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Diego Perdigão Martino

to obtain the degree of | pour obtenir le grade de

Docteur en Informatique

Optimization strategies for the integrated routing and
inventory management problem

Stratégies d’optimisation pour le problème intégré de transport et de gestion de stock
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Abstract

Inventory management and vehicle routing problems are logistic challenges that can
significantly influence the efficiency and effectiveness of supply chain operations and should
be well-coordinated and aligned. Handling both jointly is even more challenging when
considering the number of customers to be served and the length of the time horizon. In
the literature, this problem is known as the Inventory Routing Problem (IRP) and aims to
find a minimum-cost solution that addresses both inventory and transportation problems
simultaneously. The IRP was first introduced in 1983 by Bell et al. and have received a lot
of attention from the OR community so far, which has introduced numerous extensions
and provided datasets to favor research and fair comparisons.

In research, some gaps exist, and the IRP is not an exception. Most works in the
literature so far assume that the fleet of vehicles used for the deliveries is homogeneous
and that the costs associated with product storage and customer needs are constant and
equal over the entire time horizon, which is not in accordance with a real scenario. Also, a
single-item delivery per period is often considered by the formulation, which is clearly not
cost-effective.

This thesis addresses the IRP and introduces a new variant that is closer to a real
logistic scenario by incorporating a heterogeneous vehicle fleet, customer demands, and
inventory holding costs that are period-dependent. Additionally, it considers that customers
may prefer receiving products in batches rather than in single units. For that, a new set
of instances is introduced to handle these new features. This novel variant, named the
Heterogeneous Inventory Routing Problem with Batch Size (HIRP-BS), is studied using
three approaches.

The first one is a mathematical formulation that extends a flow formulation initially
designed to handle the HIRP-BS characteristics. New variables and constraints are then
required to consider the new incorporated features. Not surprisingly, the formulation is
not capable of handling large-scale instances and even the medium-scale ones are hard to
solve in a timely manner.

The second method is an iterative algorithm which decomposes the original IRP into as
many sub-problems as periods of time are considered. The idea is to solve the sub-problems
in chronological order such that at each iteration (except for the first, which corresponds
to the first period), it uses the solution obtained in the previous as a starting point for
the current one. The changes are limited by an input parameter to accelerate convergence.
The overall idea is that for a given period, the following iterations should require smart
modification of the previous solutions of the partial problem already solved and that the
number of changes should decrease once it approaches the end of the time horizon.

The third method is a split-based metaheuristic that decomposes a multi-period sequence
of customers, called a giant tour, into routes that are assigned to a period and a vehicle
type. The contribution leads to a new multi-period Split algorithm. It starts with the
computation of the estimated quantities and periods for the replenishment, assuming the
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delivery operations at the latest possible moment. It allows the definition of a giant tour
that is evaluated through a Split algorithm responsible for defining feasible solutions for the
problem. Then, a local search mechanism dedicated to the routing problem takes advantage
of classical route-based operators. Lastly, a post-optimization phase is considered, and
slightly improve solution quality in terms of inventory and routing aspects based on a
solution distance notion. Results are promising in terms of convergence and can provide
valid upper bounds in a reasonable time even for the large-scale instances proposed.

Key-words : Logistics · Inventory management · Vehicle routing · Inventory Routing
· Mixed Integer Linear Programming · Metaheuristic · Split algorithm

6



Résumé

Les problèmes de gestion de stock et de routage de véhicule sont des défis logistiques qui
peuvent influencer de manière significative l’efficacité et l’efficience des opérations de la
châıne logistique et doivent être bien coordonnées et alignées. Les gérer conjointement est
encore plus difficile lorsqu’on prend en compte le nombre de clients à servir et la durée de
l’horizon de temps. Dans la littérature, ce problème est connu sous le nom de Inventory
Routing Problem (IRP) et vise à trouver une solution de coût minimum qui traite les
problèmes de stock et de transport simultanément. L’IRP a été introduit pour la première
fois en 1983 par Bell et al. et a attiré jusqu’à présent l’attention de la communauté RO,
qui a introduit de nombreuses extensions et fourni des données pour favoriser la recherche
et les comparaisons justes.

En recherche, certaines lacunes existent, et l’IRP n’est pas une exception. La plupart
des travaux existants supposent que la flotte de véhicules utilisée pour les livraisons est
homogène et que les coûts associés au stockage des produits et aux besoins des clients sont
constants et égaux tout au long de l’horizon, ce qui ne correspond pas à un scénario réel.
De plus, la livraison d’un seul produit par période est souvent considérée, ce qui n’est pas
rentable.

Cette thèse aborde l’IRP et introduit une nouvelle variante qui est plus proche d’un
scénario logistique réel en incorporant une flotte de véhicules hétérogène, des demandes de
clients et des coûts d’inventaire dépendants des périodes. De plus, on considère que les
clients préfèrent recevoir des produits en lots plutôt qu’à l’unité. Pour cela, un nouveau
jeu d’instances est introduit pour prendre en compte ces nouvelles caractéristiques. Cette
variante, appelée Heterogeneous Inventory Routing Problem with Batch Size (HIRP-BS),
est étudiée en utilisant trois approches.

La première est un modèle mathématique qui étend une formulation de flux existante
pour incorporer les caractéristiques du HIRP-BS. De nouvelles variables et contraintes sont
alors nécessaires pour cela. Il n’est pas surprenant que la formulation ne soit pas capable
de résoudre les instances à grande échelle et que même celles à échelle moyenne soient
difficiles à résoudre dans un temps raisonnable.

La deuxième méthode proposée est un algorithme itératif qui décompose l’IRP en
autant de sous-problèmes que de périodes. Le but est de résoudre les sous-problèmes dans
l’ordre chronologique et à chaque itération (à l’exception de la première, correspondant à
la première période), d’utiliser la solution obtenue précédemment comme point de départ
pour la période actuelle. Les changements sont limités par un paramètre d’entrée pour
accélérer la convergence. L’idée générale est que pour une période donnée, les itérations
suivantes devraient nécessiter de modifications intelligentes des solutions précédentes et que
le nombre de changements devrait diminuer à mesure qu’on approche de la fin de l’horizon.

La troisième méthode est une métaheuristique basée sur un algorithme split qui
décompose une séquence multi-période de clients, appelée tour géant, en routes qui sont
attribués à une période et à un type de véhicule. L’algorithme débute par le calcul des
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quantités estimées et des périodes pour le réapprovisionnement, en supposant les opérations
de livraison au dernier moment. Il permet la définition d’un tour géant qui est évalué
à l’aide d’un algorithme split responsable pour définir des solutions réalisables pour le
problème. Ensuite, un mécanisme de recherche locale dédié au problème de routage utilise
les opérateurs classiques basés sur les routes. A la fin, une phase de post-optimisation
est considérée, améliorant la qualité de la solution en termes de stock et transport, basée
sur une notion de distance. Les résultats sont prometteurs en termes de convergence et
peuvent fournir des bornes supérieures valides dans un délai raisonnable, même pour les
instances à grande échelle.

Mots-clés : Logistique · Gestion de stock · Routage de véhicules · Inventory Routing ·
Mixed Integer Linear Programming · Métaheuristique · Algorithme split
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Resumo

Os problemas de gestão de estoque e de roteamento de véıculos são desafios loǵısticos que
podem influenciar significativamente a eficiência e a eficácia das atividades da cadeia de
suprimentos e precisam estar bem coordenadas e alinhadas. Tratar ambos simultaneamente
é ainda mais desafiador quando se considera o número de clientes a serem servidos e o
tamanho do horizonte temporal. Na literatura, este problema é conhecido como Inventory
Routing Problem (IRP) e objetiva encontrar uma solução de custo mı́nimo considerando
ambos os problemas de gestão de estoque e transporte concomitantemente. O IRP foi
tratado pela primeira vez em 1983 por Bell et al. e recebeu muita atenção da comunidade
de PO, o que motivou o estudo de novas extensões e conjuntos de dados que possam
favorecer os estudos e estabelecer comparações justas.

Gaps existem na literatura e o IRP não é uma exceção. A maioria dos trabalhos da
literatura assumem que a frota de véıculos usada para as entregas é homogênea e que
os custos associados com o armazenamento de produtos e as demandas dos clientes são
constantes e iguais em todo o horizonte de tempo, o que não representa um cenário real.
Também, as formulações existentes consideram a entrega de um único item por peŕıodo, o
que não é viável em termos de custos.

Esta tese aborda o IRP e introduz uma nova variante que se aproxima de um cenário
loǵıstico real, incorporando uma frota de véıculos heterogênea e demandas dos clientes
e custos de inventário dependentes dos peŕıodos. Além disso, considera que os clientes
preferem que as entregas sejam feitas em batches ao invés de um único item. Para isso,
um novo conjunto de instâncias é apresentado para considerar essas novas caracteŕısticas.
Essa nova variante, chamada Heterogeneous Inventory Routing Problem with Batch Size
(HIRP-BS), é estudada utilizando três abordagens.

A primeira é uma formulação matemática que estende uma formulação de fluxo da
literatura a fim de tratar o HIRP-BS. Novas variáveis e restrições são necessárias para
considerar as novas caracteŕısticas. Sem surpresas, a formulação não é capaz de resolver
instâncias de grande porte e mesmo as de médio porte são dif́ıceis de serem resolvidas em
tempo hábil.

A segunda é um algoritmo iterativo que decompõe o problema original em subproblemas
de acordo com a quantidade de peŕıodos considerados. O objetivo é de resolver os
subproblemas em ordem cronológica e, a cada iteração (exceto para a primeira que
corresponde ao primeiro peŕıodo), utilizar a solução obtida na iteração precedente como
ponto de partida para a atual. Mudanças na solução são limitadas por um parâmetro a
fim de acelerar a convergência do método. Globalmente, para cada peŕıodo, as iterações
seguintes necessitam de mudanças inteligentes em relação às soluções anteriores que já
resolvidas e que o numero de mudanças deve diminuir à medida em que se aproxima do
final do horizonte temporal.

A terceira abordagem é uma metaheuŕıstica acoplada a um algoritmo de tipo split que
decompõe uma sequência multi-peŕıodo de clientes, chamada giant tour, em rotas que são
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atribúıdas a um peŕıodo e a um tipo de véıculo. O algoritmo se inicia com a definição
das quantidades estimadas a serem entregues e os respectivos peŕıodos, considerando que
estas acontecerão no peŕıodo mais tarde posśıvel. Isso permite a definição do giant tour
que é avaliado através do algoritmo split e responsável por construir soluções viáveis para
o problema. Em seguida, mecanismos de busca local dedicados à parte de roteamento
considera operadores clássicos aplicados às rotas. Por fim, uma etapa de pós otimização
permite melhorar a qualidade das soluções em termos de gestão de estoque e roteamento
baseados na noção de distância. Os resultados são promissores em termos de convergência
e podem definir Upper bounds validos em tempo hábil mesmo para as instâncias de grande
porte.

Palavras-chave : Loǵıstica · Gestão de estoque · Roteamento de véıculos · Inventory
Routing · Mixed Integer Linear Programming · Metaheuŕıstica · Algoritmo split
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4.11 Méthode itérative sur périodes . . . . . . . . . . . . . . . . . . . . . . . . . 140
4.11.1 Résultats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

A Instances examples 143
A.1 Classical IRP instance example . . . . . . . . . . . . . . . . . . . . . . . . . 143

A.1.1 How to read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
A.1.2 Example file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

A.2 New benchmark IRP instance example . . . . . . . . . . . . . . . . . . . . . 145

13



A.2.1 How to read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
A.2.2 Example file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

B IRP extended results 148
B.1 Tables description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

B.1.1 3-period instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
B.1.2 6-period instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

C HIRP-BS extended results 164
C.1 Tables description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

C.1.1 Small-scale instances . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
C.1.2 Medium-scale instances . . . . . . . . . . . . . . . . . . . . . . . . . 170
C.1.3 Large-scale instances . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

D HIRP-BS convergence analysis 182

Acronyms 185

Bibliography 187

14



List of tables

1.1 Customer inventory level calculation example . . . . . . . . . . . . . . . . . 27
1.2 Supplier inventory level calculation example . . . . . . . . . . . . . . . . . . 29
1.3 X and Y localization coordinates . . . . . . . . . . . . . . . . . . . . . . . . . 40
1.4 Distance matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
1.5 Supplier inventory calculation . . . . . . . . . . . . . . . . . . . . . . . . . . 42
1.6 Customer 1 inventory calculation . . . . . . . . . . . . . . . . . . . . . . . . 42
1.7 Customer 2 inventory calculation . . . . . . . . . . . . . . . . . . . . . . . . 42
1.8 Customer 3 inventory calculation . . . . . . . . . . . . . . . . . . . . . . . . 42
1.9 Customer 4 inventory calculation . . . . . . . . . . . . . . . . . . . . . . . . 42
1.10 Customer 5 inventory calculation . . . . . . . . . . . . . . . . . . . . . . . . 42
1.11 Bibliography synthesis on the IRP papers contributions . . . . . . . . . . . 51
1.12 Overview on the IRP versions and approaches . . . . . . . . . . . . . . . . . 55

2.1 Sets, data and variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
2.2 Description of sets, data and variables . . . . . . . . . . . . . . . . . . . . . 64
2.3 Literature instances characteristics . . . . . . . . . . . . . . . . . . . . . . . 69
2.4 Comparison of instance features . . . . . . . . . . . . . . . . . . . . . . . . . 69
2.5 Sets of instances for the HIRP-BS . . . . . . . . . . . . . . . . . . . . . . . 71
2.6 Results for the classical IRP set . . . . . . . . . . . . . . . . . . . . . . . . . 73
2.7 Results for the small HIRP-BS instances set . . . . . . . . . . . . . . . . . . 74
2.8 Results for the medium HIRP-BS instances set . . . . . . . . . . . . . . . . 75
2.9 Results for the large HIRP-BS instances set . . . . . . . . . . . . . . . . . . 76

3.1 Results for the classical IRP instances . . . . . . . . . . . . . . . . . . . . . 83
3.2 Results for ∆ = 50 and 3 vehicles . . . . . . . . . . . . . . . . . . . . . . . . 84
3.3 Results for ∆ = 50 and 3 vehicles . . . . . . . . . . . . . . . . . . . . . . . . 84
3.4 Results for ∆ = 50 and 2 vehicles . . . . . . . . . . . . . . . . . . . . . . . . 85
3.5 Results for ∆ = 50 and 2 vehicles . . . . . . . . . . . . . . . . . . . . . . . . 85
3.6 Results for |T | = 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.7 Results for |T | = 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.1 Metaheuristic parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
4.2 Results on the high cost instances from Archetti et al. (2007) . . . . . . . . 122
4.3 Results for the small-scale instances . . . . . . . . . . . . . . . . . . . . . . 123
4.4 Gaps for the small-scale instances . . . . . . . . . . . . . . . . . . . . . . . . 124
4.5 Results for the medium-scale instances . . . . . . . . . . . . . . . . . . . . . 125
4.6 Gaps for the medium-scale instances . . . . . . . . . . . . . . . . . . . . . . 127
4.7 Results for the large-scale instances . . . . . . . . . . . . . . . . . . . . . . . 128
4.8 Gaps for the large-scale instances . . . . . . . . . . . . . . . . . . . . . . . . 128

15



B.1 Literature instances characteristics . . . . . . . . . . . . . . . . . . . . . . . 148
B.2 IRP results for 3 periods, 1 vehicle . . . . . . . . . . . . . . . . . . . . . . . 149
B.3 IRP results for 3 periods, 2 vehicles . . . . . . . . . . . . . . . . . . . . . . . 151
B.4 IRP results for 3 periods, 3 vehicles . . . . . . . . . . . . . . . . . . . . . . . 153
B.5 IRP results for 3 periods, 4 vehicles . . . . . . . . . . . . . . . . . . . . . . . 155
B.6 IRP results for 3 periods, 5 vehicles . . . . . . . . . . . . . . . . . . . . . . . 157
B.7 IRP results for 6 periods, 1 vehicle . . . . . . . . . . . . . . . . . . . . . . . 159
B.8 IRP results for 6 periods, 2 vehicles . . . . . . . . . . . . . . . . . . . . . . . 160
B.9 IRP results for 6 periods, 3 vehicles . . . . . . . . . . . . . . . . . . . . . . . 161
B.10 IRP results for 6 periods, 4 vehicles . . . . . . . . . . . . . . . . . . . . . . . 162
B.11 IRP results for 6 periods, 5 vehicles . . . . . . . . . . . . . . . . . . . . . . . 163

C.1 (S) UB and metaheuristic comparison . . . . . . . . . . . . . . . . . . . . . 166
C.2 (S) RL and metaheuristic comparison . . . . . . . . . . . . . . . . . . . . . . 167
C.3 (S) UB and metaheuristic time to target comparison . . . . . . . . . . . . . 168
C.4 (S) UB. RL and metaheuristic overview metrics . . . . . . . . . . . . . . . . 169
C.5 (M) RL and metaheuristic comparison . . . . . . . . . . . . . . . . . . . . . 170
C.6 (M) UB and metaheuristic time to target comparison . . . . . . . . . . . . . 174
C.7 (M) RL and metaheuristic overview metrics . . . . . . . . . . . . . . . . . . 177
C.8 (L) RL and metaheuristic comparison . . . . . . . . . . . . . . . . . . . . . 179
C.9 (L) UB and metaheuristic time to target comparison . . . . . . . . . . . . . 180
C.10 (L) LR and metaheuristic overview metrics . . . . . . . . . . . . . . . . . . 181

16



List of figures

1.1 3-period IRP representation . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.2 Inventory level evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.3 Customer delivered quantities . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.4 Customer inventory level example . . . . . . . . . . . . . . . . . . . . . . . . 28
1.5 Supplier production capacity . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.6 Supplier production capacity . . . . . . . . . . . . . . . . . . . . . . . . . . 30
1.7 Supplier inventory level update . . . . . . . . . . . . . . . . . . . . . . . . . 31
1.8 Anticipated inventory level . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
1.9 Saving cost delivery anticipation . . . . . . . . . . . . . . . . . . . . . . . . 32
1.10 ML replenishment policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
1.11 OU replenishment policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
1.12 ZIO replenishment policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
1.13 BS replenishment policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
1.14 Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
1.15 Alternation between search spaces (adapted from Prins et al. 2014) . . . . . 48

2.1 Example of a triangle inequality not verified . . . . . . . . . . . . . . . . . . 73

3.1 Iterative heuristic idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.2 The iterative heuristic search space evolution . . . . . . . . . . . . . . . . . 79

4.1 Schema of the SEMPO algorithm . . . . . . . . . . . . . . . . . . . . . . . . 91
4.2 Split algorithm general idea . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.3 Gain in routing cost when applying a λ probability . . . . . . . . . . . . . . 96
4.4 Customers placement into Γ . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.5 Labels propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.6 Addition of customer Γj+3 in the route . . . . . . . . . . . . . . . . . . . . . 105
4.7 Addition of customer Γj+3 in the route . . . . . . . . . . . . . . . . . . . . . 106
4.8 Delivery anticipation when adding an already visited customer . . . . . . . 106
4.9 Retrieving the critical path . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
4.10 Walks on the solutions search space . . . . . . . . . . . . . . . . . . . . . . . 109
4.11 Swap mutation operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
4.12 2-OPT inter routes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
4.13 2-OPT intra routes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
4.14 Insertion inter routes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
4.15 Insertion intra routes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
4.16 Post-optimization search schema . . . . . . . . . . . . . . . . . . . . . . . . 120
4.17 Small-scale instances SEMPO convergence . . . . . . . . . . . . . . . . . . . 124

17



List of algorithms

1 Split for the CVRP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2 Iterative algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3 Right-shift quantities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4 Left-shift quantities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5 Customers sequencing in the giant tour . . . . . . . . . . . . . . . . . . . . . 98
6 Split algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
7 Evolutionary Local Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
8 Mutation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
9 2-OPT inter routes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
10 2-OPT intra routes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
11 Insertion inter routes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
12 Insertion intra routes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
13 Global local search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

18



Introduction

Logistics operations encompasses the management of the flow of goods from its production
to its final destination and must ensure efficient coordination of the operations. These
operations comprise transportation and inventory management and must be very well
coordinated to guarantee fluidity and sustainability of the supply chain. Handling both
correctly is crucial to respond to the market demands and disruptions at the same time
that enhance customer satisfaction and guarantee a competitive position among other
companies.

Transportation management seeks for the choice of the best mode among rail, sea, air
and road, aiming the minimization of the costs involved while guarantee, at the same time,
reliability and safety. It also should deal with several problems that can represent real
challenges, such as traffic congestion, infrastructure limitations, fuel costs and pollution,
security and environmental aspects, for example. Addressing these scenarios require
strategic planning and collaboration among the different people and industry involved. On
the other hand, the inventory management considers the maintenance of the stock levels
to meet the customers demands without stockouts while ensuring a satisfactory service
quality. It faces some challenges regarding the demand prediction, the costs involved, the
products life cycle, the loss prevention, the accurate stock balance to avoid stockout or
overstock.

In order to try to handle both problems at the same time, Operations Research (OR)
techniques can be applied. The problem of solving both transportation and inventory
management simultaneously is named Inventory Routing Problem (IRP) in the literature.
It drew the attention of many researchers over the last decades due to its complexity and
practical relevance. It was introduced in 1983 by Bell et al. and as it happens for any other
OR problems, the IRP objective is to find a minimum cost optimal solution, which in this
case, is composed of both inventory and transportation costs. The IRP considers a set of
customers and a supplier. The first has deterministic demands and the second a production
capacity over a discrete time horizon. The inventory replenishment operations must be
scheduled in order to avoid inventory disruption. To do so, a set of finite capacitated
vehicles is available at each period and the routes containing the customers must be defined.

Due to its characteristics and the emergence for new features to be incorporated, several
IRP variants have been studied, including, but not limited to:

- Safety stock, by imposing a minimum inventory level over the time horizon (Ramku-
mar et al. 2012 and Archetti et al. 2018)

- Maximum time limit for routes (Peres et al. 2017)

- Transshipment, with direct shipping between suppliers and customers or between
customers (Coelho et al. 2012b, Azadeh et al. 2017 and Lefever et al. 2018)
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- Perishable products, in which products deteriorate after a given time stored (Soysal
et al. 2015, Azadeh et al. 2017 and Alvarez et al. 2020)

- Sustainable features, as summarized in Soysal et al. (2019)

- Green aspects considering hybrid vehicles (Gutierrez-Alcoba et al. 2023)

- Another variations as described in the surveys Andersson et al. (2010), Coelho et al.
(2013) and Roldán et al. (2017).

Multiple are the authors that have proposed new extensions and methods to solve the
IRP and its variants. Even if those are well tailored and introduce relevant features to
the problem, we may notice that more work can be done to try to incorporate another
characteristics that would turn the problem closer to what could be considered a real
scenario. Obviously, it still remains a great challenge in OR problems.

In this sense and to guide the purpose of this thesis, the following questions can be
raised:

→ Which extra features can also be incorporated to the IRP?

→ Is the available data capable of handling additional characteristics?

→ Are the existing algorithms easy-to-adapt to handle new attributes?

Besides addressing the classical IRP, this thesis introduces a novel extension of the IRP
with intrinsic characteristics of real systems in order to provide answer elements these three
precedent questions. Three features are added to the classical IRP: a heterogeneous and
time-dependent vehicles fleet, delivery by batches and non-static demands and inventory
holding costs. These three elements have either not been explored or have not received
enough attention in the literature so far.

First, even though some previous works consider multiple vehicle types, most of the
literature takes into account a homogeneous fleet of vehicles (as in, e.g., Desaulniers et al.
2016 and Bertazzi et al. 2019). Other authors, such as Coelho and Laporte (2014), model
the IRP for a heterogeneous fleet of vehicles, but their method is tested only on instances
with vehicles with identical capacity. Thus, benchmark instances for the IRP consider a
homogeneous fleet of vehicles. Very recently, Sk̊alnes et al. (2023) proposed a new set of
instances, but also this set includes only homogeneous vehicles. In real-life, instead, the
vehicle fleet is often heterogeneous, and the same set of vehicles is not always available
over the whole time horizon as when the fleet is leased. For this reason, we consider an
IRP with a heterogeneous fleet of vehicles whose availability varies over the time horizon.

Moreover, in real-world applications, products are often delivered to customers in batches
rather than in single units. The delivery of a greater number of products, generating a
positive inventory level, minimizes transportation costs since it reduces the number of
customer visits to meet their demands over the time horizon. From an economic point
of view, Wilson (1991) has shown that the average ordering costs are reduced with the
growth of the number of items per order, which indicates an economic advantage when
considering batch delivery. Accordingly, in the proposed new IRP variant, each customer
has a predefined batch size, i.e., when a customer is visited, the quantity delivered must be
a multiple of its batch value.
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According to Archetti et al. (2007), two inventory policies exist: the Maximum Level
(ML) and the Order-Up-to-Level (OU). The ML considers the fact that when a delivery is
scheduled to a customer, any quantity that does not violate the existing and the maximum
inventory level authorized can be chosen. However, in the OU policy, scheduling a customer
to a route means fulfill its inventory level to its maximum capacity. Since these two policies
does not correspond to the delivery by batches, the batch delivering proposed in this thesis
can be seen as an emerging inventory policy for the IRP that has not been treated in the
literature so far to the best of our knowledge.

In addition to the batch size per customer and the heterogeneous fleet of vehicles, and
aiming to bring the problem closer to real scenarios, we consider non-static demands of
customers and unit inventory costs varying over the time horizon. Consequently, and
due to the emergence of this IRP variant and features, a new set of benchmark instances
is presented to evaluate the efficiency of the proposed methods. These instances are
challenging due to the existing characteristics that make the problem even more complex
than the classical IRP, the large number of customers (up to 183) and the large size of the
time horizon (up to 28 periods). Computational experiments and results are presented and
discussed.

Similar to the classic version of the IRP, the objective is to satisfy all the customer
demands at a minimum total cost of inventory holding and transportation, respecting the
vehicle fleet capacity, the inventory level limits, the supplier production capacity and the
fact that each customer is visited at most once per time period (no split delivery allowed).
The problem is then named Heterogeneous Inventory Routing Problem with Batch Size
(HIRP-BS).

To handle the HIRP-BS, we propose a Mixed Integer Linear Programming (MILP) flow
formulation, a Split-Embedded Metaheuristic with a Post-Optimization phase (SEMPO)
and an iterative algorithm over periods. The first extends the flow formulation presented
by Archetti et al. (2014) for the classical IRP to incorporate and models the new features
considered for the HIRP-BS. The proposed SEMPO algorithm is the core of this thesis and
has mechanisms that provide high-quality solutions even for the new proposed large-scale
instances with relatively low computational time. The SEMPO algorithm generates an
initial solution using a giant tour Split approach, then it improves the solution by a local
search procedure and finally attempts to further improve it by means of a post-optimization
approach. This algorithm is derived from the Split-based algorithm originally developed
for the Capacitated Arc Routing Problem (CARP), by Lacomme et al. (2001). Lastly,
the iterative algorithm decomposes the original problem into subproblems that are solved
sequentially according to the periods available.

The thesis is organized in four chapters. In Chapter 1, the IRP is presented and detailed
according to both inventory management and transportation parts. The definition of a
solution and its components is also described as well as a literature review on the main
aspects of the IRP. Chapter 2 formalizes both IRP and HIRP-BS in mathematical terms
by presenting the corresponding formulations including variables, objective function and
constraints. Later, this Chapter presents two sets of instances: the classical one and the
one introduced in this thesis to handle the new incorporated features. Results are also
presented and discussed.

Chapter 3 presents an iterative algorithm which principle consists of defining small
subproblems from the mathematical formulation of the IRP and solving each sequentially by
adding at each iteration partial feasible solution to accelerate the convergence. Experiments
and results are also introduced and discussed.
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Lastly, Chapter 4 is the main Chapter of this thesis and presents the Split-based
metaheuristic to solve both IRP and HIRP-BS problems. Initially, the split algorithm and
its three steps to obtain a feasible solution are formalized. Then, seeking for diversification,
the mutation and local search mechanisms are presented to optimize the transportation
part of the problem and a post-optimization phase acting on both transportation and
inventory parts is also introduced. Experiments and results are presented and discussed
for both instances sets considered.
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Chapter 1

The Inventory Routing Problem

Go to the Table of Contents <

Abstract
The Inventory Routing Problem stands as an integrated inventory management and

transportation problem which considers a set of customers with deterministic demands
and a supplier that must deliver a certain amount of products to each customer at each
period of time using a fleet of vehicles available so that the demand of customers are met
at a minimum total cost. This Chapter introduces the problem and illustrates how each
part (transportation and inventory management) can be interpreted in order to obtain a
minimum-cost solution value and respect a set of imposed constraints. A literature review
is also presented to explore the problem and some of its variants as well as the resolution
methods that can contribute to solve it efficiently.
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1.1 Chapter introduction

The Inventory Routing Problem (IRP) is a largely studied problem in the Operations
Research field and incorporates an inventory management and a routing problem. Both
consider a supplier responsible for the delivery of a unique or multiple types of products
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to a set of customers that need to be served within a finite discrete time horizon. The
pioneers authors to address the IRP are authors Bell et al. (1983) that have presented
the case of a gases industry that have a real time optimizer to solve the problem by a
mathematical formulation with a sophisticated Lagrangian relaxation (Fisher 1981) and
has permitted the industry to save costs in their production system.

In this chapter, the IRP is presented from the two different points of view and the
aspects related to each one are detailed and justified with the existing literature. Also, the
details of a feasible solution including costs and inventory levels calculation and routes
definition, for example, are also presented. Lastly, the literature related works on the
problem closes the Chapter.

In Section 1.2, the inventory management part is introduced in Subsection 1.2.1 and
corresponds to the inventory management problem, partially responsible for the delivery
operations (since there is also a dependance on the routing associated problem) and the
customer replenishment over the periods of time available. An analysis is provided for
the customer and the supplier, as well as the different inventory policies considered in
the literature. The routing problem is presented in Subsection 1.2.2. It presents how the
vehicles fleet is composed as well as other aspects related to the customers visitation all
over the periods.

In Section 1.3, the elements that compose a feasible solution for the IRP are detailed
with a numerical example and include the definition of the distance matrix, the routes that
are assigned to the available vehicles, the delivery operations that define the inventory level
for each customer and supplier as well as the costs involved with these operations. Lastly, in
Sections 1.4, relevant literature on the IRP that have treated the problem and its variants
and the existing algorithms to solve the problem are presented and confirm the interest of
its resolution by incorporating interesting features and characteristics. Also, the approaches
used to solve them and obtain feasible upper bounds are presented and discussed. This
bibliography may also confirm the interest of incorporating other characteristics and present
more instances that help the problem to get closer to a real scenario, which is one of the
purposes of this thesis.

1.2 Problem definition

As previously introduced, the IRP has routing and inventory components that work together.
Figure 1.1 presents a simple schema illustrating the IRP in terms of these two elements:

- For the routing part, the arcs are represented by three colors corresponding to
different periods of time, leading to a three-period IRP. Customers are represented
by vertices (circles), while the supplier is depicted at the center as a black square.
From the supplier, all vehicle routes originate to deliver products to the customers,
returning once the scheduled customers have been served. Each route is assigned to a
single vehicle, which serves a subset of customers. Note that the same customer can
be visited at most once per period but may be visited in all the periods considered.

- At the bottom right of the schema (Figure 1.1), a detailed view focuses on a customer
to illustrate how its inventory level evolves when a delivery operation is performed.
The first orange bar represents the inventory level at the beginning of the period,
before the arrival of the vehicle to the customer or the supplier. The green bar
corresponds to the delivery amount, while the red bar represents the customers
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consumption (demand). Note that for this customer, deliveries are performed only in
periods 1 and 2 since in period 3 the inventory level is enough.

Note that when a vehicle is assigned to a route, it carries all the products that must be
delivered to the customers scheduled on his path and the inventory levels are supposed to
be respected since the decision on when and how much to deliver is stablished before the
vehicle departure from the warehouse (supplier).

Period 1

Period 3
Period 2

Figure 1.1: 3-period IRP representation

Problem assumptions

Despite all the existing IRP variants, some assumptions on the problem may never change
according to each variant. These are fundamental to understand the basis of the problem
and how each transportation and inventory management associated problems work together.
Below, the most important ones are cited.

• Split delivery is not allowed. Each customer is visited only once per period and
at most the number of periods over the time horizon.

• Delivery and consumption. The delivery occurs only at the beginning of a period
and the consumption is linear considering a time interval.

• Inventory levels calculation. Inventory levels are calculated at the end of the
period once all the operations have been concluded. These operations include the
replenishment (delivery of an amount of products), the demand deduction and
inventory level from the immediately previous period.
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• Vehicles capacity. Vehicles that perform the deliveries have a finite capacity and
can leave the depot only if there is at least one customer to be served, i.e., with at
least one product unit inside.

• Availability of products to be delivered. The supplier has always enough
products available at each period to supply all the customers once a demand exists.

• Maximum and minimum inventory levels. Customers have minimum and
maximum inventory levels to be respected. Usually, the minimum is equal to zero.
Note that for the supplier, only the minimum level exists and is always equal to zero.

• Stock disruption. In any case, a stock disruption is not authorized.

• Routes feasibility. A valid route always starts and ends at the depot. A sub-tour
(a route not starting or finishing at the depot) must be eliminated by special routing
constraints. Also, each route is assigned to only one vehicle.

1.2.1 Inventory management

The inventory levels over the time horizon takes into account the initial level si for the
fictitious period 0, the amount of product qti delivered at a each time period, the customers
demands dti for each period t as well as the supplier production capacity expressed by rt.
Each customer has a maximum inventory level allowed Ui. The inventory levels are defined
by Iti for a given customer i or supplier in period t and corresponds to the inventory level
at the end of period t once the delivery (qti) and the demand deduction (dti) have been
performed as shown in Figure 1.2. Thus, 0 ≤ Iti ≤ Ui.

Figure 1.2: Inventory level evolution

Note that the inventory levels can be analyzed from the supplier and the customer
point of views and their calculation is not the same. The next subsections explains both
calculations.
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Customer and supplier points of view

1. Customer inventory level

In Figure 1.2, for a customer i, the inventory level evolution over t periods is
represented. The first delivery operation is performed at period t−2 with the delivery
of qt−2

i unities of products and the inventory level It−2
i is calculated at the end of

this period since the problem considers discret periods of time which means that
the order of the operations (consumption/delivery) performed between the end of a
period and its precedent does not influence the inventory calculation.

First, if we take a look only at the quantities that are delivered from the supplier,
we can interpret them as a linear function that depends only on a given customer i
and a period t. This scenario is represented on Figure 1.3 for a time horizon equal to
7 periods and the data comes from the example presented in Table 1.1 for a given
customer i with an initial inventory level s0 = 30. Column t corresponds to the
period, qti to the quantity delivered, dti to the demand and Iti to the inventory level
calculated at the end of period t.

t qti dti Iti

0 - - 30

1 30 25 30 + 30 - 25 = 35

2 10 15 35 + 10 - 15 = 30

3 0 20 30 + 0 - 20 = 10

4 50 20 10 + 50 - 20 = 40

5 20 10 40 + 20 - 10 = 50

6 10 5 50 + 10 - 5 = 55

7 0 50 55 + 0 - 50 = 5

Table 1.1: Customer inventory level calculation example

Figure 1.3: Customer delivered quantities
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From these quantities delivered, the inventory level for a given customer i and period
t can be defined by Equation 1.1. Note that in this case, the level is dependent on the
previous ones, the quantities and the demands. Figure 1.4 illustrates the evolution
of the inventory level. Green bar represents the quantity delivered and the red bar
only the demand. Dotted line indicates the inventory level once the delivery and
consumption are done.

f(i, t) = si +

t∑
p=1

(qpi − dpi ) (1.1)

Figure 1.4: Customer inventory level example

Note that the assumption is that the inventory level constraints are applicable
considering the end of a given time period as previously stated, i.e., once the
quantities have been delivered and the demand has been consumed. However, it
must also take into account the remaining space available to define the quantity to
be replenished. This remaining space is calculated by subtracting from the customer
maximum inventory level allowed the inventory level at the beginning of the period.
That is why in Figure 1.4 we see that in periods 1, 4, 5 and 6, all the remaining space
is fulfilled with products but never surpass the maximum limit imposed by Ui.

2. Supplier inventory level

Now, from the supplier point of view, the production capacity rt for a given period
t is illustrated by Figure 1.5 with data from Table 1.2 and considering an initial
inventory level s0 = 600. This capacity is seen as the amount of products that the
supplier makes available for the set of customers at each period. The non used
products are cumulated for the subsequent periods. Column t corresponds to the
period, rt to the supplier production capacity,

∑
qti to the total amount of products

delivered to all the customers in period t and It0 to the supplier inventory level also
calculated at the end of period t.
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t rt
∑

qti It0

0 - - 600

1 200 450 600 + 200 - 450 = 350

2 400 300 350 + 400 - 300 = 450

3 300 350 450 + 300 - 350 = 400

4 500 550 400 + 500 - 550 = 350

5 550 200 350 + 550 - 200 = 700

6 150 300 700 + 150 - 300 = 550

7 350 450 550 + 350 - 450 = 450

Table 1.2: Supplier inventory level calculation example

Figure 1.5: Supplier production capacity

Similarly to the customers, the supplier inventory level is defined by Equation 1.2
and takes into account the initial inventory level s0, the total quantity of products
produced rt at each period t and the total amount qti that is delivered to the |N |
customers. Figure 1.6 shows the inventory level evolution over the 7 periods of time.

f(0, t) = s0 +

t∑
p=1

rt −
|N |∑
i=1

qpi

 (1.2)

Note that the supplier does not have a maximum capacity as it occurs for the
customers. We consider that his production capacity is enough to meet all the
customers demands over the time horizon.
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Figure 1.6: Supplier production capacity

□

In contrast to the classical VRP, in which the quantities to be delivered are given as
problem data, in the HIRP-BS, as for the IRP, the quantities to be delivered are variables
of the problem and must be specified in the solution. The total volume of deliverable
products in a period t ∈ T is constrained partly by the volume rt produced by the supplier
and the total capacity of the vehicle fleet, which relies on the number of available vehicles
and their respective capacities.

Therefore, the sum of the customer demands for a given period t ∈ T may exceed the
delivery capacity of the vehicle fleet (C) or exceeds the volume of products made available
by the supplier (rt). Consequently, some demands could not be met when needed and
must be delivered during the previous periods. It may also be advantageous to anticipate
the deliveries to minimize the transport and total costs, even if this incurs an additional
storage cost.

An anticipated delivery incurs an inventory level greater than zero and, consequently, a
storage cost. Additionally, each customer i ∈ N has a maximum inventory level allowed
denoted by Ui. One challenge of the IRP is to determine which quantities of products
should be delivered to each customer and in which period, aiming to meet the customers
demands for each period, taking into account the capacity of the vehicle fleet, the volume
rt produced by the supplier and the customers inventory capacity.

At each period t ∈ T , rt products arrive at the supplier inventory and the evolution
of their stock levels depend on the quantities delivered to the customers as presented in
Figure 1.7 and illustrates the delivery of q11 and q12 unities of products to customers 1 and 2
in period 2 and this amount is deducted from the supplier inventory level and also considers
the production of r2 unities.
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Inventory
level of the

supplier
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Production

Inventory
level of

customer 1

0 1 2 3 4 Periods

Inventory
level of

customer 2

0 1 2 3 4 Periods

Delivery

Delivery

Figure 1.7: Supplier inventory level update

Another challenge of the IRP resolution refers to the delivery of products to the
customers as late as possible so that the demands are met and the inventory holding costs
are the minimum possible. This scenario may exceed the total vehicle fleet capacity for
a given period and anticipating a part of the deliveries is necessary in such a way that
the vehicle fleet capacity is respected. However, it leads to an increase in the inventory
costs over the time horizon. Figure 1.8 illustrates this case by showing that in period 6,
the total delivery quantity exceeds the vehicle fleet C and then an amount of products is
anticipated to periods 3 and 5. Consequently, the inventory costs observed increase.

Another case in which it is advantageous to anticipate deliveries, even if resource
capabilities are respected, is when the total cost is minimized due to the gain on the
transportation cost despite the increase in the inventory costs because the number of visits
to one customer is reduced and the transportation costs are lower than the inventory costs
as shown in Figure 1.9.

The case described in Figure 1.9 illustrates a delivery to a customer i that is brought
forward from period 5 to 3 considering that all constraints are respected. This increases the
inventory level of customer i from period 3 onwards and, consequently, the total inventory
cost. However, customer i has already visited in period 3 and adding a supplementary
quantity to this period does not increase the corresponding transportation cost. In addition,
removing customer i from period 5 reduces the corresponding transportation cost, in such
a way that the total cost is minimized.

Inventory policies

When regarding the quantities to be delivered, two policies are studied in the literature:
Maximum Level (ML) and Order-Up to level (OU). Both are described below.

For the sake of comprehension, we consider xti,j an indicator that takes the value 1 if
customer i comes just before another customer j in a route performed at period t.
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Figure 1.8: Anticipated inventory level
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(c) Inventory total cost
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Transportation
saving cost 
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(d) Transportation total cost

Figure 1.9: Saving cost delivery anticipation
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(i) Maximum Level (ML)

The Maximum Level (ML) inventory policy considers that a customer can receive
any quantity of a given product at any moment since the inventory limitations, i.e.,
minimum and maximum levels are respected as shown in Figure 1.10.

inventory
level

periods

Figure 1.10: ML replenishment policy

In Figure 1.10, the red bars represent the consumption of products (demand) and the
green ones refer to the quantity that is delivered. Note that once the demands are
deducted and the products are added to the customer inventory, the inventory level
never surpass the limits imposed and correspond to any value between both levels Li

(min) and Ui (max).

In mathematical terms, we have the following constraints (adapted from Archetti
et al. (2007)):

qti ≥ Li − It−1
i ∀i ∈ N , t ∈ T (1.3)

qti ≤ Ui − It−1
i ∀i ∈ N , t ∈ T (1.4)

Constraints 1.3 ensure that the quantity to be delivered must respect the minimum
inventory level (Li) and the same is observed for constraints 1.4 concerning the
maximum level (Ui). Both ensure that the quantity (qti) also depends on the remaining
space available taking into account the previous inventory level (It−1

i ).

(ii) Order-up-to Level (OU)

The Order-up-to level (OU) policy states that once a customer is visited at any time
period, the amount of product that is supposed to be delivered corresponds to the
exact number of products to fill the inventory to the highest level possible (Ui) as
illustrated by Figure 1.11.

Note that in Figure 1.11, differently from the ML policy, once a delivery is made, the
customer inventory level is filled to its maximum capacity (max).
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inventory
level

periods

Figure 1.11: OU replenishment policy

Also, the following constraints are are used to handle this policy (adapted from
Archetti et al. (2007)):

qti ≥ Uiz
t
i − It−1

i ∀i ∈ N , t ∈ T (1.5)

qti ≤ Ui − It−1
i ∀i ∈ N , t ∈ T (1.6)

qti ≤ Uiz
t
i ∀i ∈ N , t ∈ T (1.7)

qti ≥ Li − It−1
i ∀i ∈ N , t ∈ T (1.8)

zti is a binary variable equal to 1 is customer i is visited in period t and 0 otherwise.
These three constraints guarantee that when a customer i is visited (zti = 1), the
quantity delivered is equal to the remaining space available considering the customer
maximum inventory level allowed (Ui) and the precedent inventory level (Iti ). Other-
wise, if the customer is not visited in a given period (zti = 0), then nothing is delivered.
What follows explain these two possibilities.

If zti = 1 then

{
qti ≥ Ui − It−1

i and qti ≤ Ui − It−1
i ⇒ qti = Ui − It−1

i

qti ≤ Ui(redundant)
(1.9)

If zti = 0 then

{
qti ≤ 0 ⇒ qti = 0 (because qti ≥ 0 always)

qti ≥ −I
t−1
i and qti ≤ Ui − It−1

i (redundant)
(1.10)

(iii) Zero-Inventory-Ordering (ZIO)

The Zero-Inventory-Ordering (ZIO) policy consists of allowing delivery operations
from the supplier to the customer only and only if the customer inventory level is
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equal to zero. Figure 1.12 illustrates this replenishment policy. Two deliveries are
scheduled in periods 2 and 3 and those happen only if the previous inventory level is
equal to zero.

inventory
level

periods

Figure 1.12: ZIO replenishment policy

Diabat et al. (2024) have classified this policy as customer-oriented since it aims
to reduce the customers inventory costs by keeping its level as low as possible and
also reduces the number of visits since a visit is made only if necessary. These same
authors have proposed a mathematical formulation to solve the IRP considering this
policy and three constraints have been added to the classical ones to take into account
this policy. An adapted version reducing at most the number of variables for the sake
of comprehension is presented below.

It−1
i ≤ Ui(1− zti) ∀i ∈ N , t ∈ T (1.11)

It−1
i ≥ 1− zti ∀i ∈ N , t ∈ T (1.12)

zti consists of a binary variable equal to 1 is customer i is visited in period t and
0 otherwise. Both Constraints 1.11 and 1.12 ensure that if a customer is visited
(zti = 1), then the inventory level for this customer is equal to 0 in the previous period
and that the inventory level is comprised in the interval [1,Ui] otherwise (zti = 0), as
follows.

