control while providing tighter
intervals that state-of-the-art methods.
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Figure 9.2: Coverage and relative interval length using 5 models and 17 datasets.
We use 17 OpenML (Vanschoren et al., 2014) datasets from Grinsztajn et al. (2022).
Each dataset is split into a train, calibration and test set. We fit 5 regression models on
the training sets: Random Forests, Multi-Layer Perceptron, Support Vector Regression,
K-Nearest Neighbors and Lasso. Calibration sets are used to compute Split Conformal
prediction intervals and conformal p-value functions. These functions are used to compute
confidence intervals for the proposed method. For each method and dataset, we report the
FCP coverage, i.e. the proportion of test splits for which the event FCP ≤ α was realized.
We also report the interval length, relative to the smallest valid interval found amongst all
methods. The proposed method achieves the expected FCP coverage while providing the
most informative intervals.

9.5 Discussion

In this paper, we have proposed a novel method that allows sharp FCP control on conformal
prediction. The computational cost of this method is comparable to classical SCP. For given
sizes of calibration and test sets, sampling conformal p-values from Algorithm 11 can be
done once and for all. Calibration using Algorithm 5 is performed via binary search of com-
plexity O(log(B′)). Computing the empirical JER of a threshold family using Algorithm 3
has a computational complexity of O(Bkmax). We provide a Python package containing
the code for CoJER available at https://anonymous.4open.science/r/CoJER-96E5/.

Additionally, once calibration is performed, the bound of Corollary 6 holds simulta-
neously for all values of α. In practice, users can try different values of α post hoc while
retaining valid FCP bounds without needing to relaunch the complete procedure.

We also extend this method to obtain this coverage when aggregating multiple predic-
tors, which provides robustness w.r.t. modeling choices. We show that we obtain tighter
intervals than existing aggregation schemes. Notably, valid p-values are not needed to
obtain FCP control. Since this control is a direct consequence of JER control on aggregated
p-values, it can be obtained for any aggregation scheme f . In particular, our use of the
harmonic mean to aggregate p-values leads to valid FCP control, even if the harmonic
mean does not yield valid p-values (Chen et al., 2024).

In this chapter, we have focused on the regression setting, while SCP can also be applied
in classification tasks. Adapting this method for classification is an interesting prospect.
This method could also be extended to other uncertainty quantification frameworks such as

https://anonymous.4open.science/r/CoJER-96E5/
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bootstrap or resampling based methods like the jackknife+ (Barber et al., 2021). Since valid
p-values are not needed, characterizing the distribution of statistics quantifying uncertainty
is sufficient to apply the proposed method.

Another interesting avenue of work is to study the impact of controlling the FCP
rather than the FCR on downstream decisions taken using confidence intervals. This type
of analysis has been conducted in Vovk and Bendtsen, 2018 in the classical conformal
prediction framework and in Perez-Lebel et al., 2024 in the field of model calibration.



Chapter 10

Conclusion

10.1 Summary

In this thesis, we have introduced four contributions to reliable statistical inference for high-
dimensional data. First, in Chapter 6 we presented Notip which provides post hoc FDP
control with increased power compared to previously existing methods. Post-hoc methods
are particularly important in the field of fMRI data analysis, as many inference procedures
operate at the cluster level. This can lead to a spatial specificity paradox: detecting large
active clusters could indicate the presence of strong signal – yet the information given by
cluster-level procedures on the spatial extent of the signal is weaker for large clusters. Such
procedures can only guarantee that there is at least one active voxel in a given cluster with
high probability. In this sense, developing post hoc methods for inference in clusters is an
important topic. To promote this type of inference to the neuroimaging community, we have
developed an open-source package available at https://github.com/alexblnn/Notip.

Second, in Chapter 7, we have introduced KOPI, a novel inference method based
on the Knockoffs framework. This approach provides FDP control in probability rather
than FDR control. As in Notip, we aim at FDP control in probability rather than in
expectation. A starting point of this thesis is to show that these two statistical controls
are not equivalent, especially in highly correlated settings as demonstrated in Figure
2.1. To obtain sharp FDP control we use non-parametric methods that rely either on
randomization – in Chapter 6 – or on theoretical derivations that allow sampling from
the joint distribution of well chosen statistics – in Chapters 7 and 9. In the KOPI proce-
dure, we also leverage multiple Knockoff draws to derandomize inference. We developed
an open-source package to allow users to reproduce the chapter’s results and to run
inference using KOPI which is available at https://github.com/alexblnn/KOPI. An
important caveat of all Knockoff methods is discussed in Chapter 8: exchangeability
violations can occur in common settings using the Gaussian algorithm with catastrophic
consequences on error control. To check potential violations, we developed an open-source
package that uses C2ST as a diagnostic tool for Knockoffs exchangeability, available at
https://github.com/alexblnn/KnockoffsDiagnostics. We hope that this incites users
of Knockoffs to pay attention to the generation process.

