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Résumeé en francais

La radiothérapie externe est un traitement local du cancer qui utilise des rayonnements
ionisants pour détruire les cellules cancéreuses. Les faisceaux de haute énergie produits par
un accélérateur linéaire sont dirigés vers le volume de la tumeur tout en minimisant
I’exposition aux rayonnements des organes voisins a risque afin de prévenir les dommages.
L'efficacité de la radiothérapie externe repose sur |'effet différentiel de la réparation des
dommages a ’ADN entre les tissus sains et la tumeur. La quantité de rayonnement délivrée,
appelée dose, est exprimée en Gray (Gy), qui est définie comme I'énergie déposée par unité
de masse (joule par kilogramme). Le radiothérapeute prescrit une dose totale pour la tumeur,
généralement administrée a raison de 2 Gy par séance. La stratégie de traitement dépend de
I'emplacement et du stade du cancer. Par exemple, dans les tumeurs a un stade précoce,
I’objectif principal est de minimiser la toxicité en limitant le volume cible et la dose globale.
En revanche, pour les tumeurs plus avancées, I'accent est mis sur I’'amélioration du contréle
local de la maladie en augmentant la dose et/ou en combinant la radiothérapie avec des
médicaments radio-sensibilisants. Les traitements hypofractionnés, caractérisés par une dose
plus élevée par séance et une réduction du nombre total de séances, gagnent en importance
en raison d’avantages tels que I'amélioration du confort du patient, la rentabilité et le ciblage
précis du cancer avec des volumes cibles plus petits.

La tomodensitométrie (TDM ou scanner CT) permet d’accéder aux densités électroniques des
tissus, essentiel pour des calculs de dose précis, et est donc la modalité d’'imagerie utilisée en
routine pour la planification dosimétrique du traitement. S'ensuit plusieurs séances
d’irradiation durant lesquelles le traitement est délivré. Concernant les techniques de
délivrance du traitement, les plus répandues sont maintenant la radiothérapie
conformationnelle par modulation d’intensité (RCMI, en anglais IMRT pour intensity
modulated radiation thearpy) et I'arcthérapie volumique (VMAT). Avec I'IMRT, plusieurs
angles de faisceau sont utilisés et l'intensité de chaque faisceau peut étre modulée a l'aide de
collimateurs multi-lames (MLC), ce qui permet de créer des profils de dose complexes.
Contrairement a I'lMRT, qui comprend généralement moins de 10 angles de faisceau a champ
fixe, la VMAT inclut un grand nombre de directions de faisceau a partir d'une trajectoire en
arc et délivre des doses de maniere dynamique pendant la rotation du dispositif. Dans le cas
d’un cancer de la prostate, les séances s’étalent sur 5 a 8 semaines en fractionnement
standard, a raison de 5 séances par semaine. La tomographie volumique a faisceau conique
(CBCT), systeme d’imagerie 3D-kV en salle, permet le positionnement du patient sous
I'accélérateur linéaire (par recalage rigide CBCT-CT).

L'imagerie par résonance magnétique (IRM) est quant a elle largement utilisée pour le
diagnostic du cancer, car elle offre un contraste tissulaire supérieur au CT et CBCT sans induire
de rayonnements ionisants. Cette modalité d’imagerie permet une délinéation du volume
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cible et des organes a risque plus précise que sur CT dans le cadre d’un cancer de la prostate.
L'IRM a suscité un vif intérét au sein de la communauté de la radiothérapie externe, en
particulier avec le développement récent d’IRM-linac qui intégrent un scanner IRM avec un
accélérateur linéaire. Cependant, 'une des principales limites de I'IRM est son incapacité a
fournir des informations sur la densité électronique des tissus, essentielle pour un calcul
précis de la dose. Pour pallier cette limitation, plusieurs méthodes ont été proposées dans la
littérature pour générer des CT synthétiques (sCT). Les sCT (en unités Hounsfield)
reproduisent un CT en étant créés a partir de I'IRM. Les méthodes de génération de sCT
peuvent étre regroupées en trois catégories : les méthodes par assignement de densité, celles
basées sur la génération d’atlas, et enfin les méthodes utilisant des modeles de machine-
learning. Parmi ces derniéres, les méthodes d’apprentissage profond se sont révélées
extrémement prometteuses en termes de performances et de rapidité d’exécution. L'IRM
pourrait ainsi remplacer le CT pour toute planification initiale de radiothérapie externe, ainsi
gue pour du monitoring de dose dans le cadre d’'une radiothérapie adaptative avec un IRM-
linac.

Malgré les avantages que présente I'utilisation de I'IRM pour la planification de traitement en
radiothérapie, son intégration en clinique fait face a un défi majeur : le manque de mesures
d’évaluation standardisées. Actuellement, I'évaluation de ces méthodes repose sur des
métriques s’appuyant sur la comparaison d’intensités a une image de référence, et
nécessitent donc un CT comme vérité terrain. Les métriques les plus fréquemment employées
sont I'erreur absolue moyenne (MAE en anglais pour mean absolute error), I'erreur moyenne
(mean error, ou ME en anglais) et le « peak signal-to-noise ratio »(PSNR). Des mesures basées
sur la perception telles que la mesure de l'indice de similarité structurelle (SSIM) et la SSIM
multi-échelle sont aussi couramment utilisées. La précision du calcul de dose résultant des
sCT est aussi souvent évaluée en comparant la distribution de dose sur sCT a celle attendue
(obtenue a partir du CT de planification). Les méthodes d’évaluation dosimétriques sont
principalement la comparaison des histogrammes dose-volume, les différences de dose par
voxel (absolues ou relatives) ou encore I’'analyse gamma.

Ces mesures fournissent une évaluation globale et offrent un apercu limité de la précision de
I'image générée dans le contour externe du patient ou de volumes délinéés. Elles dépendent
aussi de la précision du recalage entre IRM et CT de planification, et de I'existence du CT de
planification. Or, a terme, ce CT ne sera plus acquis. Par conséquent, il est impératif de
développer des méthodes de controle de qualité des sCT robustes qui non seulement
permettent I'administration précise du traitement, mais offrent également une analyse
approfondie des limites de chague méthode de génération de sCT.

Ce travail de thése a permis I'évaluation spatiale des méthodes de génération de sCT et
propose des stratégies pour évaluer la qualité de sCT généré au jour le jour. Ces stratégies
sont destinées a étre incluses dans le workflow clinique afin d’assurer la fiabilité des
techniques de planification basée sur IRM.



Dans le premier chapitre de ce manuscrit, le processus standard du traitement par
radiothérapie externe est présenté ainsi que les avantages d’une planification de traitement
sur IRM. La deuxieme partie de ce chapitre traite des méthodes de pointe pour générer un
sCT a partir de I'|RM, notamment a |'aide de modeéles d’apprentissage profond (comme décrit
dans notre article état de I’art publié dans Physica Medica). Aussi, un apercu des différentes
méthodes de contréle de la qualité impliquées dans la radiothérapie basée sur IRM est
présenté.

Le deuxieme chapitre décrit les objectifs de la thése, et présente le cadre général dans lequel
s’inscrivent les différentes composantes des travaux de cette these.

Le troisieme chapitre présente la mise en ceuvre d’'une méthodologie permettant d’évaluer
la précision des méthodes de génération de sCT a différents niveaux. Cela comprend une
évaluation des erreurs a différentes échelles : dans I'ensemble du pelvis, par organe, et enfin,
par voxel. Afin de permettre une analyse par voxel précise, les images ont été recalées de
fagon non rigide via une approche robuste impliquant le calcul des descriptions structurelles
des organes. La méthodologie présentée est fondée sur I'analyse d’une base de données
patients et met en exergues les sous-régions anatomiques ou les méthodes de génération
tendent a systématiquement sous ou surévaluer les valeurs d’intensités. Les résultats sont
présentés dans deux articles. Le premier article, publié a la suite de la présentation de I'étude
a l'International symposium on biomedical imaging (ISBI), décrit la méthode utilisée pour
évaluer quatre approches de génération de sCT en termes de métriques d’image. Le deuxiéme
article, publié dans Frontiers in Oncology, va plus loin dans I'analyse statistique et comprend
une évaluation dosimétrique.

Le chapitre précédent se concentre sur la détection de sous régions ou les erreurs de
prédictions d’unité Hounsfield (UH) sont significatives pour différentes méthodes de
génération de sCT en examinant a la fois les résultats image et dosimétrique. Cependant, ces
évaluations sont indépendantes et I'impact des erreurs d’UH sur la dose n’est pas trivial. En
effet, si une méthode a tendance a échouer dans une région spécifique, quelles seraient les
conséquences pour le traitement, s’il y en a ? Ainsi, le chapitre 4 présente une analyse de
sensibilité comme outil pour répondre a cette question. L'analyse suit la méthode de
screening de Morris et explore la corrélation entre les changements d’intensité dans
différentes structures anatomiques et la dose dans le volume cible afin d’identifier les régions
ou les erreurs d’'UH ont un impact plus important sur la dose. Aussi, cette étude évalue
I'influence d’un artefact (représentant un volume d’erreur) sur la dose délivrée au centre du
volume cible, en tenant compte de trois critéres : la taille de I'artefact, son emplacement par
rapport au volume cible et la variation d’UH dans le volume d’erreur. Il en ressort qu’une
erreur méme faible (25 UH) répartie dans I'ensemble du pelvis aura un impact significatif sur
la dose a I'isocentre, alors que des erreurs dans la vessie auront impact négligeable. La taille

du volume d’erreur ainsi que la variation d’intensité et sa position par rapport aux rayons
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incidents jouent un réle majeur sur le calcul de dose. Il est important de noter que ces
résultats dépendent du traitement prescrit (IMRT ou VMAT par exemple), et qu’il serait
pertinent de prendre en compte les sous régions d’erreurs détectées par I'analyse par voxel
précédemment présentée pour une méthode de génération donnée. L'approche présentée
dans ce chapitre est donc a adapter au cas par cas.

Cette étude a été publiée par le journal Physical and Engineering Sciences in Medicine en
octobre 2023.

Le chapitre 5 propose deux méthodes pour évaluer un sCT patient lorsqu’aucun CT de
planification n’est disponible. Ces méthodes s’appuient sur de statistiques extraites d’'une
cohorte de CT. Cette évaluation est effectuée au niveau du voxel pour la premiere étude
(comme décrit dans un article publié suite a une conférence internationale IEEE 2022, Digital
image computing : techniques et applications (DICTA)), ainsi qu’au niveau global et par organe
en utilisant la sélection des caractéristiques radiomics pour la seconde. La premiere met en
avant les voxels dont les valeurs d’UH sont significativement différentes de celles de la
cohorte de référence pour chaque voxel. La précision de cette méthode dépend de la qualité
des processus de recalage mis en place : celui permettant la création d’un atlas de référence
a partir de la cohorte de CT, mais aussi celui permettant la comparaison du nouveau sCT a cet
atlas. Les résultats pour les patients ayant une anatomie trop éloignée de celles des patients
constituant la cohorte de référence peuvent donc étre biaisés. Aussi, le recalage peut étre
couteux en temps. La seconde méthode permet d’obtenir un score illustrant la cohérence de
I'image générée dans son ensemble et par organe, selon des caractéristiques images
pertinentes et sélectionnées via un algorithme de machine learning (foréts aléatoires
conditionnelles). Elle permet également de se libérer des biais induit par le recalage et n’est
pas couteuse en temps de calcul.

Dans le chapitre 6, un résumé des méthodes d’évaluation de sCT est présenté, ainsi que des
recommandations pour mettre en place un protocole visant a intégrer le contréle de la qualité
de chaque sCT dans un workflow clinique. Ce protocole souligne I'importance de la mise en
place de contréle aux différentes étapes de la planification et implique I’évaluation : de I'|RM
dans un premier temps, puis du sCT et enfin du calcul de dose. Ceci induit I'utilisation de
métriques subjectives d’abord, mais aussi de métriques objectives de complexité variables
présentés dans les chapitres précédents.

Cette these est par définition multidisciplinaire, car elle s’inscrit dans une problématique de
traitement d’image dans une perspective clinique avec un aspect dosimétrique (relatif a la
physique médicale). Aussi, les méthodes présentées sont applicables aux sCT générés a partir
de CBCT dans le cadre d’une radiothérapie adaptative pour les centres équipés d’accélérateur
linéaire standards, puisqu'elles sont indépendantes de la modalité d’imagerie utilisée pour la
création de sCT.



Ces études ont été réalisées sur un ensemble de données d’imagerie rétrospective de patients
atteints d’un cancer de la prostate localisé traités a I’hOpital Calvary Mater a Newcastle,
Australie.

Ces travaux ont été co-financés par la Région Bretagne, France (bourse ARED) et le CSIRO,
Australie (collaborative project agreement). Afin de permettre la lecture de ce manuscrit de
thése aux co-financeurs australiens de ce projet, la suite de ce manuscrit est rédigée en
anglais.
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Acronyms

AE Absolute error

Al Artificial intelligence

APE Absolute percent error

ART Adaptive radiation therapy
CBCT Cone beam computerised tomography
CNN Convolutional neural network
CcT Computed tomography

DLM Deep-learning model

DSC Dice score coefficient

DVH Dose-volume histogram

E Error

EBRT External beam radiation therapy
GAN Generative adversarial network
Gy Gray (dose unit)

HD Hausdorff distance

HU Hounsfield Units

IGRT Image guided radiation therapy
IMRT Intensity-modulated radiotherapy
IQA Image quality assessment

LINAC Linear particle accelerator

MAE Mean absolute error

MAPE Mean absolute percent error
MASD Mean absolute surface distance
ME Mean error

MRI Magnetic resonance imaging
MSE Mean square error

MS-SSIIM Multi-scale structural similarity index
NCC Normalized cross-correlation
NMI Normalized mutual information
OAR Organs at risk

PSNR Peak signal-to-noise ratio

PTV Planning target volume
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QA Quality assessment

Qc Quality control

RMSE Root mean square error

ROI Region of interest

RSD(AE) Relative Standard Deviation of Absolute Error
RT Radiation therapy

SBRT Stereotactic body radiation therapy

sCT synthetic-CT

SSIM Structural similarity metric

TPS Treatment planning system

VIF Visual information fidelity

vMAE Voxel-wise mean absolute error

vMAPE Voxel-wise mean absolute percent error
VMAT Volumetric arc therapy

vME Voxel-wise mean error

VOI

Volume of interest
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Introduction

External beam radiotherapy is a local cancer treatment that utilizes ionizing radiation to
destroy cancer cells. The high-energy beams produced by a linear accelerator are directed
towards the tumour volume while minimizing radiation exposure to nearby organs at risk in
order to prevent harm. In the context of external beam radiotherapy, computed tomography
(CT) scans provide access to the electron densities of tissues, which are essential for accurate
dose calculations. Cone Beam Computerized Tomography (CBCT), on the other hand, enables
patient positioning under the linear accelerator (planning CBCT-CT registration) as well as
real-time monitoring of the tumour during treatment. However, these imaging modalities
suffer from limited soft tissue contrast and expose patients to additional radiation.

In contrast, Magnetic Resonance Imaging (MRI), widely used for cancer diagnosis, offers
superior tissue contrast without the need for ionizing radiation. This imaging modality holds
significant potential for precise delineation of the target volume and organs at risk [1] and
dose targeting[2]. MRI has gained particular interest in external beam radiotherapy, especially
with the recent development of MRI-linac machines that integrate an MRI scanner with a
linear accelerator. However, a key limitation of MRl is its inability to provide electron density
information essential for accurate dose calculation. To overcome this limitation, several
methods have been proposed in the literature for generating synthetic CT scans (sCT) from
MRI[3], [4]. Among these, deep learning methods have shown tremendous promise in terms
of both performance and computational efficiency[5]. Despite their favourable
characteristics, the integration of MRI into the radiotherapy workflow faces a major
challenge—the lack of standardized assessment metrics. Currently, evaluation of these
methods relies on full-reference intensity-based metrics [6], which require a CT as ground
truth, such as mean absolute error (MAE), mean error (ME), and peak signal-to-noise ratio
(PSNR). Additionally, perception-based metrics like the structural similarity index measure
(SSIM) and the multiscale SSIM are commonly employed. However, these metrics provide a
global assessment and offer limited insight into the agreement within the patient's body
contour or individual organs. Therefore, it is imperative to develop robust quality control
methods that not only facilitate accurate treatment delivery but also enable thorough analysis
of method limitations and shortcomings.

This thesis primarily aims to investigate areas where sCT generation tends to be less accurate
and proposes strategies to assess the quality of daily generated sCT. These strategies are
intended to be included in the clinical workflow to ensure the safe application of MRI-only
techniques.

In the first chapter of this manuscript, the standard process of external beam radiotherapy
treatment is presented, along with a comparison to an MRI-only workflow. The second part
of this chapter discusses the state-of-the-art methods for generating sCT from MRI using
deep-learning models (as described in an article published in Physica Medica). Additionally,
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an overview of the different quality control steps involved in MRI-only radiotherapy is
presented.

The second chapter outlines the main objectives of the thesis, in addition to an overall
framework of thesis components.

The third chapter presents research on a methodology to assess the accuracy of sCT
generation methods at various levels. This includes a standard error evaluation in the whole
pelvis, followed by an organ-wise error assessment, and finally, the implementation of voxel-
wise analysis. These findings are presented in two papers. The first paper, published in the
IEEE International Symposium on Biomedical Imaging (ISBI), presents the method used to
assess four sCT generation approaches in terms of image quality. The second paper, published
in Frontiers in Oncology, delves into the statistical analysis and includes the assessment of
dose calculations.

Chapter 4 explores the correlation between localized HU errors and the dose at the center of
the target volume using the Morris screening method. This study has been submitted to
Physical and Engineering Sciences in Medicine.

Chapter 5 proposes two methods to assess patient-specific sCT without ground truth, based
on statistics extracted from a cohort of CT scans. This assessment is done at a voxel level (as
described in a paper published in the IEEE 2022 International Conference on Digital Image
Computing: Techniques and Applications (DICTA)), as well as at a global and organ-wise level
using radiomics feature selection.

In Chapter 6, a summary of methods and metrics for assessing sCT will be provided, along
with recommendations for a protocol aimed at integrating daily sCT quality control into the
clinical workflow.

Finally, a conclusion summarizes the work conducted, highlights its limitations, and outlines
future research directions.

These studies were performed on a retrospective imaging dataset from localised prostate
cancer patients who were treated at the Calvary Mater Hospital in Newcastle, Australia.
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Chapter 1: Context of MRI for radiation therapy

This chapter aims to provide the clinical context by introducing the principles of standard
external beam radiation therapy (EBRT). It discusses the benefits of magnetic resonance
imaging (MRI) and deep learning in EBRT. Furthermore, it introduces the state-of-the-art
methods for dose calculation using synthetic-CT generated from MRI. We published a review
of deep learning-based approaches in the journal Physica Medica [1]. Additionally, the
chapter provides an overview of the various quality control steps involved in MRI-only
radiotherapy.

External beam radiation therapy

Radiotherapy is a treatment prescribed for more than two-thirds of patients with all types of
cancer, i.e around 300,000 patients per year in France. EBRT involves delivering ionising
radiation to the tumour to damage the DNA of cancer cells, mainly through double-strand
breaks, thereby inhibiting their ability to multiply. These ionising rays primarily consist of high-
energy photon beams (MV) or, less commonly, electron beams (MeV), and proton beams.
These beams are administered using a linear particle accelerator (LINAC) while the patient
remains immobilised on the treatment table with restraints. To ensure tolerance of healthy
tissues, the radiation is delivered in divided sessions, typically one session per day for 5 days
per week, usually over a period of 5 to 8 weeks.

The effectiveness of radiotherapy is based on the differential effect of DNA damage repair
between healthy tissue and the tumour. The amount of radiation delivered, known as the
dose, is expressed in Grays (Gy), which is defined as the energy deposited per unit of mass
(Joule per kilogram). The radiation therapist prescribes a total dose for the tumour, typically
delivered at a rate of 2 Gy per session. The treatment strategy depends on the cancer's
location and stage. For instance, in early-stage tumours, the primary objective is to minimise
toxicity by limiting the target volume and overall dose. In contrast, for more advanced
tumours, the focus shifts to enhancing local disease control by escalating the dose and/or
combining radiation with radiosensitising drugs. Hypofractionated treatments, characterised
by higher dose per session and reduced total sessions, are gaining prominence due to
advantages such as improved patient comfort, cost-effectiveness, and precise cancer
targeting with smaller target volumes.

Standard workflow

There are four stages involved in a standard EBRT procedure (Figure 1.1): 1) acquisition of a
planning CT scan, 2) delineation of target volume(s) and organs at risk (OARs), 3) dosimetric
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planning, and 4) treatment. The following paragraphs provide a detailed description of each
step.

Beams and dose
computation

Organs

Planning CT
e delineations

Planning Definition of
the treatment

. q Validation of the
position - ~- - B 2 dose distribution

Delivered

Planning CT

dose

-
(“5to 8

weeks, | Correct the patient’s position | Yis -
5 days /week, ¥ G"‘ §
2 Gy by I Tracking or gating of the tumour | i
fraction) CT and CBCT rigidly
registered

Figure 1.1: Standard external beam radiation therapy workflow.

The planning process is divided into three steps. The first step (1) involves acquiring the planning CT scan in
the treatment position. In the second step (2), an MRI is obtained to provide improved visualisation of soft
tissues, enabling more accurate delineation of the target volume and organs at risk. Both modalities are then
registered to align the contours with the planning CT. In the third step (3), the beam parameters are
determined by an expert, ensuring compliance with the dose constraints prescribed by the radiation therapist,
who subsequently validates the dose distribution. A CBCT scan is acquired at each session to accurately align
the patient with the planning CT and reproduce the treatment position as precisely as possible prior to dose
delivery.

1- Planning CT

The acquisition of a computed tomography (CT) image is the initial stage in EBRT. Prior to
acquiring the image, the patient is positioned using restraints to establish a reference position
for the treatment. This position should be both comfortable for the patient and reproducible.
External markers, such as tattoos on the patient's skin or markings on the restraints, are
utilised to replicate this position accurately. The length of the acquisition (head-foot axis)
varies based on the anatomical location. It should encompass the entire target volume and
the OARs, in accordance with the considered dosimetric criteria.

Limitations of the CT scanning is that it is an imaging technique that involves exposure to
ionising radiation and has low contrast in the soft tissue, impeding clear visualisation of the
tumour volume.

2- Organs at risk and tumour delineation
Manual delineation of the OARs and the target volume, which comprises the tumour and its
extensions, has traditionally been performed based on the planning CT scan. However, due

to the limited ability of CT to accurately distinguish soft tissues, diagnostic MRI is utilised in
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addition to enhance the accuracy of the delineations. To achieve this, the diagnostic MRl is
first registered with the planning CT, and then the delineations of the volumes of interest
from the MRI are transferred to the planning CT. The two imaging modalities offer
complementary information, with CT providing better visualisation of bone tissue, while MRI
enables improved visualisation of soft tissue.

CT-MRI registration introduces uncertainties into the radiotherapy workflow. MRI scans are
not acquired in the exact treatment position, posing challenges for accurate CT-MRI
registration. Additionally, anatomical variations between the two acquisitions further
complicate this stage. For instance, in prostate cancer cases, these variations can be
attributed to varying bladder volumes or the presence of gas in the rectum or intestines,
resulting in reported discrepancies of up to 2 mm in calculations for prostate cancer
patients[2].

MRI-based planning could help to reduce these uncertainties without requiring additional
radiation exposure, as MRl is a non-ionising imaging modality. Moreover, it has the potential
to lower the overall treatment cost by eliminating the need for multiple scans.

3- Dosimetric planning

Dose planning is performed by a dosimetrist, radiation therapist, or medical physicist on a
treatment planning system (TPS). Figure 1.2 shows an example of dose prescription for a
prostate cancer on a TPS. This process utilises the planning CT and delineations of the target
volume and OARs. The objective is to determine the optimal radiation pattern, including the
number of beams and their incidences, in order to deliver the prescribed dose to the planning
target volume (PTV) while minimising radiation exposure to OARs. Various irradiation
techniques are available, with intensity-modulated radiotherapy (IMRT) and volumetric arc
therapy (VMAT) being the most common nowadays. IMRT involves the use of fixed beams, a
constant flow rate, and a single multi-leaf collimator (MLC) that conforms each beam to the
shape of the PTV. Unlike IMRT, which normally employs fewer than ten fixed-field beam
angles, VMAT uses numerous beam directions from an arc trajectory and delivers doses
dynamically while the gantry rotates. The operator selects the beam parameters during the
planning process, known as direct planning. More advanced techniques of IMRT or VMAT,
require inverse planning[3]. In this case, dosimetric objectives are provided to the TPS, which
then determines the optimal solution. Intensity modulated treatments can be delivered using
fixed beams (IMRT) or arcs (VMAT).

Dosimetric planning must comply with dose constraints for the target volume, the dose
prescription specified by the radiation therapist, and the OARs. National and international
recommendations regarding dosimetric constraints are considered for OARs. These
constraints may include maximum dose, maximum average dose, or maximum percentage of
volume that can receive a certain dose, depending on the type of OARs[4]. Intensity-
modulated techniques allow for precise dose sculpting around the PTV while minimising
radiation exposure to OARs. This technique results in high dose gradients. Another technique,
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known as stereotactic body radiation therapy (SBRT), involves delivering higher radiation
doses to the tumour in a reduced number of treatment sessions (hypofractionation). It is
often used as an alternative to surgery.

Dose calculation in radiotherapy relies on having information about the electron density of
tissues, which can be obtained from CT scans but not from MRI. Electron density of tissues is
crucial information for treatment planning as it affects how they interact with radiation. It can
be derived from the Hounsfield Units (HU) of CT scans, where HU values are assigned to
specific tissues based on their radiodensity compared to that of water (e.g., water has a HU
value of 0, while dense bone may have HU values above 1000, and air -1000). The electron
density is obtained through a calibration curve.

To enable treatment planning to be based on MRI images, it is thus essential to convert MRI
into synthetic-CT, to ensure the accuracy of the generated data.

Figure 1.2: Axial view of the 3D treatment plan for a prostate cancer.
(Figure from the book “Biomedical Image synthesis and simulation”, chapter 20 [5]).

4- Treatment delivery

At each treatment session, the patient is positioned under the linear accelerator in the same
position as during the planning scan. Image-guided radiation therapy (IGRT) is commonly
employed to precisely deliver radiation to the tumour target while minimising exposure to
healthy surrounding tissues. It involves the utilisation of imaging technologies before or
during the treatment session to accurately locate the tumour and make necessary
adjustments to the radiation beams.

In IGRT, two techniques can be used: on-board 2D imaging called kV-kV (two 2D images at
different angles acquired with low energy imaging systems (kV)) or 3D imaging called CBCT
(Cone Beam Computerised Tomography). The CBCT image or the two kV-kV images are then
registered with the planning CT scan using the target volume and/or bone tissue. The
treatment table is adjusted based on the geometric transformation parameters obtained
during the registration process (only translations or translations and rotations).
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One of the main limitations of this stage is the low contrast of soft tissues in CBCT images.
This limitation makes it challenging to visualise the tumour and results in imprecise patient
positioning when relying on soft tissues. CBCT imaging has poor image quality, including the
presence of numerous artifacts and low resolution, which adds complexity to the CBCT-CT
registration process. Moreover, CBCT is an imaging technique that involves exposure to
ionising radiation. To improve patient positioning without additional radiation exposure, an
ideal solution would be to use MRI. This can be achieved with a machine combining an MRI
and a linear accelerator, known as an MRI-LINAC[6].

Table 1.1 summarises the advantages and drawbacks of standard image-guided radiotherapy
treatments compared to MRI-based radiotherapy treatments.

Table 1.1: Advantages and drawbacks of standard radiation treatment planning and MRI-based treatment
planning.

Standard image-guided
radiation therapy (planning

Advantages
Easy access to electron
density
Spatial resolution of the CT

Drawbacks
Poor soft tissue contrast,
leading to an
overestimation of volume

Fast acquisition CT /CBCT of interest
CT and CBCT) . , L .
Registration CT/CBCT Anatomical imaging only
Systems accessibility lonising modality
Better soft tissue contrast No access to electron
(more accurate density
Planning delineations) Distortions in MRI images
MRI and Variety of sequences Registration MRI/CBCT
treatment Functional imaging Patients with
with a Non-ionising contraindications
standard Limited availability of MRI
MRI-based LINAC for radiotherapy
radiation departments
therapy
Better soft tissue contrast No access to electron
(more accurate density
delineations) Distortions in MRI images
MRI-LINAC Variety of sequences Patients with

Non-ionising
Functional imaging
Daily adaptation

contraindications
Cost



Adaptive radiotherapy

Adaptive radiotherapy (ART) involves a feedback loop during standard radiotherapy
treatment, where the initially defined treatment plan is modified to account for inter- or intra-
fraction anatomical changes[7]. The goal of ART is to ensure optimal dosimetric coverage of
the target volume during treatment and/or to limit the dose to OARs in the presence of
anatomical variations from the planning CT scan.

Various ART strategies have been implemented in radiotherapy departments. Offline ART
focuses on adapting the treatment plan between sessions, considering inter-fraction
anatomical modifications. This strategy does not consider changes that occur within a
treatment session. On the other hand, online ART involves adapting the treatment plan during
the session while the patient is on the treatment table. This strategy allows for real-time
adjustments to account for random changes. The last ART strategy is inline or real-time ART,
which monitors movements of the target volume during irradiation using a "real-time"
imaging system and compensates for them by adjusting either the multi-leaf collimator (MLC)
or the source with the CyberKnife (Accuray)[8], [9]. The implementation of an ART strategy
depends on factors such as the location of the tumour and the types of movement/anatomical
variations involved. However, not all patients can benefit from ART due to limitations in
human and technical resources, as well as the lack of formal clinical evidence demonstrating
its benefits. The emergence of MRI-LINACs, which combine MRI and particle accelerators,
would make ART more accessible. However, calculating a dose from MRI images is not a
straightforward task. The challenges and methods for dose calculation from MRI images will
be discussed later in this chapter.

Treatment planning from MRI: state-of-the-art and challenges

In external radiotherapy, X-ray imaging (CT-scan and CBCT) serves as the reference modality
for treatment planning and target volume positioning before irradiation. CT provides access
to the electronic density of tissues, which is necessary for dose calculation. CBCT allows the
patient to be positioned under the linear accelerator by registration with the planning CT, and
it also enables tumour gating or tracking during treatment. Although X-ray imaging has
advantages such as accurate representation of bone tissue, it provides poor contrast between
soft tissues, leading to imprecise definition of the volumes of interest, including tumours and
OARs. Additionally, it is an irradiating modality that can increase the risk of radiation-induced
cancers due to repeated CBCT image acquisitions, which raises concerns[10].
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Figure 1.3: MRI-only workflow and its potential benefits

MRI, commonly used for diagnostic purposes, offers the potential to overcome these
drawbacks (Figure 1.3). Compared to X-ray imaging, MRI provides better contrast between
soft tissues, leading to improved tumour targeting and organ at risk definition. MRl is a non-
irradiating modality that provides both morphological and functional information. To leverage
these advantages during treatment, new treatment technologies combining a linear
accelerator and MRI (MRI-LINAC) have been developed. These technologies allow for precise
dose delivery with real-time tracking and gating of the tumour based on MRI images [6].
However, calculating the dose from MRI alone remains a crucial challenge in
radiotherapy[11], [12]. The main challenge lies in the fact that MRI does not easily provide
access to tissue electron densities, which are necessary for dose calculation.

