
HAL Id: tel-04938923
https://theses.hal.science/tel-04938923v1

Submitted on 10 Feb 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Artificial intelligence and fusion plasma control :
application to the WEST tokamak

Samy Kerboua-Benlarbi

To cite this version:
Samy Kerboua-Benlarbi. Artificial intelligence and fusion plasma control : application to the
WEST tokamak. Artificial Intelligence [cs.AI]. Université Côte d’Azur, 2024. English. �NNT :
2024COAZ5060�. �tel-04938923�

https://theses.hal.science/tel-04938923v1
https://hal.archives-ouvertes.fr


Intelligence artificielle et contrôle des plasmas de fusion:
Application au tokamak WEST

Samy KERBOUA-BENLARBI
Laboratoire Jean-Alexandre Dieudonné (LJAD)

Présentée en vue de l’obtention
du grade de docteur en Mathématiques
d’Université Côte d’Azur

Dirigée par : Blaise Faugeras
Co-direction : Rémy Nouailletas

Soutenue le : 5 Novembre 2024

Devant le jury, composé de :

Feda Almuhisen
Ingénieure-chercheuse, CEA, IRFM

Blaise Faugeras
Ingénieur-chercheur, CNRS, UCA

Federico Felici
Chercheur spécialiste, Google DeepMind

Sylvain Lamprier
Professeur, Université d’Angers, LERIA

Laurent Lefèvre
Professeur, Grenoble INP Esisar - UGA, LCIS

Rémy Nouailletas
Ingénieur-chercheur, CEA, IRFM

Olivier Sauter
Senior scientist, EPFL, SPC



Intelligence artificielle et contrôle des plasmas de
fusion: Application au tokamak WEST

Artificial intelligence and fusion plasma control:
Application to the WEST Tokamak

Jury :

Président du jury
Laurent Lefèvre Professeur Grenoble INP Esisar - UGA, LCIS

Rapporteurs
Federico Felici Chercheur spécialiste Google DeepMind
Sylvain Lamprier Professeur Université d’Angers, LERIA

Examinateurs
Olivier Sauter Senior scientist Ecole Polytechnique Fédérale de Lausanne, SPC

Directions
Blaise Faugeras Ingénieur-chercheur CNRS, UCA
Rémy Nouailletas Ingénieur-chercheur CEA, IRFM

Invitée
Feda Almuhisen Ingénieure-chercheuse CEA, IRFM



MOTS CLÉS

Apprentissage par renforcement, Contrôle des tokamaks, Réseaux de neurones, Calcul distribué, Inférence
probabiliste

RÉSUMÉ

La fusion dans un plasma magnétiquement confiné relève encore du domaine de la recherche fondamentale : en plus
de la nécessaire progression de nos connaissances théoriques, l’opération des tokamaks actuels reste délicate, car elle
nécessite un effort humain substantiel à chaque fois qu’un nouveau scénario expérimental est mis au point. En outre, la
combinaison habituelle de rétroactions linéaires et de contrôle en boucle ouverte, n’est pas complètement robuste vis à
vis du comportement non-linéaire des dynamiques du plasma. L’approche dont il est question n’est donc pas compatible
avec la fiabilité d’un futur réacteur, et un meilleur contrôle du plasma est nécessaire par le biais d’algorithmes de contrôle
utilisant des connaissances plus théoriques ou empiriques. Récemment, l’apprentissage par renforcement a démontré
son utilité dans de nombreux domaines, notamment le contrôle des tokamaks. Par essai-erreur, un agent interagit
avec un environnement, pour apprendre une politique décisionnelle maximisant une récompense formalisant les tâches
à accomplir. Une fois associé aux réseaux de neurones, l’apprentissage profond par renforcement devient un candidat
pertinent pour répondre à ces situations en grande dimension, aux nombreuses incertitudes, et non-linéaires. Ces travaux
visent à appliquer et étendre ces méthodes au tokamak WEST, au travers du développement d’une plateforme logicielle
pour entraîner un agent sur un code d’equilibre à frontière libre, qui simule l’équilibre magnétique et l’évolution des
profils au coeur du plasma. Le contrôle magnétique par rétroaction de la forme, de la position et du courant du plasma
est alors réalisé sur plusieurs scénarios de contrôle, avec des temps d’entraînement considérablement réduits grâce à
l’utilisation de l’apprentissage par curriculum. Plusieurs procédures sont discutées, non seulement pour améliorer la
généralisation dans le domaine opérationnel du système de contrôle en temps-réel de WEST, mais aussi pour explorer
la robustesse des agents appris par renforcement face aux perturbations et aux incertitudes du plasma. Les résultats
obtenus offrent de nombreuses perspectives en faveur de ce paradigme, et de l’intelligence artificielle plus généralement,
dans le cadre d’une utilisation de routine au sein des opérations d’un dispositif de fusion confiné magnétiquement. Les
liens inhérents établis entre l’apprentissage par renforcement et le contrôle classique sont étayés, et pourraient conduire
à une meilleure interprétabilité des réseaux de neurones en tant que politiques puissantes et robustes, potentiellement
capables de gérer un plus grand nombre d’actionneurs, comme d’objectifs, pendant de longues décharges de plasma.

ABSTRACT

Fusion in a magnetically confined plasma is still in the realm of fundamental research: in addition to the necessary
progress in our theoretical knowledge, the operation of current tokamaks remains delicate, as it requires substantial
human effort each time a new experimental scenario is developed. Moreover, the usual combination of linear feedback
and feedforward control is not very robust with respect to the nonlinear behavior of plasma dynamics. The overall
approach is then not compatible with the reliability of a future reactor, and a better control of the plasma is necessary
through control algorithms using more theoretical or empirical knowledge. Reinforcement Learning (RL) has recently
demonstrated its usefulness in many fields, notably tokamak control. By trial-and-error, an agent interacts with an
environment, to learn a behavioral policy maximizing a reward which formalizes the overall objectives. Paired with
neural networks, deep reinforcement learning becomes a suitable candidate to fulfill these high-dimensional, uncertain
and nonlinear situations. This thesis aims to apply and extend the said methods on the WEST tokamak, with the
development of a general framework to train an agent on a free-boundary equilibrium solver, which simulates the
magnetic equilibrium and core profiles evolution. Magnetic feedback control of plasma’s shape, position, and current
is achieved on multiple control scenarios, with training times significantly reduced by the use of curriculum learning.
Several procedures are discussed, not only to enhance generalization within the operational domain of the WEST real-
time control system, but also to explore the robustness of RL agents against disturbances and plasma uncertainties. The
obtained results offer many perspectives in favor of reinforcement learning, and more generally artificial intelligence,
for routine use in the operation of a magnetically confined fusion device. The inherent connections drawn between
reinforcement learning and classical control are studied, and could lead to a more interpretable use of neural networks as
powerful and robust policies, potentially able to manage more actuators, and objectives, during long plasma discharges.

KEYWORDS

Reinforcement Learning, Tokamak control, Neural networks, Distributed computing, Probabilistic Inference



4

Acknowledgments

The words on this page fill me with joy and emotion as I contemplate this manuscript,
which could not have seen the light of day without the help of people whom my mind, like
my heart, cannot forget.

First of all, I would like to thank my supervisors, Dr. Blaise Faugeras and Dr. Rémy
Nouailletas, for giving me this fantastic opportunity to join the fusion world. This long-
held dream came true because you believed in me and shared your passion for this fantastic
field, supporting me throughout this journey. I would also like to thank Philippe Moreau
for his sound advice throughout my thesis. I have learned much from his expertise on
tokamaks. The whole GPAM team, and STEP in general, comprises brilliant people with
whom every moment spent around the coffee machine made everyday life even better. I
would also like to thank the people at Capgemini Engineering, who played an essential
role in this project’s realization and supported me throughout.

I am genuinely thankful to all the members of my thesis jury for providing insightful
feedback, notably Dr. Federico Felici and Pr. Sylvain Lamprier, whose reviews helped me
enhance my research.

The IT department must be acknowledged for being resilient in the face of my training
sessions, which had the merit of creating a running gag like few others. I also thank the
Jean Zay servers for their extremely helpful waiting times.

As soon as I arrived at CEA, the discussions and debates I had with you, Kirill, led
us to put the world to rights on many occasions. I sincerely want to thank you for these
warm and enriching moments, where I discovered many concepts and ideas that will follow
me from now on. Moreover, I cannot forget all the passionate discussions and laughter I
shared with you, Nathan, and I thank you for all that. So many memories, from France
to Japan through motorcycling and memes, will stay with me forever. Thank you, Kevin,
for everything we talked about: science, linguistics, music and life. At all hours, our talks
were as many discoveries as moments that changed my perspective on the world.

Thank you to my dear friends with whom I shared the ASTHEC office: Guilherme,
Virginia, Nicolas, and Theo. I am proud to have learned from and rubbed shoulders with
you over these three years, between the afterworks, our challenges, and successes. You
guys are great!

Sharing laughs and joys is something I have found in each of my colleagues: Mathieu,
Jessica, James, Elisa, Nicolas, Olivier, Quentin, Alexis, Yann, Pierre, Raffael, Maxime and
many others. Meeting all of you and sharing those incredible moments was a privilege.

To you, Mathilde, thank you from the bottom of my heart. Ideas fail me to express all
the gratitude I wish to express to you. Your words have motivated me to hold on in the
face of adversity and smile when I thought it was impossible.

I could not write this section without thanking my family. Those who helped me grow
up in the best environment: my aunts, including whom I call my second mother, my
uncles, my cousins, my brother, my grandparents, those who are there and those who can
no longer be. Your memory encouraged me during the entirety of this work. My family
also continues with my closest friends, who form it in many ways, from the benches of

4



5

Paris 7 to those of Paris 6 and more: Bryan, Antoine, Edgar, Pierre, Clémence, Caroline,
Lydia, Yani, Victor, and Arthur. Not to mention Yacine, Ilan, Antoine and Clément.
Knowing you is an honour, and I need an entire manuscript to recount your exploits! I
continue to grow thanks to each of you, having the most sincere feelings for your help and
remembering that year after year, you are my brothers and sisters in time and space.

To you, Mom and Dad, as I reflect on the profound impact you both had on my life.
Mom, you taught me to believe in myself, and Dad, you showed me the importance of
thinking. Your unwavering support has lifted me up and helped me stand tall, filled with
pride to be your son. Thank you for everything and beyond.

Finally, I have spent my life raising my eyes to the sky to contemplate the stars. These
last few years have taught me that all I have to do is look around me to see the most
sparkling ones I have been given to cherish.

5



6

There is nothing like looking, if you want to find
something. You certainly usually find something,
if you look, but it is not always quite the some-
thing you were after.

J.R.R Tolkien, The Hobbit

6



7

Journal publications

• S. Kerboua-Benlarbi, R. Nouailletas, B. Faugeras, E. Nardon and P. Moreau, Mag-
netic Control of WEST Plasmas Through Deep Reinforcement Learning, in IEEE
Transactions on Plasma Science - 2024

• S. Kerboua-Benlarbi, R. Nouailletas, B. Faugeras and P. Moreau, Curriculum Rein-
forcement Learning for Tokamak Control, in Lecture Notes on Artificial Intelligence,
part of IJCAI 2024 proceedings - Accepted, 2025

Conference and workshop posters

• Symposium On Fusion Engineering (SOFE), Oxford, United Kingdom - 2023

• Workshop on Artificial Intelligence for Accelerating Fusion and Plasma Science,
IAEA headquarters, Vienna, Austria - 2023

• Workshop on Artificial Intelligence for Research at the International Joint Conference
on Artificial Intelligence (IJCAI), Jeju island, South Korea - 2024

Oral presentations

• 41st MHD, Disruptions and Control Topical Group Meeting, International Tokamak
Physics Activity (ITPA), ITER Organization, France - 2023

7



Contents

1 Introduction 15
1.1 Plasma control and Artificial Intelligence . . . . . . . . . . . . . . . . . . . . 16

1.1.1 Thermonuclear fusion and tokamaks . . . . . . . . . . . . . . . . . . 16
1.1.2 The need for robust magnetic control . . . . . . . . . . . . . . . . . . 19
1.1.3 Machine Learning and company at the rescue . . . . . . . . . . . . . 22

1.2 Objectives and main contributions . . . . . . . . . . . . . . . . . . . . . . . 25
1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2 Inference-based reinforcement learning 29
2.1 Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.2 Connections with optimal control . . . . . . . . . . . . . . . . . . . . . . . . 34
2.3 Finding optimal policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3.1 A taxonomy of algorithms . . . . . . . . . . . . . . . . . . . . . . . . 36
2.3.2 The road to the actor-critic’s pantheon . . . . . . . . . . . . . . . . . 38
2.3.3 Neural approximators . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.3.4 Exploring or exploiting: a core dilemma . . . . . . . . . . . . . . . . 43

2.4 An inference-based interpretation of deep RL . . . . . . . . . . . . . . . . . 44
2.4.1 Introduction on probabilistic inference . . . . . . . . . . . . . . . . . 45
2.4.2 Maximum a posteriori Policy Optimization . . . . . . . . . . . . . . 49

2.5 An agent ready for interactions . . . . . . . . . . . . . . . . . . . . . . . . . 57

3 PILOT: a general framework for magnetic control 60
3.1 Creating a numerical twin for WEST . . . . . . . . . . . . . . . . . . . . . . 62

3.1.1 Machine description . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.1.2 Control scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.1.3 A NICE environment to train them all . . . . . . . . . . . . . . . . . 67

3.2 In a world of scenarios and rewards . . . . . . . . . . . . . . . . . . . . . . . 79
3.2.1 References generator . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.2.2 Reward definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.2.3 A digression on the WEST plasma control system . . . . . . . . . . . 85

3.3 Assembling a distributed architecture . . . . . . . . . . . . . . . . . . . . . . 88
3.3.1 The wonderful story of how C++ met Python . . . . . . . . . . . . . 88
3.3.2 Nodes galore . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

8



9 CONTENTS

3.3.3 A glimpse of the agent’s distinctive features . . . . . . . . . . . . . . 91
3.4 A framework ready for training . . . . . . . . . . . . . . . . . . . . . . . . . 94

4 The need for speed in PILOT 95
4.1 Accelerating training through curriculum learning . . . . . . . . . . . . . . . 96

4.1.1 An inspiration from human learning . . . . . . . . . . . . . . . . . . 97
4.1.2 One does not simply generate a curriculum . . . . . . . . . . . . . . 98
4.1.3 Connections to the state-of-the-art . . . . . . . . . . . . . . . . . . . 100
4.1.4 Limitations of the current approach . . . . . . . . . . . . . . . . . . 104

4.2 A structural view against catastrophic forgetting . . . . . . . . . . . . . . . 105
4.3 A procedure ready for benchmark . . . . . . . . . . . . . . . . . . . . . . . . 107

5 Performance of RL-based magnetic control 109
5.1 Evaluation on the scenarios of interest . . . . . . . . . . . . . . . . . . . . . 110

5.1.1 Plasma centroid, elongation and minor radius . . . . . . . . . . . . . 110
5.1.2 Careful calibration of the reward hyperparameters . . . . . . . . . . 115

5.2 Issues regarding the LCFS and the plasma current . . . . . . . . . . . . . . 117
5.2.1 Myopic exploration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
5.2.2 An issue regarding plasma current . . . . . . . . . . . . . . . . . . . 119

5.3 The Good, the Bad and the Ugly of Curriculum learning . . . . . . . . . . . 123
5.4 A paradigm under careful calibration . . . . . . . . . . . . . . . . . . . . . . 126

6 Conclusion and perspectives 127

A Formal comparison between RL and OC 132

B Precisions on value and gradient-based methods 140
B.1 A focus on value learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
B.2 Looking at policy learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

C Precisions on WEST 145
C.1 A more precise representation of WEST geometry . . . . . . . . . . . . . . . 146
C.2 A noisy description of delays . . . . . . . . . . . . . . . . . . . . . . . . . . 146
C.3 May the snapshot be with you . . . . . . . . . . . . . . . . . . . . . . . . . . 148

D Reward definitions 149
D.1 Reward components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
D.2 Reward definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
D.3 Curriculum definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

E Training hyperparameters 154
E.1 The role of each hyperparameter . . . . . . . . . . . . . . . . . . . . . . . . 155

E.1.1 Generally for PILOT . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
E.1.2 Specifically for MPO . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

E.2 Current configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

9



CONTENTS 10

E.3 Neural architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

10



List of Figures

1.1 Nuclear fusion from Deuterium and Tritium . . . . . . . . . . . . . . . . . . 16
1.2 Plasma definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.3 Effects of a uniform magnetic field on plasma’s particles . . . . . . . . . . . 18
1.4 Particles’ vertical drift in tokamaks . . . . . . . . . . . . . . . . . . . . . . . 18
1.5 Influence of toroidal and poloidal fields on particles’ trajectory . . . . . . . 19
1.6 Core components of a tokamak . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.7 Classical feedback control on WEST . . . . . . . . . . . . . . . . . . . . . . 22
1.8 The russian dolls of modern artificial intelligence . . . . . . . . . . . . . . . 24
1.9 Reinforcement learning-based feedback control on WEST . . . . . . . . . . . 25

2.1 Interaction loop between the agent and the environment. . . . . . . . . . . . 31
2.2 General formulation of policy search . . . . . . . . . . . . . . . . . . . . . . 37
2.3 A fully connected neural network . . . . . . . . . . . . . . . . . . . . . . . . 40
2.4 Gradient descent methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.5 Unrolling a recurrent neural network . . . . . . . . . . . . . . . . . . . . . . 42
2.6 Summary of the Maximum a posteriori Policy Optimization algorithm . . . 59

3.1 The WEST tokamak at CEA, Cadarache . . . . . . . . . . . . . . . . . . . . 61
3.2 WEST cross-section with control coils . . . . . . . . . . . . . . . . . . . . . 62
3.3 WEST transition between limiter and X-point configurations . . . . . . . . 63
3.4 The (r,ϕ,z) coordinate system in tokamaks . . . . . . . . . . . . . . . . . . . 64
3.5 The vertical instability issue . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.6 Generic view of the poloidal plane of ta tokamak . . . . . . . . . . . . . . . 68
3.7 Initialization procedure of the NICE environment . . . . . . . . . . . . . . . 71
3.8 Stability study after plasma profiles variations in NICE . . . . . . . . . . . . 74
3.9 Closed-loop training and inference using PILOT . . . . . . . . . . . . . . . . 77
3.10 Magnetic probes and flux loops locations on WEST . . . . . . . . . . . . . . 78
3.11 The four horsemen of RL-based control experiments . . . . . . . . . . . . . 80
3.12 The Softplus transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.13 The Smoothmax combination . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.14 Full environment to mimic WEST and its control system . . . . . . . . . . . 84
3.15 Event scheduler of the WEST plasma control system . . . . . . . . . . . . . 85
3.16 WEST control tolerance using envelopes . . . . . . . . . . . . . . . . . . . . 86

11



LIST OF FIGURES 12

3.17 Communications between the policy and the NICE client . . . . . . . . . . . 89
3.18 The complete PILOT framework in the context of distributed actor-critic

agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
3.19 Architecture of the critic network . . . . . . . . . . . . . . . . . . . . . . . . 92
3.20 Architecture of the policy network . . . . . . . . . . . . . . . . . . . . . . . 93

4.1 A curriculum from a restriction of the general case . . . . . . . . . . . . . . 99
4.2 Comparison between the curriculum and the chunk procedure . . . . . . . . 101
4.3 Curriculum overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.4 An illustration of catastrophic forgetting . . . . . . . . . . . . . . . . . . . . 105
4.5 Progressive neural networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.1 Stabilization of a fixed limiter plasma with constant references . . . . . . . . 111
5.2 Tracking of a limiter plasma with several moving targets . . . . . . . . . . . 112
5.3 Stabilization of an X-point plasma with constant references . . . . . . . . . 113
5.4 Transition from of a limiter plasma to an X-point configuration . . . . . . . 114
5.5 The difficult reward calibration . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.6 Reward decomposition within an example trajectory . . . . . . . . . . . . . 116
5.7 Unusual evolution of PF coils currents . . . . . . . . . . . . . . . . . . . . . 117
5.8 Time evolution of the LCFS and the X-point with fixed references . . . . . 118
5.9 Time evolution of the LCFS and the X-point with moving references . . . . 119
5.10 X-point configuration falls into two sub-optimal policies . . . . . . . . . . . 120
5.11 The two sides of the plasma current control . . . . . . . . . . . . . . . . . . 121
5.12 Circuit equations for the central solenoid and the plasma . . . . . . . . . . . 122
5.13 Quantitative comparison between the basic and curriculum approaches . . . 124
5.14 Episodic return for both the curriculum approach and the vanilla one . . . . 125

A.1 Open and closed loop interactions with an environment . . . . . . . . . . . . 135
A.2 Online Model Predictive Control . . . . . . . . . . . . . . . . . . . . . . . . 137
A.3 Optimal trajectory under Bellman’s principle of Optimality . . . . . . . . . 138

C.1 Realistic view of the WEST poloidal plane . . . . . . . . . . . . . . . . . . . 147
C.2 Examples of snapshots used to build the plasma scenarios . . . . . . . . . . 148

12



List of Tables

1.1 Comparison between existing learning paradigms . . . . . . . . . . . . . . . 23

3.1 Description of NICE modes . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.2 PID gains and their impact on system’s response . . . . . . . . . . . . . . . 87

5.1 Root mean squared error of principal reward components . . . . . . . . . . . 123

13



List of Abbreviations

Control aspects

DP Dynamic Programming

MPC Model Predictive Control

OC Optimal Control

PID Proportional-Integral-Derivative

Implementation

PILOT Plasma reInforcement Learning fOr Tokamaks

TCP Transfer Communication Protocol

UDS Unix Domain Sockets

Artificial intelligence

AC Actor-Critic

CL Curriculum learning

EM Expectation-Minimization

LSTM Long-Short-Term-Memory

MLP Multi-Layered Perceptron

MPO Maximum a posteriori Policy Optimization

RL Reinforcement Learning

Tokamak physics

LCFS Last Closed Flux Surface

PCS Plasma Control System

PF Poloidal Field

TF Toroidal Field

14



Introduction

Contents
1.1 Plasma control and Artificial Intelligence . . . . . . . . . . . . 16

1.1.1 Thermonuclear fusion and tokamaks . . . . . . . . . . . . . . . . 16
1.1.2 The need for robust magnetic control . . . . . . . . . . . . . . . 19
1.1.3 Machine Learning and company at the rescue . . . . . . . . . . . 22

1.2 Objectives and main contributions . . . . . . . . . . . . . . . . 25
1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

15



1.1. PLASMA CONTROL AND ARTIFICIAL INTELLIGENCE 16

1.1 Plasma control and Artificial Intelligence

1.1.1 Thermonuclear fusion and tokamaks

Global demand for energy has been growing steadily since the advent of the industrial
era and the technological developments which have followed. In a context where energy
production is facing the decline of fossil fuels, new approaches need to be considered to
reduce the carbon footprint of many societies. Nuclear energy has been mastered through
fission since the middle of the 20th century, knowing that the reaction does not emit green-
house gases when carried out. Nevertheless, its combustible is only available in limited
quantities on Earth. In parallel, thermonuclear fusion could offer interesting possibilities
concerning the shortcomings of fossil energy sources. With no direct byproducts, no risks
of chain reaction and fuel partly available in large quantities, it has many advantages over
carbon-emitting energy sources [9]. However, it should be qualified regarding the current
expectations of its usefulness for climate change. Indeed, we must consider the research and
engineering time scales needed for the complete development of such technology, which will
not be available sufficiently soon to counteract and limit its consequences. Consequently,
mastering nuclear fusion will not instantaneously open the way to a miraculous means of
energy production, but it could definitely join the energy mix as a strong asset.

2
1H
2
1H

3
1H
3
1H

1
0n

4
2He
4
2He

Figure 1.1: Deuterium and tritium fuse, producing helium, a neutron and releasing 14.1
MeV .

To understand how we experimentally control this phenomenon, we must closely ex-
amine the conditions under which the fusion reaction occurs. Two positively charged light
nuclei must be brought together to achieve it, overcoming electrostatic repulsion. For
example, a helium nucleus could be obtained from two deuterium and tritium nuclei, by
emitting a neutron and releasing energy (Figure 1.1). Thanks to quantum tunneling, there
is a non-zero probability of overcoming the Coulomb barrier without needing a colossal
amount of energy, which even the Sun’s properties could not respect. With that in hand, a
sufficiently high energy level must still be reached under specific constraints of density and
temperature. Those conditions are attained within a plasma, the universe’s fourth and
most common state of matter (Figure 1.2). Observed commonly in stars like our beloved

16



17 CHAPTER 1. INTRODUCTION

Sun, this combination of charged particles is heated at several millions of degrees celsius1,
undergoing high gravity, which produces a fusion plasma.

+

+

e−

e−

e− +
e−

e−

+

e−

+

+ Ion
e− Electron

Neutral

Figure 1.2: Turning a gas into a plasma in which fusion reactions are observed under
specific constraints.

The system must be sustained with a plasma that is sufficiently hot (T ), dense (n),
and with a long confinement time τe. The latter corresponds to the characteristic time it
takes for the plasma to empty itself of its energy content if the injected sources are cut off.
Such triple product defines the Lawson criterion, which appears as a strong empirical
indicator of how well the plasma ignites to obtain a large number of fusion reactions:

nTτe ≥ 3× 1021[m−3keV s]

Reproducing the exact conditions that one would find in stars is not sustainable on
Earth. Indeed, without important gravitational forces, we must rely on other physical
concepts, such as magnetic fields. This definition leads to the two known practical ways
of reproducing what we observe on the solar scale:

• magnetic confinement fusion where τe is of the order of a second and n is 1020

particles per m3 (10−5 the density of air)

• inertial confinement fusion where τe is of the order of 10−10 second and n is 1030

particles per m3 (104 the density of liquid materials in general).

In both situations, the ionic temperature Ti is approximately around 10keV. This PhD
is solely focused on Tokamaks (Russian acronym for toroidal’naya kamera s magnitnymi
katushkami), which belong to the first kind of devices. Their purpose follows the previous
distinction: to compensate for the low plasma density by optimizing its temperature and
confinement time. As a result, it produces plasmas with temperature gradients more
significant than any natural phenomenon, at the risk of breaking its components. A
question arises regarding how tokamaks function in this context and how they try to
maximize confinement performance to obtain stable plasmas. As stated earlier, plasma
is made out of charged particles. Under the influence of a magnetic field, particles move
helically along its field lines (Figure 1.3). The gyration or Larmor radius of a particle,

115 million degrees celsius for the Sun notably

17



1.1. PLASMA CONTROL AND ARTIFICIAL INTELLIGENCE 18

depends on its mass, charge, energy, and the magnetic field’s intensity. If the intensity
increases, the Larmor radius diminishes, even more when the particle mass is small at the
same energy levels. If its energy augments, the Larmor radius follows accordingly. Knowing
that particles of interest are highly energetic, the gyration radius of several species, such
as Helium, can reach about tens of centimeters. However, if one only considers this kind of
transport, it would be relatively easy to maintain a particle inside the plasma. However,
abnormal and turbulent transport make it difficult to keep all of them in the latter [130]. To
produce fusion reactions, we need a device capable of controlling magnetic fields efficiently,
to confine the particles inside the plasma and optimize their trajectory despite the elements
stated before.

B

e

i

Figure 1.3: Electron and Ion trajectory
in a straight and uniform magnetic field.

Figure 1.4: Schematic view of the parti-
cles’ vertical drift.

Until now, we considered a straight and uniform magnetic field in what we could call
a linear device. This configuration would create losses on both ends, so we close this
cylinder-like object to create a torus. Toroidal magnetic coils surround this structure in
order to generate a magnetic field that allows circular trajectories meant to confine the
particles. However, a drift appears, which makes the overall setup insufficient for achieving
stable plasmas. Indeed, if we see the plasma as a conductive wire, the toroidal magnetic
field BT can be expressed through Ampere’s law:

BT =
µ0IT
2πR

where µ0 is the vacuum permeability, R the major radius of the magnetic field line,
and IT the current in the toroidal coils. B’s magnitude is inversely proportional to R,
meaning that a reduction of the major radius leads to a higher magnetic field intensity.
Generalizing to a regular plasma’s representation, the magnetic field is not uniform as it
becomes stronger while going from the outside edge of the torus to its inside one. In this
way, particles tend to pull away from the field lines once the lower field side has been
reached. Taking into account the remaining factors, such as the magnetic field gradient
and the centrifuge force, we get a vertical drift whose direction depends on the respective
sign of each particle (Figure 1.4). Thus, a simple torus with toroidal coils is insufficient
to maintain a plasma, even if the toroidal magnetic field was supposed to be a first step
towards properly optimizing particle trajectories. By transformer effect, if a strong current

18



19 CHAPTER 1. INTRODUCTION

is induced in the plasma, it would generate a poloidal magnetic field added to the toroidal
one. Adding a central solenoid at the center of the torus alleviates this structural notion to
produce the said current and define the full meaning of the tokamak concept. By combining
both components, magnetic field lines have a helical trajectory around the plasma so that
particles on the outer side of the torus go back on the inside. More precisely, a plasma is
made out of nested magnetic flux surfaces, and the combined magnetic field exhibits field
lines that run over the flux surfaces helically (Figure 1.5). The addition of several poloidal
coils allows the refinement of generated fields and thus controls the plasma’s position and
geometry. Despite not being important for our subject of interest, it is worth mentioning
that superconductive coils are preferred, as they allow for longer discharges, contrary to
regular coils (copper, for example), which would overheat really fast under the stated
conditions.

Figure 1.5: Magnetic fields in both poloidal (vertical) and toroidal (horizontal) directions
are at the foundations of the tokamak concept.

Therefore, tokamaks are torus-shaped configurations of coils that make it possible to
build a magnetic trap efficient enough to confine particles inside the plasma, and sustain
the necessary conditions for fusion to happen. Under specific temperature and density
conditions [130], they rely on magnetic fields generated by toroidal and poloidal field
coils to control the plasma. In fact, maintaining a plasma according to a scenario of
interest is performed using tokamak’s various actuators ranging from coils, to heating
systems, through fueling ones. During this succession of events, the plasma is subjected to
several modifications which create instabilities that compromise systems safety. A natural
question emerges on how control is performed on the device of interest and what is needed
for a better mastery of plasma’s unstable evolution.

1.1.2 The need for robust magnetic control

As stated previously, control systems are required to perform tracking of quantities in-
trinsically linked to plasma’s evolution, like the position of the plasma centroid m, its
boundary or Last Closed Flux Surface (LCFS), elongation κ and current Ip (Figure 1.6).
Future devices like ITER2 integrate many systems to tackle the numerous control issues
that appear in tokamaks. For example, ITER specifications regarding plasma current

2International Thermonuclear Experimental Reactor - https://www.iter.org/

19

https://www.iter.org/


1.1. PLASMA CONTROL AND ARTIFICIAL INTELLIGENCE 20

range from 1 to 15MA, hence the need for an efficient control apparatus. Specifically,
magnetic control plays a crucial role in modifying the plasma’s position and geometry,
which impact the stability and performance of plasma’s confinement within tokamaks.
Through the active adjustment of the voltages applied to the poloidal field (PF) coils,
magnetic fields are carefully manipulated within the said devices (Figure 1.6). This work
will then focus entirely on magnetic control, despite the fact that other domains could
benefit from the same investigation found in this work.

Figure 1.6: Schematic view of a tokamak with toroidal (red) and poloidal (striped gold)
coils. Many quantities must be controlled.

We usually refer to a plasma discharge as an experiment during which the plasma un-
dergoes structural changes from its creation to its shutdown. The plasma is initiated from
the ionization of prefilled gas by the generation of a toroidal electric field via transformer
action using the central solenoid, which ends up being similar (to a certain extent) to a
Townsend avalanche discharge [28]. Essentially, the current is ramped up in the central
solenoid, and a pre-magnetization map is built from poloidal coils. A rapid drop of the
central solenoid current induces an acceleration of the electrons by the electric field. They
collide and ionize more neutrals, producing a plasma at high loop voltage. This so-called
plasma breakdown will notably differ on ITER, as it will need additional heating from the
low loop voltage at which it should operate plasma initiation. The plasma is traditionally
launched in a circular fashion, usually known as a limiter configuration. Once formed, the
plasma evolves depending on the purpose of the experiment, with examples ranging from:

• reaching an X-point configuration, i.e., a configuration limiting the pollution of plas-
mas from wall materials, and on which will go back later on;

• to modifying the plasma current and exploring shapes within the operational domain
of the machine.

20



21 CHAPTER 1. INTRODUCTION

In many modern devices, especially onWEST 3, numerous plasma experiments tran-
sition between limiter configurations and the first option, consistently ramping up the
plasma current. This evolution is meant to reach a stable operating regime during the
so-called flat-top phase. The last part of a discharge, known as the ramp-down phase, is
used to shut down the plasma safely. However, disruptions can occur prematurely. These
quick and brutal losses of magnetic confinement can damage the machine and are, in fact,
strictly prohibited in the operation of future devices. This hazard could be related to
escaped particles but also linked to mechanical constraints placed on the tokamak ele-
ments. Some of them are sensitive to magnetic fields, and the high rate of change in
plasma current over time generates strong forces on those structures. New control ap-
proaches are being studied to answer such phenomenon, but this question is outside the
scope of this manuscript. More precisely, this work focuses entirely on plasma evolution
involving limiter and X-point plasmas since this phase is unmissable in the landscape of
magnetic control, as it allows the exploration of shapes and configurations between the
latter. Throughout a discharge, interactions between the plasma and external circuits are
governed by non-linear partial differential equations. Conventionally, several Single-Input-
Single-Output Proportional-Derivative-Integral controllers (PID) are deployed to regulate
the system [8], all of which must be designed and structured not to interfere with each
other. Controller design is then based on linearization around an equilibrium point, leav-
ing a time-invariant, low-order differential system. Ultimately, classical control needs a
physical model that is sufficiently detailed to reproduce the involved phenomena, yet sim-
ple enough for a controller to be built. The said approximations highly depend on the
geometric parameters of the plasma to be controlled and typically include the following:

• plasma’s behavior is assumed to be axisymmetric,

• it can be described with a finite number of global parameters,

• plasma mass can be neglected,

• plasma’s resistivity is assumed to be known.

The simplification of such non-linear physical reality appears unavoidable in the case of
classical fusion plasma control. Moreover, the plasma’s geometry and location can not be
directly observed and are instead inferred in real-time from magnetic sensors using recon-
struction codes [36, 20]. This overall setup (Figure 1.7) requires substantial engineering
effort to tune those classical controllers whenever control objectives undergo variations,
and show limits to the coupled behavior of plasma dynamics, i.e. magnetic equilibrium
is strongly influenced by other physics such as transport. Indeed, linear control laws are
suitable for holding stability in a narrow operating range within known targets, but non-
linear control may be required for more advanced exploration. Advanced methods such
as Multi-Input-Multi-Output plasma control [78], Linear Quadratic Regulator [95], or H∞
approach [89], have been explored in many ways. Nevertheless, most functional solutions

3Tungsten (W) Environment in Steady-state Tokamak

21



1.1. PLASMA CONTROL AND ARTIFICIAL INTELLIGENCE 22

tend to be linear, and the related model reduction ultimately leads to costly controller
synthesis.

Figure 1.7: The magnetic diagnostics (probes and flux loops) are used to reconstruct the
magnetic equilibrium, with a defined boundary and position. A feedback loop treats the
obtained information to send the next voltages to the poloidal system.

No matter the method, scientists rely on these tools to study the effects of various
configurations on plasma dynamics, such as elongated shapes and their related vertical
instabilities [89, 43, 125, 25]. Therefore, there is an essential need for flexibility, adaptabil-
ity, and robustness of magnetic control systems throughout the device’s lifetime, without
which no stable plasma could be sustained.

1.1.3 Machine Learning and company at the rescue

An interest arises with machine learning, a subfield of artificial intelligence. Any phe-
nomenon, whether artificial or natural, is governed by deterministic or stochastic dynam-
ics. All data related to these dynamics are generated through sampling from an underlying
unknown distribution. If known, it would mean that we could explain the said system al-
most entirely, which is not the case in most situations. Machine learning aims to model
the latter from related data and generalize it afterwards to new occurrences of the same
phenomenon. In a sense, it enables the premise of learning without being explicitly pro-
grammed to do so. While using neural networks as powerful function approximators, the
ability to efficiently address the nonlinearities of tokamak physics becomes a cornerstone
of this investigation. Indeed, they could directly learn a mapping from magnetic measure-
ments to the desired actuation. A number of applications have already been identified by
the fusion community [57], and discussions on their various aspects are intensifying. Even
more precisely, reinforcement learning is an exciting paradigm within machine learning,
given its intrinsic connections with classical control. In the latter, an agent interacts se-

22



23 CHAPTER 1. INTRODUCTION

Supervised
Principle Correct answers are given by labels in the dataset

Example Is it a cat ? → Yes: Wrong! The right answer was dog.
Is it a dog ? → Yes: Right! Keep going.

Unsupervised
Principle No known answers affiliated to each sample

Example Is it a cat ? → Perhaps, let’s gather similar ones.
Is it a dog ? → I don’t know, just looking for similarities.

Principle Answers are given by the reward and the environment

Example Is it a cat ? → Yes: Wrong! You receive a negative reward (-1).Reinforcement

Is it a dog? → Yes: Right! You receive a positive reward (+1).

Table 1.1: A comparison between the different learning approaches: Supervised (S), Un-
supervised (U) and by Reinforcement(R)

quentially with an environment through actions and uses information sent back by the
second. This is composed of a state, which informs how the environment evolved from
one timestep to the other, and a reward. The latter is a core concept as it formalizes
the control targets under a simple scalar function, which can combine multiple objectives.
In reinforcement learning, data are classically from the interaction with the environment,
which differs from supervised learning, i.e. the most common learning paradigm, which
uses a fixed dataset (Table 1.1). The choice for an approach is motivated by the fact that
accessing complete datasets of magnetic measurements and related actions on WEST was
not evident at some point in time. At the same time, models of plasma evolution were
readily available for the environment’s definition. Implicitly, the fusion of reinforcement
learning and neural networks, better known as deep reinforcement learning (Figure 1.8),
could overcome the issues of linear plasma control, as well as enabling the use of only one
feedback loop in the magnetic control system (Figure 1.9). To summarize such interest,
we can interface it with previous statements regarding classical control, identifiable on the
vast majority of existing tokamaks:

• Multiple control loops are usually required. With deep reinforcement learning, we
are content with a single function grouping the targets set as a scalar.