If zti = 1 then It−1
i ≤ 0 and It−1

i ≥ 0 ⇒ It−1
i = 0 (1.13)

If zti = 0 then It−1
i ≤ Ui and It−1

i ≥ 1 ⇒ It−1
i ∈ [1, Ui] (1.14)

Note that the minimum inventory level Li is not taken into account in these equations
since for all the instances considered, this minimum level is equal to 0 and since the
inventory level cannot be lower than zero according to the variable domain, it is
redundant to keep the constraints related to Li.
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As stressed by these same authors (Diabat et al. (2024)), this policy inconvenient is
that the initial inventory level of any customer must correspond to the sum of the
demands from period 0 to any of the periods considered. It can be easily proved:
if we consider an horizon from 0 to any t, then if s0 ≠

∑t
0 d

t
i, no feasible solution

exists since the inventory level will never be equal to 0 and then no delivery will
be scheduled and, consequently, a stock disruption will be observed, leading to an
unfeasible solution.

(iv) Batch size (BS)

The majority of the IRP formulations considers the fact that one customer can be
visited in a given period to receive only one unit of a given product. This situation
arises because there are no limits on the values of the qti variables to impose a minimum
authorized value. To tackle this situation, this thesis addresses a new inventory policy
named Batch Size (BS) which consists in considering for each customer a batch size
that must be considered for the deliveries and the total number of products per period
must be multiple of this predefined value. This scenario is illustrated in Figure 1.13.
Note that in practice, this policy can be helpful to facilitate the management and the
placement of the products into the warehouses and customers storage places.

inventory
level

periods

Figure 1.13: BS replenishment policy

In Figure 1.13, for a given customer, each batch is represented by the vertical green
line separated by the black dashes. In this case, three batches were delivered in period
1, followed by two in period 2 and another two in period 4.

To handle this policy and impose the quantity to be multiple of the customer batch
size, only one constraint is required. It is expressed by the equality given in Equation
1.15. Variable bti represents the number of batches delivered to customer i in period t
and ℓi the customer fixed batch size. Additional constraints 1.16 and 1.17 from the
ML policy must also be considered to manage the available space into the customer
inventory.
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qti = btiℓi ∀i ∈ N , t ∈ T (1.15)

qti ≥ Li − It−1
i ∀i ∈ N , t ∈ T (1.16)

qti ≤ Ui − It−1
i ∀i ∈ N , t ∈ T (1.17)

The BS policy is closer to the ML in such a way that the quantity to be delivered
can be any if two constraints are considered:

(a) the quantity must be multiple of the customer batch size

(b) the quantity must be under or equal the remaining space available at a customer
inventory

It differs from the other policies in such a way that the amount delivered may not
fulfill the customer inventory at its maximum authorized level as it occurs in the
OU policy and that a replenishment is totally possible even if the customer previous
inventory level is above 0 as it occurs in the ZIO policy.

1.2.2 Routing problem

The routing problem relies on the definition of the routes to be performed by a set of
vehicles assigned to a given period of time in order to execute the delivery operations
to customers. It consists in defining the customers to be visited by a vehicle in which
the capacity is finite. The vehicles must leave the depot (supplier), visit the customers
and return to the depot once all the scheduled customers have been treated. Figure 1.14
illustrates the routing problem for three periods of time and four customers (A,B,C,D)
to be treated before and after the routes schedule.

Before After A

B

C

D

A

B

C

D

Figure 1.14: Routing

On the left side of Figure 1.14, the complete graph is available to define the routes.
Two vehicles (1, 2) are available for each of the three periods. On the right side, the
customers are assigned to a route and each route is allocated to a single vehicle. Numbers
in parenthesis represents the affectation period. The routes are the following (0 stands for
the supplier):
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• Period 1

– Vehicle type assigned: 1

– Visitation sequence: 0, A,B,C, 0

– Vehicle type assigned: 2

– Visitation sequence: 0, D, 0

• Period 2

– Vehicle type assigned: 2

– Visitation sequence: 0, B, C,D, 0

• Period 3

– Vehicle type assigned: 1

– Visitation sequence: 0, A,B, 0

As in other routing problems such as the Vehicle Routing Problem (Eksioglu et al.
(2009); Baker and Ayechew (2003)), the Heterogeneous Vehicle Routing Problem (Gendreau
et al. (1999); Molina et al. (2020)), Capacitated Vehicle Routing Problem (Uchoa et al.
(2017); Toth and Vigo (2002)), sub-tours constraints have to be incorporated to the IRP
to guarantee that a route is feasible.

Vehicle fleet types

In routing problems, as previously seen, the fleet of vehicles can be homogeneous or
heterogeneous. In classical versions of these problems, the fleet is in the majority of
the cases considered as homogeneous but in real scenarios, it is often heterogeneous and
can increase considerably the complexity of the problem. Here, the fleet composition is
discussed and examples are given for each case.

(i) Homogeneous

The majority of papers that treated the IRP and variations consider a homogeneous
vehicle fleet in their algorithms. Archetti et al. (2007) when introduced a benchmarking
set of instances have considered only a single homogeneous vehicle per period. Later,
Coelho et al. (2012a) have used the same set of instances to treat the multi vehicle
case up to 5 homogeneous vehicles per period. In Sk̊alnes et al. (2023), a new set of
instances is introduced for the IRP but also only considers a homogeneous vehicle
fleet even if three vehicle dimensions are presented, each instance is considered to be
homogeneous and uses only one from the three vehicle types available.

(ii) Heterogeneous

As Hoff et al. (2010), the fleet of vehicles is rarely homogeneous and can vary
on physical, compatibility and costs aspects. The heterogeneous vehicle fleet was
introduced by Golden et al. (1984) and named Fleet Size and Mix Vehicle Routing
Problem (FSMVRP). It consists in defining the optimal size of the fleet considering a
fixed cost based on the leasing rather than the acquisition of the vehicle and assumes
that the vehicles costs and capacity are not always the same.
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Goel and Gruhn (2008) have studied the General Vehicle Routing Problem (GVRP)
which consists, among others, in considering time windows, compatibility and route
restrictions constraints in order to take the problem closer to a real life scenario. A
survey on the almost thirty years of the HVRP is presented in Koç et al. (2016).

1.3 Solution definition

Finding a feasible solution for the IRP means defining, for each time period, the visits to
the customers, the number of products delivered, the vehicles assigned to the routes, and
the customer visit sequences for each route, taking into account inventory management
and transportation constraints related to both customers and supplier.

Let’s consider for the next Subsections the instance file abs1n5 below which contains 5
customers and the supplier and was extracted from the 3-period and 2-vehicle high cost
instances set from Archetti et al. (2012). The data example is issued from this instance
and from its optimal solution.

File 1.1: Literature instance abs1n5

6 3 289
1 154 .0 417 .0 510 193 .30
2 172 .0 334 .0 130 195 0 65 .23
3 267 .0 87 .0 70 105 0 35 .32
4 148 .0 433 .0 58 116 0 58 .33
5 355 .0 444 .0 48 72 0 24 .23
6 38 .0 152 .0 11 22 0 11 .18

In the first line, number 6 corresponds to the number of customers and suppliers (5
customers, 1 supplier), 3 to the number of periods and 289 to the transportation capacity
per period. The second line provides information on the supplier, in that order: index,
X and Y location coordinates, initial inventory level, production capacity per period and
the inventory cost per unit of product. From the third line and on, the information is,
in that order: index, X and Y location coordinates, initial inventory level, maximum and
minimum inventory level allowed per period, demand per period and inventory cost per
unit of product.

1.3.1 Distances matrix

The customers and supplier X and Y coordinates are given and the distance matrix can be
obtained by applying the Euclidian distance equation as stated by Theorem 1.3.1.

Theorem 1.3.1 (Euclidian distance) The Euclidian distance between two pairs of co-
ordinates {(x1, y1), (x2, y2)} is given by

EucDist((x1, y1), (x2, y2)) =
√

(x2 − x1)2 + (y2 − y1)2 (1.18)

and corresponds to the length of the segment that relies both points in a two-dimensional
plane and can be interpreted as the shortest path between them.

□
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Table 1.3 stands for the localization coordinates X and Y for the supplier and the
customers.

X Y

Supplier 154 417

Customer 1 172 334

Customer 2 267 87

Customer 3 148 433

Customer 4 355 444

Customer 5 38 152

Table 1.3: X and Y localization coordinates

By the application of Theorem 1.3.1 and to be in accordance with the literature works,
the distances are rounded to the nearest integer value to the sake of simplicity in the
calculation. The Euclidian distance is then calculated by the Equation 1.19.

dist(i, j) =
⌊√

(x2 − x1)2 + (y2 − y1)2
⌉

(1.19)

The details on the calculation of the distances from the customer (i = 0) are given
below.

dist(0, 0) = 0 (1.20)

dist(0, 1) =
⌊√

(154− 172)2 + (417− 334)2
⌉
= ⌊84.93⌉ = 85 (1.21)

dist(0, 2) =
⌊√

(154− 267)2 + (417− 87)2
⌉
= ⌊348.81⌉ = 349 (1.22)

dist(0, 3) =
⌊√

(154− 148)2 + (417− 433)2
⌉
= ⌊17.09⌉ = 17 (1.23)

dist(0, 4) =
⌊√

(154− 355)2 + (417− 444)2
⌉
= ⌊202.81⌉ = 203 (1.24)

dist(0, 5) =
⌊√

(154− 38)2 + (417− 152)2
⌉
= ⌊289.28⌉ = 289 (1.25)

Note that for any pair of two customers (including or not the supplier) i and j, the
distance dist(i, j) is equal to the distance dist(j, i), which allows to classify the matrix as
symmetric. For this reason, given the distance dist(i, j) for any given i and j, the distance
dist(j, i) calculation is not detailed above to avoid redundancy. The final matrix is given
by Table 1.4.

0 1 2 3 4 5

0 0,00 85,00 349,00 17,00 203,00 289,00

1 85,00 0,00 265,00 102,00 214,00 226,00

2 349,00 265,00 0,00 366,00 368,00 238,00

3 17,00 102,00 366,00 0,00 207,00 302,00

4 203,00 214,00 368,00 207,00 0,00 431,00

5 289,00 226,00 238,00 302,00 431,00 0,00

Table 1.4: Distance matrix
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1.3.2 Routes scheduled

Once the distances among the customers and the supplier are established, the routes can
be defined. A feasible route starts and ends at the supplier and is characterized by a
sequence of customers for which a delivery operation is scheduled and at least one unit of
product must be delivered. A vehicle is assigned to perform the trip and the total amount
of products must not surpass its capacity.

Considering a set of customers {i, j, k, l,m, n, o, p}, a supplier (0) and the quantities
q = {qi, qj , 0, 0, 0, qn, 0, qp} requested to be delivered by the customers, a feasible route can
be expressed by {0→ j → n→ p→ i→ 0} which contains four from the eight available
customers since those are the only for which a non zero quantity must be delivered. In
order to obtain the cost of this route, the distance matrix is used and the calculation is
given by dist(0, j) + dist(j, n) + dist(n, p) + dist(p, i) + dist(i, 0).

From the guiding thread example, the transportation capacity per period is equal to
289. It means that for a single vehicle available per period, its capacity is equal to 289
but if there are two vehicles available, the capacity of each is of 144 rounding down to the
nearest integer and so on (further explanation is given in Chapter 2, Section 2.4).

Thus, the optimal routes are the following:

Period 1 (1 vehicle needed)

Route 1

Sequence: 0→ 1(65)→ 0

Vehicle load: 65

Cost: 85 + 85 = 170

Period 2 (2 vehicles needed)

Route 1

Sequence: 0→ 3(116)→ 0

Vehicle load: 116

Cost: 17 + 17 = 34

Route 2

Sequence: 0→ 4(48)→ 2(35)→ 5(22)→ 0

Vehicle load: 105

Cost: 203 + 368 + 238 + 289 = 1098

Period 3 (no vehicles needed)

No routes scheduled

Note that from the routing part and considering only the distance traveled and not the
quantities in parenthesis, the transportation cost rises to 1302.

1.3.3 Deliveries and inventory levels

Considering the previous defined routes and the quantities to be delivered in parenthesis,
the supplier and customers inventory levels can be calculated. Below, each table represents
the evolution of the inventory level considering the deliveries and the associated costs.
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Supplier

t s rt
∑

qt0 It0 ht0 cost

0 510 - - 510 0.30 153

1 510 193 65 638 0.30 191.4

2 638 193 221 610 0.30 183

3 610 193 0 803 0.30 240.9

Total cost 768.3

Table 1.5: Supplier inventory calculation

Customer 1

t s dt1 qt1 It1 ht1 cost

0 130 - - 130 0.23 29.9

1 130 65 65 130 0.23 29.9

2 130 65 0 65 0.23 14.95

3 65 65 0 0 0.23 0

Total cost 74.75

Table 1.6: Customer 1 inventory calcula-
tion

Customer 2

t s dt2 qt2 It2 ht2 cost

0 70 - - 70 0.32 22.4

1 70 35 0 35 0.32 11.2

2 35 35 35 35 0.32 11.2

3 35 35 0 0 0.32 0

Total cost 44.8

Table 1.7: Customer 2 inventory calcula-
tion

Customer 3

t s dt3 qt3 It3 ht3 cost

0 58 - - 58 0.33 19.14

1 58 58 0 0 0.33 0

2 0 58 116 58 0.33 19.14

3 58 58 0 0 0.33 0

Total cost 38.28

Table 1.8: Customer 3 inventory calcula-
tion

Customer 4

t s dt4 qt4 It4 ht4 cost

0 48 - - 48 0.23 11.04

1 48 24 0 24 0.23 5.52

2 24 24 48 48 0.23 11.04

3 48 24 0 24 0.23 5.52

Total cost 33.12

Table 1.9: Customer 4 inventory calcula-
tion

Customer 5

t s dt5 qt5 It5 ht5 cost

0 11 - - 11 0.18 1.98

1 11 11 0 0 0.18 0

2 0 11 22 11 0.18 1.98

3 11 11 0 0 0.18 0

Total cost 3.96

Table 1.10: Customer 5 inventory calcu-
lation

The first table corresponds to the supplier and the column t to the period, s to its
initial inventory level at period t, rt to the production capacity per period,

∑
qti to the

total amount of products delivered to the set of customers, Iti to the inventory level at the
end of period t, hti to the inventory holding cost and cost to the associated inventory cost
each period.

The following tables stand for the customers and column t corresponds to the period,
s to the initial inventory level at period t, dti to the customer demand at period t, qti to
the amount of products received from the supplier, Iti to the inventory level at the end of
period t, hti to the inventory holding cost and cost to the total customer inventory cost per
period calculated as Iti × hti for the supplier and the customers. The total cost value is
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calculated by
∑3

t=0(I
t
i × hti) in which t = 0 corresponds to the fictitious initial period in

which no delivery operations are performed and t = 3 to the size of the horizon of time
considered in this example.

Note that from the inventory part of the problem and considering the amount of
products to be delivered and the inventory level at the end of each period, the inventory
cost of this solution is equal to 963.21.

1.3.4 Solution cost

The solution cost can be split into the routing and the inventory parts. The first stands
for the cost of the distance traveled and the seconds by the storage costs at the supplier
or the customer. From the example, considering the data presented, the solution cost is
expressed below.

Solution cost = inventory cost + routing cost

Solution cost = (768.3 + 74.75 + 44.8 + 38.28 + 33.12 + 3.96) + (170 + 34 + 1098)

Solution cost = (963.21) + (1302)

Solution cost = 2265.21

Costs trade-off

A trade-off exists when regarding the inventory holding costs of the supplier and the
customers. When there is a difference on these values and the cost of storage at a customer
is lower than the supplier cost, there is a high probability of delivering more units of
the product than what is needed by the customer, what generates a waste once the
replenishment is done.

In such a situation, delivering more products to the customers lead to a more interesting
situation since the inventory cost at the customer is lower than the supplier inventory
cost. In other words, delivering more than the customers requirements can save the total
inventory cost.

We may notice that in the guiding thread example, customers 1, 4 and 5 have an
inventory holding cost (0.23, 0.23 and 0.18, respectively) which is lower than the supplier
(0.30). The same does not occur for customers 2 and 3 (0.32 and 0.33, respectively). Let’s
analyse each one:

• Customer 1 inventory is replenished in period 1 only. The quantity is equivalent to
the remaining space in the inventory, which considers the subtraction of the previous
inventory level (130) and the maximum inventory level allowed of 195, which leads to
65 units of products. This value matches with the quantity delivered. At the end of
the horizon, no waste is observed and it may be due to the high routing cost involved
(compared to the inventory one) to visit this customer at another period.

• Customer 4 receives a delivery in period 2 only. The maximum inventory level allowed
is of 72 and the remaining space available is equal to 48 considering the previous
inventory level of 24 unities. Then, the delivery quantity matches the value of 48
products. In the case of this customer, there is a residual of 24 units at the end of the
replenishment horizon. It means that even after treating all the customers assigned
to the route, there is a remaining space in the vehicle and for that reason, and also
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because the inventory holding cost is lower than the supplier, more products than
what is really needed is delivered and thus this waste is observed.

• Customer 5 is also delivered in period 2 only. Noticing that the remaining space is
equal to 22 considering the maximum inventory level of 22 and no previous products
in the inventory at the beginning of the period, 22 unities are then delivered. In the
case of this customer, no remaining stock is observed at the end of the third period.

Thus, for any customer i and period t, if the inventory holding cost hti < ht0, there
is a tendance to deliver to the customer more than the quantity required if and only if
the vehicle assigned has enough space and the customer inventory level remains under its
maximum authorized level. Otherwise, if hti > ht0, then the opposite occurs since there is
no advantage in terms of cost to remove products from the depot to give to the customers.

It is important to highlight this cost trade-off because when solving the problem exactly,
i.e., with a linear programming solver and without any time execution limit, it is more
simple to obtain an optimal solution that considers the case of delivering more than what
is needed when it reduces the inventory costs. Consequently, the solution cost tends to be
closer or equal to the optimal solution easier. Other approach methods such as heuristics
and metaheuristics do not take this situation into account. It may be necessary to add a
pre-processing or a post-processing phase to these non-exact methods to handle such a
situation that can lead to an slightly improvement in the solution cost.

1.4 Literature review

1.4.1 Inventory Routing Problem

Since many variants of the classical Inventory Routing Problem (IRP) exist, an extensive
range of methods has been proposed in the literature to address these different variants.
These methods vary significantly based on the type of algorithm developed. For instance,
among the algorithms identified, we can categorize them into three groups: metaheuristics,
matheuristics and exact approaches. Metaheuristics, such as those developed by Aksen et al.
(2014) and Haddad et al. (2018), are widely recognized for their ability to provide high-
quality solutions within a reasonable computational time by exploring a vast solution space.
On the other hand, the matheuristics, like the ones proposed by Hemmati et al. (2016)
and Touzout et al. (2022), combine the strengths of linear/mathematical programming
and heuristic methods to improve the efficiency and accuracy of the solutions. Finally,
exact approaches, which include methods developed by Manousakis et al. (2021), Archetti
et al. (2020), and Coelho and Laporte (2014), aim to find optimal solutions by exhaustively
searching the solution space, although these methods demand an intensive computational
effort.

A significant number of works of the literature focuses on IRP models that consider a
homogeneous fleet of vehicles as it is for the first paper (Archetti et al. (2007)) that models
the IRP (named Vendor-Managed IRP) that also proposes the set of instances largely
used in these days. This focus may be explained by the complexity involved in solving
problems with a heterogeneous fleet of vehicles. Coelho and Laporte (2013, 2014) were
among the pioneers in modeling IRP scenarios that account for both homogeneous and
heterogeneous fleets. They developed sophisticated Branch-and-Cut (B&C) algorithms
capable of addressing both fleet configurations. Despite this advancement, their results
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were limited to instances involving a homogeneous fleet of vehicles, possibly due to the
computational challenges posed by heterogeneous fleets.

Cheng et al. (2017) introduced an IRP variant that incorporates environmental consid-
erations, such as fuel consumption and carbon dioxide emissions, alongside a heterogeneous
fleet of vehicles. Their work stands out as it is the only study in the literature that evaluates
the proposed method for instances involving a heterogeneous fleet. The findings of Cheng
et al. (2017) demonstrated that utilizing a heterogeneous fleet can lead to a reduction
in total costs compared to a homogeneous fleet. However, it is important to note that
the instances used in their study, which were based on those developed by Coelho and
Laporte (2013), include specific characteristics related to environmental aspects, which
may influence the generalizability of their results.

The exploration of these various methods and their applications highlights the diversity
and complexity inherent in solving the IRP. Each approach offers unique advantages and
challenges, reflecting the multiple nature of the problem and the ongoing efforts within the
research community to develop more effective and efficient solutions.

(i) Green

To deal with the environmental aspects related to the emissions of pollutants on the
supply chain, some authors have addresses the named Green IRP that incorporates
features related to this scenario. It includes the comprehension on how these aspects
occur in terms of emission rate and their inclusion into the problem formulation as it
was done by Cheng et al. (2017). They added elements related to the fuel consumption
and CO2 emissions and concluded that for companies with high inventory holding
costs, it is hard to control these emissions since more routing operations are needed
and, consequently, more emission of pollutants are observed.

Soysal et al. (2018) proposed a mathematical formulation for a multi-supplier and
perishable multi-product IRP with horizontal collaboration including the CO2 emis-
sions. They have applied the model to a 2-supplier 2-products case in order to show
that when the suppliers collaborate with each other, the involved costs related to
the problem and the emissions are reduced. Another multi-product approach was
presented by Mirzapour Al-E-Hashem and Rekik (2014) and also considers transship-
ment. In Alinaghian et al. (2021), authors have added time windows to the problem
and proposed multiple metaheuristics to solve it, including a Tabu Search (Glover
1990).

(ii) Perishable products

In the supply chain, some products that need to be transported are perishable and,
consequently, can not stay too long on the shelter because they can perish and become
useless. Rohmer et al. (2019) have shown a linear deterioration for the products and
modeled it as a MILP and solved with a metaheuristic for a 2-echelon IRP. For the
classical IRP, Alvarez et al. (2020) have considered a fixed shelf time for the products
and introduced four mathematical formulations to solve the problem.

A survey on multiple papers that addresses the Perishable IRP (PIRP) was presented
by Shaabani (2022). In this paper, the authors have classified the perishable products
according to multiple characteristics, such as strict fixed lifetime, non-strict fixed
lifetime, random shelf life and gradual deterioration by time, and have highlighted
the fact that there are not many papers that treat this problem in the literature even
if it is considered close to what happens in real scenarios.
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(iii) Transshipment

Differently from the classical IRP in which a customer can be replenished only
by the supplier, the IRP with transshipment (IRPT) authorizes the customers to
perform delivery operations to another customer if it is beneficial for the solution
cost. In practical, the linear models that deal with the transshipment operations
need to consider an extra variable that represents the amount of products that is
delivered directly from a supplier to a customer or from a customer to another one.
Consequently, the inventory levels calculation depends on the classical variables that
represent a normal delivery operation and a second one that considers the total
transshipped. The IRPT has been first introduced by the works of Coelho et al.
(2012b) and later, Lefever et al. (2018) have presented and strengthened a Branch-
and-Cut formulation to improve the resolution quality of the problem, both for the
single-product multi-vehicle case.

Azadeh et al. (2017) have introduced the perishable products category for the IRPT
by considering a deterioration rate once the product is kept in the supplier of customer
inventory. To solve the problem, a genetic algorithm is used. Later, the multi-product
multi-vehicle case has been presented by Peres et al. (2017) with a real case study on
a large Brazilian industry. Due to the problem complexity, a Randomized Variable
Neighborhood Descent (RNVD) is used to solve the model.

(iv) Split delivery

This variant considers the fact that a customer can be visited more than once at each
period. In this case, multiple deliveries can take place within the same period by
different vehicles. In the non split version, at most one vehicle visits each customer
at each period.

Applying the split delivery policy can be computationally hard but the results obtained
by Dror and Trudeau (1990) for the Vehicle Routing Problem show that it can reduce
the costs when the customers demands exceeds the vehicles capacity, which logically
would lead to an unfeasible solution in the non split version of the problem. Also,
Dinh et al. (2023) have added the split delivery constraints for the classical IRP
version and also have shown a cost-saving scenario for both Maximum Level and
Order-Up-to-Level inventory policies.

Yu et al. (2012) have tested the split delivery for the Stochastic IRP with service
level constraints related to both supplier and customers and their hybrid solving
approach based on Lagrangian relaxation is able to find high quality solutions in a
reasonable time. Also, Li et al. (2011) have provided a study on the coordination of
split deliveries in distribution systems which are similar to the IRP and have shown
the importance of coordinating the split delivery with the inventory policy to avoid
sub optimal solutions.

(v) Two-echelon

The two-echelon IRP (2E-IRP) consists of an IRP with an intermediate echelon that
is responsible for its own delivery operations. The first echelon consists of the delivery
of products from the supplier and the industry plants and the second by the plants
and the customers. An example of a real-life application of the 2E-IRP was presented
by Schenekemberg et al. (2020) for a petrochemical industry. In this case, authors
consider the problem with fleet management (2E-IRPFM) that includes the decisions
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on how many vehicles to rent and when to provide the vehicle cleaning since the
products transported are dangerous and present a risk of contamination.

As for the original one-echelon IRP, the 2E-IRP considers one supplier on its classical
version. Authors Guimarães et al. (2019) have addressed the 2E-IRP with multiple
suppliers (2E-MDIRP). In this case, the problem complexity increases since the
number of delivery possibilities for the first echelon increases. They proposed a MILP
and a branch-and-cut to solve the problem. Another solving approaches for the
2E-IRP considers branch-and-price algorithms as proposed by Charaf et al. (2024a),
matheuristic as in Charaf et al. (2024b) and exact approaches considering multiple
inventory policies as in Farias et al. (2019).

1.4.2 Split algorithms

Split-based methods have been widely used in the literature to solve various routing
problems, showing their flexibility and effectiveness. Here, we reference several Split
algorithms that have been proposed for the classical Vehicle Routing Problem (VRP) and
those adapted for different VRP variants. Understanding how these methods work and why
they produce high-quality solutions helps justify their use in solving the Heterogeneous
Inventory Routing Problem with Batch Size (HIRP-BS).

In optimization problems, finding an initial solution and then improving it by exploring
the local search space can be quite challenging. The Split algorithm, which inspired our
method for solving the HIRP-BS, works in two main steps. The first step creates a sequence
of customers, called a giant tour, that includes all customers without considering route
limitations like vehicle capacities. In the second step, the giant tour is divided into several
routes through the split phase, which solves a specific shortest path problem, and each
route is assigned to a vehicle. The original idea of this approach was introduced by Beasley
(1983) as a route-first, cluster-second method to solve the VRP. This method has became a
key approach in solving routing problems, leading to many adaptations and improvements.

Since then, this approach has been widely used and developed in the literature. For
example, Prins et al. (2014) provided a detailed list of around 70 papers that use this
method in both basic and improved versions. The Split algorithm is very adaptable and
can be classified into several categories based on its implementation, including:

(i) Basic versions of the method that follow the original principles of the Split algorithm

(ii) Simple extensions where some paths are excluded from the giant tour due to additional
constraints from the specific optimization problem

(iii) Extensions considering shared resources, like vehicles with limited capacities or depots,
which make the shortest path problem more complex

(iv) Special cases where the graphs have unique characteristics that require customized
solutions.

These Split approaches can also be coupled with local search methods to improve
solutions with efficient operators. This includes reconstructing feasible solutions into a
giant tour and then using a perturbation step to avoid getting stuck in local minima and
ensure diverse solutions. The process involves iterating between creating giant tours and
refining feasible solutions, making it a flexible and dynamic problem-solving method.
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Figure 1.15 shows an iterative schema of the Split algorithm presented by Prins et al.
(2014). Starting from a giant tour, the sequence is split into a feasible solution, which can
be further improved through local search moves. Once an improved solution is found, a
regeneration phase, called Split−1, creates a new giant tour that can be diversified using
a perturbation operator. This results in another giant tour ready for further refinement.
This procedure can be repeated multiple times, creating a strong iterative process that can
be integrated into a metaheuristic framework to systematically enhance solution quality.
The iterative nature of this process ensures that the algorithm continually adapts and
improves, providing high-quality solutions to complex routing problems.

The wide use and adaptation of Split-based methods highlight their importance and
effectiveness in solving routing problems. The ability to generate high-quality solutions
through a structured yet flexible approach makes Split algorithms a valuable tool in the
field of optimization and routing.

Split 

Giant tour
Split A feasible

solution

Local search

An improved  
solution-1

Perturbation

Giant tour

Figure 1.15: Alternation between search spaces (adapted from Prins et al. 2014)

Originally introduced by Dantzig and Ramser (1959) to address a routing and delivery
problem for gasoline stations, the VRP has since become a widely studied problem due to
its complexity and numerous variants, each applicable to different scenarios. The most
common variant is the Capacitated VRP (CVRP), where a fleet of vehicles is tasked with
meeting the demands of a set of customers. Prins (2004) developed a Split algorithm for
solving the distance-constrained CVRP with an unlimited fleet of homogeneous vehicles.
Their Split phase involves solving a shortest path problem on a directed acyclic graph
derived from the giant tour. The minimum-cost solution for this problem is computed
using the Bellman–Ford algorithm.

Algorithm 1 presents the Split for the CVRP and it was introduced by Prins et al.
(2014). The notation include the giant tour T in which Ti corresponds to the customer
assigned to the ith position of T , V to the distance at each node of T , P to the parent
node to help finding the critical path at the end, ci,j to the distance from i to j, si to the
amount of products that must be delivered at i and Q to the vehicle capacity. Also, load
and cost correspond to the vehicle load and the solution cost, respectively.

In Algorithm 1, in the beginning, the partial distances at each node of the giant tour
are set to infinity (line 5). In the For loop, the next customer is retrieved (line 8) and the
vehicle load is set to zero (line 9) since the current route does not contain any customer
for the moment. In the Repeat loop (lines 10 to 23), the algorithm iterates until the end
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Algorithm 1: Split for the CVRP

Result: Vj , Pj ∀j ∈ {1, . . . , n}
1 Begin
2 V0 ← 0
3 P0 ← 0
4 for i = 1 to n do
5 Vi ←∞
6 end
7 for i = 1 to n do
8 j ← i
9 load ← 0

10 repeat
11 load ← load +qTj

12 if i = j then
13 cost ← c0,Ti + sTi + cTi,0

14 end
15 else
16 cost ← cost −cTj−1,0 + cTj−1,Tj + sTj + cTj ,0

17 end
18 if (load ≤ Q) and (Vi−1 + cost < Vj) then
19 Vj ← Vi−1 + cost
20 Pj ← i− 1

21 end
22 j ← j + 1

23 until j > n or load > Q;

24 end
25 End

of the sequence is found (j > n) or if the current vehicle does not have enough capacity
(load > Q). In this loop, the vehicle load is updated with the charge of Tj (line 11). Then,
two cases can occur: if the customer is the first on the route (i.e., i = j), then the solution
cost is updated with the cost of the arcs from the depot to this customer and from this
customer to the depot as well as its amount of product are added (line 13); if not, which
means that the current route has at least one customer, then the solution cost is updated
by removing the cost of the arc linking the last customer and the depot to consider the
new one as well as the amount of product to be delivered (line 16). If the vehicle load
so far respect the vehicle capacity and adding the new customer can improve the best
partial distance found so far, then the distance is improved (line 19) and the parent node
is updated (line 20) considering the new customer Tj . Lastly, the customer index j is
updated to the next one in the sequence of T (line 22).

Note that the number of vehicles is known only at the end of the algorithm and is equal
to the number of routes created during the algorithm execution. It consists on the shortest
path retrieval from the end to the beginning of the giant tour considering the parent nodes
in P . Then, the solution cost correspond to the value Vn that consists of the distance
calculated at the last node of the giant tour.

The Split algorithm can always generate a feasible solution for the CVRP with an
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unlimited fleet of homogeneous vehicles, provided that the highest customer demand is
less than the highest vehicle capacity. In cases involving limited resources, the method
becomes a shortest-path algorithm with resource consumption. Each node in the graph
maintains a list of labels, where each label includes the solution cost and the remaining
resources (e.g., vehicle availability and residual capacity at each node). The complexity of
the Split phase increases with the number of candidate optimal solutions, as the number
of labels generated at each node depends on the number and types of available resources.
Consequently, depending on the giant tour and resource assignment throughout the Split
phase, the algorithm may yield infeasible solutions if one or more required resources are
unavailable for splitting the sequence entirely. Additionally, if multiple criteria or resources
are considered at the end of the Split, it results in a Pareto front.

Duhamel et al. (2012) and Prins et al. (2014) adapted the original Split algorithm to
the CVRP with a heterogeneous fleet of vehicles. Despite its limitations, their methods
demonstrated promising results, which inspired us to employ a similar approach for solving
the HIRP-BS.

□

A non-exhaustive selection of papers that have addresses the IRP and introduced
new variants and approaches to solve it was made to show how new constraints can be
incorporated to tackle different scenarios that relies on the the logistics characteristics. As
already mentioned, the purpose of this thesis is to add new features that can turn the
problem closer to a real scenario, including a heterogeneous vehicle fleet, inventory holding
costs and customer demands that vary according to the each period and the delivery of
products by batches rather than single units. These characteristics are relevant to be
studied since some of them have never been or have barely been studied before.

The next two tables present some highlights on these selected papers by two different
ways. Both are organized by alphabetical order of the first authors last name.

• Table 1.11 highlights in some words each paper contribution including the variant
treated and the proposed approach to solve it and

• Table 1.12 presents the same papers but regarding the IRP version studied (classical
or variant), the resolution method employed (heuristic, metaheuristic, hybrid or
exact), the composition of the vehicle fleet (homogeneous or heterogeneous) and the
variation on the inventory holding costs (period-independent or dependent).
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Table 1.11: Bibliography synthesis on the IRP papers contributions

Citation Contribution

Archetti et al. (2007) Propose a branch-and-cut algorithm to solve the IRP (named Vendor-managed IRP) and introduces the
benchmarking instances set to treat the single-vehicle homogeneous vehicle fleet case.

Coelho et al. (2012a) Solve the IRP with a homogeneous vehicle fleet considering the multi-vehicle case up to five by adapting
the classical IRP benchmarking instances initially designed for the single-vehicle case (Archetti et al.,
2007).

Sk̊alnes et al. (2023) Introduce a new set of homogeneous instances for the IRP and solves them with a matheuristic and a
branch-and-cut approaches.

Alvarez et al. (2020) Four mathematical formulations, a branch-and-cut and a hybrid heuristic to the IRP with perishable
products.

Aksen et al. (2014) An IRP variant named Selective and Periodic IRP that considers collecting oil from a facility and aims
to define the optimal periodic visits to be repeated as a cycle. An Adaptive Large Neighborhood Search
algorithm is proposed to solve the problem.

Archetti et al. (2012) A hybrid algorithm that combines a Tabu Search metaheuristic and a Mathematical Formulation to solve
the classical IRP for the multi-vehicle homogeneous case per period.

Archetti et al. (2018) Propose a branch-and-cut algorithm to solve the IRP with pickups and deliveries with a single homogeneous
vehicle per period.

Archetti et al. (2020) Propose a branch-and-cut to solve the IRP with pickups and deliveries for the multiple homogeneous
vehicles per period.

Azadeh et al. (2017) Introduce a genetic algorithm to solve the IRP considering perishable products and considers a single
homogeneous vehicle per period.

Bertazzi et al. (2019) Propose a matheuristic to solve an IRP variant with multiple depots and tests the algorithm with the
classical IRP instances as well a new set introduced by them.

Continued on next page
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Table 1.11: Table 1.11 – Bibliography synthesis on the IRP papers contributions (continued)

Citation Contribution

Charaf et al. (2024b) Introduces a two-phase matheuristic that combines the tabu search metaheuristic and a linear model to
solve the classical 2E-IRP.

Charaf et al. (2024a) Proposes a mathematical formulation and a branch-and-price to solve the classical version of the 2E-IRP.

Cheng et al. (2017) Include environmental aspects to the classical IRP considering fuel and emission costs and considers
driver wage. Proposes a mathematical formulation to take these aspects into account.

Coelho et al. (2012a) Addresses the IRP considering consistency features that may help to take to problem closer to reality.
These features include the vehicle capacity usage and intervals of delivery operations, for example. The
problem is modelled as a MILP and a matheuristic is proposed to solve it.

Coelho et al. (2012b) Introduce the IRP with transshipment which allows the deliveries to be done from the supplier or from the
customer to another customer. Gives the related mathematical formulation and proposes a metaheuristic
de type ALNS to solve it using the classical IRP instances.

Coelho et al. (2013) Provide an extensive literature review on the IRP and its thirty years of new variants and methods to
solve.

Coelho and Laporte (2013) Propose an unified Branch-and-Cut algorithm to address several IRP variants and tests it for the classical
IRP instances.

Coelho and Laporte (2014) Introduce new valid inequalities to the IRP and some extensions and solve it using a Branch-and-Cut
algorithm on the IRP classical instances.

Desaulniers et al. (2016) Give a mathematical formulation and a Branch-and-Price-and-Cut to solve the classical IRP and improve
the bounds on the classical instances set.

Diabat et al. (2024) Propose a mathematical formulation and valid inequalities to solve the IRP with the Zero-Inventory-
Ordering (ZIO) policy to analyse the impact of this inventory policy.

Dinh et al. (2023) Considers the classical IRP version and incorporates split delivery constraints on both ML and OU
inventory policies and show that the split delivery can save the inventory costs for the solutions found.

Continued on next page
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Table 1.11: Table 1.11 – Bibliography synthesis on the IRP papers contributions (continued)

Citation Contribution

Farias et al. (2019) Introduces two formulations for the two-echelon IRP and adapts the classical IRP instances to handle
the problem characteristics.

Guemri et al. (2016) Solve the Multi-product Multi-vehicle IRP (MMIRP) with a Grasp metaheuristic and tests the algorithm
with the classical instances.

Guimarães et al. (2019) Proposes a mathematical formulation and a matheuristic to solve the two-echelon IRP with multiple
depots (2E-MDIRP). In this problem, more than one supplier is considered as a source of deliveries on
the first echelon.

Gutierrez-Alcoba et al.
(2023)

Propose a MILP-based heuristic to solve a green IRP named Stochastic IRP on Electric Roads that
include electric vehicles to perform the deliveries.

Hemmati et al. (2016) Solve a sea IRP in which the vehicles are heterogeneous ships through a two-phase hybrid matheuristic.

Lefever et al. (2018) Solves the IRP with Transshipment and proposes improvements on the literature mathematical formulation
by introducing new valid inequalities and eliminating unnecessary variables, for example.

Manousakis et al. (2021) Propose a branch-and-cut formulation for the classical IRP and introduces a new two-commodity flow
formulation. This paper is considered so far the best benchmarking for the classical IRP instances using
an exact formulation.

Mirzapour Al-E-Hashem
and Rekik (2014)

Solve a multi-product IRP with transshipment with a MILP model.

Peres et al. (2017) Addresses a multi-product IRP with transshipment and present a mathematical formulation and a
metaheuristic to solve it. It presents a case study in a Brazilian retail industry.

Rohmer et al. (2019) Solve the two-echelon IRP with perishable products through a three variant hybrid algorithm.

Schenekemberg et al. (2020) Solve a two-echelon IRP incorporating fleet management (2E-IRPFM) that consists of decisions on
renting and cleaning vehicles based on a real case of an industry. A mathematical formulation and a
matheuristic are considered to solve the problem.

Continued on next page
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Table 1.11: Table 1.11 – Bibliography synthesis on the IRP papers contributions (continued)

Citation Contribution

Sk̊alnes et al. (2023) Incorporates features such as period-dependent inventory holding costs and different number of vehicles,
for example, to the classical IRP. To solve the problem, they used a matheuristic and a branch-and-cut
algorithm.

Soysal et al. (2015) Solve an IRP with perishable products, uncertain demands and evaluation of CO2 emission and fuel
consumption by a MILP model.

Soysal et al. (2018) Incorporate horizontal collaboration among supplier and customers to a green IRP considering perishable
products comprising Key Performance Indicators (KIPs) related to the green aspects.

Touzout et al. (2022) Solve the Time-Dependent IRP in which the distance traveled considered a starting time and not the
distance traveled and solve it through a matheuristic by adapting the classical IRP set of instances.

Yu et al. (2012) Solve the Stochastic IRP by adding service level constraints related to both supplier and customers.
Considers the split delivery of the quantities to be delivered and solve it by a hybrid algorithm based on
the Lagrangian relaxation.
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Table 1.12: Overview on the IRP versions and approaches

Reference
IRP version Resolution method Vehicle fleet Inventory holding costs

Classical Variant Meta/heuristic Hybrid Exact Homogeneous Heterogeneous Period-independent Period-dependent

Archetti et al. (2007) ✓ ✓ ✓ ✓

Coelho et al. (2012a) ✓ ✓ ✓ ✓ ✓

Sk̊alnes et al. (2023) ✓ ✓ ✓ ✓

Alvarez et al. (2020) ✓ ✓ ✓ ✓ ✓

Aksen et al. (2014) ✓ ✓ ✓ ✓

Archetti et al. (2012) ✓ ✓ ✓ ✓

Archetti et al. (2018) ✓ ✓ ✓ ✓

Archetti et al. (2020) ✓ ✓ ✓ ✓

Azadeh et al. (2017) ✓ ✓ ✓ ✓

Bertazzi et al. (2019) ✓ ✓ ✓ ✓

Charaf et al. (2024b) ✓ ✓ ✓ ✓

Charaf et al. (2024a) ✓ ✓ ✓ ✓

Cheng et al. (2017) ✓ ✓ ✓ ✓

Coelho et al. (2012a) ✓ ✓ ✓ ✓

Coelho et al. (2012b) ✓ ✓ ✓ ✓ ✓

Coelho and Laporte (2013) ✓ ✓ ✓ ✓

Coelho and Laporte (2014) ✓ ✓ ✓ ✓ ✓

Desaulniers et al. (2016) ✓ ✓ ✓ ✓

Diabat et al. (2024) ✓ ✓ ✓ ✓

Dinh et al. (2023) ✓ ✓ ✓ ✓

Farias et al. (2019) ✓ ✓ ✓ ✓

Guemri et al. (2016) ✓ ✓ ✓ ✓

Guimarães et al. (2019) ✓ ✓ ✓ ✓ ✓

Continued on next page
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Table 1.12 – Overview on the IRP versions and approaches (continued)

Reference
IRP version Resolution method Vehicle fleet Inventory holding costs

Classical Variant Meta/heuristic Hybrid Exact Homogeneous Heterogeneous Period-independent Period-dependent

Gutierrez-Alcoba et al. (2023) ✓ ✓ ✓ ✓

Hemmati et al. (2016) ✓ ✓ ✓ ✓ ✓

Lefever et al. (2018) ✓ ✓ ✓ ✓

Manousakis et al. (2021) ✓ ✓ ✓ ✓

Mirzapour Al-E-Hashem and
Rekik (2014)

✓ ✓ ✓ ✓

Peres et al. (2017) ✓ ✓ ✓ ✓ ✓

Rohmer et al. (2019) ✓ ✓ ✓ ✓

Schenekemberg et al. (2020) ✓ ✓ ✓ ✓ ✓

Sk̊alnes et al. (2023) ✓ ✓ ✓ ✓ ✓

Soysal et al. (2015) ✓ ✓ ✓ ✓

Soysal et al. (2018) ✓ ✓ ✓ ✓

Touzout et al. (2022) ✓ ✓ ✓ ✓

Yu et al. (2012) ✓ ✓ ✓ ✓

This thesis (2024) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
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As shown in Table 1.12, when regarding the IRP version studied, many variants have
appeared due to the non sufficient classical constraints to address different scenarios that
can arise. The resolution methods are mainly exact but since it is difficult to solve in a
reasonable time, meta/heuristics and hybrid algorithms are also used. Concerning the
vehicle fleet, papers that have addresses a heterogeneous fleet are rare and even if the
formulation proposed the vehicles are indexed, the instances used present homogeneous
vehicles. The same occurs with he inventory holding costs that are in the majority of
the papers period-independent. These last two characteristics (vehicle fleet and inventory
costs) deserve to be more emphasized and have motivated the choice of the features to be
studied in this thesis, along with others that will be introduced in the next Chapter.

1.5 Chapter conclusion

In this chapter, the classical IRP has been defined in terms of the associated inventory
management and routing problems. For each, the possible variations regarding, for example,
the different supplier and customer points of view, the literature inventory policies and the
different vehicle fleet compositions are presented. Later, the different parts of a feasible
solutions are detailed and the calculations to define the distance matrix, the routes and
inventory as well as the solution costs are detailed.

Then, a bibliography review on the different variants of IRP problems show the existing
variations of the literature (Green, perishable products, transshipment and split delivery)
and a review on the Split algorithms that have been proposed so far to treat the vehicle
routing problems and some variations. It ends with two tables synthesis to summarize
the most relevant papers that have treated the IRP and variants and to highlight the
importance and the motivation to study another variation in this thesis.

Chapter remainder

• Problem definition

• Problem analyses from the inventory management and routing points of view

• Definition of a feasible IRP solution and the involved calculations

• Bibliography review on the classical IRP and its variants as well as the resolution
methods

• Bibliography review on the Split algorithms
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Chapter 2

Mathematical formulations

Go to the Table of Contents <

Abstract
In this Chapter, the mathematical formulations for the classical Inventory Routing

Problem (IRP) and the new variant named Heterogeneous Inventory Routing Problem
with Batch Size (HIRP-BS) are presented. The former stands for the classical version as it
has been studied in the literature since 2007. The latter corresponds to a new variant that
is first introduced in this work and consists in adding features that can turn the classical
IRP closer to reality. One feature is related to the delivery operations in batches previously
defined by the customers according to their needs. Another one is related to the inventory
cost and demands varying over the time periods and the last one to the heterogeneous
vehicle fleet that is also period-dependent and is characterized by a finite capacity and
fixed and variable costs according to the distance traveled. A new set of instances to
tackle the HIRP-BS is also introduced in this Chapter as well as its generation steps and
explanations on the features addressed. Computational results are performed for both IRP
and HIRP-BS linear formulations in order to test their performances in a set of literature
benchmarking instances for the IRP, and a new set introduced in this work to handle the
HIRP-BS variant.
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2.5.2 New benchmark instances . . . . . . . . . . . . . . . . . . . . . . . . 74
2.6 Chapter conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

2.1 Chapter introduction

The Inventory Routing Problem (IRP) and the Heterogeneous Inventory Routing Problem
with Batch Size (HIRP-BS) can be modeled as Mixed Integer Linear Problems (MILP) to
handle the constraints of transportation and inventory management simultaneously. In
this Chapter, the corresponding formal description and the formulations for the IRP and
the HIRP-BS are presented in Sections 2.2 and 2.3, respectively.

