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Résumé en français 
 

La radiothérapie externe est un traitement local du cancer qui utilise des rayonnements 

ionisants pour détruire les cellules cancéreuses. Les faisceaux de haute énergie produits par 

un accélérateur linéaire sont dirigés vers le volume de la tumeur tout en minimisant 

l’exposition aux rayonnements des organes voisins à risque afin de prévenir les dommages.  

L’efficacité de la radiothérapie externe repose sur l’effet différentiel de la réparation des 

dommages à l’ADN entre les tissus sains et la tumeur. La quantité de rayonnement délivrée, 

appelée dose, est exprimée en Gray (Gy), qui est définie comme l’énergie déposée par unité 

de masse (joule par kilogramme). Le radiothérapeute prescrit une dose totale pour la tumeur, 

généralement administrée à raison de 2 Gy par séance. La stratégie de traitement dépend de 

l’emplacement et du stade du cancer. Par exemple, dans les tumeurs à un stade précoce, 

l’objectif principal est de minimiser la toxicité en limitant le volume cible et la dose globale. 

En revanche, pour les tumeurs plus avancées, l’accent est mis sur l’amélioration du contrôle 

local de la maladie en augmentant la dose et/ou en combinant la radiothérapie avec des 

médicaments radio-sensibilisants. Les traitements hypofractionnés, caractérisés par une dose 

plus élevée par séance et une réduction du nombre total de séances, gagnent en importance 

en raison d’avantages tels que l’amélioration du confort du patient, la rentabilité et le ciblage 

précis du cancer avec des volumes cibles plus petits. 

La tomodensitométrie (TDM ou scanner CT) permet d’accéder aux densités électroniques des 

tissus, essentiel pour des calculs de dose précis, et est donc la modalité d’imagerie utilisée en 

routine pour la planification dosimétrique du traitement. S'ensuit plusieurs séances 

d’irradiation durant lesquelles le traitement est délivré. Concernant les techniques de 

délivrance du traitement,  les plus répandues sont maintenant la radiothérapie 

conformationnelle par modulation d’intensité (RCMI, en anglais IMRT pour intensity 

modulated radiation thearpy) et l’arcthérapie volumique (VMAT).  Avec l’IMRT, plusieurs 

angles de faisceau sont utilisés et l'intensité de chaque faisceau peut être modulée à l'aide de 

collimateurs multi-lames (MLC), ce qui permet de créer des profils de dose complexes. 

Contrairement à l'IMRT, qui comprend généralement moins de 10 angles de faisceau à champ 

fixe, la VMAT inclut un grand nombre de directions de faisceau à partir d'une trajectoire en 

arc et délivre des doses de manière dynamique pendant la rotation du dispositif. Dans le cas 

d’un cancer de la prostate, les séances s’étalent sur 5 à 8 semaines en fractionnement 

standard, à raison de 5 séances par semaine. La tomographie volumique à faisceau conique 

(CBCT), système d’imagerie 3D-kV en salle, permet le positionnement du patient sous 

l’accélérateur linéaire (par recalage rigide CBCT-CT).  

L’imagerie par résonance magnétique (IRM) est quant à elle largement utilisée pour le 

diagnostic du cancer, car elle offre un contraste tissulaire supérieur au CT et CBCT sans induire 

de rayonnements ionisants. Cette modalité d’imagerie permet une délinéation du volume 
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cible et des organes à risque plus précise que sur CT dans le cadre d’un cancer de la prostate. 

L’IRM a suscité un vif intérêt au sein de la communauté de la radiothérapie externe, en 

particulier avec le développement récent d’IRM-linac qui intègrent un scanner IRM avec un 

accélérateur linéaire. Cependant, l’une des principales limites de l’IRM est son incapacité à 

fournir des informations sur la densité électronique des tissus, essentielle pour un calcul 

précis de la dose. Pour pallier cette limitation, plusieurs méthodes ont été proposées dans la 

littérature pour générer des CT synthétiques (sCT). Les sCT (en unités Hounsfield) 

reproduisent un CT en étant créés à partir de l’IRM. Les méthodes de génération de sCT 

peuvent être regroupées en trois catégories : les méthodes par assignement de densité, celles 

basées sur la génération d’atlas, et enfin les méthodes utilisant des modèles de machine-

learning. Parmi ces dernières, les méthodes d’apprentissage profond se sont révélées 

extrêmement prometteuses en termes de performances et de rapidité d’exécution. L’IRM 

pourrait ainsi remplacer le CT pour toute planification initiale de radiothérapie externe, ainsi 

que pour du monitoring de dose dans le cadre d’une radiothérapie adaptative avec un IRM-

linac.  

Malgré les avantages que présente l’utilisation de l’IRM pour la planification de traitement en 

radiothérapie, son intégration en clinique fait face à un défi majeur : le manque de mesures 

d’évaluation standardisées. Actuellement, l’évaluation de ces méthodes repose sur des 

métriques s’appuyant sur la comparaison d’intensités à une image de référence, et 

nécessitent donc un CT comme vérité terrain. Les métriques les plus fréquemment employées 

sont l’erreur absolue moyenne (MAE en anglais pour mean absolute error), l’erreur moyenne 

(mean error, ou ME en anglais) et le « peak signal-to-noise ratio »(PSNR). Des mesures basées 

sur la perception telles que la mesure de l’indice de similarité structurelle (SSIM) et la SSIM 

multi-échelle sont aussi couramment utilisées. La précision du calcul de dose résultant des 

sCT est aussi souvent évaluée en comparant la distribution de dose sur sCT à celle attendue 

(obtenue à partir du CT de planification). Les méthodes d’évaluation dosimétriques sont 

principalement la comparaison des histogrammes dose-volume, les différences de dose par 

voxel (absolues ou relatives) ou encore l’analyse gamma. 

Ces mesures fournissent une évaluation globale et offrent un aperçu limité de la précision de 

l’image générée dans le contour externe du patient ou de volumes délinéés. Elles dépendent 

aussi de la précision du recalage entre IRM et CT de planification, et de l’existence du CT de 

planification. Or, à terme, ce CT ne sera plus acquis. Par conséquent, il est impératif de 

développer des méthodes de contrôle de qualité des sCT robustes qui non seulement 

permettent l’administration précise du traitement, mais offrent également une analyse 

approfondie des limites de chaque méthode de génération de sCT. 

Ce travail de thèse a permis l’évaluation spatiale des méthodes de génération de sCT et 

propose des stratégies pour évaluer la qualité de sCT généré au jour le jour. Ces stratégies 

sont destinées à être incluses dans le workflow clinique afin d’assurer la fiabilité des 

techniques de planification basée sur IRM.  
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Dans le premier chapitre de ce manuscrit, le processus standard du traitement par 

radiothérapie externe est présenté ainsi que les avantages d’une planification de traitement 

sur IRM. La deuxième partie de ce chapitre traite des méthodes de pointe pour générer un 

sCT à partir de l’IRM, notamment à l’aide de modèles d’apprentissage profond (comme décrit 

dans notre article état de l’art publié dans Physica Medica). Aussi, un aperçu des différentes 

méthodes de contrôle de la qualité impliquées dans la radiothérapie basée sur IRM est 

présenté.  

Le deuxième chapitre décrit les objectifs de la thèse, et présente le cadre général dans lequel 

s’inscrivent les différentes composantes des travaux de cette thèse. 

Le troisième chapitre présente la mise en œuvre d’une méthodologie permettant d’évaluer 

la précision des méthodes de génération de sCT à différents niveaux. Cela comprend une 

évaluation des erreurs à différentes échelles : dans l’ensemble du pelvis, par organe, et enfin, 

par voxel. Afin de permettre une analyse par voxel précise, les images ont été recalées de 

façon non rigide via une approche robuste impliquant le calcul des descriptions structurelles 

des organes. La méthodologie présentée est fondée sur l’analyse d’une base de données 

patients et met en exergues les sous-régions anatomiques ou les méthodes de génération 

tendent à systématiquement sous ou surévaluer les valeurs d’intensités. Les résultats sont 

présentés dans deux articles. Le premier article, publié à la suite de la présentation de l’étude 

a l’International symposium on biomedical imaging (ISBI), décrit la méthode utilisée pour 

évaluer quatre approches de génération de sCT en termes de métriques d’image. Le deuxième 

article, publié dans Frontiers in Oncology, va plus loin dans l’analyse statistique et comprend 

une évaluation dosimétrique. 

Le chapitre précédent se concentre sur la détection de sous régions ou les erreurs de 

prédictions d’unité Hounsfield (UH) sont significatives pour différentes méthodes de 

génération de sCT en examinant à la fois les résultats image et dosimétrique. Cependant, ces 

évaluations sont indépendantes et l’impact des erreurs d’UH sur la dose n’est pas trivial. En 

effet, si une méthode a tendance à échouer dans une région spécifique, quelles seraient les 

conséquences pour le traitement, s’il y en a ? Ainsi, le chapitre 4 présente une analyse de 

sensibilité comme outil pour répondre à cette question. L’analyse suit la méthode de 

screening de Morris et explore la corrélation entre les changements d’intensité dans 

différentes structures anatomiques et la dose dans le volume cible afin d’identifier les régions 

où les erreurs d’UH ont un impact plus important sur la dose. Aussi, cette étude évalue 

l’influence d’un artefact (représentant un volume d’erreur) sur la dose délivrée au centre du 

volume cible, en tenant compte de trois critères : la taille de l’artefact, son emplacement par 

rapport au volume cible et la variation d’UH dans le volume d’erreur. Il en ressort qu’une 

erreur même faible (25 UH) répartie dans l’ensemble du pelvis aura un impact significatif sur 

la dose à l’isocentre, alors que des erreurs dans la vessie auront impact négligeable. La taille 

du volume d’erreur ainsi que la variation d’intensité et sa position par rapport aux rayons 



9 

 

 

incidents jouent un rôle majeur sur le calcul de dose. Il est important de noter que ces 

résultats dépendent du traitement prescrit (IMRT ou VMAT par exemple), et qu’il serait 

pertinent de prendre en compte les sous régions d’erreurs détectées par l’analyse par voxel 

précédemment présentée pour une méthode de génération donnée. L’approche présentée 

dans ce chapitre est donc à adapter au cas par cas.  

Cette étude a été publiée par le journal Physical and Engineering Sciences in Medicine en 

octobre 2023. 

Le chapitre 5 propose deux méthodes pour évaluer un sCT patient lorsqu’aucun CT de 

planification n’est disponible. Ces méthodes s’appuient sur de statistiques extraites d’une 

cohorte de CT. Cette évaluation est effectuée au niveau du voxel pour la première étude 

(comme décrit dans un article publié suite à une conférence internationale IEEE 2022, Digital 

image computing : techniques et applications (DICTA)), ainsi qu’au niveau global et par organe 

en utilisant la sélection des caractéristiques radiomics pour la seconde. La première met en 

avant les voxels dont les valeurs d’UH sont significativement différentes de celles de la 

cohorte de référence pour chaque voxel. La précision de cette méthode dépend de la qualité 

des processus de recalage mis en place : celui permettant la création d’un atlas de référence 

à partir de la cohorte de CT, mais aussi celui permettant la comparaison du nouveau sCT à cet 

atlas. Les résultats pour les patients ayant une anatomie trop éloignée de celles des patients 

constituant la cohorte de référence peuvent donc être biaisés. Aussi, le recalage peut être 

couteux en temps. La seconde méthode permet d’obtenir un score illustrant la cohérence de 

l’image générée dans son ensemble et par organe, selon des caractéristiques images 

pertinentes et sélectionnées via un algorithme de machine learning (forêts aléatoires 

conditionnelles). Elle permet également de se libérer des biais induit par le recalage et n’est 

pas couteuse en temps de calcul.   

Dans le chapitre 6, un résumé des méthodes d’évaluation de sCT est présenté, ainsi que des 

recommandations pour mettre en place un protocole visant à intégrer le contrôle de la qualité 

de chaque sCT dans un workflow clinique. Ce protocole souligne l’importance de la mise en 

place de contrôle aux différentes étapes de la planification et implique l’évaluation : de l’IRM 

dans un premier temps, puis du sCT et enfin du calcul de dose. Ceci induit l’utilisation de 

métriques subjectives d’abord, mais aussi de métriques objectives de complexité variables 

présentés dans les chapitres précédents. 

Cette thèse est par définition multidisciplinaire, car elle s’inscrit dans une problématique de 

traitement d’image dans une perspective clinique avec un aspect dosimétrique (relatif à la 

physique médicale). Aussi, les méthodes présentées sont applicables aux sCT générés à partir 

de CBCT dans le cadre d’une radiothérapie adaptative pour les centres équipés d’accélérateur 

linéaire standards, puisqu'elles sont indépendantes de la modalité d’imagerie utilisée pour la 

création de sCT. 
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Introduction 
 

External beam radiotherapy is a local cancer treatment that utilizes ionizing radiation to 

destroy cancer cells. The high-energy beams produced by a linear accelerator are directed 

towards the tumour volume while minimizing radiation exposure to nearby organs at risk in 

order to prevent harm. In the context of external beam radiotherapy, computed tomography 

(CT) scans provide access to the electron densities of tissues, which are essential for accurate 

dose calculations. Cone Beam Computerized Tomography (CBCT), on the other hand, enables 

patient positioning under the linear accelerator (planning CBCT-CT registration) as well as 

real-time monitoring of the tumour during treatment. However, these imaging modalities 

suffer from limited soft tissue contrast and expose patients to additional radiation. 

In contrast, Magnetic Resonance Imaging (MRI), widely used for cancer diagnosis, offers 

superior tissue contrast without the need for ionizing radiation. This imaging modality holds 

significant potential for precise delineation of the target volume and organs at risk [1] and 

dose targeting[2]. MRI has gained particular interest in external beam radiotherapy, especially 

with the recent development of MRI-linac machines that integrate an MRI scanner with a 

linear accelerator. However, a key limitation of MRI is its inability to provide electron density 

information essential for accurate dose calculation. To overcome this limitation, several 

methods have been proposed in the literature for generating synthetic CT scans (sCT) from 

MRI[3], [4]. Among these, deep learning methods have shown tremendous promise in terms 

of both performance and computational efficiency[5]. Despite their favourable 

characteristics, the integration of MRI into the radiotherapy workflow faces a major 

challenge—the lack of standardized assessment metrics. Currently, evaluation of these 

methods relies on full-reference intensity-based metrics [6], which require a CT as ground 

truth, such as mean absolute error (MAE), mean error (ME), and peak signal-to-noise ratio 

(PSNR). Additionally, perception-based metrics like the structural similarity index measure 

(SSIM) and the multiscale SSIM are commonly employed. However, these metrics provide a 

global assessment and offer limited insight into the agreement within the patient's body 

contour or individual organs. Therefore, it is imperative to develop robust quality control 

methods that not only facilitate accurate treatment delivery but also enable thorough analysis 

of method limitations and shortcomings. 

This thesis primarily aims to investigate areas where sCT generation tends to be less accurate 

and proposes strategies to assess the quality of daily generated sCT. These strategies are 

intended to be included in the clinical workflow to ensure the safe application of MRI-only 

techniques.  

In the first chapter of this manuscript, the standard process of external beam radiotherapy 

treatment is presented, along with a comparison to an MRI-only workflow. The second part 

of this chapter discusses the state-of-the-art methods for generating sCT from MRI using 

deep-learning models (as described in an article published in Physica Medica). Additionally, 
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an overview of the different quality control steps involved in MRI-only radiotherapy is 

presented. 

The second chapter outlines the main objectives of the thesis, in addition to an overall 

framework of thesis components. 

The third chapter presents research on a methodology to assess the accuracy of sCT 

generation methods at various levels. This includes a standard error evaluation in the whole 

pelvis, followed by an organ-wise error assessment, and finally, the implementation of voxel-

wise analysis. These findings are presented in two papers. The first paper, published in the 

IEEE International Symposium on Biomedical Imaging (ISBI), presents the method used to 

assess four sCT generation approaches in terms of image quality. The second paper, published 

in Frontiers in Oncology, delves into the statistical analysis and includes the assessment of 

dose calculations. 

Chapter 4 explores the correlation between localized HU errors and the dose at the center of 

the target volume using the Morris screening method. This study has been submitted to 

Physical and Engineering Sciences in Medicine. 

Chapter 5 proposes two methods to assess patient-specific sCT without ground truth, based 

on statistics extracted from a cohort of CT scans. This assessment is done at a voxel level (as 

described in a paper published in the IEEE 2022 International Conference on Digital Image 

Computing: Techniques and Applications (DICTA)), as well as at a global and organ-wise level 

using radiomics feature selection. 

In Chapter 6, a summary of methods and metrics for assessing sCT will be provided, along 

with recommendations for a protocol aimed at integrating daily sCT quality control into the 

clinical workflow. 

Finally, a conclusion summarizes the work conducted, highlights its limitations, and outlines 

future research directions. 

These studies were performed on a retrospective imaging dataset from localised prostate 

cancer patients who were treated at the Calvary Mater Hospital in Newcastle, Australia. 
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Chapter 1: Context of MRI for radiation therapy  
 

This chapter aims to provide the clinical context by introducing the principles of standard 

external beam radiation therapy (EBRT). It discusses the benefits of magnetic resonance 

imaging (MRI) and deep learning in EBRT. Furthermore, it introduces the state-of-the-art 

methods for dose calculation using synthetic-CT generated from MRI. We published a review 

of deep learning-based approaches in the journal Physica Medica [1]. Additionally, the 

chapter provides an overview of the various quality control steps involved in MRI-only 

radiotherapy. 

External beam radiation therapy  

Radiotherapy is a treatment prescribed for more than two-thirds of patients with all types of 

cancer, i.e around 300,000 patients per year in France. EBRT involves delivering ionising 

radiation to the tumour to damage the DNA of cancer cells, mainly through double-strand 

breaks, thereby inhibiting their ability to multiply. These ionising rays primarily consist of high-

energy photon beams (MV) or, less commonly, electron beams (MeV), and proton beams. 

These beams are administered using a linear particle accelerator (LINAC) while the patient 

remains immobilised on the treatment table with restraints. To ensure tolerance of healthy 

tissues, the radiation is delivered in divided sessions, typically one session per day for 5 days 

per week, usually over a period of 5 to 8 weeks. 

The effectiveness of radiotherapy is based on the differential effect of DNA damage repair 

between healthy tissue and the tumour. The amount of radiation delivered, known as the 

dose, is expressed in Grays (Gy), which is defined as the energy deposited per unit of mass 

(Joule per kilogram). The radiation therapist prescribes a total dose for the tumour, typically 

delivered at a rate of 2 Gy per session. The treatment strategy depends on the cancer's 

location and stage. For instance, in early-stage tumours, the primary objective is to minimise 

toxicity by limiting the target volume and overall dose. In contrast, for more advanced 

tumours, the focus shifts to enhancing local disease control by escalating the dose and/or 

combining radiation with radiosensitising drugs. Hypofractionated treatments, characterised 

by higher dose per session and reduced total sessions, are gaining prominence due to 

advantages such as improved patient comfort, cost-effectiveness, and precise cancer 

targeting with smaller target volumes. 

Standard workflow 

There are four stages involved in a standard EBRT procedure (Figure 1.1): 1) acquisition of a 

planning CT scan, 2) delineation of target volume(s) and organs at risk (OARs), 3) dosimetric 
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planning, and 4) treatment. The following paragraphs provide a detailed description of each 

step. 

 

Figure 1.1: Standard external beam radiation therapy workflow.  

The planning process is divided into three steps. The first step (1) involves acquiring the planning CT scan in 

the treatment position. In the second step (2), an MRI is obtained to provide improved visualisation of soft 

tissues, enabling more accurate delineation of the target volume and organs at risk. Both modalities are then 

registered to align the contours with the planning CT. In the third step (3), the beam parameters are 

determined by an expert, ensuring compliance with the dose constraints prescribed by the radiation therapist, 

who subsequently validates the dose distribution. A CBCT scan is acquired at each session to accurately align 

the patient with the planning CT and reproduce the treatment position as precisely as possible prior to dose 

delivery.  

 

1- Planning CT 

The acquisition of a computed tomography (CT) image is the initial stage in EBRT. Prior to 

acquiring the image, the patient is positioned using restraints to establish a reference position 

for the treatment. This position should be both comfortable for the patient and reproducible. 

External markers, such as tattoos on the patient's skin or markings on the restraints, are 

utilised to replicate this position accurately. The length of the acquisition (head-foot axis) 

varies based on the anatomical location. It should encompass the entire target volume and 

the OARs, in accordance with the considered dosimetric criteria. 

Limitations of the CT scanning is that it is an imaging technique that involves exposure to 

ionising radiation and has low contrast in the soft tissue, impeding clear visualisation of the 

tumour volume.  

 

2- Organs at risk and tumour delineation  

Manual delineation of the OARs and the target volume, which comprises the tumour and its 

extensions, has traditionally been performed based on the planning CT scan. However, due 

to the limited ability of CT to accurately distinguish soft tissues, diagnostic MRI is utilised in 
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addition to enhance the accuracy of the delineations. To achieve this, the diagnostic MRI is 

first registered with the planning CT, and then the delineations of the volumes of interest 

from the MRI are transferred to the planning CT. The two imaging modalities offer 

complementary information, with CT providing better visualisation of bone tissue, while MRI 

enables improved visualisation of soft tissue. 

CT-MRI registration introduces uncertainties into the radiotherapy workflow. MRI scans are 

not acquired in the exact treatment position, posing challenges for accurate CT-MRI 

registration. Additionally, anatomical variations between the two acquisitions further 

complicate this stage. For instance, in prostate cancer cases, these variations can be 

attributed to varying bladder volumes or the presence of gas in the rectum or intestines, 

resulting in reported discrepancies of up to 2 mm in calculations for prostate cancer 

patients[2]. 

MRI-based planning could help to reduce these uncertainties without requiring additional 

radiation exposure, as MRI is a non-ionising imaging modality. Moreover, it has the potential 

to lower the overall treatment cost by eliminating the need for multiple scans. 

 

3- Dosimetric planning 

Dose planning is performed by a dosimetrist, radiation therapist, or medical physicist on a 

treatment planning system (TPS). Figure 1.2 shows an example of dose prescription for a 

prostate cancer on a TPS. This process utilises the planning CT and delineations of the target 

volume and OARs. The objective is to determine the optimal radiation pattern, including the 

number of beams and their incidences, in order to deliver the prescribed dose to the planning 

target volume (PTV) while minimising radiation exposure to OARs. Various irradiation 

techniques are available, with intensity-modulated radiotherapy (IMRT) and volumetric arc 

therapy (VMAT) being the most common nowadays. IMRT involves the use of fixed beams, a 

constant flow rate, and a single multi-leaf collimator (MLC) that conforms each beam to the 

shape of the PTV. Unlike IMRT, which normally employs fewer than ten fixed-field beam 

angles, VMAT uses numerous beam directions from an arc trajectory and delivers doses 

dynamically while the gantry rotates. The operator selects the beam parameters during the 

planning process, known as direct planning.  More advanced techniques of IMRT or VMAT, 

require inverse planning[3]. In this case, dosimetric objectives are provided to the TPS, which 

then determines the optimal solution. Intensity modulated treatments can be delivered using 

fixed beams (IMRT) or arcs (VMAT). 

Dosimetric planning must comply with dose constraints for the target volume, the dose 

prescription specified by the radiation therapist, and the OARs. National and international 

recommendations regarding dosimetric constraints are considered for OARs. These 

constraints may include maximum dose, maximum average dose, or maximum percentage of 

volume that can receive a certain dose, depending on the type of OARs[4]. Intensity-

modulated techniques allow for precise dose sculpting around the PTV while minimising 

radiation exposure to OARs. This technique results in high dose gradients. Another technique, 
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known as stereotactic body radiation therapy (SBRT), involves delivering higher radiation 

doses to the tumour in a reduced number of treatment sessions (hypofractionation). It is 

often used as an alternative to surgery. 

Dose calculation in radiotherapy relies on having information about the electron density of 

tissues, which can be obtained from CT scans but not from MRI. Electron density of tissues is 

crucial information for treatment planning as it affects how they interact with radiation. It can 

be derived from the Hounsfield Units (HU) of CT scans, where HU values are assigned to 

specific tissues based on their radiodensity compared to that of water (e.g., water has a HU 

value of 0, while dense bone may have HU values above 1000, and air -1000). The electron 

density is obtained through a calibration curve. 

To enable treatment planning to be based on MRI images, it is thus essential to convert MRI 

into synthetic-CT, to ensure the accuracy of the generated data. 

 

 

Figure 1.2: Axial view of the 3D treatment plan for a prostate cancer.  

(Figure from the book “Biomedical Image synthesis and simulation”, chapter 20 [5]). 

 

4- Treatment delivery 

At each treatment session, the patient is positioned under the linear accelerator in the same 

position as during the planning scan. Image-guided radiation therapy (IGRT) is commonly 

employed to precisely deliver radiation to the tumour target while minimising exposure to 

healthy surrounding tissues. It involves the utilisation of imaging technologies before or 

during the treatment session to accurately locate the tumour and make necessary 

adjustments to the radiation beams. 

 In IGRT, two techniques can be used: on-board 2D imaging called kV-kV (two 2D images at 

different angles acquired with low energy imaging systems (kV)) or 3D imaging called CBCT 

(Cone Beam Computerised Tomography). The CBCT image or the two kV-kV images are then 

registered with the planning CT scan using the target volume and/or bone tissue. The 

treatment table is adjusted based on the geometric transformation parameters obtained 

during the registration process (only translations or translations and rotations). 
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One of the main limitations of this stage is the low contrast of soft tissues in CBCT images. 

This limitation makes it challenging to visualise the tumour and results in imprecise patient 

positioning when relying on soft tissues. CBCT imaging has poor image quality, including the 

presence of numerous artifacts and low resolution, which adds complexity to the CBCT-CT 

registration process. Moreover, CBCT is an imaging technique that involves exposure to 

ionising radiation. To improve patient positioning without additional radiation exposure, an 

ideal solution would be to use MRI. This can be achieved with a machine combining an MRI 

and a linear accelerator, known as an MRI-LINAC[6]. 

