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Titre : Apprentissage statistique pour les modèles climatiques
Mots clés : Allocation de Dirichlet, Climat, Apprentissage automatique, Modèles synoptiques
Résumé :Les modèles climatiques peinent à repré-senter précisément les structures de circula-tion atmosphérique liées aux événements ex-trêmes, et notamment leurs variations régio-nales. Cette thèse explore comment l’AllocationLatente de Dirichlet (LDA), une méthode d’ap-prentissage statistique issue du traitement dulangage naturel, peut être utilisée pour évaluerla représentation par les modèles climatiquesde données telles que la pression au niveau dela mer (SLP). La LDA identifie un jeu de struc-tures locales (ou motifs) à l’échelle synoptique,interprétables physiquement comme des cy-clones et des anticyclones. La même base demotifs peut servir à décrire les données issuesdes modèles et des réanalyses, permettant dereprésenter toute carte SLP par une combi-naison parcimonieuse de ces motifs. Les coef-ficients, ou poids, de ces combinaisons four-nissent une information locale sur la configu-ration synoptique de la circulation. Les analy-

ser permet de caractériser la structure de lacirculation dans les réanalyses et les modèles,et ainsi d’identifier localement des biais glo-baux ou spécifiques aux événements extrêmes.Une erreur dynamique globale peut être défi-nie à partir des différences de poids des don-nées modèles avec les réanalyses. Cette mé-thodologie a été appliquée à quatre modèlesde CMIP6. Bien que les modèles représententcorrectement en général la circulation à grandeéchelle, leurs erreurs sont plus élevées pour lesvagues de froid et de chaleur. Une source d’er-reur dans tous les modèles est liée aux motifsméditerranéens. Des critères d’évaluation sup-plémentaires ont été proposés. L’un s’appuiesur la fréquence d’apparition desmotifs dans lareprésentation des cartes de pression. L’autreconsiste à combiner l’erreur dynamique glo-bale avec l’erreur de température, ce qui per-met de différentier entre les modèles. Ces ré-sultats démontrent le potentiel de la LDA pourl’évaluation et la préselection des modèles.

Title : Statistical learning for climate models
Keywords : Dirichlet allocation, Climate, Machine learning, Synoptic models
Abstract :Climatemodels face challenges in ac-curately representing atmospheric circulationpatterns related to extreme weather events,especially regarding regional variability. Thisthesis explores how Latent Dirichlet Allocation(LDA), a statistical learning method originatingfromnatural language processing, can be adap-ted to evaluate the ability of climate modelsto represent data such as Sea-Level Pressure(SLP). LDA identifies a set of local synoptic-scalestructures, physically interpretable as cyclonesand anticyclones, referred to as motifs. A com-mon basis of motifs can be used to describereanalysis and model data so that any SLP mapcan be represented as a sparse combination ofthesemotifs. Themotif weights provide local in-formation on the synoptic configuration of cir-culation. By analyzing the weights, we can cha-racterize circulation patterns in both reanaly-sis data and models, allowing us to identify lo-

cal biases, both in general data and during ex-treme events. A global dynamic error can bedefined for each model run based on the diffe-rences between the average weights of the runand reanalysis data. This methodology was ap-plied to four CMIP6 models. While large-scalecirculation is well predicted by all models onaverage, higher errors are found for heatwavesand cold spells. In general, a major source oferror is found to be associated with Mediterra-nean motifs, for all models. Additional evalua-tion criteria were considered : one was basedon the frequency of motifs in the sparse maprepresentation. Another one involved combi-ning the global dynamic error with the tempe-rature error, thusmaking it possible to discrimi-nate between models. These results show thepotential of LDA for model evaluation and pre-selection.



Résumé en français

Le terme "météo" désigne les conditions atmosphériques à un moment et
un lieu précis, caractérisées par des variables telles que l’humidité, la tempé-
rature, le vent, la pression ou la couverture nuageuse. Une bonne compré-
hension de la météo offre de nombreuses applications pratiques. Cela per-
met notamment des prévisions précises, utiles au quotidien, mais c’est éga-
lement un outil essentiel pour des secteurs tels que l’agriculture. Le climat,
quant à lui, décrit les structures météorologiques et leurs arrangements dans
le temps sur des échelles temporelles plus élevées. Comprendre le climat per-
met de prévoir la quantité de pluie qui tombe sur un an, les températures at-
tendues pour la prochaine saison ou l’intensité potentielle des tempêtes. De
plus, la connaissance du climat est essentielle pour projeter les changements
climatiques futurs en fonction des comportements sociétaux. Ces projections
permettent la lutte contre le changement climatique, soit par l’atténuation
(en modifiant les activités humaines pour prévenir les changements les plus
graves), soit par l’adaptation (en ajustant les infrastructures et les pratiques
pour minimiser l’impact des changements inévitables). Une meilleure com-
préhension du climat représente donc un défi théorique fondamental avec
un impact direct sur la vie humaine.
L’état de l’art actuel de la connaissance sur le climat et la météo permet la
construction de modèles, des simulateurs qui répliquent le système Terre.
Bien que cesmodèles soient imparfaits et maintiennent un certain degré d’in-
certitude, ils sont capables de prouesses tant en météorologie qu’en climato-
logie. Par exemple, la météo peut être prédite plusieurs jours à l’avance. Les
climats de nombreux scénarios passés, présents ou futurs peuvent être ex-
plorés. Et, en particulier, les modèles permettent de projeter l’évolution du
réchauffement climatique, et de prédire les fréquences et intensités atten-
dues des évènements extrêmes, tels que les vagues de chaleur, de froid, ou
encore les ouragans. Ces évènement sont d’une importance capitale en rai-
son de leurs impacts : ils peuvent causer de nombreux problèmes de santé,
des morts, des baisses de rendement agricole ainsi que des dommages aux
infrastructures. En prédisant le passé et le futur proche, les modèles offrent
un cadre d’expérimentation pour tester et améliorer notre connaissance des
processus impliqués. En retour, cette compréhension du climat permet de dé-
velopper des modèles plus fidèles à la réalité, créant ainsi un cercle vertueux.
Malgré ces progrès, cependant, de nombreux aspects du comportement phy-
siquede l’atmosphère ne sont pas compris, ou seulement partiellement. Entre
autres, c’est notamment le cas des statistiques des évènements extrêmes et
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de leur variabilité d’une région du monde à une autre. En particulier, pour les
évènements d’extrême chaud ou froid, ces difficultés demeurent même dans
les régions bien documentées telles que l’Europe. Lesmodèles ne sont pas en-
core capables de reproduire ces aspects de la réalité. Une cause probable de
cette lacune est la représentation incomplète de la circulation atmosphérique
dans lesmodèles du climat. La circulation atmosphérique est lemoyen princi-
pal par lequel les variablesmétéorologiques, telles que la température et l’hu-
midité, sont transportées spatialement. Par conséquent, la structure de ces
flux de circulation, appelée la configuration synoptique, joue un rôle impor-
tant dans l’élaboration des conditions météorologiques, à la fois au quotidien
et pour les cas extrêmes. Cependant, la circulation atmosphérique est un sys-
tème complexe, composé de cyclones et d’anticyclones transportant de l’air
dont la température est influencée par divers processus thermodynamiques.
Identifier les sources exactes des erreurs de représentation est une tâche dif-
ficile. Les modèles climatiques sont à la fois le produit de la compréhension
actuelle du système Terre, et un outil pour évaluer cette compréhension. Il
est crucial de continuer à développer de nouvelles façons de tester la repré-
sentation de la circulation atmosphérique dans les modèles, afin de pouvoir
quantifier leurs incertitudes, identifier leurs défauts, et s’assurer qu’ils conti-
nuent de s’améliorer.
L’objectif de ce travail est de construire un protocole d’évaluation de la re-
présentation de la circulation atmosphérique par les modèles. En parti-
culier, il s’agit de développer uneméthode capable d’estimer localement les
erreurs de représentation dans la configuration synoptique, avec une in-
terprétation physique claire et directe. Dans ce but, sera fait l’usage d’une
méthode d’apprentissage statistique originaire du domaine du traitement du
langage naturel : l’Allocation Latente deDirichlet (en anglais Latent Dirichlet
Allocation, LDA).
Les récents progrès en puissance de calcul, ainsi que les développements
dans l’instrumentation météorologique, ont considérablement augmenté le
volumede données disponibles pour la science du climat. En conséquence, il y
a un besoin croissant deméthodes permettant d’interpréter efficacement ces
données et d’en extraire des informations pertinentes. Pour cette raison, des
techniques d’apprentissage automatique sont d’ores et déjà appliquées dans
divers sous-domaines des sciences climatiques, notamment l’étude de la cir-
culation atmosphérique et l’évaluation des performances des modèles clima-
tiques. En général, les outils d’apprentissage automatique sont conçus pour
des tâches bien spécifiques, ce qui limite leur domaine d’application. Cepen-
dant, des questions fondamentales dans différents domaines scientifiques
peuvent partager des caractéristiques communes, suggérant que des solu-
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tions issues d’un domaine peuvent être adaptées à un autre. Dans notre cas,
des éléments communs ont été identifiés entre le traitement du langage natu-
rel et la classification de la circulation atmosphérique. Les deux visent àmodé-
liser la structure sous-jacente des données en identifiant un petit nombre de
motifs latents permettant de décrire les configurations observées. Ce travail
de thèse explore comment la LDA peut être utilisée pour extraire de l’informa-
tion de données climatiques. Ces informations seront ensuite utilisées pour
évaluer la représentation de la circulation atmosphérique dans les modèles,
dans le but ultime d’identifier et de caractériser d’éventuels défauts dans leurs
représentations.
Le chapitre 1 de cemanuscrit introduit les concepts et outils de climatologie et
demétéorologie sur lesquels ce travail s’appuie. Y sont décris lesmécanismes
physiques à l’origine de la circulation atmosphérique, l’état des connaissances
sur le changement climatique et ses effets, ainsi que les variables les plus
adaptées à décrire les phénomènes étudiés. La notion d’évènement extrême
y est discutée, et en particulier les vagues de chaleur et de froid et les diffé-
rentes façons de les définir. Ce chapitre contient également une introduction
générale à la modélisation du climat, et en particulier aux General Circulation
Models (GCM), qui sont parmi les modèle les plus avancés disponible, et aux
méthodes existantes pour leur évaluation. Dans le cadre de ce travail, quatre
GCM seront comparés à des données de référence, les réanalyses.
Le chapitre 2 fait le tour des méthodes existantes permettant la classification
des configurations synoptiques. Ce chapitre introduit notamment la Principal
Component Analysis (PCA), une méthode de réduction dimensionnelle com-
munément utilisée dans le pré-traitement des données, avant la classification.
Plusieurs méthodes de classification automatique sont présentées. Ces mé-
thodes sont catégoriques, c’est-à-dire que chaque configuration synoptique
est associée à une et une seule catégorie. Par la suite, sont présentées des
méthodes de classification non-catégoriques, dont les modèles statistiques
(dont fait partie la LDA).
Dans le chapitre 3, la méthode LDA est introduite dans le contexte de son
domaine d’application originel, le traitement du langage naturel. Plus spécifi-
quement, il s’agit du domaine du "topic modelling", qui cherche à représenter
des documents textuels par les sujets dont ils traitent. Différentsmodèles sta-
tistiques permettant de représenter la composition en sujets d’un texte sont
présentés. Le chapitre détaille les avantages de la LDA par rapport à d’autres
modèles, le fonctionnement de l’apprentissage automatique des sujets dans
un corpus de textes, ainsi que comment cette procédure est implémentée en
pratique.
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Les résultats de ce travail de thèse sont présentés dans les chapitres 4, 5 et 6.
Tout d’abord, le chapitre 4 présente la méthodologie d’application de la LDA
aux jeux de données climatiques, ainsi que les résultats de l’application à la
pression au niveau de lamer. Dans ce cas, les sujets appris automatiquement
par la LDA prennent la forme demotifs spatiaux. Ces motifs sont analogues à
des cyclones et des anticyclones, et permettent de décrire les configurations
synoptiques avec parcimonie et interprétabilité physique. La pertinence des
motifs ainsi obtenus est testée par une application à des données d’origines
différentes, qui donnent des jeux demotifs similaires. Enfin, la décomposition
en motif proposée par la LDA est comparée à la décomposition donnée par
la PCA, afin de déterminer les avantages et les inconvénients de chacune.
Dans le chapitre 5, l’outil LDA est utilisé pour caractériser la circulation at-
mosphérique dans les modèles et les réanalyses. La caractérisation des sta-
tistiques des motifs sert de base pour l’évaluation des modèles. Ce procédé
est utilisé pour évaluer les configurations synoptiques produites par les mo-
dèles, en général ainsi que dans les cas de vagues de chaleur et de froid loca-
lisées dans divers pays d’Europe. Les erreurs de représentation des modèles
sont quantifiées demanière locale. On observe que lesmodèles représentent
satisfaisamment la circulation générale, bien qu’ils sur-représentent les cy-
clones et anticyclones méditerranéens. Dans les cas extrêmes, les modèles
montrent de nombreux biais d’amplitude supérieure.
Le chapitre 6 présente des critères d’évaluation additionnels pour l’évalua-
tion des modèles. Premièrement, les propriétés statistiques des motifs sont
évaluées en plus grand détail afin de définir des notions de fréquence d’appa-
rition et d’intensité moyenne. Deuxièmement, les erreursmesurées antérieu-
rement sur les configurations synoptiques sont comparées avec une erreur
sur la représentation par lesmodèles de la température, dans le but de déter-
miner leur origine. Ces deux systèmes sont utilisés pour extraire des informa-
tions supplémentaires des données, pour évaluer et comparer lesmodèles en
plus grand détail.
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Acronyms and notations

Acronyms and abbreviations

CMIP6 - 6th Coupled Model Intercomparison ProjetEOF - Empirical Orthogonal FunctionFCM - Fuzzy C-MeansGCM - General Circulation ModelIPCC - Intergovernmental Panel on Climate ChangeKL - Kullback-LeiblerLDA - Latent Dirichlet AllocationML - Machine LearningPC - Principal ComponentPCA - Principal Component AnalysispLSI - Probabilistic Latent Semantic IndexingPOD - Proper Orthogonal DecompositionSLP - Sea-Level PressureSOM - Self-Organizing MapsUK - United Kingdomz500 - Geopotential height at 500 hPaz700 - Geopotential height at 700 hPa

Notations for matrix and vectors

Matrices and vectors are represented in bold. Elements of a matrix or vector
are represented by specifying the positions of the element as index on the
matrix name. The letters chosen for indexes are generally the lowercase of
the letter indicating the length of the indexed dimension. Example: LetA be
a I × J matrix. Its elements are writtenAi,j , ∀i ∈ {1, ..., I}, ∀j ∈ {1, ..., J}.
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Introduction

Weather refers to the atmospheric conditions at a specific time and place,
characterized by parameters such as humidity, temperature, wind, pressure,
and cloud cover. Though often taken for granted, weather plays a crucial role
in both society and everyday life. A good understanding of weather has many
practical applications, including accurate forecasting, which is of everyday use
for event planning, but also a critical tool for sectors such as agriculture.
Climate, on the other hand, describes long-term patterns of weather across
extended time scales. Understanding climate allows for predictions of how
much rain falls in a year, what temperatures can be expected for the next sea-
son, or the potential intensity of storms. In addition, knowledge of climate is
essential for projecting future climatic changes, based on societal behaviors.
Such projections are key to addressing climate change, either throughmitiga-
tion — modifying human activities to prevent the most severe changes — or
adaptation—adjusting infrastructure and practices tominimize the impact of
unavoidable changes. A better understanding of climate therefore represents
a fundamental theoretical challengewith a direct global impact for human life.
After more than a century of steady progress, the current state of knowledge
on climate has reached quite an impressive level. The dynamics of weather
variables are well understood enough that we can construct models — simu-
lators designed to replicate the Earth system. While models remain imperfect
and are associated with a degree of uncertainty, they are able to achieve feats
in bothmeteorology and climatology. Weather can be forecast several days in
advance. The behavior of climate in various scenarios past, present or future
can be explored. In particular, models allow us to project the trajectories of
global warming, and predict the frequencies and intensities to expect of ex-
tremeweather events, such as heatwaves, cold spells, or hurricanes. Extreme
weather events are of particular importance because of their impacts ; they
can cause a variety of health issues, deaths, losses of agricultural yields, as
well as damages to infrastructures. By predicting the past and the close fu-
ture, models enable reliable experimentation to test our understanding, im-
proving our knowledge of climate processes. In turn, this understanding of
climate allows for the development of models that more faithfully reproduce
the Earth system, creating a virtuous circle of knowledge.
However, despite significant progresses, gaps remain in our understanding
of climate. Many aspects of the physical behavior of the atmosphere are not,
or only partially, understood. Key areas of uncertainty include the effects
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of clouds on global warming, the influence of turbulence in air flows, and a
limited understanding of extreme weather event statistics, and their regional
variability. In particular, for extreme heat and cold events, these difficulties
remain even in well-documented regions such as Europe. Models are not yet
able to reproduce these aspects of reality.
The probable cause of this limitation is the incomplete representation of at-
mospheric circulation in climate models. Atmospheric circulation is the pri-
mary process by which weather variables, such as temperature and humid-
ity, are transported across different regions. It dictates where and how these
variables move. Therefore, the patterns of atmospheric circulation play a sig-
nificant role in shaping both everyday weather, and extreme weather events.
However, atmospheric circulation is a complex system of patterns and struc-
tures, composed of cyclones and anticyclones transporting air whose tem-
perature is determined by thermodynamic processes. Identifying the exact
sources of representation error is a difficult task.
Climate models are both the product of our current understanding of the
Earth system, and a tool for evaluating that understanding. It is crucial to
continuously test the ability of models to represent atmospheric circulation
patterns and evaluate their performances in new ways. Doing so allows us
to quantify uncertainties, to identify model flaws, and to ensure that they can
continue to improve.
The goal of this work is to construct a protocol to evaluate model rep-
resentation of atmospheric circulation. Specifically, we aim to develop a
method capable of estimating local errors in the representation of circu-
lation patterns, with a clear and direct physical interpretation.

To achieve this, we use a statistical learning method originating from the field
of natural language processing: Latent Dirichlet Allocation (LDA).
Recent advances in computational power, as well as developments in mete-
orological instrumentation, have significantly increased the volume of data
available to climate science. As a result, there is a growing need for methods
to efficiently interpret this data and extract relevant information. Machine
learning (ML), a field of research that focuses on solving this type of prob-
lem, has therefore become increasingly valuable to climate science. Machine
learning techniques are now applied across various sub-fields of climate sci-
ences, including the study of atmospheric circulation, and the evaluation of
climate model performance.
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Generally speaking, ML tools are tailored to well-identified tasks. As such,
their popularity only propagates within the limits of their scientific discipline
of application. However, fundamental questions in different scientific fields
may share common features, suggesting that solutions from one domain can
be adapted to another. In our case, we have identified common elements be-
tween natural language processing and atmospheric circulation classification.
Both aim to model the underlying structure of data, and do so by identify-
ing a small number of latent patterns to describe datapoints with. This thesis
work explores how LDA can be used to extract information from climate data.
This information will then be used to evaluate model representation of atmo-
spheric circulation, with the ultimate goal of identifying and characterizing any
potential flaws in their representations.
In chapter 1 of this manuscript, we introduce the concepts and tools of cli-
matology and meteorology on which our work is based. We focus in partic-
ular on atmospheric circulation, extreme weather events, as well as climate
models, their performances and their limitations. In chapter 2, we provide
an overview of the existing methods tackling the issue of classifying patterns
of atmospheric circulation. Then, in chapter 3, we introduce our method of
choice, Latent Dirichlet Allocation, detailing its origins, the way it functions, as
well as the rationale for choosing it. Chapter 4 details our methodology of ap-
plication of LDA, including how it was converted from studying corpora of text
documents to our set of climate data. This chapter also presents our prelim-
inary results. In chapter 5, the LDA tool is used to characterize atmospheric
circulation in reanalysis data, and use it as a basis of evaluation of the mod-
els. Model representation of the circulation is evaluated, both in general and
for various European extreme weather events. Chapter 6 relates additional
evaluation criteria for the evaluation of models, that allowed us to extract ad-
ditional information from the data. Then, we provide a conclusion, as well as
perspectives detailing how this work might be pursued in the future.
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1 - Climate and climate extremes

1.1 . Introduction

Meteorology is the study of weather. It considers the atmosphere, specifically
on the lower layers, where weather takes place, and studies the variables con-
nected to weather, such as temperature, precipitations, pressure, humidity,
or wind speed and direction. Meteorology works with a time scale of a few
days. On the other hand, according to the IPCC glossary (IPCC, 2024), clima-
tology is the study of climate, defined as:

“average weather,” or more rigorously, the statistical description
in terms of the mean and variability of relevant quantities over a
period of time ranging from months to thousands of years.

While considering the same variables as meteorology, climatology works with
statistical descriptions rather than values. It considers the atmosphere, and
the other systems with which it interacts, on a timescale of decades. This the-
sis work focuses on climatology. However, discussing statistical description
of weather variables also requires knowledge on the processes driving those
variables.
This chapter presents the key concepts and tools of meteorology and clima-
tology relevant to this thesis. We start by introducing basic mechanisms of
weather and the main climate variables used in their study. Our work fo-
cuses specifically on atmospheric circulation, which describes the large-scale
movements of air in the atmosphere. We then introduce the notion of ex-
tremeweather events, the challenges associatedwith defining them, and how
they are expected to evolve with climate change. Finally, we introduce climate
models, and their importance to climate sciences. We present a state of the
art of model performances, recent progresses, and evaluation methods, as
well as our choices regarding the data we use in our work.

1.2 . Climate study and variables

1.2.1 . Basic weather mechanisms
To facilitate later discussions, we present here basicmeteorological processes
(Wallace and Hobbs, 2006). The sun is themain driver of weather-related phe-
nomena. A part of solar radiation is absorbed by the surface of the Earth,
causing it to heat up. Because of its temperature, the Earth emits infrared
radiation. This radiation is in large part absorbed and diffused by gases and
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clouds in the atmosphere, heating up the surface and the air close to it. This
is referred to as the greenhouse effect. These processes are summarized in
figure 1.1.

Figure 1.1 – A simplified model of radiative energy transfers in the Earth sys-tem. This figure is from (Solomon et al., 2007).

Figure 1.2 – Schematic representation of the circulation of air induced by sur-face temperature gradients. Cold air is represented in blue, and warm air inred. This figure is from (Foundation and Christopher AuYeung, 2015).

Hot air is able to contain more humidity, and raises, as it is lighter than cold
20



air. This causes regions of lower pressure to exist, while cold air descend-
ing causes regions of higher pressure, as shown in 1.2. Wind flows from high
pressures to low pressures, but due to the rotation of the Earth, movement
twists to the right in the northern hemisphere, and to the left in the southern,
through a process known as baroclinic instability (Grotjahn, 2003). This is why
cyclones, which are region of low pressure, induce inward spiralling move-
ment (counterclockwise in the northern hemisphere), and anticyclones, which
are region of high pressure, outward spiralling movement (clockwise in the
northern hemisphere). Earth rotation also causes high-altitude, almost per-
manent currents of wind that goes from west to east, that we call jet stream,
or jet (Lamb, 1948; Rossby and Willett, 1948). When hot air reaches higher al-
titudes, it cools down. No longer able to contain as much humidity, the water
condenses and forms clouds. The processes associated with cyclones and an-
ticyclones are summarized in figure 1.3.

Figure 1.3 – Schematic representation of the movements of air close to thesurface and in the upper atmosphere associated with anticyclones (left) andcyclones (right) in the northern hemisphere. Air spiral outwards, clockwisenear an anticyclone, and spirals inwards, counterclockwise near a cyclone. Airwarms as it gets closer to the surface, and grows colder as it raises in altitude.Colder air liberatesmoisture, which can lead to clouds andprecipitations. Thisfigure is from (Kumbhar, 2023).

In this work, we focus on atmospheric circulation, i.e. on the structure of the
movement of air in the atmosphere. On the global scale, phenomenadescribe
in the previous section induce a 3-cell atmospheric circulation structure, as
shown in figure 1.4. The cells are separated by belts of alternatively high and
low pressure.
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Figure 1.4 – Global structure of atmospheric circulation. This figure is from(Aguado and Burt, 2014).

The dynamics of atmospheric circulation are described by the intensity and
localization of high and low pressures. This means that pressure can be a
good descriptor of atmospheric circulation. Cyclones and anticyclones typi-
cally exist at the scale of ≈ 1000 km, which is called the synoptic scale. These
objects are therefore referred to as synoptic objects. Since synoptic objects
characterize the structure of air movement, i.e. atmospheric circulation, it is
possible to study and predict changes in weather based on them (Bluestein,
1992). This is called synoptic meteorology (Bergeron, 1980). These structure
have a typical persistence time of ≈ 5 to 10 days (Bluestein, 1992). However,
the jet is sometimes subject to undulations called Rossby waves, or planetary
waves (Madden, 1979; Rossby, 1949), capable of forming big meanders. Those
meanders can be stable for longer periods of time (Krishnamurti, 1961), and
lock synoptic objects in place. This leads to what is known as blockings, where
a cyclone or anticyclone can remain for extended periods of times over the
same region (Faranda et al., 2016; Lupo, 2021). This can cause extremeweather
events, i.e. weather events of high intensity, able to cause damages to human
infrastructure and health (see section 1.3).

1.2.2 . Variables of study
Atmospheric circulation can be studied through synoptic meteorology using
pressure-related variables, which best describe synoptic objects. While cir-
culation and pressure are 3-dimensional fields, for easier visualization and
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processing, we will only consider horizontal 2-dimensional maps. Horizon-
tal pressure maps contain the information on horizontal circulation, but also
some information on vertical circulation: a high pressure means air is enter-
ing the current height level, and a low that it is exiting it. The most natural
variable choice is Sea-Level Pressure (SLP). It describes circulation at the bot-
tom of the atmosphere, where the weather is relevant to human activities.
However, if we want to study circulation patterns at higher levels, we need
another variable. Geopotential is defined as the gravitational potential en-
ergy of one unit of mass. When divided by the gravitational pull of the Earth
(g ≈ 9.8m/s2), assumed constant everywhere, it becomes a vertical coordi-
nate known as geopotential height. When studying circulation patterns, it is
common to look at geopoptential height along a surface of fixedpressure. The
National Weather Service of the United States of America (US Department of
Commerce, 2024) defines geopotential height as:

The height above sea level of a pressure level. For example, if
a station reports that the 500 mb height at its location is 5600
m, it means that the level of the atmosphere over that station at
which the atmospheric pressure is 500 mb is 5600 meters above
sea level. This is an estimated height based on temperature and
pressure data.

A common value of pressure to examine geopotential height at is 500 hPa,
shortened to z500. 500 hPa corresponds to an altitude of about 5.5 km, which
corresponds roughly to the middle of the atmosphere (Wallace and Hobbs,
2006). While still considering circulation relevant to weather, this altitude al-
lows for less influence from the topography of the surface.
Most climate variables follow an annual cycle of evolution. When considering
variations irrespective of their location in the annual cycle, it can be desirable
to eliminate this cycle from the data. To that end, are often computed what
is referred to as anomalies. Anomalies are obtained by removing from each
data point the average of all maps corresponding to the same day of the year.
For more detail, see chapter 4.
Examples of z500 anomalies graphs are shown figure 1.5. The lines repre-
sent isohypses (lines of equal geopotential height). This can be used to locate
pressure highs and lows. Furthermore, dense lines indicate regions of high
geopotential height gradient, which corresponds to high pressure gradient,
and therefore to strong winds.

1.2.3 . Climate change
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Figure 1.5 – Example of depiction of z500 (contours) and temperature (color),representing average anomalies (a) during the 2010-2011 winter (b) during the2013-2014 winter. z500 is represented through contour lines of equal geopo-tential height, with a contour interval of 20m. Dashed lines represent negativeanomalies. This figure is from (Luo et al., 2020).

The term “climate change” can refer to any change in climate over time (IPCC,
2024). However, it is known that the climate has undergone, and is still un-
dergoing, changes since the pre-industrial period, and it is know that these
changes are due to human influence (anthropogenic). The pre-industrial pe-
riod is the period of time that precedes human influence due to industrial-
ization. While lacking a general consensus on its definition, references for
pre-industrial climate are generally taken from some point between 1750 and
1850 (Carslaw et al., 2017). The Intergovernmental Panel on Climate Change
(IPCC, (programme, 2024)) was created by the United Nations to assess the
science on climate change, and especially anthropogenic climate change. Its
work consists in reviewing what is currently known on the subject, and com-
piling it into reports. The following discussion is based on the report of the
most recent iteration to date, Assessment Report 6 (IPCC, 2023e).
A main consequence of anthropogenic climate change is global warming. At
time of writing, the current world average surface temperature increased by
between 1.3°C and 1.6°C since pre-industrial times (Ipcc, 2022). However, tem-
perature does not increase at the same rate everywhere. In particular, tem-
perature has increased more inland than at sea, at the poles than in the trop-
ics. See figure 1.6, from (Intergovernmental Panel on Climate Change (IPCC),

24



2023), for observed and simulated local temperature increases for various
world average temperature increases.

Figure 1.6 – Observed and simulated local changes in annual mean surfacetemperature. In (a) is shown a comparison of observed and simulated tem-perature changes with global warming levels as observed between 1850 and2020. In (b) are shown simulated changes in temperature for higher levels ofglobal warming. This figure is from the IPCC summary for policymakers of the2021 report on the physical science basis for climate change (Intergovernmen-tal Panel on Climate Change (IPCC), 2023).

Variations in the temperature gradients across hemispheres cause changes in
the atmospheric circulation those gradients generate, which makes it difficult
to predict changes in other weather variables, such as precipitations. Climate
change-induced variations in temperatures can therefore be due to two dis-
tinct but interconnected drivers. Dynamic effects are changes in the patterns
of atmospheric circulations. For example, the increased average temperature
caused a higher frequency of circulation patterns that bring in hotter air from
equatorial regions, is a change driven by dynamic factors. Thermodynamic
effects are changes in air temperature and mechanisms of temperature ex-
change with atmosphere. For example, the increased average temperature
due to enhanced greenhouse effect, irrespective of circulation patterns, is a
change driven by thermodynamic factors.
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1.3 . Extreme weather events

1.3.1 . Motivation
In its report, the IPCC defines extreme weather events (sometimes just called
extreme events) as "an event that is rare at a particular place and time of
year" (IPCC, 2023b). The definition of extreme events can depend on the lo-
cality and the time of year, but is based on the concept of rarity. The rarity
of extreme events is due to low probability in the relevant statistical distribu-
tions. Often enough, extreme events are improbable because they require
climate variables to be far enough from average, during a long enough pe-
riod. This is notably the case for heatwaves and cold spells, which are usually
defined as a period of at least several days where the temperature is signifi-
cantly higher than (respectively, below) average. Despite their rarity, extreme
weather events have significant impacts on human society. They can cause
severe damages to human health (Weilnhammer et al., 2021) and infrastruc-
ture (Añel et al., 2017), motivating their study.
Heatwaves, in particular, are already responsible for significant societal im-
pacts. We can cite, as examples, the European heatwave of 2003 (Fink et al.,
2004; Stott et al., 2004), or that of 2018 (McCarthy et al., 2019), both responsi-
ble for tens of thousands of deaths. Cold spells also represent a significant
hazard (López-Bueno et al., 2021). For instance, we can cite the cold spell of
2017 over the Balkans, which had consequent socio-economic impacts (Anag-
nostopoulou et al., 2017). In particular, a cold spell occurring in spring, during
the budding period of plants, can break off the developing cycle of plants and
heavily reduce agricultural yields (Papagiannaki et al., 2014). One such exam-
ple is the cold spell of April 2021 described in (Vautard et al., 2023). Climate
change will not prevent such occurrences. Furthermore, their properties, in-
cluding intensity and frequency, are projected to change with climate (IPCC,
2023b). Specifically, according to the IPCC report, Heatwaves were observed
to have becomemore frequent. These trends are projected to continue in the
future (IPCC, 2023b).
Extreme weather events are difficult to study owning to their rarity: data con-
cerning them is scarse. The limited amount of observed events leads to in-
complete knowledge about their precursors and statistical properties. Fur-
thermore, this incomplete understanding propagates to their representation
by models. This leads to difficulties in forecasting, and in simulation.