• Conventional controllers usually require each control loop to be optimized sepa-
rately, based on linear models and assumptions about the physical system involved.
Advanced methods exist to fine-tune them effectively, but we still have multiple
controllers to achieve stable magnetic control. In deep reinforcement learning, we
have a joint solution for the non-linear control problem and closed-loop stability, i.e.,
the solution performs non-linear feedback control without multiple control loops to
achieve overall stability.

23



1.1. PLASMA CONTROL AND ARTIFICIAL INTELLIGENCE 24

• Precise knowledge of the involved system and its dynamics is usually needed to
effectively model each part of the control problem. This requires an in-depth un-
derstanding of the underlying dynamics. In deep reinforcement learning, domain
knowledge is in the environment, and we must only define the reward accordingly.
No assumption is made on the latter, and even if domain expertise could be valu-
able, reinforcement learning relies on trial and error without any strict requirement
for system identification.

• No need for reconstruction codes since the agent can directly learn a non-linear map-
ping from raw magnetic measurements to predicted actions, instead of mandatorily
relying on inferred quantities like classical controllers.

Artificial
intelligence

Machine
Learning

Reinforcement Learning

Deep Learning

Figure 1.8: The russian dolls of modern artificial intelligence.

Consequently, deep reinforcement learning is becoming increasingly popular among
the tokamak control community. For example, it has been used for model-based control
[22], for the stabilization of vertically unstable plasmas [32, 27], to build feedforward
trajectories of plasma parameters [107], for temperature and profile control [122, 123], or
even for disruption avoidance [106]. Recent works [29] designed a reinforcement learning-
based system which achieved magnetic control of the Tokamak à Configuration Variable
(TCV) in Lausanne, Switzerland. The learned controller demonstrates the capability of
the RL-based approach to tackle various plasma configurations of different complexities,
while simultaneously tracking many quantities of interest. These examples highlight a shift
of focus from classical plasma control, designed using a priori knowledge on how control
should be performed with respect to the physical dynamics of the device, to controllers
learning by trial-and-error to act on the system following what should be achieved in terms
of final targets. Although reinforcement learning has many advantages, it comes with
several pitfalls. Indeed, such a form of trial-and-error interaction requires the existence of
realistic simulations, which are not necessarily guaranteed for all types of control scenarios.

24



25 CHAPTER 1. INTRODUCTION

Similarly, the paradigm does not benefit from deterministic measures of stability and
robustness, as might be understood in the sense of classical control. These issues will be
discussed throughout the manuscript, notably in chapter 2. Therefore, we have defined
the context in which this thesis evolves, justifying the desired approach. The scope of
this work is then to explore the use of deep reinforcement learning for magnetic control
of a tokamak and assess the efficiency of this alternative path. A description of the main
contributions follows in the next section, as well as the outline of this manuscript.

Figure 1.9: The diagnostics are directly fed with references to a neural network trained
with reinforcement learning. As a result, no reconstruction codes are needed.

1.2 Objectives and main contributions

This PhD aims to study the use of deep reinforcement learning in the context of mag-
netic control of fusion plasmas on the WEST tokamak located in France. The previously
developed state-of-the-art led to the first practical demonstration of how an RL-based sys-
tem could shape, modify, and position the plasma. This study’s outcomes opened several
questions related to its reproducibility on other machines and how we could perform the
related training efficiently. The availability of tools enabling such an approach is not iden-
tifiable in a straightforward manner despite its description in the related work, and it is
then necessary to develop a general framework that would act as a strong basis for further
enhancements. Consequently, the first objective is to reproduce the results from the TCV
experiments in Switzerland, as it would prove that the method works indifferently of the
device. The second objective is to find means of making reinforcement learning part of the
routine operations on WEST, especially by speeding up training, as the initial proposal

25



1.2. OBJECTIVES AND MAIN CONTRIBUTIONS 26

exhibited training times lasting for several days. This is not in line with the flexibility and
adaptability sought in the fusion domain, with operational controllers obtainable much
more rapidly from one experimental campaign after the other. As we will see later on, the
system is meant to learn only one scenario at a time, which limits the expressiveness of the
controller towards handling multiple scenarios at once. This last concept will be briefly
discussed as part of the perspectives, knowing that reducing convergence time is already
a first step in this direction. A final objective rests on presenting the control performance
of the RL-based solution for several control scenarios of interest, as well as evaluating the
developed extensions. Hence, this study will feature three questions linked to the previous
questioning, from which the main contributions stem from:

Problematic 1: How can we use reinforcement learning for magnetic control on WEST ?

1. Setup a numerical twin of WEST which will be used as the environment

2. Identify the right implementation and dynamics of the Maximum a posteriori Policy
Optimization algorithm used in this thesis

3. Develop PILOT, a general framework for training of RL-based control systems on
WEST

4. Define proper control scenarios for reproduction of TCV’s trials in the WEST use-
case

5. Train controllers comparable to what was observed in the literature

Problematic 2: How can we make this method a routine part of tokamak operations?

1. Identify limitations of the initial method and potential bottlenecks including the
reward definition

2. Speed up training using curriculum learning

3. Discuss the use of Progressive Neural Networks to fight against catastrophic forget-
ting

4. Present knowledge distillation as a tool to make the latter in line with real-time
constraints

Problematic 3: How can we assess the performance and effectiveness of reinforcement
learning methods?

26



27 CHAPTER 1. INTRODUCTION

1. Analyze how reinforcement learning performs in the presence of disturbances, and
with different available modes in the numerical twin

2. Analyze the need for integral effects which are mathematically needed for plasma
current control

3. Evaluate the training speed-up offered by curriculum learning

1.3 Outline

This thesis is described as follows:

• Chapter 2 defines the path towards the algorithm used in this PhD, namely the
Maximum a posteriori Policy Optimization (MPO). This will go through the basics
of reinforcement learning, which exhibits strong connections with optimal control.
Finding efficient behaviors for the agent can be done using various methods, but only
actor-critic approaches are discussed. Finally, inference-based deep reinforcement
learning is presented as the foundation of the sole algorithm used in this work. Even
though numerous algorithms could have been applied in our context, this chapter
concludes with the reasons why MPO is kept as a suitable choice.

• Chapter 3 contains the first main contribution in the complete presentation of the PI-
LOT framework developed to answer the first problematic around the reproducibility
of TCV’s findings. Enabling the interaction loop inherent to reinforcement learning,
it asynchronously connects flexible blocks. The WEST tokamak and its numerical
twin are described at first. This is followed by a discussion on the notion of control
scenario, and a schematic view of all the ones studied during this PhD is presented.
A trajectory generator is showcased from these target discharges, yielding references
used in the reward definition. Finally, a concrete explanation of PILOT’s design is
given, from communication protocols to the agent’s specifications.

• Chapter 4 presents the remaining contributions which help answer the second prob-
lematic, namely improvements of the training procedure. An approach is proposed
using curriculum learning to speed up training and improve final performance by
several orders of magnitude. This incorporates existing attempts from the litera-
ture, notably hierarchical learning. Despite these improvements, the first implemen-
tation of the curriculum procedure displays potential issues regarding stability, as
catastrophic forgetting might occur. This phenomenon is observed when the agent
suddenly loses knowledge previously acquired. To overcome this problem, Progres-
sive Neural Networks (PNN) could be leveraged as a prospective asset, at the cost
of increased computational complexity. A brief discussion on knowledge distillation
follows, which could help PNNs to meet WEST real-time constraints. These ideas
pave the way towards an RL-based experimental routine on the WEST tokamak.

27



1.3. OUTLINE 28

• Chapter 5 analyses the results related to each contribution. A qualitative and quan-
titative comparison is done on controllers trained with different modes of the WEST
simulator, proving the need for integral control. Curriculum learning is analyzed and
appears to be a valuable training procedure enhancement.

• Chapter 6 will conclude the study, summarizing the advantages and limitations of
the paradigm of interest, as well as perspectives which could appear on short and
long-term time scales, such as Structured State Spaces for interpretability of deep
RL.

28



Inference-based reinforcement learn-
ing

Contents
2.1 Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.2 Connections with optimal control . . . . . . . . . . . . . . . . . 34
2.3 Finding optimal policies . . . . . . . . . . . . . . . . . . . . . . 36

2.3.1 A taxonomy of algorithms . . . . . . . . . . . . . . . . . . . . . . 36
2.3.2 The road to the actor-critic’s pantheon . . . . . . . . . . . . . . . 38
2.3.3 Neural approximators . . . . . . . . . . . . . . . . . . . . . . . . 39
2.3.4 Exploring or exploiting: a core dilemma . . . . . . . . . . . . . . 43

2.4 An inference-based interpretation of deep RL . . . . . . . . . 44
2.4.1 Introduction on probabilistic inference . . . . . . . . . . . . . . . 45
2.4.2 Maximum a posteriori Policy Optimization . . . . . . . . . . . . 49

2.5 An agent ready for interactions . . . . . . . . . . . . . . . . . . 57

29



2.1. FUNDAMENTALS 30

Reinforcement Learning (RL) [113] is a machine learning (ML) paradigm considered
as an innovative approach to real-time control. Over the past decade, RL has been suc-
cessfully applied to a wide range of problems, showing capabilities close, if not similar,
to human-level skills. Examples could be drawn from games [109, 121] to control [65, 29]
through natural language processing [23, 119]. Despite such achievements, it undergoes
several constraints that must be put in perspective of classical control, especially in the
context of robustness and stability assessment of controllers meant to act on critical plants.
In this chapter, a thorough description of reinforcement learning is conducted to contex-
tualize it formally. This aims first to define the fundamental notions behind reinforcement
learning, then describe how the latter is closely related to optimal control and closed-loop
systems. The next sections pave the way to deep reinforcement learning and the actor-
critic algorithm used in this thesis. Finally, we will discuss how its interpretation aligns
with the constraints of plasma applications.

2.1 Fundamentals

A classical RL framework defines a sequential decision-making problem in which an agent
interacts with an environment formalized as a Markov Decision Process (MDP) denoted
M. This MDP is defined by a quadruple {S,A, P,R}:

• a finite state space S

• a finite action space A

• its state transition distribution P (s′|s, a) : S ×A× S → [0, 1]

• the instantaneous reward function R(s, a) : S ×A → R

This environment is designed to represent the physical plant in the footsteps of classical
control, with timestep t ≥ 0. The environment’s state is denoted as st ∈ S, and sent to
the agent with a reward rt = R(s, a) = E[rt+1|st = s, at = a], as the expected value
over the next reward. This scalar feedback signal indicates how well the agent performs
with respect to the overall objectives, e.g. the reward hypothesis. It is a core concept
in reinforcement learning as it defines what the agent should aim at rather than how it
should do it, combining several constraints into a weighted sum, for example.

Definition (Reward hypothesis). All of what we mean by goals and purposes can be well
thought of as the maximization/minimization of the expected value of the cumulative sum
of a received scalar signal (called reward/cost).

We will preferably aim at non-negative instantaneous reward functions, as they work
better in many real-world problems like ours. As an example, we can picture a situation
in which we would like to perform a turn with a car from point A to point B. We could set
a reward of −1 at each timestep, implicitly asking the agent to perform the task as fast
as possible. Since it wants to maximize Gt, the agent will try out possibilities to get the

30



31 CHAPTER 2. INFERENCE-BASED REINFORCEMENT LEARNING

episodic reward closer to 0, possibly leading to large negative cumulative rewards since the
agent does not have knowledge of what a "good" trajectory is. Failing faster could avoid
such accumulation, with a return lower than what it could have been if more attempts
had been performed. In essence, this myopic behavior follows our objective but is not set
correctly in case of actual deployment of the device on the road. That is why the reward is
even more critical: if it is too simple, the signal will not be expressive enough to learn the
task, and if it is too descriptive, it will guide the agent without letting it explore possible
outcomes.

Consequently, the agent sends back actions at to the environment, and the latter
evolves to a new state with transition P (st+1 = s′|st = s, at = a). More precisely, actions
are set according to a policy :

π : S ×A −→ [0, 1]
(s, a) 7−→ P (at = a|st = s)

It is worth noticing that a policy can also be deterministic, associating the same action
with probability 1 for each observed state, i.e. ∀s ∈ S, π(.|s) = 1. One could observe that
the decision is performed solely based on current knowledge, which is a direct consequence
of the Markovian property of the environment, which states that the system’s future is
independent of the past given the present, i.e. the next state only depend of the current one.
The hypothesis becomes wrong if the state does not contain all the available information
or if transitions depend on time, for example.

Definition (Markov property). The state transition has the Markov property if and only
if

P (st+1|τ) = P (st+1|st, at), with τ = (s0, a0, ..., st, at)

An episode is a trajectory {(sk, rk, ak)}0≤k≤T , which has started from state s0 sampled
from initial distribution P0, and has reached a terminal condition at timestep T . Meant to
model constraints on the MDP, their trigger resets the environment to its initial conditions
while usually giving a strong penalty.

Agent

Environment

Action atNew state st+1 Reward rt+1

Figure 2.1: Interaction loop between the agent and the environment.

31



2.1. FUNDAMENTALS 32

Through this feedback loop (Figure 2.1), the goal of RL is to make the agent learn an
optimal policy π∗ : S → A which maximizes the discounted cumulative reward over time,
or expected return:

π∗ = argmax
π

Eτ∼P (.|τ)[G0]

with Gt =
∑∞

k=0 γ
krt+k, and the discount factor γ ∈ [0, 1]. This parameter is useful

for considerations on finite horizon formulation since it starts from an infinite sum. Also,
it penalizes long-term rewards since interest in a specific task tends to decrease over time.
From behavioral neuroscience, we focus on close rewards, compared to those that arrive
later. However, we still have to account for the long-term consequences of our actions.
So, the choice of γ model such balance, to specify the agent’s strategy over the course
of a trajectory. It is important to notice that this does not relate directly to learning or
prediction, in that it only refers to how we evaluate the reward impact in time from the
observed interactions. One question arises about how to use the discounted cumulative
reward over time in a practical manner. The Value function Vπ(s) = Eπ[Gt|st = s] and the
Action-Value function Qπ(s, a) = Eπ[Gt|st = s, at = a] comes into play as fundamental
definitions, closely related to the maximization problem previously stated. Those functions
can be understood as an assessment of the quality of being in state s, and the quality of
taking action a while being in state s. Both functions express a direct relationship between
a state’s value and its successor states’ values. The following development for Vπ is easily
generalizable to Qπ:

Vπ(s) = Eπ[Gt|st = s]

= Eπ[rt + γGt+1|st = s]

= Eπ[rt] + Eπ[γGt+1|st = s]

=
∑
a

π(a|st)
∑
s′

P (s′|s, a)R(s, a) +
∑
a

π(a|st)
∑
s′

P (s′|s, a)γVπ(s′)

=
∑
a

π(a|st)
∑
s′

P (s′|s, a)[R(s, a) + γVπ(s
′)]

We obtain the Bellman equations, which express that the value of a state (respectively
state-action pair) is equal to the immediate reward for that state and the value of adjacent
states for all actions. By adjacent, we mean accessible regarding the transition distribution
P from the particular state of interest.

Definition (Bellman Equation).

Vπ(s) =
∑
a

π(a|st)
∑
s′

P (s′|s, a)[R(s, a) + γVπ(s
′)]

Qπ(s, a) =
∑
s′

P (s|s, a)[R(s, a) + γ
∑
a′

π(a′|s′)Qπ(s′, a′))

Vπ(s) = Eπ[Qπ(s, π(.|s))]

32



33 CHAPTER 2. INFERENCE-BASED REINFORCEMENT LEARNING

Now, we can directly express how two policies could compare each other:

π ≥ π′
if and only if ∀s ∈ S, Vπ(s) ≥ Vπ′ (s)

The notion of optimality follows as ∀s ∈ S, ∀π, V∗(s) ≥ Vπ(s), with V∗(s) = maxπ Vπ(s)
and Q∗(s, a) = maxπ Qπ(s, a) accordingly. This would require a search among all, possibly
infinite policies, which is impractical. Hence, there is a need for a tool capable of checking
if the value function and the policy are optimal. The Bellman optimality equations are
then meant to show that the value of a state under an optimal policy is equal to the
expected return for the best action from that state. Again, all developments for V∗ are
easily generalizable to Q∗:

V∗(s) = max
a

Q∗(s, a)

= max
a

Eπ∗ [rtγGt+1|st = s, at = a]

= max
a

Eπ∗ [rt + γV∗(st + 1)|st = s, at = a]

= max
a

∑
s′

P (s′|s, a)[R(s, a) + γV∗(st + 1)]

From a computational perspective, it exhibits an intuitive way of computing the value
(respectively the action-value) of any state if we know P . Specifically, if we have found
an optimal value function, then acting greedily with respect to it (i.e. choosing the best
action in a particular state) defines the optimal policy. That is why basic algorithms
such as Policy and Value iteration [113] recursively exploit the structure of the Bellman
equations and the value function to find an optimal problem for a given MDP. However,
as stated before, it relies on an exhaustive search of all possible outcomes, which would
result in expensive computation to find all the related probabilities of occurrences and
expected rewards. Such reality intuitively leads to an overall idea: we could find a way
to approximately solve the Bellman optimality equations. This is the purpose of many
RL methods, like the actor-critic approach discussed in the next section, relying only on
sampled experiences instead of concrete knowledge of transition dynamics.

Definition (Bellman Optimality Equation).

V∗(s) = max
a

∑
s′

P (s′|s, a)(R(s, a) + γV∗(s
′))

Q∗(s, a) =
∑
s

P (s′|s, a)(R(s, a) + γmax
a′

Q∗(s
′, a′))

Overall, Bellmann equations and their optimality counterparts enable the evaluation
and optimization of policies to solve the MDP for π∗. The Bellman Optimality equations
guarantee convergence of classic iterative algorithms such as Policy and Value iteration
[113], which have been mentioned previously. These methods are defined in the presence
of a perfect MDP, meaning we would know the transition dynamics in advance. However,

33



2.2. CONNECTIONS WITH OPTIMAL CONTROL 34

the vast majority of real-world applications does not exhibit knowledge of the probabil-
ity transition function straightforwardly. So called model-based methods would focus on
learning a representation of the probability transitions before planning optimally. Never-
theless, this PhD focuses entirely on model-free methods, where there is no knowledge of
P and R (no perfect reward known beforehand). Based on this idea and starting from
Bellman principles, two general principles are discussed and shared among many, if not
all, modern RL algorithms;

• since Vπ(s) = Eπ[Qπ(s, a)], Qπ(s, a) > Vπ(s)⇒ action a is better in average. So we
would modify π to increase the probability of good actions by acting on gradients of
the value functions;

• if we have a policy π and a known Qπ(s, a), we can improve the first by looking at
the action that maximizes the second. The obtained policy will always be at least
as good as the initial one.

A comparison must be made to properly understand the advantages of RL over classical
control. The next section gives a high-level explanation of the latter.

2.2 Connections with optimal control

Optimal Control (OC) allows to find a control trajectory u over a dynamical system de-
fined by a state space S, that optimizes an instantaneous cost l(x, u), with x ∈ S [35].
Control design then specifies the dynamics model and the desired constraints that align
with the overall objectives. For example, one would like to build an optimal driving trajec-
tory towards a desired location while combining several other goals, such as maintaining
a comfortable driving behavior for human passengers, or avoiding dangerous obstacles.
The cost must be non-negative and penalize undesirable states. Moreover, it is usually
described as a weighted sum of individual costs, each scaling the contribution of a sub-task
(tracking, effort, etc) to the entire control objective.

It shows a shift of focus with classical control, from considering what the control
should do rather than designing how it should do it, which is precisely what is intended
by RL. Indeed, classical controllers are designed mainly with graphical tools (Bode plots,
Nyquist, etc). Laplace transforms and linearization give a simple and intuitive approach
to computing, analyzing, and tuning controllers without extensive computations. That is
why most real-world applications usually count on PID control [8], as it is sufficient to
achieve a particular system’s behavior (overshoot, steady-state error, etc.) by focusing on
a desired response. However, many of those applications could benefit from more advanced
and nonlinear approaches, that look for strong performance under explicit constraints that
classical control struggles to incorporate. Optimal control tries to answer these questions
more robustly at the cost of computational efficiency.

A critical idea appears as MDPs are discrete stochastic formulations of optimal control
problems [113]. However, RL is mainly described as a closed-loop system where the policy
is learned by feedback from the environment. Oppositely, optimal control is primarily seen

34



35 CHAPTER 2. INFERENCE-BASED REINFORCEMENT LEARNING

as an open-loop planning problem. Such difference implies that the first might benefit from
real-time information, while the second might undergo modeling errors from its dynamics
model. A closed-loop optimal control formulation could be implemented using Model
Predictive Control (MPC)[92]. This can be solved online and recursively by Dynamic
Programming (DP)[12], which is at the basis of RL. Indeed, policy and value iteration
were mentioned as algorithms used to find an optimal policy in the presence of a perfect
MDP. They are derived from DP and are initially a way of solving MPC using the said
Bellman equations. Reinforcement learning then appears as a stochastic interpretation
of the latter, which does not need system identification. A concise formal study of these
connections can be found in Appendix A and in-depth resources in [14]. This might help
readers from both fields to connect their respective knowledge, even if it is not directly
related to the subject of this manuscript.

Aside from differences in formalism, it is essential to question the overall philosophy
emanating from the two domains, which has not been studied in many works [46, 19].
Historically, control has always focused on loop stability. More precisely, it looks at main-
taining a bounded system from its initial conditions to all of its future evolution, and
state convergence towards a finite set of values. However, RL focuses more on reward
performance, and only learning convergence towards a near-optimal solution is analyzed,
either asymptotically or quantitatively via ϵ bounds, i.e. G∞ ≥ ϵ. Characterization and
deviation from the said bounds in the sense of closed-loop control and bounded systems
are often eluded. It mainly comes from the relatively harmless nature of numerous appli-
cations of RL, like games or ones where the physics properties of the environment can be
bounded heuristically. The discounted rewards themselves do not need any meaning apart
from being related to the problem definition. This can differ from optimal control where
unstable states would reflect arbitrarily large costs-to-go, i.e. costs usually express stability
concerns, while even RL terminal conditions do not follow such rigorous pattern on bounds
validation. Most importantly, control practitioners start from deterministic settings to get
an initial controller, assuming some knowledge about the system and adding uncertainties
through robust control tools (Lyapunov stability, etc). This approach allows for a refined
definition of stability guarantees since the system’s behavior is studied beforehand. On the
contrary, RL discards any information regarding the system’s dynamics and starts directly
from a stochastic perspective, making the deterministic computation of stability bounds
challenging. Because of that, RL stability is still an open area of research, and many al-
gorithms’ viewpoints aim at proving convergence rather than stipulating stability bounds
as expected from control applications. This PhD will mostly rely on a statistical analysis
of the control obtained after training, which remains classical regarding RL research.

To conclude on the links between OC and RL, both are sequential decision-making
problems designed on constraints and costs, with similarities but notable differences in
their inherent properties and conventions. In a sense, RL might be seen as online adapta-
tive optimal control that directly uses available information like real-time measurements
without relying on a deep understanding of the involved dynamics [71]. This statement
will become especially important in fusion, as complete understanding of plasma dynamics
and transition probabilities is yet to be commonly defined, as well as access to all possi-

35



2.3. FINDING OPTIMAL POLICIES 36

ble information during tokamak operations. We must now unravel how to explicitly find
(near-)optimal policies in a model-free setup since real-world applications usually do not
exhibit MDP dynamics straightforwardly.

2.3 Finding optimal policies

2.3.1 A taxonomy of algorithms

In modern reinforcement learning, classifying existing methods to find optimal policies
would give an extensive set of options. Considering our use case, we need to contextualize
our focus to justify the usefulness of the algorithm used for this study. Let us recall that an
RL problem is framed as a Markov Decision Process (MDP) denotedM(S,A, P,R), and
we look for a stochastic policy π which maximizes the expected cumulative reward over
time. As stated in a previous section, knowledge of P and R is a decisive characteristic
which allows to partition algorithms into two major families:

• Model-based methods: P is estimated and used afterwards for planning, or to im-
prove an already existing policy. If we can learn the MDP precisely, it converges to
an optimal policy;

• Model-free methods: No knowledge P and R is assumed, and the entire procedure
relies on trial-and-error.

Several precisions must be added when it comes to the knowledge of R. For each
MDP, there is no unique reward signal that might come from human intuition. Model-free
algorithms rely on this assumption, as they do not try to estimate the optimal R∗ in any
way. Furthermore, model-based methods tend to be, in general, more difficult to achieve
than discovering a (sub-)optimal policy without a model of the world. Likewise, this
approach would perform control through planning, which might be too slow compared to
the timescales of many, if not all, plasma events. Magnetic control applications motivate
the interest in the model-free paradigm since we will not try to learn P. Intuitively, this
could also be related to the uncertainties in plasma simulations, which could form a strong
bottleneck to learning the MDP precisely. In model-free methods, learning is performed
through trial-and-error, where outcomes of the policy’s actions are observed and then used
to reinforce a policy, leading to better rewards.

The search for an optimal policy could be represented by three steps, namely samples
generation, policy evaluation, and policy improvement (Figure 2.2). Samples are generated
from the interactions with the environment and then employed to estimate the returns,
which are finally used to optimize the policy. Traditionally performed online, it is worth
noticing that offline RL exists and performs the very same training loop whilst using a pre-
defined dataset of interactions. Despite offline RL gaining more interest among researchers,
even in fusion [22], we stay within the scope of online methods, recalling the first objective
of this PhD, i.e. reproducing the state-of-the-art [29] on a different device. Let us recall
value and action-value functions V π(s) and Qπ(s, a) for policy π, s ∼ P and a ∼ π(.|s).

36



37 CHAPTER 2. INFERENCE-BASED REINFORCEMENT LEARNING

It is worth mentioning that relying on V π(s) is difficult in many real-world applications
such as fusion, since they do not exhibit proper knowledge of the probability transition
function P . Because of that, making actions explicit is an interesting way of computing
the expected return, as state-action pairs can be easily sampled throughout learning. For
this reason, we will only mention the action-value function. Two ideas emerge out of
considerations between these structures and the policy:

• if we know Qπ(s, a), we can use it to improve π since they are intrinsically related;

• we could compute gradients of the policy, and performing gradient descent to increase
the probability of good actions.

Samples generation

Policy evaluation

Policy improvement

Figure 2.2: After generation of samples through interactions with the environment, returns
are estimated before optimizing π accordingly.

Value-based methods define the first case: policy evaluation is realized while fitting Qπ,
and the policy is easy to set, e.g. argmaxπ Q

π. Since we optimize the value when learning
the policy, value-based RL is closer to the implicit objective of the field. However, it may
suffer from poor convergence when associated with function approximation, such as neural
networks, when small value errors can lead to totally different actions, i.e. larger policy
errors. The second case describes gradient-based methods: policy evaluation is done by
computing Gτ on the entire trajectory τ = {a0, s0, · · · , aT , sT }, with T > 0. The policy is
improved through gradient based optimization π ←− π + α∇πEπ[Gτ ], with learning rate
α. Such formulation is directly linked to RL’s real objective, which lies in learning a policy.
Specifically, it makes working with continuous action spaces, or stochastic policies, easier
since the related search space is smoother than the value one. Nevertheless, it can converge
to a local minimum or knowledge so specific that generalization can not occur, resulting
in poor performance. Actor-critic (AC) approaches combine the previous methods by

37



2.3. FINDING OPTIMAL POLICIES 38

fitting Qπ(s, a) for policy evaluation, and performing π ←− π+α∇πEπ[Qπ] during policy
improvement. RL presents a huge number of approaches within these three families, which
could then be classified depending on the nature of the action and state spaces (discrete
or continuous), the stochasticity induced in the dynamics or in the policy, or whether it is
easier to represent P or π. To conclude this taxonomy, two terms must be shown which
relate to how the generated data for the environment is used to optimize the policy:

• on-policy : Algorithms characterized as such perform training with data related to
the current policy only. This states that if the policy changes or gets updated, data
has to be gathered immediately after;

• off-policy : These methods execute training with data from any policy, including
previous ones. This increases sample efficiency, i.e. the number of examples needed
to perform policy search, by reusing past experiences.

It is crucial to realize that looking for π using reinforcement learning is an entirely
different task than learning the latter in a supervised way. This is especially true regarding
training stability and convergence, which is not guaranteed when function approximation
appears [41], or assumptions about how much of the environment’s state we can observe.
That is why recent advancements in AC methods are particularly interesting. Not only
do they prove to leverage the use of nonlinear function approximation efficiently, but they
also exhibit strong empirical performance in various domains [44]. We will focus on the
off-policy actor-critic paradigm: it is known to have better sample efficiency, which helps
regarding the computing timescales of plasma simulations, up to several hours for an
episode; the strong results of those approaches constitute the state-of-the-art in terms of
continuous control, which is our case since actions performed on the tokamak as well as
the environment’s state are characterized as such, and in high dimensions.

2.3.2 The road to the actor-critic’s pantheon

Actor-critic RL aims to combine value-based and policy-based methods in a unified frame-
work. The actor learns to make decisions, and the critic advices on potential good actions.
In this case, the actor is related to the policy π, while the critic refers to estimated returns
and the value function. The general formulation of these methods [66] to optimize the
policy is defined as such:

∇πJ (π) = Eτ∼P(.)

[
T−1∑
t=0

∇πlog π(at|st)Qπ(st, at)

]
for trajectory τ = {s0, a0, · · · , sT , aT }, T > 0. Actually, a more general expression is

worth mentioning [104], unifying all views regarding gradient-based methods:

∇πJ (π) = Eτ∼P(.)

[
T−1∑
t=0

∇πlog π(at|st)Ψπ(st, at)

]

38



39 CHAPTER 2. INFERENCE-BASED REINFORCEMENT LEARNING

where Ψπ can be the total reward, the action-value, etc. More details are present
in Appendix B. Often, actor-critic algorithms are on-policy like policy-gradient methods.
Since we focus on off-policy settings, we directly refer to the proper formulation [30], in
which previous experiences are stored in a dedicated data structure. In the case of RL using
neural networks, we will see that this structure is referred to as the Replay Buffer. Samples
are drawn from the latter, and an estimator Q̂π of Qπ is fitted in a supervised manner.
This is done by minimizing the squared loss between predictions from the estimator and
target returns yt computed using value-based notions. Summing over the samples set x,
we end up with the following cost:

L(Q̂π) = 1

2

|x|−1∑
i=0

||Q̂π(st, at)− yt||2

with yt obtained through any valid target computation, such as estimates of the full
return using bootstrapped values like n-step bootstrap returns [113]. This target compu-
tation finds its source in value learning, and a dedicated explanation of the latter can be
found in Appendix B. Once policy evaluation is performed, policy improvement is done in
a policy-based fashion by computing the gradients of J with respect to π. The following
expression appears accordingly to perform the gradient optimization:

∇πJ (π) ≈
1

N

|x|−1∑
i=0

∇πlog π(ai|si)Q̂π(si, ai)


This method reduces the variance of policy-gradient methods. By that, we relate to

how sensitive this estimator gets to changes in the cumulative return from two trajectories
starting from the same state. However, it displays bias since the critic is fitted and conse-
quently not perfect, i.e. n-step estimates might be inaccurate as the initial values could be
ill-defined. Modifying the n hyperparameter in the n-step bootstrapping operation helps
mitigate the bias-variance trade-off: the bigger n gets, the bigger the variance follows,
lowering bias. This concise explanation of the actor-critic algorithm serves as a basis for
understanding that it addresses the flaws of value-based and policy-based ideas. The ac-
tor and the critic can be parameterized by neural networks, which could share weights,
displaying costs and return estimates in various ways [44].

2.3.3 Neural approximators

Most methods we discussed mainly considered finite state and action spaces. However,
when RL is applied to real physical systems like a tokamak, S andA are mostly continuous.
Because of this, there are no proper ways of defining exact and closed forms of V , Q, or
π, and discrete approaches tend to create tabular representations of the latter. Function
approximation constitutes an efficient tool to turn these continuous learning problems into
tractable instances while optimizing for a finite amount of parameters. Neural Networks
(NN) are an unmissable type of architectures, working as general function approximators
(Figure 2.3). Drawing inspiration from the brain, they are made of layers composed of

39



2.3. FINDING OPTIMAL POLICIES 40

neurons, which were first modeled as individual linear approximators [76]. Consequently,
connections between neurons and layers are represented by matrices of weights optimized
by gradient descent, using a cost function that depends on the objective (mean squared
error, cross-entropy, etc). This cost function must be differentiable to compute its gradients
with respect to learnable parameters, i.e. the weights of the neural network, which are
back-propagated through the network [96]. When training such architectures, one can
perform gradient descent in different ways (Figure 2.4).

input
layer hidden layer output

layer

Figure 2.3: A simple fully connected neural network. It can have many hidden layers, each
one with a different amount of neurons. Bias in each neuron is not represented here.

In the stochastic method, training is done one example at a time, meaning that the
neural network would compute the cost related to a single output, look for its gradient,
and optimize the weights accordingly. This approach is swift but suffers from strong oscil-
lations and noise in the gradient information. Conversely, the batch method considers the
entire dataset when computing the cost, which significantly stabilizes the overall scheme,
at the cost of training times that can become intractable. Finally, the mini-batch idea
helps to find the right balance between the previous methods by performing gradient de-
scent using subsets of examples. Like numerous works, we will rely on the last one to
perform neural network optimization. The learning rate of the gradient descent is a hy-
perparameter which can decay over time, or be adaptative [94]. Deep learning arises when
multiple layers are stacked to increase the depth of the neural network. Nonlinearities are
introduced between each layer in the form of activation functions [33], taking inspiration

40



41 CHAPTER 2. INFERENCE-BASED REINFORCEMENT LEARNING

Figure 2.4: Gradient descent can be done either one example at a time (stochastic),
considering the whole dataset available (batch) or considering a sampled subset of the
latter (mini-batch).

from what we observe in the biological world. Assuming the smoothness of the function
to be learned and considering that the latter can be decomposed into a composition of
simpler functions, neural networks have proven to be very efficient when dealing with
many types of data (time series, images, etc.). They exist in many forms nowadays, with
architectures ranging from fully connected neural networks, to recurrent ones improving
learning on sequences [108], through convolution networks efficient with images [87], or
even transformers architectures at the basis of large language models [120]. We will fo-
cus entirely on fully connected neural networks, namely Multi-layered perceptrons (MLP),
and Recurrent Neural Networks (RNN) in this manuscript. Indeed, MLPs are sufficiently
expressive to control a plasma and small enough to fit on a control system. On the other
hand, RNNs are structurally better at handling sequences of information. This is impor-
tant in our use case since the data from the developed environment comprises multivariate
time series. Such a network keeps an internal state that is unrolled over time, computing
outputs for various sequence lengths, which is opposed to MLP where the input size is
fixed. Their flexibility allows for many applications ranging from time series forecasting
to language translation. Indeed, they can output one or multiple values per sequence.
However, they might suffer from exploding and vanishing gradients, which raises a risk of
non-convergence [88]. Solutions have been developed by modifying the computation of the
hidden state, like the Long-Short-Term-memory unit (LSTM) [54], or the Gate recurrent

41



2.3. FINDING OPTIMAL POLICIES 42

unit [24]. Despite many advantages, and no matter what the architecture is, deep learning
applied to RL has several downsides:

• NN are universal approximators [102, 74]. Because of that, the space of potential
functions towards which an NN can converge easily becomes intractable. Combined
with RL and its non-stationary distributions, optimization and training are inher-
ently noisier than supervised learning;

• because of the previous point, gradients must be representative of the entire state
space without being biased towards a subset of the latter. Nevertheless, even if
gradients are averaged through the mini-batch procedure where samples are supposed
to respect state coverage, it might end up in exploding or vanishing gradients without
any meaningful information for back-propagation;

• we mentioned on several occasions the mini-batch approach, in which the batch
size becomes a hyperparameter of the training procedure. Moreover, the number of
layers, the number of neurons per layer, and the chosen nonlinearities are just a small
subset of hyperparameters that must be fine-tuned for each use case. Combined
with large architectures’ learnable weights, NN complexity becomes tremendous.
Even if many RL algorithms have been benchmarked [7], they still have to undergo
hyperparameter search, which can be even more expensive with the addition of neural
architectures.

H0 H1 H2 HT=Ht

y0

x0

y1

x1

y2

x2

yT

xT

yt

xt . . .
Figure 2.5: A recurrent neural network is unrolled in time, displaying the hidden unit H,
input sequence x and outputs y.

In theory, deep RL seems like the perfect combination, but many pitfalls line up in
practice as RL exhibits nosier learning dynamics. A few methods help stabilize the pro-
cedure and sort out the best out of these nonlinear predictors. First, n-step bootstrap
returns tend to be a preferable choice for deep RL, especially regarding neural networks
[79]. It makes the learned action-value function, i.e., its predictions, uncorrelated with the
computed targets to stabilize action-value fitting. Many other approaches were studied
[103, 19], out of which a few examples can be drawn:

42



43 CHAPTER 2. INFERENCE-BASED REINFORCEMENT LEARNING

• Target networks: The value function is define as a neural network. Its learning
is set as a supervised problem using bootstrapped estimates for targets. Then,
the objective is to minimize the error between the predictions and the said targets.
However, both elements are highly correlated, which could cause divergence [80]. The
value network is copied to overcome such an issue, creating a target value network.
Its weights are periodically updated by retrieving those of the online and optimized
network. This target network is used logically to compute targets, uncorrelating
them from the predictions. This idea is extended trivially to policies parameterized
by a neural network, uncorrelating actions similarly.

• Experience replay : Consecutive experiences from interactions with the environment
are stored in a fixed-size buffer [37]. Old experiments are erased sequentially in a
first-in-first-out manner (FIFO), with each entry designed as a tuple of the form
(st, at, st+1, rt)∀t > 0. Batches are sampled randomly, removing temporal corre-
lations. It is particularly well suited for off-policy settings and ensures that if a
sudden policy change occurs, the gradients will evolve slowly, improving convergence
and sample efficiency.

• Normalization: In a neural network, the scale of the outputs of each layer might be
tiny, from which gradients will not be informative enough to update the NN’s weights
properly. Normalization is then required and concerns many parts of the neural
network. Where possible, we normalize inputs to the range [-1,1] for all features
to remain at the same relative scale. Outputs of each hidden layer are normalized
through dedicated operations, that is to say, Batch or Layer normalization layers
[58, 11]. We will use only the second option, as it empirically gives better results
with the algorithm considered for this work [38]. Gradients can also be clipped to
prevent catastrophic updates of the NN’s weights and augment training speed [136].

All these elements will be used extensively during this PhD. Whether neural networks
are used, one core element of RL has not been presented yet. The notion of exploration
and its dilemma with exploitation are presented in the next section.