Table 1.1 summarises the advantages and drawbacks of standard image-guided radiotherapy 

treatments compared to MRI-based radiotherapy treatments.  

 

Table 1.1: Advantages and drawbacks of standard radiation treatment planning and MRI-based treatment 

planning. 

 Advantages Drawbacks 

Standard image-guided 

radiation therapy (planning 

CT and CBCT) 

- Easy access to electron 

density  

- Spatial resolution of the CT 

- Fast acquisition CT /CBCT 

- Registration CT/CBCT 

- Systems accessibility 

- Poor soft tissue contrast, 

leading to an 

overestimation of volume 

of interest 

- Anatomical imaging only 

- Ionising modality 

MRI-based 

radiation 

therapy 

Planning 

MRI and 

treatment 

with a 

standard 

LINAC 

- Better soft tissue contrast 

(more accurate 

delineations) 

- Variety of sequences 

- Functional imaging 

- Non-ionising 

- No access to electron 

density 

- Distortions in MRI images 

- Registration MRI/CBCT 

- Patients with 

contraindications 

- Limited availability of MRI 

for radiotherapy 

departments 

 

MRI-LINAC 

- Better soft tissue contrast 

(more accurate 

delineations) 

- Variety of sequences 

- Non-ionising 

- Functional imaging 

- Daily adaptation 

- No access to electron 

density 

- Distortions in MRI images 

- Patients with 

contraindications 

- Cost 
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Adaptive radiotherapy 

Adaptive radiotherapy (ART) involves a feedback loop during standard radiotherapy 

treatment, where the initially defined treatment plan is modified to account for inter- or intra-

fraction anatomical changes[7]. The goal of ART is to ensure optimal dosimetric coverage of 

the target volume during treatment and/or to limit the dose to OARs in the presence of 

anatomical variations from the planning CT scan. 

Various ART strategies have been implemented in radiotherapy departments. Offline ART 

focuses on adapting the treatment plan between sessions, considering inter-fraction 

anatomical modifications. This strategy does not consider changes that occur within a 

treatment session. On the other hand, online ART involves adapting the treatment plan during 

the session while the patient is on the treatment table. This strategy allows for real-time 

adjustments to account for random changes. The last ART strategy is inline or real-time ART, 

which monitors movements of the target volume during irradiation using a "real-time" 

imaging system and compensates for them by adjusting either the multi-leaf collimator (MLC) 

or the source with the CyberKnife (Accuray)[8], [9]. The implementation of an ART strategy 

depends on factors such as the location of the tumour and the types of movement/anatomical 

variations involved. However, not all patients can benefit from ART due to limitations in 

human and technical resources, as well as the lack of formal clinical evidence demonstrating 

its benefits. The emergence of MRI-LINACs, which combine MRI and particle accelerators, 

would make ART more accessible. However, calculating a dose from MRI images is not a 

straightforward task. The challenges and methods for dose calculation from MRI images will 

be discussed later in this chapter.  

Treatment planning from MRI: state-of-the-art and challenges 

In external radiotherapy, X-ray imaging (CT-scan and CBCT) serves as the reference modality 

for treatment planning and target volume positioning before irradiation. CT provides access 

to the electronic density of tissues, which is necessary for dose calculation. CBCT allows the 

patient to be positioned under the linear accelerator by registration with the planning CT, and 

it also enables tumour gating or tracking during treatment. Although X-ray imaging has 

advantages such as accurate representation of bone tissue, it provides poor contrast between 

soft tissues, leading to imprecise definition of the volumes of interest, including tumours and 

OARs. Additionally, it is an irradiating modality that can increase the risk of radiation-induced 

cancers due to repeated CBCT image acquisitions, which raises concerns[10].  
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Figure 1.3: MRI-only workflow and its potential benefits 

 

MRI, commonly used for diagnostic purposes, offers the potential to overcome these 

drawbacks (Figure 1.3). Compared to X-ray imaging, MRI provides better contrast between 

soft tissues, leading to improved tumour targeting and organ at risk definition. MRI is a non-

irradiating modality that provides both morphological and functional information. To leverage 

these advantages during treatment, new treatment technologies combining a linear 

accelerator and MRI (MRI-LINAC) have been developed. These technologies allow for precise 

dose delivery with real-time tracking and gating of the tumour based on MRI images [6]. 

However, calculating the dose from MRI alone remains a crucial challenge in 

radiotherapy[11], [12]. The main challenge lies in the fact that MRI does not easily provide 

access to tissue electron densities, which are necessary for dose calculation. 

Standard MRI sequences used in clinical practice (e.g., T1 and T2 weighted) do not capture 

the signal from tissues with short transverse relaxation times, such as collagen and bone 

cortex, resulting in poor visibility of these structures in the images and their inability to be 

distinguished from air. Furthermore, MRI image intensities are not always uniform in 

homogeneous anatomical structures. 

To generate a dose distribution from an MRI scan, the strategy involves creating a substitute 

CT scan, known as a synthetic-CT (sCT) or pseudo-CT (pCT), using three categories of methods: 

bulk-density [13]–[15], atlas-based [16]–[22], and machine learning [23]–[29], including deep-

learning based methods[30]–[39]. In recent years, deep learning-based approaches have 

gained popularity due to their ability to automatically generate accurate sCTs with minimal 

computation time. This section briefly presents the three main strategies for generating sCT 

and provides an overview of the state-of-the-art methods using deep learning approaches, 

which have been published in Physica Medica[1]. 
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The accuracy of methods from these different categories has previously been compared in 

Largent et al.[26], [40].  

Synthetic-CT generation using bulk-density based methods 

Bulk-density methods involve delineating volumes of interest on the patient's MRI, either 

manually or automatically, and then assigning a homogeneous electron density to each of 

these volumes. These methods have shown encouraging results and have been the first to be 

integrated into commercial devices, either alone like in the first release of MRCAT (MR for 

Calculating Attenuation, Ingenia 3T MR Scanner, Philips Healthcare, Cleveland, OH, USA)[14], 

[41] or combined with a multi-atlas-based registration method to create bony contours 

separated into cortical bone and trabecular bone (SyngoVia software platform , Siemens 

Healthineers, Erlangen, Germany)[42]. 

The density assignment approach is a simple method, but it can be tedious, time-consuming, 

and dependent on the operator (leading to inter-operator variability in manual 

segmentations). Automatic segmentation could be considered for certain tumour locations, 

but it may be computationally expensive in terms of computing time. Additionally, tissues 

with short transverse relaxation times are not visible on the images obtained from standard 

MRI sequences, which may limit the accuracy of delineations. The lack of consideration for 

tissue heterogeneity is not recommended, especially for certain tumour locations such as 

bone[43]. 

Synthetic-CT generation using atlas-based methods 

The initial methods for generating atlas-based sCTs involved mapping the patient's MRI to a 

CT scan (atlas) and transferring the HU values from the atlas onto the patient's MRI to obtain 

the electron density of the tissues[22]. These methods had limitations, as the atlas used was 

not representative of the population, and the use of a single multimodal registration was 

insufficient to account for complex anatomies. Moreover, due to the challenges in 

distinguishing soft tissues in CT, the registration of this atlas with MRI introduced 

uncertainties for this type of tissue. To address these issues, a more accurate and robust 

methodology was developed. This methodology involved iteratively recalibrating and 

averaging the MRI and CT images from a cohort to construct a representative "MRI-CT" atlas, 

which was then matched to the patient's MRI[17], [19] . However, this methodology was not 

very robust when dealing with patients who exhibited significant anatomical differences from 

the atlas. 
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Figure 1.4: Multi-atlas MRI dose calculation method. (1) After intra-patient registration of each pair of MRI-

CT images in the database, the atlas MRIs in the training dataset are registered with the new patient's MRI. 

(2) The deformation fields obtained from the registration step are then applied to the CT scans in the database, 

aligning these images with the patient's MRI. (3) For each voxel, the intensities of the registered CT atlases 

are averaged and weighted based on the local similarity between the patient's MRI and the base MRIs. The 

resulting image is the synthetic-CT for the patient, on which the dose calculation will be performed.  

Further modifications were eventually made by incorporating multiple atlases, resulting in 

the method being divided into two stages (Figure 1.4). In the first stage, after performing 

deformable intra-patient registration for each pair of MRI-CT images in a cohort, the cohort's 

MRI was registered with the patient's MRI. The geometric transformations obtained from this 

registration were then applied to the CT images within the cohort. In the second stage, the 

re-registered CTs were merged to generate a sCT [16], [18], [20], [21]. The results were 

deemed clinically acceptable. 

In the literature, various CT fusion strategies have been proposed for multi-atlas methods. 

The most encountered strategy is the weighted average of CT intensities [20], [21]. However, 

it has the drawback of smoothing the sCT intensities. Consequently, the weighted average has 

been substituted with the median value [16] or a shape recognition method [18]. The latter, 

when compared to an atlas method using a weighted mean to merge the CTs, did not show 

significant improvement in terms of dose but had a longer calculation time (98 min versus 

120 min per patient, based on an atlas base consisting of 6 patients). 

In summary, atlas methods offer several advantages, such as being fully automated and 

applicable to any type of anatomical structure, from pelvis[20], to head and neck[16], [21]. 

They yield satisfactory dosimetric results by considering tissue heterogeneity. However, atlas 

methods have limitations, including long calculation times due to the successive stages of 

deformable registration. Additionally, these methods are highly reliant on the quality of intra-

patient CT-MRI registration, which can be complex due to anatomical variations between 

acquisition sessions (MRI and CT), especially in the pelvic area. Furthermore, they depend on 
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the inter-patient registration of the MRI base with the patient's MRI. As a result, atlas 

methods are not robust when significant anatomical differences exist between the patient 

and the images used for the atlas database. 

Synthetic-CT generation using model-fitting approaches 

Synthetic-CT generation methods based on model-fitting, or statistical learning techniques, 

have the following objectives: 1) to model the relationships between CT HU values and MRI 

intensities of a training cohort using algorithms, and 2) to apply these algorithms to a new 

MRI image, the target, in order to predict the corresponding HU values for the sCT.  

 

Kapanen et al.[44] were the first to employ polynomial regression in generating sCTs, as 

documented in the literature. To minimise variations in patient positioning between the two 

modalities, bone registration was utilised to align the MRIs and CTs. Subsequently, the pelvic 

bones were delineated on the CT images, and regions of interest (ROIs) were manually placed 

on these delineations (small spheres with a few millimetres in diameter) and propagated onto 

the MRI images. The image database was then divided into a learning cohort and a validation 

cohort. A second-order polynomial regression was employed to establish the relationship 

between CT and MRI intensities within the pelvic bone. This regression was trained using ROIs 

derived from the CT and MRI scans in the training cohort. To generate the corresponding sCTs 

for the MRIs in the validation cohort, the regression model was applied to the pelvic bones in 

the MRIs, assigning an electron density of 1 (0 HU) to other tissue types. 

To enhance the outcomes of the aforementioned study, Korhonen et al.[45] proposed the 

inclusion of manual soft tissue classification into three classes (muscle, urine, fat), in addition 

to the regression model. 

According to the authors, the dosimetric results appeared satisfactory. However, one 

drawback of this method is the placement of ROIs and the manual segmentation of bony 

tissues, which are time-consuming and not highly reproducible due to inter-observer 

variability, particularly for anatomies more complex than the prostate. 

Patch-based methods, originally developed for image segmentation[46], have more recently 

been proposed for sCT generation[23], [24], [26], [28], [29]. These methods can be 

categorised into two types: 

1- Approaches that involve non-overlapping partitioning of MRI-CT images from a 

training cohort, followed by a step to model the relationships between MRI and CT 

intensities. 

2- "Non-local mean" approaches. 

Both of these methods require a multimodal intra-patient CT-MRI registration and a 

monomodal inter-patient MRI registration of the learning cohort. 

The first approach involves calculating image descriptors from the MRI scans of the cohort. 

These image descriptors, along with their corresponding CT scans, are divided into non-
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overlapping patches. Patches located at the same position for each patient are grouped 

together to form a stack. Algorithms are then trained on these stacks to establish the 

relationships between MRI and CT voxels at specific locations. These trained models are 

subsequently applied to the patient's MRI to generate the corresponding sCT. Huynh et al. 

were the first to propose this methodology for sCT generation[28]. Structured random forests 

were used as the algorithms to model the relationships between MRI and CT voxels using 

image and CT descriptor stacks. These models were then applied to the patient's MRI to 

generate their sCT. The evaluation results of the generated images were found to be 

consistent with those reported in the literature, although no detailed dosimetric studies were 

conducted as part of this work. 

The second approach employs sliding windows to extract patches from MRI and CT images 

with overlap. The MRI and CT images are registered using affine transformations, both from 

the training cohort and the patient's MRI. Patch extraction is limited to the surrounding area 

of the current voxel. For a specific patch from the patient's MRI, the k nearest patches from 

the MRIs in the training cohort are selected based on Euclidean distance. The CT patches 

corresponding to these selected patches are combined to generate the sCT. Andreasen et al. 

introduced this methodology for sCT generation in the pelvic region and brain[23], [29]. 

Largent et al. [40]  (Figure 1.5) went further by including a multipoint-wise aggregation 

scheme to generate the sCT patches. 

 

The advantage of patch-based methods is that they can generate accurate sCTs without 

requiring complex inter-patient deformable registration. By using affine registration instead 

of deformable registration, patch-based methods are computationally less intensive 

compared to atlas-based methods. However, the effectiveness of these approaches relies on 

the quality of the affine registration and the efficiency of the k-nearest neighbour search 

method employed. Additionally, the quality of the deformable intra-patient CT-MRI 

registration also impacts the performance of patch-based methods. It's important to note 

that the computation time for patch-based methods is still too high to allow real-time dose 

calculation in a standard radiotherapy workflow or adaptive radiotherapy. 
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Figure 1.5:Patch-based method workflow for synthetic-CT generation from MRI. (Figure from Largent et al., 

published in “International Journal of Radiation Oncology, Biology, Physics” [40]) The building part involves 

training an approximate near-neighbour model using patches from the training CT and MRI (steps 1-3). In the 

application part, the trained model is used to generate a pseudo-CT from a test MRI (step 4). 

Synthetic-CT generation using deep-learning models (DLMs) 

Deep learning is a subcategory of machine learning methods. However, due to the growing 

interest in these approaches, the generation of synthetic-CT using deep learning-based 

models will be treated separately. 

Artificial intelligence (AI) encompasses techniques that seek to automate cognitive tasks 

performed by humans using machines. Statistical learning or machine learning is a subset of 

AI. The process consists of a learning phase and an application phase. 

During the learning phase, the model's optimal parameters are iteratively determined using 

relevant data and optimisation algorithm such as the Adam optimization algorithm. This data 
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is extracted from a dataset that is relevant to the problem being solved. The goal of this phase 

is to optimise the model for subsequent application to new data in order to perform the 

desired task. 

Neural networks are a specific type of machine learning method that aims to mimic the 

functioning of the human brain. These networks are composed of interconnected artificial 

neurons, which are mathematical functions. When these neurons are connected, they enable 

the network to carry out tasks in a similar way to biological neurons and synapses. The 

architecture of a neural network refers to how these artificial neurons are connected to each 

other. 

Figure 1.6: Multilayers perceptron architecture 

Figure 1.6 illustrates the architecture of a neural network known as a multilayer perceptron, 

which is the most well-known architecture. The first layer of this network reads the input 

data, which are the explanatory variables of the model. The hidden layers capture the 

relationships between the input data and the data to be predicted. The output layer 

represents the result of the network, providing its prediction or estimate of the data to be 

predicted. 

 

Figure 1.7: Illustration of an artificial neuron 
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Figure 1.7 presents a mathematical representation of an artificial neuron. The signals 𝑥0, 𝑥1 

and 𝑥2 represent the neuron's input data, which come from the previous layers. These signals 

are weighted by 𝜔0, 𝜔1 and 𝜔2 respectively. During training, these weights are adjusted to 

enable the network to effectively predict the output data. The weighted sum of these signals 

∑ (𝜔𝑖𝑥𝑖)𝑖  is calculated by adding a bias term 𝑏. An activation function 𝑓 is then applied to the 

result of this sum to obtain the neuron's output data. This activation function represents a 

threshold at which the neuron emits an output signal. 

Deep learning is a category of neural networks that utilise a large number of hidden layers. 

These algorithms have recently been proposed for generating sCTs from MRIs used in 

radiotherapy[1], [12]. One advantage of deep learning methods is that they do not require 

deformable inter-patient registration. However, in most cases, they still rely on multimodal 

intra-patient CT-MRI registration[47]. 

 

The state of the art of dose calculation methods from MRI images using DLMs will be 

presented here in the form of an article. This article, published in the journal Physica Medica 

in 2021, was written in collaboration with Marion Boulanger and Safaa Tahri. 

As part of this review, I was involved in collecting and sorting the publications presented, 

while examining the metrics used in these studies. I also revised the manuscript. 

 

 

Deep learning methods to generate synthetic CT from MRI in 
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Discussion 

Three categories of methods were analysed consecutively to calculate dose distribution on 

MRI, as summarised in Table 1.2. Figure 1.8 illustrates the results obtained for each family of 

methods applied to the same MRI of a female pelvis. The atlas and machine learning based 

approaches involve the utilisation of a database of co-registered CT-MRI images (intra-

patient). Inter-patient image registration is also necessary in atlas methods. Bulk density 

methods, on the other hand, can be directly performed using the patient's MRI. While all the 

methods utilise standard MRI sequences, ultra-short echo time (UTE) MRI sequences, which 

can differentiate between air and bone tissue, are also employed in bulk density and machine 

learning approaches. Density assignment methods typically rely on the average intensity (in 

HU values) of specific volumes of interest, calculated from a CT scan image database, while 

Atlas-based methods incorporate intensity information and integrate spatial and shape 

information for the volumes of interest. Machine learning methods, on the other hand, 

employ image descriptors that capture texture and contour information in the 

neighbourhood of each voxel. 

Deep learning-based sCT generation methods employ convolutional neural networks (CNNs) 

as model architectures, but recently transformers have demonstrated great potential in 

image synthesis [48]. Hybrid networks, combining CNNs and transformers, have been 

proposed to extract both local texture and global information [49]–[52]. The primary 

advantage of transformers lies in their ability to better understand contextual information 

compared to CNNs. However, they do tend to come with a higher computational cost and 

require larger amounts of data. 

Bulk-density and atlas methods have received fewer recent publications, suggesting that they 

may be more challenging to improve and may struggle to compete with the performance of 

DLMs. While deep learning methods show great promise, they heavily rely on the quality of 

intra-patient registration within the learning cohort. Although cycle-GAN architectures have 

the potential to avoid intra-patient registration [53], [54], recent studies using this 

architecture still employ registered data to provide better results[54], [55]. Therefore, further 

investigation is needed in this area. 

Analysis of the literature raises several questions regarding the evaluation of improvements 

of various methods for calculating dose from MRI. One key aspect that has not been 

adequately addressed is the impact of different irradiation techniques (such as IMRT, VMAT, 

SBRT, brachytherapy, proton therapy, etc.) on these dose calculation methods. Furthermore, 

there is variation in MRI sequences and acquisition parameters across studies. Wang et al.[56] 

compared the effect of different MRI sequences on a deep-learning based sCT generation 

method (consistent cycle-GAN) for paediatric brain tumour, while Florkow et al. [57] were 

interested in studying the influence of gradient echo–based contrasts on a 3D patch‐based 

neural network. But these evaluations are conducted on different datasets and are not 

systematic. It would be valuable to establish multicentre image databases that allow for the 
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evaluation of the proposed methods on standardised datasets using consistent validation 

tools. This would facilitate the development of more generalised deep learning models and 

enable better comparisons between different approaches.  

There is also a notable methodological gap in the evaluation of different approaches[11]. 

Some studies focus solely on comparing CT-scan and sCT images, while others focus only on 

dosimetric assessment. 

All these studies based their evaluation on full reference metrics (i.e comparison with a 

ground truth), as described in Boulanger et al.[1]. These metrics provide an insight into the 

overall accuracy of the method but do not allow for the identification of the limitations of the 

sCT generation approach. Additionally, they cannot be applied in a daily sCT quality assurance 

process as no reference CT will be available in an MRI-only workflow.  

 
 

 

Figure 1.8: Example sCT comparison between 3 generation methods from a T1-weighted MRI of a female 

pelvis. The columns show: the original MRI, the actual planning CT, a bulk density sCT, a multi-atlas based sCT, 

and a conditional generative adversarial network (deep learning) based sCT. The rows show the axial, sagittal, 

and coronal views from the 3D volumes. Figure from the book “Biomedical Image synthesis and simulation”, 

chapter 20 [5]. 
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Table 1.2: Principle, advantages, and drawbacks of each category of dose calculation methods from MRI 

Methods Principle Advantages Drawbacks 

Bulk-density 

Manual or automatic 

delineation of volumes of 

interest on the patient's 

MRI, then assignment of 

a density value 

(electronic or physical) to 

each region. 

- Simplicity of the 

methodology 

- Highly operator-

dependent (manual 

delineation) 

- Time-consuming to 

calculate (automatic 

delineation) 

- Segmentation errors  

- Homogeneity of 

tissue  

- Less accurate dose 

- Restricted to certain 

locations 

Atlas 

Pairwise mapping of a 

learning database of CT 

and MRI images to the 

patient's MRI, followed 

by CTs fusion.  

- Fully automated 

method 

- Good accuracy of the 

calculated dose 

- Heterogeneity of 

tissue density 

- Automatic 

delineation of 

volumes of interest 

- Anatomical 

genericity 

- High computation 

time 

- Sensitive to 

anatomical 

dissimilarities 

- Requires intra-

patient deformable 

multimodal 

registration and inter-

patient deformable 

registration of the 

training cohort 

- Uncertainty caused 

by registration errors 

- Smoothing of 

intensities 

Machine learning  

 

(Including deep-

learning models 

(DLM)) 

Modelling the 

relationships between 

the intensities of MRI and 

CT voxels using machine 

learning tools, then 

applying the model to the 

patient's MRI. The model 

is established in 2 stages: 

learning (generating the 

model) and validation 

(application to the 

patient). 

- Speed of execution 

- Good accuracy of 

estimated dose 

- No inter-patient 

registration (except 

patch-based) 

- Heterogeneity of 

tissue density 

- Requires intra-

patient registration 

(multimodal) of the 

training cohort, except 

for non-supervised 

DLM 

- Large amount of 

data needed 

(especially for DLMs) 
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Conclusion 

MRI offers better contrast between soft tissues compared to CT imaging, making it a valuable 

reference imaging modality for treatment planning. This advantage allows for more accurate 

delineation of specific target volumes and eliminates the need for MRI-CT registration, 

reducing associated errors. Currently, two treatment strategies incorporating MRI are being 

explored. The first strategy involves replacing planning CT with planning MRI while carrying 

out treatment using a standard LINAC. The second strategy involves treatment with an MRI-

LINAC machine, where an MRI scan is acquired before each irradiation session. In MRI-LINAC 

treatments, ART strategies play a central role. It is planned that treatment plans can be 

adjusted dynamically during each session based on the real-time anatomy, utilising a live ART 

approach. Dose calculation based on MRI has thus become of interest and is a rapidly 

advancing field in radiotherapy. The emergence of deep learning has enabled fast and 

accurate generation of sCT from MRI. In the literature, various DLMs have been applied, 

primarily for brain and pelvic cancer, as well as for head and neck and liver. Each deep-

learning study has demonstrated unique characteristics in terms of hyperparameters and loss 

functions, and different MRI sequences are utilised depending on the anatomical location. It 

has been observed that employing multiple inputs in a DLM yields better sCT quality 

compared to using a single input. One of the key challenges in sCT generation from MRI in 

radiotherapy using DLMs is addressing the multicentre impact, as well as the standardisation 

of sCT evaluation.  

Indeed, multiple metrics are employed to evaluate the generated sCT, including voxel 

intensity and geometric fidelity, but no consensus has been established in the scientific 

community.  

State-of-the-art of quality assessment methods  

Overview 

Quality assessment of images involves the evaluation and measurement of different aspects 

related to the perceived quality, fidelity, and accuracy of images. It aims to assess the extent 

to which an image accurately represents the original scene or meets specific criteria or 

standards. Image quality assessment (IQA) can be approached through both objective and 

subjective methods. 

 

1- Subjective methods  

In subjective IQA, human observers are presented with a set of images, which may include 

reference images and distorted images in double stimulus approaches, or only distorted 

images in single stimulus approaches. The observers are then asked to rate or rank the quality 

of the distorted images according to their perceived visual quality. The ratings can be based 
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on the overall image quality, sharpness, colour, accuracy, and artifact visibility. To ensure 

reliable and consistent results, subjective assessments are often conducted under controlled 

conditions. Multiple observers are typically involved to account for individual differences in 

perception. The results of subjective assessments are often used to validate and refine 

objective image quality metrics. By incorporating human perception, subjective assessment 

ensures that the resulting images are not only technically accurate but also visually satisfying 

to human observers. However, conducting subjective assessments can be time-consuming 

and resource-intensive, requiring careful planning, coordination, and analysis. 

 

2- Objective methods 

Image quality assessment metrics are used to quantitatively evaluate the quality of images. 

These metrics provide objective measures that assess several aspects of image quality, such 

as sharpness, contrast, noise, and distortion.  

 

Objectives metrics can be classified in 3 categories:  

- Full reference metrics involve comparing a generated image with a reference image 

considered as the ground truth. This comparison can be conducted through voxel-wise 

difference or measures of distorting noise that affect the quality of image representation, 

such as peak signal-to-noise ratio (PSNR). Human visual system (HVS) based methods, 

such as visual information fidelity (VIF)[58] or the structural similarity index (SSIM)[59] 

and its variations, assess the similarity between the reference image and the distorted 

image by considering structural information, luminance, and contrast. These metrics 

provide a measure of perceived quality by mimicking human visual perception.  

