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Abstract

This work concerns time-delay reservoir computing (TDRC) in integrated photonic
platforms, specifically the Lithium Niobate on Insulator (LNOI) platform. We pro-
pose a novel all-optical integrated architecture, which has only one tunable param-
eter in the form of a phase-shifter, and which can achieve good performance on
several reservoir computing benchmark tasks. We also investigate the design space
of this architecture and the asynchronous operation, which represents a departure
from the more common framework of envisioning time-delay reservoir computers
as networks in the stricter sense. Additionally, we propose to leverage the optical
feedback to dispense with the input mask, which allows the bypassing of an O/E/O
conversion, which is often necessary to apply the mask. In future work, this can
allow the processing of real-time incoming signals, possibly for telecom/edge appli-
cations. The effects of the output electronic readout on the proposed architecture’s
performance are also investigated. Initial experimental work is also reported. The
unifying theme of this work is to investigate the performance possibilities with min-
imum photonic hardware requirements, relying mainly on LNOI’s low losses which
enables the integration of the feedback waveguide, and using only interference and
subsequent intensity conversion (through a photodetector) as the nonlinearity. This
provides a base for future work to compare against in terms of performance gains
when additional nonlinearities are considered (such as those available on the LNOI
platform), and when overall system complexity is increased by means of introducing
more tunable parameters.
Thus, the scope of this work is about the exploration of one particular unconven-
tional computing approach (reservoir computing), using one particular technology
(photonics), on one particular platform (lithium niobate on insulator). This work
builds on the increasing interest of exploring unconventional computing, since it has
been shown over the years that digital computers can no longer be a ‘one-size-fits-
all’, especially for emerging applications like artificial intelligence (AI). The future
landscape of computing will likely encompass a rich variety of computing paradigms,
architectures, and hardware, to meet the needs of rising specialized applications, and
all in coexistence with digital computers which remain — at least for now — better
suited for general-purpose computing.
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Chapter 1

Introduction

1.1 Context

The invention of the transistor in 1947 began the unprecedented development of com-
puters, thrusting the world into what is now called the “Information Age". Prior
to that, first-generation computers utilized vacuum tubes to carry out logical pro-
cessing. These vacuum-tube computers were first used for solving linear systems of
equations, then extended to general purpose computing (first in the ENIAC, 1945,
then later in the binary EDVAC). The concepts behind digital computing were al-
ready developed in the Babbage engine as far back as the 1820s. Going further
back, analog computers have existed for far longer in the form of devices to measure
real-world physical variables; chronometer for time, slide rule for distance, among
others. Even in ancient times, humans had the predecessors to these tools in sun-
dials and measuring rods based on arm-spans. Today, computers play a vital role
in our daily lives, both at the individual and societal level, and the modern world
would not function as it does without them.

1.1.1 A brief history of computing

The rise of computing in the 20th century — from enabling materials to the scale
and breadth of applications — was not simply a technological breakthrough. Math-
ematical progress in the 19th century had already transformed philosophical logic
into a formal language which gave birth to symbolic logic, and subsequently Boolean
algebra, which is the foundation of digital computing. In symbolic logic, an expres-
sion is evaluated for its truth value, yielding one of two possible outputs: True or
False, which can in practice be represented as ’ON’ and ’OFF’ states of a switch.
Pioneering work in computability theory in the 1930s, catalyzed by Gödel’s then-
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contemporary work in formal logic, led to the Turing machine: a conceptual com-
puter that manipulates symbols on an infinite length of tape according to a table of
rules. This simple machine could implement, in principle, any computer algorithm.
Boolean algebra was also heavily utilized by Claude Shannon to develop Informa-
tion Theory, laying the groundwork for modern communication theory. On the more
practical side, advancements in semiconductor physics and material science enabled
the engineering of the p-n junction. Thus, modern computing could only emerge
thanks to the successive breakthroughs spanning the theoretical and practical sci-
ences in the first half of the 20th century.
Vacuum tube computers were being used well beyond the first half of the 20th cen-
tury. However they were difficult to maintain due to constant failures (unreliable),
and were also operated at hundreds of volts (power hungry). The invention of the
transistor promised (and later delivered) rapid, energy-efficient, and reliable switch-
ing. This allowed for the scaling up of computing in terms of number of switches
(through scaling down of device size and on-chip integration) and also the scope
of applications, making them the ubiquitous machines we have today. The incred-
ible success of digital electronics, driven by Moore’s law [1], which predicted that
the number of transistors on an integrated circuit roughly doubles every two years,
sustained the improvement of computing performance for more than 50 years. Con-
tinuous progress in device architectures has allowed further scaling down to 2-nm
process (including Fin-Fet, GAAFET, etc.. [2]). However, this came at the expense
of rising R&D and fab costs [3, 4]. Furthermore, today’s computers — which essen-
tially use the architecture known as the “Princeton" architecture or more commonly
as the “von Neumann" model — suffer from a well-known bottleneck.

1.1.2 The von Neumann Bottleneck

In the first draft of the EDVAC report [5], John von Neumann described a design for
a digital electronic computer. The proposed architecture boils down to the schematic
shown in Fig. 1.1, comprising of:

• A central processing unit that includes an instruction register and a program
counter

• Shared memory for data and instructions

• Input and output peripherals

• External mass storage for long-term data storage

2
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Control Unit

Arithmetic Logic Unit

Memory Unit

Central Processing Unit

Input Device(s) Output Device(s)

Fig. 1.1: Simplified diagram of the von Neumann architecture

In conventional (Harvard) architectures, data and instructions share the same bus
and memory. In electronic implementations, one must resort to a serial method to
transfer instructions and data one at a time. A certain time t′ is consumed to fetch
data/instructions at each clock cycle. Consider a simple program of adding two
numbers x and y:

1. Fetch ‘add’ instruction

2. Fetch x

3. Fetch y

4. Execute ’add’ instruction

5. Store sum(x, y)

With such a simple program suffering already from an excess run time (overhead) of
4t′ (everything except the execution), it can be seen how inefficiently this scales with
the size and complexity of the program. Modern architectures, which are still largely
von Neumann based [6], mitigate this problem by providing, for example, multi-level
memory (L1, L2 cache). This can allow for some of the data and instructions to be
‘closer’ to the processor, thereby reducing t′. On the other hand, pipelining strate-
gies can also help, which is done in Microprocessor without Interlocked Pipeline
Stages (MIPS) processors (in itself a Reduced Instruction Set Computer (RISC)
architecture). Pipelining allows for several phases of instructions to execute simul-
taneously, thus reducing CPU idle time. On the other hand, multi-core processing
enables parallelization and more efficient computing, especially if programs are op-
timized to run on such hardware. However, all these mitigation techniques have
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become less effective over the years with the advances in CPU speeds while memory
access speeds plateaued [7]. Furthermore, the rise of AI and the scale at which it
is deployed nowadays means that application-specific hardware would be more suit-
able, especially one that can natively accomplish, e.g., multiply-accumulate (MAC)
operations (sum = sum+ (a× b)), which are widely used in digital signal process-
ing, image processing, and AI applications (especially neural networks). Recurrent
neural networks (RNNs) are a widely-used type of neural networks, optimized for
temporal processing such as speech recognition. In RNNs, the number of MACs
required is roughly

MACs = T ×
[
(x× h) + h2 + hy

]
(1.1)

where T refers to the number of time steps considered, h is the hidden dimension,
x is the input size, and y is size of the output. For more advanced RNNs, like the
widely used Long Short-Term Memory (LSTM), the number of MACs increases fur-
ther by a factor of four. In contrast to the example program above, which sums two
numbers, this involves additional overheads to retrieve a and b, the multiply instruc-
tion, and the previous sum as well as storing the new sum. Graphical processing
units (GPUs), which were originally made for the purpose of 3D graphic rendering,
can handle MACs more efficiently than CPUs thanks to their highly parallel archi-
tecture and matrix processing units. In addition to designing specialized hardware
that can outperform CPUs in MAC operations, it is also possible to implement MAC
operations implicitly in some paradigms of computing, where the information pro-
cessing is done in a more unconventional way, such as exploiting the properties and
dynamics of physical systems. Thus, there has been increasing interest in the explo-
ration of unconventional computing paradigms, ranging from in-memory computing
[8], stochastic computing [9], neuromorphic computing [10], and reservoir comput-
ing [11], among others. Optical computing paradigms have also been explored as a
means to leverage particular advantages of working with light over RF signals, or
simply as a basis for the implementation of some of the above-mentioned paradigms.

1.1.3 The Fall and Rise of Optical Computing

Optical computing refers to the use of optical devices and systems to perform signal
processing. ‘Information optics’ — one of the earlier names of this field — could ar-
guably be traced back to 1859 with the knife-edge test by Foucault [12], where light
propagated through a lens or curved mirror and was intercepted by a knife-edge,
such that the resulting observed image would give information about the mirror/lens
aberrations and surface quality. The first initiatives for optical computing (in the
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modern sense) emerged in the 1950s, with the first all-optical schemes proposed as
early as the 1950s, coinciding with the development of holography [13]. The linking
factor here is that both, proposed optical processors and holography, relied on a
Fourier optics treatment. The first such system, known as the 4-f correlator [14],
is composed of 3 planes: input, reference (processing), and output. Inputs were
initially realized as static slides which were later substituted with spatial light mod-
ulators (SLM), which are optical devices that could be tuned by applying electrical
signals. A lens is positioned between each pair of planes, hence the ‘4-f’ designation
implying 4 focal distances separating the input and output layers. The processing
plane can be composed of lenses, holograms, or even nonlinear elements, depending
on the desired computation. The output layer comprises a photodetector array or
a camera. While the processing itself takes place at the speed of light, the whole
system is limited by the rather slow SLMs (modern units operate at the ∼100 Hz
order of magnitude). Thus the applications for real-time signal processing remained
out of reach.
On the other hand, the rise of communication theory and information theory paved
the way for their adaptation to optical systems [15]. There was great optimism for
this then-emerging field, which continued onward until the 1990s. From a retrospec-
tive point of view, it is interesting to note that some of that optimism had been
in a surprisingly realistic direction. In 1963, a symposium was held to discuss the
role and future of optical information processing with about 425 participants from
the fields of optics and information theory. In the published proceedings [16], the
authors clearly show a preference for the use of optics within application-specific
contexts such as pattern recognition and character recognition, where the paral-
lelization offered by optics can be harnessed. In the same preface, the authors also
expressed skepticism over “the possibility of developing a general-purpose optical
computer”, but which could be overcome “with the discovery and application of new
optical effects and phenomena in laser research and fiber optics”. It is interesting
to note that, in retrospect, the scope of applications where optical computing could
really make a difference was accurately predicted, i.e. within application-specific
settings. International conferences on the theme of optical processing were held
almost on a yearly basis from the 1980s to the 1990s by various organizations, the
journal Applied Optics held a feature issue on a monthly basis, and the momentum
was strong. Owing to the nature of light, most of the efforts were naturally directed
towards analog computing paradigms.
The subsequent rise and rapid progress of electronic digital computers, backed by
the self-fulfilling prophecy of Moore’s law, dealt a heavy blow to the optical comput-
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ing community. This was especially aggravated when optical digital computing was
also considered, where it became quickly apparent that it could not compete against
the rapidly developing digital electronics industry. This was primarily due to the
limitations of cascadability, density of integration, non-volatile information storage,
and difficulty of achieving nonlinear elements in optical platforms as opposed to
electronic ones. In the early 2000s, there were no longer specialized conferences
on the topic of "Optical Processing", and the Applied Optics monthly feature was
dropped [17].
Far from being the end for optical computing, and in an ironic turn of events, it
is the slowing down of progress in digital electronics that paved the way back for
optical computing. In fact, this comeback was largely possible thanks to two major
— though unrelated — strides: the first being the rise of silicon photonics (focused
initially on interconnects) in the mid 2000s, overcoming the limitations of electrical
I/O through replacement by on-chip optical communication, and the second being
the rapid developments in AI and in particular neural networks in the late 2000s and
early 2010s. Thus, the rise of silicon photonics, coinciding with the need to address
the increasing demands of AI, has been key in the resurrection of the previously
almost-dismissed forays into optical computing. In addition to the possibility of
using optical interconnects with conventional computing platforms for AI, optical
hardware is being harnessed as a vehicle to implement various emerging computing
paradigms, such as in-memory computing [18], Ising machines [19], physical neural
networks [20], and reservoir computing [21].
So where are the opportunities in optical computing? By now it is obvious that
light-speed processing is in fact not the main catch, the reason being the unavoidable
bottlenecks from hardware required for domain conversions (i.e. between optical to
electronic and vice-versa), in addition to the simple fact that radio frequency (RF)
electrical signals do in fact travel at the speed of light as well. A recent 2023 perspec-
tive article lists some features where photonics can make a difference in computing
[22], most notably:

• Bandwidth: photonics operate on lightwaves (100s of THz), while digital
electronics operate on RF waves (GHz). The difference in potential bandwidth
is 5 orders of magnitude. This means massive parallelism can be achieved
through frequency-multiplexing, where frequency combs can generate ∼ 107

lines [23]. Data in each line can be processed in parallel.

• Near-dissipationless dynamics and low-loss transmission: photons can
propagate with negligible losses in free-space setups and very low losses in
some integrated platforms (e.g. losses demonstrated on lithium niobate on
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insulator and silicon-nitride platforms ∼ 0.2 dB cm−1 in the C-band [24, 25]).
It is anticipated that optical interconnects will also play a role in electronic
intra-chip communication.

Thus, there is great promise in utilizing photonic platforms for computing applica-
tions, especially those that would benefit from fundamentally different paradigms
that promise boosts in speed and energy efficiency, e.g., application-specific signal
processing, and which can exploit and benefit from the above-mentioned strengths
of working with light.

1.2 Structure of the Dissertation

The rest of this work is structured as follows. In chapter 3, recent advances in pho-
tonic neural networks, and in particular, photonic RC, are summarized. This is then
followed by the research questions addressed in this dissertation and a statement of
the research contributions. Chapter 4 introduces the proposed minimum complexity
architecture alongside numerical results on some standard benchmark tasks. Chap-
ter 5 proposes the dispensing of the input masking protocol through the use of the
same architecture presented albeit in the asynchronous regime. Chapter 6 shows the
experimental work done on fabricated devices on the lithium-niobate-on-insulator
platform. Finally, chapter 7 presents the summary and provides suggestions and
perspectives for future work.
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Chapter 2

Background

2.1 Background on Photonic Integrated Circuits

The history of integrated optics is almost as old as integrated electronics. A seminal
Bell-Labs 1969 paper discussed the benefits of photonic integration [1]. Just a
year earlier, the first complementary metal-oxide semiconductor (CMOS) integrated
circuits were made [2]. This section presents a brief overview of photonics, with a
focus on photonic integrated circuits (PICs). Firstly, some material platforms are
discussed, with their advantages and drawbacks. This is followed by a tutorial on
photonic building blocks and their compact models, which aims to familiarize the
reader with the simulation part of this work.

2.1.1 Material platforms

Much research has gone into finding suitable materials for integrated photonic de-
vices and circuits. For most platforms, photolithography is used to pattern wafers
for etching and material deposition. Unlike with electronic circuits, where elec-
trons exist readily inside materials, photonic circuits require the means of light
generation, usually achieved by generating electron-hole pairs within a gain medium
through an external excitation process, and detection, through the combination of
those electron-hole pairs. From a historical perspective, device-level design preceded
circuit-level thinking for decades. This resulted in the specialization of platforms
for these different devices, for example: indium phosphide (InP) for lasers, gallium
arsenide (GaAs) for detectors, and lithium niobate (LiNbO3) for high-speed modu-
lators. Each of these devices were made under different fabrication processes which
are fundamentally incompatible with the ones used for the other devices. If one
could integrate all these functionalities on silicon, with a standard fabrication pro-
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Fig. 2.1: Projection of silicon photonics compound annual growth rate (CAGR) and
comprising industries [6].

cess, then photonics would become the next fabless semiconductor industry [3]. As
of now, it remains an open engineering problem to achieve efficient, integrate-able
light emission on silicon platforms (due to silicon having an indirect bandgap), with
some recent demonstrations of such phenomena using epitaxially grown hexagonal
silicon nanowires (with direct bandgap) [4]. Earlier efforts to achieve lasing in sili-
con used Raman nonlinearities in the indirect bandgap regime [5], but this scheme
requires optical pumping which necessitates another laser. Thus, it is of interest
to explore other material platforms and the possibility of integrating multiple ones.
CMOS-compatible monolithic integration used to be attractive for the integrated
photonics community. The desire was to leverage the 50+ year-old multi-billion
dollar electronics industry for the currently booming photonics industry, and use
existing foundries and mature fabrication facilities as a quick means to achieving
large scale production of photonic chips. Additionally, many of the older facilities
that were once required for larger gate widths could be repurposed for photonic chips.
Going further in this direction, one could consider fabrication with only full CMOS
compatibility in mind, i.e. using the existing fabs without introducing fabrication
steps that may contaminate them or affect their use for traditional electronics [7, 8].
However, a fundamental limitation of this direction, observed through the years, is
the very low yield of such a scheme. The first large-scale use of CMOS-compatible
silicon photonics in an industrial setting was with optical transceivers, pioneered
by Luxtera in 2006 on a then state of the art 130 nm SOI platform [9]. Optical
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transceivers solved a fundamental issue in data centers which have large amounts of
modules and racks that require interconnectivity, initially done with coaxial cables.
The main problem with electrical cables is their impedance-induced heat generation,
which required extensive cooling equipment and associated energy costs, in addition
to bandwidth limitations. Integrated photonics solved this problem by introducing
a module that is both a transmitter and receiver, combining optical modulation cir-
cuitry with photodetectors, and replacing electrical cables with optical fibers where
light can travel without generating heat. Furthermore, wavelength-division multi-
plexing is leveraged to send multiple signals onto the same optical fiber, greatly
increasing the bandwidth. While initially InP was the dominating integrated pho-
tonic platform, silicon photonics (SiPh) has been gaining traction over the years and
is expected to contribute to larger portions of this industry over the years to come
[6], in addition to other application areas, most notably photonic processing [10, 11],
which is projected to play a major role in the industry, as shown in Fig. 2.1.
Another appeal of SiPh is the capability of integrating electronics. Active optical
devices, such as lasers and semiconductor optical amplifiers (SOAs), along with tun-
able photonics (e.g. filters) require electronic control circuits. This opened the door
to integrated photonics beyond research labs, and many kinds of applications, from
sensing to information processing, have been envisioned and implemented. This also
gave rise to the desire of integrating multiple materials on the SiPh platform. In
other words, if the strengths of all materials can be leveraged and combined together,
this would enable competitive products in a wide array of applications. Hybrid and
heterogeneous integration schemes pave this way [12], where the former is done at
the packaging stage, and the latter is done at the fabrication stage.
In recent years, silicon nitride (Si3N4) and lithium-niobate-on-insulator (LNOI),
both CMOS-compatible platforms, gained interest owing to their very low losses
and their nonlinearities. LNOI is a relatively new platform where a layer of Si3N4

is loaded onto thin-film-LiNbO3 (TFLN), which is deposited on a buried oxide
(BOX) layer, to allow for CMOS compatibility, since TFLN in itself is not CMOS-
compatible owing to specialized etching and deposition techniques [13]. LNOI en-
ables the accessing of the wide range of advantages of LiNbO3, which has been
dubbed as the ‘silicon of photonics’ [14]. For example, LiNbO3 possesses — among
other nonlinearities — the linear electro-optic ‘Pockel’s’ effect, a wide transparency
window spanning the ultraviolet to the mid-infrared (400 nm — 5 µm), and benefits
from widespread commercial availability of optical-grade wafers [15]. Among other
applications such as sensing, these properties can be exploited for the purposes of
high-speed photonic circuits, including photonic computing applications.
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2.1.2 Photonic Building Blocks

The physics of light can be described by different theories, which follow the
evolution of our understanding of the nature of light [16]. In chronological order,
these theories are ray optics, scalar wave optics, beam optics, Fourier optics, elec-
tromagnetic optics, and quantum electrodynamics. In photonic circuits, depending
on whether device level or system-level simulation is desired, and also on the kinds
of phenomena taken into account, different theories of light may be employed
for the modeling process. For integrated photonic system-level implementations,
the modeling process is mainly reliant on guided-wave optics (e.g. coupled-mode
theory).
Light can be manipulated by exploiting the phenomena associated with it, such
as reflection, interference, polarization, dispersion, in addition to nonlinearities
and further light-matter interaction phenomena. Bulk components can be used
in optical table setups to control light in free space or in fiber optics. With the
advances in photonic integration, many of these components can now be integrated
together on a single chip using the above-mentioned CMOS-compatible processes.
In PICs, components are either passive (draw no power), or active (draw some
power). On chip, light can be confined in passive waveguides which are built into
the chosen material/platform through e.g. an etching process. Active components
include light sources (laser/LED), photodiodes, optical amplifiers, among others.
A laser is a particular solution of the wave equation [17], which describes a
coherent, monochromatic light field. The electric field of this source of frequency
ω = 2πf , assuming a plane wave (i.e no spatial dependence), can be described by
its amplitude A and initial phase ϕ as

Esrc (t) = A exp (iωt+ ϕ) (2.1)

For ease of notation, the dependence on time will be implicit in subsequent equations.
Consider the following example of a photonic chip, shown in Fig. 2.2. Laser light can
be injected into a photonic chip by means of electric field coupling between an optical
fiber and a device/structure on the chip. In practice the two most common ways are
(i) butt-coupling, where the cleaved end of the fiber is aligned as close as possible
to the on-chip waveguide, and by (ii) using grating couplers (GC), which are Bragg
structures that, when a certain angle condition is satisfied, can efficiently couple
the light into the waveguide mode for a range of wavelengths. Butt-coupling, when
properly done and for permanence, can be highly efficient. However, a limitation is
that there is a high degree of alignment sensitivity. On the other hand, GCs offer
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Fig. 2.2: Example of an integrated photonic chip with some common components.