Also, the set of instances used are presented in Section 2.4. For the IRP, literature
instances are considered. For the HIRP-BS, a new set of instances is introduced in this
work because the existing ones are not well suited to handle the problem characteristics
translated into the constraints including the heterogeneous fleet of vehicles and the batch
sizes per customer.

Lastly, computational experiments and results are presented and discussed in Section
2.5 when solving both MILP models with an optimization solver.

2.2 MILP formulation for the IRP

The classical IRP consists in defining when and how many products have to be delivered to
a set of customers in such a way that there is no stock disruption and that the customers
inventory levels and the supplier production capacity is respected. To do so, a fleet os
homogeneous vehicles are considered at each period of time and the routes to be performed
also need to be defined. Customers demands and supplier production capacity are said
to be deterministic. The objective is to define a minimum transportation and inventory
cost solution taking into account a set of constraints regarding the inventory management,
quantities to be delivered, sub-tours avoidance and vehicles capacity.

Formally, the IRP is defined on a graph G = (N ′,A) in which N corresponds to
the set of n customers N = {1, ..., n} and the node 0 standing for the supplier, with
N ′ = {0} ∪ N . Therefore, A = {(i, j) : i, j ∈ N ′, i ≠ j} is the set of arcs. A time
horizon T = {1, ...,H} with H periods is considered and consequently T ′ = {0} ∪ T . A
homogeneous fleet of m vehicles is considered, where each presents a capacity B. The
distance matrix C = (ci,j)0≤i,j≤|N ′| includes the cost ci,j to travel from i to j and respect
triangular inequalities.

An initial inventory level si, ∀i ∈ N ′, is known in advance for the customers and
supplier at period 0. The inventory holding costs are given by hti, with i ∈ N ′ and t ∈ T ′.
Each customer has a period-independent demand dti that is the same for each period and a
maximum inventory level Ui allowed per period t ∈ T .

The sets, variables and data are summarized in Table 2.1.
The corresponding formulation is presented below and was inspired on the formulation

presented by Archetti et al. (2014).

2.2.1 Variables

To model the IRP, the following variables are considered to handle the customers visitation,
the quantities to be delivered, the flow and the inventory levels, respectively.
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Table 2.1: Sets, data and variables

Sets/Data Description

N Set of customers

N ′ Set of customers and the supplier

A Set of arcs (i, j), where i, j ∈ N ′ with i ̸= j

T Set of T discrete time periods from 1 to |T |
T ′ Set of T discrete time periods from 0 to |T |
m Number of vehicles available

B Capacity of the vehicles

ci,j Distance from i ∈ N ′ to j ∈ N ′, i ̸= j

rt Supplier production at time period t ∈ T
dti Demand of customer i ∈ N in period t ∈ T
Ui Upper inventory level limit for customer i ∈ N
si Initial inventory level of i ∈ N ′

hti Inventory holding cost of i ∈ N ′ at time period t ∈ T ′

Variables Description

xti,j Binary variable equal to 1 if arc (i, j) ∈ A is chosen at t ∈ T , 0 otherwise

ati,j Freight flow passing through arc (i, j) ∈ A at period t ∈ T
qti Quantity delivered to customer i ∈ N at period t ∈ T
Iti Inventory level of i ∈ N ′ at time period t ∈ T ′

- xti,j : binary variable that indicates whether the customer or supplier j ∈ N ′ is
preceded by i ∈ N ′ (with i ̸= j) in a route performed in period t ∈ T (xti,j = 1) or
not (xti,j = 0)

- qti : the amount of products delivered to a customer i ∈ N at period t ∈ T

- ati,j : freight flow passing from customer or supplier i ∈ N ′ to j ∈ N ′ (with i ̸= j) at
period t ∈ T

- Iti : inventory level of a customer or supplier i ∈ N ′ at period t ∈ T .

2.2.2 Objective function

The objective function for the IRP consists in minimize the sum of the inventory and
routing costs. The first considers the amount of products that are stored at the customers
and the supplier and the second the costs regarding the total distance traveled to serve all
the customers over all the periods of time. Commonly, both costs have similar importance
when solving the problem and their details are presented below.

Inventory costs

The inventory costs consider the the inventory level Iti at the supplier and the customers
at each period t ∈ T ′ and the inventory holding costs hti associated as shown in Equation
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2.1. Note that for period 0, the inventory level is equal to their initial inventory level, i.e.,
I0i = si ∀i ∈ N ′. ∑

i∈N ′

∑
t∈T ′

htiI
t
i (2.1)

Routing costs

The routing costs are associated with the distance traveled by each homogeneous vehicle
in order to visit the customers as in Equation 2.2. In this way, cij represents the costs to
go from customer i to j and the binary variable xti,j defines wether a customer j is visited
(xti,j = 1) or not (xti,j = 0) in period t.∑

(i,j)∈A

∑
t∈T

ci,jx
t
i,j (2.2)

□

The objective is then to minimize the sum of these costs with similar weights or
importance (Equation 2.3).

min
∑
i∈N ′

∑
t∈T ′

htiI
t
i +

∑
(i,j)∈A

∑
t∈T

ci,jx
t
i,j (2.3)

2.2.3 Constraints

Inventory level constraints

Initially (at period 0), the supplier and customers inventory levels variables Iti , ∀i ∈ N ′

and t ∈ T ′, are set to their initial inventory level si according to Constraints (2.4).

I0i = si ∀i ∈ N ′ (2.4)

Then, in Constraints (2.5), the supplier inventory level is calculated considering the
inventory level at the previous period It−1

0 , ∀t ∈ T , added of its production capacity
rt, ∀t ∈ T and deducts the total amount delivered

∑
i∈N qti , ∀t ∈ T to the customers.

It0 = It−1
0 + rt −

∑
i∈N

qti ∀t ∈ T (2.5)

In Constraints (2.6), inventory level for each customer i ∈ N and period t ∈ T considers
its precedent inventory level It−1

i and the amount of products delivered by the supplier
and the demands for the current period.

Iti = It−1
i + qti − dti ∀i ∈ N ,∀t ∈ T (2.6)

Delivery quantity constraints

The quantity qti , ∀i ∈ N , t ∈ T to be delivered must respect the remaining space available at
the customer which is the difference between its previous inventory level and its maximum
storage capacity (Ui − It−1

i ∀i ∈ N , t ∈ T ) as in Constraints (2.7).

qti ≤ Ui − It−1
i ∀i ∈ N , t ∈ T (2.7)
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Constraints (2.8) requires that the customer receiving products at a time period be
visited on one of the routes at the same period.

qti ≤ min{B,Ui}
∑
j∈N ′

j ̸=i

xti,j ∀i ∈ N , t ∈ T (2.8)

Degree constraints

Also referred to as flow constraints, these ensure that the entering and leaving flow at each
node is equal (Constraints 2.9).∑

(i,j)∈A

xti,j =
∑

(j,i)∈A

xtj,i ∀i ∈ N ′, t ∈ T (2.9)

Constraints (2.10) impose that the number m of available vehicles is respected by
regarding the first arc xt0,i ∀i ∈ N , t ∈ T in a given route.∑

i∈N
xt0,i ≤ m ∀t ∈ T (2.10)

Constraints (2.11) ensure that each customer is visited at most once per period since
split deliveries are not allowed.∑

j∈N ′

j ̸=i

xti,j ≤ 1 ∀i ∈ N , t ∈ T (2.11)

Vehicles capacity and sub-tour elimination constraints

In order to avoid sub-tours, variables ati,j , ∀i, j ∈ A, t ∈ T , are introduced and serve as an
increasing counter to ensure that a route starts and ends at node 0, which represents the
supplier. All the variables ati,0, ∀i ∈ N , t ∈ T returning to the supplier are set to 0 as in
constraints (2.12).

ati,0 = 0 ∀(i, 0) ∈ A, t ∈ T (2.12)

Constraints (2.13) are flow conservation constraints of the vehicle load when arriving
and leaving each customer at each time period.∑

j∈N ′

j ̸=i

atj,i − qti =
∑
j∈N ′

j ̸=i

ati,j ∀i ∈ N , t ∈ T (2.13)

Then, the vehicle load along each route is bounded by the vehicle capacity B as
expressed in constraints (2.14).

ati,j ≤ Bxti,j ∀(i, j) ∈ A, t ∈ T (2.14)
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Domain of variables

Lastly, the domain of variables are given by Constraints (2.15)-(2.18).

xti,j ∈ {0, 1} ∀(i, j) ∈ A, t ∈ T (2.15)

ati,j ≥ 0 ∀(i, j) ∈ A, t ∈ T (2.16)

qti ≥ 0 ∀i ∈ N , t ∈ T (2.17)

Iti ≥ 0 ∀i ∈ N ′, t ∈ T ′ (2.18)

2.3 MILP formulation for the HIRP-BS

The HIRP-BS is a multi-period IRP involving a heterogeneous fleet of vehicles and
predefined batch sizes per customer. The supplier must determine when and how many
batches of products to deliver to a set of customers and how to combine these customers
into routes, ensuring that all customer demands are met and no inventory disruptions
occur. Customer demands and supplier production are assumed to be deterministic and
known for the entire time horizon.

Additionally, vehicle capacities and customer maximum inventory levels must be
respected. The available vehicles may vary over the time horizon, and each customer
can be visited at most once per time period (i.e., no split deliveries are allowed). The
objective is to find a minimum-cost solution, with the cost comprising inventory holding
and transportation expenses. The transportation cost includes fixed costs per vehicle type
and variable costs based on distance traveled and vehicle type.

In mathematical terms, the HIRP-BS is defined on a graph G = (N ′,A) and considers:
a set N = 1, 2, . . . , n of customers; a single supplier denoted by 0, resulting in the overall
set of vertices N ′ = N ∪ 0; a time horizon set T = 1, . . . ,H of discrete time periods, where
T ′ = T ∪ 0; a period-dependent vehicle superset K and sets Kt (K = K1 ∪ K2 ∪ · · · ∪ K|T |)
for each period t ∈ T , with |Kt| different vehicle types available and mk,t vehicles of type
k ∈ Kt. Each vehicle type k ∈ Kt has a capacity and associated fixed and variable costs
given by Bk,t, fk,t, and vk,t, respectively. For convenience, vehicle types are sorted by
increasing capacity, i.e., Bk,t ≤ Bk+1,t for all k ∈ Kt, k ̸= |Kt| and for all t ∈ T .

An arc (i, j) ∈ A is created for each pair of vertices i ∈ N ′ and j ∈ N ′, with i ̸= j. The
distance matrix is given by C = (ci,j)0 ≤ i, j ≤ |N ′|, and the cost associated with arc (i, j)
is defined by ci,j . Another matrix S = (si,j)0 ≤ i, j ≤ |N ′| represents the shortest path
from i to j to handle non-Euclidean distances (when applicable). Note that this value may
differ from the Euclidean distance. The variable cost for sending a vehicle from i to j is
computed as vk,t × ci,j .

Each customer i ∈ N has a demand dti at period t ∈ T and a maximum inventory level
Ui that is period-independent. The supplier produces rt units of products per period t.
An initial inventory level si, i ∈ N ′, is observed at each customer and at the supplier,
and each customer has a predefined batch size ℓi that requires the quantities delivered
to be multiples of this value. Additionally, period-dependent inventory holding costs are
denoted as hti for each vertex i ∈ N ′ at period t ∈ T . The inventory costs are calculated
by multiplying hti by the inventory level for each i ∈ N ′ and t ∈ T . We impose h0i = h1i for
any i ∈ N ′.

The HIRP-BS is formulated by adapting the flow formulation introduced by Archetti
et al. (2014) for the classical IRP. To account for the specific characteristics of the HIRP-BS,
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new constraints are added to address the heterogeneous fleet of vehicles available per period
and the customer batch sizes.

To model the HIRP-BS, the following variables are considered: a binary variable xk,ti,j

that is equal to 1 if i ∈ N ′ is followed by j ∈ N ′, i ̸= j, in a route performed at period
t ∈ T by a vehicle of type k ∈ Kt, and 0 otherwise; a continuous variable qk,ti that defines
the quantity delivered to customer i ∈ N at period t ∈ T by a vehicle of type k ∈ Kt; an
integer variable zti corresponding to the number of batches delivered to customer i ∈ N at

period t ∈ T (such that qk,ti = ℓiz
t
i); an integer variable Iti representing the inventory level

of each vertex i ∈ N ′ at period t ∈ T ′; and an integer variable ak,ti,j representing the total

flow from i ∈ N ′ to j ∈ N ′, i ̸= j, at period t ∈ T using a vehicle of type k ∈ Kt.

Sets/Data Description

N Set of customers

N ′ Set of customers and the supplier

A Set of arcs (i, j), where i, j ∈ N ′ with i ̸= j

T Set of T discrete time periods from 1 to |T |
T ′ Set of T discrete time periods from 0 to |T |
K Unique indexes set of available vehicles from 1 to |T |

mk,t Number of vehicles of type k ∈ Kt available at period t ∈ T
Kt Set of vehicles available at time period t ∈ T , where Kt ⊆ K and Kt ∩ Kt′ = ∅, ∀t′ ∈ T , t′ ̸= t

Bk,t Capacity of vehicle k ∈ Kt at period t ∈ T
fk Fixed cost for vehicle k ∈ Kt of period t ∈ T
vk Cost per unit of distance traveled by vehicle k ∈ Kt of period t ∈ T
ci,j Parameter distance from i ∈ N ′ to j ∈ N ′, i ̸= j

si,j Calculated shortest path from i ∈ N ′ to j ∈ N ′, i ̸= j

rt Supplier production at time period t ∈ T
dti Demand of customer i ∈ N at time period t ∈ T
ℓi Batch size for customer i ∈ N
Ui Upper inventory level limits for customer i ∈ N
si Initial inventory level of i ∈ N ′

hti Inventory holding cost of i ∈ N ′ at time period t ∈ T ′

Variables Description

xk,ti,j Binary variable equal to 1 if arc (i, j) ∈ A is chosen at t ∈ T by k ∈ Kt, 0 otherwise

ak,ti,j Freight flow passing through arc (i, j) ∈ A at period t ∈ T in vehicle k ∈ Kt

qk,ti Quantity delivered to customer i ∈ N at period t ∈ T using vehicle k ∈ Kt

zti Number of batches delivered to customer i ∈ N at time period t ∈ T
Iti Inventory level of i ∈ N ′ at time period t ∈ T ′

Table 2.2: Description of sets, data and variables

2.3.1 Variables

To model the HIRP-BS, the following variables are considered to handle the customers
visitation, the quantities and the number of batches to be delivered, the flow and the
inventory levels, respectively.

- xk,ti,j : binary variable that indicates whether the customer j ∈ N ′ is preceded by

i ∈ N ′ (with i ̸= j) in a route performed by a vehicle type k ∈ Kt in period t ∈ T
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(xk,ti,j = 1) or not (xk,ti,j = 0);

- qk,ti : the amount of products delivered to a customer i ∈ N in a vehicle type k ∈ Kt

available at period t ∈ T ;

- zti : the number of batches delivered to a customer i ∈ N at period t ∈ T ;

- ak,ti,j : freight flow passing from customer i ∈ N ′ to j ∈ N ′ (with i ̸= j) in a vehicle

type k ∈ Kt at period t ∈ T ;

- Iti : inventory level of a customer i ∈ N ′ at period t ∈ T ′.

2.3.2 Objective function

Given that the objective of the HIRP-BS is to minimize the sum of the inventory and
routing costs, the objective function can be split in two parts for the sake of comprehension.
The former considers the supplier and customers inventory holding costs over all periods
of time (including period 0) and the latter the routing costs related to the total distance
traveled considering both fixed and variable costs according to the vehicle types used in a
given route. As for the IRP, both costs have similar importance when solving the problem
and their details are presented below.

Inventory costs

At first, inventory costs hold at each time period from 0 (to consider both customers and
supplier initial inventory level, i.e., I0i = si) to |T | and contemplate the cost per unit hti
and the inventory level Iti according to Equation (2.19).∑

i∈N ′

∑
t∈T ′

htiI
t
i (2.19)

Routing costs

Second, routing costs involve fixed and variable costs according to the use of a specific
vehicle type and the distance traveled, respectively. Both are detailed below by Equations
(2.20) and (2.21).

Fixed costs
In order to add the fixed costs (fk,t) per vehicle type and period, it is necessary to

know which type is assigned to a given route and which period. Also, to add the fixed cost
to the objective function, we consider getting the first arc of a route, i.e., the one that
starts at the supplier (i = 0) and go to any customer j ∈ N at any period and using any
vehicle type according to Equation (2.20).∑

j∈N

∑
t∈T

fk,txk,t0,j (2.20)

Variable costs
Since the variable costs (vk,t) are considered based on each unit of distance traveled

(si,j) per arc (i, j) ∈ A, we need to consider all the arcs (i.e., when xk,ti,j = 1) at each route
performed by a given vehicle type in a period of time according to Equation (2.21).

65



Perdigão Martino, Diego MILP formulation for the HIRP-BS

∑
(i,j)∈A

∑
t∈T

∑
k∈Kt

si,jv
k,txk,ti,j (2.21)

□

The objective is then to minimize the sum of these costs with similar weights or
importance (Equation 2.22).

minimize
∑
i∈N ′

∑
t∈T ′

htiI
t
i +

∑
(i,j)∈A

∑
t∈T

∑
k∈Kt

si,jv
k,txk,ti,j +

∑
j∈N

∑
t∈T

fk,txk,t0,j (2.22)

2.3.3 Constraints

The constraints can be classified in four groups according to their major relevance to
the formulation: classical inventory management, delivery quantities, degree and capacity
of vehicles and sub-tour elimination. Each of them is presented below by Equations
(2.23)-(2.40).

Inventory level constraints

Classical inventory management constraints are given by Constraints (2.23) to (2.25).

In constraint (2.23), the inventory level at period zero (I0i ) for each customer and the
supplier is equal to their initial inventory level which is a parameter of the problem (si).

I0i = si ∀i ∈ N ′ (2.23)

The supplier inventory level at a period t is given by its level in the precedent period
t − 1 added to its production capacity in t given by rt minus the amount of products
delivered to each customer visited in t according to Equations (2.24).

It0 = It−1
0 + rt −

∑
i∈N

∑
k∈Kt

qk,ti ∀t ∈ T (2.24)

Similarly, for the customers, their inventory level in period t is given by its level in t− 1
added by the quantity received from the supplier minus the customer demand as expressed
by Equations (2.25).

Iti = It−1
i +

∑
k∈Kt

qk,ti − dti ∀i ∈ N , t ∈ T (2.25)

Delivery quantities constraints

The quantities delivered are modeled by Constraints (2.26) to (2.28).

In a given period, each customer can be delivered at most by a single vehicle from
those available. In order to avoid stock disruption, this quantity must respect maximum
(Ui) inventory level allowed per customer and the existing inventory level (It−1

i ), which is
imposed by constraints (2.26).∑

k∈Kt

qk,ti ≤ Ui − It−1
i ∀i ∈ N , t ∈ T (2.26)
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The quantity of products delivered to a customer (qk,ti ) is bounded by the minimum
value between the vehicle capacity (Bk) and the customer maximum inventory level (Ui)
according to the inequalities (2.27).

qk,ti ≤ min{Bk, Ui}
∑
j∈N ′

j ̸=i

xk,ti,j ∀i ∈ N , t ∈ T , k ∈ Kt (2.27)

Then, to take into account the batch size ℓi per customer, we introduce constraints
(2.28) to ensure that quantities delivered are a multiple of this value.∑

k∈Kt

qk,ti = ztiℓi ∀i ∈ N , t ∈ T (2.28)

Degree (flow) constraints

The degree constraints (also named flow constraints) are given by Equations (2.29) to
(2.32).

Constraints (2.29) guarantee that the number of vehicles arriving and leaving the
customers or supplier is the same.∑

(i,j)∈A

xk,ti,j =
∑

(j,i)∈A

xk,tj,i ∀i ∈ N ′, t ∈ T , k ∈ Kt (2.29)

Constraints (2.30) forbid the split delivering and impose that a customer is visited at
most once per period. ∑

j∈N ′

j ̸=i

∑
k∈Kt

xk,ti,j ≤ 1 ∀i ∈ N , t ∈ T (2.30)

Constraints (2.31) are introduced to limit to one the number of routes per period
performed by each available vehicle.∑

i∈N
xk,t0,i ≤ 1 ∀t ∈ T , k ∈ Kt (2.31)

In order to impose that a customer is visited only if a non-zero quantity of products is
delivered, we added constraints (2.32).∑

j∈N ′

j ̸=i

∑
k∈Kt

xk,ti,j ≤
∑
k∈Kt

qk,ti ∀i ∈ N , t ∈ T (2.32)

Vehicles capacity and sub-tour elimination constraints

To avoid sub-tours in the solutions, constraints (2.33) to (2.35) are added and represent the
Miller-Tucker-Zemlin (MTZ) (Miller et al., 1960) constraints for the multi vehicle routing
problem associated.

Constraints (2.33) require that each vehicle at each time period returns empty (no flow)
to the supplier.
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ak,ti,0 = 0 ∀i ∈ N , t ∈ T , k ∈ Kt (2.33)

Constraints (2.34) are flow conservation constraints of the vehicle load when arriving
and leaving each customer at each time period.∑

j∈N ′

j ̸=i

ak,tj,i − qk,ti =
∑
j∈N ′

j ̸=i

ak,ti,j ∀i ∈ N , t ∈ T , k ∈ Kt (2.34)

Constraints (2.35) ensure consistency between the values of the ak,ti,j and xk,ti,j variables
and impose that the capacities of the vehicles are respected.

ak,ti,j ≤ Bkxk,ti,j ∀(i, j) ∈ A, t ∈ T , k ∈ Kt (2.35)

Variables domain

At last, variables domain are provided by constraints (2.36)–(2.40).

xk,ti,j ∈ {0, 1} ∀(i, j) ∈ A, t ∈ T , k ∈ Kt (2.36)

ak,ti,j ≥ 0 ∀(i, j) ∈ A, t ∈ T , k ∈ Kt (2.37)

qk,ti ≥ 0 ∀i ∈ N , t ∈ T , k ∈ Kt (2.38)

zti ∈ Z+ ∀i ∈ N , t ∈ T (2.39)

Iti ≥ 0 ∀i ∈ N ′, t ∈ T ′ (2.40)

2.4 Instances

Two groups of the IRP data are distinguished in this work. The former accounts for the
literature classical instances and the latter for the new set created in this thesis to deal
with the HIRP-BS variant.

2.4.1 IRP classical instances

Literature instances were proposed by Archetti et al. (2007). These authors presented a
total of 160 files varying from 5 to 50 customers and 3 to 6 periods of time each. These
instances are characterized by a period independent demand and inventory costs over the
periods as well as the Euclidian distance among the customers. An example of an instance
file is given in Appendix A, Section A.1.

Note that for these classical instances, the demands and the inventory costs are the
same over the whole time horizon and that the initial inventory level, the maximum storage
capacity and the demands are multiple between them.

Table 2.3 gives an overview on these 160 instances grouping them by number of
customers (N ), number of periods of time (T ), customers and supplier inventory holding
costs, respectively (hi, h0).

Each file is named absXnY in which X corresponds to the type of instance and since
each instance size has five different combinations, X values range from 1 to 5. Y values
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Table 2.3: Literature instances characteristics

Number of instances N |T | hi h0

160

100
50 {5, 10, ..., 50} 3 [0.01; 0.05] 0.03

50 {5, 10, ..., 50} 3 [0.1; 0.5] 0.3

60
30 {5, 10, ..., 30} 6 [0.01; 0.05] 0.03

30 {5, 10, ..., 30} 6 [0.1; 0.5] 0.3

corresponds to the number of customers, which means that for the 3-period instances set,
the possible values are equal to 5c, with c = {1, 2, ..., 10} and for the 6-period ones, these
values are up to 5c, with c = {1, 2, ..., 6}.

Initially, they were designed to treat the single vehicle case and later, authors Archetti
et al. (2012); Coelho et al. (2012a) have addressed the multi vehicle case up to 5 vehicles.
For each instance, the capacity of the single vehicle is indicated. To tackle the multi vehicle
case, this value is better interpreted as a transportation capacity per period and not per
vehicle since the value is divided by the number of available vehicles and the result is
rounded down to the nearest integer. Then, the number of instances increase to 800 since
the 160 base instances can be now used for up to 5 vehicles each. However, there is only
one exception in which the instance abs1n5 becomes infeasible when using 5 vehicles since
the vehicles transportation capacity is not enough to handle the customers demands over
the periods.

2.4.2 New HIRP-BS instances

Several sets of instances for the classic IRP were previously presented in the literature. In
their majority, a relatively short time horizon of up to 6 periods is considered, except for
instances proposed by Sk̊alnes et al. (2023) with a time horizon of 12 periods. The most
commonly considered instances are those introduced by Archetti et al. (2007). Available
instances usually consider constant demands inventory holding cost over the time horizon,
except for instances presented in Sk̊alnes et al. (2023), which contain period-dependent
demands. Table 2.4 summarizes instance parameters for those present in the literature
and the new set of instances proposed by us in the last column.

Archetti et al.
(2007)

Archetti et al.
(2012)

Coelho et al.
(2012b)

Sk̊alnes et al.
(2023)

This thesis
(2024)

Number of customers 5–50 50–200 5–50 10–200 19–183

Number of periods 3,6 6 3,6 6, 9, 12 7, 14, 21, 28

Period-dependent inventory costs No No No No Yes

Period-dependent demands No No No Yes Yes

Heterogeneous fleet of vehicles No No No No Yes

Batch size per customer No No No No Yes

Euclidian distance Yes Yes Yes Yes No

Table 2.4: Comparison of instance features

Since the instances introduced in these papers can not handle the HIRP-BS variant and
are quite far from its characteristics, a new set of 80 instances is introduced in this thesis.
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These instances consider an heterogeneous vehicle fleet, demands and inventory holding
costs that vary over the time horizon and a batch size per customer. Their characteristics
are detailed below.

1. Number of customers and periods: a number of customers of up to 183 and a time
horizon of up to 28 periods

2. Heterogeneous vehicle fleet: period-dependent vehicle types are available at each
period and each has a quantity, a capacity, fixed and variable costs depending on
their usage and the distance traveled, respectively

3. Demands and inventory holding costs: period-dependent values for each period of
time which represents possible fluctuations due to the customers constraints and
different inventory costs according to, for example, the difficulty in their storage

4. Customers batch sizes: each customer has a period-independent fixed batch size
which consists in a minimum products group size to be delivered at each period and
to facilitate their management and/or storage

5. Non Euclidian distances: real-life distances between French cities in which the
distances are non-Euclidean and triangle inequalities are not necessarily satisfied.

In order to generate these instances, the following steps were employed. Note that some
of these instances may provide infeasibilities and in some cases, the solver detected them
instantly at the beginning of the execution. In these cases, the instances concerned were
discarded.

• Customer demand (dti)

rand([10, 100]) ∈ Z+ ∀i ∈ N , t ∈ T (2.41)

• Inventory cost (hti)

rand([0.1, 0.5]) ∈ R+ ∀i ∈ N , t ∈ T (2.42)

• Number of vehicle types per period (|Kt|)

rand([1, 6]) ∈ Z+ ∀t ∈ T (2.43)

• Number of vehicles of each type (mk,t)

rand([1, 5]) ∈ Z+ ∀t ∈ T , k ∈ Kt (2.44)

• Capacity of vehicle type k at period t (Bk,t)⌈∑
i∈N dti
|Kt|

× (rand([1, 1.5]) ∈ R+)

⌉
∀t ∈ T , k ∈ Kt (2.45)

• Fixed cost for vehicle type k at period t (fk,t)

rand([50, 150]) ∈ Z+ ∀t ∈ T , k ∈ Kt (2.46)
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• Variable cost for vehicle type k at period t (vk,t)

rand([0.5, 3]) ∈ R+ ∀t ∈ T , k ∈ Kt (2.47)

• Maximum inventory allowed for customer i (Ui)

⌈max(dti)× (rand([1, 2]) ∈ R+)⌉ ∀i ∈ C, t ∈ T (2.48)

• Initial inventory level for customer i (si)

⌈Ui × (rand([0.2, 1]) ∈ R+)⌉ ∀i ∈ N (2.49)

• Batch size for customer i (ℓi)⌈
dti

(rand([5, 8]) ∈ Z+)

⌉
∀i ∈ N , t ∈ rand([1, |T |]) (2.50)

• Supplier production at period t (rt)∑
i∈N

dti × (rand([1.2, 2]) ∈ R+) ∀t ∈ T (2.51)

• Inventory holding cost of supplier at period t (ht0)

rand([0.1, 0.5]) ∈ R+ ∀t ∈ T (2.52)

• Initial inventory level of supplier (s0)∑
i∈N s0i
2

(2.53)

The 80 selected instances are all feasible, which means that at least one solution exists
to meet all the problem constraints. These instances can then be divided into groups
according to their size in terms of number of customers and of periods of time. Three
groups are then created: Small, Medium and Large. Table 2.5 presents the classification.

Table 2.5: Sets of instances for the HIRP-BS

Small-scale Medium-scale Large-scale

Number of instances 13 57 10

Number of periods 7 7, 14, 21, 28 7, 14, 21, 28

Number of customers 19 19*, 34, 46, 58, 83 114, 149, 170, 183

(*) Except for a time horizon with 7 periods

These new instances are up to 183 customers and 28 periods of time, which are
challenging when compared to those that exists in the literature. They were grouped
according to their facility of resolution and are presented below.
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• Small set: this set contains instances with 19 customers and a time horizon of 7
periods. Instances from this set are the only ones for which feasible solutions can be
found within a given running time limit by the proposed formulation using an MILP
solver (further presented in this Chapter)

• Medium set: this set contains instances with 19, 34, 46, 58, and 83 customers and
a time horizon with 7 (except for a number of customers equal to 19), 14, 21, and
28 time periods. These instances do not have an integer feasible solution known by
a MILP solver but only for the metaheuristic approach (further presented in the
Chapter 4). Their performance is then established between the linear relaxation
value provided by a MILP solver and the integer feasible solution values from the
metaheuristic.

• Large set: these instances provide 114, 149, 170 and 183 customers and 7, 14, 21
and 28 periods of time. They were grouped together since as for the medium set, an
integer feasible solution is not known but only the linear relaxation and in terms of
the heuristic approach, only a part of the metaheuristic can be employed since its
dimensions make their resolution complicated for the whole method.

These instances can be downloaded at https://perso.limos.fr/~diperdigao/research/
HIRP-BS/instances/. A file example is presented in Appendix A, Section A.2.

The distances matrices C = (ci,j)0≤i,j≤|N ′| were extracted from the set of instances
proposed by Duhamel et al. (2012) for the HVRP and were extracted with an API that
calculates the distance according to the time required to travel from one point to another.
These distances may not be Euclidian in some cases and, consequently, the triangle
inequalities are not verified.

□

Theorem 2.4.1 (Triangle inequalities) For any triplet of points A,B,C such that
AB ≤ AC + CB, the triangle inequalities state that

AB +BC > CA

BC + CA > AB

BA+AC > CB

Once one of these inequalities is not verified, we can state that the distances are not
Euclidian since the Euclidian distance corresponds to the shortest path between two points,
i.e., always verify the three inequalities.

□

One example from these real distance matrices can be taken from the medium instance
m 19 14 1 with 19 customers and 14 periods of time. Taking a look at the distances
between customers 1, 3 and 8, we can see that traveling from 3 to 8 is faster if we pass at
customer 1 location as shown in Figure 2.1.

To tackle the cases in which these inequalities are not verified, a pre-processing before
using them in order to find the shortest path among the customers and the supplier and can
be easily achieved with the Dijkstra (Dijkstra, 1959) shortest path algorithm. It consists in
executing the algorithm using the original distance matrix and updating it once a shortest
path is found compared to the actual values.
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Figure 2.1: Example of a triangle inequality not verified

2.5 Experiments and results

In this Section, the experiments to evaluate the linear formulations are presented. The
tests were performed on an Intel Xeron Gold 6240R 2.40GHz with 256GB of RAM memory.
The commercial solver ILOG CPLEX Optimization Studio version 20.1.0 was used and a
time limit of one hour was set for each instance.

Below, the results are divided into two parts. The first for the IRP and the second for
the HIRP-BS.

2.5.1 Literature instances

The set from the literature instances introduced in Subsection 2.4.1 was chosen randomly
to test the formulation and the results are presented in Table 2.6.

Table 2.6: Results for the classical IRP set

abs |N | |T | #Vehicles zLB zUB t(s) gap(%)

5 30 3 1 9773.08 9773.90 34.84 0

5 30 3 2 10062.50 10063.50 1431.12 0

5 30 3 3 10321.70 10449.90 3600.00 1

5 50 3 1 15677.10 15678.70 187.85 0

5 50 3 2 15916.60 16123.60 3600.00 1

5 50 3 3 15688.90 16129.10 3600.00 3

2 40 3 1 11316.70 11317.80 395.22 0

2 40 3 2 11554.40 11689.00 3600.00 1

2 40 3 3 11802.30 12015.50 3600.00 2

Average 2227 0.89

Note that a very small gap of 0,89% is observed for these instances and that the average
total time to solve is about 38 minutes as shown in Table 2.6. The results for the other
literature set of instances are presented in Appendix B. Each table refers to 3 or 6 periods
of time and contains from 1 and up to 5 vehicles. The lower and upper bounds, the time
to obtain the solution (with one hour of time limit) and the gap are presented for each
instance.
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2.5.2 New benchmark instances

The new set of benchmark instances for the HIRP-BS introduced in Section 2.4.2 is
composed of three groups: Small, Medium and Large. The results for each of them are
presented below.

Table 2.7: Results for the small HIRP-BS instances set

Instances CPLEX

|N | |T | ID zRL tRL(s) zLB zUB gap(%) ttarget(s) ttotal(s)

19 7

1 14362.21 0.59 null null null null null

2 14349.82 0.75 null null null null null

3 13192.77 0.61 13468.21 13787.07 2.31 2755 3605.44

4 15117.76 0.80 15410.03 16070.71 4.11 3602 3603.04

5 12649.01 0.69 13048.71 14871.80 12.26 3606 3607.43

6 12013.27 0.68 12365.08 12709.81 2.71 3605 3607.58

7 11091.07 0.47 11395.59 11667.71 2.33 3605 3606.29

8 13417.14 0.85 13674.95 13948.05 1.96 3603 3603.39

9 11195.59 0.55 11491.10 11722.88 1.98 3560 3603.90

10 12406.95 0.73 12752.75 13327.03 4.31 3603 3604.07

11 15287.84 0.80 15568.40 17630.62 11.70 3600 3600.14

12 15118.76 0.74 15388.55 15689.12 1.92 3562 3608.62

13 16058.63 0.77 16285.27 16535.68 1.51 3607 3609.31

Average 4.28 3519

In Table 2.7, for the two first instances considered, no results were found by CPLEX
within the one hour of execution. For the others, a gap is always observed since no
optimality is proven in less than one hour. The linear relaxation is easily solved for
this group of instances. In Table 2.8, only the results for the linear relaxation can be
reported since CPLEX is not able to provide any integer feasible solution for this group of
medium-scale instances. The same occurs for the large-scale instances which the results
are given by Table 2.9.

The results for the new benchmark instances are presented in Appendix C. Note that
the tabled are divided according to the instances dimension (Small, Medium and Large)
and the tables share the results with the metaheuristic of the next Chapter. Thus, only
the first columns (CPLEX) have to be considered for the linear formulation.
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Table 2.8: Results for the medium HIRP-BS instances set

Instances CPLEX Instances CPLEX

|N | |T | ID zRL tRL(s) |N | |T | ID zRL tRL(s)

19

14

1 31765.05 1.37

58

7

1 46315.26 24.86

2 35995.55 1.14 2 27474.70 21.40

3 36849.87 1.57 3 37506.26 18.19

21

1 70705.51 1.77

14

1 100261.9994 32.61

2 67279.76 1.58 2 102989.69 29.79

3 81136.08 1.61 3 118288.86 20.56

28

1 105572.10 2.73

21

1 199673.24 78.55

2 108853.94 2.52 2 198632.41 65.69

3 96870.65 2.50 3 187080.89 95.89

34

7

1 21504.21 4.03

28

1 312777.77 86.24

2 25220.85 3.50 2 289651.41 134.67

3 19551.36 3.08 3 344415.46 120.88

14

1 64725.84 4.74

83

7

1 46176.09 192.97

2 58026.86 8.71 2 45115.88 37.98

3 60027.35 7.40 3 48785.67 151.18

21

1 112811.33 14.25

14

1 150855.25 94.43

2 142540.13 12.29 2 115554.70 332.01

3 125961.64 16.06 3 161514.80 349.82

28

1 199983.60 14.58

21

1 220407.99 405.76

2 194899.21 18.19 2 272141.83 281.30

3 198494.93 18.27 3 254559.92 546.52

46

7

1 28952.92 9.11

28

1 - -

2 31393.56 7.63 2 458910.42 618.15

3 25408.63 4.75 3 - -

14

1 70858.715 14.24

2 85473.87 19.85

3 78769.42 13.58

21

1 163482.68 49.02

2 165078.23 47.82

3 129226.16 32.59

28

1 232277.48 56.34

2 263986.86 62.94

3 249555.83 59.98
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Table 2.9: Results for the large HIRP-BS instances set

Instances CPLEX

|N | |T | ID zRL tRL(s)

114 7 1 63214.61 148.56

114 7 2 62803.88 92.41

114 7 3 62229.09 135.55

114 14 1 160846.19 313.28

114 14 2 240633.57 164.75

114 21 1 368429.18 1234.34

149 28 1 - -

170 21 1 - -

170 28 1 - -

183 7 1 - -

2.6 Chapter conclusion

This Chapter has presented the formal description and the mathematical formulation
for both IRP and HIRP-BS. It includes the respective objective function, variables and
constraints regarding the inventory level, the delivery quantities, the flow (degree), the
vehicles capacity and the sub-tour elimination. For the IRP, the 800 classical literature
instances was presented. For the HIRP-BS, since the problem is introduced in this thesis, a
new set of instances was introduced and the generation method was explained considering
each new feature comparing to the classical IRP.

Chapter remainder

• Literature mathematical formulation for the classical IRP

• New mathematical formulation to address the HIRP-BS

• Computational experiments on both IRP and HIRP-BS
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Chapter 3

Iterative approach over periods

Go to the Table of Contents <

Abstract
In this chapter, a heuristic method that employs an iterative approach to tackle the

Inventory Routing Problem (IRP) by decomposing it into subproblems based on the time
horizon is presented. The proposed method systematically progresses through the time
horizon, addressing each period in sequence from the first to the last. At each iteration, a
subproblem is formulated, incorporating all concerned problem constraints but focusing
only on a specific interval of the time horizon. The solution obtained from the previous
periods serves as the starting point for solving the current subproblem. A key feature of
this method is its ability to limit modifications to the solutions of earlier periods, which
have already been optimized in previous iterations. It not only preserves the integrity of
previous solutions but also significantly accelerates the resolution process, as the method
avoids unnecessary recalculations and focuses computational efforts on refining the current
period solution. The results of the experiments indicate that this approach is competitive
in terms of both solution quality and execution time. It has demonstrated the ability to
generate solutions for the set of benchmark instances considered, offering a practical and
efficient method for solving IRP instances within a reasonable computational timeframe.
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3.1 Chapter introduction

The iterative approach consists of a hybrid heuristic based on the formulation presented
in Section 2.2 from Chapter 2. The method iterates over the time horizon, solving the
subproblem composed by all constraints until the current period, and starting the resolution
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from the partial solution of the previous iteration. Furthermore, the number of modifications
to the predefined partial solution is limited by a fixed method parameter.

The iterative algorithm as well as the problem and subproblem definitions are formally
introduced in Section 3.2. To test the approach, Section 3.3 presents the different experi-
ments conducted on the instances set (Subsection 3.3.1) and the results are presented and
discussed in Subsection 3.3.2.

3.2 Iterative algorithm

Let P represent the IRP, and let Pt, for all t ∈ T , denote the tth subproblem among the
|T | possible subproblems. Solving Pt involves starting from the previously determined
values for the route compositions, expressed by the variables xti,j from periods 1 to t− 1,
and then solving the current subproblem Pt while allowing a degree of freedom for the
variables x during the execution of the algorithm for Pt.

The overall concept is illustrated in Figure 3.1.

Figure 3.1: Iterative heuristic idea

In Figure 3.1, the interdependence among the subproblems for a given period t is
depicted. For example, when t = 2, the subproblem P2 relies on the preceding subproblem
P1, as it carries forward a partial solution that serves as the initial point for solving P2.
This pattern of dependency continues as the time periods progress. When t = 3, the
subproblem P3 draws information from P2, which itself depends on the solution obtained
from P1. This dependency persists throughout the process, ensuring that each subproblem
is informed by the solutions of its predecessors. The algorithm systematically iterates over
the entire time horizon, progressing from one period to the next, and concludes only after
all subproblems have been thoroughly explored.

It is also essential to highlight that as the algorithm progresses through the periods,
the size and complexity of the subproblems increase. Specifically, the dimensions of the
subproblems grow with each subsequent iteration, meaning that |P1| < |P2| < · · · <
|PT −1| < |PT |. This increasing complexity is presented in Figure 3.2, which illustrates
how the subproblems expand as the algorithm advances through the different periods. The
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gradual expansion of the subproblems reflects the accumulation of information and increase
the decisions that need to be taken as the algorithm approaches the final time period.

subproblem 
dimension

periods

Figure 3.2: The iterative heuristic search space evolution

The underlying idea is to partially explore the neighborhood associated with each time
period during each iteration. This exploration is guided by the variables that represent each
period within the time horizon, allowing the solver to implicitly follow a logical sequence
that aligns with the chronological order of the periods. It also guides the solver to know
better the problem structure into periods since it may not be clear while considering all the
variables separately. Such an approach is commonly utilized in constraint programming
algorithms, as discussed in previous works Bourreau et al. (2019, 2020).

To implement this approach, for a given period t ∈ T , the variables x̄ti,j , which

represent the values obtained from solving the subproblem Pt−1, are considered. The next
step involves calculating the distance between these variables and their corresponding
counterparts xti,j in the subproblem Pt. This calculation is done using Equations (3.1).
Consequently, the non-linear nature of Equations (18) is addressed by linearizing them
through Constraints (3.2). The linearization process employed here is consistent with
the method that is presented in Chapter 4, Section 4.5, which corresponds to the post-
optimization phase of the SEMPO metaheuristic. This step is crucial as it ensures the
compatibility of the equations within a linear model, facilitating the iterative solution of
the subproblems across different periods.

δt
′
i,j = |x̄t

′
i,j − xt

′
i,j | ∀i, j ∈ N ′, t′ ∈ {1, ..., t− 1} (3.1)
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η =


δt

′
i,j ≥ x̄t

′
i,j − xt

′
i,j

δt
′
i,j ≥ xt

′
i,j − x̄t

′
i,j

δt
′
i,j ≤ x̄t

′
i,j + xt

′
i,j

δt
′
i,j ≤ 2− x̄t

′
i,j − xt

′
ij

∀i, j ∈ N ′, t′ ∈ {1, ..., t− 1} (3.2)

Only the x variables are considered due to the fact that deactivating (xti,j = 0) or
activating (xti,j = 1) an arc in a given period directly corresponds to either completely
removing or adding a quantity q at a customer. This relation is already accounted for by
the problem constraints, which establish the connection between the x and q variables
(see Constraints (2.8) from the linear formulation of the classical IRP presented in Section
2.2 of Chapter 2). By focusing on the x variables, the changes in customer deliveries are
effectively managed since these deliveries are tied to the activation or deactivation of arcs.

Once the resolution of Pt begins, starting from the known values of the x variables
up until period t − 1, the corresponding q values can be more easily determined based
on whether an arc is utilized in a route or not. However, during the transition from
subproblem Pt−1 to Pt, an initial value for the q variables is set without allowing any
degree of freedom, thereby guiding the search process.

Following this, the degree of freedom for the x variables is expressed by∑
(i,j)∈A

∑
t′∈{1,...,t−1}

δt
′
i,j ≤

⌈
x̂ · ∆

100

⌉
(3.3)

in which x̂ represents the number of non-zero variables xti,j obtained from solving the

subproblem Pt−1, i.e., all variables where xti,j = 1. The parameter ∆ denotes the percentage
of allowed changes in each subproblem Pt based on previously activated arcs. Specifically,
when ∆ = 0, no changes to the previously activated arcs are permitted, while when
∆ = 100, all previously activated arcs could potentially be altered.

The iterative approach is outlined in Algorithm 2.
Algorithm 2 starts by defining two essential sets, denoted as X̄ and Q̄, which are

initially set to be empty (as outlined in line 1). Alongside this, the algorithm also initializes
the elapsed time variable, elpT ime, to zero, marking the start of the timing process (as
described in line 2).