Standard MRI sequences used in clinical practice (e.g., T1 and T2 weighted) do not capture
the signal from tissues with short transverse relaxation times, such as collagen and bone
cortex, resulting in poor visibility of these structures in the images and their inability to be
distinguished from air. Furthermore, MRI image intensities are not always uniform in
homogeneous anatomical structures.

To generate a dose distribution from an MRI scan, the strategy involves creating a substitute
CT scan, known as a synthetic-CT (sCT) or pseudo-CT (pCT), using three categories of methods:
bulk-density [13]-[15], atlas-based [16]-[22], and machine learning [23]—-[29], including deep-
learning based methods[30]—[39]. In recent years, deep learning-based approaches have
gained popularity due to their ability to automatically generate accurate sCTs with minimal
computation time. This section briefly presents the three main strategies for generating sCT
and provides an overview of the state-of-the-art methods using deep learning approaches,
which have been published in Physica Medica[1].
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The accuracy of methods from these different categories has previously been compared in
Largent et al.[26], [40].

Synthetic-CT generation using bulk-density based methods

Bulk-density methods involve delineating volumes of interest on the patient's MRI, either
manually or automatically, and then assigning a homogeneous electron density to each of
these volumes. These methods have shown encouraging results and have been the first to be
integrated into commercial devices, either alone like in the first release of MRCAT (MR for
Calculating Attenuation, Ingenia 3T MR Scanner, Philips Healthcare, Cleveland, OH, USA)[14],
[41] or combined with a multi-atlas-based registration method to create bony contours
separated into cortical bone and trabecular bone (SyngoVia software platform , Siemens
Healthineers, Erlangen, Germany)[42].

The density assignment approach is a simple method, but it can be tedious, time-consuming,
and dependent on the operator (leading to inter-operator variability in manual
segmentations). Automatic segmentation could be considered for certain tumour locations,
but it may be computationally expensive in terms of computing time. Additionally, tissues
with short transverse relaxation times are not visible on the images obtained from standard
MRI sequences, which may limit the accuracy of delineations. The lack of consideration for
tissue heterogeneity is not recommended, especially for certain tumour locations such as
bone[43].

Synthetic-CT generation using atlas-based methods

The initial methods for generating atlas-based sCTs involved mapping the patient's MRI to a
CT scan (atlas) and transferring the HU values from the atlas onto the patient's MRI to obtain
the electron density of the tissues[22]. These methods had limitations, as the atlas used was
not representative of the population, and the use of a single multimodal registration was
insufficient to account for complex anatomies. Moreover, due to the challenges in
distinguishing soft tissues in CT, the registration of this atlas with MRI introduced
uncertainties for this type of tissue. To address these issues, a more accurate and robust
methodology was developed. This methodology involved iteratively recalibrating and
averaging the MRl and CT images from a cohort to construct a representative "MRI-CT" atlas,
which was then matched to the patient's MRI[17], [19] . However, this methodology was not
very robust when dealing with patients who exhibited significant anatomical differences from
the atlas.
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Figure 1.4: Multi-atlas MRI dose calculation method. (1) After intra-patient registration of each pair of MRI-
CT images in the database, the atlas MRIs in the training dataset are registered with the new patient's MRI.
(2) The deformation fields obtained from the registration step are then applied to the CT scans in the database,
aligning these images with the patient's MRI. (3) For each voxel, the intensities of the registered CT atlases
are averaged and weighted based on the local similarity between the patient's MRI and the base MRIs. The
resulting image is the synthetic-CT for the patient, on which the dose calculation will be performed.

Further modifications were eventually made by incorporating multiple atlases, resulting in
the method being divided into two stages (Figure 1.4). In the first stage, after performing
deformable intra-patient registration for each pair of MRI-CT images in a cohort, the cohort's
MRI was registered with the patient's MRI. The geometric transformations obtained from this
registration were then applied to the CT images within the cohort. In the second stage, the
re-registered CTs were merged to generate a sCT [16], [18], [20], [21]. The results were
deemed clinically acceptable.

In the literature, various CT fusion strategies have been proposed for multi-atlas methods.
The most encountered strategy is the weighted average of CT intensities [20], [21]. However,
it has the drawback of smoothing the sCT intensities. Consequently, the weighted average has
been substituted with the median value [16] or a shape recognition method [18]. The latter,
when compared to an atlas method using a weighted mean to merge the CTs, did not show
significant improvement in terms of dose but had a longer calculation time (98 min versus
120 min per patient, based on an atlas base consisting of 6 patients).

In summary, atlas methods offer several advantages, such as being fully automated and
applicable to any type of anatomical structure, from pelvis[20], to head and neck[16], [21].
They yield satisfactory dosimetric results by considering tissue heterogeneity. However, atlas
methods have limitations, including long calculation times due to the successive stages of
deformable registration. Additionally, these methods are highly reliant on the quality of intra-
patient CT-MRI registration, which can be complex due to anatomical variations between
acquisition sessions (MRI and CT), especially in the pelvic area. Furthermore, they depend on
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the inter-patient registration of the MRI base with the patient's MRI. As a result, atlas
methods are not robust when significant anatomical differences exist between the patient
and the images used for the atlas database.

Synthetic-CT generation using model-fitting approaches

Synthetic-CT generation methods based on model-fitting, or statistical learning techniques,
have the following objectives: 1) to model the relationships between CT HU values and MRI
intensities of a training cohort using algorithms, and 2) to apply these algorithms to a new
MRI image, the target, in order to predict the corresponding HU values for the sCT.

Kapanen et al.[44] were the first to employ polynomial regression in generating sCTs, as
documented in the literature. To minimise variations in patient positioning between the two
modalities, bone registration was utilised to align the MRIs and CTs. Subsequently, the pelvic
bones were delineated on the CT images, and regions of interest (ROls) were manually placed
on these delineations (small spheres with a few millimetres in diameter) and propagated onto
the MRI images. The image database was then divided into a learning cohort and a validation
cohort. A second-order polynomial regression was employed to establish the relationship
between CT and MRl intensities within the pelvic bone. This regression was trained using ROIs
derived from the CT and MRI scans in the training cohort. To generate the corresponding sCTs
for the MRIs in the validation cohort, the regression model was applied to the pelvic bones in
the MRIs, assigning an electron density of 1 (0 HU) to other tissue types.

To enhance the outcomes of the aforementioned study, Korhonen et al.[45] proposed the
inclusion of manual soft tissue classification into three classes (muscle, urine, fat), in addition
to the regression model.

According to the authors, the dosimetric results appeared satisfactory. However, one
drawback of this method is the placement of ROIs and the manual segmentation of bony
tissues, which are time-consuming and not highly reproducible due to inter-observer
variability, particularly for anatomies more complex than the prostate.

Patch-based methods, originally developed for image segmentation[46], have more recently
been proposed for sCT generation[23], [24], [26], [28], [29]. These methods can be
categorised into two types:

1- Approaches that involve non-overlapping partitioning of MRI-CT images from a
training cohort, followed by a step to model the relationships between MRI and CT
intensities.

2- "Non-local mean" approaches.

Both of these methods require a multimodal intra-patient CT-MRI registration and a
monomodal inter-patient MRI registration of the learning cohort.

The first approach involves calculating image descriptors from the MRI scans of the cohort.
These image descriptors, along with their corresponding CT scans, are divided into non-
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overlapping patches. Patches located at the same position for each patient are grouped
together to form a stack. Algorithms are then trained on these stacks to establish the
relationships between MRI and CT voxels at specific locations. These trained models are
subsequently applied to the patient's MRI to generate the corresponding sCT. Huynh et al.
were the first to propose this methodology for sCT generation[28]. Structured random forests
were used as the algorithms to model the relationships between MRI and CT voxels using
image and CT descriptor stacks. These models were then applied to the patient's MRI to
generate their sCT. The evaluation results of the generated images were found to be
consistent with those reported in the literature, although no detailed dosimetric studies were
conducted as part of this work.

The second approach employs sliding windows to extract patches from MRI and CT images
with overlap. The MRI and CT images are registered using affine transformations, both from
the training cohort and the patient's MRI. Patch extraction is limited to the surrounding area
of the current voxel. For a specific patch from the patient's MRI, the k nearest patches from
the MRIs in the training cohort are selected based on Euclidean distance. The CT patches
corresponding to these selected patches are combined to generate the sCT. Andreasen et al.
introduced this methodology for sCT generation in the pelvic region and brain[23], [29].
Largent et al. [40] (Figure 1.5) went further by including a multipoint-wise aggregation
scheme to generate the sCT patches.

The advantage of patch-based methods is that they can generate accurate sCTs without
requiring complex inter-patient deformable registration. By using affine registration instead
of deformable registration, patch-based methods are computationally less intensive
compared to atlas-based methods. However, the effectiveness of these approaches relies on
the quality of the affine registration and the efficiency of the k-nearest neighbour search
method employed. Additionally, the quality of the deformable intra-patient CT-MRI
registration also impacts the performance of patch-based methods. It's important to note
that the computation time for patch-based methods is still too high to allow real-time dose
calculation in a standard radiotherapy workflow or adaptive radiotherapy.
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Figure 1.5:Patch-based method workflow for synthetic-CT generation from MRI. (Figure from Largent et al.,
published in “International Journal of Radiation Oncology, Biology, Physics” [40]) The building part involves
training an approximate near-neighbour model using patches from the training CT and MRI (steps 1-3). In the
application part, the trained model is used to generate a pseudo-CT from a test MRI (step 4).

Synthetic-CT generation using deep-learning models (DLMs)

Deep learning is a subcategory of machine learning methods. However, due to the growing
interest in these approaches, the generation of synthetic-CT using deep learning-based
models will be treated separately.

Artificial intelligence (Al) encompasses techniques that seek to automate cognitive tasks
performed by humans using machines. Statistical learning or machine learning is a subset of
Al. The process consists of a learning phase and an application phase.

During the learning phase, the model's optimal parameters are iteratively determined using

relevant data and optimisation algorithm such as the Adam optimization algorithm. This data
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is extracted from a dataset that is relevant to the problem being solved. The goal of this phase
is to optimise the model for subsequent application to new data in order to perform the
desired task.

Neural networks are a specific type of machine learning method that aims to mimic the
functioning of the human brain. These networks are composed of interconnected artificial
neurons, which are mathematical functions. When these neurons are connected, they enable
the network to carry out tasks in a similar way to biological neurons and synapses. The
architecture of a neural network refers to how these artificial neurons are connected to each
other.

Input layer Hidden layers Output layer

-

Artificial neuron

Figure 1.6: Multilayers perceptron architecture

Figure 1.6 illustrates the architecture of a neural network known as a multilayer perceptron,
which is the most well-known architecture. The first layer of this network reads the input
data, which are the explanatory variables of the model. The hidden layers capture the
relationships between the input data and the data to be predicted. The output layer
represents the result of the network, providing its prediction or estimate of the data to be
predicted.

Input neurons

Xo weights

Wo

(- Activation function
wq [ \
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1 /
> output

w2

X2

Figure 1.7: lllustration of an artificial neuron
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Figure 1.7 presents a mathematical representation of an artificial neuron. The signals x,, x;
and x, represent the neuron's input data, which come from the previous layers. These signals
are weighted by w,, w; and w, respectively. During training, these weights are adjusted to
enable the network to effectively predict the output data. The weighted sum of these signals
Y.i(w;x;) is calculated by adding a bias term b. An activation function f is then applied to the
result of this sum to obtain the neuron's output data. This activation function represents a
threshold at which the neuron emits an output signal.

Deep learning is a category of neural networks that utilise a large number of hidden layers.
These algorithms have recently been proposed for generating sCTs from MRIs used in
radiotherapy[1], [12]. One advantage of deep learning methods is that they do not require
deformable inter-patient registration. However, in most cases, they still rely on multimodal
intra-patient CT-MRI registration[47].

The state of the art of dose calculation methods from MRI images using DLMs will be
presented here in the form of an article. This article, published in the journal Physica Medica
in 2021, was written in collaboration with Marion Boulanger and Safaa Tahri.

As part of this review, | was involved in collecting and sorting the publications presented,
while examining the metrics used in these studies. | also revised the manuscript.
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Introduction planning. sCT (or pseudo-CT) is a synthetic image in Hounsfield Units

In radiation therapy, computed tomography (CT) is the standard
imaging modality for treatment planning. Magnetic resonance imaging
(MRI) iz a complementary modality to CT providing better soft-tissue
contrast without irradiation. MRI improves the delineation accuracy of
the target volume and/or organs at risk (OARs) in the brain, head-and-
neck (H&N), and lung or prostate radiotherapy [1-3]. However, MRI
does not provide information on the electron density of the tissue, re-
quires for accurate dose calculation. Most of the literature has proposed
the generation of synthetic-CT (sCT) images for MRI-based dose

* Corresponding author.
B-mail address: jean-claude nunes@univ-rennes] _fr (J.-C. Nunea).
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(HU) generated from MRI data.

The methods for generating sCTs can be divided into three cate-
gories: bulk density, atlas-based and machine learning (ML) methods
(including classical ML methods and deep learning methods [DLMs]).
The bulk density methods consist of segmenting MRI images into several
classes (usually air, soft-tissue, and bone). Each of these delineated
volumes iz assigned a homogeneous electron density, and the dose can
then be calculated. Thiz method has several drawbacks: it is tedious,
time-consuming, operator-dependent, and does not consider tissue
heterogeneity [4-2]. The atlas-based methods involve complex, non-
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rigid regisrations of one or zeveral co-regiztered MRI-CT atlazes with a
target MBI Thiz registration step iz followed by a fusion step to generate
the 3CT. The drawbacks of this method are the lack of robusmess in the
case of large anatomical variations and the need for computationally
intensive pairwise registrations [4,5,9,10]. Among the classical ML
metheds, the pateh-based methods (zuch az [4]) can be decompozed into
four steps. The first step iz interpatient rigid or affine registration with
MR images. Theze methods involve inter-patient registration, feature
extraction, and patch partitioning during the training step. The training
patches closest to the patches of the target MBI are then szelected for
aggregation to generate the sCT [4]. The main drawbacks of thiz method
are the imprerize interpatient registration and caleulation time.

DLMs are models comprising multiple processing layers that learn
multiscale representations of data through multiple levels of abstraction
[11]. These methods have recently been introduced in radiotherapy for
applications, including image segmentation, image processing and
reconstruction, image registration, treatment planning, and radiomics
[12-19]. DLMs have been proposed for =CT generation from MRL They
were trained to model the relationships between HU CT values and MRBI
intensities. Once the optimal DL parameters are estimated, the model
can be applied to a test MRI to generate itz corresponding sCT. DLMz
have the advantage of being fast for sCT generation, and some do not
require deformable inter-patient registration (only intra-patient regis-
tration) such asz in [20].

Two reviews, both published in 2015, have already summarized sCT
generation methods from MRI [21,22], they focosed only on the bulk
denszity, atlas-bazed, and woxel methods and did not include recent
DLMz. Other studies have listed sCT generation methods from MRI in the
context of MR-only radiotherapy [2,23-25]. More recently, Wang et al.
[26] proposed a review on medical imaging synthesiz uzing DL and
Spadea and Maspero et al. [27] a review on 3CT generation with DLM
from MR, CBCT and PET images.

Thiz study aimed to review literature studies using DLMs for MRI-
based doze calculation in radiation therapy. This paper reviews the DL
networks (with the loss functions), the image and dose endpoints for
evaluation and the results per anatomical localization.

Materlals and methods

We searched the PubMed and ScienceDirect electronic databaszes
from January 2010 to March 2021 (date of first online releaze) uzing the
following keywords: “deep learning”, “substitute CT™ ar “peeudo CT" or
“eomputed tomography substitute” or “synthetic CT", “MRI" or "MR" or
“magnetic resonance imaging”, “radiation therapy” or “radiotherapy”.
Mezh terms uzed in PubMed were: “radiotherapy™, "Magnetic Resonance
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Imaging”, and “deep leamning”. The search string on PubMed was: “MBI"
AND “radiotherapy™ AND ("GAN" OR “"CNN" OR “deep learning™ OR
“machine learning” OR "U-Net" OR "neural network”™) NOT “radiomics™
NOT “chemotherapy™ NOT “brachytherapy™ NOT "Positron Emiszsion
Tomography Computed Tomography™ NOT “chemoradiotherapy™ NOT
“segmentation” NOT ‘reconstruction”. We only retained original
research papers (no abstract, no review paper) that reported data ob-
tained from humans, were written in English, and addressed DL sCT
generation from MRI in radiotherapy.

For each paper, we screened: anatomical localization, MR device, MR
sequence, pre or post-treatment, use of registration, number of patients
included in the study, type of DL network, loss functions, number of
patients for training step, number of patients for evaluation step, main
image and dose evaluation results. Tables per anatomical localization
(brain, H&MN, breast-liver-abdomen, and pelviz) were created to compile
theze information

Results

Fig. 1 summarizes the number of DL studies for sCT generation from
MRI in radiation therapy per year and anatomiecal localization. The first
study was published in 2016 [25] and, at the time of manuseript sub-
miszion, a total of 57 article:r meeting the selection criteria had been
publizhed. Some stodies investigated =CT generation for zewveral
anatomical localizations [20-33].

In total, 24 studies were based on brain data, 9 on H&N data, 2 on
breast data, 3 on liver data, & on abdomen data, and 18 on pelvic data.

A. Common deep learning networks for sCT generation from MRI

Deep learning, as a mainstream of ML method, uses trainable
computational models containing multiple proceszing components with
adjustable parameters to learn a representation of data. Many DL
network architectures have been developed, depending on specific ap-
plicationz or learning data. Several reviewz hawve detailed the DL
network architecturez for radiotherapy or medical imaging
[12,26,27 34-37]. The DL architecture for sCT generation from MRI can
be roughly divided into two claszes: generator-only and generative
adwversarial network (GAN) and itz variantz (such conditional-GAMN,
Least square GAN and cyele-GAN). Fig. 2 shows the hierarchy of the
DL architectures.

1. Generator-only models

1. Baszie concepts of convolutional neural networks (CMNM)

2031

Year

Abdomen B Pelvis

Fig. 1. Mumber of publications on deep learning methods for symthetic-CT generation from MR in radiation therapy per year and anatomical localization. *:

ongoing year (to March 2021), number of studiea at the time of publication.
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Fig. 2. Hierarchy of deep learning architecturen.
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For image applications, a convolutional neural network (CNN, or
ConwMet) iz a popular class of deep neural networks uzing a set of
convolution kernels/filters for detecting image features. A CNN consists
of an input layer, multiple hidden layers and an output layer. The hidden
layers include layers that perform conwvolutions with trainable kernels.
MNonlinear activation functions (Rectified Linear Units (RelU) [35],
Leaky-RELU [32], Parametric-RelU (PrelU) or exponential linear unit
(ELLI) [407) play a erucial role in discriminative capabilities of the deep
neural networks, The RelU layer preserves the input otherwise is the
most commonly used activation layer due to itz computational
simplicity, reprezentational sparsity, and linearity. It iz commeonly to
periodically insert a pooling layer between successive conwvolutional
layerz in a CMM architecture. Pooling layers allow to reduce the
dimension (subsampling) of the feature maps. Thesze maps are generated
by following the convolutional operations. The pooling methods per-
forms down-sampling by dividing the input into rectangular pooling
regions and computing the average, the maximum, or the minimum of
each region represented by the filter (mean pooling, max-pooling, min-
pooling). Batch normalization [41] layers are inzerted after a convolu-
tional or fully connected layer to improve the convergence of the loss
function during gradient descent (optimizer). It prevents the problam of
vanishing gradient from arising and significantly reduces the time
required for network convergence. After several comvolution and pool-
ing layers, the CMN generally ends with several fully connected layers.
Dropout iz one of the most promising techniques for regularization of
CMM. Softmax layer is typically the fAnal cutput layer in a neural network
that performs multi-class claszification (for example: object
recognition).

ii. Generator-only models

The generator model can be considered as representing a complex

(cGAN)

cycleGAN

end-to-end mapping functicn that transforms an input MR image to its
to minimize an objective function called a loss function (woxel-wisze loss
function Lg), which iz an intensity-baszed similarity measurement be-
tween the generated image (2CT) and the corresponding ground truth
image (real CT). Fig. 3 prezents the global architecture of generator-only
maodel.

In 2CT generation from MRI, the generator architectures are gener-
ally based on conwolution encoder-decoder networks (CED). In the
literature, the variantz of generator model include deep CED network
[42], deep embedding CMN (DECNN) or Embedded Net [30], fully
convolutional network (FCN) [28], U-Met [20,42-57 56.58,59], efficient
CNM (eCNN) model [60], ResMet [61], SE-ResMet [61,62], and Densze-
Met [63]. Fig. 4 presents some architectures of CED-bazed generators
(Fig. 4).

The CED network consizts of a paired encoder and decoder networks.
CED hawve been extensively used in DL literature thanks itz excellent
performance. In the encoding part, low-level feature maps are down-
zampled to high-level feature maps. In the decoding part, the high-
lewel feature maps are upsampled to low-level feature maps using the
transposed convolutional layer to construet the prediction image (sCT).

The encoder network uses a set of combined 2D convolution Altering
(no dilated convolutions) for detecting image features, followed by
normalization (instance [66] or batch normalization [41]), a nonlinear
activation function (RelU [35], LeakyRELU [39], or PrelU), and max-
pooling.

The decoder path combines the feature and spatial information
through a sequence of symmetrical transpose convolutional layers (up-
convelutions), up-sampling operators, concatenate layer (concatena-
tionz with high-resolution featurez), and convolutional layers with a
RelU activation function.

The most well-known and popular CED wvariants for biomedical
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image applications is the U-shaped CNN (U-Net) architecture proposed
by Ronneberger et al. [67]. The U-Net [67] has a CED structure with
direct skip connections between the encoder and decoder. Han et al.
were the first to publizh a sCT study with a U-Net architecture [44] that
is similar to Ronneberger's model. This 2D U-net model directly learns a
mapping function to convert a 2D MR grayscale image to its corre-
sponding 2D sCT image. Han et al. study [44] differs from the original U-
net since the three fully connected layers were removed. Thus, the
number of parameters is reduced by 90%, and the final model is easier to
train. In Wang et al. [46], the U-net model used batch normalization
[41] and leaky ReLU, which was different from the classical U-net [67].

The DECNN model proposed by Xiang et al. [30] is derived by
inserting multiple embedding blocks into the U-net architecture. This
embedding strategy helps to backpropagate the gradients in the CNN
and also provides easier and more effective training of the end-to-end
mapping from MR to CT with faster convergence.

The efficient CNN (eCNN) model [60] was built based on the
encoder-decoder networks in the U-Net model [67] where the con-
volutional layers were replaced with the building structures (aiming at
extracting image features from the input MRI).

Some generative models use dilated convolutions called “atrous
convolution” (rather than conventional convolutions) that expands the

receptive field without loss of resolution or coverage [65]. Wolterink
et al. [68] used a dilated CNN capturing larger anatomical context to
differentiate between tissues with similar intensities on MR.

The ResNet architecture [5]1] has three convolutional layers (con-
taining convolution operations, a batch normalization layer, a ReLU)
activation function, followed by nine residual blocks (containing con-
volutional layers, batch normalization layers, and RelLU activation
function) with fully connected layers. HighRes-net [69] consists of a
CED architecture with residual connections, normalization layers, and
rectified linear unit (RelLU) activations [38] using high-resolution
ground truth (no pooling layers) as supervision with few trainable pa-
rameters [43]. The atrous spatial pyramid pooling (ASPP) generator
[56] employs atrous or dilated convolution and iz implemented in a
similar U-Net architecture. The ASPP module permits a reduction in the
total number of trainable parameters (almost divided by 4).

FCN better preserves the neighborhood information in the generated
sCT images [20]. Compared to the conventional CNN, the pooling layers
are not used in this task of image-to-image translation [28]. FCNs can
simplify and speed network learning and inference and make the
learning problem much easier. However, Fully connected layers are
incredibly computationally expensive.

The deep CED network [42] consists of a combined encoder network
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reader io referred to the web of thia article.)

(the popular Visual Geometry Group [VGG] 16-layer net model) and a
decoder network (reversed VGG16) with multiple symmetrical shortcut
connections between layers.

Twenty-nine state-of-the-art sCT image generation methods have
adopted a generator-only network [20,28.30 42-57,70-79]. The loss
functions Lg evaluating sCT and real CTs used in these generative models
are:

« the mean square error (MSE), the L2-norm, or the EBuclidean norm:
only for sCT [20,42.46,47,55,57,78], for sCT and embedding blocks
[30],

« the mean absolute error (MAE), mean absolute deviation (MAD), or
L1-norm [43-45,49,52,53.70,71],

# a combined MAE and MSE loss [42],

» perceptual loss [20] based on VGG (the output of the 7th VGG16
convolutional layer).

The use of L2 distance as a loss function tends to produce blurry
results. Perceptual loss is used to capture the discrepancy between the
high frequency components within an image.

One limitation of generative models based on CNN is that they may
lead to blurry results due to generally misalignment between MR and CT
[80].

2. Generative adversarial network (GAN)

The following section summarizes GAN-based architectures to
generate sCT from MRI. We introduce the GAN architecture and three
most popular GAN-based extensions: least squares-GAN, conditional-
GAN, and cycle-GAN.

i) GAN

The adversarial learning strategy was proposed by Goodfellow et al.
[81] to generate better sCT images than previous generator-only models.
The original way is to simultaneously train two separate neural net-
works (Fig. 5), the generator G (one of the generator-only models
described in i) and Fig. 4) and the discriminator D. These two neural
networks form a two-player min-max game where G tries to produce
realistic images to fool D while D tries to distinguish between real and
synthetic data [21,82]. Compared to generator-only models, GAN
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introduces a data-driven regularizer, the adversarial loss, to ensure that
the learned distribution approaches the ground truth.

In the original version [21], the discriminator and generator are
implemented as multilayer perceptrons (MLPz) and more recently
implemented as CNNs. The architecture of the generator iz often the
conventional U-Net. Another proposed generator architecture in a GAN
is ResNet [62] which is easy to optimize and can gain accuracy from
considerably increased depth. The discriminator of the GAN [21] con-
sists of six convolutional layers with different filter sizes but the zame
kernel sizes and strides, followed by five fully connected layers. ReLU
was used as the activation function and a batch normalization layer for
the convolutional layers. The dropout layer was added to the fully
connected layers, and a sigmoid activation function was used in the last
fully connected layer.

The discriminator used in [64] a convolutional "PatchGAN" classifier
(markovian discriminator) models high frequency image structure in
local patches and only penalizes structure at the scale of image patches.

Using adversarial loss Lp, the classical GAN model can generate high-
quality sCT images with less blurry results (29 507 than generator-only
models. The discriminator tries to maximize it while the generator triez
to minimize it

In this review, six studies used classical GAN-based architectures to

270

generate sCT from MRI [20,29 62,7705 24]. The overall loss functions
intergrating the adversarial loss function Lp and evaluating sCT and the
original CTs used in these GANs are :

e L2-norm alone [20,84],
« perceptual loss [20 23] and the multiscale perceptual loss [20].

The adverzarial loss function Lp of the discriminator used in these
GANs was generally the binary cross-entropy [29].

Perceptual regularization, used by Largent et al. [20], helps to pre-
vent images over-smoothing and loss of structure details. The perceptual
loss functions are bazed on high-level features extracted from pre-
trained VGG network (7th VGG16 in [20]).

As shown by several studies [29,62.85], (1) the adversarial network
prevents the generated images from blurring and better preserve details,
especially edge features; (2) the accuracy of sCT within the bone region
is increased; and (3) the discriminator detects patch features in both real
and fake images, mitigating misregistration problem caused by an
imperfect alignment between multi-parametric MRI and CT. General
convergence in GANs is heavily dependent on hyperparameter tuning to
avoid vanishing [96] or exploding gradients, and they are prone to mode
collapse. To tackle the training instability of GANs, a plethora of
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extenzions and subclaszes have been proposed.
ii} Least Squares-GAMN (L5-GAN)

Most GANs use the binary cross-entropy as the dizeriminator loss
funection. However, this cross-entropy loss function leads to the zatura-
don problem in GANz learning (the well-known problem of vanizshing
gradients [26]). Least square loss function strongly penalized the fake
samples away from decision boundary and improve the stability of
learning process. Mao et al. [87] adopted the least-squares loss function
for the dizeriminator and showed that minimizing the objective function
n\t’LE-Gﬁ.NmiujmizesﬂlePemnnf divergence [08]. Emami et al. [62]
replaced the negative log-likelihood objective with a least sguare loss
function (L2 loss), which was more stable during training and generated
better 2CT quality.

iii) Conditional-GAN (cGAN)

Sinee the original GAN allows no explicit control on the actoal data
generation, Goodfellow et al. [21] proposed the conditional GAMN
(eGAMN) to incorporate additional information such as class labels in the
synthesis process. cGAN iz an extension of the GAN model in which both
the generator and the diseriminator are conditioned on some additional
information. The sCT image output iz conditioned on the MR image
input

Different generator architectures in a oGAN have been proposed,
incloding SE-ResMet [61,62], DenseNet [63], U-Met [56,5859],
Embedded Met [30], and the atrous spatial pyramid pooling (ASPP)
methad [56]. Fetty et al. [29] evaloated four different generator archi-
tectures: SE-ResNet, DenseMet, U-Net, and Embedded MNet in a cGAN to
generate sCT from T2 MRI. Olberg et al. [56] explored two generators:
the conventional U-Net architecture implemented in the Pix2Pix
framework [64] and the ASPP method [90,91]. The discriminator of the
GAMN framework was zimilar in both implementations.

Twenty studies uzed a cGAM architecture to generate sCT from MEI
[31,33,50,566-59,88,80,02-101]. The overall losz functions Lg imter-
grating the adverzarial loss funetion Lp and evaluating sCT and real CTz
used in these eGAMs were az follows:

# adverzarial losz function (binary cross entropy) [59,101],

¢ L1-norm (MAE) [92],

# least squares loss function (L2 loss) [85,101],

« mutual information (MI) [52 597,

# focal regression loss [102] uzed in [99],

& the combination of adversarial (binary eross-entropy) and L2-norm
[561,

« the combination of L1-norm and PatchGAN loss (as proposed by Isola
et al [54]) uzed in [50,59,93],

# the combination of adversarial (binary cross-entropy) and term
derived from the log-likelihood of the Laplace distribution [95],

# the combination of Lp-norm, adverszarial and gradient [337],

# the combination of multizeale L1-norm, L1 norm and PatchGAN loss
[64] n=ed in [88].

The loss functions Ly of the dizcriminator evaluating sCT and real
CTz uzed in these c¢GANz areas followes:

# the mostly used
[56,58,59,88 93],
# least squares loss function (L2 loss) [52,94,101],

# Ll-norm [101].

adversarial losz (binary cross  entropy)

The L2-based loss function of the generator can cause image blurring.
To alleviate blurriness and improve the prediction accuracy, the L1
norm [46] makes the learning more robust to outliers in the training
data, such as noise or other artifacts in the images or due to imperfect

7
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matching between MR and CT images. The Markovian Dizcriminator
losz or Patch-GAMN loss [64], which can be understood as a form of
texture,3cyle loss, effectively models the image az a Markov random
field, azssuming independence between pixel: zeparated by more than a
patch diameter.