2.3.4 Exploring or exploiting: a core dilemma

We saw that online RL techniques are twofold: a sample-based version of dynamic pro-
gramming where transitions obtained by a fixed policy are used to approximate the value
function, and then the policy is improved. The second method involves directly optimizing
the (parameterized) policy from observed data without any direct considerations of the
value function. AC methods lie at the crossroads of these two paths. In the context of
value-based methods and Q-learning, we know that convergence is asymptotic to Qπ∗ if∑∞

t=0 α
2
t is finite, and

∑∞
t=0 αt is infinite, i.e. all state-action pairs are visited infinitely of-

ten [113]. This second statement dictates a core element of reinforcement learning, namely
exploration: all states must be reachable by available actions. Thus, a policy should ex-
plore actions and increase state space coverage as much as possible. This explains the

43



2.4. AN INFERENCE-BASED INTERPRETATION OF DEEP RL 44

interest in stochastic policies, as exploration mechanisms are inherently part of the sam-
pled actions. We can picture a situation where two outcomes are accessible to an agent.
The first one would always give a reward of 5. In contrast, the second one would give a re-
ward of -2 with a non-zero probability of giving 20 occasionally: the agent must explore the
landscape of possible outcomes to understand that exploiting the first path is beneficial,
but exploration of the second option is sometimes needed to maximize the gains. We can
extend this exploitation-exploration dilemma to any method, as generalization is enhanced
through the process. One famous example comes from the notion of greedy interaction we
mentioned earlier, which goes for the best action while acting on the environment. The
most classical way of handling exploration follows through the ϵ-greedy strategy:

at ∼ π(.|st) =

{
argmaxa∈AQ

π(st, at) with probability 1− ϵ
random sampling with probability ϵ

The action is chosen randomly with probability ϵ or taken as the highest Q-value with
probability 1− ϵ. This ensures that the agent explores the problem while using its current
knowledge of the best (greedy) behavior obtained so far. Such an exploration scheme
is similar to an excitation condition in control [19]. Indeed, even if we do not have a
proper model of the environment, the action-values embody an implicit scheme of the
MDP’s dynamics, and of the policy as a consequence. Excitation is needed to identify the
optimal trajectory through the Q-function persistently, and any policy like ϵ-greedy can be
applied to control the system. This dilemma can take many forms in more advanced actor-
critic methods, from exploration bonuses in the reward design [116], to noise-induced in
various parts of the MDP [56], through notions related to Bayesian RL [39] or probabilistic
inference as we will see right afterwards. On another note, the discount factor γ that we
have seen many times also influences the balance between exploration and exploitation.
When close to 1, the agent is more likely to explore the possibilities to find long-term
beneficial strategies. When tending towards 0, the agent may exploit strategies known to
favor immediate rewards, potentially at the risk of missing long-term dependencies.

Now that the taxonomy of common RL approaches has been described and discussed
through their core challenges, we need to link the method chosen for this PhD, already
seen in the state-of-the-art, to the preceding ideas. This will be viewed through the prism
of probabilistic inference that we present pithily.

2.4 An inference-based interpretation of deep RL

Viewing RL through the scope of probabilistic inference is not straightforward. Usually,
RL is fundamentally different from the latter because it acknowledges stochasticity only in
the sense of MDP dynamics, and the reward is only a signal determined during interactions
with the environment. Reward design is indeed a field of research, with heuristics depend-
ing on the control problem to solve. But could we model the reward differently, accounting
for probabilistic effects? Indeed, learning to match a distribution simultaneously on the
dynamics and the reward is an appealing approach, which gives new ways of conceiving

44



45 CHAPTER 2. INFERENCE-BASED REINFORCEMENT LEARNING

exploration and flexible formulations for MDPs of many complexities. By that, we mean
that in many applications, such as plasma control, the environment’s state s would not
always be entirely observable, and observations rely on a subset of o(s). Inference-based
tools provide a straightforward way of incorporating such context into learning dynam-
ics, hence their usefulness in this research. The algorithm used in this PhD is intrinsically
linked to this family of methods, so our first need lies in introducing probabilistic inference
and variational approaches in the RL context.

2.4.1 Introduction on probabilistic inference

Learning problem

Let us define an MDP M(S,A, p, r). For the sake of simplicity, we restrict this study to
a finite horizon problem with finite episode time T instead of an infinite sum relying on a
discount factor γ. Considerations on the latter will appear when necessary. We place this
discussion under a closed-loop formulation in a model-free setup, in which no knowledge
nor estimation of p and r is assumed. Let us also remember that deep RL was chosen for
this work, so the policy is parameterized by a neural network. In classical RL, the main
objective can be described as:

π∗ = argmax
π

T∑
t=1

E(st,at)∼p(st,at)[r(st, at)]

under trajectory distribution expressed by the likelihood:

p(τ) = p(s1, a1, · · · , sT , aT )

= p(s1)
T−1∏
t=1

p(st+1|st, at)π(at|st)

The return is optimized in order to a get a good control policy, from interactions
with the environment. However, nothing guarantees that the related data will always be
optimal, and no considerations on the optimal control trajectory exist. By conditioning
the reward and the transition dynamics on the latter, a probabilistic model could be built
to perform control. Let us define a binary random variable Ot over the reward, which is
conditioned to be true if the timestep is said to be optimal and set to False otherwise:

p(Ot = 1|st, at) = exp(r(st, at))

This definition assumes that the reward is bounded, as it would produce negative
p(Ot = 0|st, at) otherwise [70]. The choice of the exponentiated reward is common in
many studies [38], even if a few examples used a different formalism [128, 86]. This
random variable offers a refined interpretation of p(τ), now conditioned on OT = {Ot, ∀t ∈
{1, · · · , T}}:

45



2.4. AN INFERENCE-BASED INTERPRETATION OF DEEP RL 46

p(τ |OT ) ∝ p(τ,OT )

=

[
p(s1)

T−1∏
t=1

p(st+1|st, at)

]
exp(

T∑
t=1

r(st, at))

The first term relates to the probability of observing trajectory τ based on p, while
the second defines the probability of τ being optimal as an exponential sum of rewards.
Here, the optimal policy π∗ = p(at|st,OT ) is different than what is usually depicted by
the RL formulation π∗θ . Indeed, our new objective has the optimal trajectory conditioning
the distribution of interest, which does not depend on the parameterized representation.

Finding an optimal policy under probabilistic inference

Now that the learning problem is stated, the search for a policy must be discussed. To
find π(at|st,OT ) we compute backward messages [69] of the form:

βt(s, a) = p(OT |s, a)

βt(s) = p(OT |s) =
∫
A
βt(s, a)p(a|s)da

where p(a|s) does not describe any optimal actions and only exists as a prior action
distribution. Since we want to start in any possible state, OT can be restricted to Ot:T =
{Ot,∀t ∈ {t, · · · , T}}. These messages denote the probability of the trajectory being
optimal if it starts in state s (and action a in the corresponding case). The backward
computation is described by:

βt(st, at) = p(Ot:T |st, at) =
∫
A
βt+1(st+1)p(st+1|st, at)p(Ot|st, at)dst+1

Because of the Markovian property, π(at|st,Ot:T ) = π(at|st,OT ). From Bayes’ rule
[129], the optimal action distribution becomes:

π(at|st,Ot:T ) =
p(at, st|Ot:T )
p(st|Ot:T )

If we assume the prior p(at|st) to be uniform, the derivation leads to:

π(at|st,Ot:T ) =
p(at, st|Ot:T )
p(st|Ot:T )

=
p(Ot:T |st, at)p(at|st)

p(Ot:T |st)

∝ p(Ot:T |st, at)
p(Ot:T |st)

=
βt(st, at)

βt(st)

46



47 CHAPTER 2. INFERENCE-BASED REINFORCEMENT LEARNING

How does it relate to standard reinforcement learning? Actually, βt in log-space cor-
responds to soft interpretations of Q and V , so that:{

Q(st, at) = log βt(st, at)

V (st) = log βt(st)
. (2.1)

By marginalizing over actions, and depending on how large is Q, we get:

V (st) = log

∫
A
exp(Q(st, at))dat ≈ max

at
Q(st, at)

Finally, the backward computation becomes [69]:

Q(st, at) = r(st, at) + γlog Est+1∼p(.|st,at)(exp(V (st+1)))

Even if it looks similar, this is not the expected value displayed by many regular RL
approaches. This is similar to a soft maximum of the expectation, which is an optimistic
behavior. Such a situation is problematic, as the agent will take specific actions if it has
a non-zero probability of achieving a high reward. Among all possible and likely actions,
the agent will favor high value actions, even if they are risky or exhibit uncertainties.
Said differently, the agent could go towards actions that have high value, if there is a
non-zero probability of achieving good rewards. Now that we have described the inference
framework and how it relates to classical views on RL, we must look for the objective
optimized throughout learning. We will also try to display a more realistic behavior
through a better update rule.

Objective definition

We want to find π(at|st,OT ) so that actions are conditioned on all the optimality variables.
This is interesting because it matches situations where the Markov property does not hold.
The distribution over the entire trajectory is given by:

p(τ |OT ) =

[
p(s1)

T−1∏
t=1

p(st+1|st, at)

]
exp(

T∑
t=1

r(st, at)) (2.2)

We want to look for an approximation p̂ close enough to p(τ |OT ):

p̂(τ |OT ) =

[
p̂(s1)

T−1∏
t=1

p̂(st+1|st, at)

]
π̂(at|st) (2.3)

By exact inference, the framework looks at minimizing the Kullback-Liebler (KL) diver-
gence between the two distributions of interest. The KL divergence is defined as:

DKL(p(τ)||p̂(τ)) = Eτ∼p(.)log
(
p(τ)

p̂(τ)

)
(2.4)

47



2.4. AN INFERENCE-BASED INTERPRETATION OF DEEP RL 48

This measure stipulates how much p and p̂ differ where we consider p to be true.
It is not symmetric; hence, it is not a distance metric. Depending on the order, two
interpretations can be shown:

• the forward KL DKL(p(τ)||p̂(τ)) where we draw samples from p and maximize their
probabilities under p̂, i.e. high probabilities in p impose high probabilities in p̂. This
is known as mean-seeking behavior since p̂ must cover all modes of high probabilities
in p;

• the reverse KL DKL(p̂(τ)||p(τ)) where we draw samples from p̂ and maximize their
probabilities under p, i.e. high probabilities in p̂ impose high probabilities in p.
This is considered as mode-seeking behavior since each sample in p̂ must be within a
specific mode of p. The approximation p̂ then looks for a mode with high probability
and wide support.

The difference is subtle, as the first allows the approximation to cover all modes of
the true distribution, not collapsing in any mode in particular. The second allows the
approximation to cover one mode of high probability of the true distribution, preventing p̂
from collapsing in one which would have a strong narrow support, i.e. an overspecialized
one. Going back to equations (2.2) and (2.3), the RL objective is expressed as maximizing:
−DKL(p(τ |OT )||p̂(τ |OT )) = 0. The forward KL becomes difficult to compute since we do
not have access to the true distribution p(τ |OT ). However, we can sample from p̂ because
of interactions with the environment and realize that the previous expression is similar to a
reverse KL: −DKL(p(τ |OT )|p̂(τ |OT )) = DKL(p̂(τ |OT )|p(τ |OT )). Now, we see that p̂ looks
for a mode of high probability and wide support of p. Since the latter is conditioned on the
optimal trajectory, optimization will look for a mode close to optimality without collapsing
in one which would harm generalization. To simplify notations, we will hide conditions
on OT . Negating and developing the KL objective using linearity of the expectation, we
obtain:

−DKL(p̂(τ)||p(τ)) = Eτ∼p̂(.)[log p(s1) +
T−1∑
t=1

log p(st+1|st, at) +
T∑
t=1

r(st, at)

− log p̂(s1)−
T−1∑
t=1

log p̂(st+1|st, at)− log π̂(at|st)] (2.5)

= Eτ∼p̂(.)[log p(s1) +
T−1∑
t=1

log p(st+1|st, at) +
T∑
t=1

r(st, at)]

− H(π̂(τ))

with the entropy H(p) = −E[log p]. This objective is difficult to optimize because of
the lop-probabilities logp(st+1|st, at) and logp̂(st+1|st, at). Again, this makes the agent too
optimistic since it has control over the transition dynamics. It would allow the algorithm
to remove terrible outcomes of risky actions from the model while we want to take them
into account. Moreover, accessing the transition dynamics is unrealistic in many settings,

48



49 CHAPTER 2. INFERENCE-BASED REINFORCEMENT LEARNING

as the resulting policies would be sub-optimal in practice. One could force p̂(s1) = p(s1)
as well as p̂(st+1|st, at) = p(st+1|st, at), letting only π̂(at|st) vary. This would lead to a
modification of p̂(τ):

p̂(τ) =

[
p(s1)

T−1∏
t=1

p(st+1|st, at)

]
π̂(at|st)

From it, we derive a new expression from the KL divergence with several elements
canceling each other:

−DKL(p̂(τ)||p(τ)) = Eτ∼p(.)[
T∑
t=1

r(st, at)− log π̂(at|st)]

= Eτ∼p(.)[
T∑
t=1

r(st, at)]−H(π̂(τ))

We now seek to optimize the expected reward and entropy, which differs from tradi-
tional RL because of the second. We refer to this framework as Maximum Entropy RL,
from which we can also derive a formulation for Q and V by recovering a proper Bellman
operator [70]. It essentially formalizes that policies generating similar rewards should be
equally probable. By that, it enhances exploration and generalization in the presence of
disturbances [47]. Thus, it is entirely in line with the fact that learning a proper controller
for magnetic control might benefit from enhanced exploration mechanisms. This objective
will be extended in the next section using variational inference, starting the description of
the algorithm used in this PhD.

2.4.2 Maximum a posteriori Policy Optimization

The Maximum a posteriori Policy Optimization algorithm (MPO) is an off-policy actor-
critic, which sees the search of a policy from the perspective of Expectation-Minimization
(EM) algorithms [5]. Generally speaking, EM methods are applied where there is a latent
random variable from which data is not supposed to be visible in the first place [16]. In
our context, this means obtaining the mode of a posterior distribution q over the optimal
trajectory yet to be optimized. To understand MPO, we must start with the variational
inference approach and use it to extend the initial inference-based formulation. Let us
recall the trajectory distribution:

p(τ) = p(s1)

∞∏
t=1

p(st+1|st, at)πp(at|st) (2.6)

and OT the optimal trajectory, under the MDP M(S,A, p, r). We denote πp(at|st) =
p(at|st) for consistency regarding previous policy notations, and use a discount factor γ
to turn the problem into a finite horizon one, instead of considering the finite sum which
has been seen until now. We then have:

49



2.4. AN INFERENCE-BASED INTERPRETATION OF DEEP RL 50

p(τ |OT ) ∝ p(τ,OT ) = [p(s1)
∞∏
t=1

p(st+1|st, at)] exp(
∞∑
t=1

γtr(st, at))

Similarly, we define q as the approximation of the posterior distribution we seek through
optimization. For the incoming derivation, let us place ourselves in the continuous case,
even if the discrete one would follow the same principle. Performing the optimization using
variational inference principles relates to looking for an evidence lower bound, starting its
derivation from:

log p(OT ) = log

∫
p(OT , τ)dτ

= log

∫
q(τ)

q(τ)
p(OT , τ)dτ

= log Eτ∼q(.)
[
p(OT , τ)
q(τ)

]
Jensen’s inequality stipulates that:

log Eτ∼q(.)
[
p(OT , τ)
q(τ)

]
≥ Eτ∼q(.)

[
log

p(OT , τ)
q(τ)

]
Using log decomposition and the Bayes’ rule [129], we obtain:

Eτ∼q(.)
[
log

p(OT , τ)
q(τ)

]
= Eτ∼q(.)[log p(OT , τ)− log q(τ)]

= Eτ∼q(.)[log (p(OT |τ)p(τ))− log q(τ)]

= Eτ∼q(.)[
∞∑
t=1

1

α
γtr(st, at)− (log q(τ)− log p(τ))]

The 1
α term is usually induced as a temperature parameter in the expression of p(Ot =

1|st, at). Finally, using linearity of the expected value, the variational lower bound is
expressed as:

log p(OT ) ≥ Eτ∼q(.)

[ ∞∑
t=1

1

α
γtr(st, at)

]
−DKL(q(τ) || p(τ)) = J (q, p)

This is a KL term similar to what was displayed in Equation (2.5), this time incor-
porating the discount factor. Many choices are valid for q, and we choose to define it
with q(s1) = p(s1) and q(st+1|st, at) = p(st+1|st, at), ∀t > 0. Hence, q(τ) is expressed
in a similar way as Equation (2.6) for p(τ), letting only q(at|st) vary. We will write
πq(at|st) = q(at|st), for consistency with πp. Developing the Kullback-Leibler term, we
end up with:

50



51 CHAPTER 2. INFERENCE-BASED REINFORCEMENT LEARNING

log p(OT ) ≥ Eτ∼q(.)

[ ∞∑
t=1

1

α
γtr(st, at)

]
−DKL(πq || πp) = J (πq, πp)

We want to find the policy which maximizes J (q, p). Indeed, we want to identify
posterior distribution q close to prior distribution p, controlling the rate of change in policy
updates at each learning iteration. Again, this reverse KL scheme makes πq look for a mode
of high probability and wide support of πp, which is conditioned on the optimal trajectory.
Once this lower bound is formally defined, we follow the same operations seen in actor-
critic algorithms. First, we estimate new representations for the Q-values and improve
the policy from them. This actor-critic setup allows to work in a distributed manner, as
described in [5, 79], which increases the sample efficiency by multiplying many actors in
favor of one critic, filling a replay buffer with many interactions with the environment.
The MPO procedure refers to policy evaluation and improvement in the same way it has
been described previously:

1. policy evaluation: We learn an estimation of the critic Qπp using a standard on-
policy algorithm. Qπp will be parameterized by the neural network with learnable
parameters λ. It is worth noticing that initial works [5] used the Retrace algorithm
[81]. However, we did not see any enhancements compared to the regular n-step
bootstrap targets, so the latter is kept in the remaining part of this manuscript;

2. policy improvement: We use the new Qπp to perform the EM scheme:

(a) the E-step optimizes J (πq, πp) with respect to πq while fixing πp = πθ, a pa-
rameterized policy in the form of a fully-connected neural network. Since we
do not have knowledge of which actions are optimal, we infer πq from which
actions would lead to improvement of the policy;

(b) the M-step optimizes J (πq, πp) with respect to πp while fixing the obtained πq.
Since πq gives a lower bound, it maximizes J , improving the policy.

As seen previously in this chapter, target networks are known to make learning in
off-policy algorithms run smoother. We will use this principle for the actor and the critic
and denote them:

• Qπθλ the online parameterized critic fitted at each policy evaluation;

• Qπθλ′ the target critic that is updated periodically with weights from Qπθ
λ ;

• πθ the online parameterized policy, i.e. the one that is improved at each EM iteration;

• πθ′ the target parameterized policy that is updated periodically with weights from
πθ.

At each iteration k of MPO, Qπ
(k)
θ

(.) will refer to the current online or target critic, and

Q
π
(k−1)
θ

(.) to the previous ones. The same idea applies to π(.). Since weights of target networks

51



2.4. AN INFERENCE-BASED INTERPRETATION OF DEEP RL 52

are kept fixed for N iterations, we almost always have (.)
(k)
(.)′ = (.)

(k−1)
(.)′ = · · · = (.)

(k−N)
(.)′ .

Experiences used to perform learning are tuples (st, at, st+1, rt) with t ∈ {1, ..., T} for
T > 0, sampled from a replay buffer. Later in this manuscript, we will see that MPO
is trained with sequences instead of one-step interactions, for use by a recurrent critic
[29, 135]. Considering maximum length L of a random episode, this means that st will
be defined on {0, · · · , L− 1}, and st+1 will span {1, · · · , L}. N-step bootstrap returns are
then computed for each state in the sequence, with practical implementations padding the
end of the latter with n repetitions of the last observed Q-values.

Policy Evaluation

A simple TD-learning approach is considered to fit Qπ
(k)
θ
λ in a supervised way, minimizing

the following TD error by gradient descent:

min
λ

Qπ(k−1)
θ
λ′ (st+1, at+1)︸ ︷︷ ︸

targets

−Qπ
(k)
θ
λ (st, at)︸ ︷︷ ︸
predictions


2

We have at+1 ∼ π(k)θ′ (st+1), and targets computed using n-step bootstrap returns. This

means (for sequences but not only) that Qπ
(k−1)
θ
λ′ (st+1, at+1) is evaluated for each state, and

the related target is built using the next n states as expected by the method. Now that

Q
π
(k)
θ
λ is updated, the EM procedure can start.

Policy Improvement

Let us recall that the lower bound of interest is defined as:

J (πq, πp) = Eτ∼q(.)

[ ∞∑
t=1

1

α
γtr(st, at)

]
−DKL(πq || πp)

We can fold 1/α in the reward function, i.e. as an implicit hyperparameter, or multiply
the expression by α to get a similar expression in which the KL divergence is weighted
[47]. This might be seen as an interpolation between the standard RL objective and the
KL one.

E-step To start with, we fix πp = π
(k)
θ′ , and rely on the target critic Qπ

(k)
θ
λ′ since it is

preferable regarding training stability. Without them, all derivations would just assume

πp = π
(k)
θ and Qπ

(k)
θ
λ . So, we get:

J (πq, π(k)θ′ ) = Eτ∼q(.)

[ ∞∑
t=1

γtr(st, at)

]
− αDKL(πq || π(k)θ′ )

52



53 CHAPTER 2. INFERENCE-BASED REINFORCEMENT LEARNING

We can realize that J is associated with a general Q-function Qd like any MDP, for any
distribution d, state and action trajectories. Traditionally, Qd = Eτ∼d

[∑∞
t=1 γ

tr(st, at)
]
.

In our situation, we have:

Qd = Eτ∼d(.)

[ ∞∑
t=1

γtr(st, at)− αDKL(πq || π(t))

]
This shows that optimizing J with respect to πq can be expressed as solving the MDP

with a regularized Qd, i.e. πq is regularized towards the best current policy π(t) = π
(k)
θ′ .

Here, we have Qπ
(k)

θ′ = Eτ∼q(.)
[∑∞

t=1 γ
tr(st, at)

]
. This formulation is critical since it

introduces Q-values. Ultimately, the approximation q must have the following property:

E
τ∼π(k)

θ′

[
Qπ

(k)

θ′
]
≤ E

τ∼π(k)
q

[
Qπ

(k)
q

]
We can modify J by marginalizing out actions and states, and by playing with the previous
inequality, we get the extended cost [5]:

J (πq, π(k)θ′ ) = Es∼q(.)
[
Ea∼πq(.|s)

[
Q
π
(k)
θ
λ′ (s, a)

]
− αDKL(πq || π(k)θ′ )

]
A more complete derivation can be found in [5, 4]. It is challenging to compute the

expectation Eq with respect to πq [38], so s is sampled from the replay buffer which exhibits
a stationary distribution µ. A final issue arises with the α parameter, which is complex
to fine-tune because of the relative scale of the KL term and Q. To overcome it, this
regularization problem is turned into a hard constraint on the KL divergence:

max
q

Es∼µ(.)
[
Ea∼πq(.|s)

[
Q
π
(k)
θ
λ′ (s, a)

]]
s.t. Es∼µ(.)

[
DKL(πq || π(k)θ′ )

]
< ϵ (2.7)

One can interpret the ϵ hyperparameter as a tool to control the exploration rate during
learning, allowing deviation from the target policy. To infer πq, we consider that it is
given by a non-parametric formulation, built with actions sampled from π

(k)
θ′ for each state

in the current batch. Parametric formulations of πq would remove the need for an M-
step, leading to algorithms such as Soft actor-critic, Trust Region Policy Optimization or
Proximal Policy Optimization [48, 103, 105]. Once we have a proper formulation for this
E-step, the algorithm is executed in the following way while taking time back into account:

1. We sample m actions from π
(k)
θ′ , for each state {sj,t+1}1≤j≤n in the current batch,

i.e. ai,t+1 ∼ π
(k)
θ′ (sj,t+1) with i ∈ {1, · · · ,m}, j ∈ {1, · · · , n}, t ≥ 0. For the sake of

simplicity, let us note ai,t+1 simply by a, and similarly for s, except when precisions
will be required. By doing this, we build state-action pairs to create targets from
the fixed policy.

53



2.4. AN INFERENCE-BASED INTERPRETATION OF DEEP RL 54

2. Shaping πq(a|s) comes to adjusting the probabilities of each action for each state,
so that actions with higher action-value have higher probabilities [4]. This goes
back to the reverse KL definition: we want to shape πq close to a mode of high
probability and wide support of the Q-values for the best current policy π(k)θ′ . Any
valid transformation should guarantee ∀(i, j) ∈ {1, · · · ,m}×{1, · · · , n}, πq(ai|sj) >
0 and

∑
i πq(ai|sj) = 1. We enhance the constraints as a consequence:

max
q

Es∼µ(.)
[
Ea∼πq(.|s)

[
Q
π
(k)
θ
λ′ (s, a)

]]
s.t. Es∼µ(.)

[
DKL(πq || π(k)θ′ )

]
< ϵ

∀s
m∑
i=0

π
(k)
θ′ (ai|s) = 1

By doing that, we ensure that normalized πq(a|s) stay close enough to the last policy
distribution. Expected Q-values increase while preventing πq(a|s) from collapsing
into one narrow mode at the start.

3. A derivation of this problem is obtainable through a Lagrangian formulation [5],
giving:

πq(a|s) ∝ π(k)θ′ (a|s)exp

Qπ(k)
θ
λ′ (s, a)

η


where η is a temperature parameter representing the hard constraint on ϵ. To un-
derstand the naming of this parameter in machine learning, we can start from the
Boltzmann distribution that historically emanates from statistical mechanics. Let us
define a system’s state as a function of its temperature and energy, with p(sn) the
probability of being in state sn:

p(sn) =
exp(−En

kT )∑|Ω|
l exp(− El

kT )

with a finite set of reachable state Ω, k set to the Boltzmann constant and T the
temperature of the system. We can see that states with lower energy will have a high
probability of occurrence. More than that, if T is increased, the overall distribution
flattens out, increasing entropy. However, if T is reduced, the distribution sharpens
with a dominating mode. Said differently, if T is increased, high probabilities be-
come lower, and low ones become higher. In the opposite case, high probabilities
become even higher, and low ones become even lower. While being used intensively
in Machine Learning, the function Softmax : Rm −→ [0, 1]m, m > 0 can be linked
to the Boltzmann distribution. The Softmax is mainly used to output a vector of
probabilities whose dimension relates to the classification problem at hand. For ex-
ample, we could try to output the probability that one picture will be a dog, a cat,

54



55 CHAPTER 2. INFERENCE-BASED REINFORCEMENT LEARNING

or a panda. Placed at the end of a neural network, it leads to a vector with three
probabilities summing up to 1. Each of the latter’s components comes from the
expression:

Softmax(s)n =
exp(−βsn)∑m
l exp(−βsl)

for component n of vector s. We connect the two mathematical tools, setting β = 1
T

and sn = En. This might be one reason why machine learning refers to this naming
convention. In our case, the Q-values replace the energy. However, the interpretation
still holds: a higher η would flatten the distribution, making the probabilities of states
with lower Q-values higher and those with higher Q-values lower. A smaller η would
follow the opposite behavior we just discussed. Exploration is intrinsically related
to this statement since the ϵ parameter from Equation (2.7) can be interpreted as
such. In addition, η impacts the distribution of Q-values, which directly connects to
the reverse KL mode-seeking formulation. Finding this temperature is the ultimate
operation required by this E-step and corresponds to a convex dual optimization of
the form:

η = argmin
η

ηϵ+ η

n∑
j=1

1

n
log

m∑
i=1

1

m
exp

Qπ(k)
θ
λ′ (sj , ai)

η


In practice, only one gradient descent step is needed to update πq, using the Adam

optimizer [64] as it ensures η positive. The initialization of the temperature is important
because it will influence how exploration happens at the beginning of learning. Because of
the stationary distribution µ(s) given by samples from the replay buffer and the target Q
network used to evaluate the system over actions a, we face a complete off-policy learning
procedure. It has reduced variance of the estimate [5] at the cost of performing only

a partial optimization of J , since πp = πθ′ and Qπ
(k)

θ′ as a consequence, are seen as
constant with respect to q. This shows that policy improvement is performing an alternate
coordinate ascent in πq and πp.

M-step Now that a new estimate πq(a|s) is obtained based on sampled actions, we must
extend it to the state space so that better actions can be taken in unknown states. That
is when the M-step steps in by optimizing J (πq, πθ) with respect to πθ to improve the
policy, i.e. obtain π

(k+1)
θ . In J , we drop terms independent of π(k)θ and we fix πq to the

previously inferred distribution. It leads to the following problem:

max
θ
J (πq, πp) = maxEq∼µ(.)

[
Ea∼πq(.|s)log π

(k)
θ (a|s)

]
(2.8)

Unfortunately, this maximum likelihood can overfit easily to the the sampled based
distribution obtained in the E-step. Furthermore, if the policy evaluation gives poor

55



2.4. AN INFERENCE-BASED INTERPRETATION OF DEEP RL 56

signals, the sampled-based distribution can be inaccurate. These elements might result
in strong oscillations of the action distribution. A solution comes from adding a new
KL constraint to Equation (2.8) to limit the change of the parametric policy, which is
different than what was done during the E-step, which limited the rate of change in
the approximate action distribution. Consequently, it would better generalize without
overfitting the samples, going beyond the state-actions pairs used previously. This gives
the following constrained M-step:

max
πθ

Eq∼µ(.)
[
Ea∼πq(.|s)log π

(k)
θ (a|s)

]
s.t. Es∼µ(.)

[
DKL(π

(k)
θ′ || π

(k)
θ )
]
< ϵπθ

where ϵπθ is a hyperparameter of the expected change over state distribution in KL
divergence for the policy. If we consider π(k)θ′ to be the true stable action distribution, and
π
(k)
θ the online one yet to be approximated, this can be seen as a forward KL formulation.

More than the rate of change, it ensures that updates in the policy do not collapse in a
specific mode, covering all high probabilities modes from the old representation. Using a
Lagrangian formulation again [5, 4], we obtain a primal optimization problem which can
be solved by gradient ascent and descent:

max
πθ

min
α

n∑
j=1

m∑
i=1

πq(ai|sj) log π(k)θ (ai|sj) + α

ϵπθ − m∑
j=1

1

m
DKL(π

(k)
θ′ || π

(k)
θ )


with α > 0. It is solved in practice by alternate optimization of the inner and outer

objectives independently, with one gradient optimization step performed for each rou-
tine. A new π

(k+1)
θ is obtained, and we repeat policy evaluation and improvement until

convergence.

Convergence issues

The overall policy improvement procedure has a significant flaw. The expected regularized
reward is updated through actions sampled from the last policy distribution. In this case,
the optimal solution gives equal probabilities to equally good actions based on Qπ

(k)

θ′ and
0 probabilities to others. This induces a mode collapse on the best actions even if they are
not truly optimal because of a wrong approximation of Q. A first intuitive solution comes
from adding a KL constraint, as done during the M-step, regarding the rate of change in
the parametric policy. However, we would still lose entropy to cover the best actions so
far, i.e. the algorithm would prematurely converge towards one sub-optimal mode. This
also depends on the hyperparameters for ϵπθ , and the underlying topological structure of
Q [4]. The solution has been studied in other works such as [3], and presents a decoupling
of the objective into the policy mean and its covariance matrix:

56



57 CHAPTER 2. INFERENCE-BASED REINFORCEMENT LEARNING

1. we first maximize one objective to update the mean of the policy distribution, with
the covariance matrix fixed to the one from the target policy, i.e. the last best policy;

2. we then maximize the other objective to update the covariance matrix while similarly
fixing the mean.

This is particularly useful with action spaces in high dimensions, which is the case of
our application. Indeed, it avoids ill-definitions of the covariance matrix but enables fast
learning by allowing significant changes in the mean. More than that, gradients from the
covariance are independent of variations of the mean. Because of that, if one wants to
increase the likelihood of good samples far away from the mean, the policy must stretch
along the value manifold, which is allowed by the decoupling without introducing any
additional entropy term to control the policy distribution [114]. Again, through Lagrangian
relaxation, the M-step objective becomes:

max
µθ,Σθ

Eq∼µ(.)
[
Ea∼πq(.|s)

[
log πθ(a|s, µ = µk)

]]
+ Eq∼µ(.)

[
Ea∼πq(.|s)

[
log πθ(a|s,Σ = Σk)

]]
s.t. Es∼µ(.)

[
DKL(π

(k)
θ′ (a|s) || π(k)θ (a|s, µ = µk))

]
< ϵµ

s.t. Es∼µ(.)
[
DKL(π

(k)
θ′ (a|s) || π(k)θ (a|s,Σ = Σk))

]
< ϵΣ

with πθ = N (µθ,Σθ). ϵ hyperparameters can again be interpreted as a decoupled
tolerance over exploration. Finally, an action penalty is added to the learning scheme sim-
ilarly to [2]. The decoupling shows that we use Gaussian policies, and enhance exploration
through proper initial mean and standard deviations. Nevertheless, such distributions
have infinite support. A penalty for the actions trespassing their bounds is added to the
policy loss in the M-step, forcing the mean of the policy to stay within the range of the
action space. In our context, it helps avoid modes of the action distribution in which the
agent’s actions saturate to physical limits of the device, stopping premature convergence
to a non-optimal policy. A final summary of the MPO algorithm is given in (Figure 2.6).

2.5 An agent ready for interactions

This chapter allowed us to define the proper terminology of RL and display its close
links with optimal control. Many methods exist, and we decided to focus on off-policy
actor-critic methods, defining their core elements as neural networks. Deep reinforcement
learning has then been described to better contextualize the advantages and drawbacks
of the approach. Probabilistic inference is an interesting interpretation of RL, which is at
the basis of the Maximum a posteriori Policy Optimization algorithm used in this PhD.
The latter was finally presented, notably its implementation and how it inserts itself in

57



2.5. AN AGENT READY FOR INTERACTIONS 58

the family of inference-based methods. It combines the estimation of the Q-values, policy
evaluation, and policy improvement as an EM-based procedure. Hard constraints on the
objectives and Gaussian policies explicitly handle exploration. One must notice that the
MPO formulation slightly differs from the introduction we discussed regarding inference-
based approaches. Indeed, it does not rely on a complete probabilistic model but only on
a lower bound defined for classical policy search, which results in risk-seeking behavior
[69]. Furthermore, it does not try to solve a maximum entropy objective framing the
entire problem but focuses on solving such formulation at each learning iteration. This is
done through a bound on the KL divergence, which is not between the new policy and
an exponentiated reward but between the new policy and the old one (in the sense of
target networks). This gives more stable training, avoiding previous issues raised by the
difference with classical maximum entropy RL. It exhibits several advantages of inference-
based algorithms, and its off-policy setting shows strong empirical performance in a variety
of domains [115]. Moreover, its sample complexity is lower than state-of-the-art on-policy
methods [103, 105], and it is easily scalable to gather interaction data in a distributed
manner. This is particularly interesting knowing that the environment used in this PhD
is computationally expensive, as we will see in chapter 3. Its use of probabilistic inference
allows a refined control solution in the context of Markov Decision Processes where the
transition dynamics are uncertain, and the environment’s state is not completely visible
to the agent. Finally, considering the objective stated in the introduction, replicating
the state-of-the-art might benefit from using the same algorithm despite the number of
approaches in the deep RL landscape. Now that everything has been displayed for the
agent, the next chapter will present the environment simulating everything needed for
magnetic control on the WEST tokamak.

58



59 CHAPTER 2. INFERENCE-BASED REINFORCEMENT LEARNING

Mini-batch
of samples

Policy Evaluation

Use the target critic to compute n-step bootstrap targets

Fit Qπ
(k)
θ

λ in a supervised manner using predictions
from the online critic and the obtained targets

Policy Improvement

E-step

Sample actions from π
(k)
θ′

Create new targets with Qπ
(k)
θ

λ′

using the previous actions

Update the non-parametric πq
using the new targets, by partial

optimization of J (πq, π(k)
θ′ )

M-step

Fix πq and the covariance of π(k)
θ

Get µ(k+1)
θ by optimization of J (πq, π(k)

θ )

Fix πq and the mean of π(k)
θ

Get Σ
(k+1)
θ by optimization of J (πq, π(k)

θ )

Update target networks
if period passed

Figure 2.6: Summary of the Maximum a posteriori Policy Optimization algorithm

59



PILOT: a general framework for mag-
netic control

Contents
3.1 Creating a numerical twin for WEST . . . . . . . . . . . . . . 62

3.1.1 Machine description . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.1.2 Control scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.1.3 A NICE environment to train them all . . . . . . . . . . . . . . . 67

3.2 In a world of scenarios and rewards . . . . . . . . . . . . . . . 79
3.2.1 References generator . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.2.2 Reward definition . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.2.3 A digression on the WEST plasma control system . . . . . . . . 85

3.3 Assembling a distributed architecture . . . . . . . . . . . . . . 88
3.3.1 The wonderful story of how C++ met Python . . . . . . . . . . 88
3.3.2 Nodes galore . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
3.3.3 A glimpse of the agent’s distinctive features . . . . . . . . . . . . 91

3.4 A framework ready for training . . . . . . . . . . . . . . . . . . 94

60



61 CHAPTER 3. PILOT: A GENERAL FRAMEWORK FOR MAGNETIC CONTROL

To produce RL-based magnetic controllers, a proper interaction loop is needed, com-
posed of all the inherent building bricks of reinforcement learning. However, such dedicated
software was not directly available for this PhD. During its entirety, the PILOT 1 frame-
work was born to create a platform on which environments and agents could be easily
modified across projects. In the previous section, we defined the chosen algorithm for this
study, called the Maximum a posteriori Policy Optimization (MPO), which has several
advantages in complex and slow environments. In fusion applications, available simula-
tions have constrained specifications, notably regarding magnetic equilibrium evolution.
No available numerical solver is provided for possible integration into an RL framework.
Codes usually run entirely until they terminate since there is no reason to pause the exe-
cution, as expected from the RL interaction loop. Because of that, an extension of NICE 2

has been conducted to create a stable environment for our agent. This chapter thoroughly
describes PILOT’s components when applied to the WEST tokamak.

Figure 3.1: The WEST tokamak at CEA, Cadarache.

1Plasma rEinforcement Learning cOntrol for Tokamaks
2Newton direct and Inverse Computation for Equilibrium

61



3.1. CREATING A NUMERICAL TWIN FOR WEST 62

3.1 Creating a numerical twin for WEST

3.1.1 Machine description

Figure 3.2: WEST cross-section with surrounding poloidal field coils.