 

- Reduced reference IQA metrics rely on comparing specific features or information from a 

distorted image with a reference image, but they do not require a full reference image for 

comparison. Instead, they use a reduced set of reference information or features to assess 

image quality. 

 

- No-reference IQA metrics do not require a reference image for comparison. Instead, they 

are designed to assess the quality of an image based solely on its own content and 

characteristics. Sharpness, noise, texture, and structural information within the image are 

analysed to estimate its quality. Examples of popular no-reference IQA metrics include 

BRISQUE (Blind/Reduced-Reference Image Quality Evaluator) [60], NIQE (Naturalness 

Image Quality Evaluator), and PIQE (Perceptual Image Quality Evaluator) [61]. These 

metrics are trained on a large dataset of images and utilise statistical or machine learning 

techniques to provide objective quality scores without relying on a reference image. 

Deep-learning based methods also recently arise [62]–[64]. 

Objective metrics provide quantitative measures of image quality, allowing comparisons 

between different images or different processing algorithms. However, it's important to note 
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that no single metric can fully capture all aspects of human perception, and the choice of 

metric depends on the specific application and requirements. 

IQA in CT 

A recently published report by the French Society of Medical Physicists (SFPM) presents the 

metrics used to assess a CT scan1. The classical methods can be divided into four categories: 

- Signal and contrast 

The signal of each voxel in a CT scan is measured in HU. This scale is defined based on the 

relationship between the linear absorption coefficient of water (𝜇𝑤𝑎𝑡𝑒𝑟) and the average 

linear absorption coefficient (𝜇𝑋) of the contents within the volume defined by voxel X. 

 

𝐻𝑈 = 1000 × 
𝜇𝑋 −  𝜇𝑤𝑎𝑡𝑒𝑟

𝜇𝑤𝑎𝑡𝑒𝑟
 (1) 

 

The signal measured within a region of interest (ROI) is determined by calculating the average 

value of the HU for the voxels included in the ROI: 

 

𝑠𝑖𝑔𝑛𝑎𝑙(𝑅𝑂𝐼) =  𝐻𝑈(𝑅𝑂𝐼)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  (2) 

 

Finally, the contrast between 2 ROIs is defined as follow:  

 

𝐶(𝑅𝑂𝐼1, 𝑅𝑂𝐼2) =   𝑠𝑖𝑔𝑛𝑎𝑙(𝑅𝑂𝐼1) −  𝑠𝑖𝑔𝑛𝑎𝑙(𝑅𝑂𝐼2) (3) 

 

- Noise 

In CT scans, noise arises from both quantum noise, which is associated with the random 

emission and detection of photons, and electronic noise. The assessment of noise in an image 

of a homogeneous object involves calculating the standard deviation of the HU within a ROI. 

- Spatial resolution 

Spatial resolution refers to the minimum distance that can be measured between two 

structures and is closely associated with the concept of point spread function (PSF). The PSF, 

also known as the spatial impulse response, is a mathematical function that characterizes the 

imaging system's response to a point object.  

                                                      

1 The report is available online: 
https://www.sfpm.fr/sites/www.sfpm.fr/files/Bibliotheque/Documents_SFPM/Public/Rapports_SFPM/Rappor
ts_GT/sfpm_2023_41_tdm_metriques.pdf 
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The Modulation Transfer Function (MTF) is a function that describes the imaging system's 

capability to preserve contrast as a function of the level of object detail, also known as spatial 

frequency. 

- Detectability  

Signal-to-noise ratio (SNR) is the comparison of a specific signal to the background noise. A 

low SNR value will result in a significant amount of noise that can partially or completely mask 

the signal, making it challenging to interpret the image. 

The contrast-to-noise ratio (CNR) is a measure used to evaluate the difference in average 

attenuation or signal intensity between a structure of interest and the background, relative 

to the background noise. The CNR is commonly defined as follows: 

 

𝐶𝑁𝑅(𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒, 𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑) =   
𝑠𝑖𝑔𝑛𝑎𝑙(𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒) − 𝑠𝑖𝑔𝑛𝑎𝑙(𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑) 

𝑠𝑖𝑔𝑛𝑎𝑙(𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑)
 (4) 

 

A "low" CNR value will manifest in the image as a significant amount of noise that partially or 

completely obscures the contrast of the lesion, thereby posing challenges for the radiologist 

in interpreting the image.  

These metrics show that contrast and noise are two key features to describe the quality of a 

CT scan. However, they are not sufficient to assess the quality of a sCT in the context of MRI-

only RT.  

IQA in synthetic-CT generation for MRI-only radiation therapy 

Methods and algorithms developed for generating sCT scans require validation, not only 

during the development phase of new generation methods but also for the clinical validation 

of implementing an sCT system in a radiotherapy center prior to routine use. This validation 

is achieved using full-reference metrics, which involve comparing the generated sCT image to 

its corresponding planning CT. Discrepancies in terms of HU values compared to a reference 

CT are measured using metrics such as mean absolute error (MAE) and mean error (ME). This 

difference can be assessed at a voxel level, resulting in 3D error maps. Additionally, mean 

square error (MSE), root mean square error (RMSE), and PSNR[65] are computed. The MSE is 

defined as:  

𝑀𝑆𝐸 =  
1

𝑁
∑(𝐻𝑈𝑠𝐶𝑇(𝑖) −  𝐻𝑈𝐶𝑇(𝑖))2

𝑁

𝑖=1

  (5) 

 

With N the number of voxels in the image, 𝐻𝑈𝑠𝐶𝑇(𝑖) the intensity in HU of the 𝑖𝑡ℎ voxel in the 

sCT and 𝐻𝑈𝐶𝑇(𝑖) the intensity in HU of the 𝑖𝑡ℎ in the reference CT. While this metric provides 
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insight into the dispersion of the error, the PSNR, defined as follows, measures the level of 

noise corruption in the image:  

 

𝑃𝑆𝑁𝑅 =  10𝑙𝑜𝑔10 (
𝑄2

𝑀𝑆𝐸
) (6) 

With 𝑄 the dynamic of the image.  

 

Perception-based metrics like the visual information fidelity (VIF),  the structural similarity 

index (SSIM) (eq. 7) [5], [12] and multi-scale SSIM [52] are also commonly employed and focus 

on the structure, contrast, and luminance of an image.  

 

𝑆𝑆𝐼𝑀 =  
(2𝜇𝐶𝑇𝜇𝑠𝐶𝑇 + 𝐶1)(2𝜎𝐶𝑇𝑠𝐶𝑇  +  𝐶2)

(𝜇𝐶𝑇
2 +  𝜇𝑠𝐶𝑇

2 +  𝐶1)(𝜎𝐶𝑇
2 +  𝜎𝑠𝐶𝑇

2 +  𝐶2)
  (7) 

 

Here, 𝐶1 and 𝐶2 are two variables to stabilize the division with weak denominator, 𝜇𝐶𝑇 and 

𝜇𝑠𝐶𝑇 represent respectively the mean value of the reference CT and the sCT, 𝜎𝐶𝑇
2  and 𝜎𝑠𝐶𝑇

2  

their variance and 𝜎𝐶𝑇𝑠𝐶𝑇 the covariance of the CT and the sCT.  

The assessment of geometric fidelity for automatically segmented structures, such as bones 

and body contours, involves metrics like the Dice similarity coefficient (DSC), Hausdorff 

distance, and mean absolute surface distance (MASD). These metrics provide valuable 

information about the accuracy of the image contours. 

Dose accuracy is evaluated using full-reference metrics that compare the dose calculations 

obtained from the sCT with those derived from the reference CT. Many studies in the sCT 

generation literature focus on dosimetric endpoints, including gamma analysis and dose-

volume histogram (DVH) metric [66].  DVH is a widely used tool in radiation therapy routine. 

Gamma analysis allows for the spatial analysis of dose distributions obtained from the sCT 

and reference CT by utilizing gamma maps. It can be performed in two or three dimensions, 

incorporating dose and spatial criteria. Various parameters must be set for a gamma analysis, 

including dose criteria, distance-to-agreement criteria, local or global analysis, and dose 

threshold.  

Figure 1.9 summarises the different metrics commonly used by order of complexity. They also 

have been described in Boulanger et al.[1].  
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Figure 1.9: Imaging and dose metrics used for the evaluation of synthetic-CT.  

These diverse metrics provide a comprehensive assessment of the image quality, ranging from voxel-level 

analysis to overall body evaluation, including delineated organs. Abbreviations: MAE: Mean absolute error, 

ME:  mean error, MSE: Me an square error, RMSE: Root mean square error, PSNR: Peak signal-to-noise-ratio, 

NMI: Normalized mutual information, NCC: normalized cross-correlation, DSC: Dice score coefficient, HD: 

Hausdorff distance, MASD: Mean absolute surface distance, SSIM: structural similarity, MS-SSIM: Multi-scale 

SSIM, VIF: Visual information fidelity, DVH: Dose-volume histogram.  

Patient specific sCT QA 

In practice, patient specific sCT assessment can be used for validation (offline or online) or to 

validate sCT generation methods as part of a clinical evaluation stage. In the literature, CBCTs 

were used to assess patient-specific sCTs generated from MRI by comparing dose 

distributions and CT number accuracy in both images [67]–[69]. For sCT used in an adaptive 

proton therapy workflow, a range probing approach has been proposed by Oria et al.[70]. 

Film and 3D gel dosimetry were also investigated. It relies on printing 3D case-specific 

phantoms[71] . Choi et al.[72] proposed a strategy for assessing sCT by comparing the 

resulting dose distribution with the dose distribution obtained from a bulk- density image. 

Probabilistic estimation of errors in sCT at a voxel level has also been explored in previous 

studies. Van Harten et al.[73] proposed a method to obtain a voxel-wise uncertainty map by 

analysing the discrepancies between sCT volume reconstructions on different axes (axial, 

sagittal, and coronal) using a DLM trained on 2D data for each axis. DLM also allows for the 

computation of epistemic (model-dependent) and aleatoric (data-dependent) 

uncertainties[30], [74], [75]. Johansson et al. [76], introduced a method estimating the 

probability of error in sCT generated from a Gaussian mixture model. These methods provide 
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3D maps of the probability of errors but are developed for specific models and provide 

estimates without generalisability. 

Conclusion 

Several metrics exist for assessing image quality, and in the context of sCT quality assurance, 

the ones currently utilised are full-reference metrics. However, they pose a limitation as they 

require a planning CT as a ground truth, which may not be available in an MRI-only workflow. 

The methods proposed to tackle this issue in the literature are defined for specific sCT 

generation methods or specific application (i.e ART with CBCT or proton therapy). 

In contrast, existing no-reference IQA metrics rely on extensive datasets for model training 

and provide a global evaluation of image quality. However, before these models can be 

effectively implemented in clinical workflow, they would need to be trained on large 

multicentre datasets.  

It is important to note that an sCT image does not need to be perfect to enable safe treatment 

planning in MRI-only radiation therapy. Therefore, it is crucial to establish acceptance criteria 

for errors in generated sCT and develop a standardised QA method for sCT validation that can 

be universally applied. 
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Chapter 2: Aims of the thesis 
 

Numerous methods for generating synthetic CTs have been developed, and recent 

advancements in deep learning have facilitated the production of accurate results. However, 

for the systematic use of MRI-based dose planning in clinical routine, the issue of quality 

control for the generated images still needs to be addressed. 

 

The main objectives of this thesis are as follows: 

 

- To identify the limitations and shortcomings of the synthetic CT generation methods 

through statistical evaluation. This will provide a better understanding of their 

capabilities and constraints. 

 

- To quantify the impact of errors in intensity on dose distribution. By measuring the 

effects of these errors, the goal is to assess their significance and potential impact on 

treatment. 

 

- To develop a framework for evaluating the quality of each patient specific sCT. This 

assessment will ensure that the resulting images meet the required standards and are 

acceptable for treatment planning purposes. 

 

The research conducted in this thesis aims to address these objectives and will contribute to 

the development of recommended best practices for inclusion in a clinical protocol. The 

objectives and the content of the various chapters comprising the thesis are presented in 

Figure 2.1, providing a comprehensive overview of the study's scope and structure. 
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Chapter 3: Quality assurance for MRI‐only 

radiation therapy: A voxel‐wise population‐based 

methodology for image and dose assessment of 

synthetic‐CT generation methods 

This chapter introduces a methodology for comprehensive assessment of synthetic-CT 

generation methods at the voxel level, encompassing both image quality and dose accuracy. 

This evaluation may be used prior to incorporating a specific sCT generation approach into a 

clinical workflow to ensure its robustness and reliability. By following this methodology, a 

better understanding of the capabilities and limitations of these methods can also be 

achieved. 

The content of this chapter has been published in Frontiers in Oncology in 2022.  

 

“Quality assurance for MRI-only radiation therapy: a voxel-wise population-based 

methodology for image and dose assessment of synthetic-CT generation methods”  

Hilda Chourak, Anaïs Barateau, Safaa Tahri, Capucine Cadin, Caroline Lafond, Jean-Claude 

Nunes, Adrien Boue-Rafle, Mathias Perazzi, Peter Greer, Jason Dowling, Renaud de Crevoisier, 

Oscar Acosta (Frontiers in Oncology, 2022) 

 

Preliminary versions of this work were presented at international and national conferences.  

“Voxel-Wise Analysis for Spatial Characterisation of Pseudo-CT Errors in MRI-Only 

Radiotherapy Planning”  

Hilda Chourak, Anaïs Barateau, Eugenia Mylona, Capucine Cadin, Caroline Lafond, Jean-

Claude Nunes, Peter Greer, Jason Dowling, Renaud de Crevoisier, Oscar Acosta - ISBI 2021 

(poster)  

“Spatial Characterization of errors in pseudo-CT generation for MRI-only radiotherapy” 

Hilda Chourak, Anaïs Barateau, Capucine Cadin, Caroline Lafond, Jean-Claude Nunes, Peter 

Greer, Jason Dowling, Renaud de Crevoisier, Oscar Acosta - ESTRO 2021 (poster)  

“Caractérisation spatiale d’erreurs de pseudo-CT pour la planification de dose à partir d’IRM” 

Hilda Chourak, Anaïs Barateau, Capucine Cadin, Caroline Lafond, Jean-Claude Nunes, Peter 

Greer, Jason Dowling, Renaud de Crevoisier, Oscar Acosta - SFPM 2021 (oral presentation)  

Abstract 

Quality assurance (QA) of synthetic-CT (sCT) is crucial for safe clinical transfer to an MRI-only 

radiotherapy planning workflow. The aim of this work is to propose a population-based 

process assessing local errors in the generation of sCTs, and their impact on dose distribution.  
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For the analysis to be anatomically meaningful, a customised inter-patient registration 

method brought the population data to the same coordinate system. Then, the voxel-based 

process was applied on two sCT generation methods: a bulk-density method (BDM) and a 

Generative Adversarial Network (GAN). CT and MRI pairs of 39 patients treated by 

radiotherapy for prostate cancer were used for sCT generation, and 26 of them with 

delineated structures were selected for the analysis. Voxel-wise errors in sCT compared to CT 

were assessed for image intensities and dose calculation, and a population-based statistical 

test was applied to identify regions where discrepancies were significant. Cumulative 

histograms of mean absolute dose error per volume of tissue were computed to give a 

quantitative indication of the error for each generation method. 

Accurate inter-patient registration was achieved, with mean Dice scores higher than 0.91 for 

all organs. The proposed method produces 3D maps that precisely show the location of the 

major discrepancies for both sCT generation, highlighting the heterogeneity of image and 

dose errors for sCT generation methods from MRI across the pelvic anatomy. Hence, this 

method provides additional information that will assist with both sCT development and 

quality control for MRI-based planning radiotherapy. 

Introduction 

Magnetic resonance imaging (MRI) is becoming increasingly integrated into clinical 

radiotherapy (RT) planning and monitoring. MRI guided RT is motivated by the superior soft 

tissue contrast compared to CT and the non-ionizing modality. However, MRI does not 

provide information on electron density of tissue, essential for radiotherapy dose calculation. 

To overcome this issue, several approaches to generate synthetic CT (sCT) in Hounsfield Units 

(HU) from a specific MRI have been developed[1], [2]. These include: bulk density[3], [4], 

atlas-based[5], machine-learning models, such as patch-based methods with feature 

extraction[6], and more recently deep-learning models (DLMs)[6]–[12].  

Currently, sCT image quality assessment is based on global metrics that measure 

discrepancies between reference CT and the corresponding sCT[12], [13]. The most common 

are intensity-based[14] metrics, like mean absolute error (MAE), mean error (ME) , mean 

squared error (MSE) and peak signal to-noise ratio (PSNR). Structural similarity (SSIM)[15], 

[16] is also often computed. These metrics have been reported at a global level, restricted to 

a single value describing agreement within the body contour of the patient, or within an 

organ[12]. Regarding dosimetric evaluation, dose distributions obtained from sCT are 

assessed by comparing dose-volume histogram (DVH) and gamma analysis[17]–[20] to the 

ground truth (dose distribution from reference CT).  

DVHs are volume-based statistics that are not relatable to spatial locations; while gamma are 

spatial distributions, they are usually condensed to a single pass-rate metric and gamma 

scores are difficult to interpret clinically. For sCT evaluations each patient is usually assessed 
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in isolation and results are then combined. However, it has been reported that errors might 

appear heterogeneously distributed across different tissue densities[6], [16], [21]–[24]. 

Assessing the spatial distribution of errors at a population level may help to identify their 

origin as well as clinical impact and may subsequently improve the accuracy of sCT generation 

methods. It can also be useful to compare and select sCT generation methods, and to a large 

extent it may lead to the introduction of quality control protocols within the MRI-based RT 

planning workflow.   

Voxel-wise population analysis can provide powerful tools to assess clinical impacts of image 

and dose difference across individuals[25], [26]. However, their application requires an 

accurate non-rigid registration of a whole population to a single coordinate system, and the 

implementation of voxel-wise statistical tests. Previous preliminary work has demonstrated 

the feasibility of this method, but the analysis methods were limited in clinical scope [27]. 

The aim of this paper was to propose a multiscale strategy to assess accuracy of sCT 

generation methods, starting with a standard error evaluation in the whole pelvis, followed 

by assessment of organ errors and finally by the implementation of a voxel-wise workflow. 

The whole scan population was brought to the same coordinate system via a customized non-

rigid registration method. Two different sCT generation approaches were chosen as examples 

to illustrate the methodology: a bulk-density method (BDM) and a deep-learning method, 

based upon a generative adversarial network (GAN) architecture [6], [28]. Then a 

comprehensive population based statistical analysis is performed, including a permutation 

test adapted to non-parametric paired data and the evaluation of the error dispersion at a 

voxel-wise scale for each method. The presented methodology provides not only a population 

spatial quantification of sCT image value and dose errors, but it also allows comparison across 

different sCT generation approaches using the same dataset. 

Materials and Methods  

Data  

A cohort of 39 patients with prostate cancer aged 58 to 78 years were used to generate sCT 

scans. For each patient, a CT scan was acquired on a GE LightSpeed RT or a Toshiba Aquilion, 

(256 x 256 x 128 matrix with a voxel size of 1.17 mm x 1.17 mm x 2.5 mm or 2.0 mm) and a 

T2-weighted MRI was acquired on a Siemens Skyra 3T in the treatment position (resolution 

of 1.6 mm x 1.6 mm x 1.6 mm). Each CT was resampled and registered to the corresponding 

MRI via a symmetric rigid registration followed by a structure-guided non-rigid method[29], 

[30] to rectify the main anatomical variations due to the delay between both acquisitions. 

MRI were then pre-processed to correct non-uniformity [31] with the Insight Toolkit Library 

(ITK). 

As some organs’ delineation, crucial for the interpatient-registration, were incomplete, the 

voxel-wise analysis was performed on the 26 patients with bones, prostate, bladder, and 
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rectum delineated on MRI by 2 physicians. The rectal length started at 2 cm below the clinical 

target volume (CTV). Two clinical target volumes (CTVs) were defined: CTV1 including prostate 

and seminal vesicles, and CTV2 corresponding to the prostate only. 

Workflow  

The proposed workflow is presented in Figure 3.1. It includes the generation of sCTs using 

two methods (BDM and GAN) and dose computation. Then, sCTs and dose distributions 

followed a standard evaluation in the native space. Finally, an accurate customized organ-

driven non-rigid algorithm was applied to bring all the data to the same coordinate system, 

where voxel-wise analysis was performed. 

sCT generation methods   

Bulk-density method (BDM) 

Bulk density methods have application to quality assurance of sCT scans [4] and are also 

employed in this work to demonstrate that differences between scan quality for different sCT 

method can be determined with our workflow. sCTs were obtained by assigning Hounsfield 

Units (HU) values to the patient's soft tissue, bones and air segmented from MRI. For bone 

segmentation, automatic tools from Varian Eclipse were used on CT. This contour was then 

rigidly aligned to the MRI scan and contours were manually adjusted by a research radiation 

therapist [31]. The volume of air resulted from thresholds in the inner part of the rectum 

delineated on MRI. The soft tissue area corresponds to the subtraction of bones and air from 

the body contour. A water equivalent density (0 HU) was assigned to the soft tissue [3], [32]. 

For bones and air, the densities allocated were respectively 350 HU and -450 HU, which are 

the mean CT values of the cohort in the corresponding segmented regions[28]. 

Generative Adversarial Network (GAN)  

The GAN architecture used in this study to generate sCT is fully described in Largent et al.[6]. 

The generator was a U-Net inspired by Han et al.[33], with L2 norm as loss function:  

𝐿𝐺(𝐼, 𝐶) =  ||𝐶 −  𝐺(𝐼)||
2

2
(1) 

Where 𝐼 corresponds to the MRI intensity, 𝐺(𝐼) to the generated sCT and 𝐶 to the reference 

CT.  

The discriminator was a PatchGAN, using binary cross entropy as loss function: 

𝐿𝐷(𝐺(𝐼), 𝐶) =  − ∑ 𝐶𝑖 log (𝐺(𝐼)𝑖)  +  (1 − 𝐶𝑖) log (1 − 𝐺(𝐼)𝑖)

𝑛

𝑖=1

 (2) 

𝐺(𝐼) is the sCT produced by the generator from the target MRI, C the corresponding reference 

CT and n the number of voxels in C.𝐿𝐺(𝐼, 𝐶) and 𝐿𝐷(𝐺(𝐼), 𝐶) were combined to create the 

adversarial loss. Axial 2D CT and MRI slices were used to train the model, and a three-fold 
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cross validation was applied. The training cohort comprised 26 patient data and the validation 

cohort of size 13.  

Dose calculation in native space 

Volumetric modulated arc therapy (VMAT) was planned on reference CT images with the 

Pinnacle v.9.10 (Philips) treatment planning system (TPS) using the collapsed cone 

convolution algorithm and a dose grid resolution of 3 mm. For all patients, a sequential 

treatment was delivered with a total dose of 50 Gy to the CTV1, followed by a boost of 28 Gy 

Figure 3.1: Workflow of voxel-wise population-based analysis 

This workflow comprises 5 steps: (1) synthetic-CT (sCT) generation with a bulk-density and a Generative 

Adversarial Network (GAN) method, (2) dose calculation and (3) error evaluation of images and doses in the 

native space of each patient. This evaluation includes the computation of Absolute Error, Error, and the 

Absolute Percent Error. The non-rigid registration step (4) resulted in deformation fields, allowing for 

propagation of the whole data to a common coordinate system. Once all data were in the same anatomical 

space, statistical analysis was performed (5), producing 3D error maps for each sCT generation method and 

highlighting significant difference subregions for both image and dose distributions.  
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in the CTV2, both at 2 Gy per fraction. The beam parameters used to compute the dose on 

the reference CT were used to calculate dose on the sCT. 

Image and dose error evaluation in native space  

The accuracy of the sCT generation in HU and in Gy was first assessed in the native space, to 

reduce bias induced by the inter-patient non-rigid registration. 

Absolute error (AE), error (E) and absolute percent error (APE) were computed by comparing 

corresponding CT and sCT pairs at a voxel level, producing 3D error maps for each patient.  

The global quality of sCT was evaluated with respect to the patient's structures (prostate, 

rectum and bladder) and the whole pelvis by computing the mean absolute error (MAE), the 

mean error (ME) and the mean absolute percent error (MAPE) in these regions from the 

previous maps. 

 

𝐴𝐸(𝑖) =  |𝑋𝐶𝑇(𝑖) − 𝑋𝑠𝐶𝑇(𝑖)| (3𝑎) 

𝑀𝐴𝐸 =  
1

𝑛
∑ 𝐴𝐸(𝑖)

𝑛

𝑖=1

(3𝑏) 

 

𝐸(𝑖) =  𝑋𝐶𝑇(𝑖) − 𝑋𝑠𝐶𝑇(𝑖) (4𝑎) 

𝑀𝐸 =  
1

𝑛
∑ 𝐸(𝑖)

𝑛

𝑖=1

(4𝑏)  

 

𝐴𝑃𝐸(𝑖) =  |
𝑋𝐶𝑇(𝑖) − 𝑋𝑠𝐶𝑇(𝑖)

𝑋𝐶𝑇(𝑖)
| (5𝑎) 

𝑀𝐴𝑃𝐸 =  
1

𝑛
∑ 𝐴𝑃𝐸(𝑖)

𝑛

𝑖=1

(5𝑏) 

with 𝑛 the number of voxels, 𝑋𝐶𝑇(𝑖) and 𝑋𝑠𝐶𝑇(𝑖) the intensities of the 𝑖𝑡ℎvoxel in, respectively, 

the reference and the generated image, in HU for image evaluation or in Gy for dose 

evaluation. 

The closer to zero the AE, the E, the APE, and so their respective means, the more accurate is 

the prediction.  