a larger alignment flexibility for on-chip coupling, but they intrinsically suffer from
more losses due to mode mismatch and energy dissipation into higher diffraction
orders. After the light is coupled from the fiber into the chip via the GC, the field
can be described as

Egc = γgc(λ, θ)Esrc (2.2)

where γgc is the coupling coefficient of the GC which depends on the laser wavelength
λ and the angle θ between the fiber and the normal. After being coupled into the
on-chip waveguide and travelling some distance Lwg, the field evolves to:

Ewg = Egc exp (iβLwg) exp (−αwgLwg) (2.3)

where Lwg is the length of the waveguide [m], αwg is the waveguide loss [m−1], and
β = 2πneff/λ [m−1] is the propagation constant of the guided mode with effective
refractive index neff . The effective index describes the approximate index encoun-
tered by the propagating field due to the fact that not all the mode travels inside the
waveguide core. This means that some of the mode will leak into the surrounding
medium which in turn causes the field to encounter an ‘effective’ index that takes
into account this effect. In practice, the effective index is usually found through
mode solvers which apply coupled-mode theory to the boundary conditions defined
by the waveguide dimensions and the properties of the materials involved. The de-
tails of this calculation are not discussed here. The field can then be split up using
splitters, either in the form of Y-junctions, directional couplers, or multimode inte-
ferometers (MMI). A 1×2 50-50 (3-dB) MMI, or the equivalent Y-splitter, will split
the field such that one half of the associated power will go into each arm, yielding

E1 = E2 =
γmmi√

2
Ewg (2.4)
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where γmmi ∈ (0, 1) is the MMI gain and depends largely on the inaccuracies encoun-
tered during fabrication processes. For a perfectly symmetric Y-splitter/1×2 MMI,
there is no phase delay between the splitter arms. In general, MMIs are more toler-
ant to fabrication variations, as they rely on interference as the mechanism of power
splitting. A 1×2 MMI and 2×1 MMI can be used together with two waveguides in
between to construct an important device: the Mach-Zender interferometer (MZI),
also shown in Fig. 2.2. An MZI exploits the interference property of light to gener-
ate a target output intensity from the interference of the two fields. This becomes
especially useful when combined with a phase shifter, which is usually implemented
by simply placing an electrical heater close to one of the waveguides. Thanks to the
material’s thermo-optic coefficient, the applied heat will alter the optical path length
experienced by the field in that waveguide, thus controlling the MZI output inten-
sity. This can be either slowly/statically controlled with a DC supply, or rapidly
with a radio-frequency (RF) wave, as in the case of electro-optic modulators, which
exploit a material’s electro-optic coefficient for that purpose. For certain kinds of
materials which have a non-centrosymmetric crystal structure, Pockel’s effect is ob-
served, whereby the change in refractive index is proportional to the applied electric
field. The output field of the unbalanced MZI is expressed as

Emzi =
γmmi√

2
E1 exp (−iβL1) +

γmmi√
2
E2 exp

(
−iβL2 − iπ

(
Vm

V RF
π

+
Vb

V DC
π

))
(2.5)

where L1 and L2 are the lengths of the top and bottom MZI arms, respectively, Vm

is the modulation voltage, Vb is the MZI bias voltage, V DC
π is the DC voltage that

induces a π phase shift, and similarly V RF
π for the RF voltage. The electric field

now encounters a resonant structure: a microring resonator. The microring filters
the signal according to its resonant frequency with the optical path length condition
given by

2πneffr = mλ0 (2.6)

where r is the radius of the ring resonator, m is the mode number, and λ0 is the
resonance wavelength [18]. Ring resonators are typically used in either an all-pass
configuration (as in this example) or an add-drop configuration, which includes an
additional ’drop’ waveguide above the ring. Ignoring the waveguide between the
combiner MMI and the ring resonator, and assuming symmetric point coupling (i.e.
bidirectionally equivalent), the output of an all-pass or ‘notch’ ring resonator in the
time domain can be expressed as

Ering (t) = γcrEmzi (t)− iγcκ exp (−iβLrt)Emzi (t− τ) (2.7)
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where γc ∈ (0, 1) is the coupler gain, r is the through coupling coefficient, κ is the
cross coupling coefficient, Lrt is the round-trip length, and τ is the round-trip time.
In this equation the time-dependence and delay are explicitly written, as the res-
onator is a feedback structure described by both the incoming field and the stored
field.
The presented compact models are useful for designing photonic circuits. The pho-
tonic devices are considered as blocks that affect the complex field either linearly or
nonlinearly, in terms of phase and amplitude. More rigorous modeling techniques,
such as solving the Maxwell equations in 3D, e.g. the finite-difference time-domain
(FDTD) algorithm, which are suitable for device-level simulations, would not be
practical for system-level modeling and design (which often take into account mul-
tiple components).

2.2 Background on Reservoir Computing

Machine learning (ML) can be defined as the building of a statistical model that
solves a practical problem, based on a gathered dataset that is either present in
the real-world or artificially created. ML can be supervised, unsupervised, or semi-
supervised. In supervised ML, the dataset contains a collection of L labeled examples
(xi, yi)

L
i=1, where xi is a feature vector of dimension j that describes the example in

some way. The goal is then to create a model that trains on these examples such
that it can make sufficiently accurate predictions on unseen data. Reservoir com-
puting (RC) is one type of supervised machine learning approaches. The underlying
mathematical framework for reservoir computing has been developed in two ways
independently of each other (also motivated by different reasons): the “echo-state
network" (ESN) [19] and the “liquid-state machine" (LSM) [20]. The former deals
with discrete-time systems, while the latter describes a continuous-time perspec-
tive useful for spiking systems [21]. Historically, the motivation for ESN was to
circumvent the problems of training large-scale artificial neural networks (ANNs)
implemented in software, which suffered from e.g. the vanishing gradient problem.
Currently, the interest has shifted more towards physical RC implementations which
leverage the dynamics of physical systems to do the computing, and which have been
explored in various domains. One of the earliest RC hardware implementations in-
volved mechanical actuators that acted as input to a ‘reservoir’ of water, which was
able to solve the XOR and speech recognition benchmark tasks [22]. RC has since
been implemented in electronics and photonics, among other platforms [23].
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Fig. 2.3: Visualization of dimensionality expansion: (a) only nonlinear solutions can
separate the different classes, while in (b) a plane can linearly separate them.

2.2.1 Formalism

We will concern ourselves with the ESN framework, as it is the one considered in
the rest of this work. The ESN is a nonlinear dynamical system which exhibits
particular characteristics, namely:

• the echo-state property (ESP); the system allows reverberations of past input
that decay with time (fading memory),

• dimensionality expansion, usually achieved through a nonlinear activation
function (Fig. 2.3).

The ESP is a condition that necessitates the forgetting of past inputs such that the
reservoir does not depend on its initial conditions. This is an essential feature of RC
as it would allow the reservoir to respond to the same input in the same manner. The
consistent mapping of input data is crucial for ensuring that a model trained on the
output of the reservoir can generalize effectively to different datasets. Dimensionality
expansion enables the separation of multiple classes with simple linear classifiers,
even for tasks that would normally require larger and deeper neural networks. The
idea is, by projecting the data onto a higher dimensional space, there would exist
more hyperplanes that can separate well the various classes of data, which enables
high performance accuracy.
As shown in Fig. 2.4a, any RC scheme consists of the following 3 layers:

• Input layer: where data is preprocessed (optional) and then injected into the
reservoir,
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• Reservoir layer: which consists of nonlinear nodes connected to each other,

• Output layer: where the reservoir states are collected by means of a readout
mechanism.

Each layer is connected to the next one via a series of weighted connections. What
separates reservoir computing from similar temporal NNs, such as RNNs, is that the
weights between the input and the reservoir layers can be set and fixed, as well as the
interconnections between the nonlinear nodes, whereas in RNNs all the connections
need to be optimized. Thus, in RC only the output layer is trained, which means that
only least-squares methods are required to find the optimal weights. Furthermore, a
reservoir may be constructed from an ensemble of physical nodes (Fig. 2.4b), or with
one node in delayed feedback (Fig. 2.4c), known as time-delay reservoir computing
(TDRC), which is discussed in section 2.2.2. The reservoir state matrix, which is a
collection of the states of each of the N nodes, is described at each discrete timestep
according to

x (n) = f
[
W inu (n) +W resx (n− 1)

]
(2.8)

where f is the nonlinear activation function, u[n] is the current input, W in ∈ RN×M

is the weight connectivity matrix between the M (usually M = 1) inputs and each
reservoir node, and W res ∈ RN×N is the reservoir connectivity matrix describing
how the nodes are connected to one another. The prediction step is then done at
the output layer

y (n) = W outx(n) (2.9)

where W out ∈ RS×N is the output weight matrix with S being the readout dimen-
sionality (usually S = M = 1). After recording all the states, they are arranged
together in a matrix which describes the N microstates of the reservoir for each
training example L. W out is then found by e.g. ridge regression:

W out =
[
X⊤X+ λI

]−1
X⊤y (2.10)

where X ∈ RN×L is the matrix containing the reservoir states corresponding to each
training example, y ∈ RS×L is the labels matrix, I is the identity matrix, and λ is
the Tikhonov regularization term which prevents overfitting by limiting the range
of values available for the weights to take.

2.2.2 Time-delay Reservoir Computing

The emergence of TDRC came from the realization that networks of physical nodes
can have their equivalents in the time-dimension of delayed-dynamical systems [24].
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Fig. 2.4: (a) A reservoir computing scheme consists of 3 layers: input, reservoir, and
output. The reservoir may be in the form of (b) physical nonlinear nodes connected to
each other according to the reservoir connection matrix W res, or as (c) one nonlinear

node in a delayed feedback configuration.

Such systems are described by delay-differential equations (DDE) [25]. For example,
the DDE of a system that considers a single constant delay has the form

Ẋ(t) = F [t,X(t), X(t− τd)] (2.11)

where τd is the delay time and is a positive constant. In other words, the system’s
rate of change is described by its present state and its state τd into the past. When
stable, an input-driven system possesses some initial state X(t0) = X0, where F

maps a subsequent trajectory until the system is brought back to its rest state after
a certain time constant ts, which depends on the system parameters. For RC, it is
fundamental that F is nonlinear and that the system eventually goes to rest after
being perturbed, which permits the forgetting of past inputs at ts and thus removes
dependence from the initial state.
Due to consideration of network equivalents, initial attempts at hardware TDRC
were constrained by a quasi-synchronization of the input clock cycle T with the
delay time, i.e. T ≈ τd. This yields a ’network’ of equidistant virtual nodes Nv

which are sampled at equal divisions of the clock cycle, i.e. T = θNv, with θ

being the inter-node temporal distance. In physical systems the network topology is
defined by the interplay of the input datarate with the characteristic timescale of the
system, which is dependent on τd and the timescale of the nonlinearity τnl. When
τnl ≪ τd, a perfect synchronization τd = T would couple each node to its past state
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Fig. 2.5: Different network topologies in TDRC arising from the temporal dynamics, (a)
τnl ≪ τd and T = τd, (b) τnl ≪ τd and T = τd + θ, (c) τnl ≫ τd

(Fig. 2.5a). Mismatching the clock cycle with the input delay by one node distance,
i.e. τd = T + θ, achieves the forward connectivity of the states of the reservoir,
through what is usually described as ‘coupling by inertia’ (Fig. 2.5b). In the last case,
τnl ≫ θ, which entails an even richer interconnectivity between the nodes thanks to
the participation of the nonlinearity’s timescale (Fig. 2.5c). However, this comes at
the cost of slowing down the overall speed of the system. Interestingly, this forward
connectivity with delay lines was explored theoretically and published in 2011 by
Rodan and Tino [26], coinciding with the pioneering experimental demonstrations
of TDRC that were published around the same time [24, 27]. Rodan’s work was
motivated by the construction of minimum complexity ESNs in software, where
various time-multiplexed network topologies are investigated. Prior to that, ESNs
were usually randomly initialized, but optimizing the internal connectivity to yield
optimal dynamics for the task at hand was desirable. The optimization procedure
proved difficult for interconnection weight matrices where most of the elements were
nonzero, especially when this optimization was usually done through a parameter
space exploration. This was addressed in [26] through the use of ‘simple cycle
reservoirs’ where most of the internal weights were zeroed out. In this respect,
physical TDRC based on ultrashort timescales is in fact the hardware realization of
simple cycle reservoirs. One key feature of TDRC is the applying of an input mask
onto the input signal in the pre-processing stage, as shown in Fig. 2.6. The mask
repeats every clock cycle, and is usually done using either binary values, or using
pseudo-random values drawn from some distribution. This ensures that the reservoir
can have a rich temporal response, which results in a higher effective dimensionality
of the reservoir. This is due to the nodes occupying different states from one another,
which essentially translates to approaching linear independence from one another.
A higher effective dimensionality ensures that the number of nodes obtained are
useful for solving the task at hand.
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Fig. 2.6: The input masking protocol is commonly used in TDRC, adapted from [28].
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Chapter 3

State of the Art

In this chapter, a brief overview of photonic neural networks is given, followed by
a detailed report on the state of the art in photonic reservoir computing, shedding
light on the most important advancements in the field. The research aims will then
be presented within the context of current research trends and gaps in the literature.

3.1 Photonic Neural Networks

The rapid developments in AI and deep neural networks (DNNs) in the last decade
signaled the need for new technologies that can allow faster, energy-efficient process-
ing of MAC operations through hardware accelerators. On the one hand, photonic-
based AI accelerators are being explored, for example in a systolic-array topology
[1], or with optoelectronic time-frequency interleaving schemes [2]. Hardware ac-
celerators are usually not full neural network implementations, it suffices that they
serve to execute the resource-intensive parts of a neural network (such as MAC
operations/convolution), with the rest being done on conventional hardware (e.g.
computer/FPGA). On the other hand, there has been considerable research into
realizing physical NNs in photonic hardware.
Photonic neural networks (PNNs) have recently gained considerable interest [3], ow-
ing largely to their promise of higher energy-efficiency per MAC and fast processing
speeds. Like software implementations of NNs, PNNs are suitable for solving image
recognition tasks, video processing (such as object detection), and natural language
processing, among others. PNNs do not need to be neuromorphic, i.e. they do not
need to be spike-driven. However, they usually realize the artificial neuron model,
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whose output y is given by

y = ϕ

(∑
i

wixi + b

)
(3.1)

where wi is the weight of the input xi (e.g. an output of a preceding neuron with
index i), b is a bias term, and ϕ being an activation function. The McCulloch-
Pitts neuron model is usually associated with the term ‘Perceptron’ [4], where a
hard thresholding (Heaviside) function allows a neuron to fire only when it has
accumulated a specific value from its weighted inputs. However, it is more desirable
that photonic implementations approximate some well-known nonlinear functions
which are bounded and monotonic such as Re-Lu and sigmoid, which yield a richer
variety of output. There are several possibilities to realize weight multiplication,
summation, and nonlinearity in photonic hardware [5].

Weight multiplication

Multiplication can be done in photonics in multiple ways. In on-chip settings, in-
terference paths can be tuned to apply the desired weight. For example, if two
beams with the same wavelength interfere and combine, the strength of their com-
bination can be tuned by, e.g., a heater element. The heater changes the optical
path length experienced by one beam with respect to the other, yielding an output
dependent on the phase difference between the two beams. Another way to realize
weight multiplication is via resonance tuning with a ring resonator. The idea here
is to modify the resonance of a ring resonator via a tuning element, consequently
determining how much of the incoming signal, at a fixed wavelength, couples into
the resonator. The resulting weighted signal can be collected in a drop waveguide.
Phase change materials (PCMs), such as GeSbTe (GST), can be used to control the
transmission of the optical signal in a non-volatile manner[6, 7]. They require an
optical or electrical pulse to change their state between amorphous and crystalline,
which then changes their optical transmission, thus the exiting signal carries the
corresponding weight. Weight multiplication can also be implemented off-chip, e.g.,
with bulk MZIs or SLMs, which are usually used for diffraction-based implementa-
tions. Recent implementations mostly use MEMS-based digital micromirror devices
(DMDs) such as SLMs, which provide the weight multiplication through tuning the
positions of the individual mirrors, often referred to as pixels. Usually, they are
either set to ‘ON’ (facing the light source) or ‘OFF’ state (facing away from the
light source). Thus, the ensemble of pixels yield a rich diffraction pattern that cor-

27



3.1. Photonic Neural Networks

responds to a weighted multiplication, which can be collected on a plane/screen. It
is worth mentioning that, while the process of tuning consumes energy, the actual
multiplication is done at no energy cost, i.e. it is an entirely passive process which
only relies on the interference of the beams.

Summation

Summation can be done by several means, depending mainly on whether the im-
plementation is coherence-based or utilizes wavelength-multiplexing. One way to
do the summation in a coherent implementation is by using PCMs which can ag-
gregate until a certain saturation point [8]. For spike-driven systems, micropillar
lasers based on saturable absorbers can integrate multiple spike trains [9], which
can in principle be done also using VCSELs and DFB lasers [5, 10, 11]. Further-
more, microrings can implement the summation function through light confinement
up to the cavity lifetime. For wavelength-multiplexed systems, and depending on
the channel spacing, a photodetector can be a means of achieving summation for
signals on different wavelengths, which can be tuned individually through spectral
filtering approaches [12].

Nonlinear activation function

Nonlinearities can be achieved in a number of ways in photonics, whether in inte-
grated or bulk settings. In integrated approaches, one way is to use SOAs which,
through gain saturation, exhibit a nonlinear, truncated ‘S-curve’ response to the
input signal [13]. Optical nonlinearities can also be exploited, depending on the
platform. For example, in SOI one can leverage the free carrier dispersion (FCD) or
two photon absorption (TPA) to yield a nonlinear response in a microring resonator
[14]. A reconfigurable all-optical nonlinearity was proposed, which is based on a mi-
croring and couplers which control the strength of the nonlinearity, and can achieve
good approximations of many commonly used nonlinear functions in deep learning
[15]. For optoelectronic implementations, a Mach-Zender Modulator (MZM) yields
the sin (.) nonlinearity, the strength of which can be controlled by the biasing elec-
trical signal on the modulator.
If the designed network is one layer deep, and is subsequently converted to the elec-
trical domain (which is the common case), a nonlinearity can be obtained by what
is known as the square law of the photodetector. The complex optical field Eopt

is translated to a photodetector current Ipd which is proportional to the associated
optical power Ipd ∝ Popt ∝ |Eopt|2, which means this scheme has the activation
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function ϕ = |.|2. This type of nonlinearity is in fact very common in photonic
implementations (especially photonic RC), sometimes dubbed as the ‘photodetector
nonlinearity’, even though the photodetector does not actually provide the nonlin-
earity. A more accurate term could be the ‘intensity-conversion nonlinearity’ since it
is associated with interfering fields in coherent implementations. For the intensity-
conversion nonlinearity to take place, there must exist nonzero-phase-difference in-
terference paths in the photonic circuit. From an optics point of view, interference
itself is not a nonlinear phenomena, since it is the linear sum of the associated in-
terfering fields. Consider two interfering complex fields E1 and E2 which have the
same wavelength, the sum of their interference is Esum = E1 + E2. The associated
intensity (from |.|2) becomes

Isum = I1 + I2 + 2
√

I1I2 cos (θ) (3.2)

where θ is the phase difference between the two interfering fields. If we consider a
black box implementation of this function, it is clear that, for θ ̸= 0, it is nonlinear
as neither the additivity nor homogeneity conditions are satisfied. It is also clear
that it is a sinusoidal nonlinearity. Thus, it is clear that the photodetector, as a
stand-alone component, does not provide the nonlinearity.

Learning

One other feature that is essential to NNs is the means of implementing learning al-
gorithms. This is usually done off-chip (offline learning), where the learned weights
are then transformed to the photonic hardware. However, the goal is to eventu-
ally implement these learning algorithms on-chip (online learning). For real-time
learning, on-chip learning is desirable as it avoids bottlenecks caused by electronic
bandwidth limitations and increases the system’s overall energy efficiency by reduc-
ing domain conversion overheads. Additionally, integrating electronic control with
photonic components can limit scalability and increase overall system complexity.
For DNNs, backpropagation is often used to train the weights for the different layers.
In optical implementations, these weights are typically complex-valued (as they are
associated with the complex-valued fields), where one phase shifting element, e.g.,
a heater, controls the intensity and another controls the phase. This can be utilized
using MZIs or meshes of MZIs. The output of the network is probed and typically a
backpropagation algorithm tunes the voltage on each heater. Reinforcement learn-
ing has also been explored in photonics [16] and implemented on RC-like physical
networks [17]. Further strategies for online training have been explored and reported
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in the literature [18, 19].

3.2 Examples of PNNs

In this section, we examine some examples of PNNs found in the literature.