WEST is a full tungsten environment superconducting tokamak located at CEA,
Cadarache in France [17, 18] (Figure 3.1). It is an upgrade of Tore Supra, which was
built in 1988 and achieved a first record plasma duration of 6 minutes and 30 seconds
in 2003. In preparation for the ITER establishment, Tore Supra was transformed into
WEST in 2016 to master the heat exhaust in a tungsten environment for long discharges.
Consequently, the WEST experiment’s main objectives gravitate around testing actively
cooled plasma-facing components, especially its new divertor3, as well as performing stable
plasma discharges over 1000 seconds. WEST operates with a plasma current up to 1MA,
exhibits a minor radius of 50cm, a major one of 2.5m, and a plasma volume of 20m3. Its
heating systems incorporate Ion Cyclotron Resonance Heating and Lower Hybrid anten-
nas, with respectively 9 and 7MW of power. Electron Cyclotron Resonance Heating was
recently added and delivers 3MW of power. One of WEST main features lies in its supra-
conductive toroidal coils which generate a magnetic field of 3.7T (at 2.5 meters radius)
for long pulses. For control, nine poloidal coils surround the vacuum chamber, with two
remaining inside as part of the divertors (Figure 3.2). WEST established a new record of

3Parts of the vacuum vessel in contact with the plasma in many configurations. Its utility will be
discussed in the following sections

62



63 CHAPTER 3. PILOT: A GENERAL FRAMEWORK FOR MAGNETIC CONTROL

discharge duration in 2024, maintaining a plasma at 4keV for 6 minutes and 4 seconds,
with an electron density twice greater than what was obtained on Tore Supra.

3.1.2 Control scenarios

Main magnetic configurations

In tokamak physics, the plasma can be seen as nested closed magnetic flux surfaces, i.e.
iso-contours numerically speaking, where the Last Closed Flux Surface (LCFS) defines
the plasma boundary. Magnetic control intervenes to target specific scenarios in which
the plasma follows different configurations. In WEST, the latter is initiated in the limiter
configuration, which sees the plasma leaning on an interaction point present on the limiter,
a succession of manufactured tiles shaping a bumper that prevents damages on fragile
components. Its circular-like boundary is then considered the last closed flux surface that
is not in contact with the limiter. This can be performed using the nine control coils
outside the vacuum vessel. Historically, elongated plasmas gained a lot of interest because
advanced configurations with improved confinement properties originate from them. On
WEST, they are achieved by adding two in-vessel coils to the overall system, namely the
divertor coils, located in eponym structures (Figure 3.3). Each of these coils is composed
of 4 sub-coils connected in series.

Each of their currents {IXup , IXdown
} can be set in the same direction as the plasma

current Ip so that the LCFS gets stretched and the elongation κ increases (κ > 1). At
some point, one or more saddle points appear where the gradient of the magnetic flux is
null, and the sign of its second-order derivative depends on the currents’ direction. These
null field areas form X-points, and the LCFS becomes surrounded by open surfaces. The
chosen coil current values dictate the saddle point locations, which can appear on the upper

Figure 3.3: On WEST, many discharges describe a transition between limiter and X-point
configurations.

63



3.1. CREATING A NUMERICAL TWIN FOR WEST 64

half side of the vacuum chamber, on its lower one, or at both simultaneously. For each
X-point, the plasma interacts with the wall materials at two strike points located on the
related divertors. An important part of the plasma energy deposits on the latter, which
is then subject to strong mechanical and physical constraints studied in many modern
tokamaks. In this PhD, we only consider lower single null configurations, where a unique
X-point is produced on the lower divertor coil side. This configuration is the basis of
many experiments on WEST, in which classical control was used. Hence, it logically
serves as a baseline to assess the efficiency of RL-based solutions before future work on
more advanced configurations. It is worth noticing that the aforementioned enhanced
confinement properties might come from the fact that X-points work as exclusive bounded
zones, which limit contamination of the plasma by impurities caused by erosion of the
chamber walls. This is particularly important when the latter are made out of tungsten,
a heavy element with high radiating power: a small number of impurities can significantly
degrade plasma confinement to the point of disruption. On WEST, most experiments tend
to achieve higher plasma elongation, to benefit from these more efficient operation regimes.
Therefore, scenarios start from a limiter configuration and evolve towards an X-point one.
Then, the main objective is to ensure transitions as fast and precise as possible, without
parasite oscillations in the plasma location, as well as undesired contacts between the
confined plasma and many parts of the vacuum vessel. Nevertheless, relying on elongated
plasmas comes at the risk of growing vertical instabilities that must be taken care of.

z

r

R

Z

ϕ

dSz

Figure 3.4: The (r,ϕ,z) coordinate system used to describe the origins of magnetic insta-
bilities. The spatial integral over the disc of radius R and centered at Z is used to model
the poloidal magnetic flux.

Plasma vertical instabilities

We now consider a filament model for a massless plasma in a tokamak, which was men-
tioned in the introduction, and a cylindrical right-handed coordinate system (r, ϕ, z) [101],
with ϕ the toroidal angle. Recalling the foundations of tokamak physics, a strong cur-
rent in the central solenoid generates a poloidal magnetic field, which combines with the
toroidal one. From unit vectors r̂, ẑ, ϕ̂, the total magnetic field in a tokamak becomes:

B = Br(r, z)r̂+Bz(r, z)ẑ+Bϕ(r, z)ϕ̂ = Bp(r, z) +Bϕ(r, z)

64



65 CHAPTER 3. PILOT: A GENERAL FRAMEWORK FOR MAGNETIC CONTROL

with Bp and Bϕ, respectively the poloidal and toroidal components. The poloidal
magnetic flux can then be described as [130]:

ψ(r, z) =

∫∫
S
B dSz =

∫∫
S
Bz(r

′, z)r′dr′dϕ = 2π

∫ R

0
Bz(r

′, z)r′dr′

with dSz a surface element normal in the z direction and R the plasma major radius
(Figure 3.4). Taking partial derivatives, we get:

∂ψ

∂r
= 2πrBz

∂ψ

∂z
= 2π

∫ R

0

∂Bz
∂r

r′dr′

From the tokamak axisymmetry property on ϕ, we know that ∇·B = 1
r
∂rBr
∂r + ∂Bz

∂z = 0.
By rearranging the previous equations, we obtain:{

Br = − 1
2πr

∂ψ
∂z

Bz =
1

2πr
∂ψ
∂r

Now that Br and Bz are properly defined, they will be used to identify the mentioned
instabilities. On the r axis, an outward force Fr is initially observed [130], and conse-
quently, there is a need for a counteracting inward force to stabilize the plasma. This is
done by generating a vertical magnetic field Bv using the control coils. This generation
process is performed in the aim of giving Ip × Bv orientated in the −r̂ direction, with
a resulting Lorentz force FL ∼ Ipϕ̂ × Bvẑ. It is important to note that in the chosen
coordinate system, the right-hand rule gives us that the sign of Ip is opposed to that of
Bv. Knowing this, all plasma of interest are radially stable, and radial position control
through the generation of a radial field Bv is only needed because of changes in the plasma
characteristics (current, profiles, etc). Furthermore, we denote the curvature index n [67],
which defines the curvature of the vertical field generated by the control coils:

n = − R

Bzp

∂Bv
∂r

with R the major radius, Bzp the vertical field Bv generated by the coils and evaluated
at zp the plasma location on the z axis. That should equal 0 for a limiter plasma, and
lower than 0 in the case of an elongated one [124]. Vertically, the plasma is at equilibrium
where Br = 0. Knowing the resulting Lorentz force Fz ∼ Ip × Br, and using the sign
convention mentioned previously, we get that:

∂Fz
∂z

∣∣∣
z=zp

< 0⇐⇒ ∂Br
∂z

∣∣∣
z=zp

> 0

In the plasma, ∇ ·Bp = 0, which leads to:

65



3.1. CREATING A NUMERICAL TWIN FOR WEST 66

∂Bv
∂r

=
∂Bh
∂z

.
By rearranging the curvature index and recalling that if Ip > 0 → Bzp < 0, we get

that n > 0. However, it goes against what was previously stated for an elongated plasma,
with n < 0. This shows that any elongated plasmas will be vertically unstable. A stability
analysis can also be performed from a control perspective, exhibiting an unstable mode
under which the system undergoes vertical instabilities, and even if the vacuum vessel
induces passive currents counteracting this issue, the instability timescale is too fast to
entirely mitigate the phenomenon [67].

Xup

IXup

Xdown
IXdown

XP

Ip

Figure 3.5: If we see the divertor coils and the plasma as conducting wires with currents
flowing in the same direction, they attract each other. This attraction creates a vertical
force responsible for vertical instabilities while the plasma stretches.

To conclude, the two divertor coils stretch and move the plasma. However, a small
vertical displacement will increase the vertical force in this direction (Figure 3.5), accel-
erating the so-called vertical instabilities. Vertical control is an essential part of tokamak
operations, and it will be discussed several times in this PhD, as we will look for mag-
netic control of the plasma position and shape. Thus, if we want to properly evaluate
the approach of this PhD on a vast number of scenarios, these shapes must be handled

66



67 CHAPTER 3. PILOT: A GENERAL FRAMEWORK FOR MAGNETIC CONTROL

accordingly. Scenarios are then made of a succession of transitions between the two con-
figurations of interest (Figure 3.3). The simulator described in the next section has been
configured for stable initialization of both shapes and many possible intermediate ones.

3.1.3 A NICE environment to train them all

Magnetic equilibrium

Let us recall that the total magnetic field in a tokamak is decomposed in toroidal and
poloidal components, respectively named Bϕ and Bp so that B = Bϕ + Bp. Similarly,
let us use the (r, ϕ, z) coordinate system introduced in the previous section. The NICE 4

[36, 45] solver is a C++ free-boundary equilibrium code solving a non-linear 2D partial
differential equation of the poloidal flux ψ in time and space in tokamaks. The said
equation represents the force balance in the plasma and starts from Maxwell equations,
which are augmented with Faraday and Ohm laws to model the system’s evolution:

−∆∗ψ(r, z, t) = jϕ(r, ψ(r, z, t), t) (3.1)

The left-hand side of 3.1 considers a second order elliptic operator ∆∗:

∆∗ψ =
∂

∂r

(
1

µ(ψ)r

∂ψ

∂r

)
− ∂

∂z

(
1

µ(ψ)r

∂ψ

∂z

)
= ∇.

(
1

µ(ψ)r
∇ψ
)

where µ(ψ) is the magnetic permeability, and ∇ is the 2D operator in the (r,z)-plane.
The toroidal component of the current density jϕ depends on the location inside the
vacuum chamber (Figure 3.6), and several domains must be taken into account as a con-
sequence:

• the iron structures Ωf , which make µ non-linearly dependent on ψ. Outside of them,
it is equal to the constant permeability of vacuum µ0;

• the passive structures {Ωpsi}(1≤i≤Nps) with conductivity σi ̸= 0;

• the PF coils regions {Ωcj}(1≤j≤Nc) with respective areas Aj and currents Ij ;

• the limiter region ΓL, where the plasma exists before reaching the walls;

• the plasma domain Ωp ⊂ ΓL, which is unknown and defined by its boundary, namely
the last closed iso-contour of ψ. The latter is either tangent to ΓL or bounded by
the presence of an X-point. The whole equation to solve is then referred to as the
Grad-Shafranov equation (GS):

−∆∗ψ = Rp′(ψ) +
1

µ0R
ff ′(ψ)

with major radius R, pressure p(ψ), and diamagnetic function f(ψ) = RBϕ. Both p
and ff ′ are 0 outside Ωp.

4Newton direct and Inverse Computation for Equilibrium

67



3.1. CREATING A NUMERICAL TWIN FOR WEST 68

Ωp

ΓL

ΩcΩps

Ωf

Figure 3.6: Schematic view of a tokamak poloidal plane, as modeled in NICE. Ferromag-
netic iron structures (gray) introduce a non-linearity in the equilibrium equation. The
passive structures (dashed contour) notably include the vacuum vessel. The latter con-
tains the limiter region ΓL (purple), where the plasma domain Ωp lies. Coils surround the
vessel (brown rectangles), and the two divertor coils are logically inside the chamber.

We can rewrite (3.1) so that it involves all domains:

−∆∗ψ(r, z, t) =


rp′(ψ, t) + 1

µ0r
ff ′(ψ, t) in Ωp

−σi
r
dψ
dt in Ωpsi

− 1
Aj
Ij(

dψ
dt , t) in Ωcj

0 otherwise

(3.2)

A precise depiction of WEST geometry and related domains is presented in Appendix
C. Part of the RL interaction loop described in Chapter 2 implies sending actions to

68



69 CHAPTER 3. PILOT: A GENERAL FRAMEWORK FOR MAGNETIC CONTROL

the NICE environment so that plasma evolution can be computed. The agent predicts
the input voltages, which appear in the expression of coil currents. Taking into account
mutual and self induction through circuit equations [53], Ij(dψdt , t) is expressed as:

Ij(
dψ

dt
, t) =

Ns∑
k=1

SjkVk(t) +

Nc∑
l=1

Rjl
1

Al

∫
Ωcl

dψ

dt
drdz, ∀i ∈ 1, . . . , Nc

with Ns the number of power supplies, S of dimension Nc × Ns and R of dimension
Nc ×Nc. It is worth mentioning that equation (3.2) is parabolic inside the coils or when
the plasma evolves through time, but elliptic in static cases. In ΓL, the magnetic axis
of the plasma is taken as the global minimum of ψ, i.e. ∇ψ = 0, and X-points are
saddle points of ψ. Given prescribed p(ψ), ff ′(ψ) and initial conditions ψ(r, z, 0), we
solve (3.2) at each timestep for ψ such that lim||(r,z)||→∞ψ(r, z, t) → 0. The timestep is
always set to δt = 10−3 s, following the frequency at which the real plasma control system
of WEST works. The equation is discretized using a P1 finite element method based on
a triangular mesh of the computation domain [15]. More precisely, the triangulation is
performed on a restricted spatial domain named ABB5, which is enclosed in a semi-circle
containing the whole geometry of the tokamak, i.e. Ωp ∪Ωp ∪i Ωpsi ∪j Ωcj . In addition to
the P1 approach, a second finite element method is implemented. It couples C0 piecewise
linear Lagrange finite elements in a region without the plasma, and C1 piece-wise cubic
reduced Hsieh–Clough–Tocher finite elements elsewhere [45]. Ultimately, it stabilizes the
numerical scheme but is computationally more expensive, which explains our focus on
the P1 formulation. Nevertheless, the latter also displays long training times that we
compensate for through enhancements on the RL side (See Chapter 4).

NICE modes and initialization procedure

NICE features several modes, each with a specific purpose regarding tokamak operations,
or more specifically for the training procedure used in PILOT (Table 3.1). The inverse and
reconstruction modes do not solve directly the Grad-Shafranov equation. They perform
least-squares optimization to minimize a cost function specified by the user, so that the
equilibrium equation in the ABB domain is satisfied. The general formulation of this
cost function could be simplified as such, with C the overall cost, D a quadratic term to
make an iso-contour run through the desired boundary points {(Rk, Zk)}0≤k≥Nb

and R a
regularization term for large coil currents {Ij}0≤j≥Nc :

5It stands for Albanase, Blum, de Barbieri who first introduced the semi-circle integral method used
to consider the previous conditions at infinity [6]

69



3.1. CREATING A NUMERICAL TWIN FOR WEST 70

C = D +R

D =
1

2

Nb∑
i

(ψ(Ri, Zi)− ψ(R0, Z0))
2

R =
1

2

Nc∑
i

wiI
2
i

Mode Purpose Input Output Usual applications

Inverse
Find coil currents
to match a desired

plasma shape

Desired shape
Ip

p′ and ff ′
Icoils

ψ(R,Z)
Development of

magnetic configurations

Inverse evolution

Find coil currents and
voltages to match
a desired plasma
shape evolution

Desired shape evolution
ψ(R,Z, t0)

Ip(t), p′(t) and ff ′(t)

Icoils(t)
Vcoils(t)
ψ(R,Z, t)

Not used in practice
(too costly and difficult

to fine tune).

Direct
Compute one
equilibrium at
a given time

Icoils
Ip

p′ and ff ′
ψ(R,Z)

Study of
equilibrium stability

Direct evolution Compute the
equilibrium evolution

ψ(R,Z, t0)
Vcoils(t)
Ip(t)

p′(t) and ff ′(t)

ψ(R,Z, t)

Controller design
and scenario development

Direct evolution
with resistive diffusion

Refined computation of the
equilibrium evolution

ψ(R,Z, t0)
Vcoils(t)
p′(t)

ψ(R,Z, t)

Direct evolution
with resistive diffusion
and transport equation

Physically refined
computation of the

equilibrium evolution

ψ(R,Z, t0)
Vcoils(t)

ψ(R,Z, t)

Reconstruction
Compute the

equilibrium with given
measurements

Magnetic measurements
Icoils

Ipassive = 0

ψ(R,Z)
p′ and ff ′

Plasma state and
shape estimation for

real time control,
diagnostic treatment
and physics analysis

Table 3.1: NICE modes can be employed for theoretical studies and practical uses within
the WEST operating routine.

In this PhD, the NICE code is used within a reinforcement learning loop, meaning
interactions with the chosen MPO agent are performed through episodes. Ideally, the latter
must be informative enough to make the data gathered in the replay buffer, useful at best
for policy optimization. Nevertheless, one must realize that there is no guarantee that the
simulation will converge because of possible local minima in the resolution of the Newton
formulation. This could lead to numerical instabilities, shortening episode duration, while
the agent’s actions could have been efficient. Hence, a standard procedure is defined at the
initialization of each new execution. This strategy ensures proper convergence of NICE for
RL, either to reach the full desired duration of an episode, or at least to support enough
direct evolutive iterations to shape informative data sequences for the agent (Figure 3.7).
The procedure always follows the same pattern no matter what the scenario can be:

70



71 CHAPTER 3. PILOT: A GENERAL FRAMEWORK FOR MAGNETIC CONTROL

1. an inverse iteration based on configuration files for the initial shape is computed.
Consequently, optimized currents of the poloidal system are obtained as an initial
guess in preparation for the next step;

2. a first direct computation is performed to safely check that the previous equilibrium
is a good starting point. Profiles are initialized from the ones obtained at the previous
step, that is to say, normalized ψN , p′(ψ), and ff ′(ψ);

3. the direct evolution starts, with initial profiles copied in the same way for consistency.

Moreover, executions (and episodes as a consequence) are always launched from con-
figuration files extracted from recent experimental data, so that the configuration files
contain specifications that are physically reachable on the WEST tokamak.

INITIALIZATION PROCEDURE

Configuration files

Start NICE instance

Inverse Convergence ?

Direct Convergence ?

Evolutive step Convergence ?

Equilibrium
for PILOT

yes

no

yes

no

yes

no

Figure 3.7: Summary of the interaction loop that is happening in the NICE environment,
including convergence checks during initialization.

Improving numerical stability

The initialization strategy ensures that the computational workflow of the NICE environ-
ment is efficiently set. Despite its presence, NICE still exhibits numerical instabilities in

71



3.1. CREATING A NUMERICAL TWIN FOR WEST 72

all modes involved. Over time, NICE was augmented with resistive diffusion [52], to better
model plasma evolution. In classical formulations, p′ and ff ′ must be prescribed as input
data. Out of the two, ff ′ can lead to strong numerical instabilities. In most works, this
term is computed from the resistive current diffusion equation, with the flux surface average
Grad-Shafranov equation. Nonetheless, the resistive current diffusion equation is usually
part of a transport model, which evolves parallel to the magnetic equilibrium one. This
makes it difficult to ensure numerical stability since two representations are required for
the poloidal flux. NICE implements an evolution equation directly for f [45], which leads
to the following expression. Given initial conditions f0(t), and ∀g(ψ)so thatg(ψLCFS) = 0:

Find f(ψ, t) w.r.t.
∫
Ωp

df(ψ, t)

dt

g(ψ)

r
drdz +

∫
Ωp

dψ

dt

f(ψ, t)

r
g′(ψ)drdz

+

∫
Ωp

η||(rp′f(ψ, t)) +
f2(ψ, t) + |∇ψ|2

µ0r
f ′(ψ, t)− rjni ·B)g′(ψ)drdz = 0

with non-inductive current density jni, resistivity η|| (the parallel component coeffi-
cient of the anisotropic resistivity tensor of the plasma) and flux at the plasma boundary
ψLCFS . jni originates from current sources created by additional heating systems, namely
the ECRH and ICRH on WEST. Furthermore, jni is not well known, so it is approximated
through jni(ψ) · |B| with jni(ψ) an analytical formula discussed later in this chapter.
An abstract analytical formula also represents η||. This guarantees a more complete and
physically accurate representation of the plasma’s behavior, accounting for the dynamics
of the plasma’s magnetic flux profiles. In previous research found in the literature, dif-
ferent models have been defined, such as a 0D flux consumption model where a simple
lumped-circuit equation describes the plasma current time evolution [85, 29]. The present
extensions display noticeable benefits compared to previous alternatives, as they represent
the current density distribution in the plasma. Hence, it better models the magnetic field
lines’ evolution over time as they diffuse, which is crucial for better simulation during each
control scenario. In addition, it gives a more representative evolution of the total plasma
current:

Ip :=

∫
Ωp

(
Rp′(ψ) +

1

µ0R
ff ′(ψ)

)
drdz

with Ωp defining plasma domain. However, resistive diffusion does not entirely prevent
convergence issues within the P1 formulation, as it sometimes results in sudden spikes of
plasma current up to several kA [63] and of current density, which are not expected from
reality. To overcome this problem, NICE was recently extended with an electron energy
transport equation [45]. Through the definition of the electron temperature profiles, it
realistically computes pressure profiles p, and better approximate jni · B and η|| [100].
This approach refines the entire simulation as profiles include physical information instead
of abstract representations. It results in even more stabilized and realistic calculations,
which benefit the framework. Hence, the information observed by the agent is more in
line with reality.

72



73 CHAPTER 3. PILOT: A GENERAL FRAMEWORK FOR MAGNETIC CONTROL

Diversity among samples

The agent used in this study appeals to a replay buffer, in which data from the NICE
environment is stored. Once sampled, they are used by the MPO algorithm to optimize
the behavioral policy. A lack of diversity among the samples could result in more extended
training at best, or convergence towards a non-optimal policy in the worst-case scenario.
Indeed, generalization and performance could rapidly drop if the observations processed
by the learning algorithm are too similar, or if a few examples drift from the average
trajectory displayed by the current behavior. There is a need to promote sample diversity
throughout each episode. To do so, let us recall the said NICE enhancements using resistive
diffusion and electron transport. Without the latter, p′ and ff ′ are represented by A and
B, linear combinations of a set of basis functions defined on [0, 1] which do not follow the
same formulation depending on the involved mode. In the reconstruction mode, they can
be piecewise linear or cubic splines, for example. In inverse, direct and evolution ones,
which are used extensively in our initialization workflow, A and B can either:

• be prescribed by given profile points in the configuration files, and linearly interpo-
lated afterwards;

• rely on parametric formations of the form:

A(x) = β(1− xα)γ

B(x) = (1− β)(1− xα)γ

The second option is employed exclusively in this work, and proper randomization
of α, β, and γ paves the way towards the desired diversity, encouraging initial profiles
to vary between episodes. Nonetheless, one must remember that the NICE solver dis-
played convergence issues without its enhancements, so there must be regions of this 3D
hyperparameter space where convergence is unlikely to happen. So, to perform the said
randomization correctly, a stability search is conducted under variations of α, β, and γ for
both A and B. The same kind of layout is present on different simulators like FEEQS [53].
Analyzing parameters on these software shows that α ∈ {0.5, 1, 2} depending on plasma’s
type, β ∈ [0.1, 2] adjusting the normalized pressure, and γ ∈ [0, 3]. In FEEQS, the latter is
empirically linked to plasma’s internal inductance through γ = 2× li− 1 with li ∈ [0.5, 2].
We then perform 200 runs of 200 timesteps kept at 10−3 s each, sampling a triplet at each
new execution and recording failures occurring at any step of the initialization procedure.
The time threshold is meant to check if the initialized profiles are well posed so that the
execution goes further than the first steps of the starting procedure, which are the inverse
and the direct operations. Indeed, the evolutive part could also crash before reaching a de-
cent number of iterations. In this 3-dimensional parameter space, the obtained hypercube
(Figure 3.8) is used to sample triplets at each episode during training, which minimizes
the probability of NICE not converging. When resistive diffusion is present, let us recall
that parameterized equations are employed for jni and η||, which are required to compute
f and chosen to be:

73



3.1. CREATING A NUMERICAL TWIN FOR WEST 74

η|| =
a

(b− ψN )
jni ·B = max

ψ
jni(ψ) · |B| × (1− ψN )

In the same way as for α, β and γ, we study NICE convergence under the randomization
of a and b, with maxψ jni(ψ) = 105. The exact same runs are computed, with a sampled
within [10−9, 10−8] and b from [1.005, 1.01]. These intervals were identified after many
attempts outside of their bounds were unsuccessful. This ends up in extended bounds,
from which additional sampling of the two parameters helps promote diversity among the
related profiles. Since this grid search is performed among all modes and for all shapes of
interest, NICE stability becomes empirically bounded for this project.

Figure 3.8: All points are execution examples which stopped at a certain step of the RL
loop, either at initialization or during the evolutive part. The hypercube minimizes the
number of failed attempts.

We must notice that p′ and ff ′ do not evolve and are kept as such after getting
randomized at initiation. The same idea can be said about η|| and jni · B which are also
fixed parameters. In fact, the second step of the initialization procedure marginally differs
when resistive diffusion is considered since p and ff ′ are obtained through intermediate
basis decomposition of f , p, η, jni · B. When both resistive diffusion and electron energy
transport are included, the initialization procedure still needs the randomization of initial
profiles. Once the evolution section is reached, the evolving p and ff ′ profiles are then

74



75 CHAPTER 3. PILOT: A GENERAL FRAMEWORK FOR MAGNETIC CONTROL

directly part of the computation. Yet, most of the analyses conducted in this PhD and
presented in Chapter 5, did not benefit from the electron energy transport equation, which
explains why the previous procedure is put on show. One could have randomized the
initial plasma shapes (position, LCFS coordinates, etc), but the starting references are
fixed instead. Indeed, they have been specifically chosen for their numerical stability,
as random updates could have harmed the entire procedure. Moreover, extending the
previous searches for the whole plasma geometry is impractical, as we observed shapes
between two functional ones from which NICE can not converge. Most importantly, the
breakdown and formation of the first plasma are always the same: we can reasonably
assume that the shape of the plasma will always be similar once it is formed and the
trained policy takes over. In addition, the internal profiles and the resistivity depend
on the device conditioning, the impurities, and a lot of uncontrolled parameters, which
justifies even more why the previous random search is worth doing.

Assessing NICE performance

Several NICE parameters influence the average calculation time for magnetic equilibria. A
parallel study was conducted to select values prioritizing calculation speed while limiting
the risk of precision loss. Considering that NICE is expensive in terms of its calculations,
a first optimization of the stopping criterion for the Newton solver is done. This threshold
is set to 10−5 instead of the default value of 10−10. Thus, it limits the maximum number of
iterations considered for convergence in each direct evolution computation without losing
accuracy in its inputs. Choosing the timestep depends on the control objective and may
impact solver convergence. If the step size is too large, the situation will not be modeled
correctly, and invalid information may be obtained. Conversely, a smaller step size will
stabilize the simulation at the risk of increasing calculation times. After a certain threshold,
reducing the step size will no longer modify the result, but the calculation time will
continue to grow. Here, the timestep has been set to 10−3 second, as a value of 10−4

second is unnecessary. Indeed, this value enables us to model the learning process with
the characteristic times observable on WEST while matching the frequency of the control
system.

The mesh size directly impacts the search time when identifying nodes useful for inter-
polating a quantity like magnetic flux. The mesh is generated within the ABB domain, as
presented earlier in this section. To do this, the mesh boundary must be defined by several
points, up to 500. After several trials, 17 points look sufficient to achieve stable gener-
ation at the environment launch. Increasing or decreasing this number might augment
the number of mesh generation failures, thus blocking the training launch. This research
extended to the desired area for each triangle of the structure within the computational
domain. This size corresponds to 3× 10−4 m2 in the limiter domain, and 2× 10−3 m2 in
iron structures, PF coils and the vessel around the limiter domain. Finally, 2 × 10−4 m2

is retained in passive structures, and 5 × 10−3 m2 in the remaining space of the ABB
domain. This way, the mesh is generated efficiently and finely enough to obtain accurate
results without unnecessarily increasing size.

These specifications lead to an average computation time of 3 seconds per timestep for

75



3.1. CREATING A NUMERICAL TWIN FOR WEST 76

each direct evolution step. However, this only considers equilibria computed in the middle
of the vacuum chamber. It does not consider locations of the latter where equilibrium
computation might be more difficult than others, especially at the start of training where
the agent moves the plasma in a sub-optimal manner. With that in hand, the new average
computation time per timestep was measured at 10 seconds. Adding resistive diffusion and
electron energy transport equations increases it to 15 seconds. It is worth mentioning that
an initial analysis showed that the previous combined mode computed each equilibria in
13 seconds on average. This was refined by looking more in-depth at the said plasma loca-
tions, as several pathological trajectories that increase computation time were not initially
considered. Moreover, shared computational resources challenged the precise computation
of the average computation time. So, this update considered different server loads.

Finalizing the environment

Once all of this is set up, is it enough for a real numerical twin? The environment only
contains a simulation of the plasma’s equilibrium evolution without considering what links
the structure to actuators and diagnostics. For this purpose, power supply and diagnostic
models are incorporated to represent the plasma control system on WEST accurately
(Figure 3.9). The power supply model is kept simple with only a few parameters of the
poloidal coils system reproduced from the real plant, including delays. This is programmed
as a cycling matrix of dimensions Nc × d with d being the number of delayed timesteps
for each coil, and Nc = 11 in the WEST case. This comes down to periodically shifting
columns of the matrix with vectors containing the actions predicted by the agent for
each of the 11 poloidal field coils. Moreover, limits on their currents and voltages are
considered at 95% of the operational limits defined on WEST. This is done to replicate
safety control requirements induced through the terminal conditions inherent to the RL
loop. In addition, it characterizes the action penalty used for the agent in Chapter 2. The
terminal conditions are triggered if the thresholds are reached or the safety factor at 95%
of the magnetic flux, namely the q95, goes below 2. The regular safety factor expresses
the ratio of the number of poloidal turns per toroidal cycle on a field line running over a
magnetic surface. Is it known that the plasma tends to disrupt when Ip/Bϕ exceeds a limit
expressed by the edge safety factor, conveniently expressed as qedge ∝ a2

R /
Bϕ

Ip
with Bϕ the

toroidal magnetic field, Ip the plasma current, and a, R minor and major radii. This limit
equals 2 for limiter plasmas [90], but does not hold for diverted configurations. In the
latter, we must use the safety factor just inside the LCFS, namely the q95. A low factor
might end up in a squished plasma that is unmaintainable. If triggered, the environment
is reset, and the initialization procedure is performed.

Diagnostics are simulated through the direct mode, in which a specific tool has been
developed (Table 3.1). It is worth discussing that the environment’s state is initially defined
as s = {y, Ia,m} with y the plasma equilibrium information, Ia the currents in the active
control coils, and m the raw magnetic measurements. y typically contains all quantities of
interest used to compute the holy grail of RL, namely the reward. However, s is usually
tricky to observe entirely in real-time. To overcome this issue, the NICE environment is

76



77 CHAPTER 3. PILOT: A GENERAL FRAMEWORK FOR MAGNETIC CONTROL

Figure 3.9: PILOT incorporates power supply and diagnostics models, so that training
and inference can be performed. For example, a trained policy can be connected to the
complete environment for tests or evaluation.

restricted to a Partially Observable MDP (POMDP) where the state space is limited to
the observation space O. As such, we have o(s) = {mb, f l, Ia,

dmb
dt , Vloop}, with {mb, f l}

magnetic probes and flux loops raw measurements, dmb
dt , first-order temporal derivatives

of a selection of magnetic probes signals, and the loop voltage Vloop taken as the temporal
derivative of the first flux loop. As a side note, the loop voltage is the voltage created
in a circular loop concentric with the plasma column due to the variation of the poloidal
magnetic flux passing through it. More than the real-time observation issue, the agent
will be able to learn directly from raw magnetic measurements, which aligns with the
objectives stated in the introduction. Indeed, the purpose of using neural networks is
to get rid of reconstruction codes during real-time operations. At each new equilibrium
computation during the direct evolution part, synthetic data is generated, reproducing
what is seen on the data acquisition system of WEST. More precisely, WEST boasts 110
magnetic sensors measuring the magnetic field locally in tangent and normal directions for
each cross-section on which they are placed. Considering the axisymmetric assumption in
tokamaks, and despite many sections, only one is considered for the final measurements
(Figure 3.10). Similarly, 17 flux loops quantify the magnetic flux. At last, why is it
interesting to add temporal derivatives of the magnetic probes if the previous sensors
already give insights into the plasma’s state?

The inclusion of temporal information leverages a missing aspect coming from static
sensor data in the sense that the rate of change in the magnetic field measurements im-
proves representation of the device dynamics. Combined with the initial raw measure-
ments, they could leverage a robust identification of implicit plasma events during train-
ing. Even so all probes could have been retained, only 55 pairs of local measurements are
uniformly sampled along the cross-section, to compute the said derivatives. Using half of
the sensors reduces the agent’s neural networks’ potential input size, with enough physical
details captured in the observations. Again, delays are implemented to ensure consistency
within the actual plant. Finally, noise can be injected in o(s) to model uncertainties and
potential faulty diagnostics.

77



3.1. CREATING A NUMERICAL TWIN FOR WEST 78

Figure 3.10: Magnetic probes with normal measurements (blue arrows) and tangential
ones (red arrows), as well as flux loops (purple squares) circle the torus. We only consider
one cross-section for the diagnostics model thanks to the axisymmetry assumption.

To conclude, PILOT uses an environment based on NICE, which computes the evolving
magnetic equilibrium under incoming voltages for a timestep of 10−3 second, generating
raw synthetic magnetic data for use by the other parts of the framework. This environment
gives an accurate representation of the plasma, as well as the WEST control system. From
now on, we will interchangeably refer to it as NICE or the environment.

78



79 CHAPTER 3. PILOT: A GENERAL FRAMEWORK FOR MAGNETIC CONTROL

3.2 In a world of scenarios and rewards

3.2.1 References generator

We want to train an agent capable of controlling plasma’s shape, position, and current.
Using RL means having a reward function designed to track such quantities along specified
scenarios. However, to compute this signal, we must find a way to compare the agent’s
behavior with targets of interest. An easily modifiable reference generator is then inte-
grated into PILOT. One must only specify snapshots depending on current needs and time
intervals between them. Several examples of these snapshots can be found in Appendix
A. The initial and final equilibriums can be both X-point or limiter configurations. Any
specifications in between are possible, as intermediate sections are bounded by snapshots
of the plasma containing all needed information. Intermediate equilibria, which compose
the said sections, are linearly interpolated with respect to the environment timestep of 1
millisecond. By doing that, reward computation is available at every step of the training
loop. The data structures produced by the generator store the 32 LCFS reference points,
the elongation, limiter and/or X-point location, magnetic center coordinates, supplied
voltages, as well as plasma and coil currents. On top of that, snapshots are taken from
successful discharges extracted from the WEST database. In this way, references are not
only feasible but also within the operational domain of the device. This builds an entire
discharge with automatically generated transitions. In this work, four scenarios are show-
cased to answer the first problematic (Figure 3.11), closely related to the state-of-the-art
and the routine operation on WEST:

1. limiter maintain is the baseline scenario for this PhD, as it looks for simple control
of a stable plasma with all of its characteristics kept constant over time;

2. limiter evolve is looking for the displacement of the plasma magnetic center and
boundary, varying the elongation while keeping all other information constant. This
task exhibits an actual evolution of the targets, which gives insights on how the
controller might track moving references;

3. X-point maintain is designed to evaluate the performance of RL-based solutions
against references of an unstable elongated plasma kept constant over time;

4. X-point evolve corresponds to a classical transition between a limiter configuration
and an X-point one; it is somehow the final level, because of the unstable moving
targets.

All scenarios last for about 300 timesteps, as it appeared enough for generalization
and inference on longer shots and to check if the trained controllers can handle vertical
instabilities in the case of X-point transitions. For the latter, this duration is also close to
actual transition times observed on WEST.

79



3.2. IN A WORLD OF SCENARIOS AND REWARDS 80

0 r

z

M M

t = 0 t = tfinal

(a) Limiter maintain

0 r

z

M

M

t = 0

t = tfinal

(b) Limiter evolve

0 r

z

M

XP

M

XP

t = 0 t = tfinal

(c) X-point maintain

0 r

z

M

M

XP

t = 0

t = tfinal

(d) X-point evolve

Figure 3.11: The four horsemen of RL-based control experiments.

3.2.2 Reward definition

Let us recall the classic RL interaction loop. The agent interacts with the environment
through actions and obtains a state s(t) and a reward r(t) in return. The reward is a scalar
feedback signal, which the agent uses to optimize its behavior in many ways, as described
in Chapter 2. This work does not contradict this idea, as rewards are computed from s(t),
with target references tr(t) coming from the reference generator. The chosen reward is a
normalized combination of error signals, each describing a specific sub-task of magnetic
control (shape, plasma current, etc). Each component c is computed as the absolute
distance between its reference value trc(t) and the corresponding state’s property from the
NICE environment sc(t). It is worth saying that while such distance is not differentiable,
the remaining operations are meant to be. Since the agent tries to maximize the reward,
we enforce positive ones, which worked best in our use case. Negative rewards could be
used to model faster controller’s response, but this potential objective is instead obtained
by defining shorter transitions in the reference generator.

Even though the reward scale should not matter in theory, we observe steeper gradients
as the range of reward values increases in practice. Such gradients might make the training
process unstable compared to the initial networks’ weights. Because of that, the final
reward is normalized to [0, 1] through non-linear transformations. Such a process goes
through two steps: firstly, scaling is applied to each c using the Softplus function to get

80



81 CHAPTER 3. PILOT: A GENERAL FRAMEWORK FOR MAGNETIC CONTROL

sub-task rewards between 0 and 1. Suppose one component comprises several targets,
like shape control using all last closed flux surface (LCFS) reference points. In that case,
they are combined with the Smoothmax function to get a scalar value within the desired
interval. At the end, a last combination is performed through the same function to get a
final reward value within the range of interest. This bounds the reward, which is helpful for
interpretation and stays in line with the reward assumption introduced in the probabilistic
inference framework. The resulting method appears in Algorithm 1. It is worth mentioning
that the final scalar is multiplied by 10−1 so that the maximum cumulative return for 100ms
of plasma is 10. This last operation follows [29] and is useful to scale the reward signal
well with the input features received by the critic during training. Finally, the agent gets
a penalizing reward equal to −5, scaled accordingly to 0.5 when terminal conditions are
triggered.