Organ-driven registration 

First, an individual MRI scan from the cohort was selected as a template (exemplar) by 

considering the median volumes of bladder, rectum, and prostate. Then, a customized organ-

driven registration, based upon previously proposed methods [25], [34] was performed with 

an overall optimized alignment across the organs.  
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Input images for the registration were a combination of MR images and structural 

descriptions (SD) of the delineated organs obtained as follows: 

-          Euclidean distances to the surface were computed for all structures[35]. 

-          For the rectum, a scalar field was generated by applying the Laplacian equation 

inside the volume[36]. The Laplacian field provided a normalised distance map to the 

central path of the organ. 

-          For the prostate, the Laplacian was also computed with respect to its barycentre. 

Finally, scalar fields of all structures were merged into a global structural description of the 

organs and combined to the MRI (Figure 3.2). Afterwards, all the structures were rigidly 

aligned using the Elastix toolbox (translation). From bones to bladder, each structure requires 

a different level of deformation. To handle this high variability, non-rigid registration based 

on diffeomorphic demons[37] with 4 levels of resolution was successively applied to: i) the 

bladder, ii) the whole pelvis, iii) the prostate, iv) the rectum, v) the bones. 

The demons algorithm uses Gaussian regularisation, which involves smoothing the 

deformation field. The sigma of the Gaussian filter was set to 1, and the number of iterations 

for the 4 levels of resolution were: i) 300, 300, 200, 20 for the bladder contour, ii)  200, 200, 

100,0 for the whole pelvis, iii) 200, 200, 150, 5 for the prostate SD , iv) 100, 100, 100,5 for the 

rectum SD, v) 100, 100, 150,50 for the bones SD. 

For the bladder, a b-spline transform using the Elastix toolbox was also performed on SD prior 

to the demons registration (step i) ). 

 

Each step resulted in deformation fields: 3D vectors defined at each voxel and providing the 

appropriate transformation. The resulting 3D deformation fields were combined and applied 

to delineated structures, reference CTs, sCTs, dose planning and error maps to propagate all 

the data from their native spaces to a common coordinate system (CCS). After the 

propagation of CT in the CCS the bones, including the femoral heads, were split between 

spongy and cortical and separately registered to preserve their inner structure composition. 

This final transformation was then applied to sCT, dose and error maps. 

For the propagation of CT in the CCS to be meaningful, each CT-MRI patient pair had to be 

properly co-registered prior to the inter-patient registration. This step-by-step approach can 

accommodate the high anatomical inter-individual variability, and facilitates the propagation 

of delineated structures, including the registered reference CTs, sCTs, dose distributions and 

the error maps from their native spaces to a common coordinate system (CCS).  

As a visual indicator of the performance of this process, a checkerboard of the template MRI 

with the mean population MRI in the CCS, and a checkerboard of the template CT with the 

mean population CT in the CCS are presented in Figure 3.3. The probability maps, also in 

Figure 3.3, allow visualization of the discrepancies between the delineated organs contours 

following registration. 
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Table 3.2 summarises the volumes of the delineated organs prior and after the registration 

process. The Dice similarity coefficient (DSC) between the template structures, 𝑉𝑡𝑀𝑅𝐼
, and the 

corresponding deformed delineated organ, 𝑉𝑀𝑅𝐼, was also used for validation.  

 

𝐷𝑆𝐶 =  
2(𝑉𝑡𝑀𝑅𝐼

∩ 𝑉𝑀𝑅𝐼 )

𝑉𝑡𝑀𝑅𝐼
 +  𝑉𝑀𝑅𝐼

 (6)  

 

For the voxel-based population analysis to be meaningful, only accurately registered data 

were included (DSC > 0.85 for all the segmented organs). The 26 cases passed this criterion. 

 

 

   

Figure 3.2: Pre-processing step for the non-rigid registration process. 

After organ delineation, a structural description was performed by computing the Euclidean distances to the 

surface and the Laplacian equation. This was finally combined to MR images to obtain the deformation fields 

used to bring all the data from their native space to the common coordinate system (CCS). 
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Voxel-wise analysis in CCS 

Image and dose mean error maps computation 

Once all data were in the CCS, voxel-wise MAE (vMAE), ME (vME) and MAPE (vMAPE) maps 

for images and dose distributions were obtained by averaging the voxel errors data across the 

cohort. The 𝑣 represents that these data are now voxel specific and hence spatial, i.e they are 

not averaged across a particular patient’s voxels, they are found by considering all the patient 

cohort values for a particular voxel 𝑖. 

So, in the CCS errors are defined as follow:  

 

𝑣𝑀𝐴𝐸(𝑖) =  
1

𝑝
∑|𝑋𝐶𝑇(𝑖, 𝑗) − 𝑋𝑠𝐶𝑇(𝑖, 𝑗)|

𝑝

𝑗=1

 (7) 

Figure 3.3: Visual quality control of the interpatient registration. 

Checkerboard comparison of (a) the template MRI with the mean of all the population MRIs registered in 

the common coordinate system (CCS) and (b) the template CT with the mean population CTs in the CCS. 

Probability maps are presented in (c). It is the result of the overlapping of all the delineated structures in 

the same space to estimate the precision of the registration. In blue, few structures are overlaid (poor 

quality of registration). In red, all the patient structures correspond to the same anatomical location (100%, 

perfect registration). 
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𝑣𝑀𝐸(𝑖) =  
1

𝑝
∑ 𝑋𝐶𝑇(𝑖, 𝑗) − 𝑋𝑠𝐶𝑇(𝑖, 𝑗)

𝑝

𝑗=1

(8)  

𝑣𝑀𝐴𝑃𝐸(𝑖) =  
1

𝑝
∑ |

𝑋𝐶𝑇(𝑖, 𝑗) − 𝑋𝑠𝐶𝑇(𝑖, 𝑗)

𝑋𝐶𝑇(𝑖, 𝑗)
|

𝑝

𝑗=1

(9) 

 

𝑣𝑀𝐴𝐸(𝑖) is the mean absolute error, 𝑣𝑀𝐸(𝑖) the mean error and 𝑣𝑀𝐴𝑃𝐸(𝑖) the mean 

absolute percent error for a voxel 𝑖. 𝑋𝐶𝑇(𝑖, 𝑗)  and 𝑋𝑠𝐶𝑇(𝑖, 𝑗) represent the values, in HU for 

the image assessment or in Gy for the dose assessment, of the reference CT and the sCT, for 

the 𝑖𝑡ℎvoxel of the 𝑗𝑡ℎ image of the population, and 𝑝 the total number of patients in the 

population.  

The template scan body contour was applied to these images to focus on the region of interest 

and discard slight body contour variation due to registration. Then, the relative standard 

deviation of the absolute error (RSDAE), also known as coefficient of variation, was used for 

the evaluation of the dispersion of the prediction error at a voxel-wise scale.  

 

𝑅𝑆𝐷𝐴𝐸(𝑖) =
√∑ (𝐴𝐸(𝑖, 𝑗) − 𝑣𝑀𝐴𝐸(𝑖))

2𝑝
𝑗=0

𝑣𝑀𝐴𝐸(𝑖)
  (10)

  

with  𝐴𝐸(𝑖, 𝑗) =  |𝑋𝐶𝑇(𝑖, 𝑗) − 𝑋𝑠𝐶𝑇(𝑖, 𝑗)| 

 

So, for each voxel 𝑖 , the lower is the RSDAE, the higher is the probability to have an absolute 

error close to the 𝑣𝑀𝐴𝐸(𝑖) value. Figure 3.4 and Figure 3.5 illustrate the results, respectively 

for image and dose assessment. 
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Figure 3.4: HU error maps in the common coordinate system. 

Axial and sagittal views of voxel-wise mean absolute error (vMAE), mean error (vME) and mean absolute 

percent error (vMAPE) maps in the same anatomical space and the corresponding histograms (3) for sCT 

generated with (1) bulk-density and (2) GAN method. The relative standard deviation of the absolute error 

(RSD(AE)) is also illustrated. Colours scales of error maps were associated to histograms. 
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Figure 3.5: Mean dose error maps in the common coordinate system. 

Axial and sagittal views of voxel-wise mean absolute error (vMAE), mean error (vME) and mean absolute 

percent error (vMAPE) maps in the same anatomical space and the corresponding histograms (3) for dose 

computed from sCT generated with (1) bulk-density and (2) GAN method. The relative standard deviation of 

absolute error (RSD(AE)) is also illustrated. Contours of delineated organs of the template were overlaid on 

each image, and colour scales of error maps were associated to histograms. 
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Permutation test 

To complete this study, voxel-wise paired permutation tests proposed by Konietschke et 

al.[38] were performed for each method with the R software package for nonparametric 

multiple comparisons[39]. This statistical approach is an adaptation of the Student’s test for 

non-parametric paired data and includes permutation tests. The hypothesis in this study was 

that the intensity in Hounsfield units, or the dose in Gy, of the generated sCT scans were 

identical to the value of the reference scans (Figure 3.6). 

 

Figure 3.6: Paired permutation test general workflow: example for the image evaluation using Hounsfield 

Units. 

To each voxel coordinate (x,y) correspond paired data (A1, B1), …, (Ap, Bp). These pairs were used to 

determine if the generated (B) and the reference (A) samples were identical or not following the procedure 

proposed by Konietschke et al[38]. A p-value(x,y) is obtained for each voxel, highlighting the regions where 

the differences are significant. The same process was applied on dose distributions. 

 

Two paired lists of values were determined for each voxel and compared. 
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Multiple comparisons may lead to type I errors, namely the false positive rate. So, to limit 

these errors, 10000 random permutations were utilized to estimate the p-value.  

The procedure to estimate the p-value followed these steps:  

● Computation of the statistics[38] on the initial data: 𝑈 = ( 𝑈1, … , 𝑈𝑝 ), with 𝑈1 =

 (𝑋𝐶𝑇(1), 𝑋𝑠𝐶𝑇(1) ) the paired values for patient 1, and p the total number of patients 

in the population 

● Computation of the statistics on randomly permuted data defined as 𝑈𝑝𝑒𝑟𝑚 =

( 𝑈𝑝𝑒𝑟𝑚1, … , 𝑈𝑝𝑒𝑟𝑚𝑝 ), with 𝑈𝑝𝑒𝑟𝑚1 =  {((𝑋𝐶𝑇(1), 𝑋𝑠𝐶𝑇(1)), ((𝑋𝑠𝐶𝑇(1), 𝑋𝐶𝑇(1))} 

the two possible paired values for patient 1. This step was repeated 10 000 times 

● Comparison of the results obtained with the swapped data 𝑈𝑝𝑒𝑟𝑚 and the one 

obtained in the first step to estimate the p-value [38].  

This test resulted in 3D maps, where a voxel i corresponds to the probability that the initial 

hypothesis was true for the ith voxel of the generated sCTs. Regions of significant differences 

(p-value < 0.05) between CTs and sCTs on the one hand, and between dose plans calculated 

on CTs and sCTs on the other, were generated. These volumes, referred to as Error Sub-

Regions (ESR), are illustrated in Figure 3.7. 

Mean absolute dose error – volume histogram 

This cumulative histogram is a quantitative tool, allowing for assessment of absolute error in 

the dose calculations on the sCT and CT scans with respect to the volumes of tissue. It was 

built in the same way as dose volume histograms (DVH) and computed from the vMAE map 

in the CCS. The regions of interest for this evaluation were bladder, rectum, prostate and 

pelvis. To focus on the region of the dose distribution, the pelvic region was cropped to within 

2 cm above and 2 cm below the rectum, according to the superior to inferior axis.  

Two criteria for evaluation were selected: V0.5Gy and V1Gy, which correspond respectively 

to the total volume with an absolute error greater than or equal to 0.5 Gy and 1 Gy. 

Dosimetric endpoints 

● Gamma analysis 

Dose plans were propagated to the CCS and combined, resulting in mean reference CT dose 

and mean dose for each sCT generation method. Thus, a spatial dose evaluation was 

conducted comparing mean dose distributions with a 3D gamma analysis (local, 1%/1mm, 

dose threshold 10%) using VeriSoft software. The gamma pass-rate, corresponding to the 

percentage of voxels with gamma inferior to 1, and mean gamma were reported, additionally 

to gamma maps in the axial plan.  

● DVH criteria 

Absolute differences between dosimetric values calculated on the reference CT propagated 

in the CCS and those calculated using sCT generated from BDM and GAN were determined. 

The contours used were the bladder, rectum and prostate of the template in the CCS. Table 

3.4 presents the average differences of mean dose, D2%, D50% and D95% for each method, 

with Dx % representing the dose in x% of the volume of interest. 
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Results   

Image and dose error evaluation in native space 

Table 3.1 depicts the results of the evaluation in the native space for both bulk-density and 

GAN methods. The BDM presented higher MAE, MAPE, and ME than the deep-learning based 

approach. The worst MAE scores for both methods were in the bone regions (244.4 HU for 

BDM, 124.3 HU for the GAN). This structure also had higher mean CT number and standard 

deviation (342 HU ± 317 HU).  

Table 3.1: Error evaluation performed in the native space for sCT generation methods. 

Global scores for the whole pelvis and per organ are presented. Mean absolute error (MAE), mean absolute 

percentage error (MAPE) and mean error (ME) were computed between reference CT and sCT (image results 

in HU) and between dose distribution calculated from these images (dose results in Gy). Reference CT 

number and mean dose in each anatomical region are also indicated.  

Table 3.3: Error evaluation performed in the native space for sCT generation methods. 

    IMAGE (HU)   DOSE (Gy)  

   GAN 
BULK- 

DENSITY 

Mean CT 

number 
GAN 

BULK-

DENSITY 
Mean dose 

  MAE 33.9 ± 7.6 96.4 ± 16.5  0.06 ± 0.02 0.2 ± 0.36  

Global PELVIS MAPE 1.3 ± 0.6 2.3 ± 0.8 18 ± 184 0.1 ± 0.03 0.12 ± 0.04 8.9 ± 13.4 

  ME 3.4 ± 15.6 -10.4 ± 24.3  0.11 ± 0.05 0.19 ± 0.27  

  MAE 124.3 ± 22.4 244.4 ± 29.8  0.06 ± 0.03 0.24 ±0.46  

 BONES MAPE 1.3 ± 0.8 3.9 ± 1.8 342 ± 317 0.04 ± 0.02 0.06 ± 0.03 14.6 ± 15.1 

  ME 23.9 ± 45.7 20.4 ± 62.3  0.03 ± 0.08 0.24 ± 0.47  

  MAE 18.2 ± 4.9 17.1 ± 5.8  0.11 ± 0.1 0.72 ± 1.88  

 BLADDER MAPE 2.2 ± 1.2 1.1 ± 0.1 4 ± 19 0.01 ±0.01 0.02 ± 0.05 25.8 ± 22.7 

Organ-  ME 4.9 ± 12.0 4.9 ± 12.9  -0.02 ± 0.15 0.69 ± 1.89  

wise  MAE 67.1 ± 66.6 140.9 ± 71.8  0.23 ± 0.23 0.79 ±1.62  

 RECTUM MAPE 2.1 ± 1.2 6.8 ± 6.2 -13 ± 135 0.01 ± 0.0 0.02 ±0.05 36.7 ± 19.2 

  ME -16.3 ± 77.6 98.2 ± 82.9  -0.04 ± 0.18 0.58 ± 1.68  

  MAE 17.6 ± 3.8 34.2 ± 8.5  0.34 ± 0.2 1.46 ±3.54  

 PROSTATE MAPE 1.2 ± 1.0 1.0 ± 0.0 29 ± 24 0.0 ±0.0 0.02 ± 0.05 78.7 ± 0.8 

  ME 3.7 ± 11.3 30.7 ± 11.6  -0.04 ± 0.38 1.3 ± 3.61  
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Regarding dose calculation, MAE reached 1.46 Gy, equivalent to 1.85% of the expected dose, 

in the prostate for the BDM and 0.34 Gy for the GAN. For each method, MAPE was similar for 

the prostate, rectum and bladder (around 0.02 for BDM and 0.01 for GAN), and superior in 

bones (0.06 and 0.04). Standard deviation for all error types and all delineated organs were 

larger for BDM compared to GAN. 

Registration 

The customized non-rigid registration process accurately brought the 26 patients of the 

cohort in the same anatomical space, as shown by the average dice score of 0.98 ± 0.01 for 

the body contour, 0.93 ± 0.01 for the bones, 0.96 ± 0.01 for the bladder, 0.91 ± 0.02 for the 

rectum and 0.91 ± 0.02 for the prostate. The mean volume, in cubic centimeters, of each 

delineated structure ended close to the volume of the template’s organs in the CCS (Table 

3.2) confirming the efficiency of the method. 

The accuracy of the registration inside the body is also illustrated visually in Figure 3.3. 

Voxel-based error maps 

Image assessment 

Figure 3.4 depicts the vMAE, vME and vMAPE error maps computed in the CCS for both BDM 

and GAN methods. RSDAE map, representing the dispersion of the absolute error distribution 

at each voxel considering the overall cohort, are also included. It illustrates the voxel-wise 

quality assessment of sCT generated for each method. Histograms of these 3D error maps are 

presented in this figure, which allows comparison of the accuracy of both methods. Difference 

in intensity up to 250 HU in the rectum and more than 500 HU in cortical bones were found 

for the BDM. An underestimation (in red, Figure 3.4) of more than 200 HU in the cortical 

bones, and around 140 HU in the rectum were observed in sCT generated from BDM, as well 

as an overestimation (in blue, negative values) of 200 HU in spongy bones. For the GAN, the 

highest vMAE was found in bones (around 100 HU, and up to 220 HU in denser regions). The 

vMAE reached 200 HU in a small specific region within the rectum, close to the prostate and 

seminal vesicles. According to the vME map, the GAN approach led to an overestimation (in 

blue, Figure 3.4) in the previously described location in the rectum, with a score equal to -85 

HU, and in spongy bones (-40 HU). An underestimation of 110 HU in cortical bones (in red, 

Figure 3.4). Errors highlighted with the vMAPE were in spongy bones and in the rectum for 

both methods, also in the contour of the bladder for the GAN. The vMAPE histogram for the 

BDM has a narrow distribution around 1in soft tissue, as computing the MAPE in this area, 

where sCT value is equal to 0 HU, results in dividing the reference CT value by itself. Though 

the RSDAE were more than to 1.5 and to 2 respectively for the BDM and the GAN in the 

rectum, the highest values were not at same location.  
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Figure 3.7 presents significant ESRs, in red, overlaid on the mean MR images in the CCS and 

on the mean dose distribution. Most of the HU values predicted with the BDM were 

significantly different from the reference CT HU values, except in an important part of the 

bladder and in tissue interfaces. According to the studentized permutation test result, ESRs 

were preferentially located in cortical bones, skin, a part of the prostate, and regions 

scattered around the bladder and the rectum for the sCT obtained with the DLM.  

 

Table 3.2: Volume of delineated structure in cm3 prior and after the non-rigid registration.  

These data are presented regarding the volume of the template in the common coordinate system (CCS). 

 VOLUME IN NATIVE SPACE (cm3) REGISTERED VOLUME (cm3) 
TEMPLATE IN 

CCS (cm3) 
  mean std min max mean std min max 

BODY 14362 2092 10608 18300 15392 261 14363 15812 15374 

BLADDER 274 142 113 633 243 3 237 251 246 

BONES 1259 205 908 1817 1082 36 1031 1183 1076 

PROSTATE 40 19 16 82 33 1 31 37 34 

RECTUM 66 29 25 133 36 1 34 37 36 

 

Dose assessment 

Figure 3.5 illustrates the dose differences for the whole population data. As for the image 

assessment, the resulting maps allowed to evaluate and compare locally resulting the dose 

Figure 3.7: Studentized paired permutation test results 

Significant error subregions brought out by the Konietschke’s paired permutation test, in red, overlaid on 

mean MR images in the common coordinate system (CCS) for HU values (left) and overlaid on the mean dose 

plans in the CCS for Gy values (right). This statistical test produced p-value maps. Differences of intensities 

(HU) in one hand, and dose (Gy) in the other hand, were considered as significant for p-value < 0.05. 
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calculation of both sCT generation methods. For the BDM, vMAE in the organs at risk 

increased up to 1.7 Gy, just near the prostate. The most predominant absolute errors for the 

GAN appeared in the rectum with differences up to 0.75 Gy, and the first centimetre of the 

body contour. In the prostate the vMAE was around 0.3 Gy. The vME reached 0.4 Gy on the 

body contour for the DLM. The vMAPE confirmed the error on the body contour but not in 

the rectum for both approaches. RSDAE highlighted the same area in the rectum than vMAE 

and vME maps (RSDAE > 1.5). The higher the delivered dose, the higher was the error 

observed, with an underestimation of the dose distribution of 1.3 Gy in the prostate for the 

BDM. As for image analysis, dose error maps histograms appeared wider than for GAN (Figure 

3.5). 

According to Figure 3.7, a major part of the dose plans computed from the BDM were 

considered as significantly different from the ground truth. For those calculated from sCT 

generated with GAN, ESR were localized surrounding the body, mainly on the skin and until 3 

cm inside the body.  

Mean absolute dose error per volume  

Figure 3.8 presents the comparison of the two sCT methods by showing the absolute dose 

difference (Gy) per percentage of tissue volume. This metric reveals a larger error for BDM 

than GAN, regardless of the organ considered. No volume reached 1Gy of dose difference for 

the GAN sCT (Table 3.3). 

Table 3.3: Percent of tissue volume with a mean absolute error (MAE) reaching 0.5 Gy (V0.5 Gy) and 1 Gy (V1 

Gy) for both sCT generation methods. The mean of voxel values of the vMAE map in the common coordinate 

system was computed in the whole pelvis and in the template’s structures (bladder, rectum, and prostate). 

 BULK-DENSITY GAN 

 PELVIS BLADDER RECTUM PROSTATE PELVIS BLADDER RECTUM PROSTATE 

V0.5 Gy 16.58% 77.03% 80.93% 100% 1.10% 0% 10.03% 0% 

V1 Gy 3.63% 16.48% 31.85% 100% 0.08% 0% 0% 0% 

Dosimetric endpoints 

Results of 3D gamma analysis (criteria: local, 1%/ 1mm, low dose threshold = 10%) performed 

on mean dose volume in the CCS are presented Figure 3.. This allows for local comparison of 

gamma maps of each sCT generation methods.  
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In Table 3.4, dosimetric criteria assessment shows an absolute difference superior to 1 Gy in 

the prostate for the BDM, while the GAN results are around 0.33 Gy in this location.   

Figure 3.8: Mean absoulte dose error - volume histogram 

Mean absolute difference between dose computed from the reference CT and dose computed from the synthetic 

CT generated with bulk-density method (BDM, continuous line) and GAN (dotted line) for a specific volume of 

delineated structures. Each colour represents a tissue volume. 

Figure 3.9: Dose distributions and gamma maps 

Dose distributions were propagated to the common coordinate system (CCS) and combined, resulting in 

mean reference CT dose, mean dose for sCT generated from bulk-density and mean dose for sCT generated 

from GAN method. These dose distributions were used to calculate the gamma pass rate (criteria: 3D, local, 

1%/ 1mm, low dose threshold = 10%). 
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Table 3.4: Absolute difference of dosimetric criteria computed for both bulk-density and GAN methods using 

the template contours in the common coordinate system (CCS).  

Absolute difference of the dose means, D2%, D50%, and D95% computed between the reference CT and the 

synthetic CTs in the rectum, bladder and prostate. Dx% represents the dose in x% of the volume of interest. 

 BULK-DENSITY GAN 

  BLADDER RECTUM PROSTATE BLADDER RECTUM PROSTATE 

mean dose 

absolute 

difference (Gy) ± 

std 

0.71 ±1.90 0.69 ± 1.85 1.45 ± 3.62 0.10 ± 0.10 0.16 ± 0.12 0.33 ± 0.21 

D2% absolute 

difference (Gy) ± 

std 
1.59 ± 3.66 1.44 ± 3.28 1.41 ± 3.58 0.27 ± 0.19 0.50 ± 0.62 0.33 ± 0.22 

D50% absolute 

difference (Gy) ± 

std 
0.67 ± 1.88 0.66 ± 1.68 1.43 ± 3.63 0.09 ± 0.09 0.18 ± 0.20 0.33 ± 0.21 

D95% absolute 

difference (Gy) ± 

std 
0.24 ± 0.83 0.22 ± 0.56 1.49 ± 3.63 0.03 ± 0.05 0.04 ± 0.04 0.32 ± 0.22 

 

Discussion   

This study proposed a methodology based on voxel-wise population analysis to assess the 

local errors in sCT generation approaches and their impact on the dose distribution. It also 

allows comparison of performance of several sCT generation methods. The full evaluation 

process was applied on two sCT generation methods, allowing for the examination of 

heterogeneity of errors in HU but also in 3D dose distributions across the pelvis. 

The presented methodology relies on the accuracy of the interindividual non-rigid registration 

step, as for all voxel-based approaches[40]. Registration methods have been developed in 

morphometry studies [41]–[43] Previous studies in the pelvic area included structural 

descriptions of the bladder and prostate only[25], rectum only[34], or were combined to 

CT[44].  The voxel-wise statistical analysis performed here includes a novel integration of 

bones, with a step dedicated to the preservation of their inner structure. The combination of 

these structural descriptions with MR images is also original in this context and achieved a 

precise registration of the whole pelvis as it offers superior contrast in soft tissue. With the 

Demons algorithm for deformable registration, the amount of deformation is limited by the 

deformation field smoothing at each iteration, which heaps avoid large and unnatural 

displacement. The algorithm is quite robust to breaking down, however this is possible if the 

anatomy or modality is very different, particularly if the rigid registration step has failed prior 

to the Demons algorithm. 
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The same pelvic MRI data used in this study had been successfully evaluated in previous work 

which has relied on the same registration method (for example, “Automatic Substitute 

Computed Tomography Generation and Contouring for Magnetic Resonance Imaging (MRI)-

Alone External Beam Radiation Therapy From Standard MRI Sequences” Dowling et al. 2015, 

and “A Multi-center Prospective Study for Implementation of an MRI-Only Prostate 

Treatment Planning Workflow” Greer et al. 2019 ). 