1.3.2 . Definition of extreme events
There is no general consensus about the definitions of extremeweather events
(McPhillips et al., 2018). Here, we list the three main approaches used to de-
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fine them.
Impacts-baseddefinition: The first approach is to define an extremeweather
event by its impacts. In this case, an event is categorized as such if it meets
certain criteria regarding numbers of dead or injured, economical losses, or
amount of affectedpeople. One commonly usedopen access database record-
ing events using this method is the Emergency Events Database (EM-DAT)
(Delforge et al., 2023). Following EM-DATmethodology, an event is recorded if
it meets at least one of the following criteria: 10 or more deaths, 100 or more
affected people, a call for international assistance or a declaration of a state
of emergency occurred. In addition to these metrics, economic impact is also
recorded by EM-DAT. Costs associated with extreme events are estimated in
reinsurance reports, providing generally accessible data. However, estimat-
ing the economic impacts of extreme events is a complex problem. Among
other reasons, this is because of the problem of estimating intangible, long-
term effects on society and the time and efforts required for recovery. For
a detailed review of the methodologies used to the estimation of economic
impacts of extreme events, see (Doktycz and Abkowitz, 2019). A problem with
this approach is that itmakes extreme event detection dependent onwhether
the affected location is populated, and if so, on whether it has adaptation pro-
cedures in place to reduce impacts.
Physics-based definition: A second approach is to use physical thresholds
to discriminate extreme events. Extreme wind gusts may be defined using
a threshold in wind speed. Extreme temperature events may be defined us-
ing thresholds in temperature and duration. However, the choice of the vari-
ables to apply the threshold to is not obvious and can have an impact on the
results. In the case of heatwaves, for example, temperature thresholds can
be applied to dailymaximum temperature, daily minimum temperature, daily
average temperature, or more complex indexes takingmore information into
account (Perkins and Alexander, 2013), such as Excess Heat Factor (EHF) (Nairn
et al., 2009). Similarly, thresholds canbe chosen to be relative to the data (such
as a given percentile), or absolute. And the choice of a threshold necessarily
involves some arbitrariness. Because of these reasons, definitions can vary
significantly on a study-to-study basis (Grotjahn et al., 2016). Furthermore, for
more structurally complex extremes, such as tropical cyclones, automating
the detection in climate datasets poses its own difficulties. There is no con-
sensus on detection algorithms to use, and the choice of methods influences
the resulting data (Bourdin et al., 2022).
Machine Learning-based definition: The third approach to extreme event
definition is to use machine learning (or deep learning) for automatic de-
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tection and classification in climate datasets (McGovern et al., 2017). These
methodologies require an input of extremeevents labelled by humans to train
the model on. This is particularly common for more structurally complex ex-
treme events such as cyclones, due to the difficulty of the task of devising an
algorithm for automatic detection. The techniques involved are methodolo-
gies of image classification, as is done in (Liu et al., 2016), or image segmenta-
tion, as is done in (Kumler-Bonfanti et al., 2020).
In this thesis work, when studying extreme weather events, we focus specifi-
cally on heatwaves and cold spells. We chose the physical approach, so as to
ensure our definition of extreme event does not depend on population vul-
nerability. Our definition of choice is the following:

• A Heatwave over a specific region designates any period of at least
three consecutive days where the spatial average of daily mean tem-
perature over the region is beyond the 97th percentile.

• ACold Spellover a specific region designates any period of at least three
consecutive days where the spatial average of daily mean temperature
over the region is below the 3rd percentile.

The regions considered will be European countries. Daily mean temperature
was chosen for its widespread availability in many datasets. The threshold is
chosen to be relative so that the definition is adaptable to different regions.
Arbitrariness is unavoidable in the choice of the threshold value. The value
we picked was chosen to ensure a number of extreme events per year similar
to estimations fromorganisms of weather study (in particular, Météo-France).
(See chapter 5.)

1.3.3 . Time evolution

Cold spells are not projected to increase in frequency nor intensity with cli-
mate change (IPCC, 2023b). Heatwaves, however, are projected to increase in
both frequency and intensity (Alexander et al., 2006; Frich et al., 2002; IPCC,
2023b). See figure 1.7, from (Intergovernmental Panel on Climate Change
(IPCC), 2023), for a summary of the currently observed trends in heatwaves,
and the knowledge regarding human contribution. An increase in heatwaves
can be due to either thermodynamic drivers or dynamic drivers, or a mix of
the two. Thermodynamic drivers can make heatwaves more likely or intense,
by way of a general increase in temperature, and increased ability of circula-
tion patterns to cause intense heat (Chan et al., 2022). Dynamic drivers, on the
other hand, can make heatwaves more likely or intense through changes in
the statistics of atmospheric circulation patterns associated with heatwaves.
In particular, the article (Rousi et al., 2022) demonstrates a link between in-
creasing heatwaves trends over Europe, and an increasing tendency for the
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Figure 1.7 – Observed regional changes in hot extremes between pre-industrial and current periods, and level of confidence in the observedchanges. This figure is from the IPCC summary for policymakers of the 2021report on the physical science basis for climate change (IntergovernmentalPanel on Climate Change (IPCC), 2023).

jet to split in two, trapping an anticyclone over Europe, causing a blocking
event.
Extreme events are generally described in terms of “return time”. The return
time of an event is the average time it would take for an event of similar or
higher intensity to happen again, assuming a fixed statistical distribution. It
is inversely proportional to the probability of the event. As an example, a
heatwave with a 1

50 chance to occur any given year (based on current climate
statistics) currently has a return time of 50 years. The probabilistic represen-
tations of extreme events are based on Extreme Value Theory (Coles, 2001;
Gumbel, 1942, 2019; Wilks, 2011), which will not be detailed here. The return
times of events can change when the climate changes, making them less or
more likely.
In general, the return time of an extreme event grows with its intensity, which
means that heatwaves of higher temperatures are less likely to happen. When
it is said that heatwaves increase in both frequency and intensity, it is meant
that the statistical distribution is shifting towards the extremes. Events of
fixed intensity have their return time decrease. In parallel, events of fixed
return times become associated with higher intensities. These two effects
come together, as consequences of the same changes in weather statistics.
See figure 1.8, from (Intergovernmental Panel on Climate Change (IPCC), 2023),
for a summary of the effects of climate change on heatwaves, seen either as
changes in frequency of events at fixed intensity, or changes in intensity of
events at fixed frequency.
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Figure 1.8 – Projected changes in the intensity and frequency of 10-year and 50-year return times hot temperature extremes over land, for different levels ofglobal warming. Values shown are relative to the 1850-1900 period, represent-ing a climate without human influence. This figure is from the IPCC summaryfor policymakers of the 2021 report on the physical science basis for climatechange (Intergovernmental Panel on Climate Change (IPCC), 2023).

1.4 . Climate models

1.4.1 . Introduction to climate modelling

Data used in climate science comes either from observations, or models. Ob-
servations refers to data measured from the Earth system using instruments.
When studying weather, this mainly refers to weather stations and satellites.
There areweather observation stations inmany places in theworld, equipped
with instruments such as thermometers, barometers, hygrometers or anemome-
ters. They providing regular measurements of climate observables such as,
respectively, temperature, pressure, humidity, or wind speed and direction.
Satellites provide information on many weather-related variables, including
cloud cover aswell as temperature (Foelsche et al., 2008). Observation datasets
are compiled from weather station observations (using between 10,000 and
40,000 stations, depending on the dataset), satellite data, and older records
(Rohde and Hausfather, 2020).

30



On the other hand, climate models are simulators, build to generate climate
data similar to reality. Given an initial situation and external forcings (such
as solar radiation, and greenhouse gas emissions), they compute the future
of the Earth system based on a set of assumptions that vary among models.
Because climate is chaotic, it is common practice to run the models several
times with slight random differences in initial conditions, in order to explore
the space of possible outcomes. These are called model runs.
There are several types of climate models, with varying levels of complexity
(Edwards, 2011; Saunois, 2022). On the simpler side, Energy Balance Models
compute the radiative balance of the Earth and its atmosphere, without tak-
ing any spatial effect into consideration (North et al., 1981). On the opposite
end, General Circulation Models (GCM) solve the fluid equations in the at-
mosphere and ocean on 3D grids. These models are the highest performing
and are used in many projects that aim at producing realistic data. GCM are
comprised of several sub-models each taking care of one component of the
Earth system. This includes the atmosphere, the ocean, sea ice, but also, in
some models, vegetation, land use, or ocean biochemistry. These elements
are connected through the use of a coupler. As an example, the structure of
the ACCESS-ESM1.5 model (Ziehn et al., 2020) is shown in figure 1.9.

Figure 1.9 – Example of the structure of a General Circulation Model, with sev-eral modules dealing with different parts of the Earth system, linked togetherby a coupler. This example is of the ACCESS-ESM1.5 model, taken from (In-frastructure, 2024).

Due to domain size, which is the entire Earth, GCM are limited in their grid
resolutions by computation times and data volume. In practice, GCM with
finer grid can only reach cell size of one degree of latitude and longitude, or
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a fraction of a degree, which still represents hundreds of kilometers. There-
fore, there are several phenomenons that GCM are incapable of resolving,
including, for example, turbulence, and cloud microphysics. Because of this,
approximations have to be formulated to include the influence of sub-cell
scale phenomena. These are called parametrizations. Several parametriza-
tion schemes exist, and there is no general consensus on which are the best
(Loehle, 2018). Some regional circulation models can afford to have grid cells
on the scale of ≈ 1 km. Such models can resolve some smaller-scale phe-
nomena such as convection rain (Lucas-Picher et al., 2021), but still require
parametrizations for even smaller-scale phenomena, such as cloud forma-
tion, or turbulence.
Models play a key role in climate science, due to the limited amount of data
that can feasibly be measured, and the fact that there is only a single Earth
system trajectory available. They fulfill several roles:

• The completion of missing observation data. Observations are spatially
sparse, due to only being available locally, at weather stations. Models
can be used to interpolate this data using physical knowledge, resulting
in complete datasets known as “reanalysis” (Dee et al., 2014). Reanalyses
are the closest complete datasets to reality available.

• Generation of additional data. By applying to the models forcings similar
to that of the present climate, but different (often randomized) initial
conditions, models can be used to generate alternative trajectories for
the Earth system. This augments the amount of data available, allowing
for statistical analyses that would be impossible otherwise.

• Test of our understanding of the processes involved in climate. Models have
many parameters and parametrizations. By studying the similarity be-
tween generated data and observations, we can asses how well the un-
derlying assumptions of models represent reality.

• Prediction and forecast of the future. By taking as initial conditions our
current knowledge about the present, climate models can be used to
simulate the future. On short enough timeframes, this can be done for
a goal of weather prediction (Lynch, 2008). On larger timescales, this
can be done for a goal of climate projection, which is prediction based
on assumptions about future forcings (IPCC, 2023d).

• Simulation of alternative climates. By applying different forcings to the cli-
mate models, that correspond to what we know of different conditions,
we can reproduce and study the climate of different periods, such as
the pre-industrial period, or ancient times (“paleoclimates”) (Overpeck,
1995).

1.4.2 . Model evaluation
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The formulation and parametrization of a climatemodel involves a high num-
ber of parameters. Values for these parameters must be determined in a way
that ensures the convergence of computations, the verisimilitude of the un-
derlying physics (for example, the conservation of energy), as well as similarity
with observations of some climate phenomena. The process of selecting val-
ues for the parameters of a model is called tuning, and the climate variables
chosen for themodel tomimic observations are referred to as “tuning targets”
(Schmidt et al., 2017). There exist many different tuning strategies that aim at
different tuning targets. The choice of tuning strategy is crucial, because it
can significantly influence the behavior of the model (Hourdin et al., 2017).
As an example, the tuning process of the IPSL-CM6A-LR model is described
in (Mignot et al., 2021). Therefore, in order to know how much the output of
models can be trusted, it is necessary to evaluate their performance.
To begin with, the most obvious way to evaluate a model is on the similarity
of its output with known aspects of reality. However, a model cannot be vali-
dated as a whole. Models must be evaluated independently on each specific
purpose they are used for (Parker, 2009, 2020; Winsberg, 2018). As an example,
the adequacy of a model in representing current precipitations over north-
ern Europe does not guarantee its adequacy for predicting future changes in
precipitation in the region. Furthermore, model evaluation must take into ac-
count the uncertainties onmodel outputs, as well as their robustness with re-
spect to changes in parameters, parametrizations, or tuning (Notz, 2015). The
relevant evaluation metrics and processes vary depending on the purpose in
question. When amodel is found to not be fit for an intended purpose, amod-
eller must either increase the resolution to better represent smaller scales,
improve the parametrization scheme of relevant phenomenon, or find a bet-
ter suited tuning strategy. However, onemust note thatmaking amodelmore
fit for one purpose may make it worse for a different task.
Every few years, the Coupled Model Intercomparison Project (CMIP) provides
a framework of comparison of climate modelling (Meehl et al., 2000). Its goal
is the production of standardized model datasets, to facilitate the evaluation
and comparison of currently existing GCM, and the assessments of what can
be learned from themabout the Earth system. This is achieved by having each
participating model run the same set of standardized experiments. At time of
writing, the most recent iteration of this project is the 6th. The different ex-
periments run in CMIP6 are detailed in (Eyring et al., 2016).
Thanks to CMIP6, large quantities of model data, with varied parameters,
forcings, or initial conditions, are widely available. Ensemble methods are
methodologies designed to take advantage of modern processing capabili-
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ties and the abundance of data to evaluate the performance of models. By
running several models with the same initial conditions and forcings, it is pos-
sible to evaluate the uncertainty amongmodels. Using many models reduces
the influence of individual choices in parameters, parametrization and tuning.
The aggregation of runs of differentmodels can lead to well-quantified uncer-
tainty ranges and therefore higher confidence projections (Knutti et al., 2010).
However, this approach has limits. Many models share structures and com-
ponents (Masson and Knutti, 2011), which can lead to common sources of bi-
ases that are systematic across differentmodels (Abramowitz et al., 2019; Boé,
2018). Alternatively, running the samemodel with a large number of slightly or
significantly different initial conditions allows for estimating the robustness of
the model output and distinguishing the model’s internal variability from its
errors (Hawkins et al., 2016; Kay et al., 2015; Maher et al., 2019). This approach
can also be used to evaluate parameterizations (Phillips et al., 2004), as done
on a large scale in projects like (Williams et al., 2013), and to estimate the un-
certainty and robustness of a model with respect to its parameters (Lee et al.,
2011; Murphy et al., 2004; Shiogama et al., 2014).

1.4.3 . Recent progress in models

There is a large amount of studies comparing GCMs with observations or re-
analyses. In chapter 3 of the 2021 report on the science basis behind climate
changes (IPCC, 2023c), the IPCC provides an overview assessment of the abil-
ity of models to reproduce the properties of reanalysis and observed climate.
Based on this report, we provide here a short state of the art on the perfor-
mance and progress of GCM climate models.
In the 2013 IPCC report on the physical science basis behing climate change
(Intergovernmental Panel on Climate Change (IPCC), 2014), it was found that
models that participated in CMIP5 are generally able to represent the proper-
ties and evolutions of climate variables, such as temperature, as well as atmo-
spheric circulation (Rodrigues et al., 2018a). Similar conclusions are reached
for models participating in CMIP6. Nevertheless, several biases are fond in
model outputs relative to observed behavior of the climate. Such biases in-
clude underestimation of global warming trends (Oldenborgh et al., 2009),
mis-representations of clouds andwinds (Lauer et al., 2018), mis-representation
of the arctic sea temperatures (Găinuşă-Bogdan et al., 2018; Kuhlbrodt et al.,
2018), as well as underestimation of atmopheric blocking events in the north
hemisphere (Crueger et al., 2018; Davini andD’Andrea, 2020; Scaife et al., 2010).
These biases were found in CMIP5 participants, and were reduced, but not
eliminated, in CMIP6. Details regarding recent progresses of climate models
are included below.
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Despite these difficulties, models have made continued progress on various
aspects, as detailed in (IPCC, 2023a). To begin with, modellers were able to sig-
nificantly increase resolutions between the two last iterations of CMIP. CMIP6
included HighResMIP, a selection of high-resolution simulation experiments,
destined to explore the effects of increased resolution onmodel performance.
In HighResMIP, models reached up to 10 km resolutions, which is an order of
magnitude above typical GCM resolutions. It was shown that higher reso-
lution allows models to better represent atmospheric mechanisms (Bock et
al., 2020). This has resulted in reduced biases, notably on cyclogenesis as
well as blocking events (Jiaxiang et al., 2020; Schiemann et al., 2020). How-
ever, resolution increase is not by itself sufficient to eliminate biases, several
of which were shown to be at least partially caused by model formulation
and parametrization. Such biases include the misrepresentation of the per-
sistence of blocking events (Davini and D’Andrea, 2020), and the duplication
of the intertropical belt of precipitation (Tian and Dong, 2020).
Parametrizations have also seen improvements between CMIP5 and CMIP6.
One consequences of the increase in resolution is that some phenomenon
that used not be resolved now are, allowing for parametrization to be simpli-
fied. This notably the case for ocean eddies and narrow currents, no longer
needing to be parameterized (Hewitt et al., 2017). A commonly used mean
to compare and evaluate models is the Climate sensitivity, which designates
the increase of temperature that would follow from doubling the CO2 lev-els relative to pre-industrial times. The largest source of model spread in the
estimation of climate sensitivity is the representation of the effects of short-
lived aerosols in the atmosphere. While it remains the main source of spread
among models, progress was made in their parametrizations (Meehl et al.,
2020). Furthermore, our understanding and representation of within-ice pro-
cesses have progressed (Faria et al., 2014; Hanna et al., 2020), leading to better
ice-ocean interactions representation (Asay-Davis et al., 2017). Similarly, a bet-
ter understanding of various biogeochemistry processes have helpedmodels
reduce uncertainties in carbon cycle representation (Jones and Friedlingstein,
2020). Finally, the inclusion of stochasticity in parameterization schemes was
shown to be able to reduce model biases (Berner et al., 2017; Palmer, 2019).
Building models that capture the properties of extreme weather events is dif-
ficult, owning to their rarity. Similarly, the limited amount of observation data
makes it difficult to evaluate the ability of amodel to reproduce the properties
of real extreme events. Despite the challenges, extreme events are reason-
ably well represented by CMIP6 models (Kharin et al., 2013; Li et al., 2021). For
temperature extremes in particular, the statistics of simulated extremes rea-
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sonably match observations. However, model representation of temperature
extremes still contain biases. While CMIP6 models were shown to better rep-
resent underlying physical causes than CMIP5, temperatures biases remain
similar in model outputs (Di Luca et al., 2020a,b). Additional biases also affect
the estimation of trends, with heatwave trends being often underestimated,
and cold spell trends underestimated (Fischer and Knutti, 2014; Ringard et
al., 2016; Sillmann et al., 2014). Furthermore, there is high model-to-model
variability on the sign and amplitudes of many local changes (Borodina et al.,
2017). Strong regional differences in extreme events statistics are typically not
that well represented by models (Donat et al., 2017).

1.4.4 . Selected datasets
One of the main goals of this work is to evaluate models by assessing their
similarity with reality in their representation of atmospheric circulations and
extreme events. As several methods (including our own, see chapter 4) re-
quire data to be complete (no holes), it is standard practice to use reanaly-
sis as ground truth. Relevant reanalysis datasets include NCEP (Kalnay et al.,
1996; Kistler et al., 2001; Saha et al., 2010), and ERA5 (Hersbach et al., 2020),
with ERA5 being the general go-to at time of writing due to a combination of
availability, higher resolution, and verisimilitude. Regarding the model data
to evaluate, models participating to CMIP generate data that is systematically
made widely available. It is used in many studies, and is therefore well docu-
mented. Furthermore, it represents the latest advances in climate models. In
this work, we take our model data from CMIP6, the most recent CMIP at time
of writing. Specifically, we take GCM data, and we focus on GCMs that have a
large amount of available runs. Based on these criteria, our choice of models
is:

• IPSL-CM6A-LR, from the Institut Pierre-Simon Laplace, in France (Boucher
et al., 2020).

• MIROC6, from the Atmosphere and Ocean Research Institute, in Japan
(Tatebe et al., 2019).

• ACCESS-ESM1.5, from the ACCESS-National Research Infrastructure, in
Australia (Ziehn et al., 2020).

• CanESM5, from the Canadian Centre for Climate Modelling and Analy-
sis, in Canada (Swart et al., 2019).

1.5 . Summary

In this thesis work, wemainly focus on atmospheric circulation, i.e. the move-
ments of air in the atmosphere, carrying with it properties of the air masses
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such as temperature or humidity. Atmospheric circulation is mostly deter-
mined by the localization and intensity of cyclones and anticyclones. Some
patterns of atmospheric circulation can cause extreme weather events, such
as heatwaves or cold spells. Extreme weather events are a relevant subject
of study due to their impacts on society. Furthermore, circulation patterns
and their effects on temperature are projected to change with anthropogenic
climate change.
Climatemodels are tools of simulation that are used for many purposes in cli-
mate sciences, from enriching observation data to making projections about
the future of the climate. They must be very complex, in order to be able to
faithfully reproducemany of the phenomena and behaviors observed in real-
ity. However, despite their continuous progress, models still struggle with sys-
tematic biases in their representations. In particular, there is a lot of progress
to be made on their representation of extreme events. In order for models
to be able to progress, it is crucial to keep developing evaluation methods, so
that model flaws can be identified, and the models can be improved.
In this thesis work, we want to evaluate how models represent atmospheric
circulation and extreme events. To that end, pressure-related variable maps,
such as Sea-Level Pressure, are commonly used, as they contain the infor-
mation on cyclone and anticyclones. It is standard practice to use reanalysis
data, which is incomplete observations filled in using models, as ground truth
to compare the models to. The models that we will study are selected from
the CMIP6 project, which consists in a standardized set of experiments meant
to evaluate models and produce large quantities of available data.
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2 - Classificationof atmospheric circulationpat-
terns

2.1 . Introduction

Weather is in large part determined by the circulation of air masses in the at-
mosphere. Atmospheric circulation is itself described by highly dimensional
data, generally pressuremaps. One way to overcome the high dimensionality
hurdle is to classify daily maps into a finite set of weather patterns. Weather
patterns are configurations of the circulation of airmasses in the atmosphere,
described through the intermediary of pressure variable maps. Here, we are
concerned with methodologies for the identification of atmospheric circula-
tion patterns, and the classification of maps along them. These methods aim
to separate individual maps into a finite set of classes which have, ideally, rel-
evant and distinct effects on weather.
In this chapter, we go over the different existing classification methods, with
applications to the problemof atmospheric circulation classification. Wepresent
Principal Component Analysis (PCA), a dimensionality reduction technique com-
monly used as preprocessing before classification. We show how PCA can be
applied to determine weather regimes, which are classifications of circulation
patterns of large spatial and temporal scales.
Then, we focus on classification methods that apply to individual daily maps
of pressure-related data. We first present hard-clustering methods, which at-
tribute to each map a unique class. Among them are hierarchical clustering,
k-means, the rotated T-mode PCA, as well as self-organizing maps. We con-
tinue with soft-clusteringmethods, which attribute to eachmap a distribution
over classes instead. Among them, we present several methods of fuzzy clus-
tering, as well as a type of statistical model called mixture model. Part of the
discussion this chapter is based on (Huth et al., 2008).

2.2 . Generalities

While classification is inherently an approximation, as atmospheric circula-
tion is continuous, and not naturally separated into discrete configurations,
a classification scheme provides a proxy for studying the dynamics of atmo-
spheric circulation dynamics. Insight on circulation dynamics can be obtained
by studying the properties of each class, such as frequencies of appearance,
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persistence, and preferred transitions to other classes. We present several
methodologies used to that effect, and reference results they have produced,
based on a review article from Huth et al. (Huth et al., 2008). Atmospheric
circulation pattern classification uses as input data 2-dimensional fields of
a pressure-related variables, generally either SLP or geopotential height at
a pressure level of 500 or 700 hPa. Some studies have demonstrated that
there is little to be gained in using more than one pressure level, due the
high amount of dependence among them (Esteban et al., 2005b; Kidson, 1997).
Therefore, all methodologies presented here will be made to work with indi-
vidual 2-dimensional pressure level maps as input and as objects to classify.
According to (Huth et al., 2008), here is a list of five properties to evaluate a
classification scheme by:

• Consistency: The classification does not vary excessively with small vari-
ations of its hyperparameters.

• Separability: Maps within a class are similar to each other, while maps
of different classes are dissimilar.

• Stability: The classification does not vary excessively with small alter-
ations in the data, like re-sampling, or altering its grid resolution.

• Structure: Do the classes contain similar amounts of maps, or is there
one class containing most of the data.

• Reproduction of predefined types: Expected results, gained from physical
knowledge of the system, are reproduced.

Classification of atmospheric circulation patterns is a long-standing practice
historically used in the context of weather forecast. This was known as syn-
optic classification, and would include synoptic catalogues of circulation pat-
terns. In the Hess-Brezowsky catalogue (Hess and Brezowsky, 2010), the pat-
terns are chosen using expert knowledge of their relevance and influence
on weather. In the Lamb catalogue (Lamb, 1972), they are based on geo-
metric physical information such as the direction of associated wind. Such
catalogues can allow for high-performing and pertinent classification, but re-
quire pressure variable maps to be classified by hand and eye, making them
difficult to generalize to big datasets. Furthermore, while physical and ex-
pert knowledge is included in the construction of the classes, synoptic cat-
alogues have unavoidable arbitrariness in the class definitions and map at-
tribution in boundary, limit cases. Recent works have adapted these classi-
fication system for computer automation. See (James, 2007) for the Hess-
Brezowsky catalogue and (Jones et al., 1993) for the Lamb catalogue. However,
that does not remove the problem of arbitrariness in the class definition. Fur-
thermore, the automatic classification is meant only to facilitate application
to large datasets, and not to replace the need for classification by a human
expert These automatedmethods are notmeant to constitute a self-sufficient
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classification procedure by themselves.

2.3 . Principal Component Analysis

2.3.1 . Dimensional reduction
Attempting to apply any classification method to pressure data raises two
problems. Firstly, the high number of dimensions of the datapoints causes
difficulties. A high dimensionality complicates the problem, increasing com-
putation times, memory requirements, and the amount of local minima to
avoid during optimization. Secondly, a bias emerges from the fact that there
are highly correlated variableswithin the input datamaps. Some classification
methods, such as clustering (see below) are based on a measure of distance
between datapoints, that attributes an equal weight to each data variable.
Variables containing redundant information are a problem in these classifica-
tion methods, because the redundant information would be given additional
weight by the amount of variables it appears in (Davis and Kalkstein, 1990;
Fovell and Fovell, 1993). As an example, if the pressure in six neighbouring
grid points is always identical, then the pressure in this region would be given
six times the weight in the estimation of which circulation maps should be
considered similar. Furthermore, this increase in weight would be dependant
on the choice of grid resolution. For these two reasons, it is preferable to
preprocess the data before classification. Specifically, the data must be con-
verted into a new basis, one that has a lower amount of dimensions, and that
avoids or reduces correlations between the variables.
Principal Component Analysis (PCA) (Kherif and Latypova, 2020; Preisendor-
fer, 1988; Wold et al., 1987) is an unsupervised dimensional reductionmethod.
It is known in some domains of research as Proper Orthogonal Decompo-
sition, or POD, and in the field of atmospheric sciences, it is often known
instead as Empirical Orthogonal Function analysis (EOF analysis) (Hannachi
et al., 2007). The different names all refer to the same methodology. The
goal of PCA is to findmodes (linear combinations of the data variables), all or-
thogonal to one another, that maximally explain the variance within the data.
Furthermore, the modes it generates are ordered, with the first mode being
optimized to explain as much of the data variance as possible, and each sub-
sequent mode explaining as much variance as possible, among what is not
yet explained by previous modes. Those modes can then be substituted to
the data variables.
Let (Pd,i)d∈{1,...,D},i∈{1,...,I} designate a set ofD pressure maps, each contain-
ing I variables. Each datapoint Pd is a vector of length I . The input data can
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be written as a matrix, P , of shapeD × I , D being the amount of datapoints
(or realizations, or time steps). Then, we are searching for modes, themselves
vectors of length I . Let them be noted m. If there are K of them, then they
can be written as a matrixM of shape I ×K , such that:

T = PM (2.1)
Where T is the matrix of shapeD×K representing the projection of the data
in the PCA mode basis.
PCA modes are called principal components. Let us start by searching for
the first one. It is defined as the linear combination of the I variables that
lead to the highest explained variance. The explained variance of a mode is
defined as the variance of the projection of the data in that mode. Therefore,
we search form1 that minimizes:

∑
d

Var(Td,1) =
∑
d

Var
(∑

i

Pd,iMi,1

)
=
∑
d

Var (Pd ·m1)

=
∑
d

(
Pd ·m1 −

1

D

∑
d

Pd ·m1

)2

(2.2)

Where · designates the scalar product. The solution can be shown to be an
eigenvector of the correlation matrix of the data, P TP . Specifically, it is the
eigenvector with the highest associated eigenvalue. Furthermore, the propor-
tion of explained variance explained by this mode is equal to this eigenvalue
divided by the sum of all eigenvalues of the datamatrix, i.e. the trace ofP TP .∑

d Var(Td,1)Var(P )
=

λmaxTr (P TP )
(2.3)

To compute further modes, one must subtract from the data its projection
into all previous modes, expressed into the basis of the original I variables.
It can be proven that modes constructed this way, maximizing at each step
the explained variance, correspond to the eigenvectors of the data correla-
tion matrix, sorted in descending order of the eigenvalues.
This process can be continued until I modes have been found. At that point,
all the variance will be explained, and one has obtained an alternative basis
for the data, of the same dimension. As the variables of this new basis are
the eigenvector of the data correlation matrix, which is Hermitian, they are
all orthogonal. This ensures that they are not linearly related to each other.
By construction, this basis avoids highly-correlated variables, and therefore
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the bias due to redundant information. Furthermore, the contribution to ex-
plained variance decreases with each new mode, and in high dimension, it
will typically become negligible before I modes are found. PCA functions as
a dimensional reduction method by truncating the process, and keeping only
the first few modes. The amount of modes to keep is either directly chosen
as a hyperparameter of the method, or by keeping only modes higher than a
predefined threshold of explained variance.
Therefore, PCA outputs a series of modes, in decreasing order of relevance.
Thosemodes form a set of linearly independent dimensions and can serve as
a basis to project the data into. As this process ensure both that the dimen-
sion of the data is reduced, and no variables contain redundant information
(at least in the form of linear dependencies), it solves the two problems of
clustering data that were previously identified. This is why PCA is often used
as preprocessing before the application of classification methods.
The PCA methodology, under the name of EOF analysis (Fukuoka, 1951), was
introduced in atmospheric sciences by (Lorenz, Edward N, 1956). Like in many
other domains, it has seen and still sees a lot of application (Richman, 1990).
For its application in atmospheric circulation patterns classification, see the
rest of this chapter. Most of the classification methodologies we discuss be-
gin by an application of PCA for data preprocessing, and it has been a standard
for a significant time (Christensen and Bryson, 1966).