3.2.1 Coherent PNNs

A recent on-chip scheme, shown in Fig. 3.1 (a), implements the perceptron using
spatio-temporal multiplexing and passive delay lines [20]. The scheme relies on
the intensity-conversion nonlinearity, and the complex weights are applied on-chip
through heaters which change the phases of the signal, before being combined at
the output photodiode. Similarly, feed-forward coherent PNNs rely on a similar
setup, where they have multiple nodes arranged in a mesh, usually of a triangular
or rectangular topology. The MZI mesh can implement any unitary transformation,
as first demonstrated in [23]. Each node is represented by a MZI with two heaters
that change the incoming light’s phase and intensity, making it very popular for
on-chip implementations [21, 24]. For free-space implementations, a popular scheme
known as ‘Deep diffractive neural networks’ (D2NN), similar to the 4-f correlator
discussed in section 1.1.3, utilizes layers of diffractive planes situated between an
input plane and an output plane [22, 25]. In this scheme, each layer is designed
through simulating the network and training it with backpropagation to find the
suitable complex transmission coefficients for each segment of each layer. The layers
are then fabricated using 3-D printing (lithography is another possibility). However,
one of the limitations is the need for a photodetector array that scans the spots
corresponding to the nodes, requiring large energy overheads. Another limitation is
the difficulty of scaling down this scheme to a chip level. Moreover, most coherent
implementations can only allow the processing of one signal at a time.

3.2.2 Wavelength-multiplexed PNNs

On the other hand, PNNs can leverage wavelength-division-multiplexing (WDM)
to process several signals at once, each on a carrier at a different wavelength. In a
WDM system, multiple channels can use the same physical medium. Respecting
the minimum distance between channels will result in good isolation and prevent
unwanted crosstalk and photodetector interference. A spatially-multiplexed
WDM-based neuromorphic photonic implementation can realize SNNs, such as
in [12]. In this case, each neuron block comprises: an array of tunable add-drop
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Fig. 3.1: Some coherent PNNs in the literature, (a) all-optical perceptron (adapted from
[20]), (b) MZI-meshes implementing the unitary transformation (adapted from [21]), (c)

free-space D2NN implementation (adapted from [22]).

microrings to implement the weights via spectral filtering, a balanced photodetector
to implement the summation (with +/- sign for the weights), and a laser or MZI to
realize the E/O conversion. In this scheme, the signal is sent back to the broadcast
interconnect which contains the outputs of the other neurons. This approach was
shown to solve the well-known differential system emulation task: the Lorenz system
(also a popular RC benchmark task). As can be seen in Fig. 3.2 (a), this approach
is footprint-demanding, and can impose some restrictions due to the sensitivity of
the microring elements, which would be used in abundance if a large number of
neurons are needed. Furthermore, there are large energy overheads involved for
the tunable elements, detection, and E/O conversion. In Fig. 3.2 (b), a photonic
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WDM-based perceptron (which can also serve as a convolutional accelerator) is
shown [26], which exploits 49 wavelengths produced from a kerr-microcomb source.
The scheme was able to achieve high accuracy on the handwritten digit recognition
(93%) and cancer-cell detection (86%) benchmark tasks.

Fig. 3.2: Some WDM-based PNNs in the literature, (a) Broadcast and weight protocol
(adapted from [12]), (b) Time-wavelength multiplexed vector convolution accelerator

(adapted from [2]).

The difficulties associated with realizing, scaling, and training fully connected
NNs in photonics has made RC an attractive choice, since in RC only the output
weights need to be trained. RC can even be realized with entirely passive photonic
circuits, as will be discussed in the following section.
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3.3 Photonic Reservoir Computing

Over the years, photonics has proven to be especially well-suited to RC. RC can
be classified, at least in principle, as a type of RNN, where the input weights and
internal (connectivity) weights do not participate in the training process. The hard-
ware approach to RC differs fundamentally from PNNs, one of the key differences
being that the weights are usually applied post-readout in RC as a post-processing
step. From an applications standpoint, RC works best for time-series prediction
tasks, where the memorization of inputs in the recent past is required. However, it
has also been shown to be capable of solving image recognition tasks such as the
Iris dataset [27] and the MNIST hand-digit recognition [28]. A concise list of RC
applications and their application domains can be found in this review article [29].

A standard photonic RC scheme comprises:

• Input generation stage; the RF input, which is typically high-speed, is usually
defined in software and generated with an arbitrary waveform generator. Input
pre-processing, if required, is also done at this stage.

• Modulation stage; the RF signal is used to modulate a laser source. Indirect
(e.g. electro-optic) or direct (e.g. current) modulation approaches can be used,
depending on the reservoir scheme and system bandwidth.

• Reservoir stage; essentially a high-dimensional substrate. This can be imple-
mented using a laser diode, electro-optic modulator, passive optical waveguides
(provided interference is involved), or devices leveraging optical nonlinearities.

• Output stage; typically in the form of an electronic readout consisting of photo-
diode(s), associated amplification circuitry, and analog-to-digital (ADC) con-
version for sampling and recording data.

• Data processing stage; part of the recorded data is then used to train the
reservoir output weight matrix. The learned weights can then be applied on
the remaining data. For continuous operation, the same weights can be applied
only if the reservoir interconnectivity weight matrix does not change. This is
not a trivial matter.

Different RC implementations can be compared regardless of the substrate or imple-
mentation through some well-known benchmark tasks, which are explained in detail
in a recent review article [30]. In the following, we will discuss some of the various
implementations of photonic RC using off-the-shelf bulk components and PICs.
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3.3.1 Bulk implementations

Similar to the synchronicity in the development of the LSM and ESN mathematical
frameworks, the first RC demonstrations using bulk optics were published around
the same time by two different research groups [31, 32]. Both used an optoelec-
tronic implementation which comprises a MZM as the nonlinear node, an optical
fiber as the delay line, and optoelectronic feedack, as shown in Fig. 3.3. The feed-
back signal is then combined with the electronic input before both are sent back
to the MZM. This time-multiplexing approach to yield ‘virtual’ nodes is referred to
in the literature as ‘Time-delay Reservoir Computing’ (TDRC) and as ‘Delay-based
Reservoir Computing’. In [32], a 400-node reservoir of this configuration was driven
at a relatively slow speed of 50 kHz (τd = 20.9 µs) to solve the Santa Fe one-step
prediction (NMSE = 0.124) and the spoken digit recognition, yielding a word er-
ror rate WER < 0.005. In [31], a 50-node optoelectronic configuration was driven
at around 118 kHz (τd = 8.5 µs) to solve the NARMA-10 task (NMSE = 0.168),
signal classification task (NMSE = 1.5× 10−3), nonlinear channel equalization task
(symbol error rate SER = 1.3 × 10−4), and isolated spoken digit recognition task
(WER = 0.004 with 200 nodes).
All-optical configurations were proposed shortly after the first optoelectronic demon-
strations, which used different sources of nonlinearity. The following examples,
which were instrumental in advancing photonic RC, were all carried out within the
same research group led by S. Massar. One implementation used the SOA satu-
ration as the nonlinearity [33]. The following one used a semiconductor saturable
absorption mirror (SESAM) [34] as a passive nonlinearity. A third implementa-
tion leveraged a coherently-driven passive cavity to realize the intensity-conversion
nonlinearity [35]. In the first all-optical implementation [33], the nonlinear channel
equalization task was solved with 50 nodes (SER = 4×10−4), slightly lower than the
optoelectronic performance. The same number of nodes was used to solve the radar
time-series prediction task (NMSE = 3.0 × 10−3 for 1-step prediction). Further-
more, the isolated spoken digit recognition task was solved with 200 nodes, yielding
an order of magnitude worse performance (WER = 0.04) than the optoelectronic
RC. In an improved implementation [34], the same research group investigated the
low-power nonlinearity from the SESAM implementation which, unlike the SOA
implementation [33], does not need to be powered. In this light, this work can be
considered as the first step towards leveraging passive nonlinearities. For certain
values of input power, the performance on the nonlinear channel equalization task
is comparable to the SOA and optoelectronic reservoirs (SER ∼ 10−4). For the
radar task, the results also showed comparable performance to the SOA and op-
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toelectronic implementations. For the isolated spoken digit recognition, the result
(WER = 0.046) is close to the SOA implementation. In [35], the passive cavity was
able to outperform the previous all-optical and optoelectronic implementations while
relying only on the intensity-conversion nonlinearity. For the NARMA-10 task, it
achieved a minimum NMSE = 0.107 using 50 nodes. For the same number of nodes,
the nonlinear channel equalization task was solved perfectly with SER = 0.0 at suf-
ficiently high SNR. For the isolated spoken digit task, a performance of WER = 0.0

was obtained using 200 internal variables. The excellent results in this study speak
for the merits of the careful experimental setup, which reduced noise to a minimum
and allowed good performance with lower SNR than previous implementations. This
was also made possible by removing active components from the reservoir itself.
More importantly, it showed the potential of a passive cavity, which relies only
on the intensity-conversion nonlinearity, to achieve top performance on several RC
benchmark tasks. More recently, VCSEL polarization dynamics have been explored
within a fiber cavity [36], showing good results on the Santa-Fe (NMSE = 1.6×10−2)
and nonlinear channel equalization (SER = 1.5 × 10−2) tasks. VCSELs have also
been used in diffractive RC networks [37] to solve the temporal bitwise XOR task
(BER < 0.01, 2-bits) and the optical header recognition task.
One can summarize that the main theme of research that links the aforementioned
studies is the exploration of what can be achieved by off-the-shelf photonic com-
ponents in RC. Such an approach was necessary, as the formal framework of RC
does not readily predict the computational power and performance of certain sub-
strates/implementations. This is further augmented by the fact that, while ESNs
are considered universal approximators under certain conditions, there has been no
straightforward link between a dynamical system’s characteristics and predicting its
performance on specific RC tasks. Thus, these concerns have been in themselves a
topic of recent exploration in theoretical RC, whether through attempting to pro-
vide a substrate-independent framework for RC [38], or linking dynamical system
analysis and task-independent metrics to task-specific performance [39, 40].
Alternatively, some studies were concerned with the theme of reservoir connectiv-
ity. Deep RC was proposed theoretically to leverage the interplay between various
timescales in a dynamical system [41], where layers of RC are stacked in a forward,
series connectivity. This was followed later by the first proposals (in bulk) of deep
photonic reservoirs in 2023 and 2024 [42, 43, 44, 45]. In [44], it was experimentally
shown that, for high enough SNR values, two orders of magnitude improvement was
obtained with deep RC over shallow RC for the Santa Fe and nonlinear channel
equalization benchmark tasks.
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Fig. 3.3: First demonstration: An optoelectronic RC, (adapted from[32]). The MZM acts
as the nonlinear node, where an optoelectronic feedback closes the loop back to the MZM

after being combined with the electronic input.

Other themes relating to solving multiple tasks and techniques for RC performance
enhancement were also explored. Shortly after the first photonic RC demonstrations,
the ability to solve two tasks at the same time with the same RC was demonstrated
in a pioneering study in 2013 [46]. The impact of delay times was explored in [40],
where the authors highlighted the historical convention of the synchronous regime
and showed that good performance can be obtained outside of it. Furthermore, they
have showed that resonance between the input clock cycle and the delay time can
significantly degrade RC performance, especially in terms of the memory capacity
of the system. In [47], the operation in the asynchronous regime was experimentally
investigated with a reservoir comprising a semiconductor laser in optical feedback,
where the authors reported significantly better performance on the Santa-Fe task
while using a considerably longer delay time than the input clock cycle (τd = 3.5Tc).
In another study of delay-based RC with semiconductor lasers, the authors inves-
tigate the impact of different input masks on the Santa Fe benchmark tasks [48].
The masks considered were binary, chaos, and colored noise. The key finding was
that chaos and colored noise masking provided much better performance than bi-
nary masking. In another study, the effect of post-filtering was investigated for an
optoelectronic reservoir [49], showing improved performance with lower bandwidth
post-filtering.
More recently, different modulation schemes have been investigated as well. In an
RC implementation using semiconductor lasers with external cavity [50], the authors
explored the difference in performance when considering direct intensity modulation
and phase modulation of the semiconductor laser. The key finding was that per-
formance significantly improved when using phase modulation. Another approach
that used phase-modulation of a pulsed laser was investigated, where the readout
was implemented using homodyne detection (i.e. access to information regarding
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both phase and amplitude) [51], showing good results on the NARMA-k task for
various k. Furthermore, another study investigated parameter-drift on a reservoir
based on a semiconductor with optical feedback [52]. In this study, the authors
present transfer learning as a method to compensate for the ambient temperature
fluctuations. In [53], a method of countering phase noise – due to changes in the
optical path length of a Fabry-Perot resonator – was proposed, where the output
weights themselves vary with the phase noise. The result is that only a small per-
formance degradation was observed over a range of fluctuations, without the need
for employing setup stabilization techniques.
It is worth mentioning that for all the above-mentioned photonic RC schemes (ex-
cept [53]), the time-multiplexing approach was used. In other words, they are all
delay-based/TDRC implementations. This shows the considerable popularity of
time-multiplexed RC schemes over their spatially-multiplexed counterparts. For
parallel and deep RC implementations, one could consider these schemes to be of a
spatiotemporal nature, since multiple physical nodes would be typically required.

3.3.2 PIC implementations

The first PIC RC implementations were proposed a few years before the first bulk
demonstrations. The first proposed approach dates back to 2008, which involved
SOI-based SOAs as nonlinear nodes in a spatially multiplexed approach comprising
9 nodes [54] (Fig. 3.4 (a)). In this study, the authors compared the performance of
the SOA model’s nonlinearity and the widely used – in machine learning – tanh (.)

nonlinearity for a feed-forward topology of SOAs and one with feedback. Using
an input clock rate of 500 MHz, they obtained good results on the signal pattern
recognition task for the SOA feedback topology. The topology was later optimized
with what was coined the ‘swirl’ topology, which realized 16 nodes of SOAs [55]
(Fig. 3.4 (b)). In this scheme, the input was fed to each node, and the impact of
coherent vs incoherent source was investigated. Three years later, in a pioneering
study reporting the first experimental on-chip (SOI) RC demonstration, P. Bienst-
man’s research group used the same topology of connectivity, but dropped the SOAs,
thus realizing the first all-passive integrated reservoir which relied on the intensity-
conversion nonlinearity at the readout [56] (Fig. 3.4 (c)). The scheme showed good
performance on the bitwise XOR task between various bits into the past. Spirals
were introduced between the nodes to slow down the system to speeds which are
detectable by high-speed electronics, which significantly impacted the chip footprint
(16 mm2). Furthermore, 5 of the 16 nodes were unusable, due to the low power
values obtained at these nodes. A further improvement in this scheme over its SOA
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(a) (b)

(c)

Fig. 3.4: Evolution of the ‘swirl’ spatially-multiplexed topology: (a) 9 SOA nodes, (b) 16
SOA nodes, (c) 16 passive nodes. Adapted from [54, 55, 56].

predecessor is the use of only one node for the input. Moreover, since this scheme
is not reconfigurable, the good performance on the various tasks was accomplished
through tuning the input bitrate with respect to the fixed interconnection delay,
which can be considered another limitation of this study. Additionally, it required
one photodiode per node to implement the readout.
The same research group did further investigations on the swirl topology. In [57],
it was shown that using a binary mask (masking is usually done with TDRC) with
SOAs allows the timescale of the system to be reduced such that it can be sampled
at slower speeds. The motivation for this study was the naturally high on-chip band-
width that requires costly pre-processing and detection electronics – in the form of
signal generators and oscilloscopes which may not be readily available – to oper-
ate the system. Moreover, real-time signal processing applications such as speech
recognition would naturally require lower bandwidths. Significantly better results
were obtained for the speech recognition task through using the mask (WER ∼ 0.1),
which allowed 40× reduction in signal processing speed, than the unmasked version
(WER ∼ 0.3). In [58, 59], an all-optical readout was considered. The weights are
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pre-trained in simulation, which are then applied to the reservoir through optical
modulators, and then fine-tuned on-chip to account for fabrication variations. This
entails that the on-chip weights are complex, which is further explored in their work.
This scheme improves on the previous experimentally demonstrated work [56] by re-
quiring only one photodiode at the readout which sums all the states of the nodes.
However, it requires one MZM per node, which can be a limitation when scaling up
the reservoir size. It has been recently demonstrated experimentally in [19], where
a detailed algorithm was proposed to perform the on-chip tuning of the complex
weights. Another avenue of research explored by the Bienstman group was the use
of an ensemble of passive reservoirs, which proposes for the first time parallel/deep
on-chip RC [60], which also predates the first bulk implementations of such networks.
In this numerical study, the authors consider different network topologies between
the reservoirs, whether through ensembling, boosting, stacking, or chaining. They
also consider a photodiode model to account for its noise. The key finding was that a
considerable (10×) improvement was obtained on the 5-bit header recognition task
over the baseline, which constituted a single reservoir comprising the same total
number of nodes distributed among the different reservoirs. For the 3-bit XOR and
Santa-Fe tasks, the ensemble topology achieved little improvement (BER = 0.001,
NMSE = 0.057) over the baseline (BER = 0.006, NMSE = 0.073). The authors con-
cluded that different types of connection topologies are more suited to some tasks
over others.
Another interesting direction pursued by the same group was the training for robust-
ness on the passive swirl architecture (similar to the aforementioned studies for bulk
RC). Since PICs are susceptible to environmental fluctuations (e.g. temperature),
it is of importance to consider ways to mitigate its effects on the RC performance.
In their study [61], the authors train the output of a reservoir under input of several
wavelengths in the vicinity of the principle one. The key finding is that a weight
matrix can be found which achieves good performance on the XOR task for a range
of wavelengths corresponding to what would be encountered in an experimental set-
ting through parameter drift (mainly temperature).
In [62], the same group considered a different approach using on-chip DFB lasers
and a Fabry-Perot cavity and experimentally verified it. Similarly, another scheme
utilizing a DFB laser and a tunable external cavity was investigated by another
group [63], which can be considered the first on-chip proposal and experimental
demonstration of photonic TDRC. In another study by the Bienstman group [64],
the potential of SOI-based microring resonators (MRRs) and their nonlinearities
for RC is discussed. In that numerical study, the authors essentially substitute the
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(a) (b)

Fig. 3.5: MRR-based TDRC: (a) a MRR in add-drop configuration can solve certain tasks
by itself and larger-memory tasks with an external feedback loop, (b) A cascaded MRR

scheme significantly enhances the memory capacity without requiring an external
feedback. Adapted from [65, 66].

SOAs for microring resonators as the nonlinear nodes, using the same swirl topol-
ogy, and investigate its RC performance. The use of MRRs was later investigated
in more depth by another research group led by L. Pavesi, albeit for TDRC rather
than spatially-multiplexed RC.
In the first work on RC by Pavesi’s group, MRR-based TDRC was experimentally
validated for the first time [67, 27], where the 1-bit XOR (BER = 0.0, 3 nodes
with input datarate < 25 Mbps and no signal masking) and Iris image classification
(50 nodes at an input datarate of 380 MHz) were successfully demonstrated. In a
follow-up numerical study [65], the add-drop configuration was augmented with an
off-chip delay line – in the form of a single mode fiber – that was shown to enhance
the memory capacity of the system, thereby yielding good results on large-memory
tasks such as NARMA-10, which are not solvable by the MRR’s intrinsic memory.
This was followed by a recently published study which reports the experimental re-
sults of this approach [68]. In [69] the authors investigate the effect of noise, which
was later expanded to include the effects of the setup and input non-idealities on the
RC performance, isolated from the device under test (DUT) [70]. A recent work by
another group addresses the limited intrinsic memory capacity of MRRs by adding
cascaded ring resonators of larger radii (operating in the linear regime) in a CROW
configuration to the principal nonlinear MRR [66]. In that numerical study, the
authors took into account the effects of fabrication variations on the performance
of the system. For the NARMA-10 task, the study reports NMSE = 0.156 with an
array of 10 linear MRRs as opposed to NMSE = 0.534 obtained with a single MRR.
Lastly, another research group recently proposed exploiting cross-gain modulation
(XGM) using a SOA as a nonlinear node for TDRC [71]. In this scheme, the input
is fed through two ports to the saturated SOA where they modulate each other.
Two SOAs work in parallel by means of a silicon-based MZI which divides the input
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power evenly across them. The delay was implemented with an external (off-chip)
delay line consisting of a fiber loop. The authors report good performance on the
Santa-Fe task (NMSE = 0.103).

3.4 Beyond State of the Art

By now, I hope it is clear to the reader the extent and breadth of the literature on
photonic RC. What is most impressive is the fact that, while photonic RC could
still be considered a nascent field, there have been already many pioneering studies
in different directions that explored much of the important questions that needed
addressing. Nevertheless, we did notice a few gaps that may have required the
attention given in this dissertation.

3.4.1 Original Contributions

First of all, we have seen many implementations in the literature utilizing different
kinds of nonlinearities (whether in bulk or integrated). The passive, spatially mul-
tiplexed architecture [56], and the time-multiplexed bulk passive architecture [35],
have shown great promise when utilizing only the intensity-conversion nonlinearity.
However, in [56], the only way to tune the proposed scheme is by means of chang-
ing the input data rate, which may not be a practical degree of freedom within an
applications setting. Another merit of using only the intensity-conversion nonlin-
earity – aside from the simplified design considerations – is the fact that it is not
limited by the timescales of some nonlinear processes (e.g. thermal nonlinearities
in SOI). Thus the RC system is not speed-limited except by the readout electronics
and post-readout processing. Furthermore, schemes that utilize MRR-based nonlin-
earities [27, 65, 66] require extensive hardware to probe the MRR detuning (which
in itself requires precision). Moreover, many of the photonic nonlinearities previ-
ously/subsequently investigated did not provide significant improvement across the
RC spectrum in terms of memory capacity and benchmark tasks (in fact, in some
cases they show inferior performance to the passive schemes). This prompted us
to consider the design of a reconfigurable TDRC architecture that minimizes hard-
ware complexity by reducing the number of physical parameters that need to be
controlled, while leveraging the low losses of the LNOI platform to fully integrate a
delay line on-chip to provide a high enough memory capacity on a PIC implemen-
tation.
Additionally, while the impact of using different input masks on photonic TDRC
has been investigated [48], there has been no mention of a mask-less TDRC scheme
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in the literature. In fact, it has been only briefly brushed upon in [27] where the
authors reported solving the 1-bit XOR task in the absence of an input mask. This
gave rise to our second direction of investigation, where we address the absence of
input masking in TDRC using our designed architecture. This is of interest as it
further reduces the complexity of the pre-processing stage, thereby allowing an in-
coming optical signal to directly interact with the reservoir and bypassing possible
domain conversions at the input layer. Furthermore, it is of interest to also consider
the effects of the electronic readout on this scheme, as it imprints noise and filtering
which affect the final acquired signal, as has been done in the optoelectronic imple-
mentation (albeit for the electronic feedback) [49].
Finally, we consider the asynchronous operation of the proposed reservoir, in line
with recent trends in the literature [40, 47], and in contrast to the historical conven-
tion of the quasi-synchronization of the input clock cycle with the feedback loop’s
delay time. This would allow the optimization of the reservoir design as well as the
possible reduction of the feedback length when the considered task does not benefit
from longer delay lines, thereby reducing excess on-chip footprint, in addition to
providing interesting system dynamics which can be exploited.