In Chapter 9, we apply the ideas of this thesis to the framework of conformal prediction.
Conformal prediction can be viewed as a multiple testing problem across many test points.
In this problem, we want to control the proportion of points that are not covered by
confidence intervals. Again, controlling the False Coverage Proportion (FCP) does not boil
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down to controlling its expectation (FCR). We have shown empirically that standard SCP
can yield an empirical FCP greater than the expected level for up to 65% of data splits.
To obtain sharp FCP probabilistic bounds, we again rely on a theoretical derivation of the
joint distribution of conformal p-values.

10.2 Perspectives

Notip beyond fMRI data. In Chapter 6 we propose Notip and extensively validate the
procedure on fMRI data. This procedure is fully nonparametric and can be applied to
other types of data. For instance, in genomics data, practitioners face similar challenges
as in fMRI analysis. Genomics data presents high local correlation and post hoc analysis
of specific genes is of interest (Brzyski et al., 2017). Therefore, performing large-scale
experiments using Notip on genomics data is an interesting avenue of work.

Single dataset Notip. Notip relies on an external dataset to build data-driven
templates. In practice, choosing – or even obtaining – such a dataset can be cumbersome
and costly. We have shown empirically in Section 6.3.6 that using Notip on a single
dataset with two different rounds of randomization yields results comparable to the original
approach. Obtaining a theoretical result on the validity of Notip used on a single dataset
is a desirable goal. This would allow us to recommend definitively this use to practitioners,
alleviating the constraint of having an additional dataset.

Notip, calibrated Simes and pARI. In the experimental campaign of Chapter
6, Notip is extensively compared to ARI (Rosenblatt et al., 2018) and to the calibrated
Simes template. Using the calibrated Simes template is equivalent to using the original
permuted-ARI (pARI, Andreella et al., 2020) procedure. In a recently published comment
(Andreella et al., 2024), the authors of pARI propose tuning a hyperparameter to obtain a

shifted Simes template: using δ > 0, the shifted Simes template is written tk(λ) =
(k−δ)λ
m−δ .

The authors argue that this modified procedure using δ = 27 outperforms Notip. Perhaps
a similar idea could be used in Notip, i.e. using a kmin > 0 value in the learned template t
in addition to kmax.

Rigorous testing of exchangeability assumptions. In this thesis, we have used
two frameworks that required an exchangeability assumption; in the Knockoffs frame-
work, knockoff variables have to be pairwise exchangeable with the original ones for the
inference to be valid. In split conformal prediction, calibration and test scores have to
be exchangeable for coverage to hold. Both of these assumptions are hard to check in
practice. In conformal prediction, much work has been done to extend SCP beyond
exchangeability (Gibbs and Candes, 2021; Barber et al., 2023) but only a few papers study
the question of exchangeability testing (Vovk, 2023). We studied this at length in Chapter
8 in the context of Knockoffs and proposed a diagnostic tool using classifier two-sample
tests. However, this test relies only on checking the violation of a necessary condition. A
promising avenue of work is to obtain a necessary and sufficient condition that can be tested.

Decision-making using conformal prediction intervals. Conformal prediction
produces valid uncertainty quantification via confidence intervals. While we introduced a
method that yields error guarantees for multiple test points in Chapter 9, An open question
that remains is the use of these confidence intervals to take decisions in practice. In the
field of model calibration, Perez-Lebel et al., 2024, study this question through the lens of
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maximizing utility functions – perhaps this work could be extended to the framework of
conformal prediction.