While the reported DSC highlight the structural similarities, these are also robust indicators 

for when the analysis would break down. Major displacement of the organs leading to non-

realistic deformation within the body during the registration will impact the DSC of the 

contours and can provide a good quality assurance step to ensure the registration has not 

failed.  The mean DSC of 0.98 for the body contours indicates that the registration on this 

dataset appears to be accurate. 

This method permits to map organs, images, and doses in a single coordinate system. 

Comparison by voxel is thus anatomically meaningful for both images and doses. 

vMAE, vME, vMAPE and RSDAE 3D maps were produced, showing the distribution of mean 

error across the pelvis for a whole population. The error maps histograms are a quantitative 

tool to compare the chosen methods. As vMAE map values appear to be correlated to the 

reference intensity (the most important errors are in cortical bones, where the mean HU value 

is the highest), the relative difference, vMAPE, was also computed as a measure of prediction 

accuracy. The purpose of vME maps is to determine if the prediction tends to be 

systematically superior or inferior to the reference, and the RSDAE, also known as coefficient 

of variation, can be interpreted as uncertainties maps of each method [45]. RSDAE gives an 

insight into regions where HU prediction is trustworthy or not. Therefore, each 3D map 

computed in this study illustrated complementary information on errors produced in both 

sCT and dose distributions. 

To define if the errors were significant across the anatomy in the CCS, a voxel-wise statistical 

test was applied on images and on dose distributions. The permutation test proposed by 

Konietschke et al.[38] was used to cope with the multiple comparison problem and is 

appropriate for paired and non-parametric data. Other permutation tests, such as Chen’s[46] 

used in Chourak et al.[27], does not appear suitable in our approach as it does not compare 

each CT to its corresponding sCT. 

The two evaluated methods were BDM and DLM using GAN. BDM is an historical approach 

for MRI-only radiation planning and was the first integrated in a commercialized device 

(MRCAT, Philips[47]). The BDM also have application to quality assurance of sCT scans[4]. This 

approach is simple and does not involve registration, but it lacks accuracy as it does not take 

tissue heterogeneity into account. The BDM presented in this paper was chosen as an 

illustration of the proposed methodology, but it has been shown that more accurate methods 

exist[3], [47]–[49]. 

Although several sCT generation methods have been proposed in the literature, recent 

studies head towards deep-learning strategies[12], [50] DLMs such as GAN trained with 
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paired-data rely on intra-patient registration precision[51]. Multimodal registration of the 

input data and training is time-consuming, but generated sCT are in general more accurate[6], 

[20]. 

According to the RSDAE map, the GAN was more consistent in HU prediction and resulted in 

more reliable dose planning. For both methods, important MAEs and MEs arose in the rectum, 

near the prostate. This area corresponded to a high RSDAE regarding other structures and a 

high MAPE, expressing the lack of accuracy of both methods in this location. Besides, the error 

did not stand out as significant with the studentized permutation test for GAN. This wide error 

might be due to the change in patients’ anatomy between CT and MRI acquisition, but is not 

necessarily related to an incorrect prediction of the HU. Another possibility is that the change 

in patients’ anatomy disrupted the training phase for the GAN. 

BDM statistically lacked accuracy for HU prediction and dose calculation. For the GAN HU 

values, significant differences were observed in cortical bones, especially in the femoral 

heads, but no significant consequence appeared in the dose distribution. 

Although HU prediction accuracy is important,  sCT generation needs to be reliable for dose 

planning. Dosimetric assessment is thus crucial, and is usually based on DVH, which is an 

organ-based metric, and gamma analysis. The gamma was computed in the CCS, allowing for 

the extraction of local values across the population. The location of dose discrepancies is 

clearly visible, with gamma superior to 1 in the prostate for the BDM (Figure 3.). Gamma 

results allow a spatial dose analysis of the sCT generation method for chosen criteria 

(1%/1mm in this study). 

Recent studies in sCT generation involve deep-learning for different anatomical locations. 

Nevertheless, artificial intelligence (AI) is not yet fully trusted for clinical use and key points 

to assess AI solutions in radiology are raised[52]. Critical questions for performance and 

validation are related to robustness to input variability, training data and potential sources of 

bias identified by developers. As the GAN was trained with paired CT and MRI, the multi-

modal registration accuracy directly impacts the quality of sCT[51]. In addition, uncertainties 

inherent to deep learning models[53] also generate misprediction. 

These uncertainties may produce errors in sCT HU values, and so may impact dose 

computation. 

The population-based strategy presented in this paper offers the possibility to define at a 

voxel level the capability of a method to be accurate across a cohort of patients, having 

variable tissue density and anatomy, in HU and on the resulting dose distribution. It gives an 

insight on the reliability of sCT generation, where usually the assessment is limited to global 

or organ-wise assessment [1], [54], [55]. 

A limitation of the registration process might be the accuracy of the contours. Inter-observer 

delineation for bladder, prostate and rectum on a similar dataset appeared to be close in a 

previous study[31]. However, the experts may have been more experienced than the 

physicians who segmented the data for this project. Nevertheless, relations between HU 

errors and their impact on dose computations are yet to be investigated. In silico models with 
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simulated HU errors in specific tissue followed by dose computation could help to determine 

the acceptable level of error in sCT that will not affect the dose. 

Overall, voxel-wise analysis brought out significant differences which did not show up with 

the global scores and allowed the assessment of both HU prediction and dose distribution. 

This process identified locations where the sCT were more prone to errors. This will provide 

a way forward for translation to a clinical radiotherapy practice. However, the analysis 

accuracy highly depends on the quality of the interpatient registration. As misregistration can 

remain, dissociating registration error to those inherent to the generation methods is an issue 

of interest and this is yet to be fully explored. 

Even if the sCT generation method appeared to be accurate, there is no guarantee that each 

new sCT will be reliable for dose calculation, especially for a patient anatomically different 

from the training cohort or if the MR image presents artefacts, is acquired with a different 

sequence or device. 

The implemented voxel-based analysis workflow depends on interpatient registration 

accuracy: mismatch between structures will lead to biased results. Moreover, the statistical 

test presented in this paper is time-consuming, as simulation studies show that at least 10 

000 random permutation are needed for each voxel for an adequate p-value estimation[38]. 

Furthermore, type I error may remain in the ESR. 

This methodology is a tool for assessing and comparing sCT generation methods and illustrate 

inhomogeneities. But more research is required to go further in quality assurance process. 

Part of our future work is to investigate the ability to assess a single sCT, without reference, 

before its use for dose calculation. 

This study focused on the male pelvic area considering prostate cancer irradiation, however 

the methodology can be applied to any other anatomical location provided accurate 

registration is achieved. 

Conclusion   

The proposed voxel-wise population-based workflow resulted in 3D error maps for sCT 

generation from MRI. This methodology relies on a robust organ-driven non-rigid registration 

which brings all the patients to the same anatomical space. The assessment of HU and dose 

distributions calculated from sCT accuracy followed a multi-scale strategy, whereby errors 

were computed for the whole pelvis, followed by the organs and finally at a voxel level, 

allowing for spatial characterization of the differences across the methods. This analysis was 

completed with a quantitative assessment via error map histograms comparison and the 

mean absolute dose error per volume histogram to compare different sCT generation 

methods. Thus, this workflow will be useful in comparison and localization of errors in sCT 

generation method and provides a way forward to sCT quality control within the MRI-based 

planning RT. 
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Chapter 4: Determination of acceptable 
Hounsfield Units uncertainties via a sensitivity 
analysis for an accurate dose calculation in the 
context of prostate MRI‐only radiotherapy 

The previous chapter focused on detecting significant errors subregions of sCT generation 

methods, examining both image and dose aspects. However, these assessments were 

conducted independently, and their specific impact on the dose remains unclear. If a method 

tends to fail in a specific region, what would be the consequences for the treatment? 

This chapter presents a sensitivity analysis as a valuable tool to address this question. The 

analysis explores the correlation between intensity changes in different structures to identify 

regions where mispredictions will have the most substantial impact on the dose in the target 

volume. Furthermore, the study investigates the influence of error volume on the dose at the 

isocenter, considering three criteria: size, location relative to the target volume, and the 

intensity change within the error volume. 

The findings of this study have been accepted for publication, after minor revisions, in the 

Physical and Engineering Sciences in Medicine journal in August 2023. 

“Determination of acceptable Hounsfield Units uncertainties via a sensitivity analysis for an 

accurate dose calculation in the context of prostate MRI-only radiotherapy” 

H. Chourak, A. Barateau, P. Greer, C. Lafond, J-C Nunes, R. de Crevoisier, J. Dowling, O. Acosta 

(PESM, 2023) 

 

Preliminary work of this study has been presented at the AUS MRinRT conference in 2022. 

“MRI-only radiation therapy for prostate cancer: exploration of the impact of synthetic-CT 

uncertainties on dose calculation” 

Hilda Chourak, Dowling Jason, Peter Greer, Anais Barateau, Safaa Tahri, Renaud de Crevoisier, 

Jean-Claude Nunes, Oscar Acosta - AUS MrinRT 2022 (oral presentation) 
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Abstract 

Radiation therapy is moving from CT based to MRI guided planning, particularly for soft 

tissue anatomy. An important requirement of this new workflow is the generation of 

synthetic-CT (sCT) from MRI to enable treatment dose calculations. Automatic methods 

to determine the acceptable range of CT Hounsfield Unit (HU) uncertainties to avoid 

dose distribution errors is thus a key step toward safe MRI-only radiotherapy. This work 

has analysed the effects of controlled errors introduced in CT scans on the calculated 

radiation dose for prostate cancer patients. Spearman correlation coefficient has been 

computed, and a global sensitivity analysis performed following the Morris screening 

method. This allows the classification of different error factors according to their impact 

on the dose at the isocentre. sCT HU estimation errors in the bladder appeared to be 

the least influential factor, and sCT quality assessment should not only focus on organs 

surrounding the radiation target, as errors in other soft tissue may significantly impact 

the dose in the target volume. This methodology links dose and intensity-based metrics, 

and is the first step to define a threshold of acceptability of HU uncertainties for 

accurate dose planning.  

Keywords: Sensitivity analysis; quality assurance; synthetic-CT; MRI-only radiotherapy; 

prostate cancer. 

Introduction 

External beam radiation therapy (EBRT) involves the application of high-energy x-ray beams 

from multiple directions, depositing energy (dose) within a tumour to destroy cancer cells. 

EBRT is a well-established treatment modality for localised prostate cancer. Until recently, 

treatment has traditionally been planned based on Computed Tomography (CT), with 

Magnetic Resonance Imaging (MRI) also acquired for diagnostic information. For prostate 

cancer, MRI has added significant value to EBRT due to its superior soft tissue contrast which 

results in the improved accuracy of manual labelling of the target volume (the prostate gland) 

and nearby organs at risk (bladder, rectum, bones).  This improved accuracy may reduce the 

risk of toxicity in healthy tissue[1], [2].  

The deployment of MRI-only radiotherapy (RT) provides greater efficiency and accuracy in the 

clinical workflow by bypassing the MR to planning CT registration step and removes the need 

for an extra CT scan. This justifies the increasing worldwide deployment of dedicated MRI 

scanners and MRI-linear accelerator (MRI-linac) hybrid machines for treatment delivery, the 

latter also allows for better patient positioning and tumour targeting[3]. However, MRI does 

not provide information on the electron density of tissues, which is necessary for dose 

calculation. Synthetic-Computed Tomography (sCT) generation is thus a critical component of 

MRI-only RT workflows. 
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Currently, sCT images are assessed against a ground truth CT in two ways: image and dose[4]. 

The first method involves a comparison of Hounsfield Units (HU)[5], [6]. The most commonly 

used metrics are full reference intensity-based and include mean absolute error (MAE), mean 

error (ME) and peak signal-to-noise ratio (PSNR). Perception-based models like the structural 

similarity (SSIM) may also be assessed[7], [8], and more specifically the multiscale SSIM (MS-

SSIM)[9]. These metrics result in global or organ-wise values, but local errors such as air 

incorrectly included within an organ may have an impact on treatment delivery and may not 

be identified with a global metric. For sCT in the pelvic area, the HU uncertainties are typically 

observed in the cortical bone and rectum when air pockets are present[10], [11]. 

The quality of sCT images is also assessed by the dose accuracy. For the different EBRT 

treatment techniques such as intensity-modulated radiation therapy (IMRT) or volumetric 

modulated arc therapy (VMAT), the beams cross several healthy tissues before reaching the 

target. Errors in these beams' trajectories will have consequences on the dose distribution in 

the target. Most of the sCT generation literature describe dosimetric endpoints such as 

gamma analysis and dose-volume histograms (DVH) metrics[12]. These measures give an 

insight of the overall dose distribution accuracy on the sCT. A previous study proposed a voxel-

wise statistical analysis strategy to locally assess sCT generation approaches in image and 

dose domains[13], but no correlation was made between both. Choi et al.[14] investigated 

the correlation between image metrics as a global value (computed within the body contour) 

and dose accuracy in the target volume and proposed a water equivalent depth method as a 

metric. However, no information was given on the origin of dosimetric errors. Generated 

images must be sufficiently correct to ensure accurate dose planning in the tumour area. So, 

determining the origin of local erroneous dose will allow focusing on the most meaningful HU 

error and provide thresholds of HU uncertainties acceptability.  

The aim of this study is to investigate the correlation between localised HU errors and dose 

at the centre of the target volume, here the prostate. To do so, a sensitivity analysis (SA) was 

performed, by applying the Morris screening method[15]. An SA is designed to quantify the 

effect of parameters on the output[16]; in this study, the effect of HU error on the dose 

distribution at the isocentre (centre of the prostate). 

Several SA methods exist and can be classified in two types: local and global. Local methods 

allow for the examination of the model at a specific point in the input space. Most of these 

approaches induce a low computational cost. However, they do not give an indication of 

interactions between parameters or on the linearity of their effects. Global methods measure 

the sensitivity in several points in the input space and highlight the type of effect and the 

possibility of interactions[17]. SA has previously been applied to assess the ability of quality 

assurance protocols to detect events affecting MRI in RT[18], or to evaluate the sensitivity of 

electron dose calculation with respect to stopping power and transport coefficients[19]. 

In this study, a global one-at-a-time (OAT) approach, the Morris screening method, has been 

chosen to identify the impact of uncertainties in synthetic-CT on the isodose. The Morris 

method has previously demonstrated its ability to simplify models predicting biochemical 
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recurrence after radiotherapy[20] by discarding parameters with a low impact on the output. 

Applying this methodology to sCT for MRI-only RT is the first step in the definition of 

thresholds of acceptability of HU errors in sCT for safe MRI-only RT practice. 

Material and methods 

Two experiments have been conducted to determine the errors in sCT that are more likely to 

affect the dose at the isocentre. First, the errors have been assessed in terms of HU number, 

volume, and location by adding an artefact in the reference CTs. Spearman correlation 

coefficient (SCC) between error features (intensity, volume, location) and dose at the 

isocentre were computed. While the SCC indicates if the different features have a monotonic 

impact on the dose, the SA will help to classify the features according to their influence on 

the output and give information on the linearity and or interaction between factors. 

In a second phase, we focused on the impact of errors in specific anatomical location by 

changing the mean intensity in the bladder, rectum, bones, prostate and in the remaining soft 

tissues. 

Dataset 

Data of 39 patients with localised prostate cancer aged 58 to 78 years were used in this study. 

Ethics approval for the study protocol was obtained from the local area health ethics 

committee, and informed consent was obtained from all patients. For each patient, a CT scan 

was acquired on a GE LightSpeed RT or a Toshiba Aquilion, (256 x 256 x 128 matrix with a 

voxel size of 1.17 mm x 1.17 mm x 2.5 mm or 2.0 mm). Bones, bladder, rectum, and prostate 

were manually delineated by experts. 

Sensitivity analysis: Morris screening method 

The Morris screening method is a randomised OAT global SA. The parameters are modified 

individually, and cover a K-dimensional cube, with K representing the number of factors 

(Figure 4.1). 

Feature values were generated using the Sensitivity R package[21] and were randomly 

assigned to efficiently cover the K-dimensional space. Elementary effects (EE) given by (1) are 

calculated to assess the effect of the 𝑋𝑖 factor variation on the output. The model is evaluated 

𝑁 = 𝑅 × (𝐾 + 1) times for each 𝑗 patient, with 𝑅 the number of repetitions, i.e the number 

of EE computed per factor. It offers an insight of the influence of parameters 𝑋 =

[𝑋1, … , 𝑋𝑖, … , 𝑋𝐾] on the model 𝑌 = 𝑓𝑗(𝑋) with a moderate computational cost. This 

approach also provides information on the type of impact (linear / non-linear, monotonic or 

not) and on the interaction between the factors assessed[17]. 
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𝐸𝐸𝑖,𝑗 =    
𝑓𝑗(𝑋1, … , 𝑋𝑖 + ∆𝑖, … , 𝑋𝐾) − 𝑓𝑗(𝑋1, … , 𝑋𝑖, … , 𝑋𝐾)

∆𝑖

 (1) 

 

∆𝑖 is the discrete variation of the parameter. 

For each factor and each patient, the mean 𝜇𝑖,𝑗 (2) of EE, the standard deviation 𝜎𝑖,𝑗  (3), and 

the mean of the absolute values of the EE 𝜇 ∗𝑖,𝑗 (4) are computed to summarise the EE and 

thus estimate the global sensitivity in the output space[22]. 𝜇 ∗𝑖,𝑗 is used to solve the effect 

of opposite signs for non-monotonic functions. 

 

𝜇𝑖,𝑗 =
∑ 𝐸𝐸𝑖,𝑗

𝑟𝑅
𝑟=1

𝑅
  (2) 

 

𝜎𝑖,𝑗 =
∑ (𝐸𝐸𝑖,𝑗

𝑟 − 𝜇𝑖,𝑗)𝑅
𝑟=1

𝑅
  (3) 

 

𝜇 ∗𝑖,𝑗=
∑ |𝐸𝐸𝑖,𝑗

𝑟 |𝑅
𝑟=1

𝑅
  (4) 

 

To illustrate the impact of the parameters on the output, the Euclidean distance of each point 

to the origin (𝜇 ∗ 0, 𝜎 = 0)  𝐷𝑖 = √𝜇 ∗𝑖,𝑗
2+ 𝜎𝑖,𝑗

2 has been calculated[23]. 

Low 𝜇 ∗ and 𝜎 indicate an insignificant impact for a chosen factor, and high 𝜇 ∗ and/or 𝜎 stand 

for significant impact. High value of  𝜎  compare to 𝜇 ∗indicates a factor involved in interaction 

with others factors or whose effect is non-linear (Figure 4.2). 

In this study, the Morris screening approach aimed to emphasise the impact of localised HU 

errors on dose calculation, according to:  

- descriptive characteristics of the error (intensity, size and location), 

- mean intensity within the organs. 

These two approaches are described in the experiment’s sections below. 

Figure 4.1: Example of a trajectory for the evaluation of the influence of K = 3 factors. First, one point 

is randomly selected in the 3-dimensional space (a). Then, three other points are created by changing 

one parameter value at a time (b, c and d). 
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Experiment 1  

The first experiment aimed to assess the impact of error according to 3 factors: intensity, size 

and location. To achieve this, an artefact with various combinations of these three parameters 

has been added to the 39 planning CTs. The artefact was built as follows: 

– HU variation, from -250 HU to + 250 HU. 

– Distance to the isocentre, from 0 to 100 mm. The artefact displacement followed one 

of the beams’ axis. 

– Diameter of the artefact, from 2 mm to 50 mm. 

The model has been evaluated 200 times for each patient: 𝑁 = 𝑅 × (𝐾 + 1),with 𝑅 = 50 

repetitions, and 𝐾 = 3 factors (intensity, distance, size), resulting in 7800 simulations. 

 

The Spearman correlation coefficient (SCC) has also been computed in this experiment. This 

is a nonparametric measure of statistical dependence of ranking between two variables.  

An SCC close to -1 or 1 denotes a strong correlation, while an SCC close to 0 illustrates a weak 

relationship. 

To compute the SCC for each error features, the following parameters have been defined: 

– For the effect of changes in HU, the step was set to 25 HU. The diameter of the artefact 

was fixed to 50 mm and its centre aligned to the isocentre, allowing for complete 

coverage of the target and ensuring a homogeneous distribution of the dose within 

the error volume. 

– For the effect of distance, the step was set to 10 mm, with an error fixed at +200 HU 

and a size of 50 mm. The displacement followed a beam axis, minimizing the impact of 

the dose on the result. (For the error to have consequences on the dose at the 

isocentre, it must be encountered by one of the beams delivering the treatment). 

Figure 4.2: Classification of parameters according to the mean of the absolute elementary 

effects (µ*) and their dispersion (σ). 
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- For the effect of size, the error was fixed at +200 HU and located at 30 mm from the 

isocentre. This location corresponds approximately to the rectum, where high HU 

variation can be observed due to the difficulty of predicting air pockets.  

2145 images were generated to compute the SCC. 

Experiment 2  

Errors in sCT are more likely to be evaluated in terms of mean HU error within the body or 

per organs[24]–[27]. So, in this experiment, mean intensity changes in the following locations 

have been applied in order to assess their potential impact on the dose: 

– Bladder (from -100 HU to +100 HU), 

– Rectum (from -1000 HU to +200 HU), 

– Bones (from -500 HU to +500 HU), 

– Prostate (from -100 HU to +100 HU), 

– Remaining soft tissue (from -100 HU to +100 HU). 

Remaining soft tissue volumes are generated by subtraction of bone, bladder, prostate and 

rectum volumes from the body contour. The model was evaluated 240 times for each patient 

𝑅 = 40 repetitions, and 𝐾 = 5factors), resulting in 9360 simulations. Higher threshold has 

been defined for bone and rectum, according to the difficulty for a sCT generation method to 

predict HU in these locations. Especially for the rectum, where the presence of gas (-1000 HU) 

is uncertain. 

Dose planning 

IMRT with 7 beams (photons of 6 MV) was planned for 39 fractions (2 Gy per fraction) on 

reference CT images using a dose grid resolution of 3x3x3 mm with MatRad[28], an open-

source software for radiation treatment planning developed for research purposes[29]–[31]. 

The beam parameters used to compute the dose on the CT were then copied to calculate the 

dose on each modified CTs. Figure 4.3 presents examples of modified CT and their 

corresponding dose used in this study.   

Results 

Experiment 1  

The relationship between the 3 error features and the isodose appear to be monotonic, with 

an SCC of -0.99 for the intensity variation, -0.95 for the size and 0.73 for the distance. As 

shown in  Figure 4.4 , an overestimation of HU will reduce the dose distributed in the target, 

while an under estimation will result in a higher dose at the isocentre. Also, there is an 

important interaction between the size of the volume error and the beams delivering the 
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dose.  As the amount of this volume within the beam increases there are greater impacts on 

the treatment. An artefact with a diameter of 30mm will decrease the dose in the target of 

0.5 Gy in average. As the error is fixed at +200HU to assess the impact of the size, the dose 

distribution will decrease in this graph. 
Regarding the distance, the closer is the volume from the isocentre, the more important is 

the impact of the error in this location. For all of the patient cohort, when the distance to the 

isocentre reaches 40 mm, the impact of the artefact starts to be constant, without reaching 

the prescribed dose (78Gy). This might be explained by the variation of the dose going 

through the volume of error.  

The SCC gives an insight of the effect of each parameter on the dose distribution, but this 

covers only a few possible combinations of factors compared to the Morris screening method.  

Figure 4.3: Example of a Modified CT (a) and its corresponding dose distribution overlaid (b) for both 

experiments. For Experiment 1, the error volume is visible in the red square, and the dotted arrow 

represent its axis of displacement. A modified image of the same patient has been randomly selected to 

illustrate Experiment 2. Here, 100 HU were added in the bladder, 66.6 HU in the rectum, 55.5 HU in the 

prostate, and 78 HU in the remaining soft tissue. 146.5 HU were subtracted in the bones. 
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Figure 4.5  (a) presents the results of the SA. 𝜎 is superior to 𝜇 ∗ for all the factors assessed: 

their effect on the dose distribution at the isocentre is thus non-linear / non-monotonic 

and/or they interact with each other. This figure also shows that intensity and size are the 

two most impactful parameters. This statement is confirmed by Figure 4.5 (b), as the 

Euclidean distance to the origin of the graph is an indication of the influence of a factor on 

the output. Indeed, it shows that on average, the intensity and the size have both a similar 

impact on the output. 

Experiment 2 

Figure 4.6 shows that change in bladder and prostate intensities do not imply significant 

change in the dose at the isocentre. The dose appeared to be more sensitive to errors in the 

bones and rectum. The standard deviation of 𝜇 ∗ and 𝜎 are more important for these 

anatomical locations, so change of intensity had a less constant impact across the patient 

cohort than for the bladder or prostate.  

Errors in the remaining soft tissue are the most impactful. 

 

Figure 4.4: Experiment 1: Impact of the error (in terms of intensity in blue, size in green and distance in red) 

on the dose distribution at the isocentre. 
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Figure 4.5: Morris screening results for the Experiment 1. (a) Mean of (µ*i,j,σi,j) for each 

factor. The bars correspond to the standard deviation of µ*i,j and σi,j across the patient 

cohort. (b) Euclidean distance of each point (µ*i,j,σi,j) to the origin of the graph σ = f(µ∗) in 

descending order of importance. 
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Figure 4.6: Morris screening results for Experiment 2. (a) Mean of (µ*i,j,σi,j) for each 

factor. The bars correspond to the standard deviation of µ*i,j and σi,j across the patient 

cohort. (b) Euclidean distance of each point (µ*i,j,σi,j) to the origin of the graph σ = f(µ∗) 

in descending order of importance. 