Looking at both functions, nonlinearity plays an important role. Ultimately, the pro-
cedure starts from errors computed as distances between targets and references. It would
be beneficial to map the said distances to [0, 1] and intelligently combine them, either pro-
moting exploration or boosting precise control through exploitation. With that in hand,
functions defining the reward computation should allow such branching depending on the
overall scenario:

• for each component, one must let the agent know that there is wide room for improve-
ments. Conversely, the agent should sometimes stay within narrow error bounds, by
which the reward evolves steeply from a good behavior to a bad one;

• for combination, there should be a mechanism that follows the same principle. The
agent could consider all components equally, which can be useful for proper explo-
ration. On the contrary, it could focus on the worst component of them all at a given
time so that precise tracking of the latter can be achieved.

Algorithm 1 Reward calculation pseudo-code
C, set of reward components, TR set of corresponding targets, W set of corresponding weights.

COMPUTE(C)
R← {}
for all c ∈ C do

if c scalar then
E ← |sc(t)− trc(t)|
Rc ← SOFTPLUS(E)

else
Rc ← SMOOTHMAX({SOFTPLUS(Rci)}1≤i≤size(c), 1)

end if
APPEND(R,Rc)

end for
return SMOOTHMAX(R,W )

81



3.2. IN A WORLD OF SCENARIOS AND REWARDS 82

Figure 3.12: Softplus behavior. If the error is smaller than the good parameter, the reward
will saturate to 1. If worse than bad, the reward decays to 0. ξ describes scaling steepness
between the two anchor points and is fixed at −log(19) like [29]. This value is chosen so
that the bad parameter leads to a reward of 0.1 out of 1.

The two transformations used in this PhD explicitly act on two sides of this coin. More
precisely, good and bad parameters in the Softplus formulation appears as core elements
of the tool:

Softplus(e) = min(max(2 · s, 0), 1),with

{
s = σ(−ξ( e−good

bad−good))

ξ = −log(19)
(3.3)

This operation scales the reward signal nonlinearly according to regions of interest
in the reward space (Figure 3.12). Tight values in both parameters of the component
will lead to higher focus to achieve high related reward, and smoother values will make
the components easier to satisfy. Consequently, if the related error is below good, the
corresponding reward will always be 1, meaning that anything in this region of the reward
space can be considered a proper behavior towards the control objective. If the error goes
above the bad threshold, the reward rapidly decays from 0.1 towards 0. This penalizes the
current behavior but lets the agent attempt to recover in a small room for improvements.
In between, the reward scale depends on the width of the parameters’ interval, with an
apparent drop-off passing the good parameter. The steepness is parameterized by ξ and set
to −log(19) following several standards proposed by [29]. To conclude on this matter, close
parameters for the Softplus function help look for precise control, making it difficult to get
valuable signals when the training scenario involves substantial variations, and exploration
should occur. Oppositely, wide intervals favor in-depth exploration at the cost of precise
control through exploitation. In the case of the present scenarios, limiter maintain and X-

82



83 CHAPTER 3. PILOT: A GENERAL FRAMEWORK FOR MAGNETIC CONTROL

point maintain exhibit initial conditions similar to their final targets. Choosing relatively
tight intervals for each reward component is suitable since the region of interest does not
need extensive exploration. For limiter evolve and X-point evolve, they explicitly show
differences between initial and final target states. With such a context, exploration is
needed and will be preeminent to gain efficient knowledge of the reference trajectories and
their surroundings. In fact, Sigmoid and asymptotic scaling functions were tested, but the
use of the Softplus function is more suitable, especially regarding interpretability.

(a) α = 0 (b) α = −0.5

(c) α = −1 (d) α = −5

Figure 3.13: Smoothmax(r1, r2, α), with r1, r2 scaled reward components in [0, 1]. Focus
is directed towards the worst component as α → −∞. Such nonlinear scaling allows the
refinement of objectives specification during training.

Then, the Smoothmax transformation allows for a non-linear combination of its inputs:

Smoothmax(r,w) =

∑
wirie

αri∑
wieαri

83



3.2. IN A WORLD OF SCENARIOS AND REWARDS 84

Weights affect the importance of each reward component, while the α parameter cre-
ates a balance between them (Figure 3.13). This setup becomes even more critical as each
component, i.e. control tasks, does not display the same level of difficulty or the same
importance regarding a configuration of interest. Indeed, a negative value will shape final
rewards close to the least performing component, leaving others vaguely explored. Such
trade-offs are essential since the closer α is to 0, the more all components are treated
equally, i.e. all control objectives are put on an equal footing. The positive case should
be discarded, as it entirely excludes any component that will perform badly. Since each
kind of scenario displays a specific usage, the previous dilemma between exploitation and
exploration is raised accordingly. With this aim in mind, let us compare both plasma
configurations of interest to get a better intuition of Smoothmax utility. For instance,
when the plasma is diverted, the LCFS component would be closely related to the X-point
location component because both are intrinsically linked to the plasma’s geometry. If
the plasma is limited, we could draw the same idea regarding the LCFS and the refer-
ence elongation. In each situation, exploring the two components is correlated: this does
not mean we should remove one of them, but it is pretty intuitive to consider all tasks
equally. It becomes imperative when reference targets variate sufficiently between a sce-
nario’s beginning and end, as no components should be favored. This is directly linked
to the mandatory nature of exploration in the evolve scenarios since the agent explores
possibilities at the potential risk of losing accuracy. This loss could happen on several
components to get better capabilities on others. Furthermore, knowledge acquired for one
component does not interfere with what comes from the second one, and exploration re-
mains general enough. However, in maintain use cases, initial conditions are the same as
final targets, which favors focusing on precise control immediately at the start. The ini-

Figure 3.14: Full environment with target generation, to mimic WEST and its control
system.

84



85 CHAPTER 3. PILOT: A GENERAL FRAMEWORK FOR MAGNETIC CONTROL

tial intuitive understanding of Smoothmax is put at half-mast. Even if components might
be correlated, the system should focus on the current worst component to increase the
reward without needing in-depth exploration by the agent. Many transformations could
have been used for the final nonlinear combination since mappings from R∗

+ → [0, 1] can
be drawn out of several possible operators (Softmax, Maximum, etc). This work relied on
SmoothMax as it is flexible enough to approximate the common maximum if needed, while
being convex. This latter point is an important feature with regards to neural networks
since it can be differentiated many times. For a description of each component and how
they are configured for all scenarios, please refer to Appendix D.

Training RL-based magnetic controllers requires building an environment mimicking
WEST in the most realistic way. After receiving voltages processed by a power supply
model, NICE advances in time the equilibrium, which data is used for the final reward
calculation and to check terminal conditions. Thanks to the reference generator and the
reward design with a tolerance over control accuracy, this environment (Figure 3.14) is
ready for full integration into PILOT.

3.2.3 A digression on the WEST plasma control system

Previously, we stated that reference scenarios are sequences of transitions linearly interpo-
lated between several desired snapshots, from which the reference generator yields targets
for reward computation. The latter’s definition employs multiple parameters (Good, Bad,
α), which allow to refine the granularity of objectives we are aiming at. It is worth building
a parallel with the WEST plasma control system to understand how the previous part of
the framework relates to a certain logic already seen in real devices.

Initiation

Ramp-up

Pulse-stop

Flat-top

Correct

Failure

Correct

Failure

Failure/Pulse end

Figure 3.15: An example of the event scheduler with segments defined as cells, which
transition depending on which even has been triggered.

85



3.2. IN A WORLD OF SCENARIOS AND REWARDS 86

0 t

Ip

Segment 1 Segment 2 Segment 3 Segment 4

Figure 3.16: For example, a plasma current reference trajectory is made out of several
segments, integrating different envelopes accounting for control tolerance.

Several parameters must be maintained close to some desired references to achieve
a plasma discharge on WEST. This is done by managing actuators to react to specific
situations and ensure machine protection. In practice, the Plasma Control System (PCS)
handles magnetic control, with specifications on expected or unplanned events (disruptions,
coils overheating, etc). For this, it must implement a real-time event manager (Figure 3.15)
while keeping its structure flexible enough for future advanced control methods that might
become useful. Like many other devices, diagnostics gather data in real-time not only for
control but also for data storage. On WEST, this interplay between the diagnostics,
the controllers, and the event manager goes through segments. One segment contains
the variations occurring in the PCS during a pre-defined time interval. These changes
might concern references to waveforms of plasma parameters (plasma current, etc) or even
parameters of the controllers. Segments are switched depending on the plasma state,
the status of the actuators and diagnostics, or any characterized event that could have
been detected. To detect them, each reference waveform considers an envelope around its
nominal trajectory (Figure 3.16). If observations from the diagnostics exceed the bounds,
the event manager reacts quickly. Depending on the event, the pulse either keeps going
with the initial plan or starts an alternative segment like discharge termination. This
system permits a flexible definition of what is acceptable regarding reference tracking,
allowing more or less deviation from the specific aim of the experiment. Without being its
first inspiration, these segments are quite in line with the reference generator developed for
the framework. The same idea applies to terminal conditions of the reinforcement learning
loop and its connections with the said envelopes.

86



87 CHAPTER 3. PILOT: A GENERAL FRAMEWORK FOR MAGNETIC CONTROL

Just like many devices, most WEST controllers are based on PID control, a proven
method that stands for Proportional, Integral, and Derivative. Its terms respectively reduce
the error between references and measurements, minimize its integral over time, and act on
the system’s response through the error derivative. Their usual formulation [8] is described
as:

u(t) = Kpe(t) +Ki

∫ t

0
e(τ)) dτ +Kd

de(t)

dt

Gain Purpose Limits

Kp
Getting closer to the setpoint Too high → Unstable system, noise sensitivity

Limiting residual errors Too low → Poor tracking, high residual error

Ki
Cancel residual error Too high → Unstable system, setpoint overshoot

Handles input disturbance Too low → Low robustness to input disturbances

Kd
Improve system reaction Too high → Unstable system, noise sensitivity

Improve stability Too low → No handling of system instabilities

Table 3.2: Summary of PID gains and their impact on the system’s response.

with control u(t), and difference between the observation and the desired reference
e(t). As stated in the first chapter, the tuning of WEST controllers is fully realized when
we start to look at PID gains, each having a specific impact on the system’s response
(Table 3.2). Such fine-tuning could be linked to the reward engineering process in RL.
While PID gains modify the behavior of the classical controller, an RL-based alternative
learns from the reward, in which parameters must be fine-tuned depending on the scenario.
This recalls what was stated in the introduction, with a clear shift of interest from fine-
tuning how control should perform to what should be achieved. To conclude on WEST
magnetic controllers, diagnostics inform on raw measurements used to reconstruct the
plasma information, which are sent to different PIDs through feedback. Moreover, control
is coupled to feedforward trajectories to define reference poloidal coil currents, which end
up dictating the voltages supplied to the poloidal system.

This overall description serves as an additional basis for understanding where an RL-
based controller could be deployed and, most importantly, what we intend to replace.
Recalling the introduction, the RL-based controller would not need any reconstruction
code. More than that, it could handle feedback control and feedforward trajectories as
reward components. Ultimately, its deployment would rely on a binary of the behavioral
policy, with inputs and outputs already integrated into the control system (measurements,
currents, voltages). Such flexibility appears again as proof of RL’s theoretical usefulness,
comparing the integration of this approach to the actual way of performing plasma control.

87



3.3. ASSEMBLING A DISTRIBUTED ARCHITECTURE 88

3.3 Assembling a distributed architecture

3.3.1 The wonderful story of how C++ met Python

Now that the environment has been carefully described, as well as core definitions of
rewards and references, a question remains regarding how the decisions taken by the agent
can be communicated to the environment. Both elements are not written in the same
programming language. Indeed, the agent and the framework are developed in Python.
This is mainly done to benefit from various tools for off-policy RL and optimized deep
learning libraries, e.g. TensorFlow [1]. This is different in the case of NICE, which is
written in C++. This could be often seen in fusion, as simulations are usually written
in such language, in Fortran or Matlab. Because of that, one must look at a simple
yet safe communication protocol to let these building bricks interact with each other. The
system here transfers predicted voltages to NICE, which processes them until the following
magnetic equilibrium and synthetic measurements are sent back to Python. Several options
were contemplated, each with its advantages and drawbacks. To choose between these
options, the specifications of an RL training loop for plasma control must be in sight.
Given the computing timescales of NICE, communication must be fast to optimize training
duration without modifying the numerical solver in depth. It must also be reliable to
avoid losing valuable information in the NICE data. Sockets fulfill these requirements,
providing a proper platform for connecting the agent’s decisions to the actual simulation
across several viable protocols. From this idea, the full environment retains its last crucial
concept. It spans an interface between a Python server and the NICE instance working
as a client. Specifically, the said server is instantiated in the environment object. Right
after, NICE is launched, and the server waits for the first data. If NICE initialization
succeeds, the client responds by concatenating all needed information. This object is then
proceeded to compute the reward and check terminal conditions. The agent observes the
environment’s measurements o(t), coupled with all current targets to predict the next
actions. As a side note, the said inputs are normalized, if possible, with respect to deep
learning practices.

Thereafter, actions are sent to the NICE client, thanks to the server. This interaction
loop goes on until a terminal condition is reached. Hence, the server sends a reset signal to
NICE, which restarts from scratch, going again through the initialization procedure (Figure
3.17). One might wonder what happens if the initialization fails or NICE does not converge
during an evolution time step. In this case, a reset of the simulation is directly performed,
and the server receives a signal stating that a new episode has to start. Such signals
management ensures that the whole interface handles exceptions at both Python and
C++ levels, or any issue that will compromise data exchange. One must say that we rely
on this procedure because NICE’s implementation does not display any straightforward
utilities for saving the solver’s state at any moment during the execution, nor pausing the
latter to perform the interaction with the agent. By using sockets, blocking Input/Outputs
practically implement an RL loop. A first attempt relied on TCP (Transmission Control
Protocol), which helped in creating a development routine for further extensions. Unix
domain sockets (UDS) ends up being a valuable improvement, analyzing how the transfer

88



89 CHAPTER 3. PILOT: A GENERAL FRAMEWORK FOR MAGNETIC CONTROL

is observed at each side of the server-client interface. On average, sending times are
under 21 microseconds, compared to TCP’s 54 microseconds. Then, the time taken for
communication is 2.5 times faster than within the previous procedure. Now, we have an
exact definition of which elements compose the implemented environment:

• a launcher starting the NICE client, which contains both the power supply and
diagnostics models;

• the server allowing communication with the latter;

• finally, utilities to compute rewards and check terminal conditions for episode reset.

Launch NICE client Initialization

Start server Episode start

Create policy

Send data

Success ?

no

Observe measures

yes

Evolutive step

Send actions

Send data

Success ?

Observe measures

no
yes

Figure 3.17: Schematic execution of the synchronous interaction between the policy and the
NICE environment. After certain operations, the related component waits (dashed arrows)
until the response is received. If an exception is raised, we go back to the initialization
procedure in the client, and the server starts a new episode.

3.3.2 Nodes galore

The previous section only shows how information are shared in the present multi-language
setup. Simply put, the socket approach only enables sending actions to the simulation and
processing its data, but it lacks everything related to the training procedure. In Chapter
2, MPO is presented as an actor-critic algorithm, with each element in the expression
respectively synonym of policy and action-value functions. Since we work in the context
of deep RL, both are neural networks. By linking the policy to the actual environment, we
finally get to predict actions necessary to form the interaction loop inherent to reinforce-
ment learning. But we still have to realize the remaining connection with the replay buffer.
Most importantly, executing NICE is costly, which makes training of MPO through only
one actor intractable for the desired problem. Distributed reinforcement learning comes
into play, as described in Chapter 2.

89



3.3. ASSEMBLING A DISTRIBUTED ARCHITECTURE 90

Figure 3.18: The complete framework in the context of distributed actor-critic agents. The
environment is made up of a C++ client hosting NICE (blue) and the Python server (light
green), enabling the use of observations for MPO. Dashed lines represent data exchange
through sockets, with serialization performed at each sending.

Indeed, one can overcome the long duration of each episode by multiplying the number
of actors running simultaneously. By doing so, the replay buffer is filled with more diverse
information straight from the beginning, helping in shorter training times. Our setup
would then require many actors to interact with their respective environments, gathering
information for the replay buffer in parallel and without waiting for each other. Not to
mention that the replay buffer must be connected to the critic neural network for MPO to
perform policy optimization. We could have used sockets again, but the complexity of this
undertaking would have increased tremendously. This issue exists because handling multi-

90



91 CHAPTER 3. PILOT: A GENERAL FRAMEWORK FOR MAGNETIC CONTROL

ple handcrafted connections produces bottlenecks and quickly becomes obsolete compared
to ready-to-use open-source tools. The Launchpad library [134] appears as a powerful
choice for this purpose, where gRPC (Remote Procedure Call) transactions connect nodes
that represent different distributed services in or between networks. It is directly related
to the distributed actor-critic layout we want to alleviate, with nodes representing threads
for each block in PILOT. Assembling such architecture follows the present specification:

• the first node contains the replay buffer implemented with Reverb [21];

• the learner node uses information gathered within the replay buffer to optimize
policy and critic stored neural networks;

• actor nodes work independently from each other, spanning a UDS protocol inter-
face with its own random seed, in which the control policy interacts with a unique
instance of NICE. All needed interaction data are sent to the replay buffer asyn-
chronously. Each present node updates its policy by copying weights periodically
from the learner.

This results in a fast and reliable, multi-language, multi-threaded framework, running
numerous instances of the NICE environment in parallel to learn a control policy (Figure
3.18). As a side note, we can notice that all policy inputs, as well as data passing through
the replay buffer, are normalized if possible, namely observations, actions, rewards, and
targets. This is done with respect to usual practices in deep learning, as using inputs with
similar scales speeds up neural network training.

3.3.3 A glimpse of the agent’s distinctive features

For now, nothing was stated regarding neural network architectures used with MPO. Both
actor and critic could share the same architecture, like a standard Multi Layered Perceptron
(MLP), or use an asymmetric design with a Recurrent critic. Proved to be more efficient
[29, 84], this second option is the one considered throughout the manuscript (Figures
3.19, 3.20). The use of a Long-Short-Term Memory (LSTM) [54] requires preparing and
characterizing the data format, which will describe every element filling the replay buffer.
For this purpose, stored data are defined as sequences of lengths ranging from 1 in case we
would require a feedforward critic, to any n > 0 for the recurrent approach. By doing that,
temporal dynamics are taken into account by the critic and emphasized anew if we recall
the previous considerations on temporal derivatives in the observations. The Sonnet6 and
Acme [55] libraries were intensively used to implement MPO, and specifically to adapt its
internal mechanisms to sequences. The latter are partitioned to perform a burn-in phase,
which takes place at each learner step, i.e. a partition of each input sequence sampled
from the replay buffer is used to initialize the LSTM core [62].

It is important to mention that despite MPO being theoretically robust to changes in its
hyperparameters (meaning not ones related to the reward definition), a search over them is

6https://github.com/google-deepmind/sonnet/tree/v2

91



3.3. ASSEMBLING A DISTRIBUTED ARCHITECTURE 92

mandatory to extract the best out of the algorithm. However, their number is high, which
showcases limitations in our computational budget. Even if it was enhanced throughout
the project, a threshold must have been set to use the number of computing hours at hand
realistically. To a lesser extent, it also argues in favor of reproducibility, considering what
the vast majority of research laboratories in fusion might own. First, a few publications
[38, 5, 4], as well as large-scale studies [7], inform on a set of viable values which mainly
worked for toy problems. Coupled with an in-depth understanding of the MPO algorithm,
we can realistically refine the intervals for each hyperparameter. We initially limit our
focus on the scenario limiter maintain for simplicity. Next, Bayesian optimization [127] is
employed to restrict the dimensions of the search space. Afterwards, a regular grid search
is performed to find correct values for the scenario. Finally, validation is conducted by
running trainings using the best set of hyperparameters for all remaining scenarios over
two different seeds. One must notice that each actor node increments this seed value to
be unique for each environment and neural network initialization. The conclusion follows
what makes MPO an interesting choice: once a set of hyperparameters is found for one
control scenario, it requires little if no updates when moving to a new one. Please refer to
Appendix E for a complete description of each hyperparameter.

x1

x2

xT

...
LSTM

a
(2)
1

a
(2)
2

a
(2)
3

a
(2)
256

...

a
(3)
1

a
(3)
2

a
(3)
3

a
(3)
256

...

Qπ

Figure 3.19: An LSTM with 256 units is used in the critic network. Inputs (green) are
of dimensions (T,B, |o(t)| + |a(t)|), where T is the length of the sequence and B is the
batch size. The next hidden layers (blue) have 256 neurons, each fully connected. The
output layer (red) contains only one neuron, which outputs the action-value. A detailed
description of its implementation can be found in Appendix E.

Policy networks in actor nodes are all restricted to CPU to lower simulation to reality
gaps, preparing the control policy for smooth transfer to the WEST control system. The
C++ environments then run on Intel® Cascade Lake® 6248 at 2.50GHz. However, the
learner node performs its computations on an NVIDIA® Tesla V100S to benefit from
GPU advantages over deep learning architectures. Remote access to the Jean Zay super-

92



93 CHAPTER 3. PILOT: A GENERAL FRAMEWORK FOR MAGNETIC CONTROL

computer7 gave access to several nodes with similar characteristics while expanding the
number of GPUs to 4. The hybridism of this configuration is what makes the optimization
of the framework not straightforward. We do not necessarily need a lot of GPUs to obtain
correct training or inference times, but enough CPUs so that the NICE instances can run
effortlessly one episode after the other. Like so, every aspect of the framework checks
that training puts the agent in realistic conditions regarding WEST usual operation. As
a side note, the framework is flexible enough to allow the addition of new control scenar-
ios. Moreover, even if the NICE environment is used in the entirety of the thesis, any
environment could be added as long as data specification is done rigorously, and functions
inherent to the RL loop are implemented (reset, step). Data specification relates to the
description of what we want to send and receive across the socket connections.

x1

x2

xn

...

a
(1)
1

a
(1)
2

a
(1)
3

a
(1)
256

...

a
(2)
1

a
(2)
2

a
(2)
3

a
(2)
256

...

a
(3)
1

a
(3)
2

a
(3)
3

a
(3)
256

...

a
(4)
1

a
(4)
2

a
(4)
3

a
(4)
256

...

y
(µ,σ)
1

y
(µ,σ)
11

...

Figure 3.20: Input layer is of size |o(t)| + |tr(t)|, and all four hidden layers have 256
neurons. The output layer outputs parameters of a normal distribution for each of the 11
coils. Appendix E provides a detailed description of its implementation.

For predicted actions, voltages are sampled from Gaussian distributions, whose param-
eters are the outputs of the control policy, i.e. mean and standard deviation for each control
coil. Thus, the agent does not directly learn the mapping from raw magnetic measurements
to voltages, but an intermediate representation helpful for exploration. We stated that
RL is deeply related to the exploitation/exploration dilemma, i.e how the agent exploits
acquired knowledge or explores possible outcomes to refine the policy. We saw that a first
implemented procedure acts on the environment to randomize initial conditions at best,
leading to various observations that describe plasma evolution more efficiently. Another
lever is linked to the reward definition and how the related functions can be configured. In
particular, one can act on the agent by choosing an advanced exploration mechanism for
our use-case. In Chapter 2, we briefly discussed stochastic policies, and how they could
learn distributions used to sample actions during training. The agent’s structure follows

7http://www.idris.fr/jean-zay/

93



3.4. A FRAMEWORK READY FOR TRAINING 94

this concept to maximize its exploration of state and action spaces. The sampled voltages
are then supplied to each of the 11 PF coils of WEST. After exploring possible outcomes
during training, only the mean of each distribution is kept at inference to predict optimal
actions. It is worth mentioning that the policy is evaluated during training on a separate
node, using only the mean in the same way. This helps in logging enough data for active
monitoring. Most importantly, the weights of the policy network in this evaluation node
are used to initialize the controller used for post-training analysis. This means all results
presented in Chapter 5 are outputted by networks following the same architecture (Figure
3.20).

3.4 A framework ready for training

This chapter presented all the components of the PILOT framework needed to answer the
first problematic. We first described which plasma configurations are usually displayed on
the WEST tokamak and how this PhD defines scenarios targeting transitions between the
limiter and X-point shapes. Then, we explained the NICE magnetic equilibrium simula-
tion, from which we will compute episodes, extract rewards based on target scenarios, and
gather data for learning by MPO. The initialization procedure is discussed since NICE was
not initially designed to integrate a reinforcement learning interaction loop. Furthermore,
a proper digital twin is set so the agent faces a realistic setup during training. Finally, the
framework is shown, displaying how its building bricks are written in different languages
and communicate through sockets. Nonetheless, NICE computation times are mentioned
as a bottleneck. There is an evident need to find methods to reduce training times without
thoroughly modifying the framework’s core elements, especially the simulation. Indeed,
modifying the NICE environment to speed up execution while staying within the scope of
this PhD might be too complex. Similarly, changing the agent’s structure or the training
algorithm could give more insights into how different RL algorithms compare to each other.
However, given the important work on hyperparameter choice, such an initiative would be
counterproductive. Lower training times would give more arguments in favor of the adop-
tion of RL as a promising alternative to classical control. The next chapter presents simple
yet efficient methods to speed up training without an in-depth modification of PILOT.

94



The need for speed in PILOT

Contents
4.1 Accelerating training through curriculum learning . . . . . . 96

4.1.1 An inspiration from human learning . . . . . . . . . . . . . . . . 97
4.1.2 One does not simply generate a curriculum . . . . . . . . . . . . 98
4.1.3 Connections to the state-of-the-art . . . . . . . . . . . . . . . . . 100
4.1.4 Limitations of the current approach . . . . . . . . . . . . . . . . 104

4.2 A structural view against catastrophic forgetting . . . . . . . 105
4.3 A procedure ready for benchmark . . . . . . . . . . . . . . . . 107

95



4.1. ACCELERATING TRAINING THROUGH CURRICULUM LEARNING 96

PILOT enables the training of RL-based controllers at the cost of long training times.
Each parallel environment runs NICE, a powerful yet costly free-boundary equilibrium
solver. This slowness impacts many parts of the framework, including non-exhaustively
the pace at which the replay buffer is filled, the ratio at which inserts and samplings
are performed within the latter, and consequently, how fast optimization is performed in
the learner. This chapter details a procedure based on Curriculum Learning (CL), which
could speed up training by several orders of magnitude without in-depth modifications
of PILOT’s building bricks. This approach is one of the first attempts, along with [118],
to look for practical means of speeding up training of magnetic controllers trained by
reinforcement learning, and answers directly to our second problem. A discussion will
follow on the method’s shortcomings and approaches to prevent them.

4.1 Accelerating training through curriculum learning

Reinforcement learning can take several training days to reach minimal performance on
relatively simple plasma scenarios [29, 63]. As stated previously, PILOT contains multiple
elements, each being computationally expensive. Indeed, one NICE instance can take more
than 10 minutes to simulate one second of plasma in the best-case scenario, while PILOT’s
learner node is faster but requires GPU usage to reach its full computing potential. Because
of that, the computing timescales of each building brick of our framework vary greatly
during training. Nonetheless, the routine operation of WEST and other tokamaks requires
flexibility and adaptability in the design of controllers. Minimum engineering efforts should
be targeted to train and adapt the controllers with respect to the control objectives of
each new experimental campaign. This makes the framework valid to answer the first
problematic of the manuscript but insufficient to answer the second. Several levers are
considered to overcome this critical bottleneck. The first idea could focus on upgrading
the NICE environment to reduce execution times. However, this might be too complex
while staying within the scope of this PhD. Similarly, NICE instances could be restricted
to their minimal mode, removing transport and resistive diffusion. Nonetheless, by trading
a numerically stable simulation for a probable performance drop, this concept would lose
out, with only a relative enhancement of computing costs. Another way would be to look
over the MPO agent. Despite its theoretical advantages compared to other algorithms,
it is still sensitive to changes in the hyperparameter settings. This means modifying the
MPO algorithm would occasionally require many searches to find an optimal setup. In
the same sense, completely changing the agent for a different one would give more insights
regarding the efficiency of other approaches. Still, since the first problematic looks for
ways to reproduce the state-of-the-art, this modification is considered counterproductive.
On another note, enabling GPU usage does not prevent the expected expense of neural
networks training. Because of these considerations, we must look for a different path to
obtain magnetic controllers more rapidly, without an in-depth modification of PILOT’s
building bricks.

96



97 CHAPTER 4. THE NEED FOR SPEED IN PILOT

4.1.1 An inspiration from human learning

From the initial stages of human development to adulthood, learning is organized sequen-
tially to transmit knowledge over time gradually. This process is structured to facilitate
the understanding of new notions or tasks that occur later in life. This logic can be in-
tuitively linked to how we learn to walk before learning to run. Therefore, a sequence
of increasingly complex tasks helps in learning a final objective, which would have been
difficult to train from scratch. Depending on the period of life, such a strategy is scheduled
and designed to support the learner in acquiring transferable skills to guide its exploration
during training. It promises increased performance and reduced learning time for a final
set of tasks if done properly. This implicitly builds a curriculum, as knowledge must be
transferred from one intermediate task to another. Curriculum Learning (CL) appears
as a methodology to optimize the order in which experiences are sampled for training.
Initially applied to supervised learning [13], this paradigm was built upon the hypothesis
that learning could benefit from switching between the gradual introduction of increas-
ingly complex pre-processed samples, and the use of specific ones that are neither too hard
nor too easy. This handmade task-specific curriculum sped up training and yielded better
generalization properties. When applied to RL, CL can be introduced to the training
procedure in multiple ways. Recent works developed a classification of existing methods
[111]. Most importantly, CL gained a mathematical framework for reinforcement learning
domains [82] that we use in the present chapter. In most cases, each task considers its
own Markov Decision Process, and three concepts arise with which CL taxonomy can be
classified:

• the intermediate task generation, which is done manually or automatically;

• the partial ordering on the previous set, which schedules intermediate tasks;

• the knowledge transfer within the obtained schedule, as what is exactly shared one
task to the other.

Indeed, task generation and sequencing can be handcrafted by human operators [112,
75], but both concepts could be built up automatically, either in an offline or an online
manner [133, 59, 42]. Finally, Transfer Learning (TL) is the approach we refer to when
describing how knowledge is shared among instances of the curriculum. This method
discusses how the representations learned for one training can be extended to a new domain
that can differ more or less from the initial one. For example, one could train a system to
recognize pictures of cats and dogs, and perform transfer by augmenting the classification
task with bird images. The identifiable primitives in the new class are indeed different,
but the knowledge acquired in the initial task is inherently helpful for the second. In
the context of RL, knowledge representation concerns several elements of the training
loop, such as policies, value functions, rewards, etc [137]. As we will see, care must be
taken while choosing the right combination of methods to avoid unwanted effects on the
learning dynamics, i.e. finding the right approach avoids negative transfer, which could
harm control performance [132]. CL then appears as a potential path to reduce training

97



4.1. ACCELERATING TRAINING THROUGH CURRICULUM LEARNING 98

times, especially in contexts like fusion, where poor reward and state representations slow
down the training process. By focusing on simpler tasks at the start and appropriately
transferring knowledge, convergence might be faster and more stable. Since the initial
trainings last for more than a week, we look for increased performance at start of each
new task, specializing exploration as training moves forward.

Considering the costly data sampling through WEST simulations, let alone on the
actual device, curriculum learning could be of great assistance to stabilize the training
procedure and reduce convergence time by several orders of magnitude. Each new ex-
perimental campaign on WEST requires the definition of multiple control scenarios. The
latter might have similar plasma configurations and control objectives. Consequently, the
same plasma targets can be used within different scenarios. Since we consider a sequence
of transitions between desired plasma shapes, the ordering on the latter already implicitly
defines a curriculum. Indeed, magnetic equilibriums must transition from one to another
in a realistic and feasible way. One could go further by explicitly generating a curricu-
lum on the reward function, looking for a sequence on its definition. By doing this, we
can explicitly create a sequence of increasingly difficult control objectives, which might be
similar between scenarios. For example, such curriculum could start with a simple reward
on the shape, later including information regarding the X-point, etc. These two notions
lead to the same conclusions when it comes to CL in fusion:

• the curriculum can be implicit because of the physical constraints required while
transitioning between plasma configuration;

• curriculum generation and task ordering could explicitly describe tasks as sequences
of desired events, or intermediate reward definitions. It is easy to realize that the
two are equivalent since we want to track trajectories of target events through the
reward;

• the two approaches show that a curriculum designed for a specific control scenario
could be intuitively generalizable on similar ones, enhancing the production of con-
trollers for multiple plasma discharges between experimental campaigns.

Now that we have described the general principle behind curriculum-based reinforce-
ment learning, we should integrate this framework with ours. This will go through the
three mandatory steps used to characterize the procedure of interest: the definition of
magnetic control tasks, their ordering, and the concern raised by knowledge transfer and
evaluation.

4.1.2 One does not simply generate a curriculum

Formalism

Let T be a finite set of tasks with correspondingMi : (S,A, Pi,Ri) ∈ T ,∀i ∈ {1, · · · , T },
all sharing the same state and action space. Moreover, we denote ΘT , the set of all
transitions belonging to T , so that:

98



99 CHAPTER 4. THE NEED FOR SPEED IN PILOT

ΘT = {(s, a, r, s′) | ∃Mi ∈ T ⇒ s ∈ S, a ∈ A, s′ ∼ Pi(.|s, a), r = Ri(s, a, s′)}

A curriculum C can then be defined as a direct acyclic graph (V, ε, H, G), with V
vertices, ε edges, H : V → P(ΘT ), connecting v ∈ V to a subset of samples of ΘT .
An edge < vj , vk > of C links two tasks, using all samples associated by H to vj before
transferring to vk. For eachMi ∈ T , we have:

ΘT
i = {(s, a, r, s′) | s ∈ S, a ∈ A, s′ ∼ Pi(.|s, a), r = Ri(s, a, s′)}

We need to associate all v ∈ V with corresponding Mi and ΘT
i , meaning that each

path on the graph directly influences how H : V → {ΘT
i |Mi ∈ T } filter knowledge

transfer between tasks, with edges built on properties of the samples associated with
adjacent nodes. Tasks have to be ordered so that π(i)∗ is useful in acquiring good samples
at each transition to the current vertex. It is worth saying that |T | = 1 characterizes many
RL methods, and Experience Replay is one of them since we look for a way to organize
incoming data in the replay buffer. In the current case, we restrict ourselves to a simple
setup (Figure 4.1): a task is associated with only one vertex, and each intermediate vertex
sinks in only one node until the terminal one is reached, which corresponds to the final
task [82].

M1

M2

M3

M4

M5

M1

M2

M3

M4

M5

Figure 4.1: In the general case, nodes might sink in multiple neighbors as multiple paths
might exist towards the final goal. The restriction used in this work is motivated by its
simplicity and by the use of prior knowledge about WEST operations.

This directed path is a straightforward way to link the present formulation with the
scenarios studied in this PhD. The implicit curriculum we mentioned earlier exhibits this
exact property, as each scenario fixes a plasma configuration for each timestep, with one
transition sinking in only one of the others. When it comes to the explicit formulation,
it follows the same conclusion and avoids any possibilities for branching, i.e. considering
that a successful task might lead to several new ones. This is especially true in the case

99



4.1. ACCELERATING TRAINING THROUGH CURRICULUM LEARNING 100

of automatic curriculum generation, where an algorithm chooses the ordering online and
might opt for different paths according to various metrics [91]. However, the uncertain-
ties around plasma dynamics make the choice for a handcrafted curriculum more suitable.
Considering the importance of human intuition to define simple tasks [13], domain experts
could efficiently distinguish between objectives that are neither too simple nor too com-
plex. Prior control experience on the device precisely informs which tasks should form
the curriculum, and most importantly, which sequencing should be considered easier than
others. This work relies entirely on human experts for both determining T , as well as the
resulting ordering based on V and ε, and we will now refer only to the explicit curriculum
formulation.

4.1.3 Connections to the state-of-the-art

It is worth noticing that [118] addressed the initial drawbacks of the method from the state-
of-the-art we attempt to reproduce. In the initial research, training speed and steady-state
performance could also be improved. Their approach resembles curriculum learning by
borrowing similar codes. Target scenarios are made of snapshots between which transitions
are interpolated. These sequences are partitioned into smaller chunks {Hi}i>1, each related
to one part of the general task. For example, let us define a transition from a limiter plasma
to an X-point one, built using two intermediate reference snapshots. The entire scenario
would then be made of three sections, and the proposed scheme would use each of the
latter as a chunk. Let us recall that PILOT uses many NICE environments running in
parallel. These distributed environments are divided into subsets of various cardinalities,
each linked to one of the said chunks. Reusing our example, we could have 70% of the
actor nodes run on the entire scenario, while the remaining 30% would be split equally
among the three chunks. Trajectories are accumulated from MDPs that differ in their
underlying dynamics, namely in P and S. The samples become more diverse right at the
beginning of training and implicitly combine several levels of difficulty inside the same
training procedure. This method has already reduced training time by a factor of 4, but
how does it exactly differ from our paradigm of interest? Despite multiple initial state
distributions, the explicit reward definition remains the same between chunks, and neither
curriculum, knowledge transfer, nor task ordering are specifically mentioned between each
partition (Figure 4.2). Hence, the chunks procedure builds up parallel MDPs sharing
action space and reward function, only letting transition dynamics and state space vary.
Oppositely, the curriculum strategy builds a reward hierarchy among the available MDPs
sharing action and state spaces, with transition dynamics and reward definition evolving
through the procedure. An interesting outcome shows that the two methods are not
orthogonal and could be combined easily. This is done simply by:

1. splitting in chunks according to the related approach;

2. for each task in the curriculum, all chunks would refer to the same Ri.

100



101 CHAPTER 4. THE NEED FOR SPEED IN PILOT

All actor nodes
on changing reward

T1 : R1 T2 : R2 T3 : R3

t = 0
t = tfinalM

M

XP

H1 H2 H3

Partitioned actors
on fixed reward

A1

...
Ak

Ak+1

...
Ak+k′

Ak+k′+1

...
Ak+l

Ak+l+1

...
AN

Figure 4.2: In the present setup, curriculum learning (top) uses an evolving sequence
of rewards on which all actors are trained. In the chunks procedure (bottom), subsets
of actors work either on the entire scenario or partitions of the latter, while the reward
definition is kept fixed between chunks.

We will use the combined procedure to benefit from both approaches. Since we re-
stricted the curriculum to a specific setup, we must now describe the actual tasks and
justify the handcrafted ordering.