Chapter 11

Synthèse en Français

Cette thèse de doctorat porte sur le contrôle des fausses découvertes dans les problèmes
d’inférence en grande dimension. Elle est divisée en deux parties : dans la première partie,
nous introduisons les concepts fondamentaux du test statistique, de la prédiction conforme
et de l’analyse des données en neuroimagerie. Dans la seconde partie, nous présentons les
nouvelles méthodes développées au cours de cette thèse. Dans la partie consacrée aux bases
théoriques, nous introduisons tout d’abord la notion de test statistique au Chapitre 2 et
discutons du problème difficile des tests multiples. Nous présentons les principales mesures
d’erreur utilisées en tests multiples, telles que le taux d’erreur de famille (Family-wise Error
Rate, FWER) et le taux de fausses découvertes (False Discovery Rate, FDR), ainsi que les
procédures permettant de contrôler ces erreurs. Nous passons ensuite au Chapitre 3, où
nous approfondissons certains outils récents de la littérature sur les tests multiples que nous
utilisons dans cette thèse. Notamment, nous introduisons le taux d’erreur conjoint (Joint
Error Rate), un cadre général pour contrôler la proportion de fausses découvertes (False
Discovery Proportion, FDP), ainsi que la procédure des Knockoffs, une approche novatrice
pour le contrôle du taux de fausses découvertes. Dans le Chapitre 4, nous présentons la
prédiction conforme, un cadre populaire pour la quantification de l’incertitude dans les
problèmes de prédiction. En utilisant les valeurs de conformalité (p-values conformes),
nous établissons un lien entre ce cadre et la littérature sur les tests statistiques. Nous
abordons ensuite les bases de l’analyse des données en neuroimagerie, depuis l’acquisition
et le prétraitement jusqu’à l’analyse statistique, dans le Chapitre 5. L’analyse des données
d’IRMf constitue une motivation centrale de cette thèse, la plupart des expériences réalisées
dans le cadre de nos contributions étant menées sur des ensembles de données d’IRMf.
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Les contributions de cette thèse sont organisées autour de quatre articles, détaillés dans
les sections suivantes :

• Blain, A., Thirion, B., and Neuvial, P. (2022). Notip: Non-parametric true
discovery proportion control for brain imaging. NeuroImage, 260:119492

• Blain, A., Thirion, B., Grisel, O., and Neuvial, P. (2023). False discovery
proportion control for aggregated knockoffs. NeurIPS 2023

• Blain, A., Thirion, B., Linhart, J., and Neuvial, P. (2024a). When knockoffs
fail: diagnosing and fixing non-exchangeability of knockoffs. arXiv preprint
arXiv:2407.06892

• Blain, A., Thirion, B., and Neuvial, P. (2024b). Tight and reliable conformal
prediction. Under review

11.1 Notip : Contrôle non paramétrique de la proportion
de découvertes réelles pour l’imagerie cérébrale

Les procédures d’inférence au niveau des clusters sont largement utilisées pour la cartogra-
phie cérébrale. Ces méthodes comparent la taille des clusters obtenus par seuillage des
cartes cérébrales à une borne supérieure sous l’hypothèse nulle globale, cette borne étant
calculée via la théorie des champs aléatoires (Random Field Theory) ou par permutation.
Cependant, les garanties fournies par ce type d’inférence – à savoir qu’au moins un voxel est
véritablement activé dans le cluster – ne sont pas informatives quant à l’étendue du signal
présent. Il est donc nécessaire de disposer de méthodes permettant d’évaluer la quantité de
signal au sein des clusters, tout en prenant en compte le fait que ces clusters sont définis à
partir des données, ce qui introduit une circularité dans le raisonnement statistique. Cela
a motivé l’utilisation d’estimateurs post hoc permettant une estimation statistiquement
valide de la proportion de voxels activés dans les clusters. Dans le contexte des données
d’IRMf, le cadre d’Inférence à Toutes les Résolutions (All-Resolutions Inference), introduit
dans Rosenblatt et al., 2018, fournit de telles estimations. Cependant, cette méthode repose
sur des familles de seuils paramétriques, ce qui conduit à une inférence conservatrice. Dans
le Chapitre 6, nous proposons une approche adaptative aux caractéristiques des données
afin d’obtenir un contrôle plus précis des fausses découvertes. Pour cela, nous exploitons
des méthodes de randomisation. Nous obtenons ainsi Notip (Non-parametric True
Discovery Proportion control), une méthode puissante et non paramétrique qui fournit
des garanties statistiques sur la proportion de voxels activés dans des clusters définis à partir
des données. Des expériences numériques montrent des gains substantiels en nombre de
détections par rapport aux méthodes de pointe, sur 36 ensembles de données d’IRMf. Nous
discutons également des conditions dans lesquelles la méthode proposée apporte un bénéfice.