Following this, the algorithm proceeds to generate the first subproblem, P1, which is
constructed using only the relevant data for the first period of the problem time horizon
(as specified in line 3). This initial subproblem is then solved using a Mixed-Integer Linear
Programming (MILP) solver, which applies the mathematical model defined by equations
(2.1) through (2.18) (as detailed in Chapter 2, Section 2.2). The process of solving this first
subproblem is critical, as it sets the stage for subsequent iterations (as indicated in line 4).
Upon obtaining a solution for P1, the algorithm updates the elapsed time, elpT ime, to
the duration spent in solving this initial subproblem (line 5).

If a feasible solution is found for the first subproblem, the algorithm then moves forward
by incorporating the associated decision variables x and q into the previously defined sets,
X̄ and Q̄, respectively (this step is carried out between lines 6 and 23, specifically in lines
8 and 9). The inclusion of these variables into the sets X̄ and Q̄ is a crucial as it allows
the algorithm to reuse these values in subsequent periods.

As the algorithm transitions to the second period and continues through to the final
period of the time horizon, it enters a loop (as delineated between lines 10 and 23).
Within each iteration of this loop, the algorithm integrates the solution obtained from
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Algorithm 2: Iterative algorithm

Data: problem data from Chapter 2, Section 2.2
degree of freedom ∆
solver time limit timeMax

Result: a feasible solution s(PT ) for the Pt subproblem
1 X̄, Q̄ ← ∅
2 elpT ime← 0
3 Create the first subproblem P1

4 s(P1) ← solve(data, P1, timeMax)
5 Update elapsed time elpT ime
6 if s(P1) is feasible then
7 x̄1i,j , q̄

1
i ← getValues(s(P1))

8 X̄ ← x̄1i,j
9 Q̄← q̄1i

10 for each period t ∈ T \{1} do
11 Create the tth subproblem Pt

12 Pt ← addHint(X̄, Q̄, η,∆)
13 timeMax← timeMax− elpT ime
14 s(Pt) ← solve(data, Pt, timeMax)
15 Update elapsed time elpT ime
16 if s(Pt) is feasible then
17 x̄ti,j , q̄

t
i ← getValues(s(Pt))

18 X̄ ← X̄ ∪ x̄ti,j
19 Q̄← Q̄ ∪ q̄ti
20 else
21 stop
22 end

23 end

24 else
25 stop
26 end
27 return s(PH)

the previous period into the current subproblem. Specifically, during the tth iteration,
the algorithm constructs the tth subproblem (as indicated in line 11). Since the solution
from the preceding period, t− 1, is now available, additional constraints are introduced
into the tth subproblem to guide the search for an optimal solution. These constraints are
formulated by incorporating the ∆ ratio, as well as the set of linear constraints η, which
are represented by Inequalities 4.39 (as specified in line 12). The role of these constraints
is to restrict the x variables within the allowable flexibility defined by ∆ and to provide an
initial value for the q variables, thereby improving the efficiency of the solution process.

As the loop progresses, the algorithm continuously updates the maximum allowable
time, timeMax, based on the cumulative elapsed time from the previous iterations (as
described in line 13). Subsequently, the algorithm solves the tth subproblem and updates
the elapsed time, elpT ime, to the time spent in solving this particular subproblem (this
update is captured in line 15). If the algorithm succeeds in finding a feasible solution
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(this check occurs between lines 16 and 19), it extracts the solution (as detailed in line
17) and adds the corresponding values to the sets X̄ (line 18) and Q̄ (line 19), thereby
incrementally building the final solution.

Lastly, after all iterations have been completed and each subproblem has been addressed,
the algorithm returns the solution obtained from the last subproblem, PH (as indicated in
line 27). This final step concludes the algorithm execution, providing the complete solution
to the problem.

3.3 Experiments

The experiments were conducted on a high-performance computing environment equipped
with an AMD EPYC 7452 32-Core processor, supported by 512GB of RAM. The imple-
mentation was carried out using the C++ programming language. For solving the complex
MILP model, the solver IBM ILOG CPLEX Optimization Studio, specifically version
22.1.1.0, was chosen.

The experimental setup focused on the set of classical IRP instances, originally proposed
by Archetti et al. (2007); Coelho et al. (2012a). These instances serve as a benchmark in the
field, providing a standardized way to evaluate and compare the performance of different
algorithms. In addition to these classical instances, a series of experiments were conducted
to explore the impact of varying the maximum authorized distance for the x variables.
The results of these variations are presented in the subsequent sections, offering insights
into how different constraints on x influence the overall solution quality and computational
efficiency.

For each IRP instance and the corresponding method applied, the MILP solver was
given a strict time limit of one hour to find a solution. In the case of the iterative method,
this time constraint is cumulative across periods; that is, when solving an instance up
to a certain period t, the elapsed time is the sum of the times spent from period 1 to
period t. This is due to the fact that the subproblem Pt in the iterative method reuses
information from previously solved subproblems, making it period-dependent. Conversely,
in the classical approach, the time limit is applied individually to each instance, as there is
no inter-period dependency in solving the subproblems. This distinction highlights the
iterative method increasing complexity.

Furthermore, the parameter ∆ was systematically varied across a predefined set of
values, specifically ∆ = {0, 10, 20, . . . , 90, 100}, to thoroughly analyze its impact on the
algorithm performance in solving the problem. These ∆ values, representing different levels
of tolerance or flexibility within the model, were held constant throughout the execution
of the algorithm, allowing for a clear comparison of their effects on the solution process.
The choice of these particular values was made to cover a wide range of possible scenarios,
providing a comprehensive understanding of how varying ∆ influences the efficiency and
effectiveness of the solution approach.

3.3.1 Instances

To evaluate the performance of the iterative algorithm, the well-known set of classical IRP
instances was utilized. The detailed description and characteristics of these specific IRP
instances were thoroughly introduced in Chapter 2, Subsection 2.4.1.
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3.3.2 Results for the literature instances

Table 3.1 presents the results for the same group of instances chosen on the previous
chapters. Columns abs, |N |, |T | and vehic present the instances characteristics. The next
four columns zLB, zUB, t(s), gap(%) present the results for the lower and upper bounds,
time in seconds and the gap for the iterative algorithm. The next four columns (also zLB,
zUB, t(s), gap(%)) consider the results for the linear formulation on its classical version
without the iterative approach. The last column globalGap(%) compares the gap between
both approaches (iterative and classical).

Table 3.1: Results for the classical IRP instances

Iterative algorithm Classical formulation

abs |N | |T | #Vehicles zLB zUB t(s) gap(%) zLB zUB t(s) gap(%) globalGap(%)

5 30 3 1 10320.60 10321.60 84.02 0 9773.08 9773.90 34.84 0 5

5 30 3 2 10549.10 10550.10 2315.07 0 10062.50 10063.50 1431.12 0 5

5 30 3 3 11024.20 11025.30 2732.16 0 10321.70 10449.90 3600.00 1 5

5 50 3 1 16174.30 16175.90 383.72 0 15677.10 15678.70 187.85 0 3

5 50 3 2 16588.20 16688.80 3600.00 1 15916.60 16123.60 3600.00 1 3

5 50 3 3 16828.10 17208.20 3600.00 2 15688.90 16129.10 3600.00 3 6

2 40 3 1 11795.70 11796.80 432.17 0 11316.70 11317.80 395.22 0 4

2 40 3 2 12126.30 12127.50 222.02 0 11554.40 11689.00 3600.00 1 4

2 40 3 3 12480.50 12481.80 2548.52 0 11802.30 12015.50 3600.00 2 4

Average 1768 0.34 2227 0.89 4

Note that in Table 3.1 the average time for the iterative approach is of about 30 minutes
while the classical approach is 38 minutes. When comparing both approaches, the last
column show an average gap of 4%, which shows that the iterative approach is competitive
to provide good results for these instances. In the following, results for other classical IRP
instances are presented and discussed.

Tables 3.2 to 3.5 show the results for a particular subset of instances where the parameter
∆ is set to 50, and involve either 2 or 3 vehicles. The delta value was chosen to be 50 since it
presents the best results considering the other ones from 0 to 100. These specific instances
were chosen based on their representativity among the whole set. In these tables, a detailed
comparison is provided against the benchmark values reported by Manousakis et al. (2021),
who have established the so far best-known bounds for these classical instances in the
literature. This comparison highlights the relative performance of the current algorithm
against the state of the art, offering insights into its effectiveness and efficiency within this
context.

The results presented in Table 3.2 demonstrate that, on average, the iterative method is
ten times faster than direct resolution, with an average solution gap of 9%. However, a closer,
instance-by-instance analysis reveals significant variability in performance. Specifically, five
instances − low abs1n20, low abs1n25, high abs1n15, high abs1n20, and high abs1n25 −
exhibit a tenfold acceleration in computation time. Among these, the instance abs1n25.dat
shows a 19% gap, highlighting a trade-off between speed and solution quality in some cases.
The least favorable is observed for the instance low abs1n5.dat, with a time horizon of
three periods, where a 22% cost gap and a computation time ratio of 1 are observed. On
the other hand, the most favorable instance is high abs1n20.dat, also with a three-period
time horizon, which shows only a 4% cost gap and a computation time ratio of 39.

In Tables 3.3 and 3.5, a comparison of the iterative approach with the best-known
upper bounds from the literature, as provided by Manousakis et al. (2021), reveals that
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Table 3.2: Results for ∆ = 50 and 3 vehicles

instance Iterative heuristic MILP model
gap(%) ratioT ime

type name |N | |T | UB time(s) UB time(s)

low abs1n5 5 3 1826.68 0 1430.51 0 22 2

low abs1n10 10 3 2894.35 1 2732.61 5 6 3

low abs1n15 15 3 3073.35 9 2783.77 86 9 10

low abs1n20 20 3 3913.45 139 3605.72 3600 8 26

low abs1n25 25 3 4312.25 107 3503.30 3600 19 34

low abs1n30 30 3 4764.89 406 4251.64 3600 11 9

low abs1n35 35 3 4836.19 3596 4099.58 3600 15 1

low abs1n40 40 3 5367.35 3593 4552.06 3600 15 1

low abs1n45 45 3 5309.61 1782 4537.30 3600 15 2

low abs1n50 50 3 5769.00 2046 5442.62 3600 6 2

high abs1n5 5 3 2695.22 0 2298.73 0 15 1

high abs1n10 10 3 5666.74 1 5506.09 6 3 3

high abs1n15 15 3 6480.80 9 6242.90 104 4 11

high abs1n20 20 3 8506.00 85 8165.42 3600 4 42

high abs1n25 25 3 9711.60 71 8893.88 3600 8 51

high abs1n30 30 3 13464.80 833 12908.90 3600 4 4

high abs1n35 35 3 13125.20 2459 12445.00 3600 5 1

high abs1n40 40 3 15037.00 3591 14224.10 3600 5 1

high abs1n45 45 3 15443.10 1466 14771.00 3600 4 2

high abs1n50 50 3 16292.90 1331 15926.00 3600 2 3

Average 9 10

Table 3.3: Results for ∆ = 50 and 3 vehicles

instance Iterative heuristic Manousakis et al. (2021)
gap(%) ratioT ime

type name |N | |T | UB time(s) UB time(s)

low abs1n5 5 3 1826.68 0 1430.51 1 22 1

low abs1n10 10 3 2894.35 2 2732.61 21 6 11

low abs1n15 15 3 3073.35 9 2783.77 23 9 3

low abs1n20 20 3 3913.45 139 3605.72 196 8 1

low abs1n25 25 3 4312.25 107 3503.38 83 19 1

low abs1n30 30 3 4764.89 407 4251.64 1069 11 3

low abs1n35 35 3 4836.19 3596 4080.60 2463 16 1

low abs1n40 40 3 5367.35 3593 4532.84 13369 16 4

low abs1n45 45 3 5309.61 1783 4537.30 29437 15 17

low abs1n50 50 3 5769.00 2046 6017.66 42832 -4 21

high abs1n5 5 3 2695.22 0 2298.73 0 15 0

high abs1n10 10 3 5666.74 2 5506.09 13 3 8

high abs1n15 15 3 6480.80 9 6242.90 16 4 2

high abs1n20 20 3 8506.00 85 8165.42 229 4 3

high abs1n25 25 3 9711.60 71 8893.82 53 8 1

high abs1n30 30 3 13464.80 834 12098.90 2409 10 3

high abs1n35 35 3 13125.20 2460 12396.00 3380 6 1

high abs1n40 40 3 15037.00 3592 14224.10 9173 5 3

high abs1n45 45 3 15443.10 1467 14771.00 34500 4 24

high abs1n50 50 3 16292.90 1331 16115.80 43101 1 32

Average 9 7
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Table 3.4: Results for ∆ = 50 and 2 vehicles

instance Iterative heuristic MILP model
gap(%) ratioT ime

type name |N | |T | cost time(s) cost time(s)

low abs1n5 5 6 3776.60 1 3775.80 5 0 7

low abs1n20 20 6 7392.36 2791 7388.92 3600 0 1

low abs1n25 25 6 8233.73 3329 7464.18 3600 9 1

high abs1n5 5 6 6380.03 1 6380.03 3 0 5

high abs1n15 15 6 13105.10 126 12624.70 3600 4 29

high abs1n20 20 6 15585.80 3053 15553.20 3600 0 1

high abs1n25 25 6 16218.50 3062 15958.40 3600 2 1

Average 2 6

Table 3.5: Results for ∆ = 50 and 2 vehicles

instance Iterative heuristic Manousakis et al. (2021)
gap(%) ratioT ime

type name |N | |T | cost time(s) cost time(s)

low abs1n5 5 6 3776.60 1 3775.68 8 0 11

low abs1n20 20 6 7392.36 2791 7388.80 2276 0 1

low abs1n25 25 6 8233.73 3329 7461.55 735 9 0

high abs1n5 5 6 6380.03 1 6379.56 8 0 13

high abs1n15 15 6 13105.10 126 12624.70 148 4 1

high abs1n20 20 6 15585.80 3053 15540.40 3232 0 1

high abs1n25 25 6 16218.50 3062 15954.80 197 2 0

Average 2 4

the iterative method is competitive in terms of time convergence, despite some gaps being
observed in certain cases.

Tables 3.6 and 3.7 summarize the results for classical IRP instances over time horizons
of 3 and 6 periods, respectively. The analysis focuses exclusively on the first type of instance
(abs1nB.dat). In these tables, the column labeled type indicates the type of inventory
holding costs considered, gapX(%) represents the average gap across all instances up to
the Xth period, timeRatio denotes the ratio between the time required to solve the last
period using the classical approach and the cumulative time for the iterative heuristic, and
finally, σ provides the standard deviation of the timeRatio values for a specified ∆.

In Tables 3.6 and 3.7, it is important to note that gap values can only be calculated
starting from the second period. This is because, in the first period, both the iterative
and classical approaches yield identical results, as there is no prior information available to
incorporate into the first subproblem in the iterative method. Consequently, the initial
period does not provide a basis for calculating a performance gap between the two methods.

During the first period, for the majority of instances analyzed, no routes are scheduled
because customers have sufficient inventory levels, meaning that no product deliveries are
necessary. As a result, there are no differences between the methods at this stage. Moving
into the second period, all gap values are observed to be zero. This is attributed to the
problem in this period, where the information carried over from the first period significantly
aids in resolving the subproblem, ensuring that both methods arrive at the same solution.

However, as we progress to the third period and beyond, the complexity of the problem
increases considerably. From gap3 onward, the problem dimension can expand significantly,
making it more challenging to obtain optimal solutions. This is where the iterative method
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Table 3.6: Results for |T | = 3

type ∆ gap2(%) gap3(%) timeRatio σ

low

0 0 20 100.69 202.33

10 0 19 61.06 168.77

20 0 17 18.45 40.07

30 0 13 6.64 19.54

40 0 15 5.77 16.11

50 0 12 5.22 15.86

60 0 12 4.81 15.22

70 0 12 4.56 15.11

80 0 11 5.00 16.80

90 0 10 4.89 17.52

100 0 10 8.08 25.00

high

0 0 8 78.49 204.18

10 0 8 57.29 239.40

20 0 7 22.55 74.27

30 0 5 5.73 14.85

40 0 5 4.71 11.19

50 0 5 4.13 9.30

60 0 5 3.87 9.04

70 0 4 3.78 9.53

80 0 4 3.86 10.80

90 0 4 4.04 11.66

100 0 4 5.66 9.18

avg 0 10 19.06 52.53

Table 3.7: Results for |T | = 6

type ∆ gap2(%) gap3(%) gap4(%) gap5(%) gap6(%) timeRatio σ

low

0 0 18 21 17 18 402.81 491.65

10 0 19 12 12 10 36.17 32.06

20 0 17 11 7 8 15.01 11.51

30 0 16 8 5 5 11.13 10.97

40 0 15 6 2 6 4.37 3.58

50 0 15 0 7 -2 3.94 3.64

60 0 14 -1 6 -4 2.77 2.93

70 0 12 -1 4 -4 1.72 1.27

80 0 12 -3 -1 -2 2.03 1.37

90 0 10 -4 2 -6 1.57 0.67

100 0 9 -4 -1 -7 1.43 0.84

high

0 0 7 8 11 11 692.68 1264.34

10 0 8 4 6 5 33.75 43.56

20 0 4 1 5 15 17.13 28.21

30 0 7 2 1 0 8.14 11.55

40 0 6 -1 4 -2 4.83 6.63

50 0 6 -1 3 -2 5.43 8.06

60 0 5 -1 2 -5 3.60 6.88

70 0 4 -2 2 -5 2.66 4.20

80 0 4 -1 1 -4 2.08 2.41

90 0 3 -4 0 -5 1.61 2.11

100 0 3 -5 -2 -5 1.23 1.42

avg 0 10 2 4 1 57.09 88.18
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starts to diverge in performance from the classical approach, as the problem becomes
harder to solve with each subsequent period.

Regardless of the instance type or its size, a trend is observed: as the ∆ value increases,
there is a notable reduction in the gap. This trend occurs because a higher ∆ value allows
the subproblem more flexibility in adjusting the arcs, thereby increasing the chances of
finding better solutions. However, this benefit comes at a cost-computation time increases
as the search space expands with the larger ∆ values. Despite this, even in the worst-case
scenarios regarding time, the iterative approach generally outperforms the classical method
on average, highlighting its efficiency in balancing solution quality and computational
effort.
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3.4 Chapter conclusion

In this chapter, an iterative approach for solving the IRP was introduced. This method
integrates exact resolution techniques, based on a MILP formulation of the IRP, with an
iterative exploration of the search space across the available time periods. The approach is
structured so that, at each iteration, the subproblem corresponding to the current time
period is formulated and solved, building upon the solution obtained from the preceding
subproblem. This iterative process allows the method to refine and improve the solution
progressively as it advances through the time periods.

The experiments were conducted using a set of classical instances from the literature,
which serve as benchmarks in the field. The results demonstrated that this iterative method
offers a significant competitive advantage, particularly when evaluating execution time and
the solution quality within a one-hour time limit. The method presents a computational
efficiency and the quality of the solutions, as indicated by the results.

Chapter remainder

• An iterative algorithm to solve the IRP

• Decomposition method according to the number of periods available

• Sequential resolution from the first to the last period

• Partial dependance on the subproblems to accelerate the algorithm convergence
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Chapter 4

A Split-embedded Metaheuristic
with a Post-optimization phase
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Abstract
A Split-based metaheuristic is introduced in this Chapter to solve the IRP and the

HIRP-BS. A Greedy Randomized Adaptive Search Procedure (GRASP) coupled with an
Evolutionary Local Search (ELS) and a Post-optimization phase comprises the metaheuristic.
A Split algorithm is the main core of the metaheuristic and relies on the definition of a
multi-period giant tour containing the customers and predefined calculated quantities to be
delivered and consists in splitting this sequence to define the routes that are assigned to the
set of available vehicles. Once the search has reached the end of the giant tour, the shortest
path retrieval is performed in order to retrieve the minimum-cost solution value found. The
metaheuristic combines a three-step constructive heuristic capable of generating a good
quality starting solution to be further improved by the ELS mechanism which includes a
mutation, an evaluation and a local search phases. Lastly, the best solution obtained so
far is improved in a Post-optimization phase that acts on the mathematical formulation
introduced in the previous Chapter. Computational results are then performed in both
literature and new instances sets and results are reported and discussed.
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4.1 Chapter introduction

In this Chapter, a metaheuristic named Split-Embedded Metaheuristic with a Post-
Optimization phase (SEMPO) is introduced to solve the HIRP-BS. The algorithm contains
three main steps: a constructive heuristic, an Evolutionary Local Search (ELS) and a
Post-Optimization step. The Split algorithm, which is the main step of the constructive
heuristic, is presented in Section 4.3 and considers the decomposition of a multi-period
giant tour into routes with a shortest path with ressource consumption algorithm to create
feasible solutions for the problem. The objective is to generate a good quality solution to
be further improved.

The ELS step is introduced in Section 4.4 as well as the mutation and local search
mechanisms. Then, an original post-optimization phase is presented in Section 4.5 to try
to improve the solutions even more after the ELS. Experiments are conducted on the new
set of instances proposed in this thesis and the results are presented in Section 4.6.

4.2 The SEMPO schema

The Split-based metaheuristic (SEMPO) integrates a Greedy Randomized Adaptive Search
Procedure (GRASP) algorithm that utilizes the Split mechanism at various stages of its
process, in combination with an Evolutionary Local Search (ELS) and a Post-Optimization
phase, which includes a local search as illustrated in Figure 4.1. The GRASP metaheuristic
is a well-known approach that iteratively constructs initial solutions and applies a local
search procedure until a predefined stopping criterion is reached. Numerous researchers
have applied this method to VRP problems (Kontoravdis and Bard 1995, Villegas et al.
2011, Guemri et al. 2016) as well as ELS algorithms (Duhamel et al. 2011, Zhang et al.
2015). While GRASP and ELS have been widely explored for VRP, their application
specifically to the IRP has been less studied, with no recent publications identified.

Therefore, the metaheuristic contains the following three main steps:
Step 1. A three-step constructive heuristic that provides feasible solutions even for

large-scale instances. These are the three steps:

1. Definition of a multi-period giant tour containing a sequence of customers to be
visited and the quantities to be delivered that favor the split decomposition into
routes of reasonable quality. It relies on the possibility of anticipating the customer
deliveries to previous time periods.

2. Evaluation of the previous generated giant tour in order to decompose the sequence
into routes that are assigned to the set of available vehicles at each period of time.
This evaluation step is obtained thanks to the Split algorithm.

3. Improvement of the solution obtained so far by a local search mechanism that acts
on the routing part of the problem by four neighborhoods considering intra and inter
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Figure 4.1: Schema of the SEMPO algorithm
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routes moves. Once done, the improved solution is converted into a giant tour to
restart the process if needed.

Step 2. An Evolutionary Local Search (ELS) procedure to improve the solution
obtained in the previous stage for a given number of iterations without improvement. The
ELS combines also three phases as follows:

1. A mutation phase that provides diversification by permuting the giant tour positions
among those belonging to the same period of time.

2. An evaluation phase which corresponds to the algorithme Split and

3. A local search mechanism that are the same from the previous three-step constructive
heuristic presented above.

Step 3. The Post-Optimization procedure seeks to enhance the solution by refining the
best ELS outcome solution obtained in the current GRASP iteration. This method operates
on the premise that the search space of the mathematical model can be constrained by
defining a “distance” from the best ELS solution. By narrowing the search space, this
approach reduces the computational effort required to solve an MILP model while focusing
on areas with a higher probability of improvement. During this stage, the delivery quantities
and route configurations are optimized. The model builds on the mathematical formulation
introduced in Section 2.3 of Chapter 2 by adding constraints related to the “distance” from
the ELS solution and targeting solutions with routes that remain “close” to those identified
in the previous stage.

The initial two steps of the proposed constructive heuristic, which involve generating
a giant tour by determining the quantities and positioning of customers in Γ, followed
by creating a feasible solution for the HIRP-BS using the Split algorithm, are detailed
in Section 4.3. The ELS algorithm, which includes the local search procedure also used
in the third step of the constructive heuristic, is discussed in Section 4.4. Finally, the
Post-Optimization procedure is described in Section 4.5.

4.3 Giant tour generation and Split algorithm

Given a sequence of customers, the Split algorithm for the VRP focuses on finding the
shortest path in a graph. For the capacitated version (CVRP), it not only seeks the shortest
path but also accounts for resource constraints due to the limited number of vehicles. In
the case of the IRP, the Split algorithm further incorporates inventory management into
the process of route creation. The primary objective of the algorithm is to efficiently solve
the combined challenges of routing and inventory management.

A schema of the Split algorithm is presented in Figure 4.2.
In Figure 4.2, customers A, B, C, D, and E are scheduled over a 3-period horizon and

arranged into a giant tour based on their product needs, considering a scenario with no
previous delivery operations, only their initial inventory level si. The arc from node 0 to 1
represents the route 0→ C → 0, which delivers q1c units of products during period 1. This
scenario is similar to the one presented by Prins (2004) for the VRP.

The originality of the approach introduced in this thesis is illustrated by two particular
cases: anticipating a delivery from one customer assigned to a period t to a period t′ such
that t′ < t and that the customer (i) has not already been treated in the current route and
(ii) has already been treated in the current route. These two cases are illustrated below.
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Figure 4.2: Split algorithm general idea

(i) The second route {0, B, D, A, 0} represents an anticipation delivery scenario since
customers D and A are initially scheduled at period 2, but the route is assigned
to period 1 given the time period of the first customer B. Since a constructive
heuristic to define the giant tour places the quantities at the very latest possible
period, assigning this route to period 2 would cause an inventory disruption since
the quantity q1B is supposed to be delivered at period 1 at most

(ii) The third rote given by the sequence {0, E, B, D, 0} also anticipates the deliveries
and has the particularity of accumulating the quantity to be delivered to customer E
at period 3 with those of period 2, and also the fact that this customer only appears
once on the route, which may reduce transportation costs whereas the inventory costs
increase. This trade-off has been explained in Chapter 1, Subsection 1.3.4, when
defining a feasible IRP solution.

These particular cases differ from the classical Split for the VRP and variations and
can handle the transportation and the inventory problem simultaneously. More specifically,
the algorithm consists of the following steps:

1. Step 1: Defining of a giant tour. Generate a multi-period giant tour containing
a sequence of customers and predefined quantities to be delivered and a number of
periods which correspond to an estimation of the latest possible moment to deliver
the given quantity. This placement is done by a constructive heuristic that allows
finding the “best” moment in which the customer should be placed and the quantity
and possible period to be assigned.

2. Step 2: Splitting the giant tour. From the left to the right, splitting the sequence
taking into account the problem constraints given in Section 2.3 by Constraints
(2.23) to (2.40) including the customers storage capacity, the inventory level and
the capacity of the vehicles (heterogeneous fleet). It proceeds to an exploration of
the possible routes to be created by adding labels that contains information on the
candidate route. A limit must be imposed in order to reduce the space complexity
since one label may generate multiple others. To select the best candidates, the labels
are sorted by their increasing solution costs. Once the last customer in the sequence
is chosen, the procedure ends.

3. Step 3: Retrieving the critical path. From the right to the left, this step aims
to retrieve the critical path that corresponds to the minimum cost solution obtained
once the giant tour exploration is done by the previous step. Picking any label on
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the last customer on the sequence allows finding a feasible solution for the problem.
It can be done by retrieving the customers that originates the route as well as the
vehicle and the period assigned since the parent nodes and indices were saved through
the algorithm execution. This step can be seen as an application of a shortest path
algorithm.

To the best of my knowledge, no existing literature addresses a Split-based algorithm
for inventory routing problems that considers a multi-period giant tour. The process of
defining the giant tour is detailed in Subsection 4.3.1, the splitting phase is explained in
Subsection 4.3.2, and the shortest path retrieval for identifying a feasible solution is covered
in Subsection 4.3.3.

4.3.1 Generation of the giant tour

A giant tour is defined on an auxiliary directed graph G = (V ′,A). The vertex subset V
represents the customers, and V ′ = V ∩ 0 includes both the supplier and the customers.
For routing problems, each node in V represents a customer that must be visited by a
vehicle. In the IRP context, however, each node v ∈ V represents a triplet Γv, γv, q

γv
Γv
,

where Γv ∈ N is a customer served during the last time period γv ∈ T with an amount qγvΓv
.

The arc set is defined as A = {(a, b) | a, b ∈ V ′, a ≠ b and γa ≤ γb if a, b ∈ V}. Γ denotes a
multi-period giant tour where each customer may appear more than once, but at most the
number of available periods.

Determining when and how many products should be delivered to meet all demands
while adhering to inventory capacities is necessary. Each customer can be supplied at most
once per time period (no split delivery allowed) but may receive multiple deliveries over
the time horizon, limited by the number of periods. The method involves (i) calculating
delivery quantities as late as possible to avoid stockouts without considering the maximum
inventory level and (ii) adjusting quantities that exceed the maximum inventory level as
follows.

(i) It iterates through the time horizon from beginning to end and calculates, for each
customer i ∈ N , the specific time period t ∈ T when the inventory level for that
customer would become negative based on its initial inventory and demands, assuming
no deliveries are made. Consequently, the quantity qti is determined for each customer
i ∈ N during period t ∈ T .
For each customer i ∈ N and time period t ∈ T , if the inventory level It−1

i is lower
than the demand dti, a delivery is necessary. The total amount of goods delivered is
based on the batch size, with the delivery amount being the smallest multiple of ℓi
required to meet the demand, as specified in Equation (4.1).

qti =

⌈
dti − It−1

i

ℓi

⌉
ℓi ∀i ∈ N , t ∈ T (4.1)

Next, the inventory level at the end of period t is computed as the inventory level
at the end of the previous period t − 1, plus the deliveries made during period t
(qti), minus the customer demand in period t (dti). This calculation is represented by
Equation (4.2) and is analogous to Constraint (2.25), excluding the vehicle assignment
considerations. Algorithm 3 presents the steps of these calculations.
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Iti = It−1
i + qti − dti ∀i ∈ N , t ∈ T (4.2)

Algorithm 3: Right-shift quantities

Data: data: problem data from Chapter 2
Result: qti : amount to be delivered for customer i ∈ N in period t ∈ T
Iti : inventory level for customer i ∈ N in period t ∈ T

1 Begin
2 for each customer i = 1 to |N | do
3 I0i ← si
4 end
5 for each period t = 1 to |T | do
6 for each customer i = 1 to |N | do
7 qti ← 0

8 if dti > It−1
i then

9 qti ←
⌈
dti−It−1

i
ℓi

⌉
× ℓi

10 end

11 Iti ← It−1
i + qti − dti

12 end

13 end
14 return qti , I

t
i ∀i ∈ N , t ∈ T

15 End

(ii) Since the values qti may exceed the maximum inventory level allowed per customer,
a left-shifting of quantities from the end of the time horizon to the beginning may
be necessary. For each customer i ∈ N and each period t ∈ T , if Ui < Iti (i.e., the
inventory level surpasses the maximum allowed for the customer), then deliveries must
be shifted. The amount to be shifted is determined by considering the customer’s
batch size and is adjusted to the minimum possible value.

Algorithm 4: Left-shift quantities

Data: data: problem data from Chapter 2
qti : quantity for customer i ∈ N in period t ∈ T from Algorithm 3
Iti : inventory level for customer i ∈ N in period t ∈ T from Algorithm 3

Result: qti : updated quantities
1 Begin
2 for each customer i = 1 to |N | do
3 for each period t = T to 2 do
4 δti ← Ui − Iti
5 if δti < 0 then

6 p←
⌈
|δti |
ℓi

⌉
× ℓi

7 qt−1
i ← qt−1

i + p

8 It−1
i ← It−1

i + p
9 qti ← qti − p

10 Iti ← Iti − p

11 end

12 end

13 end
14 return qti ∀i ∈ N , t ∈ T
15 End

Secondly, once the delivery quantities are established, the giant tour Γ = Γ1, . . . ,Γt can
be defined, where Γt represents a sequence of customers for a period t ∈ T . Note that Γt
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can be empty, indicating that there are no customers to deliver in period t because their
inventory is sufficient. Furthermore, Γt may vary from period to period, as stockouts do
not occur simultaneously for all customers due to differences in their initial inventory levels
and demands.

Based on the previously calculated quantities qti , for each i ∈ N and t ∈ T , we define
Ct = i ∈ N | qti ̸= 0 as the set of customers to be delivered in period t, with nt = |Ct|. Similar
to Γt, the set Ct may also be empty for the same reason. We denote Γt

n as the customer
scheduled at period t in position n of Γ, where n ∈ 0, |Γ|+ 1, and |Γ| =

∑
t∈T nt + 1, with

an additional fictional node 0 at the beginning.
The giant tour Γ is constructed from the sets Ct in chronological order. For the first

period t in which at least one delivery occurs, the customers in Ct are randomly ordered in
Γ. For subsequent periods, Γ is arranged to facilitate the future Split algorithm evaluation,
ensuring that routes start with a customer scheduled in period t and end with another
customer assigned to a later period t′ with t′ > t.

Incorporating a customer from period t′ into a route scheduled for period t incurs
additional transportation costs if the customer has not yet been visited on this route. If
the customer is already on the route, adding them only increases the delivery quantity
without incurring extra transportation costs. This placement must also comply with other
constraints, such as maximum inventory levels and vehicle capacity.

Thus, for a period t′ ∈ T with t′ > t and for customers in Ct ∩ Ct′ , each customer is
placed in the first available position in Γ with a probability λ. For each period from t′ to
T , customers from Ct ∩ Ct′ are considered and placed to minimize costs. These customers
are positioned in the first |Ct ∩ Ct′ | positions according to probability λ. If placement fails,
the next available slot is tested, and if all slots are filled, the process restarts from the first
available position. Note that each customer in Ct ∩Ct′ is placed as close as possible to their
appearance in the previous set Ct, aligning with the scenario depicted in Figure 4.3.

0

Set of customers
planned for and

delivered at 
 period t

Set of customers
planned for period
t' and anticipated

for period t

0

Special case in which

Figure 4.3: Gain in routing cost when applying a λ probability

Figure 4.3 depicts a scenario where strategically placing customers enhances the
probability of having two deliveries for the same customer in consecutive periods appear
next to each other in the giant tour. This arrangement can help reduce transportation
costs when the Split algorithm is applied (as discussed in Section 4.3.2).

Once all customers from Ct ∩ Ct′ have been positioned, the remaining customers in
Ct′ − (Ct ∩ Ct′) are inserted into random positions within Γ with equal probability. This
placement process is repeated as needed until every period in T is addressed. Figure 4.4
demonstrates this approach with 6 customers, A,B,C,D,E, and F , across 4 time periods.

In Figure 4.4, the composition of sets Ct is shown on the left. Note that C2 is empty and
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Figure 4.4: Customers placement into Γ

the final multi-period giant tour contains only period 1, 3 and 4. For period 1, customers
A,B and D are randomly placed and the sequence results in BDA. In period 3, the 5
customers scheduled are organized as follows: first, customers from C1 ∩ C3 = A,D are
inserted according to a probability λ to favor their placement closer to their occurrence in
period 1 and it results in AD; secondly, the remaining customers C3 − (C1 ∩ C3) = C,E, F
are randomly placed in the remaining cases. Lastly, in period 4, the same occurs: customers
from C3 ∩ C4 = A,C,D, F are placed according to a λ probability and the only remaining
C4 − (C3 ∩ C4) = B is inserted into the last available giant tour position.

Note that the fact of not having customers scheduled for period 2 in the giant tour
does not exclude the possibility of having it once a feasible solution is obtained. That will
be further explained in the nest Subsection concerning the giant tour partitioning into
routes and may occur if it provides a less costly solution.
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Algorithm 5: Customers sequencing in the giant tour

Data: data: problem data from Chapter 2
Result: qti : amount to be delivered for customer i ∈ N in period t ∈ T
Iti : inventory level for customer i ∈ N in period t ∈ T

1 Begin
/* Part 1. Random customers placement */

2 t← get first period in which |Ct| ≠ ∅
3 while Ct ̸= ∅ do
4 c← get a random customer in Ct

5 Add the triplet {c, qtc, t} at the next position p in Γ of {Γp, qp, γp}, p ∈ [1, |Ct|]
6 Remove customer c from Ct

7 end
/* Part 2. "Mirror" random placement */

8 t′ ← get next period in which |Ct′ | ≠ ∅
9 p← next available position of Γ (i.e., |Ct|+ 1)

10 while the current period t′ ̸= T do
/* Part 2.1. According to a probability λ */

11 Define set E = Ct ∩ Ct′

12 Define set F = Ct′ − E
13 while E ̸= ∅ do
14 e← get the closest customer in E from its appearance in Ct

15 repeat
16 with a probability λ and if Γp is empty do

17 Add the triplet {e, qt′e , t′} at position p of {Γp, qp, γp}
18 Remove e from E

19 with a probability 1− λ do
20 Increment the value of p

21 if p value exceeds [|Ct|+ 1, |Ct|+ |Ct′ |] then
22 Reset p to |Ct|+ 1
23 end

24 until e is placed successfully;

25 end
/* Part 2.2. Random probability */

26 p← next available position of Γ (i.e.,
∑t′

t=1 |Ct|+ 1)
27 while F ̸= ∅ do
28 f ← get a random customer in F

29 Add the triplet {f, qt′f , t′} at the next available position p of {Γp, qp, γp},
p ∈ [|Ct′ |, |Ct′ |+ |Ct|]

30 Remove customer f from F

31 end
32 t← t′

33 t′ ← get next period in which |Ct| ≠ ∅
34 end
35 return Γ, γi for all i ∈ {1, . . . , |Γ|}
36 End
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4.3.2 Splitting the giant tour

Given the auxiliary directed graph G = (V ′,A), an arc (u, v) represents a sub-sequence
σ = (Γu+1, . . . ,Γv) of consecutive customers visited within a single route assigned to
period γu+1, and includes

∑v
u′=u+1 q

γu′
Γu′

products. A valid solution for the HIRP-BS can be
derived from the giant tour Γ. Throughout the search process, a list of labels is maintained
at each node of Γ, facilitating the management of resources and inventory. Each label
contains information regarding the previous and current routes originating from its node
and includes:

- t: the assignment period equivalent to the period of the route origin node;

- Iti : the inventory level for each customer and supplier at period t;

- cost: the accumulated routing and inventory costs;

- k: the type of vehicle used at period t;

- Mk,t: the number of vehicles of type k available at period t;

- scti: binary indicator equal to 1 if customer i is serviced at period t and 0 otherwise;

- fn, idx: the origin node of the route and its index, respectively.

Since each label in a partially feasible solution corresponds to a route, it holds informa-
tion about the inventory levels for each customer and the time period of the route. This
is necessary because the labels at a given node can span different periods. As a result,
varying values for accumulated inventory levels can appear. This variability occurs because
the partitioning algorithm may consider the possibility of advancing customer deliveries,
leading to a situation where labels at the same node reflect different periods and inventory
levels.

Thus, an optimal solution for the HIRP-BS, based on the giant tour Γ, corresponds
to a minimum-cost path that incorporates both resource (vehicle) usage and inventory
management (supplier/customer inventory constraints) and with no maximum number of
labels allowed per node of Γ. It is important to note that while constructing a feasible
solution for any configuration of Γ, skipping any nodes to form a route is not permitted.
This highlights the significant influence of the giant tour on the quality of a feasible solution.

□

Generating a label

Creating a label l from a node i ∈ V to j ∈ V involves adding a label at node j ∈ V label
list Lj based on a label from node i, using a vehicle of type k ∈ Kt that is available during
period t ∈ T . This process assumes that the propagation from i to j − 1 has already been
completed and can be viewed as an update from each label incident to a node sequentially.

Two scenarios need to be considered. The first scenario occurs when both customers
Γi+1 and Γj , the start and end of the arc (i, j), are assigned to the same time period. This
is the common case, analogous to the HVRP algorithm. The second scenario arises when
Γi+1 and Γj are assigned to different time periods, which is a specific aspect of the IRP
and a central focus of the algorithm presented in this thesis. This particular case will be
explored further in this chapter.
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In this context, a route from customer Γi+1 to Γj incurs routing and inventory costs as
detailed below:

The routing cost, composed of the fixed cost fk,t of the vehicle k at period t, added
to the variable transportation cost that depends on the vehicle used:

fk,t + c0,Γi+1 vk,t +

j∑
u=i+1

cΓu,Γu+1 vk,γu + cΓj ,0 vk,γu (4.3)

The inventory cost contains two parts: the increase in the inventory cost for each
customer Γu, u ∈ {i+ 1, ..., j} of a given route as a new quantity qγuΓu

is delivered and
the one that represents the decrease in the inventory cost at the supplier since the
quantity delivered to the customer was taken from its inventory:

T∑
t=Γi+1

j∑
u=i+1

qγuΓu
hγuΓu
−

T∑
t=t′

j∑
u=i+1

qγuΓu
hγu0 (4.4)

Once the costs are established, the inventory level is calculated as follows:

IγuΓu
= I

γu−1

Γu
+ qγuΓu

− dγuΓu
∀u ∈ {i+ 1, ..., j} (4.5)

□

Generation of first label (node 0)

The first and only label to node 0 of the giant tour is defined as:

(t, Iti , cost, v,M
k,t, scti, fn, idx) = (−, Iti ,−,Mk,t,−, Iti , 0, 0) (4.6)

In this case, neither period t nor vehicle v is assigned, as it does not pertain to any route.
The inventory level is calculated by considering the initial inventory, customer demands,
and supplier production capacity according to the procedure outlined in Equations 4.7.
The cost is determined by Equations 4.3 and 4.4, taking into account the previously defined
inventory level Iti . The available vehicles Mk,t are those specified by the problem data (see
Section 2.3 in Chapter 2). The binary indicator is set to zero (scti = 0 ∀i ∈ N , t ∈ T ), and
both the father and index node are set to 0 since there is no preceding node.

Equations 4.7 allows the definition of the inventory level in a scenario where no delivery
operation is performed. The first equation defines the initial inventory level given by the
problem data and expressed by si ∀i ∈ N ′ (both customers and supplier). The second
concerns only the customers and adds the supplier production capacity per period which
is also a problem data and given by rt ∀t ∈ T . The third and last one refers only to the
customers and take into account the demands over the time periods given by the problem
data and expressed by dti.

Iti =


1st : I0i = si ∀i ∈ N ′

2nd : It0 = It−1
0 + rt ∀t ∈ T

3rd : Iti = It−1
i − dti ∀i ∈ N , t ∈ T

(4.7)
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Note that, according to Equations 4.7, customer inventory levels may be negative, as no
delivery operations are considered. The purpose of this step is to perform pre-calculations
that help with computations during label propagation in the Split algorithm and to avoid
redundant recalculations.

□

Addition of a label

After augmenting the new candidate label with additional information, its feasibility
is tested by checking that the inventory levels remain within the specified lower and
upper bounds and comply with the supplier production capacity. The feasibility check
also includes verifying vehicle capacities and availability, and ensuring that split delivery
constraints are met, which prevent a customer from being visited on multiple routes within
the same period. Once the feasibility is confirmed, the candidate label is added to the node
list. It is important to note that batch size constraints do not need further verification,
as the delivery quantities in the giant tour were previously calculated to adhere to these
constraints.

To avoid excessive computational time during label propagation, the number of labels
associated with any node in the giant tour is restricted by the parameter nMaxLabel.
Labels are sorted by ascending cost to prioritize the exploration of lower-cost labels.
Consequently, when a label is added, its position in the list is determined by its cost—lower
costs correspond to higher priority positions in the list.

□

Label propagation

The Split algorithm propagates labels to construct a feasible solution for the HIRP-BS.
The algorithm primarily involves four nested loops (see Algorithm 6), iterating over graph
nodes (u ∈ V), customers (Γu ∈ N ), labels available at each node list (j ∈ V and Lj), and
vehicle types (k ∈ Kt) in that order. The overall process is depicted in Figure 4.5.

...... ...

PROPAGATE ADD TO        

Figure 4.5: Labels propagation

Figure 4.5 illustrates the propagation of labels from node i to j + 2. In this scenario, a
label is selected from the list associated with node i, denoted Li. This label is updated
based on the customers in the candidate route, which includes nodes i, i+ 1, ..., j + 2, as
well as the scheduled quantities qγii , qi+ 1γi+1 , ..., q

γj+2

j+2 , and the periods γi, γi+1, ..., γj+2.
If the updated label is feasible, it is then added to the list Lj+2.
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Algorithm 6: Split algorithm

Data: data from the problem, triplets {Γ, γ, q}, maximum number of labels Lmax

Result: a feasible solution s
1 Begin
2 Generate the only label at L0
3 for each node v ∈ |V| − 1 of Γ do
4 Get customer j = Γv+1 and period t = γv+1

5 Set inventory and routing costs and volume load to zero
6 repeat
7 Calculate inventory costs and distance traveled
8 Update vehicle load with qtj
9 for each label l ∈ Lj do

10 Define a label L = l
11 Update L
12 for each vehicle v ∈ Kt do
13 Update the inventory and routing costs
14 if L is feasible then
15 Add label to Lj considering Lmax

16 end

17 end

18 end

19 until ∆load > argmaxk∈Kt{Bk} and j ≥ |Γ|;
20 end
21 Retrieve critical path and build the solution s
22 return s if Γ|Li| > 0 and ∅ otherwise

23 End

The instructions from Algorithm 6 are detailed below.

• Generate the only label at L0. List L0 has no more than one unique label. It
happens because no propagation has been done so far. The details of this step are
detailed in Subsection 4.3.2 (Generation of first label (node 0))

• Set inventory and routing costs and volume load to zero. The propagation
restarts from a node v, which means a new route is about to be created. For that
reason, the inventory costs, the routing costs and the volume load are set to zero to
save later the information about the new route.