Tasks generation and scheduling

We start from the scenarios defined for the reference generator in Chapter 3 and consider
only one of the two possibilities mentioned earlier regarding curriculum definition. The
chosen curriculum is entirely conditioned by a set of fixed reward definitions Ri. More
precisely, the curriculum has been built from intuition around several key control challenges
studied for all tokamaks (Figure 4.3):

1. control of the plasma centroid while tracking plasma current is a well-known chal-
lenge. Starting from it, it directly relates to the vertical stabilization problem. In
most cases, PID controllers are used to stabilize the plasma’s centroid (rm, zm) and
plasma current Ip. Their relative simplicity is not far from a naive RL-based ap-
proach, as an agent can be seen as a proportional-integral controller. The initial
reward function then considers targets for the two mentioned components. Handling
such a classical problem is a good start to reinforce the foundations of our agent
before more complex tasks;

2. tracking the LCFS becomes more difficult, as methods from classical control usually
rely on advanced methods to synthesize controllers. Since the difficulty reaches a
new step, we add the plasma boundary and the elongation to the desired references.
In the limiter case, this would be the final task. In the case of an X-point transition,

101



4.1. ACCELERATING TRAINING THROUGH CURRICULUM LEARNING 102

this guides the agent towards an elongated shape, correctly positioning it before the
final curriculum step;

3. the final objective looks at setting up and maintaining the X-point configuration.
We extend the reward by including targets related to the X-point characteristics
(distance to the reference location, magnetic flux at the current location if the X-
point is observed, etc.). This might be seen as a fine-tuning exploration since the
agent must have already learned to position the plasma boundary accordingly in the
previous step.

R1 : (rM , zM ), Ip R2 : R1, κ,LCFS R3 : R2, Xp targets

Figure 4.3: We start from a simple vertical control stabilization problem with a free plasma
current to a complex one involving shape and X-point.

As a side note, a question arises when we focus on X-point scenarios. In this context,
ending the curriculum by extending the reward with various X-point targets is understand-
able: the new objectives aim to form an X-point, knowing that the agent already learned to
position the plasma boundary as well as possible. Let us now consider a situation starting
from the X-point configuration and transitioning to a limiter one. In this case, stopping
at the second step of the curriculum should be preferable, removing the related targets
from the procedure. This idea assumes that the lack of reward components discriminating
between configurations does not penalize the agent while going to a limiter shape. Indeed,
we will see in the next chapter that when asked to stabilize a plasma without X-point
targets or heavy weight put on the elongation, the agent tends to reduce the latter. This
is an expected result since limiter plasmas are inherently stable, and the agent exploits
this underlying fact [29]. Hence, the latter reduces κ and removes X-point(s) at the same
time. All scenarios of interest can then use this curriculum, but how would we perform
skills transfer between tasks?

Knowledge transfer and evaluation

At each task, let us specify that target networks are copied from the online networks in the
same way as the standard procedure. We transfer the policy and the action-value function

102



103 CHAPTER 4. THE NEED FOR SPEED IN PILOT

by common transfer learning. The parameters of Qπθλi learned during an intermediate task
serve as initialization for the weights of the next action-value function Qπθλj , without any
freezing procedure which could cause negative knowledge transfer [132]. Doing so bias vol-
untarily the agent towards more guided exploration in the next MDP. The policy’s weights
are also retained to initialize the parameters of the new one, again without any freezing
procedure. This seems counter-intuitive as transfer learning in a supervised setting is per-
formed as such almost exclusively. One could have incrementally frozen layers between
tasks to save learned representations implicitly handled by the neural network. However,
we empirically observed that it is not necessary for the curriculum learning to work well in
practice. Firstly, it limits the number of tasks in the curriculum, as the number of layers
is bounded. Secondly, the learning dynamics in reinforcement learning are noisy enough,
so an agent with frozen layers might not have enough expressive power, i.e. number of
learnable parameters, to account for strong changes in the state representation one task
after the other. On a side note, one could have transferred only one of each component
because of the actor-critic structure, but it is observed that transferring both works bet-
ter in practice [132]. Earlier in this manuscript, we mentioned how exploration is a core
concept in reinforcement learning. It happens to be handled by several parameters of
MPO, namely the parameters of Gaussian policies and the hard constraints in the policy
improvement step. To enhance the overall process, especially as training starts, we could
find a way to guide the agent, starting from states that were valuable at the previous task
and overlap with the new one. One could keep transitions in the replay buffer, but this
idea could be harmful since the information is not guaranteed to be insightful. We could,
however, add a bonus to the reward, shaping it with respect to our current intent. Instead
of looking for a physically related bonus, we leverage the use of the previous critic through
potential-based advice reward shaping (PBARS) [83]. In this setup, the rewards sampled
for MPO are extended thanks to the formula:

R′
j(st, at) =Ri(st, at) + F (st, at) +Rj(st, at)

with F (st, at, st+1, at+1) = γ[Qπθ
λ′i
(st+1, at+1)−Qπθλ′i (st, at)]

with γ discount factor set to 0.95 to balance between the different terms. Following
our previous statement, Ri relates to the knowledge gained from the source task, and F
computes the distances between Q-values of consecutive states from the old target critic.
It encourages exploration from valuable states that overlap with the target j. Indeed,
starting from states with high Q-values computed from the previous critic will emphasize
going into ones that still increase the Q-values, i.e. maximize the related distance. Hence,
a valuable state for the previous task overlaps with the new set of proper ones. This
idea forms the potential-based bonus with guarantees that it will not change the optimal
policy [50]. Even if final performance on the target task matters, our main interest lies
in evaluating how curriculum-based RL could rapidly produce magnetic controllers for
routine use on WEST. For this reason, we must choose metrics accordingly to measure
how CL enhances training times, compared with the vanilla method in which the agent
immediately learns the final task. This choice is intrinsically linked to knowledge transfer,

103



4.1. ACCELERATING TRAINING THROUGH CURRICULUM LEARNING 104

as the latter impacts convergence speed every time a new task is launched. In this PhD,
we will use two tools:

• the jumpstart, which measures the performance increase at the beginning of each
new task, as a result of transfer;

• the Time To Threshold (TTT) which checks how fast the overall performance reaches
a threshold on the episodic return. This threshold is set for the final task, as in-
termediate ones will see their duration caped so that they do not exceed 24 hours
of execution at worst. Indeed, we do not look necessarily for strong performance
on intermediate tasks, only for enough gained knowledge to boost performance after
each transfer.

Many other metrics could have been defined [137], but the present tools are well suited
to measure convergence speed. By doing so, we do not look at how the reward evolves in a
detailed way, but only concentrate on how it starts and ends within each curriculum step
and for the entire training duration.

4.1.4 Limitations of the current approach

The procedure at stake is now fully described, with justified task generation and curricu-
lum ordering. The metrics are in line with transfer learning, as the latter is the key to
transitioning between tasks and answering the second problematic. It is worth noting that
the method displays several limitations, which must be discussed in the context of what
we try to achieve.

The curriculum is restricted to a fixed sequence of reward functions, assuming that
the latter can be generalizable to many scenarios. However, one should prove formally
that this curriculum is at least part of a set of sequences known to produce optimal
policies, which might be complex. Moreover, even if the present method gives interesting
outcomes, it still requires fine-tuning on each reward component. Let us recall that the
second objective of this PhD is to look for ways to make the entire training procedure
easier for routine use in tokamaks. However, the relative inflexibility of the curriculum
could lead to a lack of adaptability. Thus, ablation studies should be performed to prove
that the chosen sequence is useful for any WEST scenario. In the formalism section, it
is stated that the action space is kept fixed between tasks. Nevertheless, several parts of
the defined scenarios might not require the entirety of the control coils. Extending the
curriculum by manually varying the number of available actions considered for each task
might be beneficial, to look for decisions in lower dimensions and hypothetically optimize
training speed [138].

One phenomenon yet to be mentioned is known as catastrophic forgetting [40]. It is en-
countered with neural networks, which tend to have difficulties learning tasks sequentially.
Even if the curriculum procedure is well documented, catastrophic forgetting occurs when
the network abruptly forgets previously gained knowledge and starts to perform poorly
on new examples. In reinforcement learning, the agent’s capacity to handle old objectives

104



105 CHAPTER 4. THE NEED FOR SPEED IN PILOT

is reduced, and its performance drops sharply after transitioning to a new goal, with no
real possible recovery, i.e. no comeback to a better behavior. The root causes of this
serious problem might come from many possibilities, ranging from the neural network ar-
chitecture, to gradient-related hyperparameters (learning rate, etc), through exploration
mechanisms. Most importantly, it could be related to how the curriculum has been de-
signed. We must proceed cautiously to avoid this infamous phenomenon since we found
several observations in favor of it happening during many of our trainings. Such clues
come from a simple analysis of the reward jumpstart without an in-depth exploration of
the mentioned potential sources. This discussion would have had many benefits in per-
forming a full ablation study to identify which part of the curriculum could have caused
it. Even so, it is kept as a prospective work for future research.

0
Learning

steps

Episodic
return T1 T2 T3

Catastrophic
forgetting

Figure 4.4: Catastrophic forgetting might occur while transferring to a new task, with a
drop of performance difficult to recover.

The remaining section presents an attempt to mitigate catastrophic forgetting, thanks
to a dedicated architecture. This neural network was recently implemented in PILOT
but has not been extensively benchmarked on the set of available scenarios. Hence, the
following discussion acts as a short-term enhancement of the present procedure.

4.2 A structural view against catastrophic forgetting

During transfer learning, catastrophic forgetting often acts in the shadows. Because of it,
many researches were conducted to identify a common cause or ideas to mitigate it [137].
A straightforward idea emerges from Progressive neural networks (PNN) [98], which can
counteract catastrophic forgetting with ease. Instead of looking for the right layers to
freeze, they leverage the entire set of learned parameters at each transition to a new task.
When convergence is observed at each curriculum step, the policy network is frozen and

105



4.2. A STRUCTURAL VIEW AGAINST CATASTROPHIC FORGETTING 106

connected to a new network randomly instantiated (Figure 4.5).

π(1)

h
(1)
2

h
(1)
1

Input

Step 1 : T1

π(1) π(2)

h
(1)
2 h

(2)
2

h
(1)
1 h

(2)
1

Input

Step 2 : T2

π(1) π(2) π(3)

h
(1)
2 h

(2)
2 h

(3)
3

h
(1)
1 h

(2)
1 h

(3)
1

Input

Step 3 : T3

Figure 4.5: At task 1, it is a classical training. For more tasks, the neural network
displays several columns at the end with lateral connections between hidden layers. Frozen
weights (dashed) keep knowledge from previous tasks, and the remaining ones (plain) are
optimized. Small gray boxes represent dimensionality reduction. For task Ti, the output
of column i gives π(i)(a|s).

Let us consider a series of |T | fully connected neural networks with L layers each. We
will denote h(k)i , the activated output of layer 1 ≤ i ≤ L for network k ≥ 1, with dimension
n
(k)
i for the number of neurons at layer i of network k. For example, h(1)1 corresponds to

the hidden activations from layer 1 of the first network, i.e. the network related to the
first task in the curriculum. The forward pass follows the standard NN formula:

h
(1)
i = f

(
W

(1)
i h

(1)
i−1

)
with activation function f , W(1)

i the weight matrix from layer i−1 to layer i of the first
network with resulting dimension n

(k)
i × n

(k)
i−1, and h

(1)
i−1 the activations from its previous

layer. As a precision, h0 refers to the input layer. After training, the first network is
completely frozen and is connected to a second network randomly initialized, which will
be optimized. The forward pass becomes:

h
(2)
i = f

(
W

(2)
i h

(2)
i−1 +U

(2:1)
i h

(1)
i−1

)
with U

(2:1)
i lateral connections from layer i − 1 of the first network to layer i of the

second, with dimension n
(2)
i × n

(1)
i−1. This is repeated for K tasks, and the forward pass

generalizes to:

106



107 CHAPTER 4. THE NEED FOR SPEED IN PILOT

h
(k)
i = f

W
(k)
i h

(k)
i−1 +

∑
j<k

U
(k:j)
i h

(j)
i−1


By keeping previous networks intact throughout the curriculum, it is structurally im-

possible for catastrophic forgetting to happen, as all features learned from previous tasks
are kept intact. Reusing RL notation convention, we end up with π(k)(a|s) = h

(k)
L . It can

be extended to the critic, but we consider only a progressive policy for the sake of simplic-
ity. In practice, the lateral connections implemented with the U matrices are modified to
integrate a one fully connected layer neural network. It performs dimensionality reduction
to avoid an actual explosion in the number of parameters. Indeed, lateral connections
consider all previous networks, not just the latest one. This leads to a final modification
of the forward pass:

h
(k)
i = f

(
W

(k)
i h

(k)
i−1 +U

(k)
i g

(
V

(k:1)
i α

(k:1)
i h

(k:1)
i−1

))
One can see that the summation was replaced by a matrix operation using the activa-

tion function g. Moreover, h(k:1)i−1 is the concatenation of all h(l)i−1, ∀l < k. It is important
to notice that α(k:1)

i−1 is a learnable scalar that scales the content of h(k:1)i−1 , i.e. the scalar is
repeated in a vector to respect matrix operations. The one hidden layer NN is represented
by V

(k:1)
i of dimensions n(k)i−1 × (n

(1)
i−1 + · · · + n

(k−1)
i−1 ), confirming the stated reduction of

dimensions. The notation for U
(k)
i has changed to represent the remaining lateral con-

nections from the output of the corresponding one layer NN to layer i of network k, with
dimension n(k)i × n

(k)
i−1.

The PNNs are then capable of sequentially learning multiple tasks, structurally pro-
tected from catastrophic forgetting. Despite this simple scheme based on traditional MLPs,
the parameter complexity increases as the number of tasks grows. As it is, this does not
impact training but poses a serious issue regarding magnetic control applications. In-
deed, deploying the policy on the actual device requires fast inference, which might not
be achieved if the network becomes too big. A promising approach resolves around distill-
ing the knowledge of this PNN expert into a smaller network. By gathering interactions
between a control policy parameterized by the strong PNN controller and the NICE envi-
ronment, we could train a student policy in a supervised and offline manner without too
much loss of accuracy. This student would be parameterized by a smaller neural network
similar to the one currently used in PILOT, fast enough to respect real-time constraints.
This forms a promising path, which could also get extended to multi-scenario control with
many experts on different scenarios, gathering data for a student policy learning to follow
multiple trajectories.

4.3 A procedure ready for benchmark

This chapter described a curriculum strategy to reduce training time and increase perfor-
mance. Because of the training timescales, this approach could be an essential milestone

107



4.3. A PROCEDURE READY FOR BENCHMARK 108

to answer the second problematic of this PhD, and put RL under the spotlight within
the routine operation of WEST. The chosen curriculum is defined as a sequence of fixed
rewards, with tasks generation and ordering advised by prior control experience on the
device, without relying on an automatic curriculum generation. A parallel has been made
between the strategy developed in this manuscript and the literature, which differs from
the paradigm of interest. Combining the two is straightforward, and the results will be
discussed in the next chapter. Transfer learning between each task is done through both
the policy and the action-value networks without any freezing procedure. This setup
might seem counter-intuitive compared to supervised learning, but we empirically see that
it works without needing an incremental freeze of layers. However, it might undergo
catastrophic forgetting, a serious problem related to neural network training. A hyperpa-
rameter search and a study of the reward definition under the latter mitigate it. A more
complete analysis is part of the prospective works to assess the viability and generality of
the method, as well as the potential sources responsible for the phenomenon. One promis-
ing idea comes from Progressive Neural Networks, which are structurally impervious to
catastrophic forgetting at the cost of increasing model complexity, i.e. a high number of
learnable parameters. Even if their implementation has been recently added to PILOT,
future works must rigorously benchmark them against the classical transfer approach.
Finally, we briefly mentioned Policy Distillation as a way to distill knowledge from an
expert progressive policy into a smaller network in line with the real-time constraints of
the WEST plasma control system. This manuscript now describes a complete environment
for RL-based control, an agent ready for training, and a curriculum procedure capable of
reducing convergence time. The next chapter will present the results following MPO’s
trainings, and the application of curriculum learning.

108



Performance of RL-based magnetic con-
trol

Contents
5.1 Evaluation on the scenarios of interest . . . . . . . . . . . . . . 110

5.1.1 Plasma centroid, elongation and minor radius . . . . . . . . . . . 110
5.1.2 Careful calibration of the reward hyperparameters . . . . . . . . 115

5.2 Issues regarding the LCFS and the plasma current . . . . . . 117
5.2.1 Myopic exploration . . . . . . . . . . . . . . . . . . . . . . . . . . 117
5.2.2 An issue regarding plasma current . . . . . . . . . . . . . . . . . 119

5.3 The Good, the Bad and the Ugly of Curriculum learning . . 123
5.4 A paradigm under careful calibration . . . . . . . . . . . . . . 126

109



5.1. EVALUATION ON THE SCENARIOS OF INTEREST 110

In this chapter, we present the performance and robustness of RL-based control on the
four scenarios currently used in PILOT. The path towards the best performance obtained
so far will be discussed from a qualitative and quantitative point of view, using an example
of obtained control trajectories for each scenario. A discussion will follow on which reward
threshold could be sufficient to achieve efficient magnetic control. This question relates to
the second problematic of this study and is directly linked to the curriculum formulation.
All evaluated trajectories are performed on episodes lasting for 300 timesteps. One must
note that the transport equation is not part of all the experiments, as it was not yet added
to the PILOT framework at the time. In this case, we rely only on the NICE resistive
diffusion mode. As stated previously, the simulation could not last without observing
unknown crashes due to the solver’s non-convergence, even if the initialization procedure
stabilized the overall scheme significantly. Once transport was enabled, we tested X-point
scenarios for 400 timesteps, as crashes would not occur as quickly and often. A few
examples perform control over 500ms to account for longer plasma discharges. It is worth
noticing that we display results over plasma current, position, elongation, and boundary,
as well as on its minor radius. While not part of the objectives stated in the introduction,
we include the latter to complete our views on this evaluation. All targets are displayed in
dashed blue lines, and observations in orange, except if stated differently. Throughout the
chapter, one can refer to Appendix B for a complete description of the reward components
for all scenarios.

5.1 Evaluation on the scenarios of interest

In this section, performance relates to tracking the reference plasma’s boundary (LCFS),
its elongation, minor radius, and plasma current, as generated by PILOT’s reference gen-
erator. Results are analyzed for each scenario, always looking at the steady-state tracking
error throughout the discharge. In some cases, a discussion is made on how fast the agent
bridges the gap between the observations and the reference value. This is helpful to see
how far the agent deviated from the sequence of snapshots given by the reference genera-
tor. One must also recall that the control networks used in this section are Multi-Layered
Perceptrons, whose architecture can be found in Figure 3.20. More details about their
implementation can be found in Appendix E.

5.1.1 Plasma centroid, elongation and minor radius

Limiter maintain The present scenario is simple: we only seek to maintain the location
and properties of a fixed limited plasma. This is a baseline experiment that classical PID
control can perform without much effort. The results are easy to analyze, as the plasma
should stay close to the fixed targets. This is indeed the case, as radial and vertical coordi-
nates of the plasma centroid (rm, zm) do not diverge from the initial configuration (Figure
5.1). Similarly, the minor radius stays within range without any substantial evolution far
from the reference. We see that the elongation gets stabilized but tends towards 1. The

110



111 CHAPTER 5. PERFORMANCE OF RL-BASED MAGNETIC CONTROL

Figure 5.1: The controller stabilizes the plasma close to the targets. The elongation strays
from its reference, which might be explained by the agent’s tendency to exploit trajectories
with lower κ because of a reward component minimizing the coil currents.

starting plasma has low elongation, and the control seems to reduce it. The difference
between the target and the observation is outside the bounds of the good and bad pa-
rameters for the Softplus formulation, indicating that the corresponding signal saturates
towards a low reward value. One potential explanation comes from the implicit connection
shared with a reward component on the poloidal field coils. The latter aims to minimize
their current, and one way to perform it would be to reduce the elongation. We know that
the closest κ is from 1, the more vertically stable the plasma becomes. From this idea, the
controller found a way of exploiting the underlying dynamics of the plasma to stabilize
it, undermining κ for the benefit of other components. This is an equivalent result of the
one presented in [29], where a simple reward only meant to stabilize the plasma results
in a controller trying to reduce the elongation. Through this example, we found a way to
reproduce a small part of TCV’s experiments.

Limiter evolve Let us recall that this second scenario looks for the displacement of the
plasma magnetic center and boundary, slightly varying elongation while keeping all other
information constant. We do not display the minor radius, as it shows the same behavior

111



5.1. EVALUATION ON THE SCENARIOS OF INTEREST 112

visible in the limiter maintain task. This scenario exhibits an evolution of the references
to evaluate how the controller might track moving targets. Despite minor steady-state
errors on the centroid position, the control is performed swiftly and rapidly (Figure 5.2).
Within the reward, the components on the radial and vertical locations of the plasma
consider a wide interval between good and bad parameters. Choosing stricter intervals
could have been more effective in reducing the steady-state errors, but despite several
tests, a bias is still present. This could be explained by the lack of integral control over
the said coordinates, as we will see later in this chapter. For elongation, it is carried out
without producing an excessive stabilization bias. It is worth mentioning that the scenario
was first defined transitioning slowly to the final plasma configuration. Indeed, the time
intervals specified in the reference generator were wider than showcased here. This update
is conceived to check how fast the response of an RL-based controller could become, hence
the fast ramp towards the desired references. Also, it validates the fact that the agent can
stay relatively close to the reference trajectory, even with a relatively permissive reward
definition. However, this idea should not be applied to the X-point scenarios, mainly to
respect the transition times performed on WEST while dealing with such configurations.
Going under this threshold might give unexpected or unrealistic results, which could harm
a potential transfer of the policy to the real domain.

Figure 5.2: Control is performed rather precisely on moving targets, with others kept
constant, like in the limiter maintain scenario. The transition duration is chosen to verify
RL’s ability to perform faster response. Only the final setpoint is displayed for each
controlled variable.

X-point maintain This scenario is designed to observe the performance of RL-based
control facing an unstable elongated plasma in an X-point configuration kept constant over
time. Numerous difficulties appear, as staying close to the references involves controlling
an unstable vertical position that can move abruptly. Moreover, the X-point information
creates new objectives along with existing ones (X-point location, etc). Again, the observed

112



113 CHAPTER 5. PERFORMANCE OF RL-BASED MAGNETIC CONTROL

quantities do not drift far from the targets, and fine-tuning would only be performed to
reduce the steady-state errors on each component, depending on our needs (Figure 5.3).
The minor radius and κ logically follow what is observed for the limiter case since they
are not subjected to strong instabilities. Despite this efficient control, one must notice
that the trajectories seem to end at way less than the expected 300 timesteps. This
means that the episode encountered an issue related to NICE convergence or the plasma’s
state. The second option becomes more probable since NICE convergence was checked and
ensured. Indeed, we will see in the following sections that RL-based controllers initially
have difficulties controlling the boundary location and the plasma current. This issue is
even more important when X-point configurations are at stake. The LCFS is implicitly
related to the centroid, the elongation, and the minor radius, which are all stable. We
can then discard the boundary from the set of potential threats. The X-point maintain
scenario has been appropriately handled throughout many attempts regarding the plasma’s
centroid, LCFS, minor radius, and elongation. Still, the short episode duration foresees
an issue with the plasma current.

Figure 5.3: Control of the quantities is performed well again, but the short episode duration
presages an unstable behavior of the plasma current.

113



5.1. EVALUATION ON THE SCENARIOS OF INTEREST 114

X-point evolve This final scenario studies a classical transition between a limiter con-
figuration and an X-point one. It serves as a final proof of concept because of the unstable
moving targets. Here, all stated quantities vary over time, which might interfere with each
other. The agent must find the right balance between them, knowing that the reward
definition voluntarily focuses on exploration at the cost of precise control. The example
trajectories align with this idea (Figure 5.4), and controlled quantities stay within range
of the references, considering the good and bad parameters in each of their Softplus trans-
formations. The exception comes from the minor radius at almost 10cm from the setpoint.
Its weighting has been set to a low value with a wide Softplus, which might explain why
the component stabilizes far from its references. On the contrary, it is important to notice
that more weight is put on the vertical centroid coordinate than the other components,
which is verified by looking at how the z trajectory is sensibly closer to its targets.

Figure 5.4: The unstable moving targets are handled well, with the relaxed reward defini-
tion allowing more gap between the observations and the references.

Furthermore, we can see that the initial radial location is far from its initial reference.
This is a voluntary attempt to evaluate how RL can perform if strong disturbances, like
changes in the initial state distribution, impact the behavioral policy during inference.
In real conditions, this could happen after an exceptional update of the initial plasma

114



115 CHAPTER 5. PERFORMANCE OF RL-BASED MAGNETIC CONTROL

location between two plasma discharges. The initial displacement is not too high, so
learning performs relatively better than expected. If we increase the distance in question,
control can not be maintained anymore, and the radial position will move sub-optimally.
These relaxed constraints over several objectives serve as an example to highlight the
careful calibration of the reward function, especially in the context of moving references.
One must proceed cautiously to avoid situations where one component would take the
lead, leaving others poorly controlled.

5.1.2 Careful calibration of the reward hyperparameters

Figure 5.5: In the upper example, twice more weight is put on the elongation. As a result,
the control of the other components tends to drift quickly from their targets, not always
returning to the desired trajectory. In the lower example, three times more weight is put on
the plasma current and z components, resulting in low efficiency in the remaining control
objectives.

There are many ways of describing the reward, such that the policy displays good
behavior. However, it is difficult to define in the first place and costly to fine-tune. For
this PhD, the simulation was enhanced with resistive diffusion and transport, enabling
the agent to use more realistic data. Thanks to this, we could start to train on more
extended scenarios, kept at 400ms. We observed that the stated problems were even more
present throughout these longer episodes, even when only 100ms are added to the overall
scenarios. Without doubt, finding the right balance between the reward components is
complex. Apart from several heuristics from physics, it is an art on its own that requires
careful exploration of the reward landscape. In the following example (Figure 5.6), the
component on the LCFS has much more weight than the two others. Looking at the

115



5.1. EVALUATION ON THE SCENARIOS OF INTEREST 116

immediate bad performance on the elongation, the divergence from the target boundary
overshadows the learning dynamics, and even the radius term decreases over time.

Figure 5.6: The reward includes many terms, which are combined in a non-linear manner.
They can interfere with each other, with the underlying dynamics of the function not
entirely known.

One must be careful while analyzing the entire reward dynamics in such a way. The
latter can be misguiding, as the number of information can quickly push towards over-
interpretation. The performance drops significantly in many situations because of reward
misspecifications (Figure 5.5). Indeed, if the reward specifies too much weight on one
component, it could achieve strong performance, but only for the element of interest. The
others, such as the plasma centroid or the elongation, are then impossible to handle cor-
rectly, with poor performing policies. One of the main problems of the RL-based magnetic
control approach lies in the multiplicity of reward components set to guide the controller
efficiently. The usual purpose of RL would be to find a generalized policy which could
work on many scenarios. Considering the uncertainties of plasma dynamics and the state-
of-the-art in RL, nothing guarantees that complete generalization is practically feasible,
and we have to resort to domain knowledge to design the reward, overspecializing it within
a subset of potential behaviors. This idea is reinforced in the case of longer scenarios when
we increased the number of timesteps to 400, or 500 once NICE was augmented with resis-
tive diffusion and transport. Indeed, a wrong reward specification impacts the behavior in

116



117 CHAPTER 5. PERFORMANCE OF RL-BASED MAGNETIC CONTROL

the entirety of the scenario without any possibility of recovery. As a side note, the current
trajectories exhibited by the RL-based controllers present an inversion (Figure 5.7) in the
E and F coils (Figure 3.2). This observation seems specific to WEST, as the naming con-
vention of the coils is only related to the device of interest. Interpreting this outcome is not
straightforward, as it is opposed to what is generally performed using PID control. One
short-term perspective is linked to using these currents as feedforward trajectories for the
classical controllers used in actual experiments. This will help gain insights into what the
RL-based solution exploited to perform the X-point transition, but not only. Indeed, we
observed this phenomenon for all four control scenarios in this manuscript. The analysis
of such behavior is a first step towards a better understanding of the learned behavior, to
minimize the effort needed for deployment of the full control policy on the machine.

Figure 5.7: Through its actions, the agent tends to influence the evolution of the poloidal
field coils currents. In the context of RL, the obtained trajectories differ from classical ones
and could help optimize the landscape of configurations through the feedforward control
system of WEST.

5.2 Issues regarding the LCFS and the plasma current

5.2.1 Myopic exploration

Until now, we have only referred to plasma’s magnetic center and general quantities related
to its geometry. Including the LCFS and the X-point would allow a complete analysis of
RL-based magnetic control. In limiter scenarios, the LCFS stays stable without too much
trouble. This was also the case of X-point maintain scenarios (Figure 5.8), where the
LCFS tracks its reference well. However, one can realize that the plasma boundary is in

117



5.2. ISSUES REGARDING THE LCFS AND THE PLASMA CURRENT 118

the middle of the vacuum chamber, and the X-point is close to the lower divertor. In fact,
many experiments on WEST locate the X-point slightly higher, and the LCFS closer to
the lower field side of the torus, i.e. the outer edge of the vessel, with lower magnetic
field than in the inner side of the torus. While trying to master this final configuration,
the X-point evolve scenario starts to pose more challenges. Let us look at the evolution
of the LCFS and the X-point location under this realistic case. We clearly see that the
boundary does not match its targets entirely, with a subset of reference points not tracked
correctly. It becomes even worse in the case of the X-point, as the plasma goes back
in limiter configuration periodically. The root mean squared error over all the points of
interest decreases when considering the final target shape (Table 5.1), but remains higher
than what was seen in TCV’s experiments. In the WEST use-case, the weight placed on
the LCFS reward component is greater than those placed on the other reward terms, but
the agent still fails to match the boundary completely (Figure 5.9).

Figure 5.8: While maintaining an X-point configuration, the location of the desired X-
point and LCFS is crucial on WEST. The observed (orange) and desired (dashed blue)
elements match almost exactly, with the X-point (red) exactly on its target location.

After several hyperparameter searches and observations on the behavior of the obtained
policies, we identified two major outcomes related to the present issue (Figure 5.10). In the
first case, the plasma follows the X-point location carefully but does not match the LCFS
on the entirety of the lower field side of the torus. The significant mismatch increases
the mean squared error over the LCFS, even if the X-point configuration is maintained
somehow. In the second case, the agent sends the plasma to match the LCFS on the
side in question, but it turns into a limiter configuration, as the X-point can not be
formed anymore. This myopic behavior can be explained by how the agent explores the
possibilities but struggles to stabilize the plasma in the area of interest: it is easier to
exploit current knowledge than explore possibilities in this subset of the state space. It
is even more interesting to compare it to the X-point maintain scenario where the target
LCFS is far from the outer side of the torus and easier to keep at the center of the vacuum
chamber. No proper general solution is found now, except after careful fine-tuning of the
reward to end up in the first case. The mismatch with the reference boundary is still

118



119 CHAPTER 5. PERFORMANCE OF RL-BASED MAGNETIC CONTROL

present but mitigated as much as possible.

Figure 5.9: While performing an X-point transition with observations (blue) and targets
(orange), the configuration oscillates between leaning on the wall materials in a limiter
fashion, or put the x-point quite far from its desired location.

An important observation comes from the need for discriminant features. Reward
components should help differentiate between states appropriate for each configuration
of interest. While transitioning from a limiter plasma to an X-point configuration, there
should be a way to clearly see the difference between states involving an X-point and
those not. The distance to the X-point itself does not suffice, as the exploration process
does not find strong intensities to reach the desired target from the moment it is first
encountered. Adding a component on the limit point is then mandatory: it is set as the
interaction point with the material walls in the limiter configuration or the actual X-point
in the aforementioned situation. During training, the reward is boosted as a bonus appears
in the X-point-related states. Future works will focus on finding more efficient ways of
augmenting the reward signal to perform better in this final scenario. One idea comes
from gap control, which is actively used in the WEST plasma control system (Figure 5.10
- red arrows). Developing a reward component on the three studied locations (upper,
equatorial, and lower ones) could prevent the policy from collapsing in a myopic mode of
operation, throwing the plasma on the outer side of the torus.

5.2.2 An issue regarding plasma current

Many trials were attempted to get a stable control of the plasma current. However,
the same outcome always appeared: Ip dropped significantly far from the target, avoiding
proper considerations of the associated good and bad hyperparameters. A first explanation
comes from using the P1 formulation in NICE without resistive diffusion nor transport.
Within this basic environment configuration, we observed sudden spikes of plasma current
up to several kA [63], which is not physically possible. This concerned all scenarios of
interest, no matter how much the reward component on Ip was modified. (Figure 5.11a).
The agent then learns representations which are not only biased, but also susceptible to
harm learning. Indeed, it observes data linked to incoherent information in shortened
data sequences and acts based on these wrong observations: the resulting policy is then

119



5.2. ISSUES REGARDING THE LCFS AND THE PLASMA CURRENT 120

Figure 5.10: When performing an X-point transition, the agent exploits a sub-optimal way
of positioning the plasma. The X-point configuration is either lost or does not match an
important part of the targets.

sub-optimal and biased regarding the real dynamics of the plasma. Even after extensions
of NICE to the resistive diffusion and the electron energy transport, supported by the
improved initialization procedure, the RL-based controllers would fail the control of the
plasma current. A formal way exists to explain that this phenomenon will always happen
on WEST whenever integral control is lacking. Considering mutual inductance M between
the plasma and the coils, we obtain a circuit diagram of the WEST tokamak with the
central solenoid CS, the latter’s current ICS , and the plasma one Ip (Figure 5.12).

Notations follow with the plasma resistance Rp and self-inductance Lp, the central
solenoid resistance RCS and self-inductance LCS , and the source voltage VCS. We can
develop the circuit equations related to this lumped system through the Kirchhoff circuit
law stating that voltage around any circuit is equal to 0:{

Lpİp +MİCS = −RpIp
Mİp + LCS İCS −RCSICS = VCS

We retrieve the idea stated in the introduction that a varying current in the central
solenoid will induce a voltage in the second circuit related to the plasma, which leads to
the plasma current. In steady-state regimes, the plasma current Ip is constant, and its
first-order derivative is then equal to zero. As a side note, inductance terms could be
considered constant. Then, by integration, we get:

120



121 CHAPTER 5. PERFORMANCE OF RL-BASED MAGNETIC CONTROL

(a) No matter the scenario, Ip diverged either because of many numerical instabilities in the NICE
environment, or potentially because of another explanation related to the conception of WEST.

(b) After integration of integral effects within the PILOT framework, the control of the plasma
current becomes more efficient with examples using limiter maintain and X-point evolve scenarios,
as well as the latter with a combination of integral input and reward components (from left to
right).

Figure 5.11: The two sides of the plasma current control

{
MICS = −Rp

∫
t Ip dt

LCS İCS = −RCSICS + VCS

We quickly see that the integral over Ip will increase over time, and only ICS can
compensate through this phenomenon. This current is directly linked to the source voltage
VCS , which varies over time. Hence, the steady-state error related to the plasma current
will increase without the latter. Formally, it is shown that one must add an integral effect,
trying to minimize the term in question. This is explicitly done by a controller varying
the appropriate voltage source in the solenoid, i.e. the A coil.

It can be defined as part of the reward definition, with a target looking to minimize
this integral error over time, or as part of the input like state observers in classical control.
This second path was notably implemented in [118], as an average error term computed

121



5.2. ISSUES REGARDING THE LCFS AND THE PLASMA CURRENT 122

RCS

LCSVCS ⟳ICS RpLp ⟳Ip

M

Figure 5.12: Circuit equations for the central solenoid and the plasma. We would refer to
the A coil to perform variations of the plasma current.

at each timestep and added to the input observations. The results align with our previous
statements since the steady-state error on the plasma current is improved compared to
earlier works [29]. Applying such an idea in our context leads to the same conclusion:
plasma current control is now enabled in our framework (Figure 5.11b - left and center).
The variations observed in the limiter maintain example come from the fact that the
plasma current component is not weighted as much as in the other scenarios. We also
tested the approach using an exponential decay of the accumulated error d, in the form of
dt = αet + (1 − α)dt−1, with α = 0.9. Nevertheless, we did not empirically identify any
advantage given to one of the two approaches; only the overall addition of the integral
effect matters. Future studies would need to carefully determine if the initial failure in Ip
control came from WEST specifications in the simulation or if it could have benefited more
hyperparameter searches. The second idea remains challenging because of the available
computing resources, so the proposed approach completely fits our needs. A question arises
about what could happen if we couple this observer-like error measurement with an actual
new reward component performing the same objective. This combination helped reduce
the steady-state error even more (Figure 5.11b - right). The integral reward component has
good and bad parameters, respectively set to 1500kA and 15000kA, and does not induce
much more complexity into the reward calculation. If we remove the observer input,
with or without the integral reward component, the poor control performance appears
again, and no proper plasma current control can be performed. This example shows how
classical control can interact with reinforcement learning, and the idea is also applicable
to the plasma centroid coordinates. It is worth noting that this approach requires the
computation of the Ip error over time in the WEST control system so that it can be fed
to the neural policy. So, adding the integral input on other controllable parameters would
need reconstruction codes or any tool to infer Ip in real-time. This would take out one of
the advantages of RL since a few plasma characteristics would not be observed directly
from the diagnostics.

122



123 CHAPTER 5. PERFORMANCE OF RL-BASED MAGNETIC CONTROL

LCFS κ minor radius Ip X-point distance
Limiter maintain 2.1cm 0.057 0.87cm 4.3kA X
Limiter evolve 2.8cm 0.023 0.99cm 3.01kA X

X-point maintain 3.04cm 0.013 1.3cm 2.03kA 0.63cm
X-point evolve 12.3cm 0.053 7.4cm 1.7kA 0.84cm

Table 5.1: The root mean squared error of components of interest is averaged for three
different initial conditions (core profiles) in each scenario, after fine-tuning at best. The
integral effect is used in all of them for Ip control.

5.3 The Good, the Bad and the Ugly of Curriculum learning

In initial works [29, 63], training time could go up to several days for proper convergence of
MPO. This is not in line with the requirements of the WEST control system, which needs
adaptable and flexible controllers. To answer the second problematic of this manuscript,
curriculum learning is introduced as well as the chunks procedure described by [118]. The
combined approach is denoted CLC, and the comparison is performed against the vanilla
procedure, which does not rely on chunks or curriculum learning. Training results are
averaged with three different seeds incremented over all distributed actors used to fill the
replay buffer. We analyze only the X-point evolve scenario, but the results generalize
directly to the other scenarios. Figures are displayed using episodes as time units. This
is because computing speed was variable during training (and between tasks within the
latter), as the shared resources could not be entirely available. That is why we compute
average simulation step durations depending on the situation and use this approximation
with respect to the number of considered episodes. The reward set for the Time To
Threshold (TTT) is 25, as control starts to perform sufficiently well with regards to the
duration of 400 ms. For intermediate tasks in the curriculum, their duration is caped
to 60 evaluator node episodes so that they do not exceed 30 hours each of execution, at
worst. This threshold was identified after benchmarking MPO’s start of learning, PILOT’s
communication, and NICE speed on dedicated servers.