3.4.2 Research Questions

The research questions addressed in this work can be summarized as follows:

1. RQ1: Can we design an integrated photonic reservoir to minimize operational
complexity while still being reconfigurable and achieving good performance on
benchmark tasks?

2. RQ2: What is the impact of the absence of input masking on this scheme’s
performance, in terms of task-independent metrics and benchmark tasks?

3. RQ3: How is the performance of the proposed reservoir affected when driven
in the asynchronous regime?

4. RQ4: What is the impact of the electronic readout on the reservoir perfor-
mance? In particular, how does the photodiode bandwidth and noise affect
the RC performance?

5. RQ5: What is the experimental performance of this architecture when fabri-
cated on LNOI and operated in the asynchronous, mask-less regime?

RQ1 is addressed in chapter 4, RQ2, RQ3, and RQ4 are addressed in chapter 5,
and RQ5 is addressed in chapter 6.
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Chapter 4

The Minimum Complexity Approach
to Photonic Time-Delay Reservoir
Computing

In this chapter, we address RQ1 by proposing a novel integrated photonic archi-
tecture which leverages the low-loss LNOI platform, which is developed at RMIT’s
Integrated Photonics and Applications Center (InPAC), led by Arnan Mitchell. The
proposed scheme is designed with the goal of minimizing complexity; i.e. reducing
hardware requirements while also simplifying the overall operation of the RC scheme,
especially in terms of reconfigurability. We numerically investigate its performance
on various reservoir computing benchmark tasks. Some of the presented in this
chapter are published in a journal article [1].

4.1 Motivation

One notable advantage of using hardware-based RC is that the input and internal
weights do not require tuning. This means that the RC framework is robust to
process variations typically encountered during PIC manufacturing steps. With
this in mind, however, most coherent (single wavelength) nanophotonic systems
suffer from sensitivity to environmental factors such as temperature fluctuations,
limiting the RC operation time and making it difficult to have one set of weights
that are reusable. In general, the parameters are optimized every time the photonic
RC is utilized due to ambient fluctuations, especially in the cases of all-optical
feedback. To the authors’ knowledge, this remains an area to be explored with
only a few recent examples in the literature proposing techniques to solve this issue,
such as training for a given range of wavelengths corresponding to the range of
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thermal fluctuations in a controlled setting [2], or using other machine learning
techniques such as transfer learning [3]. Thus, while the cost of optimizing the
weights themselves is minimal, it is paid for by the need for optimizing the system
parameters, often requiring the scanning of a multi-dimensional parameter space.
For example, the proposed VCSEL scheme in [4] and the microring-based scheme
in [5] both require 4 (hyper)parameters to be optimized. Furthermore, while it is
useful for some parameters such as the bitrate or input power to be tuned and
optimized for the purpose of finding the global optimum for each specific task, they
may not be readily available degrees of freedom for general-purpose RC within an
application setting. This may be of interest for designing reservoirs for a specific
target application, where those parameters would be more or less fixed. On the other
hand, for more general-purpose RC applications, the search for local optima within
a more constrained parameter space gives a better idea of the usability of the design,
while giving a fairly accurate picture of the information processing capabilities of
the system.
Considering the above, we propose a novel architecture based on an asymmetric
Mach-Zehnder interferometer (MZI) for TDRC with only one tunable parameter:
a phase shifting element, and which leverages the intensity-conversion nonlinearity.
We show that such a minimum complexity approach, i.e. using a minimal number
of simple hardware components and control parameters, is sufficient for obtaining
good performance on the various tasks investigated. Our approach enables GSa/s
processing speeds which are only limited by the photodetector electronics, and we
consider the Lithium-Niobate-on-Insulator (LNOI) platform [6, 7, 8] to leverage the
low waveguide losses (< 0.2dB/cm) that enable an on-chip feedback loop, in addition
to high-speed on-chip modulation (> 100GHz).

4.2 Operation principle

The integrated photonic reservoir is based on an asymmetric MZI used in a feedback
configuration by means of a delay line. The asymmetric MZI is based on two 3-dB
directional couplers and different arm lengths (3.0 mm and 1.5 mm), as shown in
Fig. 4.1. The top ports of the MZI are connected to each other by a spiral waveguide
of length 4.55 cm, which introduces a delayed feedback and thus short-term memory
to the system. A phase shifting element on the bottom MZI arm controls both
the feedback phase and feedback strength in this configuration, thereby essentially
tuning the memory (without coupling optical power out of the system in the process
as with using optical attenuators), thanks to the coupling modulation scheme [9].
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Fig. 4.1: Proposed architecture: a CW laser is modulated by the electrical input using a
Mach-Zender modulator, the reservoir layer consists of the asymmetric MZI connected

onto itself with a spiral waveguide and a photodetector, which also performs the readout.

Considering an input optical field Ein(t) = Ain exp (iωt) with amplitude Ain and
ω = 2πc/λ0, where λ0 is the source wavelength, it enters the first coupler at t = 0,
and considering the 3-dB couplers as point couplers, we can describe the fields’
evolution in time everywhere in the system using the scattering matrix approach
(see Fig. 4.1): (
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Efb(t) =
√
αfbEout1(t− τfb) exp (−iβLfb) (4.3)

where αc is the fraction of optical power exiting from the coupler (considered equal
for both ports), α1,2,fb = 10−AL/10 are the overall fractions of power after waveguide
propagation for a loss factor A [dB/m] and the respective waveguide lengths L1,2,fb

[m], which are the lengths of the upper MZI arm, bottom MZI arm, and the feed-
back loop, respectively, κ and r are the cross and through field coupling coefficients,
respectively, β = 2πneff/λ0 [m−1] is the propagation constant of the guided mode
with effective refractive index neff , τ1,2,fb [s] are the delay times of the upper MZI
arm, bottom MZI arm, and delay line, respectively, and Φ [rad] is the applied phase
shift on the bottom arm. The −i in front of κ results from the π/2 phase shift
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encountered when the field is crossing in the coupler.
The choice of the spiral waveguide length Lfb is important for enabling the desired
maximum memory of the system. Normally, the feedback length would be con-
strained by the desired operation speed through one of two techniques: (i) Matching
the sample hold duration with the delay time of the feedback, (ii) using a slightly
longer sample hold duration than the delay time of the feedback. The first case is
useful when the temporal distance between the ’virtual’ nodes is smaller than the
timescale of the nonlinearity such as the electronic implementation in [10]. Indeed,
this creates a forward coupling of these nodes, in addition to remembering their
previous states, by equating the delay time to the bit period. On the other hand,
when the timescale of the nonlinearity is too small such that it can be considered
instantaneous in the system [11, 12], using (i) will result in the nodes remember-
ing only their own previous states (provided that the system does not reach steady
state during one bit period) and so they become completely disconnected from each
other. This can be alleviated by mismatching the sample hold duration with respect
to the delay line (ii), which allows the nodes to remember the previous state of their
neighboring node instead of their own (for a de-sychronization time of one node
distance). However, as discussed in [13], it is not necessary for the delay time to be
constrained by these two regimes for a variety of applications, especially those that
do not require a large short-term memory. These constraints are due to considering
the network equivalents of the TDRC scheme.
In fact, the memory capacity, discussed later in section 4.3.1, is significantly af-
fected by the ratio of delay time to the sample hold duration. In [14] it has been
shown that resonance between the delay time and the sample hold duration can
especially be detrimental to the memory of the system for some tasks, specifically
when they are integer multiples of each other. However, the specific components
of the total metric are affected differently and thus the detriment in performance
is task-dependent. Considering the above, we leverage these insights to design the
delay line of our system for good performance and to reduce overall footprint. At
an input sample rate B = 1 Gbit/s (i.e. sample hold time τB = 1 ns), the equivalent
length is LT = cτB/ng ≈ 13.24 cm. While the study in [13] uses the opto-electronic
model as their basis, their findings show the impact of the ratio of the delay time to
the input clock cycle on the memory capacity, which are also applicable in our case,
the feedback phase is further considered in our case of optical feedback. Therefore
we have done a few sweeps around LT/Lfb = 3 while avoiding the resonant condition
of having the exact integer value. Our design choice of LT/Lfb = 2.91 thus reflects
a region where indeed the memory capacity has been reduced below its maximum,
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Fig. 4.2: Simulated dynamical response of the system subjected to different applied phase
shifts Φ[rad] to an input bitstream with (a) symmetric MZI, (b) asymmetric MZI [1].

but is still enough for performing the nonlinear tasks presented here, while saving
around 3× on footprint.
The second point to consider in this architecture is the choice of an asymmetric
MZI as opposed to a symmetric one, where τ1 = τ2. As shown in Fig. 4.2 (b), the
dynamics of the system are more interesting than that of the symmetric case in
Fig. 4.2 (a) due to the different number of delays introduced in the system. Us-
ing an asymmetric MZI, there is one additional delay which enriches the dynamics
further and this temporal mismatch enables the system to provide a more complex
spectro-temporal response. These rich dynamics correspond to a more interesting
mapping of input to output, thereby allowing the reservoir to solve highly nonlinear
tasks more effectively.

4.3 Metrics and Benchmarks

The inputs of the various tasks, described in sections 4.3.1 – 4.3.5, are fed one at
a time to the simulated system and its response is recorded and then trained on
the various tasks using linear regression. All the simulations were carried out with
the model presented in 4.2 and with an open source S-matrix based photonic cir-
cuit solver [15] to validate our analytical model. In this study, we consider the
operation of the phase shifting element up to Vπ and divide the interval into 101
points, constituting our applied phase values, to obtain an accurate view of the
trend between the reservoir’s predicted results and the applied phase. Masks were
applied to the inputs for all the benchmark tasks presented here, with values drawn
pseudo-randomly from a uniform distribution on the interval (0,1] corresponding to
the number of ’virtual’ nodes in the reservoir Nv. In this way, each mask value can
be viewed as the input weight connecting the input layer to its corresponding N th

node. For all the tasks, we passed the photonic circuit’s response (Eout2 in Eq. 4.2)
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Parameter Designation Value

Input sample rate B 1 GSa/s
Simulation timestep ∆t 10 ps
Laser wavelength λ0 1550 nm
Waveguide effective index neff 2.2111
Waveguide group index ng 2.2637
Directional coupler gain αc 0.966
Waveguide propagation loss A 20 dB/m
Input optical power Pin 10 mW
Photodiode responsivity r 0.7
Load resistance Rl 100 Ω
Dark current Id 5 nA

Table 4.1: Simulated photonic circuit and photodetector parameters.

through photodetectors of 5 GHz, 10 GHz, 20 GHz, and 25 GHz bandwidth (corre-
sponding to Nv = 5, Nv = 10, Nv = 20, and Nv = 25, respectively) to determine the
required size of the reservoir for the various tasks presented here. Furthermore, the
trained output layer was tested on different inputs wtih the results presented in 4.4.
To ensure accurate circuit-level simulations, the simulation timestep ∆t was chosen
to be 100 times smaller than the span of one input clock cycle, which is also small
enough to take into account the short delays of the MZI arms. These short delays
constitute the fastest timescale in the dynamics of this system. All the simulated
photodetectors were bandwidth-dependent (incorporating a 4th order butterworth
filter) and exhibited Gaussian noise with variance corresponding to the different
contributions to noise. All the simulation parameters are listed in Table 4.1.
The use of standard ordinary least squares regression proved sufficient for the model
to generalize and predict accurately the unseen test data, because we considered
almost ideal inputs and also injected noise into the data through simulating the
photodetector’s response. The added noise is also a form of regularization in itself,
as it prevents the model from overfitting (and from depending too strongly on very
few features) and increases the robustness of the model to irregular variations or out-
liers. For experimental verification, however, Tikhonov regularization or Bayesian
regression may need to be employed, where nonidealities and outliers in the gathered
data may result in an ill-posed problem when attempting to calculate the matrix
pseudoinverse [16]. The following tasks, listed in no particular order of importance,
are standard RC benchmark tasks. Their widespread use in the literature allows for
a direct comparison of this architecture with other photonic RC schemes.
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4.3.1 Linear memory capacity

The linear memory capacity is one of the fundamental tasks for RC, which aims to
test the echo state property by training the reservoir to reconstruct a given input
stream of values ∈ [0, 1) drawn from an independent and identical distribution (i.i.d.)
k inputs later. It was first introduced in [17] and is given by:

MCk =
cov(u[n− k], yk(n))

2

var(u(n))var(yk(n)))
= r2c(u[n− k], yk(n)) (4.4)

NMSE =
⟨∥yk(n)− yexp(n)∥2⟩

⟨∥(yexp(n))− ⟨yexp(n)⟩∥2⟩
(4.5)

where u(n) is the input at discrete timestep n, yexp(n) is the expected value, yk(n)
is the predicted value (after training), NMSE is the normalized mean square error,
and MCk ∈ [0,1] is the memory capacity for a k bits shift. MCk = 1 corresponds
to a perfect recall of the input sequence after k input samples/bits, while MCk = 0

corresponds to the complete absence of any information regarding the input sam-
ple/bit k steps into the past.
A sequence of 4000 samples was constructed from an i.i.d. stream. The target se-
quence is a k-bits delayed copy of the input, testing the reservoir’s ability to faithfully
reconstruct the input sequence after k input samples. The model was trained on the
first 1000 samples and then tested on the remaining 3000 samples. The performance
of specific components of the memory capacity (Eq. 4.4) are investigated as it gives
a better indication of the usability of the stored information, in contrast to just the
amount of information stored given by the summation of all the components, given
by MCtotal =

∑N
k=1 MCk, where N is the number of nodes. The relevance of this

evaluation for tasks requiring specific memory has also been mentioned and taken
into account in other works [5, 13].

4.3.2 Temporal bitwise XOR

The temporal bitwise XOR task is a nontrivial, nonlinear memory-specific task com-
monly used for evaluating RC performance which was first introduced in [18]. For
this task, a quasi-ideal bit stream of 4000 bits was generated, where the first 1000
bits were fed to the circuit for training and the rest were used for testing. The target
bit streams were constructed by applying the XOR operation on the bit stream and
a k time steps shifted version of it, yielding x(n)⊕x[n−k], where x(n) is the current
input bit (similar to the treatment of this task in [19]). The performance (up to
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k = 4) is evaluated with the bit error rate (BER) metric, given by

BER =
#incorrectly classified bits

length of test set
(4.6)

4.3.3 Mackey-Glass

The Mackey-Glass sequence was first used as a RC benchmark in [20], and is gener-
ated from solving the following differential equation numerically using the 4th order
Runge-Kutta method:

dy(t)

dt
=

ay(t− τ)

1 + y(t− τ)10
− by(t) (4.7)

with the commonly used parameters a = 0.2, b = 0.1, τ = 17, and an integration
step of 0.1. The behavior resulting from these chosen parameters is fairly periodic
and only slightly irregular in the sense of causing minor fluctuations for each re-
peated cycle. The training set was 5000 samples long and the test set consisted of
another 3000 samples. The task is a one-step ahead prediction. The performance is
then evaluated according to the NMSE between the target values and the predicted
output.

4.3.4 Santa Fe

The Santa Fe dataset [21] comprises data points collected experimentally from a
far infrared laser operating in a chaotic regime. This dataset is fairly chaotic in
the vicinity of a few data points and fairly cyclic in terms of long-term dynamical
behavior. The stream of 4000 data points was divided into 2000 points used for
training and the other 2000 for testing. This task is also a one-step ahead prediction.
The performance on the test set is then evaluated by NMSE.

4.3.5 NARMA-3

The nonlinear autoregressive moving average (NARMA) is a commonly used bench-
mark task for RC which mimics a randomly varying signal around a certain average
value, similar to noise. It is often used in its 10th order form to test a reservoir
with very large memory. Due to the smaller memory in our system, we test the per-
formance on a 3rd order variant of this task, which would show how the system is
solving a sufficiently nonlinear task, without imposing further memory requirements
than the system is capable of. The discrete difference equation that produces the
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NARMA-3 sequence is given by:

y[n] = 0.3y[n− 1] + 0.05y[n− 1]
3∑

i=1

y[n− i] + 1.5u[n]u[n− 3] + 0.1 (4.8)

where the input sequence u is drawn from a uniform distribution [0,0.5]. The task is
to predict y[n] given u[n]. The performance on the test set is evaluated with NMSE.

4.3.6 Baseline: Asymmetric MZI

To better understand the role of the delay line and its impact on the various tasks
presented here, and consequently their memory requirements, we proceed to compare
the architecture presented in Fig. 4.1 with just the asymmetric MZI without the
feedback spiral waveguide. To that end, we consider the same tasks mentioned
above to evaluate the performance of the asymmetric MZI alone on solving them.

4.4 Results and Discussion

4.4.1 Linear Memory Capacity

The results for different k time steps shifts in Fig. 4.3 show the variation of MCk with
respect to the applied phase shift. For lower number of nodes, the effect of the phase
shift is more pronounced on the memory as can be seen in Fig. 4.3(a),(b), with k = 3

and k = 4 improving significantly as the reservoir size increases (Fig. 4.3(c),(d)). We
also show MCtotal for each reservoir size in Fig. 4.4(a) and the optimal MCk obtained
for each k up to k = 10, as shown in Fig. 4.4. Beyond Nv = 5, the peak MCk values
for many k’s appear to be close to each other. This suggests that further exceeding
the studied number of nodes (i.e Nv = 25) would not enhance the memory further
as it is fundamentally limited by the length of the spiral waveguide with the given
input bitrate. Our results for MCtotal, shown in Fig. 4.4 are consistent with those
presented in [13], as we achieve MCtotal ≈ 5.5 which is close to the result obtained
in the same work for our chosen ratio of delay time and input clock cycle. Thus,
our MCtotal exceeds that of the PIC implementation in [22], which requires copies
of the delayed input at the modulation stage to exceed its intrinsic MCtotal = 1.
However, it is lower than the one presented in [19], where additional post-processing
is performed to merge the responses to previous inputs with the current input. This
increases the number of virtual nodes and subsequently the linear memory capacity
from an intrinsic MCtotal ≈ 6 to MCtotal ≈ 8 with post-processing. Furthermore,
our MCk results for 20 nodes are almost equivalent to the simulated result in [23]
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using 20 on-chip lasers from k = 1 to k = 5. However, it is lower for further k

as our system was not designed for large memory for the purpose of the currently
investigated tasks. This can be easily alleviated - thanks to the low losses of the
LNOI platform - by utilizing a longer spiral length and using the desynchronized
regime explained in section 4.2, and/or possibly using similar pre/post-processing
techniques such as those described in [22, 19].

Fig. 4.3: Performance of the reservoir on solving the linear memory capacity task for
different values of applied phase shift Φ for different reservoir sizes: (a) Nv=5 (b) Nv=10,

(c) Nv=20, (d) Nv=25 [1].

Fig. 4.4: MCtotal (a) and peak obtained values of MCk (b) for different reservoir sizes:
Nv=5, Nv=10, Nv=20, and Nv=25 [1].
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Fig. 4.5: Performance of the reservoir on solving the temporal bitwise XOR task for
different values of applied phase shift Φ [rad] on the MZI arm for different reservoir sizes:
(a) 5 Nodes, (b) 10 Nodes, (c) 20 Nodes, (d) 25 Nodes. When the blue line (k=1) is not

visible, it is due to BER = 0 everywhere on the plot [1].

4.4.2 Temporal bitwise XOR

For the XOR task, the test sequence used consisted of 3000 bits, limiting the resolu-
tion of the BER to 3.33× 10−4. Thus, a BER below 10−3 is considered acceptable,
as shown in dotted purple lines in Fig. 4.5, where results of k = 1 to k = 4 are shown
for various reservoir sizes. Similar to the memory capacity results, the performance
on the XOR task mostly improves as the reservoir size scales. It is shown in Fig.
4.5(a) that it is possible to perform the one bit XOR with only 5 nodes. It can be
seen from Fig. 4.5(c) that the architecture can be used successfully for XOR-ing the
current input bit with 3 bits into the past, for Nv = 20.

4.4.3 Mackey-Glass

The results in Fig. 4.6(a) are for differently sized reservoirs under applied phase
shift. One of the interesting features in the curve is that the performance is only
minimally affected by the number of nodes Nv presented here, which suggests that
only a small memory is required for this task. We obtain NMSE = 0.0056 which
is close to the optimum value obtained in [5], even when compared to a bulk setup
implementation [24].
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Fig. 4.6: Performance of the reservoir (NMSE) under applied phase shift on one-step
ahead prediction time series tasks: (a) Mackey-Glass, and (b) Santa Fe [1].