104 

 

 

Discussion 

As different sCT generation methods will produce different and inhomogeneous HU 

uncertainties across the patient’s body[11], [13], [26], two experiments have been 

performed. The first one highlighted the sensitivity of the dose to changes in intensity and 

size of the volume of error. According to Figure 4.4 , the three features assessed had a 

monotonic effect on the output, and the Morris screening analysis demonstrated that the 

three parameters interact with each other.  

The second experiment presented the result of the SA on organ-wise error. The variation of 

HU has been applied homogeneously across each structure to be consistent with the way the 

methods are usually assessed in the literature (mean error within the organs and the body 

contours).  

Sensitivity to errors in the bones and rectum is less consistent across the patient cohort 

(Figure 4.6) compared to errors in the bladder and prostate. This might be due to higher 

variability of size and HU in these structures, with the presence or absence of rectal gas, and 

different densities in the bone structure (cortical and spongy bones, with a variability in 

density across the population due to age and body mass[32]). The size of the bones, varying 

with size of the individual, would also depend on patient weight, where for a thin person an 

error in bone would have more influence as there is less soft tissue. In this experiment, unlike 

in the first one, the impact of the different parameters assessed tended to be linear. This 

might be explained by the consistency of the size and distance of each structure assessed, so 

the only changing factor is the variation of HU.   

Some studies evaluated the dosimetric impact of HU to density curve variation. For example, 

in a previous study, Thomas et al.[33] reported a dosimetric error of 1.0% for a difference of 

8.0% in bone electron density. Notable HU variations affect the accuracy of dose calculation 

[34], [35]. In case of HU to density curve error, the whole CT image is impacted for a given 

tissue. In this study, we focused on specific local area.  

An absolute threshold of acceptability cannot be universally defined since it depends on each 

specific sCT generation method and treatment scenario. Therefore, it is recommended to 

apply this methodology to each clinical centre’s specific data. The obtained results are specific 

to the dose calculation algorithm, the number of beams crossed by the volumes and the 

amount of dose distributed by each of them. In this study, we assessed the effect of errors on 

IMRT dose plans, but other treatment techniques may be used in the clinic like VMAT, and 

stereotactic body radiation therapy (SBRT)[36], may result in different dose distributions 

across the body and thus will have a strong impact on the results. For particle therapy, the 

dose in the normal tissue outside the target volume is reduced[37], and the dosimetric impact 

due to misprediction in HU are likely to be larger. Different results are thus expected for 

proton and carbon ion therapy. Future work will investigate the other treatment techniques, 

with a more significant link with the sCT generation. 



105 

 

 

We focused on the dose at the isocentre, but changes in HU also have consequences on dose 

distributions in the organs at risk (bladder, rectum, femoral heads), leading to toxicity and 

inconvenient secondary effects such as chronic bladder inflammation. Therefore, future work 

will also explore the local influence of HU modification, using dose-volume histogram 

differences in each specific location. 

In the pelvic area, the anatomy of the patient is subject to change due to variation of the 

bladder and rectal filling for example, which may have consequences on the accuracy of the 

treatment delivery[38], [39]. The method proposed in this paper could also be used to 

determine an acceptance criteria of organs motion during the treatment.   

The methodology presented in this study can be adapted to each specific generation method, 

once the location of HU uncertainties has been identified, and the treatment plans defined. 

Deep-learning based sCT generation methods tend to be the most common[40], and more 

effective models should to be developed in the future.  Aleatoric (data dependant) and 

epistemic (model dependant) uncertainties are specific to machine-learning models and can 

be assessed[41]–[43]. Including the impact of these uncertainties on the dose distribution 

during the learning process might be a way to create more clinically valid image generation. 

Conclusion 

A sensitivity analysis was performed, allowing for determining the less influential HU errors 

on the dose distribution at the isocentre. sCT assessment should not only focus on delineated 

contours, and sparse error in the body contours should not be neglected. This study confirms 

the necessity to locally assess each sCT prior to its use in a clinical workflow, particularly in 

steep dose gradient areas.  

The main contribution of this paper is to provide a bridge between intensity-based metrics 

and dose, which are often used independently to assess the quality of sCT for EBRT. This 

approach can be used to generate clinical thresholds, and potentially model constraints, for 

both training and validation of sCT generation methods. The study is the first step in the 

definition of threshold of uncertainty acceptability in sCT to ensure accurate MRI-only RT. 
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Chapter 5: Patient specific synthetic‐CT quality 
assessment without reference 

 

In this chapter, two methods are proposed for assessing the quality of patient-specific 

synthetic-CT when no planning CT is available as a ground truth. The first approach involves 

creating an atlas using a cohort of CT scans and detecting outliers to highlight significant error 

subregions. A voxel-wise Shapiro-Wilk test allowed us to conclude that the density of tissue 

follows a normal distribution (this hypothesis had been rejected in the rectum and in areas 

where the body contour was misregistered). However, this method can be time-consuming, 

and the accuracy of the results depends on the precision of the registration. 

To address these issues, a radiomics-based approach is proposed. This involves selecting 

significant radiomics features from a cohort of CT scans. These features are then computed 

on the new image, and a score is assigned based on their distance from the values obtained 

on the reference images.  

The first section has been published and presented in the Digital Image Computing: 

Techniques and Applications (DICTA) conference.  

“Local quality assessment of patient specific synthetic-CT via voxel-wise analysis” 

Hilda Chourak, Anaïs Barateau, Jean-Claude Nunes, Peter Greer, Safaa Tahri, Caroline Lafond, 

Renaud de Crevoisier, Jason Dowling, Oscar Acosta – DICTA 2022 (oral presentation) 

 

The second section is ongoing work and need further investigation before being submitted to 

a journal. 
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1- Local quality assessment of patient specific synthetic-CT via 

voxel-wise analysis 

Abstract 

Synthetic-Computed Tomography (sCT) generation is a critical component of Magnetic 

Resonance Imaging (MRI)only radiation therapy workflows. The sCT computed from MRI is 

generally assessed by measuring Hounsfield Units (HU) discrepancies with a reference CT. The 

aim of this work was to propose a process for the blind assessment of local errors in generated 

sCTs where a reference CT is unavailable, allowing for safe MRI-only radiation therapy 

treatment planning. A personalised inter-patient registration method was applied to align a 

cohort of reference CTs into the same coordinate system. This process resulted in probability 

maps for each segmented organ, a mean CT image and a standard deviation map. These data 

were propagated to the anatomical space for each sCT, allowing for out of distribution 

intensities to be detected at a voxel level by computing local z-scores. Probability maps of 

organs were used to weight the resulting z-scores, reducing the bias induced by the 

registration around structures. Two sCT generation methods were chosen as examples to 

illustrate this methodology: an atlas-based method (ABM) and a deep-learning approach 

based on a Generative Adversarial Network (GAN) architecture. 39 patients treated with 

external beam radiotherapy for prostate cancer, with co-registered CT and MR pairs, were 

used for sCT generation. 26 of these patients were selected as reference CT, and sCT of the 

remaining 13 patients were assessed. Accurate inter-individual registration was achieved, 

with mean Dice scores higher than 0.91 for all organs. The average volume of error 

represented 0.29% of the image for the ABM, 0.37% for the GAN. The proposed methodology 

produced 3D volumes which identify significant local sCT errors. Depending on their size and 

location, these errors could lead to inaccurate tissue density computation during radiation 

therapy. This work provides an automated QA method aimed at preventing incorrect 

radiation dose delivery to patients. 

Introduction 

Radiation therapy is a well established, cost-effective treatment which has an evidence-based 

indication for 48% of cancer patients [1]. Most treatment planning is based on Computed 

Tomography (CT) imaging. Magnetic Resonance Imaging (MRI) is a non-ionizing modality. 

providing improved soft tissue contrast than CT, which leads to more accurate tumour and 

organ delineation in radiation therapy treatment planning. This justifies the increasing 

worldwide deployment of dedicated MRI scanners and MRI-linear accelerator hybrid 

machines for treatment delivery. However, unlike CT scans, MRI does not provide information 

on electron density of tissue, crucial for dose calculation. Therefore, several approaches to 
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generate synthetic-CT (sCT) from MRI have been developed to allow for MRI-only radiation 

therapy [2], [3], including: bulk density [4], [5], atlas-based [6], machinelearning models, such 

as patch-based methods with feature extraction [7], and more recently deep-learning models 

[7]– [13]. sCT image quality is currently assessed via global metrics, which measure 

discrepancies between a reference CT and the corresponding sCT [13], [14]. The most 

commonly used are intensity-based metrics [15], such as mean absolute error (MAE), mean 

error (ME), mean absolute percent error (MAPE), mean squared error (MSE) and peak signal-

to-noise ratio (PSNR). Structural similarity (SSIM) [16] and visual information fidelity (VIF) [17] 

may also computed. These metrics are reported at a global level: either restricted to a single 

value describing agreement within the body contour of the patient, within a class of tissue, or 

within contoured organ boundaries [13]. A limitation of all of these metrics is that they are 

based on comparison to a ground truth CT scan, which means they are only useful for 

validation prior to clinical deployment. Once deployed in an MRI-only radiotherapy clinical 

practice, quality assurance becomes very important as errors may appear sporadically 

distributed across different tissue densities [7], [18], and there will not be a reference to 

assess the sCT (this is referred to as blind quality in this paper). As Hounsfield Units (HU) 

intensities are correlated to tissue density, the inaccurate prediction of these values may lead 

to error in dose calculation. Thus, it is crucial to localise and determine the volume of error in 

HU prediction for each new sCT. Previous studies on blind CT quality assessment have focused 

on noise detection [19]. Choi et al [5] investigated the use of a bulk-density map generated 

from MRI as reference to assess sCT, but this does not consider the contrast of intensities in 

soft tissue. Voxel-wise analysis has proved to be efficient in the assessment of the clinical 

impacts of image and dose difference across individuals [20], [21]. However, their application 

requires an accurate non-rigid registration of a whole population to a single coordinate 

system, and the implementation of voxel-wise statistical tests [22]. Previous work gave an 

insight of the feasibility of this method, but the analysis was based upon comparison of 

generated data to their ground truth [23]. 

The aim of this paper is to propose a strategy to assess the quality of patient specific sCT at a 

voxel-level to ensure safe MRI-only treatment planning. The first step was the offline 

computation of an atlas from a cohort of reference CTs: these data were registered in the 

same anatomical space following an adapted non-rigid registration process. The second step 

for online processing of a new sCT involves extracting mean and standard deviation maps from 

this atlas, which are propagated in the sCT space. This allows the computation of a z-score 

map to highlight local outliers. As the inter-patient registration in the atlas construction may 

induce bias in the analysis, probability maps extracted from the organ delineation of the atlas 

were used to assign weights to z-score according to their location. 

The output of the blind QA method includes 3D volumes showing predicted areas of significant 

errors in HU values. Two different sCT generation approaches were chosen as examples to 

demonstrate the efficiency of this methodology: an atlas-based method (ABM) [6] and a deep-

learning method, based upon a generative adversarial network (GAN) architecture [7]. 
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Material et methods 

A. Treatment planning for radiation therapy 

The aim of the treatment planning phase in external beam radiation therapy is to define the 

optimal beam settings to maximise the dose that will be delivered in the tumour while 

minimising it in the surrounding organs. The standard treatment planning workflow is 

presented Figure 5.1.1. A planning CT is acquired, giving electron density information. This 

step is crucial as the dose delivered depend on the density of tissue crossed by the beams. 

Then, this image is registered to the diagnosis MRI. The MRI aim for tumour and organs 

delineation. During the beam’s and dose computation step, these contours are used to control 

the dose that will be delivered in the target and the healthy tissue. Once the optimum settings 

are determined, a radiation oncologist validate the treatment. For prostate cancer, the 

treatment will then be delivered in 30 to 40 fractions, at a rate of 5 fractions a week. 

One of the advantages of MRI-only radiation therapy is the simplification of the planning 

phase for the physicist and physician involved in the process, but also for the patient. 

 

B. Data 

Retrospective data from 39 patients with localised prostate cancer aged 58 to 78 years were 

used in this work. For each patient, a CT scan was acquired on a GE LightSpeed RT or a 

Toshiba Aquilion, (256 x 256 x 128 matrix with a voxel size of 1.17 mm x 1.17 mm x 2.5 mm or 

2.0 mm) and a T2-weighted MRI was acquired on a Siemens Skyra 3T in the treatment position 

(resolution of 1.6 mm x 1.6 mm x 1.6 mm). Each CT was resampled and registered to the 

corresponding MRI via a symmetric rigid registration followed by a structure-guided non-rigid 

method [24], [25] to rectify the anatomical variations due to the delay between both 

acquisitions. Non-uniformity of MRI was then corrected [6] with the Insight Toolkit Library 

(ITK). Organ delineation (labelling) was performed on the MRI by three experienced observers. 

These organs include the bladder, prostate, rectum, bones, and body contour (Figure 5.1.2). 
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Figure 5.1.1: Standard workflow for treatment planning in external beam radiation therapy. 

C. synthetic-CT generation methods 

1. Atlas based method: The Atlas-based method (ABM) [6] used rigid followed by non-

rigid registration of a set of 3D MRI-CT atlases to a target MRI. sCT voxel intensities 

were then propagated from the co-registered CTs according to a patch based local 

intensity match between the target MRI and the multiple MRIs composing the atlas. 

2. Generative adversarial network (GAN): The GAN architecture chosen for this study to 

generate sCT was composed of a U-Net for the generator, and a PatchGAN for the 

discriminator. Axial 2D CT and MRI slices, were used to train the model. A three-fold 

cross validation was used to validate the model: 26 patient data composed the training 

cohort, and 13 patient data composed the validation set. The architecture of the 

model is described in Largent et al. [7]. 

 

D. Workflow 

The voxel-based analysis workflow process is presented in Figure 5.1.3. 

a) Structure guided non-rigid registration: In radiation therapy, target (the prostate in this 

study) and organs at risk (bladder, rectum, bones) delineation is a crucial step in the 

treatment planing process. Thus, delineations are systematically achieved by the radiation 

oncologist, allowing for the use of these contours in the registration process. All the 

reference data were registered following the personalized organ driven non-rigid 

registration method described below. First, a representative study patient was selected as 

a template (this patient was selected based on their similarity to the median volume of 
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body, prostate, rectum and bladder). Following this, a customised organ-driven 

registration, based upon previously proposed methods [20], [23] was performed. As MRI 

provides better contrast in soft tissues compared to CT, the registration process has a 

combination of MR intensities and structural descriptions (SD) of the structure contours 

(bones, prostate, bladder, rectum) obtained in a pre-processing step. The structural 

description was obtained as follows: - Euclidean distances to the surface were computed 

for all structures [26]. 

A scalar field was generated by applying the Laplacian equation inside the rectum [27], 

resulting in a normalised distance map to the central path of the organ. - The Laplacian 

was also computed for the prostate with respect to its barycentre. 

All the input images were aligned using the Elastix toolbox (translation). Then, non-rigid 

registration based on diffeomorphic demons [28] was successively applied to: i) the 

bladder SD, ii) the whole pelvis, iii) the prostate SD, iv) the rectum SD, v) the bones SD. 

This resulted in a 3D vectors fields, allowing for the propagation of CTs in the template 

space. Bones were divided between spongy and cortical and separately registered, to 

preserve the composition of inner structure. This step-by step process allows for fine-

tunes, providing accurate registration of both contours and inner structure of all organs. 

The non-rigid registration was validated by computing the Dice Similarity Coefficient (DSC) 

between the template structures, 𝑉𝑡𝑀𝑅𝐼
 and the corresponding deformed delineated 

organ, 𝑉𝑀𝑅𝐼: 

 

Figure 5.1.2: MRI of one patient of the cohort (top) and its co-registered CT (bottom) with 3D models 

of delineated main organs in the pelvic area: bones, bladder, prostate and rectum respectively in 

blue, purple, red and green. 
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𝐷𝑆𝐶 =  
2(𝑉𝑡𝑀𝑅𝐼

∩ 𝑉𝑀𝑅𝐼 )

𝑉𝑡𝑀𝑅𝐼
 +  𝑉𝑀𝑅𝐼

 (1)  

 

b) Reference atlas data: Once all the reference CT are in the common coordinate system, 

the voxel-wise mean and standard deviation of the intensities’ distribution were 

computed. 

c) Probability maps: The probability map resulted from the superposition of the reference 

CT organs’ delineation in the common coordinate system (CCS). This allowed for the 

visualisation and estimation of the discrepancies between the delineated organ contours 

following registration, and provides an indication of the probability of a voxel’s inclusion 

within an organ. 

E. sCT assessment 

Mean HU values, standard deviation and probability maps of structures were propagated to 

each sCT anatomical space for the voxel-wise analysis. We assume that, at each location, the 

tissue density across the cohort follows a normal distribution. To detect outliers in the sCT, 

the z-score, also called standard score, was computed. It is an indication of the probability of 

the value to be part of the reference distribution, and was calculated at each voxel 𝑖 as follows: 

 

𝑧(𝑖) =
𝑠𝐶𝑇(𝑖) −  𝜇(𝑖)

𝜎(𝑖)
×  𝜔(𝑖) (2) 

 

Where 𝑠𝐶𝑇(𝑖) is the HU value of the 𝑖𝑡ℎ
 voxel in the synthetic image. 𝜇(𝑖) and 𝜎(𝑖) are 

respectively the mean intensity and the standard deviation at this location in the CT atlas. The 

inter-patient registration may lead to bias in the reference data. Thus, to reduce the impact 

of mis-registration, 𝜔(𝑖), the weight corresponding to the normalised probability map value 

at the 𝑖𝑡ℎ voxel, were multiplied on the z-scores. All voxel values outside the 95% confidence 

interval in the resulting 3D map, i.e all values superior to 2 or inferior to −2, were considered 

as outliers. 

 

A conventional image quality assessment was proceeded to highlight the relevance of the 

method. Thus, mean absolute error (MAE), mean error (ME) and mean absolute percent error 

(MAPE) were computed as follow: 

𝑀𝐴𝐸 =  
1

𝑛
∑|𝐻𝑈𝐶𝑇(𝑖) − 𝐻𝑈𝑠𝐶𝑇(𝑖)|

𝑛

𝑖=1

(3) 

𝑀𝐸 =  
1

𝑛
∑ 𝐻𝑈𝐶𝑇(𝑖) − 𝐻𝑈𝑠𝐶𝑇(𝑖)

𝑛

𝑖=1

(4)  
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𝑀𝐴𝑃𝐸 =  
1

𝑛
∑ |

𝐻𝑈𝐶𝑇(𝑖) − 𝐻𝑈𝑠𝐶𝑇(𝑖)

𝐻𝑈𝐶𝑇(𝑖)
|

𝑛

𝑖=1

(5) 

 

with 𝑛 the total number of voxels, 𝐻𝑈𝐶𝑇(𝑖) and 𝐻𝑈𝑠𝐶𝑇(𝑖) the intensities of the 𝑖𝑡ℎ voxel in, 

respectively, the reference and the generated image. The closer to zero these values are, the 

more accurate is the prediction. These metrics were applied to assess HU errors in the whole 

pelvis, by organ and in the volume of outliers. 

 

 

Figure 5.1.3: Workflow of voxel-based analysis. The input dataset was composed of 39 images, and sCT were 

generated for all of them. 26 patient CTs were selected as a reference cohort, allowing for blind sCT quality 

assessment for the 13 remaining patients. The 26 patient data were non-rigidly registered into a common 

coordinate system (CCS), resulting in the reference atlas. Probability maps of the delineated organs, mean 

reference CT and standard deviation of CT in the CCS were then computed at a voxel-level. These data are 

then registered to each sCT anatomical space, providing detection of significant error subregions.  

Results and discussion 

The personalised non-rigid registration method accurately brought the 26 patients of the 

reference cohort in the same anatomical space, as demonstrated by the average DSC scores 

of 0.98 ± 0,01 for the body contour, 0.93 ± 0,01 for the bones, 0.96 ± 0,01 for the bladder, 

0.91 ± 0,02 for the rectum and 0.91 ± 0,02 for the prostate. Previous work has supported the 

use of the organ structural description [20], and its combination to MRI for better 

preservation of the different soft tissue class within the body [23]. The reference atlas for the 

assessment was thus considered reliable, allowing for the voxel-wise analysis to be proceeded 

[22]. On this sample of 13 sCT assessed, ABM and GAN obtained close MAE, ME and MAPE 
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results, as shown in Table 5.1.1. Despite the small volume represented by the outliers, these 

presented a MAE up to 155.37 HU for the ABM and 135.82 for the GAN, and a MAPE of 4.03 

for the ABM, against 2.44 for the GAN. MAE values appeared to be correlated to the reference 

intensity (the most important errors are in cortical bones, where the mean HU value is the 

highest) and illustrates how far from the ground truth the mean HU prediction is. The MAPE, 

which correspond to the relative difference, was computed as a measure of prediction 

accuracy. The ME determined if the prediction tends to be systematically superior (negative 

results) or inferior to the reference. These metrics offer complementary information and can 

be computed at a voxel level, and should not be used alone for global assessment. For 

example, a ME close to zero in a volume do not imply an accurate prediction, as this volume 

might include both high positive and negative scores. And, as full reference metrics, they need 

a CT ground truth, making them useful to assess the efficiency of a sCT generation method 

during the development phase, but unsuitable in a clinical workflow. 

The average volume of the outliers identified within the sCT scans represented 0.29% ± 0.26 

of the image for the ABM, 0.37% ± 0.35 for the GAN (Table 5.1.1). Figure 5.1.4 illustrates the 

regions where the out of distribution HU values were detected in the worst case on one hand 

(patient 3), and the best case (patient 5) on the other. Few errors appeared in the prostate 

and in the organs at risk (bladder, rectum, femoral heads), except for one patient where the 

voxel-wise approach has detected significant errors in the bladder for both sCT generation 

method, especially for the GAN, as shown in Figure 5.1.4. This might be explained by a high 

anatomical variation compared to the training cohort for the GAN. The ABM performed better 

in this location, for all the sCT assessed (Table 5.1.1Table 5.1.1).  

A similar process was used in Wang et al. [29] on pediatric brain data. However, the 

registration errors were not considered and the threshold of a difference of 100 HU compared 

to the mean chosen in this study may not be valuable regarding the variability of tissue 

densities within the pelvic area (from -1000 HU for the air to 1500 HU for dense bones) and 

for each patient.  

Applying a weight to the z score map according to the probability of mis-registration of each 

structure reduce the bias linked to the inter-patient registration, but error may still remain, 

especially when assessing sCT for a patient with high anatomical variation compared to the 

reference cohort. So, part of our future work is to separate errors due to the inter-patient 

non-rigid registration from errors inherent to the generation method. Deep-learning can help 

to estimate local error registration [30]. Unfortunately, this study is limited by the number of 

data available. Thus, using 26 patients as reference atlas might not be enough to be 

representative of the population concerned by prostate cancer. 
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Table 5.1.1: Mean absolute error (MAE), mean error (ME) and mean absolute percent error (MAPE) obtained 

for the 13 sCT generated with the atlas-based method (ABM) on one hand, and the GAN on the other. These 

scores were computed in the whole pelvis (body), by organ and within the volume of outliers.  

 
ABM GAN 

  
mean  std mean  std 

BODY 

MAE (HU) 37.89 ± 8.65 32.35 ± 7.70 

MAPE 1.53 ± 0.73 1.33 ± 0.69 

ME (HU) -7.06 ± 14.47 -3.53 ± 13.87 

BLADDER 

MAE (HU) 17.30 ± 8.46 20.84 ± 14.25 

MAPE 2.42 ± 1.01 3.12 ± 1.13 

ME (HU) 8.49 ± 11.35 6.98 ± 19.94 

RECTUM 

MAE (HU) 76.54 ± 59.97 68.83 ± 66.85 

MAPE 2.12 ± 1.09 1.84 ± 1.32 

ME (HU) -14.40 ± 78.81 -38.19 ± 69.57 

PROSTATE 

MAE (HU) 23.94 ± 4.96 19.08 ± 5.80 

MAPE 1.62 ± 1.26 1.64 ± 1.59 

ME -4.05 ± 13.29 -3.34 ± 14.05 

BONES 

MAE (HU) 127.29 ± 27.58 122.29 ± 21.39 

MAPE 1.58 ± 1.21 1.34 ± 1.03 

ME (HU) 23.90 ± 48.18 24.90 ± 38.23 

VOL. OF OUTLIERS 

% body vol. 0.29 ± 0.26 0.37 ± 0.35 

MAE (HU) 

MAPE 

155.37 

4.03 

± 

± 

30.56 

2.29 

135.82 

2.44 

± 

± 

29.72 

1.39 

ME (HU) 25.49 ± 56.02 -10.84 ± 62.20 

 

In addition, a potential uncertainty while using an atlas for sCT assessment in the pelvic area 

is the air in the digestive system, as there is no consistent state from one patient to another, 

and even for the same patient over time. One way to correct this issue might be to include a 

step to compare the volume of air in the delineated rectum in the input MRI with its resulting 

sCT. A limitation of the proposed approach in this work may be the computation time involved 

with the non-rigid registration process (20 min for each sCT). However, this is generally not an 

issue in treatment planning (as there are usually a number of days between an initial planning 
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scan and treatment delivery), and faster registration methods could be investigated if clinically 

required. 

 

 

Figure 5.1.4: Axial, sagittal and coronal views of the MRI used as template to create the reference atlas 

followed by two patients MRI and (a) their resulting synthetic-CT (sCT) generated from the atlas-based 

method (ABM) and the GAN method. (b) represents these sCT with the significant outlier (error) volume 

overlaid in red 

Integrating this workflow in a treatment planning system will allow for manual correction of 

the density by the radiation oncologist in detected volume of outliers before dose calculation. 