Pix2Pix proposed by Izola et al [64] iz a sucecessful eGAN variant for
high-regolution image-to-image translation. Pix2Pix model generally
uzes Unet generator and PatchGAN dizcriminator. Az investigated by
Izola et al [54], the use of a loss function based on L1 alone leads to
reasonable but blurred results; while cGAN alone leads to sharp results
but introduces image artifactz. The authors showed that training in an
adwersarial setting together with an L1 norm generated sharp images
with few artefacts (tissue-clazsification errors, ezpecially for bone and
air differentiation).

In Hemsley et al. [95], the L1 term in cGAN loss function [64] is
replaced by a term derived from the log-likelihood of the Laplace dis-
tribution to capture data dependent uncertaingy.

To overcome ME/CT registration izzues, Kazemifar et al [58 59]
uzed a generator loss function bazed on the MI in eGAM. The MI loss
allows the cGAN to uze unregisterad data to generate 2CT and seems to
accurately diztinguish between air and bone regions.

Instead of the usual eross-entropy Ly loss in eGAN, Mao et al. [87]
recommend the guadratic version of the least square GAMN. Olberg et al.
[56] evaluared a Pix2Pix framework with two different generators: the
conventional U-net and a proposed generator composed of stacked en-
coders and decoders zeparated by dilared convolutions applied to in-
creasze rates in parallel to encode large-scale features. The overall loss
function was composed of adversarial (sigmoid cross-entropy) and MAE
loszez.

Twelve studies uzed a Pix2Pix architecture
[31,50,56,88,80,02-94 97,98,101,103]. Mo=t of these Pix2Pix frame-
works used only one MBI zequence az input and generated one sCT as
output (called single-input zingle-output, SI50). A variant of Pix2Pix
architecture proposed by Sharma et al [103] iz multi-input and
multiple-output (MIMO) combining information from all available MRI
zequences and synthesizes the missing onesz.

One of the main advantages of ¢GAMz iz that the networks learn
reasonable image-to-image translations even if the training dataset size
iz small. However, oGAN: require coregistered MR-CT image pairs for
training except with MI az losz function [53,59].

iv) Cycle-GAN

For image-to-image tranzlations between two modalities, the prin-
ciplez of the eycle-GAN are to extract characteriztic features of both
modalities and discover the underlying relationship between them
[104]. The cycle-GAM involved two GANsz: one to generate 2CT from MRI
and a zecond to generate sgynthetic-MRI (sMRI) from =CT (the output of
the first GAN). Theze dual GAMz leamn zimultanecusly and a cyclic loss
funetion minimizes the discrepancy between the original CT and the =CT
obtained from the chained generators.

Cyele GAN-based framework does not require paired MBI/CT images
[80,105]. Wolterink et al. [20] found that training using unpaired im-
ages could, in zome cases, outperform a GAN-model on paired images.

Eleven studies uzed a cyele-GAN architecture to generate =CT from
MRI [32,33,67,77,80,100,101,105-108]. The overall loas functions Lg
intergrating the adwversarial loss function Lp and comparing the gener-
ared =CT and real CT3 uzed in theze cyele-GAN: were:

# the combination of adverzarial loss (cross-entropy) and Ll-norm
[33,101],

# the combination of the adversarial loss based on cross-entropy, the
cycle consistency loss based on Ll-norm, and the structural consis-
tency losz based on L1-MIND [105] (the modality-independent
neighborhood dezcriptor, MIND, introduced in [1097),
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# the combination of L2-norm, adwversarial loss (binary cross-entropy),
the gradient difference losz and cyele consistency loss (bazed on L1
norm) [80],

» the combination of Lp-norm (mean P distance, MPD), adversarial loss
and gradient less [32,33,77,107].

Los= funetions Ly, of the discriminator used in eyele-GAN are:

# L2-norm (least squares lozs) [62] as proposed in [B7,110],
« MAD (Ll-norm) [32,77,101,107],
# Lp-norm (MPD) [102].

Since L2-based loss functions tend to generate blurry images and L1-
based losz functions may introduce tissue-classification errors, some
authors [32,33,77,107,108] used an lp-norm (p = 1.5) distance, the
MPD (Mean P distance). Using the MPD-bazed loss term, the authors alse
integrated an image gradient difference (GD) losz term (proposzed in
[207) into the lose function [32,33.77,107,102], to retain sharpness in
gynthetic images, which maintain zones with strong gradients, such az
edges. Cycle-GAM-bazed methods use MSE losz as distance loss function,
which often leads to blurring and over-smoothing.

B. Data for sCT generation from MRI

1. MRI/CT image preprocessing and post-processing

In eighteen studies an MRI bias correction
[20,30,32,33,43,44,47,49,78,83,80,92,94,101,105-108] was reported.
In [30.32 44 47], intensity inhomogeneity (or non-uniformity) correc-
tion was performed in all MR images uzing the N3 bias feld correction
algorithm [111,112] to correct the biaz field before training or synthesis.
Im [33,43,78,83,89,92,04 105-108], the authors reported that the in-
tensity inhomogeneity of the MBI was corrected using the N4 bias fleld
correction algorithm.

A 2D or 3D MRI geomerry cormection provided by the vendor waz
sometimes reported [49.57 70,105]. We can think that most of MR
images had a geometry correction, but that it was not mentioned.

In [30,33,78,23.94], all MR imagez were nommalized using a
histogram-based intensity normalization [113] to minimize the inter-
patient MR intenzity variation. Intenzity normalization was also uszed
in [30,32]. In [44], all MR images were then histogram-matched to a
randomly chosen template to help standardize image intensities across
different patients uzing the method described by Coxetal. [114]. All MR
volume: were normalized by aligning the white matter peak identified
by fuzzy C-means in [105]. In [49,101], histogram standardizations
performed using vendor-provided software (CLEAR) were applied az
provided by the vendor.

In the study by Mazpero et al. [93], the voxel intensity of CT was
clipped within the interval HU to avoid an exceszsively large dizeretiza-
tion step and the MR images were normalized to their 95% intensity
interval over the whole patient. All the images were converted to 8-bitz
to conform to the Pix2Pix implementation [54]. Before training, the air
cavities were filled in CT image: and bulk-assigned (—1000 HU) az
located in ME images using an automated method.

2. Troining dmto characteriztics

Compared to 2D CNN, 3D CNN can better model 3D spatial infor-
mation (neighborheod information) owing to the uze of 3D convolution
operations [28] solving the dizcontinuity problem across slices, which
are suffered by 2D CNM. However, the input type to DL models is mainly
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in 2D becausze fully 3D networks are much more difficult to train due toa
large numbers of trainable parameters and requires exponentially more
(GPU) memory and maore data [28 447, With the 2.5 D approach, Dinkla
et al. [70] added 3D contextoal information while maintaining a
manageable number of trainable parameters. Furthermore, dizcontinu-
itiez across slices present in 20 methods, were decreazed. Bezides, the
25D approaches [45,70,71] inelude average axial, sagittal, and ecronal
images az input to train the GNN. In 3D (patch-based) CNN [23,32], an
input MR image iz first partitioned into owverlapping patches. For each
patch, the CNN iz used to predict the correzponding CT patch and all
predicted CT patches are merged into a single CT image by averaging the
intensitiez of overlapping CT regions.

Most of the reviewed studies uzed one MREI zequence az input and
generated one =CT as output; an architecture generally called zingle-
input single-putput (SI150). Four zmodies used several MRI zequences as
input to generate one sCT in output [50,72 92 1037, these architectures
referred to as mult-input single-gutput (MIS0) [50.7 2,92, 103] or multi-
input multiple-output (MIMO) [103]. Moreowver, most studies uszed
training and evaluation data from one MBI device while eight studies
uzed mult-device MRI. One study reported uze of MRI data from
different centers [96] and two studies [55,29] used data from the Gold
Atlaz Data set [115]. Five studies uzed low MR field (0.35 T) az input
image= [31,33,56,73 89].

3. Training and evaluation of date zize

The studies included in thiz review used several training strategies
ineluding k-fold erosz-validation, single-fold validation, or leave-one-
out. In k-fold eross-validation, the datazet iz divided into k subsets,
and the holdout method iz repeated k times. Bach time, one of the k
zubzets is used as the test zet and the other k-1 subsets are combined to
form a training set. The average error across all k trials is then computed.
In single-fold wvalidation, the dataset iz separated into two sets, the
training and testing =zerz. The leave-one out strategy consizts on k-fold
cross-validation taken to itz logical extreme, with k equal to M, the
number of data patients in the zet.

Data size is a fundamental challenge for DL approaches. There is no
reported minimal or optimal data zize for DL training. In the head area,
four studies assessed =CT image quality az a function of the number of
available images for training, from 15 to 242 patients for Alvares Andres
etal [43], from 5 to 47 patients for Gupta [45], from 34 to 1356 patients
for Peng et al. [100], and from 1 to 40 patients for Maspero et al. [96].
Better image results were found for higher numberzs of available images.
A minimum of 10 patients seems to be needed since it has shown similar
performance than a training of 20, 30 or 40 patients. One effective way
to improve model robustmess iz to enhance the diversity of the training
datazet. Data augmentation iz eszential to teach the network the desired
invariance and robustness propertiez when only a few training zamples
are available. Ome common data augmentation technique [32 44 92] is
to apply random translations, rotations, zooms, and elastic deformations
and adding low-level random noize to training images.

C. Evaluation metrics

sCT evaluation can be performed in terms of intensity, geometric
fidelity, or dose metrice. A =CT evaluation was performed using
intensity-based metrics for all reviewed stodiez and through dose
criteria in 63% of the reviewed studies. The metries used in the reviewed
studies are listed in Table 1.



M. Boulanger et al Physica Medica 89 (2021) 265-281

Table 1
Imaging and dose metricz used for the evaluation of synthetic-CT g jon from MRL
Type of metrics Metric Definition Ideal value
Image Intersity-based ME: mean esror | OHU
evaluati i W-A-,E:“m—cﬂ
MAE: mean absolute error m_l ,lrc";-chl 0 HU
PSNR: peak to noise ratio Maximum of
peskien) m-mb,,.(%) =
SSIM: structural similarity metric (2,, M +c‘)(”q+c,) 1
MSE: mean square errar M-W"m*c'xm*m*m 0
= MSE - —E’,W,-ﬂ,)ﬂ
RMSE: rot mean square error - }‘{:’_‘W—cmﬁ 0O HU
NCC: normalized cross- ar R
P Nzua(xm ser)(lperls 3.2 = toer )
Scrdcr
Geometric fidelity DSC: dice score coefficient DSC = 2( 1
metrics
HD: Hausdocff distance H(pCTCT,.') mx(i(pcrcr.g).h(cr.q.pa)) O mm
MASD: mean absclute surface AR _a,_(s,,gs)za_(s.,s 0mm
Doszevaluation  Dose difference Voxed-to-voxel doge differences Difference b the dose distributi nputed on the refe CTandon O Gy or 0%
metrics the sCT
DVH difference Doge differences on DVH specific points (Daex, Drogy, etc), for a given 0 Gy or 0%
structure
Gamma analysis Mean gamma Value of the mean gamma 0
metrics Gamma pass-rate Percentage of pixels/voxels with a gamma value lower than | 100%
Abbreviati N: b ofvmh;m Mean square error; QQ: range of voxel value of sCT and refi CT; x: ref CT; y: 3CT; P mean value of x; By mean
value of y; 8,% vari ofrﬁ, i ot'y;C,andC,me:mtenedn(k,Q)’and(lrgQ)z'lquUvaheofd:emfmCT,l‘n\HUvahuof&eﬂ,ua\mm
mlznntynlueoftheufu!uecl' Mmeanml:nntynlneo‘thelﬂ Ocr and Oyt dard deviation of the refe CT and sCT; V: volume on CT and oCT; dave:
lid Sa: of the g I Sp: surface of the refl organ delineati
Brain H&N Liver o Abdomen Pelvis
120
100
D
2
80 ® O i
ORERRERY PR 3 ® =
o &
g Esl * > A
~ 60 (9] (o
w A
< ©° O B A
= z & A A
: syl
“ $
P A
20
0 |
S18  [19;40) >40 <18 (19;40] >40 | <13 [19;40] >a40 | 18 [19;40] >40
Number of patients
Fig. 6. Mean aboolute error (MAE) results for body b £ ﬂmdlﬂmdwtﬁaduphmnamzdwdforln@um‘ludmgthebnm,
H&N, liver, abdomen, and pelvis Each marker represent a study result. Full mark only models and empty kera g delo with
Mmmwmm:wmmu&mlsm lmdleamdudmgl9eo40 3 and studies including more than 40
i Red dotted lines rep dzemednnv:lnuTbgmndmvalnune:742HUfmdubnm,779HUme&N,nd42.4HUfo|-dmpelvn The zelected
valnenm!ntzdmd:eAdd:hanalnblulho4(Anp¢quxA).ﬂ'ot P ion of the refi to colour in this figure legend, the reader is referred to the web

wversion of this article.) 23



M. Boclanger et al. Physica Medica 89 (2021) 265-281
Brain H&N Abdomen Pelvis
40
30
20
=) ¢ 0
Ll
3z 10 % .
w ‘ PRI
P “ A
0 6] A
H
~mo 2}
-10
-20
<18 [19;40] >40 [<18 [19;40) >40 <18 [19;40] >40 [$18 [19;40] >40
Number of patients

Fig. 7. Mean error (ME) results between reference CT and sCT generated with a deep learning method for studies including the brain, head and neck, abdomen, and

pelvia Bach marker reprecent a study regult. Full marl

into three categories: studies including less than 18 p
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1. Intensity-based evaluation

Only three studies of sCT generation from MRI did not reported MAE
values (56,73 92]. Some articles reported MAE in bone or soft tizsue
while others reported MAE in anatomical structures such as the kidneys,
bladder, or rectum [20.45 47 76,88]. Fig. 6 summarizes the MAEs of the
studies on brain, H&N, liver, abdomen, and pelvis sCT generation from
MRI.

Eighteen studies reported mean error (ME) results. Fig. 7 details the
MEs of the studies on brain, H&N, abdomen, and pelvis sCT generation
from MRI. For the pelvis, three studies provided ME values for the
bladder, rectum and soft tissue [20.47 52]. Some studies have illustrated
MAE or ME for one or several slices. Such difference maps allow for
qualitative comparisons and spatial analyses.

The peak signal to noise ratio (PSNR) is the simplest and most widely
used fidelity measure (full-reference quality metric), which is related to
the distortion metric, the MSE. Twenty-two studies on sCT generation
from MRI reported PSNR rezults. Fig. & details PSNR results for the
brain, H&N, and pelvis sCT generation from MRI studies.

Four studies reported MSE values in the brain and pelvis. Only three
studies reported the root MSE (RMSE) value in the brain [92], the breast

only
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[56], and the abdomen [50]. Although the MSE is an attractive measure
due to its simplicity of calculation, MSE/PSNR can be a poor predictor of
visual fidelity in images [116].

More sophisticated measures have been developed to take advantage
of the known characteristics of the human visual system. Wang et al.
[117] proposed a structural similarity metric (S5IM) to capture the loss
of image structure due to variations in lighting (contrast or brightness
changes). The SSIM captures image distortion as a combination of three
types of distortion: correlation, contrast, and luminance.

2. Geometric fidelity evaluation

Geometric fidelity is based on delineated structures. Nineteen arti-
cles reported dice score coefficients (DSCs) between sCT and reference
CT for bone, air, or body structures. One study reported DSCs for the
bladder and rectum [47]. DSCs were between 0.85 and 0.99 for body
and were higher than 0.68 and up to 0.93 for bone structure.

Only two studies reported Hausdorff distance (HD) values for the
H&N area [79] and the pelvis [77]. Only one study reported mean ab-
solute surface distance (MASD) values for body, bone, bladder, and
rectum volumes [ 47]. Five studies reported normalized cross-correlation
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(NCC) values in the brain, liver, and pelvis [32,77,106-108]. The dose difference iz defined as the difference between the dose
The penultimate columns of Additional Tables 1, 2, 3, and 4 in Ap- distribution computed on the reference CT and the =CT. The dose dif-
pendix A list the image results of sCT generated from MRI. ference can be expressed as absolute value (Gy) or relative to the
reference dose (%).
3. Dose evaluation Several studies reported mean absolute dose error to express dose

In MRI-only workflows for radiotherapy, a sCT is generated to uncertainties and mean dose error to express systematic dose un-
perform dose calculation. In this context, studies have proposed dosi- certainties (47,49 50,7077 96.101]. Some studies have provided dose
metric evaluation of dose calculation from sCT with DVH, voxel-to-voxel differences using dose thresholds such as doses higher than 90% of the
dose differences or gamma index analysis. Most studies evaluated dose prescribed dose, while others have illustrated dose difference maps that
calculation with photon particles, while nine studies investigates sCT allow qualitative and spatial analyses.
dose uncertainties with protons [45 5559 .71.74 77 96,107,108].

vii) Gamma index analysis
v) Dose-volume histogram (DVH)
Gamma analyses allow spatial analysis (through gamma maps) of

DVH is a widely used tool in routine clinical radiotherapy. All dose distributions calculated from sCT compared to those calculated
treatment planning systems allow for the analysis of dose distributions from a reference CT [112]. Gamma analysis can be performed in two or
through DVHs. Twenty-two sCT studies reported dose differences at three dimensions. This analysis combines dose and spatial criteria.
DVH specific points. Eighteen studies reported mean dose differences in Several parameters need to be set to perform a gamma analysis,

selected volume (PTV, CTV, OAR). including dose criteria, distance-to-agreement criteria, local or global
analysis, and dose threshold. Interpretation and comparizon between
vi) Voxel-to-voxel dose difference studies of gamma index results are challenging because they depend on
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the chosen parameters, dose grid size, and voxel resolution [119]. The
gamma results can be expressed as gamma pass-rate (percentage of
pixels/voxels with a gamma value lower than 1) or mean gamma.
Twenty-eight articles reported gamma pass-rate results. Only one study
reported mean gamma values in the pelvis [20].

Fig. 9 summarizes the gamma pass-rate results between reference
doge distribution and sCT dose distribution for several anatomical lo-
calizations. The mean gamma pass-rates were above 89% for all locali-
zations and up to 100%, depending on gamma criteria.

viii) Specific metrics for proton dose calculation

Proton ranges along the beam paths were compared for doze distribu-
tions on the reference CT and =CT. In protontherapy, the range of the
proton beam strongly depends on the stopping power ratio (SPR) of a
given tissue relative to water, which can be determined using the elec-
tron density and effective atomic number through the Bethe-Bloch
equation. The range is defined as at the 80% distal dose falloff along
each beam direction. Several studies have reported the results of range
shift or range difference (in mm) per beam [45 55.71,108].

The last columns of Additional Tables 1, 2, 3, and 4 in Appendix A
summarize the dose results of the DL sCT generation studies for MRI
doge calculation.

D. Image and dose results per anatomical localisation

1. Brain

Twenty-four studies of the brain were performed between 2017 and
2021. Additional Table 1 (Appendix A) summarizes the DL networks and
the image and dose metrics results of these studies on brain sCT gen-
eration from MRI in radiotherapy. T1-weighted (T1w) sequences were
mostly used for generating sCTs 88% of the reviewed studies).

For sCT evaluation, all brain studies reported MAEs, which varied
from 44 to 129 HU for the whole brain (¥ig. 6). For the brain, the MAEs
for bone structure were above 174 HU and up to 399 HU in one study.
Koike et al. [92] trained a ¢GAN network with only a T1 sequence or a
combination of several sequences (T1w, T2w and FLAIR). The multi-
sequence training showed a decrease in MAEs results for the body,
soft tissue and bone (between —8 and -33 HU) [92]. Alvarez Andres
et al. reported MAE values for CNN and U-Net networks, with higher
values for the U-Net network than for the CNN network for the head (an
increase of 9 HU) [43]. They also investigated the influence of several
sequences (T1, T1-Gd, and T2 FLAIR images) as input in the CNN
network. The MAE values were higher with a FLAIR sequence as input in
the CNN network than those with T1 sequence (increase of 34 HU). The
MAE:s were alzo higher with contrast-enhanced T1-weighted MRI (T1-
Gd) than those for Tlw MRI (from + 3 to + 32 HU). Only four studies
reported ME values (44,4555 70], which ranged between —4 HU and
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13 HU for the whole brain (¥ig. 7). The PSNR values were above 24 dB
for all brain studies [29,30,32.57 62,72,80,96,97,105] (Fig. 8). The
D8Cs were above 0.96 for the body, 0.69 for bone, and 0.70 for air
structures [42 45 50.70.72]. For §SIM, values varied from 0.63 to 0.94
[57.62,72,96,105]. For NCC, two studies reported values of 0.96
[32,108]. Massa et al. [72] trained models on four different MR
sequence: CUBE-FLAIR, T1, T1 post contrast and T2 fatsat. No sequence
was statistically better on all the metrics (MAE, PSNR, SSIM, DSC).

Among the 24 brain studies, only 14 reported a dose evaluation
[42,45,45,48 55,58,59,70,04,92,96-98,108]. Five studies reported re-
sults for proton dose planning [455559,96,108]. All reported DVH
mean dose differences were below 2%
[42,45,48,59,70,84,92,96-98,108].

For most of the studies, gamma pass-rates were above 89% with the
most restrictive criterion (1%,/1 mm), and except for one study above
95% for other criteria (Fiz. 9). One study [55] reported a mean gamma
pass-rate of 89% with 2%/2 mm criteria. With the multi-sequence
training, Koike et al. showed an increase in gamma pass-rates (be-
tween 0.1% and 1.1%), compared to single sequence training [92].

2. Head and Neck (H&N)

Nine DL sCT generation studies were performed in H&N radio-
therapy. Additional Table 2 (Appendix A) summarizes the DL networks
and the image and dose metrics results of these studies. The MRI se-
quences used in the H&N sCT studies were T1 and T2. Four studies used
the Dixon reconstruction [49.50,70 1017,

MAE and ME metrics have been widely reported in the literature.
MAEs varied from 65 to 131 HU for the body or head structures (Fig. 6).
For the H&N, the MAEs for bone were above 166 HU and up to 357 HU
in one study [46]. Qi et al. [50] used multi-sequence input (T1w, T2w,
contrast-enhanced T1, and contrast-enhanced T1 Dixon water) images
to train a ¢cGAN. The multi-sequence training showed a decrease in MAE
for the body, soft tissue, and bone and an increase in PSNR, S5IM, and
DSC. They also compared cGAN and U-Net networks. With ¢cGAN and
single-sequence input, the MAE, PSNR, and DSC were higher than those
obtained using U-Net. For the body, the MEs were mostly around 0 HU,
above —6 HU and up to 37 HU (Fig. 7). Five studies reported ME for air,
bone, or soft tissue [9 46,4979 100]. For bone structure, MEs were
higher up to 247 HU. PSNR and 5SIM were only reported in two studies
[50,94]. The PSNR results were approximately 28 dB (Fig. &). The SS5IMs
were between 0.78 and 0.92. For bone structure, DSC valuez were be-
tween 0.70 and 0.89 [50,70,71.79,94].

DVH dose difference was performed in nine studies, with a mean
difference less than 1.6%. Klages et al. reported a mean dose (D) to
the parotid glands below 1% and the maximum dose (D) to the spinal
cord below 1.5% [101]. In the only one protontherapy study, the dose
differences reached 8% for some OARs [71].

The gamma pass-rates were above 95% for the most restrictive cri-
terion (2%/2mm) and above 98% for the other criterion (3%,/3 mm).
With the multi-sequence training, Qi et al. showed non-significant
gamma pass-rate results [50]. In the same study, they also found
higher gamma pass-rates for cGAN than for U-Net architectures.

3. Breast

Two DL sCT generation studies were carried out for breast radio-
therapy. Additional Table 3 (Appendix A) summarizes the DL networks
and the image and dose metrics results of the studies for breast sCT
generation from MRI in radiotherapy. These two studies were based on
MR images from a low field (0.35 T) MRI device.

Jeon et al. [73] only reported DSC values for two patients. Olberg
et al. reported a PSNR of 72 dB, an S5IM of 0.999, and an RMSE of 17 HU
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[56]. For dose results, they reported gamma pass-rate higher than 98%
with 2%6/2 mm criteria.

4. Liver

Three DL =CT generation studies were carried out for liver radio-
therapy. Additional Table 3 (Appendix A) summarizes the DL networks
and the image and dose metrics results of the studies for liver sCT
generation from MRI in radiotherapy.

Two of the three liver studies used T1 sequence. The MAEs varied
from 72 to 94 HU for body structure between studies. Fu et al. [33]
compared ¢GAN and cycle-GAN DLMz for data from three patients. The
MAE: were higher for cycle-GAN than for cGAN. The PNSR values were
above 22 dB. The NCC values were 0.92 in two liver studies [106, 1077,

DVH dosze difference were calculated in the three liver studies, with
the mean differences below 1%. In one study, the dose difference in
OAR:z was less than 0.6% [33]. The dose difference in PTV (Dgge,) was
lessthan 1.1% [106,107]. The gamma pass-rates were above 9096 for the
most restrictive criterion (1%/1mm) and above 95% for the other
criteria (Fig. 9). In the study by Fu etal. [33], the gamma pass-rates were
higher for a c<GAN DLM than those for a cycle-GAN DLM.

5. Abdomen

Six DL sCT generation studies were carried out for abdomen radio-
therapy. Additional Table 3 (Appendix A) summarizes the DL networks
and the image and dose metrics results of the studies for abdomen sCT
generation from MRI in radiotherapy.

Acquisitions were performed in breath hold inspiration for two
studies on 0.35 T MRI device (31 33].

The MAE:s varied from 55 to 94 HU for body structure between
abdomen studies. MAEs in lungs were 105 HU in two studies [74.76]. In
Florkow et al. [74], PSNR value was 30 dB and DSC values were 0,76 for
bone and 0.92 for lungs. Mean dose differences were lower than 1% and
gamma pass-rate above 98% in 2%,/2mm.

6. Pelvis

Eighteen DL =CT generation studies for the pelvis were performed
between 2016 and 2020. Additional Table 4 (Appendix A) summarizes
the DL networks and the image and dose metrics results of these studies.

Most MRI sequences in these pelvis studies were T2 sequences. T1
sequences [30,53 78] or Dixon reconstruction [52.54 93] were also used
to generate sCT from MRI in the pelvis.

The reported MAEs were 27-65 HU for body structure (Fig. 6) and
around 120 HU and up to 250 HU for bone [20,31 47 51, 53,78,99]. Fu
et al. compared training in 2D and 3D in four patients [75], reporting
higher MAEs for 2D than for 3D training (+2-5 HU). Largent et al.
compared U-Net and GAN networks with different loss functions [20].
With the L2 loss function, U-Net showed lower MAEs than those for
GAN. For all studies, the MEs were generally near to 0 HU for the whole
body structure (Fig. 7). One multicenter study reported an ME of —18
HU [28]. For the pelvis, the MEs in the bone were up to 141 HU in one
study [31]. The reported PSNRs were between 24 and 34 dB (Fig. 8).
Only one study reported SSIM in the pelvic area [75]. Only two studies
reported DSC for the body (0.85 and 0.99) [47.77]. The DSCs for bone
ranged between 0.70 and 0.93 [47.52,53.7578]. Only one study re-
ported a DSC for the bladder and rectum of 0.9 [47].

Among the 18 pelvic studies, only nine reported dose evaluations.
Liu et al. [107] performed proton dose planning. Most studies reported
dose differences below 1.5% for target volumes and OARs. Arabi et al.
reported maximum dose differences below 0.5% for the bladder and
rectum between 1.1% and 2.9% for the CTV and PTV. Some studies
reported a very low dose difference (less than 0.6%) for PTV, bladder,
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rectum, and femoral heads [20,51]. However, Liu et al. reported dose
differences up to 5% in the rectum and up to 11% in the bladder [77].

The gamma pazs-rates were above 59%: for the most restrictive cri-
terion and generally abowve 95% for the other eriteria (Fig. 9). In a study
using prostate data in training to generate sCT of the rectum and cervix
[03], the gamma pass-rates were around 91% for gamma criteria of 2%/
2 mm.

Discusslon

Thiz article reviewed deep learning methods used to generate sCT
from MRI in radiation therapy, and their associated image and doze
uncertainties. Two types of DL architectures are widely uzed; generator-
only, and GAN. The most recent DLMz were cGAMN and cyele-GAN. A
variety of metrics for image evaluation (image intensity and geometric
fdelity) haz been proposed. The median MAE resultz were 76 HU for
head localization (brain and H&N) and liver, and 42 HU for the pelvie
area. Doze evaluations consisted in DVH comparisons, voxel-to-voxel
dose differences, or gamma index analyses. The mean dose differences
were below 1% in the H&MN, liver, breazt, and pelviz sCT studies. In brain
sCT studies, the mean doze difference was below 2%. For most of the
smudies, the gamma paszs-rates were above 95% (with 2%,/2 mm and 3%/
3 mm criteria) (Fig. 9).

In radictherapy, the frst :CT generation methods from MRI were
bulk density and atlas-based. Other ML methods (non-DLM) have also
been investigated, including patch-based or random forese [10,1207.
This review focused on DLMs which are the most recent methods with
the first study in the pelvic area reported in 2016. Different neural
network architecturez have been uzed in the literature with multiple
parameters to be set. Compared to other =CT generation methods, DLM=
have fast computation times, and do not necessarily require deformable
inter-patient registration. sCT generation DLMs hawe just been
commercially available for a elinical use [79,121]. To our knowledge, no
open zource software iz available for =CT generation from MRI with a
DLM. Each research team has developed hiz own DLM with hyper-
parameter tuning. This review was not able to identify the most “accu-
rate” DL architecture. Although GAN DLMsz are the most recent, for now
they do not outperform generator-only DLMs (Figs. 6, 7, 2, and 9).
Moreover, we acknowledge that studies are not directly comparable due
to the great disparitiez in input data (imaging protocol, scanner pa-
ters, ete.), training cohort sizes, evalvation ecohort sizes, and
methods of evaluation. Same data should be used to directly compare
the resultz, such az data in open access from the Gold Atlaz Project
[115]. Two studies used these data [52.89]. Some studies directly
compared several DLMs with the same data (Additional Tables 1, 2, 3,
and 4 in Appendixz A). Bize of patient cohort (training + evaluation)
varied according to study and anaromieal localization (Addidonal Ta-
bles 1, 2, 3, and 4 in Appendix A). The median number of patients were
45 for the brain, 33 for H&N and 23 for pelvic localization. Studies
including few patients (lesz than 19) did not show the better results
(Figs. 6, 7, and 8). But studiez with more than 40 patients did not
outperform compared with studies with 19 to 40 patientz (Fig. G).
Training strategy depends on the number of available data. If you have
few data (lezz than 20 patient data), a leave-one-out strategy iz recom-
mended. Image quality of data training iz important. Image with arte-
factz must be removed of the training. A frst step of quality image
optimization (MR sequence or CT acquizition parameters) can be uzeful.