2.3.2 . Application: Weather Regimes

Weather regimes are a commonly used type of atmospheric circulation clas-
sification, introduced in (Rex, 1950). Here, we present them as both an intro-
duction to the concept of atmospheric circulation classification, and as an ex-
ample application of PCA to this domain. Unlike other methods we look at in
this chapter, weather regimes are a classification focusing on low-frequency
dynamics. Weather regimes typically exist on temporal scales of at least 10
days, and consider spatial fluctuations at synoptic scale or higher. As stated
in (Michelangeli et al., 1995), weather regimes are a small set of structures that
are defined by either:

• Persistence: Weather regimes are the patterns that last the longest amount
of time on average.

• Recurrence: Weather regimes are the patterns that occur the most of-
ten. In other words, they are the maxima of the probability distribution
function in phase space.

• Quasi-stationarity: Weather regimes are patterns that are stationary, i.e.
for which derivatives cancel out and vanish.
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Baroclinic disturbances in the atmosphere, which have a life cycle on the tem-
poral scale of about aweek, and can cause fluctuations at smaller spatial scale,
are only considered as modulations of the regimes. As such, most individual
daily maps are transitory, not coinciding with any regime directly. Weather
regimes are applied to classify agglomerated data over several consecutive
days, rather than daily maps.
The computation of weather regimes, whether based on Recurrence or Quasi-
stationarity, typically makes use of PCA as a dimensionality reduction tool. Be-
cause these definitions of weather regimes require the exploration of phase
space, it is useful to reduce its dimension to a more manageable amount.
In addition to this, PCA is also used as a form of filtering. PCA modes are
generally associated with a specific spatial frequency. Therefore, by carefully
selecting which and how many modes to take into account, it is possible to
filter out frequencies that are not of interest (in the case of weather regimes,
higher frequencies). This allows the reduced phase space to incorporate only
properties relevant to weather regimes.
PCA has notably been applied with these two goals to study circulation dy-
namics in the North-Atlantic region in (Michelangeli et al., 1995) as well as in
(Vautard, 1990). We show in figure 2.1 the 4 regimes obtained for the winter in
the north-Atlantic region in (Michelangeli et al., 1995) with a quasi-stationarity
based method.
However, in this thesis work, we chose to focus on methodologies adapted to
the classification of maps on a daily scale, and take into account fluctuations
due to baroclinic disturbances.

2.4 . Hard clustering

Clustering, or cluster analysis, designates the unsupervised process of auto-
matically finding arrangements of unlabelled datapoints into classes (or clus-
ters) in such a way that all elements within a class are as similar as possible,
while elements from different classes are as different as possible (Han et al.,
2022). This corresponds to the separability property defined earlier. Depend-
ing on the method, the number of clusters K can either be user-chosen, or
automatically optimized. There exist two main types of clustering methods:
hard clustering, which attributes to each map a unique cluster, and soft clus-
tering, which attributed to each maps a distribution over clusters.

44



Figure 2.1 – 4 weather regimes of 700 hPa geopotential height obtained forwinter in north-Atlantic region using a quasi-stationarity based method. Con-tour interval is 50m. Dark shaded areas are where the anomaly is more than50m higher than the average. Light shaded areas are where the anomaly isless than -50mhigher than the average. This figure is from (Michelangeli et al.,1995).

2.4.1 . Hierarchical clustering

Hard clustering methods can be split into two categories: hierarchical, and
non-hierarchical methods. Hierarchical methods consists in building a hier-
archy of nested clusters. It begins with attributing each datapoint to its own
cluster, then iteratively merging the two closest clusters until only one cluster
is left. (To be exhaustive, one should mention this only the agglomerative type
of hierarchical models. Divisive types, which start with one cluster and then it-
eratively divide clusters until each datapoint is its own cluster, also exist.) The
metric of cluster similarity, based on which the choice of clusters to merge is
based, greatly influences the result of the clustering. There are two layers to
this choice. First, a measure of distance between datapoints is picked ; more
often than not it is the mean square distance. Then, based on this distance
metric, one must choose a way to determine the distance between two clus-
ters. This choice of generalization of the distance metric to clusters is called
the linkage. Simple examples includeminimum linkage, ormaximum linkage, in
which the distance between two clusters is the minimum (respectively, max-
imum) of their element-wise distances. These and many other linkage algo-
rithms are detailed inMurtagh, 1985 (Chambers et al., 1985). (Fovell and Fovell,
1993) also discusses in detail the methodological biases of several previously
discussed methods, such as the different linkage choices of hierarchical clus-
tering.
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Hierarchical clustering has seen application atmospheric circulation classifi-
cation. Examples of such applications of hierarchical cluster analysis use the
following linkages.

• Average linkage: The distance between two clusters is the average of
their element-wise distances. In (Mote, 1998), average linkage was ap-
plied to find correlations between synoptic patterns and Greenland ice
melting.

• Ward linkage: The two clusters to bemerged are those that would result
in the lowest total within-cluster variance. In (Cheng and Wallace, 1993),
the Ward method is used to classify large scale circulation in the north-
ern hemisphere. In (Fernau and Samson, 1990) and (Vrac et al., 2007), it
is used to identify circulation patterns in North-American atmospheric
circulation.

Among these two linkages, (Kalkstein et al., 1987) finds that while the Ward
method reliably leads to clusters of similar sizes, average linkage is the best
suited to the goal of clustering extreme events separately from regular days.
The COST733 Action (Huth, 2010; Philipp et al., 2016) compared the perfor-
mance for atmospheric circulation classification of many different classifica-
tion methods, including several hierarchical clustering linkage.
As an example, we show in figure 2.2 the centroids of 3 clusters obtained in
anomalies of z500 height on the norther hemisphere in (Cheng and Wallace,
1993), using Ward linkage hierarchical clustering.

Figure 2.2 – Average 500 hPa geopotential height anomaly maps of 3 clustersobtained by applying Ward linkage hierarchical clustering to northern hemi-sphere winter data. Contour interval is 50 m. Dashed lines indicate negativeanomalies. This figure is from (Cheng and Wallace, 1993).

2.4.2 . k-means
Non-hierarchical clustering takes as an input parameter the number of clus-
tersK , and uses centroids to represents them, associating each datapoint to
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one centroid. Here, wewill detail one of themost common and representative
non-hierarchical clustering methods, k-means (Ahmed et al., 2020; Hartigan,
1975). K-means is a simple model that takes as input a set ofD datapointsPd,in the shape of vectors of length I , and a cluster amount K. The clusters Sk,for k ∈ {1, ...,K}, are defined by centroids, themselves vectors of length I .
The goal of k-means is to attribute each datapoints to one of the clusters in a
way that minimizes the within-cluster variance, written in equation 2.4.

K∑
k=1

∑
Pd∈Sk

∣∣∣∣∣∣
∣∣∣∣∣∣Pd −

1

NSk

∑
Pd∈Sk

Pd

∣∣∣∣∣∣
∣∣∣∣∣∣
2

(2.4)

where ||·||2 designates the ℓ2 norm, and NSk
the amount of elements in clus-

ter Sk.
We present in algorithm 1 a standard algorithm for k-means. It is known as the
"naive" algorithm due to more efficient options existing. To summarize, each
Algorithm 1 Naive k-means learning process
Initialize cluster centroids (Sk)k∈{1,...,K}
while hasn’t converged do

for d in {1, ..., D} do ▷ Assignment stepAssign Pd to Sk such that k = argmink ||Pd − Sk||2
end for
for k in {1, ..., K} do ▷ Update stepUpdate centroids to Sk =

1
NSk

∑
Pd∈Sk

Pd

end for
end while

datapoint is associated to the closest centroid, then each centroid moves to
the average of all its assigned datapoint. The process is then repeated until
convergence.
Wenowpresent someexamples of application of thismethod on atmospheric
classification. Note that these applications use more efficient optimization
algorithms than the one presented before, as well as refined initialization
schemes. In (Brinkmann, 1999), k-means is applied to z700 data over east-
ern North America data to explore the link between temperature anomalies
and circulation patterns. In (Corte-Real et al., 1998), using SLP, it is applied to
explore the circulation patterns associated with dry weather or precipitation
over Portugal, and explore their variations over years. These associations are
then tested for in a GCMmodel (HADCM2) in (Corte-Real et al., 1999). In (Este-
ban et al., 2005a), the authors determine circulation patterns responsible for
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heavy snowfall in Andorra. And in (Esteban et al., 2006), the same methodol-
ogy is applied on NCEP reanalysis data to construct a catalogue of circulation
patterns over western Europe.
However, k-means has downsides. In particular, its lacks Consistency: the clus-
ters are highly dependant on the choice of initialization. K-means optimiza-
tion is likely to lead to local minima, failing to find the global minimum. Simu-
lated annealing is a mean of ensuring Consistency when solving the clustering
problem (Selim and Alsultan, 1991). Rather than a clustering method, simu-
lated annealing is an optimisation process. It can be applied to the problem
of choosing clusters that minimize internal variance to avoid local maxima
and find the global minimum (Laarhoven and Aarts, 1987).
In consists in the following. Let us call "loss" any function that we want to
minimize. In this cluster analysis case, it is the total within-cluster variance. At
each step, rather that systematically making a change that would reduce loss,
like gradient descent would do, simulated annealing picks a random move in
parameter space. Then, the random move is accepted at a probability that
exponentially decreases with the increase in loss. By analogy with physical
processes, this loss increase is treated like an increase in energy ∆E. More
specifically, the probability of accepting a move associated with∆E is:

1− exp
∆E

kT
(2.5)

Continuing the analogy, T is called the temperature. At higher temperature,
simulated annealing will have an easier time escaping from local minima, but
a harder time converging, and vice-versa. During the simulated annealing
process, T starts high and then is progressively decreased, following a pre-
defined "annealing schedule". k is a constant factor that relates temperature
to energy, analogous to Boltzmann’s constant. It exists to relate values of
temperature with values of the loss function, and ensure they are of compa-
rable scales. While technically a hyperparameter of the method, changing k

is equivalent to a multiplicative change of variable in the annealing schedule
defining the values of T .
A example of application to circulationpatterns classificationwould be (Philipp
et al., 2007). In this article, the authors use simulated annealing to describe at-
mospheric circulation patterns over the North-Atlantic-European region, and
study their changes since pre-industrial times.

2.4.3 . PCA as a classification method
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T-mode PCA

This subsection is mainly based on the work of Michael B. Richman, in (Rich-
man, 1986). While PCA is useful as a tool for dimensional reduction, notably
due to the linear independence of itsmodes, it can also be applied as a classifi-
cation method itself. However, that requires using it with a different method-
ology from what was previously presented, as PCA modes do not typically
resemble common atmospheric circulation patterns. In the domain of circula-
tion pattern classification, when PCA is used as preprocessing, the datamatrix
has datapoints as rows, and data variables as columns. This, which has been
presented in an earlier section, is referred to a S-mode PCA, and leads to the
PCAmodes (Principal Components, PC) being linear combinations of the data
variables. When used as a classification tool, the data matrix is transposed.
Now of shape I × D instead of D × I , the rows are data variables and the
columns are datapoints. This is referred to as T-mode PCA, and leads to PC
being linear combinations of the datapoint indexes. Figure 2.3 summarizes
the differences between these two methods. However, this is not enough yet
to provide a classification scheme.

Figure 2.3 – Difference between S-mode and T-mode of PCA. In T-mode, thedata matrix is transposed before PCA application. In S-mode, the principalcomponents (PC) are defined over data variables. In T-mode, PC are definedover datapoints. This figure is adapted from (Richman, 1986).

Rotated PCA

The PC modes obtained from PCA, either in S-mode or T-mode, have a set of
characteristics that can be undesirable:
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• Dependence to domain shape: The first few PC obtained by PCA are gen-
erally low-frequency modes covering the entire spatial domain. Gener-
ally, these modes depend only on the shape of the spatial domain, and
not on the input data.

• Subdomain instability: Because of the previous property, applying PCA
to a subdomain of space usually does not yield subdomains of the PC,
but rather compressed versions of them.

• Sampling error: When eigenvalues are close, the order of themodesmay
change depending on the sampling of the data.

• Lack of physical interpretability: In meteorological contexts, PC generally
fail to represent meaningful or interpretable states on their own, and
only have physical meaning when combined (Lamb, 1985).

A solution to these four problems is to apply a rotation to the PCA basis in
phase space. Applying a rotation to the PCAbasis allows one tomodify it along
new degrees of freedom, while preserving the orthogonality of the PC. The
specific rotation is chosen to optimize for desired properties. This is done at
the sacrifice of the variance maximization property of the PC (Richman, 1986).
There are many different ways to choose a rotation to apply. Historically, the
optimization criterion was motivated by the desire for the PC to be associ-
ated with human intuition-compatible physical interpretations. The first ob-
jectively defined criterion for finding useful rotations of the PC was described
by Thurstone in (Thurstone, 1933). However, more recent applications, espe-
cially in the study of weather variables, use the varimax criterion defined in
(Kaiser, 1958). The varimax criterion optimizes for a balanced spread of the ex-
plained variance among the rotated PC. It also has the effect of making the PC
sparse - only a limited amount of variables are non-negligibly represented in
each given PC. Thus, application of such a rotation to the PC basis results in a
set of data-informed, interpretablemodes that are generally local and sparse.
This can bedone to S-modePCA, resulting in localized, physically interpretable
modes. But when done to T-mode PCA, where the resulting PC are defined
over datapoint indexes, the sparsity property means that in each PC, only a
limited amount of datapoint are represented non-negligibly. By interpreting
each PC as a cluster, and considering a datapoint index being represented in
a PC, as it being included in the corresponding cluster, we have applied PCA
as a clustering method.
Rotated T-mode PCA classification has been shown to be capable of capturing
previously known circulation patterns classes in artificial test data (Compag-
nucci and Richman, 2008), and in European midlatitudes (Huth, 1993). It has
also been applied to study circulation in the northern hemisphere (Bartzokas
and Metaxas, 1996). In (Huth, 1996), the author explores the optimal ways to
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apply T-mode rotated PCA on geopotential height maps to classify circulation
over Europe. We show in figure 2.4 example circulation patterns obtained by
(Huth, 1996) with a rotated T-mode PCA method in the European and north-
Atlantic region, using the z500 variable. This methodology is then adapted for
the purposes of model evaluation in (Huth, 2000; Huth, 1997). SLP has also
seen use under this methodology for the classfication and study of the tem-
poral variations of circulation patterns in (Jacobeit et al., 2003), and to explore
links between circulation patterns and extreme cold in the wet Pampas, Ar-
gentina, in (Müller et al., 2003).

Figure 2.4 – Mean 500 hPa geopotential height (in meters) for example classesobtained by rotated T-mode PCA. This figure is from (Huth, 1996).

2.4.4 . Self-Organizing Maps
A neural network is a machine learning model using an architecture based on
units called neurons, arranged in a set of interconnected layers. Each neuron
takes values as its input (either the output of the previous layer, or the input
data if it is the first), applies a non-linear function depending on some param-
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eters to it, and produces a value as its output. As long as there is non-linearity
in the neuron, a sufficiently deep (number of layers) and wide (amount of
neurons per layer) network can in theory model any function. However, as is
often the case in machine learning, deep and/or wide networks have many
parameters to optimize and therefore require a lot of data to train. Here we
will focus specifically on Self-Organizing maps (SOM), a popular neural net-
work methodology in the domain of atmospheric circulation study.
SOM are an architecture for unsupervised learning initially developed by Ko-
honen in (Kohonen, 1990; Kohonen, 1995). The goal of SOM is twofold. First,
SOM are a clustering method. It aims to sort individual datapoints among a
user-chosen number of clusters. The clusters are defined by centroids, i.e.
points in the phase space of the data, which are optimized in the learning
process. Secondly, the main particularity of SOM is that the clusters also have
positions relative to each other in an abstracted cluster space. Some clus-
ters are close and others are further away, giving additional meaning to the
cluster attributions of the datapoints. As such, SOM also serves as a sort of
dimensional reduction method, with discrete output. The distances between
the clusters are determined by the positions of nodes in cluster space associ-
ated with each cluster. The distribution of the cluster-nodes in cluster space,
as well as its dimension, are user-chosen. In this discussion, we will only con-
sider 2-dimensional cluster-space and regular arrangements of nodes.
SOMhave one layer of neurons, which are identifiedwith the nodes in cluster-
space. Each node has I parameters that define the centroid of the associated
cluster. This is referred to as the "reference vector". In order to determine
the cluster attributed to a datapoint by an already optimized SOM model:

• The datapoint is compared in parallel to the reference vector of each
node, using a distance metric (in general, either the Euclidean distance,
or the scalar product).

• The node with lowest distance becomes the attributed cluster.
Non-linearity is necessary to any neural network, in order to be able to repre-
sent arbitrary functions. But the distancemetric chosen to compare the data-
point with the reference vectors needs not be non-linear in the data variables,
because the non-linearity of SOM networks comes in the "best fit" selection
process. The architecture of SOM summarized in figure 2.5.

Most neural networkmethodologies use backpropagation to optimize the pa-
rameters. Backpropagation is amethodology of gradient estimation in neural
networks commonly used for parameter optimization. It was originally named
in (Orbach, 1962), however the first implementation was described in (KELLEY,
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Figure 2.5 – Schematic representation of Self-Organizing Maps. An input mapis compared to the reference vectors ofK nodes, and a best fit k∗ is selectedas output. In this example, the nodes are arranged in a 2-dimensional cluster-space.

1960). However, SOM utilize competitive learning, detailed in algorithm 2. The
symbol ← means: “Is set to the value of”. Let K be the amount of clusters.
∀k ∈ {1, ...,K}, letmk designates the reference vector associatedwith cluster
k. And finally, let ||·|·|| be the distance metric chosen to compare datapoints
with reference vectors, and ||·|| the distance metric in cluster space. In each
step t of the learning process, a datapoint Pt is classified by being compared
to every reference vector and picking a best fitmk∗ . The best fit node, as wellas its neighbours in cluster space are then updated to have their reference
vector become closer to the classified datapoint. Howmuch a given node k is
to be adjusted is determinedby the neighborhood function, notedhk∗k(t). It isa function of distance between the positions of node k, rk and that of the bestfit node k∗, rk∗ , and time t (i.e. learning steps): hk∗k(t) = h(||rk − rk∗ || , t). Theneighbourhood function determines how close nodes must be to be consid-
ered neighbours. It goes to zero when ||rk − rk∗ || increases to ensure localityof the learning, and goes to zero when t increases to ensure convergence.
This local (in cluster space) update process is where the spatial structure of
the nodes comes into play, and the source of the global ordering in the re-
sulting clustering scheme. As a result, the structure of the clustering provided
by SOM is different from other methods, such as k-means. Where these tend
to generate few, populated clusters where data is dense, and many where
data is sparse, SOM on the other hand generates many clusters where data
is dense, and few where it is sparse.
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Algorithm 2 Self-Organizing Maps learning process
Randomly initialize themk, ∀k ∈ {1, ..., K}
for t in {1, ..., D}, repeated until convergence do

k∗ ← argmink ||Pd|mk||
for k in {1, ..., K} do

mk(t+ 1)←mk(t) + hk∗k(t)× (Pt −mk(t))
end for

end for

A visual example of the learning process, from (Kohonen, 1995), is displayed
in figure 2.6. In this simple case, both input data space and cluster space
are 2-dimensional. The probability distribution of the data fed to the learning
model is assumed to be uniform on the square region. We see the reference
vectors, initialised randomly inside a small centered circle, progressively ad-
just to represent an approximation of the probability distribution of the input
data.
To the author’s knowledge, this method was first applied to weather data by
Cavazos in (Cavazos, 1999), then in (Cavazos, 2000), to the classification of
weather patterns associated with extreme events. It was demonstrated that
SOM were capable of revealing underlying structure in its input data in (He-
witson and Crane, 1994). They have been successfully used to extract patterns
associated with extreme weather events. It has notably permitted studies of
the temporal evolution, in frequency and aspect, of these patterns (Hewitson
and Crane, 2002). Since then, the SOM method has seen a lot of use in the
domain, owning to its ability to provide detailed classifications with high num-
ber of classes ; while retaining approachable physical interpretability thanks
to the visualization of the underlying structure of classes (Sheridan and Lee,
2011). This method continues to see new applications in the field of atmo-
spheric circulation classification (Mwasiagi, 2011).

2.5 . Soft clustering

Up to now, the methods that were presented are for hard clustering, where
the attribution of a datapoint to a cluster is:

• Boolean: A datapoint is either included or not included in a cluster, with-
out third option such as partial inclusion.

• Unique: A datapoint is only included in exactly one cluster.
The only exception would be T-mode PCA clustering, which is not unique, as
it may attribute datapoints to numbers of clusters other than one. However
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Figure 2.6 – Example representation of the SOM learning process. The back-ground square represents the 2-dimensional space of possible input vectors,which we assume to be of uniform probability distribution. The reference vec-tors of the nodes after varying amount of learning steps are represented by agrid, with the links representing the nearest neighbours of each node, reveal-ing the 2-dimensional topological structure of the cluster space. This figure isfrom (Kohonen, 1995).

there exist clustering methodologies, referred to as "soft clustering", that aim
to provide more subtle information on datapoint categorization by attribut-
ing them cluster attributions in the form of numbers between 0 and 1 for each
cluster. Those numbers may symbolize either a degree of fulfillment of con-
ditions that describe a cluster, or a probability of belonging to it, rather than
categorical attributions. Because it providesmore detailed information on the
datapoints, soft clustering will be our approach of choice for the circulation
classification performed in this thesis work.

2.5.1 . Fuzzy relation-based methods

Among soft clustering methods, there exists a set of methods referred to as
fuzzy clustering, which uses values between 0 and 1 instead of Boolean to
deal with imprecise and subjective statements, including the degree of mem-
bership of a datapoint to a cluster (Yang, 1993). Fuzzy clustering designates a
wide array of methods. First we look at a method based on fuzzy relations, or
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rules. This methods consists in defining clusters using imprecise statements
such as "there is very low pressure at this position". For each datapoint, the
truth value of these statements are represented by values in [0, 1], using the
concept of fuzzy logic as proposed by Zadeh in 1965 (Zadeh, 1965). From these
statements are then computed the degrees of membership of datapoints to
clusters (see below for more detail).
This method was introduced to atmospheric circulation classification in (Bar-
dossy et al., 1995; Bárdossy et al., 2002). Its performance was compared to
other classification methods in (Stehlík and Bárdossy, 2003). It remains at
time of writing an uncommon method, with few articles applying it to the do-
main of atmospheric circulation classification.
In order to apply fuzzy rules-based classification to data, itmust first be brought
to the [0, 1] range. This is to ensure a regular scale shared for each datapoint,
and facilitates the definition of terms such as "low" or "very high". Using equa-
tion 2.6, input data maps are normalized to set each daily map minimum at 0
and maximum at 1.

∀d ∈ {1, ..., D} , i ∈ {1, ..., I} ,Xd,i =
Pd,i −minj (Pd,j)maxj (Pd,j)−minj (Pd,j)

(2.6)

The classes are defined by fuzzy rules consisting of a list of I statements, one
for each data variable. Those statements are either VERY LOW, MODERATELY
LOW, MODERATELY HIGH, VERY HIGH or INDIFFERENT. In (Bardossy et al.,
1995), those were chosen manually based on the Hess-Brezowsky catalogue
(Hess and Brezowsky, 2010), with the aim of representing these patterns as
the classes. From these Hess-Brezowsky catalogue maps were selected a set
of representative locations of very low, medium low, medium high and very
high pressures ; the others were set to INDIFFERENT. In (Bárdossy et al., 2002),
the fuzzy rules were instead a parameter to optimize. The evaluation of the
statement associated with class k, ∀k ∈ {1, ...,K} on variable i,∀i ∈ {1, ..., I},
is done by the way of membership functions fk,i : [0, 1] −→ [0, 1]. Member-
ship functions take as argument the normalized map variable of index i,Xd,i,and return a value reflecting how true the statement associated with class k
is for that variable. In (Bardossy et al., 1995; Bárdossy et al., 2002), there are
5 possible membership functions, one for each of the 5 possible statements
attributed. They are triangular fuzzy numbers, i.e. functions of the form:

f(x) =


x−a
b−a if a ≤ x ≤ b
c−x
c−b if b ≤ x ≤ c

0 otherwise
(2.7)
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with three parameters (a, b, c). The choices of parameters made for each
statement in (Bardossy et al., 1995; Bárdossy et al., 2002) are shown in table
2.1.

Statement Fuzzy triangular number parameters
VERY LOW (0, 0, 0.4)MEDIUM LOW (−0.2, 0.2, 0.5)MEDIUM HIGH (0.5, 0.8, 1.2)VERY HIGH (0.6, 1, 1)INDIFFERENT µk,i is the constant 1

Table 2.1 – Triangular fuzzy number parameters chosen to mathemati-cally represent each statement in (Bardossy et al., 1995; Bárdossy et al.,2002).

Arbitrariness in the choices of thresholds for the triangular functions is un-
avoidable.
To classify an input field Xd, one must compute its "degree of fulfillment"
of the properties of class k, µk(Xd), for each class. This degree of fulfill-
ment serves as soft cluster attributions of the datapoints. For each variable
i ∈ {1, ..., I}, the associated statement are evaluated by the corresponding
membership function fk,i. Then, the fk,i(Xd,i) are agglomerated for all i to
compute the degree of fulfillment. The exact equation used to obtain the de-
gree of fulfillment can vary depending on user choice. Generally, themember-
ship functions are first agglomerated by statement type (except INDIFFERENT
which can be safely ignored), then the 4 remaining values are agglomerated
into the degree of fulfillment. That is done by the use of AND: a, b 7−→ a × b,
OR: a, b 7−→ a + b − ab, or weighted linear combinations of the two. Thus, a
degree of fulfillment is obtained for every class k, functioning as a soft cluster
attribution.

2.5.2 . Fuzzy C-means
In the previous subsection, we have seen a soft clustering method based on
the truth value of fuzzy rules. There also exist soft clustering methods that
are based on functions to optimize, as we have seen in hard clustering, but
do so using fuzzy (soft) cluster attributions (Yang, 1993). Such methods have
seen limited application to the field of atmospheric circulation pattern classi-
fication, but are presented here for the sake of exhaustivity.
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A representativemethodof function optimization-based soft clustering is fuzzy
C-means (FCM) (Suganya and Shanthi, 2012). FCM is a soft clustering counter-
part to k-means, basedon the idea of fuzzy logic (Zadeh, 1965). Compared to k-
means, it adds the possibility of representing datapoints that are intermediary
between clusters. Cluster attributions can be partial and datapoints spread
between clusters. FCM was initially described in (Dunn, 1973), and an algo-
rithm was proposed in (Bezdek, 2013). Similarly to k-means, the goal of FCM
is to optimize for low within-cluster variance, and maximal between-cluster
variance, but with a soft clustering formulation of variance.
Let µd,k, ∀k ∈ {1, ...,K} denote the cluster attribution of datapoint d to cluster
k, also called the degree of membership. It is a number between 0 and 1, such
that ∀d ∈ {1, ..., D} ,∑K

k=1 µd,k = 1. FCM seeks to optimise the following:
D∑

d=1

K∑
k=1

µm
d,k ||Pd − Sk||2 (2.8)

with m ∈ [1, inf), a metaparameter, representing a degree of fuzziness. We
present in algorithm 3 a standard algorithm for FCM, adapted from (Yang,
1993). To summarize, at each step, the cluster centroids move to the average
Algorithm 3 Fuzzy c-means learning process
Initialize degrees of memberships µd,k

while hasn’t converged do
for k in {1, ..., K} do ▷ Update step

Update centroids to Sk =
∑D

d=1 µ
m
d,kXd∑D

d=1 µ
m
d,k

end for
for d in {1, ..., D} do ▷ Assignment stepAssign degrees of membership µd,k =(∑K
k′=1

(
||Xd−Sk||2
||Xd−Sk′ ||2

) 2
m−1

)−1

end for
end while

of all its assigned datapoint, weighted by their degrees of membership. Then,
the degrees of membership are computed, based on their relative distance
to each centroid, and the value ofm. As was the case for k-means, many vari-
ations of this algorithm exist, some more efficient than it.
Several generalizations andmodifications of the FCM objective and algorithm
exist (Yang, 1993). One particular generalization of FCM consists in adding
an entropy-based regularization term to the objective function (Honda et al.,
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2014). This particular FCM generalization can be demonstrated to be identi-
cal to a clustering method based on a probabilistic description of the process
of data creation, where each datapoint is assumed to come from one of K
distinct Gaussian distributions with different parameters, corresponding to
each cluster (Ichihashi et al., 2001). This type of clustering methods, based on
a probabilistic description of the data generation process, with each datapoint
coming fromone ofK separate probability distribution eachmodelled by one
of the clusters, are calledmixturemodels and are detailed in the next section.