First, an environment’s step lasts for 15 seconds on average during exploration (Chapter
3) since the plasma moves to locations of the vacuum chamber where convergence of NICE
is more difficult to achieve. In this way, these complex situations where poor reward
signals are standard exhibit tedious and lengthy exploration. Consequently, an episode
has its computing time increased to almost 3 hours when it reaches its entire duration
of 400 timesteps. Thereby, the monitored convergence time, when trained from scratch,
reaches the symbolic length of a whole week. Furthermore, the reward never surpasses 20
inside the 60 episodes limit and struggles to attain 25 afterwards. This is largely under
our expectations regarding TTT (Figure 5.14 - upper). One could mention that further
hyperparameters search could have been performed on the reward definition. However,
we kept it similar to its previous definition to efficiently compare the performance of one
procedure against the other in the same conditions from which we obtained the results
presented in the last sections. Furthermore, this search over the hyperparameter space

123



5.3. THE GOOD, THE BAD AND THE UGLY OF CURRICULUM LEARNING 124

could have helped in finding a better policy with the vanilla method, but convergence
would have still been slow, which is not in line with our primary goal. Indeed, our interest
is more related to how much we can speed up training, and we look for reward performance
only through the prism of minimal required performance. By that, we mean that to answer
the second problematic of this PhD, one must find a way to build efficient controllers as fast
as possible. If one controller achieves good performance without reaching the full reward,
we still consider it a step towards faster production of magnetic controllers. Future works
will then focus on optimizing the procedure as stated in the approach’s limitations.

Method Jumpstart on the final task TTT
Vanilla 4.3 180h

CL -10.2 24h

(a) Comparing transfer metrics between the vanilla and CLC methods.
Average reward Error margin

Vanilla 5.2 ±3.65
CLC 18.4 ±4.23

(b) Average reward over tasks.

Figure 5.13: Study of the control policy learned from scratch and the CLC method,
across three seeds.

Returning to our analysis, the CLC procedure implicitly pushes the exploration to
reachable states that are considered easier at the beginning of the initial task. Thus, the
duration of an environment step becomes shorter on average, and NICE converges to an
equilibrium in about 2 seconds. Good results from the initial task condition next ones,
keeping this state assumption valid, i.e. each new task will start from a better-than-
averaged behavior. Moreover, the chunks partitioning enables efficient diversification of
the situations filling the replay buffer, meaning that the state space coverage is greatly
improved right at the beginning of training. These two elements lead to 2.3 seconds on
average for the remaining parts of the curriculum. Finally, we obtain episodes computed
at worst in 0.26 hours if the maximum episode duration is reached, which is already an
auspicious outcome. This way, the reward threshold is reached in about 120 episodes, and
the TTT is reduced to approximately 24 hours. Previous attempts1 reduced the TTT to 60
hours, which was before optimization of the reward components displayed in Appendix D.
Even so, we observe an apparent reduction in convergence time towards a reward sufficient
to perform magnetic control in each configuration of interest (Figure 5.13a). The training
was stopped before 60 evaluation episodes for the final curriculum task, with a stable
return of about 25. The TTT of 24 hours is higher than the convergence time of 10 hours
presented in the work introducing the chunks procedure [118]. Nonetheless, the training
timescales depend on the machine and the environment, and only the procedure matters
to increase training speed drastically.

1Publications list available at the beginning of this manuscript

124



125 CHAPTER 5. PERFORMANCE OF RL-BASED MAGNETIC CONTROL

Figure 5.14: Episodic return for both methods (vanilla - red, CL - green). Since MPO
goes through a warm-up phase, we consider the last meaningful episodes regarding reward
convergence.

One important thing to notice comes from the jumpstart using the total number of
episodes. The curriculum strategy sometimes performs worse than the best return for the
vanilla approach at each new task (Figure 5.14 - upper). A concise explanation comes from
the fact that the new reward definition has an increased complexity, which inevitably drops
the return at start. Another explanation could arise from catastrophic forgetting, but a
more rigorous evaluation must confirm this hypothesis. This phenomenon could occur for
many reasons, while this PhD only displays a practical application of the method. This
means careful analysis is required to conclude which part of the curriculum is responsible
for this punctual performance loss. After those sudden reductions, the agent fails its first
attempt but recovers at the end. Let us remind that we are not stopping previous tasks
based on control performance, but rather to constrain the entire training time. Again,
we do not necessarily look for strong performance on intermediate tasks; we only look

125



5.4. A PARADIGM UNDER CAREFUL CALIBRATION 126

for enough knowledge transfer to boost performance after each curriculum step. So, this
observation is not entirely surprising since no optimal behavior is guaranteed nor expected
at the end of each intermediate task. Furthermore, MPO needs several initial exploratory
episodes for training to start concretely with informative data at hand. The curriculum
strategy could also be evaluated without these warm-up phases. Hence, we restrict our
findings to the last 20 meaningful episodes (Figure 5.14 - lower). Consequently, both
metrics give better results, as only improved behaviors are considered: the jumpstart is
significantly better, despite the last drop for the last transition, and the time to threshold
is reduced. Curriculum learning improves the final average performance(Figure 5.13b), as
it displays higher reward than the vanilla policy (Figures 5.14 - both). It shows that the
approach does not induce training instabilities, apart from the hypothetical catastrophic
forgetting.

5.4 A paradigm under careful calibration

These examples provided a qualitative and quantitative assessment of RL-based controllers
over the four scenarios studied in this work. More than just performance, they highlighted
the capacity for reinforcement learning to handle relatively small disturbances, fast tran-
sitions, and unstable moving targets. The related results answer the first problematic
of this PhD, as RL-based solutions exhibit interesting behaviors in line with what was
observed in the literature. Nevertheless, this is done by properly calibrating the reward
function, which makes the overall setup prone to overfitting. This could be considered the
underlying objective of these trainings: we want a controller that tracks the reference as
closely as possible, overspecializing on the related scenario without intending to generalize
effectively to others. In a sense, we look to "overfit" to a minimal working example, robust
enough in front of the uncertainties of plasma dynamics. Finally, curriculum learning is
coupled with the chunks procedure from the state-of-the-art and allows for fast training
and increased general performance while transitioning to an X-point. This first proof of
concept requires ablation studies to identify which part of the curriculum could be opti-
mized and which specification could cause the said catastrophic forgetting. For now, we
performed a simple statistical study with a qualitative description of the potential and
existing difficulties. Nonetheless, RL lacks a deterministic tool to assess its robustness in
the same way classical control offers. Future works are directed towards finding ways to
assess the robustness and stability of the approach in a more precise way.

126



Conclusion and perspectives

This PhD aimed at defining the first building bricks enabling the use of deep reinforcement
learning for tokamak control. The PILOT framework was developed from scratch to allow
the training of magnetic controllers with enough flexibility to address various problems. It
incorporates an agent chosen as the Maximum a posteriori Policy Optimization algorithm,
and an environment based on the NICE software. Both were built to answer the first prob-
lematic of this PhD, namely the design of core components required to use reinforcement
learning for magnetic control on WEST:

• the NICE environment acts as a numerical twin of the tokamak, taking into account
power supply, diagnostics and noise models. This correctly mimics the uncertainties
and specifications of the device. It is worth realizing that NICE required rigor-
ous configuration to stabilize the solver and obtain helpful plasma information for
training;

• the MPO algorithm is an alternative interpretation of reinforcement learning from
the point of view of probabilistic inference. This distributed actor-critic was im-
plemented after carefully understanding its dynamics and properly fine-tuning its
hyperparameters. Its advantages come from its low sensitivity to small changes of
the latter, depending on the use-case, and its capability to run numerous parallel
actor instances to gather more data in a replay buffer. This makes its setup straight-
forward for magnetic control within the landscape of potential applications;

The plasma scenarios considered for this work are inspired by the ones used in the state-
of-the-art [29, 118]. The presented study is complementary to the original one performed on
TCV, strengthening the idea of RL as an alternative to classical control design in tokamak
operation. As such, the reward signal is computed from an observed plasma state and a
plasma target interpolated by the reference generator of PILOT, starting from an ordered
set of desired plasma snapshots. These rewards are designed in an interpretable way so
that post-training analysis rapidly informs of potential updates in the reward definition.
This reasoning gives the final answer to the first problematic as trained controllers perform
well on the said scenarios, comparably to what is observed in the aforementioned literature.

127



128

It is essential to realize that this entire research requires much initial engineering effort
to develop the core elements needed for RL-based magnetic control, including exhaustive
hyperparameter searches. Nonetheless, it usually comes down to fine-tuning a few reward
components once the general set of hyperparameters has been optimized.

However, the paradigm of interest has multiple pitfalls, making its adoption for routine
use in tokamak operations unlikely to happen on a short timescale. As it is, it still needs
careful reward design to find the right combination of components, and is restricted to only
one scenario per training. Most importantly, training times easily trespass the symbolic
week threshold: the method uses a flexible framework, but is not flexible itself to produce
magnetic controllers rapidly. This is particularly problematic if we compare it to classical
controllers, which can be obtained much more quickly. This comes mainly from the NICE
environment, which can take hours to advance the plasma equilibrium in time for the
entirety of an episode. Instead of an exhaustive modification of NICE, we leverage the
use of curriculum learning, a simple procedure that sequentially increases the difficulty of
control objectives. By that, we mean that a sequence of tasks of increasing complexity is
produced, and the agent is trained on each of them sequentially. It is known to improve
performance and reduce convergence time towards an optimal policy by several orders
of magnitude. Previous works [118] also tried to speed up the production of magnetic
controllers, and their method can be combined trivially to curriculum learning. The results
show the potential of the mutual approach, as training duration goes from more than a
week to 24 hours on average. Nevertheless, the method presented in this research has
several limitations which make difficult its generalization to any case:

• the curriculum is handcrafted, and despite being generalizable to many scenarios, it
is not formally proven to be the best one;

• the action and state spaces remain the same between tasks, but nothing guarantees
that it is required, i.e. we could have restricted the action space to a subset of the
control coils in initial tasks, to speed up training even more;

• curriculum might be subject to catastrophic forgetting which causes divergence of
the policy in several occasions.

A discussion is conducted to counteract these issues, alleviating progressive neural
networks as promising architectures that can not suffer from catastrophic forgetting, while
being similar to regular fully connected neural networks. Their complexity is not in line
with the real-time constraints of WEST magnetic control, and only future works on policy
distillation could make such networks part of the training procedure. It is worth mentioning
that the latter could enable multi-scenario control by involving multiple expert controllers.
Furthermore, reinforcement learning does not exhibit tools to assess the stability and
robustness of an agent in the same way it is done in classical control. Because of that, it is
impossible to evaluate consistently the involved algorithm apart from rigorous statistical
analysis. Nonetheless, the second problematic is answered as curriculum learning limits
training duration to what is expected from the field. It is a first step towards making RL
a routine part of tokamak operations.

128



129 CHAPTER 6. CONCLUSION AND PERSPECTIVES

The results show that RL-based controllers can follow complex trajectories if the bal-
ance between reward components has been carefully designed. Indeed, without doing so,
we can end up with low-performance controllers incapable of handling disturbances and
uncertainties in plasma dynamics. Since NICE is augmented with more realistic modes,
the agent benefits from more accurate data, and training becomes more stable as sudden
changes in how the agent pictures the state space occur less frequently. It is essential to
consider that RL-based controllers are trained on reference trajectories inspired by exper-
imental ones. This means they refer to trajectories that are close if not similar to PID
control extensively used on WEST. Arguably, we only reproduce more robustly what clas-
sical controllers are already capable of. One could take the idea even further by stating
that maximizing the reward in our context comes down to overfitting the neural network to
a specific scenario already explored on the device. It would be beneficial to look for ways to
learn representations that did not occur in the set of existing control experiments, but this
is outside the scope of what was presented in this manuscript. Ultimately, deep RL dis-
played a strong potential in producing magnetic controllers for plasma control on WEST,
from limiter to X-point configurations. All developments are now focused on a practical
deployment on WEST, by fine-tuning the X-point transition to remove any steady-state
errors on the LCFS before producing a binary ready for execution on the WEST control
system.

Deep reinforcement learning is a paradigm displaying many hopes for the future. From
control of many configurations to multi-scenario control, there is room for improvement
at each level of the developed framework. Indeed, we identified training speed as a major
bottleneck and tried to counteract this issue through a simple yet effective curriculum
learning procedure. This was justified as a path contained within the neighbouring scope of
this PhD, with other potential approaches being too complex or too far from the applicative
character of this research. However, prospective works could definitely focus on them, not
only to enhance the capabilities of PILOT, but also to optimize the overall performance
of RL-based controllers. Typical prospects include:

• Enhancement of the NICE environmentEnhancement of the NICE environment:

– Surrogate models: With computing times reaching hours to simulate several
seconds of plasma, the NICE software might have to undergo a few modifications
to increase its execution speed. One idea would be to replace expensive steps
within the evolution mode, with neural networks trained in a supervised manner
to output an approximate yet precise solution of these computations. One could
go even further by replacing NICE with a neural network directly solving the
plasma evolution equation [61, 60]. However, this would come at the cost of
losing many functionalities that are more interpretable than neural networks.
It would be worth studying the balance offered by these concepts since a fast
simulator would allow the application of RL-based solutions to long plasma
pulses operation.

– Coupling codes: In fusion applications, the coupling of different codes is stan-
dard to refine the initial conditions of a simulation, or even its intermediate

129



130

calculations, with better defined parameters. Even if NICE includes resistive
diffusion and electron energy transport, it could be beneficial to augment it
with a complete transport solver like METIS [10]. This would not only offer
the previous advantages regarding stability but also enable more controls within
WEST (density control, etc), with an extended set of actuators (heating sys-
tems, etc). It is worth noticing that coupled codes are also concerned by the
surrogate models approach.

• Improvements over the agentImprovements over the agent:

– Comparing algorithms: The Maximum a posteriori Policy Optimization is the
sole algorithm used in this PhD. Despite correct performance on various control
scenarios and different tokamaks (TCV and WEST), it is not the only existing
solution. It would be beneficial to benchmark multiple actor-critic methods
[105, 103, 48] to conclude which algorithm suits magnetic control best.

– Exploring neural architectures: In this work, one of the primary intents was re-
producing the state-of-the-art. It then reuses a similar setup where the policy is
parameterized by a regular fully connected neural network and the critic by an
LSTM recurrent one. Nonetheless, many architectures could be particularly ef-
ficient not only during training but also for inference. It includes recurrent state-
space models [49, 31], which integrate classical control ideas to the recurrent
approach. The obtained networks could benefit from increased interpretabil-
ity and proper performance since they efficiently model long-range sequences.
Their relatively low complexity makes them capable of being deployed for the
critic, and the policy that has to function under real-time constraints. This is
different from what we observe from LSTMs or even transformer networks[72],
which model long-term dependencies at high complexity, making their use im-
practical for the control policy. These options must be benchmarked to enhance
the horizon of events that the RL-based controller could foresee.

– Improving exploration: The Maximum a posteriori Policy Optimization already
exhibits interesting properties in the dilemma between exploitation and explo-
ration. Through careful definition of the hard constraints over policy search,
exploration is influenced in policy space, benefiting from probabilistic inference
principles. Exploration could be augmented in many ways, from exploration
bonuses [51] to a restyle of the reward design integrating new transformations.

• Routine trainingRoutine training:

– Curriculum learning : We displayed curriculum learning as a way to speed up
the convergence of the algorithm and general performance on complex tasks.
This has been shown to constitute a powerful tool that could be used in the
future to produce magnetic controllers for each new experimental campaign
rapidly. However, we applied this methodology in a restricted setup, which
would require more ablation studies. This concerns an analysis of the learning

130



131 CHAPTER 6. CONCLUSION AND PERSPECTIVES

dynamics, within which unwanted phenomena such as catastrophic forgetting
can happen. Ultimately, it would help to better transfer the policy between
tasks. An automatic curriculum should be compared with the handcrafted one
to discover new learning trajectories and accelerate training even more.

– Progressive networks and distillation: A clear limitation of the current cur-
riculum approach comes from the risk of catastrophic forgetting. Even if the
mentioned ablation study is performed, this would still endanger the adoption
of this routine as part of PILOT’s main features. Progressive Neural Networks
[98] were presented and are implemented in PILOT. They will be tested ac-
cordingly, with proven guarantees regarding catastrophic forgetting. However,
these architectures have high complexity, making them difficult to use in real-
time control systems. One could prune the network to overcome this bottleneck
since several of its weights are not required after transfer [99]. A more elegant
solution might come from Policy Distillation [97, 26]. By training a PNN with
curriculum learning, an expert policy could be learned quickly and distilled in a
supervised manner into a smaller network, which aligns with the plasma control
system requirements.

– Continual learning and multi-scenario control : A discussion was made on the
use of policy distillation not only to distillate the knowledge of one expert policy
into a smaller network but also to perform the same procedure using many
experts trained on different scenarios. By doing that, the small network could
handle multiple control trajectories and pave the way towards multi-scenario
control. This idea is part of a general concept known as Continual learning
[126], in which we try to optimize agents under requirements changing over
time, i.e. agents that have to learn many new tasks often, while keeping intact
their acquired knowledge. This would constitute a final goal where RL-based
controllers are adapted swiftly to changes in the overall control objectives across
devices. This is intrinsically close to curriculum learning while focusing even
more on preventing catastrophic forgetting no matter the neural architecture
employed [34, 93].

– Experimental data: In this work, training was performed entirely with simula-
tions. This choice was motivated by models of plasma evolution that were read-
ily accessible from the start of this journey, while relying on complete datasets
of experimental data was not evident. The latter could be used to perform
offline reinforcement learning [110] or imitation learning [73], offering new per-
spectives for comparison with the model-free off-policy approach presented in
this work. An excellent idea could come from using these experimental data
to pre-fill the replay buffer. Easy to implement, it would enhance cold start of
training with information guiding the controller at the beginning of exploration.

131



Formal comparison between RL and
OC

132



133 APPENDIX A. FORMAL COMPARISON BETWEEN RL AND OC

Let us consider a simple offline optimization scheme, that can be exhibited while as-
suming a general case where an optimal trajectory exists with implicit state and control
constraints. Consider a dynamical system f , a control law u, and g an observation function
over the full state:

∀t ∈ [0,∞[

{
ẋ(t) = f(x(t), u(t))
y(t) = g(x(t))

with x(t) ∈ Rn, u(t) ∈ Rm

We look for trajectories x and u that minimizes the total cost L(x, u):

x∗, u∗ = argmin
x,u

L(x, u) = argmin
x,u

∫ ∞

0
l(x(t), u(t))dt (A.1)

with
{

x(0) = x0
∀t, l(x(t), u(t)) ≥ 0

One element remains important regarding its computation: the integral over an infinite
interval. While infinite horizon optimal control is defined formally, it is somehow ill-posed
since it could result in an infinite cost even in the case of optimal trajectories. We introduce
a discount factor of the form O(βt) with 0 < β < 1 which decays towards 0 as t→∞. This
will ensure that the cost will be bounded without turning the problem into a proper finite
horizon one. We could also add a terminal cost that penalizes the state attained at the
final state, but the discounted formulation allows for a more straightforward connection
with RL definitions. So, we end up rewriting (A.1) into:

x∗, u∗ = argmin
x,u

L(x, u) = argmin
x,u

∫ ∞

0
βtl(x(t), u(t))dt

with


x(0) = x0

l(x(t), u(t)) ≥ 0
0 < β < 1

Discretization is often needed as a necessary step before actual computation, and
we will use such representation from now on. Optimal trajectories become discrete as
{x(i)}i≥0 and {u(i)}i≥0, with discrete dynamics fd, and minimizes a discounted cumula-
tive cost:

x∗, u∗ = argmin
x,u

L(x, u) = argmin
x,u

∞∑
k=0

βkl(xk, uk) (A.2)

with


xk+1 = fd(xk, uk)
uk+1 = u(xk) ∀k ≥ 0
x(k) = xk
l(xk, uk) ≥ 0

We can, of course, restrain the optimization from any starting state, and by develop-
ment, we turn (A.2) into:

133



134

x∗t , u
∗
t = argmin

x,u
L(xt, ut) = argmin

x,u

∞∑
k=0

βkl(xt+k, ut+k)

with discrete time t = i× T , with timestep size T and i ≥ 0 . Precisely, we can rearrange
L(xt, ut) in order to obtain equations comparable to what has been seen in the previous
section:

L(xt, ut) =
∞∑
k=0

βkl(xt+k, ut+k)

= l(xt, ut) +
∞∑
k=1

βkl(xt+k, ut+k)

= l(xt, ut) + βL(xt+1, ut+1)

Let us recall that RL solves an infinite horizon problem by learning an optimal policy
π∗, which maximizes a discounted cumulative reward over time. Notably, it relies on the
value function from starting state st:

Vπ(s) =
∑
a

π(a|st)
∑
s′

P (s′|s, a)[R(s, a) + γVπ(s
′)]

If we consider a deterministic MDP and policy, with the value function definition in
mind, we find a straightforward connection between each paradigm in terms of cost/reward-
to-go:

Vπ(st) = R(st, at) + γVπ(st+1)

L(xt, ut) = l(xt, ut) + βL(xt+1, ut+1)

Furthermore, looking at optimality, a similar pattern is observable:

π∗ = argmax
π

Vπ(s) = argmax
π

Eπ[
∞∑
k=0

γkrk|st = s]

x∗, u∗ = argmin
x,u

L(x, u) = argmin
x,u

∞∑
k=0

βkl(xk, uk)

More than a difference in notation conventions, an interesting take on their dissimilari-
ties could come from the question of stochasticity. Indeed, MDPs are a discrete stochastic
formulation of optimal control problems [113]. This equivalence could also be obtained by
referring, for example, to the injection of noise both in the dynamics and observations so
that xt+1 = f(x, u,Nx) and yt+1 = g(x, u,Ny). This would still initially be formulated
without any feedback mechanism in the optimization process.

134



135 APPENDIX A. FORMAL COMPARISON BETWEEN RL AND OC

Agent Plant

u1, ..., uT

ut

xt

Figure A.1: Open (blue) and closed loop (green) interaction between an agent/controller
and a system. The closed loop enhances adaptability and allows the use of real-time
information at each step.

Moreover, whereas RL is mainly seen as a closed loop system where the policy is
learned by feedback from the environment, optimal control is primarily seen as an open-
loop planning formulation where the entire optimal control trajectory is optimized only at
first timestep (Figure A.1):

u1, ..., uT = argmin
u1,...,uT

L(x, u) with
{
xt+1 = f(xt, ut)
ut+1 = u(xt)

(A.3)

Even if we consider a stochastic version of the open loop, the disadvantages of the
approach remain the same, as it can not benefit from real-time information, inducing
potential inefficiency and risks of instability:

u1, ..., uT = argmin
u1,...,uT

Eu[L(x, u)|u1, ..., uT ] with


xt+1 = f(xt, ut, wt)

ut+1 = u(xt)
wt ∼ Nx(µx, σx)

Most importantly, a major concern regarding the open-loop approach is that the dy-
namics model is different from reality. This could cause the obtained trajectory to diverge
from the optimal behavior, as no feedback could be used to correct modeling errors. The
gap between the latter and the former can be closed by Model Predictive Control (MPC).
Starting from state x∗0, we would simulate the closed loop for t ∈ [0, T − 1[ :

u∗t = h∗t (x
∗
t )

x∗t+1 = f(x∗t , u
∗
t )

MPC traditionally finds the optimal control trajectory (u∗0, ..., u
∗
T−1) by optimizing

through a sliding window for reference y. Figure A.2 displays a closed loop where the

135



136

output of the system is given by g = Id(.). Indeed, we only design u∗0 and start by solving
(A.3) on discrete times spanned by the initial horizon ∆0. The first element of the control
law h∗0 is kept as u∗1, and shifting of the time window to ∆1 is performed. Once again,
(A.3) is solved on the new window: the first value of h∗1 is kept as u∗2, shifting to ∆2. We
repeat this online process sequentially, yielding optimal trajectories x∗ and u∗. Formally,
MPC is an optimal control method which does not assume any hypothesis on linearity, and
is capable of handling strong disturbances because of its efficient account for the receding
horizon. Following the discrete formulation, and since we bound the sum to a time window
of length N , this turns the whole setup into a tractable finite horizon problem:

x∗, u∗ = argmin
x,u

t+N∑
k=t

l(xk, uk), ∀t ≥ 0,

with


xk+1 = fd(xk, uk)
uk+1 = u(xk) ∀k ∈ {1, · · ·N}
x(k) = xk
l(xk, uk) ≥ 0

N > 0

Consequently, optimization is still at the heart of MPC. Indeed, even if a closed-loop
form is accessible, we optimize for an entire trajectory at each timestep. Because of
that, fast hardware is required to recompute every timestep for the updated horizon and
obtain a refined control strategy. Sufficient computing power enables direct optimization of
those systems in reasonable times, without an extensive need for linearization and Linear
Quadratic Regulator (LQR) control. MPC and LQR are both OC methods, but the second
assumes linearity and quadratic costs. With MPC, such a hypothesis does not hold, as
it can deviate from equilibrium states without becoming weak in its control objectives or
needing quadratic costs. However, there are no guarantees of an optimal solution for such
non-linear systems, which makes MPC a more efficient solution in terms of performance
and robustness but a hazardous option when it comes to global stability [68]. Therefore, we
can say that MPC allows a closed-loop formulation of OC where trajectories are optimized
continuously in an online manner. This formulation allows a new comparison with RL
which better contextualizes the need for closed-loop control, while general optimal control
helped realize the stochastic properties of RL. One question arises then: Which general
theory bridges the gap between RL and MPC ?

136



137 APPENDIX A. FORMAL COMPARISON BETWEEN RL AND OC

MPC
ẋ = f(x, u)

y = g(x)

Control ut

Output yt

x

Figure A.2: Online MPC where optimal control is computed iteratively.

In Chapter 2, policy and value iteration were mentioned as algorithms used to find
an optimal policy in the presence of a perfect MDP. They are derived from Dynamic
Programming (DP)[12], which is at the basis of RL and initially a way of solving MPC
using the said Bellman equations. Starting from Bellman’s principle of Optimality, an
optimal cost trajectory has the property that any subsequent partition is optimal (Figure
A.3).

Definition. Bellman’s Principle of optimality An optimal policy has the property that
whatever the initial state and initial decision are, the remaining decisions must constitute
an optimal policy with regard to the state resulting from the first decision.

Based on this idea, we get a recursive definition of the optimal cost for each interval
[k, k + 1]:

L∗
k(xk, uk) = min

x,u
l(xk, uk) + βL∗

k+1(xk+1, uk+1)

Here, we must notice that with its subscript, L∗ is non-stationary as it depends both
on time and state. In such a case, the optimal cost-to-go could evolve at each timestep,

137



138

which is not a situation covered in this brief analysis. This forward recursion, called exact
dynamic programming, allows to compute an optimal feedback control law u∗k = h∗(xk) =
argminx,u l(xk, uk) + βL∗(xk+1, uk+1), as well as an optimal state trajectory x∗ by the
closed-loop system x∗k+1 = f(x∗k, u

∗
k). Requiring a stationary property for DP recursion,

i.e L∗
k = L∗

k+1 and generalizing to any state x, the optimal cost known as the stationary
Bellman equation, and the corresponding control law, can finally get simplified to:

L∗(x) = L∗(x, .) = min
u
l(x, u) + βL∗(f(x, u))︸ ︷︷ ︸

Q(x,u)

h∗(x) = h∗(x, .) = argmin
u

Q(x, u)

Trivially, the action-value function from RL is recovered by rearranging notations.
Looking only at the action-value has its importance, as discussed in Chapter 2. The
missing stochasticity of RL could easily be added as an expectancy over disturbances put
on both f and h, but we rely more on the recursive properties of DP to close the gap
between MPC and RL. Consequently, the Bellman operator T can be introduced as:

T [L](x) := min
u
l(x, u) + βL∗(f(x, u))

⇐⇒ ∀s ∈ Rn, L ≥ L′ ⇒ T [L] ≥ T [L′]

Again, we quickly recover the Bellman optimality equations. This material conditional
is historically known as monotonicity in DP, which is directly translatable to policies and
rewards from RL. This shows that RL (and DP more generally) can be seen as a fixed-point
problem of the form T L∗ = L∗ . Consequently, the solutions of the Bellman Optimality
equations are the fixed points of the Bellman operator. Since the Bellman operator is

0 t

L∗(x, u) u∗(x)

u∗

xk xN

L∗(xk, uk)

L∗(xN , uN )

L∗(x0, u0)

Figure A.3: From optimal trajectories L∗ and u∗, any portion [k,N] remains optimal for
initial state xk.

138



139 APPENDIX A. FORMAL COMPARISON BETWEEN RL AND OC

a contraction mapping in infinity norm, one can prove through the Banach fixed-point
theorem that it has a unique fixed point [113]. Hence, any policy based on the Bellman
optimality equations has values equal to that solution, i.e the optimal policy formally
exists.

One could point out that we face a minimization problem, while RL defines a maxi-
mization one. However, this difference is negligible, as the Bellman operator can be defined
similarly from both perspectives, leading to proper optimality equations. So, DP is an el-
egant way of solving MPC, performing an exhaustive search of all possible actions for all
possible states. Nevertheless, its computational complexity increases exponentially with
the number of states, and actions to a lesser extent. For this reason, the so-called Curse
of Dimensionality becomes a substantial issue. On the one hand, classical MPC restricts
computation to only start at the current state s0. Applying such a method to DP recursion
does not remove all problems regarding dimensionality, as the mentioned search remains
infeasible for all actions. On the other hand, discretization and reduction of state and ac-
tion spaces could be considered, at the cost of losing tremendous precision in the process.
Overall, both paths would lead to tabular representations of L∗, which can not be exactly
implemented in most real applications where the state space becomes too large. Most im-
portantly, a significant bottleneck of DP (including MPC as a general consequence) is the
need for system identification. By that, we mean that they require proper knowledge of
the system’s dynamics, as well as the stochastic processes that can be added to the whole
framework (noise, disturbances). If we rely on our second option, we could destroy such an
assumption and create an ill-posed problem. That is why dynamic programming and what
comes straight from it in reinforcement learning (policy and value iteration algorithms)
are restricted to tractable problems, in terms of dimensions and dynamics modelization.

139



Precisions on value and gradient-based
methods

140



141 APPENDIX B. PRECISIONS ON VALUE AND GRADIENT-BASED METHODS

This appendix presents more details about value-based and policy-based methods,
notably how the bias-variance trade-off inherent to machine learning helps analyze the
outcomes of each approach.

B.1 A focus on value learning

Let us assume a fixed policy π. The purpose of value learning can be illustrated at a high
level by first evaluating Qπ and then setting the improved policy using the best values. In
the context of actor-critic algorithms, only the first evaluation is performed, and gradient-
based optimization is conducted to improve the policy. This initially resolves around
Monte-Carlo reinforcement learning. Let us define a trajectory τ over state and action
spaces, built using π. Let us recall that ∀s ∈ S, Qπ(s, a) = Eπ[Gτ |st = s, at = a] with
Gτ =

∑∞
k=0 γ

krt+k. Using τ , Monte-Carlo methods compute the empirical average return
over each visited state-action pair for this episode instead of the expected return, starting
at step T . More precisely, we update Qπ(s, a) using a running average of the return for all
occurrences of (s, a) registered from previous trajectories. Through these definitions, we
can see that Monte-Carlo approximations definitely work in model-free settings because
experiences are assumed to contain enough knowledge to fit the action-value function,
without knowing anything about the MDP’s dynamics. Nonetheless, this approach is
problematic since we need entire episodes to perform training, assuming that they effec-
tively reach a defined terminal state. To avoid this issue, we must use a method that does
not rely on complete sequences. Temporal-Difference (TD) learning steps in without the
need for entire episodes. Its pinnacle principle looks after updating the estimate of Qπ

using actual estimates. In a sense, this bootstrapping tries to guess the action-value out of
previously guessed estimates. Despite our focus on Qπ, we will resolve on V π to explain
TD learning, as keeping our focus on the action-value function would result in a specific
case within the TD domain. Hence, the TD update is expressed as:

V π(st)←− V π(st) + α [rt+1 + γV π(st+1)︸ ︷︷ ︸
TD target

−V π(st)

︸ ︷︷ ︸
TD error

]

with learning rate α ∈ [0, 1] and discount factor γ ∈ [0, 1]. We look to minimize the
TD error, which is the reward from transitioning from state st to st+1 augmented with the
difference between the discounted value estimate for st+1 and the value estimate for st. So,
we do not update the value based on the entire return but only on the immediate reward
and an estimate of the next state. As learning steps go on, the TD error will become more
stable than the actual rewards received during an episode, converging to the optimal value
function defined by the Bellman equation. A simple understanding of TD learning could
be stated using an intuitive example. While planning a car trip on a weekend, one could
try to predict its duration. Moreover, a road traffic model with ongoing works could be
available, considering everything that happened during the week. A naive approach would
be to wait until the weekend to update the model based on all outcomes of previous days.

141



B.1. A FOCUS ON VALUE LEARNING 142

However, you could already have enough information on Friday to confirm your itinerary
and plan your trip accordingly. That is why the update does not need to wait until the
weekend since it can be done in an online manner. TD learning using the Qπ defines the
SARSA1 approach [113], which updates the action-value representation with the following
rule:

Qπ(st, at)←− Qπ(st, at) + α[rt+1 + γQπ(st+1, at+1)−Qπ(st, at)]
in which the γ parameter weights by how much we want to balance between previous

estimates and the target value. This differs from the famous Q-learning algorithm, which
is an off-policy variation of the idea:

Qπ(st, at)←− Qπ(st, at) + α[rt+1 + γmax
a∈A

Qπ(st+1, a)−Qπ(st, at)]

= (1− α)Qπ(st, at) + α[rt+1 + γmax
a∈A

Qπ(st+1, a)]

This is off-policy, mainly because it disregards the actual trajectory, and updates based
on what the result of the next greedy state-action pair could be, i.e. the best action
using the maximum. The learned policy acts greedily, while the concrete policy used to
interact with the environment and gather the actual trajectory could have been anything
exploratory. Thanks to its smaller event horizon, the TD target displayed in both regular
TD-learning and Q-learning has a lower variance than the return. Unfortunately, it is
inherently biased because of the bootstrapping idea. N-step bootstrap is a way to unify
Monte-Carlo methods with TD learning, by looking at an update based on n intermediate
rewards. We can compare the actual n-step return computation with the two previous
approaches. Now, the action-value function has time indexes that relate to when it was
updated:

• Monte-Carlo: Gτ = rt+1 + · · ·+ γT−t−1rT

• TD: Gt:t+1 = rt+1 + γVt+1(st+1)

• N-step: Gt:t+n = rt+1 + γrt+2 + · · ·+ γnVt+n−1(st+n)

N-step returns then function as estimates of the full return using bootstrapped values.
In this case, 1-step returns are similar to TD learning, and ∞-step returns align with
Monte-Carlo methods. In the end, it helps overcome the time constraints that exist in
other designs. We can easily extend the update rule to this specific generated target and
obtain the following:

V π
t+n(st)←− V π

t+n−1(st) + α[Gt:t+n − V π
t+n−1(st)]

with V π
t+n−1(s) = V π

t+n(st),∀s ̸= st. Deriving an actual formula from SARSA is
straightforward and follows the same pattern as the previous equation. However, per-
forming the same derivation for Q-learning is not trivial, as it would no longer respect

1Acronym standing for State-Action-Reward-State-Action

142



143 APPENDIX B. PRECISIONS ON VALUE AND GRADIENT-BASED METHODS

several assumptions of off-policy learning. Indeed, we would have to re-establish the off-
policy nature of the initial algorithm [113], mostly using importance sampling [117], for
example. This overall definition would need an actual thorough discussion on the TD(λ)
paradigm, in which Gt = (1 − λ)

∑∞
n=1 λ

n−1Gt:t+n. Previous methods and other ones
can be derived from this expression. However, we avoid displaying the entirety of avail-
able possibilities since we practically implemented our target computation following the
formula:

Gt = rt+1 + γ [ rt+2 + γ [ · · · [ rt+n + γ Qπt+n(st, at)]] (B.1)

and used these bootstrap estimates to fit a parameterized representation of Qπ in a
supervised manner, as it works sufficiently well with MPO, the algorithm used in this
thesis. Now that we have described the value estimate in the actor-critic setup, we need
to understand the whole point of policy-based approaches better.

B.2 Looking at policy learning

Let us remind that the optimal policy is defined as π∗ = argmaxπ Eτ∼P (.) [
∑

t r(st, at)].
We define a cost J with respect to π so that:

J (π) = Eτ∼P (.)

[∑
t

r(st, at)

]
≈ 1

N

∑
i

∑
t

r(si,t, ai,t)

with N the number of trajectory samples. A first approach comes from the REIN-
FORCE 2 algorithm [131] which uses the fact that P (τ)∇π log P (τ) = P (τ)∇πP (τ)

P (τ) =

∇πP (τ), in order to express:

J (π) = Eτ∼P (.)

[(∑
t

∇π log π(at|st)

)(∑
t

γ r(st, at)

)]

≈ 1

N

∑
i

(∑
t

∇π log π(at|st)

)(∑
t

γr(st, at)

)

with N entire trajectories sampled from P , following Monte-Carlo procedures depicted
in the previous section. Finally, the policy is improved by gradient ascent with the up-
date rule π ←− π + α∇πJ (π). Actually, the cost J is close to a maximum likelihood
formulation. Thanks to it, we can interpret the approach as a procedure to increase the
probabilities of good trajectories and decrease the probabilities of bad ones. Nevertheless,
this method shows high variance, leading to overestimating probabilities related to actions
with low rewards. Said differently, for the same policy and state-action pair, the reward
can be different. This is solved by the fact that π at time t′ can not affect the reward at

2Common shorthand written in capital letters

143



B.2. LOOKING AT POLICY LEARNING 144

time t if t < t′. Indeed, the future logically does not impact the past. So we can rewrite
the gradient and approximate it by:

∇πJ (π) ≈
1

N

∑
t

∇π log π(at|st)

∑
t′≥t

γ r(st′ , at′)− b


with b an unbiased estimator, such as the average reward. We subtract to the current

reward r(st, at), the mean return starting from state st, keeping the advantage taken out
the chosen action at [77]. This overall scheme is on-policy because of the expectation over
the entire trajectory τ . We can make it off-policy [30], but it does not solve entirely our
main concerns regarding convergence. Indeed, ∇πJ (π) has a low bias, but a high variance
because of entire trajectories which might be long. Moreover, this signal can be really
noisy, which would raise difficulties in defining proper learning rates. These clarifications
have provided insights into the gradient-based methods, which could be useful for potential
comparison with the actor-critic setup.