Although eyele-GAM or other networks do not require paired data for
training step, paired data are required for the evaluation step. For the
brain a rigid regizstration can be sufficient [32] but not for H&N or pelriz
area. Pew ztudies used unpaired data in training, even with cycle-GAN
[20,105] and with MI az los= function in GAN [52,59]. To have paired
data, a deformable registration is needed, with additional uncertainties.
Florkow et al. [52] quantified the uncertainties due to MRI-CT
registration.

To perform the evaluation, sCTs generated from MRI are compared

ra
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to reference CT. Even if the time between acquizitions iz kept as short as
paossible, MBI acquizition and reference CT can differ even after non-
rigid registration, due to gas wolatility and bowel loops displacement
in the abdomen, artifacts (teeth, hip prosthesis, Aiducials, contrast agent,
ete.) or internal movements (bladder and rectum filling) between CT and
MR images. Mazpero et al. [23] propozed to override gaz in the rectum as
in the reference CT and performed the imaging evaluation in the inter-
zection volume of the body contours (reference CT M 2CT). Cusumano
et al excloded some patientz from their studiez because of artifacts
(artificial implantz) or difference of air pocket locations between CT and
MR images [31].

Muost of studies reported global imaging evaluation metries, without

local or spatial analysis. Hemsley et al. [95] proposed a detailed =CT
evaluation with uncertainty heatmaps. Model: were proposed to
spatially quantify intrinzic and parameter sCT uncertainties [122]. With
thiz method, uncertainty maps are a second output of the DL network
[123]. Moreover, an analysis based on image gradient could be
performed.
i articles aimed to show accuracy of sCT generation from
MRI compared to a reference CT. In the future, we can imagine an MRI-
only workflow without any CT acquizition. In this caze, image evalua-
tion metrics without reference need to be developed. Before any use in
clinieal practice, commissioning and quality assurance process must be
implemented [124]. Practical guidelines on the uze of MRI for external
radiotherapy treatment planning were recently proposed by a multi-
dizciplinary working group of the Institute of Physics and Engineering in
Medicine (IPEM) [125]. This document overviews all the aspects of MRI
implementation for radiotherapy are described (MR safety, raining and
education, patient zet-up, MBI sequence, MR quality assurance, ete.).

To date, few DL studiez have been carried out on abdomen, liver,
breast, or H&N radiotherapy. Thiz limited number may be due to the
zmall number of patients undergoing MRI for liver or abdomen radio-
therapy compared to brain or prostate radiotherapy. Moreover, standard
acquisition of breast MRI iz not in radiotherapy treatment position.
Mumber of breast studies are increasing with the availably of MR ac-
quizitions from MRI-linac dewice. The lack of 3CT generation from H&MN
and abdomen MRI may be due to the complexity of these anatomiecal
localizations with the large part of heterogeneities. MRI in the treatment
paosition can be challenging for H&N acquizitions becausze specific coils
are used [33]. No study has yet investigated lung =CT generation from
MRI with DLM. Mowvement iz a huge challenge for MR imaging.

Sewveral MRI sequence:s have been uzed to generate sCT from MREI in
radiotherapy, with T2w sequences the most common. Some studies uzed
specific reconstruction techniques such az mDixon or FLAIR. The FLAIR
zequence iz an inversion-recovery nce. This nee improves the
detection of lesions of the cerebral parenchyma and enables visualiza-
tion of edemas. It also facilitates the detection of white matter pathol-
ogies (zoftening, demyelination process), which appear az hyperzignals.

Three studies investigared the impact of MISO, compared to a SIS0
[50,92,103]. MISO has the advantage of better tizsue description. Koike
et al. reported that MISO decreazed the MAE and improved gamma pass-
rate resultz compared to SIS0 [92]. Qi et al. used four zequences indi-
widually and combined them as input. The combination of sequences
improved the sCT accuracy and robustmess [50]. Sharma et al [103]
proposzed a MIMO method generalizing to any combination of available
and miszing MR sequence.

Muoreover, three studies evaluated the impact of generating a =CT
from a device other than the one uzed during training [28 89.95]. Such
“multidevice” or "multicenter” impact iz a key challenge to a commer-
cial development.

The emergence of linacs combining MRI in the treatment room (MRI-
linaes) increase the willingness of MRl-only workflow radiotherapy
[126]. Some reviewed studies already used DLM for sCT generation from
thiz dewice [31,33,56,73]. In thiz context, dose planning need to
consider the prezence of magnetic fleld, with the electron return effect
[127,128]. Moreover, on MRI-linac, an MR image iz acquired for each
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fraction. This image could be used to perform dose monitoring or
replanning with the use of a DLM, in the context of MR-guided adaptive
radiotherapy [129].

Conclusions

The emergence of DL allows the fast and accurate generation of sCT
from MRI in radiotherapy. In the literature, a variety of DLMs have been
applied, mainly for brain and pelvis cancer, and also for H&N and liver.
Each DL study has showed particularities in terms of hyperparameters or
loss functions. Different MRI sequences are used depending on the
anatomical location. Many metrics are used for image (voxel intensity
and geometric fidelity) evaluation of the generated sCT. The MAE results
were around 76 HU for head localization (brain and H&N) and liver, and
40 HU for pelvis. Dosimetric evaluation showed uncertainties below 2%
for brain radiotherapy and lower than 1% for H&N, liver, abdomen, and
pelvic areas. A better sCT quality was obtained with multiple inputs
compared to single input of a DLM. Key challenges of the sCT generation
for MRI in radiotherapy with DLMs is the standardization of =CT eval-
uation, and multicentrer impact.
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Discussion

Three categories of methods were analysed consecutively to calculate dose distribution on
MRI, as summarised in Table 1.2. Figure 1.8 illustrates the results obtained for each family of
methods applied to the same MRI of a female pelvis. The atlas and machine learning based
approaches involve the utilisation of a database of co-registered CT-MRI images (intra-
patient). Inter-patient image registration is also necessary in atlas methods. Bulk density
methods, on the other hand, can be directly performed using the patient's MRI. While all the
methods utilise standard MRI sequences, ultra-short echo time (UTE) MRI sequences, which
can differentiate between air and bone tissue, are also employed in bulk density and machine
learning approaches. Density assignment methods typically rely on the average intensity (in
HU values) of specific volumes of interest, calculated from a CT scan image database, while
Atlas-based methods incorporate intensity information and integrate spatial and shape
information for the volumes of interest. Machine learning methods, on the other hand,
employ image descriptors that capture texture and contour information in the
neighbourhood of each voxel.

Deep learning-based sCT generation methods employ convolutional neural networks (CNNs)
as model architectures, but recently transformers have demonstrated great potential in
image synthesis [48]. Hybrid networks, combining CNNs and transformers, have been
proposed to extract both local texture and global information [49]-[52]. The primary
advantage of transformers lies in their ability to better understand contextual information
compared to CNNs. However, they do tend to come with a higher computational cost and
require larger amounts of data.

Bulk-density and atlas methods have received fewer recent publications, suggesting that they
may be more challenging to improve and may struggle to compete with the performance of
DLMs. While deep learning methods show great promise, they heavily rely on the quality of
intra-patient registration within the learning cohort. Although cycle-GAN architectures have
the potential to avoid intra-patient registration [53], [54], recent studies using this
architecture still employ registered data to provide better results[54], [55]. Therefore, further
investigation is needed in this area.

Analysis of the literature raises several questions regarding the evaluation of improvements
of various methods for calculating dose from MRI. One key aspect that has not been
adequately addressed is the impact of different irradiation techniques (such as IMRT, VMAT,
SBRT, brachytherapy, proton therapy, etc.) on these dose calculation methods. Furthermore,
there is variation in MRI sequences and acquisition parameters across studies. Wang et al.[56]
compared the effect of different MRI sequences on a deep-learning based sCT generation
method (consistent cycle-GAN) for paediatric brain tumour, while Florkow et al. [57] were
interested in studying the influence of gradient echo—based contrasts on a 3D patch-based
neural network. But these evaluations are conducted on different datasets and are not
systematic. It would be valuable to establish multicentre image databases that allow for the
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evaluation of the proposed methods on standardised datasets using consistent validation
tools. This would facilitate the development of more generalised deep learning models and
enable better comparisons between different approaches.

There is also a notable methodological gap in the evaluation of different approaches[11].
Some studies focus solely on comparing CT-scan and sCT images, while others focus only on
dosimetric assessment.

All these studies based their evaluation on full reference metrics (i.e comparison with a
ground truth), as described in Boulanger et al.[1]. These metrics provide an insight into the
overall accuracy of the method but do not allow for the identification of the limitations of the
sCT generation approach. Additionally, they cannot be applied in a daily sCT quality assurance
process as no reference CT will be available in an MRI-only workflow.

o\v
2P

et g q f, A ‘ﬁ ,}

1 MRI Bulk Dens Atlas Based Deep Leamning

Figure 1.8: Example sCT comparison between 3 generation methods from a T1-weighted MRI of a female
pelvis. The columns show: the original MRI, the actual planning CT, a bulk density sCT, a multi-atlas based sCT,
and a conditional generative adversarial network (deep learning) based sCT. The rows show the axial, sagittal,
and coronal views from the 3D volumes. Figure from the book “Biomedical Image synthesis and simulation”,
chapter 20 [5].
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Table 1.2: Principle, advantages, and drawbacks of each category of dose calculation methods from MRI

Machine learning

(Including deep-
learning models
(DLM))

relationships between
the intensities of MRl and
CT voxels using machine
learning tools, then
applying the model to the
patient's MRI. The model
is established in 2 stages:
learning (generating the
model) and validation
(application to the
patient).

- Good accuracy of
estimated dose

- No inter-patient
registration (except
patch-based)

- Heterogeneity of
tissue density

Methods Principle Advantages Drawbacks
Manual or automatic - Simplicity of the - Highly operator-
delineation of volumes of | methodology dependent (manual
interest on the patient's delineation)

MRI, then assignment of - Time-consuming to
a density value calculate (automatic
. (electronic or physical) to delineation)
Bulk-density ] )
each region. - Segmentation errors
- Homogeneity of
tissue
- Less accurate dose
- Restricted to certain
locations
Pairwise mapping of a - Fully automated - High computation
learning database of CT method time
and MRI images to the - Good accuracy of the | - Sensitive to
patient's MRI, followed calculated dose anatomical
by CTs fusion. - Heterogeneity of dissimilarities
tissue density - Requires intra-
- Automatic patient deformable
delineation of multimodal
Atlas . . . .
volumes of interest registration and inter-
- Anatomical patient deformable
genericity registration of the
training cohort
- Uncertainty caused
by registration errors
- Smoothing of
intensities
Modelling the - Speed of execution - Requires intra-

patient registration
(multimodal) of the
training cohort, except
for non-supervised
DLM

- Large amount of
data needed
(especially for DLMs)
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Conclusion

MRI offers better contrast between soft tissues compared to CT imaging, making it a valuable
reference imaging modality for treatment planning. This advantage allows for more accurate
delineation of specific target volumes and eliminates the need for MRI-CT registration,
reducing associated errors. Currently, two treatment strategies incorporating MRI are being
explored. The first strategy involves replacing planning CT with planning MRI while carrying
out treatment using a standard LINAC. The second strategy involves treatment with an MRI-
LINAC machine, where an MRI scan is acquired before each irradiation session. In MRI-LINAC
treatments, ART strategies play a central role. It is planned that treatment plans can be
adjusted dynamically during each session based on the real-time anatomy, utilising a live ART
approach. Dose calculation based on MRI has thus become of interest and is a rapidly
advancing field in radiotherapy. The emergence of deep learning has enabled fast and
accurate generation of sCT from MRI. In the literature, various DLMs have been applied,
primarily for brain and pelvic cancer, as well as for head and neck and liver. Each deep-
learning study has demonstrated unique characteristics in terms of hyperparameters and loss
functions, and different MRI sequences are utilised depending on the anatomical location. It
has been observed that employing multiple inputs in a DLM vyields better sCT quality
compared to using a single input. One of the key challenges in sCT generation from MRI in
radiotherapy using DLMs is addressing the multicentre impact, as well as the standardisation
of sCT evaluation.

Indeed, multiple metrics are employed to evaluate the generated sCT, including voxel
intensity and geometric fidelity, but no consensus has been established in the scientific
community.

State-of-the-art of quality assessment methods

Overview

Quality assessment of images involves the evaluation and measurement of different aspects
related to the perceived quality, fidelity, and accuracy of images. It aims to assess the extent
to which an image accurately represents the original scene or meets specific criteria or
standards. Image quality assessment (IQA) can be approached through both objective and
subjective methods.

1- Subjective methods
In subjective IQA, human observers are presented with a set of images, which may include
reference images and distorted images in double stimulus approaches, or only distorted
images in single stimulus approaches. The observers are then asked to rate or rank the quality
of the distorted images according to their perceived visual quality. The ratings can be based
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on the overall image quality, sharpness, colour, accuracy, and artifact visibility. To ensure
reliable and consistent results, subjective assessments are often conducted under controlled
conditions. Multiple observers are typically involved to account for individual differences in
perception. The results of subjective assessments are often used to validate and refine
objective image quality metrics. By incorporating human perception, subjective assessment
ensures that the resulting images are not only technically accurate but also visually satisfying
to human observers. However, conducting subjective assessments can be time-consuming
and resource-intensive, requiring careful planning, coordination, and analysis.

2- Objective methods
Image quality assessment metrics are used to quantitatively evaluate the quality of images.
These metrics provide objective measures that assess several aspects of image quality, such
as sharpness, contrast, noise, and distortion.

Objectives metrics can be classified in 3 categories:

- Full reference metrics involve comparing a generated image with a reference image
considered as the ground truth. This comparison can be conducted through voxel-wise
difference or measures of distorting noise that affect the quality of image representation,
such as peak signal-to-noise ratio (PSNR). Human visual system (HVS) based methods,
such as visual information fidelity (VIF)[58] or the structural similarity index (SSIM)[59]
and its variations, assess the similarity between the reference image and the distorted
image by considering structural information, luminance, and contrast. These metrics
provide a measure of perceived quality by mimicking human visual perception.

- Reduced reference IQA metrics rely on comparing specific features or information from a
distorted image with a reference image, but they do not require a full reference image for
comparison. Instead, they use a reduced set of reference information or features to assess
image quality.

- No-reference IQA metrics do not require a reference image for comparison. Instead, they
are designed to assess the quality of an image based solely on its own content and
characteristics. Sharpness, noise, texture, and structural information within the image are
analysed to estimate its quality. Examples of popular no-reference IQA metrics include
BRISQUE (Blind/Reduced-Reference Image Quality Evaluator) [60], NIQE (Naturalness
Image Quality Evaluator), and PIQE (Perceptual Image Quality Evaluator) [61]. These
metrics are trained on a large dataset of images and utilise statistical or machine learning
techniques to provide objective quality scores without relying on a reference image.
Deep-learning based methods also recently arise [62]—-[64].

Objective metrics provide quantitative measures of image quality, allowing comparisons

between different images or different processing algorithms. However, it's important to note
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that no single metric can fully capture all aspects of human perception, and the choice of
metric depends on the specific application and requirements.

IQA in CT

A recently published report by the French Society of Medical Physicists (SFPM) presents the
metrics used to assess a CT scan?. The classical methods can be divided into four categories:

- Signal and contrast

The signal of each voxel in a CT scan is measured in HU. This scale is defined based on the
relationship between the linear absorption coefficient of water (U, qter) and the average
linear absorption coefficient (uy) of the contents within the volume defined by voxel X.

HU = 1000 X Hx = Hwater )

Hwater

The signal measured within a region of interest (ROI) is determined by calculating the average
value of the HU for the voxels included in the ROI:

signal(ROI) = HU(ROI) (2)
Finally, the contrast between 2 ROlIs is defined as follow:
C(ROI,R0OI,) = signal(ROI,) — signal(ROI,) (3)

- Noise

In CT scans, noise arises from both quantum noise, which is associated with the random
emission and detection of photons, and electronic noise. The assessment of noise in an image
of a homogeneous object involves calculating the standard deviation of the HU within a ROI.

- Spatial resolution

Spatial resolution refers to the minimum distance that can be measured between two
structures and is closely associated with the concept of point spread function (PSF). The PSF,
also known as the spatial impulse response, is a mathematical function that characterizes the
imaging system's response to a point object.

! The report is available online:
https://www.sfpm.fr/sites/www.sfpm.fr/files/Bibliotheque/Documents_SFPM/Public/Rapports_SFPM/Rappor
ts_GT/sfpm_2023_41_tdm_metriques.pdf
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The Modulation Transfer Function (MTF) is a function that describes the imaging system's
capability to preserve contrast as a function of the level of object detail, also known as spatial
frequency.

- Detectability

Signal-to-noise ratio (SNR) is the comparison of a specific signal to the background noise. A
low SNR value will result in a significant amount of noise that can partially or completely mask
the signal, making it challenging to interpret the image.

The contrast-to-noise ratio (CNR) is a measure used to evaluate the difference in average
attenuation or signal intensity between a structure of interest and the background, relative
to the background noise. The CNR is commonly defined as follows:

signal(structure) — signal(background)
CNR(structure, background) = signal(background) (4)

A "low" CNR value will manifest in the image as a significant amount of noise that partially or
completely obscures the contrast of the lesion, thereby posing challenges for the radiologist
in interpreting the image.

These metrics show that contrast and noise are two key features to describe the quality of a
CT scan. However, they are not sufficient to assess the quality of a sCT in the context of MRI-
only RT.

IQA in synthetic-CT generation for MRI-only radiation therapy

Methods and algorithms developed for generating sCT scans require validation, not only
during the development phase of new generation methods but also for the clinical validation
of implementing an sCT system in a radiotherapy center prior to routine use. This validation
is achieved using full-reference metrics, which involve comparing the generated sCT image to
its corresponding planning CT. Discrepancies in terms of HU values compared to a reference
CT are measured using metrics such as mean absolute error (MAE) and mean error (ME). This
difference can be assessed at a voxel level, resulting in 3D error maps. Additionally, mean
square error (MSE), root mean square error (RMSE), and PSNR[65] are computed. The MSE is
defined as:

AN . .
MSE = ) (HUaer(®) = HUr () ()

With N the number of voxels in the image, HUcr (i) the intensity in HU of the it" voxel in the
sCT and HU(i) the intensity in HU of the i*" in the reference CT. While this metric provides

53



insight into the dispersion of the error, the PSNR, defined as follows, measures the level of
noise corruption in the image:

2
PSNR = 10log, (MQ—SE> (6)

With Q the dynamic of the image.

Perception-based metrics like the visual information fidelity (VIF), the structural similarity
index (SSIM) (eq. 7) [5], [12] and multi-scale SSIM [52] are also commonly employed and focus
on the structure, contrast, and luminance of an image.

2 + C,)(20 + C
SSIM = Cucrscr 1) QRaocrser 2) %

(P‘ET + P‘§CT + Cl)(aCZ‘T + USZCT + C3)

Here, C; and C, are two variables to stabilize the division with weak denominator, uqr and
Uscr represent respectively the mean value of the reference CT and the sCT, o2 and 6%,
their variance and ocrscr the covariance of the CT and the sCT.

The assessment of geometric fidelity for automatically segmented structures, such as bones
and body contours, involves metrics like the Dice similarity coefficient (DSC), Hausdorff
distance, and mean absolute surface distance (MASD). These metrics provide valuable
information about the accuracy of the image contours.

Dose accuracy is evaluated using full-reference metrics that compare the dose calculations
obtained from the sCT with those derived from the reference CT. Many studies in the sCT
generation literature focus on dosimetric endpoints, including gamma analysis and dose-
volume histogram (DVH) metric [66]. DVH is a widely used tool in radiation therapy routine.
Gamma analysis allows for the spatial analysis of dose distributions obtained from the sCT
and reference CT by utilizing gamma maps. It can be performed in two or three dimensions,
incorporating dose and spatial criteria. Various parameters must be set for a gamma analysis,
including dose criteria, distance-to-agreement criteria, local or global analysis, and dose
threshold.

Figure 1.9 summarises the different metrics commonly used by order of complexity. They also
have been described in Boulanger et al.[1].
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Figure 1.9: Imaging and dose metrics used for the evaluation of synthetic-CT.

These diverse metrics provide a comprehensive assessment of the image quality, ranging from voxel-level
analysis to overall body evaluation, including delineated organs. Abbreviations: MAE: Mean absolute error,
ME: mean error, MSE: Me an square error, RMSE: Root mean square error, PSNR: Peak signal-to-noise-ratio,
NMI: Normalized mutual information, NCC: normalized cross-correlation, DSC: Dice score coefficient, HD:
Hausdorff distance, MASD: Mean absolute surface distance, SSIM: structural similarity, MS-SSIM: Multi-scale
SSIM, VIF: Visual information fidelity, DVH: Dose-volume histogram.

Patient specific sCT QA

In practice, patient specific sCT assessment can be used for validation (offline or online) or to
validate sCT generation methods as part of a clinical evaluation stage. In the literature, CBCTs
were used to assess patient-specific sCTs generated from MRI by comparing dose
distributions and CT number accuracy in both images [67]—-[69]. For sCT used in an adaptive
proton therapy workflow, a range probing approach has been proposed by Oria et al.[70].
Film and 3D gel dosimetry were also investigated. It relies on printing 3D case-specific
phantoms[71] . Choi et al.[72] proposed a strategy for assessing sCT by comparing the
resulting dose distribution with the dose distribution obtained from a bulk- density image.

Probabilistic estimation of errors in sCT at a voxel level has also been explored in previous
studies. Van Harten et al.[73] proposed a method to obtain a voxel-wise uncertainty map by
analysing the discrepancies between sCT volume reconstructions on different axes (axial,
sagittal, and coronal) using a DLM trained on 2D data for each axis. DLM also allows for the
computation of epistemic (model-dependent) and aleatoric (data-dependent)
uncertainties[30], [74], [75]. Johansson et al. [76], introduced a method estimating the
probability of error in sCT generated from a Gaussian mixture model. These methods provide
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[1]

[2]

3]

[4]

[5]

[6]

3D maps of the probability of errors but are developed for specific models and provide
estimates without generalisability.

Conclusion

Several metrics exist for assessing image quality, and in the context of sCT quality assurance,
the ones currently utilised are full-reference metrics. However, they pose a limitation as they
require a planning CT as a ground truth, which may not be available in an MRI-only workflow.
The methods proposed to tackle this issue in the literature are defined for specific sCT
generation methods or specific application (i.e ART with CBCT or proton therapy).

In contrast, existing no-reference IQA metrics rely on extensive datasets for model training
and provide a global evaluation of image quality. However, before these models can be
effectively implemented in clinical workflow, they would need to be trained on large
multicentre datasets.

It is important to note that an sCT image does not need to be perfect to enable safe treatment
planning in MRI-only radiation therapy. Therefore, it is crucial to establish acceptance criteria
for errors in generated sCT and develop a standardised QA method for sCT validation that can
be universally applied.
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Chapter 2: Aims of the thesis

Numerous methods for generating synthetic CTs have been developed, and recent
advancements in deep learning have facilitated the production of accurate results. However,
for the systematic use of MRI-based dose planning in clinical routine, the issue of quality
control for the generated images still needs to be addressed.

The main objectives of this thesis are as follows:

- To identify the limitations and shortcomings of the synthetic CT generation methods
through statistical evaluation. This will provide a better understanding of their
capabilities and constraints.

- To quantify the impact of errors in intensity on dose distribution. By measuring the
effects of these errors, the goal is to assess their significance and potential impact on
treatment.

- To develop a framework for evaluating the quality of each patient specific sCT. This
assessment will ensure that the resulting images meet the required standards and are
acceptable for treatment planning purposes.

The research conducted in this thesis aims to address these objectives and will contribute to
the development of recommended best practices for inclusion in a clinical protocol. The
objectives and the content of the various chapters comprising the thesis are presented in
Figure 2.1, providing a comprehensive overview of the study's scope and structure.
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Chapter 3: Quality assurance for MRI-only
radiation therapy: A voxel-wise population-based
methodology for image and dose assessment of
synthetic-CT generation methods

This chapter introduces a methodology for comprehensive assessment of synthetic-CT
generation methods at the voxel level, encompassing both image quality and dose accuracy.
This evaluation may be used prior to incorporating a specific sCT generation approach into a
clinical workflow to ensure its robustness and reliability. By following this methodology, a
better understanding of the capabilities and limitations of these methods can also be
achieved.

The content of this chapter has been published in Frontiers in Oncology in 2022.

“Quality assurance for MRI-only radiation therapy: a voxel-wise population-based
methodology for image and dose assessment of synthetic-CT generation methods”

Hilda Chourak, Anais Barateau, Safaa Tahri, Capucine Cadin, Caroline Lafond, Jean-Claude
Nunes, Adrien Boue-Rafle, Mathias Perazzi, Peter Greer, Jason Dowling, Renaud de Crevoisier,
Oscar Acosta (Frontiers in Oncology, 2022)

Preliminary versions of this work were presented at international and national conferences.
“Voxel-Wise Analysis for Spatial Characterisation of Pseudo-CT Errors in MRI-Only
Radiotherapy Planning”

Hilda Chourak, Anais Barateau, Eugenia Mylona, Capucine Cadin, Caroline Lafond, Jean-
Claude Nunes, Peter Greer, Jason Dowling, Renaud de Crevoisier, Oscar Acosta - ISBI 2021
(poster)

“Spatial Characterization of errors in pseudo-CT generation for MRI-only radiotherapy”

Hilda Chourak, Anais Barateau, Capucine Cadin, Caroline Lafond, Jean-Claude Nunes, Peter
Greer, Jason Dowling, Renaud de Crevoisier, Oscar Acosta - ESTRO 2021 (poster)
“Caractérisation spatiale d’erreurs de pseudo-CT pour la planification de dose a partir d’IRM”
Hilda Chourak, Anais Barateau, Capucine Cadin, Caroline Lafond, Jean-Claude Nunes, Peter
Greer, Jason Dowling, Renaud de Crevoisier, Oscar Acosta - SFPM 2021 (oral presentation)

Abstract

Quality assurance (QA) of synthetic-CT (sCT) is crucial for safe clinical transfer to an MRI-only
radiotherapy planning workflow. The aim of this work is to propose a population-based
process assessing local errors in the generation of sCTs, and their impact on dose distribution.
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For the analysis to be anatomically meaningful, a customised inter-patient registration
method brought the population data to the same coordinate system. Then, the voxel-based
process was applied on two sCT generation methods: a bulk-density method (BDM) and a
Generative Adversarial Network (GAN). CT and MRI pairs of 39 patients treated by
radiotherapy for prostate cancer were used for sCT generation, and 26 of them with
delineated structures were selected for the analysis. Voxel-wise errors in sCT compared to CT
were assessed for image intensities and dose calculation, and a population-based statistical
test was applied to identify regions where discrepancies were significant. Cumulative
histograms of mean absolute dose error per volume of tissue were computed to give a
guantitative indication of the error for each generation method.

Accurate inter-patient registration was achieved, with mean Dice scores higher than 0.91 for
all organs. The proposed method produces 3D maps that precisely show the location of the
major discrepancies for both sCT generation, highlighting the heterogeneity of image and
dose errors for sCT generation methods from MRI across the pelvic anatomy. Hence, this
method provides additional information that will assist with both sCT development and
quality control for MRI-based planning radiotherapy.

Introduction

Magnetic resonance imaging (MRI) is becoming increasingly integrated into clinical
radiotherapy (RT) planning and monitoring. MRI guided RT is motivated by the superior soft
tissue contrast compared to CT and the non-ionizing modality. However, MRI does not
provide information on electron density of tissue, essential for radiotherapy dose calculation.
To overcome this issue, several approaches to generate synthetic CT (sCT) in Hounsfield Units
(HU) from a specific MRI have been developed[1], [2]. These include: bulk density[3], [4],
atlas-based[5], machine-learning models, such as patch-based methods with feature
extraction[6], and more recently deep-learning models (DLMs)[6]—-[12].

Currently, sCT image quality assessment is based on global metrics that measure
discrepancies between reference CT and the corresponding sCT[12], [13]. The most common
are intensity-based[14] metrics, like mean absolute error (MAE), mean error (ME) , mean
squared error (MSE) and peak signal to-noise ratio (PSNR). Structural similarity (SSIM)[15],
[16] is also often computed. These metrics have been reported at a global level, restricted to
a single value describing agreement within the body contour of the patient, or within an
organ[12]. Regarding dosimetric evaluation, dose distributions obtained from sCT are
assessed by comparing dose-volume histogram (DVH) and gamma analysis[17]—[20] to the
ground truth (dose distribution from reference CT).

DVHs are volume-based statistics that are not relatable to spatial locations; while gamma are
spatial distributions, they are usually condensed to a single pass-rate metric and gamma
scores are difficult to interpret clinically. For sCT evaluations each patient is usually assessed
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in isolation and results are then combined. However, it has been reported that errors might
appear heterogeneously distributed across different tissue densities[6], [16], [21]-[24].
Assessing the spatial distribution of errors at a population level may help to identify their
origin as well as clinical impact and may subsequently improve the accuracy of sCT generation
methods. It can also be useful to compare and select sCT generation methods, and to a large
extent it may lead to the introduction of quality control protocols within the MRI-based RT
planning workflow.

Voxel-wise population analysis can provide powerful tools to assess clinical impacts of image
and dose difference across individuals[25], [26]. However, their application requires an
accurate non-rigid registration of a whole population to a single coordinate system, and the
implementation of voxel-wise statistical tests. Previous preliminary work has demonstrated
the feasibility of this method, but the analysis methods were limited in clinical scope [27].
The aim of this paper was to propose a multiscale strategy to assess accuracy of sCT
generation methods, starting with a standard error evaluation in the whole pelvis, followed
by assessment of organ errors and finally by the implementation of a voxel-wise workflow.
The whole scan population was brought to the same coordinate system via a customized non-
rigid registration method. Two different sCT generation approaches were chosen as examples
to illustrate the methodology: a bulk-density method (BDM) and a deep-learning method,
based upon a generative adversarial network (GAN) architecture [6], [28]. Then a
comprehensive population based statistical analysis is performed, including a permutation
test adapted to non-parametric paired data and the evaluation of the error dispersion at a
voxel-wise scale for each method. The presented methodology provides not only a population
spatial quantification of sCT image value and dose errors, but it also allows comparison across
different sCT generation approaches using the same dataset.