• Calculate inventory costs and distance traveled. Since a node representing
a customer is added into a new (if j = v + 1) or existing route (if j > v + 1), the
involved inventory costs are calculated according to Equations 4.4. Special cases in
which the origin node and the its successor are (Case 1) or not (Case 2) in the same
period are further detailed by Equations 4.9 for the inventory costs. At this stage,
the routing costs can only be considered according to the distance traveled. Neither
the fixed nor the variables costs can be calculated for the moment since no vehicle
has been assigned to the route under definition.

• Update vehicle load with qtj. As for the costs, the vehicle load set to zero once a
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new route is created is incremented according to the quantity of products from node
Γj . Note that in this case, the load does not depend if it is the first customer or not
on the route.

• Define a label L. Considering all the labels incident to Lv, each one is treated
separately and copied to L to be updated.

• Update L. The copy label L that has just been created is updated according to
the previous information (inventory and routing costs and the vehicle load), as well
as the assignment period (t), the type of vehicle used (v), the number of vehicles
available (Mk,t), the indicators of visitation (scti), origin node (fn) and its index
(idx). Also, according to Equation 4.5, the inventory levels are also updated.

• Update the inventory and routing costs. The inventory costs are added
according to the precedent values and the routing costs can now be defined according
to the vehicle that is being tested to be assigned to the route. The corresponding
routing costs are then expressed by Equation 4.8. Special cases rely on the fact that
if the customer already exists on the route, the routing cost does not change since
the visitation has already been considered before.

• If feasible, add label to Li. Once the label is created, it is time to check its
feasibility. The following tests are performed:

- The inventory level must be under or equal to the maximum level authorized
and always bigger than zero for the customers. For the supplier, it should be
under its inventory level considering the production capacity.

- The availability of vehicles. For all nodes except the last one in which no more
routes can be created, a label is unfeasible if there are no more vehicles available
of any type considered.

- If the customer has already been visited in another route at the same period,
the label is unfeasible since no split delivery is allowed. The visitation indicator
scti provides this information.

• Retrieve critical path and build the solution s. Once the search has been
finished, the critical path can be retrieved if and only if all the nodes of the giant
tour have been explored. Note that a giant tour may lead to an unfeasible solution
if at least the last node does not contain any label. Otherwise, a solution can be
defined using the first label incident to the last node of the giant tour. The path can
be retrieved with the information from the parent node (fn) and its index (idx) label.
In other words, the critical path corresponds to the shortest path found considering
a given giant tour.

Further details on the special cases while exploring the giant tour nodes and the
information they contain are provided below.

□

Once iterating over the graph nodes, if an arc (v, u) satisfies u = v+1, this implies that
the route consists of a single customer, Γu, with a vehicle type k assigned. The routing
cost for this specific case can then be computed by considering both fixed and variable
costs, as detailed in Equation 4.8. This represents a specific instance of the general case
provided in Equation 4.3.
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routingcost = fk,t + c0,Γu vk,t + cΓu,0 vk,t (4.8)

The inventory cost (inventorycost) can thus be defined by Equation 4.9.

inventorycost =

T∑
t′=t

qt
′
Γu

ht
′
Γu
−

T∑
t′=t

qt
′
Γu

ht
′
0 (4.9)

The supplier inventory level is then updated according to Equation 4.10 if the only
customer Γu is the first visited in period t′ (i.e.,

∑
i∈N sct

′
i = 0). Otherwise, (i.e.,∑

i∈N sct
′
i > 0), then the supplier production capacity has already been considered, which

means that Equation 4.11 is used.

It
′
0 = It

′−1
0 − qγuΓu

+ rγu (4.10)

It
′
0 = It

′−1
0 − qγuΓu

(4.11)

The accumulated amount of products must be stored in order to test later if the vehicle
capacity constraints are respected. Thus, for a given label L, its attributes can be calculated
as:

L.t = γu (4.12)

L.cost = P.cost+routingcost + inventorycost (4.13)

L.IγuΓu
= P.IγuΓu

+ qγuΓu
− dγuΓu

(4.14)

A customer Γu is then added to a route scheduled at period γi and scti is set to 1 which
is the last period t where the customer has been serviced: by consequence, the demands
dtΓu

must be subtracted for all the periods from γi period and the period where scti = 1.

L.IγiΓi
= P.IγiΓi

+ qγiΓi
−

t=γi∑
t=t′|L.scti=1

dγiΓi
(4.15)

Note that P.IγiΓi
is equivalent to P.Iγi−1

Γi
since the customer appear only once per period

and P.IγiΓi
has not been updated before in the current period.

L.Iγi0 = P.Iγi0 − qΓu (4.16)

L.sctΓu
= 1 (4.17)

L.Mk,t = P.Mk,t − 1 (4.18)

If an arc (v, u) satisfies u > v + 1, this indicates that the route is extended by
incorporating a new customer, Γu, after completing the evaluation of the route that starts
at Γv+1 and ends at Γu−1.

Since the Split algorithm explores label propagation from node i to j and then from
node j to j + 1, the computation of all labels can be performed in O(1) time.

At this point, there are two possible cases:

104



Perdigão Martino, Diego Giant tour generation and Split algorithm

Case 1. If Γj is in the same period t as Γi (where t is the period of the current route),
incorporating Γj into the route necessitates updating the label as follows:

To calculate the routing cost, subtract the cost of the previous routes that end at node
j + 2 (customer Γj+2) from the depot node. Then, add the cost of two new arcs: one from
customer Γj+2 to customer Γj+3, and another from customer Γj+3 to the depot.

routingcost = routingcost + (−cj+2,0 vk,t
′
+ cΓj+2,Γj+3 vk,t

′
+ cΓj+3,0 vk,t

′
) (4.19)

Period 

Extra  
routing 

costExtra  
routing  

cost

Figure 4.6: Addition of customer Γj+3 in the route

The inventory cost is computed considering the inventorycost of the route that ends a
node j − 1 plus the new inventory holding cost at customer Γj minus the inventory holding

cost at the supplier, which decreases of
∑T

t=t′ q
t′
Γu

ht
′
0 .

inventorycost = inventorycost +

T∑
t=t′

qtΓu
htΓu
−

T∑
t=t′

qtΓu
ht0 (4.20)

The inventory levels at both customer (Γj) and supplier are given by the increase and
the decrease of qtΓj

unities, respectively.

It
′
Γu

= It
′
Γu

+ qt
′
Γu
− dt

′
Γu
∀u = i+ 1, ..., j − 1 (4.21)

It
′
0 = It

′
0 −

j∑
u=i+1

qt
′
Γu

(4.22)

Thus, the new label modeling the route that starts at node i, ends at node j and
propagates the label L (coming from node i) is defined as follows:

L.t = γi (4.23)

L.cost = P.cost+, routingcost + inventorycost (4.24)

L.It
′
Γu

= P.It
′
Γu
−

t=γi∑
t=t′|L.sct′i =1

dtΓu
∀u = i+ 1, ..., j − 1 (4.25)

L.Iγi0 = P.Iγi0 −
t∑

u=i+1

qγiΓu
(4.26)

L.scti = 1 (4.27)

L.Mk,t = P.Mk,t − 1 (4.28)

□
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Case 2. Γi and Γu are not in the same period. Two different sub cases must me considered,
as follows.

Case 2.1. Γj ̸= Γi with u = i+1, . . . , j (the new customer Γu does not appear in the
route).

Such a situation is similar to Case 1; the updated label is the same.

Period 

Extra  
routing 

costExtra  
routing  

cost

Period 

Figure 4.7: Addition of customer Γj+3 in the route

Case 2.2. Γj = Γv with v = j + 1, . . . , j + 3.
Such a situation means that the customer j + 3 is already present in the route that

starts at node j and ends at node j + 2. Therefore, the routing cost does not change.

Period Period 

No extra cost when
anticipating the

delivery of A

Figure 4.8: Delivery anticipation when adding an already visited customer

The inventory cost is computed considering the inventorycost of the trip that ends at
node j − 1 plus the new inventory holding cost at customer Γj minus the inventory holding

cost at the supplier, which decreases of
∑T

t=t′ q
t′
Γu

ht
′
0 .

inventorycost = inventorycost +
T∑

t=t′

qtΓu
htΓu
−

T∑
t=t′

qtΓu
ht0 (4.29)

Similarly to the precedent case, the inventory level at both customer Γj and supplier
Γ0 increase and decrease of qtΓj

unities, respectively.

It
′
Γu

= It
′
Γu

+ qt
′
Γu
− dt

′
Γu
∀u = i+ 1, ..., j − 1 (4.30)

It
′
0 = It

′
0 −

j∑
u=i+1

qt
′
Γu

(4.31)

The generation of the new label is achieved as follows:

L.t = γi (4.32)

L.cost = P.cost+routingcost + inventorycost (4.33)
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L.It
′
Γu

= P.It
′
Γu
−

t=γi∑
t=t′|L.sct′i =1

dtΓu
∀u = i+ 1, ..., j − 1 (4.34)

In this specific situation,
∑t=γi

t=t′|L.sct′i =1
dtΓu

= 0 because L.sct
′
i = 1 for t′ = γi. Conse-

quently:

L.Iγi0 = P.Iγi0 −
t∑

u=i+1

qγiΓu
(4.35)

L.scti = 1 (4.36)

L.Mk,t = P.Mk,t − 1 (4.37)

In routing problems such as the CVRP and HVRP, the Split algorithm leverages
dominance rules to eliminate certain labels. These rules help to prune labels that are either
dominated by others or are less optimal compared to existing labels, based on the number
of available vehicles and the partial solution cost associated with each label. However,
for Inventory Routing Problems (IRPs), such dominance rules are not applicable. This
is because the information related to inventory levels can fluctuate throughout the giant
tour exploration. Therefore, it is challenging to determine if a particular inventory level is
advantageous or not for pruning purposes. In routing problems, resources are defined by
the number of vehicles available, which only decreases as new labels are added. In contrast,
in IRPs, inventory levels can increase when additional quantities are added to a customer
or decrease when demands are subtracted, making it difficult to establish clear dominance
rules.

At each node, labels are sorted in ascending order based on their total cost, which
includes both inventory and routing costs. When the list of labels for a node reaches its
maximum size and a new candidate label with a lower cost than at least one existing label is
found to be feasible, the label with the highest cost is discarded. While this approach may
lead to a sub-optimal splitting of the giant tour, it is generally not a significant drawback.
Combining this algorithm with additional techniques, such as local search methods, can
still yield high-quality solutions, as demonstrated by Boudia et al. (2007).

4.3.3 Shortest path retrieval

After executing the Split algorithm, the solution can be reconstructed by tracing through
the parents and indices of the labels. Begin with the first label associated with the last
node of the giant tour, which is the one with the minimum cost due to the labels being
sorted by ascending solution cost. From this starting point, you can retrieve the routes,
the assigned periods, and the vehicle types used. Figure 4.9 demonstrates how to trace the
path from the last node back to the first node in the giant tour to reconstruct the solution.

A solution s for the HIRP-BS contains a set of routes per period t ∈ T and each route
is composed of a set of customers, an assigned vehicle type, and a total load of products to
be delivered for each customer. In the giant tour illustrated by Figure 4.9, the first label
(the minimum-cost label) in L9 has node 5 as parent and 3 as index since the third label
in L5 originated the route {0, E,D, 0} and is assigned to period 2 since the parent node
belongs to this period. Then, route {0, B,C,A, 0} is retrieved by the second label in L1
and belongs to period 1. The third and last route {0, C, 0} has its origin in the fourth
label in list L0 and is also assigned to period 1.
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1 2 3 4 6 7 8B0 C B C EA D E D431

0, B, C, A, 0 0, E, D, 0

0, C, 0
5 9

Figure 4.9: Retrieving the critical path

The Split algorithm may succeed or not in the labels exploration. If it is the case as
in the previous example, the set of routes can be retrieved. If not, only partial routes
are retrieved and, consequently, the solution is not feasible since demands were not met
completely. It can arises due to the following non-exhaustive reasons:

• an insufficient number of labels stored at each node since keeping all of the possible
labels would increase exponentially the space complexity of the algorithm and finding
a feasible solution would be harder.

• the giant tour generated is infeasible because the order of the nodes should affect the
splitting phase and may stop the search due to

– an insufficient number of vehicles available at a given period or

– the quantities previously defined that does not take into account the inventory
management.

4.4 Evolutionary Local Search algorithm

The Evolutionary Local Search (ELS) consists of mutating and applying local search
operators seeking for an improved solution. It was introduced by Wolf and Merz (2007) to
treat two problems named the Super-Peer Selection and p-Hub Median. Essentially, the
ELS is composed of two phases: mutation and local search. The objective is to explore
the solutions neighborhood and avoid staying stuck in a basin (which can yield to local
minima) in order to diversify the solutions.

Figure 4.10 illustrates how local search and mutation influence the search for a global
optima. Local search operators allows exploring a solution neighborhood seeking for the
best solution available in a basin whereas mutation can skip from one neighborhood to
another one (from one basin to another) to increase diversification in the solutions and
avoid local minima since the objective is to reach the global optima.

Algorithm 7 illustrates the overall idea of the ELS. As input parameters, the algorithm
considers both the number of global ngi and local ni iterations and an initial solution s
previously defined. Two nested loops are considered to iterative over the different ELS
levels. Lines 4 to 12 refers to one ELS level and the best solution obtained at each is stored
at s̄ and f̄ and corresponds to a local minima. At each execution of loop from lines 2 to
16, the cost of the best solution found is reseted (line 3) and it allows to select at the end
the best solution from all the ELS levels expressed by s∗.
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Figure 4.10: Walks on the solutions search space

Algorithm 7: Evolutionary Local Search

Data: ngi: number of global iterations, ni: number of iterations, s: initial solution
Result: an improved solution s∗

1 Begin
2 for each global iteration itg from 1 to ngi do
3 f̄ ←∞
4 for each iteration it from 1 to ni do
5 s′ ← s
6 Mutate(s′)
7 LocalSearch(s′)
8 if f(s′) < f̄ then
9 s̄← s′

10 f̄ ← f(s′)

11 end

12 end
13 if f̄ < f(s∗) then
14 s∗ ← s̄
15 end

16 end
17 return s∗

18 End

For the IRP, and considering the algorithm Split previously presented in this Chapter,
one intermediate phase is added between the mutation and the local search steps. It
consists in the evaluation phase which corresponds to the use of the Split algorithm to
recreate a solution. The three steps are described below.

The mutation phase corresponds to the permutation of nMut customers in the giant
tour and is performed within the customers from the same period to avoid stock disruption.
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The evaluation phase comes to the use of the giant tour in the sequence previously mutated,
and lastly, the local search consists of an adaptive schema that aims to improve the
composition of routes previously found by the Split and is explained in the next section.

4.4.1 Mutation

The mutation corresponds to a swap operator between two nodes of the giant tour. Two
nodes are selected and are then permuted. Note that one node corresponds to the triplet
{Γv, γv, q

γv
Γv
}. Considering the generation of the giant tour and in order to avoid extra

calculations and inventory disruption, this operator is applied only among nodes within the
same period of time. And to provide diversification, nMut swaps are applied at mutation
phase but not necessarily for the same period. Figure 4.11 illustrates the swap operator.

DA B C QP R

BA D C RP Q

Figure 4.11: Swap mutation operator

In Figure 4.11, the operator is executed twice. Firstly between customers B and D
assigned to period t and secondly for customers Q and R in period t

′
. Algorithm 8 gives

more details on how the mutation phase is executed.

Algorithm 8: Mutation

Data: Γ = {Γv, γv, q
γv
Γv
}: the giant tour, |T |: number of periods, nMut: the

number of swap operations
Result: Γ

′
: the giant tour modified

1 Begin
2 for each operation from 1 to nMut do
3 t̄← random(1, |T |)
4 N1, N2 ← getTwoRandNodes(t̄,Γ), N1 ̸= N2

5 swap(t̄, N1, N2)


1st : {Γaux, γaux, q

γaux
Γaux
} ← {ΓN1 , t̄, q

t̄
ΓN1
}

2nd : {ΓN1 , t̄, q
t̄
ΓN1
} ← {ΓN2 , t̄, q

t̄
ΓN2
}

3rd : {ΓN2 , t̄, q
t̄
ΓN2
} ← {Γaux, γaux, q

γaux
Γaux
}

6 end

7 return Γ
′

8 End

As input, the algorithm needs the giant tour to be modified, the horizon of time as
well as the number of swap operations to be executed. nMut operators are applied (lines 2
to 6) and at each, a random period is chosen (line 3) and two customers N1 and N2 are
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chosen with N1 ≠ N2 (line 4). Next, the swap operator is applied (line 5): at first, an
auxiliary node stores the first node N1 to be swapped; at second, node N1 is replaced by
N2 and at last, node N2 is replaced by the auxiliary which contains the N1.

4.4.2 Evaluation

It consists in applying the Split algorithm presented in Subsection 4.3.2 in the giant tour
that has been previously changed in the mutation phase in order to define a new solution
based on the changes made by the successive swap operators. Note that the new solution
obtained may be of a worst quality when compared to the one before the mutation. It
occurs because when permuting successive nodes in the sequence, splitting it can lead
to an unfeasible solution due to the insufficient number of labels per node as well as the
availability of the vehicles and the customers inventory management as previously discussed
in Subsection 4.3.3.

4.4.3 Local search

The local search corresponds to the use of two operators that are directly applied to one or
more routes from a solution that has been recreated in the precedent evaluation phase.

A solution for the HIRP-BS is composed of two parts, inventory and routing, as
described below:

1. the inventory part that is defined by the heuristic procedure presented in Section
4.3.1 that allows the quantities placement at the very latest possible period (right
shift) and can be optimal for the routing part since we consider the exact time period
in which the inventory of customers is disrupted and also because these quantities
can be anticipated through the Split and

2. the routing part that corresponds to the set of routes defined by the Split algorithm
and their quality is totally dependent on the giant tour generation given by Section
4.3.1 from the quantities calculated, which means that an efficient local search should
be applied as shown by Prins (2004) when applying a local search that alternates
from the set of giant tours to the set of solutions in order to improve their quality.

Two types of neighborhood operators are used to enhance the quality of the solution:
reinsertion and 2-OPT. These operators can be applied either within the same route (intra-
route) or across different routes (inter-route). They specifically target improvements in the
routing part of the problem. Moves involving customers assigned to different time periods
are not considered, as they would require propagating delivery quantities across the entire
time horizon, which adds significant complexity. Therefore, four neighborhood operators
are utilized: reinsertion within routes and between routes, and 2-OPT within routes and
between routes. An explanation, along with an illustration and the pseudo-algorithm, is
provided below. For the illustrations, note that the customers placement represented by
letters does not correspond to a geographic position and and are presented as follows to
facilitate the comprehension of the moves considered.

For the sake of comprehension, a route R is identified by
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R =



f(R) : route cost (transportation + inventory)

R.seq : the sequence of customers to visit starting and ending by 0 (supplier)

R.k : vehicle type used

fR.k : fixed cost of the vehicle type R.k assigned

vR.k : variable cost of the vehicle type R.k assigned

BR.k : capacity of vehicle type R.k assigned

R.load : the amount of products that are carried by the vehicle

R.lvi : quantity assigned to deliver customer i

2-OPT INTER. Let R1 and R2 be two routes assigned to a period t from a feasible
solution. Let also a, b ∈ R1 connected by an arc eab of length ca,b and c, d ∈ R2 two
customers linked by an arc ec,d and distant of cc,d unities. This operator tests the removal
of both arcs eab and ec,d and the creation of the arcs ea,d and ed,b in such a way that the
beginning of R1 until customer a is attached to the customers from d to the end of R2 and
that from the beginning of route R2 until customer c is attached to customer b to the end
of R1. The corresponding procedure is presented in Algorithm 9.

Algorithm 9 has an input parameter the problem data given by Tables and 2.1 and
2.2 from the IRP and the HIRP-BS, respectively, a period t in which the search will be
performed, two routes R1 and R2 and a maximum number of iterations nLLS. It starts
by fixing route R1 and exploring each position (lines 8 to 33) and varying all the positions
in R2 (lines 16 to 32). Since this operator consider testing the insertion of a part of a
route into another, the cost variation is calculated by saving, for route R1, the partial costs
c̄R1 , cR1 in which c̄R1 corresponds to the remaining cost once the arcs have been deleted
and cR1 to the new part that has been added from R2 are calculated. The same occurs for
c̄R2 , cR2 .

Figure 4.12: 2-OPT inter routes

2-OPT INTRA. Let R be a route assigned to period t and a, b, c, d ∈ R four customers
such that a and b and connected by an arc eab and c and d by ecd. This operator tests
the removal of arcs eab and ecd and adds the arcs eac and ebd. Since it is an intra route
operator, the set of customers belonging to R remains the same when an improvement
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Algorithm 9: 2-OPT inter routes

Data: data: problem data, t: a period, R1, R2: two routes, nLLS: maximum
number of iterations

Result: R′
1, R

′
2: two modified routes

1 Begin
2 iterator ← 0
3 cR1 , cR2 ← 0
4 c̄R1 ← f(R1)
5 c̄R2 ← f(R2)
6 lR1 ← 0
7 l̄R1 ← R1.load
8 for each position i in R1.seq do
9 n1 ← R1.seqi

10 n2 ← R1.seqi+1

11 cR1 ← cR1 + (cn1,n2 · vR2.k)

12 c̄R1 ← cR1 − (cn1,n2 · vR1.k)
13 lR1 ← lR1 +R1.lvn1

14 l̄R1 ← lR1 −R1.lvn1 lR2 ← 0
15 l̄R2 ← R2.load
16 for each position j in R2.seq do
17 n3 ← R2.seqj
18 n4 ← R2.seqj+1

19 cR2 ← cR2 + (cn3,n4 · vR1.k)

20 c̄R1 ← cR1 − (cn3,n4 · vR2.k)
21 lR2 ← R.lvn3

22 l̄R2 ← l̄R2 −R.lvn3

23 δtemp ← (cn1,n4 − cn3,n4) · vR2.k + (cn3,n2 − cn1,n2) · vR1.k

24 if δtemp < 0 and δtemp < δbest and lR1 + l̄R2 ≤ BR1.k and l̄R1 + lR2 ≤ BR2.k

then
25 // improvement, save move δbest ← δtemp

26 end
27 iterator ← iterator + 1
28 if iterator > nLLS then
29 R′

1 ← bestMove(R1)
30 R′

2 ← bestMove(R2)

31 end

32 end

33 end
34 // perform best move in R1 and R2

35 return R′
1, R

′
2

36 End

is observed. Note that all the arcs from b to c need to be reversed only and only if the
distance matrix is not symmetric, which is not the case of the HIRP-BS since for any two
customers i, j ∈ N ′, cij = cji.
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Algorithm 10: 2-OPT intra routes

Data: data: problem data, t: a period, R: one route, nMaxIt: maximum number
of iterations

Result: R′: the modified route
1 Begin
2 iterator ← 0

3 δbest ←∞
4 for each position i in R.seq do
5 n1 ← R.seqi
6 n2 ← R.seqi+1

7 δ1 = −cn1,n2

8 for j = i+ 2 do
9 n3 ← R.seqj

10 n4 ← R.seqj+1

11 δ2 = cn1,n3 + cn2,n4 − cn3,n4

12 δ = (δ1 + δ2) · vR.k

13 if δ < 0 and δ < δbest then
14 // improvement, save move

15 δbest ← δ

16 end
17 iterator ← iterator + 1
18 if iterator > nMaxIt then
19 R′ ← bestMove(R)
20 end

21 end

22 end
23 // perform best move in R
24 return R′

25 End

Figure 4.13: 2-OPT intra routes

INSERTION INTER. Let R1 and R2 be two routes assigned to a period t. In R1, three
customers a, b and c connected by arcs eab, ebc and for R2, two customers d, e represented
by an arc ede are chosen. This operator tries to remove one customer from a route and
try its insertion into another route. In Figure 4.14, the insertion of b ∈ R1 is tested in R2
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by removing arcs eab, ebc and ede and adding arcs edb and ebe in order to place customer b
between d and e. Note that this operator may reduce the length of the route in which the
customers are removed and it may also delete completely a route if all the customers could
be better placed in the other one.

Algorithm 11: Insertion inter routes

Data: data: problem data, t: a period, R1, R2: two routes, nMaxIt: maximum
number of iterations

Result: R′
1, R

′
2: two modified routes

1 Begin
2 iterator ← 0

3 δbest ←∞
4 for each position i in R1.seq do
5 n1 ← R1.seqi−1

6 n2 ← R1.seqi
7 n3 ← R1.seqi+1

8 δ1 = (cn1,n3 − cn1,n2 − cn2,n3) · vR1.k

9 if R1.lvn2 +R2.load ≤ BR2.k then
10 for each position j in R2.seq do
11 n4 ← R2.seqj
12 n5 ← R2.seqj+1

13 δ2 = (cn4,n2 + cn2,n5 − cn4,n5) · vR2.k

14 if δ1 + δ2 < 0 and δ1 + δ2 < δbest then
15 // improvement, save move

16 δbest ← δ1 + δ2

17 end
18 iterator ← iterator + 1
19 if iterator > nMaxIt then
20 R′

1 ← bestMove(R1)
21 R′

2 ← bestMove(R2)

22 end

23 end

24 end

25 end
26 // perform best move in R1 and R2

27 return R′
1, R

′
2

28 End
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Figure 4.14: Insertion inter routes

INSERTION INTRA. Let R be a route in period t. The objective is to choose one customer
and try to insert into the same route but between other customers. In Figure 4.15, five
customers a, b, c, d and e are considered to try the insertion of b in another position of the
route. The arcs eab that relies customers a and b, ebc connecting b and c and ede for d and
e are removed and customer b is placed between d and e. For that, an arc eac is added
from a to c and the two arcs edb and ebe are added to insert b between d and e.

Figure 4.15: Insertion intra routes

Note that the 2-OPT operators involve reversing multiple arcs, which can increase the
complexity of these moves based on the size of the routes being considered. In the method,
distances are assumed to be symmetric between customers and the supplier, meaning that
for any pair of (i, j), the costs ci,j and cj,i are identical.

The four operators described are integrated into the global adaptive framework given
by Algorithm 13, where those operators that most significantly enhance the solution
are given priority. Initially, each operator has an equal chance of being selected, i.e.,
P1 = P2 = P3 = P4 = 25%. As the search progresses, if a move improves the current
solution, its probability of being chosen in subsequent iterations is increased by a factor of
δ. Consequently, the probabilities for the remaining three operators are decreased by δ

3
units each. To prevent any single operator from dominating, lower (P−) and upper (P+)
bounds for the probabilities Po are enforced at each iteration, ensuring P− ≤ Po ≤ P+ for
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Algorithm 12: Insertion intra routes

Data: data: problem data, t: a period, R: one route, nMaxIt: maximum number
of iterations

Result: R′: the modified route
1 Begin
2 iterator ← 0

3 δbest ←∞
4 for each position i in R.seq do
5 n1 ← R.seqi−1

6 n2 ← R.seqi
7 n3 ← R.seqi+1

8 δ1 = cn1,n3 − cn1,n2 − cn2,n3

9 for j = i+ 1 do
10 n4 ← R.seqj
11 n5 ← R.seqj+1

12 δ2 = cn4,n2 + cn2,n5 − cn4,n5

13 δ = (δ1 + δ2) · vR.k

14 if δ < 0 and δ < δbest then
15 // improvement, save move

16 δbest ← δ

17 end
18 iterator ← iterator + 1
19 if iterator > nMaxIt then
20 R′ ← bestMove(R)
21 end

22 end

23 end
24 // perform best move in R
25 return R′

26 End

each operator o ∈ {1, . . . , 4}. This dynamic probability adjustment system is inspired by
the work of Chassaing et al. (2016). Finally, the adaptive global local search procedure
is performed nGLS times, with each local search operator allowed a maximum of nLLS
moves.
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Algorithm 13: Global local search

Data: data: problem data, nGLS: global maximum number of iterations, nLLS:
local maximum number of iterations s: current solution

Result: s′: updated solution
1 Begin
2 iterator ← 0
3 while iterator < nGLS do
4 with a probability P1 do
5 Select one route R1

6 Apply 2-OPT intra route(data, t, R1, nLLS)
7 if improvement then
8 Save move on s′

9 P1 = min(P1 + δ;P+)

10 Pi,i ̸=1 = max(Pi − δ
3 ;P

−)

11 else
12 P1 = max(P1 − δ;P−)
13 Pi,i ̸=1 = min(Pi + δ;P+)

14 end

15 with a probability P2 do
16 Select two routes R1, R2, R1 ̸= R2

17 Apply 2-OPT inter routes(data, t, R1, R2, nLLS)
18 if improvement then
19 Save move on s′

20 P2 = min(P2 + δ;P+)

21 Pi,i ̸=2 = max(Pi − δ
3 ;P

−)

22 else
23 P2 = max(P2 − δ;P−)
24 Pi,i ̸=2 = min(Pi + δ;P+)

25 end

26 with a probability P3 do
27 Select two routes R1, R2, R1 ̸= R2

28 Apply Insertion inter routes(data, t, R1, R2, nLLS)
29 if improvement then
30 Save move on s′

31 P3 = min(P3 + δ;P+)

32 Pi,i ̸=3 = max(Pi − δ
3 ;P

−)

33 else
34 P3 = max(P3 − δ;P−)
35 Pi,i ̸=3 = min(Pi + δ;P+)

36 end

37 with a probability P4 do
38 Select one route R1

39 Apply Insertion intra routes(data, t, R1, nLLS)
40 if improvement then
41 Save move on s′

42 P4 = min(P4 + δ;P+)

43 Pi,i ̸=4 = max(Pi − δ
3 ;P

−)

44 else
45 P4 = max(P4 − δ;P−)
46 Pi,i ̸=4 = min(Pi + δ;P+)

47 end

48 end
49 return s′

50 End
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4.5 Post-optimization

The approach aims to improve a solution quality by exploring neighbors near the best
solution identified by the ELS. To achieve this, it is necessary to define a “distance” metric
based on the routes, which will then be used to recalculate the delivery quantities. This
involves extending the linear models from Chapter 2 (Equations (2.1) through (2.18) and
(2.19) through (2.40)), thereby initiating an iterative post-optimization process. The
concept of distance allows for modifications in the routes, such as adding or removing arcs,
and adjusting the previously calculated quantities for each customer and time period, all
according to a specified degree of flexibility. The linearization process and the notion of
distance is similar to what has been done in Chapter 3, Section 3.2.

4.5.1 Linearization constraints

Let X = x̄i, jk,t denote the set of binary parameters representing the routes and their
assignments to vehicles and time periods, while Q = qk,ti represents the delivery quantities
for each customer across different time periods. The values of X̄ are derived from the
binary variables xk,ti,j obtained from the metaheuristic phase of SEMPO; specifically, if

xk,ti,j = 1, then x̄k,ti,j = 1, otherwise x̄k,ti,j = 0. Both X̄ and Q come from the optimal solution

identified after the completion of the ELS iterations. Additionally, let X = xk,ti,j represent

the decision variables used in the linear models outlined in Chapter 2, and δ = δk,ti,j be a

new set of binary variables that capture the absolute difference between each pair xk,ti,j , x̄
k,t
i,j ,

as defined by Constraints (4.38). Constraints (4.39) are used to replace (4.38) because the
latter is non-linear.

δk,tij = |x̄k,tij − xk,tij | ∀i, j ∈ N ′, t ∈ T , k ∈ Kt (4.38)

η =


δk,tij ≥ x̄k,tij − xk,tij

δk,tij ≥ xk,tij − x̄k,tij

δk,tij ≤ x̄k,tij + xk,tij

δk,tij ≤ 2− x̄k,tij − xk,tij

∀i, j ∈ N ′, t ∈ T , k ∈ Kt (4.39)

4.5.2 Distance definition

To establish the degree of freedom, a single integer variable ϕ in Constraint (4.40) is
introduced and denotes the allowable degree of freedom for modifying the current solution.
Let ξi represent the maximum number of arc changes from the previous iteration, and ∆
be the increment for the current iteration. Therefore, Constraint (4.41) is incorporated to
restrict the number of arc changes permitted at each iteration.

ϕ =
∑
i∈N ′

∑
j∈N ′

∑
t∈T

∑
k∈Kt

δt,ki,j (4.40)

ξi ≤ ϕ <ξi +∆ (4.41)

□

The extended model incorporates the objective function and constraints detailed in
(2.1)-(2.18) and (2.19)-(2.40), as well as (4.39) and (4.40), with iterative adjustments based
on the progress of the search iterations as given by constraints (4.41).
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Figure 4.16 depicts the post-optimization process. Search spaces are denoted by Yi,
where i indicates each iteration of the procedure. The initial solution (the best ELS solution)
is represented as s′, and the best-improved solution at Yi is denoted as si. In the first
iteration, the delivery quantities Q are used as the starting point for the extended model,
and ξ1 is initialized to zero. Consequently, in the first iteration, Constraint (4.41) simplifies
to 0 ≤ ϕ ≤ ∆. After finding a new solution s1, the ξi variables are updated to the value of
ϕ from the previous iteration, adjusting Constraint (4.41) accordingly. The model is then
resolved to find a potentially better solution. Thus, in the subsequent iteration, solutions
are constrained by s1. In the second iteration, Constraint (4.41) becomes ξ2 ≤ ϕ ≤ ξ2 +∆,
and after finding s2, ξ2 is updated to the new ϕ value. If no feasible solutions are found in
the third iteration within Y3, the allowed deviation is doubled, adjusting Constraint (4.41)
to ξ3 ≤ ϕ ≤ ξ3 + 2∆. A new solution s4 is then found in the fourth iteration.

Figure 4.16: Post-optimization search schema

The algorithm iterates continuously until either a maximum allowable distance ∆max

from the solution sG is reached or a maximum number of iterations, pOPTMax, is
completed. Each iteration is constrained by a predefined time limit, timepOPT , set for the
solver. It is important to note that the X̄ values remain constant, ensuring that the search
space remains centered around the initial solution sG, with the space being constrained by
si at each iteration.

Additionally, if at iteration i the zone defined by ϕ ≤ ξi−1 + ∆ does not yield any
feasible solutions, exploring this region again is theoretically redundant. However, in
practice, it provides a useful starting point based on the best solution found in the previous
iteration. This approach allows for consideration of alternative values for the search space
limits, thereby guiding the convergence of the algorithm in a different manner.

4.6 Experiments and results

This section presents the computational experiments to evaluate the SEMPO algorithm
and to compare its performance with both the mathematical formulation detailed in
Section 2.3 of Chapter 2 and the most recent algorithm introduced by Sk̊alnes et al. (2023).
The experiments were conducted on a system powered by an Intel Xeon Gold 6240R
2.40GHz processor with 256GB of RAM. Both the mathematical formulation and the
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SEMPO algorithm were implemented in C++. The MILP formulation, along with the
Post-optimization approach, was solved using the CPLEX MILP solver version 20.1.0.

A time limit of one hour was imposed for solving the proposed MILP formulation,
including its linear relaxation, while the Post-optimization approach was given a time
limit of 60 seconds. For the SEMPO algorithm, 10 runs were executed for each instance,
with a computational time limit of 30 minutes per run. The parameters utilized for the
SEMPO algorithm are provided in Table 4.1 and were chosen empirically based on multiple
experiments.

Table 4.1: Metaheuristic parameters

Parameter Value Parameter Value Parameter Value

λ 80% nGLS 50 [P−, P+] [10, 90]

timeSEMPO 1800s nLLS 200 δ 3

iterELS 5 timeOPT 60s Lmax 10

nNeighs 10 ∆ 3

nMut 15 ∆max 10

The proposed new set of instances for the HIRP-BS was introduced in Section 2.4
of Chapter 2. Sections 4.6.1 and 4.6.2 analyze the computational results obtained from
the mathematical formulation and the SEMPO method for the instances available in the
literature and the newly generated benchmark instances presented in Subsection 2.4 of
Chapter 2, respectively.

4.6.1 Results for the literature instances

The proposed SEMPO algorithm was designed to solve the HIRP-BS. This section presents
the results obtained by the SEMPO approach when applied to the classic IRP, which
represents a simpler variant of the HIRP-BS. While the proposed method yields satisfactory
results for IRP instances, it is expected that specialized IRP methods available in the
literature perform better.

Table 4.2 shows the results for a selection of instances proposed by Archetti et al. (2007)
(as discussed in Subsection 2.4.1 of Chapter 2). These instances were randomly selected to
demonstrate the metaheuristic performance in solving the IRP. The first three columns
describe the instance configurations: the group of “abs” instances, the number of customers
|N |, the number of periods in the time horizon |T |, and the number of vehicles (#Vehicles).
The following two columns present the solution cost (z) and the running time in seconds (t)
reported by Sk̊alnes et al. (2023), which details the best-known solutions in the literature.
In this column, values in bold represent the optimal costs reported by Archetti et al. (2012)
and Manousakis et al. (2021) for the single and multiple-vehicle cases, respectively.

Subsequently, the table shows the cost of the best solution provided by the SEMPO
algorithm across all runs (z∗) and the corresponding running time in seconds (t∗) required
to obtain it. The final column provides the percentage gap between z∗ and z.

According to Table 4.2, the SEMPO algorithm produces high-quality solutions for IRP
instances, with an average gap of 2% from the best-known solutions in the literature, while
requiring significantly less computational time (an average of 11 seconds compared to 33
minutes). Additionally, for the first instance, the optimal value is obtained (highlighted in
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Table 4.2: Results on the high cost instances from Archetti et al. (2007)

Instance Sk̊alnes et al. (2023) SEMPO algorithm
Gap

abs |N | |T | #Vehicles z t (s) z∗ t∗ (s)

5 30 3 1 9773.90 1 9773.90 2 0.00

5 30 3 2 10063.46 110 10079.30 15 0.16

5 30 3 3 10450.30 72 10508.50 12 0.55

5 50 3 1 15678.67 84 16120.50 11 2.74

5 50 3 2 16027.70 7200 16361.90 18 2.04

5 50 3 3 16537.10 7198 17157.40 9 3.62

2 40 3 1 11317.85 612 11681.30 14 3.11

2 40 3 2 11665.70 1585 12078.70 15 3.42

2 40 3 3 12015.60 1223 12339.70 5 2.63

Avg. 2009 11 2.09

bold).

4.6.2 Results for the new benchmark instances

This subsection presents the results obtained by the MILP formulation and the SEMPO
algorithm for the newly proposed set of instances introduced in Chapter 2, Subsection
2.4.2. The results are organized into three tables, each corresponding to a different subset
of instances.

First, Table 4.3 shows the results for the small-scale instances. For each of the 13
instances, the initial columns show the results obtained by solving the MILP formulation,
including: the cost of the optimal solution from the Linear Relaxation (LR), the Upper
Bound (UB) at the conclusion of the MILP solver execution, the percentage gap (GapUL)
between the UB and the Lower Bound (LB), and the running time in seconds to reach the
UB (t∗).

The next five columns present the SEMPO algorithm results across all 10 runs: the
cost of the best solution (z∗), the cost of the worst solution (zw), the average cost (z̄), the
standard deviation (zsdv) of the solutions obtained, and the average time across all runs
to find the best solution (t̄∗) in seconds. The final two columns provide the percentage
gaps between z∗ and the cost of the LR solution (GapLR), and between z∗ and the UB
obtained by the MILP formulation (GapUB). The last row of the table summarizes the
average values.

No solution found by the proposed formulation, as solved by CPLEX, was proven to be
optimal within the one-hour running time limit. Additionally, for the first two small-scale
instances (instances 1 and 2), the MILP model failed to provide a feasible solution, whereas
the SEMPO algorithm successfully generated solutions for all small-scale instances. The
SEMPO algorithm outperformed the MILP formulation, providing better solutions for
four instances (instances 4, 5, 10, and 11, highlighted in bold) in approximately half the
execution time. For the remaining instances, the solution costs were, on average, very
close to the best solutions obtained by both methods. The SEMPO algorithm achieved an
average GapUB of 0.31%, with an average running time of 850 seconds to find the best
solution—four times faster than the average running time of 3519 seconds for the proposed
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Table 4.3: Results for the small-scale instances

Id.
MILP model SEMPO algorithm

GapLR GapUB

LR UB GapUL t∗ (s) z∗ zw z̄ zsdv t̄∗ (s)

1 14362.21 - - 3600 15070.70 15186.60 15134.38 39.25 789 4.70 -

2 14349.83 - - 3600 15430.10 15554.10 15477.01 38.34 626 7.00 -

3 13192.78 13787.07 2.31 2755 14000.50 14188.70 14086.11 57.48 947 5.77 1.52

4 15117.77 16070.72 4.11 3600 15860.80 15945.00 15899.31 32.12 841 4.68 -1.32

5 12649.02 14871.81 12.26 3600 14470.00 14746.90 14575.43 93.03 722 12.58 -2.78

6 12013.27 12709.82 2.71 3600 13077.60 13188.20 13140.11 32.91 951 8.14 2.81

7 11091.08 11667.72 2.33 3600 11855.70 11948.10 11910.31 24.30 1063 6.45 1.59

8 13417.15 13948.06 1.96 3600 14497.40 14663.30 14583.48 63.23 546 7.45 3.79

9 11195.60 11722.88 1.98 3560 11953.50 11997.70 11979.08 12.65 994 6.34 1.93

10 12406.95 13327.03 4.31 3600 13324.60 13420.20 13374.03 34.05 970 6.89 -0.02

11 15287.85 17630.63 11.70 3600 16263.50 16363.60 16317.16 33.57 1245 6.00 -8.41

12 15118.76 15689.13 1.92 3562 16041.20 16142.80 16105.04 30.15 716 5.75 2.19

13 16058.64 16535.69 1.51 3600 16889.80 17046.40 16984.97 50.20 636 4.92 2.10

Avg 4.28 3519 41.64 850 6.67 0.31

formulation. Furthermore, the standard deviation of the costs among the 10 best solutions
found by the SEMPO algorithm was sufficiently low to confirm the metaheuristic stability
across different runs. The average cost of the best solutions provided by the SEMPO
algorithm was 6.67% higher than the cost of the linear relaxation, as indicated by the
GapLR.

Additionally, Table 4.4 summarizes the results for the same small-scale instances,
considering the ten runs performed by SEMPO. For each of the 13 instances, the table
presents the gap (GapF) between the best Upper Bound (UBF) and Lower Bound (LBF)
provided by CPLEX within the time limit for solving the proposed formulation. It also
shows the best and worst runs, including the minimum, maximum, average, and standard
deviation values of the gap (GapUB) between the cost of the best solution obtained by
SEMPO (UBGE) and UBF. Similarly, the table presents the gap (GapLR) between UBGE
and the linear relaxation of the formulation LRF. The last row of the table provides the
average gaps for all small-scale instances.

In Table 4.4, it is observed that the average gap between the MILP model and SEMPO
is approximately 1%, with a very low standard deviation. Notably, for three instances
(instances 4, 5, and 11), this gap is negative. When considering the linear relaxation, the
gap is around 7%, also accompanied by a very low standard deviation.

Figure 4.17 illustrates the convergence of the SEMPO algorithm (for the best run) and
the MILP model for two small-scale instances: one where the MILP model demonstrates
the best convergence and one where it shows the worst convergence compared to the
SEMPO algorithm.
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Table 4.4: Gaps for the small-scale instances

ID
MILP model SEMPO - GapUB (%) SEMPO - GapLR (%)

t̄(s)SEMPO
GapF(%) UB t(s) best worst min max avg sdv best worst min max avg sdv

1 - - - - - - - - 5.38 4.99 4.70 5.43 5.10 0.25 789

2 - - - - - - - - 7.22 7.33 7.00 7.74 7.28 0.23 626

3 2.31 13787.07 2755 1.52 2.53 1.52 2.83 2.12 0.40 6.18 6.73 5.77 7.02 6.34 0.38 947

4 4.11 16070.71 3602 -0.92 -0.79 -1.32 -0.79 -1.08 0.20 4.71 5.19 4.68 5.19 4.92 0.19 841

5 12.26 14871.80 3606 -2.70 -0.85 -2.78 -0.85 -2.04 0.65 12.58 14.23 12.58 14.23 13.21 0.55 722

6 2.71 12709.81 3605 3.15 3.52 2.81 3.63 3.27 0.24 8.46 8.81 8.14 8.91 8.58 0.23 951

7 2.33 11667.71 3605 1.59 2.07 1.59 2.35 2.04 0.20 6.77 6.91 6.45 7.17 6.88 0.19 1063

8 1.96 13948.05 3603 4.72 4.40 3.79 4.88 4.36 0.42 8.37 8.04 7.45 8.50 8.00 0.40 546

9 1.98 11722.88 3560 1.93 2.29 1.93 2.29 2.14 0.10 6.49 6.69 6.34 6.69 6.54 0.10 994

10 4.31 13327.03 3603 0.49 0.47 -0.02 0.69 0.35 0.25 7.20 7.34 6.89 7.55 7.23 0.24 970

11 11.70 17630.62 3600 -8.01 -7.91 -8.41 -7.74 -8.05 0.22 6.20 6.43 6.00 6.57 6.31 0.19 1245

12 1.92 15689.12 3562 2.60 2.77 2.19 2.81 2.58 0.18 5.99 6.31 5.75 6.34 6.12 0.18 716

13 1.51 16535.68 3607 2.75 2.10 2.10 3.00 2.64 0.29 5.65 4.92 4.92 5.79 5.45 0.28 636

Avg 4.28 0.65 0.96 0.31 1.19 0.76 0.29 7.02 7.22 6.67 7.47 7.07 0.26
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Figure 4.17: Small-scale instances SEMPO convergence

Figure 4.17a illustrates the case where the MILP model shows the best convergence
compared to the SEMPO algorithm. During the first 500 seconds, the SEMPO algorithm
provides a better solution than the MILP model. However, in this specific instance,
the metaheuristic gets trapped in a local minimum, and by the end of the one-hour
computational time, CPLEX finds a better solution. In contrast, Figure 4.17b demonstrates
a scenario where the SEMPO algorithm initially provides a solution of significantly better
quality than the first solution found by CPLEX using the MILP model. The SEMPO
algorithm then maintains a high convergence rate, ultimately yielding a solution with a
significantly lower cost than that found by CPLEX by the end of the execution.