2.5.3 . Mixture models
We now look at a different kind of soft clustering methods: mixture mod-
els (Lindsay, 1995). This is the type of method that this thesis research work
is based on. Mixture models are statistical models (McCullagh, 2002). This
means that their aim is to represent, in the form of probability distributions,
the process of datapoint generation (Cox, 2006). Mixture models, in particu-
lar, assume that there exists a number K of distinct, independent processes
of datapoint generation that are each associated to one of theK classes. They
are described by the probability distributions pk,∀k ∈ {1, ...,K}. The generalprobability distribution of the data is therefore expressed as a weighted av-
erage, i.e. mixture, of those other probability distribution, with the weights
corresponding to the probabilities of a datapoint being generated by each of
theK processes. For a datapoint Pd:

p(Pd) =
K∑
k=1

mkpk(Pd) (2.9)
withmk denoting the prior probability of a datapoint being generated by theprocess k. To ensure that p(Pd) is a probability function, we necessarily have∑K

k=1mk = 1. Each of the probability distributions pk is then written as a
function of a set of parameters θk: pk(Pd,θk).
In order to classify datapoints, the model must be fitted to the dataset. The
parameters, (θk)k∈{1,...,K} and (mk)k∈{1,...,K}, are optimized to maximize the
probability of the data (or a lower bound estimate if it is intractable) using
any optimization process such as gradient descent. Then, a datapoint can be
attributed a probability of belonging to each class by using Bayesian infer-
ence. 1 If one needs categorical class attributions, they can take the values of
k that maximize the probability of belonging. The most commonly used mix-
ture model is the Gaussian mixture model, where all of the pk are assumed
Gaussian. This is the type ofmixturemodel proven to result in an identical op-
timization process than regularized FCM, see (Ichihashi et al., 2001). But there

1. See chapter 3 for more on statistical models and details on Bayesian inference.
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exists a great variety of possible mixturemodels ; using distinct types of prob-
ability distributions as class descriptors. The advantage of the mixture model
classificationmethod is that class attributions provide information on the sta-
tistical properties of the data. Oftentimes, in contexts where mixture models
are used, the values of the fitted parameters, and the shapes of the distri-
butions associated with each class, are of more interest than the attributions
themselves. The downside of this method is that it requires assumptions on
the shape of the distributions associated with each class.
There are relatively few applications of mixture models to atmospheric cir-
culation classification. They were used in (Vrac et al., 2007) to identify sea-
sonal circulation patterns over north America. This methodology is included
in the latest versions of themethodological intercomparison project COST733
(Philipp et al., 2016), where it was proven to be able to lead to useful results.

2.6 . Summary

Atmospheric circulation canbedescribed and studied throughhigh-dimensional
data. Attempting to classify daily maps into a finite set of circulation patterns,
or classes, is one way to deal with the high dimensionality. It makes it possible
to measure variations in time of frequencies of appearances of the patterns,
or to measure their correlations with other observables or events. We have
given in this chapter an overview of the many different existing methods of
classifying atmospheric circulation patterns.
Most of these methods require preprocessing of the data to avoid linear de-
pendencies in the variables (which can induce biases) and reduce the number
of dimensions. This preprocessing is usually done by the application of Prin-
cipal Component Analysis (PCA, alternatively referred to as POD or EOF anal-
ysis), which extracts from a dataset a set of linearly independent components
that maximize explained variance.
One common way to categorize atmospheric circulation is to use weather
regimes, defined as states of maximal persistence, frequency, or stationarity.
Weather regimes can be a very efficient way to describe the low-frequency,
large scale aspects of circulation. However, inwhat follows, we focus onmethod-
ologies that are adapted to the classification of individual maps on a daily
timescale.
Several different classification methods have been conceived, based on dif-
ferent criteria to optimize. Suchmethods include cataloguesmade by experts
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for manual classification, designed specifically to facilitate weather forecast.
Many others are automated methodologies that optimize for good catego-
rizations, along user-defined metrics. We first look at hard clustering, a set
of methods whose goal is to provide unique class attributions to any pres-
sure map. More specifically, it seeks to organise data into clusters such that
the datapoints sharing a cluster are as similar as possible, while being as dis-
similar as possible to datapoints in other clusters. Those include hierarchical
clustering, which constructs nested structures of clusters, or k-means, which
groups datapoints according to cluster centroids they are the closest to. By
applying it to a transposed data matrix and rotating the obtained compo-
nents, PCA itself can also be used as a clustering algorithm itself. Another
popular method, Self-Organizing Maps, is a neural network that produces
clusters endowed with an underlying ordered structure, facilitating physical
interpretation.
However, there also exists a different kind of classification methodology that
does not categorically attributes clusters to maps, but instead provides clus-
ter attributions in the form of numbers between 0 and 1. They are called soft
clustering methods, and are able to represent more information on the prop-
erties of datapoints. For example, fuzzy rules-based clustering handles impre-
cise conditions for cluster belonging, and measures degrees of fulfillment of
these conditions. Othermethodologies of fuzzy clustering utilize partial levels
of clustermembership to optimize some criteria. This includes fuzzy c-means,
a fuzzy counterpart to k-means that allows for each datapoint to be spread
over several clusters. On the other hand, mixture models are statistical mod-
els, using a probabilistic representation of the process of data generation.
They assume the existence of underlying classes with distinct statistical prop-
erties, and estimate probabilities of a map being a part of each cluster. How-
ever, in their applications in the domain of circulation patterns classifications,
these methods are generally used as categorical classifications by selecting
for each datapoint the cluster with highest degree of fulfillment or probabil-
ity. In this thesis work, we will use statistical models for soft clustering as a
way to extract more information from pressure-related data.
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3 - Introductionof LDA through topicmodelling

3.1 . Introduction

The goal of our work is to study atmospheric circulation through an approach
basedon clustering. As seen in the previous chapter,most clusteringmethods
aim to attribute clusters tomaps categorically, i.e. with cluster attributions that
are both Boolean and unique. However, there exist “soft clustering” method-
ologies, that provide cluster attributions in the form of a number between 0

and 1 associated with each cluster, representing a form of partial attribution.
In particular, statistical models are models that represent the process of data
generation in a probabilistic way. In mixture models, the clusters are defined
as distinct probabilistic processes of data generation. These models provide
soft cluster attributions to datapoints in the form of a posteriori probabilities
of them having been generated through the processes associated with each
cluster.
In this chapter, our goal is to find a statistical model method to provide soft
clustering of the data, in a way that provides meaningful and physically in-
terpretable information. That method is Latent Dirichlet Allocation. In order
to clarify why it is the model we have chosen to use, we will introduce it pro-
gressively by presenting several intermediary statistical models in increasing
order of complexity. In order to facilitate their introduction, we start here
by introducing the graphical model formalism. The models are introduced in
the original domain of application of LDA - natural language processing - and
more specifically, topic modelling. We also go over the notion of Bayesian in-
ference, i.e. how to optimize model parameters from the data, and detail two
possible algorithms for optimization of LDA: Gibbs sampling, and variational
inference. The information contained in this chapter is mainly based on (Jor-
dan, 2004), (Cowell et al., 2007), (Blei et al., 2003), and (Yvon, 2022).

3.2 . Graphical models

3.2.1 . Networks and probability distributions
The relationships of interdependencies among randomvariables can bemod-
elled using graphical model representation (also called Bayesian networks).
Therefore, we will begin by introducing notions on the study of graphs. A net-
work, or graph, G is defined by a set of nodes, called V, and a set of edges
(u, v) ∈ V× V, called E. Such a network is directed if each edge is associated
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with a direction. (u, v) ∈ E ̸⇔ (v, u) ∈ E

A path of length l in G is a sequence of edges (u1, v1), ..., (ul, vl) such that
∀0 < i < l, (ui, vi) ∈ E and ui+1 = vi. A network is acyclic, if there exists no
path of nonzero length ending on the same node that it starts. G acyclic⇔ ∀
path in G, l = 0 or u1 ̸= vl.
Let πu denotate the set of parents of a node u ∈ V. It is defined as the set of
all nodes v ∈ V such that (v, u) ∈ E, i.e. with an edge going from v to u.
Graphical models are acyclic directed graphs, where each node is associated
to a random variable. Let variables (xi)i∈{1,...,I} be a set of random variables
associated with the nodes of G = (V,E). Then, the joint probability distribu-
tion of the (xi)i∈{1,...,I} is of the form:

p((xi)i∈{1,...,I}) =

V∏
xi

p(xi|πxi) (3.1)
Thus, a graph corresponds to a family of joint probability distributions over
the random variables. From now on, the nodes of a graph and the associated
random variables will be identified: (xi)i∈{1,...,I} = V.

Figure 3.1 – Example of a directed, acyclic graph. Each node corresponds to arandom variable.

As an example, an acyclic, directed graph is represented in figure 3.1. Ac-
cording to the graphical model formalism, this graph implies that the joint
probability distribution of the variables x1, ..., x4 is of the form described in
equation3.2.

p(x1, x2, x3, x4) = p(x4|x3, x2)p(x3|x1)p(x2|x1)p(x1) (3.2)
In simpler terms, what a graph tells you is that the probability distribution of
a random variable is only and fully defined by the value of the variables cor-
responding to its parent nodes.
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A graphical model also represents a generative process, i.e. a process accord-
ing to which new values of the random variables can be generated. First, draw
every variable associated to a node without parents. Then, draw every vari-
able whose parent nodes have all been drawn. Taking again the example of
figure 3.1, we would first draw the value of x1 from its probability distribution
p(x1), which does not depend on any of the other variables. Then, we can
draw x2 and x3 from p(x2|x1) and p(x3|x1) respectively, using the value ob-tained from x1. Finally, we can draw x4 from p(x4|x3, x3), using the values of
x2 and x3.
To simplify the notations of graphs with high number of nodes, we introduce
the plate notation, see figure 3.2. Sets of nodes playing similar roles in the
structure of the graph can be represented within a plate, functioning simi-
larly to a “for” loop.

Figure 3.2 – Example of a graph illustrating the plate notation.

When studying systems using graphical models, it can be useful to differenti-
ate between hidden variables, and observed variables, the values of which are
considered known. To that end, observed variables are shown with a grayed
node. See figure 3.3 for an example.

3.2.2 . Inference in graphical models
Let G = (V,E) a Bayesian network. Let X ⊂ V and Y ⊂ V be two disjoint sets
of variables, with X non-empty. The problem of inference consists in find-
ing the conditional probability distribution p(X|Y), i.e. finding the distribution
over X when the variables in Y are observed. Solving the inference problem
is key to fitting statistical models to observed data.
By summing over all possible realizations of a random variable, we can elim-
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Figure 3.3 – Example of a graph displaying two observed variables (x2 and x4,in gray), and two unobserved variables (x1 and x3, in white).

inate this variable from the equations. This is called marginalisation of the
joint probability distribution.

p(x) =
∑
y0

p(x, y = y0) (3.3)
To shorten notations, summing over all possible realizations of a random vari-
able y will be written by putting the random variable as index of the sum:
p(x) =

∑
y p(x, y). If the set of possible realizations of y is continuous, andnot discrete, then we write p(x) =

∫
y p(x, y) dy instead.

By definition of conditional probability, p(x|y) = p(x,y)
p(y) . Usingmarginalisation,

we can write:
p(X|Y) = p(X,Y)∑

X p(X,Y)
(3.4)

Both the numerator and the denominator can be rewritten as marginalisa-
tions of the joint probability distribution p(V):

p(X|Y) =
∑

V\X\Y p(V)∑
X
∑

V\X\Y p(V)
(3.5)

Where∑X designates summing over all possible realizations of all variables
in X, and \ designates set subtraction. The solution to the inference problem
is obtaining a expression for this formula. In some cases this can easily be
done, is others it can be analytically intractable.
In Bayesiannetworks, it is possible to simplify this computationprocess thanks
to the constraints imposed on the form of p(V). Let u, v ∈ V. u and v are in-
dependent ⇐⇒ p(u, v) = p(u)p(v). In such a case, knowing the realization
of one of the independent variables has no effect on the distribution of the
other. It can be shown that the form taken by the probability distribution of
variables in a Bayesian network (equation 3.1) implies the following relation-
ships of independence. Let u, v ∈ V such that u ̸∈ πv, v ̸∈ πu. If the variables
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πu are observed, then u and v are independent. In many cases, these rela-
tionships can be used to simply the inference computations.

3.3 . Topic modelling

3.3.1 . Introduction
Topic modelling consists in building representations of the underlying word
patterns in collections of text documents, which are sequences of words. Typ-
ically, this is done with statistical models by using latent variables, referred to
as “topics” (Blei et al., 2010). Each topic represents a different probability dis-
tribution over words, generally containing words which commonly appear in
the same documents. For example, a topic related to sports would attribute
high probabilities to words like “athlete” or “training”, and a lower probability
to words such as “stratosphere” or “wiring”. This section is based on theworks
of David Blei in (Blei et al., 2003) and François Yvon in (Yvon, 2022).
Let (Xd)d∈{1,...,D} be the corpus of documents. Each document Xd is definedby a sequence of Nd words: (wd,n)d∈{1,...,D},n∈{1,...,Nd}. The set of all possiblewords is referred to as the vocabulary, and its size is noted V . In order to sim-
plify the problem, we consider the order of the words to be irrelevant. This is
referred to as the “bag of words” hypothesis. A document is only defined by
the number of times each word appears in it. In practice, it means we are only
interested in the patterns of occurrences of words in documents, and not in
the patterns of sequences of words.

3.3.2 . Unigrammodel
One of the simplest models we can make is to assume each word of each
document is drawn from the same categorical probability distribution defined
over the vocabulary. This is called the unigrammodel, andwould bedescribed
by the graph shown in figure 3.4, and equation 3.6.

p((wd,n)d∈{1,...,D},n∈{1,...,Nd}) =

D∏
d=1

Nd∏
n=1

p(wd,n) (3.6)

The unigram model has one parameter: that of the probability distribution
over the vocabulary p(w = v),∀v ∈ {1, ..., V }. Since the vocabulary v ∈
{1, ..., V } is a finite discrete set, this distribution is a categorical distribution.
Its parameter is a normalized vector, each element of it being the proba-
bility associated to the corresponding element in the set. For the unigram
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Figure 3.4 – Graphical model representation of the unigram model. The D-plate represents iteration over all documents, and theNd-plate iteration overwords.

model, this parameter is noted β, and is a vector of length V , such that ∀v ∈
{1, ..., V } , p(w = v) = βv.
Every statistical model is also a generative model, able to be used to generate
new documents. For the generation process, the model parameters are as-
sumed known. In the unigram model, the generation process is as shown in
algorithm 4. The symbol∼means: “Is drawn from the probability distribution
parameterized by”.
Algorithm 4 Unigram model document generation
Pick a document length N
for n in {1, ..., N} do

wn ∼ β
end for

Note that the model does not innately provide a way to pick a document
length N . This will be the case for all the models presented in this section.
One way of doing it is to draw N from a Poisson law fitted on the lengths of
documents in the corpus (Nd)d∈{1,...,D}. While an integral part of document
generation, modelling document length is a distinct problem from topic mod-
elling, and will not be explored further in this work.

3.3.3 . Mixture model
The unigram model captures the frequencies of each word, but it does not
represent the 2-variable statistics, such as correlations between words. In
order to increase the complexity of themodel, we introduce a document-level
latent variable, called “topic attribution”. Topic attributions are noted z, and
are a vector of lengthD. The topic attribution of document d, zd, is a number
in {1, ...,K}. Qualitatively, zd represents which, among a set of K different
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topics, best describes the distribution of words observed in the document.
The number of topics K is a hyperparameter of the method, equivalent to
a number of clusters. This model is a discrete mixture model (Nigam et al.,
2000) (see chapter 2). It is described by the graph shown in figure 3.5, and the
corresponding equation 3.7.

Figure 3.5 – Graphical model representation of the mixture model. The D-plate represents iteration over all documents, and theNd-plate iteration overwords.

p((wd,n)d∈{1,...,D},n∈{1,...,N} , z) =
D∏

d=1

p(zd)

Nd∏
n=1

p(wd,n|zd) (3.7)

Instead of assuming that each word is drawn from the same probability dis-
tribution, the mixture model assumes the existence ofK distinct topics, each
associated to a different probability distribution on the vocabulary. Each doc-
ument is then assumed to have been generated following the probability dis-
tribution associated with one of the topics. The parameters of the mixture
model are noted β and α. In the mixture model, the parameter β is a ma-
trix of shape K × V , with each row βk,∀k ∈ {1, ...,K} , the parameter of
the categorical distribution over the vocabulary associated with the k-th topic.
∀k ∈ {1, ...,K} ,∀v ∈ {1, ..., V } , p(w = v|z = k) = βk,v. α is a vector of length
K , parameter of the probability distribution over topic attributions, which is
also a categorical distribution. ∀k ∈ {1, ...,K} , p(z = k) = αk. In the mixture
model, the generation process is as shown in algorithm 5.
Algorithm 5Mixture model document generation
Pick a document length N
z ∼ α
for n in {1, ..., N} do

wn ∼ βz

end for
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3.3.4 . pLSI
The mixture model is capable of representing more detail than the unigram
model, but it still has limitations. It assumes that a document is always de-
fined by a single topic, and does not allow for documents sharing a topic to
have differing statistical properties. We want the ability to represent docu-
ments that contain a mix of different topics. To that end, topic attribution zdis changed to be a word-level variable zd,n, and each document is associated
a composition in topics.
Probabilistic Latent Semantic Indexing (pLSI), is a model that functions this
way. It considers each document index d to be associated with its own prob-
ability distribution over topics. pLSI is described by the graph shown in figure
3.6, and the corresponding equation 3.7.

Figure 3.6 – Graphical model representation of pLSI. The D-plate representsiteration over all documents, and the Nd-plate iteration over words.

p((wd,n)d∈{1,...,D},n∈{1,...,N} , z|d) =
D∏

d=1

Nd∏
n=1

p(zd,n|d)p(wd,n|zd,n) (3.8)

pLSI has some specificities compared to the other models seen thus far. It
uses d, the index of documents in the corpus, as one of the variables, with-
out modelling a p(d). In effect, when fitted, it associates to each document d
in the learning corpus its own probability distribution over topic attributions.
The parameters of pLSI are noted θ and β. θ is a matrix of shapeD ×K , pa-
rameterizing the document-topic distributions. Each row θd is the parameter
of the categorical distribution over topic attributions associated with docu-
ment d, such that ∀d ∈ {1, ..., D} ,∀k ∈ {1, ...,K} , p(z = k|d) = θd,k. Sim-
ilarly to the mixture model case, β is a matrix of shape K × V , such that
∀k ∈ {1, ...,K} ,∀v ∈ {1, ..., V } , p(w = v|z = k) = βk,v.
pLSI does not exactly generate new documents, but it describes the process
of generating a new instance of a document at a given index d. This process
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Algorithm 6 pLSI document generation
Pick a document index d ∈ {1, ..., D}Pick a document length N
for n in {1, ..., N} do

zn ∼ θd

wn ∼ zn
end for

is described in algorithm 6.
Due to its particularity, pLSI comes with the drawback of being unable to han-
dle documents that are not part of the learning corpus. All other models
described here can, given new documents, determine values for their latent
variables using Bayesian inference, without needing to re-fit the model. But
adding a new document to pLSI would imply a new document index d = D+1,
and therefore newmodel parameters θD+1 that would need to be fitted. Fur-thermore, the amount of values contained in the model parameter θ grows
linearly with the amount of documents in the corpus, which can become im-
practical for large datasets.
For these reasons, we introduce a new model that shares the structure of a
word-level latent variable describing topic attribution, and a document-level
latent variable that describes topic composition, but without involving the
document index. This model is Latent Dirichlet Allocation.

3.4 . Latent Dirichlet Allocation

3.4.1 . Introduction
LatentDirichlet Allocation (LDA) is an unsupervised statistical learningmethod
introducedbyDavid Blei in (Blei et al., 2003). Like themodels presented above,
its purpose is tomodel the statistical relationships between words in a corpus
of text documents, using latent variables known as “topics”, characterized by
a probability distribution over the vocabulary. The number of topics K is a
hyperparameter of the method, equivalent to a number of clusters. LDA is a
soft clustering technique: each of the D documents in the corpus is associ-
ated with a distribution over the topics. LDA treats documents under the bag
of words hypothesis, which assumes that the ordering of words in documents
is irrelevant.
The graph representing the structure of LDA is shown figure 3.7, and the as-
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sociated equation is equation 3.9. From now on, for the sake of simpler nota-
tions, wewill abuse of the vector notationby referring to (wd,n)d∈{1,...,D},n∈{1,...,Nd}asw as if it were amatrix, despite the lengths of each row,Nd, not being equalin general.

Figure 3.7 – Graphical model representation of LDA. The D-plate representsiteration over all documents, and the Nd-plate iteration over words.

p(w, z, c) =

D∏
d=1

p(c(d))

Nd∏
n=1

p(zd,n|c(d))p(wd,n|zd,n) (3.9)

LDA introduces a prior probability distribution on the topic composition asso-
ciated to a document d. This topic composition c(d) is the parameter of the
document-topic categorical distribution. Therefore, it is a vector of length K

summing to 1. Since the value of c can be inferred for any document once the
model is fitted using Bayesian inference, including documents outside train-
ing data, c will be treated as a function defined on documents. This is why it
is denoted c(d) and not cd. The set of possible topic composition describes
a simplex of dimension K − 1. A simple example, with only K = 3 topics, is
shown figure 3.8.
In LDA, the prior probability distribution on the topic composition associated
to a document is assumed to be a Dirichlet distribution, of parameterα. Thus,
LDA has two parameters, β and α. β is a matrix of shape K × V governing
the topic-word categorical distributions associated with each topic. Each row
βk,∀k ∈ {1, ...,K} , is the parameter of the categorical distribution over the
vocabulary associated with topic k. α is a vector of length K , parameter of
the Dirichlet distribution over the topic composition of documents. There is
no additional parameter governing the categorical distribution over topic at-
tribution p(zd,n|c(d)), because the parameter of this law is c(d).
LDA is also a generative model, capable of generating new documents from
the fitted model parameters. The generation process of LDA is as shown in
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Figure 3.8 – Example representation of the space of possible topic composi-tions, on which we define the Dirichlet probability distribution parameterizedby α.

Algorithm 7 LDA document generation
Pick a document length N
c ∼ α
for n in {1, ..., N} do

zn ∼ c
wn ∼ zn

end for

algorithm 7.
While LDA sees use in natural language processing, it is also applied in several
other fields of science (Jelodar et al., 2019). Notably, text mining techniques
have direct applications to fields such as social sciences, as well as political
sciences, which are also concerned with the study of large quantities of nat-
ural language. See (Gross and Murthy, 2014) for a social science example, re-
garding the search of organizations in topics in social network exchanges, and
(Greene and Cross, 2015) for a political science example, regarding the time
evolution of political terms and topics in European parliament debates. How-
ever, LDA can also be applied to data other than text corpora. For instance,
it has been applied in biogeography, to study the spatial distribution of the
presence of species of birds (Valle et al., 2018). Finally, closer to what is done
in this thesis work (see chapter 4), there are applications to fluid mechanics,
where it is used to find structures within turbulent flows (Frihat et al., 2021;
Podvin et al., 2024).

3.4.2 . Joint distribution
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To facilitate amoredetailed examination of LDA,wepresent a graphicalmodel
representation including the model parameters in figure 3.9.

Figure 3.9 – Graphical model representation of LDA, including model param-eters. The D-plate represents iteration over all documents, and the Nd-plateiteration over words.

The joint distribution of all variables in LDA, knowing the parameters α and
β, is equation 3.10

p(w, z, c|α,β) =
D∏

d=1

p(c(d)|α)

Nd∏
n=1

p(zd,n|c(d))p(wd,n|zd,n,β) (3.10)
where

• c(d) is drawn from the Dirichlet distribution of parameter α:

p(c(d)|α) =
1

B(α)

K∏
k=1

(ck(d))
αk−1 , B(α) =

∏K
k=1 Γ(αk)

Γ(
∑K

k=1αk)
(3.11)

• zd,n is drawn from the categorical distribution parameterized by c(d):
p(zd,n = k|c(d)) = ck(d) (3.12)

• wd,n is drawn from the categorical distribution parameterized by βzd,n :
p(wd,n = v|zd,n,β) = βzd,n,v. (3.13)

3.4.3 . Smooth LDA
Ideally, when themodel is fit to the data, theβk should reflect the frequenciesof apparition of words within in each topic. This can be a problem because
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of the strong sparsity of natural language data: it is very common for docu-
ments to contain words that appear in no other. Words that do not appear
in the learning corpus, and by extension documents containing them, would
therefore be assigned a probability of 0. That would render meaningful in-
ference of latent parameters for such documents impossible. To solve this
problem, according to (Jelinek, 1998), we must “smooth” the parameters β to
ensure that every word of the vocabulary is assigned a nonzero probability,
even if it does not appear in the learning corpus. In this case, the smoothing
of β is achieved by assuming the distribution parameter of each topic, the βk,is obtained from a Dirichlet prior of parameter η.

∀k ∈ {1, ...,K} , p(βk|η) =
1

B(η)

V∏
i=1

(βk,i)
ηi−1 (3.14)

The full graphical model representation of smoothed LDA is represented in
figure 3.10. This is the version of LDA we use in the rest of this work.

Figure 3.10 – Graphical model representation of smoothed LDA, includingmodel parameters. The D-plate represents iteration over all documents, the
Nd-plate iteration over words, and theK-plate iteration over topics.

3.5 . Learning for LDA

3.5.1 . Inference for model parameters
Analysis of a corpus of documents with LDA consists in examining the poste-
rior distribution of the topics β, topic proportions c, and topic assignments
z. To apply LDA in practice, we use the Python module Gensim (Řehůřek and
Sojka, 2010), whose implementation is based on the works of M. Hoffman, D.
Blei and F. Bach. in (Hoffman et al., 2010), itself based on (Blei et al., 2003). The
methodology presented here is from these articles.
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Using conditional probabilities, we can write:
p(β, c, z|w,α,η) =

p(β, c, z,w|α,η)

p(w|α,η)

Let us obtain an expression for the denominator, p(w|α,η). To that end, we
write the joint probability law and then marginalize over β, c, and z, by inte-
grating over all possible values of β, c, and summing over all possible values
of z.

p(w|α,η) =

∫
β

∫
c

∑
z

p(w, z, c,β|α,η) dβ dc

Based on 3.10, this takes the form:
p(w|α,η) =

∫
β

∫
c

∑
z

((
K∏
k=1

p(βk|η)

)
D∏

d=1

p(c(d)|α)

N∏
n=1

p(zd,n|c(d),β)p(wd,n|zd,n)

)
dc dβ

Which, when developed, yields:

p(w|α,η) =
Γ(
∑K

k=1αk)∏K
k=1 Γ(αk)

×
∫
β

(
K∏
k=1

p(βk|η)

)
∫
c

∑
z

D∏
d=1

(
K∏
k=1

ck(d)
αk−1

)(
N∏

n=1

czd,n(d)βzd,n,wd,n

)
dc dβ (3.15)

The problem here is the coupling of β and c in the marginalisation process.
Because of this, the likelihood of the data, p(w|α,η), is not tractable in prac-
tice. Therefore, p(β, c, z|w,α,η) can not be derived through purely analytical
means.

3.5.2 . Gibbs sampling
This section presents onemethod used to overcome this analytical intractabil-
ity: Gibbs sampling (Casella and George, 1992). While not the method used in
our implementation of LDA learning, we detail it here for exhaustivity. The
Gibbs sampling method is based on the idea that it is easier to sample from
conditional distributions than tomarginalize the joint distribution. It functions
by generating a sequence of samples, iteratively sampling each variable from
its conditional distribution knowing all others. In the end, the intractable joint
distribution can be approximated using the set of samples.
The application of Gibbs sampling to generate J samples on a set of I random
variables V = (xi)i∈{1,...,I} described by a joint probability p(V) is described
by algorithm 8.
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Algorithm 8 Gibbs sampling
Initialize variables (x(0)

i

)
i∈{1,...,I}

for j = 1 to J do
for i = 1 to I do

x
(j)
i ∼ p(xi|x(j−1)

0 , ..., x
(j−1)
i−1 , x

(j)
i+1, ..., x

(j)
I )

end for
end for

To summarize, the process starts by choosing, as random initialisation, a start-
ing value for each random variable ofV. Gibbs sampling consists in iteratively
sampling each of the random variables, from their conditional distribution
knowing all the others variables, using the last sampled value. By repeating
this process a large amount of times, we obtain a set of samples for each of
the random variables from which the joint probability distribution can be ap-
proximated.
Gibbs sampling can be applied to fit a LDA model. The following discussion
and algorithm are adapted from (Pochon and Favre, 2022), and concerns a
non-smoothed LDA model. Since this is a learning process, wordsw are con-
sidered known and are not sampled. Furthermore, the only variables needing
to be sampled are the topic attributions z. The variables c(d),∀d ∈ {1, ..., D} ,
and β are directly measured at each given step by looking at the topic attri-
butions of the words zd,n. Additionally, if the wordsw are considered known,
it can be demonstrated that:
∀k ∈ {1, ...,K} ,

p(zd,n = k|wd,n, c(d),β) ∝ p(zd,n = k|c(d))× p(wd,n|zd,n,β)
= ck(d)× βzd,n,wd,n

(3.16)
The process of applying Gibbs sampling to fit a (non-smoothed) LDA model is
described in algorithm 9.
Specifically, the estimation of c(d)(j), at document d, at word n, is done based
on the frequencies of each topic index in the sampled topic attributions in the
document:
∀k ∈ {1, ...,K} ,

ck(d)
(j) =

1

Nd − 1

(
n−1∑
n′=1

[
z
(j)
d,n′ = k

]
+

Nd∑
n′=n+1

[
z
(j−1)
d,n′ = k

]) (3.17)
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Algorithm 9 Gibbs sampling for LDA
Initialize topic attributions z(0) =

(
z
(0)
d,n

)
d∈{1,...,D},n∈{1,...,Nd}

for j = 1 to J do
for d = 1 to D do

for n = 1 to Nd doEstimate c(d)(j) based on the topic attributions of otherwords in document d.Estimate β(j) based on the topic attributions of otherwords in the corpus.
z
(j)
d,n ∼ p(z|wd,n, c(d),β) ∝ cz(d)× βzd,n,wd,n

end for
end for

end for

With [·] designating the Iverson Bracket:
[P ] =

{
1 if P is true
0 otherwise (3.18)

And the estimation of β(j), at document d, at word n, is done based on the
frequencies of each word with each topic attribution, in the sampled topic
attributions in the entire corpus:
∀k ∈ {1, ...,K} , ∀v ∈ {1, ..., V } ,

β
(j)
k,v =

1(∑D
d′=1Nd′

)
− 1

(
d−1∑
d′=1

nd′∑
n′=1

[
z
(j)
d′,n′ = k

] [
wd′,n′ = v

]

+

n−1∑
n′=1

[
z
(j)
d′,n′ = k

] [
wd′,n′ = v

]
+

Nd∑
n′=n+1

[
z
(j−1)
d′,n′ = k

] [
wd′,n′ = v

]
+

D∑
d′=d+1

nd′∑
n′=1

[
z
(j−1)
d′,n′ = k

] [
wd′,n′ = v

]
)

(3.19)

3.5.3 . Variational approach
Gibbs sampling is a way around the intractability of the joint distribution.
However, it can take a very high amount of samples for Gibbs sampling to
provide a satisfying approximation of the joint probability distribution, espe-
cially in cases with high amount of variables to samples. We resort instead
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to a variational approach (Attias, 1999; Jordan et al., 1999). The basic idea of
the variational approach is to estimate an intractable function to optimize by
constructing another, strictly inferior, simpler function that depends on addi-
tional variables called variational parameters. This function is called the lower
bound. Bymaximizing the lower boundwith respect to the variational param-
eters, we obtain an estimate of the original function to optimize, that can then
be optimized with respect to its original variables.
Let q designate a set of probability distributions distinct from the ones de-
scribed by p. With q(β, c, z) an arbitrary probability distribution over c, z, and
β, we can rewrite the log likelihood of the data, and use Jensen’s inequality:

log p(w|α,η) = log

∫
c

∫
β

∑
z

p(β, c, z,w|α,η)dcdβ

= log

∫
c

∫
β

∑
z

p(β, c, z,w|α,η)q(β, c, z)

q(β, c, z)
dcdβ

≥
∫
c

∫
β

∑
z

q(β, c, z) log p(β, c, z,w|α,η)dcdβ

−
∫
c

∫
β

∑
z

q(β, c, z) log q(β, c, z)dcdβ

=Eq[log p(β, c, z,w|α,η)]− Eq[log q(β, c, z)]

(3.20)

With Eq[·] designating the expectation over the distributions described by q.
We have obtained a lower bound for the log likelihood log p(w|α,η). Fur-
thermore, it can be proven that the difference between the two sides of the
inequality corresponds to the Kullback-Leibler (KL) divergence between the
variational and real posterior distributions. Therefore, we can ensure the
tightness of the lower bound by minimizing the KL divergence.
To simplify computations, we choose a fully factorized distribution of the form
shown in equation 3.21.

q(β, c, z) =

K∏
k=1

q(βk)×
D∏

d=1

q(c(d))

Nd∏
n=1

q(zd,n) (3.21)
Tractability is ensured by removing all couplings, and choosing either cate-
gorical of Dirichlet distributions for the variables. The graph corresponding
to the equation, including the variational parameters, is represented in figure
3.11.