Materials and Methods

Data

A cohort of 39 patients with prostate cancer aged 58 to 78 years were used to generate sCT
scans. For each patient, a CT scan was acquired on a GE LightSpeed RT or a Toshiba Aquilion,
(256 x 256 x 128 matrix with a voxel size of 1.17 mm x 1.17 mm x 2.5 mm or 2.0 mm) and a
T2-weighted MRI was acquired on a Siemens Skyra 3T in the treatment position (resolution
of 1.6 mm x 1.6 mm x 1.6 mm). Each CT was resampled and registered to the corresponding
MRI via a symmetric rigid registration followed by a structure-guided non-rigid method[29],
[30] to rectify the main anatomical variations due to the delay between both acquisitions.
MRI were then pre-processed to correct non-uniformity [31] with the Insight Toolkit Library
(ITK).

As some organs’ delineation, crucial for the interpatient-registration, were incomplete, the

voxel-wise analysis was performed on the 26 patients with bones, prostate, bladder, and
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rectum delineated on MRI by 2 physicians. The rectal length started at 2 cm below the clinical
target volume (CTV). Two clinical target volumes (CTVs) were defined: CTV1 including prostate
and seminal vesicles, and CTV2 corresponding to the prostate only.

Workflow

The proposed workflow is presented in Figure 3.1. It includes the generation of sCTs using
two methods (BDM and GAN) and dose computation. Then, sCTs and dose distributions
followed a standard evaluation in the native space. Finally, an accurate customized organ-
driven non-rigid algorithm was applied to bring all the data to the same coordinate system,
where voxel-wise analysis was performed.

sCT generation methods

Bulk-density method (BDM)

Bulk density methods have application to quality assurance of sCT scans [4] and are also
employed in this work to demonstrate that differences between scan quality for different sCT
method can be determined with our workflow. sCTs were obtained by assigning Hounsfield
Units (HU) values to the patient's soft tissue, bones and air segmented from MRI. For bone
segmentation, automatic tools from Varian Eclipse were used on CT. This contour was then
rigidly aligned to the MRI scan and contours were manually adjusted by a research radiation
therapist [31]. The volume of air resulted from thresholds in the inner part of the rectum
delineated on MRI. The soft tissue area corresponds to the subtraction of bones and air from
the body contour. A water equivalent density (0 HU) was assigned to the soft tissue [3], [32].
For bones and air, the densities allocated were respectively 350 HU and -450 HU, which are
the mean CT values of the cohort in the corresponding segmented regions[28].

Generative Adversarial Network (GAN)
The GAN architecture used in this study to generate sCT is fully described in Largent et al.[6].
The generator was a U-Net inspired by Han et al.[33], with L2 norm as loss function:

2
Le(,0) = |IC = GDI, (D
Where I corresponds to the MRl intensity, G (I) to the generated sCT and C to the reference

CT.
The discriminator was a PatchGAN, using binary cross entropy as loss function:

Lp(G(D),C) = —Z Cilog(G(1y) + (1—Cp)log(1—-G(1)y) (2)

G (1) is the sCT produced by the generator from the target MRI, C the corresponding reference
CT and n the number of voxels in C.L;(I,C) and L, (G(I),C) were combined to create the

adversarial loss. Axial 2D CT and MRI slices were used to train the model, and a three-fold
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cross validation was applied. The training cohort comprised 26 patient data and the validation
cohort of size 13.
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Figure 3.1: Workflow of voxel-wise population-based analysis

This workflow comprises 5 steps: (1) synthetic-CT (sCT) generation with a bulk-density and a Generative
Adversarial Network (GAN) method, (2) dose calculation and (3) error evaluation of images and doses in the
native space of each patient. This evaluation includes the computation of Absolute Error, Error, and the
Absolute Percent Error. The non-rigid registration step (4) resulted in deformation fields, allowing for
propagation of the whole data to a common coordinate system. Once all data were in the same anatomical
space, statistical analysis was performed (5), producing 3D error maps for each sCT generation method and
highlighting significant difference subregions for both image and dose distributions.

Dose calculation in native space

Volumetric modulated arc therapy (VMAT) was planned on reference CT images with the
Pinnacle v.9.10 (Philips) treatment planning system (TPS) using the collapsed cone
convolution algorithm and a dose grid resolution of 3 mm. For all patients, a sequential
treatment was delivered with a total dose of 50 Gy to the CTV1, followed by a boost of 28 Gy
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in the CTV2, both at 2 Gy per fraction. The beam parameters used to compute the dose on
the reference CT were used to calculate dose on the sCT.

Image and dose error evaluation in native space

The accuracy of the sCT generation in HU and in Gy was first assessed in the native space, to
reduce bias induced by the inter-patient non-rigid registration.

Absolute error (AE), error (E) and absolute percent error (APE) were computed by comparing
corresponding CT and sCT pairs at a voxel level, producing 3D error maps for each patient.
The global quality of sCT was evaluated with respect to the patient's structures (prostate,
rectum and bladder) and the whole pelvis by computing the mean absolute error (MAE), the
mean error (ME) and the mean absolute percent error (MAPE) in these regions from the
previous maps.

AE(Q) = [Xcr(i) — Xser (D] (3a)
1~
MAE = H; AE () (3b)
E@) = Xcr(i) — Xser (D) (4a)
el
ME = ;; E() (4b)
APE(D) XCT(i))(C;()i(;CT(i) (50)
1v ,
MAPE = ;; APE(D) (5b)

with n the number of voxels, X (i) and X.cr (i) the intensities of the i“*voxel in, respectively,
the reference and the generated image, in HU for image evaluation or in Gy for dose
evaluation.

The closer to zero the AE, the E, the APE, and so their respective means, the more accurate is
the prediction.

Organ-driven registration

First, an individual MRI scan from the cohort was selected as a template (exemplar) by
considering the median volumes of bladder, rectum, and prostate. Then, a customized organ-
driven registration, based upon previously proposed methods [25], [34] was performed with

an overall optimized alignment across the organs.
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Input images for the registration were a combination of MR images and structural
descriptions (SD) of the delineated organs obtained as follows:

- Euclidean distances to the surface were computed for all structures[35].

- For the rectum, a scalar field was generated by applying the Laplacian equation
inside the volume[36]. The Laplacian field provided a normalised distance map to the
central path of the organ.

- For the prostate, the Laplacian was also computed with respect to its barycentre.
Finally, scalar fields of all structures were merged into a global structural description of the
organs and combined to the MRI (Figure 3.2). Afterwards, all the structures were rigidly
aligned using the Elastix toolbox (translation). From bones to bladder, each structure requires
a different level of deformation. To handle this high variability, non-rigid registration based
on diffeomorphic demons[37] with 4 levels of resolution was successively applied to: i) the
bladder, ii) the whole pelvis, iii) the prostate, iv) the rectum, v) the bones.

The demons algorithm uses Gaussian regularisation, which involves smoothing the
deformation field. The sigma of the Gaussian filter was set to 1, and the number of iterations
for the 4 levels of resolution were: i) 300, 300, 200, 20 for the bladder contour, ii) 200, 200,
100,0 for the whole pelvis, iii) 200, 200, 150, 5 for the prostate SD, iv) 100, 100, 100,5 for the
rectum SD, v) 100, 100, 150,50 for the bones SD.

For the bladder, a b-spline transform using the Elastix toolbox was also performed on SD prior
to the demons registration (step i) ).

Each step resulted in deformation fields: 3D vectors defined at each voxel and providing the
appropriate transformation. The resulting 3D deformation fields were combined and applied
to delineated structures, reference CTs, sCTs, dose planning and error maps to propagate all
the data from their native spaces to a common coordinate system (CCS). After the
propagation of CT in the CCS the bones, including the femoral heads, were split between
spongy and cortical and separately registered to preserve their inner structure composition.
This final transformation was then applied to sCT, dose and error maps.

For the propagation of CT in the CCS to be meaningful, each CT-MRI patient pair had to be
properly co-registered prior to the inter-patient registration. This step-by-step approach can
accommodate the high anatomical inter-individual variability, and facilitates the propagation
of delineated structures, including the registered reference CTs, sCTs, dose distributions and
the error maps from their native spaces to a common coordinate system (CCS).

As a visual indicator of the performance of this process, a checkerboard of the template MRI
with the mean population MRI in the CCS, and a checkerboard of the template CT with the
mean population CT in the CCS are presented in Figure 3.3. The probability maps, also in
Figure 3.3, allow visualization of the discrepancies between the delineated organs contours
following registration.
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Table 3.2 summarises the volumes of the delineated organs prior and after the registration
process. The Dice similarity coefficient (DSC) between the template structures, V¢, .., and the

corresponding deformed delineated organ, Vg, was also used for validation.

(6)

For the voxel-based population analysis to be meaningful, only accurately registered data
were included (DSC > 0.85 for all the segmented organs). The 26 cases passed this criterion.

Template (common coordinate system)

Delineated _»Structural : xiFt{I:out NON-RIGID
organs description REGISTRATION
structure
T Deformation
fields

Patient in the native space
),
/ + —

Figure 3.2: Pre-processing step for the non-rigid registration process.

After organ delineation, a structural description was performed by computing the Euclidean distances to the
surface and the Laplacian equation. This was finally combined to MR images to obtain the deformation fields
used to bring all the data from their native space to the common coordinate system (CCS).
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Figure 3.3: Visual quality control of the interpatient registration.

Checkerboard comparison of (a) the template MRI with the mean of all the population MRIs registered in
the common coordinate system (CCS) and (b) the template CT with the mean population CTs in the CCS.
Probability maps are presented in (c). It is the result of the overlapping of all the delineated structures in
the same space to estimate the precision of the registration. In blue, few structures are overlaid (poor
quality of registration). In red, all the patient structures correspond to the same anatomical location (100%,
perfect registration).

Voxel-wise analysis in CCS

Image and dose mean error maps computation

Once all data were in the CCS, voxel-wise MAE (VMAE), ME (vVME) and MAPE (vVMAPE) maps
for images and dose distributions were obtained by averaging the voxel errors data across the
cohort. The v represents that these data are now voxel specific and hence spatial, i.e they are
not averaged across a particular patient’s voxels, they are found by considering all the patient
cohort values for a particular voxel i.

So, in the CCS errors are defined as follow:

VMAE (i) = limr(i P = Xeer )l 7)
po T

73



p
1
vME (i) = ;ZXCT(iJ) — Xser (6, )) (8)
j=1

p

N 1
VMAPE (i) = 52

j=1

Xer(6)) = Xser(i,))
Xer(i,))

9)

vMAE (i) is the mean absolute error, vME (i) the mean error and vMAPE (i) the mean
absolute percent error for a voxel i. X1 (i,j) and Xgcr(i,j) represent the values, in HU for
the image assessment or in Gy for the dose assessment, of the reference CT and the sCT, for
the it"voxel of the jth image of the population, and p the total number of patients in the
population.

The template scan body contour was applied to these images to focus on the region of interest
and discard slight body contour variation due to registration. Then, the relative standard
deviation of the absolute error (RSDAE), also known as coefficient of variation, was used for
the evaluation of the dispersion of the prediction error at a voxel-wise scale.

\/25.’:0(,45(1', j) — vMAE (D))’
VMAE (i)
with AE(i,j) = |Xcr (i) — Xser ()|

RSDAE(l) =

(10)

So, for each voxel i , the lower is the RSDAE, the higher is the probability to have an absolute
error close to the vMAE (i) value. Figure 3.4 and Figure 3.5 illustrate the results, respectively
for image and dose assessment.
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METHOD: BULK-DENSITY METHOD: GAN
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Figure 3.4: HU error maps in the common coordinate system.

Axial and sagittal views of voxel-wise mean absolute error (vMAE), mean error (vVME) and mean absolute
percent error (VMAPE) maps in the same anatomical space and the corresponding histograms (3) for sCT
generated with (1) bulk-density and (2) GAN method. The relative standard deviation of the absolute error
(RSD(AE)) is also illustrated. Colours scales of error maps were associated to histograms.
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METHOD: BULK-DENSITY METHOD: GAN
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Figure 3.5: Mean dose error maps in the common coordinate system.

Axial and sagittal views of voxel-wise mean absolute error (vMAE), mean error (vVME) and mean absolute
percent error (vMAPE) maps in the same anatomical space and the corresponding histograms (3) for dose
computed from sCT generated with (1) bulk-density and (2) GAN method. The relative standard deviation of
absolute error (RSD(AE)) is also illustrated. Contours of delineated organs of the template were overlaid on
each image, and colour scales of error maps were associated to histograms.
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Permutation test

To complete this study, voxel-wise paired permutation tests proposed by Konietschke et
al.[38] were performed for each method with the R software package for nonparametric
multiple comparisons[39]. This statistical approach is an adaptation of the Student’s test for
non-parametric paired data and includes permutation tests. The hypothesis in this study was
that the intensity in Hounsfield units, or the dose in Gy, of the generated sCT scans were
identical to the value of the reference scans (Figure 3.6).

cT sCT

Sample of
reference

Generated
sample

B:

p patients

Hypothesis for each i(x,y) voxel: The samples (A) and (B) are identical

;

A B, Step 1: compute statistics on initial

paired data
— | | un | un |
- Step 2: randomly switch pairs and By €>A,
compute statistics
Repeat step 2 10000 i
times B, €>A,

!

Step 3: compared results of step 2 with step 1 to estimate two-sided p-value

!

P-value < 0,05 ====p samples are considered as significantly different

Figure 3.6: Paired permutation test general workflow: example for the image evaluation using Hounsfield
Units.

To each voxel coordinate (x,y) correspond paired data (A1, B1), ..., (Ap, Bp). These pairs were used to
determine if the generated (B) and the reference (A) samples were identical or not following the procedure
proposed by Konietschke et al[38]. A p-value(x,y) is obtained for each voxel, highlighting the regions where
the differences are significant. The same process was applied on dose distributions.

Two paired lists of values were determined for each voxel and compared.
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Multiple comparisons may lead to type | errors, namely the false positive rate. So, to limit
these errors, 10000 random permutations were utilized to estimate the p-value.
The procedure to estimate the p-value followed these steps:
e Computation of the statistics[38] on the initial data: U = ( Uy, ..., Up ), with U; =
(Xcr(1), Xg0r (1)) the paired values for patient 1, and p the total number of patients
in the population
e Computation of the statistics on randomly permuted data defined as Uperm =
(Upermli e Upermp ): with Uperml = {((XCT(]-): XSCT(l))’ ((XSCT(]-): XCT(]-))}
the two possible paired values for patient 1. This step was repeated 10 000 times
e Comparison of the results obtained with the swapped data U,.r, and the one
obtained in the first step to estimate the p-value [38].
This test resulted in 3D maps, where a voxel i corresponds to the probability that the initial
hypothesis was true for the ith voxel of the generated sCTs. Regions of significant differences
(p-value < 0.05) between CTs and sCTs on the one hand, and between dose plans calculated
on CTs and sCTs on the other, were generated. These volumes, referred to as Error Sub-
Regions (ESR), are illustrated in Figure 3.7.

Mean absolute dose error — volume histogram

This cumulative histogram is a quantitative tool, allowing for assessment of absolute error in
the dose calculations on the sCT and CT scans with respect to the volumes of tissue. It was
built in the same way as dose volume histograms (DVH) and computed from the vMAE map
in the CCS. The regions of interest for this evaluation were bladder, rectum, prostate and
pelvis. To focus on the region of the dose distribution, the pelvic region was cropped to within
2 cm above and 2 cm below the rectum, according to the superior to inferior axis.

Two criteria for evaluation were selected: V0.5Gy and V1Gy, which correspond respectively
to the total volume with an absolute error greater than or equal to 0.5 Gy and 1 Gy.

Dosimetric endpoints
e Gamma analysis

Dose plans were propagated to the CCS and combined, resulting in mean reference CT dose
and mean dose for each sCT generation method. Thus, a spatial dose evaluation was
conducted comparing mean dose distributions with a 3D gamma analysis (local, 1%/1mm,
dose threshold 10%) using VeriSoft software. The gamma pass-rate, corresponding to the
percentage of voxels with gamma inferior to 1, and mean gamma were reported, additionally
to gamma maps in the axial plan.

® DVH criteria

Absolute differences between dosimetric values calculated on the reference CT propagated
in the CCS and those calculated using sCT generated from BDM and GAN were determined.
The contours used were the bladder, rectum and prostate of the template in the CCS. Table
3.4 presents the average differences of mean dose, D2%, D50% and D95% for each method,

with Dx % representing the dose in x% of the volume of interest.
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Results

Image and dose error evaluation in native space

Table 3.1 depicts the results of the evaluation in the native space for both bulk-density and
GAN methods. The BDM presented higher MAE, MAPE, and ME than the deep-learning based
approach. The worst MAE scores for both methods were in the bone regions (244.4 HU for
BDM, 124.3 HU for the GAN). This structure also had higher mean CT number and standard
deviation (342 HU + 317 HU).

Table 3.1: Error evaluation performed in the native space for sCT generation methods.
Global scores for the whole pelvis and per organ are presented. Mean absolute error (MAE), mean absolute
percentage error (MAPE) and mean error (ME) were computed between reference CT and sCT (image results

in HU) and between dose distribution calculated from these images (dose results in Gy). Reference CT

number and mean dose in each anatomical region are also indicated.

Table 3.3: Error evaluation performed in the native space for sCT generation methods.

IMAGE (HU) DOSE (Gy)
GAN BULK- Mean cr GAN BULK- Mean dose
DENSITY number DENSITY
MAE 33.9%7.6 96.4 £16.5 0.06 +0.02 0.2+0.36
Global PELVIS MAPE 1.3+0.6 23+0.8 18 + 184 0.1+0.03 0.12 £ 0.04 89+134
ME 3.4+156 -10.4 +24.3 0.11 £ 0.05 0.19+0.27
MAE 124.3+22.4 244.4 +29.8 0.06 £ 0.03 0.24 £0.46
BONES MAPE 1.3+0.8 39+18 342 + 317 0.04 £0.02 0.06 £ 0.03 14.6 +15.1
ME 23.9+457 20.4 £62.3 0.03£0.08 0.24 £ 0.47
MAE 18.2+49 17.1+£58 0.11+0.1 0.72+1.88
BLADDER MAPE 2.2+1.2 1.1+01 4+19 0.01 £0.01 0.02 £ 0.05 25.8+22.7
Organ- ME 49+12.0 49+129 -0.02 £ 0.15 0.69+1.89
wise MAE 67.1+66.6 140.9+71.8 0.23+0.23 0.79 £1.62
RECTUM MAPE 2.1+1.2 6.8+6.2 -13+135 0.01+0.0 0.02 +0.05 36.7+£19.2
ME -16.3+77.6 98.2+£82.9 -0.04 +0.18 0.58 £1.68
MAE 17.6+3.8 34.2+85 0.34+£0.2 1.46 £3.54
PROSTATE MAPE 1.2+1.0 1.0+0.0 29+24 0.0 0.0 0.02 £ 0.05 78.7+0.8
ME 3.7+11.3 30.7+11.6 -0.04 £ 0.38 1.3+3.61

79



Regarding dose calculation, MAE reached 1.46 Gy, equivalent to 1.85% of the expected dose,
in the prostate for the BDM and 0.34 Gy for the GAN. For each method, MAPE was similar for
the prostate, rectum and bladder (around 0.02 for BDM and 0.01 for GAN), and superior in
bones (0.06 and 0.04). Standard deviation for all error types and all delineated organs were
larger for BDM compared to GAN.

Registration

The customized non-rigid registration process accurately brought the 26 patients of the
cohort in the same anatomical space, as shown by the average dice score of 0.98 + 0.01 for
the body contour, 0.93 + 0.01 for the bones, 0.96 + 0.01 for the bladder, 0.91 + 0.02 for the
rectum and 0.91 + 0.02 for the prostate. The mean volume, in cubic centimeters, of each
delineated structure ended close to the volume of the template’s organs in the CCS (Table
3.2) confirming the efficiency of the method.

The accuracy of the registration inside the body is also illustrated visually in Figure 3.3.

Voxel-based error maps

Image assessment

Figure 3.4 depicts the vMAE, vME and vVMAPE error maps computed in the CCS for both BDM
and GAN methods. RSDAE map, representing the dispersion of the absolute error distribution
at each voxel considering the overall cohort, are also included. It illustrates the voxel-wise
quality assessment of sCT generated for each method. Histograms of these 3D error maps are
presented in this figure, which allows comparison of the accuracy of both methods. Difference
in intensity up to 250 HU in the rectum and more than 500 HU in cortical bones were found
for the BDM. An underestimation (in red, Figure 3.4) of more than 200 HU in the cortical
bones, and around 140 HU in the rectum were observed in sCT generated from BDM, as well
as an overestimation (in blue, negative values) of 200 HU in spongy bones. For the GAN, the
highest vMAE was found in bones (around 100 HU, and up to 220 HU in denser regions). The
VMAE reached 200 HU in a small specific region within the rectum, close to the prostate and
seminal vesicles. According to the vME map, the GAN approach led to an overestimation (in
blue, Figure 3.4) in the previously described location in the rectum, with a score equal to -85
HU, and in spongy bones (-40 HU). An underestimation of 110 HU in cortical bones (in red,
Figure 3.4). Errors highlighted with the vMAPE were in spongy bones and in the rectum for
both methods, also in the contour of the bladder for the GAN. The vMAPE histogram for the
BDM has a narrow distribution around 1lin soft tissue, as computing the MAPE in this area,
where sCT value is equal to 0 HU, results in dividing the reference CT value by itself. Though
the RSDAE were more than to 1.5 and to 2 respectively for the BDM and the GAN in the
rectum, the highest values were not at same location.
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Figure 3.7 presents significant ESRs, in red, overlaid on the mean MR images in the CCS and
on the mean dose distribution. Most of the HU values predicted with the BDM were
significantly different from the reference CT HU values, except in an important part of the
bladder and in tissue interfaces. According to the studentized permutation test result, ESRs
were preferentially located in cortical bones, skin, a part of the prostate, and regions
scattered around the bladder and the rectum for the sCT obtained with the DLM.

IMAGE DOSE

Bulk-density

Axial Sagittal Axial Sagittal
I significant error subregions

Figure 3.7: Studentized paired permutation test results

Significant error subregions brought out by the Konietschke’s paired permutation test, in red, overlaid on
mean MR images in the common coordinate system (CCS) for HU values (left) and overlaid on the mean dose
plans in the CCS for Gy values (right). This statistical test produced p-value maps. Differences of intensities
(HU) in one hand, and dose (Gy) in the other hand, were considered as significant for p-value < 0.05.

Table 3.2: Volume of delineated structure in cm3 prior and after the non-rigid registration.
These data are presented regarding the volume of the template in the common coordinate system (CCS).

VOLUME IN NATIVE SPACE (cm?) REGISTERED VOLUME (cm?) TEMPLATE IN

mean std min max mean std min max S o)
BODY 14362 2092 10608 18300 15392 261 14363 15812 15374
BLADDER 274 142 113 633 243 3 237 251 246
BONES 1259 205 908 1817 1082 36 1031 1183 1076
PROSTATE 40 19 16 82 33 1 31 37 34
RECTUM 66 29 25 133 36 1 34 37 36

Dose assessment
Figure 3.5 illustrates the dose differences for the whole population data. As for the image

assessment, the resulting maps allowed to evaluate and compare locally resulting the dose
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calculation of both sCT generation methods. For the BDM, vMAE in the organs at risk
increased up to 1.7 Gy, just near the prostate. The most predominant absolute errors for the
GAN appeared in the rectum with differences up to 0.75 Gy, and the first centimetre of the
body contour. In the prostate the vVMAE was around 0.3 Gy. The vME reached 0.4 Gy on the
body contour for the DLM. The vVMAPE confirmed the error on the body contour but not in
the rectum for both approaches. RSDAE highlighted the same area in the rectum than vMAE
and vVME maps (RSDAE > 1.5). The higher the delivered dose, the higher was the error
observed, with an underestimation of the dose distribution of 1.3 Gy in the prostate for the
BDM. As for image analysis, dose error maps histograms appeared wider than for GAN (Figure
3.5).

According to Figure 3.7, a major part of the dose plans computed from the BDM were
considered as significantly different from the ground truth. For those calculated from sCT
generated with GAN, ESR were localized surrounding the body, mainly on the skin and until 3
cm inside the body.

Mean absolute dose error per volume

Figure 3.8 presents the comparison of the two sCT methods by showing the absolute dose
difference (Gy) per percentage of tissue volume. This metric reveals a larger error for BDM
than GAN, regardless of the organ considered. No volume reached 1Gy of dose difference for
the GAN sCT (Table 3.3).

Table 3.3: Percent of tissue volume with a mean absolute error (MAE) reaching 0.5 Gy (Vo 6y) and 1 Gy (V1
ay) for both sCT generation methods. The mean of voxel values of the vMAE map in the common coordinate
system was computed in the whole pelvis and in the template’s structures (bladder, rectum, and prostate).

BULK-DENSITY GAN

PELVIS BLADDER RECTUM PROSTATE PELVIS BLADDER RECTUM PROSTATE

Vosey  16.58% 77.03% 80.93% 100% 1.10% 0% 10.03% 0%
Viey 3.63% 16.48% 31.85% 100% 0.08% 0% 0% 0%

Dosimetric endpoints

Results of 3D gamma analysis (criteria: local, 1%/ 1mm, low dose threshold = 10%) performed
on mean dose volume in the CCS are presented Figure 3.. This allows for local comparison of
gamma maps of each sCT generation methods.
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In Table 3.4, dosimetric criteria assessment shows an absolute difference superior to 1 Gy in
the prostate for the BDM, while the GAN results are around 0.33 Gy in this location.

MEAN ABSOLUTE DOSE ERROR - VOLUME HISTOGRAM

—— BDM:PROSTATE == BDM :BODY
0, == GAN.PROSTATE == GAN:BODY

~— BDM:RECTUM —— BDM : BLADDER

— = GAN:RECTUM == GAN:BLADDER

Volume (%)

0.00 025 050 075 100 125 150 175 200

Figure 3.8: Mean absoulte dose error - volume histogram

Mean absolute difference between dose computed from the reference CT and dose computed from the synthetic
CT generated with bulk-density method (BDM, continuous line) and GAN (dotted line) for a specific volume of
delineated structures. Each colour represents a tissue volume.

100 %
Reference Bulk-density GAN '

Green: 90% to 100%
Yellow: 75% to 90%
Red: 00% to 75%

e e e I O R I‘w

3D Gamma pass rate : 92.7 % 3D Gamma pass rate : 99.6 % o
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Min: 0.00 Min: 0.00

Max:18.95 Max: 2.90

Figure 3.9: Dose distributions and gamma maps

Dose distributions were propagated to the common coordinate system (CCS) and combined, resulting in
mean reference CT dose, mean dose for sCT generated from bulk-density and mean dose for sCT generated
from GAN method. These dose distributions were used to calculate the gamma pass rate (criteria: 3D, local,
1%/ 1mm, low dose threshold = 10%).
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Table 3.4: Absolute difference of dosimetric criteria computed for both bulk-density and GAN methods using
the template contours in the common coordinate system (CCS).

Absolute difference of the dose means, D2%, D50%, and D95% computed between the reference CT and the
synthetic CTs in the rectum, bladder and prostate. Dx% represents the dose in x% of the volume of interest.

BULK-DENSITY GAN

BLADDER RECTUM PROSTATE BLADDER RECTUM PROSTATE

mean dose

absolute 0.71+1.90 069+1.85 145+362 010+010 0.16+012 0.33+0.21
difference (Gy) +

std

D2% absolute
difference (Gy) + 1.59 + 3.66 1.44 +3.28 1.41 +3.58 0.27 £0.19 0.50 £ 0.62 0.33+0.22
std

D50% absolute
difference (Gy) + 0.67+1.88 0.66 +1.68 1.43 +3.63 0.09+0.09 0.18+0.20 0.33+0.21
std

D95% absolute
difference (Gy) + 0.24+0.83 0.22+0.56 1.49 + 3.63 0.03+0.05 0.04+0.04 0.32+0.22
std

Discussion

This study proposed a methodology based on voxel-wise population analysis to assess the
local errors in sCT generation approaches and their impact on the dose distribution. It also
allows comparison of performance of several sCT generation methods. The full evaluation
process was applied on two sCT generation methods, allowing for the examination of
heterogeneity of errors in HU but also in 3D dose distributions across the pelvis.

The presented methodology relies on the accuracy of the interindividual non-rigid registration
step, as for all voxel-based approaches[40]. Registration methods have been developed in
morphometry studies [41]-[43] Previous studies in the pelvic area included structural
descriptions of the bladder and prostate only[25], rectum only[34], or were combined to
CT[44]. The voxel-wise statistical analysis performed here includes a novel integration of
bones, with a step dedicated to the preservation of their inner structure. The combination of
these structural descriptions with MR images is also original in this context and achieved a
precise registration of the whole pelvis as it offers superior contrast in soft tissue. With the
Demons algorithm for deformable registration, the amount of deformation is limited by the
deformation field smoothing at each iteration, which heaps avoid large and unnatural
displacement. The algorithm is quite robust to breaking down, however this is possible if the
anatomy or modality is very different, particularly if the rigid registration step has failed prior

to the Demons algorithm.
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The same pelvic MRI data used in this study had been successfully evaluated in previous work
which has relied on the same registration method (for example, “Automatic Substitute
Computed Tomography Generation and Contouring for Magnetic Resonance Imaging (MRI)-
Alone External Beam Radiation Therapy From Standard MRI Sequences” Dowling et al. 2015,
and “A Multi-center Prospective Study for Implementation of an MRI-Only Prostate
Treatment Planning Workflow” Greer et al. 2019 ).

While the reported DSC highlight the structural similarities, these are also robust indicators
for when the analysis would break down. Major displacement of the organs leading to non-
realistic deformation within the body during the registration will impact the DSC of the
contours and can provide a good quality assurance step to ensure the registration has not
failed. The mean DSC of 0.98 for the body contours indicates that the registration on this
dataset appears to be accurate.

This method permits to map organs, images, and doses in a single coordinate system.
Comparison by voxel is thus anatomically meaningful for both images and doses.

vMAE, vME, vMAPE and RSDAE 3D maps were produced, showing the distribution of mean
error across the pelvis for a whole population. The error maps histograms are a quantitative
tool to compare the chosen methods. As vMAE map values appear to be correlated to the
reference intensity (the most important errors are in cortical bones, where the mean HU value
is the highest), the relative difference, vMAPE, was also computed as a measure of prediction
accuracy. The purpose of VME maps is to determine if the prediction tends to be
systematically superior or inferior to the reference, and the RSDAE, also known as coefficient
of variation, can be interpreted as uncertainties maps of each method [45]. RSDAE gives an
insight into regions where HU prediction is trustworthy or not. Therefore, each 3D map
computed in this study illustrated complementary information on errors produced in both
sCT and dose distributions.