Table 4.5 presents the results for the medium-scale instances. For the MILP model, it
shows the cost obtained from the linear relaxation. For the SEMPO algorithm, it lists the
cost of the best solution (z∗), the cost of the worst solution (zw), the average cost across
all runs (z̄), the standard deviation of the costs across all runs (zsdv), and the average time
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across all runs to find the best solution (t̄∗) in seconds. Unlike Table 4.3, only the cost of
the linear relaxation (column LR) is provided here, as the MILP formulation failed to find
a feasible solution for all medium-scale instances. Consequently, only the gap between the
best solution provided by the SEMPO algorithm and the linear relaxation cost (GapLR)
can be calculated. For instances 1 and 3, which have 83 customers and a time horizon
of 28 periods, the GapLR could not be calculated since the CPLEX solver was unable to
optimally solve the linear relaxation within the one-hour time limit. The last row of the
table provides the average values.

In Table 4.5, for the medium-scale instances, the average GapLR is 8.53%. On average,
the SEMPO algorithm finds the best solution in less than 20 minutes (921 seconds). These
results are considered to be of high quality given the complexity of the HIRP-BS compared
to the classical IRP. The difficulty of solving the HIRP-BS stems from its characteristics,
such as a heterogeneous fleet of vehicles, variable costs and demands, batch sizes per
customer, etc., as well as the size of the time horizon and number of customers. This is
evident from the fact that even for instances with 19 customers and a time horizon of 14
periods, the CPLEX solver fails to find feasible solutions for the proposed model within
the one-hour computation time.

Table 4.5: Results for the medium-scale instances

Instances MILP model SEMPO algorithm
GapLR

|N | |T | Id. LR z∗ zw z̄ zsdv t̄∗ (s)

20

14

1 31765.05 33861.00 34310.40 34135.72 152.40 568 6.19

2 35995.55 38037.40 38184.90 38098.06 50.75 934 5.37

3 36849.88 39391.00 39677.50 39533.20 87.06 845 6.45

21

1 70705.51 74315.90 74685.10 74477.94 125.89 634 4.86

2 67279.77 71637.70 71959.80 71773.83 86.61 697 6.08

3 81136.08 85644.50 86204.60 85957.79 213.05 1069 5.26

28

1 105572.10 112247.97 114155.00 113299.10 813.64 1213 5.95

2 108853.94 115040.73 116761.00 115569.96 486.08 723 5.38

3 96870.66 102777.00 104181.00 103317.85 482.34 748 5.75

34

7

1 21504.21 23272.60 23462.20 23372.28 64.95 928 7.60

2 25220.85 26918.00 27388.40 27168.72 138.79 843 6.30

3 19551.37 21610.70 21773.50 21699.36 66.91 634 9.53

14

1 64725.84 68249.90 68664.50 68480.09 148.40 1175 5.16

2 58026.87 63853.30 64305.60 64156.87 152.21 471 9.12

3 60027.36 66903.30 69413.60 67992.80 749.34 945 10.28

21

1 112811.34 120413.00 121767.00 121000.50 449.45 788 6.31

2 142540.14 152232.00 154337.00 153684.00 812.55 1019 6.37

3 125961.65 135518.00 137021.00 136466.10 484.19 941 7.05

28

1 199983.60 210551.00 211847.00 211313.40 379.20 948 5.02

2 194899.22 211936.00 213026.00 212255.30 303.29 914 8.04

3 198494.93 212032.48 214014.00 213063.18 730.89 1227 6.38

46

7

1 28952.92 31531.70 32216.50 31836.35 186.75 1070 8.18
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2 31393.57 34461.50 35002.90 34739.92 179.66 772 8.90

3 25408.63 27565.80 27845.20 27684.01 79.09 833 7.83

14

1 70858.72 74801.30 75545.10 75232.20 203.08 1058 5.27

2 85473.88 91480.70 91840.00 91686.45 103.67 802 6.57

3 78769.42 85545.30 86500.70 86094.61 267.94 850 7.92

21

1 163482.68 174044.00 174392.00 174175.90 99.85 945 6.07

2 165078.24 173148.00 174971.00 174330.50 679.94 1088 4.66

3 129226.17 138930.00 139341.00 139166.00 108.66 888 6.98

28

1 232277.48 245113.00 245555.00 245387.30 148.83 888 5.24

2 263986.87 281252.00 282505.00 281903.30 396.04 936 6.14

3 249555.84 265153.00 265668.00 265435.40 191.95 1053 5.88

58

7

1 46315.26 52713.20 53387.20 53026.60 251.08 676 12.14

2 27474.70 33768.10 34370.00 34107.19 194.95 1036 18.64

3 37506.27 43614.60 44267.90 44028.97 242.42 784 14.01

14

1 100262.00 112607.00 113317.00 112918.60 228.33 950 10.96

2 102989.70 124007.00 124892.00 124339.50 266.90 728 16.95

3 118288.86 129879.00 132119.00 131319.70 847.64 1164 8.92

21

1 199673.24 222510.00 223928.00 222944.20 479.55 1308 10.26

2 198632.42 220827.00 222426.00 221688.20 527.22 910 10.05

3 187080.90 216367.00 217453.00 216936.00 383.59 774 13.54

28

1 312777.77 338614.00 341230.00 340238.10 831.13 993 7.63

2 289651.41 324261.00 325817.00 324912.10 505.19 1091 10.67

3 344415.47 380963.00 385579.00 382520.00 1399.66 822 9.59

83

7

1 46176.09 53916.50 54359.30 54054.96 132.68 801 14.36

2 45115.89 53376.90 53819.60 53657.34 124.79 679 15.48

3 48785.68 55261.00 55892.40 55641.00 211.91 997 11.72

14

1 150855.25 168151.00 168906.00 168624.30 251.30 874 10.29

2 115554.71 129975.00 131003.00 130494.40 370.69 812 11.09

3 161514.81 179839.00 180555.00 180194.70 214.70 811 10.19

21

1 220407.99 240328.00 242961.00 241556.80 713.51 1225 8.29

2 272141.84 298430.00 301140.00 299549.70 826.73 1095 8.81

3 254559.93 280787.00 282879.00 281799.80 659.61 1372 9.34

28

1 – 485412.00 488434.00 487275.20 924.85 1044 –

2 458910.43 499365.00 501946.00 500579.90 798.14 863 8.10

3 – 442948.00 444221.00 443590.80 420.45 1250 –

Avg 375.97 921 8.53

Table 4.6, similar to the table for small-scale instances, provides the average gap across
all ten runs of SEMPO for the medium-scale instances. In this case, there is no gap from an
Upper Bound since no feasible integer solution was found by the MILP model. Therefore,
only the gap from the linear relaxation is presented. Generally, these gaps are around 7%,
similar to the small instances, indicating a certain convergence stability of the algorithm, a
very low standard deviation.
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Table 4.6: Gaps for the medium-scale instances

Instance GapLR(%) Instance GapLR(%)

N ′ T best worst min max avg sdv N ′ T best worst min max avg sdv

19 34

7 8.24 8.73 7.82 8.73 8.35 0.34

14 6.33 6.14 6.05 6.72 6.42 0.25 14 8.64 9.50 8.58 9.50 8.91 0.46

21 5.66 5.82 5.43 5.82 5.65 0.17 21 7.46 6.81 6.81 7.65 7.24 0.39

28 5.98 6.79 5.72 7.08 6.29 0.50 28 6.74 6.76 6.65 6.98 6.79 0.21

Avg 5.99 6.25 5.97 6.40 6.12 0.31 Avg 7.77 7.95 7.62 7.96 7.82 0.35

46

7 8.91 9.11 8.59 9.48 8.97 0.42

58

7 15.63 15.38 15.29 15.84 15.64 0.45

14 6.93 7.01 6.86 7.24 7.03 0.22 14 12.38 12.70 12.38 13.06 12.77 0.31

21 6.26 6.17 5.98 6.31 6.20 0.17 21 11.45 11.55 11.45 11.71 11.53 0.19

28 5.88 5.88 5.85 5.99 5.89 0.09 28 9.60 9.77 9.42 9.77 9.63 0.23

Avg 7.00 7.04 6.94 7.13 7.02 0.22 Avg 12.27 12.35 12.27 12.50 12.39 0.29

83

7 14.35 14.37 14.01 14.51 14.27 0.25

14 10.74 10.79 10.65 10.92 10.78 0.16

21 9.21 9.32 9.04 9.34 9.19 0.24

28 7.97 7.91 7.78 7.98 7.88 0.14

Avg 10.57 10.60 10.45 10.60 10.53 0.20

Global 8.86 8.97 8.86 8.97 8.92 0.27

Lastly, Table 4.7 presents the results for the ten large-scale instances, similar to the
information provided in the previous tables. For these large-scale instances, only the first
two phases of the SEMPO algorithm were executed (as outlined in Figure 4.1), since
including the third phase would significantly increase the computational time. For the last
four instances in the table, the GapLR could not be calculated because the CPLEX solver
was unable to optimally solve the linear relaxation of the model within the one-hour time
limit. For the remaining instances, the average GapLR is 12.01%. Additionally, the total
average execution time is less than 15 minutes.

It’s also observed that, even though the post-optimization phase was not executed for
the large-scale instances, the gap between the cost of the solutions provided by the SEMPO
algorithm and the cost of the linear relaxation of the model is not significantly larger
compared to the small and medium-scale instances where the full method was applied.
This indicates that the SEMPO approach is efficient in terms of execution time and can
still deliver high-quality solutions, even when the linear relaxation solved by CPLEX does
not yield an optimal solution within a considerably longer running time.

Table 4.8 summarizes the gaps obtained for the large-scale instances across each run.
For the last four instances, marked with an asterisk, the linear relaxation of the proposed
model was not fully resolved within the one-hour time limit. This explains the occurrence
of negative gaps for some of these instances.

For further analysis, the detailed table results are presented in Appendix C. Also, the
convergence graphics for the small-scale instances comparing both the MILP model and
the SEMPO algorithm performance is in Appendix D.
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Table 4.7: Results for the large-scale instances

Instances MILP model SEMPO algorithm
GapLR

|N | |T | Id. LR z∗ zw z̄ zsdv t̄∗ (s)

114

7

1 63214.61 73697.50 74914.70 74120.87 357.73 1288.13 14.22

2 62803.88 72296.70 73236.40 72902.97 293.43 1057.53 13.13

3 62229.09 70788.60 71175.00 70952.09 129.24 836.96 12.09

14
1 160846.19 183068.00 184650.00 183790.90 524.65 689.14 12.14

2 240633.57 268914.00 271892.00 270369.50 965.68 809.31 10.52

21 1 368429.18 409142.00 410697.00 409722.40 627.68 683.57 9.95

149 28 1 - 900932.00 905981.00 904061.50 2204.26 780.12 -

170
21 1 - 537235.00 539239.00 538574.90 687.44 1103.05 -

28 1 - 852666.00 856599.00 854943.00 1628.57 888.50 -

183 7 1 - 98708.70 99711.30 99123.17 326.58 806.78 -

Avg 774.53 894.31 12.01

Table 4.8: Gaps for the large-scale instances

Instances SEMPO GapLR

|N ′| |T ′| ID UB t(s) R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

114 7 1 63214.61 1288 14.66 14.22 14.66 14.60 14.91 14.69 15.07 15.62 14.33 14.36

114 7 2 62803.88 1058 13.83 14.13 14.03 13.13 13.56 13.51 13.97 14.00 14.24 14.11

114 7 3 62229.09 837 12.38 12.16 12.51 12.28 12.17 12.33 12.31 12.09 12.57 12.14

114 14 1 160846.19 689 12.64 12.14 12.39 12.39 12.64 12.14 12.64 12.29 12.66 12.89

114 14 2 240633.57 809 10.95 11.33 10.97 10.98 10.52 10.60 11.50 11.14 10.73 11.25

114 21 1 368429.18 684 9.95 10.07 10.29 9.97 10.16 9.95 9.97 10.29 10.16 9.97

149 28 1* 704377.65 780 22.17 22.25 22.25 22.25 22.17 22.17 21.82 21.82 22.17 21.82

170 21 1* 612220.46 1103 -13.55 -13.53 -13.68 -13.96 -13.85 -13.58 -13.62 -13.79 -13.61 -13.56

170 28 1* 688814.62 888 19.35 19.27 19.22 19.59 19.57 19.59 19.33 19.57 19.28 19.55

183 7 1* 326477.91 807 -227.42 -227.90 -230.07 -228.68 -230.46 -229.88 -229.63 -229.13 -229.77 -230.75

Global Gap(%) 894 -12.51 -12.59 -12.74 -12.74 -12.86 -12.85 -12.66 -12.61 -12.72 -12.82
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4.7 Chapter conclusion

This chapter addressed an algorithm to solve the new variant of the Inventory Routing
Problem named Heterogeneous Inventory Routing Problem with Batch Size (HIRP-BS)
which contains some characteristics that represent a more realistic scenario including a
heterogeneous fleet of vehicles and a batch size per customer. In order to solve the problem,
the mathematical formulation presented in Subsection 2.3 from Chapter 2 is used. The
solution method introduced consists of a Split-based algorithm using a multi-period giant
tour and a post-optimization search phase embedded in a metaheuristic, referred to as the
SEMPO algorithm, to solve the problem.

To test the SEMPO, the new set of benchmarking instances introduced in Section 2.4
from Chapter 2 is used as well as the classical existing literature instances from Archetti
et al. (2007) and Coelho et al. (2012a).

The results show that the proposed flow formulation solved by the CPLEX solver is not
able to provide feasible solutions to the problem in a reasonable computational time for
medium and large-scale instances. In addition, the model only provides feasible solutions
to some of the small-scale instances. However, the SEMPO metaheuristic is able to find
feasible solutions for all the proposed instances with better or competitive costs in a short
running time.

Chapter remainder

• A Split-based algorithm adapted to the HIRP-BS

• A metaheuristic schema which embeds the Split algorithm

• Computational experiments on the new benchmarking instances for the HIRP-BS

• Convergence analysis on the algorithm performance compared to the mathematical
formulation
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Conclusion

This thesis addressed the integrated inventory management and routing problem named
Inventory Routing Problem (IRP) as well as a new extension named Heterogeneous
Inventory Routing Problem with Batch Size (HIRP-BS). The first stands for the classical
version of the problem and has received a lot of attention of the OR community so far.
The second was introduced in this thesis and considers an extension of the classical IRP
in which some characteristics are added, such as a heterogeneous vehicle fleet, inventory
holding costs and demands that are period-dependent as well as an inventory policy based
on the delivery by batches rather than in single unities.

For both problems, the objective is to serve a set of customers that has demands over
a finite horizon of time and consider a supplier from which a set of vehicles is scheduled at
each period to perform the routes respecting a set of contraints. These include the vehicles
capacity, the fact that a route starts and ends at the supplier and the inventory management,
for example. The IRP and the HIRP-BS are challenging in terms of logistics operations in
a supply chain and must be coordinated to avoid customers inventory disruption and to
keep a satisfying level of service for both customers and supplier.

In order to do so, three approaches have been proposed: a mathematical formulation in
Chapter 2, an iterative algorithm in Chapter 3 and a metaheuristic in Chapter 4. Below, a
summary on these approaches and results is presented including the problem description
and literature review presented in Chapter 1.

• In Chapter 1, the Inventory Routing Problem has been introduced and explained
in terms of the inventory management problem and the routing problem associated.
Multiple works from the literature have been highlighted to present what has already
been proposed as extensions of the base classical problem and the methods and
algorithms to solve them. In these literature papers, the instances provided are, in
the majority of the cases, derived from the same classical set introduced in 2007,
which does not incorporate enough features for the IRP variants. Also, from the
bibliography review presented in this chapter, it is clear that more work can be done
to get closer to a real scenario and the variation proposed (HIRP-BS) is of interest
of the OR community since the features considered have never been proposed before.

• Chapter 2 formalizes both IRP and HIRP-BS problems with the corresponding
mathematical formulation and the set of instances proposed to solve each one. For
the HIRP-BS, since it first appear in this theses, a new set of instances to match its
characteristics is proposed. It is clear from the experiments presented that another
strategies of resolution rather than the linear approaches are requested to obtain
feasible upper bounds in a reasonable time in order to increase the convergence
time since the number of variables for the HIRP-BS is very huge and the problem
dimension increases fast considering the customers, periods and vehicles indexation.
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Thus, it is impossible to provide a feasible integer solution for more than half of the
new instances considered.

• In Chapter 3, another approach to solve the IRP was presented. It consists of an
iterative algorithm that decomposes the initial problem into subproblems according
to the number of periods considered. These subproblems are treated and solved
sequentially according to the ascending period order and until all the periods have
been explored. Each subproblem carries information from the previous ones to
accelerate the algorithm convergence. They also consider a parameter responsible for
defining the number of changes authorized so that the changes in the solutions are
controlled according to this parameter to define a notion of neighborhood around the
current solution. The results have shown promising solutions in terms of solution
quality and convergence.

• Chapter 4, known to be the core chapter of this thesis, addresses a metaheuristic
with a Split algorithm embedded to solve the HIRP-BS and has also been tested
on the IRP. The metaheuristic can be seen as an extension of the Grasp×ELS that
exists in the literature in which additional steps and features have been added to
contemplate the problem treated. The algorithm relies on a three-step constructive
heuristic that considers an evaluation phase (Split), a local search mechanism (ELS)
that also incorporates the Split and a post-optimization. The first consists of defining
a feasible solution for the problems through the evaluation of a sequence of customers
named giant tour and splitting it into feasible routes. These are later improved by the
ELS phase which also contains a mutation operator to provide diversification on the
solutions found so far and to avoid local minima. Lastly, the post-optimization aims
to use the mathematical formulation of the problems to improve the solution quality
in terms of routing and inventory management. Several experiments are considered
including the new set of instances and the results show a fast convergence of the
method and promising solution quality compared to the linear formulation resolution.
Different from the previous chapter, the metaheuristic is capable of finding one upper
bound for all the new set of instances considered. Also, the metaheuristic present an
insight on how its structure can be adapted to treat another types of problems and
produce good quality solutions.

If the major contributions and the originality of this thesis were to be highlighted, the
following aspects could be mentioned:

- Introduction of an IRP extension (the HIRP-BS) that considers a period-dependent
heterogeneous vehicle fleet, demands and inventory costs and a batch size per
customers;

- Introduction of a new set of instances to address the HIRP-BS features;

- A mathematical formulation of the HIRP-BS to handle the characteristics considered
as an extension of the classical IRP;

- A Split algorithm capable of generating feasible solutions from a multi-period giant
tour strategically defined to handle the customers demands over the periods and the
constraints associated;
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- An extension of the classical Grasp×ELS metaheuristic by incorporating the Split
algorithm for the IRP and a post-optimization phase using the problem linear
formulation and a commercial solver;

- An iterative decomposition algorithm for the IRP that divides the problem into
subproblems that are solved sequentially and that reuses information from previous
iterations to accelerate convergence.

As with all research problems, there is always place for further work to add more
features and explore additional characteristics of the IRP, including new constraints and
instance sets. Some perspectives are listed below.

First of all, the iterative approach presented for the classical IRP version can be extended
for the HIRP-BS to analyse and compare its performance with the linear formulation
proposed as well as the SEMPO metaheuristic. Also, the development of a Branch-and-Cut
algorithm could be useful to help the HIRP-BS mathematical formulation in generating
feasible solutions since it has been widely applied to the classical IRP version because the
base formulations are also hard to solve. This B&C algorithm could also be incorporated
into the iterative algorithm to increase the method performance.

As for new characteristics of the problem, we could consider the multi-product scenario,
in which the linear formulations as well as the SEMPO metaheuristic complexity would be
significantly increased. Alternatively, we could consider the fact that some products cannot
be transported by some vehicles, which would help to reduce the number of possibilities
for assignment and, consequently, the algorithm complexity.

Also, the use of artificial intelligence techniques could offer the methods presented
in this thesis significant improvements in terms of finding promising solutions. The idea
would be to analyse an extensive number of solutions for the problem and to identify which
features contribute to designing good solutions and bad ones. With this information in
hand, it would be insightful to incorporate strategies that can favor the prevalence of good
solutions and avoid the bad ones.

Along with this thesis, the algorithms presented here can provide valuable insights
for developing further extensions and adapting them to incorporate new features and
address other OR problems. Not limited to IRPs, the iterative approach, the SEMPO
metaheuristic, and the underlying ideas of these algorithms can also serve as inspiration
for application to other OR problems.
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Publications

This thesis has led to several publications, including national and international communi-
cations, a book chapter and a journal paper currently under review. Their references and
main contributions are listed below.

• International communications

1. Martino, D., Lacomme, P., Farias, K., & Manuel, I. (2022, July). A Split-based
Dynamic Programming approach for the Inventory Routing Problem. In EURO
2022-Espoo.

This resume was orally presented in the International communication on the
European Conference of Operational Research in Espoo, Finland, from july 3th
to july 6th, 2022. It addresses a preliminary work on a Split algorithm developed
to solve the IRP.

2. Martino, D. P., Lacomme, P., Farias, K., & Iori, M. (2023, April). A
metaheuristic schema for the Inventory Routing Problem. In EU/ME meeting
x Quantum School: Emerging optimization methods: from metaheuristics to
quantum approaches.

This paper is issued from the EU/ME international conference held in Troyes,
France, from april 17th to april 21th, 2023. It addresses a preliminary work on
a GRASPxELS metaheuristic to solve the IRP by using a Split-based algorithm
adapted from the VRP literature.

• National communications

1. Lucas, F., Martino, D., Billot, R., & Lacomme, P. (2023, February). Inventory
Routing Problem et Fouille de données: quel apport des règles de décision?. In
ROADEF 2023: 24ème édition du congrès annuel de la Société Française de
Recherche Opérationnelle et d’Aide à la Décision.

This 2-pages resume in french was orally presented in the 24th edition of the
French conference on Operational Research in Rennes, France, from february
20th to february 23th, 2023. It is issued from a collaboration with Flavien Lucas
and Romain Billot from the IMT Atlantique to apply data mining techniques
to extract good and bad characteristics to classify the solutions. The study was
carried on thousands of solutions of variate quality and allow the definition of
decision rules based on these.

2. Perdigão, D., Lacomme, P., de Araújo, K. F., & Iori, M. (2023, February).
Un algorithme basé sur la Programmation Dynamique pour l’Inventory Routing
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Problem. In 24ème Congrès Annuel de la Société Française de Recherche
Opérationnelle et d’Aide à la Décision.

This 2-pages resume in french was orally presented in the 24th edition of the
French conference on Operational Research in Rennes, France, from february
20th to february 23th, 2023. It addresses the Split-based dynamic programming
algorithm to solve the IRP as well as some local search operators acting on the
routing part of the problem.

• Book chapter

1. 1 Farias, K., Lacomme, P., & Martino, D. P. (2024, June). Iterative Heuristic
over Periods for the Inventory Routing Problem. In Metaheuristics International
Conference (pp. 123-135). Cham: Springer Nature Switzerland.

This book chapter is published in Lecture Notes in Computer Science (LNCS) by
Springer and is issued from the 15th Metaheuristics International Conference
held in Lorient, France, from June 4th to June 7th, 2024. The paper addresses
an iterative algorithm to solve the IRP which decomposes the mathematical
formulation into subproblems according to the number of periods of time consid-
ered. Each ith subproblem is treated as period-dependent problem and contains
information about the previous ones according to a degree of freedom established.
The algorithm is solved sequentially and aims to accelerate the convergence of
the mathematical formulation that models the problem. Results confirm the fast
convergence in terms of time, which reduces the decision-making time in some
cases.

• Journal

1. A Split-Embedded Metaheuristic for the Heterogenous Inventory Routing Prob-
lem with Batch Size. Under review.

This paper is currently under review in a journal. It addresses a new variant
of the classical Inventory Routing Problem by incorporating new characteristics
and constraints such as a batch size per customer, period-dependent inventory
holding costs, customers demands and an heterogeneous vehicle fleet as well as
non-Euclidian distances among the customers and the supplier. This variant
is then names the Heterogeneous Inventory Routing Problem with Batch Size
(HIRP-BS). To handle this problem, a mathematical formulation which is an
adaptation of an existing flow formulation is presented as well as a metaheuristic
with a post-optimization phase. The metaheustics embeds a Split-based algorithm
which consists in splitting a sequence of customers named giant tour into routes
that are assigned to the set of available vehicles. To test the algorithm, the
classical instances set from the literature is used and a new one is introduced
to match the HIRP-BS characteristics. Several experiments are conducted and
the convergence analysis is done in order to validate the metaheuristic approach
and its capability of addressing this new problem variation. Results shown that
the metaheuristic performs well and provides valid upper bounds on instances
for which the mathematical formulation is not capable of doing so.

1Alphabetical family name authorship order
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Résumé étendu

Introduction

La gestion des transports vise à choisir le mode le plus adapté parmi le rail, la mer, l’air
et la route, en cherchant à minimiser les coûts tout en garantissant fiabilité et sécurité.
Elle doit également faire face à plusieurs défis majeurs, tels que la congestion du trafic, les
limitations des infrastructures, le coût des carburants, la pollution, la sécurité ou encore
les aspects environnementaux. Pour surmonter ces difficultés, une planification stratégique
et une collaboration entre les différents acteurs et secteurs concernés sont nécessaires.

D’autre part, la gestion des stocks se concentre sur le maintien de niveaux suffisants
pour répondre aux demandes des clients sans rupture de stock, tout en assurant un service
de qualité. Cette tâche est complexe, car elle doit relever plusieurs défis, notamment la
prévision de la demande, la gestion des coûts, le cycle de vie des produits, la prévention
des pertes et le maintien d’un équilibre précis des stocks pour éviter les ruptures ou les
excès de stock.

Afin de gérer simultanément les problèmes de transport et de gestion des stocks, les
techniques de Recherche Opérationnelle (RO) peuvent être appliquées. Le problème qui
consiste à traiter à la fois la gestion des stocks et des transports est appelé Inventory
Routing Problem (IRP) dans la littérature. Il a suscité l’intérêt de nombreux chercheurs
au cours des dernières décennies en raison de sa complexité et de sa pertinence pratique.
L’IRP a été introduit en 1983 par Bell et al., et comme pour la plupart des problèmes de
RO, l’objectif est de trouver une solution optimale à coût minimal. Dans ce cas, il s’agit
d’optimiser à la fois les coûts liés aux stocks et ceux liés au transport.

L’IRP considère un ensemble de clients et un fournisseur. Les clients ont des demandes
déterministes, tandis que le fournisseur dispose d’une capacité de production sur un horizon
temporel discret. Les opérations de réapprovisionnement doivent être planifiées de manière
à éviter toute rupture de stock. Pour ce faire, un ensemble de véhicules à capacité limitée
est disponible à chaque période, et les itinéraires desservant les clients doivent être définis.

En plus de traiter le problème classique de l’IRP, cette thèse propose une nouvelle
extension de l’IRP en intégrant des caractéristiques intrinsèques aux systèmes réels, afin
d’apporter des éléments de réponse aux trois questions précédentes. Cette extension est
nommée Heterogeneous Inventory Routing Problem with Batch Size (HIRP-BS). Trois
éléments sont ajoutés au modèle classique de l’IRP : une flotte de véhicules hétérogène
et dépendante du temps, des livraisons par lots, ainsi que des demandes et des coûts de
stockage non statiques selon les périodes. Ces trois aspects ont soit été peu explorés, soit
n’ont pas reçu une attention suffisante dans la littérature jusqu’à présent.

La thèse est divisée en quatre chapitres, et les sections suivantes résument les techniques
employées ainsi que les résultats obtenus dans chaque chapitre. La Section 1 présente l’IRP,
en détaillant les opérations de gestion des stocks et de transport, ainsi qu’une revue de la
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littérature. La Section 2 formalise l’IRP et l’HIRP-BS en termes mathématiques, avec les
variables, la fonction objective et les contraintes, et introduit deux ensembles d’instances :
le classique et celui proposé dans cette thèse. Les résultats sont également discutés.

La Section 4, central à cette thèse, présente la métaheuristique basée sur l’algorithme de
type Split pour résoudre l’IRP et l’HIRP-BS. Le processus de découpage en trois étapes est
décrit, suivi des mécanismes de mutation et de recherche locale pour optimiser le transport,
ainsi qu’une phase de post-optimisation pour le transport et les stocks. Les résultats pour
les deux ensembles d’instances sont discutés.

Enfin, la Section 3 introduit un algorithme itératif qui résout des sous-problèmes issus
de la formulation de l’IRP, ajoutant à chaque itération des solutions partielles pour accélérer
la convergence. Les résultats expérimentaux sont également analysés.

4.8 L’Inventory Routing Problem

Même si plusieurs variations de l’IRP existent, certaines hypothèses sur le problème
demeurent constantes à travers chaque variante. Ces hypothèses sont fondamentales pour
comprendre les bases du problème et comment les aspects de la gestion des transports et
des stocks interagissent. Les plus importantes sont :

• Le split delivery n’est pas autorisé. Chaque client est visité une seule fois par
période et au maximum autant de fois que le nombre de périodes de l’horizon de
temps.

• Livraison et demande. La livraison a lieu uniquement au début d’une période, et
la demande est déduite de manière linéaire sur l’intervalle de temps considéré.

• Calcul des niveaux de stock. Les niveaux de stock sont calculés à la fin de
la période, une fois toutes les opérations terminées. Ces opérations incluent le
réapprovisionnement (livraison d’une quantité de produits), la déduction des demandes
et le niveau de stock de la période précédente immédiate.

• Capacité des véhicules. Les véhicules chargés des livraisons ont une capacité finie
et ne peuvent quitter le dépôt que s’ils ont au moins un client à servir, c’est-à-dire
avec au moins une unité de produit à bord.

• Disponibilité des produits à livrer. Le fournisseur dispose toujours de suff-
isamment de produits à chaque période pour satisfaire toutes les demandes des
clients.

• Niveaux de stock maximum et minimum. Les clients ont des niveaux de stock
minimum et maximum à respecter. En général, le niveau minimum est égal à zéro.
Pour le fournisseur, seul le niveau minimum existe et est toujours égal à zéro.

• Disruption de stock. En aucun cas, une disruption de stock n’est autorisée.

• Faisabilité des itinéraires. Un itinéraire valide commence et se termine toujours
au dépôt. Un sous-tour (un itinéraire ne commençant ni ne se terminant au dépôt)
doit être éliminé par des contraintes spéciales. De plus, chaque route est attribuée à
un seul véhicule.
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4.9 Formulations mathématiques

4.9.1 l’IRP

L’IRP classique consiste à déterminer quand et combien de produits doivent être livrés à
un ensemble de clients de manière à éviter toute rupture de stock tout en respectant les
niveaux de stock des clients et la capacité de production du fournisseur. Pour cela, une
flotte de véhicules homogènes est considérée à chaque période, et les itinéraires à effectuer
doivent également être définis. Les demandes des clients et la capacité de production du
fournisseur sont considérées comme déterministes. L’objectif est de définir une solution
minimisant les coûts de transport et de gestion des stocks, tout en respectant un ensemble
de contraintes relatives à la gestion des stocks, aux quantités à livrer, à l’évitement des
sous-tours et à la capacité des véhicules.

Formellement, l’IRP et l’HIRP-BS sont définis sur un graphe G = (N ′,A), où N
représente l’ensemble des n clients N = 1, ..., n et le nœud 0 représente le fournisseur,
avec N ′ = 0 ∪ N . Ainsi, A = (i, j) : i, j ∈ N ′, i ̸= j est l’ensemble des arcs. Un horizon
temporel T = 1, ...,H avec H périodes est considéré, et donc T ′ = 0 ∪ T . Une flotte
homogène de m véhicules, chacun ayant une capacité B, est utilisée. La matrice des
distances C = (ci,j)0 ≤ i, j ≤ |N ′| indique le coût ci, j pour voyager de i à j et respecte les
inégalités triangulaires. Dans le cas de l’HIRP-BS, cette distance ne respecte pas forcément
les inégalités triangulaires.

Un niveau de stock initial si, ∀i ∈ N ′, est connu à l’avance pour les clients et le
fournisseur à la période 0. Les coûts de stockage sont donnés par hti, avec i ∈ N ′ et
t ∈ T ′. Chaque client a une demande indépendante de la période di et des niveaux de
stock maximum Ui autorisés par période t ∈ T .

Un résumé concernant la fonction objectif et les contraintes est présenté ci-dessous
pour l’IRP et l’HIRP-BS.

• Fonction objectif. La fonction objective vise à minimiser la somme des coûts de
stockage et de routage. Les coûts de stockage concernent les produits stockés chez
les clients et le fournisseur, tandis que les coûts de routage concernent la distance
totale parcourue pour servir tous les clients sur l’ensemble des périodes. Dans le
cas de l’HIRP-BS, les coûts incluent les coûts fixes et variables selon l’utilisation du
véhicule et la distance parcourue.

• Contraintes

– Niveaux de stock. Au départ (à la période 0), les variables des niveaux de
stock du fournisseur et des clients, Iti , ∀i ∈ N ′ et t ∈ T ′, sont fixées à leur niveau
de stock initial si. Le niveau de stock du fournisseur est calculé en prenant le
niveau de stock de la période précédente It−1

0 , ∀t ∈ T , en ajoutant sa capacité
de production rt,∀t ∈ T , et en déduisant le montant total livré aux clients,
soit

∑
i∈N qti , ∀t ∈ T . Le niveau de stock pour chaque client i ∈ N et chaque

période t ∈ T est calculé en prenant en compte le niveau de stock précédent
It−1
i , la quantité de produits livrée par le fournisseur, et les demandes pour la
période en cours.

– Quantités à livrer. La quantité qti , ∀i ∈ N , t ∈ T à livrer doit respecter
l’espace de stockage disponible chez le client, soit la différence entre son niveau
de stock précédent et sa capacité de stockage maximale (Ui−It−1

i ∀i ∈ N , t ∈ T ).
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Il est nécessaire que le client recevant des produits à une période donnée soit
visité sur l’un des itinéraires de cette même période.

– Flux/degré. Aussi appelées contraintes de flux, elles garantissent que le flux
entrant et sortant à chaque nœud est égal. Impose que le nombre m de véhicules
disponibles soit respecté en considérant le premier arc xk,t0,i ∀i ∈ N , t ∈ T , k ∈ Kt

dans une route donnée. Assure que chaque client est visité au plus une fois par
période, puisque les livraisons fractionnées ne sont pas autorisées.

– Capacité des véhicules et élimination des sous-tours. Pour éviter les sous-
tours, des variables ak,ti,j , ∀i, j ∈ A, t ∈ T , k ∈ Kt sont introduites et servent de
compteur croissant pour garantir qu’une route commence et se termine au nœud
0, qui représente le fournisseur. Toutes les variables ak,ti,0 , ∀i ∈ N , t ∈ T , k ∈ Kt,
revenant au fournisseur, sont fixées à 0. Les contraintes de conservation de flux
veillent à ce que la charge des véhicules soit correctement gérée lors de l’arrivée
et du départ de chaque client à chaque période. La charge des véhicules le long
de chaque itinéraire est limitée par la capacité des véhicules Bk,t.

4.10 Métaheuristique basée sur un algorithme Split

La matheuristique basée sur le Split intègre un algorithme Greedy Adaptive Search
Procedure (GRASP) qui utilise le mécanisme Split à différentes étapes de son processus,
en combinaison avec une Recherche Locale Évolutionnaire (ELS) et une phase de Post-
Optimisation, incluant une recherche locale. L’algorithme est nommé Split-Embedded
Metaheuristic with a Post-optimization (SEMPO). La métaheuristique GRASP est une
méthode bien connue qui construit itérativement des solutions initiales et applique une
procédure de recherche locale jusqu’à atteindre un critère d’arrêt prédéfini. De nombreux
chercheurs ont appliqué cette méthode aux problèmes de VRP (Kontoravdis and Bard
1995, Villegas et al. 2011, Guemri et al. 2016) ainsi qu’aux algorithmes ELS (Duhamel
et al. 2011, Zhang et al. 2015). Bien que GRASP et ELS aient été largement explorés pour
les VRP, leur application spécifique à l’IRP a été moins étudiée, avec aucune publication
récente identifiée.

Les étapes de la métaheuristique sont détaillées ci-dessous.

• Étape 1 : Une heuristique constructive en trois étapes qui fournit des solutions
réalisables même pour des instances de grande taille :

– Définition d’un tour géant multi-période contenant une séquence de clients à
visiter et les quantités à livrer, favorisant une décomposition en routes de qualité
raisonnable.

– Évaluation du tour géant généré pour décomposer la séquence en routes assignés
aux véhicules disponibles à chaque période, à l’aide de l’algorithme Split.

– Amélioration de la solution obtenue par un mécanisme de recherche locale
agissant sur la partie routage du problème via quatre voisinages, considérant les
mouvements intra et inter-routes. La solution améliorée est convertie en tour
géant pour relancer le processus si nécessaire.

• Étape 2 : Une procédure de Recherche Locale Evolutionnaire (ELS) pour améliorer
la solution obtenue à l’étape précédente, par un nombre défini d’itérations sans
amélioration. L’ELS comprend :
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– Une phase de mutation pour diversifier en permutant les positions du tour géant
entre celles appartenant à la même période.

– Une phase d’évaluation (Split) et un mécanisme de recherche locale similaires à
ceux de l’heuristique constructive en trois étapes décrite ci-dessus.

• Étape 3 : Le Post-Optimisation vise à affiner la solution en améliorant la meilleure
solution ELS obtenue lors de l’itération GRASP actuelle. Cette méthode repose sur la
définition d’une “distance” par rapport à la meilleure solution ELS pour contraindre
l’espace de recherche. En restreignant cet espace, cette approche réduit l’effort
computationnel nécessaire pour résoudre un modèle MILP tout en se concentrant sur
les zones avec une probabilité plus élevée d’amélioration. Pendant cette étape, les
quantités de livraison et les configurations des itinéraires sont optimisées, en ajoutant
des contraintes liées à la “distance” de la solution ELS et en visant des solutions avec
des itinéraires restant “proches” de ceux identifiés lors de l’étape précédente.

4.10.1 Algorithme Split

L’algorithme Split pour le VRP se concentre sur la recherche du chemin le plus court dans
un graphe. Pour la version capacité (CVRP), il ne cherche pas seulement le chemin le
plus court, mais prend également en compte les contraintes de ressources dues au nombre
limité de véhicules. Dans le cas de l’IRP, l’algorithme Split intègre également la gestion des
stocks dans le processus de création des itinéraires. L’objectif principal de cet algorithme
est de résoudre efficacement les défis combinés du routage et de la gestion des stocks.

L’originalité de l’approche introduite dans cette thèse est illustrée par deux cas partic-
uliers : (i) anticiper une livraison d’un client assigné à une période t vers une période t′

telle que t′ < t et que le client n’ait pas encore été traité dans une route en cours, et (ii) le
client a déjà été traité dans la route en cours.

L’algorithme suit les étapes suivantes :

• Étape 1 : Définition d’un grand tour. Générer un tour géant multi-période contenant
une séquence de clients avec des quantités prédéfinies à livrer et une estimation du
dernier moment possible pour effectuer ces livraisons. Cette répartition est réalisée
par une heuristique constructive qui détermine le “meilleur” moment où un client
doit être placé, ainsi que la quantité et la période à lui assigner.

• Étape 2 : Découpage du tour géant. De gauche à droite, découper la séquence en
tenant compte des contraintes du problème, notamment la capacité de stockage des
clients, le niveau des stocks et la capacité des véhicules. Cela inclut une exploration
des routes possibles en ajoutant des labels contenant des informations sur les routes
candidates. Une limite est imposée pour réduire la complexité, car un label peut en
générer plusieurs autres. Les meilleurs candidats sont ensuite triés par coût croissant.
Une fois le dernier client de la séquence choisi, la recherche se termine.

• Étape 3 : Récupération du chemin critique. De droite à gauche, cette étape vise
à récupérer le chemin critique correspondant à la solution à coût minimal obtenue
après l’exploration du tour géant. En choisissant un label sur le dernier client de la
séquence, on trouve une solution faisable en identifiant les clients à l’origine de la
route, ainsi que le véhicule et la période assignés.

139
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4.10.2 Résultats

Version classique de l’IRP

L’algorithme SEMPO proposé a été conçu pour résoudre le HIRP-BS. Cette section présente
les résultats obtenus par l’approche SEMPO lorsqu’elle est appliquée à la version classique
de l’IRP, une variante plus simple du HIRP-BS. Bien que la méthode proposée donne des
résultats satisfaisants pour les instances IRP, il est attendu que des méthodes spécialisées
disponibles dans la littérature pour l’IRP obtiennent de meilleures performances.

L’algorithme SEMPO produit des solutions de haute qualité pour les instances classiques
de l’IRP, avec un écart moyen de 2% par rapport aux meilleures solutions connues dans la
littérature, tout en nécessitant beaucoup moins de temps de calcul (une moyenne de 11
secondes contre 33 minutes). Aucune solution trouvée par la formulation proposée, résolue
avec CPLEX, n’a été prouvée optimale dans la limite d’une heure. De plus, pour deux
petites instances, le modèle MILP n’a pas fourni de solution faisable, alors que l’algorithme
SEMPO a généré des solutions pour toutes les instances. SEMPO a surpassé la formulation
MILP en fournissant de meilleures solutions pour quatre instances en environ la moitié du
temps. Pour les autres instances, les coûts des solutions étaient très proches des meilleures
solutions obtenues par les deux méthodes.

Nouvelle variante HIRP-BS

Pour les instances de petite taille, l’algorithme SEMPO a atteint un écart moyen de 0,31%
avec un temps de calcul moyen de 850 secondes pour trouver la meilleure solution, soit
quatre fois plus rapide que le temps de 3519 secondes de la formulation proposée. De plus,
la faible déviation standard des coûts parmi les 10 meilleures solutions confirme la stabilité
de la métaheuristique. Le coût moyen des meilleures solutions fournies par SEMPO était
de 6,67% supérieur au coût de la relaxation linéaire.

L’écart moyen entre le modèle MILP et SEMPO est d’environ 1%, avec une faible
déviation standard. Pour trois instances, cet écart est négatif. En ce qui concerne la
relaxation linéaire, l’écart est d’environ 7%, avec également une faible déviation standard.

Pour les instances de taille moyenne, l’écart moyen est de 8,53%, et SEMPO trouve la
meilleure solution en moins de 20 minutes en moyenne (921 secondes).Ces résultats sont
considérés de haute qualité compte tenu de la complexité du HIRP-BS, qui comprend
des caractéristiques telles qu’une flotte hétérogène de véhicules, des coûts et demandes
variables, et des tailles de lots par client. Cela se reflète dans le fait que, même pour des
instances avec 19 clients et un horizon de 14 périodes, CPLEX n’a pas trouvé de solutions
faisables dans le temps imparti d’une heure.

Enfin, bien que la phase de post-optimisation n’ait pas été exécutée pour les instances
de grande taille, l’écart entre le coût des solutions fournies par SEMPO et celui de la
relaxation linéaire n’est pas significativement plus grand comparé aux petites et moyennes
instances, montrant ainsi l’efficacité de SEMPO en termes de temps d’exécution et de
qualité des solutions.

4.11 Méthode itérative sur périodes

Soit P le problème IRP, et soit Pt, pour tout t ∈ T , le tème sous-problème parmi les |T |
sous-problèmes possibles. La résolution de Pt commence à partir des valeurs préalablement
déterminées pour les compositions de routes, exprimées par les variables xti,j des périodes 1
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à t− 1, puis consiste à résoudre le sous-problème actuel Pt, en permettant une certaine
liberté pour les variables x lors de l’exécution de l’algorithme pour Pt.

Au fur et à mesure que l’algorithme progresse à travers les périodes, la taille et la
complexité des sous-problèmes augmentent. Plus précisément, les dimensions des sous-
problèmes croissent à chaque itération successive, ce qui signifie que |P1| < |P2| < · · · <
|PT −1| < |PT |. Cette expansion progressive des sous-problèmes reflète l’accumulation
d’informations et l’augmentation des décisions à prendre à mesure que l’algorithme approche
de la période finale.

L’idée sous-jacente est d’explorer partiellement le voisinage associé à chaque période
temporelle lors de chaque itération. Cette exploration est guidée par les variables qui
représentent chaque période dans l’horizon temporel, permettant au solveur de suivre
implicitement une séquence logique alignée avec l’ordre chronologique des périodes. Cela
aide également le solveur à mieux comprendre la structure du problème en termes de
périodes, ce qui peut ne pas être évident lorsqu’on considère toutes les variables séparément.
Une telle approche est couramment utilisée dans les algorithmes de programmation par
contraintes, comme mentionné dans des travaux précédents Bourreau et al. (2019, 2020).

Une fois que la résolution de Pt commence, en partant des valeurs connues des variables
x jusqu’au période t− 1, les valeurs correspondantes des q peuvent être déterminées plus
facilement en fonction de l’utilisation ou non d’un arc dans un itinéraire. Cependant, lors
de la transition du sous-problème Pt−1 vers Pt, une valeur initiale pour les variables q est
fixée sans permettre de degré de liberté, ce qui guide le processus de recherche.

Le paramètre ∆ indique le pourcentage de modifications autorisées dans chaque sous-
problème Pt en fonction des arcs activés précédemment. Plus précisément, lorsque ∆ = 0,
aucune modification des arcs précédemment activés n’est autorisée, tandis que lorsque
∆ = 100, tous les arcs activés précédemment peuvent potentiellement être modifiés.