This methodology can also be used for offline validation or to validate sCT generation 

methods as part of a clinical evaluation stage. This study presents results for the male pelvis 
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(prostate cancer radiation therapy), but the method can be applied to other anatomical 

locations. 

Conclusion 

In this paper, we have presented a voxel-wise analysis method based on an efficient non-rigid 

registration process. The step-by-step approach has been shown to be robust to high inter-

individual anatomical variability. The method results in a 3D volume, highlighting regions 

where the estimated HU in the generated sCT is significantly different from an atlas of 

previously acquired reference CT data. The proposed methodology has been shown to be 

capable of detecting local errors in sCT generated from MRI, which is an important 

contribution towards safe MRI based radiation treatment planning. 
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2- Radiomic features selection for quality assessment of patient 

specific synthetic-CT 

Abstract 

The MRI-only workflow has gained popularity in external beam radiation therapy for 

improving efficiency and accuracy in treatment planning. It relies on generating synthetic-CT 

(sCT) from MRI for dose calculation, but assessing the accuracy of these images without 

reference remains challenging. Current methods that rely on the comparison to a reference 

CT as a ground truth are inadequate for MRI-only workflows. This study aims to investigate a 

protocol for assessing patient-specific sCTs in radiation therapy (RT) workflow using radiomics 

analysis. The study involved 39 patients with localized prostate cancer. sCTs were generated 

using four methods: multi-atlas, bulk-density, patch-based, and a Generative adversarial 

network (GAN). Radiomic features extracted from CT scans and sCTs were used to select the 

most significant features through a random forest algorithm train to classify the images 

according to their gamma pass-rate. These features were then compared to expected values 

from the reference CT cohort, assigning a quality score based on out-of-distribution values. 

Radiomics analysis is shown to be an efficient method for quality control of patient-specific 

sCTs in MRI-only RT. However, further investigations are necessary before deploying this 

approach in clinical settings. Nevertheless, the findings provide valuable insights for 

evaluating the accuracy of predicted Hounsfield Units (HU), enhancing dose calculation and 

treatment outcomes in MRI-only RT. 

Introduction 

Radiation therapy (RT) is a well-established treatment with evidence-based indications for 

48% of cancer patients [1]. The standard RT workflow relies on two imaging modalities: 

computed tomography (CT) for dose calculation based on electron density information, and 

magnetic resonance imaging (MRI) for better soft tissue contrast, enabling more accurate 

target delineation [2] and minimising the risk of toxicity in healthy tissue [3]. To define the 

treatment plan, traditionally both CT and MRI images are co-registered. However, the MR-CT 

registration step introduces uncertainties, with reported calculations of up to 2 mm for 

prostate cancer patients [4]. 

In order to enhance efficiency and accuracy in the clinical workflow, MRI-only RT has 

gained popularity, eliminating the need for CT scans and relying solely on MRI. This has led to 

the widespread deployment of dedicated MRI scanners and MRI-linear accelerator (MRI-

LINAC) hybrid machines for treatment delivery. The advantage of MRI-LINAC is its ability to 

accommodate adaptive RT, which considers daily internal anatomical changes and 

recalculates the dose distribution prior to each session. However, as MRI does not provide 
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electron density information, the generation of synthetic-CT (sCT) becomes crucial for MRI-

only RT [5]–[7]. 

The use of sCT in clinical practice faces a significant limitation: the lack of robust 

approaches to evaluate the accuracy of generated images and ensure the correctness of 

predicted Hounsfield Units (HU) for accurate dose calculation. Currently, the assessment of 

sCT involves the use of full reference intensity-based metrics, i.e. requiring a reference CT, 

such as mean absolute error (MAE), mean error (ME), and peak signal-to-noise ratio (PSNR) 

[8]. Perception-based metrics like the structural similarity index measure (SSIM) [9], [10] and 

the multiscale SSIM are also commonly employed. However, these metrics rely on a 

simulation CT as the ground truth and the accuracy of the registration between the reference 

CT and the MRI used for sCT generation. Consequently, these metrics are inadequate for 

quality control in an MRI-only clinical workflow. To address this challenge and enable patient-

specific sCT assessment, a previous study proposed the use of an atlas of reference CT to 

identify local out-of-distribution HU numbers in sCT [11]. This approach, based on voxel-wise 

analysis, aimed to highlight discrepancies between the predicted and expected HU values. 

However, it is necessary to note that the reliability of the results depends on the robustness 

of the interpatient registration process used to generate the atlas prior to statistical analysis. 

The purpose of this study is to establish a simple and reliable protocol based on the 

selection of significant image features from radiomics, allowing for patient-specific sCT 

assessment before its use in clinical practice. 

Radiomics analysis has been successfully employed in RT to improve diagnosis, assess 

treatment response [12]–[14], classify errors [15], and detect errors [16] in intensity-

modulated RT (IMRT) quality assurance (QA). However, to our knowledge, its application for 

patient-specific sCT QA has not been explored. In this paper, quantitative image features have 

been extracted from a cohort of CT scans and sCT generated from four previously published 

methods: an atlas-based method [17], a bulk-density method, a patch-based method [18], 

and a Generative Adversarial Network (GAN) [19]. A random forest (RF) algorithm is then 

employed to select the most significant image features according to the gamma pass-rate 

(GPR). 

Material and methods 

The workflow of the study is presented Figure 5.2.1. First, radiomic features were computed 

on a cohort of reference CTs and on sCTs generated through four different methods: an atlas-

based method, a bulk-density method, a patch-based method, and a GAN. Volumetric 

modulated arc therapy (VMAT) was planned on reference CT images (treatment planning 

system Pinnacle v.9.10, Philips) using the collapsed cone convolution algorithm and a dose 

grid resolution of 3 mm. For all patients, a sequential treatment was delivered with a total 

dose of 78 Gy in the clinical target volume (CTV). The same beam parameters were used to 

compute the dose on the sCT. Key features were selected using an RF algorithm train to 
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classify images based on their GPR (”excellent” for GPR ≥ 99.9, ”correct” for 99.9 > GPR ≥ 98, 

”insufficient” for GPR < 98). GPR were computed using MatRad [20], an open-source software 

for radiation treatment planning developed for research purposes. The selected features 

were then used to define a score, computed according to the percent of selected features 

with values falling within the range of expected values according to the cohort of reference 

CT. 

Dataset 

A total of 39 patients with localised prostate cancer, aged 58 to 78 years, were included in 

this study. For each patient, a CT scan was acquired using a GE LightSpeed RT large-bore 

scanner or a Toshiba Aquilion scanner, with a matrix size of 256 x 256 x 128 and a voxel size 

of 1.17 mm x 1.17 mm x 2.5 mm or 2.0 mm. Additionally, a T2-weighted MRI was obtained in 

treatment position using a Siemens Skyra 3T scanner, with a voxel size of 1.6 mm x 1.6 mm x 

1.6 mm. To correct the non-uniformity of the MRI images, the N4 bias field correction 

algorithm from the Insight Toolkit Library (ITK) was employed [17]. Afterwards, the CT scans 

were resampled and registered to their corresponding MRIs to account for anatomical 

variations caused by the time gap between acquisitions. This registration process involved an 

inverse-consistent affine registration [21], followed by a non-rigid registration [22]. 

Synthetic-CT generation 

Multi-Atlas The multi-atlas technique was originally published by Dowling et al. [17]. It 

involves non-rigid registrations of MRI-CT atlases that have been co-registered with a target 

MRI. A fusion step is then performed by assessing local similarities between the training atlas 

and the target MRI. The local weighting of the registered CT atlases in the corresponding areas 

is used to create each voxel in the sCT. 

Bulk-density sCTs were obtained by assigning HU values to the patient’s soft tissue, bones 

and air. The volume of air resulted from thresholds in the inner part of the rectum delineated 

on MRI. The soft tissue area corresponds to the subtraction of bones and air from the body 

contour. A water equivalent density (0 HU) was assigned to the soft tissue, and densities 

allocated to bones and air were 350 HU and -450 HU, corresponding to the mean CT values 

of the cohort in the corresponding segmented regions [18]. 
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Patch-based This approach involves inter-patient registration, feature extraction from MRIs 

and patch partitioning. The sCT is generated within a matching of multiple patches to the 

target MRI [18].  
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GAN The GAN architecture used in this study for sCT generation is fully described in Largent 

et al. [18]. The generator employed a U-Net inspired by Han et al. [22], with the L2 norm used 

as the loss function: 

𝐿𝐺(𝐼, 𝐶)  =  ‖𝐶 − 𝐺(𝐼)‖
2

2
 (1) 

 

Here (equation (1)), I corresponds to the MRI intensity, G(I) represents the generated sCT, 

and C denotes the reference CT. The discriminator utilised a PatchGAN, with binary cross-

entropy as the adversarial loss function: 

 

𝐿𝐷(𝐺(𝐼), 𝐶) =  − ∑ 𝐶𝑖 log(𝐺(𝐼)𝑖) + (1 − 𝐶𝑖) log(1 − 𝐺(𝐼)𝑖) 

𝑛

𝑖=1

(2) 

 

 In the equation (2), G(I) refers to the sCT produced by the generator from the target MRI,C 

represents the corresponding reference CT, and n the number of voxels in C. The global loss 

was created by combining LG(I,C) and LD(G(I),C). The model was trained using axial two-

dimensional CT and MRI slices, and three-fold cross-validation was applied. 

Test data 

To test the ability of the algorithm to detect errors, 10 reference CT were randomly selected. 

Expert delineated MRI contours were used to modified HU values within the bladder, CTV, 

rectum, bones, and the remaining soft tissue. Random HU shifts were applied: 

- From -100 HU to +100 HU in the bladder, 

- From -1000 HU to +200 HU in the rectum, 

- From -500 HU to +500 HU in the bones, 

- From -100 HU to +100 HU in the CTV, 

- From -100 HU to +100 HU in the remaining soft tissue. 

 

Remaining soft tissue volumes are generated by subtraction of bone, bladder, CTV and 

rectum volumes from the body contour. Higher threshold has been defined for bone and 

rectum, according to the difficulty for a sCT generation method to predict HU in these 

locations. Especially for the rectum, where the presence of air pocket is uncertain. 

A spherical artefact has been added to 10 other randomly selected CT. The size, intensity 

and location has been randomly assigned to this error volume: 

- Intensity from -250 HU to + 250 HU. 

- Distance from 0 to 100 mm to the isocentre. 
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-  Size from 2 mm to 50 mm of diameter. 

Examples of images used for validation are presented figure 5.2.2. 

 

Figure 5.2.2: Example of modification applied on CT for validation, with (a) the presence of an artefact and (b) 

random HU modification in delineated organs. 

 

Radiomic feature extraction and selection 

Images features were extracted from CT scans and sCT using the PyRadiomics Python package 

[24]. The package includes a class for first-order statistics (18 features), a class for shape 

descriptors (26 features), and 75 textures features classified in five classes: grey level co-

occurrence matrix, grey level run length matrix, grey level size zone matrix, neighbouring grey 

tone difference matrix, and grey level dependence matrix. In this study, a total of 1275 

features were extracted from body contour. These features encompassed first-order statistics 

and textures from the original image, as well as wavelets and Laplacian of Gaussian (LoG) 

filters with sigma values of 1 mm, 2 mm, 3 mm, 4 mm, and 5 mm. Morphological features 

were deemed irrelevant and discarded. 

In the feature selection approach, the first step involved eliminating highly correlated features 

by discarding those with a pairwise Pearson correlation coefficient ≥ 0.85. Then, an RF 

algorithm was used to select the most significant features as descriptors. The algorithm aimed 

to classify images according to their GPR (“Excellent” for GPR ≥ 99.9, ”Correct” for 99.9 < GPR 

≥ 98, ”Insufficient” for GPR > 98). GPR were computed using MatRad [20], an open-source 

software for radiation treatment planning developed for research purposes. The criteria to 

compute the GPR were 1% dose difference and 1mm distance to agreement. 
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The RF model was implemented using the scikit-learn package [25]. The hyperparameters of 

the RF model were fine-tuned using a randomised search parameter optimisation process 

[26]. Then a recursive feature elimination was performed in a cross-validation loop to find the 

optimal number of features (RFECV). The selected features were computed from the image 

to assess. Points falling outside the range of the reference cohort were considered outliers, 

given the limited size of the dataset consisting of real patient data used in this study. A quality 

score was assigned based on the percentage of out-of-distribution values. Consequently, the 

results were classified into three categories: “poor” for a score < 40%, “good” for a score 

between 40% and 80%, and “excellent” for a score ≥ 80%. 

Random forest model training and evaluation 

3-fold stratified cross-validation was conducted for model training and evaluation. The 

training/validation dataset included 136 images, representing 70% of the initial dataset, and 

the test set 59 ( 10 “Excellent GPR”, 37 “Good GPR”, 12 “Insufficient GPR”). 

To evaluate the efficiency of the trained RF model, several performance metrics were 

computed on the test dataset, including precision (eq.3), sensitivity (eq.4), F1-score (eq.5) and 

accuracy (eq.6). The results are presented in Table 5.2.1, followed by the confusion matrix, 

Table 5.2.1.  

Precision measures the proportion of correctly predicted positive instances out of the total 

instances predicted as positive. It provides insight into the model’s ability to avoid false 

positives. 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑡𝑝

𝑡𝑝 + 𝑓𝑝
 (3) 

tp stands for the number of true positive, and fp the number of false positive. 

Sensitivity, also known as recall or true positive rate, calculates the proportion of actual 

positive instances that are correctly predicted by the model. It indicates the model’s 

effectiveness in identifying true positives. 

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑡𝑝

𝑡𝑝 + 𝑓𝑛
 (4) 

with fn the number of false negative. 

The F1-score combines precision and sensitivity into a single metric and provides a 

balanced measure of the model’s performance. It considers both false positives and false 

negatives, making it useful when there is an imbalance between positive and negative 

instances. 

𝐹1 = 2 × 
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
 (5) 
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Accuracy determines the overall correctness of the model by calculating the proportion of 

correctly predicted instances out of the total instances. It is a common metric to assess the 

overall performance of a model. 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑡𝑝 + 𝑡𝑛

𝑡𝑝 + 𝑡𝑛 + 𝑓𝑝 + 𝑓𝑛
 (6) 

with tn the number of true negative. 

These metrics provide valuable insights into different aspects of the model’s performance 

and help evaluate its effectiveness in making accurate predictions. 

Results 

RF models were found to accurately distinguish between the first two categories of GPR, but 

tend to struggle in predicting GPR < 98, as indicated in Table 5.2.1, which displays the 

performance of the model for each class. The confusion matrix (Table 5.2.2) reveals that the 

probability for the prediction to be accurate for low GPR is only 58%. In 42% of cases, the GPR 

is classified as “good” instead of “insufficient”. This could potentially be attributed to the lack 

of poor GPR in the dataset (Figure 5.2.3). 

Regarding the evaluation, Table 5.2.3 demonstrates that both random HU errors in VOI and 

the presence of artefacts have been successfully identified by the score based on the selected 

radiomics features. However, no correlation can be established regarding the impact of this 

change on the dose calculation. 

 
Table 5.2.1: Random forest model evaluation. 

Gamma pass-rate class      Precision        Sensitivity        F1-score       Support 

Excellent 1.00 1.00 1.00 10  

Good 0.86 0.81 0.83 37  

insufficient 0.50 0.58 0.54 12  

Accuracy : 0.80      

 

Table 5.2.2: Confusion matrix 

 GPR ”Excellent” GPR ”Good”  GPR ”Insufficient” 

GPR ”Excellent” 1.0 0.0 0.0 

GPR ”Good” 0.0 0.81 0.19 

GPR ”Insufficient” 0.0 0.42 0.58 
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Figure 5.2.3: Histogram of the gamma pass rate (GPR) of the data used to train the Random Forest 

Classifier. 

 

Table 5.2.3: Scores were obtained using the selected features and applied on the validation dataset. 

Experiment 1 refers to the data where a random HU variation has been applied, while experiment 2 refers 

to the presence of a spheric volume of error in the image. 

CT score Experiment 1 Experiment 2 

100 73.91 86.96 

100 67.39 86.96 

100 71.73 86.96 

100 91.30 86.96 

100 82.61 80.43 

100 60.87 89.13 

100 78.26 93.48 

100 63.04 84.78 

100 73.91 84.78 

100 78.26 86.96 
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Discussion 

The main objective of this study was to explore the use of radiomics features to introduce a 

reliable and efficient tool for patient-specific sCT quality control in MRI-only RT. This approach 

enables daily assessment of synthetic CTs without requiring a simulation CT as a reference.  

Probabilistic estimation of errors in sCT at a voxel level has been explored in previous studies. 

For instance, Van Harten et al. [27] proposed a method to obtain a voxel-wise uncertainty 

map by analysing the discrepancies between sCT volume reconstructions on different axes 

(axial, sagittal, and coronal) using a deep-learning model trained on 2D data for each axis. 

Deep-learning models also allow for the computation of epistemic (model-dependent) and 

aleatoric (data-dependent) uncertainties [28], [29]. Another method, introduced by 

Johansson et al.[30], involves estimating the probability of error in sCT generated from a 

Gaussian mixture model. These methods provide 3D maps of the probability of errors. 

However, it is important to note that these approaches are developed for specific models and 

provide estimates without generalisability. In contrast, the method presented in this paper 

aims to overcome these limitations and provide a more generalisable solution for error 

detection in sCT. Furthermore, our model enables the direct comparison of CT features, not 

solely based on voxel-wise intensity changes. 

To select the most informative data, features were chosen based on their ability to impact 

the GPR within the entire pelvis. These features were mainly extracted using wavelet 

decomposition or a LoG filter with small kernel sizes applied to the original images. Wavelet 

transforms have proven to be a robust technique for extracting biomarkers in radiomics [31]. 

They have demonstrated efficiency in predicting the tumour type of early-stage lung nodules 

in CT[32], assessing the treatment response of gastric carcinoma to low-dose rate 

radiotherapy [33], detecting liver cirrhosis[34], and evaluating the neoadjuvant 

chemotherapy response in breast cancer using MRI [35]. However, since wavelet-derived 

features primarily capture local variations, they might be too restrictive to serve as the sole 

criteria for rejecting an sCT. Therefore, subjective image quality assessment remains 

necessary, as not having a good score in a specific location doesn’t necessarily lead to 

significant consequences in dose calculation. 

Another advantage of the proposed approach is its potential use as a reduced-reference 

metric when the patient’s simulation CT is available, allowing for a direct comparison of 

feature values between the two images in the context of image-guided RT workflow, for 

example. This eliminates uncertainties associated with the intrapatient data registration step, 

required when using full reference metrics. In such cases, an acceptability threshold needs to 

be defined. 

The method described can also be extended to sCT generated from cone-beam computed 

tomography (CBCT) [10], as its applicability is not limited to a specific imaging modality. CBCT 

is widely employed for patient positioning and monitoring during various stages of treatment 
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delivery. However, CBCT image reconstruction is prone to artifacts, so, the use of daily CBCT 

for online plan adaptation has been limited. By converting CBCT to CT, accurate dose 

computation could be achieved, thereby enhancing the quality of image-guided adaptive RT 

(IGART). Our protocol can be integrated into the IGART workflow, evaluating the accuracy of 

sCT for precise treatment delivery. 

The major limitation of this study is the small size of the dataset and the limited 

representation of low GPR instances. The results are therefore not statistically robust enough 

to definitively draw conclusions about the effectiveness of this approach. Furthermore, the 

model developed in this study is specifically designed for detecting discrepancies within 

certain sCT generation methods and CT images from the same center. To enhance the 

generalizability of this approach, it would be beneficial to apply it to multi-center data. 

Adapting this methodology to a different monocenter dataset would necessitate repeating 

the entire procedure, considering factors such as varying field of view and image resolution, 

as these factors can impact the extracted features. While this method enables patient-specific 

sCT quality assurance uses GPR for clinically relevant feature selection, the selected features 

may be overly restrictive.  

The key improvement of this approach lies in the robustness of the protocol. Indeed, the 

process of extracting and selecting radiomic features is very sensitive to the scanner and to 

the quality of the segmentation of the region of interest. Several repetitions with contour 

variations and tests on different datasets should be carried out to guarantee the robustness 

and reliability of the selected features.  

It is crucial to explore this methodology on a larger dataset for both training and validation 

purposes, and to assess the correlation between detected anomalies and their impact on the 

dose distribution at different scales. Part of the future work will thus involve creating a more 

diverse validation set and applying the methodology per VOI. 

Conclusion 

The proposed radiomics-based workflow for patient-specific QA involves selecting 

quantitative image features to assess the similarity between a sCT and a reference CT cohort. 

This approach utilises optimised random-forest models, ensuring both performance and ease 

of implementation. The resulting score effectively highlights significant discrepancies without 

relying on a specific simulation CT as ground truth, enabling rapid assessment of new sCT 

images. Radiomics analysis proves to be an efficient tool for quality control of patient-specific 

sCTs in an RT workflow. However, further investigation is needed prior to use this approach 

in clinical settings. Nevertheless, this workflow may serve as the initial step in a QA procedure 

aimed at facilitating safe MRI-only RT, given its efficiency in detecting artefacts and shift of 

HU within specific organs. 
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Chapter 6: AI‐based synthetic CT quality control 
guidelines for accurate MRI‐only radiation therapy 

This chapter presents methods and metrics used for assessing sCT, along with 

recommendations for quality control steps to integrate daily use of sCT into the clinical 

routine. This chapter is the beginning of a manuscript draft. It is still in its early stages and 

requires discussion with experts in image processing, medical physicists, and clinicians to 

establish a consensus ensuring the accuracy of MRI-only RT. 

Introduction  

Radiotherapy (RT) is a highly effective treatment option for cancer patients, with 

approximately 40% of patients undergoing RT during their cancer care[1]. In the conventional 

RT workflow, CT imaging is used for treatment planning and dose calculation, while MRI 

provides superior soft tissue contrast for accurate tumour identification during planning and 

treatment delivery. MRI also offer better soft tissue visualization and enable more precise 

delineation of organs at risk. MR-only RT workflow has thus emerged[2]. It can be 

implemented using a standard linear accelerator (LINAC) or an MR-LINAC—a device 

combining an MRI and a LINAC in the same room. In the standard workflow, there are 

challenges related to dose calculation based on MRI and the registration between planning 

MRI and daily images (such as 3D CBCT or 2D images). The MR-LINAC offers the advantage of 

daily adaptation of the initial treatment plan based on the day's anatomy captured by MR 

images. However, a major drawback of MRI for MR-only RT, with or without MR-LINAC, is its 

inability to provide information on tissue densities, which is crucial for accurate dose 

calculation. To overcome this limitation, several methods have been developed to generate 

synthetic CTs (sCTs) that allow for the use of MRI in treatment planning. These approaches, 

mainly based on deep-learning models (DLMs)[3] nowadays, have demonstrated high 

accuracy and robustness.  

Despite the effectiveness of DLMs in predicting Hounsfield Units (HU) values from MRI 

sequences, challenges remain in evaluating the image quality of the resulting sCTs[4]. The 

current literature assesses sCT quality by comparing them to their corresponding planning 

CTs. However, with the adoption of MRI-only RT treatment planning, these CT scans will be      

no longer available. Alternative methods for patient-specific quality assurance (QA) without 

CT have been proposed, such as using cone-beam CT (CBCT) to evaluate patient-specific sCTs 

generated from MRI[5]–[7]. However, incorporating CBCT acquisition in adaptive RT with 

MRI-LINAC is unlikely. To our knowledge, there are no widely accepted practices or standards 

for ongoing QA of sCTs derived from MRI. Therefore, establishing a standardized quality 

control protocol for patient-specific sCTs obtained on a daily basis becomes imperative. 
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The aim of this chapter was to provide guidelines for sCT QA, ensuring reliable treatment 

delivery in MRI-only RT. Qualitative and quantitative approaches, with and without reference 

CT, for daily patient specific QA have been considered.  

Qualitative evaluation 

Different scenario can be encountered in RT (Figure 6.1), for both the planning phase and the 

treatment delivery. For accurate dose delivery, the treatment plan is adjusted to the anatomy 

of the day by aligning the treatment plan to a CBCT or MRI acquired prior to delivering the 

treatment. The use of sCT during each phase allows for not having to do registration and thus 

should provide a more precise targeting of the tumour volume.  

Figure 6.1:  Standard and MRI-online adaptive radiation therapy (RT) workflows. The planning phase in 
standard RT involves the acquisition of a planning CT for dose calculation, and a diagnosis MRI for accurate 
tumour and organs at risk delineation. Both images are then non-rigidly registered before calculating the dose. 
In MRI-only RT planning, a planning MRI is acquired. This image is then used to generate a synthetic-CT (sCT), 
allowing for dose calculation. Traditionally in ART, the planning CT is registered to a CBCT to adapt the 
treatment to the anatomy of the day. With the MR-LINAC, a sCT can be generated from the MRI and the 
treatment plan can be transposed on this image.  
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But, the sCT is an image generated, and not acquired, it is thus important to check its accuracy 

each time prior to use it.  

The type of sequence and the overall quality of the MRI used to generate the sCT will have an 

impact on the resulting image. The quality control process thus begins with the assessment 

of the MRI, then qualitative and quantitative metrics can be used to assess the sCT. In figure 

6.2, we propose a decision tree from the MRI acquisition to the treatment delivery. 

 

 

Figure 6.2: Quality assurance (QA) steps for MRI-based treatment planning 

MR images QA 

Automatic verification of acquisition parameters by reading the DICOM files will allow for 

detection of errors in: sequence type acquisition, image orientation, application of gradient 

distortion correction, spatial resolution (pixel size and slice thickness) and detection of gap.  

The QA of the MRI need to be completed by the overall visual inspection by radiotherapist 

and medical physicists.  
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Also, DLMs are trained using specific MRI sequences. When generating daily sCTs, it's essential 

to use the same sequence for optimal accuracy. 