To define if the errors were significant across the anatomy in the CCS, a voxel-wise statistical
test was applied on images and on dose distributions. The permutation test proposed by
Konietschke et al.[38] was used to cope with the multiple comparison problem and is
appropriate for paired and non-parametric data. Other permutation tests, such as Chen’s[46]
used in Chourak et al.[27], does not appear suitable in our approach as it does not compare
each CT to its corresponding sCT.

The two evaluated methods were BDM and DLM using GAN. BDM is an historical approach
for MRI-only radiation planning and was the first integrated in a commercialized device
(MRCAT, Philips[47]). The BDM also have application to quality assurance of sCT scans[4]. This
approach is simple and does not involve registration, but it lacks accuracy as it does not take
tissue heterogeneity into account. The BDM presented in this paper was chosen as an
illustration of the proposed methodology, but it has been shown that more accurate methods
exist[3], [47]-[49].

Although several sCT generation methods have been proposed in the literature, recent
studies head towards deep-learning strategies[12], [50] DLMs such as GAN trained with
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paired-data rely on intra-patient registration precision[51]. Multimodal registration of the
input data and training is time-consuming, but generated sCT are in general more accurate[6],
[20].

According to the RSDAE map, the GAN was more consistent in HU prediction and resulted in
more reliable dose planning. For both methods, important MAEs and MEs arose in the rectum,
near the prostate. This area corresponded to a high RSDAE regarding other structures and a
high MAPE, expressing the lack of accuracy of both methods in this location. Besides, the error
did not stand out as significant with the studentized permutation test for GAN. This wide error
might be due to the change in patients’ anatomy between CT and MRI acquisition, but is not
necessarily related to an incorrect prediction of the HU. Another possibility is that the change
in patients’ anatomy disrupted the training phase for the GAN.

BDM statistically lacked accuracy for HU prediction and dose calculation. For the GAN HU
values, significant differences were observed in cortical bones, especially in the femoral
heads, but no significant consequence appeared in the dose distribution.

Although HU prediction accuracy is important, sCT generation needs to be reliable for dose
planning. Dosimetric assessment is thus crucial, and is usually based on DVH, which is an
organ-based metric, and gamma analysis. The gamma was computed in the CCS, allowing for
the extraction of local values across the population. The location of dose discrepancies is
clearly visible, with gamma superior to 1 in the prostate for the BDM (Figure 3.). Gamma
results allow a spatial dose analysis of the sCT generation method for chosen criteria
(1%/1mm in this study).

Recent studies in sCT generation involve deep-learning for different anatomical locations.
Nevertheless, artificial intelligence (Al) is not yet fully trusted for clinical use and key points
to assess Al solutions in radiology are raised[52]. Critical questions for performance and
validation are related to robustness to input variability, training data and potential sources of
bias identified by developers. As the GAN was trained with paired CT and MRI, the multi-
modal registration accuracy directly impacts the quality of sCT[51]. In addition, uncertainties
inherent to deep learning models[53] also generate misprediction.

These uncertainties may produce errors in sCT HU values, and so may impact dose
computation.

The population-based strategy presented in this paper offers the possibility to define at a
voxel level the capability of a method to be accurate across a cohort of patients, having
variable tissue density and anatomy, in HU and on the resulting dose distribution. It gives an
insight on the reliability of sCT generation, where usually the assessment is limited to global
or organ-wise assessment [1], [54], [55].

A limitation of the registration process might be the accuracy of the contours. Inter-observer
delineation for bladder, prostate and rectum on a similar dataset appeared to be close in a
previous study[31]. However, the experts may have been more experienced than the
physicians who segmented the data for this project. Nevertheless, relations between HU
errors and their impact on dose computations are yet to be investigated. In silico models with
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simulated HU errors in specific tissue followed by dose computation could help to determine
the acceptable level of error in sCT that will not affect the dose.

Overall, voxel-wise analysis brought out significant differences which did not show up with
the global scores and allowed the assessment of both HU prediction and dose distribution.
This process identified locations where the sCT were more prone to errors. This will provide
a way forward for translation to a clinical radiotherapy practice. However, the analysis
accuracy highly depends on the quality of the interpatient registration. As misregistration can
remain, dissociating registration error to those inherent to the generation methods is an issue
of interest and this is yet to be fully explored.

Even if the sCT generation method appeared to be accurate, there is no guarantee that each
new sCT will be reliable for dose calculation, especially for a patient anatomically different
from the training cohort or if the MR image presents artefacts, is acquired with a different
sequence or device.

The implemented voxel-based analysis workflow depends on interpatient registration
accuracy: mismatch between structures will lead to biased results. Moreover, the statistical
test presented in this paper is time-consuming, as simulation studies show that at least 10
000 random permutation are needed for each voxel for an adequate p-value estimation[38].
Furthermore, type | error may remain in the ESR.

This methodology is a tool for assessing and comparing sCT generation methods and illustrate
inhomogeneities. But more research is required to go further in quality assurance process.
Part of our future work is to investigate the ability to assess a single sCT, without reference,
before its use for dose calculation.

This study focused on the male pelvic area considering prostate cancer irradiation, however
the methodology can be applied to any other anatomical location provided accurate
registration is achieved.

Conclusion

The proposed voxel-wise population-based workflow resulted in 3D error maps for sCT
generation from MRI. This methodology relies on a robust organ-driven non-rigid registration
which brings all the patients to the same anatomical space. The assessment of HU and dose
distributions calculated from sCT accuracy followed a multi-scale strategy, whereby errors
were computed for the whole pelvis, followed by the organs and finally at a voxel level,
allowing for spatial characterization of the differences across the methods. This analysis was
completed with a quantitative assessment via error map histograms comparison and the
mean absolute dose error per volume histogram to compare different sCT generation
methods. Thus, this workflow will be useful in comparison and localization of errors in sCT
generation method and provides a way forward to sCT quality control within the MRI-based
planning RT.
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Chapter 4: Determination of acceptable
Hounsfield Units uncertainties via a sensitivity
analysis for an accurate dose calculation in the
context of prostate MRI-only radiotherapy

The previous chapter focused on detecting significant errors subregions of sCT generation
methods, examining both image and dose aspects. However, these assessments were
conducted independently, and their specific impact on the dose remains unclear. If a method
tends to fail in a specific region, what would be the consequences for the treatment?

This chapter presents a sensitivity analysis as a valuable tool to address this question. The
analysis explores the correlation between intensity changes in different structures to identify
regions where mispredictions will have the most substantial impact on the dose in the target
volume. Furthermore, the study investigates the influence of error volume on the dose at the
isocenter, considering three criteria: size, location relative to the target volume, and the
intensity change within the error volume.

The findings of this study have been accepted for publication, after minor revisions, in the
Physical and Engineering Sciences in Medicine journal in August 2023.

“Determination of acceptable Hounsfield Units uncertainties via a sensitivity analysis for an
accurate dose calculation in the context of prostate MRI-only radiotherapy”

H. Chourak, A. Barateau, P. Greer, C. Lafond, J-C Nunes, R. de Crevoisier, J. Dowling, O. Acosta
(PESM, 2023)

Preliminary work of this study has been presented at the AUS MRinRT conference in 2022.

“MRI-only radiation therapy for prostate cancer: exploration of the impact of synthetic-CT
uncertainties on dose calculation”

Hilda Chourak, Dowling Jason, Peter Greer, Anais Barateau, Safaa Tahri, Renaud de Crevoisier,
Jean-Claude Nunes, Oscar Acosta - AUS MrinRT 2022 (oral presentation)
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Abstract

Radiation therapy is moving from CT based to MRI guided planning, particularly for soft
tissue anatomy. An important requirement of this new workflow is the generation of
synthetic-CT (sCT) from MRI to enable treatment dose calculations. Automatic methods
to determine the acceptable range of CT Hounsfield Unit (HU) uncertainties to avoid
dose distribution errors is thus a key step toward safe MRI-only radiotherapy. This work
has analysed the effects of controlled errors introduced in CT scans on the calculated
radiation dose for prostate cancer patients. Spearman correlation coefficient has been
computed, and a global sensitivity analysis performed following the Morris screening
method. This allows the classification of different error factors according to their impact
on the dose at the isocentre. sCT HU estimation errors in the bladder appeared to be
the least influential factor, and sCT quality assessment should not only focus on organs
surrounding the radiation target, as errors in other soft tissue may significantly impact
the dose in the target volume. This methodology links dose and intensity-based metrics,
and is the first step to define a threshold of acceptability of HU uncertainties for
accurate dose planning.

Keywords: Sensitivity analysis; quality assurance; synthetic-CT; MRI-only radiotherapy;
prostate cancer.

Introduction

External beam radiation therapy (EBRT) involves the application of high-energy x-ray beams
from multiple directions, depositing energy (dose) within a tumour to destroy cancer cells.
EBRT is a well-established treatment modality for localised prostate cancer. Until recently,
treatment has traditionally been planned based on Computed Tomography (CT), with
Magnetic Resonance Imaging (MRI) also acquired for diagnostic information. For prostate
cancer, MRI has added significant value to EBRT due to its superior soft tissue contrast which
results in the improved accuracy of manual labelling of the target volume (the prostate gland)
and nearby organs at risk (bladder, rectum, bones). This improved accuracy may reduce the
risk of toxicity in healthy tissue[1], [2].

The deployment of MRI-only radiotherapy (RT) provides greater efficiency and accuracy in the
clinical workflow by bypassing the MR to planning CT registration step and removes the need
for an extra CT scan. This justifies the increasing worldwide deployment of dedicated MRI
scanners and MRI-linear accelerator (MRI-linac) hybrid machines for treatment delivery, the
latter also allows for better patient positioning and tumour targeting[3]. However, MRI does
not provide information on the electron density of tissues, which is necessary for dose
calculation. Synthetic-Computed Tomography (sCT) generation is thus a critical component of
MRI-only RT workflows.
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Currently, sCT images are assessed against a ground truth CT in two ways: image and dose[4].
The first method involves a comparison of Hounsfield Units (HU)[5], [6]. The most commonly
used metrics are full reference intensity-based and include mean absolute error (MAE), mean
error (ME) and peak signal-to-noise ratio (PSNR). Perception-based models like the structural
similarity (SSIM) may also be assessed[7], [8], and more specifically the multiscale SSIM (MS-
SSIM)[9]. These metrics result in global or organ-wise values, but local errors such as air
incorrectly included within an organ may have an impact on treatment delivery and may not
be identified with a global metric. For sCT in the pelvic area, the HU uncertainties are typically
observed in the cortical bone and rectum when air pockets are present[10], [11].

The quality of sCT images is also assessed by the dose accuracy. For the different EBRT
treatment techniques such as intensity-modulated radiation therapy (IMRT) or volumetric
modulated arc therapy (VMAT), the beams cross several healthy tissues before reaching the
target. Errors in these beams' trajectories will have consequences on the dose distribution in
the target. Most of the sCT generation literature describe dosimetric endpoints such as
gamma analysis and dose-volume histograms (DVH) metrics[12]. These measures give an
insight of the overall dose distribution accuracy on the sCT. A previous study proposed a voxel-
wise statistical analysis strategy to locally assess sCT generation approaches in image and
dose domains[13], but no correlation was made between both. Choi et al.[14] investigated
the correlation between image metrics as a global value (computed within the body contour)
and dose accuracy in the target volume and proposed a water equivalent depth method as a
metric. However, no information was given on the origin of dosimetric errors. Generated
images must be sufficiently correct to ensure accurate dose planning in the tumour area. So,
determining the origin of local erroneous dose will allow focusing on the most meaningful HU
error and provide thresholds of HU uncertainties acceptability.

The aim of this study is to investigate the correlation between localised HU errors and dose
at the centre of the target volume, here the prostate. To do so, a sensitivity analysis (SA) was
performed, by applying the Morris screening method[15]. An SA is designed to quantify the
effect of parameters on the output[16]; in this study, the effect of HU error on the dose
distribution at the isocentre (centre of the prostate).

Several SA methods exist and can be classified in two types: local and global. Local methods
allow for the examination of the model at a specific point in the input space. Most of these
approaches induce a low computational cost. However, they do not give an indication of
interactions between parameters or on the linearity of their effects. Global methods measure
the sensitivity in several points in the input space and highlight the type of effect and the
possibility of interactions[17]. SA has previously been applied to assess the ability of quality
assurance protocols to detect events affecting MRI in RT[18], or to evaluate the sensitivity of
electron dose calculation with respect to stopping power and transport coefficients[19].

In this study, a global one-at-a-time (OAT) approach, the Morris screening method, has been
chosen to identify the impact of uncertainties in synthetic-CT on the isodose. The Morris

method has previously demonstrated its ability to simplify models predicting biochemical
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recurrence after radiotherapy[20] by discarding parameters with a low impact on the output.
Applying this methodology to sCT for MRI-only RT is the first step in the definition of
thresholds of acceptability of HU errors in sCT for safe MRI-only RT practice.

Material and methods

Two experiments have been conducted to determine the errors in sCT that are more likely to
affect the dose at the isocentre. First, the errors have been assessed in terms of HU number,
volume, and location by adding an artefact in the reference CTs. Spearman correlation
coefficient (SCC) between error features (intensity, volume, location) and dose at the
isocentre were computed. While the SCC indicates if the different features have a monotonic
impact on the dose, the SA will help to classify the features according to their influence on
the output and give information on the linearity and or interaction between factors.

In a second phase, we focused on the impact of errors in specific anatomical location by
changing the mean intensity in the bladder, rectum, bones, prostate and in the remaining soft
tissues.

Dataset

Data of 39 patients with localised prostate cancer aged 58 to 78 years were used in this study.
Ethics approval for the study protocol was obtained from the local area health ethics
committee, and informed consent was obtained from all patients. For each patient, a CT scan
was acquired on a GE LightSpeed RT or a Toshiba Aquilion, (256 x 256 x 128 matrix with a
voxel size of 1.17 mm x 1.17 mm x 2.5 mm or 2.0 mm). Bones, bladder, rectum, and prostate
were manually delineated by experts.

Sensitivity analysis: Morris screening method

The Morris screening method is a randomised OAT global SA. The parameters are modified
individually, and cover a K-dimensional cube, with K representing the number of factors
(Figure 4.1).

Feature values were generated using the Sensitivity R package[21] and were randomly
assigned to efficiently cover the K-dimensional space. Elementary effects (EE) given by (1) are
calculated to assess the effect of the X; factor variation on the output. The model is evaluated
N = R X (K + 1) times for each j patient, with R the number of repetitions, i.e the number
of EE computed per factor. It offers an insight of the influence of parameters X =
(X1, ..., X, ..., Xgk] on the model Y = fj(X) with a moderate computational cost. This
approach also provides information on the type of impact (linear / non-linear, monotonic or
not) and on the interaction between the factors assessed[17].
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(a) (b) (c) (d)

Figure 4.1: Example of a trajectory for the evaluation of the influence of K = 3 factors. First, one point
is randomly selected in the 3-dimensional space (a). Then, three other points are created by changing
one parameter value at a time (b, c and d).

(X Xy 44,0, X)) — i (X, o, Xy X
pr = (0K B 20 = Ko W
12

A; is the discrete variation of the parameter.

For each factor and each patient, the mean y; ; (2) of EE, the standard deviation o; ; (3), and
the mean of the absolute values of the EE y *; ; (4) are computed to summarise the EE and
thus estimate the global sensitivity in the output space[22]. i *; ; is used to solve the effect
of opposite signs for non-monotonic functions.

R FET.
nui,j = —r_lR b (2)
Z$=1(EEir,j - :ui,j) (3)
0ij = R
R |EFET.
g = HT] (4)

Toillustrate the impact of the parameters on the output, the Euclidean distance of each point
to the origin (u * 0,0 = 0) D; = \/u *; j*+ 0; ;* has been calculated[23].
Low u * and ¢ indicate an insignificant impact for a chosen factor, and high u * and/or o stand
for significant impact. High value of & compare to u *indicates a factor involved in interaction
with others factors or whose effect is non-linear (Figure 4.2).
In this study, the Morris screening approach aimed to emphasise the impact of localised HU
errors on dose calculation, according to:

- descriptive characteristics of the error (intensity, size and location),

- mean intensity within the organs.

These two approaches are described in the experiment’s sections below.
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Figure 4.2: Classification of parameters according to the mean of the absolute elementary
effects (1*) and their dispersion (o).

Experiment 1
The first experiment aimed to assess the impact of error according to 3 factors: intensity, size
and location. To achieve this, an artefact with various combinations of these three parameters
has been added to the 39 planning CTs. The artefact was built as follows:

- HU variation, from -250 HU to + 250 HU.

- Distance to the isocentre, from 0 to 100 mm. The artefact displacement followed one

of the beams’ axis.

- Diameter of the artefact, from 2 mm to 50 mm.
The model has been evaluated 200 times for each patient: N = R X (K + 1),with R = 50
repetitions, and K = 3 factors (intensity, distance, size), resulting in 7800 simulations.

The Spearman correlation coefficient (SCC) has also been computed in this experiment. This
is a nonparametric measure of statistical dependence of ranking between two variables.

An SCC close to -1 or 1 denotes a strong correlation, while an SCC close to O illustrates a weak
relationship.

To compute the SCC for each error features, the following parameters have been defined:

- For the effect of changes in HU, the step was set to 25 HU. The diameter of the artefact
was fixed to 50 mm and its centre aligned to the isocentre, allowing for complete
coverage of the target and ensuring a homogeneous distribution of the dose within
the error volume.

- For the effect of distance, the step was set to 10 mm, with an error fixed at +200 HU
and a size of 50 mm. The displacement followed a beam axis, minimizing the impact of
the dose on the result. (For the error to have consequences on the dose at the
isocentre, it must be encountered by one of the beams delivering the treatment).
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- For the effect of size, the error was fixed at +200 HU and located at 30 mm from the
isocentre. This location corresponds approximately to the rectum, where high HU
variation can be observed due to the difficulty of predicting air pockets.

2145 images were generated to compute the SCC.

Experiment 2

Errors in sCT are more likely to be evaluated in terms of mean HU error within the body or
per organs[24]—[27]. So, in this experiment, mean intensity changes in the following locations
have been applied in order to assess their potential impact on the dose:

Bladder (from -100 HU to +100 HU),

Rectum (from -1000 HU to +200 HU),

Bones (from -500 HU to +500 HU),

Prostate (from -100 HU to +100 HU),

Remaining soft tissue (from -100 HU to +100 HU).

Remaining soft tissue volumes are generated by subtraction of bone, bladder, prostate and
rectum volumes from the body contour. The model was evaluated 240 times for each patient
R = 40 repetitions, and K = 5factors), resulting in 9360 simulations. Higher threshold has
been defined for bone and rectum, according to the difficulty for a sCT generation method to
predict HU in these locations. Especially for the rectum, where the presence of gas (-1000 HU)
is uncertain.

Dose planning

IMRT with 7 beams (photons of 6 MV) was planned for 39 fractions (2 Gy per fraction) on
reference CT images using a dose grid resolution of 3x3x3 mm with MatRad[28], an open-
source software for radiation treatment planning developed for research purposes[29]—[31].
The beam parameters used to compute the dose on the CT were then copied to calculate the
dose on each modified CTs. Figure 4.3 presents examples of modified CT and their
corresponding dose used in this study.

Results

Experiment 1

The relationship between the 3 error features and the isodose appear to be monotonic, with
an SCC of -0.99 for the intensity variation, -0.95 for the size and 0.73 for the distance. As
shown in Figure 4.4, an overestimation of HU will reduce the dose distributed in the target,
while an under estimation will result in a higher dose at the isocentre. Also, there is an
important interaction between the size of the volume error and the beams delivering the
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dose. As the amount of this volume within the beam increases there are greater impacts on
the treatment. An artefact with a diameter of 30mm will decrease the dose in the target of
0.5 Gy in average. As the error is fixed at +200HU to assess the impact of the size, the dose
distribution will decrease in this graph.

Regarding the distance, the closer is the volume from the isocentre, the more important is
the impact of the error in this location. For all of the patient cohort, when the distance to the
isocentre reaches 40 mm, the impact of the artefact starts to be constant, without reaching
the prescribed dose (78Gy). This might be explained by the variation of the dose going
through the volume of error.

The SCC gives an insight of the effect of each parameter on the dose distribution, but this
covers only a few possible combinations of factors compared to the Morris screening method.

Experiment 1

I:l Artefact location <-» Axis of displacement

(a)

(b)

Experiment 2

1226
1000

(a)

(b)

Axial Sagittal Coronal

Figure 4.3: Example of a Modified CT (a) and its corresponding dose distribution overlaid (b) for both
experiments. For Experiment 1, the error volume is visible in the red square, and the dotted arrow
represent its axis of displacement. A modified image of the same patient has been randomly selected tooo
illustrate Experiment 2. Here, 100 HU were added in the bladder, 66.6 HU in the rectum, 55.5 HU in the
prostate, and 78 HU in the remaining soft tissue. 146.5 HU were subtracted in the bones.



Figure 4.5 (a) presents the results of the SA. ¢ is superior to u * for all the factors assessed:
their effect on the dose distribution at the isocentre is thus non-linear / non-monotonic
and/or they interact with each other. This figure also shows that intensity and size are the
two most impactful parameters. This statement is confirmed by Figure 4.5 (b), as the
Euclidean distance to the origin of the graph is an indication of the influence of a factor on
the output. Indeed, it shows that on average, the intensity and the size have both a similar

impact on the output.

Experiment 2

Figure 4.6 shows that change in bladder and prostate intensities do not imply significant
change in the dose at the isocentre. The dose appeared to be more sensitive to errors in the
bones and rectum. The standard deviation of u * and ¢ are more important for these
anatomical locations, so change of intensity had a less constant impact across the patient
cohort than for the bladder or prostate.

Errors in the remaining soft tissue are the most impactful.
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Figure 4.4: Experiment 1: Impact of the error (in terms of intensity in blue, size in green and distance in red)
on the dose distribution at the isocentre.
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Figure 4.5: Morris screening results for the Experiment 1. (a) Mean of (p*i,j,oi,j) for each
factor. The bars correspond to the standard deviation of pu*i,j and ci,j across the patient
cohort. (b) Euclidean distance of each point (u*i,j,oi,j) to the origin of the graph ¢ = f(u*) in
descending order of importance.

102



e Bladder
0.6 » Rectum
e Bones
0.5 Prostat
i Monotonic .
e Soft tissue
0.4 =t
T o=u*x10
%03
0.2
o
0.1 f P~
T Linear
0.0
0 1 2 3 4 5 6
” *
(a)

[

Euclidean distance
w F =N w ()]

0 )

Bladder Prostate Rectum Bones  Soft tissue
(b)
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103



Discussion

As different sCT generation methods will produce different and inhomogeneous HU
uncertainties across the patient’s body[11], [13], [26], two experiments have been
performed. The first one highlighted the sensitivity of the dose to changes in intensity and
size of the volume of error. According to Figure 4.4 , the three features assessed had a
monotonic effect on the output, and the Morris screening analysis demonstrated that the
three parameters interact with each other.

The second experiment presented the result of the SA on organ-wise error. The variation of
HU has been applied homogeneously across each structure to be consistent with the way the
methods are usually assessed in the literature (mean error within the organs and the body
contours).

Sensitivity to errors in the bones and rectum is less consistent across the patient cohort
(Figure 4.6) compared to errors in the bladder and prostate. This might be due to higher
variability of size and HU in these structures, with the presence or absence of rectal gas, and
different densities in the bone structure (cortical and spongy bones, with a variability in
density across the population due to age and body mass[32]). The size of the bones, varying
with size of the individual, would also depend on patient weight, where for a thin person an
error in bone would have more influence as there is less soft tissue. In this experiment, unlike
in the first one, the impact of the different parameters assessed tended to be linear. This
might be explained by the consistency of the size and distance of each structure assessed, so
the only changing factor is the variation of HU.

Some studies evaluated the dosimetric impact of HU to density curve variation. For example,
in a previous study, Thomas et al.[33] reported a dosimetric error of 1.0% for a difference of
8.0% in bone electron density. Notable HU variations affect the accuracy of dose calculation
[34], [35]. In case of HU to density curve error, the whole CT image is impacted for a given
tissue. In this study, we focused on specific local area.

An absolute threshold of acceptability cannot be universally defined since it depends on each
specific sCT generation method and treatment scenario. Therefore, it is recommended to
apply this methodology to each clinical centre’s specific data. The obtained results are specific
to the dose calculation algorithm, the number of beams crossed by the volumes and the
amount of dose distributed by each of them. In this study, we assessed the effect of errors on
IMRT dose plans, but other treatment techniques may be used in the clinic like VMAT, and
stereotactic body radiation therapy (SBRT)[36], may result in different dose distributions
across the body and thus will have a strong impact on the results. For particle therapy, the
dose in the normal tissue outside the target volume is reduced[37], and the dosimetric impact
due to misprediction in HU are likely to be larger. Different results are thus expected for
proton and carbon ion therapy. Future work will investigate the other treatment techniques,
with a more significant link with the sCT generation.

104



[1]

[2]

We focused on the dose at the isocentre, but changes in HU also have consequences on dose
distributions in the organs at risk (bladder, rectum, femoral heads), leading to toxicity and
inconvenient secondary effects such as chronic bladder inflammation. Therefore, future work
will also explore the local influence of HU modification, using dose-volume histogram
differences in each specific location.

In the pelvic area, the anatomy of the patient is subject to change due to variation of the
bladder and rectal filling for example, which may have consequences on the accuracy of the
treatment delivery[38], [39]. The method proposed in this paper could also be used to
determine an acceptance criteria of organs motion during the treatment.

The methodology presented in this study can be adapted to each specific generation method,
once the location of HU uncertainties has been identified, and the treatment plans defined.
Deep-learning based sCT generation methods tend to be the most common[40], and more
effective models should to be developed in the future. Aleatoric (data dependant) and
epistemic (model dependant) uncertainties are specific to machine-learning models and can
be assessed[41]-[43]. Including the impact of these uncertainties on the dose distribution
during the learning process might be a way to create more clinically valid image generation.

Conclusion

A sensitivity analysis was performed, allowing for determining the less influential HU errors
on the dose distribution at the isocentre. sCT assessment should not only focus on delineated
contours, and sparse error in the body contours should not be neglected. This study confirms
the necessity to locally assess each sCT prior to its use in a clinical workflow, particularly in
steep dose gradient areas.

The main contribution of this paper is to provide a bridge between intensity-based metrics
and dose, which are often used independently to assess the quality of sCT for EBRT. This
approach can be used to generate clinical thresholds, and potentially model constraints, for
both training and validation of sCT generation methods. The study is the first step in the
definition of threshold of uncertainty acceptability in sCT to ensure accurate MRI-only RT.
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Chapter 5: Patient specific synthetic-CT quality
assessment without reference

In this chapter, two methods are proposed for assessing the quality of patient-specific
synthetic-CT when no planning CT is available as a ground truth. The first approach involves
creating an atlas using a cohort of CT scans and detecting outliers to highlight significant error
subregions. A voxel-wise Shapiro-Wilk test allowed us to conclude that the density of tissue
follows a normal distribution (this hypothesis had been rejected in the rectum and in areas
where the body contour was misregistered). However, this method can be time-consuming,
and the accuracy of the results depends on the precision of the registration.

To address these issues, a radiomics-based approach is proposed. This involves selecting
significant radiomics features from a cohort of CT scans. These features are then computed
on the new image, and a score is assigned based on their distance from the values obtained
on the reference images.

The first section has been published and presented in the Digital Image Computing:
Techniques and Applications (DICTA) conference.

“Local quality assessment of patient specific synthetic-CT via voxel-wise analysis”

Hilda Chourak, Anais Barateau, Jean-Claude Nunes, Peter Greer, Safaa Tahri, Caroline Lafond,
Renaud de Crevoisier, Jason Dowling, Oscar Acosta — DICTA 2022 (oral presentation)

The second section is ongoing work and need further investigation before being submitted to
a journal.
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1- Local quality assessment of patient specific synthetic-CT via

voxel-wise analysis

Abstract

Synthetic-Computed Tomography (sCT) generation is a critical component of Magnetic
Resonance Imaging (MRIl)only radiation therapy workflows. The sCT computed from MRI is
generally assessed by measuring Hounsfield Units (HU) discrepancies with a reference CT. The
aim of this work was to propose a process for the blind assessment of local errors in generated
sCTs where a reference CT is unavailable, allowing for safe MRI-only radiation therapy
treatment planning. A personalised inter-patient registration method was applied to align a
cohort of reference CTs into the same coordinate system. This process resulted in probability
maps for each segmented organ, a mean CT image and a standard deviation map. These data
were propagated to the anatomical space for each sCT, allowing for out of distribution
intensities to be detected at a voxel level by computing local z-scores. Probability maps of
organs were used to weight the resulting z-scores, reducing the bias induced by the
registration around structures. Two sCT generation methods were chosen as examples to
illustrate this methodology: an atlas-based method (ABM) and a deep-learning approach
based on a Generative Adversarial Network (GAN) architecture. 39 patients treated with
external beam radiotherapy for prostate cancer, with co-registered CT and MR pairs, were
used for sCT generation. 26 of these patients were selected as reference CT, and sCT of the
remaining 13 patients were assessed. Accurate inter-individual registration was achieved,
with mean Dice scores higher than 0.91 for all organs. The average volume of error
represented 0.29% of the image for the ABM, 0.37% for the GAN. The proposed methodology
produced 3D volumes which identify significant local sCT errors. Depending on their size and
location, these errors could lead to inaccurate tissue density computation during radiation
therapy. This work provides an automated QA method aimed at preventing incorrect
radiation dose delivery to patients.

Introduction

Radiation therapy is a well established, cost-effective treatment which has an evidence-based
indication for 48% of cancer patients [1]. Most treatment planning is based on Computed
Tomography (CT) imaging. Magnetic Resonance Imaging (MRI) is a non-ionizing modality.
providing improved soft tissue contrast than CT, which leads to more accurate tumour and
organ delineation in radiation therapy treatment planning. This justifies the increasing
worldwide deployment of dedicated MRI scanners and MRI-linear accelerator hybrid
machines for treatment delivery. However, unlike CT scans, MRI does not provide information

on electron density of tissue, crucial for dose calculation. Therefore, several approaches to
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generate synthetic-CT (sCT) from MRI have been developed to allow for MRI-only radiation
therapy [2], [3], including: bulk density [4], [5], atlas-based [6], machinelearning models, such
as patch-based methods with feature extraction [7], and more recently deep-learning models
[7]- [13]. sCT image quality is currently assessed via global metrics, which measure
discrepancies between a reference CT and the corresponding sCT [13], [14]. The most
commonly used are intensity-based metrics [15], such as mean absolute error (MAE), mean
error (ME), mean absolute percent error (MAPE), mean squared error (MSE) and peak signal-
to-noise ratio (PSNR). Structural similarity (SSIM) [16] and visual information fidelity (VIF) [17]
may also computed. These metrics are reported at a global level: either restricted to a single
value describing agreement within the body contour of the patient, within a class of tissue, or
within contoured organ boundaries [13]. A limitation of all of these metrics is that they are
based on comparison to a ground truth CT scan, which means they are only useful for
validation prior to clinical deployment. Once deployed in an MRI-only radiotherapy clinical
practice, quality assurance becomes very important as errors may appear sporadically
distributed across different tissue densities [7], [18], and there will not be a reference to
assess the sCT (this is referred to as blind quality in this paper). As Hounsfield Units (HU)
intensities are correlated to tissue density, the inaccurate prediction of these values may lead
to error in dose calculation. Thus, it is crucial to localise and determine the volume of error in
HU prediction for each new sCT. Previous studies on blind CT quality assessment have focused
on noise detection [19]. Choi et al [5] investigated the use of a bulk-density map generated
from MRI as reference to assess sCT, but this does not consider the contrast of intensities in
soft tissue. Voxel-wise analysis has proved to be efficient in the assessment of the clinical
impacts of image and dose difference across individuals [20], [21]. However, their application
requires an accurate non-rigid registration of a whole population to a single coordinate
system, and the implementation of voxel-wise statistical tests [22]. Previous work gave an
insight of the feasibility of this method, but the analysis was based upon comparison of
generated data to their ground truth [23].