4.11.1 Résultats

En moyenne, la méthode itérative est dix fois plus rapide que la résolution directe, avec
un écart moyen de 9% sur la qualité des solutions. Cependant, une analyse plus détaillée,
instance par instance, révèle une variabilité significative des performances. Plus précisément,
cinq instances affichent une accélération du temps de calcul par un facteur dix. Parmi
celles-ci, l’instance abs1n25.dat présente un écart de 19%, soulignant ainsi un compromis
entre rapidité et qualité de la solution dans certains cas. L’instance la moins favorable est
low abs1n5.dat, avec un horizon temporel de trois périodes, où un écart de 22% et un ratio
de temps de calcul de 1 sont observés. En revanche, l’instance la plus favorable est high
abs1n20.dat, également avec un horizon de trois périodes, montrant un écart de seulement
4% et un ratio de temps de calcul de 39.

Au cours de la première période, pour la majorité des instances analysées, aucune
route n’est planifiée car les clients disposent de niveaux de stock suffisants, ce qui signifie
qu’aucune livraison de produits n’est nécessaire. Par conséquent, il n’y a pas de différence
entre les méthodes à ce stade. En avançant vers la deuxième période, toutes les valeurs de
gap sont zéro. Cela s’explique par le fait que l’information transmise de la première période
facilite grandement la résolution du sous-problème, garantissant que les deux méthodes
aboutissent à la même solution.

Cependant, à partir de la troisième période et au-delà, la complexité du problème
augmente considérablement. Dès le gap pour la période 3, la dimension du problème
peut s’étendre de manière significative, rendant plus difficile l’obtention de solutions
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optimales. C’est à ce stade que la méthode itérative commence à se différencier en termes
de performance de l’approche classique, car le problème devient de plus en plus complexe
à résoudre avec chaque période successive.

Indépendamment du type ou de la taille de l’instance, une tendance est observée : à
mesure que la valeur de ∆ augmente, il y a une réduction notable du gap. Cette tendance
s’explique par le fait qu’une valeur plus élevée de ∆ permet au sous-problème d’avoir plus
de flexibilité pour ajuster les arcs, augmentant ainsi les chances de trouver de meilleures
solutions. Cependant, cet avantage a un coût : le temps de calcul augmente car l’espace de
recherche s’étend avec des valeurs de ∆ plus grandes. Malgré cela, même dans les scénarios
les plus défavorables en termes de temps, l’approche itérative dépasse généralement la
méthode classique en moyenne, mettant en évidence son efficacité à équilibrer la qualité
des solutions et l’effort computationnel.

Conclusion

Cette thèse a traité du problème intégré de gestion des stocks et de routage appelé Inventory
Routing Problem (IRP), ainsi que d’une nouvelle extension nommée Heterogeneous Inven-
tory Routing Problem with Batch Size (HIRP-BS). Les deux posent des défis importants
en termes d’opérations logistiques dans la châıne logistique et doivent être coordonnés
pour éviter les interruptions de stocks chez les clients et maintenir un niveau de service
satisfaisant pour les clients comme pour le fournisseur. Pour ce faire, plusieurs approches
ont été proposées. Une formulation mathématique, une matheuristique et un algorithme
itératif ont été présentés.

Si les contributions majeures et l’originalité de cette thèse devaient être mises en avant,
les aspects suivants pourraient être mentionnés :

- Introduction d’une variation de l’IRP (HIRP-BS) considérant une flotte de véhicules
hétérogène dépendante des périodes, des demandes et des coûts de stockage, ainsi
qu’une taille de lot par client

- Un nouvel ensemble d’instances pour aborder les caractéristiques du HIRP-BS

- Un algorithme Split capable de générer des solutions réalisables à partir d’un tour
géant multi-périodes défini stratégiquement pour gérer les demandes des clients sur
les périodes

- Une extension de la métaheuristique classique Grasp×ELS en incorporant une phase
de post-optimisation utilisant la formulation linéaire du problème et un solveur
commercial

- Un algorithme itératif de décomposition de domaine qui utilise les informations des
itérations précédentes pour accélérer la convergence.

Comme pour tous les problèmes de recherche, il y a toujours place pour des travaux
supplémentaires afin d’ajouter de nouvelles fonctionnalités et d’explorer d’autres car-
actéristiques de l’IRP, y compris de nouvelles contraintes et ensembles d’instances.

En parallèle de cette thèse, les algorithmes présentés ici peuvent fournir des bonnes
perspectives pour le développement d’avantage d’algorithmes et pour leur adaptation afin
d’incorporer de nouvelles fonctionnalités et de traiter d’autres problèmes de RO.
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Instances examples

Go to the Table of Contents <
Go to the Instances section <

In this Appendix, examples of the classical IRP and the new HIRP-BS instances are
presented. For each, a How to read and a file example provide details on how to read and
how the files are structured, respectively.

A.1 Classical IRP instance example

These classical instances come from Archetti et al. (2007) and Archetti et al. (2012) for the
single-vehicle and the multi-vehicle case, respectively. Note that for these two cases, the
instances file remains the same: what changes is the readability of the vehicles capacity
that is divides by the number of vehicles available and then rounded down for the nearest
integer value.

In Subsection A.1.1, the details on how to read the file are given and then, in Subsection
A.2.1, an example file is presented.

A.1.1 How to read

In order to better understand how these new instances files are structured, the following
algorithm provide details on how to interpret them based on the initial problem data that
can be found in Table 2.1.

|N | |T | B

Supplier data
1 s0
X1 Y1 s0 rt ht0

Customers data
for each customer i = 1 to |N |

index Xi Yi si Ui Li dti hti
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A.1.2 Example file

File A.1: Literature instance abs1n20

21 6 1651
1 113 .0 95 .0 2743 1101 .30
2 266 .0 433 .0 24 36 0 12 .23
3 257 .0 469 .0 91 182 0 91 .32
4 363 .0 330 .0 91 182 0 91 .33
5 158 .0 453 .0 45 90 0 45 .23
6 423 .0 238 .0 174 261 0 87 .18
7 363 .0 368 .0 78 117 0 39 .29
8 182 .0 3 .0 15 30 0 15 .42
9 332 .0 420 .0 55 110 0 55 .42

10 388 .0 385 .0 21 42 0 21 .24
11 188 .0 69 .0 184 276 0 92 .43
12 374 .0 148 .0 102 153 0 51 .18
13 296 .0 322 .0 20 40 0 20 .22
14 332 .0 204 .0 47 94 0 47 .24
15 432 .0 250 .0 72 144 0 72 .31
16 488 .0 307 .0 23 46 0 23 .22
17 46 .0 351 .0 86 129 0 43 .38
18 302 .0 139 .0 142 213 0 71 .13
19 23 .0 126 .0 176 264 0 88 .43
20 22 .0 79 .0 80 160 0 80 .37
21 81 .0 442 .0 116 174 0 58 .17

The instance abs1n20 accounts for 20 customers as shown by the number 21 which
also includes the supplier; 6 periods and the vehicle capacity of 1651 units of products
per period. In the first line, index 1 represents the supplier followed by its x and y

Euclidian coordinates, respectively, its initial inventory level of 2743 (fictitious period 0),
its production capacity per period of 1101 units and its inventory holding costs of 0.30. The
following lines represent each of the five customers and the information provided includes,
in that order, the customer index 2 (shifted by 1 since the first stands for the supplier),
the x and y Euclidian coordinates 266 and 433, respectively, the initial inventory level of
24, the maximum and minimum inventory level of 36 and 0 authorized, the static demand
of 12 and an inventory holding cost of 0.23. The next four lines gives provide the same
information for the remaining four customers.

144



Perdigão Martino, Diego New benchmark IRP instance example

A.2 New benchmark IRP instance example

A.2.1 How to read

In order to better understand how these new instances files are structured, the following
algorithm provide details on how to interpret them based on the initial problem data
that can be found in Table 2.2. Three main parts are considered: the vehicles, supplier
and customers data. The first contains, for each period, information about the vehicles
available, in which quantity, their capacity and costs involved. The second provides the
supplier initial inventory level, inventory cost and production capacity. The third related
to the customers concerns their initial inventory level, maximum inventory level allowed,
batch size, inventory costs, demands as well as the distances among them considering a
complete graph.

|N | |T |

Vehicles data

for each period t ∈ T
t |Kt|
for each type k ∈ Kt of vehicle available

k mk,t Bk,t fk,t vk,t

Supplier data

0 s0
for each period t ∈ T

ht0 rt

Customers data

for each customer i ∈ N
i si Ui ℓi hti dti

for each i ∈ N ′

for each j ∈ N ′

ci,j
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A.2.2 Example file

File A.2: New instance s 19 7 1

19 7

1 3

1 3 227 126 0.85

2 1 221 89 1.30

3 1 197 115 2.97

2 3

1 2 246 126 0.63

2 3 218 122 1.72

3 1 171 91 1.44

3 2

1 4 282 92 2.69

2 1 276 144 0.73

4 3

1 4 269 139 2.14

2 1 244 59 0.97

3 1 191 127 1.22

5 1

1 3 359 100 0.72

6 2

1 2 217 75 2.56

2 4 194 65 2.56

7 4

1 4 129 90 1.64

2 1 112 90 0.95

3 4 95 111 1.44

4 2 92 63 1.95

0 773 0.34 1664 0.44 1636 0.18 2039 0.38 1432 0.34 1643 0.49 2052 0.17 1353

1 173 0 173 13 0.1 19 0.2 95 0.5 27 0.4 60 0.1 47 0.2 91 0.4 10

2 60 0 145 14 0.5 38 0.4 42 0.4 33 0.2 24 0.3 14 0.4 10 0.2 85

3 114 0 161 17 0.3 30 0.2 36 0.2 88 0.4 10 0.3 40 0.2 89 0.5 33

4 115 0 115 6 0.3 70 0.5 96 0.4 51 0.3 87 0.4 32 0.2 93 0.3 29

5 57 0 156 16 0.2 81 0.2 11 0.1 84 0.3 61 0.4 82 0.5 90 0.4 40

6 42 0 166 11 0.4 77 0.1 80 0.2 43 0.4 60 0.2 28 0.3 22 0.2 84

7 43 0 97 13 0.2 15 0.4 72 0.4 47 0.1 64 0.3 82 0.3 14 0.3 37

8 147 0 158 4 0.3 19 0.1 11 0.3 83 0.1 51 0.2 73 0.1 79 0.4 22

9 84 0 149 3 0.3 74 0.4 40 0.1 24 0.2 77 0.2 55 0.2 42 0.3 28

10 46 0 98 2 0.2 87 0.3 20 0.3 29 0.5 81 0.5 47 0.3 43 0.1 11

11 91 0 118 14 0.2 27 0.3 70 0.4 73 0.1 37 0.4 74 0.1 63 0.5 80

12 99 0 185 5 0.1 33 0.5 78 0.3 18 0.4 45 0.3 23 0.4 99 0.4 90

13 70 0 122 6 0.5 40 0.2 94 0.3 98 0.3 89 0.2 74 0.3 72 0.1 28

14 25 0 76 7 0.4 51 0.5 69 0.1 43 0.5 43 0.5 69 0.3 42 0.5 43

15 38 0 91 4 0.3 56 0.3 16 0.1 84 0.1 70 0.2 21 0.5 23 0.3 12

16 129 0 157 6 0.3 95 0.3 40 0.2 76 0.3 86 0.2 18 0.2 46 0.5 74

17 103 0 123 12 0.3 79 0.3 19 0.3 18 0.3 77 0.3 23 0.2 86 0.4 87

18 56 0 102 2 0.1 12 0.3 34 0.2 47 0.5 47 0.3 57 0.3 69 0.4 94

19 54 0 156 7 0.1 52 0.2 91 0.1 60 0.3 13 0.1 11 0.4 46 0.2 93

0 1238 2398 2183 3214 2930 3709 2627 2677 4229 4627 7891 6341 5047 8006 8159 6765 5946 6358 7358

1238 0 1494 2632 3662 3379 4158 2981 2021 2146 3635 8387 6790 5496 8455 8608 4640 3305 4275 6364

2398 1494 0 1601 2796 3238 5164 5015 4078 2793 3192 7260 5882 5355 9456 9609 8215 4510 4922 5921

2183 2632 1601 0 1891 2612 4538 4389 5695 4410 2728 8321 4734 4728 8829 8982 7588 6127 6539 10465

3214 3662 2796 1891 0 2215 4969 5555 5706 5101 3516 8540 2461 3515 5884 10149 8755 6818 7230 10685

2930 3379 3238 2612 2215 0 3473 3747 4835 5363 5762 10464 4635 2941 3534 8340 6946 7080 7492 12609

3709 4158 5164 4538 4969 3473 0 2414 4284 7443 7841 11105 6156 3717 2665 5409 5614 6987 9572 10572

2627 2981 5015 4389 5555 3747 2414 0 2529 4682 7534 10798 9248 5936 5609 5163 3257 5280 6999 10265
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2677 2021 4078 5695 5706 4835 4284 2529 0 2262 4024 8782 8279 6985 8671 12308 3795 2634 4353 6759

4229 2146 2793 4410 5101 5363 7443 4682 2262 0 2963 7715 7088 6674 10782 13585 6304 3788 2695 5692

4627 3635 3192 2728 3516 5762 7841 7534 4024 2963 0 4835 6483 9225 16701 14517 7359 4843 4670 2912

7891 8387 7260 8321 8540 10464 11105 10798 8782 7715 4835 0 5588 9427 13244 16886 16800 13183 8395 5501

6341 6790 5882 4734 2461 4635 6156 9248 8279 7088 6483 5588 0 3283 6031 13975 11825 16986 12198 9304

5047 5496 5355 4728 3515 2941 3717 5936 6985 6674 9225 9427 3283 0 3751 9949 14877 8610 15703 12809

8006 8455 9456 8829 5884 3534 2665 5609 8671 10782 16701 13244 6031 3751 0 4242 7261 15593 20098 17203

8159 8608 9609 8982 10149 8340 5409 5163 12308 13585 14517 16886 13975 9949 4242 0 5068 9132 13855 17429

6765 4640 8215 7588 8755 6946 5614 3257 3795 6304 7359 16800 11825 14877 7261 5068 0 5031 10025 13600

5946 3305 4510 6127 6818 7080 6987 5280 2634 3788 4843 13183 16986 8610 15593 9132 5031 0 3757 10358

6358 4275 4922 6539 7230 7492 9572 6999 4353 2695 4670 8395 12198 15703 20098 13855 10025 3757 0 5639

7358 6364 5921 10465 10685 12609 10572 10265 6759 5692 2912 5501 9304 12809 17203 17429 13600 10358 5639 0

147



Appendix B

IRP extended results

Go to the Table of Contents <
Go to the IRP results section <

In this Appendix, the tables present the results for the IRP classical instances set from
Archetti et al. (2007) for single-vehicle case and Archetti et al. (2012); Coelho et al. (2012a)
for the multi-vehicle case per period. The instances were solved through the linear flow
formulation presented in Section 2.2 from Chapter 2.

B.1 Tables description

For each table, the results are provided for both high and low inventory holding costs.
Column abs provides the instance type from {1, 2, ..., 5}, |N | to the number of customers,
zLB and zUB for the lower and upper bounds, respectively, t(s) to the time in seconds
(1-hour limit for execution) and gap the gap between zLB and zUB.

As a reminder, these classical IRP instances are summarized in Table B.1.

Table B.1: Literature instances characteristics

Number of instances N |T | hi h0

160

100
50 {5, 10, ..., 50} 3 [0.01; 0.05] 0.03

50 {5, 10, ..., 50} 3 [0.1; 0.5] 0.3

60
30 {5, 10, ..., 30} 6 [0.01; 0.05] 0.03

30 {5, 10, ..., 30} 6 [0.1; 0.5] 0.3

For the following, the tables are summarized below.

• Table B.2. 3 periods, 1 vehicle

• Table B.3. 3 periods, 2 vehicles

• Table B.4. 3 periods, 3 vehicles

• Table B.5. 3 periods, 4 vehicles

• Table B.6. 3 periods, 5 vehicles

• Table B.7. 6 periods, 1 vehicle

• Table B.8. 6 periods, 2 vehicles

• Table B.9. 6 periods, 3 vehicles

• Table B.10. 6 periods, 4 vehicles

• Table B.11. 6 periods, 5 vehicles
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B.1.1 3-period instances

Table B.2: IRP results for 3 periods, 1 vehicle

High inventory costs Low inventory costs

abs |N | zLB zUB t(s) gap(%) zLB zUB t(s) gap(%)

1 5 2108.34 2108.34 0.09 0 1235.92 1235.92 0.09 0

2 5 1767.06 1767.06 0.13 0 988.66 988.66 0.08 0

3 5 2973.00 2973.00 0.07 0 1758.02 1758.02 0.07 0

4 5 1981.04 1981.04 0.09 0 1397.20 1397.29 0.21 0

5 5 2170.04 2170.04 0.07 0 999.36 999.42 0.10 0

1 10 4510.61 4510.61 0.36 0 1743.07 1743.07 0.39 0

2 10 4504.61 4504.61 0.39 0 2229.25 2229.25 0.79 0

3 10 4031.40 4031.40 0.30 0 1871.14 1871.14 0.32 0

4 10 3933.46 3933.46 0.17 0 1773.00 1773.00 0.20 0

5 10 4709.35 4709.79 1.09 0 1938.18 1938.18 0.42 0

1 15 5589.20 5589.70 2.09 0 2131.00 2131.04 1.85 0

2 15 5443.02 5443.34 3.48 0 2131.37 2131.58 2.42 0

3 15 6300.27 6300.86 1.44 0 2463.68 2463.68 1.27 0

4 15 4977.16 4977.58 6.42 0 2151.94 2151.94 4.14 0

5 15 4867.38 4867.53 2.33 0 2160.42 2160.59 2.94 0

1 20 6858.74 6859.02 2.36 0 2267.32 2267.32 0.79 0

2 20 7087.24 7087.74 17.26 0 2497.69 2497.90 7.03 0

3 20 7354.53 7354.68 5.95 0 2590.48 2590.48 4.87 0

4 20 6952.10 6952.79 38.72 0 3122.03 3122.31 62.74 0

5 20 7874.26 7874.26 8.23 0 2849.90 2849.90 6.53 0

1 25 8227.18 8227.86 13.86 0 2840.92 2840.92 15.64 0

2 25 8765.32 8765.72 18.32 0 3014.56 3014.56 13.26 0

3 25 9382.11 9382.42 19.82 0 3050.40 3050.40 13.52 0

4 25 8452.09 8452.93 20.33 0 3078.45 3078.67 18.97 0

5 25 10080.50 10081.40 19.38 0 2954.71 2954.96 13.62 0

1 30 12066.00 12066.90 29.74 0 3427.49 3427.78 21.43 0

2 30 10940.30 10941.30 24.66 0 3328.79 3328.94 15.62 0

3 30 12121.20 12122.40 39.43 0 3471.78 3471.86 20.69 0

4 30 9686.13 9687.10 124.32 0 3321.16 3321.48 107.89 0

5 30 9773.08 9773.90 34.84 0 2914.41 2914.60 10.87 0

1 35 11659.60 11659.90 61.08 0 3315.11 3315.26 21.91 0

2 35 10465.80 10466.80 69.97 0 3229.22 3229.34 24.89 0

3 35 13775.50 13776.50 37.61 0 3811.40 3811.78 24.00 0

4 35 10306.40 10307.40 37.33 0 3346.12 3346.12 24.66 0

5 35 10846.90 10847.80 25.94 0 3541.39 3541.71 42.93 0

1 40 13363.60 13364.90 110.81 0 3874.62 3874.62 35.91 0

Continued on next page
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Table B.2 – IRP results for 3 periods, 1 vehicle (continued)

High inventory costs Low inventory costs

abs |N | zLB zUB t(s) gap(%) zLB zUB t(s) gap(%)

2 40 11316.70 11317.80 395.22 0 3701.91 3702.14 62.59 0

3 40 13598.20 13598.90 71.09 0 3534.80 3534.80 40.83 0

4 40 11353.40 11353.40 51.00 0 3575.46 3575.46 26.25 0

5 40 13069.70 13070.20 78.71 0 3831.71 3832.09 327.50 0

2 45 13142.20 13142.20 78.55 0 3950.86 3950.86 69.74 0

1 45 14177.70 14179.10 326.00 0 3702.72 3702.72 55.95 0

3 45 14842.30 14843.60 80.22 0 3967.77 3968.04 176.17 0

4 45 13573.30 13574.50 146.72 0 3998.21 3998.26 41.48 0

5 45 13585.90 13587.30 877.10 0 3717.17 3717.54 431.08 0

1 50 14575.90 14577.30 219.14 0 4046.91 4047.18 97.06 0

2 50 15000.20 15001.60 420.65 0 4512.79 4512.96 73.16 0

3 50 15278.00 15279.50 272.29 0 4451.00 4451.44 62.17 0

4 50 16515.40 16517.00 139.37 0 4405.84 4405.84 85.27 0

5 50 15677.10 15678.70 187.85 0 4218.10 4218.37 134.12 0
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Table B.3: IRP results for 3 periods, 2 vehicles

High inventory costs Low inventory costs

abs |N | zLB zUB t(s) gap(%) zLB zUB t(s) gap(%)

1 5 2265.12 2265.21 0.13 0 1396.33 1396.33 0.31 0

2 5 1969.31 1969.31 0.06 0 1177.49 1177.49 0.28 0

3 5 3653.00 3653.00 0.32 0 2437.93 2438.02 0.29 0

4 5 2301.04 2301.04 0.15 0 1717.29 1717.29 0.34 0

5 5 2372.36 2372.36 0.08 0 1220.21 1220.21 0.15 0

1 10 5031.58 5032.05 2.43 0 2263.10 2263.19 3.29 0

2 10 5080.45 5080.54 0.48 0 2809.71 2809.86 0.85 0

3 10 4371.55 4371.94 0.89 0 2220.46 2220.46 1.15 0

4 10 4642.81 4643.24 5.34 0 2481.89 2482.06 4.38 0

5 10 4930.79 4930.79 1.16 0 2159.04 2159.18 0.81 0

1 15 5754.99 5755.54 3.49 0 2296.92 2297.02 5.99 0

2 15 5852.79 5853.37 20.31 0 2553.85 2554.10 36.26 0

3 15 6646.05 6646.62 7.20 0 2799.80 2800.00 7.72 0

4 15 5337.83 5338.36 25.68 0 2513.45 2513.69 50.63 0

5 15 5317.01 5317.53 9.25 0 2610.43 2610.59 9.57 0

1 20 7508.01 7508.76 413.89 0 2917.02 2917.30 274.99 0

2 20 7254.26 7254.98 18.26 0 2664.98 2664.98 14.72 0

3 20 7591.45 7592.14 10.70 0 2818.40 2818.62 12.55 0

4 20 7379.85 7380.59 1170.10 0 3416.84 3417.18 46.33 0

5 20 8440.71 8441.54 23.95 0 3560.26 3560.62 1745.83 0

1 25 8520.71 8521.52 99.07 0 3133.01 3133.28 74.06 0

2 25 9173.89 9258.10 3600.00 1 3471.47 3471.82 243.86 0

3 25 9803.96 9804.92 142.76 0 3247.29 3247.61 132.56 0

4 25 8630.47 8631.33 61.94 0 3506.35 3506.70 60.96 0

5 25 10632.00 10633.10 55.75 0 3439.51 3501.14 3600.00 2

1 30 12448.60 12449.90 323.72 0 3803.40 3803.78 495.45 0

2 30 11257.00 11258.10 177.01 0 3644.85 3645.20 89.96 0

3 30 12275.90 12277.10 35.18 0 3615.84 3616.18 39.50 0

4 30 9837.02 9963.98 3600.00 1 3215.54 3215.86 1893.11 0

5 30 10062.50 10063.50 1431.12 0 3434.56 3609.98 3600.00 5

1 35 11921.10 11922.30 256.44 0 3593.29 3593.64 71.83 0

2 35 10764.60 10765.60 2988.85 0 3441.00 3441.32 39.54 0

3 35 14146.10 14147.50 177.95 0 4183.64 4184.06 117.61 0

4 35 10521.10 10522.10 43.10 0 3597.54 3597.90 292.38 0

5 35 11125.90 11127.00 47.70 0 3854.22 3854.60 1882.39 0

1 40 13659.00 13660.40 460.08 0 3736.41 3736.78 429.65 0

2 40 11554.40 11689.00 3600.00 1 4105.17 4105.58 510.79 0

Continued on next page
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Table B.3 – IRP results for 3 periods, 2 vehicles (continued)

High inventory costs Low inventory costs

abs |N | zLB zUB t(s) gap(%) zLB zUB t(s) gap(%)

3 40 13828.70 13830.10 556.63 0 3992.06 3992.46 763.68 0

4 40 11589.30 11590.40 1270.95 0 3994.42 4182.07 3600.00 4

5 40 13336.30 13413.50 3600.00 1 3868.22 3895.46 3600.00 1

2 45 14306.00 14307.30 446.07 0 4077.52 4077.86 82.93 0

1 45 13548.30 13651.00 3600.00 1 4121.31 4121.72 537.37 0

3 45 15006.70 15008.20 549.19 0 4068.92 4183.68 3600.00 3

4 45 13938.50 14048.30 3600.00 1 4383.08 4481.60 3600.00 2

5 45 13700.20 13792.40 3600.00 1 3829.70 3912.18 3600.00 2

1 50 14989.10 15136.40 3600.00 1 4662.37 4662.84 750.80 0

2 50 15341.40 15342.90 1769.40 0 4842.44 4842.92 1237.56 0

3 50 15488.50 15520.90 3600.00 0 4491.21 4614.16 3600.00 3

4 50 16773.40 16775.10 781.46 0 4667.89 4705.74 3600.00 1

5 50 15916.60 16123.60 3600.00 1 4497.82 4586.49 3600.00 2
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Table B.4: IRP results for 3 periods, 3 vehicles

High inventory costs Low inventory costs

abs |N | zLB zUB t(s) gap(%) zLB zUB t(s) gap(%)

1 5 2298.59 2298.59 0.12 0 1430.49 1430.49 0.19 0

2 5 2369.91 2369.93 0.32 0 1582.62 1582.69 0.42 0

3 5 4190.92 4191.26 0.13 0 2997.44 2997.44 0.32 0

4 5 2844.86 2844.94 0.18 0 2262.16 2262.16 0.18 0

5 5 2663.46 2663.66 0.23 0 1513.63 1513.76 0.43 0

1 10 5505.43 5505.85 3.69 0 2732.59 2732.59 5.23 0

2 10 5742.67 5743.20 3.77 0 3469.93 3470.14 5.02 0

3 10 4807.62 4808.06 4.61 0 2649.06 2649.26 3.66 0

4 10 5334.76 5335.29 23.75 0 3183.05 3183.36 25.63 0

5 10 5223.94 5224.45 2.71 0 2460.97 2461.11 2.93 0

1 15 6242.28 6242.90 39.46 0 2757.56 2757.82 4.55 0

2 15 6070.72 6071.26 1.80 0 3072.52 3072.80 3.42 0

3 15 6925.19 6925.82 3.59 0 2783.49 2783.77 204.65 0

4 15 5704.59 5705.16 277.64 0 2886.03 2886.32 127.35 0

5 15 5966.65 5967.25 1903.31 0 3184.39 3260.59 3600.00 2

1 20 7497.81 7498.56 156.90 0 3064.78 3064.78 11.53 0

2 20 7839.98 7840.54 9.74 0 2908.09 2908.38 176.34 0

3 20 9148.25 9149.16 1420.90 0 4123.83 4124.24 2181.87 0

4 20 8009.89 8165.42 3600.00 2 3418.07 3605.72 3600.00 5

5 20 7810.77 7918.67 3600.00 1 3976.75 4088.85 3600.00 3

1 25 8799.71 8893.88 3600.00 1 3394.13 3503.30 3600.00 3

2 25 9581.14 9676.58 3600.00 1 3835.64 3916.72 3600.00 2

3 25 10315.40 10404.00 3600.00 1 3938.63 4068.58 3600.00 3

4 25 8968.99 9052.69 3600.00 1 3578.45 3659.03 3600.00 2

5 25 11225.00 11250.90 3600.00 0 4033.00 4120.26 3600.00 2

1 30 12486.70 12488.00 116.80 0 3820.31 3820.66 144.98 0

2 30 12778.00 12918.30 3600.00 1 4080.44 4251.64 3600.00 4

3 30 11535.80 11737.60 3600.00 2 3920.00 4102.29 3600.00 4

4 30 10155.10 10287.10 3600.00 1 3755.97 3958.58 3600.00 5

5 30 10321.70 10449.90 3600.00 1 3445.20 3588.60 3600.00 4

1 35 12231.30 12435.70 3600.00 2 3876.51 4051.94 3600.00 4

2 35 10969.60 11125.30 3600.00 1 3813.19 4031.04 3600.00 5

3 35 14643.60 14694.50 3600.00 0 4690.73 4725.86 3600.00 1

4 35 10913.70 11106.40 3600.00 2 4047.61 4221.73 3600.00 4

5 35 11415.90 11567.50 3600.00 1 3853.24 4080.60 3600.00 6

1 40 13963.00 14229.80 3600.00 2 4309.71 4310.14 2398.89 0

2 40 11802.30 12015.50 3600.00 2 4285.62 4544.89 3600.00 6

Continued on next page
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Table B.4 – IRP results for 3 periods, 3 vehicles (continued)

High inventory costs Low inventory costs

abs |N | zLB zUB t(s) gap(%) zLB zUB t(s) gap(%)

3 40 14038.10 14039.50 1994.81 0 4116.35 4435.10 3600.00 7

4 40 11790.70 11849.00 3600.00 0 4252.12 4545.00 3600.00 6

5 40 13608.20 13976.30 3600.00 3 3955.42 3994.38 3600.00 1

2 45 15168.40 15170.00 1159.82 0 4266.99 4267.42 828.43 0

1 45 14637.00 14771.00 3600.00 1 4397.17 4537.30 3600.00 3

3 45 13902.90 14295.20 3600.00 3 4413.16 4825.74 3600.00 9

4 45 13887.50 14026.60 3600.00 1 3976.21 4154.82 3600.00 4

5 45 14247.20 14561.00 3600.00 2 4695.31 4921.10 3600.00 5

1 50 15504.40 15945.90 3600.00 3 4943.69 5162.78 3600.00 4

2 50 15746.10 15974.60 3600.00 1 4963.91 5207.12 3600.00 5

3 50 17142.90 17654.40 3600.00 3 5000.49 5289.80 3600.00 5

4 50 16350.90 16628.80 3600.00 2 4882.15 5183.63 3600.00 6

5 50 15688.90 16129.10 3600.00 3 5150.29 5791.58 3600.00 11
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Table B.5: IRP results for 3 periods, 4 vehicles

High inventory costs Low inventory costs

abs |N | zLB zUB t(s) gap(%) zLB zUB t(s) gap(%)

1 5 2411.27 2411.27 0.07 0 1541.73 1541.73 0.19 0

2 5 2452.97 2453.18 0.20 0 1665.74 1665.74 0.25 0

3 5 4807.52 4807.52 0.36 0 3603.72 3603.74 0.57 0

4 5 3210.24 3210.24 0.09 0 2631.56 2631.58 0.35 0

5 5 2824.32 2824.50 0.14 0 1676.40 1676.40 0.18 0

1 10 6020.82 6021.09 4.35 0 3261.63 3261.94 16.51 0

2 10 6476.60 6477.24 12.00 0 4208.36 4208.78 16.91 0

3 10 5126.45 5126.96 5.00 0 2968.49 2968.74 4.18 0

4 10 5834.10 5834.68 60.06 0 2871.81 2872.09 8.31 0

5 10 5643.83 5644.39 14.28 0 3682.81 3683.17 53.84 0

1 15 6704.78 6705.45 136.89 0 3396.28 3396.62 151.73 0

2 15 6610.65 6611.31 272.24 0 3199.80 3200.12 108.00 0

3 15 6016.24 6016.84 103.82 0 3545.25 3545.60 106.89 0

4 15 6255.63 6256.24 72.87 0 3756.99 3757.36 810.89 0

5 15 7606.92 7607.68 610.04 0 3166.12 3166.44 2569.22 0

1 20 7710.14 7710.91 235.19 0 3127.74 3128.05 317.26 0

2 20 9781.57 9782.55 1244.10 0 4764.30 4764.78 2978.92 0

3 20 8418.11 8717.83 3600.00 3 3774.55 4148.00 3600.00 9

4 20 8337.58 8414.08 3600.00 1 3528.92 3645.48 3600.00 3

5 20 8433.67 8592.35 3600.00 2 4465.17 4773.73 3600.00 6

1 25 9044.89 9287.53 3600.00 3 3648.97 3949.69 3600.00 8

2 25 10012.30 10278.30 3600.00 3 4272.33 4523.59 3600.00 6

3 25 10853.30 11026.80 3600.00 2 4520.37 4687.62 3600.00 4

4 25 9260.16 9438.34 3600.00 2 3854.63 4069.25 3600.00 5

5 25 11732.20 11805.50 3600.00 1 4578.40 4672.78 3600.00 2

1 30 12821.40 12822.70 685.05 0 4141.63 4142.04 1106.72 0

2 30 13144.90 13405.40 3600.00 2 4448.95 4758.06 3600.00 6

3 30 11900.00 12027.90 3600.00 1 4297.32 4453.99 3600.00 4

4 30 10500.80 10843.30 3600.00 3 4135.48 4468.71 3600.00 7

5 30 10621.70 10891.60 3600.00 2 3752.67 3991.70 3600.00 6

1 35 12560.70 12698.30 3600.00 1 4241.71 4521.10 3600.00 6

2 35 11288.30 11674.60 3600.00 3 5094.63 5341.60 3600.00 5

3 35 15089.90 15417.40 3600.00 2 4358.48 4740.22 3600.00 8

4 35 11279.10 11676.30 3600.00 3 4196.36 4608.06 3600.00 9

5 35 11785.20 12060.80 3600.00 2 4191.85 4379.12 3600.00 4

1 40 14362.80 14747.20 3600.00 3 4662.35 5107.19 3600.00 9

2 40 12178.20 12545.90 3600.00 3 4483.45 4671.50 3600.00 4
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Table B.5 – IRP results for 3 periods, 4 vehicles (continued)

High inventory costs Low inventory costs

abs |N | zLB zUB t(s) gap(%) zLB zUB t(s) gap(%)

3 40 14225.90 14398.90 3600.00 1 4693.73 5070.26 3600.00 7

4 40 12063.70 12403.70 3600.00 3 4219.15 4456.70 3600.00 5

5 40 13990.70 14233.20 3600.00 2 4474.40 4756.60 3600.00 6

2 45 14990.20 15258.40 3600.00 2 4744.77 5035.20 3600.00 6

1 45 14408.10 14815.30 3600.00 3 4921.01 5341.00 3600.00 8

3 45 15341.80 15451.70 3600.00 1 4392.69 4514.50 3600.00 3

4 45 14095.90 14305.10 3600.00 1 4197.00 4426.96 3600.00 5

5 45 14711.70 15030.00 3600.00 2 5148.43 5741.86 3600.00 10

1 50 17672.60 18175.10 3600.00 3 5545.82 6057.92 3600.00 8

2 50 16141.00 16327.80 3600.00 1 5299.55 5624.07 3600.00 6

3 50 16054.60 16398.00 3600.00 2 5522.84 6164.42 3600.00 10

4 50 16172.80 16740.30 3600.00 3 5660.40 6406.86 3600.00 12

5 50 16844.60 17422.10 3600.00 3 5365.54 5905.22 3600.00 9
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Table B.6: IRP results for 3 periods, 5 vehicles

High inventory costs Low inventory costs

abs |N | zLB zUB t(s) gap(%) zLB zUB t(s) gap(%)

1 5 2577.40 2577.54 0.17 0 1710.34 1710.34 0.12 0

2 5 2806.05 2806.27 0.68 0 2019.45 2019.45 0.24 0

3 5 5115.64 5115.64 0.21 0 3918.88 3918.88 0.72 0

4 5 3899.39 3899.72 0.26 0 3318.97 3318.97 0.20 0

5 5 3166.28 3166.48 0.45 0 2008.29 2008.49 0.65 0

1 10 6495.31 6495.89 22.57 0 3728.35 3728.71 8.92 0

2 10 6959.75 6960.44 9.32 0 4680.83 4681.29 10.62 0

3 10 5555.79 5556.34 7.47 0 4156.55 4156.95 19.67 0

4 10 6307.90 6308.53 22.13 0 2993.77 2993.89 3.47 0

5 10 5770.91 5771.47 4.37 0 3400.76 3401.10 143.44 0

1 15 7022.97 7023.67 247.45 0 3580.45 3580.81 334.69 0

2 15 6386.96 6387.60 174.31 0 3572.12 3572.48 616.44 0

3 15 7976.46 7977.26 1582.22 0 3889.04 3889.43 2429.97 0

4 15 7193.58 7194.30 1935.98 0 4113.94 4128.41 3600.00 0

5 15 6836.51 6963.15 3600.00 2 4116.01 4260.88 3600.00 3

1 20 7909.71 7910.50 151.53 0 3343.78 3344.11 873.96 0

2 20 8964.31 8965.21 1008.92 0 4382.53 4404.77 3600.00 1

3 20 8620.94 8787.40 3600.00 2 3912.45 4016.48 3600.00 3

4 20 8918.73 9047.34 3600.00 1 5089.54 5219.21 3600.00 2

5 20 10375.00 10603.90 3600.00 2 5386.49 5506.02 3600.00 2

1 25 9363.20 9473.21 3600.00 1 4062.50 4095.20 3600.00 1

2 25 10586.00 10757.70 3600.00 2 4825.08 5009.76 3600.00 4

3 25 11477.10 11576.30 3600.00 1 5092.39 5229.32 3600.00 3

4 25 9552.42 9719.33 3600.00 2 4182.76 4378.75 3600.00 4

5 25 12262.70 12454.00 3600.00 2 5119.61 5315.02 3600.00 4

1 30 12266.20 12498.50 3600.00 2 4661.69 4879.36 3600.00 4

2 30 13040.70 13128.10 3600.00 1 4335.98 4458.84 3600.00 3

3 30 13570.70 14086.60 3600.00 4 4587.45 4959.78 3600.00 8

4 30 10936.70 11234.30 3600.00 3 4988.86 5411.16 3600.00 8

5 30 10987.00 11234.30 3600.00 2 4127.11 4433.58 3600.00 7

1 35 12909.90 13105.20 3600.00 1 4738.07 5027.59 3600.00 6

2 35 11668.30 12059.90 3600.00 3 4640.60 4864.66 3600.00 5

3 35 11746.50 12036.90 3600.00 2 4640.73 4845.42 3600.00 4

4 35 12172.60 12388.70 3600.00 2 4550.97 4764.86 3600.00 4

5 35 15620.50 15926.90 3600.00 2 5621.46 6036.76 3600.00 7

1 40 12592.40 12832.50 3600.00 2 4556.89 4781.78 3600.00 5

2 40 14471.80 14694.50 3600.00 2 4741.75 4977.14 3600.00 5
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Table B.6 – IRP results for 3 periods, 5 vehicles (continued)

High inventory costs Low inventory costs

abs |N | zLB zUB t(s) gap(%) zLB zUB t(s) gap(%)

3 40 12423.10 12728.40 3600.00 2 5149.92 5354.91 3600.00 4

4 40 14791.80 15376.60 3600.00 4 5109.79 5647.94 3600.00 10

5 40 14383.30 14505.90 3600.00 1 4896.85 5006.26 3600.00 2

2 45 15569.20 15729.60 3600.00 1 4619.16 4831.70 3600.00 4

1 45 14334.40 14486.40 3600.00 1 4439.47 4686.29 3600.00 5

3 45 15221.20 15910.10 3600.00 4 5134.47 5520.42 3600.00 7

4 45 15375.20 15746.50 3600.00 2 5652.20 6310.31 3600.00 10

5 45 14976.10 15569.10 3600.00 4 5468.58 6141.00 3600.00 11

1 50 16654.30 17132.20 3600.00 3 5716.76 6151.10 3600.00 7

2 50 16789.40 17725.80 3600.00 5 6133.39 6800.72 3600.00 10

3 50 16546.10 16885.90 3600.00 2 6259.79 6881.77 3600.00 9

4 50 18247.60 18978.50 3600.00 4 6094.62 6850.73 3600.00 11

5 50 17356.30 17887.00 3600.00 3 5897.69 6921.84 3600.00 15
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B.1.2 6-period instances

Table B.7: IRP results for 6 periods, 1 vehicle

High inventory costs Low inventory costs

abs |N | zLB zUB t(s) gap(%) zLB zUB t(s) gap(%)

1 5 5788.85 5789.35 1.22 0 3187.30 3187.30 0.63 0

2 5 4883.57 4883.77 0.77 0 2565.72 2565.92 1.27 0

3 5 6642.81 6643.29 2.92 0 4489.67 4489.83 2.49 0

4 5 5076.43 5076.88 1.34 0 3174.06 3174.35 2.04 0

5 5 4377.31 4377.71 1.21 0 2266.97 2267.10 0.90 0

1 10 8479.35 8480.17 18.52 0 4141.12 4141.53 22.83 0

2 10 8346.61 8347.44 96.19 0 5044.13 5044.63 76.86 0

3 10 8320.92 8321.68 9.42 0 4506.42 4506.83 11.23 0

4 10 8473.42 8474.26 10.99 0 4823.07 4823.53 11.73 0

5 10 9385.13 9386.03 9.85 0 4545.54 4545.98 9.73 0

1 15 11822.40 11823.50 440.51 0 5388.54 5389.08 742.15 0

2 15 13304.40 13305.70 21.42 0 5897.10 5897.68 35.43 0

3 15 12051.40 12052.60 1314.46 0 5417.93 5418.47 467.30 0

4 15 10478.20 10479.30 420.81 0 5334.48 5335.01 494.18 0

5 15 10053.10 10054.10 191.69 0 5052.01 5052.51 364.73 0

1 20 14265.10 14266.50 1426.21 0 5956.71 5957.31 1381.63 0

2 20 14317.90 14319.40 466.35 0 6783.38 6784.06 1019.41 0

3 20 14458.80 14477.80 3600.00 0 6113.43 6114.04 3037.08 0

4 20 16192.30 16194.00 536.52 0 7461.33 7462.08 1142.81 0

5 20 14042.60 14390.30 3600.00 2 7109.01 7310.80 3600.00 3

1 25 15292.30 15725.30 3600.00 3 6740.65 6968.58 3600.00 3

2 25 15166.40 15565.40 3600.00 3 6812.29 7090.19 3600.00 4

3 25 16287.90 16711.10 3600.00 3 7026.58 7257.15 3600.00 3

4 25 17639.10 17833.40 3600.00 1 7296.87 7614.55 3600.00 4

5 25 18372.90 18638.90 3600.00 1 6849.30 7120.70 3600.00 4

1 30 22546.90 23079.30 3600.00 2 7805.38 8195.27 3600.00 5

2 30 19560.00 19888.00 3600.00 2 7319.69 7631.21 3600.00 4

3 30 22991.20 23110.30 3600.00 1 7967.92 8203.69 3600.00 3

4 30 17424.80 17509.80 3600.00 0 7351.58 7508.28 3600.00 2

5 30 18460.30 18775.30 3600.00 2 7008.65 7231.97 3600.00 3
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Table B.8: IRP results for 6 periods, 2 vehicles

High inventory costs Low inventory costs

abs |N | zLB zUB t(s) gap(%) zLB zUB t(s) gap(%)

1 5 6378.92 6379.56 2.63 0 3775.32 3775.68 4.15 0

2 5 5498.13 5498.64 3.19 0 3184.88 3185.19 5.09 0

3 5 8107.22 8108.03 30.69 0 3805.60 3805.98 16.80 0

4 5 5717.45 5718.02 11.50 0 2891.61 2891.85 3.45 0

5 5 4998.79 4999.24 1.14 0 5962.16 5962.76 142.26 0

1 10 9070.14 9071.05 201.20 0 5259.91 5260.44 210.61 0

2 10 10017.40 10018.40 42.03 0 5137.01 5137.52 45.03 0

3 10 9880.61 9996.96 3600.00 1 5528.78 5667.41 3600.00 2

4 10 9630.80 9814.04 3600.00 2 6323.21 6512.43 3600.00 3

5 10 9740.27 9864.35 3600.00 1 6034.72 6198.49 3600.00 3

1 15 12478.70 12637.70 3600.00 1 5816.69 6002.38 3600.00 3

2 15 12531.30 12568.50 3600.00 0 6085.22 6152.90 3600.00 1

3 15 14192.90 14450.10 3600.00 2 6726.91 7011.20 3600.00 4

4 15 11125.70 11267.90 3600.00 1 5923.92 6126.74 3600.00 3

5 15 11084.20 11375.40 3600.00 3 6066.40 6365.00 3600.00 5

1 20 15283.70 15622.10 3600.00 2 7111.92 7493.37 3600.00 5

2 20 14831.80 14955.00 3600.00 1 6281.58 6358.66 3600.00 1

3 20 14821.40 15025.30 3600.00 1 7277.66 7477.95 3600.00 3

4 20 14993.10 15450.80 3600.00 3 7920.91 8314.01 3600.00 5

5 20 16769.70 17162.30 3600.00 2 8182.95 8588.11 3600.00 5

1 25 15865.70 15955.70 3600.00 1 7419.45 7464.12 3600.00 1

2 25 17267.40 17591.50 3600.00 2 8030.15 8336.09 3600.00 4

3 25 18816.30 19034.60 3600.00 1 8492.33 8710.77 3600.00 3

4 25 16552.00 16663.10 3600.00 1 7761.35 7884.33 3600.00 2

5 25 19765.00 20003.70 3600.00 1 8249.37 8538.53 3600.00 3

1 30 23364.70 23911.40 3600.00 2 8585.37 9165.95 3600.00 6

2 30 20212.50 20683.80 3600.00 2 7951.33 8605.09 3600.00 8

3 30 23377.00 23416.80 3600.00 0 8387.87 8442.43 3600.00 1

4 30 17792.30 18317.40 3600.00 3 7736.92 8490.49 3600.00 9

5 30 18955.50 19645.90 3600.00 4 7465.74 8220.79 3600.00 9
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Table B.9: IRP results for 6 periods, 3 vehicles