Table 6.1 presents the key elements to check in order to determine if the MRI scan is suitable 

for sCT generation. 

 

Table 6.1: Quality assurance checks of MRI for RT dose calculation.  

LFOV stands for large field of view, SNR for signal to noise ratio, OAR for organ at risk. This checklist has been 

established according to the suggestions made by Speight et al.[1] and Dowling et al.[8]. Some of these 

elements can be checked with the DICOM tags. These elements are parts of QA checks used in the HIPSTER[9] 

and NINJA[10] clinical trials.  

Check list Details 

Distortion correction 3D distortion correction has been activated for the LFOV scan. 

Check distortion corrections for other scans. 

Voxel spacing and gap Ideally like CT slice thickness. Should be less than 2mm and near 

isotropic. 

There shouldn’t be any slice gap. 

3D versus 2D acquisition 3D acquisitions should be used to provide high resolution 

isotropic imaging. 2D acquisition may be used if it offers good 

soft tissue contrast. 

FOV position The centre of the FOV should be positioned over the anatomy of 

interest (FOV and magnet isocentre are aligned for better 

geometric fidelity) 

Gradient non-linearity 

correction 

2D distortion correction should be applied as a minimum. 3D 

distortion correction should be applied if available. Some 

systems allow 3D distortion correction to be applied to 2D multi-

slice datasets. 

Contrast agent May be used to highlight targets or OARs. The decision whether 

to use contrast agent should follow discussion with a radiologist. 

Fiducial marker visibility Verify that the fiducial markers are clearly visible on MRI and 

distinguishable from calcifications. 

Size  The skin must be in the FOV and the image must be large enough 

for insertion of a virtual couch (required for treatment planning 

system (TPS) )   

MRI sequence The sequence must be the same than the data used to train the 

DLM. 

Anatomy The image is the correct anatomy, and the orientation is correct 
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Intensity distribution The intensity distribution is within the same range of the 

intensities of MRI used to train the DLM. 

sCT QA 

Once the quality of the acquired MRI scan is deemed suitable for sCT generation and image 

guidance, the image can be produced and assessed.  

Table 6.2 lists the elements to check before using a sCT for treatment planning. If the image 

respects all the conditions below, complementary quantitative QA can be applied.  

Table 6.2: sCT qualitative assessment check list. (Dowling et al.[8]). These elements are parts of QA checks 

used in the HIPSTER[9] and NINJA[10] clinical trials.  

Check list Details 

Image transfer Confirm that the correct sCT has been assigned to the patient 

and confirm that sCT is correctly oriented. 

Image integrity Visually inspect the entire sCT volume for any missing tissue or 

major artefacts. These differences may not affect dose 

calculation but should be noted. 

Field of view Ensure that the sCT has sufficient field-of-view to cover all 

relevant anatomy, skin contour, and sufficient extension for 

dose calculation. 

Body contour Check if the sCT body contour match the MRI body contour 

(require segmentation). 

HU to electron density 

conversion 

Check that the correct calibration curve has been applied to the 

sCT. 

 

Quantitative evaluation of sCT 

Most of the methods used for the evaluation of sCT are also used in general image QA. Figure 

6.3 shows the methods employed for sCT QA by order of complexity. These metrics can be 

classified in 3 categories:  

- Full reference, i.e compare the generated image to a ground truth. For voxel-wise 

comparison, the two images must be registered.  

- Reduced reference. In this case, only features of a ground truth image are compared.  

- No reference. These are used when no ground truth is available for direct comparison.  

The choice of metrics will then depend on the availability of a planning CT (ground truth).   
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With reference CT 

sCT can be generated to adapt the treatment to the anatomy of the day, but the acquisition 

of a CT for the planning phase may remain. In this scenario, the planning CT can be used as a 

reference to assess the quality of the sCT.  

The most commonly used in the literature are the mean absolute error (MAE), the mean error 

(ME), the peak signal-to-noise ratio (PSNR) and the structural similarity index (SSIM)[11]. The 

mean absolute percent error (MAPE) is the relative error, indicating the precision of the 

prediction regarding the reference. The absolute difference, absolute percent difference and 

the difference of intensities between the sCT and the planning CT can be computed either 

within a contour (body contour or organs), or at a voxel level resulting respectively in absolute 

error (AE), absolute percent error (APE), and error (E) maps. The PSNR is an indication of the 

distorting noise in the generated image, while the SSIM is a measure of the difference in 

luminance, contrast, and structure. The visual information fidelity (VIF) is an alternative 

measure of the global similarity of the images. All these metrics give complementary 

information. However, the sCT and the planning CT need to be registered to compute these 

metrics. 

 

 

Figure 6.3: Methods for image quality assessment of synthetic CT by order of complexity. This diagram 

presents metrics comparing directly the sCT to a planning CT (full reference metrics, in blue) and methods to 

assess the sCT when no planning CT is available (no reference, in purple). The no-reference metrics in this 

context are based on statistics derived from retrospective CT scans. The voxel intensities (outliers' detection) 
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or key radiomics features (confidence score) are compared to those obtained from a reference CT cohort, 

representing the range of expected values. 

These quantitative metrics can be computed at a voxel level, organ-wise (local) or within the whole body 

contour (global). Aleatoric and epistemic allow for the probability of having a misprediction of Hounsfield Unit 

value for each voxel and are specific to deep-learning, or Artificial Intelligence (AI) – based models. The 

acronyms are details at the end of the chapter.  

Without reference CT 

In the scenario of MRI-only RT, i.e when no reference CT is available, the generated image can 

be assessed by statistical analysis of HU values compared to a cohort of CT. A voxel-wise 

outliers’ detection method was previously proposed by Chourak et al.[12]. This method relies 

on the registration of the sCT to an atlas of reference. A confidence score according to the 

values of specific image features can also be computed, as proposed in the 2nd section of 

chapter 5.   

DLM allows for fast sCT generation. One approach to reducing uncertainties is generating 

multiple sCTs from the same MRI scan and measuring the voxel-level differences in Hounsfield 

Units (HU). However, if the error stems from a bias in the model, the same misprediction 

could be present in all the generated images, making it less discernible through multiple sCT 

generations alone. The idea is thus to compare images obtained from two different 

methods[13]. In a clinical setting, the sCT derived from a commercial device can be compared 

to an in-house method that has demonstrated its effectiveness using center-specific data. 

Predictive uncertainty maps 

Epistemic and aleatoric uncertainties are specific to deep-learning model[14]–[16].  

Epistemic uncertainty could be reduced with a better dataset and refers to the uncertainty of 

a model. It can be divided as :  

- Structural uncertainty : related to the architecture of the model, i.e. is it the best 

choice for the task?  

- Parametric uncertainty : related to the estimation of the parameters of the model.  

The measure of these uncertainties can be interpreted as the standard deviation of the output 

according to variations of the model. Monte Carlo dropout, which consists of deactivating 

random neurons in the network during the learning phase, is one way to estimate the 

epistemic uncertainty.   

Aleatoric, also known as data or intrinsic uncertainty, refers to the inherent property of the 

data distribution and is thus irreducible[17]. It can be divided as :  

- Homoscedastic uncertainty : constant across all input data. 

- Heteroscedastic uncertainty : varies across the input data. 

Using probabilistic models, i.e. models incorporating probabilistic layers, like Bayesian Neural 

Networks (BNNs), enables to capture both aleatoric and epistemic uncertainties. 
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Another effective approach is the use of ensemble models[18], where multiple models with 

the same architecture are trained with different initialisations or on diverse data subsets. The 

variance in predictions across the ensemble provides an indication of aleatoric uncertainty. 

Computing these uncertainties results in 3D maps, providing insight into the probability of an 

accurately predicted HU value at a voxel level. This gives an indication of the areas where the 

generation method may lack accuracy. 

Recommendations  

Table 6.3: Threshold of acceptability for quantitative evaluation of sCT generated from MRI with deep-

learning based methods. 

 Methods Recommendations 

With reference 

CT 

MAE per organ and within the 

body contour 

(Particular case for air cavities      where 

the presence of air must be compared 

with the MRI to correspond to the 

anatomy of the day) 

Within 10% of accuracy[19]. 

Geometric integrity ≤ 1mm for structure within 10cm radial 

distance of isocentre, ≤ 2mm if outside 

of this perimeter[20]. 

Without 

reference CT 

Statistics on retrospective CT 

(voxel-wise or confidence 

score)  

Within the 95% confidence interval or 

within the minimal and maximal values 

if the sample size of the reference CT 

cohort is < 100. 

Double sCT computation Absolute HU difference < 50 HU in each 

non-bony structure.  

 

Discussion  

This paper proposes guidelines for sCT QA to ensure reliable treatment delivery in MRI-only 

RT. Both qualitative and quantitative approaches were considered. Full-reference metrics, 

which involve comparing the sCT to a planning CT, as well as no-reference methods, have 

been presented to provide QA solutions for different RT scenarios involving sCT from MRI. 

These methods allow for the assessment of the generated image at different scales, from the 

overall images to the organs and voxel level. Ideally, automatic tools for sCT QA in MRI-LINAC 

workflow (online ART) should be integrated in the device. Low computation time and easy 

interpretation of the results are key elements for fast and efficient quality control. 
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The results of images generated from DLM are highly dependent on the training database. 

For non-'in-house' models, harmonisation of scanners and pre-processing is beneficial but 

may not be sufficient. Multicentre studies have shown the positive impact of mixing data from 

different hospitals on the results, compared to training on a dataset from one centre and 

testing on another[21], allowing for more generalisable models. This also allows training a 

model to produce sCT from MRI of different field strengths (0.35T to 3T, for example). 

Additionally, training the model with a large variability in the dataset provides a better chance 

to produce good quality images for patients with low representation in the population. 

For “in-house” models trained on monocentre data, the MRI used to generate the sCT must 

be consistent with the type of sequences and the field of view of the MRI used to train the 

model. If change appears in practice, the model will have to be re-evaluated. For commercial 

software, a test on a known image dataset should be conducted after each update. Changes 

in the population over time might also cause the model to degrade2. In future work, setting 

up a protocol to predict locally the potential errors in the sCT by assessing the MRI will permit 

to save time and resources. 

This chapter presents suggestions for sCT QA focusing on the accuracy of HU prediction. 

However, the finality is the RT dose calculation and the treatment delivery. Once a sCT is 

deemed of sufficient quality, a dosimetric QA is necessary. In case of the existence of a 

planning CT, the dose calculation of the day can be compared to the initial DVH. Dosimetric 

QA if no ground truth is available is a main concern and this need to be addressed. In the 

International Commission on Radiation Units and Measurements report published in 2022, 

Keall et al.[19] suggest respecting an accuracy of 10% in CT number as 20% variation in HU 

may result in a systematic dose error of 1.5%[22]. The treatment to determine this threshold 

have been determined using a 6  MV photon beam, but proton therapy is more sensitive to 

HU variation. Therefore, these recommendations must be adjusted according to the 

prescribed treatment and anatomical location.  

The location of the errors needs also to be identified, as the influence of an error is correlated 

to its interaction within the beams (area where the dose is homogenous or strong gradient). 

Impact of HU errors on dose calculation should also be investigated to better determine 

threshold of acceptability.   

Due to the complexity of the treatment planning and delivery workflow in RT, it is important 

to note that not only the quality of images should be assessed; the contours and the dose 

calculation need to be controlled prior to treatment delivery. The whole quality control 

pipeline needs to be applied each time an sCT is used, because, unlike images acquired from 

a device, the sCT is an image resulting from a computational process and thus errors in its 

generation can occur at any time. 

                                                      

2 https://www.fda.gov/media/160125/download 
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Conclusion 

Practical QA for clinical use of sCT in MRI-only RT has been proposed in this chapter, taking 

into consideration the existence, or not, of a planning CT. These QA criteria aim to be 

implemented in clinics and future clinical trials.  

Metrics acronyms 

AE Absolute error 

APE Absolute percent error 

DVH Dose-volume histogram 

E Error 

MAE Mean absolute error 

MAPE Mean absolute percent error 

ME Mean error 

MSE Mean square error 

NCC Normalized cross-correlation 

NMI Normalized mutual information 

PSNR Peak signal-to-noise ratio 

RMSE Root mean square error 

SSIM Structural similarity metric 

VIF Visual information fidelity 
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Conclusion: overview, contributions, limitations, 

and perspectives  

Overview 

The generation of sCT from MRI is an area of significant interest due to its potential to 

streamline patient care and enhance the accuracy of treatment delivery in EBRT. Recent 

advancements in deep-learning models have demonstrated promising precision and 

robustness in sCT generation. However, it should be noted that these approaches have been 

trained and evaluated on monocentre datasets of varying sizes. Therefore, their effectiveness 

and consistency on MRIs from different manufacturers and across the diverse range of 

anatomies encountered in clinical practice remain uncertain. 

Existing literature typically presents results based on body contours or organ-wise 

evaluations, where an assessment of the overall quality of the generated sCTs is provided. 

However, this lacks information about the specific locations of mispredictions. In this thesis, 

a methodology has been proposed to identify voxel-level locations, encompassing both image 

and dose calculations, where the methods tend to be less accurate. To address the impact of 

localized HU errors on dose calculation, sensitivity analysis based on the Morris screening 

method is employed to determine whether a volume of error would have an impact on the 

dose at the isocentre. This analysis can also assist in establishing acceptable thresholds in 

terms of size or HU discrepancies based on their respective locations. 

Once a generation method is deemed robust and accurate enough to be integrated in a 

clinical workflow, the assessment of patient-specific sCTs becomes a crucial aspect. However, 

in the existing literature, the metrics used for assessment either require a planning CT as a 

reference (full reference metrics) or involve the use of a CBCT, which is not applicable in an 

MRI-only radiation therapy workflow. To address this challenge, an atlas based approach is 

proposed using a cohort of CT scans to assist with identifying outliers at a voxel level in daily 

sCTs. Alternatively, radiomics features can be computed on a cohort of CT scans, and these 

values can be used to assign an acceptability score to a new sCT. 

While an sCT does not need to be perfect in terms of image quality, it must possess sufficient 

quality to enable accurate dose calculation. Therefore, the selection of features correlated to 

a dosimetric endpoint, such as the gamma pass-rate, holds significance in the context of EBRT. 

Main contributions and limitations 

This thesis proposes a methodology to identify the limitations of sCT generation methods 

through statistical evaluation, aiming to provide a better understanding of their strengths and 

limitations. To achieve this, the patient cohort data has been brought into the same 
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anatomical space using a robust non-rigid registration method. The suggested hybrid 

registration approach utilizes intensity and contour-based methods to combine the MRI 

images to the structural description of its delineated organs, resulting in improved alignment 

of soft tissues, contours, and inner structures.  Statistical analysis is then conducted on both 

images and doses, to subsequently generate 3D error maps that highlight regions where 

mispredictions of HU tend to be significant. It is important to note that this methodology has 

a major limitation: the bias induced by the interpatient registration process, as well as the 

intra-patient registration process (where CT and MRI are registered for each patient before 

generating the sCT).  

The sensitivity analysis presented in this study follows the Morris screening method. It 

highlights the structures in which a change in HU values will have the most significant impact 

on the dose in the centre of the prostate. Specifically, the bones and the soft tissues 

(excluding the bladder, rectum, and prostate) were found to have the highest impact. This 

can be attributed to the number of beams that pass through these structures.  

By assessing the impact of size, location, and changes in HU of an artifact on the dose in the 

target volume, the proposed methodology allows us to conclude that the distance to the 

isocentre is the least influential factor. The impact of changes in intensity shows the most 

variability across the patient cohort and is equally significant to the size factor. These findings 

provide valuable insights for determining thresholds of acceptability for uncertainties in HU. 

However, it is important to note that the approach should be adapted based on factors 

specific to each sCT generation method, such as location, error intensity rank, size, or any 

other relevant factor for this method. It is essential to interpret these conclusions with 

caution as they are specific to the dose calculation algorithm, the number of beams crossed 

by the volumes and the amount of dose delivered in each of them. In this study, we assessed 

the effect of errors on IMRT dose plans. The results cannot be generalized to other treatment 

techniques such as VMAT, SBRT, or proton therapy. Furthermore, another limitation of this 

study is that we focused solely on the impact in the centre of the target volume. Changes in 

HU may also have consequences on the dose distribution in organs at risk, leading to toxicity 

and potentially side effects such as bladder inflammation.  

To address the challenge of assessing patient-specific sCT without a reference, two strategies 

have been developed. The first strategy involves creating an atlas from a cohort of reference 

CTs. This atlas is then registered to the new sCT, and a statistical analysis is conducted to 

detect outliers at a voxel level by comparing the HU values of the new sCT to the distribution 

of HU values from the cohort of reference CTs. To mitigate the bias induced by the 

interpatient registration process, a weight has been applied according to the probability of 

mis-registration of each structure. This method highlights regions of significant discrepancies. 

However, it is time-consuming and relies on the accuracy of interpatient registration, making 

it potentially inappropriate for patients with significantly different anatomies compared to 

the atlas.  
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To avoid registration uncertainties, the second approach utilizes radiomics-based feature 

calculation. These features are computed on a cohort of generated and reference data. An 

optimized random forest algorithm is then employed to select the most meaningful features 

for regarding their dosimetric outcomes. These selected features are then computed on each 

new sCT, and based on their deviation from the expected range of values, a score is assigned. 

This process can be repeated for several volumes of interest, including the body contour, 

bladder, rectum, clinical target volume, and heads of femurs, enabling assessment at both a 

global and organ-wise level. While this method has a low computation time and may allow 

for online QA, the selected features can present vendor dependency. Additionally, the field 

of view and the accuracy of the contours also impact the results.  

A major limitation of this work is the data we worked with. As all the experiments were 

performed with a unique dataset of 39 patients with localized prostate cancer, the results 

presented cannot be considered generalizable but give an insight into the performance of the 

model assessed. Also, while the results are not generalizable, the methods proposed are and 

can be adapted to different generation approaches and anatomical locations. 

The knowledge acquired during my thesis on sCT generation and the significance of QA have 

led to suggested guidelines for integrating quality control measures at various stages of the 

clinical workflow. However, this work is still in its early stages and requires discussion with 

experts in image processing, medical physicists, and clinicians to establish a consensus on 

metrics and best practices that ensure the accuracy of MRI-only RT. 

The contributions of this thesis to sCT QA can be applied to sCT generated from CBCT, as they 

are not dependent on the modality used for image generation. Additionally, these 

contributions can be extended to other anatomical locations. 

Perspectives  

Using a large multicentre dataset to train deep-learning models for generating sCTs from MRI 

can enhance the generalizability and robustness of these methods. The availability of such a 

database to the public would also facilitate meaningful comparisons among published 

methods. Currently, each publication compares its results with other models based on their 

own dataset, and each method optimizes hyperparameters to achieve the best performance 

on their specific dataset, which complicates the implementation of these methods in different 

centres. Creating such a database poses several challenges, including the requirement for 

paired images where both a CT and an MRI are acquired from the same patient. Additionally, 

it necessitates international collaboration and should aim to represent diverse anatomies, 

socio-economical levels, ethnicities, and age groups to ensure fairness of the models[1]. This 

database will also prove valuable for the statistical approaches investigated in this study, as 

the patient data used were acquired at a single centre and consisted of only 39 CT-MRI pairs, 

potentially limiting its representativeness of the prostate cancer population. 
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To address the limitations associated with uncertainties arising from the non-rigid registration 

process in the previously presented methodologies, one potential solution is to differentiate 

between errors attributed to registration and those intrinsic to the method itself. This may be 

achieved by adapting mixed-effects models, initially developed for longitudinal data 

analysis[2], or by applying deep-learning approach[3]. Incorporating complementary metrics, 

such as Hausdorff distance and negative mean square difference, to assess the accuracy of 

the registration process would provide a more comprehensive understanding of potential 

biases introduced. 

The sensitivity analysis can be enhanced by investigating the local influence of modified HU 

values, incorporating differences in dose-volume histograms for each volume of interest, 

including the target volume as well as the organs at risk (bladder, rectum, and heads of 

femur). Future work will also explore other treatment techniques. It would be valuable to 

model the impact of each error factor based on its interaction with the beams in different 

treatment modalities. 

In the pelvic area, the patient's anatomy is susceptible to changes caused by variations in 

bladder and rectal filling for example. These changes may have implications for the accuracy 

of treatment delivery [4], [5]. The presented methodology in this study can be adapted to 

each specific sCT generation method, once the locations of HU uncertainties have been 

identified and treatment plans have been defined. Deep-learning-based sCT generation 

methods are commonly used, and the development of more effective models should be 

pursued in the future. Aleatoric uncertainties (data-dependent) and epistemic uncertainties 

(model-dependent) are specific to machine-learning models and can be assessed [6]. 

Considering the impact of these uncertainties on the dose distribution during the learning 

process could lead to the creation of more clinically valid image generation. The method 

proposed in this paper has also the potential to determine acceptance criteria for organ 

motion during treatment. 

The voxel-wise approach for patient-specific sCT QA is time-consuming and impractical for 

online use. Therefore, exploring faster registration methods can be beneficial. The use of this 

methodology for offline validation or as part of the clinical evaluation stage to validate sCT 

generation methods can also be explored. 

The radiomics feature-based methodology is more efficient and does not require interpatient 

registration. However, it's important to note that the study was conducted on a single-centre 

dataset. If applying this methodology to a different dataset, the entire procedure would need 

to be repeated, considering factors such as different field of view, image resolution, and 

variations in the feature extraction process. Additionally, when bladder injection is involved 

in the CT procedure for the training phase, it can affect the extracted features. The 

reproducibility of radiomic features is also influenced by various factors such as image 
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acquisition settings, reconstruction algorithms, and the software used for feature extraction 

[7]. A part of future work will involve investigating the reproducibility of selected features and 

testing their effectiveness as an assessment tool on sCT generated from data outside the 

training centre. Furthermore, exploring the benefits of using a multicentre database to train 

the random forest during the feature selection phase will be valuable. To achieve 

generalizability, a protocol for normalizing the data in terms of field of view and image 

resolution needs to be defined prior to using this approach. Additionally, an assessment of 

the contours used to delineate the volume of interest is necessary. 

Conclusion 

In conclusion, DLM have demonstrated great potential in sCT generation for MRI-only EBRT. 

Research has already proposed DLMs that achieve a high level of accuracy. However, the 

integration of DLM-based sCT into clinical practice faces two main obstacles: 

- The need for training cohorts in reference centres or access to multicentre databases  

- The requirement to analyse the limitations of these methods and assess the quality of 

the generated images before their clinical use. 

Generation of sCT for MRI-based radiotherapy RT shows promise in reducing toxicity and 

improving local control. For this approach to be effective, the generated images must meet 

quality standards in terms of both visual representation and electron densities specific to each 

patient. Nevertheless, clinical trials are necessary to demonstrate the clinical benefits of this 

approach, and international consensus for sCT QA need to be established.  
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Titre : Evaluation de la qualité de CT synthétiques générés à partir d’IRM pour la planification 

de traitement en radiothérapie externe  

Mots clés : CT synthétiques, contrôle qualité, radiothérapie externe 

Résumé : La radiothérapie (RT) externe 
repose sur deux modalités d’imagerie: la 
tomodensitométrie (scanner CT) pour le 
calcul de la dose basée sur la densité 
électronique des tissus, et l’imagerie par 
résonance magnétique (IRM) permettant une 
segmentation plus précise de la tumeur et des 
organes a risque grâce au meilleur contraste 
que cette modalité offre. L’ IRM seule pour la 
planification de dose a gagné en popularité 
rendant le CT de planification obsolète. 
Cependant, cette modalité ne fournit pas 
d’informations sur la densité électronique des 
tissus. La génération de CT synthétique (sCT) 
est donc essentielle à la planification du 
traitement à partir d’IRM. Plusieurs méthodes 
ont été développées, et les progrès récents en  

apprentissage profond permettent 
d’obtenir des images précises. Mais le 
contrôle qualité d’un sCT pour une 
utilisation systématique en routine clinique 
n'est pas trivial. Les principaux objectifs de 
cette thèse sont: 1) Identifier les limites des 
méthodes de génération de sCT via une 
analyse statistique. 2) Quantifier l’impact 
des erreurs d’intensité sur la distribution de 
dose. L’objectif est d’évaluer l’importance 
de ces erreurs et leurs potentielles impact 
sur le traitement. 3) Proposer un protocole 
permettant l’évaluation de chaque sCT, 
afin de s’assurer que les images générées 
répondent aux normes requises et sont 
acceptables pour la planification du 
traitement. 
 

 

Title: Synthetic-CT quality assessment for MRI-only based treatment planning in radiation  

therapy 

Keywords: synthetic-CT, quality assessment, radiation therapy 

Abstract: The standard external beam 
radiation therapy (EBRT) workflow relies on 
two imaging modalities: computed 
tomography (CT) for dose calculation based 
on electron density information, and magnetic 
resonance imaging (MRI) for better soft tissue 
contrast, enabling more accurate target 
delineation and minimising the risk of toxicity 
in healthy tissue. To define the treatment plan, 
both CT and MRI images are co-registered, 
inducing uncertainties. MRI- only RT has thus 
gained popularity by eliminating the need for 
CT scans. But, as MRI does not provide 
electron density information, the generation of 
synthetic-CT (sCT) is essential for MRI-only 
RT. Several methods have been developed, 
and recent advancements in deep learning 
have facilitated the production of more  

accurate results. However, for the 
systematic use of MRI-based dose 
planning in a clinical setting, the issue of 
quality control for the sCT still needs to be 
addressed. The main objectives of this 
thesis are: 1) To identify the limitations of 
the sCT generation methods through 
statistical analysis. 2) To quantify the 
impact of Hounsfield Unit errors on dose 
distribution. By measuring the effects of 
these errors, the goal is to assess their 
significance and potential implications in 
treatment. 3) To develop a patient specific 
sCT quality assessment framework, to 
ensure that generated sCTs meet required 
standards and are acceptable for treatment 
planning purposes. 

 