The aim of this paper is to propose a strategy to assess the quality of patient specific sCT at a
voxel-level to ensure safe MRI-only treatment planning. The first step was the offline
computation of an atlas from a cohort of reference CTs: these data were registered in the
same anatomical space following an adapted non-rigid registration process. The second step
for online processing of a new sCT involves extracting mean and standard deviation maps from
this atlas, which are propagated in the sCT space. This allows the computation of a z-score
map to highlight local outliers. As the inter-patient registration in the atlas construction may
induce bias in the analysis, probability maps extracted from the organ delineation of the atlas
were used to assign weights to z-score according to their location.

The output of the blind QA method includes 3D volumes showing predicted areas of significant
errors in HU values. Two different sCT generation approaches were chosen as examples to
demonstrate the efficiency of this methodology: an atlas-based method (ABM) [6] and a deep-

learning method, based upon a generative adversarial network (GAN) architecture [7].
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Material et methods

A. Treatment planning for radiation therapy

The aim of the treatment planning phase in external beam radiation therapy is to define the
optimal beam settings to maximise the dose that will be delivered in the tumour while
minimising it in the surrounding organs. The standard treatment planning workflow is
presented Figure 5.1.1. A planning CT is acquired, giving electron density information. This
step is crucial as the dose delivered depend on the density of tissue crossed by the beams.
Then, this image is registered to the diagnosis MRI. The MRI aim for tumour and organs
delineation. During the beam’s and dose computation step, these contours are used to control
the dose that will be delivered in the target and the healthy tissue. Once the optimum settings
are determined, a radiation oncologist validate the treatment. For prostate cancer, the
treatment will then be delivered in 30 to 40 fractions, at a rate of 5 fractions a week.

One of the advantages of MRI-only radiation therapy is the simplification of the planning
phase for the physicist and physician involved in the process, but also for the patient.

B. Data

Retrospective data from 39 patients with localised prostate cancer aged 58 to 78 years were
used in this work. For each patient, a CT scan was acquired on a GE LightSpeed RT or a

Toshiba Aquilion, (256 x 256 x 128 matrix with a voxel size of 1.17 mm x 1.17 mm x 2.5 mm or
2.0 mm) and a T2-weighted MRI was acquired on a Siemens Skyra 3T in the treatment position
(resolution of 1.6 mm x 1.6 mm x 1.6 mm). Each CT was resampled and registered to the
corresponding MRI via a symmetric rigid registration followed by a structure-guided non-rigid
method [24], [25] to rectify the anatomical variations due to the delay between both
acquisitions. Non-uniformity of MRI was then corrected [6] with the Insight Toolkit Library
(ITK). Organ delineation (labelling) was performed on the MRI by three experienced observers.
These organs include the bladder, prostate, rectum, bones, and body contour (Figure 5.1.2).
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Figure 5.1.1: Standard workflow for treatment planning in external beam radiation therapy.

C. synthetic-CT generation methods

1. Atlas based method: The Atlas-based method (ABM) [6] used rigid followed by non-
rigid registration of a set of 3D MRI-CT atlases to a target MRI. sCT voxel intensities
were then propagated from the co-registered CTs according to a patch based local
intensity match between the target MRI and the multiple MRIs composing the atlas.

2. Generative adversarial network (GAN): The GAN architecture chosen for this study to
generate sCT was composed of a U-Net for the generator, and a PatchGAN for the
discriminator. Axial 2D CT and MRI slices, were used to train the model. A three-fold
cross validation was used to validate the model: 26 patient data composed the training
cohort, and 13 patient data composed the validation set. The architecture of the
model is described in Largent et al. [7].

D. Workflow

The voxel-based analysis workflow process is presented in Figure 5.1.3.

a) Structure guided non-rigid registration: In radiation therapy, target (the prostate in this
study) and organs at risk (bladder, rectum, bones) delineation is a crucial step in the
treatment planing process. Thus, delineations are systematically achieved by the radiation
oncologist, allowing for the use of these contours in the registration process. All the
reference data were registered following the personalized organ driven non-rigid
registration method described below. First, a representative study patient was selected as

a template (this patient was selected based on their similarity to the median volume of
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body, prostate, rectum and bladder). Following this, a customised organ-driven
registration, based upon previously proposed methods [20], [23] was performed. As MRI
provides better contrast in soft tissues compared to CT, the registration process has a
combination of MR intensities and structural descriptions (SD) of the structure contours
(bones, prostate, bladder, rectum) obtained in a pre-processing step. The structural
description was obtained as follows: - Euclidean distances to the surface were computed
for all structures [26].

Figure 5.1.2: MRI of one patient of the cohort (top) and its co-registered CT (bottom) with 3D models
of delineated main organs in the pelvic area: bones, bladder, prostate and rectum respectively in
blue, purple, red and green.

A scalar field was generated by applying the Laplacian equation inside the rectum [27],
resulting in a normalised distance map to the central path of the organ. - The Laplacian
was also computed for the prostate with respect to its barycentre.

All the input images were aligned using the Elastix toolbox (translation). Then, non-rigid
registration based on diffeomorphic demons [28] was successively applied to: i) the
bladder SD, ii) the whole pelvis, iii) the prostate SD, iv) the rectum SD, v) the bones SD.
This resulted in a 3D vectors fields, allowing for the propagation of CTs in the template
space. Bones were divided between spongy and cortical and separately registered, to
preserve the composition of inner structure. This step-by step process allows for fine-
tunes, providing accurate registration of both contours and inner structure of all organs.
The non-rigid registration was validated by computing the Dice Similarity Coefficient (DSC)
between the template structures, Vi, .. and the corresponding deformed delineated

organ, Vyg;:
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(1)

b) Reference atlas data: Once all the reference CT are in the common coordinate system,
the voxel-wise mean and standard deviation of the intensities’ distribution were
computed.

c) Probability maps: The probability map resulted from the superposition of the reference
CT organs’ delineation in the common coordinate system (CCS). This allowed for the
visualisation and estimation of the discrepancies between the delineated organ contours
following registration, and provides an indication of the probability of a voxel’s inclusion
within an organ.

E. sCT assessment

Mean HU values, standard deviation and probability maps of structures were propagated to
each sCT anatomical space for the voxel-wise analysis. We assume that, at each location, the
tissue density across the cohort follows a normal distribution. To detect outliers in the sCT,
the z-score, also called standard score, was computed. It is an indication of the probability of
the value to be part of the reference distribution, and was calculated at each voxel i as follows:

sCT (@) — pu(@) y

20 =%

w(i) (2)

Where sCT (i) is the HU value of the i®" voxel in the synthetic image. u(i) and o(i) are
respectively the mean intensity and the standard deviation at this location in the CT atlas. The
inter-patient registration may lead to bias in the reference data. Thus, to reduce the impact
of mis-registration, w(i), the weight corresponding to the normalised probability map value
at the it" voxel, were multiplied on the z-scores. All voxel values outside the 95% confidence
interval in the resulting 3D map, i.e all values superior to 2 or inferior to -2, were considered
as outliers.

A conventional image quality assessment was proceeded to highlight the relevance of the
method. Thus, mean absolute error (MAE), mean error (ME) and mean absolute percent error
(MAPE) were computed as follow:

1 n
MAE = ) UG () = HUscr (0] ©)

1 n
ME ;Z HUcr (i) — HUser (i) 0

116



10 |HUer (D) = HUger (D)
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with n the total number of voxels, HU.r (i) and HUcr (i) the intensities of the i* voxel in,
respectively, the reference and the generated image. The closer to zero these values are, the
more accurate is the prediction. These metrics were applied to assess HU errors in the whole
pelvis, by organ and in the volume of outliers.
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Figure 5.1.3: Workflow of voxel-based analysis. The input dataset was composed of 39 images, and sCT were
generated for all of them. 26 patient CTs were selected as a reference cohort, allowing for blind sCT quality
assessment for the 13 remaining patients. The 26 patient data were non-rigidly registered into a common
coordinate system (CCS), resulting in the reference atlas. Probability maps of the delineated organs, mean
reference CT and standard deviation of CT in the CCS were then computed at a voxel-level. These data are
then registered to each sCT anatomical space, providing detection of significant error subregions.

Results and discussion

The personalised non-rigid registration method accurately brought the 26 patients of the
reference cohort in the same anatomical space, as demonstrated by the average DSC scores
of 0.98 + 0,01 for the body contour, 0.93 + 0,01 for the bones, 0.96 + 0,01 for the bladder,
0.91 + 0,02 for the rectum and 0.91 + 0,02 for the prostate. Previous work has supported the
use of the organ structural description [20], and its combination to MRI for better
preservation of the different soft tissue class within the body [23]. The reference atlas for the
assessment was thus considered reliable, allowing for the voxel-wise analysis to be proceeded
[22]. On this sample of 13 sCT assessed, ABM and GAN obtained close MAE, ME and MAPE
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results, as shown in Table 5.1.1. Despite the small volume represented by the outliers, these
presented a MAE up to 155.37 HU for the ABM and 135.82 for the GAN, and a MAPE of 4.03
for the ABM, against 2.44 for the GAN. MAE values appeared to be correlated to the reference
intensity (the most important errors are in cortical bones, where the mean HU value is the
highest) and illustrates how far from the ground truth the mean HU prediction is. The MAPE,
which correspond to the relative difference, was computed as a measure of prediction
accuracy. The ME determined if the prediction tends to be systematically superior (negative
results) or inferior to the reference. These metrics offer complementary information and can
be computed at a voxel level, and should not be used alone for global assessment. For
example, a ME close to zero in a volume do not imply an accurate prediction, as this volume
might include both high positive and negative scores. And, as full reference metrics, they need
a CT ground truth, making them useful to assess the efficiency of a sCT generation method
during the development phase, but unsuitable in a clinical workflow.

The average volume of the outliers identified within the sCT scans represented 0.29% * 0.26
of the image for the ABM, 0.37% + 0.35 for the GAN (Table 5.1.1). Figure 5.1.4 illustrates the
regions where the out of distribution HU values were detected in the worst case on one hand
(patient 3), and the best case (patient 5) on the other. Few errors appeared in the prostate
and in the organs at risk (bladder, rectum, femoral heads), except for one patient where the
voxel-wise approach has detected significant errors in the bladder for both sCT generation
method, especially for the GAN, as shown in Figure 5.1.4. This might be explained by a high
anatomical variation compared to the training cohort for the GAN. The ABM performed better
in this location, for all the sCT assessed (Table 5.1.1Table 5.1.1).

A similar process was used in Wang et al. [29] on pediatric brain data. However, the
registration errors were not considered and the threshold of a difference of 100 HU compared
to the mean chosen in this study may not be valuable regarding the variability of tissue
densities within the pelvic area (from -1000 HU for the air to 1500 HU for dense bones) and
for each patient.

Applying a weight to the z score map according to the probability of mis-registration of each
structure reduce the bias linked to the inter-patient registration, but error may still remain,
especially when assessing sCT for a patient with high anatomical variation compared to the
reference cohort. So, part of our future work is to separate errors due to the inter-patient
non-rigid registration from errors inherent to the generation method. Deep-learning can help
to estimate local error registration [30]. Unfortunately, this study is limited by the number of
data available. Thus, using 26 patients as reference atlas might not be enough to be
representative of the population concerned by prostate cancer.

118



Table 5.1.1: Mean absolute error (MAE), mean error (ME) and mean absolute percent error (MAPE) obtained
for the 13 sCT generated with the atlas-based method (ABM) on one hand, and the GAN on the other. These
scores were computed in the whole pelvis (body), by organ and within the volume of outliers.

ABM GAN
mean std mean std
MAE (HU) 37.89 + 8.65 32.35 + 7.70
BODY MAPE 1.53 + 0.73 1.33 + 0.69
ME (HU) -7.06 + 14.47 -3.53 + 13.87
MAE (HU) 17.30 t 8.46 20.84 + 14.25
BLADDER MAPE 2.42 * 1.01 3.12 + 1.13
ME (HU) 8.49 * 11.35 6.98 * 19.94
MAE (HU) 76.54 + 59.97 68.83 * 66.85
RECTUM MAPE 2.12 + 1.09 1.84 + 1.32
ME (HU) -14.40 + 78.81 -38.19 +  69.57
MAE (HU) 2394 + 496  19.08 + 580
PROSTATE MAPE 1.62 t 1.26 1.64 * 1.59
ME -4.05 * 13.29 -3.34 * 14.05
MAE (HU) 127.29 + 27.58 122.29 + 21.39
BONES MAPE 1.58 + 1.21 1.34 + 1.03
ME (HU) 23.90 + 48.18 24.90 + 3823
% body vol.  0.29 + 0.26 0.37 + 0.35
MAE  (HU) 155.37 * 30.56 135.82 * 29.72
VOL. OF OUTLIERS
MAPE 4.03 * 2.29 2.44 * 1.39
ME (HU) 25.49 + 56.02 -10.834 +  62.20

In addition, a potential uncertainty while using an atlas for sCT assessment in the pelvic area
is the air in the digestive system, as there is no consistent state from one patient to another,
and even for the same patient over time. One way to correct this issue might be to include a
step to compare the volume of air in the delineated rectum in the input MRI with its resulting
sCT. A limitation of the proposed approach in this work may be the computation time involved
with the non-rigid registration process (20 min for each sCT). However, this is generally not an

issue in treatment planning (as there are usually a number of days between an initial planning
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scan and treatment delivery), and faster registration methods could be investigated if clinically

required.

Reference template MRI

Axial Sagittal Coronal

Patient 3 Patient 5

Input
MRI

ABM
sCT

(a)

(b)

GAN
sCT

(a)

(b)
View: Axial Sagittal Coronal Axial Sagittal Coronal

Figure 5.1.4: Axial, sagittal and coronal views of the MRI used as template to create the reference atlas
followed by two patients MRI and (a) their resulting synthetic-CT (sCT) generated from the atlas-based
method (ABM) and the GAN method. (b) represents these sCT with the significant outlier (error) volume
overlaid in red

Integrating this workflow in a treatment planning system will allow for manual correction of
the density by the radiation oncologist in detected volume of outliers before dose calculation.
This methodology can also be used for offline validation or to validate sCT generation
methods as part of a clinical evaluation stage. This study presents results for the male pelvis
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[1]
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(prostate cancer radiation therapy), but the method can be applied to other anatomical
locations.

Conclusion

In this paper, we have presented a voxel-wise analysis method based on an efficient non-rigid
registration process. The step-by-step approach has been shown to be robust to high inter-
individual anatomical variability. The method results in a 3D volume, highlighting regions
where the estimated HU in the generated sCT is significantly different from an atlas of
previously acquired reference CT data. The proposed methodology has been shown to be
capable of detecting local errors in sCT generated from MRI, which is an important
contribution towards safe MRI based radiation treatment planning.
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2- Radiomic features selection for quality assessment of patient

specific synthetic-CT

Abstract

The MRI-only workflow has gained popularity in external beam radiation therapy for
improving efficiency and accuracy in treatment planning. It relies on generating synthetic-CT
(sCT) from MRI for dose calculation, but assessing the accuracy of these images without
reference remains challenging. Current methods that rely on the comparison to a reference
CT as a ground truth are inadequate for MRI-only workflows. This study aims to investigate a
protocol for assessing patient-specific sCTs in radiation therapy (RT) workflow using radiomics
analysis. The study involved 39 patients with localized prostate cancer. sCTs were generated
using four methods: multi-atlas, bulk-density, patch-based, and a Generative adversarial
network (GAN). Radiomic features extracted from CT scans and sCTs were used to select the
most significant features through a random forest algorithm train to classify the images
according to their gamma pass-rate. These features were then compared to expected values
from the reference CT cohort, assigning a quality score based on out-of-distribution values.
Radiomics analysis is shown to be an efficient method for quality control of patient-specific
sCTs in MRI-only RT. However, further investigations are necessary before deploying this
approach in clinical settings. Nevertheless, the findings provide valuable insights for
evaluating the accuracy of predicted Hounsfield Units (HU), enhancing dose calculation and
treatment outcomes in MRI-only RT.

Introduction

Radiation therapy (RT) is a well-established treatment with evidence-based indications for
48% of cancer patients [1]. The standard RT workflow relies on two imaging modalities:
computed tomography (CT) for dose calculation based on electron density information, and
magnetic resonance imaging (MRI) for better soft tissue contrast, enabling more accurate
target delineation [2] and minimising the risk of toxicity in healthy tissue [3]. To define the
treatment plan, traditionally both CT and MRI images are co-registered. However, the MR-CT
registration step introduces uncertainties, with reported calculations of up to 2 mm for
prostate cancer patients [4].

In order to enhance efficiency and accuracy in the clinical workflow, MRI-only RT has
gained popularity, eliminating the need for CT scans and relying solely on MRI. This has led to
the widespread deployment of dedicated MRI scanners and MRI-linear accelerator (MRI-
LINAC) hybrid machines for treatment delivery. The advantage of MRI-LINAC is its ability to
accommodate adaptive RT, which considers daily internal anatomical changes and
recalculates the dose distribution prior to each session. However, as MRI does not provide
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electron density information, the generation of synthetic-CT (sCT) becomes crucial for MRI-
only RT [5]-[7].

The use of sCT in clinical practice faces a significant limitation: the lack of robust
approaches to evaluate the accuracy of generated images and ensure the correctness of
predicted Hounsfield Units (HU) for accurate dose calculation. Currently, the assessment of
sCT involves the use of full reference intensity-based metrics, i.e. requiring a reference CT,
such as mean absolute error (MAE), mean error (ME), and peak signal-to-noise ratio (PSNR)
[8]. Perception-based metrics like the structural similarity index measure (SSIM) [9], [10] and
the multiscale SSIM are also commonly employed. However, these metrics rely on a
simulation CT as the ground truth and the accuracy of the registration between the reference
CT and the MRI used for sCT generation. Consequently, these metrics are inadequate for
quality control in an MRI-only clinical workflow. To address this challenge and enable patient-
specific sCT assessment, a previous study proposed the use of an atlas of reference CT to
identify local out-of-distribution HU numbers in sCT [11]. This approach, based on voxel-wise
analysis, aimed to highlight discrepancies between the predicted and expected HU values.
However, it is necessary to note that the reliability of the results depends on the robustness
of the interpatient registration process used to generate the atlas prior to statistical analysis.

The purpose of this study is to establish a simple and reliable protocol based on the
selection of significant image features from radiomics, allowing for patient-specific sCT
assessment before its use in clinical practice.

Radiomics analysis has been successfully employed in RT to improve diagnosis, assess
treatment response [12]—-[14], classify errors [15], and detect errors [16] in intensity-
modulated RT (IMRT) quality assurance (QA). However, to our knowledge, its application for
patient-specific sCT QA has not been explored. In this paper, quantitative image features have
been extracted from a cohort of CT scans and sCT generated from four previously published
methods: an atlas-based method [17], a bulk-density method, a patch-based method [18],
and a Generative Adversarial Network (GAN) [19]. A random forest (RF) algorithm is then
employed to select the most significant image features according to the gamma pass-rate
(GPR).

Material and methods

The workflow of the study is presented Figure 5.2.1. First, radiomic features were computed
on a cohort of reference CTs and on sCTs generated through four different methods: an atlas-
based method, a bulk-density method, a patch-based method, and a GAN. Volumetric
modulated arc therapy (VMAT) was planned on reference CT images (treatment planning
system Pinnacle v.9.10, Philips) using the collapsed cone convolution algorithm and a dose
grid resolution of 3 mm. For all patients, a sequential treatment was delivered with a total
dose of 78 Gy in the clinical target volume (CTV). The same beam parameters were used to

compute the dose on the sCT. Key features were selected using an RF algorithm train to
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classify images based on their GPR (”excellent” for GPR > 99.9, “correct” for 99.9 > GPR > 98,
"insufficient” for GPR < 98). GPR were computed using MatRad [20], an open-source software
for radiation treatment planning developed for research purposes. The selected features
were then used to define a score, computed according to the percent of selected features
with values falling within the range of expected values according to the cohort of reference
CT.

Dataset

A total of 39 patients with localised prostate cancer, aged 58 to 78 years, were included in
this study. For each patient, a CT scan was acquired using a GE LightSpeed RT large-bore
scanner or a Toshiba Aquilion scanner, with a matrix size of 256 x 256 x 128 and a voxel size
of .17 mm x 1.17 mm x 2.5 mm or 2.0 mm. Additionally, a T2-weighted MRI was obtained in
treatment position using a Siemens Skyra 3T scanner, with a voxel size of 1.6 mm x 1.6 mm x
1.6 mm. To correct the non-uniformity of the MRI images, the N4 bias field correction
algorithm from the Insight Toolkit Library (ITK) was employed [17]. Afterwards, the CT scans
were resampled and registered to their corresponding MRIs to account for anatomical
variations caused by the time gap between acquisitions. This registration process involved an
inverse-consistent affine registration [21], followed by a non-rigid registration [22].

Synthetic-CT generation

Multi-Atlas The multi-atlas technique was originally published by Dowling et al. [17]. It
involves non-rigid registrations of MRI-CT atlases that have been co-registered with a target
MRI. A fusion step is then performed by assessing local similarities between the training atlas
and the target MRI. The local weighting of the registered CT atlases in the corresponding areas
is used to create each voxel in the sCT.

Bulk-density sCTs were obtained by assigning HU values to the patient’s soft tissue, bones
and air. The volume of air resulted from thresholds in the inner part of the rectum delineated
on MRI. The soft tissue area corresponds to the subtraction of bones and air from the body
contour. A water equivalent density (0 HU) was assigned to the soft tissue, and densities
allocated to bones and air were 350 HU and -450 HU, corresponding to the mean CT values
of the cohort in the corresponding segmented regions [18].
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Patch-based This approach involves inter-patient registration, feature extraction from MRIs

and patch partitioning. The sCT is generated within a matching of multiple patches to the

target MRI [18].
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GAN The GAN architecture used in this study for sCT generation is fully described in Largent
et al. [18]. The generator employed a U-Net inspired by Han et al. [22], with the L2 norm used
as the loss function:

2
Lo(1,€) = lIc =G, (1)

Here (equation (1)), I corresponds to the MRI intensity, G(I) represents the generated sCT,
and C denotes the reference CT. The discriminator utilised a PatchGAN, with binary cross-
entropy as the adversarial loss function:

Lp(G(D,C) = — Z C;log(G(Dy) + (1 = C)log(1 — G(1),) (2)

In the equation (2), G(I) refers to the sCT produced by the generator from the target MRI,C
represents the corresponding reference CT, and n the number of voxels in C. The global loss
was created by combining Lg(I,C) and Lp(G(I),C). The model was trained using axial two-
dimensional CT and MRI slices, and three-fold cross-validation was applied.

Test data

To test the ability of the algorithm to detect errors, 10 reference CT were randomly selected.
Expert delineated MRI contours were used to modified HU values within the bladder, CTV,
rectum, bones, and the remaining soft tissue. Random HU shifts were applied:

- From -100 HU to +100 HU in the bladder,

- From -1000 HU to +200 HU in the rectum,

- From -500 HU to +500 HU in the bones,

- From -100 HU to +100 HU in the CTV,

- From -100 HU to +100 HU in the remaining soft tissue.

Remaining soft tissue volumes are generated by subtraction of bone, bladder, CTV and
rectum volumes from the body contour. Higher threshold has been defined for bone and
rectum, according to the difficulty for a sCT generation method to predict HU in these
locations. Especially for the rectum, where the presence of air pocket is uncertain.

A spherical artefact has been added to 10 other randomly selected CT. The size, intensity
and location has been randomly assigned to this error volume:
- Intensity from -250 HU to + 250 HU.

- Distance from 0 to 100 mm to the isocentre.
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- Size from 2 mm to 50 mm of diameter.

Examples of images used for validation are presented figure 5.2.2.

Artefact location <-> Axis of displacement

1226
1000

1226
1000

Figure 5.2.2: Example of modification applied on CT for validation, with (a) the presence of an artefact and (b)
random HU modification in delineated organs.

Radiomic feature extraction and selection

Images features were extracted from CT scans and sCT using the PyRadiomics Python package
[24]. The package includes a class for first-order statistics (18 features), a class for shape
descriptors (26 features), and 75 textures features classified in five classes: grey level co-
occurrence matrix, grey level run length matrix, grey level size zone matrix, neighbouring grey
tone difference matrix, and grey level dependence matrix. In this study, a total of 1275
features were extracted from body contour. These features encompassed first-order statistics
and textures from the original image, as well as wavelets and Laplacian of Gaussian (LoG)
filters with sigma values of 1 mm, 2 mm, 3 mm, 4 mm, and 5 mm. Morphological features
were deemed irrelevant and discarded.

In the feature selection approach, the first step involved eliminating highly correlated features
by discarding those with a pairwise Pearson correlation coefficient > 0.85. Then, an RF
algorithm was used to select the most significant features as descriptors. The algorithm aimed
to classify images according to their GPR (“Excellent” for GPR > 99.9, ”"Correct” for 99.9 < GPR
> 98, "Insufficient” for GPR > 98). GPR were computed using MatRad [20], an open-source
software for radiation treatment planning developed for research purposes. The criteria to
compute the GPR were 1% dose difference and 1mm distance to agreement.
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The RF model was implemented using the scikit-learn package [25]. The hyperparameters of
the RF model were fine-tuned using a randomised search parameter optimisation process
[26]. Then a recursive feature elimination was performed in a cross-validation loop to find the
optimal number of features (RFECV). The selected features were computed from the image
to assess. Points falling outside the range of the reference cohort were considered outliers,
given the limited size of the dataset consisting of real patient data used in this study. A quality
score was assigned based on the percentage of out-of-distribution values. Consequently, the
results were classified into three categories: “poor” for a score < 40%, “good” for a score
between 40% and 80%, and “excellent” for a score > 80%.

Random forest model training and evaluation

3-fold stratified cross-validation was conducted for model training and evaluation. The
training/validation dataset included 136 images, representing 70% of the initial dataset, and
the test set 59 ( 10 “Excellent GPR”, 37 “Good GPR”, 12 “Insufficient GPR").

To evaluate the efficiency of the trained RF model, several performance metrics were
computed on the test dataset, including precision (eq.3), sensitivity (eq.4), F1-score (eq.5) and
accuracy (eq.6). The results are presented in Table 5.2.1, followed by the confusion matrix,
Table 5.2.1.

Precision measures the proportion of correctly predicted positive instances out of the total
instances predicted as positive. It provides insight into the model’s ability to avoid false
positives.

tp
to +fp

tp stands for the number of true positive, and fp the number of false positive.

(3)

precision =

Sensitivity, also known as recall or true positive rate, calculates the proportion of actual
positive instances that are correctly predicted by the model. It indicates the model’s
effectiveness in identifying true positives.

tp

tp+ fn )

sensitivity =

with fn the number of false negative.

The Fl-score combines precision and sensitivity into a single metric and provides a
balanced measure of the model’s performance. It considers both false positives and false
negatives, making it useful when there is an imbalance between positive and negative
instances.

precision X sensitivity
F1=2 x — — (5)
precision + sensitivity
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Accuracy determines the overall correctness of the model by calculating the proportion of
correctly predicted instances out of the total instances. It is a common metric to assess the
overall performance of a model.

tp +tn
tp+tn+fp+fn

accuracy =

(6)

with tn the number of true negative.

These metrics provide valuable insights into different aspects of the model’s performance
and help evaluate its effectiveness in making accurate predictions.

Results

RF models were found to accurately distinguish between the first two categories of GPR, but
tend to struggle in predicting GPR < 98, as indicated in Table 5.2.1, which displays the
performance of the model for each class. The confusion matrix (Table 5.2.2) reveals that the
probability for the prediction to be accurate for low GPR is only 58%. In 42% of cases, the GPR
is classified as “good” instead of “insufficient”. This could potentially be attributed to the lack
of poor GPR in the dataset (Figure 5.2.3).

Regarding the evaluation, Table 5.2.3 demonstrates that both random HU errors in VOI and
the presence of artefacts have been successfully identified by the score based on the selected

radiomics features. However, no correlation can be established regarding the impact of this
change on the dose calculation.

Table 5.2.1: Random forest model evaluation.

Gamma pass-rate class  Precision Sensitivity Fl-score  Support
Excellent 1.00 1.00 1.00 10
Good 0.86 0.81 0.83 37
insufficient 0.50 0.58 0.54 12
Accuracy : 0.80
Table 5.2.2: Confusion matrix
GPR "Excellent” GPR "Good” GPR ”Insufficient”
GPR "Excellent” 1.0 0.0 0.0
GPR "Good” 0.0 0.81 0.19
GPR ”Insufficient” 0.0 0.42 0.58
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Histogram of GPR
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Figure 5.2.3: Histogram of the gamma pass rate (GPR) of the data used to train the Random Forest
Classifier.

Table 5.2.3: Scores were obtained using the selected features and applied on the validation dataset.
Experiment 1 refers to the data where a random HU variation has been applied, while experiment 2 refers
to the presence of a spheric volume of error in the image.

CT score Experiment 1 Experiment 2
100 73.91 86.96
100 67.39 86.96
100 71.73 86.96
100 91.30 86.96
100 82.61 80.43
100 60.87 89.13
100 78.26 93.48
100 63.04 84.78
100 73.91 84.78

100 78.26 86.96
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Discussion

The main objective of this study was to explore the use of radiomics features to introduce a
reliable and efficient tool for patient-specific sCT quality control in MRI-only RT. This approach
enables daily assessment of synthetic CTs without requiring a simulation CT as a reference.

Probabilistic estimation of errors in sCT at a voxel level has been explored in previous studies.
For instance, Van Harten et al. [27] proposed a method to obtain a voxel-wise uncertainty
map by analysing the discrepancies between sCT volume reconstructions on different axes
(axial, sagittal, and coronal) using a deep-learning model trained on 2D data for each axis.
Deep-learning models also allow for the computation of epistemic (model-dependent) and
aleatoric (data-dependent) uncertainties [28], [29]. Another method, introduced by
Johansson et al.[30], involves estimating the probability of error in sCT generated from a
Gaussian mixture model. These methods provide 3D maps of the probability of errors.
However, it is important to note that these approaches are developed for specific models and
provide estimates without generalisability. In contrast, the method presented in this paper
aims to overcome these limitations and provide a more generalisable solution for error
detection in sCT. Furthermore, our model enables the direct comparison of CT features, not
solely based on voxel-wise intensity changes.