Another interesting point this result shows is the minimal dependence on the varying
phase shift, which prompts further investigation into which part of the architecture
is responsible for the obtained NMSE performance. It was found that equivalent
performance is obtainable by training the input data with linear regression, without
going through the photonic circuit. This is discussed later in section 4.4.6.

4.4.4 Santa Fe

For the Santa Fe time series prediction, the results in Fig. 4.6(b) show a minimum
NMSE of 0.038 using 25 nodes, which is close to the simulated result in the nonlinear
microring approach in [5] (NMSE=0.038) and better than the experimental result
in the multiple cavities approach based on a feed-forward photonic neural network
in feedback reported in [25] (NMSE=0.06). It is also slightly better than the exper-
imental result mentioned in [19] (NMSE=0.049), which was achieved by increasing
the laser pump current and the semiconductor optical amplifier (SOA) current, using
23 virtual nodes, albeit with additional postprocessing techniques. Furthermore, we
also obtain better prediction results than the approach in [23] where they reported
a minimum NMSE≈ 0.01 using 40 on-chip lasers with small external cavities of 10
mm.

4.4.5 NARMA-3

For the NARMA-3 task, beyond Nv = 5, the results show only a slight dependence
on the number of nodes for all values of phase shift. This is especially the case
around Φ = 0.5 rad. However, the results are much more strongly influenced by
the phase shift range, especially from Φ = 1 rad to Φ = 2.5 rad. This indicates
that the memory and nonlinearity of the system are being strongly altered by the
different interference conditions at the MZI, which produces sufficient changes in
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Fig. 4.7: Performance on the NARMA-3 task for various Nv [1].

the output dynamics to yield excellent (e.g. Φ ≈ 0.5 rad) or poor (e.g. Φ ≈ 1.7 rad)
performance. A low NMSE= 0.096 is obtained using as few as 10 nodes.

4.4.6 Baseline: Asymmetric MZI

Performing the same numerical investigations on the MZI alone without the feedback
loop helps in understanding the delay’s role further. For our operation speed of 1
GSa/s, it can be seen that tasks requiring a memory of one sample/bit into the
past are achievable, which is not surprising since at some point the current sample
interacts with the previous input sample due to the differences between the arm
lengths, and consequently the asymmetric MZI alone is sufficient. Such tasks are
the memory capacity and XOR tasks for k = 1, where MC1 ≈ 1.0 everywhere for
all phase shifts and for all reservoir sizes Nv. The XOR operation for k = 1 is
successful beyond a certain value of phase shift, due to destructive interference at
this value of applied phase (Fig. 4.8 (a), a similar behavior is seen in (b) as well).
For tasks requiring deeper memories, the MZI alone fails completely: MCk>1 ≈ 0

for all N and phase shift, BER≈ 0.5 XOR for k > 1. For the Santa Fe task, the
performance degrades considerably as shown in Fig 4.8 (b) with NMSE≈ 0.34 being
the best value achieved. For the NARMA-3 task (Fig. 4.8 (c)), it fails completely
with NMSE ≈ 0.7 everywhere on the plot.
For the Mackey-Glass one-step ahead prediction task, we get equivalent performance
(NMSE = 0.00587) with the MZI alone as shown in Fig. 4.8 (d), and in fact it is also
similar to the performance obtained when training the input data itself (masked and
unmasked) using linear regression, where we also found no degradation in NMSE for
all Nv considered (NMSE = 0.00583). We find this result particularly interesting,
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Fig. 4.8: Performance of the different tasks using only the asymmetric MZI under varying
phase shift: (a) XOR for k=1, (b) Santa Fe, (c) NARMA-3, (d) Mackey-Glass [1].

since it shows that solving the one-step ahead task can be done with 5 trainable
features and using a regression on the input data itself. Considering two and three
steps ahead predictions on the same task, the full reservoir architecture only slightly
outperforms (NMSEk=2 = 0.0114, NMSEk=3 = 0.0170) the almost equivalent result
of training on both the input dataset directly, and passing it through just the MZI
(NMSEk=2 = 0.0119, NMSEk=3 = 0.0182). According to these results, the one-step
ahead Mackey-Glass task can be linearly separable, at least in the considered portion
of the dataset used for training and validation.

4.4.7 Further discussion

For all the tasks presented here, a reservoir size of Nv = 20, with a 20 GHz pho-
todetector, is sufficient for obtaining the best performance out of this architecture.
Furthermore, the variation in prediction accuracy (under applied phase shift) for the
several tasks presented are strongly related to the phases of the signals travelling
into the spiral from the two MZI arms. To further explain this notion, we refer
back to the memory capacity results in section 4.4.1. According to the value of Φ,
interference occurs at the input and output couplers. Due to the low losses, mul-
tiple round trips can take place within both paths, yielding either constructive or
destructive interference over one or multiple round trips. This directly influences the
virtual nodes’ connectivity matrix, and has a much stronger effect for lower number
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of nodes such as Nv = 5, as can be seen from the larger variability in Fig. 4.3(a).
Increasing the number of nodes allows more information to be captured each round
trip, which especially improves the performance on tasks requiring deeper memo-
ries. The memory eventually saturates when there is no longer any representation
of the information inside the system for further past inputs (Fig. 4.3(c) and (d)).
Naturally, this behavior is also pronounced in other tasks (Fig. 4.6(b) and Fig. 4.7).
In addition, there are multiple advantages for using the proposed RC scheme:

• First, the fully integrated low-loss delay line, which is made possible by
considering low-loss platforms such as LNOI, which entails less power loss
coupling into and out of the chip, similar to [19], and in contrast to [5] when
using an external feedback.

• Second, the high-speed operation, limited only by the photodetector band-
width, whereas other architectures employing relatively slow nonlinearities (es-
pecially thermal nonlinearities in the case of silicon-on-insulator) can signifi-
cantly lower computation speeds [22].

• Third, the exploiting of multiple timescales in this RC scheme for response
richness, which was also previously leveraged in [25]. However, our architecture
reduces complexity by minimizing the number of phase shifters, while also
obtaining better results on the Santa Fe task (compared to [25]).

Taking into consideration some PIC RC implementations from the literature, we see
that compared to [23], which uses up to 40 on-chip lasers, the memory MCk of our
system is close to the one obtained by them using 20 on-chip lasers in the range of
k = 1 to k = 5 (Fig. 4.4 (b)). In [26], the similarly passive architecture – which
also relies only on the photodetector nonlinearity – is limited in scalability by the
use of physical nodes instead of virtual ones, and the need to change the ratio of
interconnection delay and bit period for solving different tasks. Since the former is
fixed, this entails changing the input bitrate for tasks requiring different memories,
such as the bitwise XOR with multiple bits in the past. This is often not practical
or even possible in certain scenarios. However, in our case, as shown in section 4.4.2,
only a single phase shifting element is required. In fact, it is even possible to do
the XOR for k = 1 to k = 3 at the same value of phase shift, thus requiring only
a change in the applied output weights to perform the three different tasks. The
architecture in [19], consisting of a distributed Bragg reflector laser and amplifiers,
as well as integrated delay lines, achieved similar performance on the Santa Fe task
after additional post-processing.
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On the other hand, it is also important to consider that simulation setups and learn-
ing algorithms are different between different investigations; for example, most often
ridge regression is employed instead of linear regression, and the ridge parameter
is usually scanned and optimized for the unique requirements of each scheme and
setup. It is therefore not straightforward to compare these different examples from
the literature, which is why a rigorously fair comparison is beyond the scope of this
work. Instead, we aim to shed light on the fact that RC with matching performance
to the above examples can be done on-chip with mostly passive components, with-
out the need for nonlinearities beyond that of the photodetector, with minimum
active components (no optical amplifiers or multiple laser sources), and with only
one phase shifter controlling two tunable parameters (feedback strength and phase).
Using a single phase shifter that is relatively easy to control – as opposed to scan-
ning and optimizing for a multidimensional parameter space – can enable on-chip
stabilization using optical feedback techniques [27], which could potentially enable
photonic RC that is robust to ambient fluctuations. Further adding to the system
complexity may indeed boost the system performance beyond simpler architectures
such as that proposed in this work. We believe this work could therefore serve as a
baseline in terms of performance for the given system and hardware requirements,
and that future works could enable performance improvements that warrant the use
of higher complexity PIC RC schemes.

4.5 Conclusion

We have proposed an integrated photonic architecture for RC which leverages the
low losses of the LNOI platform to enable a fully integrated delay line and with only
one tunable parameter to tune the feedback phase and the feedback strength simul-
taneously. The delay line was designed to be compact enough while still delivering
equivalent performance to other PIC implementations for a variety of tasks. Further
enhancement of the memory is possible by increasing the length of the spiral waveg-
uide, at the cost of footprint. This approach also provides more efficient utilization
of the optical power and of the information stored inside the reservoir layer. This is
especially the case when compared to other photonic implementations requiring an
optical attenuator block in the feedback loop to tune the feedback strength, where
light is simply coupled out of the system. We conclude that minimum complexity
RC can also open the doors towards robust RC in ambient conditions by only re-
quiring the stabilization of one parameter, thereby increasing the longevity of each
training cycle and possibly allowing the deployment of photonic RC in real-world
settings and applications. Lastly, we believe this work can also serve as a baseline
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to be compared against more complex photonic RC systems, since there could in-
deed be room for performance improvement through using more interesting (and
complex) hardware schemes or physical phenomena.
In the next chapter, a more detailed investigation involving a design space explo-
ration will be presented, while proposing novel approaches to bypassing the input
mask.
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Chapter 5

Mask-less Photonic Time-Delay
Reservoir Computing

In this chapter, we are going to focus on how we can optimize the design of the min-
imum complexity reservoir, discussed in Chapter 4, to achieve optimal performance
on desired tasks. Furthermore, we look into opportunities to bypass the input mask-
ing protocol, which can constrain the input layer to costly and energy-consuming
auxiliary electronics, in addition to possible domain conversions. Additionally, the
correlation between the performance on multiple tasks is investigated, which can be
leveraged to design a reservoir that can handle multiple tasks with the same input
signal. The reported results in this chapter address RQ2, RQ3, and RQ4, and
have been published in a journal article [1].

5.1 Motivation

Recently, some interest has been directed towards the exploration of the asyn-
chronous regime in RC [2, 3, 4], where the delay time of the feedback loop is uncon-
ventionally chosen to be neither equivalent nor close to that of the input rate. The
synchronicity convention stemmed from the initial approach of viewing TDRC sys-
tems as the network equivalent of spatially multiplexed networks, where the nodes
are connected in a cyclic fashion [5]. Another conventional preference has been the
use of an input masking protocol to prolong a reservoir’s activity. This approach
generally improves performance, but introduces complications in practical cases as
well as associated power costs, in addition to a bottleneck for ultra-high speed signal
processing [6]. In this study, we tackle this problem by dispensing with the input
mask altogether, which allows the bypassing of an optical/electronic/optical conver-
sion at the input, in case the signal to be fed to the reservoir is in the optical domain
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(for example in telecom applications for in-network computing [7]). We use task-
independent metrics alongside standard benchmark tasks to judge the performance
of an all-optical integrated reservoir over its design space, with a specific focus on
the feedback time and applied phase shift. The considered photonic reservoir has
an ultrashort timescale, which is only limited by the RF bandwidth of the readout
electronics [8]. We also take into account the associated effects of the electronic
readout in our study, mainly the photodiode noise and filtering with subsequent
12-bit quantization, to understand its implications on the performance. Lastly, we
show the correlation between the performance on benchmark tasks and the different
task-independent metrics within the explored design space.

5.2 Methods

The performance of an RC scheme can be quantified in a number of ways; the most
obvious is by using standard benchmark tasks. However, this constrains the evalu-
ation to these specific tasks and does not provide information about the reservoir’s
overall memory/nonlinearity capabilities. To give a more comprehensive account of
the RC performance, task-independent metrics must be employed as well. The in-
formation processing capacity (IPC) [9] is a task-independent metric that has been
used to quantify the performance of reservoirs in a number of dedicated studies
[10, 11, 12, 13]. However, when considering a large design space (as in our case),
IPC calculation would require large computational time and resources. Instead, we
opted for a combination of other metrics which can reflect the memory/nonlinearity
abilities of a reservoir, while requiring less computing resources. The combined use
of task-independent metrics and benchmark tasks aim to quantify the reservoir’s
performance such that the different instances can be compared to one another, and
also compared to some of the proposed schemes in the literature.

5.2.1 Task-independent tests

The first metric considered is the linear memory capacity [14], which showcases
the ability to reconstruct past inputs using a weighted linear combination of the
reservoir’s presently probed states. An input sequence u of length 2000, drawn from
a uniform distribution ∈ [0, 0.5), is used to train the model with linear regression
to reconstruct k inputs into the past. The performance is then evaluated with the
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square of the Pearson correlation coefficient r2c :

MCk =
cov(u[n− k], yk[n])

2

var(u[n])var(yk[n]))
= r2c(u[n− k], yk[n]) (5.1)

where cov(.) is the covariance, var(.) is the variance, u[n] is the input at the current
step, u[n−k] is the input delayed by k discrete steps, and yk[n] is the predicted stream
(after training). For this study, we calculate the total linear memory capacity MCtot

by summing up the first m = 100 terms. Theoretically speaking, the sum includes
the infinite past, i.e. all the m ∈ [1,∞) to be considered. A similar truncation
strategy to [15] is used, where we do not consider the terms where MCk < 0.01.

MCtot =
m∑
k=1

MCk (5.2)

The second metric is the computational ability (CA), which is a measure of the
RC nonlinearity strength or computation power. It is calculated by performing
two tests on the reservoir: the kernel quality and the generalization tests [16]. The
kernel quality test evaluates how the reservoir can map different inputs to sufficiently
different states. For this test, we construct 100 input streams, with each being
a sequence of length 100, drawn from an independent and identical distribution
with values ∈ [0, 0.5). All 20 nodes corresponding to the 100th input are then
collected to construct a 100 × 20 matrix (#input streams×N). The generalization
test reflects how well the reservoir can map the same input samples under different
initial conditions. A useful schematic which explains the procedures of this test
can be found in [17]. Using the previously generated 100 different input streams,
we concatenate to each an identical sequence of 10 inputs, and we collect the node
responses corresponding to the 110th output sample to construct a 100×20 matrix.
Using singular value decomposition with the appropriate threshold [18], the ranks of
their corresponding matrices are then found. The normalized CA is then calculated:

CA = (KQR−GR)/Nv (5.3)

where KQR is the kernel quality matrix rank (from the kernel quality test), GR is
the generalization matrix rank (from the generalization test), and Nv is the number
of nodes in the reservoir. Thus, high KQR and low GR are desirable.
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5.2.2 Benchmark tasks

Each realization over the entire design space was trained on 3 benchmark tasks:
NARMA-k, XOR-k, and the Santa Fe dataset [19]. The NARMA-k task is given
by:

y[n] = 0.3y[n− 1] + 0.05y[n− 1]
k∑

i=1

y[n− i] + 1.5u[n]u[n− k] + 0.1 (5.4)

where the input sequence u is drawn from a uniform distribution ∈ [0, 0.5). The
task is to predict y[n] given u[n]. The performance on these tasks is evaluated by
the normalized mean square error (NMSE), which is given by:

NMSE =
1

nσ2
yt

n∑
i=1

(y
(i)
t − y(i)p )2 (5.5)

where yt is the target (true) value and yp is the predicted value, n is the number
of data points, and σ2

yt is the variance of the sequence of true values. For the XOR
task, the commonly used bit error rate (BER) was also evaluated, which is given by:

BER =
#incorrectly classified bits

length of test set
(5.6)

NMSE and BER were already defined in chapter 4. They are reproduced here for
convenience, using the same notation as the rest of this chapter. Training for all
the benchmark tasks was done using ridge regression, with the regularization term
α = 10−4 to prevent overfitting. For the linear memory capacity, linear regression
was employed since this task does not require a test set. For the NARMA-k task,
an input sequence of length 3500 was used for training and 500 for testing. For the
XOR=k task, 1000 bits were used for training and 3000 for testing. For the Santa
Fe task, the training sequence was 3000 samples, while 1000 were used for testing.

5.2.3 Simulation setup

The considered photonic circuit, shown in Fig. 5.1, consists of passive waveguides,
3-dB directional couplers, and a heater to tune the system’s output dynamics. This
circuit can be fabricated on a low-loss integrated photonic platform, such as Si3N4

[20] or LNOI [21]. The circuit is modeled using the transfer matrix approach and
numerically solved with the following delayed coupled equations, which describe the
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Fig. 5.1: Passive photonic reservoir. Depending on the desired Lfb, the feedback
waveguide is either straight, with bends, or in a spiral configuration [1].

temporal evolution of the electric field everywhere in the system (Fig. 5.1).[
E1(t)

E2(t)

]
=

√
γc

[
−iκ r

r −iκ

][
Ein(t)

Efb(t)

]
(5.7)

[
Eout1(t)

Eout2(t)

]
=

√
γc

[ √
γ1re

−iβL1 −√
γ2iκe

−i(βL2+Φ)

−√
γ1iκe

−iβL1
√
γ2re

−i(βL2+Φ)

] [
E1(t− τ1)

E2(t− τ2)

]
(5.8)

Efb(t) =
√
γfbEout1(t− τfb) exp (−iβLfb) (5.9)

Eqs. 5.7-5.9 show the circuit model, where γc is the percentage of optical power ex-
iting from the coupler, γ1,2,fb = 10−AL/10 are the fractions of power after waveguide
propagation for a loss factor A [dB/m] and waveguide lengths L1,2,fb [m], corre-
sponding to the lengths of the upper MZI arm, bottom MZI arm, and the feed-
back loop, respectively. Since we are considering 50/50 couplers, the cross and
through field coupling coefficients are equivalent (κ = r). For waveguide param-
eters, β = 2πneff/λ0 [m−1] is the propagation constant of the guided mode with
effective refractive index neff , τ1,2,fb [s] are the delay times of the upper MZI arm,
bottom MZI arm, and feedback waveguide, respectively, and Φ [rad] is the applied
phase shift on the bottom arm. The application of voltage on the heater allows the
reservoir’s dynamics to be changed through controlling both the feedback strength
and phase by adjusting the interference at the directional couplers. For the electronic
readout, the photodetector is modeled by adding the associated noise components
of shot noise and thermal noise, and then low-pass-filtering the signal with the cut-
off frequency as the chosen photodetector bandwidth. The signal is then converted
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Table 5.1: parameters of the optical and electronic simulations

Parameter Value Description
τfb scanned over [20 ps;500 ps] Feedback time
τ 100 ps Synchronized delay time
Lfb τfb × c/ng Feedback length
Φ scanned over [0;2π] Applied phase shift
Bm 10 GBit/s Input rate
fs 200 GSa/s Sampling rate (electronic)
Nv fs/Bm = 20 Number of nodes
∆t 1.6 ps Simulation timestep (optical)
λ0 1550 nm Laser wavelength
ng 1.996 Group index of Si3N4

γc 0.966 Pout/Pin of directional coupler
κ

√
0.5 Cross coefficient of coupler

r
√
0.5 Through coefficient of coupler

A(fb) 20 dB/m (Feedback) waveguide loss
Pin 10 mW Input laser power (amplitude)
rp 0.8 Photodetector responsivity
Id 2 nA Photodetector dark current
Rl 100 Ω Load resistance
fc scanned over [2 GHz;40 GHz] Photodetector bandwidth
Q 12 bits ADC bits of resolution

VRefHi 1.2 V ADC upper bound
VRefLo 0.0 V ADC lower bound

to a voltage through a transimpedence amplifier, where the only TIA-related noise
considered is the one contributed by the load resistance to the thermal noise. Fi-
nally, the signal is binned to yield the final output as if it were passed through
a 12-bit analog-to-digital converter (ADC), as would be found on most high-end
digital oscilloscopes. The photodetector noise is modeled by:

σ2
th = 4kBTfc/Rl (5.10)

σ2
sh = 2q(Ip + Id)fc (5.11)

σ2
tot = σ2

th + σ2
sh (5.12)

Ip = rpPopt (5.13)

Vp = RlIp (5.14)

where σ2
th is the thermal noise variance, σ2

sh is the shot noise variance, σ2
tot is the

total noise variance, kB is the Boltzmann constant, T is the temperature, fc is
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the photodetector 3-dB bandwidth (cutoff-frequency), Rl is the load resistance, q
is the electronic charge, Ip is the current proportional to the input optical power
Popt through responsivity rp, Id is the dark current, and Vp is the voltage converted
through load resistance Rl. The voltage after passing through the ADC is then
quantized by

VQ = floor
(
Vp

∆q

)
×∆q (5.15)

where ∆q is the ADC quantization step, given by ∆q = (VRefHi − VRefLo) /(2
Q − 1),

which depends on the considered voltage range and number of bits of resolution Q

of the ADC. Further information about the simulation parameters can be found in
Table 5.1.

5.3 Results and Discussion

We consider the passive all-optical integrated reservoir scheme shown in Fig. 5.1
operating with 10 mW laser power (λ = 1550 nm) at a fixed datarate of 10 GBit/s,
which corresponds to a synchronized delay time τ = 100 ps. The reservoir output is
then sampled at 200 GSa/s to yield 20 time-multiplexed nodes per input clock cycle.
We sweep the feedback time (50 values), in the form of the feedback waveguide’s
length, from 0.2τ (corresponding to approximately 3.0 mm on Si3N4 and 2.65 mm
on LNOI) to 5τ (approximately 7.51 cm on Si3N4 and 6.62 cm on LNOI), and
the applied phase shift (49 values) on the bottom MZI arm from 0 to 2π. The
performance is then recorded with the relevant metric for each test/task.