Travail publié. Blain, A., Thirion, B., and Neuvial, P. (2022). Notip: Non-parametric
true discovery proportion control for brain imaging. NeuroImage, 260:119492

11.2 Contrôle de la proportion de fausses découvertes pour
les Knockoffs agrégés

La sélection de variables sous contrôle statistique est une étape analytique essentielle dans
de nombreux domaines scientifiques, comme l’imagerie cérébrale ou la génomique. Dans ces
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contextes de données en grande dimension, inclure trop de variables peut conduire à des
modèles peu performants et coûteux, d’où la nécessité d’obtenir des garanties statistiques
sur le taux de faux positifs. Les Knockoffs sont un outil statistique populaire pour la
sélection de variables conditionnelle en grande dimension. Cependant, ils contrôlent la
proportion attendue de fausses découvertes (FDR) mais non leur proportion effective (FDP).
Dans le Chapitre 7, nous présentons une nouvelle méthode, KOPI, qui permet de contrôler
la proportion de fausses découvertes dans les inférences basées sur les Knockoffs. Cette
méthode repose également sur un nouveau type d’agrégation afin de limiter l’aléa associé
aux Knockoffs classiques. Nous démontrons un contrôle efficace de la FDP et des gains
substantiels en puissance par rapport aux méthodes existantes, aussi bien en simulations
que sur des données réelles d’imagerie cérébrale et de génomique.

Travail publié. Blain, A., Thirion, B., Grisel, O., and Neuvial, P. (2023). False
discovery proportion control for aggregated knockoffs. NeurIPS 2023

11.3 Quand les Knockoffs échouent : diagnostic et correction
du non-échangeabilité des Knockoffs

Les Knockoffs constituent un cadre statistique populaire pour la sélection conditionnelle de
variables en grande dimension sous contrôle statistique. Un tel contrôle est essentiel pour la
fiabilité des inférences. Cependant, les garanties offertes par les Knockoffs reposent sur une
hypothèse d’échangeabilité qui est difficile à tester en pratique, et peu d’études discutent
des solutions à adopter lorsque cette hypothèse est violée. Nous introduisons un outil
diagnostique basé sur les tests de deux échantillons par classifieur (Classifier Two-Sample
Tests) au Chapitre 8. Nous montrons, sur des simulations et des données réelles, que cette
violation survient fréquemment lorsque la structure de dépendance des données est forte.
Nous proposons une alternative non paramétrique et efficace au niveau computationnel,
qui permet de restaurer le contrôle des erreurs.

Prépublication. Blain, A., Thirion, B., Linhart, J., and Neuvial, P. (2024a). When
knockoffs fail: diagnosing and fixing non-exchangeability of knockoffs. arXiv preprint
arXiv:2407.06892

11.4 Prédiction conforme rigoureuse et fiable

La prédiction conforme avec séparation (Split Conformal Prediction, SCP) offre un moyen
computationnellement efficace de construire des intervalles de confiance dans les problèmes
de régression. Notamment, la plupart des travaux théoriques sur SCP se concentrent sur le
problème d’un seul point de test. Or, dans les applications réelles, les ensembles d’inférence
contiennent plusieurs points, ce qui soulève la question des garanties de couverture pour un
ensemble de points simultanément. En moyenne, la proportion de non-couverture (False
Coverage Proportion, FCP) reste contrôlée, mais elle peut varier fortement autour de sa
moyenne. Nous montrons que lorsque l’on partitionne un ensemble de données plusieurs
fois, la SCP classique peut ne pas contrôler la FCP dans jusqu’à 65% des partitions. Dans
le Chapitre 9, nous introduisons CoJER, une nouvelle méthode qui assure un contrôle
précis de la FCP en probabilité pour la prédiction conforme, en exploitant la connaissance
de la distribution des p-valeurs conformes sous échangeabilité. Grâce à des expériences
approfondies sur des données réelles, nous montrons que CoJER garantit la couverture
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annoncée, contrairement à la SCP standard. De plus, CoJER produit des intervalles plus
courts que la méthode state-of-the-art et seulement légèrement plus larges que la SCP
classique.

En révision. Blain, A., Thirion, B., and Neuvial, P. (2024b). Tight and reliable
conformal prediction. Under review
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