144



Precisions on WEST

145



C.1. A MORE PRECISE REPRESENTATION OF WEST GEOMETRY 146

C.1 A more precise representation of WEST geometry

In Chapter 2, a schematic view of a tokamak poloidal plane is presented. However, this
general representation does not account for WEST particularities. Below, the real geom-
etry of WEST is displayed (Figure C.1), as configured in the NICE environment. This
more realistic figure includes all defined domains for NICE computation. The domains are
similar, except that the vacuum vessel is treated differently:

• the iron structures Ωf highlighted in green;

• the passive structures Ωps in burgundy, including the divertor structures, with the
circular chamber walls hosting the vacuum chamber, and surrounded by toroidal coils
(solid black lines). It differs from the D-shaped scheme in the general representation;

• the PF coils regions Ωc are placed around the circular chamber (blue squares) to
control plasma’s shape, position, and current;

• the limiter region ΓL occupies the entirety of the vacuum chamber;

• the plasma domain Ωp, here displayed in light yellow.

C.2 A noisy description of delays

In chapter 3, we stated that PILOT incorporates noise injection in the observations, as well
as delays both in the diagnostics and power supply models. The following table concisely
lists these elements.

Power supply related Each of the bounds presented below is multiplied by 0.9 to
ensure safe transfer to reality once deployment is performed.

Delay (ms) Min. current (A) Max. Current (A) Voltage limit (V)
A 0.002 −30000 35000 1400
B 0.003 −4300 5600 1400
D 0.003 −2000 2300 2500
E 0.003 −4000 1300 2500
F 0.003 −4000 1000 2500
X 0.003 −2000 20000 370

Diagnostics related For each diagnostic i, noise is sampled from a normal law N (0, σi).
The following table presents the standard deviations for all observations of interest.

146



147 APPENDIX C. PRECISIONS ON WEST

σ Delay (ms)
Coils currents 25

0.5

Loop voltage 0.3
Flux loops 10−4

Magnetic probes 10−4

Temporal derivatives 0.05
Coils currents 0.003

Figure C.1: Schematic view of the WEST poloidal plane, as opposed to the general rep-
resentation presented in a previous chapter.

147



C.3. MAY THE SNAPSHOT BE WITH YOU 148

C.3 May the snapshot be with you

We present several snapshots used to build control scenarios. The shapes range from a
plasma in limiter configuration, to an X-point one stabilized in the long run, through a
plasma which just started to stretch. Any combination of the latter is possible, as well
as the addition of new shapes to PILOT, under the condition that new transitions are
physically accurate.

Figure C.2: Several snapshots are at the basis of our control scenarios. The
D_transition_start increases elongation, and D_transition_mid forms an intermediate
shape with an X-point. Hence, we can configure a vast number of potential scenarios.

148



Reward definitions

149



D.1. REWARD COMPONENTS 150

In Chapter 3, the reward computation is described, but no proper definition of its
components is performed. This appendix presents all the reward components used in this
PhD, as well as the combination performed for each of the four scenarios of interest. As
a side note, the reward penalty related to terminal conditions is set to −5, which is equal
to −0.5 once scaled properly.

D.1 Reward components

General purpose

LCFS Distance between the observed LCFS upsampled to 128 points, and the tar-
get boundary composed of 32 reference points. For each of the latter, its
distance to the nearest segment made of observed LCFS points is computed,
and expressed in meters. The 32 values are normalized through the procedure
depicted in Chapter 3, leading to one scalar value.

R Distance to the reference radial coordinate of the plasma centroid, expressed
in meters. This is computed from the real R which is interpolated for increased
precision. Indeed, it would have followed nodes of the simulation mesh other-
wise.

Z Distance to the vertical coordinate of the plasma centroid, expressed in meters.
Interpolation is performed again.

Ip Plasma current expressed in amperes.

κ Plasma elongation, which is unitless. This is expressed by the height of the
plasma, divided by its width.

a Minor radius, expressed in meters.

ICmin Minimization of the poloidal coils currents, expressed in amperes. We consider
general good and bad parameters since a specific pair per coil showed no
significant improvement over the current implementation.

X-points related

Xl Distance to the desired X-point location, expressed in meters. This is com-
puted from the real x-point location, which is interpolated for increased preci-
sion. Indeed, it would have followed nodes of the simulation mesh otherwise.

Xn Normalized flux at the desired X-point location. Target set to 1. It forces the
X-point to be on the LCFS, forming the configuration of interest.

Xf Gradient of the flux at the desired X-point location. Target set to 0, and
expressed in W.rad−1.s−1. It helps form an X-point in the neighborhood of
the target.

150



151 APPENDIX D. REWARD DEFINITIONS

Xns Normalized flux at the desired left and right strike points, located on the lower
divertor. Target set to 1.

LP Coordinates of the actual limit point, either the limiter in corresponding sce-
narios or the X-point in the other case, expressed in meters.

D.2 Reward definition

The reward definition with all hyperparameters is described for each of the control scenarios
used in this PhD in the following tables.

Limiter maintain

Component Softplus Smoothmax Weightgood bad α

LCFS 0.001 0.025 −1 3
R 0.001 0.025 x 1
Z 0.001 0.025 x 1
a 0.002 0.02 x 1
Ip 1000 10000 x 1
κ 0.002 0.02 x 1
a 0.002 0.02 x 1

ICmin 100 10000 −0.5 1

Combined with α = −0.5

Limiter evolve

Component Softplus Smoothmax Weightgood bad α

LCFS 0.001 0.03 −1 3
R 0.005 0.05 x 1
Z 0.005 0.05 x 1
a 0.002 0.025 x 1
Ip 1000 15000 x 2
κ 0.002 0.15 x 1
a 0.002 0.03 x 1

ICmin 100 10000 −0.5 1

Combined with α = −5

151



D.2. REWARD DEFINITION 152

X-point maintain

Component Softplus Smoothmax Weightgood bad α

LCFS 0.005 0.035 −1 3
R 0.002 0.025 x 1
Z 0.002 0.025 x 1
Ip 500 10000 x 2
a 0.002 0.03 x 1
κ 0.002 0.025 x 1
a 0.002 0.03 x 1

ICmin 100 10000 −0.5 1
Xl 0.005 0.03 x 1
Xn 0 0.08 x 1
Xf 0 3.5 x 0.5
LP 0.002 0.025 x 1

Combined with α = −0.5

X-point evolve

Component Softplus Smoothmax Weightgood bad α

LCFS 0.004 0.04 −1 3
R 0.002 0.02 x 1
Z 0.002 0.015 x 2
a 0.02 0.5 x 0.5
Ip 500 20000 x 3
κ 0.005 0.2 x 1
a 0.002 0.035 x 1

ICmin 100 12000 −5 1
Xl 0.01 0.15 x 3
Xn 0 1 x 2
Xf 0 3.5 x 1
Xns 0.1 0.8 −5 2
LP 0.1 0.25 x 1

Combined with α = −5

152



153 APPENDIX D. REWARD DEFINITIONS

D.3 Curriculum definition

The curriculum is set to be a sequence of fixed rewards. It sequentially starts by controlling
the plasma centroid and its current. Then, it adds the elongation and the LCFS. All
defined X-point targets are included for the final task in X-point scenarios. At each step
of the curriculum and for each scenario, the chosen hyperparameters are the same as those
presented in the previous tables.

153



Training hyperparameters

154



155 APPENDIX E. TRAINING HYPERPARAMETERS

This section describes all MPO hyperparameters and their related values. They follow
the hyperparameter search described in Chapter 3.

E.1 The role of each hyperparameter

E.1.1 Generally for PILOT

A The number of actor nodes running in parallel.

SL Length of the sequences gathered in the replay buffer.

BL The stored sequences will be of length SL + |Burn-in length|. The added part
is used to initialize the critic LSTM core.

RP Replay period. This allows the overlap of SL − RP timesteps in consecutive
sequences.

minRS Minimum size of the replay buffer, which impacts the pace at which data is
processed. Training starts when minRS are in the replay buffer.

maxRS Maximum size of the replay buffer, with the same kind of impact stated right
before.

SPI Samples per insert. If the environments are faster than the learner, data might
be replaced too fast, and training might become unstable as the distribution
of samples evolves too rapidly. If the learner is faster than the environments,
we would have more samplings than writings. It is more stable but can lead
to instabilities if we encounter several samples that are completely different
from the average distribution. This hyperparameter then regulates the ratio
between the number of examples sampled by the learner node and the number
of writings happening in the replay buffer.

V The period after which actor nodes retrieve policy weights from the learner
node. This can be set automatically to the maximum duration of an episode.
If an episode ends before its full length, the counter keeps going until the
update threshold is reached.

I Type of integral effect used either in the policy’s input, or as a reward compo-
nent. It can be the empirical average (Emp), a classic integral representation
(Int), or an exponential decay (Exp).

E.1.2 Specifically for MPO

General

B Batch size.

155



E.2. CURRENT CONFIGURATION 156

γ Discount factor.

n N-step bootstrapping horizon.

Tπ Number of online updates before target policy network update.

TQ Number of online updates before target critic network update.

lc Learning rate for the critic update in policy evaluation.

ld Learning rate for the dual problem related to η in the E-step.

lp Learning rate for the policy update in the M-step.

πΣ0 Initial standard deviation of the Gaussian policies.

Policy improvement

m Number of sampled actions in the E-step.

ϵ Hard constraint for the E-step.

ϵµ Hard constraint for the M-step while fixing the mean of the policy.

ϵΣ Hard constraint for the M-step while fixing the covariance matrix of the policy.

log η0 Initial temperature in the E-step in log-space.

log αµ0 Initial alpha in log-space for the inner optimization of the objective to fit Σθ in the
M-step.

log αΣ0 Initial alpha in log-space for the inner optimization of the objective to fit µθ in the
M-step.

ϵa Hard constraint for the action penalty summed to the overall policy.

E.2 Current configuration

PILOT MPO
General parameter Specific parameters

A 100 B 256 m 20
SL 64 γ 0.99 ϵ 5× 10−1

BL 20 n 5 ϵµ 9.09
RP 10 Tπ 50 ϵΣ 0.966

minRS 512 TQ 50 log η0 10
maxRS 106 lp 3× 10−4 log αµ0 10

SPI 256 ld 3× 10−4 log αΣ0 1000
V Adaptative lc 10−2 ϵa 10−3

I Emp πΣ0 0.5

156



157 APPENDIX E. TRAINING HYPERPARAMETERS

E.3 Neural architectures

Finally, we thoroughly describe the policy’s fully connected structure and the recurrent
critic. All weights are initialized randomly from a truncated normal distribution with
a zero bias and scaled with the number of inputs. The last layer of the policy follows
the same specification, but the weights are scaled with 10−4. This is similar to [29], as
[7] showed that the last policy layer should be initialized with weights a hundred times
smaller than remaining layers, i.e. considering the Tensorflow implementation TensorFlow
[1], it corresponds to a product by 10−4. The policy network uses distributions for the 11
control coils used to operate WEST. Both architectures follow the state-of-the-art [29], as
hyperparameter searches over the properties of the network lead to structures performing
worse on average. Moreover, MPO tends to work best with networks at least as wide and
deep as the ones presented in [38].

policy_network = Sequential([
Linear(256),
LayerNorm(),
tf.nn.tanh,
Linear(256),
tf.nn.elu,
Linear(256),
tf.nn.elu,
Linear(256),
tf.nn.elu,
MultivariateNormalDiagHead(11,init_scale=pi_Sigma_0)
])

critic_network = snt.Sequential([
ClipActionToSpec(),
tf.nn.tanh,
ConcatObsAndAction(),
LSTM(256),
ResidualConcat() -> Output of LSTM concatened to its inputs
Linear(256),
tf.nn.elu,
Linear(256),
tf.nn.elu,
Linear(1)
])

157



References

[1] M. Abadi, A. Agarwal, P. Barham, et al. TensorFlow: Large-scale machine learning
on heterogeneous systems, 2015.

[2] A. Abdolmaleki, S. Huang, L. Hasenclever, et al. A distributional view on multi-
objective policy optimization. In Hal Daumé III and Aarti Singh, editors, Proceedings
of the 37th International Conference on Machine Learning, volume 119 of Proceedings
of Machine Learning Research, pages 11–22. PMLR, 2020.

[3] A. Abdolmaleki, B. Price, N. Lau, et al. Deriving and improving CMA-ES with
information geometric trust regions. In Proceedings of the Genetic and Evolutionary
Computation Conference, GECCO ’17, page 657–664. Association for Computing
Machinery, 2017.

[4] A. Abdolmaleki, J. T. Springenberg, J. Degrave, et al. Relative entropy regularized
policy iteration. CoRR, abs/1812.02256, 2018.

[5] A. Abdolmaleki, J. T. Springenberg, Y. Tassa, et al. Maximum a Posteriori Policy
Optimisation. In International Conference on Learning Representations, 2018.

[6] R. Albanese, J. Blum, and O. Barbieri. On the solution of the magnetic flux equation
in an infinite domain. In EPS. 8th Europhysics Conference on Computing in Plasma
Physics, pages 41–44, 1986.

[7] M. Andrychowicz, A. Raichuk, P. Stańczyk, et al. What matters for on-policy deep
actor-critic methods? a large-scale study. In International Conference on Learning
Representations, 2021.

[8] K. H. Ang, G. Chong, and Y. Li. PID control system analysis, design, and technology.
IEEE Transactions on Control Systems Technology, 13(4):559–576, 2005.

[9] M. Ariola and A. Pironti. Magnetic Control of Tokamak Plasmas. Springer London,
2008.

[10] J.F. Artaud, F. Imbeaux, J. Garcia, et al. Metis: a fast integrated tokamak modelling
tool for scenario design. Nuclear Fusion, 58(10):105001, aug 2018.

158



159 REFERENCES

[11] J. L. Ba, J. R. Kiros, and G. E. Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

[12] R. Bellman. Dynamic Programming. Dover Publications, 1957.

[13] Y. Bengio, J. Louradour, R. Collobert, and J. Weston. Curriculum learning. In
Proceedings of the 26th Annual International Conference on Machine Learning, page
41–48. Association for Computing Machinery, 2009.

[14] D. Bertsekas. A Course in Reinforcement Learning: 2nd Edition. Athena Scientific,
2024.

[15] J. Blum. Numerical simulation and optimal control in plasma physics. New York,
NY; John Wiley and Sons Inc., 1989.

[16] S. Borman. The expectation maximization algorithm a short tutorial, 2006.

[17] C. Bourdelle, J.F. Artaud, V. Basiuk, et al. WEST Physics Basis. Nuclear Fusion,
55(6), 2015.

[18] J. Bucalossi, J. Achard, O. Agullo, et al. Operating a full tungsten actively cooled
tokamak: overview of WEST first phase of operation. Nuclear Fusion, 62(4):042007,
2022.

[19] L. Buşoniu, T. de Bruin, D. Tolić, J. Kober, and Ivana Palunko. Reinforcement learn-
ing for control: Performance, stability, and deep approximators. Annual Reviews in
Control, 46:8–28, 2018.

[20] F. Carpanese. Development of free-boundary equilibrium and transport solvers for
simulation and real-time interpretation of tokamak experiments. PhD thesis, EPFL,
2021.

[21] A. Cassirer, G. Barth-Maron, E. Brevdo, et al. Reverb: A framework for experience
replay, 2021.

[22] I. Char, J. Abbate, L. Bardoczi, et al. Offline model-based reinforcement learning
for tokamak control. In Nikolai Matni, Manfred Morari, and George J. Pappas, edi-
tors, Proceedings of The 5th Annual Learning for Dynamics and Control Conference,
volume 211 of Proceedings of Machine Learning Research, pages 1357–1372. PMLR,
2023.

[23] P. Christiano, J. Leike, T. B. Brown, et al. Deep reinforcement learning from human
preferences, 2023.

[24] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio. Empirical evaluation of gated
recurrent neural networks on sequence modeling, 2014.

[25] G. Cunningham. High performance plasma vertical position control system for up-
graded MAST. Fusion Engineering and Design, 88(12):3238–3247, 2013.

159



REFERENCES 160

[26] W. M. Czarnecki, R. Pascanu, S. Osindero, et al. Distilling policy distillation, 2019.

[27] G. De Tommasi, S. Dubbioso, Y. Huang, et al. A RL-based vertical stabilization
system for the EAST tokamak. In 2022 American Control Conference (ACC), 2022.

[28] P.C. de Vries and Y. Gribov. ITER breakdown and plasma initiation revisited.
Nuclear Fusion, 59(9):096043, 2019.

[29] J. Degrave, F. Felici, J. Buchli, et al. Magnetic control of tokamak plasmas through
deep reinforcement learning. Nature, 602:414–419, 2022.

[30] T. Degris, M. White, and R. S. Sutton. Off-policy actor-critic. In Proceedings of
the 29th International Conference on Machine Learning, ICML’12, page 179–186,
Madison, WI, USA, 2012. Omnipress.

[31] A. Doerr, C. Daniel, M. Schiegg, et al. Probabilistic recurrent state-space models,
2018.

[32] S. Dubbioso, G. De Tommasi, and A. Mele et al. A deep reinforcement learning
approach for vertical stabilization of tokamak plasmas. Fusion Engineering and
Design, 194, 2023.

[33] S. R. Dubey, S. K. Singh, and B. B. Chaudhuri. Activation functions in deep learning:
A comprehensive survey and benchmark, 2022.

[34] B. Ehret, C. Henning, M. Cervera, et al. Continual learning in recurrent neural
networks. In International Conference on Learning Representations, 2021.

[35] L. C. Evans. An introduction to mathematical optimal control theory version 0.2,
2013.

[36] B. Faugeras. An overview of the numerical methods for tokamak plasma equilib-
rium computation implemented in the nice code. Fusion Engineering and Design,
160:112020, 2020.

[37] W. Fedus, P. Ramachandran, R. Agarwal, et al. Revisiting fundamentals of expe-
rience replay. In International conference on machine learning, pages 3061–3071.
PMLR, 2020.

[38] H. Furuta, T. Kozuno, T. Matsushima, Y. Matsuo, and S. (Shane) Gu. Co-
adaptation of algorithmic and implementational innovations in inference-based deep
reinforcement learning. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and
J. Wortman Vaughan, editors, Advances in Neural Information Processing Systems,
volume 34, pages 9828–9842. Curran Associates, Inc., 2021.

[39] M. Ghavamzadeh, S. Mannor, J. Pineau, and A. Tamar. Bayesian reinforcement
learning: A survey. Found. Trends Mach. Learn., 8(5–6):359–483, 2015.

160



161 REFERENCES

[40] I. J. Goodfellow, M. Mirza, D. Xiao, A. Courville, and Y. Bengio. An empirical
investigation of catastrophic forgetting in gradient-based neural networks, 2015.

[41] G. J. Gordon. Reinforcement learning with function approximation converges to
a region. In T. Leen, T. Dietterich, and V. Tresp, editors, Advances in Neural
Information Processing Systems, volume 13. MIT Press, 2000.

[42] A. Graves, M. G. Bellemare, J. Menick, R. Munos, and K. Kavukcuoglu. Automated
curriculum learning for neural networks, 2017.

[43] Y. Gribov, A. Kavin, V. Lukash, et al. Plasma vertical stabilisation in ITER. Nuclear
Fusion, 55(7), 2015.

[44] I. Grondman, L. Busoniu, G. A. D. Lopes, and R. Babuska. A survey of actor-critic
reinforcement learning: Standard and natural policy gradients. IEEE Transactions
on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 42(6):1291–
1307, 2012.

[45] G. Gros, B. Faugeras, C. Boulbe, et al. Numerical simulation of tokamak plasma
equilibrium evolution. Technical report, INRIA, 2024.

[46] D. Görges. Relations between model predictive control and reinforcement learning.
IFAC-PapersOnLine, 50(1):4920–4928, 2017. 20th IFAC World Congress.

[47] T. Haarnoja, H. Tang, P. Abbeel, and S. Levine. Reinforcement learning with deep
energy-based policies. In International conference on machine learning, pages 1352–
1361. PMLR, 2017.

[48] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy max-
imum entropy deep reinforcement learning with a stochastic actor. In Jennifer Dy
and Andreas Krause, editors, Proceedings of the 35th International Conference on
Machine Learning, volume 80 of Proceedings of Machine Learning Research, pages
1861–1870. PMLR, 2018.

[49] D. Hafner, T. Lillicrap, I. Fischer, et al. Learning latent dynamics for planning from
pixels. In International conference on machine learning, pages 2555–2565. PMLR,
2019.

[50] A. Harutyunyan, S. Devlin, P. Vrancx, and A. Nowe. Expressing arbitrary reward
functions as potential-based advice. Proceedings of the AAAI Conference on Artifi-
cial Intelligence, 29(1), 2015.

[51] M. Henaff, M. Jiang, and R. Raileanu. A study of global and episodic bonuses for
exploration in contextual MDPs. In International Conference on Machine Learning,
pages 12972–12999. PMLR, 2023.

[52] H. Heumann. A Galerkin method for the weak formulation of current diffusion and
force balance in tokamak plasmas. Journal of Computational Physics, 442, 2021.

161



REFERENCES 162

[53] H. Heumann, J. Blum, C. Boulbe, et al. Quasi-static free-boundary equilibrium
of toroidal plasma with CEDRES++: Computational methods and applications.
Journal of Plasma Physics, 81(3), 2015.

[54] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Comput.,
9(8):1735–1780, 1997.

[55] M. W. Hoffman, B. Shahriari, J. Aslanides, et al. Acme: A research framework for
distributed reinforcement learning. arXiv preprint arXiv:2006.00979, 2022.

[56] J. Hollenstein, S. Auddy, M. Saveriano, E. Renaudo, and J. Piater. Action noise
in off-policy deep reinforcement learning: Impact on exploration and performance.
Transactions on Machine Learning Research, 2022. Survey Certification.

[57] D. Humphreys, A. Kupresanin, M.D. Boyer, et al. Advancing fusion with machine
learning research needs workshop report. J Fusion Energ, 39:123–155, 2020.

[58] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. CoRR, abs/1502.03167, 2015.

[59] B. Ivanovic, J. Harrison, A. Sharma, M. Chen, and M. Pavone. Barc: Backward
reachability curriculum for robotic reinforcement learning. In 2019 International
Conference on Robotics and Automation (ICRA), pages 15–21. IEEE, 2019.

[60] S. Joung, Y.-C. Ghim, J. Kim, et al. GS-DeepNet: mastering tokamak plasma
equilibria with deep neural networks and the Grad–Shafranov equation. Scientific
Reports, 2023.

[61] S. Joung, J. Kim, S. Kwak, et al. Deep neural network Grad–Shafranov solver con-
strained with measured magnetic signals. Nuclear Fusion, 60(1):016034, December
2019.

[62] S. Kapturowski, G. Ostrovski, W. Dabney, J. Quan, and R. Munos. Recurrent
experience replay in distributed reinforcement learning. In International Conference
on Learning Representations, 2018.

[63] S. Kerboua-Benlarbi, R. Nouailletas, B. Faugeras, E. Nardon, and P. Moreau. Mag-
netic control of west plasmas through deep reinforcement learning. IEEE Transac-
tions on Plasma Science, 2024.

[64] D. P. Kingma. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[65] J. Kober, J. A. Bagnell, and J. Peters. Reinforcement Learning in Robotics: A
Survey, pages 9–67. Springer International Publishing, 2014.

[66] V. Konda and J. Tsitsiklis. Actor-critic algorithms. In S. Solla, T. Leen, and
K. Müller, editors, Advances in Neural Information Processing Systems, volume 12.
MIT Press, 1999.

162



163 REFERENCES

[67] E.A. Lazarus, J.B. Lister, and G.H. Neilson. Control of the vertical instability in
tokamaks. Nuclear Fusion, 30(1):111, 1990.

[68] N. Lehtomaki, N. Sandell, and M. Athans. Robustness results in linear-quadratic
gaussian based multivariable control designs. IEEE Transactions on Automatic Con-
trol, 26(1):75–93, 1981.

[69] S. Levine. Motor Skill Learning with Local Trajectory Methods. PhD thesis, Stanford
University, Stanford, CA, USA, 2014.

[70] S. Levine. Reinforcement learning and control as probabilistic inference: Tutorial
and review. CoRR, abs/1805.00909, 2018.

[71] F. L. Lewis, D. L. Vrabie, and K. G. Vamvoudakis. Reinforcement learning and feed-
back control: Using natural decision methods to design optimal adaptive controllers.
IEEE Control Systems, 32:76–105, 2012.

[72] T. Lin, Y. Wang, X. Liu, and X. Qiu. A survey of transformers. AI Open, 3:111–132,
2022.

[73] M. Liu, H. Zhao, Z. Yang, et al. Curriculum offline imitating learning. Advances in
Neural Information Processing Systems, 34:6266–6277, 2021.

[74] Y. Lu and J. Lu. A universal approximation theorem of deep neural networks for
expressing probability distributions. In H. Larochelle, M. Ranzato, R. Hadsell, M.F.
Balcan, and H. Lin, editors, Advances in Neural Information Processing Systems,
volume 33, pages 3094–3105. Curran Associates, Inc., 2020.

[75] P. MacAlpine and P. Stone. Overlapping layered learning. Artificial Intelligence,
254:21–43, 2018.

[76] W. Mcculloch and W. Pitts. A logical calculus of ideas immanent in nervous activity.
Bulletin of Mathematical Biophysics, 5:127–147, 1943.

[77] J. Mei, W. Chung, V. Thomas, et al. The role of baselines in policy gradient opti-
mization. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho,
editors, Advances in Neural Information Processing Systems, 2022.

[78] A. Mele, R. Albanese, R. Ambrosino, et al. MIMO shape control at the EAST
tokamak: Simulations and experiments. Fusion Engineering and Design, 146:1282–
1285, 2019.

[79] V. Mnih, A. P. Badia, M. Mirza, et al. Asynchronous methods for deep reinforcement
learning. CoRR, abs/1602.01783, 2016.

[80] V. Mnih, K. Kavukcuoglu, D. Silver, et al. Human-level control through deep rein-
forcement learning. Nature, 518:529–533, 2015.

163



REFERENCES 164

[81] R. Munos, T. Stepleton, A. Harutyunyan, and M. G. Bellemare. Safe and efficient
off-policy reinforcement learning. CoRR, abs/1606.02647, 2016.

[82] S. Narvekar, B. Peng, M. Leonetti, et al. Curriculum learning for reinforcement
learning domains: A framework and survey. Journal of Machine Learning Research,
21(181):1–50, 2020.

[83] S. Narvekar and P. Stone. Learning curriculum policies for reinforcement learn-
ing. In Proceedings of the 18th International Conference on Autonomous Agents and
MultiAgent Systems, AAMAS ’19, page 25–33, Richland, SC, 2019. International
Foundation for Autonomous Agents and Multiagent Systems.

[84] T. Ni, B. Eysenbach, and R. Salakhutdinov. Recurrent model-free RL is a strong
baseline for many pomdps. CoRR, abs/2110.05038, 2021.

[85] R. Nouailletas, P. Moreau, B. Santraine, et al. West plasma control system status.
Fusion Engineering and Design, 192:113582, 2023.

[86] J. Oh, Y. Guo, S. Singh, and H. Lee. Self-imitation learning. In J. Dy and A. Krause,
editors, Proceedings of the 35th International Conference on Machine Learning, vol-
ume 80 of Proceedings of Machine Learning Research, pages 3878–3887. PMLR, 2018.

[87] K. O’Shea and R. Nash. An introduction to convolutional neural networks. CoRR,
abs/1511.08458, 2015.

[88] R. Pascanu, T. Mikolov, and Y. Bengio. Understanding the exploding gradient
problem. CoRR, abs/1211.5063, 2012.

[89] F. Pesamosca, F. Felici, S. Coda, C. Galperti, and the TCV Team. Improved plasma
vertical position control on TCV using model-based optimized controller synthesis.
Fusion Science and Technology, 78(6):427–448, 2022.

[90] P. Piovesan, J. M. Hanson, P. Martin, et al. Tokamak operation with safety factor
q(95) < 2 via control of mhd stability. Physical review letters, 113:045003, 2014.

[91] R. Portelas, C. Colas, L. Weng, K. Hofmann, and P.-Y. Oudeyer. Automatic cur-
riculum learning for deep rl: A short survey, 2020.

[92] J. B. Rawlings, D. Q. Mayne, and M. M. Diehl. Model Predictive Control: Theory,
Computation, and Design. Nob Hill Publishing, 2017.

[93] D. Rolnick, A. Ahuja, J. Schwarz, T. P. Lillicrap, and G. Wayne. Experience replay
for continual learning. CoRR, abs/1811.11682, 2018.

[94] S. Ruder. An overview of gradient descent optimization algorithms. CoRR,
abs/1609.04747, 2016.

[95] W. Rui, Y. Wang, H. Song, et al. Using LQR controller for vertical position control
on EAST. Nuclear Fusion, 64(6):066040, 2024.

164



165 REFERENCES

[96] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by
back-propagating errors. Nature, 323:533–536, 1986.

[97] A. A. Rusu, S. G. Colmenarejo, C. Gulcehre, et al. Policy distillation, 2016.

[98] A. A. Rusu, N. C. Rabinowitz, G. Desjardins, et al. Progressive neural networks.
CoRR, abs/1606.04671, 2016.

[99] A. A. Rusu, M. Večerík, T. Rothörl, et al. Sim-to-real robot learning from pixels
with progressive nets. In S. Levine, V. Vanhoucke, and K. Goldberg, editors, Pro-
ceedings of the 1st Annual Conference on Robot Learning, volume 78 of Proceedings
of Machine Learning Research, pages 262–270. PMLR, 2017.

[100] O. Sauter, C. Angioni, and Y. R. Lin-Liu. Neoclassical conductivity and boot-
strap current formulas for general axisymmetric equilibria and arbitrary collisionality
regime. Physics of Plasmas, 6:2834–2839, 1999.

[101] O. Sauter and S. Yu. Medvedev. Tokamak coordinate conventions: COCOS. Comput.
Phys. Commun., 184(2):293–302, 2013.

[102] A. M. Schäfer and H. G. Zimmermann. Recurrent neural networks are universal
approximators. In S. D. Kollias, A. Stafylopatis, W. Duch, and E. Oja, editors,
Artificial Neural Networks – ICANN 2006, pages 632–640, Berlin, Heidelberg, 2006.
Springer Berlin Heidelberg.

[103] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz. Trust region policy
optimization. In F. Bach and D. Blei, editors, Proceedings of the 32nd International
Conference on Machine Learning, volume 37 of Proceedings of Machine Learning
Research, pages 1889–1897, Lille, France, 2015. PMLR.

[104] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel. High-dimensional
continuous control using generalized advantage estimation. In Proceedings of the
International Conference on Learning Representations (ICLR), 2016.

[105] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy
optimization algorithms, 2017.

[106] J. Seo, S. Kim, A. Jalalvand, et al. Avoiding fusion plasma tearing instability with
deep reinforcement learning. Nature, 626:746–751, 2024.

[107] J. Seo, Y.-S. Na, B. Kim, et al. Feedforward beta control in the KSTAR tokamak
by deep reinforcement learning. Nuclear Fusion, 61(10), 2021.

[108] A. Sherstinsky. Fundamentals of recurrent neural network (RNN) and long short-
term memory (LSTM) network. CoRR, abs/1808.03314, 2018.

[109] D. Silver, A. Huang, C. J. Maddison, et al. Mastering the game of go with deep
neural networks and tree search. Nature, 529:484–503, 2016.

165



REFERENCES 166

[110] S.Levine, A. Kumar, G. Tucker, and J. Fu. Offline reinforcement learning: Tutorial,
review, and perspectives on open problems. CoRR, abs/2005.01643, 2020.

[111] P. Soviany, R. T. Ionescu, P. Rota, and N. Sebe. Curriculum learning: A survey.
International Journal of Computer Vision, 130(6):1526–1565, 2022.

[112] K. O. Stanley, B. D. Bryant, and R. Miikkulainen. Real-time evolution in the NERO
video game (winner of CIG 2005 best paper award). In IEEE Conference on Com-
putational Intelligence and Games, 2005.

[113] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. MIT press,
2018.

[114] V. Tangkaratt, A. Abdolmaleki, and M. Sugiyama. Guide actor-critic for continuous
control. arXiv preprint arXiv:1705.07606, 2017.

[115] Y. Tassa, Y. Doron, A. Muldal, et al. DeepMind control suite, 2018.

[116] A. A. Taïga, W. Fedus, M. C. Machado, A. Courville, and M. G. Bellemare. Bench-
marking bonus-based exploration methods on the arcade learning environment, 2021.

[117] S. T. Tokdar and R. E. Kass. Importance sampling: a review. Wiley Interdisciplinary
Reviews: Computational Statistics, 2, 2010.

[118] B. D. Tracey, A. Michi, Y. Chervonyi, et al. Towards practical reinforcement learning
for tokamak magnetic control. ArXiv, abs/2307.11546, 2023.

[119] V. Uc-Cetina, N. Navarro-Guerrero, A. Martin-Gonzalez, C. Weber, and S. Wermter.
Survey on reinforcement learning for language processing. Artificial Intelligence
Review, 56(2):1543–1575, 2023.

[120] A. Vaswani, N. Shazeer, N. Parmar, et al. Attention Is All You Need. CoRR,
abs/1706.03762, 2017.

[121] O. Vinyals, I. Babuschkin, W. M. Czarnecki, et al. Grandmaster level in StarCraft
II using multi-agent reinforcement learning. Nature, 575:350 – 354, 2019.

[122] T. Wakatsuki, T. Suzuki, N. Hayashi, N. Oyama, and S. Ide. Safety factor profile
control with reduced central solenoid flux consumption during plasma current ramp-
up phase using a reinforcement learning technique. Nuclear Fusion, 59(6):066022,
2019.

[123] T. Wakatsuki, T. Suzuki, N. Oyama, and N. Hayashi. Ion temperature gradient
control using reinforcement learning technique. Nuclear Fusion, 61(4):046036, 2021.

[124] M. L. Walker, P. de Vries, F. Felici, and E. Schuster. Introduction to tokamak plasma
control. In 2020 American Control Conference (ACC), pages 2901–2918, 2020.

166



167 REFERENCES

[125] M. L. Walker and D. A. Humphreys. On feedback stabilization of the tokamak
plasma vertical instability. Automatica, 45(3):665–674, 2009.

[126] L. Wang, X. Zhang, H. Su, and J. Zhu. A comprehensive survey of continual learn-
ing: Theory, method and application. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 46(8):5362–5383, 2024.

[127] X. Wang, Y. Jin, S. Schmitt, and M. Olhofer. Recent advances in bayesian opti-
mization. ACM Computing Surveys, 55(13s):1–36, 2023.

[128] Z. Wang, A. Novikov, K. Zolna, et al. Critic regularized regression. In H. Larochelle,
M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors, Advances in Neural
Information Processing Systems, volume 33, pages 7768–7778. Curran Associates,
Inc., 2020.

[129] G. I. Webb. Bayes Rule, pages 74–75. Springer US, Boston, MA, 2010.

[130] J. Wesson. Tokamaks 3rd edition. Journal of Plasma Physics, 71(3):377–377, 2004.

[131] R. J. Williams. Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Mach. Learn., 8(3–4):229–256, 1992.

[132] M. Wolczyk, M. Zając, R. Pascanu, Ł. Kuciński, and P. Miłoś. Disentangling transfer
in continual reinforcement learning. In A. H. Oh, A. Agarwal, D. Belgrave, and
K. Cho, editors, Advances in Neural Information Processing Systems, 2022.

[133] Y. Wu and Y. Tian. Training agent for first-person shooter game with actor-critic
curriculum learning. In International Conference on Learning Representations, 2017.

[134] F. Yang, G. Barth-Maron, P. Stańczyk, et al. Launchpad: A programming model
for distributed machine learning research, 2021.

[135] Z. Yang and H. Nguyen. Recurrent off-policy baselines for memory-based continuous
control. CoRR, abs/2110.12628, 2021.

[136] J. Zhang, T. He, S. Sra, and A. Jadbabaie. Why gradient clipping accelerates
training: A theoretical justification for adaptivity. In International Conference on
Learning Representations, 2020.

[137] Z. Zhu, K. Lin, A. K. Jain, and J. Zhou. Transfer learning in deep reinforcement
learning: A survey. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 45(11):13344–13362, 2023.

[138] M. Zimmer, Y. Boniface, and A. Dutech. Developmental reinforcement learning
through sensorimotor space enlargement. In 2018 Joint IEEE 8th International
Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob),
2018.

167


	Introduction
	Plasma control and Artificial Intelligence
	Thermonuclear fusion and tokamaks
	The need for robust magnetic control
	Machine Learning and company at the rescue

	Objectives and main contributions
	Outline

	Inference-based reinforcement learning
	Fundamentals
	Connections with optimal control
	Finding optimal policies
	A taxonomy of algorithms
	The road to the actor-critic's pantheon
	Neural approximators
	Exploring or exploiting: a core dilemma

	An inference-based interpretation of deep RL
	Introduction on probabilistic inference
	Maximum a posteriori Policy Optimization

	An agent ready for interactions

	PILOT: a general framework for magnetic control
	Creating a numerical twin for WEST
	Machine description
	Control scenarios
	A NICE environment to train them all

	In a world of scenarios and rewards
	References generator
	Reward definition
	A digression on the WEST plasma control system

	Assembling a distributed architecture
	The wonderful story of how C++ met Python
	Nodes galore
	A glimpse of the agent's distinctive features

	A framework ready for training

	The need for speed in PILOT
	Accelerating training through curriculum learning
	An inspiration from human learning
	One does not simply generate a curriculum
	Connections to the state-of-the-art
	Limitations of the current approach

	A structural view against catastrophic forgetting
	A procedure ready for benchmark

	Performance of RL-based magnetic control
	Evaluation on the scenarios of interest
	Plasma centroid, elongation and minor radius
	Careful calibration of the reward hyperparameters

	Issues regarding the LCFS and the plasma current
	Myopic exploration
	An issue regarding plasma current

	The Good, the Bad and the Ugly of Curriculum learning
	A paradigm under careful calibration

	Conclusion and perspectives
	Formal comparison between RL and OC
	Precisions on value and gradient-based methods
	A focus on value learning
	Looking at policy learning

	Precisions on WEST
	A more precise representation of WEST geometry
	A noisy description of delays
	May the snapshot be with you

	Reward definitions
	Reward components
	Reward definition
	Curriculum definition

	Training hyperparameters
	The role of each hyperparameter
	Generally for PILOT
	Specifically for MPO

	Current configuration
	Neural architectures