5.3.1 Dispensing with the input mask

An input masking protocol is generally used in TDRC schemes to keep the reservoir
continuously perturbed to delay it from falling to a steady state, and thereby aiding
in improving the reservoir’s memory [22, 23]. However, there are limitations imposed
by the use of a mask in practice (especially in photonic implementations) which call
for alternative approaches [6]. Masks normally have to be prepared electronically,
which may necessitate a domain conversion at the input, instead of allowing an
incoming optical signal to be directly processed by the reservoir. Moreover, for
high speed implementations in the GHz range, the input mask preparation not only
introduces an associated energy cost, but can also put additional constraints on
modulation speeds. This would exhaust the arbitrary waveform generator’s output
sample rate on the mask, thus limiting the system’s information processing speed.
For example, a 10 GSa/s input signal, when masked for a reservoir of 20 nodes,
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would be a 200 GSa/s signal, which is impractical.
One solution to this problem is by shortening the feedback delay time τfb to fractions
of the input clock cycle τ . If the reservoir’s timescale is short enough - as in the case
of passive optical reservoirs - this would allow the same input sample to interact
with past version(s) of itself, such that the system is kept continuously perturbed
during the interval of one input sample. The effect produced can be explained in
two complementary ways:

1. The input interacts with itself and thus increases the complexity, or ’richness’
of the output signal;

2. The shorter feedback lengths allow the reservoir to more quickly ’forget’ inputs
further in the past, resulting in a lower GR, which in turn increases CA.

For this reason, it is of interest in this study to dispense with the masking procedure
and observe how well the reservoir can solve some tasks when fed the input signal
directly. As will be seen, a signal interacting with itself in the sub-τ regime can
provide the necessary computational power to carry out some tasks, especially those
not requiring a large memory. It is especially important that the feedback losses
Afb are kept to a minimum, as this prolongs the reservoir’s activity and delays
the time taken to reach steady state (Fig. 5.2(a,c)). As shown in Fig. 5.2(b,d,f),
higher Afb results in many nodes sharing the same state, which means that the
nodes are not linearly independent and thus reduces the effective dimensionality
of the reservoir. Furthermore, the delay time also affects the effective reservoir
dimensionality, as longer delays (with respect to the input clock cycle) would increase
the amount of nodes that share the same state (Fig. 5.2(e)). One must also ensure
that the node states are sufficiently distinguishable above the system’s noise floor,
which primarily results from the electronic readout and photodetector sensitivity.
Furthermore, signal filtering also affects the effective dimensionality of the reservoir,
especially if the timescale of the filtering is close to the input clock cycle or slower.
For this reason, it is of interest in this study to dispense with the masking procedure
and observe how well the reservoir can solve some tasks when fed the input signal
directly, in the presence of the electronic readout. As will be seen, a signal interacting
with itself in the sub-τ regime can provide the necessary computational power to
carry out some tasks with moderate memory requirements.

5.3.2 Task-independent performance

In Fig. 5.3, we show the performance of the proposed reservoir on MCtot, CA, and its
constituent metrics GR and KQR, while considering different feedback lengths, and
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Fig. 5.2: Effect of τfb and Afb on the dynamics and effective dimensionality of the
reservoir. Blue dots represent the sampled nodes. τ is the delay time synchronized to the

input clock cycle (100 ps) [1].

considering an applied phase shift between 0 rad to 2π rad. Here, we consider all
the outputs passing through a photodetector with 40 GHz bandwidth and a 12-bit
ADC. For feedback times less than τ , it is observed that MCtot (CA) is generally
low (high). A closer look at the constituent metrics of CA (Fig. 5.3(c,d)) shows
that GR lowers with decreasing feedback time, especially in the sub-τ region, while
also showing some dependence on the applied phase shift. However, for KQR, the
variation is smaller over the entire design space, with an especially lower rank in
the sub-τ region. Since GR becomes considerably lower in this region, the overall
CA is highest. Less variation is observed in KQR when compared to GR. These
variations are phase-dependent as the nonlinearity is effectively performed by the
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Fig. 5.3: Results on task-independent tests for different feedback lengths: (a) MCtot, (b)
CA, (c) GR, and (d) KQR [1].

strength of the interference between the fields at the couplers, which is controlled by
the phase shifter. This also changes the signal-to-noise ratio (SNR) of the output
signal and the overall Q-factor of the implicit cavity, which impacts the performance.
Overall, these results show that there is opportunity in scaling down the feedback
length while having enough MCtot and CA to do some tasks in the absence of input
masking, as will be explored in the following sections.

5.3.3 Benchmark task: NARMA-k

In this section, we consider the performance on the nonlinear autoregressive mov-
ing average (NARMA-k) benchmark task. This task requires both memory and
nonlinearity. By varying the maximum number of memory steps k, we challenge
the reservoirs in the design space with different memory/nonlinearity requirements.
Furthermore, we also consider the temporal XOR-k task (u[n] ⊕ u[n − k]) and the
Santa Fe chaotic laser prediction, which are not displayed here for the sake of brevity,
but which are taken into account in sections 5.3.4 and 5.3.7. For all NARMA-k, a
thresholding trend can be observed for a feedback time longer than the most dis-
tant memory. This is due to the absence of interaction between the first input and
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Fig. 5.4: Performance over the design space on the NARMA-k benchmark task. Shorter
feedback delay times achieve excellent performance especially for lower k [1].

earlier inputs into the past, which are essentially skipped. Since the NARMA-k
task considers the aggregate of previous inputs (Eq. 5.4), it depends on the total
memory until the chosen k. This is observed in Fig. 5.4 where, beyond a certain
feedback time, some earlier components of the memory are missing and thus lead to
significantly worse performance. This sensitivity to earlier k reduces as k increases
(as more terms are being aggregated). Additionally, for k’s which are further back
in time, their attenuated power in the circuit becomes more sensitive to readout
noise, which is the reason that this task does not achieve a low enough NMSE for k
higher than 5. In the sub-τ region, it can be seen that a low NMSE can be achieved
for all reported NARMA-k. However, differing trends are observed due to the dif-
ferent memory/nonlinearity requirements from the RC system. Furthermore, upon
closer examination, there seems to be a striking resemblance in pattern between
both NARMA-4 and NARMA-5, and CA and GR results in Fig. 5.3(b,c). This is
explored further in the section on correlation (section 5.3.7).
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5.3.4 Performance comparison

In this section, we compare the obtained results on the mask-less protocol with
results simulating the same architecture considering a pseudo-randomly generated
mask from an i.i.d. ∈ (0, 1], which is synchronized to the 20 nodes of the reservoir.
Here, the same mask is considered for all the reported tasks. While, in practice,
it would be difficult to generate such a mask due to limitations on the RF signal
generation equipment (as discussed in section 5.3.1), it is nonetheless interesting –
from the point of view of a numerical study – to assess how the mask-less performance
compares to that of a masked version. Additionally, we compare to results reported
in the literature for some RC schemes, including integrated TDRC [24, 25, 26, 27],
integrated spatial-multiplexed RC [28], and bulk [29]. Similar to section 5.3.3, we
scanned the parameter space in the length-phase space and considered a fixed high-
speed 40 GHz photodetector with a subsequent 12-bit ADC. The best performance
on the considered tasks is reported in Table 5.2. For the NARMA−k task, it can
be seen that the mask-less performance is close to the masked performance, and
is also better than the simulated performance of the RC scheme in [29] except for
NARMA-5. Since the test set of the XOR task is 3000 bits, the BER resolution
is 3.33 × 10−4. Therefore, we have also included the NMSE between brackets to
observe the performance variations between XOR-1 and XOR-2 which both yield
BER = 0.0. It can be seen that the unmasked performance is good up to XOR-3,
beyond which the masked scheme outperforms it. However, the mask-less BER is
still close to the state of the art performance [28, 27]. For the Santa Fe task, we
can observe no significant difference between the optimal NMSE for the masked
and mask-less scheme. Compared to the state of the art, the mask-less scheme
achieves better performance than what is reported in [25], and performs worse than
the simulated scheme in [26]. Furthermore, it can be seen in Table 5.2 that our
scheme can provide a large enough MCtot compared to state of the art integrated
photonic TDRC schemes, and the optimal MCtot improves by 1 when using the
masked scheme. For the majority of tasks considered here, the performance obtained
for the unmasked reservoir is comparable to that of the masked reservoir, and even
sometimes slightly outperforms it. However, for tasks which require a larger memory,
the mask indeed provides a considerable improvement, e.g., in NARMA-5 and XOR-
4,5. When comparing to examples from the literature, it is important to consider
the different factors involved. For example, the number of nodes, training and
test dataset lengths, regularization parameter(s), and post-processing are almost
different in every case, which makes it difficult to have a completely fair comparison.
Nevertheless, it is shown that the mask-less scheme achieves results that are within
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Table 5.2: Performance Comparison of Proposed vs. Existing Schemes

Task Masked Unmasked State of the Art
NARMA-2 9.37× 10−3 6.69× 10−3 5× 10−2 [29]∗
NARMA-3 1.73×10−2 3.75× 10−3 6× 10−2 [29]∗
NARMA-4 6.42×10−2 7.95× 10−2 0.12 [29]∗
NARMA-5 9.93×10−2 0.149 0.14 [29]∗

XOR-1 0.0 (7.49× 10−5) 0.0 (1.72× 10−5) 10−3[28] 10−0.7[27]
XOR-2 0.0 (7.51× 10−3) 0.0 (1.26× 10−2) 2× 10−3[28] 10−0.9[27]
XOR-3 0.0 (4.68× 10−3) 6.67× 10−4 (0.10) 2× 10−2[28] 10−2.6[27]†
XOR-4 0.0 (5.39× 10−3) 3.20× 10−2 (0.22) 7× 10−2[28] — [27]
XOR-5 0.0 (5.19× 10−3) 2.30× 10−2 (0.19) — [28] — [27]

Santa Fe 0.102 0.108 0.135 [25], 4× 10−2 [26]
MCtot 10.06 9.06 ∼1.0 [26]‡, 1.5 [24], 6.0 [25]

Nodes 20 20 124 [24], 16 [28], 35 [29]
23 [26], 23 [25], 5 [27]

For the XOR task BER is reported, NMSE is between brackets. For Santa Fe and
NARMA-k, NMSE is reported.
— means unreported
Simulation results [26, 28, 29], experimental results [25, 27, 24].
∗ NMSE calculated from the reported R2 scores as NMSE= 1−R2
† Post-processing involved
‡ Ref.[26] reports MCtot = 2 without external feedback, but the authors consider also
the term MC0.

the vicinity of state of the art performance, and comparable to those obtained from
applying the mask on the proposed scheme.

Furthermore, it can be seen in Table 5.2 that our scheme can provide a large
enough MCtot compared to state of the art integrated photonic TDRC schemes, and
the optimal MCtot improves by 1 when using the masked scheme. For the majority
of tasks considered here, the performance obtained for the unmasked reservoir is
comparable to that of the masked reservoir, and even sometimes slightly outperforms
it. However, for tasks which require a larger memory, the mask indeed provides
a considerable improvement, e.g., in NARMA-5 and XOR-4,5. When comparing
to examples from the literature, it is important to consider the different factors
involved. For example, the number of nodes, training and test dataset lengths,
regularization parameter(s), and post-processing are almost different in every case,
which makes it difficult to have a completely fair comparison. Nevertheless, it is
shown that the mask-less scheme achieves results that are within the vicinity of
state of the art performance, and comparable to those obtained from applying the
mask on the proposed scheme.
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Fig. 5.5: Performance on the task-independent tests, with respect to photodetector
bandwidth and feedback time [1].

5.3.5 Effect of post-filtering

In this section, we consider the effect of post-filtering at the readout. Filtering has
been recently investigated [30] as a means of performance improvement for optoelec-
tronic reservoirs. This is of particular interest for passive photonic reservoirs as the
readout imprints features on the final output signal which need to be considered.
Here, we sweep the photodetector’s bandwidth (20 points), ranging from 2 GHz to
40 GHz, while considering the task-independent metrics and the NARMA-k task.
The results are not independent of the applied phase shift. However, for visualiza-
tion purposes, we choose one value of phase shift, and plot the results with respect
to feedback time. The results on MCtot, as shown in Fig. 5.5 (a), show an overall
increasing trend with increasing bandwidth. In Fig. 5.5 (b), there is a consistently
high CA in the sub-τ region from 5 GHz and above. Thus, for tasks that require
less MCtot and more CA, one could in principle scale down the reservoir while being
less constrained by readout electronics. For the most part, KQR increases quasi-
monotonically with increasing bandwidth, similar to Fig. 5.5 (a). Also, it can be
seen that smaller τfb are more tolerant to lower bandwidths in terms of CA. We
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Fig. 5.6: Performance on NARMA-k benchmark task. For some feedback lengths,
post-filtering assists in lowering the NMSE [1].

also consider the NARMA-k benchmark task, and report the behavior for different
photodetector bandwidths, as shown in Fig. 5.6. For NARMA-2 and NARMA-3,
excellent performance is obtainable in the sub-τ region, where there is a large degree
of tolerance for lower bandwidths. On the other hand, NARMA-4 and NARMA-5
seem to benefit more from the slower dynamics of longer delay lines. We conclude
that the output readout affects the dimensionality of the reservoir, mostly reducing
the effective number of nodes through a combination of noise and linear filtering,
which could essentially drown some of the independent features which become insuf-
ficiently distinguishable after passing through the output electronics. Thus, shorter
feedback lengths, which provide stronger and more frequent dynamics, seem to be
particularly robust to the readout’s considered effects.

5.3.6 Effect of ENOB

ADCs in oscilloscopes typically have a lower effective number of bits (ENOB) than
their designed resolution, especially when operating at high frequencies. Therefore,
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it is interesting to see how the proposed RC scheme would perform with such low
ENOB. We consider how the scheme performs in the sub-τ region, showing the op-
timum values obtained for some of the tasks presented earlier in the work under the
harsh conditions of a single oscilloscope acquisition, which is equivalent of greatly
reducing the considered SNR in this work. Thus, we consider the cases of 5-8 bits
of ADC resolution to mimic the effect of a lowering ENOB. For XOR-k tasks we
report the BER, while for NARMA-k and Santa Fe tasks we report the NMSE.

Table 5.3: Performance on lower ENOB

Task 5 bits 6 bits 7 bits 8 bits
XOR-1 0.0 0.0 0.0 0.0
XOR-2 8.3×10−3 6.6×10−4 0.0 0.0

NARMA-2 0.13 0.08 0.05 0.04
NARMA-3 0.29 0.21 0.16 0.12

SF 0.46 0.27 0.22 0.17

While the consideration of a single acquisition heavily degrades the signal qual-
ity, the proposed scheme can still solve the above tasks effectively, albeit with less
accuracy. This degradation can be easily mitigated by averaging multiple signal ac-
quisitions, which is usually done in practice and can improve the ENOB by multiple
effective bits of precision, in accordance with the number of signals acquired and
averaged. An important consideration here would be the signal stability during the
total acquisition time of the multiple signals to be averaged. This is done in practice
by using a temperature controller to keep the photonic circuit thermally stable dur-
ing the total acquisition time. Usually, precision temperature controllers based on
resistance temperature detector (RTD) in a feedback loop – typically proportional-
integral-derivative (PID) – can achieve a thermal stability < 0.1◦C. However, when
considering real-time processing, one limitation is that averaging over multiple ac-
quisitions would decrease the overall throughput of the system. Higher input optical
powers would also further improve the SNR and minimize the needed amplification
after detection, reducing their associated noise. Under these considerations, the
simulation results obtained in this work should approximate the experimental per-
formance.

5.3.7 Correlation between different tasks

The relation between task-specific performance and task-independent metrics has
also been a topic of recent interest [31]. In this section, we shed light on the re-
lation between different tasks through observation of the correlation between the
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Fig. 5.7: Correlation matrix between different tasks, XOR-k, NARMA-k (NAR-k), Santa
Fe (SF), and the task independent metrics [1].

reservoir’s performance on different tasks over the chosen design space, where we
consider the varying feedback length and applied phase shift, and a fixed photode-
tector bandwidth of 40 GHz. We employ the Pearson correlation coefficient (rc) to
identify linear relations between the performance on various tasks/metrics over the
design space. We take into consideration all the presented tasks thus-far, namely the
temporal bitwise XOR-k task (with k from 1 to 4 bits into the past), the NARMA-k
task (with k from 2 to 5 inputs in the past), the Santa Fe chaotic laser prediction,
as well as MCtot, CA, and its constituent metrics (GR, KQR). In this case, for the
XOR task, we also employ the NMSE as BER does not yield results falling within
a normal distribution. When 0 < rc ≤ 1, a positive correlation exists, and when
−1 < rc < 0 it is a negative correlation. A strong positive correlation indicates that
two tasks perform similarly well (or similarly poorly) over the design space, while
a strong negative correlation would mean that the tasks require opposite configura-
tions. If a strong positive correlation exists between two tasks, we can infer that it
is highly likely that the system can be configured in such a way to solve those two
tasks at the same time, i.e. the tasks can be solved with the same hyperparameter
configuration of the reservoir.
A strong positive correlation is observed between XOR tasks and NARMA tasks for
some k. For example, rc(xor2, narma2) = 0.88, which suggests that they can ben-
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efit from sharing the same hyperparameter configuration within this design space,
even though they are different families of tasks. The same applies to other cases:
r(xor2, narma3) = 0.73, rc(narma2, narma3) = 0.88 and rc(xor2, xor3) = 0.72.
These same tasks also exhibit a strong positive correlation with CA (the two quan-
tities CA and NMSE improve in opposite directions). Looking at CA’s constituent
metrics, it is observed that this is mainly due to the stronger correlation with GR, as
the correlation with KQR is generally weak with all benchmark tasks. This is due to
the small variations in KQR over the explored design space, which was explained in
section 5.3.2, and is the reason why CA itself does not show a strong linear relation
with KQR. Similarly, for the Santa Fe task, weak relations are established due to
minimal variation of NMSE over the design space. Beyond the sub-τ region, MCtot

does not change considerably, and hence the average or weak correlations with other
tasks/metrics. Therefore, for this scheme, CA is a more relevant metric of the reser-
voir’s performance on the different tasks than MCtot, especially considering the fact
that GR is in itself a test of memory. In fact, the individual memory components
MCk can give a better picture on how much the reservoir can remember for tasks
that target specific inputs into the past, such as XOR-k. For other RC schemes,
which can have sufficiently different types of nonlinearity, a stronger correlation with
KQR over the design space would be expected. In any case, the correlation matrix
not only shows inherent relations between different tasks over that space, but is also
a useful tool to judge a reservoir’s ability to solve multiple desired tasks on the same
signal. It can also aid in the design process of any type of reservoir for the tasks of
interest.

5.4 Conclusion

In this work, we have explored the potential for mask-less photonic TDRC using
an all-optical, passive, integrated architecture. For applications with an already-
incoming optical signal, dispensing with the mask enables bypassing the usual do-
main conversion(s) at the input layer. In addition to reductions in associated energy
and complexity costs, this enables the processing of higher signal bitrates Bm as the
mask normally requires N × Bm of signal generation/modulation bandwidth, thus
restricting either the size of the reservoir or the overall speed of the system. We have
explored this within the chosen design space of the minimum complexity architec-
ture, focusing on the feedback length, and the applied phase shift which can be freely
tuned post-fabrication. The best obtained results show small differences between
masked and mask-less performance for tasks with moderate memory requirements.
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Additionally, we considered the effects of post-filtering and showed that in the sub-τ
region, some tasks can be performed even with very strong linear filtering, which de-
grades the linear independence of the sampled nodes. Furthermore, we have shown
the correlation between the reservoir performance on the considered tasks as a way
to understand the relation between the performance on different benchmark tasks
and the task-independent metrics within the chosen design space. This would allow
further optimization of the reservoir design to handle multiple tasks using the same
configuration. This could be useful for other reservoir implementations and serve
as a practical tool to aid in the design of multitasking RC. Future studies may con-
sider nonlinear effects of the considered platform (e.g. χ2 and χ3 nonlinearities in
LNOI), along with relevant parameters such as varying the SNR, waveguide losses,
input wavelength, MZI arm lengths, and coupling ratio of the splitters, which would
influence the dynamics of the proposed reservoir and the effective (usable) number
of nodes. Moreover, the number of nodes required for certain tasks may be less
than what is considered here, which means that they can operate at faster input
clock cycles (e.g. tasks showing tolerance to lower bandwidth post-filtering). Fi-
nally, other metrics such as the information processing capacity (IPC) [9] may be
applied to quantify the reservoir performance and provide insight into the computa-
tional power of the intensity-conversion nonlinearity used here and in similar passive
photonic RC schemes.
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Chapter 6

Experimental Work

This chapter reports the experimental work carried out during my stay at RMIT
University, at the Integrated Photonics and Applications Center (InPAC), from
February to September 2023. The aim of the reported experiments is to verify
the proposed RC scheme in chapter 4, under mask-less conditions as discussed in
chapter 5. The layout and experimental characterization were carried out by myself,
while fabrication was done by the InPAC fabrication team, led by Dr. Guanghui
Ren. The platform considered is the SiN-loaded LNOI, as shown in Fig. 6.1. SiN is
a good optical load material due to a similar transparency and refractive index as
LiNbO3. Furthermore, SiN is CMOS-compatible, which allows standard deposition
and etching to be used, which simplifies fabrication. The ridge waveguide (Fig. 6.1)
enables lower propagation losses due to the minimal area of interaction between
the optical mode and the sidewalls’ roughness. This is because most of the mode
is confined in the thin-film lithium niobate (TFLN) layer. However, due to weaker
lateral confinement than wire waveguides (where the refractive index contrast is with
air), these ridge waveguides require larger bending radii (∼ 200µm) to minimize
associated radiative losses. However, for straight waveguides, losses as low as 0.3
dB/cm can be obtained. The following sections aim to document the activities I
carried out, from the preparation of the chip layout using IPKISS1, to the lab work
encompassing device characterization and RC system testing.