• λ is a matrix of shapeK × V . Each row λk, ∀k ∈ {1, ...,K} correspondsto the parameter of the Dirichlet distribution q(βk).• γ is a matrix of shapeD ×K. Each row γd,∀d ∈ {1, ..., D} correspondsto the parameter of the Dirichlet distribution q(c(d)).
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Figure 3.11 – Graphical model representation of the variational parameterscheme for LDA inference. The D-plate represents iteration over all docu-ments, the Nd-plate iteration over words, and theK-plate iteration over top-ics.

• ϕ is a 3D tensor of shapeD×V×K. Each rowϕd,v,∀d, v ∈ {1, ..., D} , {1, ..., V }corresponds to the parameter of the categorical distribution over zd,n,knowingwd,n = v: q(zd,n = k) = ϕd,wd,n,k.
From this, by computing the derivatives of the KL divergence with respect
to the variational parameters, and setting them equal to zero, update equa-
tions are obtained for the parameters. Using the bag of words hypothesis,
we reformulate the information of the sequences of words contained in each
documents, wd, as word counts Xd. X is a D × V matrix such that ∀d ∈
{1, ..., D} , ∀v ∈ {1, ..., V } ,Xd,v is the number of times the word v appears in
document d. With a corpus of documents described by X fixed and known,
we can iterate the application of the update equations on each parameter un-
til convergence. This process, including the update equations, is summarized
in algorithm 10, taken directly from (Hoffman et al., 2010). Then, we have a
satisfying approximation on the posterior distributions on β, c, and z. The
variables β, c, and z are then selected to maximize this probability, complet-
ing the analysis of the corpus by LDA.

3.5.4 . Online learning
In practice, however, we use a slightly different version of this algorithm. In-
stead of going over every document at each update step, we only cover each
document once. 1 This allows it converge faster for large datasets, and func-
tion in contexts where data arrives progressively in time. For this reason, it

1. The number of times each document is covered by online learning can be in-creased, as a hyperparameter called passes, in the gensim implementation.
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Algorithm 10 Variational Bayes learning for LDA
Initialize λ randomly
while relative improvement to lower bound > 0.00001 do

for d = 1 to D doInitialize γd,k = 1. (The constant 1 is arbitrary.)
while 1

K

∑
k |change inγd,k| < 0.00001 doSet ϕd,v,k ∝ exp (Eq[log(ck(d))] + Eq[log(βk,v)])Set γd,k = α+

∑
v ϕd,v,kXd,v

end while
end forSet λk,v = η +

∑
d Xd,vϕd,v,k

end while

referred to as “online” learning for LDA. In this algorithm 11 (also taken from
(Hoffman et al., 2010)), documents are indexed by timestep t, and the update
process on λ is modified in the following way. During the consideration of
each new document t, λ̃ is estimated as the optimal value for λ if all currently
observed document were copies of the current one. λ is then updated using
a weighted average of its previous value and λ̃. The respective weights are
determined by a new variable ρt = (τ0 + t)−κ, with κ ∈]0.5, 1], meant to pro-
gressively decrease the influence of λ̃ as more documents are seen. κ and τ0are hyperparameters of the method.
Algorithm 11 Online variational Bayes learning for LDA
Set ρt = (τ0 + t)−κ

Initialize λ randomly
for t = 0 to inf doInitialize γt,k = 1. (The constant 1 is arbitrary.)

while 1
K

∑
k |change inγt,k| < 0.00001 doSet ϕt,v,k ∝ exp (Eq[log(ck(t))] + Eq[log(βk,v)])Set γt,k = α+

∑
v ϕt,v,kXt,v

end whileCompute λ̃ = η + tXt,vϕt,v,kSet λ = (1− ρt)λ+ ρtλ̃
end for

With this algorithm, α and η can be considered hyperparameters. However,
when fitting themodel on the learning corpus, wewould like to also obtain es-
timates for α and η. This is be done based on the same variational approach
as for model parameter inference. The lower bound estimate of the log like-
lihood can be optimized with respect to either α or η, yielding two additional
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update equations. This process can then be adapted to the online learning
algorithm in a way similar to λ: The optimal values of α and η if all known
documents were identical to the current one, α̃ and η̃, are computed, and
weighted with the previous value using ρt.
Once the model parameters have been estimated by the learning process, a
dimension-reduced approximation of the documents is obtained as the com-
bination of their topic composition c, and the basis of topics β. New docu-
ments can be studied under LDA through their representation in this already
learned basis. In order to do that, the same algorithm is used, without updat-
ing the model parameters α, η and β that are considered known. This way, a
topic composition c can be obtain from any document. For this reason, once
a LDA model is learned, c is considered to be a function over documents.

3.6 . Summary

To summarize, we have defined an unsupervised statistical learning method
called Latent Dirichlet Allocation. This method aims at modeling underlying
patterns in the occurrences of words within text documents through the use
of latent variables referred to as topics. The topics are defined by probability
distributions over the set of possible words. Each document is attributed a
distribution over topic indexes, noted c, which can be interpreted as its com-
position in topics, providing a soft clustering of the input data. This methods
was chosen over simpler models for its ability to capture 2-variables statistics
and to represent documents with more than a single topic.
Direct parameter optimization is impossible due to analytical intractability
of the posterior probability over model parameters. However, we can still
approximate optimal parameters by using variational Bayes inference. This
method is accessible in the Python module Gensim, which we use in the fol-
lowing applications.
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4 - Application of LDA to climate data

4.1 . Introduction

In the previous chapter, we introduced the Latent Dirichlet Allocation (LDA)
method, which is traditionally used to extract a set of topics from a corpus
of text documents, and associate each document with its own topic compo-
sition. However, as was demonstrated in (Griffiths and Steyvers, 2004), topic
modelling methods can be applied to images, and by extension, to physical
variable maps. In this chapter, we will go over how LDA is applied to extract a
set of patterns called motifs from a dataset of bidimensional climate variable
maps, and associate each map with it own motif composition. Our method-
ology closely follows that of (Fery et al., 2022).
We present a set of motifs learned from Sea-Level Pressure (SLP) data in the
NCEP reanalysis dataset (Kalnay et al., 1996; Kistler et al., 2001). The motifs are
found to be similar to localized cyclonic and anticyclonic structures, providing
them with direct physical interpretations. To verify whether these motifs rep-
resent general features of atmospheric circulation rather than artifacts spe-
cific to NCEP data, we apply LDA to a different reanalysis dataset, ERA5 (Hers-
bach et al., 2020), of higher spatial resolution. The results show a similar set
of motifs, confirming the generalizability of the features captured by LDA to
different datasets.
To further test the robustness of these motifs, meaning their stability across
different parameter values and datasets, we compute additional LDA bases
with different value of the parameters, and on model data. We find that all
tested cases result in similar bases, therefore confirming the robustness of
our set of motifs.
LDA serves as a dimensionality reduction tool, representing data on a small
set of relevant modes. As such, despite its application for soft clustering, it
fulfills a function similar to that of Principal Component Analysis (PCA). In the
final section, we compare the advantages and drawbacks of LDA and PCA
in reducing the dimensionality of SLP data. We develop a method to evalu-
ate how efficiently each technique captures the information contained in the
data. We find that PCA generally performs better when allowed to use all
learned modes. However, with its sparse representation of maps, LDA cap-
tures the information of themaps, especially the extrema, using only a limited
amount ofmotifs. The physically interpretable nature of the LDAmotifs, along
with their locality and the sparsity of the decomposition, make LDA a relevant
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tool for studying atmospheric circulation.

4.2 . Methodology of application to climate data

4.2.1 . From text documents to climate maps
Latent Dirichlet Allocation is applied to datasets of bidimensional climate vari-
ables maps by using the equivalences summarized in table 4.1. Each spatial
map is reinterpreted as a document. Grid points, or cells, are reinterpreted
as the words, with the list of cells taking the role of the vocabulary. Field
values at each cell are reinterpreted as word counts. In this case, the dis-
tribution over the vocabulary associated with the motifs, parameterized by
βk,∀k ∈ {1, ...,K}, are defined over space and are called “motifs” instead of
topics. An illustration of these correspondences is shown in figure 4.1.

Natural Language Processing Climate data application
Corpus Dataset of 1-variable 2-D mapsDocument 1-variable 2-D mapWord GridpointWordcount Map field valueTopic Motif

Table 4.1 – Equivalences between application of LDA in the context Nat-ural Language Processing and in our context. The maps used are 1-variable and 2-D, but contain 2 channels, one for positive values, andone for negative values.

Since the climate variable values are interpreted by LDA as word counts, they
have to be digitized andmade non-negative. In order to both satisfy this need,
and still be able to process negative field values, the real variable maps are
separated into two channels, one for positive and one for negative values.
This process is equivalent to doubling the grid size over which the maps are
defined, and results in a vocabulary size V of twice the amount of grid cells
I (see also (Fery et al., 2022)). This process of separating the data into two
channels is schematically represented in figure 4.2. Moreover, LDA computa-
tion times increase with the total amount of words in the documents, which
corresponds in our case to the total sum of absolute field values in the maps.
In order to manage computation times, a rescaling factor A is applied to the
data before digitization. To sum up, let xi designate the value of a map x at
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Figure 4.1 – Schema illustrating the objects that LDA takes as input, and seeksas topics/motifs, in the applications to text documents (left) and climate datamaps (right). This figure is from (Fery et al., 2022).

cell i, out of a total number of I cells. The LDA formatted version of the map,
X , is defined as follows:

∀i ∈ {1, ..., I},

{
Xi = max(int(A× xi), 0)

Xi+I = max(−int(A× xi), 0)
(4.1)

where int() designates the truncate to integer function. X is therefore a non-
negative, integer-valued map defined on V = 2I cells. The motifs βk are
therefore defined over the V = 2I cells of the two channels.

Figure 4.2 – Example representation of the process of separating the positiveand negative values into two distinct channels. As LDA only takes positive val-ues as input, both channels can be set to contain only positive or zero values,without loss of information.

Analysis of a corpus of documents with LDA consists in examining the poste-
rior distribution of the topics β, topic proportions c, and topic assignments
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z. These are determined via a variational Bayes approach (for more detail on
the optimisation process, see section 3.5). This process generally outputs val-
ues for the Dirichlet parametersα and η that respectively ensure the sparsity
of the document-topic and of the topic-word distributions: there are gener-
ally only a few topics with non-negligible weight in each document, and each
topic is characterized by high occurrences of a few vocabulary words. In the
climate data case, this manifests as each data map only containing a few mo-
tifs, and eachmotif only involving a limited amount of grid points. This sparsity
propertymakes LDA particularly suited to providemodels and decomposition
bases that can be interpreted easily.
For a given set of D maps, LDA returns motif distributions over grid cells
β = (βk)k∈{1,...,K}, as well as themap compositions (ck(d))d∈{1,...,D},k∈{1,...,K},where ck(d) denotes the weight of motif k in map d. The sum of all motif
weights in a map is 1, such that ∀d ∈ {1, ..., D}∑K

k=1 ck(d) = 1. The motif
weights c(d) are always positive, unlike in othermethods such as PCA. The set
of distributions β can be considered as a basis of motifs. Any mapX defined
on the grid (but not necessarily part of the learning set) can be approximated
in this basis by its K−dimensional motif composition, noted c(X). Different
sets of maps can thus be compared efficiently through examination of their
motif compositions.

4.2.2 . Application to sea-level pressure
We use the reanalysis dataset NCEP (Kalnay et al., 1996; Kistler et al., 2001) as
our source of data to train LDA on. Our variable of study is the SLP, which
contains the synoptic information relevant atmospheric circulation. 1 Our in-
put dataset is NCEP SLP data from the north-Atlantic region between 22.5°
and 70° latitude and 80° and 50° longitude, from 1948 to 2018. The temporal
correlation time of synoptic circulation patterns is of a few days. Daily data,
which is widely available, is therefore well suited to hold all the necessary
information regarding atmospheric circulation patterns. We use the highest
available spatial resolution for NCEP on this region, which is 20 by 53. Wewant
to eliminate the seasonal cycle from the data, so as to look only at anomalous
atmospheric circulation patterns, and ignore the average changes in pressure
due to seasonal effects. Before applying equation 4.1 to format our data for
LDA, we first compute SLP anomalies. Let (Pd)d∈{1,...,D} denote the set of rawvariable maps in the input dataset. As the data maps are daily, the d index
can be interpreted as indicating the date of the corresponding map. There-
fore, each map can be re-indexed by a combination of the year, noted y, and

1. See 1.2 for more information on pressure variables and the information theycontain.
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the day of the year, noted d′. In order to eliminate the seasonal cycle from the
data, we compute anomalies, x, from the input dataset P using equation 4.2.

xd′,y,i = Pd′,y,i −
〈
Pd′,y,i

〉
y

(4.2)
With ⟨·⟩y designating the average over all values of the variable y.
Our choice for the number ofmotif is based on the average local dimension of
data, a value obtained using a dynamical systems methodology (Rodrigues et
al., 2018b). Local dimension represents the number of degrees of freedom ac-
cessible to the system at any given point in phase space. In (Fery et al., 2022), it
was found that NCEP SLP anomalies over our spatial domain have an average
local dimension of 28. Therefore, we chose to useK = 28motifs. The rescal-
ing factor is set to A = 0.5 to alleviate computation time. Some arbitrariness
exists in the choice of the factor. The effects of changing this parameter in
the resulting motif basis are explored in section 4.3. The motif basis resulting
from this choice of parameters is shown in figure 4.3. The motifs βk are de-fined over the V = 2I cells of the two channels. In order to represent them on
the original grid size I , we show them as the difference of the two channels:
at grid point i, βk,i − βk,i+I . We found that no motif attributes non-negligible
probability to both channels at any grid point, which reflects the anticorrela-
tion of the two channels. The motifs are shown in decreasing order of their
average weights in the learning dataset. These average weights are show in
figure 4.4.
Motifs take the form of localized objects at synoptic scale (of the order of 1000
km). In most cases, motifs are exclusively of one sign, either positive or neg-
ative. As such, the motifs can be seen as similar to cyclonic or anticyclonic
structures. These properties of the motifs correspond to what is observed in
previous applications of themethod, in (Fery et al., 2022). Based on this physi-
cal interpretation, and to make discussion easier, names based on their signs
and geographical locations were assigned to the motifs. Therefore, the motif
weights inferred from an SLP anomaly map directly measure the contribution
of the associated synoptic objects to the synoptic configuration of the map.
In the learning process, there is no constraint that imposes that the LDA mo-
tifs be localized. However, the motifs typically contain grid points with highly
correlated field values. Therefore, the locality of the motifs is likely due to the
local correlations caused by fluid interactions in the atmosphere. We note
that several motifs are approximate opposites of one another, such as the
Mediterranean anticyclone (motif 2) and theGenoa low (motif 8), or theGreen-
land high (motif 10) and Greenland low (motif 13). This allows motif composi-
tions to represent both cyclonic and anticyclonic structures at the same loca-
tion. In practice, we observe that no map is assigned non-negligible weights
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Figure 4.3 – The basis of 28 motifs learned by LDA from NCEP SLP anomalyfields. Each motif is defined as a probability distribution over space, with pos-itive and negative channels. The names were given based on sign and geo-graphical location.
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Figure 4.4 – Average weight of the 28 motifs learned by LDA in NCEP SLP data.

to two opposite motifs at the same time.
To provide a rough estimate, the computation of the LDA learning process,
on this dataset of 25574 maps, with 2000 iterations of 20 passes through the
training data, organized in chunks of 2048 maps, takes from 2 to 5 hours to
complete on a computation cluster, with no particular parallelization of the
code.

4.2.3 . Map reconstruction
LDA offers the possibility of reconstructing maps from a motif composition.
The reconstruction of mapX , notedX∗, is obtained based on equation 4.3.

X∗ = ||X||1
K∑
k=1

ck(X)βk (4.3)
where:

• βk is the spatial distribution associated with motif k.
• ck(X) is theweight of the k-thmotif in theweight vector associatedwith
the pressure mapX .

• ||X||1 =
∑V

v=1 |Xi|, v iterating over the V grid points in both channels,
is the ℓ1 norm of mapX . This term is a renormalization factor, allowing
for direct comparison with physical fields.

Reconstruction has no common equivalent in natural language applications
of LDA. It is connected to, but different from, the generative process described
in section 3.4. In the LDA generative process, a document lengthN is chosen,
and motif weights are drawn from a Dirichlet distribution. N times, a motif
is randomly chosen based on the weights, and a gridpoint is drawn from the
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probability distribution described by the chosen motif. The field value at that
gridpoint is then incremented. The reconstruction equation is obtained by
applying the following changes to this process.

• Reconstruction is done from known motif weights: c(X).
• In order to limit map values dependancy to N , which has no physical
meaning, the output map is normalized. The total sum of the map ab-
solute values (i.e. its ℓ1 norm) is set to 1.

• We want to eliminate all probabilistic aspects. To that end, we take the
N −→ ∞ limit, so that the random sampling of motifs and gridpoints
returns the exact probability distributions. Therefore, for each motif,
gridpoints are attributed field values in direct proportion to the asso-
ciated probability, and the field values associated with each motif are
summed, weighted according to the motif weights.

Note that, while LDA takes as input text documents in the shape ofword count
matrices, it has nomodel for the amount of words in a document (see chapter
3). In the case of this climate application, this means that the LDAmodel does
not represent the ℓ1 norm of input maps. The output motifs β are all proba-
bility distributions over the two-channels grid, and the map weights c(X) are
a probability distribution over motif indices. Therefore, without renormaliza-
tion, a reconstructed field will have a ℓ1 norm of 1. Patterns are preserved,
but information regarding their intensity is lost. In order to restitute this in-
formation to reconstructedmaps, theymust be given an ℓ1 normwith physical
meaning. The value of the renormalization factor can be arbitrary in several
cases. However, for reconstructed maps with available real field equivalents,
the renomalization is taken directly from the original map.
Maps can be reconstructed from their associated motif weight vectors. We
also can reconstruct maps from arbitrary weight vectors, even if they were
not directly inferred from a real map. For example, we can reconstruct the
average weights of cold spells and heatwaves maps in a given model. In this
case, ck(X) is replaced with ⟨⟨ck(X)⟩⟩, where ⟨⟨.⟩⟩ designates the average
over all time steps associated with a given type of extreme event, and the
renormalization factor ||X||1 is replaced with ||⟨⟨X⟩⟩||1.

4.3 . Robustness of the motif basis

4.3.1 . Robustness for different datasets
In this section, we explore whether the motifs identified by LDA capture gen-
eral features of atmospheric circulation. To that end, we compare the basis
of motif obtained in section 4.2 with a basis obtained on a different reanal-
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ysis dataset, ERA5 (Hersbach et al., 2020). If the two bases exhibit sufficient
similarity, which will be measured through spatial correlation, it will demon-
strate that the features captured by LDAmotifs represent general features of
atmospheric circulation, rather than being specific to the NCEP data. In this
case, we say that the resulting basis is robust with respect to changes in input
dataset.
Our ERA5 learning corpus consists in daily maps from 1957 to 2021. We main-
tain the same spatial domain as for NCEP: between 22.5° and 70° latitude and
80° and 50° longitude. Although higher resolutions are available, we used a
spatial resolution of 1°. It was found to be sufficient to contain all relevant
information about circulation patterns on the synoptic scale, while maintain-
ing manageable computation times. Our resolution is 48 points in latitude,
130 points in longitude, and we have two channels for positive and negative
values. Therefore, the total number of values permap, associatedwith the vo-
cabulary size V , is 2×48×130 = 12480, an increase from the 2×20×53 = 2120

of the NCEP case. We maintain the number of motifs,K = 28.
The 28 motifs learned from this ERA5 dataset are shown in figure 4.5. They
are sorted by their average weights in decreasing order, as shown in figure
4.6. As was done previously, names are assigned to the motifs based on sign
and localisation.
We evaluate the impact of this change in input data on the learned basis.
Since motifs are defined by a spatial distribution, we use spatial correlation
to measure their similarity. A K × K correlation matrix for the two bases
is obtained as follows. All motifs are set to the same 1° resolution by linear
interpolation. For each matrix entry, the Pearson correlation coefficient ρklbetween motif k of basis β and motif l of basis β′ is computed as shown in
equation (4.4).

ρkl =

(
βk − βk

) (
β′
l − β′

l

)
√(

βk − βk

)2√(
β′
l − β′

l

)2 (4.4)

We show in figure 4.7 the correlation between the bases learned respectively
on NCEP and ERA5, which are respectively associated with cell-motif distri-
butions β and β′. Motifs were reordered in order to give the same rank to
motifs with the highest correlation. We see that 25 out of 28 motifs have a
correlation of at least 0.7 with one in the other basis, defining a clear, unique
equivalent. Motif differences are usually due to slight spatial translations, or
the split of larger motifs into several smaller ones. The bases learned by LDA
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Figure 4.5 – The basis of 28 motifs learned by LDA from ERA5 SLP anomalyfields. Each motif is defined as a probability distribution over space, with pos-itive and negative channels. The names were given based on sign and geo-graphical location.
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Figure 4.6 – Average weight of the 28 motifs learned by LDA in ERA5 SLP data.

Figure 4.7 – Spatial correlation between the motifs of the bases obtained byapplying LDA on NCEP (vertical) and on ERA5 (horizontal). The order of themotifs has been adjusted to put the highest correlations on the diagonal.

from NCEP and ERA5 SLP datasets are found to be similar despite the differ-
ence in origin and resolution. This demonstrates that the motifs do in fact
represent features that are generally relevant to atmospheric circulation, and
not just artifacts due to specific datasets.

4.3.2 . Applicability to model data
Our goal is to use motif weights to characterize atmospheric circulation in
model and reanalysis data, and to use this characterization as a basis for
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model evaluation. However, we must first demonstrate that the LDA basis,
which was extracted from reanalysis data, is also suitable for the study of
model data. If the underlying patterns of model SLP anomalies are too differ-
ent to be efficiently represented with the same set of motifs, computingmotif
weights of model data in the ERA5 basis would result in loss of information,
and induce biases in our results.

Figure 4.8 – Spatial correlation between the motifs of the bases obtained byapplying LDA on ERA5 (horizontal) and on IPSL-CM6A-LR run 1 (vertical). Theorder of the motifs has been adjusted to put the highest correlations on thediagonal.

In order to explore how different a basis learned from model data would be,
we compute a LDA basis from run 1 of the model IPSL-CM6A-LR over the his-
torical period, from 1950 to 2014, with the same parameters as for the ERA5
application. figure 4.8 shows the correlation matrix between this basis and
the ERA5 one. For the case considered, 22 out of 28 motifs have a clear equiv-
alent in the other basis with correlation of 0.7 or higher. Based on these re-
sults, we consider that the features of atmospheric circulation captured by
reanalysis motifs are also relevant to model data. The motif basis learned
from ERA5 can therefore be considered suitable to represent model data.

4.3.3 . Robustness for different parameter values
To explore further the impact of data resolution on LDA, the correlation ma-
trix between bases learned on ERA5 with respectively 20 × 53 and 48 × 130
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resolution is shown in figure 4.9.

Figure 4.9 – Spatial correlation between the motifs of the bases obtained byapplying LDA on ERA5with 20×53 resolution (vertical), and 48×130 resolution(horizontal). The order of the motifs has been adjusted to put the highestcorrelations on the diagonal.

The bases are similar, with a majority of the motifs having an equivalent in
the other basis with high correlation. However, there are 6 motifs that do not
have a correlation of at least 0.7 with any from the other basis. Specifically,
this is due to regions of high or low pressure being cut into a different amount
of motifs in the two bases, as shown in figure 4.10. While the two bases are
mostly similar, resolution does have an impact on LDA basis.
Finally, we examine the influence of the choice of rescaling factor on the LDA
basis. The correlation between the bases learned on ERA5 respectively with
rescaling factors A = 1 and A = 0.5 is shown in figure 4.11. All motifs have a
unique equivalent in the other basis with a correlation of at least 0.85. Rescal-
ing factor seems to have little impact on the basis learned by LDA.

4.4 . Comparison with PCA

4.4.1 . Methodology of comparison
LDA is used here as a dimensionality reduction technique, to provide new av-
enues of statistical analysis of SLP data. As such, it faces competition from
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Figure 4.10 – Example of a region of low pressure being cut differently intomotifs in bases learned from the same ERA5 SLP dataset, but with differentresolution.

Figure 4.11 – Spatial correlation between the motifs of the bases obtained byapplying LDA on ERA5 with, 1° resolution, with a rescaling factor of 1 (vertical),and 0.5 (horizontal). The order of the motifs has been adjusted to put thehighest correlations on the diagonal.

more commonly used dimensionality reduction tools. In order to highlight
the properties, advantages and drawbacks, of using LDA for this purpose, we
compare its performance with PCA (Wold et al., 1987) using various metrics
detailed below.
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The performance of the dimensionality reduction methods will be compared
through their ability to capture the information contained in the data. We
compute LDA and PCA bases on the same dataset: daily NCEP SLP anomalies,
with the same spatial and temporal domains and resolutions as detailed in
section 4.2. In order to facilitate comparison with LDA, the number of modes
chosen for PCA is the same K = 28. For both methods, the number of it-
erations is independently chosen to ensure convergence of the modes. Ad-
ditional iterations produced only negligible effects in the modes. We com-
pute the weights of SLP maps from the NCEP dataset in the reduced spaces
of modes as learned by LDA and PCA. Then, the maps are reconstructed us-
ing equation 4.3, and compared with the original using one of the following
six metrics.

• ℓ2 norm, defined in equation 4.5.
1

V

√√√√ V∑
v=1

(X∗
v −Xv)

2 (4.5)
• Extremum value, defined in equation 4.6. A similar definition is used for
the minimum.

|maxv (X
∗
v )−maxv (Xv)| (4.6)

• Extremum position, defined as the haversine distance between the co-
ordinates of the grid pointwhere themaximum (res. minimum) is reached
in the reconstructed map, versus the original, in kilometers.

• Correlation, defined in equation 4.7.(
X −X

) (
X∗ −X∗

)√(
X −X

)2√(
X∗ −X∗

)2 (4.7)

Where · designates the spatial average: X =
∑V

v=1Xv. A low reconstruction
error (or high correlation) indicates that the dimensionality reductionmethod
has efficiently captured the information from the data into its modes and
weights.
When reconstructing the maps, instead of using all 28 modes, we only use a
limited number of modes, noted Klim. This incomplete reconstruction using
onlyKlim modes is done following equation 4.8, assuming ck(X) designates
the weight associated to mode k in mapX for both methods.

X∗ = ||X||1
Klim∑
k=1

ck(X)βk (4.8)
With

D∑
d

|c0(d)| ≥
D∑
d

|c1(d)| ≥ ... ≥
D∑
d

|cK(d)| (4.9)
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The incomplete reconstruction process assumes that the motifs are ordered
from highest to lowest total absolute weight in the considered dataset. This
order is computed independently for the general, cold spell, and heatwave
cases. In the extreme cases, the total absolute weights are computed using
only maps associated with the corresponding type of extreme event. Here,
Klim is treated as a variable of study, and we will explore reconstruction er-
rors as a function ofKlim.

4.4.2 . Properties of LDA and PCA

In fig 4.12 we represent the median and quartiles reconstruction errors as a
function ofKlim, for LDA and PCA, using each of the previously defined errormetrics, in the general, heatwave, and cold wave cases.
When all 28 motifs are used, PCA achieves lower reconstruction error than
LDA for every metric, in every case. PCA also scores better than LDA when
using the ℓ2 norm and correlation error metrics, for all valus of Klim. How-ever, LDA reaches its optimum score with notably fewer motifs than PCA. On
metrics based on extrema, the convergence of the LDA reconstruction error
requires even fewer motifs. Furthermore, on lower motif amounts, LDA can
reach lower reconstruction errors than PCA on median. This is especially vis-
ible with the minimum value error metric (g, h and i). The fast convergence
of LDA allows it to reach low error values, performing better than PCA when
using only few motifs, even if it is overtaken when more motifs are available.
The behavior of LDA is likely due to the sparsity of the map representation,
and the sparsity of the motif themselves. In the LDA basis, each map is only
attributed non-negligible weights to a limited number of motifs. This likely
explains the fast convergence of LDA reconstruction error with Klim. Addi-tionally, themotifs are localized, only having non-negligible values in a limited
spatial region. LDA approximates maps by cutting them down into localized
objects whose weights are proportional to the relative local intensity of the
field. Therefore, extrema are typically represented by LDA using a single mo-
tif with high weight, while PCA requires the combination of several motifs to
reproduce its shape and intensity. These properties make LDA well-suited to
the representation of extrema in a map, within few motifs. Since the dynam-
ics of atmospheric circulation are described by the intensity and localization
of high and low pressures, and the fluctuations around the middle values are
less relevant, we believe that LDA is adapted to the task of representing it.
Furthermore, the locality of the motifs, as well as the two levels of sparsity,
contribute to the ease of associating a physical interpretation to individual
LDA weights.
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Figure 4.12 – Median (solid line) and quartile (dashed lines) reconstruction er-ror of LDA and PCA, as a function of the number of modes (out of 28) used forreconstruction. Left to right: general case, heatwave, and cold spell case. Topto bottom: ℓ2 norm error (a-c), maximum value error (d-f), minimum valueerror (g-i), maximum location error (j-l), minimum location error (m-o), corre-lation (p-r).
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Note, however, that there are limits to the relevance of this comparison. While
PCA modes can be associated with a positive or negative weight for approx-
imating a map, LDA motifs can only have positive weights. This means that
unlike PCA, to capture the possibility of a structure being either positive or
negative, LDA requires the use of twomodes instead of one. Therefore, using
the same number of modes does not imply that PCA and LDA will be able to
capture a straightforwardly comparable amount of information.
In conclusion, PCA outperforms LDA in capturing the information present in
the dataset maps. However, LDA possesses the advantages of sparsity of the
map representation, and sparsity and locality of the motifs. Such properties
are appropriate to a study of atmospheric circulation using pressure data.