To select the most informative data, features were chosen based on their ability to impact
the GPR within the entire pelvis. These features were mainly extracted using wavelet
decomposition or a LoG filter with small kernel sizes applied to the original images. Wavelet
transforms have proven to be a robust technique for extracting biomarkers in radiomics [31].
They have demonstrated efficiency in predicting the tumour type of early-stage lung nodules
in CT[32], assessing the treatment response of gastric carcinoma to low-dose rate
radiotherapy [33], detecting liver cirrhosis[34], and evaluating the neoadjuvant
chemotherapy response in breast cancer using MRI [35]. However, since wavelet-derived
features primarily capture local variations, they might be too restrictive to serve as the sole
criteria for rejecting an sCT. Therefore, subjective image quality assessment remains
necessary, as not having a good score in a specific location doesn’t necessarily lead to
significant consequences in dose calculation.

Another advantage of the proposed approach is its potential use as a reduced-reference
metric when the patient’s simulation CT is available, allowing for a direct comparison of
feature values between the two images in the context of image-guided RT workflow, for
example. This eliminates uncertainties associated with the intrapatient data registration step,
required when using full reference metrics. In such cases, an acceptability threshold needs to
be defined.

The method described can also be extended to sCT generated from cone-beam computed
tomography (CBCT) [10], as its applicability is not limited to a specific imaging modality. CBCT
is widely employed for patient positioning and monitoring during various stages of treatment
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delivery. However, CBCT image reconstruction is prone to artifacts, so, the use of daily CBCT
for online plan adaptation has been limited. By converting CBCT to CT, accurate dose
computation could be achieved, thereby enhancing the quality of image-guided adaptive RT
(IGART). Our protocol can be integrated into the IGART workflow, evaluating the accuracy of
sCT for precise treatment delivery.

The major limitation of this study is the small size of the dataset and the limited
representation of low GPR instances. The results are therefore not statistically robust enough
to definitively draw conclusions about the effectiveness of this approach. Furthermore, the
model developed in this study is specifically designed for detecting discrepancies within
certain sCT generation methods and CT images from the same center. To enhance the
generalizability of this approach, it would be beneficial to apply it to multi-center data.
Adapting this methodology to a different monocenter dataset would necessitate repeating
the entire procedure, considering factors such as varying field of view and image resolution,
as these factors can impact the extracted features. While this method enables patient-specific
sCT quality assurance uses GPR for clinically relevant feature selection, the selected features
may be overly restrictive.

The key improvement of this approach lies in the robustness of the protocol. Indeed, the
process of extracting and selecting radiomic features is very sensitive to the scanner and to
the quality of the segmentation of the region of interest. Several repetitions with contour
variations and tests on different datasets should be carried out to guarantee the robustness
and reliability of the selected features.

It is crucial to explore this methodology on a larger dataset for both training and validation
purposes, and to assess the correlation between detected anomalies and their impact on the
dose distribution at different scales. Part of the future work will thus involve creating a more
diverse validation set and applying the methodology per VOI.

Conclusion

The proposed radiomics-based workflow for patient-specific QA involves selecting
guantitative image features to assess the similarity between a sCT and a reference CT cohort.
This approach utilises optimised random-forest models, ensuring both performance and ease
of implementation. The resulting score effectively highlights significant discrepancies without
relying on a specific simulation CT as ground truth, enabling rapid assessment of new sCT
images. Radiomics analysis proves to be an efficient tool for quality control of patient-specific
sCTs in an RT workflow. However, further investigation is needed prior to use this approach
in clinical settings. Nevertheless, this workflow may serve as the initial step in a QA procedure
aimed at facilitating safe MRI-only RT, given its efficiency in detecting artefacts and shift of
HU within specific organs.
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Chapter 6: Al-based synthetic CT quality control
guidelines for accurate MRI-only radiation therapy

This chapter presents methods and metrics used for assessing sCT, along with
recommendations for quality control steps to integrate daily use of sCT into the clinical
routine. This chapter is the beginning of a manuscript draft. It is still in its early stages and
requires discussion with experts in image processing, medical physicists, and clinicians to
establish a consensus ensuring the accuracy of MRI-only RT.

Introduction

Radiotherapy (RT) is a highly effective treatment option for cancer patients, with
approximately 40% of patients undergoing RT during their cancer care[1]. In the conventional
RT workflow, CT imaging is used for treatment planning and dose calculation, while MRI
provides superior soft tissue contrast for accurate tumour identification during planning and
treatment delivery. MRI also offer better soft tissue visualization and enable more precise
delineation of organs at risk. MR-only RT workflow has thus emerged[2]. It can be
implemented using a standard linear accelerator (LINAC) or an MR-LINAC—a device
combining an MRI and a LINAC in the same room. In the standard workflow, there are
challenges related to dose calculation based on MRI and the registration between planning
MRI and daily images (such as 3D CBCT or 2D images). The MR-LINAC offers the advantage of
daily adaptation of the initial treatment plan based on the day's anatomy captured by MR
images. However, a major drawback of MRI for MR-only RT, with or without MR-LINAC, is its
inability to provide information on tissue densities, which is crucial for accurate dose
calculation. To overcome this limitation, several methods have been developed to generate
synthetic CTs (sCTs) that allow for the use of MRI in treatment planning. These approaches,
mainly based on deep-learning models (DLMs)[3] nowadays, have demonstrated high
accuracy and robustness.

Despite the effectiveness of DLMs in predicting Hounsfield Units (HU) values from MRI
sequences, challenges remain in evaluating the image quality of the resulting sCTs[4]. The
current literature assesses sCT quality by comparing them to their corresponding planning
CTs. However, with the adoption of MRI-only RT treatment planning, these CT scans will be
no longer available. Alternative methods for patient-specific quality assurance (QA) without
CT have been proposed, such as using cone-beam CT (CBCT) to evaluate patient-specific sCTs
generated from MRI[5]-[7]. However, incorporating CBCT acquisition in adaptive RT with
MRI-LINAC is unlikely. To our knowledge, there are no widely accepted practices or standards
for ongoing QA of sCTs derived from MRI. Therefore, establishing a standardized quality
control protocol for patient-specific sCTs obtained on a daily basis becomes imperative.
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The aim of this chapter was to provide guidelines for sCT QA, ensuring reliable treatment
delivery in MRI-only RT. Qualitative and quantitative approaches, with and without reference
CT, for daily patient specific QA have been considered.

Qualitative evaluation

Different scenario can be encountered in RT (Figure 6.1), for both the planning phase and the
treatment delivery. For accurate dose delivery, the treatment plan is adjusted to the anatomy
of the day by aligning the treatment plan to a CBCT or MRI acquired prior to delivering the
treatment. The use of sCT during each phase allows for not having to do registration and thus
should provide a more precise targeting of the tumour volume.
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Figure 6.1: Standard and MRI-online adaptive radiation therapy (RT) workflows. The planning phase in
standard RT involves the acquisition of a planning CT for dose calculation, and a diagnosis MRI for accurate
tumour and organs at risk delineation. Both images are then non-rigidly registered before calculating the dose.
In MRI-only RT planning, a planning MRI is acquired. This image is then used to generate a synthetic-CT (sCT),
allowing for dose calculation. Traditionally in ART, the planning CT is registered to a CBCT to adapt the
treatment to the anatomy of the day. With the MR-LINAC, a sCT can be generated from the MRI and the
treatment plan can be transposed on this image.

141



But, the sCT is an image generated, and not acquired, it is thus important to check its accuracy
each time prior to use it.

The type of sequence and the overall quality of the MRI used to generate the sCT will have an
impact on the resulting image. The quality control process thus begins with the assessment
of the MRI, then qualitative and quantitative metrics can be used to assess the sCT. In figure
6.2, we propose a decision tree from the MRI acquisition to the treatment delivery.

QA checks

Image QA . Satisfy
(qualitative Synthetic CT acceptability
and generation

quantitative)

no

criteria ?

Satisfy
HU
criteria ?

Treatment Dosimetric
planning QA

Satisfy
dose
criteria ?

Treatment
delivery

Figure 6.2: Quality assurance (QA) steps for MRI-based treatment planning

MR images QA

Automatic verification of acquisition parameters by reading the DICOM files will allow for
detection of errors in: sequence type acquisition, image orientation, application of gradient
distortion correction, spatial resolution (pixel size and slice thickness) and detection of gap.
The QA of the MRI need to be completed by the overall visual inspection by radiotherapist
and medical physicists.
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Also, DLMs are trained using specific MRI sequences. When generating daily sCTs, it's essential

to use the same sequence for optimal accuracy.

Table 6.1 presents the key elements to check in order to determine if the MRI scan is suitable

for sCT generation.

Table 6.1: Quality assurance checks of MRI for RT dose calculation.

LFOV stands for large field of view, SNR for signal to noise ratio, OAR for organ at risk. This checklist has been
established according to the suggestions made by Speight et al.[1] and Dowling et al.[8]. Some of these
elements can be checked with the DICOM tags. These elements are parts of QA checks used in the HIPSTER[9]

and NINJA[10] clinical trials.

Check list

Details

Distortion correction

Voxel spacing and gap

3D versus 2D acquisition

FOV position

Gradient non-linearity
correction

Contrast agent

Fiducial marker visibility

Size

MRI sequence

Anatomy

3D distortion correction has been activated for the LFOV scan.
Check distortion corrections for other scans.

Ideally like CT slice thickness. Should be less than 2mm and near
isotropic.

There shouldn’t be any slice gap.

3D acquisitions should be used to provide high resolution
isotropic imaging. 2D acquisition may be used if it offers good
soft tissue contrast.

The centre of the FOV should be positioned over the anatomy of
interest (FOV and magnet isocentre are aligned for better
geometric fidelity)

2D distortion correction should be applied as a minimum. 3D
distortion correction should be applied if available. Some
systems allow 3D distortion correction to be applied to 2D multi-
slice datasets.

May be used to highlight targets or OARs. The decision whether
to use contrast agent should follow discussion with a radiologist.
Verify that the fiducial markers are clearly visible on MRI and
distinguishable from calcifications.

The skin must be in the FOV and the image must be large enough
for insertion of a virtual couch (required for treatment planning
system (TPS) )

The sequence must be the same than the data used to train the
DLM.

The image is the correct anatomy, and the orientation is correct
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Intensity distribution

The intensity distribution is within the same range of the
intensities of MRI used to train the DLM.

sCT QA

Once the quality of the acquired MRI scan is deemed suitable for sCT generation and image

guidance, the image can be produced and assessed.

Table 6.2 lists the elements to check before using a sCT for treatment planning. If the image

respects all the conditions below, complementary quantitative QA can be applied.

Table 6.2: sCT qualitative assessment check list. (Dowling et al.[8]). These elements are parts of QA checks
used in the HIPSTER[9] and NINJA[10] clinical trials.

Check list

Details

Image transfer

Image integrity

Field of view

Body contour

HU to electron density
conversion

Confirm that the correct sCT has been assigned to the patient
and confirm that sCT is correctly oriented.

Visually inspect the entire sCT volume for any missing tissue or
major artefacts. These differences may not affect dose
calculation but should be noted.

Ensure that the sCT has sufficient field-of-view to cover all
relevant anatomy, skin contour, and sufficient extension for
dose calculation.

Check if the sCT body contour match the MRI body contour
(require segmentation).

Check that the correct calibration curve has been applied to the
sCT.

Quantitative evaluation of sCT

Most of the methods used for the evaluation of sCT are also used in general image QA. Figure

6.3 shows the methods employed for sCT QA by order of complexity. These metrics can be

classified in 3 categories:

- Full reference, i.e compare the generated image to a ground truth. For voxel-wise

comparison, the two images must be registered.

- Reduced reference. In this case, only features of a ground truth image are compared.

- Noreference. These are used when no ground truth is available for direct comparison.

The choice of metrics will then depend on the availability of a planning CT (ground truth).
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With reference CT

sCT can be generated to adapt the treatment to the anatomy of the day, but the acquisition
of a CT for the planning phase may remain. In this scenario, the planning CT can be used as a
reference to assess the quality of the sCT.

The most commonly used in the literature are the mean absolute error (MAE), the mean error
(ME), the peak signal-to-noise ratio (PSNR) and the structural similarity index (SSIM)[11]. The
mean absolute percent error (MAPE) is the relative error, indicating the precision of the
prediction regarding the reference. The absolute difference, absolute percent difference and
the difference of intensities between the sCT and the planning CT can be computed either
within a contour (body contour or organs), or at a voxel level resulting respectively in absolute
error (AE), absolute percent error (APE), and error (E) maps. The PSNR is an indication of the
distorting noise in the generated image, while the SSIM is a measure of the difference in
luminance, contrast, and structure. The visual information fidelity (VIF) is an alternative
measure of the global similarity of the images. All these metrics give complementary
information. However, the sCT and the planning CT need to be registered to compute these
metrics.
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Figure 6.3: Methods for image quality assessment of synthetic CT by order of complexity. This diagram
presents metrics comparing directly the sCT to a planning CT (full reference metrics, in blue) and methods to
assess the sCT when no planning CT is available (no reference, in purple). The no-reference metrics in this
context are based on statistics derived from retrospective CT scans. The voxel intensities (outliers' detection)
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or key radiomics features (confidence score) are compared to those obtained from a reference CT cohort,
representing the range of expected values.

These quantitative metrics can be computed at a voxel level, organ-wise (local) or within the whole body
contour (global). Aleatoric and epistemic allow for the probability of having a misprediction of Hounsfield Unit
value for each voxel and are specific to deep-learning, or Artificial Intelligence (Al) — based models. The
acronyms are details at the end of the chapter.

Without reference CT

In the scenario of MRI-only RT, i.e when no reference CT is available, the generated image can
be assessed by statistical analysis of HU values compared to a cohort of CT. A voxel-wise
outliers’ detection method was previously proposed by Chourak et al.[12]. This method relies
on the registration of the sCT to an atlas of reference. A confidence score according to the
values of specific image features can also be computed, as proposed in the 2" section of
chapter 5.

DLM allows for fast sCT generation. One approach to reducing uncertainties is generating
multiple sCTs from the same MRI scan and measuring the voxel-level differences in Hounsfield
Units (HU). However, if the error stems from a bias in the model, the same misprediction
could be present in all the generated images, making it less discernible through multiple sCT
generations alone. The idea is thus to compare images obtained from two different
methods[13]. In a clinical setting, the sCT derived from a commercial device can be compared
to an in-house method that has demonstrated its effectiveness using center-specific data.

Predictive uncertainty maps

Epistemic and aleatoric uncertainties are specific to deep-learning model[14]—-[16].

Epistemic uncertainty could be reduced with a better dataset and refers to the uncertainty of
a model. It can be divided as :

- Structural uncertainty : related to the architecture of the model, i.e. is it the best

choice for the task?

- Parametric uncertainty : related to the estimation of the parameters of the model.
The measure of these uncertainties can be interpreted as the standard deviation of the output
according to variations of the model. Monte Carlo dropout, which consists of deactivating
random neurons in the network during the learning phase, is one way to estimate the
epistemic uncertainty.

Aleatoric, also known as data or intrinsic uncertainty, refers to the inherent property of the
data distribution and is thus irreducible[17]. It can be divided as :

- Homoscedastic uncertainty : constant across all input data.

- Heteroscedastic uncertainty : varies across the input data.

Using probabilistic models, i.e. models incorporating probabilistic layers, like Bayesian Neural
Networks (BNNs), enables to capture both aleatoric and epistemic uncertainties.
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Another effective approach is the use of ensemble models[18], where multiple models with
the same architecture are trained with different initialisations or on diverse data subsets. The
variance in predictions across the ensemble provides an indication of aleatoric uncertainty.
Computing these uncertainties results in 3D maps, providing insight into the probability of an
accurately predicted HU value at a voxel level. This gives an indication of the areas where the
generation method may lack accuracy.

Recommendations

Table 6.3: Threshold of acceptability for quantitative evaluation of sCT generated from MRI with deep-
learning based methods.

Methods Recommendations

MAE per organ and within the | (Particular case for air cavities where

body contour the presence of air must be compared
with the MRI to correspond to the
With reference anatomy of the day)
CT Within 10% of accuracy[19].
Geometric integrity < 1mm for structure within 10cm radial

distance of isocentre, < 2mm if outside
of this perimeter[20].

Statistics on retrospective CT | Within the 95% confidence interval or
(voxel-wise or confidence | Within the minimal and maximal values

Without score) if the sample size of the reference CT
reference CT cohort is < 100.
Double sCT computation Absolute HU difference < 50 HU in each

non—bony structure.

Discussion

This paper proposes guidelines for sCT QA to ensure reliable treatment delivery in MRI-only
RT. Both qualitative and quantitative approaches were considered. Full-reference metrics,
which involve comparing the sCT to a planning CT, as well as no-reference methods, have
been presented to provide QA solutions for different RT scenarios involving sCT from MRI.
These methods allow for the assessment of the generated image at different scales, from the
overall images to the organs and voxel level. Ideally, automatic tools for sCT QA in MRI-LINAC
workflow (online ART) should be integrated in the device. Low computation time and easy
interpretation of the results are key elements for fast and efficient quality control.
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The results of images generated from DLM are highly dependent on the training database.
For non-'in-house' models, harmonisation of scanners and pre-processing is beneficial but
may not be sufficient. Multicentre studies have shown the positive impact of mixing data from
different hospitals on the results, compared to training on a dataset from one centre and
testing on another[21], allowing for more generalisable models. This also allows training a
model to produce sCT from MRI of different field strengths (0.35T to 3T, for example).
Additionally, training the model with a large variability in the dataset provides a better chance
to produce good quality images for patients with low representation in the population.

For “in-house” models trained on monocentre data, the MRI used to generate the sCT must
be consistent with the type of sequences and the field of view of the MRI used to train the
model. If change appears in practice, the model will have to be re-evaluated. For commercial
software, a test on a known image dataset should be conducted after each update. Changes
in the population over time might also cause the model to degrade?. In future work, setting
up a protocol to predict locally the potential errors in the sCT by assessing the MRI will permit
to save time and resources.

This chapter presents suggestions for sCT QA focusing on the accuracy of HU prediction.
However, the finality is the RT dose calculation and the treatment delivery. Once a sCT is
deemed of sufficient quality, a dosimetric QA is necessary. In case of the existence of a
planning CT, the dose calculation of the day can be compared to the initial DVH. Dosimetric
QA if no ground truth is available is a main concern and this need to be addressed. In the
International Commission on Radiation Units and Measurements report published in 2022,
Keall et al.[19] suggest respecting an accuracy of 10% in CT number as 20% variation in HU
may result in a systematic dose error of 1.5%[22]. The treatment to determine this threshold
have been determined using a 6 MV photon beam, but proton therapy is more sensitive to
HU variation. Therefore, these recommendations must be adjusted according to the
prescribed treatment and anatomical location.

The location of the errors needs also to be identified, as the influence of an error is correlated
to its interaction within the beams (area where the dose is homogenous or strong gradient).
Impact of HU errors on dose calculation should also be investigated to better determine
threshold of acceptability.

Due to the complexity of the treatment planning and delivery workflow in RT, it is important
to note that not only the quality of images should be assessed; the contours and the dose
calculation need to be controlled prior to treatment delivery. The whole quality control
pipeline needs to be applied each time an sCT is used, because, unlike images acquired from
a device, the sCT is an image resulting from a computational process and thus errors in its
generation can occur at any time.

2 https://www.fda.gov/media/160125/download
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Conclusion

Practical QA for clinical use of sCT in MRI-only RT has been proposed in this chapter, taking
into consideration the existence, or not, of a planning CT. These QA criteria aim to be
implemented in clinics and future clinical trials.

Metrics acronyms

AE Absolute error

APE Absolute percent error

DVH Dose-volume histogram

E Error

MAE Mean absolute error

MAPE Mean absolute percent error

ME Mean error

MSE Mean square error

NCC Normalized cross-correlation

NMI Normalized mutual information

PSNR Peak signal-to-noise ratio

RMSE Root mean square error

SSIM Structural similarity metric

VIF Visual information fidelity
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Conclusion: overview, contributions, limitations,
and perspectives

Overview

The generation of sCT from MRI is an area of significant interest due to its potential to
streamline patient care and enhance the accuracy of treatment delivery in EBRT. Recent
advancements in deep-learning models have demonstrated promising precision and
robustness in sCT generation. However, it should be noted that these approaches have been
trained and evaluated on monocentre datasets of varying sizes. Therefore, their effectiveness
and consistency on MRIs from different manufacturers and across the diverse range of
anatomies encountered in clinical practice remain uncertain.

Existing literature typically presents results based on body contours or organ-wise
evaluations, where an assessment of the overall quality of the generated sCTs is provided.
However, this lacks information about the specific locations of mispredictions. In this thesis,
a methodology has been proposed to identify voxel-level locations, encompassing both image
and dose calculations, where the methods tend to be less accurate. To address the impact of
localized HU errors on dose calculation, sensitivity analysis based on the Morris screening
method is employed to determine whether a volume of error would have an impact on the
dose at the isocentre. This analysis can also assist in establishing acceptable thresholds in
terms of size or HU discrepancies based on their respective locations.

Once a generation method is deemed robust and accurate enough to be integrated in a
clinical workflow, the assessment of patient-specific sCTs becomes a crucial aspect. However,
in the existing literature, the metrics used for assessment either require a planning CT as a
reference (full reference metrics) or involve the use of a CBCT, which is not applicable in an
MRI-only radiation therapy workflow. To address this challenge, an atlas based approach is
proposed using a cohort of CT scans to assist with identifying outliers at a voxel level in daily
sCTs. Alternatively, radiomics features can be computed on a cohort of CT scans, and these
values can be used to assign an acceptability score to a new sCT.

While an sCT does not need to be perfect in terms of image quality, it must possess sufficient
quality to enable accurate dose calculation. Therefore, the selection of features correlated to
a dosimetric endpoint, such as the gamma pass-rate, holds significance in the context of EBRT.

Main contributions and limitations

This thesis proposes a methodology to identify the limitations of sCT generation methods
through statistical evaluation, aiming to provide a better understanding of their strengths and
limitations. To achieve this, the patient cohort data has been brought into the same
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anatomical space using a robust non-rigid registration method. The suggested hybrid
registration approach utilizes intensity and contour-based methods to combine the MRI
images to the structural description of its delineated organs, resulting in improved alignment
of soft tissues, contours, and inner structures. Statistical analysis is then conducted on both
images and doses, to subsequently generate 3D error maps that highlight regions where
mispredictions of HU tend to be significant. It is important to note that this methodology has
a major limitation: the bias induced by the interpatient registration process, as well as the
intra-patient registration process (where CT and MRI are registered for each patient before
generating the sCT).

The sensitivity analysis presented in this study follows the Morris screening method. It
highlights the structures in which a change in HU values will have the most significant impact
on the dose in the centre of the prostate. Specifically, the bones and the soft tissues
(excluding the bladder, rectum, and prostate) were found to have the highest impact. This
can be attributed to the number of beams that pass through these structures.

By assessing the impact of size, location, and changes in HU of an artifact on the dose in the
target volume, the proposed methodology allows us to conclude that the distance to the
isocentre is the least influential factor. The impact of changes in intensity shows the most
variability across the patient cohort and is equally significant to the size factor. These findings
provide valuable insights for determining thresholds of acceptability for uncertainties in HU.
However, it is important to note that the approach should be adapted based on factors
specific to each sCT generation method, such as location, error intensity rank, size, or any
other relevant factor for this method. It is essential to interpret these conclusions with
caution as they are specific to the dose calculation algorithm, the number of beams crossed
by the volumes and the amount of dose delivered in each of them. In this study, we assessed
the effect of errors on IMRT dose plans. The results cannot be generalized to other treatment
techniques such as VMAT, SBRT, or proton therapy. Furthermore, another limitation of this
study is that we focused solely on the impact in the centre of the target volume. Changes in
HU may also have consequences on the dose distribution in organs at risk, leading to toxicity
and potentially side effects such as bladder inflammation.

To address the challenge of assessing patient-specific sCT without a reference, two strategies
have been developed. The first strategy involves creating an atlas from a cohort of reference
CTs. This atlas is then registered to the new sCT, and a statistical analysis is conducted to
detect outliers at a voxel level by comparing the HU values of the new sCT to the distribution
of HU values from the cohort of reference CTs. To mitigate the bias induced by the
interpatient registration process, a weight has been applied according to the probability of
mis-registration of each structure. This method highlights regions of significant discrepancies.
However, it is time-consuming and relies on the accuracy of interpatient registration, making
it potentially inappropriate for patients with significantly different anatomies compared to
the atlas.
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To avoid registration uncertainties, the second approach utilizes radiomics-based feature
calculation. These features are computed on a cohort of generated and reference data. An
optimized random forest algorithm is then employed to select the most meaningful features
for regarding their dosimetric outcomes. These selected features are then computed on each
new sCT, and based on their deviation from the expected range of values, a score is assigned.
This process can be repeated for several volumes of interest, including the body contour,
bladder, rectum, clinical target volume, and heads of femurs, enabling assessment at both a
global and organ-wise level. While this method has a low computation time and may allow
for online QA, the selected features can present vendor dependency. Additionally, the field
of view and the accuracy of the contours also impact the results.

A major limitation of this work is the data we worked with. As all the experiments were
performed with a unique dataset of 39 patients with localized prostate cancer, the results
presented cannot be considered generalizable but give an insight into the performance of the
model assessed. Also, while the results are not generalizable, the methods proposed are and
can be adapted to different generation approaches and anatomical locations.

The knowledge acquired during my thesis on sCT generation and the significance of QA have
led to suggested guidelines for integrating quality control measures at various stages of the
clinical workflow. However, this work is still in its early stages and requires discussion with
experts in image processing, medical physicists, and clinicians to establish a consensus on
metrics and best practices that ensure the accuracy of MRI-only RT.

The contributions of this thesis to sCT QA can be applied to sCT generated from CBCT, as they
are not dependent on the modality used for image generation. Additionally, these
contributions can be extended to other anatomical locations.

Perspectives

Using a large multicentre dataset to train deep-learning models for generating sCTs from MRI
can enhance the generalizability and robustness of these methods. The availability of such a
database to the public would also facilitate meaningful comparisons among published
methods. Currently, each publication compares its results with other models based on their
own dataset, and each method optimizes hyperparameters to achieve the best performance
on their specific dataset, which complicates the implementation of these methods in different
centres. Creating such a database poses several challenges, including the requirement for
paired images where both a CT and an MRI are acquired from the same patient. Additionally,
it necessitates international collaboration and should aim to represent diverse anatomies,
socio-economical levels, ethnicities, and age groups to ensure fairness of the models[1]. This
database will also prove valuable for the statistical approaches investigated in this study, as
the patient data used were acquired at a single centre and consisted of only 39 CT-MRI pairs,
potentially limiting its representativeness of the prostate cancer population.
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To address the limitations associated with uncertainties arising from the non-rigid registration
process in the previously presented methodologies, one potential solution is to differentiate
between errors attributed to registration and those intrinsic to the method itself. This may be
achieved by adapting mixed-effects models, initially developed for longitudinal data
analysis[2], or by applying deep-learning approach[3]. Incorporating complementary metrics,
such as Hausdorff distance and negative mean square difference, to assess the accuracy of
the registration process would provide a more comprehensive understanding of potential
biases introduced.

The sensitivity analysis can be enhanced by investigating the local influence of modified HU
values, incorporating differences in dose-volume histograms for each volume of interest,
including the target volume as well as the organs at risk (bladder, rectum, and heads of
femur). Future work will also explore other treatment techniques. It would be valuable to
model the impact of each error factor based on its interaction with the beams in different
treatment modalities.

In the pelvic area, the patient's anatomy is susceptible to changes caused by variations in
bladder and rectal filling for example. These changes may have implications for the accuracy
of treatment delivery [4], [5]. The presented methodology in this study can be adapted to
each specific sCT generation method, once the locations of HU uncertainties have been
identified and treatment plans have been defined. Deep-learning-based sCT generation
methods are commonly used, and the development of more effective models should be
pursued in the future. Aleatoric uncertainties (data-dependent) and epistemic uncertainties
(model-dependent) are specific to machine-learning models and can be assessed [6].
Considering the impact of these uncertainties on the dose distribution during the learning
process could lead to the creation of more clinically valid image generation. The method
proposed in this paper has also the potential to determine acceptance criteria for organ
motion during treatment.

The voxel-wise approach for patient-specific sCT QA is time-consuming and impractical for
online use. Therefore, exploring faster registration methods can be beneficial. The use of this
methodology for offline validation or as part of the clinical evaluation stage to validate sCT
generation methods can also be explored.

The radiomics feature-based methodology is more efficient and does not require interpatient
registration. However, it's important to note that the study was conducted on a single-centre
dataset. If applying this methodology to a different dataset, the entire procedure would need
to be repeated, considering factors such as different field of view, image resolution, and
variations in the feature extraction process. Additionally, when bladder injection is involved
in the CT procedure for the training phase, it can affect the extracted features. The

reproducibility of radiomic features is also influenced by various factors such as image
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acquisition settings, reconstruction algorithms, and the software used for feature extraction
[7]. A part of future work will involve investigating the reproducibility of selected features and
testing their effectiveness as an assessment tool on sCT generated from data outside the
training centre. Furthermore, exploring the benefits of using a multicentre database to train
the random forest during the feature selection phase will be valuable. To achieve
generalizability, a protocol for normalizing the data in terms of field of view and image
resolution needs to be defined prior to using this approach. Additionally, an assessment of
the contours used to delineate the volume of interest is necessary.

Conclusion

In conclusion, DLM have demonstrated great potential in sCT generation for MRI-only EBRT.
Research has already proposed DLMs that achieve a high level of accuracy. However, the
integration of DLM-based sCT into clinical practice faces two main obstacles:

- The need for training cohorts in reference centres or access to multicentre databases
- The requirement to analyse the limitations of these methods and assess the quality of
the generated images before their clinical use.

Generation of sCT for MRI-based radiotherapy RT shows promise in reducing toxicity and
improving local control. For this approach to be effective, the generated images must meet
quality standards in terms of both visual representation and electron densities specific to each
patient. Nevertheless, clinical trials are necessary to demonstrate the clinical benefits of this
approach, and international consensus for sCT QA need to be established.
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Abstract: The standard external beam
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tomography (CT) for dose calculation based
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resonance imaging (MRI) for better soft tissue
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electron density information, the generation of
synthetic-CT (sCT) is essential for MRI-only
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accurate results. However, for the
systematic use of MRI-based dose
planning in a clinical setting, the issue of
quality control for the sCT still needs to be
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thesis are: 1) To identify the limitations of
the sCT generation methods through
statistical analysis. 2) To quantify the
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distribution. By measuring the effects of
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