1https://www.lucedaphotonics.com/luceda-photonics-design-platform
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6.1. Chip Layout Design

Fig. 6.1: Cross-section of the SiN-loaded LNOI platform. More information about the
LNOI platform can be found here [1].

6.1 Chip Layout Design

The mask layouts were prepared using InPAC’s LNOI process design kit (pdk) in
IPKISS. The first layout is shown in Fig. 6.2. The grating couplers (GC) pitch was
set to 127 µm for compatibility with the fiber array. The first and last GC were
reserved for a reference loop, which estimates the GC insertion loss. Bend radii
(including the concentric spiral waveguides) were set at 150 – 200 µm to ensure
minimal bending losses. Heater pads were positioned in the horizontal direction for
access to DC probes from below. On the other hand, the RF pads were positioned
vertically for access from the left and right directions with respect to the chip. Three
feedback lengths, previously considered in simulation in chapter 4 and chapter 5,
were considered: 1.88 cm (R188), 2.84 cm (R284), and 4.55 cm (R455). For the
devices only (without on-chip modulators), two instances of R188, one instance of
R284, and one instance of R455 were placed on the layout. For devices with on-chip
modulators, one instance each of R188 and R284 were placed. Furthermore, three
test structures corresponding to the spiral lengths used were placed in the bottom
half of the chip layout. These test structures allow the testing of the impact of bends
on the spiral losses. Moreover, since LNOI is anisotropic, changing the direction of
propagation along the chip affects which refractive index (ordinary or extraordinary)
the field is experiencing, which contributes to the losses due to the modal mismatch.
X-cut LNOI is usually preferred for electro-optic applications because it maximizes
in-plane electric fields, utilizing the high electro-optic coefficients r11 and r12 for
efficient modulation in integrated photonic devices. Design rule checking (DRC)
was done manually, ensuring that:

• minimal amount of bends overlap with the electron beam lithography (EBL)
grid lines to minimize stitching error;
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6.1. Chip Layout Design

• minimum distance between nearby waveguides is respected to minimize
crosstalk;

• DC pad spacing (200 µm) corresponds to the pitch of the DC probe;

• RF pad spacing corresponds to the pitch of the RF probe.

The second layout (Fig. 6.3) was completed for a second fabrication run, which will
take place at another facility, and which uses a different pdk developed by my col-
leagues at InPAC. In addition to the reference waveguides for estimating GC losses,
additional reference waveguides were added to estimate the losses resulting from
stitching errors on the new platform. Stitching errors in photonic chip fabrication
refer to misalignments or discontinuities at the boundaries between the exposed sec-
tions during lithography, leading to misalignment and therefore optical losses. This
layout does not include on-chip modulators and is thus focused on the devices them-
selves - namely the feedback structure used and its length, as well as the impact of
the asymmetry of the MZI. Thus, the results reported in this chapter concern the
first mask layout.
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Fig. 6.2: The first layout includes test structures and test devices with and without
on-chip modulators.
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Fig. 6.3: The second layout allows the study of the impact of MZI asymmetry and the
choice of feedback lengths and their chosen structures (mostly straight waveguides,

meanders, and concentric spirals).
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6.2 Device Characterization

In this section, the characterization of the grating couplers, reference spiral struc-
tures, and devices (R188, R284, R455) is reported. Extremely low losses were en-
countered for the devices with modulators, which are significantly lower than the
noise floor of the setup, and therefore their performance is not reported here. The
setup used is shown in Fig. 6.4. A tunable laser is connected to the fiber array which
is aligned to the on-chip GCs which couple the light into waveguides (TE mode).
The laser power is set at 0 dBm (1 mW).

λ = 1550 nm

Laser ON

0 dBm 

Output

λ = 1550 nm

-23 dBm

Fiber array

Φ Input

DUT

Tunable Laser
Power meter

DC Output

DC Supply

10 V

Fig. 6.4: Setup for loss characterization of the GCs, test structures, and devices.

The laser wavelength is swept and the power is recorded. The first measurements
concern the reference loop which estimates the GC losses, as shown in Fig. 6.5. The
results show that the GCs work at their designed wavelength, with a peak trans-
mission at ∼ 1550 nm. However, it can also be seen that the insertion losses are
high, with about 9.5 dB per GC for the upper devices and for the devices with
modulators. For the bottom devices, the insertion losses are slightly more than 11
dB per GC. It is not unusual to have variability of performance over the dimensions
of the chip in thin film platforms. This is due to the inconsistencies in TFLN layer
thickness across the chip. The next measurement concerns the reference loops at
the bottom of the chip, which share the same GC array as the bottom devices. It
can be similarly observed that the GCs work at their designated wavelength, except
for the one concerning the spiral used to form the feedback of the R455. Comparing
to the values above, we can estimate that the spiral losses are the following:

• Loop188 ≈ 1.1 dB

• Loop284 ≈ 6.3 dB

• Loop455 ≈ 10.2 dB

The significant losses encountered can be attributed to modal mismatches between
the ordinary and extraordinary refractive indices as the field continuously alters its
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Fig. 6.5: Measurement of GC losses through the reference loop. Ripples are caused by the
cavity formed by the fiber’s cleaved end and the grating coupler.

Fig. 6.6: Measurement of the feedback spiral losses through the reference structures.

orientation within the spiral. This does not exclude the possibility of losses due to
local defects on the chip. After reporting the GC and spiral losses, we proceed to
the device characterization. One can observe the envelope (FSR) created by the
difference in MZI arm lengths. The smaller FSR is caused by the cavities formed
by the feedback waveguide with the MZI arms. For larger Lfb, this FSR becomes
smaller. Furthermore, the smaller ripples dampen with increasing Lfb, as a result of
the higher losses encountered. Since for R455 the losses are very high, we proceeded
with the system characterization of R188 and R284, excluding R455.
Finally, we proceed to the phase shifter characterization. We employ the DC supply,
as shown in Fig. 6.4 to provide the voltage to the tungsten heater by means of a DC
probe. The maximum operating voltage is around 9V, beyond which the heater can
be permanently damaged. As shown in Fig. 6.8, the distance between two successive
peaks on the MZI envelope is ≈ 650 pm, which means that a π phase shift is ≈ 325
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6.2. Device Characterization

Fig. 6.7: Characterization for the devices with different feedback lengths.

pm. The full range of 228 pm thus provides ≈ 0.7π phase shift. This is a limitation
in the fabricated chips that can be easily remedied in the future by increasing the
heater length.

228 pm

Lfb = 1.88 cm

Fig. 6.8: Phase shifter characterization.
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6.3 System Characterization

The system’s temporal response is first captured using a non-return-to-zero (NRZ)
input bitstream. A marker bit precedes the sequence and serves as the trigger level
on the oscilloscope, as shown in Fig. 6.10 (a). The bulk modulator was also tested
before the experiment, and it was found that a bias voltage of ∼14 V yielded the
optimum swing. By creating a python script, based on an in-house PyVISA interface
independent measurement control python package, the experiment is automated, i.e.
the laser wavelength, DC supply voltage, oscilloscope acquisition could be controlled
and swept. All functional instances of R188 and R284 were tested for 5 and 10 Gbit/s
bit rates. Here reported are the results of one R188 instance, showing the temporal
response to a 5 Gbit/s bit stream for various wavelengths λ1 – λ6 between 1549 nm –
1551 nm, and various Vϕ between 5V – 9V, without (Fig. 6.11) and with (Fig. 6.12)
a temperature controller (TC) for the device under test (DUT).

Fiber array

Φ Input

DUT
70 GHz PD

RF Output

AWG

λ = 1550 nm

Laser ON

0 dBm 

Output

Tunable Laser

RF Input

Oscilloscope

RF Out

Intensity Modulator

DC Output

DC Supply

10 V

Fig. 6.9: Setup for RC system characterization. AWG refers to an arbitrary waveform
generator. Erbium doped fiber amplifiers (EDFA) were also included before and after the
device under test (DUT) to compensate for the losses. Additionally, an RF amplifier is

used after the photodetector.

Fig. 6.10: AWG output of a 5 Gbit/s NRZ bit stream, measured on the oscilloscope.
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Fig. 6.11: Response of R188 to the input bitstream, using a TC. Varying dynamics for
varying wavelengths and Vϕ can be observed. Note especially the changing decay

behavior.
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Fig. 6.12: Response of R188 to the input bitstream, using a TC. Similarly, varying
dynamics for varying wavelengths and Vϕ can be observed, although much less noisy.

The principle point of notice in the figures above is the changing amplitudes
and decay times, signifying the different effective cavities being formed under the
influence of the interference at the couplers, controlled by the heater.
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6.4 Experimental demonstration

In this section, we attempt to train the reservoir on two tasks, the temporal bitwise
XOR and the Santa Fe timeseries prediction. The responses obtained from R284
and R188 are used, with 6 voltage levels (4V - 9V) and 10 wavelengths (around
1550 nm) scanned per reservoir, yielding 60 different datasets for each. The input
is mask-less and the clock cycle is 0.2 ns, corresponding to a data rate of 5 Gbit/s.
For both tasks, ridge regression was used with the ridge parameter set to 10−4.

6.4.1 XOR

The input is defined in a python script and exported as a .csv file to be sent to the
AWG. The AWG has a maximum output sample rate of 64 GSa/s, which permits
∼ 13 (∼ 6) samples per input bit for a bit rate of 5 (10) Gbit/s. The input stream
consists of 16384 NRZ bits, and is used to attempt the XOR-1 task. The BER
threshold was scanned with 20 values from 0.05 to 0.95, and the best BER for each
dataset is reported, as shown in Fig. 6.13. The obtained BER is very high, which
means this task was not solved. This could be due to the 0 level being designated
to 0 mV, which means a large portion of the gathered data is close to the noise floor
of the system and/or limited by the photodiode sensitivity. This could be alleviated
by setting a higher 0 level, while ensuring a sufficient swing between the two levels.
Since the BER is already high when using all 16384 examples in the training set, a
validation set was not used.

Fig. 6.13: BER obtained for the XOR task.
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6.4.2 Santa Fe

The Santa Fe time series was also investigated. An input stream of 4000 training
examples was employed, where 3500 where used for training and 500 for testing. In
Fig. 6.14, the defined input and response are shown. We report excellent results on
the 1-step ahead prediction, which is the commonly used version of this task. We
also obtained good results for the 2-steps ahead prediction, while the performance
was found to significantly degrade when considering 3 or more steps, as shown in
Fig. 6.15 and Fig. 6.16.

Fig. 6.14: (a) Zoomed out view and (b) zoomed in view of the Santa Fe input (software)
and obtained responses from R188 and R284.
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Fig. 6.15: NMSE obtained with the various datasets for the Santa Fe task for (a) 1 step
ahead prediction, (b) 2 steps ahead prediction, and (c) 3 steps ahead prediction.

Fig. 6.16: Minimum obtained NMSE for R188 and R284 for various prediction steps,
showing similar trends and performance for both reservoirs.

The 0th prediction step is considered to ensure the temporal synchronicity be-
tween the training set and the obtained response. This ensures that the task is
solved by the memory of the reservoir and not due to an already delayed input.
Table 6.1 reports the minimum NMSEs obtained for the various prediction steps,
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corresponding to Fig. 6.16. The achieved results are slightly better than simulations,
and are among the best obtained in the relevant literature.

Table 6.1: Minimum obtained NMSE on the Santa Fe task (experimental)

Task R188 R284
SF-1 0.01 0.03
SF-2 0.05 0.22
SF-3 0.36 0.44
SF-4 0.39 0.38

6.5 Conclusion

In conclusion, different instances of the proposed reservoir were designed, physically
realized on the LNOI platform, and characterized for the relevant parameters. The
results show the changing time dynamics for different Vϕ, which confirms the oper-
ation principle of this architecture. The XOR task yielded a high BER, while the
Santa FE time series was solved with excellent results. A fabrication based on the
second layout (Fig. 6.3), which features shorter feedback waveguides, would allow
higher data rates to be used, and possibly improve the results. Additionally, the use
of a different cut of LNOI can minimize anisotropic effects and would further min-
imize spiral losses to values closer to those of straight waveguides (< 0.3 dB/cm),
which would allow larger memory tasks to be solved.
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Chapter 7

Conclusion

7.1 Summary

In this dissertation, the need for alternative computing paradigms was presented.
The attractiveness of leveraging photonic integrated circuits towards that aim was
discussed. The current trends in photonic neural networks were summarized and a
detailed overview of the state of the art in photonic reservoir computing was pro-
vided. The main theme explored throughout this work is the minimization of the
complexity of photonic RC schemes, while still achieving high performance. To that
aim, we have launched multiple investigations in different directions. The first con-
cerns proposing a novel integrated photonic RC architecture that is reconfigurable
using a single element, in the form of a phase shifter, which controls two parameters
simultaneously; the feedback strength and the feedback phase. Tuning the feedback
strength in this manner does not require power to be coupled out of the system
(lost), as is typically achieved by using an optical attenuator. The integration of the
feedback waveguide is enabled by the low-loss LNOI platform or any other low-loss
platform, such as silicon nitride. Our simplified design enabled good performance on
some RC benchmark tasks, while at the same time significantly reducing the hard-
ware complexity of the reservoir and auxiliary equipment. The second investigation
concerns the further reduction of complexity by disposing with the input mask at
the input layer and engineering the feedback length to prolong the dynamical sys-
tem’s transient response time, which is essentially the aim of the input mask. The
reservoir’s performance in the asynchronous regime was evaluated using a variety
of task-independent metrics and benchmark tasks. The results showed compara-
ble performance to the literature for the considered tasks. In summary, the results
presented in this dissertation suggest that such minimal RC schemes can achieve
on-par performance with schemes that either require costly auxiliary instruments,
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or schemes that use a multitude of tunable parameters. The proposed implemen-
tations are less costly and more energy-efficient for a variety of tasks, especially
if the inputs are already in the optical domain. Finally, the impact of bandwidth
limitations and noisy readout on performance was examined across various tasks. It
was concluded that the nature of the task determines its robustness to lower band-
widths (i.e. slower photodetectors). Finally, the experimental demonstration of the
proposed design was presented, and the scheme was shown to solve the Santa Fe
benchmark task with excellent results.

7.2 Perspectives

There are several key limitations of the proposed architecture, particularly at the
proposed high speeds. The first is the need for high speed readout equipment to
achieve higher processing speeds. This means high bandwidth photodetectors and
driving/readout electronics, which are costly and energy consuming. Like other
PIC-based schemes, our proposed scheme is limited to solving tasks with moderate
memory requirements. For example, solving the NARMA-10 task with this scheme,
especially when considering readout noise, becomes very difficult.
Large waveguide losses pose a significant challenge to this approach, restricting its
implementation to inherently low-loss platforms. However, non-ideal conditions are
inevitable and result in higher-than-expected losses. Although the system success-
fully solved one of the tasks, improved experimental performance over a wider variety
of tasks could be achieved with reduced waveguide losses (< 0.5 dB/cm).
Furthermore, while we brushed on the topic of solving multiple tasks at the same
time, further investigation is still needed. In particular, it would be interesting to
investigate the use of multiple wavelengths, as could be done using an integrated
micro-comb source, which is possible on the LNOI platform. Furthermore, the rich
variety of optical nonlinearities accessible on LNOI can be explored and its RC per-
formance compared against this minimalist scheme.
Finally, and not unique to this approach, photonic systems inherently suffer from
wavelength drift due to refractive index changes caused by ambient temperature
fluctuations. While compensation is feasible in a controlled lab environment, it be-
comes challenging in packaged systems for real-world applications. Several studies
have investigated methods to mitigate this issue, as discussed in chapter 3, yet there
remains significant potential for further improvement. The proposed architecture
may handle this through either an FPGA or a co-packaged ASIC that implements
a zero-calibration point algorithm to compensate for temperature drift. The ASIC
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would take as input a portion of the detected output power, and accordingly adjust
the phase shifter voltage to perform the compensation.
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Appendix A

Synthèse en Français

A.1 Résumé

Cette étude concerne le calcul par réservoir à retard temporel, en anglais Time-
Delay Reservoir Computing (TDRC) dans les plateformes de photonique inté-
gré, en particulier la plateforme Lithium Niobate On Insulator (LNOI). Nous
proposons une nouvelle architecture intégrée «tout optique », avec seulement un
déphaseur comme paramètre modifiable pouvant atteindre de bonnes performances
sur plusieurs tâches de référence de calcul par réservoir. Nous étudions également
l’espace de conception de cette architecture et le fonctionnement asynchrone du
TDRC, qui s’écarte du cadre plus courant consistant à envisager les ordinateurs
TDRC comme des réseaux. En outre, nous suggérons d’exploiter le schéma tout
optique pour se passer du masque d’entrée, ce qui permet de contourner la conver-
sion Optique/Electronique/Optique (O/E/O), souvent nécessaire pour appliquer le
masque dans les architectures TDRC. Dans des travaux futurs, cela pourra permettre
le traitement de signaux entrants en temps réel, éventuellement pour des applica-
tions de télécommunication de pointe. Les effets de la lecture électronique de sortie
sur cette architecture sont également étudiés. Aussi, nous suggérons d’utiliser la cor-
rélation de Pearson comme une métrique nous permettant de concevoir un réservoir
capable de traiter plusieurs tâches en même temps sur le même signal entrant (et
éventuellement sur des signaux dans des canaux différents). Les premiers travaux ex-
périmentaux menés à l’université RMIT sont également présentés. Par ces travaux,
nous voulons étudier la performance de ces nouvelles architectures TDRC tout en
ayant minimisant la complexité du matériel photonique. Pour cela on s’appuiera
principalement sur les faibles pertes du LNOI qui permettent l’intégration du guide
d’onde de rétroaction, et en utilisant uniquement l’interférence et la conversion
d’intensité à la sortie (par le biais d’un photodétecteur) en tant que non-linéarité.
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Cela constitue une base sur laquelle pourront s’appuyer de futurs travaux étudiant
les gains de performance lorsque des non-linéarités supplémentaires sont prises en
compte (telles que celles de la plateforme LNOI) et lorsque la complexité globale du
système augmente par l’introduction d’un plus grand nombre de paramètres. Ces
travaux portent donc sur l’exploration d’une approche informatique non convention-
nelle particulière (TDRC), utilisant une technologie particulière (la photonique in-
tégrée), sur une plateforme particulière (LNOI). Ces travaux s’appuient sur l’intérêt
croissant pour l’informatique non conventionnelle puisqu’il a été démontré au fil des
ans que les ordinateurs numériques ne peuvent plus être une solution unique, en
particulier pour les applications émergentes telles que l’intelligence artificielle (IA).
Le paysage futur de l’informatique englobera probablement une grande variété de
paradigmes informatiques, d’architectures et de hardware, afin de répondre aux be-
soins d’applications spécialisées croissantes, tout en coexistant avec les ordinateurs
numériques qui restent - du moins pour l’instant - mieux adaptés à l’informatique à
usage général.