4.5 . Summary

In this chapter, we applied LDA to daily SLP anomaly data from reanalysis
datasets. This was done by reinterpreting physical maps as text documents,
with grid points corresponding to a vocabulary of words, and field values to
word counts. The latent variables of LDA, topics, became spatial distribution
that we call motifs. The motif basis learned from the data is comprised of
synoptic-scale localized objects that can be physically interpreted as cyclones
and anticyclones. We tested the robustness of the basis by comparing it to
others learned from different datasets, including model data, with different
resolutions, and/or different parameters. We find that the set of motifs is ro-
bust and represents features generally relevant to atmospheric circulation.
Finally, the ability of LDA to capture information from the data was compared
to that of PCA. We show that each method has its advantages, and that that
of LDA lie in the sparsity of themotifs, the sparsity of themap representation,
and the ease of access of a physical interpretation for motif compositions.
SLP maps, even outside of the training dataset, can be associated with a com-
position in motifs. This composition characterizes the synoptic configuration
of the map. Therefore, we now have a tool that allows us to compute the
synoptic configuration of any SLP map or dataset. This characterization can
then be used as a basis for comparing the synoptic configurations of several
datasets, which can be applied for model evaluation.
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5 - Analysis of synoptic composition

5.1 . Introduction

In the previous chapter, it was established that applying LDA to ERA5 SLP
anomaly data yields a basis that decomposes any SLP map into its synoptic
components. In this part, we use this decomposition to characterize aver-
age atmospheric circulation in ERA5 by the average motif weights. We obtain
this characterization in the general case, as well as for extreme temperature
events (Cold Spells and Heatwaves) in several European countries: France,
Germany, Poland, Italy, Spain, and the United Kingdom (UK). This allows us
to discuss the atmospheric circulation patterns associated with extreme cold
and heat, and explore their variations across European countries.
We introduce four GCM from the CMIP6 project: IPSL-CM6A-LR, MIROC6,
ACCESS-ESM1.5 and CanESM5. By applying the same characterization to the
models, we can evaluate their ability to capture the properties observed in
ERA5 reanalysis data. Wefind thatmodels generally replicate the atmospheric
circulation associated with ERA5, but still display significant biases. Extreme
event circulation, however, is less well represented by the models. We ob-
serve significant errors that vary on a model-to-model basis as well as per
region of interest.
Since we measure representation error on individual motifs, our methodol-
ogy allows us to detect and measure model biases in a localized manner. In
this chapter we provide several examples of model biases, either shared or
model-specific, in the general case, as well as for extreme temperature events
in different countries.

5.2 . Synoptic configurations in ERA5

5.2.1 . Average atmospheric circulation
In the following, we use the basis of 28motifs learned on ERA5 with 48× 130

(1°) resolution, with a rescaling factor of A = 0.5 (see figure 4.5). This data will
be treated as ground truth to compare the models to.
In figure 5.1, we show the average motif weight of anomaly SLP fields in the
ERA5 dataset, between 1957 and 2014. Uncertainties are estimated by a re-
sampling method called bootstrapping. Many alternative sets of maps, of the
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Figure 5.1 – Averagemotif weights in ERA5 SLP anomalymaps. Themotifs havebeen ordered by decreasing average weight. 90% confidence uncertaintiesare determined by bootstrapping.

same size as the original, are generated by randomly sampling with replace-
ments from the original data. The averagemotif weights in these datasets are
computed, and the 5th and 95th percentile weights for each motif are used
as lower and upper errors, provide a 90% confidence intervals. The choice of
90% is customary for the computation of confidence intervals. The number
of resampled datasets used for this is 500, as it was found to be sufficient to
reach statistical convergence.
To each motif is associated an average weight, representing the percentage
of the data it explains. As motifs are associated with synoptic objects, motif
weights also indicate the prevalence of the associated synoptic object in the
data. Therefore, we refer to the set of average motifs weights of a dataset as
its synoptic configuration. We find that some motifs explain more of the data
than others, with weights varying between 2% and more than 5%. Most of
the dominant motifs are northern anticyclones, such as the Labrador high, or
the Greenland anticyclone, with the exception of the Scandinavian low. The
motif with the smallest overall contribution in ERA5 data is the Azores low.
This characterization of the synoptic configuration of ERA5 reanalysis data will
serve as a basis of comparison when exploring the synoptic configurations of
other datasets. For this reason, the order themotifs will be presented in, in all
subsequent figures, will be the decreasing ERA5 average weight order shown
here.
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5.2.2 . Synoptic configuration of extreme events
Synoptic configuration can also beused to characterize extremeweather events.
We want to identify the average atmospheric circulation patterns associated
with extreme cold or heat events, and compare themwith average circulation
in the general case. This is accomplished by selecting only maps correspond-
ing to days associated with a given type of extreme event, then computing
average weights over those maps. We use the following definitions for ex-
treme temperature events:

• ACold Spellover a specific region designates any period of at least three
consecutive days where the spatial average of daily mean temperature
over the region is below the 3rd percentile.

• A Heatwave over a specific region designates any period of at least
three consecutive days where the spatial average of daily mean tem-
perature over the region is beyond the 97th percentile.

The patterns associated with extreme temperatures events in one region are
expected to differ from those associated to such events in another. This is
the reason why our definitions are region-based. The considered regions are:
France, Germany, Italy, Poland, Spain, and the United Kingdom (UK). In order
to filter the data by country, we use masks based on the NUTS region system
(Commission Européenne, 2005). These masks are shown in figure 5.2.

Figure 5.2 – Masks used to define the different regions. They are based on theNUTS region system (see Commission Européenne, 2005).

We first focus our study on extreme temperature events occurring in France.
The synoptic configurations corresponding to Cold Spells and Heatwaves in
France are shown and compared to the general synoptic configuration of re-
analysis data in figure 5.3. Uncertainties for Cold Spells andHeatwaveswere
obtained through the same method of bootstrapping.
We find that the synoptic configuration of extreme events is significantly dif-
ferent from the average configuration of the general data. This is an expected
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Figure 5.3 – Average motif weights in ERA5 SLP anomaly maps, in the generalcase (black), in the case of Cold Spells in France (blue), and in the case of
Heatwaves in France (red). 90% confidence uncertainties are determined bybootstrapping.

result, as specific atmospheric circulation patterns are known to be drivers of
extreme temperature events. In particular, in both the Cold Spell and Heat-
wave cases, the synoptic configuration displays a higher amplitude of vari-
ation between the motifs with highest and lowest weights. Cold Spell circu-
lation is dominated by northern anticyclones such a the Greenland high, the
Scandinavian anticyclone and the UK high, with more than 6% weights each.
Correspondingly, the low pressure objects over those regions have less than
half of their general case weights. The Genoa low is also a key motif in French
Cold Spells, with the fourth highest weight. Its opposite, the Mediterranean
anticyclone, has half of its general case weight. Heatwave circulation is dom-
inated by a smaller set of high-weights motifs, mainly consisting of the Scan-
dinavian anticyclone, and the central European high. Both types of extremes
are associated with above-average weights of the Scandinavian anticyclone
and UK high.
However, our definitions of extreme temperature events induces a bias re-
garding the period of the year these events are from. Cold Spells, with our
definition, are extremely likely to occur during winter, and Heatwaves, simi-
larly, in summer. Therefore, it is important to determine whether the signifi-
cant differences observed in synoptic configuration are due extreme circula-
tion, or seasonal circulation. To that end, we look at the synoptic configura-
tion of ERA5 maps corresponding to winter and summer, and compare it to
the previously shown extreme event synoptic configuration. This is shown in
figure 5.4. Uncertainties for seasonal data were obtained through bootstrap-
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Figure 5.4 – Top: Average motif weights in ERA5 SLP anomaly maps, in thegeneral case (black), in the case of winter (cyan), and in the case of Cold Spellsin France (blue). Bottom: Average motif weights in ERA5 SLP anomaly maps,in the general case (black), in the case of summer (orange), and in the case of
Heatwaves in France (red). 90% confidence uncertainties are determined bybootstrapping.

ping, as in the previous figures. We find that the amplitude of differences
in average motif weights between seasonal data and general data is signifi-
cantly smaller than with the extreme temperature cases. Therefore, we con-
clude that the different motif weights observed in extreme cases cannot be
explained by seasonal circulation, and are instead the product of circulation
patterns specifically associated with extreme temperature events.

5.2.3 . Extreme events across European countries

We have established that our method is able to characterize circulation pat-
terns associated with extreme temperature events. In order to explore the
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possible geographical dependencies of the synoptic configurations associ-
ated with extreme events, we compare averagemotif weights during extreme
events across several western European countries. The list of countries stud-
ied, in no particular order, is: France, Germany, Poland, Italy, Spain, and the
United Kingdom (UK) (see figure 5.2 for the definition of the regions).
In figure 5.5 are shown the average synoptic configurations of Cold Spells
days for each of the six considered countries. (The data for France is the same
as in figure 5.3.)

Figure 5.5 – Average motif weights in ERA5 SLP anomaly maps, in the generalcase (black), and in the case of Cold Spells in various European countries. 90%confidence uncertainties are determined by bootstrapping.

There is a shared structure among the synoptic configurations ofHeatwaves
in the six regions, which generally involves higher weights for highs in the
north and low in the south, and correspondingly, lower weights for low in
the north and highs in the south. The five most prevalent motifs during Cold
Spells in France areUKhigh, Greenlandhigh, Scandinavian anticyclone, Genoa
low, and Central European high. However, we observe that there are dif-
ferences in the synoptic configurations associated with Cold Spells in other
countries. In particular, the UK differs from the other countries. In the UK,
Cold Spells are associated with higher average weights for Labrador high,
Greenland high, Cyprus low, Genoa low and east coast low, and lower weights
for Quebec high, UK high, and Siberian high. The larger differences in synop-
tic configuration of UK Cold Spells, relative to other countries, may be due
to its position being further north than other countries, as well as being the
only insular region considered. Comparatively, France, Germany and Poland
display Cold Spell synoptic configuration within similar ranges. Notable dif-
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ferences include largely lower weights for UK high and north Atlantic high for
Germany and Poland, compared to France, as well as higher weights for north
Russian high, north Atlantic high, and mid Atlantic low. This similarity can
be explained by geographical proximity. In Italy, unlike all other considered
countries, Cold Spells are not associated with higher Genoa lowweights com-
pared to the general case. Similarly, the weights for Quebec high, Greenland
low, and Labrador lowdonot significantly deviate from the general case, while
they do for all other considered countries. Italy Cold Spell synoptic configu-
ration shows lower weight for Greenland high, and higher weights for central
European high, and eastern Atlantic ridge. Finally, Cold Spells in Spain are
associated with relatively lower weight differences with the general case for
Scandinavian high and low motifs, indicating a lower influence of the Scandi-
navian synoptic objects over Cold Spells in Spain, relative to other countries.
This is also the case for the eastern Atlantic ridge. The Spain Cold Spell syn-
optic configuration also displays higher weights for north Atlantic high and
Siberian low, as well as lower weight for central European high.

Figure 5.6 – Reconstructions from the average Cold Spell weights in six Euro-pean countries (normalized).

In order to visualize the different structures associated with these differences
in weights, we provide normalized reconstructed maps in figure 5.6. The re-
constructions displays the properties we have highlighted from the differ-
ences in Cold Spell weights. In particular, the lack of a strong Genoa low in
the case of Italy sets it apart relative to the other countries. We also observe
the anticyclonic structure extending further over the north Atlantic for France
than for Germany and Poland. In the case of the UK, we see a stronger cy-
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clonic structure in the south, which extends further west, as well as a lack of
UK high, compared to the other countries.
Figure 5.7 shows the average synoptic configurations associated with Heat-
waves for each of the six considered countries. (The data for France is the
same as in figure 5.3.)

Figure 5.7 – Average motif weights in ERA5 SLP anomaly maps, in the generalcase (black), and in the case of Heatwaves in various European countries.
90% confidence uncertainties are determined by bootstrapping.

Heatwave results differs from Cold Spells by having larger variations in mo-
tif weights among countries. However, simultaneously, there are more mo-
tifs without significant differences among countries. Those are Quebec high
and low, Labrador low, Nova Scotia high and low, Baffin bay low, and East
Coast low. Unlike all other regions, Italy and Spain show little to not weight
difference between Heatwaves and the general case for Scandinavian anti-
cyclone, Scandinavian low, and north Russian high. For Italy and Poland, this
also includes mid-Atlantic high, mid-Atlantic low, UK high, UK low and central
European high. Heatwaves in Spain are also associated with a lower Genoa
low weight. France, Germany and Poland have similar variations in average
synoptic configuration relative to he general case for most motifs. Exceptions
include Scandinavian anticyclone and low, UK low, and Siberian high and low.
Finally, UK Heatwaves are associated with weights for Scandinavian anticy-
clone much higher that in any other case, for any country. Furthermore, they
are associated with lower weights for Icelandic low. They are also associated
with higher weights for UK high and lower weights for UK low, which is con-
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sistent with known drivers of Heatwaves, as detailed in chapter 1.
All of these differences inmotif weights can be visualized using normalized re-
constructedmaps, as shown in figure 5.8. We recognize in figure 5.8 several of

Figure 5.8 – Reconstructions from the average Heatwaveweights in six Euro-pean countries (normalized).

the properties that were seen from the weights. Notably, we can see that Italy
is closer to the average than other countries, or that for the UK, Heatwave
synoptic configuration is dominated by a strong Scandinavian anticyclone.
To conclude, we have observed that extreme temperature events in each re-
gion, both hot and cold, are associated with distinct average synoptic config-
urations. This provides a detailed characterization of the atmospheric circu-
lation associated with extremes in reanalysis data, on which models can then
be evaluated.

5.3 . Synoptic configurations in models

5.3.1 . General case
Using this characterization of atmospheric circulation, we will now evaluate
the ability of climate models to reproduce the synoptic configurations ob-
served in ERA5 reanalysis data. The results presented in this part were pub-
lished in (Malhomme et al., 2025). We consider 4 GCM models from CMIP6:
IPSL-CM6A-LR, MIROC6, ACCESS-ESM1.5 and CanESM5. The spatial resolu-
tion and number of available run of each model are detailed in table 5.1
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Model Resolution SLP runs Reference
IPSL-CM6A-LR 38× 53 33 Boucher et al., 2020

MIROC6 34× 92 50 Tatebe et al., 2019
ACCESS-ESM1.5 39× 69 30 Ziehn et al., 2020

CanESM5 17× 46 25 Swart et al., 2019
Table 5.1 – Spatial resolution and amount of available runs for each ofthe 4 considered models.

In our methodology of model evaluation, ERA5 reanalysis data is treated as
ground truth. Note, however, that reanalysis datasets combine observational
datawithmodel outputs, through interpolation and other techniques. As a re-
sult, reanalysis data can potentially inherit some of the biases from the mod-
els used in their construction. As our methodology relies on comparing of
the two, it is blind to any shared biases. This is a limitation of our method.
Nonetheless, because reanalyses incorporate actual observations, they re-
main the closest data available to reality, and are likely to be less biased than
themodels alone. Therefore, if the two are found to disagree, we have reason
to believe that reanalyses are closer to the truth, and our approach can still
detect biases in the models.
For each historical run of the four models, the ERA5 motif basis weights are
computed by Bayesian inference. Then, the average synoptic configuration
is computed. At first, we consider the general data (no filtering by extreme
event). For each run, the relative differencebetween the averagemotif weights
in themodel and in the reanalysis is computed for allKmotifs following equa-
tion 5.1.

∀k ∈ {1, ...,K} , Ek =
⟨ck(Xm,r)⟩ − ⟨ck(X)⟩

⟨ck(X)⟩
(5.1)

where X corresponds to reanalysis maps, Xm,r corresponds to maps from
run r of modelm, and ⟨·⟩ designates the average over all maps in the dataset
(model run or reanalysis).
The statistics of this relative error, for each of the four considered models,
are shown in figure 5.9, using box plots. The mean motifs weights in the re-
analysis data are also shown, for reference. Box plots represent data in the
following way: The black horizontal line inside the box designates the median
of the values. The edges of the box represent the first and third quartiles of
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the values. Whiskers extend to the maximum and minimum values, but only
up to 1.5 times the difference between the first and third quartiles. The re-
maining values are represented as colorless circles.

Figure 5.9 – Top: Relative error on average motif weight between models andERA5 reanalysis. The box edges correspond to 1st and 3rd quartiles. The blackline is the median. The whiskers extend to the furthest datapoint, up to 1.5times the difference between the 1st and 3rd quartiles. Datapoints beyond thewhiskers are represented as colorless circles. Bottom: average motif weightin the synoptic configuration of ERA5 fields.

Here, we see that median relative errors are mostly contained within ±20%,
which is relatively small. In particular, all model relative errors are less than
15% for the eight most prevalent motifs in the reanalysis. Therefore, mod-
els reproduce well the synoptic configuration observed in reanalysis. Relative
errors made by IPSL-CM6A-LR, MIROC6 and ACCESS-ESM1.5 are all below
20%. The largest errors, with a median reaching 25%, are made by CanESM5
on the Mediterranean anticyclone and Cyprus low motifs. It is possible that
these larger errors are due to the lower resolution of CanESM5, compared to
the other models (see table 5.1).
Models can be evaluated and compared based on the errors they make rela-
tive to reanalysis. However, another key factor to model evaluation is to com-
pare the errors with model inner variability, represented here by the height
of the boxes. If the inner variability is smaller than the errors, it shows that
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all runs of the model make similar predictions, and indicates the presence of
a bias inherent to the model. Here, the inner variability of the models is sig-
nificantly smaller than the error in 96 out of 112 cases, so 87.5% of the time.
Therefore, the models do have biases, deviating from the motif weights that
characterize atmospheric circulation in ERA5 by up to around 20%.
Additionally, we observe that the motifs associated with largest relative er-
rors tend to be the same from one model to another. A multimodel ensem-
ble method would therefore not eliminate these biases. The largest errors
are made on motifs located on the Mediterranean region. Specifically, the
Mediterranean anticyclone and Cyprus low motifs weights are systematically
over-estimated in every runof everymodel. Everymodel run also over-represents
Genoa low and under-represents UK high and low. Finally, all models but
ACCESS-ESM1.5 systematically under-represent the Scandinavian anticyclone,
which is the fourth most prevalent motif in the reanalysis, with an average
weight of more than 4%. These similarities in model errors suggest that the
origin of the errors could be common to all models.
In the end, our results indicate that average atmospheric circulation is gener-
ally well represented by the models, according to the angle of study of LDA-
based synoptic configurations. Models still contain biases, however, of rela-
tively low, but not insignificant, amplitude. Some biases are different from
model to model, and can therefore be eliminated, or at least diminished, by
ensemblemethods. Some biases, however, are common to all the considered
models.

5.3.2 . Cold spells in France

In order to study how well models represent the circulation associated with
extreme events, we now apply this method to extreme temperature events
data, starting with Cold Spells occurring in France. To begin with, we evalu-
ate the ability of models and the LDA basis weights to reproduce the overall
structure of SLP anomalies associated with extremes. Real and reconstructed
averages of Cold Spell daily maps, for ERA5 and each model, are shown in
figure 5.10. The real average is obtained by averaging over daily maps associ-
ated with a Cold Spell. The reconstructed average is obtained from the aver-
age motif weights of daily maps associated with a Cold Spell, using equation
4.3. To identify the most significant motifs associated with each model, the
two most prevalent cyclonic and the two most prevalent anticyclonic motifs
in each case are annotated on the figure. We observe that the overall synoptic
structure associated with French Cold Spells consists of an anticyclonic struc-
ture in the north, and a cyclonic structure in the south. The corridor between
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Figure 5.10 – Top line: Reconstruction of the average motif composition of
Cold Spells in France according to different models (columns). The two cy-clones and the two anticyclones with highest average weights in each caseare annotated. Bottom line: Average SLP field for Cold Spells in France ac-cording to different models (columns).

the two is slanted northeast-southwest, passing through themiddle of France.
First, we compare real average anomaly maps with the corresponding LDA
reconstructions. We find that, for all models, the reconstructed average re-
produces the overall structure, as well as most of the detail of the shapes
of the high and low pressures. This confirms that LDA captures the synoptic
information contained in the real maps. Then, we compare models with re-
analysis. Model average maps are in good agreement with ERA5. They have
the same two most prevalent cyclones as ERA5, Cyprus low and Genoa low,
and reproduce motif 8, UK high, as a dominant motif. However, some dis-
crepancies are present. All models underestimate the westward extent of
the anticyclonic structure over the Atlantic. OnlyMIROC6 reproduces the fact
that Greenland high (motif 3) ismore prevalent than Scandinavian anticyclone
(motif 4), though as seen in section 5.2, Greenland high and Scandinavian an-
ticyclone are both relevant for French Cold Spells (near 8% weights).
Model relative errors on synoptic configurations in the case of Cold Spells oc-
curring in France are shown in figure 5.11, using box plots.
The amplitudes of model errors are significantly higher in the Cold Spell case
than for the general case. The variability among the runs of each models is
also higher. The five most prevalent reanalysis motifs during French Cold
Spells are UK high, Greenland high, Scandinavian anticyclone, Genoa low,
and Central European high. The significantly higher weights of UK high and
Genoa low during Cold Spells are well reproduced by all models with an er-
ror within the internal variability of all four models. The central European
high weight is also well represented by all models except by ACCESS-ESM1.5
which overestimates it by at least 25%. The weight of Scandinavian anticy-
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Figure 5.11 – Top: Relative error on average motif weight betweenmodels andERA5 reanalysis in the case of Cold Spells occurring in France. Bottom: aver-age motif weight in the synoptic configuration of ERA5 fields, for Cold Spellsand in the general case.

clone is well reproduced by IPSL-CM6A-LR andMIROC6. However, it is over-
estimated by around 25% by the two other models. All four models under-
represent the Greenland highmotif by around 25%. Larger relative errors are
made on less relevant motifs where reanalysis weights are lower. The most
over-represented motifs are Cyprus low and Mid-Atlantic high for all models
except ACCESS-ESM1.5. We note that larger relative errors are generally ob-
served for the lower resolution model CanESM5.
In the end, our study shows that models have significantly larger biases in
their representation of the average atmospheric circulation associated with
Cold Spells in France. Many of these biases are shared among the models,
and therefore cannot be eliminated by ensemblemethods. One possible con-
clusion would be that models do not use, on average, the same circulation
patterns to cause Cold Spells as reanalysis.

5.3.3 . Heatwaves in France

We apply the same methodology to Heatwaves occurring in France. Simi-
larly to the previous case, we first evaluate the ability of models and projec-
tion onto LDA basis to reproduce the overall structure of SLP anomalies as-
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Figure 5.12 – Top line: Reconstruction of the average motif composition of
Heatwaves in France according to different models (columns). The two cy-clones and the two anticyclones with highest average weights in each caseare annotated. Bottom line: Average SLP field for Heatwaves in France ac-cording to different models (columns).

sociated with extremes. Real and reconstructed averages of Heatwave daily
maps, for ERA5 and eachmodel, are shown in figure 5.12. To identify themost
significant motifs in each case, the two most prevalent cyclonic and the two
most prevalent anticyclonic motifs are annotated on the figure. SLP anomaly
values are weaker than in the Cold Spell case. This is because Heatwaves
are more varied in configuration, leading to average anomaly values closer to
zero.
In the Heatwave case, there are differences between the real and recon-
structed maps. In every dataset, the anticyclonic structure over Europe has
a crescent-like shape around the Atlantic cyclone. However, it appears in re-
constructionwith an arrow-like shape, without an extension over north Africa.
Despite this, the overall structure consisting of anticyclones over northern
and central Europe, with a depression over the Atlantic is preserved by LDA
reconstruction. Regarding model performance, we find that similarly to the
Cold Spell case, model reproduce the overall structure of ERA5 average cir-
culation, with anticyclonic conditions on northern and central Europe and cy-
clones over the Atlantic. However, models disagree with ERA5 and each other
on the detail of the shapes of those synoptic structures. The most preva-
lent anticyclones in reanalysis data are the Scandinavian anticyclone (motif
4) and the Central European high (motif 20). Only CanESM5 reproduces this
property. For the other models, this leads to an anticyclonic structure that
is weaker in the north for IPSL-CM6A-LR, and in the south for MIROC6 and
ACCESS-ESM1.5. The most prevalent cyclones in reanalysis data are Siberian
low (motif 12) andMid-Atlantic low (motif 16). OnlyACCESS-ESM1.5 reproduces
this property, which is shown by deviations from ERA5 in the other models re-
garding the shape and intensities of the synoptic structures.
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Relative errors in motif weights between reanalyses and models for Heat-
waves occurring in France are computed and shown in figure 5.13.

Figure 5.13 – Top: Relative error on averagemotif weight betweenmodels andERA5 reanalysis in the case of Heatwaves occurring in France. Bottom: aver-age motif weight in the synoptic configuration of ERA5 fields, for Heatwavesand in the general case.

Similarly to the Cold Spell case, both relative errors and internal variabili-
ties are higher in the Heatwave case than in the general case. Which mo-
tifs are or are not relevant to Heatwaves in France is generally well repro-
duced by the models. However, the most relevant motifs tend to be under-
represented. Every model systematically under-represents the contribution
of the most prevalent motif, which is the Scandinavian anticyclone, except
ACCESS-ESM1.5, which still underestimate its average weight by more than
10% on median. The weight of the second most prevalent motif, central Eu-
ropean high, is well represented by IPSL-CM6A-LR and CanESM5, but under-
estimated by about 20% by MIROC6 and ACCESS-ESM1.5. UK high, the third
most prevalentmotif, is under-represented by 20% ormore by almost all runs
of all models. In general, motifs that have higher weights than in the general
case tend to be under-represented (including Quebec high and north Rus-
sian high), while motifs that have lower weights (UK low, Nova Scotia low, and
Genoa low) are over-represented. This shows that models underestimate the
changes in SLP patterns associated with Heatwaves.
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In the end, similarly to the Cold Spell case, we find that models display sig-
nificant and shared biases in their representation of the average circulation
associated with Heatwaves in France. As was said for Cold Spells, a possible
conclusion is that, on average, models do not use the same circulation pat-
terns to cause extreme events.

5.3.4 . Cold spells across European countries
We have established that our method can evaluate the ability of models to
reproduce atmospheric circulation patterns associated with extreme events.
In order to explore the possible geographical dependencies of model errors,
we now apply the same methods to other western European countries. The
list of countries studied is the same as previously, France, Germany, Poland,
Italy, Spain, and the UK. We first look at Cold Spells.
Model relative errors on synoptic configurations in the case of Cold Spells
occurring in Germany are shown in figure 5.14, using box plots. Model errors

Figure 5.14 – Top: Relative error on averagemotif weight betweenmodels andERA5 reanalysis in the case of Cold Spells occurring in Germany. Bottom:average motif weight in the synoptic configuration of ERA5 fields, for Cold
Spells and in the general case.

are higher than in the general case, on a scale similar to what was observed
for France. Furthermore, model errors are mostly the same as in the case
of France, with models generally over-representing and under-representing
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the same motifs, by similar amounts. This is an expected result, considering
the geographical proximity of the two countries. As some of the countries we
consider display similar behavior from the models, we chose not to go over
all of them in this part, so as to avoid repetition. We will only look at Italy
and UK, ignoring Poland, which is similar to Germany and France, and Spain,
which is similar to Italy. Figures representing the data for the other countries
are available in Appendix A.
Figure 5.15 showsmodel relative errors on synoptic configurations in the case
of Cold Spells occurring in Italy. We find that in the case of Cold Spell occur-

Figure 5.15 – Top: Relative error on averagemotif weight betweenmodels andERA5 reanalysis in the case of Cold Spells occurring in Italy. Bottom: averagemotif weight in the synoptic configuration of ERA5 fields, for Cold Spells andin the general case.

ring in Italy, model relative errors differ from the France and Germany cases.
MIROC6 is the only model that does not over-represent Cyprus low, while it
was ACCESS-ESM1.5 for France and Germany. Inversely, MIROC6 is the only
model to systematically over-represent central European high, which is a key
motif in this case, while ACCESS-ESM1.5 was the only model to do this for
France and Germany. The relative errors are overall lower on Genoa low, and
models over-represent significantly less somemotifs such asmid Atlantic high
and eastern Atlantic ridge.
Figure 5.16 showsmodel relative errors on synoptic configurations in the case
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of Cold Spells occurring in the UK. This case is mainly characterized by high

Figure 5.16 – Top: Relative error on average motif weight between modelsand ERA5 reanalysis in the case of Cold Spells occurring in the UK. Bottom:average motif weight in the synoptic configuration of ERA5 fields, for Cold
Spells and in the general case.

overestimation of somemotif weights, especially by themodelCanESM5. This
concerns mainly Icelandic low, a model with low average weight in this case
which is overestimated by a factor between 3 and 6 by this model. CanESM5
also severely over-represents the Scandinavian low,midAtlantic high,Mediter-
ranean anticyclone and eastern Atlantic ridges by up to 200%. While the re-
analysis value of the Icelandic low weight is within model variability for the
three other models, they also over-represent, although less severely, the mid
Atlantic high.MIROC6over-represents the eastern Atlantic ridge andMediter-
ranean anticyclone aswell. IPSL-CM6A-LRover-represents theMediterranean
anticyclone, and under-represents the Scandinavian low. All four models also
overestimate the weights of the Quebec high, as well as the Nova Scotia high.

5.3.5 . Heatwaves across European countries
We now apply the same method to Heatwaves. figure 5.17 shows model rel-
ative errors on synoptic configurations in the case of Heatwaves occurring
in Germany. We find that models generally reproduce the significantly higher
weight of the Scandinavian anticyclone motifs compared to the general case.
However, it is systematically underestimated by all four models by around
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Figure 5.17 – Top: Relative error on average motif weight between modelsand ERA5 reanalysis in the case of Heatwaves occurring in Germany. Bot-tom: average motif weight in the synoptic configuration of ERA5 fields, for
Heatwaves and in the general case.