High inventory costs Low inventory costs

abs |N | zLB zUB t(s) gap(%) zLB zUB t(s) gap(%)

1 5 7258.32 7259.05 12.03 0 4656.69 4657.15 9.39 0

2 5 9861.91 9862.89 15.99 0 7702.77 7703.53 16.96 0

3 5 6405.10 6405.74 16.54 0 4494.86 4495.31 20.75 0

4 5 6529.70 6530.35 458.31 0 3878.70 3879.09 44.73 0

5 5 5972.18 5972.78 90.37 0 4220.58 4221.00 1113.03 0

1 10 9980.56 9981.56 776.02 0 5791.92 5792.50 417.49 0

2 10 10672.40 10673.50 228.28 0 6883.71 7103.26 3600.00 3

3 10 11223.40 11469.60 3600.00 2 7890.42 8097.79 3600.00 3

4 10 11205.30 11413.00 3600.00 2 6159.45 6185.17 3600.00 0

5 10 11008.10 11106.60 3600.00 1 7308.82 7417.08 3600.00 1

1 15 13325.10 13515.80 3600.00 1 6682.92 6861.16 3600.00 3

2 15 13364.10 13510.60 3600.00 1 6936.21 7113.75 3600.00 2

3 15 15248.20 15600.00 3600.00 2 7819.23 8160.36 3600.00 4

4 15 12043.90 12296.00 3600.00 2 6771.58 7267.16 3600.00 7

5 15 12338.90 12610.80 3600.00 2 7344.74 7606.32 3600.00 3

1 20 16620.40 16931.70 3600.00 2 8433.32 8782.16 3600.00 4

2 20 15371.00 15484.60 3600.00 1 6796.05 6928.07 3600.00 2

3 20 15728.50 15931.90 3600.00 1 8201.40 8387.05 3600.00 2

4 20 16491.40 17243.20 3600.00 4 9445.16 10116.80 3600.00 7

5 20 18591.00 19005.70 3600.00 2 10014.90 10498.80 3600.00 5

1 25 16544.90 16915.80 3600.00 2 8098.22 8417.94 3600.00 4

2 25 18498.40 19020.80 3600.00 3 9241.86 9728.38 3600.00 5

3 25 20213.20 20758.90 3600.00 3 9883.21 10359.40 3600.00 5

4 25 17230.80 17599.40 3600.00 2 8476.48 9107.76 3600.00 7

5 25 21323.20 21798.20 3600.00 2 9843.21 10464.20 3600.00 6

1 30 24484.60 25341.50 3600.00 3 9703.94 11003.80 3600.00 12

2 30 21225.20 22025.00 3600.00 4 8949.45 9626.14 3600.00 7

3 30 24009.90 24399.30 3600.00 2 9023.93 9453.25 3600.00 5

4 30 18723.90 19338.60 3600.00 3 8667.34 9713.45 3600.00 11

5 30 19947.30 20811.80 3600.00 4 8475.49 9779.33 3600.00 13
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Table B.10: IRP results for 6 periods, 4 vehicles

High inventory costs Low inventory costs

abs |N | zLB zUB t(s) gap(%) zLB zUB t(s) gap(%)

1 5 8110.51 8111.31 13.91 0 5505.65 5506.19 17.47 0

2 5 7253.29 7254.01 14.34 0 4951.01 4951.50 17.65 0

3 5 6984.76 6985.40 2.13 0 9319.80 9320.73 30.26 0

4 5 11474.10 11475.30 88.76 0 5085.33 5085.81 2.89 0

5 5 6951.20 6951.89 27.05 0 4873.30 4873.79 187.63 0

1 10 12575.70 12748.80 3600.00 1 8245.87 8421.88 3600.00 2

2 10 13052.40 13181.90 3600.00 1 9748.58 9874.21 3600.00 1

3 10 11066.80 11067.90 3497.16 0 7215.35 7255.57 3600.00 1

4 10 12232.70 12323.90 3600.00 1 8513.30 8645.11 3600.00 2

5 10 11369.40 11471.50 3600.00 1 6489.47 6604.90 3600.00 2

1 15 14287.30 14410.80 3600.00 1 7624.39 7773.55 3600.00 2

2 15 14356.80 14515.50 3600.00 1 7926.37 8073.85 3600.00 2

3 15 16367.60 16709.10 3600.00 2 8914.69 9284.44 3600.00 4

4 15 13130.30 13465.00 3600.00 2 7979.88 8316.65 3600.00 4

5 15 13635.70 14011.00 3600.00 3 8633.65 9008.01 3600.00 4

1 20 18154.10 18526.10 3600.00 2 9939.81 10321.10 3600.00 4

2 20 15932.30 16157.20 3600.00 1 7380.92 7609.65 3600.00 3

3 20 16624.40 16988.60 3600.00 2 9128.29 9502.85 3600.00 4

4 20 18154.40 18762.30 3600.00 3 11051.70 11647.80 3600.00 5

5 20 20482.90 21078.50 3600.00 3 11872.20 12554.90 3600.00 5

1 25 17424.70 17841.80 3600.00 2 8930.54 9430.07 3600.00 5

2 25 19801.70 20653.80 3600.00 4 10542.00 11255.80 3600.00 6

3 25 21870.30 22635.40 3600.00 3 11527.70 12492.70 3600.00 8

4 25 18133.10 18649.70 3600.00 3 9331.65 9889.61 3600.00 6

5 25 23096.60 23870.00 3600.00 3 11573.30 12499.80 3600.00 7

1 30 25892.60 27150.40 3600.00 5 11132.80 12592.40 3600.00 12

2 30 22364.20 23091.70 3600.00 3 10080.60 10861.30 3600.00 7

3 30 24869.10 25465.60 3600.00 2 9855.42 10239.60 3600.00 4

4 30 19859.40 20733.80 3600.00 4 9832.02 10699.80 3600.00 8

5 30 21039.80 22026.30 3600.00 4 9561.87 11013.70 3600.00 13
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Table B.11: IRP results for 6 periods, 5 vehicles

High inventory costs Low inventory costs

abs |N | zLB zUB t(s) gap(%) zLB zUB t(s) gap(%)

1 5 9000.31 9001.21 24.56 0 6395.14 6395.78 21.81 0

2 5 8298.03 8298.86 225.81 0 11281.60 11282.70 4.88 0

3 5 13397.80 13399.10 5.40 0 6284.09 6284.72 134.94 0

4 5 8176.81 8177.63 119.52 0 6008.80 6009.40 1429.72 0

5 5 infeasible 1

1 10 14011.90 14143.50 3600.00 1 8185.35 8186.17 2153.92 0

2 10 14566.80 14933.10 3600.00 2 9672.66 9807.36 3600.00 1

3 10 11980.50 12005.80 3600.00 0 11261.20 11631.30 3600.00 3

4 10 13555.90 13752.00 3600.00 1 9889.12 10081.20 3600.00 2

5 10 12031.00 12068.50 3600.00 0 7178.28 7214.49 3600.00 1

1 15 15154.00 15446.10 3600.00 2 8503.58 8801.68 3600.00 3

2 15 15343.70 15476.90 3600.00 1 8919.41 9073.11 3600.00 2

3 15 17562.40 17842.70 3600.00 2 10070.50 10432.10 3600.00 3

4 15 14426.20 14540.50 3600.00 1 9268.88 9385.89 3600.00 1

5 15 14987.30 15437.70 3600.00 3 9937.35 10547.40 3600.00 6

1 20 19633.40 19995.50 3600.00 2 11439.00 11825.80 3600.00 3

2 20 16643.20 16870.50 3600.00 1 8064.15 8299.47 3600.00 3

3 20 17660.10 18073.10 3600.00 2 10153.70 10494.40 3600.00 3

4 20 19861.00 20359.60 3600.00 2 12707.00 13445.30 3600.00 5

5 20 22419.40 23116.00 3600.00 3 13904.90 14469.50 3600.00 4

1 25 18368.80 18874.90 3600.00 3 9860.04 10350.10 3600.00 5

2 25 21260.20 22038.40 3600.00 4 11959.00 12709.10 3600.00 6

3 25 23569.20 24422.10 3600.00 3 13224.00 14114.50 3600.00 6

4 25 19052.90 19571.80 3600.00 3 10264.20 10773.20 3600.00 5

5 25 24941.30 25711.40 3600.00 3 13454.90 14332.30 3600.00 6

1 30 23513.80 24369.30 3600.00 4 12633.40 13975.90 3600.00 10

2 30 25828.90 26273.90 3600.00 2 11273.50 12026.10 3600.00 6

3 30 21112.90 21824.60 3600.00 3 10819.20 11387.40 3600.00 5

4 30 22205.40 23224.90 3600.00 4 11067.70 11971.00 3600.00 8

5 30 27428.60 28511.80 3600.00 4 10751.30 12064.90 3600.00 11

1Infeasible because when dividing the total transportation capacity by the number of vehicles, each
vehicle capacity is under the values expected to meet some customers demands.
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HIRP-BS extended results

Go to the Table of Contents <
Go to the HIRP-BS results section <

In this Appendix, the results for the new set of instances to treat the HIRP-BS are
presented. These instances were introduced in Subsection 2.4.2 of Chapter 2. To solve
them, two approaches are considered: the linear flow formulation from Section 2.3, Chapter
2 and the SEMPO metaheuristic from Chapter 4.

C.1 Tables description

The instances are divided into three groups: Small, Medium and Large-scale instances. A
summary for each table is given below.

Small-scale instances (S)

• Table C.1. Provides valid upper bounds as well as the linear relaxation values
considering the mathematical formulation of the problem and the gap obtained
when comparing the upper bounds and the metaheuristic solutions over ten
runs.

• Table C.2. Gives valid upper bounds and the linear relaxation values consider-
ing the mathematical formulation of the problem and the gap obtained when
comparing the linear relaxation values and the metaheuristic solutions over ten
runs.

• Table C.3. Provides valid upper bounds as well as the linear relaxation values
considering the mathematical formulation of the problem and time needed by
the metaheuristic, in seconds, to obtain the best feasible solution over ten runs.

• Table C.4. Presents valid upper bounds as well as the linear relaxation values
considering the mathematical formulation of the problem and presents some
metrics including average, starndard deviation and gap when comparing the
upper bounds and the metaheuristic firstly, and then the linear relaxation and
the metaheuristic secondly.

Medium-scale instances (M)

• Table C.5. Presents the linear relaxation values from the mathematical formu-
lation and compares the gap obtained when considering the metaheuristic valid
best upper bounds over the ten runs.
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• Table C.6. Presents the time to target, in seconds, needed by the metaheuristic
to obtain the best valid upper bounds over each of the ten runs.

• Table C.7. Presents some metrics including the average values, the standard
deviation as well as the representation in terms of percentage of the standard
deviation when regarding the average solution value obtained by the metaheuris-
tic.

Large-scale instances (L)

• Table C.8. Presents the linear relaxation values from the mathematical formu-
lation and compares the gap obtained when considering the metaheuristic valid
best upper bounds over the ten runs. note that for some instances, even the
linear relaxation is not capable of finding a solution over one our of processing.
Due to this, no comparison can be done with the metaheuristic feasible solutions.

• Table C.9. Presents the time to target, in seconds, needed by the metaheuristic
to obtain the best valid upper bounds over each of the ten runs. Blank values
also correspond to the instances for which a value is not known using the
mathematical formulation.

• Table C.10. Presents some metrics including the average values, the standard
deviation as well as the representation in terms of percentage of the standard de-
viation when regarding the average solution value obtained by the metaheuristic.
Blank values also corresponds to the instances for which a value is not known
using the mathematical formulation.
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C.1.1 Small-scale instances

Table C.1: (S) UB and metaheuristic comparison

Instances CPLEX Gap(%) - zUB and zMeta

|N | |T | ID zRL tRL(s) zLB zUB gap(%) ttarget(s) ttotal(s) Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10

19 7

1 14362.21 0.59 - - - - 3600 - - - - - - - - - -

2 14349.82 0.75 - - - - 3600 - - - - - - - - - -

3 13192.77 0.61 13468.21 13787.07 2.31 2755 3600 2.53 1.64 1.95 2.06 1.52 2.07 2.04 2.83 2.08 2.49

4 15117.76 0.80 15410.03 16070.71 4.11 3600 3600 -0.79 -1.28 -1.30 -1.32 -0.92 -0.87 -1.09 -1.07 -1.26 -0.88

5 12649.01 0.69 13048.71 14871.80 12.26 3600 3600 -0.85 -2.00 -2.78 -1.14 -2.70 -1.83 -2.25 -2.66 -1.85 -2.32

6 12013.27 0.68 12365.08 12709.81 2.71 3600 3600 3.52 3.38 3.15 3.21 3.15 3.20 3.63 2.81 3.53 3.16

7 11091.07 0.47 11395.59 11667.71 2.33 3600 3600 2.07 2.35 1.93 1.95 1.59 1.99 2.13 2.10 2.19 2.07

8 13417.14 0.85 13674.95 13948.05 1.96 3600 3600 4.40 3.79 4.75 4.65 4.72 4.13 4.88 3.85 4.53 3.85

9 11195.59 0.55 11491.10 11722.88 1.98 3560 3600 2.29 2.09 2.08 2.10 1.93 2.22 2.11 2.17 2.25 2.13

10 12406.95 0.73 12752.75 13327.03 4.31 3600 3600 0.47 0.12 0.32 -0.02 0.49 0.69 0.33 0.47 -0.01 0.65

11 15287.84 0.80 15568.40 17630.62 11.70 3600 3600 -7.91 -7.74 -8.17 -7.82 -8.01 -8.20 -7.94 -7.95 -8.41 -8.35

12 15118.76 0.74 15388.55 15689.12 1.92 3562 3600 2.77 2.62 2.44 2.45 2.60 2.81 2.19 2.57 2.72 2.65

13 16058.63 0.77 16285.27 16535.68 1.51 3600 3600 2.10 2.76 2.85 2.71 2.75 2.46 2.60 3.00 2.28 2.93

4.28 3519 0.96 0.70 0.66 0.80 0.65 0.79 0.79 0.74 0.73 0.76
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Table C.2: (S) RL and metaheuristic comparison

Instances CPLEX Gap(%) - zRL and zMeta

|N | |T | ID zRL tRL(s) zLB zUB gap(%) ttarget(s) ttotal(s) Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10

19 7

1 14362.21 0.59 - - - - 3600 4.99 5.43 5.38 4.70 5.41 4.88 5.05 5.08 5.17 4.91

2 14349.82 0.75 - - - - 3600 7.33 7.55 7.22 7.15 7.74 7.05 7.00 7.26 7.13 7.39

3 13192.77 0.61 13468.21 13787.07 2.31 2755 3600 6.73 5.88 6.18 6.28 5.77 6.29 6.26 7.02 6.31 6.69

4 15117.76 0.80 15410.03 16070.71 4.11 3600 3600 5.19 4.72 4.71 4.68 5.07 5.11 4.90 4.92 4.74 5.10

5 12649.01 0.69 13048.71 14871.80 12.26 3600 3600 14.23 13.24 12.58 13.97 12.65 13.39 13.03 12.68 13.37 12.98

6 12013.27 0.68 12365.08 12709.81 2.71 3600 3600 8.81 8.67 8.46 8.52 8.46 8.51 8.91 8.14 8.82 8.47

7 11091.07 0.47 11395.59 11667.71 2.33 3600 3600 6.91 7.17 6.77 6.80 6.45 6.83 6.97 6.94 7.03 6.91

8 13417.14 0.85 13674.95 13948.05 1.96 3600 3600 8.04 7.45 8.37 8.28 8.35 7.78 8.50 7.51 8.17 7.51

9 11195.59 0.55 11491.10 11722.88 1.98 3560 3600 6.69 6.50 6.49 6.50 6.34 6.62 6.51 6.57 6.65 6.54

10 12406.95 0.73 12752.75 13327.03 4.31 3600 3600 7.34 7.01 7.20 6.89 7.36 7.55 7.22 7.34 6.89 7.51

11 15287.84 0.80 15568.40 17630.62 11.70 3600 3600 6.43 6.57 6.20 6.51 6.34 6.18 6.40 6.40 6.00 6.05

12 15118.76 0.74 15388.55 15689.12 1.92 3562 3600 6.31 6.16 5.99 6.00 6.14 6.34 5.75 6.11 6.26 6.19

13 16058.63 0.77 16285.27 16535.68 1.51 3600 3600 4.92 5.57 5.65 5.52 5.56 5.27 5.41 5.79 5.10 5.73

4.28 3519 7.22 7.07 7.02 7.06 7.05 7.06 7.07 7.06 7.05 7.07
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Table C.3: (S) UB and metaheuristic time to target comparison

Instances CPLEX ttarget(s) Metaheuristic

|N | |T | ID zRL tRL(s) zLB zUB gap(%) ttarget(s) ttotal(s) Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10

19 7

1 14362.21 0.59 - - - - 3600 764 803 1269 10 1303 1230 623 1079 799 10

2 14349.82 0.75 - - - - 3600 5 251 3 1522 501 1009 1191 10 519 1253

3 13192.77 0.61 13468.21 13787.07 2.31 2755 3600 307 920 1090 928 1778 251 1631 2 929 1631

4 15117.76 0.80 15410.03 16070.71 4.11 3600 3600 763 1517 1042 528 4 765 264 1491 750 1285

5 12649.01 0.69 13048.71 14871.80 12.26 3600 3600 931 1434 1120 332 180 858 913 874 158 416

6 12013.27 0.68 12365.08 12709.81 2.71 3600 3600 278 156 461 6 1050 1639 1582 1147 1600 1595

7 11091.07 0.47 11395.59 11667.71 2.33 3600 3600 1680 252 1462 673 281 1462 1304 230 1563 1724

8 13417.14 0.85 13674.95 13948.05 1.96 3600 3600 254 1074 259 2 568 530 903 189 4 1675

9 11195.59 0.55 11491.10 11722.88 1.98 3560 3600 761 1635 1483 1014 762 1589 8 1025 520 1145

10 12406.95 0.73 12752.75 13327.03 4.31 3600 3600 1717 1319 1741 475 4 1136 896 460 486 1465

11 15287.84 0.80 15568.40 17630.62 11.70 3600 3600 1610 1784 1094 1461 917 1798 1146 1443 1193 2

12 15118.76 0.74 15388.55 15689.12 1.92 3562 3600 1112 508 260 1528 469 4 1464 189 975 652

13 16058.63 0.77 16285.27 16535.68 1.51 3600 3600 520 401 185 697 1491 1591 5 7 714 744

4.28 3519 823 927 882 706 716 1066 918 627 785 1046
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Table C.4: (S) UB. RL and metaheuristic overview metrics

Instances CPLEX UB/Meta RL/Meta

|N | |T | ID zRL tRL(s) zLB zUB gap(%) ttarget(s) ttotal(s) avg sdv zbestUB gapzbestUB
zworst
UB gapzworst

UB
avgUB sdvUB Time(s) avg sdv Best

19 7

1 14362.21 0.59 - - - - 3600 - - 15070.70 - 15186.60 - 15134.38 39.25 789 5.10 0.25 4.70

2 14349.82 0.75 - - - - 3600 - - 15430.10 - 15554.10 - 15477.01 38.34 626 7.28 0.23 7.00

3 13192.77 0.61 13468.21 13787.07 2.31 2755 3600 2.12 0.40 14000.50 1.52 14188.70 2.83 14086.11 57.48 947 6.34 0.38 5.77

4 15117.76 0.80 15410.03 16070.71 4.11 3600 3600 -1.08 0.20 15860.80 -1.32 15945.00 -0.79 15899.31 32.12 841 4.92 0.19 4.68

5 12649.01 0.69 13048.71 14871.80 12.26 3600 3600 -2.04 0.65 14470.00 -2.78 14746.90 -0.85 14575.43 93.03 722 13.21 0.55 12.58

6 12013.27 0.68 12365.08 12709.81 2.71 3600 3600 3.27 0.24 13077.60 2.81 13188.20 3.63 13140.11 32.91 951 8.58 0.23 8.14

7 11091.07 0.47 11395.59 11667.71 2.33 3600 3600 2.04 0.20 11855.70 1.59 11948.10 2.35 11910.31 24.30 1063 6.88 0.19 6.45

8 13417.14 0.85 13674.95 13948.05 1.96 3600 3600 4.36 0.42 14497.40 3.79 14663.30 4.88 14583.48 63.23 546 8.00 0.40 7.45

9 11195.59 0.55 11491.10 11722.88 1.98 3560 3600 2.14 0.10 11953.50 1.93 11997.70 2.29 11979.08 12.65 994 6.54 0.10 6.34

10 12406.95 0.73 12752.75 13327.03 4.31 3600 3600 0.35 0.25 13324.60 -0.02 13420.20 0.69 13374.03 34.05 970 7.23 0.24 6.89

11 15287.84 0.80 15568.40 17630.62 11.70 3600 3600 -8.05 0.22 16263.50 -8.41 16363.60 -7.74 16317.16 33.57 1245 6.31 0.19 6.00

12 15118.76 0.74 15388.55 15689.12 1.92 3562 3600 2.58 0.18 16041.20 2.19 16142.80 2.81 16105.04 30.15 716 6.12 0.18 5.75

13 16058.63 0.77 16285.27 16535.68 1.51 3600 3600 2.64 0.29 16889.80 2.10 17046.40 3.00 16984.97 50.20 636 5.45 0.28 4.92

4.28 3519 0.76 0.29 0.31 1.19 41.64 850 7.07 0.26 6.67
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C.1.2 Medium-scale instances

Table C.5: (M) RL and metaheuristic comparison

Instances CPLEX Gap(%) - zRL and zMeta

|N | |T | ID zRL tRL(s) Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10

19

14

1 31765.05 1.37 6.98 7.37 6.19 7.42 6.67 7.26 6.91 6.45 6.84 7.34

2 35995.55 1.14 5.68 5.43 5.37 5.73 5.41 5.42 5.64 5.52 5.52 5.47

3 36849.87 1.57 6.69 6.96 6.59 6.99 6.83 6.82 6.78 6.45 6.62 7.13

21

1 70705.51 1.77 4.96 4.95 4.95 5.09 5.28 5.10 4.86 5.33 4.95 5.21

2 67279.76 1.58 6.08 6.23 6.24 6.50 6.30 6.36 6.17 6.28 6.22 6.22

3 81136.08 1.61 5.40 5.45 5.68 5.77 5.68 5.88 5.26 5.84 5.83 5.29

28

1 105572.10 2.73 6.19 7.46 7.47 6.50 7.42 5.95 6.07 7.52 6.27 7.31

2 108853.94 2.52 5.74 6.77 5.71 5.92 5.80 5.46 5.97 5.86 5.48 5.38

3 96870.65 2.50 5.99 7.02 6.19 5.96 5.85 5.75 6.23 6.99 6.19 6.20

Avg. group gap(%) 5.97 6.40 6.04 6.21 6.14 6.00 5.99 6.25 5.99 6.17

34

7

1 21504.21 4.03 7.94 7.60 8.20 7.88 7.85 8.35 8.12 8.32 7.67 7.99

2 25220.85 3.50 6.95 6.30 7.20 7.35 6.97 7.91 7.31 7.65 7.40 6.61

3 19551.36 3.08 10.13 9.56 9.69 10.17 10.21 9.53 9.83 10.21 9.64 10.01

14

1 64725.84 4.74 5.16 5.49 5.70 5.74 5.68 5.54 5.52 5.22 5.51 5.26

2 58026.86 8.71 9.43 9.65 9.76 9.74 9.66 9.32 9.65 9.76 9.12 9.45

3 60027.35 7.40 12.76 11.93 10.28 10.92 11.89 11.47 10.81 13.52 11.28 12.21

21

1 112811.33 14.25 7.35 6.31 6.93 6.53 7.06 6.66 6.43 6.71 7.17 6.51

2 142540.13 12.29 7.59 7.59 7.11 7.57 6.37 7.64 7.64 6.46 7.51 7.01

3 125961.64 16.06 7.99 7.05 7.89 8.07 7.99 7.69 7.71 7.25 7.71 7.62

28

1 199983.60 14.58 5.46 5.25 5.37 5.02 5.34 5.20 5.44 5.40 5.53 5.60

2 194899.21 18.19 8.09 8.20 8.18 8.15 8.12 8.04 8.12 8.51 8.12 8.25

Continued on next page
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Table C.5 – (M) RL and metaheuristic comparison (continued)

Instances CPLEX Gap(%) - zRL and zMeta

|N | |T | ID zRL tRL(s) Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10

3 198494.93 18.27 6.60 6.53 7.25 6.79 7.24 7.14 6.77 6.38 6.58 7.09

Avg. group gap(%) 7.96 7.62 7.80 7.83 7.86 7.87 7.78 7.95 7.77 7.80

46

7

1 28952.92 9.11 8.80 10.13 9.50 8.18 8.65 8.90 9.39 8.90 8.91 9.19

2 31393.56 7.63 9.06 9.61 9.81 9.78 9.06 9.83 10.31 9.95 9.98 8.90

3 25408.63 4.75 8.09 8.31 8.35 8.20 8.07 8.04 8.75 8.47 7.83 8.07

14

1 70858.71 14.24 5.90 6.20 5.76 5.84 6.07 5.65 5.27 5.88 5.66 5.89

2 85473.87 19.85 6.72 6.78 6.57 6.83 6.84 6.77 6.86 6.79 6.66 6.93

3 78769.42 13.58 8.94 8.27 8.67 7.92 8.80 8.56 8.46 8.37 8.47 8.61

21

1 163482.68 49.02 6.13 6.13 6.07 6.11 6.14 6.19 6.16 6.26 6.13 6.08

2 165078.23 47.82 5.52 4.75 5.33 5.48 4.66 5.65 5.44 4.99 5.57 5.65

3 129226.16 32.59 7.17 7.14 7.17 7.14 7.15 6.98 7.14 7.26 7.08 7.20

28

1 232277.48 56.34 5.29 5.31 5.38 5.38 5.41 5.40 5.29 5.37 5.36 5.24

2 263986.86 62.94 6.38 6.35 6.33 6.54 6.37 6.14 6.55 6.24 6.23 6.43

3 249555.83 59.98 5.88 5.88 6.03 6.06 6.01 6.00 5.90 6.02 6.05 5.98

Avg. group gap(%) 6.99 7.07 7.08 6.95 6.94 7.01 7.13 7.04 7.00 7.01

58

7

1 46315.26 24.86 12.31 13.00 12.53 12.14 12.38 12.70 12.14 13.15 13.25 12.94

2 27474.70 21.40 20.06 19.00 19.44 18.64 20.06 19.53 19.51 18.99 19.45 19.75

3 37506.26 18.19 15.14 15.21 14.99 15.08 15.07 15.27 14.90 14.01 14.19 14.27

14

1 100261.99 32.61 11.52 11.23 11.35 11.34 11.30 11.02 11.18 10.96 11.18 10.99

2 102989.69 29.79 17.19 17.24 17.27 17.54 17.08 17.04 16.95 17.04 17.03 17.33

3 118288.86 20.56 10.47 8.95 10.40 9.54 10.31 9.96 10.40 10.09 8.92 10.15

21

1 199673.24 78.55 10.30 10.40 10.26 10.41 10.35 10.75 10.83 10.32 10.40 10.35

2 198632.41 65.69 10.70 10.61 10.34 10.16 10.33 10.61 10.05 10.46 10.24 10.50

Continued on next page
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Table C.5 – (M) RL and metaheuristic comparison (continued)

Instances CPLEX Gap(%) - zRL and zMeta

|N | |T | ID zRL tRL(s) Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10

3 187080.89 95.89 13.84 13.55 13.87 13.97 13.87 13.77 13.60 13.88 13.73 13.54

Continued on next page
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Table C.5 – (M) RL and metaheuristic comparison (continued)

Instances CPLEX Gap(%) - zRL and zMeta

|N | |T | ID zRL tRL(s) Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10

28

1 312777.77 86.24 7.63 8.34 8.24 8.25 8.30 8.13 7.98 7.85 7.96 8.02

2 289651.41 134.67 10.80 11.10 10.96 11.00 10.94 10.77 10.67 10.78 10.76 10.73

3 344415.46 120.88 9.95 9.73 10.03 9.66 9.97 9.67 9.59 10.68 10.09 10.23

Avg. group gap(%) 12.49 12.36 12.47 12.31 12.50 12.44 12.32 12.35 12.27 12.40

83

7

1 46176.09 192.97 14.66 14.73 14.62 14.37 15.05 14.43 14.45 14.56 14.52 14.36

2 45115.88 37.98 15.82 15.94 15.93 16.17 15.99 16.16 15.48 15.83 15.90 15.95

3 48785.67 151.18 12.14 12.70 12.31 12.00 12.50 12.07 12.41 12.72 12.64 11.72

14

1 150855.25 94.43 10.39 10.40 10.60 10.58 10.66 10.69 10.54 10.29 10.61 10.62

2 115554.70 332.01 11.79 11.09 11.46 11.73 11.41 11.75 11.30 11.55 11.17 11.22

3 161514.80 349.82 10.29 10.45 10.28 10.19 10.31 10.32 10.47 10.55 10.42 10.38

21

1 220407.99 405.76 9.28 8.69 8.29 8.60 9.00 8.80 8.83 8.74 8.52 8.79

2 272141.83 281.30 8.96 9.17 9.63 8.81 9.33 9.00 8.85 9.21 9.31 9.23

3 254559.92 546.52 9.79 9.67 9.79 9.72 9.34 9.45 9.68 10.01 9.81 9.39

28

1 - - - - - - - - - - - -

2 458910.42 618.15 8.10 8.21 8.57 8.38 8.23 8.30 8.20 8.42 8.49 8.34

3 - - - - - - - - - - - -

Avg. group gap(%) 11.12 11.11 11.15 11.05 11.18 11.10 11.02 11.19 11.14 11.00

Avg. global gap(%) 8.99 8.97 8.98 8.94 8.99 8.96 8.92 9.02 8.90 8.95
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Table C.6: (M) UB and metaheuristic time to target comparison

Instances CPLEX ttarget Metaheuristic

N T ID zRL tRL(s) Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10

19

14

1 31765.05 1.37 553 806 1041 520 20 555 268 560 1080 275

2 35995.55 1.14 1313 1042 1690 2 1273 1228 671 719 1152 255

3 36849.87 1.57 710 1177 1300 1316 62 675 674 693 1052 789

21

1 70705.51 1.77 33 18 1270 561 12 573 1776 1191 886 21

2 67279.76 1.58 281 17 1127 1408 812 850 1111 283 1072 13

3 81136.08 1.61 1409 620 1550 586 1061 1755 634 605 1163 1311

28

1 105572.10 2.73 1371 1056 1619 1334 1405 905 47 1607 1612 1173

2 108853.94 2.52 426 1179 230 1180 1117 325 303 1301 423 743

3 96870.65 2.50 1052 177 1025 1442 69 1234 341 178 1007 957

Avg. group time(s) 794 677 1206 928 648 900 647 793 1050 615

34

7

1 21504.21 4.03 603 879 656 1633 16 47 1732 646 1732 1339

2 25220.85 3.50 48 47 1607 693 1056 1688 36 1052 625 1575

3 19551.36 3.08 897 925 389 284 1262 326 991 350 632 289

14

1 64725.84 4.74 120 1572 1124 1136 1457 1660 1799 1250 805 830

2 58026.86 8.71 9 950 16 649 326 9 676 7 390 1675

3 60027.35 7.40 107 845 1707 1030 969 773 406 1461 482 1671

21

1 112811.33 14.25 892 135 809 840 1313 97 52 1181 1663 902

2 142540.13 12.29 1469 1260 1422 66 112 1690 852 1688 941 691

3 125961.64 16.06 1685 1411 1043 33 15 1659 1412 1363 13 773

28

1 199983.60 14.58 64 98 1507 732 1558 1647 406 1285 389 1799

2 194899.21 18.19 340 1749 168 884 427 1517 1723 1784 427 117

3 198494.93 18.27 1139 1453 638 1347 1748 1179 1123 404 1592 1645

Avg. group time(s) 614 943 924 777 855 1024 934 1039 807 1109

Continued on next page
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Table C.6 – (M) UB and metaheuristic time to target comparison (continued)

Instances CPLEX ttarget Metaheuristic

N T ID zRL tRL(s) Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10

46

7

1 28952.92 9.11 1708 1091 155 1170 871 1012 1421 1655 1159 459

2 31393.56 7.63 1411 1027 360 48 74 1458 1657 1073 48 568

3 25408.63 4.75 1521 86 185 1522 93 898 472 1557 473 1526

14

1 70858.71 14.24 1502 1718 678 225 606 331 1011 1447 1796 1272

2 85473.87 19.85 128 357 1793 499 200 1739 207 1259 843 990

3 78769.42 13.58 1018 161 608 71 923 721 1322 305 1604 1769

21

1 163482.68 49.02 243 1669 1613 929 459 1485 796 373 142 1735

2 165078.23 47.82 1685 423 1261 1176 39 177 1359 1618 1670 1472

3 129226.16 32.59 1403 1323 1422 473 456 376 536 1498 316 1073

28

1 232277.48 56.34 1212 535 1121 165 845 1765 1691 334 820 388

2 263986.86 62.94 1798 1609 998 364 1203 511 591 879 431 980

3 249555.83 59.98 799 926 1120 1625 523 767 891 1730 1046 1108

Avg. group time(s) 1202 910 943 689 524 937 996 1144 862 1112

58

7

1 46315.26 24.86 390 429 1123 439 1652 1206 526 8 544 444

2 27474.70 21.40 1115 1549 1121 433 756 1454 849 1468 1078 533

3 37506.26 18.19 1194 1223 1208 488 82 854 583 102 1170 937

14

1 100261.99 32.61 1505 702 318 685 1772 258 371 695 1419 1779

2 102989.69 29.79 1063 351 76 1511 473 300 1091 950 715 751

3 118288.86 20.56 471 1741 1724 1780 1123 1585 1087 1146 132 855

21

1 199673.24 78.55 1599 235 1723 1783 1211 1157 1256 1714 1292 1107

2 198632.41 65.69 896 169 528 1434 487 1401 1775 273 916 1221

3 187080.89 95.89 98 1054 1143 195 991 180 1704 1194 168 1012

Continued on next page
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Table C.6 – (M) UB and metaheuristic time to target comparison (continued)

Instances CPLEX ttarget Metaheuristic

N T ID zRL tRL(s) Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10

28

1 312777.77 86.24 896 1137 1656 900 1584 447 1233 610 794 671

2 289651.41 134.67 747 1597 1246 1003 705 991 1094 1238 1004 1291

3 344415.46 120.88 384 850 510 1317 1754 636 278 352 523 1614

Avg. group time(s) 863 920 1031 997 1049 872 987 813 813 1018

83

7

1 46176.09 192.97 211 1782 1163 204 1399 111 1158 966 97 921

2 45115.88 37.98 838 208 1591 283 590 298 1034 886 125 931

3 48785.67 151.18 1189 949 1629 1502 700 619 1319 706 413 942

14

1 150855.25 94.43 1466 1720 83 244 992 575 680 1312 569 1099

2 115554.70 332.01 757 1611 674 616 653 814 1115 383 641 858

3 161514.80 349.82 410 535 311 1249 836 1305 1040 466 203 1758

21

1 220407.99 405.76 1475 489 1725 1323 635 1670 1746 1064 1155 970

2 272141.83 281.30 966 766 1105 1166 1754 1754 751 659 1699 327

3 254559.92 546.52 945 1527 1476 1106 1501 1424 1671 1794 951 1329

28

1 - - - - - - - - - - - -

2 458910.42 618.15 1318 128 562 1355 284 825 1122 966 278 1795

3 - - - - - - - - - - - -

Avg. group time(s) 957 971 1032 904 934 939 1163 920 613 1093

Avg. global time(s) 889 893 1017 854 806 936 954 951 825 1006
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Table C.7: (M) RL and metaheuristic overview metrics

Instances
zbest zworst zavg zstd zstd(%) tavg(s)

N T ID

19

14

1 33861.00 34310.40 34135.72 152.40 0.45 568

2 38037.40 38184.90 38098.06 50.75 0.13 934

3 39391.00 39677.50 39533.20 87.06 0.22 845

21

1 74315.90 74685.10 74477.94 125.89 0.17 634

2 71637.70 71959.80 71773.83 86.61 0.12 697

3 85644.50 86204.60 85957.79 213.05 0.25 1069

28

1 112247.97 114155.00 113299.10 813.64 0.72 1213

2 115040.73 116761.00 115569.96 486.08 0.42 723

3 102777.00 104181.00 103317.85 482.34 0.47 748

34

7

1 23272.60 23462.20 23372.28 64.95 0.28 928

2 26918.00 27388.40 27168.72 138.79 0.51 843

3 21610.70 21773.50 21699.36 66.91 0.31 634

14

1 68249.90 68664.50 68480.09 148.40 0.22 1175

2 63853.30 64305.60 64156.87 152.21 0.24 471

3 66903.30 69413.60 67992.80 749.34 1.10 945

21

1 120413.00 121767.00 121000.50 449.45 0.37 788

2 152232.00 154337.00 153684.00 812.55 0.53 1019

3 135518.00 137021.00 136466.10 484.19 0.35 941

28

1 210551.00 211847.00 211313.40 379.20 0.18 948

2 211936.00 213026.00 212255.30 303.29 0.14 914

3 212032.48 214014.00 213063.18 730.89 0.34 1227

46

7

1 31531.70 32216.50 31836.35 186.75 0.59 1070

2 34461.50 35002.90 34739.92 179.66 0.52 772

3 27565.80 27845.20 27684.01 79.09 0.29 833

14

1 74801.30 75545.10 75232.20 203.08 0.27 1058

2 91480.70 91840.00 91686.45 103.67 0.11 802

3 85545.30 86500.70 86094.61 267.94 0.31 850

21

1 174044.00 174392.00 174175.90 99.85 0.06 945

2 173148.00 174971.00 174330.50 679.94 0.39 1088

3 138930.00 139341.00 139166.00 108.66 0.08 888

28

1 245113.00 245555.00 245387.30 148.83 0.06 888

2 281252.00 282505.00 281903.30 396.04 0.14 936

3 265153.00 265668.00 265435.40 191.95 0.07 1053

Continued on next page
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Table C.7 - (M) RL and metaheuristic overview metrics (continued)

Instances
zbest zworst zavg zstd zstd(%) tavg(s)

N T ID

58

7

1 52713.20 53387.20 53026.60 251.08 0.47 676

2 33768.10 34370.00 34107.19 194.95 0.57 1036

3 43614.60 44267.90 44028.97 242.42 0.55 784

14

1 112607.00 113317.00 112918.60 228.33 0.20 950

2 124007.00 124892.00 124339.50 266.90 0.21 728

3 129879.00 132119.00 131319.70 847.64 0.65 1164

21

1 222510.00 223928.00 222944.20 479.55 0.22 1308

2 220827.00 222426.00 221688.20 527.22 0.24 910

3 216367.00 217453.00 216936.00 383.59 0.18 774

28

1 338614.00 341230.00 340238.10 831.13 0.24 993

2 324261.00 325817.00 324912.10 505.19 0.16 1091

3 380963.00 385579.00 382520.00 1399.66 0.37 822

83

7

1 53916.50 54359.30 54054.96 132.68 0.25 801

2 53376.90 53819.60 53657.34 124.79 0.23 679

3 55261.00 55892.40 55641.00 211.91 0.38 997

14

1 168151.00 168906.00 168624.30 251.30 0.15 874

2 129975.00 131003.00 130494.40 370.69 0.28 812

3 179839.00 180555.00 180194.70 214.70 0.12 811

21

1 240328.00 242961.00 241556.80 713.51 0.30 1225

2 298430.00 301140.00 299549.70 826.73 0.28 1095

3 280787.00 282879.00 281799.80 659.61 0.23 1372

28

1 485412.00 488434.00 487275.20 924.85 0.19 -

2 499365.00 501946.00 500579.90 798.14 0.16 863

3 442948.00 444221.00 443590.80 420.45 0.09 -
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C.1.3 Large-scale instances

Table C.8: (L) RL and metaheuristic comparison

Instances CPLEX Gap(%) - zRL and zmeta

|N | |T | ID zRL tRL(s) Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10

114 7 1 63214.61 148.56 14.66 14.22 14.66 14.60 14.91 14.69 15.07 15.62 14.33 14.36

114 7 2 62803.88 92.41 13.83 14.13 14.03 13.13 13.56 13.51 13.97 14.00 14.24 14.11

114 7 3 62229.09 135.55 12.38 12.16 12.51 12.28 12.17 12.33 12.31 12.09 12.57 12.14

114 14 1 160846.19 313.28 12.64 12.14 12.39 12.39 12.64 12.14 12.64 12.29 12.66 12.89

114 14 2 240633.57 164.75 10.95 11.33 10.97 10.98 10.52 10.60 11.50 11.14 10.73 11.25

114 21 1 368429.18 1234.34 9.95 10.07 10.29 9.97 10.16 9.95 9.97 10.29 10.16 9.97

149 28 1 - - - - - - - - - - - -

170 21 1 - - - - - - - - - - - -

170 28 1 - - - - - - - - - - - -

183 7 1 - - - - - - - - - - - -

Average gap(%) 12.40 12.34 12.48 12.23 12.33 12.20 12.58 12.57 12.45 12.45
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Table C.9: (L) UB and metaheuristic time to target comparison

Instances CPLEX ttarget SEMPO (s)

|N | |T | ID zRL tRL(s) Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10

114 7 1 63214.61 148.56 1481 1418 914 1215 1689 1535 1237 1455 763 1169

114 7 2 62803.88 92.41 1106 849 798 939 1127 395 1599 1025 1308 1426

114 7 3 62229.09 135.55 1296 807 335 1355 920 1676 300 667 699 310

114 14 1 160846.19 313.28 618 312 956 756 710 1148 901 348 1127 11

114 14 2 240633.57 164.75 605 274 1241 474 1678 599 1222 867 1083 45

114 21 1 368429.18 1234.34 530 42 108 1699 126 555 1501 301 424 1545

149 28 1 - - - - - - - - - - - -

170 21 1 - - - - - - - - - - - -

170 28 1 - - - - - - - - - - - -

183 7 1 - - - - - - - - - - - -

Avg. time(s) 940 618 726 1074 1042 985 1127 778 901 751
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Table C.10: (L) LR and metaheuristic overview metrics

Instances CPLEX SEMPO

N T ID zRL tRL(s) zbest zworst zavg zstd tavg(s)

114 7 1 63214.61 148.56 73697.50 74914.70 74120.87 357.73 1288.13

114 7 2 62803.88 92.41 72296.70 73236.40 72902.97 293.43 1057.53

114 7 3 62229.09 135.55 70788.60 71175.00 70952.09 129.24 836.96

114 14 1 160846.19 313.28 183068.00 184650.00 183790.90 524.65 689.14

114 14 2 240633.57 164.75 268914.00 271892.00 270369.50 965.68 809.31

114 21 1 368429.18 1234.34 409142.00 410697.00 409722.40 627.68 683.57

149 28 1 - - 900932.00 905981.00 904061.50 2204.26 -

170 21 1 - - 537235.00 539239.00 538574.90 687.44 -

170 28 1 - - 852666.00 856599.00 854943.00 1628.57 -

183 7 1 - - 98708.70 99711.30 99123.17 326.58 -

Avg. time(s) 774.53 894.10
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Appendix D

HIRP-BS convergence analysis

Go to the Table of Contents <
Go to the HIRP-BS results section <

The following graphics illustrate the convergence of the metaheuristic (blue dots) and
the mathematical formulation (orange dots) for the Heterogeneous Inventory Routing
Problem with Batch Size (HIRP-BS) over one hour (3600 seconds) of execution. The X
axis contains the time and the Y the solution value found. The instances considered here
are the thirteen small-scale ones (introduced in Chapter 2, Subsection 2.4.2).
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Acronyms

ALNS Adaptive Large Neighborhood Search.

API Application Programming Interface.

BS Batch size inventory policy.

CARP Capacitated Arc Routing Problem.

CVRP Capacitated Vehicle Routing Problem.

ELS Evolutionary Local Search.

FSMVRP Fleet Size and Mix Vehicle Routing Problem.

GRASP Greedy Randomized Adaptive Search Procedure.

GVRP General Vehicle Routing Problem.

HIRP-BS Heterogeneous Inventory Routing Problem with Batch Size.

HVRP Heterogeneous Inventory Routing Problem.

IRP Inventory Routing Problem.

LB Lower Bound.

LR Linear Relaxation.

MILP Mixed Integer Linear Problem.

ML Maximum level inventory policy.

MMIRP Multi-product Multi-vehicle Inventory Routing Problem.

OR Operations Research.

OU Order-up-to level inventory policy.

PIRP Perishable Inventory Routing Problem.

RNVD Randomized Variable Neighbourhood Descent.
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SEMPO Split-Embedded Metaheuristic with a Post-Optimization phase.

UB Upper Bound.

VRP Vehicle Routing Problem.

ZIO Zero-Inventory-Ordering inventory policy.
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Charaf, S., Taş, D., Flapper, S. D. P., and Van Woensel, T. (2024a). A branch-and-
price algorithm for the two-echelon inventory-routing problem. Computers & Industrial
Engineering, page 110463. (Cited on pages 47, 52, and 55)
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