PARTIE I: CONTEXTE SCIENTIFIQUE

A.2 Introduction

L’essor de l’informatique au 20e siècle – partant des les matériaux de base jusqu’à
l’échelle et l’étendue des applications - n’a pas été une simple percée technologique.
Les progrès mathématiques du XIXe siècle avaient déjà transformé la logique
philosophique en un langage formel qui a donné naissance à la logique symbol-
ique, puis à l’algèbre de Boole, à la base de l’informatique numérique. En logique
symbolique, une expression est évaluée pour sa valeur de vérité, produisant l’une
des deux sorties possibles : Vrai ou Faux, qui peuvent en pratique être représentés
comme les états « ON » et « OFF » d’un interrupteur. Les travaux pionniers de la
théorie de la calculabilité dans les années 1930, catalysés par les travaux de Gödel
sur la logique formelle, ont abouti à la machine de Turing : un ordinateur conceptuel
qui manipule des symboles sur une longueur infinie de ruban suivant un tableau de
règles. Cette machine simple peut mettre en œuvre, en principe, n’importe quel
algorithme informatique. L’algèbre de Boole a également été largement utilisée par
Claude Shannon pour développer la théorie de l’information, posant les bases de la
théorie moderne de la communication.
D’un point de vue plus pratique, les progrès de la physique des semi-conducteurs
et de la science des matériaux ont permis l’élaboration de la jonction p-n. Ainsi,
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l’informatique moderne n’a pu voir le jour que quand les sciences théoriques et pra-
tiques se sont rencontrées au cours de la première moitié du XXe siècle. Les ordina-
teurs à tube à vide ont été utilisés bien au-delà de la première moitié du XXe siècle.
Cependant, ils étaient difficiles à entretenir en raison de pannes constantes (peu fi-
ables) et fonctionnaient à des centaines de volts (gourmands en énergie). L’invention
du transistor promettait (et plus tard réalisa) un changement d’état logique rapide,
économe en énergie et fiable. Cela a permis aux ordinateurs d’augmenter leur nom-
bre d’interrupteurs (grâce à la réduction de la taille des dispositifs et à l’intégration
sur puce) et d’élargir le champ des applications, leur permettant d’être les machines
performantes et omniprésentes que nous connaissons aujourd’hui.
L’incroyable succès de la microélectronique , stimulé par la loi de Moore, prévoyant
que le nombre de transistors sur un circuit intégré doublerait environ tous les deux
ans, a soutenu l’amélioration des performances informatiques pendant plus de 50 ans.
Notons également les progrès continus au niveau des architectures des dispositifs per-
mettant de réduire la taille des transistors à 2 nm (y compris Fin-Fet, GAAFET,
etc.), mais au prix d’une augmentation des coûts de R&D et de fabrication. En
outre, les ordinateurs d’aujourd’hui - qui utilisent essentiellement l’architecture con-
nue sous le nom d’architecture « Princeton » ou plus communément de modèle «
von Neumann » - souffrent de ce qu’on appelle un goulot d’étranglement.
Celui-ci se situe au niveau du transfert de données entre les unités distinctes de mé-
moire et de calcul. C’est pourquoi l’exploration de paradigmes informatiques non
conventionnels a suscité un intérêt croissant, allant du calcul en mémoire (les opéra-
tions de calcul et la mémoire se situent dans la même unité), au calcul stochastique,
en passant par le calcul neuromorphique et le calcul par réservoir, pour ne citer
qu’eux. Le calcul optique a également été utilisé comme un moyen d’exploiter les
avantages à travailler avec la lumière plutôt qu’avec des signaux à fréquence radio
(RF), ou simplement comme base pour la mise en œuvre de certains des paradigmes
susmentionnés.
La photonique peut faire la différence dans le domaine de l’informatique, notamment
en termes de :

• Largeur de la bande de fréquence : la photonique fonctionne avec des
ondes lumineuses (des centaines de THz) alors que l’électronique numérique
fonctionne avec des ondes RF (GHz). La différence de largeur de bande atteint
alors 5 ordres de grandeur. Un parallélisme massif peut être obtenu grâce au
multiplexage des fréquences, les peignes en fréquence pouvant générer de la
lumière dans environ 107 lignes de fréquence distinctes ; les données de chaque
ligne pouvant alors être traitées en parallèle.
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• Dynamique à faible perte: les photons peuvent se propager avec des
pertes négligeables dans les configurations en espace libre et des pertes très
faibles dans certaines plates-formes intégrées (par exemple, les pertes démon-
trées sur les plates-formes LNOI ou avec SiN sont de l’ordre de 0,2 dB/cm
dans la bande optique C). C’est une autre raison pour laquelle, on s’attend à
ce que les interconnexions optiques jouent également un rôle important dans
la communication électronique intra-puce.

L’utilisation de plates-formes photoniques pour des applications en calcul est donc
très prometteuse, en particulier pour les paradigmes émergents qui promettent une
augmentation de la vitesse et de l’efficacité du calcul, par exemple dans le domaine
du traitement du signal ou de l’intelligence artificielle.

A.3 Quelques éléments de photonique

Cette section présente un bref aperçu de la photonique, en mettant l’accent sur les
circuits intégrés photoniques (PICs). De nombreuses recherches ont été menées pour
trouver des matériaux adaptés aux dispositifs et circuits photoniques intégrés. Pour
la plupart des plates-formes, la photolithographie est utilisée de la même manière
qu’en microélectronique, pour la gravure et le dépôt de matériaux. Mais, contraire-
ment aux circuits électroniques où les électrons existent facilement à l’intérieur des
matériaux, les circuits photoniques ont besoin de sources de lumière, généralement
obtenus par émission stimulée en générant des paires électron-trou dans un matériau
à gain. La lumière a également besoin d’être détectée, la détection se faisant dans
un semiconducteur par la combinaison de ces paires électron-trou.
D’un point de vue historique, la conception des dispositifs a précédé de quelques
décennies les réflexions au niveau du circuit ou de systèmes. Cela a entraîné la spé-
cialisation des plateformes pour ces différents dispositifs, par exemple : le phosphure
d’indium (InP) pour les lasers, l’arséniure de gallium (GaAs) pour les détecteurs et
le niobate de lithium LiNbO3 pour les modulateurs à grande vitesse. Chacun de
ces dispositifs a été fabriqué selon des procédés de fabrication différents qui sont
fondamentalement incompatibles avec ceux utilisés pour les autres dispositifs.
Si on se focalise maintenant au niveau de la conception et de la simulation des
dispositifs et des systèmes photoniques il est nécessaire de revenir à l’optique fon-
damental. La physique de la lumière peut être décrite par différentes théories,
qui suivent l’évolution de notre compréhension de la nature de la lumière. Par
ordre chronologique, ces théories sont l’optique géométrique, l’optique des ondes
scalaires, l’optique des faisceaux, l’optique de Fourier, l’optique électromagnétique
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et l’électrodynamique quantique. Ces différentes théories de la lumière peuvent être
utilisées pour modéliser la propagation de la lumière dans les circuits photoniques,
selon que l’on souhaite une simulation au niveau du dispositif ou au niveau du sys-
tème, et selon les types de phénomènes pris en compte. Pour les implémentations
photoniques intégrées au niveau du système, on modélise la plupart du temps la
lumière grâce à l’optique ondulatoire à ondes guidées (par exemple, la théorie des
modes couplés). Les simulations au niveau du circuit effectuées dans cette thèse
sont réalisées à l’aide de la méthode de la matrice S. Un exemple simple est présenté
ci-dessous pour montrer comment cela fonctionne.
Considérons une source laser, décrite comme un champ électromagnétique cohérent
et monochromatique. Le champ électrique E de cette source de fréquence ω = 2πf ,
en supposant une onde plane (c’est-à-dire sans dépendance spatiale), peut être décrit
par son amplitude A et sa phase initiale ϕ comme suit :

Esrc (t) = A exp (iωt+ ϕ) (A.1)

Cette lumière peut être couplée à une puce photonique intégrée par divers moyens,
le plus souvent par l’intermédiaire d’un coupleur à réseau. Lors du couplage, le
champ est donné par :

Egc = γgc(λ, θ)Esrc (A.2)

où γgc est le coefficient de couplage du CG qui dépend de la longueur d’onde du
laser λ et de l’angle θ entre la fibre et la normale. Après avoir été couplé dans le
guide d’onde de la puce, il se propage sur une certaine distance, ce qui donne:

Ewg = Egc exp (iβLwg) exp (−αwgLwg) (A.3)

où Lwg est la longueur du guide d’ondes [m], αwg est la perte du guide d’ondes [m−1],
et β = 2πneff/λ [m−1] est la constante de propagation du mode guidé avec l’indice
de réfraction effectif neff . L’indice effectif décrit en première approximation l’indice
que le champ subit lors de sa propagation dans le guide d’ondes sachant qu’il ne
se déplace pas uniquement dans le cœur du guide. Cela signifie qu’une partie du
mode s’échappe dans le milieu environnant, se faisant, le champ rencontre un indice
« effectif » qui tient compte de cet effet. D’autres éléments composants les circuit
photoniques peuvent être décrits de manière similaire qu’il s’agisse d’éléments actifs,
passifs, linéaires ou non-linéaires. Nos simulations sont réalisées dans le domaine
temporel en raison de l’aspect dynamique du calcul TDRC.
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A.4 A propos du calcul par réservoir

Comme le calcul neuromorphique , le calcul par réservoirs (RC) est un type
d’approche d’apprentissage automatique supervisé. Initialement connu sous le nom
de « Echo-state networks » (ESN), le RC a été utilisé dans des implémentations
logicielles au début des années 2000 pour contourner les problèmes de formation
de grands réseaux neuronaux récurrents (RNN). Différents systèmes physiques peu-
vent être exploités pour mettre en œuvre les RC, notamment dans les domaines de
l’électronique et de la photonique. L’ESN est un système dynamique non linéaire
qui présente des caractéristiques particulières, à savoir

• la propriété d’écho-état (ESP) ; le système permet des réverbérations d’entrées
passées qui diminuent avec le temps (mémoire déclinante),

• l’expansion de la dimensionnalité, généralement obtenue grâce à une fonction
d’activation non linéaire.

L’ESP est une condition qui nécessite l’oubli des entrées passées, de sorte que le
réservoir ne dépende pas de ses conditions initiales. Il s’agit d’une caractéristique
essentielle du RC car elle permet au réservoir de répondre de la même manière à
la même entrée. Cette mise en correspondance cohérente est essentielle pour qu’un
modèle formé sur la sortie du réservoir puisse se généraliser. L’expansion de la
dimensionnalité permet de séparer plusieurs classes avec de simples classificateurs
linéaires, même pour des tâches qui nécessiteraient normalement des réseaux neu-
ronaux plus vastes et plus profonds. L’idée principale est qu’en projetant les données
dans un espace de dimension supérieure, il existe davantage d’hyperplans capables
de bien séparer les différentes classes de données, ce qui permet d’obtenir une pré-
cision élevée.
Tout schéma de RC se compose des trois couches suivantes :

• La couche d’entrée : où les données sont potentiellement prétraitées puis in-
jectées dans le réservoir,

• La couche réservoir : composée de nœuds non linéaires connectés les uns aux
autres,

• La couche de sortie : où les états du réservoir sont collectés au moyen d’un
mécanisme de lecture.

Chaque couche est reliée à la suivante par une série de connexions pondérées. La
distinction entre l’informatique à réservoir des réseaux neuronaux temporels simi-
laires, tels que les RNN, réside dans le fait que les poids entre la couche d’entrée et
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la couche de réservoir peuvent être définis et fixés, de même que les interconnexions
entre les nœuds non linéaires, alors que dans les RNN, toutes les connexions doivent
être optimisées. Ainsi, dans le RC, le système s’entraîne uniquement sur la couche
de sortie, ce qui signifie que seules les méthodes des moindres carrés sont nécessaires
pour trouver les poids optimaux.
Le RC peut être réalisé spatialement ou temporellement, dans le cas des TDRC, si
le réseau consiste en des multiplexés dans le temps. Dans ce dernier cas, il s’agit
d’utiliser un seul nœud non linéaire et de l’échantillonner dans le temps pour obtenir
les états souhaités du nœud. Notre travail s’est alors focalisé sur la conception de
ces TDRC utilisant des circuits photoniques. Ce sujet a été exploré depuis 2011, et
un chapitre détaillé sur l’état de l’art aborde les innovations les plus notables dans
ce domaine.

PARTIE 2: CONTRIBUTIONS SCIENTIFIQUE

A.5 Calcul par réservoir photonique de complexité

minimale

Notre première contribution s’appuie sur la littérature existante et sur le thème
contemporain du calcul par réservoir dans les circuits intégrés photoniques, plutôt
qu’en espace libre. Notre étude montre comment un dispositif simple (illustré sur la
Fig. A.1), composé de guides d’ondes passifs et d’un déphaseur chauffant (pour
la reconfigurabilité), peut déjà être aussi performant que certains schémas plus
complexes. La non-linéarité se retrouve alors dans la non-linéarité de conversion
d’intensité fournie au photodétecteur. Les performances ont été mesurées sur une
variété de tâches standard de référence. Pour ce qui est de son fonctionnement,
l’élément chauffant modifie la longueur du chemin optique dans le guide d’ondes
inférieur, ce qui entraîne une modification de la dynamique de sortie (illustré sur la
Fig. A.2). Une fois la dynamique souhaitée trouvée, le circuit peut être entraîné à
résoudre des tâches de référence avec une grande précision, telles que les tâches XOR
bit à bit (Fig. A.3), Mackey-Glass et Santa-Fe, et la capacité de mémoire (Fig. A.4).
Nous avons également montré qu’il était possible que la rétroaction soit intégrée à
la puce, grâce aux faibles pertes de la plate-forme LNOI. Cette étude montre en fin
de compte ce qu’un simple schéma TDRC peut faire, et servira de référence lorsque
des schémas plus complexes seront envisagés.
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Fig. A.1: Architecture de calcul par réservoir photonique reconfigurable de complexité
minimale.

Fig. A.2: Sortie du système pour différents déphasages (tension de chauffage)

Fig. A.3: Performances du XOR pour différentes profondeurs de mémoire, sous différentes
valeurs de déphasage.
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Fig. A.4: (a) Capacité totale de la mémoire et (b) capacités individuelles maximales

A.6 Calcul par réservoir photonique asynchrone

sans masque

L’une des principales limites du TDRC se situe dans le multiplexage temporel des
nœuds limitant la vitesse de traitement du système. Cette limitation est générale-
ment accentuée par l’utilisation d’un masque d’entrée, qui réduit encore la vitesse
de traitement effective du système. Ce masque empêche le système de tomber dans
un état stable pendant la durée de l’échantillon d’entrée. De plus, ce masque ajoute
des contraintes en termes de complexité et de consommation d’énergie puisqu’une
conversion O/E/O peut être nécessaire pour appliquer le masque. Dans notre étude,
nous explorons la possibilité d’utiliser le réservoir sans le masque d’entrée en util-
isant la longueur du guide de rétroaction de telle manière à remplir le même rôle que
le masque (comme illustré sur Fig. A.5). Le système n’a alors plus besoin de masque
d’entrée accélérant ainsi son fonctionnement. Nous avons testé le réservoir sur une
série de mesures ne dépendant pas de de la tâche choisie, ainsi que sur quelques
tâches de référence. Les résultats numériques montrent de bonnes performances sur
ces différentes tâches de référence (Fig. A.6), comparable à d’autres schémas dans
la littérature (utilisant un masque).
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Fig. A.5: Des longueurs de rétroaction plus courtes permettent au signal d’interagir avec
lui-même plusieurs fois, ce qui permet d’avoir le même effet qu’un masquage de l’entrée.

Cela étant possible grâce aux faibles pertes de la plateforme LNOI.

Fig. A.6: L’erreur quadratique moyenne normalisée (NMSE) est présentée pour une
variété de tâches avec différents temps de rétroaction et déphasages.
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A.7 Effet d’une lecture à largeur de bande limitée

Nous examinons également les effets de la lecture électronique sur les performances
de cette architecture. La lecture joue un rôle central, étant l’intermédiaire entre
le réservoir optique et le signal électronique de sortie. La lecture, composée d’une
photodiode et des circuits associés, imprime des imperfections sur le signal qui sera
utilisé pour l’apprentissage du modèle des moindres carrés. Pour cela, nous con-
sidérons une photodiode simple et un modèle de bruit, et nous tenons compte de
la conversion analogique-digital (ADC) effectuée par l’oscilloscope numérique. Pour
l’ADC nous avons utilisé une seule acquisition avec un nombre effectif de bits in-
férieur pour vérifier que le schéma peut fonctionner dans ces conditions pour quelques
tâches. Les ENOB considérés sont généralement utilisés dans les oscilloscopes haut
de gamme.

Fig. A.7: Les performances sont enregistrées pour différentes largeurs de bande du
photodétecteur et différents temps de rétroaction, montrant une grande tolérance pour

des largeurs de bande plus faibles pour certaines tâches.

Table A.1: Le système est capable de résoudre certaines tâches même en considérant une
routine d’acquisition unique avec un nombre effectif de bits inférieur.

Task 5 bits 6 bits 7 bits 8 bits
XOR-1 0.0 0.0 0.0 0.0
XOR-2 8.3×10−3 6.6×10−4 0.0 0.0

NARMA-2 0.13 0.08 0.05 0.04
NARMA-3 0.29 0.21 0.16 0.12

SF 0.46 0.27 0.22 0.17
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A.8 Démonstration expérimentale

Dans cette dernière étude, nous avons fabriqué et testé expérimentalement notre
schéma de calcul par réservoir à complexité minimale sans masque sur la tâche de
référence Santa-Fe, en obtenant d’excellents résultats. La puce a été fabriquée par
l’équipe de fabrication du Centre intégré de photonique et d’applications du RMIT.
Le design de la puce (comme illustré sur Fig. A.8) a été réalisé à l’aide d’IPKISS et du
kit de développement de processus (pdk) d’InPAC. Différentes règles de conception
ont été vérifiées manuellement pour s’assurer que :

• Un minimum de courbes se chevauchant avec les lignes de la grille de lithogra-
phie par faisceau d’électrons (EBL) ;

• la distance minimale entre les guides d’ondes soit respectée ;

• L’espacement des plots DC (200 µm) corresponde au pas de la sonde DC ;

• L’espacement des contacts RF corresponde au pas de la sonde RF.

Fig. A.8: Disposition de la puce générée à l’aide d’IPKISS. Plusieurs dispositifs de test
ont été réalisés avec des longueurs de rétroaction variables, ces dispositifs possèdent des

modulateurs intégrés, ainsi que des structures de test.
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Fig. A.9: Illustration du dispositif expérimental.

Fig. A.10: NMSE obtenu avec les différents ensembles de données pour la tâche de Santa
Fe pour (a) la prédiction 1 pas, (b) la prédiction 2 pas, et (c) la prédiction 3 pas.

Le dispositif expérimental utilisé est illustré sur la Fig. A.9. Les résultats expérimen-
taux de la tâche de Santa Fe sont présentés sur la Fig. A.10 pour tous les ensembles
de données obtenues par balayage en longueur d’onde et en tension au déphaseur.
Nous avons considéré deux dispositifs, celui utilisant une boucle de rétroaction de
2,84 cm (R284) et celui utilisant une boucle de rétroaction de 1,88 cm (R188). Nor-
malement, la tâche de Santa Fe est considérée pour la prédiction à un pas, mais
nous avons également documenté les résultats pour la prédiction à 2 pas et à 3 pas.
Chaque pas représente des exigences différentes concernant la mémoire du système
de calcul par réservoir. On peut constater que R188 est plus performant que R284,
en raison des pertes de rétroaction plus faibles rencontrées.
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A.9 Résumé et conclusions

Au cours de ces travaux nous avons cherché à minimiser la complexité des sché-
mas de RC photonique et avons obtenus de bons résultats. Pour cela, nous avons
lancé plusieurs recherches. La première consiste à proposer une nouvelle architec-
ture de RC photonique intégrée qui est reconfigurable à l’aide d’un seul élément de
déphasage, qui contrôle deux paramètres simultanément : la force de rétroaction et
la phase de rétroaction. Se faisant, la modification de la puissance de la rétroaction
ne nécessite pas de couplage de puissance hors du système, comme c’est générale-
ment le cas en utilisant un atténuateur optique. Les plateformes à faible perte
(LNOI, SiN) permettent l’intégration d’un guide d’onde de rétroaction. Notre con-
ception simplifiée a permis d’obtenir de bonnes performances pour certaines tâches
de référence en matière de RC, tout en réduisant considérablement la complexité
matérielle du réservoir et de l’équipement auxiliaire. La deuxième étude porte sur
une réduction supplémentaire de la complexité en éliminant le masque d’entrée au
niveau de la couche d’entrée et en concevant la longueur de la rétroaction pour
obtenir une dynamique qui reste transitoire pendant la perturbation de l’entrée, ce
qui était essentiellement l’objectif du masque d’entrée. Les performances du réser-
voir dans le régime asynchrone ont été évaluées à l’aide d’une variété de mesures
(indépendantes de la tâche effectuée mais également sur de tâches de référence). Les
résultats ont montré des performances comparables à celles de la littérature pour
les tâches étudiées. En résumé, les résultats présentés dans cette thèse suggèrent
que de tels schémas RC minimaux peuvent atteindre des performances compara-
bles à celles des schémas qui nécessitent des instruments auxiliaires coûteux ou des
schémas qui utilisent une multitude de paramètres. Enfin, les effets de la lecture
à bande passante limitée ont été étudiés, en montrant comment le bruit et la lim-
itation de la bande passante affectent les performances du système pour diverses
tâches. Nous avons conclu que la nature de la tâche détermine la robustesse des
performances du système pour des largeurs de bandes plus faibles. Enfin, la dé-
monstration expérimentale a été présentée et le système a permis de résoudre la
tâche de référence de Santa Fe avec d’excellents résultats. L’architecture proposée
présente plusieurs limites essentielles, en particulier liées aux échelles de temps. La
première est la nécessité d’un équipement de lecture à grande vitesse pour atteindre
des largeurs de bande plus élevées. Cela implique des photodétecteurs et des oscil-
loscopes à large bande passante, qui sont coûteux et encombrants. Comme d’autres
systèmes basés sur des puces, il est limité à la résolution de tâches requérant une
mémoire moyenne ou faible. Par exemple, il est très difficile de résoudre la tâche
NARMA-10 avec ce système, surtout si l’on tient compte du bruit de lecture. En
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outre, bien que nous ayons abordé la question de la résolution de plusieurs tâches
en même temps, des recherches plus approfondies sont encore nécessaires. Il serait
notamment intéressant d’étudier l’utilisation de plusieurs longueurs d’onde, comme
on pourrait le faire en utilisant une source de peigne en fréquence intégrée, ce qui
est possible sur la plateforme LNOI. Aussi, il serait intéressant d’exploiter la grande
variété de non-linéarités optiques accessibles sur le LNOI pour créer des systèmes de
RC et comparer leur performance au schéma minimaliste. Enfin, et cela n’est pas
spécifique à notre design, les systèmes photoniques souffrent intrinsèquement de dé-
calages de la longueur d’onde due aux changements d’indice de réfraction provoqués
par les changements de température. S’il est possible de compenser ce phénomène
en laboratoire, cela n’est pas évident dans un environnement conditionné pour des
applications réelles. Bien que plusieurs études aient exploré les moyens d’atténuer
ce problème, des améliorations sont encore possibles. L’un des moyens de résoudre
ce problème à l’aide de l’architecture proposée pourrait être l’utilisation d’un FPGA
ou d’un ASIC cointégré qui met en œuvre un algorithme d’étalonnage pour com-
penser la dérive de la température. L’ASIC prendrait en entrée une partie de la
puissance de sortie détectée et ajusterait en conséquence la tension du déphaseur
pour effectuer la compensation.
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