25%. The highest relative errors are committed on motifs that are not rel-
evant to German Heatwaves, that models tend to over-represent. This in-
cludes Scandinavian low, mid-Atlantic high, Cyprus low, or Genoa low. Rela-
tive errors on these motifs can reach 100%. Similarly to the case of France, it
appears that models underestimate the changes in atmospheric circulation
associated with Heatwaves. However, some differences exist. Overestima-
tion of Scandinavian low weight is more severe in this case than for France.
IPSL-CM6A-LR under-represents the central European high, while MIROC6
and ACCESS-ESM1.5 do so more severely. However, the errors on most mo-
tifs are of similar sign and amplitude than in the case ofHeatwaves occurring
in France. For similar reasons as in the Cold Spell case, all six countries will
not be examined in detail here. Instead, we will examine Germany, Italy, and
the UK. Figures relating to the other countries are included in Appendix A.
Figure 5.18 showsmodel relative errors on synoptic configurations in the case
of Heatwaves occurring in Italy. The synoptic configuration associated with
Heatwaves in Italy is closer to the general case than in the other countries.
As one of the main differences, Cyprus low weight is significantly lower dur-
ing extreme heat. This difference is not well represented by the models, who
overestimate this weight in almost every case by a factor that reaches 100%
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Figure 5.18 – Top: Relative error on averagemotif weight betweenmodels andERA5 reanalysis in the case of Heatwaves occurring in Italy. Bottom: averagemotif weight in the synoptic configuration of ERA5 fields, for Heatwaves andin the general case.

for IPSL-CM6A-LR and ACCESS-ESM1.5. Models disagree on the weight asso-
ciated to the eastern Atlantic ridge, with it being systematically overestimated
byMIROC6, and systematically underestimatedbyACCESS-ESM1.5 andCanESM5.
Unlike in Germany and France, the weight associated with the UK low is un-
derestimated by themodels, and the weight associated with the Icelandic low
is systematically overestimated.
Figure 5.19 showsmodel relative errors on synoptic configurations in the case
ofHeatwaves occurring in the UK. The synoptic configuration associatedwith
extreme heat in the UK is dominated by the Scandinavian anticyclone, by a
wider margin than in the other countries. Its average weight is underesti-
mated by IPSL-CM6A-LR, MIROC6 and ACCESS-ESM1.5. However, CanESM5
reproduces the value observed in reanalysis. Models disagree on the average
weight of Scandinavian low. It is underestimated by CanESM5, and overesti-
mated by IPSL-CM6A-LR and ACCESS-ESM1.5.

5.3.6 . Discussion

To sum up, when considering variations across several European countries,
we reach similar conclusions for both Heatwaves and Cold Spells. Models
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Figure 5.19 – Top: Relative error on averagemotif weight betweenmodels andERA5 reanalysis in the case of Heatwaves occurring in the UK. Bottom: aver-age motif weight in the synoptic configuration of ERA5 fields, for Heatwavesand in the general case.

make relative errors on extreme synoptic configurations that are of similar
scales for every considered country. This implies that, in every country, mod-
els associate extreme temperature events with different synoptic configura-
tions than reanalysis. Furthermore, the errors made by models tend to have
the same sign on most countries, for most motifs. This especially the case
for neighbouring countries, such as France and Germany, where models mis-
representations are similar.
However, we observe variations in the localizations and amplitudes of model
errors, depending on the region of interest. For examples on Cold Spells, we
can citeMIROC6 and ACCESS-ESM1.5 switch their errors on the central Euro-
pean high and Cyprus lowwhen looking at Italy and France, or the fact that ex-
treme cold in the UK is heavily mis-represented by CanESM5 especially, which
over-represents motifs of little relevance. For examples onHeatwaves, mod-
els fail to capture the much lower weight of the Cyprus low during extreme
heat in Italy, nor the much higher weight of the Scandinavian anticyclone dur-
ing extreme heat in the UK.
By providing these detailed and local estimation of model representation er-
rors, LDA allows informed preselection of a model best suited for a specific

122



task. As examples, among the four models we considered, CanESM5 would
be best suited to represent circulation in the north during Heatwaves in the
UK, but IPSL-CM6A-LR would be preferable for the representation of key cir-
culation patterns during Cold Spells in Italy.

5.4 . Summary

In this chapter, we have demonstrated that LDA, through its ability to char-
acterize the atmospheric circulation of datasets, can be used as a tool for
evaluating model representation of synoptic configurations observed in re-
analysis data. Due to the locality of the LDA motifs, we were able to measure
model representation error locally. This was done for four CMIP6 models,
IPSL-CM6A-LR,MIROC6, ACCESS-ESM1.5 and CanESM5, in the general case,
and for Cold Spells and Heatwaves in several European countries.
We have been able to detect several biases, either shared or model-specific,
including a general over-representation of synoptic objects located on the
Mediterranean sea. We have shown that model representation of circulation
associated with extreme events is associated with significant errors, higher
than in the general case. The errors are of a similar order of magnitude for
extremes located in every examined country.
However, each extreme event is associated with errors that vary model-to-
model. As such, given a specific type of event, and a location of interest, the
LDA study of synoptic configurations is able to rank the representations of
atmospheric circulation by the models. This provides a tool for preselecting
models best suited to provide useful data on specific extreme events. Fur-
thermore, this method can be generalized to any kind of extreme event that
can be automatically detected in the data.
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6 - Higher-dimensional evaluation criteria

6.1 . Introduction

We have shown in chapter 5 that the synoptic configurations, defined as the
sets of averageweights associatedwith a given basis ofmotifs, provide a char-
acterization of the atmospheric circulation. This average can be either uncon-
ditional or conditional on specific events. Comparison of synoptic configura-
tions provides a local measure of the differences in circulation patterns, in
particular those associated with extreme events, and can be used to evaluate
the accuracy of a model. In this chapter, we discuss two possible extensions
of our evaluation protocol, in order to obtain a fuller characterization of the
model relevance.
Firstly, we examine inmore detail the characteristics of the weights. Themotif
representation is sparse: in any individual map, many of the motifs will have
negligible weights. This intermittency effect is averaged out in ourmeasure of
synoptic configuration. A lower (resp. higher) average weight of a motif could
be due to one or both of two possible effects:

• The motif has a negligible weight (i.e. is absent) in a higher (resp. lower)
proportion of the maps.

• The weight values of the motif, when not negligible (i.e. present), are
lower (resp. higher).

Our previous analysis does not allow us to differentiate between these two
causes for a change in the average value of the weights. In this part, we will
use this intermittency information to produce a more detailed characteriza-
tion of atmospheric circulation, and apply it for model evaluation.
Secondly, while differences between synoptic configurations in reanalysis and
models can be used to define an error on model representation of dynam-
ics, another key aspect of evaluating climate models is the representation of
temperature. We therefore introduce another component to our model eval-
uation protocol: the representation error of the average temperature. We
explore how the conjunction of these two evaluation metrics can, or cannot,
be used to discriminate between the four models: IPSL-CM6A-LR, MIROC6,
ACCESS-ESM1.5 and CanESM5, in the general case, Cold Spells, and Heat-
waves. Moreover, we consider the correlation between temperature-based
and dynamics-based model representation errors. Model errors on temper-
ature can be caused either by a misrepresentation of circulation, which ad-
vects air from different regions, or by a misrepresentation of thermodynam-
ics, which governs the exchanges of heat between air masses and their en-
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vironment (see section 1.2). Evidence of correlation could therefore indicate
a possible causal link between model dynamic error and model temperature
error.

6.2 . Motifs frequencies and intensities

6.2.1 . Defining motif presence
The logarithmic histograms of all motifs weights in ERA5 as well as in run 1
of each model is shown in figure 6.1. All motifs, in each dataset, show a bi-

ERA5

IPSL-CM6A-LR MIROC6

ACCESS-ESM1.5 CanESM5

Figure 6.1 – Logarithmic histogram of motif weights, all 28 motifs included.Left to right, top to bottom: ERA5, run 1 of IPSL-CM6A-LR,MIROC6, ACCESS-
ESM1.5 and CanESM5.
modal distribution, separated by a gap located around 10−6. This shows that
motifs are intermittent, and can be used to define the notion of motif pres-
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ence or absence. A motif is present in a map if it has a weight higher than
ϵ = exp−14 ≈ 8.3× 10−7, and absent otherwise. This likely overestimates the
presence of motifs in the representation, as probabilities in the lower end of
the high probability lobe are much lower than those in the higher end, and a
motif weight can still be negligible despite being present. However, it has the
advantage of being a robust way of defining intermittency, as the results do
not change with small variations of ϵ. Mathematically, the presence of motif
k in map d is noted [ck(d) > ϵ], where [·] is the Iverson bracket:

[P ] =

{
1 if P is true
0 otherwise (6.1)

This idea can be further extended into the notion of motif frequency, i.e. the
proportion ofmaps amotif is present in. The frequency ofmotif k in a dataset
is noted fk and is defined in equation 6.2.

fk = ⟨[ck(d) > ϵ]⟩ (6.2)
Where ⟨·⟩ designates the average over d ∈ {1, ..., D}.
From now on, we will consider all values in the left lobe to be 0, which makes
no difference within round-off errors. The frequency of a motif in a dataset
contains a portion of the information thatmakes up the averageweight. Specif-
ically, it contains the information of: “how many maps the motif plays a role in”.
The part of the motif average weight that is not contained in frequencies is
“the value of the weight when it is non-zero”. We call “intensity” of a motif in
a dataset the average of these values. For a motif k, let it be noted ik. Itsdefinition is provided in equation 6.3.

ik = ⟨ck(d)× [ck(d) > ϵ]⟩ (6.3)

Within round-off error, the average weight of a motif is the product of its fre-
quency and intensity. We note that these are themselves values aggregated
using average.

∀k ∈ {1, ...,K} ,fk × ik = ⟨ck(X)⟩ (6.4)
Thus, differences in motif weights between two datasets can be attributed in
proportion to these two factors.
However, while motif frequencies are physically interpretable, the ik do not
have a direct physical interpretation. This is due to two reasons. To beginwith,

127



LDA has no model of the norm of a map - the total sum of all absolute field
values. As a result, an SLP anomaly map which is twice as intense but with the
same distribution as another would be treated as identical by LDA. Therefore,
what we would interpret as the physical intensity of a motif in an SLP map -
say, how strong an anticyclone is at a given location - is in fact not an informa-
tion represented in the motif weight. Furthermore, maps are associated with
a composition in motifs, which must always sum to 1. Therefore, a motif may
have a lower weight simply because more motifs are present, rather than be-
cause it appears with lower intensity, even relatively to the other motifs. As a
result, while we will refer to the ik as “motif intensities” in the following, they
are not to be understood as the physical intensity of the corresponding motif
in the SLP anomaly map. Intensities and frequencies are the two elements
that make up the average weight, and the two sources that can participate
to its changes between datasets. However, since only the frequencies have a
clear physical interpretation, we will mainly focus on them in the rest of this
study.

6.2.2 . Motif frequencies and intensities in ERA5

We now show how the computation of motif frequencies and intensities can
improve the characterization of atmospheric circulation provided by average
weights. This can be applied to every case - models, extreme events, regions
of interest - studied in chapter 5. In this part, we will apply this enriched char-
acterization on some of these cases, to explore what can be learned from it.

Motif Motif1 : Labrador H 15 : Icelandic L2 : Scandinav. L 16 : mid Atlantic L3 : Greenland H 17 : Labrador L4 : Scandinav. H 18 : Mediterr. H5 : Quebec H 19 : Nova Scotia H6 : north Russian H 20 : C. European H7 : UK L 21 : Baffin bay L8 : UK H 22 : Nova Scotia L9 : mid Atlantic H 23 : E. Atlantic ridge10 : Cyprus L 24 : Quebec L11 : N. Atlantic H 25 : Genoa L12 : Siberian L 26 : Siberian H13 : N. Atlantic L 27 : east coast L14 : Greenland L 28 : Azores L

Figure 6.2 – Motif frequencies versus motif intensities, in ERA5. Each motif isannotatedwith its index. Indices and names of the 28 LDAmotifs are providedin the table. They are sorted in decreasing order of average weight in ERA5.L: low. H: high.
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Weplotmotif intensities versus frequencies in ERA5 in figure 6.2. Eachmotif is
annotated with its motif index. We recall that motifs are ordered by decreas-
ing average weight. Unsurprisingly, the most prevalent motif (1, Labrador
high) has both a high intensity and high frequency, while the least preva-
lent motif (28, Azores low) has a low intensity and frequency. However, the
highest frequency is associated with motif 5 (Quebec high), while the lowest
corresponds to motif 15 (Icelandic low). Considering that some motifs are op-
posites of each other, it may seem counter-intuitive that almost every motif
has a frequency of at least 50%. This is due to the fact that the gap with which
we define the presence of motifs is very low, and there are therefore values
of weight that are considered present despite still being negligible. The fre-
quencymeasured with this indicator can be seen as overestimated compared
to the proportion of maps a motif plays a significant role in. However, it re-
mains relevant for comparison purposes.
We show the motif intensities and frequencies in ERA5 in 6.3, using the usual
order of decreasing average weights. We find that neither intensities nor fre-
quencies reproduce the prevalence order obtained for average weights. As
we saw in figure 6.2, we find examples of motifs that have high weight due
to a high frequency, despite a low intensity, such as the Quebec high (motif
5), as well as motifs that have high average weight despite a relatively low
frequency, such as the Scandinavian anticyclone (motif 2). While both inten-
sities and frequencies can be relevant, intensities are closer to reproducing
the order of prevalence obtained from average weights. Furthermore, motif
intensities are spread from 4% up to 9%, over a factor of 2.5. Motif frequen-
cies, on the other hand, are spread over a factor of 1.5. Therefore, more of
the variance observed for average weights is explained by intensities than by
frequencies.
We also learn the following about synoptic configurations in ERA5. Motifs lo-
cated on Quebec (Quebec high, motif 5, and Quebec low, motif 24) are par-
ticularly common. That is also the case of Mediterranean motifs, such as the
Mediterranean anticyclone (motif 18), and the Genoa low (motif 10). On the
opposite side, motifs located on the UK (motif 7 and 8) only appear in a lower
percentage of maps. The features identified by the frequency/intensity split-
ting can then be compared with other datasets, such as models, or extreme
events.
We now look at extreme temperature events. Our goal is to determine if the
differences in synoptic configuration observed with the general case are due,
or not, to motif frequency. We focus on extreme events occurring in France.
In figure 6.4, we show motif intensities and frequencies during Cold Spells,
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Figure 6.3 – Top: Average motif intensities in ERA5 SLP anomaly maps. Bot-tom: Average motif frequencies in ERA5 SLP anomaly maps. 90% confidenceintervals are determined by bootstrapping.

according to ERA5.
We find that bothmotif intensities andmotif frequencies display changes big-
ger that the 90% confidence interval when compared to the general case. Vari-
ations in frequencies across motifs are of much higher amplitude than in the
general case. We also observe that the spread of frequency values is higher
than for the general case, with frequencies reaching as low as 20% for the UK
low. Most changes are shared between the two metrics: when one increases,
the other does too, and vice versa. This stronger correlation between the two
can be better observed in figure 6.5, wheremotif intensities are plotted versus
frequencies in the case of ERA5 Cold Spells. Each motif is annotated with its
motif index. This strong correlation, as well as the spread between themotifs,
show that Cold Spells in France are associated with a specific synoptic con-
figuration.
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Figure 6.4 – Top: Motif intensities in ERA5 SLP anomaly maps, in the case of
Cold Spells in France (blue), and in the general case (black). Bottom: Motiffrequencies in ERA5 SLP anomaly maps, in the case of Cold Spells in France(blue), and in the general case (black). 90% confidence intervals are deter-mined by bootstrapping.

In figure 6.6, we show motif intensities and frequencies during Heatwaves,
according to ERA5. We observe variations in motif intensities and frequencies
during Heatwaves, compared to the general case. In most cases, these vari-
ations are of higher amplitude than the 90% confidence interval.
For a more detailed analysis, intensities and frequencies are plotted against
each other in 6.7, for the case of ERA5 Heatwaves. Each motif is annotated
with its motif index. The spread in motif frequencies in reduced compared
to the Cold Spell case. However, the spread in intensities is higher, with the
Scandinavian anticyclone (motif 4) having more than 11% intensity. We also
observe less correlation between frequencies and intensities than for the ex-
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Motif Motif1 : Labrador H 15 : Icelandic L2 : Scandinav. L 16 : mid Atlantic L3 : Greenland H 17 : Labrador L4 : Scandinav. H 18 : Mediterr. H5 : Quebec H 19 : Nova Scotia H6 : north Russian H 20 : C. European H7 : UK L 21 : Baffin bay L8 : UK H 22 : Nova Scotia L9 : mid Atlantic H 23 : E. Atlantic ridge10 : Cyprus L 24 : Quebec L11 : N. Atlantic H 25 : Genoa L12 : Siberian L 26 : Siberian H13 : N. Atlantic L 27 : east coast L14 : Greenland L 28 : Azores L

Figure 6.5 – Motif frequencies versus motif intensities, in ERA5 Cold Spells.Eachmotif is annotatedwith its index. Indices and names of the 28 LDAmotifsare provided in the table. They are sorted in decreasing order of averageweight in ERA5. L: low. H: high.

treme cold case.
In the end, the frequency/intensity split has allowed us to characterize atmo-
spheric circulation in the ERA5 dataset further than average motif weights.
We have obtained an indicator of motif intermittency, which can be used to
compare the synoptic configuration of extreme events with the general case.

6.2.3 . Motif frequencies and intensities in models

We will now use the features identified by the frequency/intensity split as a
model evaluation criterion. We plot motif intensities versus frequencies for
general data in each model in figure 6.8. Each motif is annotated with its mo-
tif index, and the values are averaged over allmodel runs. Wefind thatmodels
generally reproduce the overall structure observed in ERA5. The Azores low
(motif 28) has both low frequency and low intensity in every model, while the
Labrador High (motif 1) has high frequency and intensity. Models also repro-
duce the occurrence of motifs with high frequency but low intensity, such as
Quebec high (motif 5), or low frequency but high intensity, such as the Scan-
dinavian low (motif 2). Furthermore, most motifs occupy a similar region of
the intensity-frequency space in models and reanalysis.
We now look at Cold Spells events occurring in France. We plot motif inten-
sities versus frequencies in Cold Spells for each model in figure 6.9. Each
motif is annotated with its motif index, and the values are averaged over all
model runs. All four models reproduce the larger variability and stronger cor-
relation between frequencies and intensities compared to the general case
as observed in ERA5. Motifs also seem to occupy the same overall region of
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Figure 6.6 – Top: Motif intensities in ERA5 SLP anomaly maps, in the case of
Heatwaves in France (red), and in the general case (black). Bottom: Motiffrequencies in ERA5 SLP anomaly maps, in the case of Heatwaves in France(red), and in the general case (black). 90% confidence intervals are determinedby bootstrapping.

intensity-frequency space than in ERA5, but there are bigger differences than
for the general case. All models except MIROC6 overestimate the intensity
of Scandinavian low (motif 4) compared to Greenland high (motif 3). Fur-
thermore, the central European high (motif 20) is mis-represented in differ-
ent ways by eachmodel. IPSL-CM6A-LR underestimates ts intensity,MIROC6
overestimates its frequency,ACCESS-ESM1.5overestimates both its frequency
and intensity, and CanESM5 satisfyingly represents the ERA5 values.
We now look at Heatwaves events occurring in France. We plot motif inten-
sities versus frequencies in Heatwaves for each model in figure 6.10. Each
motif is annotated with its motif index, and the values are averaged over all
model runs. In the extreme heat case, the spread among models is higher
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Motif Motif1 : Labrador H 15 : Icelandic L2 : Scandinav. L 16 : mid Atlantic L3 : Greenland H 17 : Labrador L4 : Scandinav. H 18 : Mediterr. H5 : Quebec H 19 : Nova Scotia H6 : north Russian H 20 : C. European H7 : UK L 21 : Baffin bay L8 : UK H 22 : Nova Scotia L9 : mid Atlantic H 23 : E. Atlantic ridge10 : Cyprus L 24 : Quebec L11 : N. Atlantic H 25 : Genoa L12 : Siberian L 26 : Siberian H13 : N. Atlantic L 27 : east coast L14 : Greenland L 28 : Azores L

Figure 6.7 – Motif frequencies versus motif intensities, in ERA5 Heatwaves.Eachmotif is annotatedwith its index. Indices and names of the 28 LDAmotifsare provided in the table. They are sorted in decreasing order of averageweight in ERA5. L: low. H: high.

for both frequencies and intensities. No model reproduces the high intensity
of Scandinavian high (motif 4) observed in ERA5. The high frequency of the
central European high (motif 20) in ERA5 is reproduced by IPSL-CM6A-LR and
CanESM5, but not MIROC6 nor ACCESS-ESM1.5. On the other side, the low
frequency of the eastern Atlantic ridge (motif 23) is reproduced by ACCESS-
ESM1.5 and CanESM5, but not IPSL-CM6A-LR norMIROC6. The models also
tend to overestimate, to various degrees, the frequency of the Scandinavian
anticyclone (motif 2)
Similarly to what was done with average motif weight in chapter 5, we now
examine the model relative error on the representation of motif intensities
and frequencies, using boxplots. Relative errors in motif intensities and fre-
quencies between reanalyses and models are shown in figure 6.11. Model
represent relatively well the motif intensities and frequencies observed in
ERA5. We find that model relative errors on intensities are of similar scale
than for average motif weights. In fact, the main errors on intensities are the
same that were observed for average weights. TheMediterraneanmotifs, the
Cyprus low and the Mediterranean anticyclone, are overestimated by every
run of every model. Relative errors in frequencies, on the other hand, be-
have differently. They reach lower values, only up to ∼ 8%, unlike the ∼ 25%

reached for intensities. ACCESS-ESM1.5 underestimates the frequencies of
both Mediterranean motifs. However, despite the lower errors on frequen-
cies, innermodel variability is still smaller than the error in amajority of cases.
Relative errors in motif intensities and frequencies between reanalyses and
models for Cold Spells occurring in France are shown in figure 6.12. Unlike the
general case, the amplitude of relative errors on intensity and frequencies are
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Motif Motif1 : Labrador H 15 : Icelandic L2 : Scandinav. L 16 : mid Atlantic L3 : Greenland H 17 : Labrador L4 : Scandinav. H 18 : Mediterr. H5 : Quebec H 19 : Nova Scotia H6 : north Russian H 20 : C. European H7 : UK L 21 : Baffin bay L8 : UK H 22 : Nova Scotia L9 : mid Atlantic H 23 : E. Atlantic ridge10 : Cyprus L 24 : Quebec L11 : N. Atlantic H 25 : Genoa L12 : Siberian L 26 : Siberian H13 : N. Atlantic L 27 : east coast L14 : Greenland L 28 : Azores L

Figure 6.8 – Motif frequencies versus motif intensities, averaged over allmodel runs, for each model. Top-left: IPSL-CM6A-LR. Top-right: MIROC6.Bottom-left: ACCESS-ESM1.5. Bottom-right: CanESM5. Each motif is anno-tated with its index. Indices and names of the 28 LDA motifs are provided inthe table. They are sorted in decreasing order of average weight in ERA5. L:low. H: high.

similar. However, the errors models make on intensities and frequencies are
different. Models systematically underestimate the intensity of theGreenland
high, but generally reproduce the frequency observed in ERA5. They system-
atically overestimate overestimate the frequency of themid Atlantic high, and
underestimate mid Atlantic low. Models also generally overestimate the fre-
quencies of the Greenland low, as well as the Nova Scotia high, and under-
estimate that of the Nova Scotia low. The relative errors on intensities and
frequencies both show differences with the errors on average weights seen in
chapter 5. Therefore, the intensity/frequency split provides additional infor-
mation to the characterization of the way models mis-represent atmospheric
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Motif Motif1 : Labrador H 15 : Icelandic L2 : Scandinav. L 16 : mid Atlantic L3 : Greenland H 17 : Labrador L4 : Scandinav. H 18 : Mediterr. H5 : Quebec H 19 : Nova Scotia H6 : north Russian H 20 : C. European H7 : UK L 21 : Baffin bay L8 : UK H 22 : Nova Scotia L9 : mid Atlantic H 23 : E. Atlantic ridge10 : Cyprus L 24 : Quebec L11 : N. Atlantic H 25 : Genoa L12 : Siberian L 26 : Siberian H13 : N. Atlantic L 27 : east coast L14 : Greenland L 28 : Azores L

Figure 6.9 – Motif frequencies versus motif intensities, averaged over allmodel runs, for model Cold Spells. Top-left: IPSL-CM6A-LR. Top-right:
MIROC6. Bottom-left: ACCESS-ESM1.5. Bottom-right: CanESM5. Each mo-tif is annotated with its index. Indices and names of the 28 LDA motifs areprovided in the table. They are sorted in decreasing order of average weightin ERA5. L: low. H: high.

circulation associated with Cold Spells.
Relative errors in motif intensities and frequencies between reanalyses and
models for Heatwaves occurring in France are shown in figure 6.13. Similarly
to the extreme cold case, modelsmake different errors for intensities and fre-
quencies. Models tend to overestimate the intensities of the Greenland high,
the Cyprus low, the Mediterranean anticyclone and the Nova Scotia low. In
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Motif Motif1 : Labrador H 15 : Icelandic L2 : Scandinav. L 16 : mid Atlantic L3 : Greenland H 17 : Labrador L4 : Scandinav. H 18 : Mediterr. H5 : Quebec H 19 : Nova Scotia H6 : north Russian H 20 : C. European H7 : UK L 21 : Baffin bay L8 : UK H 22 : Nova Scotia L9 : mid Atlantic H 23 : E. Atlantic ridge10 : Cyprus L 24 : Quebec L11 : N. Atlantic H 25 : Genoa L12 : Siberian L 26 : Siberian H13 : N. Atlantic L 27 : east coast L14 : Greenland L 28 : Azores L

Figure 6.10 – Motif frequencies versus motif intensities, averaged over allmodel runs, for model Heatwaves. Top-left: IPSL-CM6A-LR. Top-right:
MIROC6. Bottom-left: ACCESS-ESM1.5. Bottom-right: CanESM5. Each mo-tif is annotated with its index. Indices and names of the 28 LDA motifs areprovided in the table. They are sorted in decreasing order of average weightin ERA5. L: low. H: high.

ERA5, the frequency of the UK lowmotif duringHeatwaves is among the low-
est. This is not reproduced by themodels, who systematically overestimate its
frequency. The eastern Atlantic ridge also has among the lowest frequencies
in ERA5. ACCESS-ESM1.5 reproduces the ERA5 value, but it is overestimated
by IPSL-CM6A-LR and MIROC6, and underestimated by CanESM5. All mod-
els also underestimate the frequency associated with the north Russian high,
and the UK high. As for the extreme cold case, the intensity/frequency split
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Figure 6.11 – From top to bottom: Relative error on motif intensities betweenmodels and ERA5 reanalysis. Motif intensities in ERA5 data. Relative error onmotif frequencies between models and ERA5 reanalysis. Motif frequencies inERA5 data.
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Figure 6.12 – From top to bottom: Relative error on motif intensities betweenmodels and ERA5 reanalysis in the case of Cold Spells occurring in France.Motif intensities in ERA5 data, for Cold Spells and in the general case. Relativeerror on motif frequencies between models and ERA5 reanalysis in the caseof Cold Spells occurring in France. Motif frequencies in ERA5 data, for Cold
Spells and in the general case.
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Figure 6.13 – From top to bottom: Relative error on motif intensities betweenmodels and ERA5 reanalysis in the case of Heatwaves occurring in France.Motif intensities in ERA5 data, for Heatwaves and in the general case. Rel-ative error on motif frequencies between models and ERA5 reanalysis in thecase of Heatwaves occurring in France. Motif frequencies in ERA5 data, for
Heatwaves and in the general case.
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has provided additional characterization of the way models mis-represent at-
mospheric circulation associated with Heatwaves.
Lastly, we wish to quantify whether models errors on intensities and frequen-
cies are good indicators of model errors on motif weights. To that end, we
compute the Pearson correlation coefficient (see equation 4.4) betweenmodel
relative error on motif intensities (respectively: motif frequencies) and model
relative error on average motif weights. The results are shown in table 6.1.

Intensities General case Cold Spells Heatwaves
IPSL-CM6A-LR 0.95 0.82 0.82

MIROC6 0.96 0.84 0.85
ACCESS-ESM1.5 0.98 0.83 0.82

CanESM5 0.97 0.81 0.89
Frequencies General case Cold Spells Heatwaves
IPSL-CM6A-LR 0.55 0.72 0.74

MIROC6 0.49 0.61 0.81
ACCESS-ESM1.5 0.23 0.64 0.76

CanESM5 0.56 0.72 0.84
Table 6.1 – Top: Correlations betweenmodel relative errors on the rep-resentation of motif average weights, and motif intensities. Bottom:Correlations between model relative errors on the representation ofmotif average weights, andmotif frequencies. For eachmodel, the cor-relation is computed over all motifs and runs.

We find that, in the general case, model relative errors on intensities are a
good indicator of model relative errors on average weights, with correlations
of at least 0.95, while model relative errors on frequencies are a poor indi-
cator. Intensity errors are always better correlated with average weight er-
rors than frequency errors. However, in the extreme event cases, the corre-
lation between model relative errors on frequencies and average weights are
higher, especially for Heatwaves, where frequency errors and intensity er-
rors are comparable.
To sum up, we have been able to enrich our characterization of the average
atmospheric circulation in ERA5 and models. This was done through a ro-
bust measure of motif intermittency, on the basis of which we were able to
separate average motif weights into motif frequencies, and motif intensities,
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which represent the average weight of a motif when it is nonzero. Model er-
rors are split into a frequency and intensity contribution, which provides ad-
ditional characterization of the model accuracy. We find that extreme events
are characterized by a strong disparity betweenmotifs, both in frequency and
in intensity, which is relatively well captured by the models.

6.3 . Dynamic and temperature representation errors

6.3.1 . Definition of the errors
We have shown in chapter 5 that the synoptic configurations obtained by pro-
jecting SLP anomalies into the LDA basis provides a characterization of atmo-
spheric circulation. Differences in synoptic configurations between models
and reanalysis can be used as a quantitative measurement of model repre-
sentation error. This error specifically assesses how well atmospheric circu-
lation dynamics are represented, and is therefore referred to as the dynamic
error. The dynamic error of run r of modelm, Em,r

X , is defined as the sum of
individual motif errors, where the error associated with each motif is defined
as the absolute difference between the average weights in the model and in
reanalysis data. It is computed according to equation 6.5.

Em,r
X =

K∑
k=1

|⟨ck(Xm,r)⟩ − ⟨ck(X)⟩| (6.5)
This dynamic error can be used to evaluate models comparatively, and pro-
duce rankings.
Alternatively, models can be comparatively evaluated based on their repre-
sentation of average temperature, i.e. the average temperature difference
between models and reanalysis data. For run r of modelm, the temperature
error is computed as shown in equation 6.6.

Em,r
T =

〈
Tm,r

〉
−
〈
T
〉
, (6.6)

where T refers to reanalysis temperature maps, and Tm,r to temperature
maps from run r of model m. Two sources can contribute to the temper-
ature representation error: errors in the representation of thermodynamic
processes (regulating the exchanges of heat), and errors in the representa-
tion of circulation dynamics (responsible for the advection of warm or cold
air from different longitudes/latitudes) (Wehrli et al., 2018). The dynamic er-
ror, as previously defined, may propagate to the temperature error, but it is
a priori unclear to what extent the latter is determined by the former.
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This section will attempt to answer two questions. Both questions relate to
whether dynamic and temperature errors contain distinct or redundant in-
formation. First, we will determine whether the two measures of error can
be combined to provide a comparative evaluation of model performance. We
will explore howdifferent the rankings resulting fromeach error, andwhether
they suffice to discriminate between models. Then, we will explore whether
the two errors are linked. Knowing that temperature error can be caused ei-
ther by misrepresentation of dynamics or thermodynamics, the correlation
between the two errors will inform us on the cause of temperature errors in
the models.

6.3.2 . Model comparative evaluation
We represent eachmodel run as a point in the error plane (Em,r

X , Em,r
T ), shown

in figure 6.14. In addition, we annotate for each run the index of the motif
which contributes the most to the dynamic error: minkck(X

m,r) − ck(X).
For eachmodel, we show on the right of the figure the twomotifs that appear
most frequently as the largest contributors to the error of a run (the propor-
tion of runs each motif corresponds to is indicated between parentheses) -
except for ACCESS-ESM1.5, where the largest contributor is always Cyprus
low.

Figure 6.14 – Run-average temperaturemodel error (average temperature dif-ference with reanalysis), versus run-average dynamic model error (averagemotif weights difference with reanalysis). The colored dots indicate the aver-age of all runs of amodel. Each number corresponds to themotif contributingthemost to the dynamic error in a given run. The twomost frequent suchmo-tifs for each model are displayed on the right.
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Each model is associated with a well-identified cluster in the 2-dimensional
error plane. If only one of the error was considered, there would be some
overlap between the model clusters. MIROC6 is the model with the high-
est temperature error, but with the lowest temperature variability. Unlike
other models, it over-predicts the temperature by almost 1.5°C. In contrast,
the IPSL-CM6A-LRmodel has the highest temperature variability, and under-
predicts the temperature by around 1°C. IPSL-CM6A-LR also corresponds to
the lowest dynamic error. CanESM5 has a slightly lower temperature error
that IPSL-CM6A-LR, and has the second highest average dynamic error, be-
hindMIROC6. ACCESS-ESM1.5 has the lowest temperature error, and a rela-
tively low dynamic error.
As mentioned earlier, each run is annotated with the index of the motif with
the highest contribution to dynamic error. This makes it possible to attribute
errors to specific motifs and regions in space. The Cyprus low (motif 10) is
the least well represented motif for all or almost all runs of ACCESS-ESM1.5
and IPSL-CM6A-LR, as well as most runs of CanESM5. Mediterranean anticy-
clone (motif 18), the opposite of Cyprus low, is occasionally the least well rep-
resented in runs of CanESM5 and IPSL-CM6A-LR. Both are eastern Mediter-
ranean motifs.
We note that these motifs, which contribute the most to the error in many
model runs, are not the most prevalent motifs. If they were, as we are using
absolute errors, the large model error on their average weight could be ex-
plained by small relative fluctuations. The relative error associated to these
Mediterranean motifs is therefore necessarily large. This confirms that the
representation of atmospheric circulation over the eastern Mediterranean
is a significant issue for all models, particularly for IPSL-CM6A-LR, ACCESS-
ESM1.5, and CanESM5. MIROC6 differs from the other models. Its error
on the mean temperature is larger, it is the only model that overestimates
average temperature, and its dynamic error is attributed to different motifs
than other models, namely the Scandinavian low and Scandinavian anticy-
clone (motifs 2 and 4). This points to there being different sources of error
betweenMIROC6 and the other models.
In the end, comparatively evaluatingmodels based on both dynamic and tem-
perature errors provides more detailed characterizations of model misrepre-
sentations than any error on its own. This can be used to select the model
best suited to a specific representation task.

6.3.3 . Case of extreme temperature events in France
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Wenow consider extreme temperature events and compute the dynamic and
temperature errors associated with Heatwaves and Cold Spells. When con-
sidering extreme events, we are only interested in the components of error
specific to the extreme events. Indeed, the biases of the general case were al-
ready examined previously. We want to examine the biases that are specific
to extremes. Therefore, we eliminate the average bias, as shown in figure 6.14.
This error specific to extreme temperature events is called the anomalous er-
ror. We define the anomalous dynamic error Em,r

X,ex similarly for Heatwaves
and Cold Spells following equation 6.7.

Em,r
X,ex =

K∑
k=1

|⟨⟨ck(Pm,r)⟩⟩ − ⟨⟨ck(P )⟩⟩| − Em,r
X (6.7)

The anomalous temperature error Em,r
T ,ex is defined for Heatwaves and Cold

Spells, for run r of modelm following equation 6.8.
Em,r

T ,ex =
〈〈
Tm,r

〉〉
−
〈〈
T
〉〉
− Em,r

T (6.8)

In each remaining figure in this chapter, the dynamic and temperature errors
represented will be the anomalous errors defined above. The average errors
studied in figure 6.14 are eliminated. However, we note that the general con-
clusions reported below did not change when these errors were taken into
account.
Figure 6.15 showsmodel anomalous temperature error againstmodel anoma-
lous dynamic error in the case of Cold Spells occurring in France.
Model internal variability is higher in the cold extreme case than in the gen-
eral case, both for dynamic and temperature error. There are three distinct
clusters in the error plane, separated by gaps larger than internal model vari-
abilities. One cluster corresponds to CanESM5. It is the model with the high-
est dynamic error, and has a high temperature error. A second cluster cor-
responds to ACCESS-ESM1.5. ACCESS-ESM1.5 has the highest temperature
error. Its overestimates Cold Spell temperatures by more than 1.5°C on av-
erage. ACCESS-ESM1.5 dynamic error is comparable to that of MIROC6, and
both aremade inmajority on the samemotif (Greenlandhigh). The last cluster
consists of twomodels, IPSL-CM6A-LR andMIROC6. With the general bias re-
moved, the temperature value from reanalysis is within the internal variability
of both thesemodels. They are also associatedwith the lowest dynamic error.
This cluster appears to be closest to reanalysis. On average, IPSL-CM6A-LR
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Figure 6.15 – Run-average temperaturemodel error (average temperature dif-ferencewith reanalysis) onCold Spells in France, versus run-average dynamicmodel error (average motif weights difference with reanalysis) on same ex-tremes. We eliminate the errors computed in the general case, so as to lookonly at errors specific to extreme events. The colored dots indicate the aver-age of all runs of amodel. Each number corresponds to themotif contributingthemost to the dynamic error in a given run. The twomost frequent suchmo-tifs for each model are displayed on the right.

has a slightly lower dynamic error than MIROC6, but the difference is lower
than internal variability.
The Greenland high (motif 3) is the least well representedmotif on more than
80% of MIROC6 and ACCESS-ESM1.5 runs, as well as 45% of IPSL-CM6A-LR
runs. However this does not necessarily indicate a major model error in the
local atmospheric circulation during Cold Spells. The relative error on Green-
landhighweight is small (see figure 5.11). The significant contributionmay sim-
ply reflect the predominance of the motif in the composition of Cold Spells.
In contrast, for a majority of CanESM5 runs, as well as 24% of IPSL-CM6A-LR
runs, the largest contribution to dynamic error is due to the Cyprus low (mo-
tif 10). The Cyprus low is not a particularly dominant motif, but one on which
models make a significant relative error (75% on median, see figure 5.11). This
suggests amajor flaw in themodel representation of local circulation over the
Mediterranean, specific to Cold Spells.
In figure 6.16, we plot model anomalous temperature error against model
anomalous dynamic error in the case of Heatwaves occurring in France.
Internal model variability for Heatwaves is similar to the Cold Spell case.
However, both temperature and dynamic errors associated with the models
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Figure 6.16 – Run-average temperature model error (average temperaturedifference with reanalysis) on Heatwaves in France, versus run-average dy-namicmodel error (averagemotif weights differencewith reanalysis) on sameextremes. We eliminate the errors computed in the general case, so as to lookonly at errors specific to extreme events. The colored dots indicate the aver-age of all runs of amodel. Each number corresponds to themotif contributingthemost to the dynamic error in a given run. The twomost frequent suchmo-tifs for each model are displayed on the right.

are closer, so that in error plane, the regions occupied by each model are
overlapping. The models are not separated into distinct clusters in this case.
All four models are associated with temperature errors between +1.0 and
+2.5°C - as these biases are all positive, they cannot be removed by the use of
ensemblemethods. Still, some differences can bemade between themodels.
CanESM5 has the lowest of both types of error on average, and IPSL-CM6A-
LR the highest, but the differences are lower thanmodel internal variabilities.
In addition, motifs that contribute themost to dynamic error vary significantly
more from run to run than for both the general and Cold Spells cases. In par-
ticular, no motif is the highest contributor to the error in more than 50% of
runs of any model. The Central European high (motif 20) appears frequently
as the highest contributor to the error in runs of bothMIROC6 and ACCESS-
ESM1.5. The Scandinavian anticyclone (motif 4) is the largest error contribu-
tions in multiple runs of IPSL-CM6A-LR, MIROC6 and CanESM5. However,
both the Central European high and the Scandinavian anticyclone are dom-
inant motifs in Heatwaves, so their presence does not necessarily reflect a
significant bias in the models. To sum up, all models appear to perform com-
parably for the representation of heat waves.
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6.3.4 . Case of extreme temperature events in Italy
We now look atmodel errors on extreme events occurring in a different coun-
try. Italy was chosen as its extreme temperature events are known to be-
have differently than that of France (see chapter 5). Figure 6.17 shows model
anomalous temperature error againstmodel anomalous dynamic error in the
case of Cold Spells occurring in Italy.

Figure 6.17 – Run-average temperaturemodel error (average temperature dif-ference with reanalysis) on Cold Spells in Italy, versus run-average dynamicmodel error (average motif weights difference with reanalysis) on same ex-tremes. We eliminate the errors computed in the general case, so as to lookonly at errors specific to extreme events. The colored dots indicate the aver-age of all runs of amodel. Each number corresponds to themotif contributingthemost to the dynamic error in a given run. The twomost frequent suchmo-tifs for each model are displayed on the right.

Temperature error reaches higher values than in the case of France, up to
+3°C for CanESM5, and −2°C for MIROC6. Each model is associated with
its own cluster in the error plane in the case of Italian Cold Spells. IPSL-
CM6A-LR is the cluster associated with lowest average temperature error.
It is tied for lowest dynamic error with MIROC6, although the internal vari-
ability of this second one reaches higher. MIROC6 is the only model to un-
derestimate the Cold Spell temperature, with a temperature error between
−1°C and−2°C. ACCESS-ESM1.5 has higher average dynamic error than IPSL-
CM6A-LR, however, their internal variabilities are overlapping for this error.
ACCESS-ESM1.5 is associated with a temperature error 1° higher than IPSL-
CM6A-LR. CanESM5 is associated with both highest temperature error, be-
tween +2°C and +3°C, and highest dynamic error.
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The Scandinavian anticyclone (motif 4) concentrates the highest dynamic er-
ror on 30% of IPSL-CM6A-LR runs, 37% of ACCESS-ESM1.5 runs, and 56% of
CanESM5 runs. The Cyprus low (motif 10) also plays an important role, being
the worst offender in 54% of IPSL-CM6A-LR runs and 44% of CanESM5 runs,
despite its major influence on error in the general case being ignored. Once
again, the motifs contributing the most toMIROC6 dynamic errors are differ-
ent motifs than the other models. In 72% of runs, it is the central European
high. The Scandinavian anticyclone and central European high are dominant
motifs in Cold Spells occurring in Italy. These error do not demonstrate a bias
in the model. The Cyprus low, however, has lower average weight. There-
fore, the fact that it is the largest contributor to dynamic error in some runs
demonstrates a bias in the representation of the atmospheric circulation spe-
cific to extreme cold in Italy. With the exception ofMIROC6, temperature and
dynamic error are in general agreement regarding the rankings of model per-
formance.
Figure6.18 showsmodel anomalous temperature error againstmodel anoma-
lous dynamic error in the case of Heatwaves occurring in Italy.

Figure 6.18 – Run-average temperaturemodel error (average temperature dif-ference with reanalysis) on Heatwaves in Italy, versus run-average dynamicmodel error (average motif weights difference with reanalysis) on same ex-tremes. We eliminate the errors computed in the general case, so as to lookonly at errors specific to extreme events. The colored dots indicate the aver-age of all runs of amodel. Each number corresponds to themotif contributingthemost to the dynamic error in a given run. The twomost frequent suchmo-tifs for each model are displayed on the right.

In the case of Heatwaves occurring in Italy, we observe two well-separated
cluster: one containing only MIROC6, and another cluster regrouping the
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three other models. Internal model variability on dynamical error is higher
in this case than in all the other extreme events considered thus far. The
MIROC6 cluster is characterized by high temperature error, around +7°C on
average. It is the model with the lowest average dynamic error. IPSL-CM6A-
LR, ACCESS-ESM1.5 and CanESM5 are characterized by similar, overlapping
ranges of dynamic error, with IPSL-CM6A-LR being slightly higher on average.
While there is also overlap in the ranges of temperature errors, the ranking
can unequivocally be established. In increasing temperature error order, it is
CanESM5, IPSL-CM6A-LR, and ACCESS-ESM1.5.
The Icelandic low (motif 15) contributes the most to dynamic error in most of
IPSL-CM6A-LR runs and 36% of MIROC6 runs. The Greenland high (motif 3)
concentrates the most error in a fourth of MIROC6 runs, a fifth of ACCESS-
ESM1.5 runs, and a third of CanESM5 runs. High representation errors on
the Greenland high do not necessarily signify a major bias in the models, as
the error could simply be due to the high values of average weight. However,
the representation error on the Icelandic low indicates a model bias on the
representation of circulation at the north of Europe, specifically during Heat-
waves occurring in Italy. Preselection of the best suited model in this case is
not obvious. It can depend on whether accurate event intensity, or accurate
circulation patterns aremore valued. However, dynamic representation plays
amuch weaker role than temperature representation in the discrimination of
models for this type and location of extremes.

6.3.5 . Link between the two errors

As was established in the previous subsections, there are cases where dy-
namic and temperature errors are in agreement regardingmodel representa-
tion performance rankings, and caseswhere they are not. Wewill nowexplore
the correlations between the two types of model errors to determine their re-
lationship in different extreme events. Since temperature error arises from
two sources — dynamic and temperature misrepresentation — a correlation
between these errors could suggest a causal link from dynamic misrepresen-
tation to temperature misrepresentation.
We compute the Pearson correlation coefficient (see equation 4.4) between
the absolute value of temperature error and dynamic error, using each run of
each model as a realization of the two variables. This is done in the general
case. For extreme cold and heat event in each of the 6 considered countries,
we compute the correlation between the absolute value of the anomalous
temperature error, and the anomalous dynamic error. The results are shown
in table 6.2
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General case 0.52

Cold Spells HeatwavesFrance 0.41 0.29Germany 0.48 0.30Poland 0.29 0.03Italy 0.61 -0.45Spain 0.60 0.22UK 0.50 0.05
Table 6.2 – Correlations between temperature error and dynamic er-ror, in absolute value, in the general case and in extreme temperatureevents in six European countries. When considering extreme events,only the anomalous error, excluding the average error observed in thegeneral case, is considered.

In most cases, we observe a positive, but partial correlation between the two
types of error. Here, we are particularly interested in the correlations between
themisrepresentations of the differential of temperature and circulation spe-
cific to extreme, as measured by the anomalous error metrics in the extreme
event cases. To begin with, we observe that correlation is systematically lower
forHeatwaves than forCold Spells. Thismeans that dynamic aspects are less
relevant to the errormodelsmake on extreme temperature values, or at least
the surface level circulation dynamics described by SLP anomalies. Thismeans
that surface-level circulation plays less of a role in extreme heat temperature
events that in extreme cold temperatures.
We find a correlation close to zero for Heatwaves in Poland and the UK. This
indicates that errors in SLP anomaly have little to no bearing on themisrepre-
sentation of extreme heat temperature in those countries. This can indicate
that errors in temperature are mostly due to thermodynamic misrepresenta-
tion, or at the very least that atmospheric circulation at surface level is not rel-
evant to these kinds of extremes. Cold Spells in Italy and Spain have the high-
est level of correlation between anomalous temperature error and anoma-
lous dynamic error. This implies that misrepresentation of atmospheric cir-
culation at the surface level is an important reason why models make errors
on the temperature differenceswith the general case. The case ofHeatwaves
in Italy is the only one where the correlation coefficient is negative. The posi-
tion of MIROC6, with very large temperature error and lower dynamic error
that other models, increases this effect - whithout MIROC6, which is an out-
lier in this case, the correlation would be of -0.15. Nevertheless, this too would
indicate that misrepresentation of surface level circulation patterns is not the
cause of the temperature errors.
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6.4 . Summary

In this chapter, we define additional criteria to represent model errors in a
higher-dimensional space. This is used to extract discriminating features from
the data, with the goal of improving the evaluation of the models, in partic-
ular with respect to the representation of extreme events. Two analysis pro-
tocols are explored. One corresponds to a more detailed analysis of the av-
erage motif weight, which is factorized into a frequency and an intensity con-
tribution using a robust measure of motif intermittency. The large spread in
motif frequencies makes it possible to identify specific motifs contributing to
the extreme events, such as the UK high and the Scandinavian anticyclones
for Cold Spells, or the central European high for Heatwaves in the case of
France. Model errors can be evaluated separately on intensities and frequen-
cies, providing additional insight on model mis-representation of circulation.
In the general data case, a clear correlation is observed between the average
weight of the motif and its intensity, but this is not the case for the frequency.
However, for extreme events, the intensities and frequencies of events are
both well correlated with the average weight, particularly for cold spells.
The second protocol consists in taking into account both dynamic and tem-
perature errors. Differences betweenmodel synoptic configuration in reanal-
yses and models can be used to define a global dynamic error. But models
can also be evaluated based on the temperature error, which corresponds
to the difference between the average temperature observed in reanalysis
and that predicted by the models. By extracting which motif contributes the
most to the total dynamic error, and by comparing the dynamic error with
the temperature error, it is possible to characterize model errors. We show
that the conjunction of these two model evaluation metrics can discriminate
between the performances of the models, especially in the general and Cold
Spell cases. This can be used as a mean to pre-select models that are best
suited to faithfully represent specific types of extreme events.
Moreover, model temperature error can have two possible sources, misrep-
resentation of dynamic processes, or misrepresentation of thermodynamic
processes. By studying the correlation betweenmodel temperature error and
model dynamic error, we can estimate in each case howmuch of the temper-
ature error is due to the dynamic error as wemeasure it. In particular, we find
that the two error metrics are correlated in the case of Cold Spells occurring
in Italy, which would point toward a causality link. On the other hand, there
is little correlation observed in the case of Heatwaves in Italy, indicating that
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the model misrepresentation of temperature is not due to the misrepresen-
tation of low-altitude circulation. However, we note that our definition of the
dynamic error is based on the surface level atmospheric circulation described
by SLP anomalies. Therefore, this assessment is only valid for low-altitude cir-
culation.
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Conclusion

Summary and main results

The stated goal of this thesis research project was to devise a protocol for
locally evaluating model representation of atmospheric circulation. In this
work, we have developed methodologies to evaluate climate models by
comparing learned representations of the model atmospheric circula-
tion with those of reanalysis data. We have chosen to work with Sea Level
Pressure (SLP), which specifically represents atmospheric circulation close to
the surface. Latent Dirichlet Allocation (LDA), a machine learning tool from
natural languageprocessing, was used to extract local latent information from
climate data related to atmospheric circulation. We explored various ways in
which this latent information could be used to characterize atmospheric cir-
culation within a dataset and develop methods for model evaluation. These
evaluation methods were applied to four General Circulation Models (GCM)
from theCMIP6project - IPSL-CM6A-LR,MIROC6,ACCESS-ESM1.5 andCanESM5-
to evaluate their representation of atmospheric circulation, both generally
and specifically for extreme temperature events (Heatwaves andCold Spells)
in several European countries. We were thus able to identify biases in the
models, in both the general case, as well as for extreme events. Some of the
biases were shared by all models, while others were model-specific. Below,
we summarize the main findings of our work.
The LDA technique could be adapted to identify a common basis of local-
ized synoptic objects to represent SLP maps from any dataset. The data
representation provided by LDA is low-dimensional, local and physically
interpretable. LDA is an unsupervised learning method developed for topic
modelling in natural language processing. In its original version, it takes as
input a corpus of text documents, all defined only by their word counts (and
ignoring their order), and extracts from them a set of latent variables called
topics, which are distributions over the set of possible words. Each document
is then associatedwith a topic composition, thus providing soft clustering. The
method was adapted for SLPmaps, which represents atmospheric circulation
close to the surface. We focused on the European and North-Atlantic region
and have considered daily maps from the period of ∼ 1950-2010. When ap-
plied to SLP from any dataset, LDA yields a basis of motifs which are localized
objects at synoptic scale. These motifs are physically interpretable, as they
can be recognized as synoptic objects such as cyclones and anticyclones. La-
tent variables, or weights, describing the motif composition can be obtained
from any SLP anomaly map. Furthermore, the motif compositions of maps
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are sparse, so that each map is characterized by a few motifs. Therefore, in
addition to being a dimensionality reduction method, LDA also provides an
accessible physical interpretation to the motif weights.
Extreme events can be associated with characteristic synoptic config-
urations. LDA motif weights can be used to characterize the atmospheric
circulation in a dataset. In particular, we use the average weight of eachmotif
in a dataset as a characterization of its synoptic configuration. This allows us
to measure differences between the atmospheric circulation patterns associ-
ated with extreme temperature events, and the general average circulation.
As an example, we have found that cold extremes in a country are generally
associated with a wide anticyclonic structure at the north of the country, and
a cyclonic structure at the south. The synoptic patterns vary per country, as
shown in the case of Italy, which show little to no southern anticyclonic struc-
ture, and the UK, which shows an intense cyclonic structure. These obser-
vations can be directly obtained from the motif weights and given a physical
interpretation.
Models can be evaluated and compared with each other, based on syn-
optic configurations. By comparing synoptic configurations in a model with
reanalysis data, we can evaluate the model representation of atmospheric
circulation. This evaluation method can be applied to general data over the
whole domain, but also to the subset of maps associated with a Cold Spell or
Heatwave occurring in a specific region. The motif representation provides
a local assessment of the error, and makes it possible to identify common or
model-specific sources of errors in the model. Among the results, we note
that:

• All models misrepresent circulation around the Mediterranean re-
gion. Using the previously defined methodology, we were able to iden-
tify biases in the fourmodels we have studied: IPSL-CM6A-LR,MIROC6,
ACCESS-ESM1.5 andCanESM5. Someof these biasesweremodel-specific,
and therefore can be eliminated using multimodel ensemble methods.
Other biases, however, were shared by all fourmodels. In particular, we
have found that everymodel systematically overestimates the presence
of cyclones and anticyclones located over the Mediterranean.

• Models use different recipes than reanalyses for extreme temper-
ature events. Model representation errors are several times higher
when studying specifically extreme temperature events. While that varies
on a model-to-model basis, synoptic configurations associated with ex-
treme temperature events are substantially different from results in
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ERA5. This implies that models cause extreme temperatures using dif-
ferent patterns of circulation, on average.

Further characterization can be obtained by higher-dimensional repre-
sentations, at both a local and global level.

• Locally, each average weight can be decomposed as the product of
a characteristic frequency and an intensity. Each motif is then rep-
resented by an intensity and a frequency, each of which can be com-
pared independently. Representation errors can then be locally mea-
sured for eachmodel, specifically in intensities or frequencies, the latter
being physically interpretable. We find that errors in average weights
are mostly due to intensities in the general case. But during extreme
temperature events, distinct relevant errors are observed on both indi-
cators, allowing for the characterisation of model error in higher detail.
The inter-model variability of those errors is generally higher than the
inner model variability.

• The combination of global dynamic error and global temperature
error in each model run can discriminate model performance in
the general case, and for some extreme events. The global dynamic
error in each model run can be compared with the global temperature
error, and associated with the dominant motif contributing the most to
the error. Studied in conjunction, the two model errors allow for dis-
criminating the performances of the models in the general and Cold
Spell cases. Depending on the country of interest, model generally per-
form similarly on Heatwaves.

• We can estimate the influence of model misrepresentation of cir-
culation on model temperature errors. Comparing the dynamic and
temperature errors makes it possible to estimate the influence of the
model misrepresentation of circulation on the model temperature er-
ror. Temperature errors in models arise from inaccuracies in either the
dynamic or thermodynamic components. By examining the correlation
between dynamic errors and temperature errors, we can estimate how
much of the temperature error is attributable to dynamic factors. This
can be applied to either type of extreme temperature events in any re-
gion. In particular, we have found a strong link between the two in Cold
Spells in Italy, while there is close to no link in the Heatwaves of this
country.

These methodologies can be used for model pre-selection. Each method
of model evaluation we have presented can be used to compare them with

157



each other. By producing rankings based on either global or local criteria,
we can determine which model best represents the specific aspects of atmo-
spheric circulation that each method examines. Therefore, we can determine
which model is best suited to realistically reproduce atmospheric circulation
in a given region, in general or for a specific type of extreme event. This can
be helpful for future studies requiring large amounts of data, as they will be
able to select the models best suited to generate it.

Perspectives

This thesis work concerns the application of a relatively new methodology
to atmospheric sciences. As such, it is still largely exploratory and merely
scratches the surface of its potential uses. Below, we propose several direc-
tions for future research to build upon this work. We divide these potential
developments into two categories: extractingmore information from themo-
tif weights, or exploring application of LDA to different datasets.

Extracting more information frommotif weights
Considering highermoments of theweight distributions.Whenusing LDA
motif weights to characterize atmospheric circulation in a dataset, we have so
far only looked at averages. More information could be obtained by looking at
higher orders of the weight distributions, such as variances. This would pro-
vide a more detailed characterization, and may allow the detection of subtler
biases in model representation of circulation, in general, or during extreme
events.
Studying motif weights as time series. The motifs weights of a dataset
of daily maps form a set of time series. Exploring the properties of these
times series may result in new insight regarding atmospheric circulation in a
dataset. For instance, one could explore whether the motif weights show any
trends, and if so, whether they can be attributed to climate change.
Exploring dynamics of the motif weights. Because of the accessible phys-
ical interpretation, the dynamics of SLP in the reduced space of motif com-
positions could provide interesting insight. In particular, the motif to motif
transfer rates could be explored to determine which motifs tend to follow
after which. With a choice of time step, for example, the 5 days of synoptic
correlation time, a matrix of motif-to-motif transfer rates can be obtained un-
der a stationarity assumption. This would provide synoptic-level information
onmeteorology andwould be applicable to short-term qualitative predictions
by humans, thanks to the sparsity of LDA decomposition. For a less rudimen-
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tary model, the transfer rates could be made to vary by season, or with day
of the year.

Extending the field of application of LDA
Producing rankings of every CMIP6 model to identify internal sources
of error. Without changes to the method, data from additional GCM could
be included in a further study. This would provide a more complete picture
of the performances of CMIP6 models, and therefore give further insight re-
garding which biases are shared and which are model-specific. Furthermore,
exploring in more detail the links between model biases and their resolu-
tions, parametrization schemes, or tuning strategies would help locating the
sources of these biases and finding solutions. Considering additional models
would also provide more complete rankings of their performance, and thus
facilitate the task of model preselection.
Considering other climate variables. This method could also be applied to
variables other than SLP, and thus evaluate model performances on other as-
pects of atmospheric circulation, or climate in general, with little to no changes
to the methodology. As an example, 500 hPa geopotential height (z500) also
contains relevant information on atmospheric circulation, at higher altitude.
Alternatively, LDA could also be applied to temperature data, to extract infor-
mation about the thermodynamics aspects of climate.
Building anLDAmotif basis onmultiple variables, possibly including tem-
poral aspects. In ourmethodology of application for LDA, an input document
was one daily map of SLP anomalies. But it is possible to give LDA daily maps
of several variables simultaneously, as a single document. This would result in
multi-variablemotifs. Similarly, by considering several consecutive dailymaps
as a single document, LDA could learn motifs that include a short temporal
evolution. However, this would require learning a higher amount of motifs. A
limitation of this approach is that it would require a high amount data to con-
verge. 60 years of daily maps may therefore not be sufficient, and combining
several datasets may be mandatory.
Exploringother spatial domains, andotherdefinitions of extremeevents.
We have only applied our model evaluation methods to the north-Atlantic re-
gion, looked only at extremes defined in western European countries, and
consideredonly temperature-related extremes. Without changes to themethod,
more could be learned by applying ourmethodology to other regions, and ex-
ploring any definitions of extreme events that can be automatically detected
in the data.
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Comparing motif bases from different periods. Finally, the time evolution
of the LDA motif basis can be explored. By dividing the input data into a set
of overlapping sub-periods, and computing the LDAmotif basis separately on
each one, a time dependency can be introduced into the motifs themselves.
Corresponding motifs would be recognizable from successive similar bases,
and the progressive evolution - or discrete transformations - of themotifs that
best describe the data could be measured. Then, the question of whether
such changes are attributable to climate change could be explored.
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Figure A.1 – Top: Relative error on average motif weight between models andERA5 reanalysis in the case of Cold Spells occurring in Italy. Bottom: averagemotif weight in the synoptic configuration of ERA5 fields, for Cold Spells andin the general case.

Figure A.2 – Top: Relative error on average motif weight between models andERA5 reanalysis in the case of Heatwaves occurring in Italy. Bottom: averagemotif weight in the synoptic configuration of ERA5 fields, for Heatwaves andin the general case.
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Figure A.3 – Top: Relative error on average motif weight between models andERA5 reanalysis in the case of Cold Spells occurring in Germany. Bottom:average motif weight in the synoptic configuration of ERA5 fields, for Cold
Spells and in the general case.

Figure A.4 – Top: Relative error on average motif weight between models andERA5 reanalysis in the case of Heatwaves occurring in Germany. Bottom:average motif weight in the synoptic configuration of ERA5 fields, for Heat-
waves and in the general case.
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Figure A.5 – Top: Relative error on average motif weight between models andERA5 reanalysis in the case of Cold Spells occurring in Poland. Bottom: aver-age motif weight in the synoptic configuration of ERA5 fields, for Cold Spellsand in the general case.

Figure A.6 – Top: Relative error on average motif weight between models andERA5 reanalysis in the case of Heatwaves occurring in Poland. Bottom: aver-age motif weight in the synoptic configuration of ERA5 fields, for Heatwavesand in the general case.
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Figure A.7 – Top: Relative error on average motif weight between models andERA5 reanalysis in the case of Cold Spells occurring in Spain. Bottom: averagemotif weight in the synoptic configuration of ERA5 fields, for Cold Spells andin the general case.

Figure A.8 – Top: Relative error on average motif weight between models andERA5 reanalysis in the case of Heatwaves occurring in Spain. Bottom: aver-age motif weight in the synoptic configuration of ERA5 fields, for Heatwavesand in the general case.
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Figure A.9 – Top: Relative error on average motif weight between models andERA5 reanalysis in the case of Cold Spells occurring in the UK. Bottom: aver-age motif weight in the synoptic configuration of ERA5 fields, for Cold Spellsand in the general case.

Figure A.10 – Top: Relative error on averagemotif weight betweenmodels andERA5 reanalysis in the case of Heatwaves occurring in the UK. Bottom: aver-age motif weight in the synoptic configuration of ERA5 fields, for Heatwavesand in the general case.
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