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Titre : D’unécoulement irrégulier auxexpériences : un cheminvers lamesurede la stochas-
ticité spontanée
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Résumé : Les systèmes chaotiques sont car-
actérisés par une séparation exponentielle des
paires de particules. C’est en outre cette pro-
priété qui rend ces systèmes imprédictibles sur
une fenêtre de temps infinie. Pour autant, il est
certain que ce phénomène n’est pas à l’origine
du caractère aléatoire de la turbulence. On ob-
serve en effet que les paires de particules en
expérience se séparent de manière algébrique,
suivant une loi cubique indépendante de la sé-
paration initiale. Ce régime, dit de Richardson,
suggère que la stochasticité devrait arriver en
un temps fini, contrairement à ce qui est ob-
servé dans le chaos. Ce phénomène est in-
titulé « stochasticité spontanée » et tient sa
source du caractère irrégulier de la dynamique
sous-jacente. C’est en tout cas un candidat
théorique qui pourrait expliquer la nature aléa-
toire de la turbulence elle-même. Alors que
la stochasticité spontanée est bien formalisée
dans des modèles simplifiés, il n’existe pas à ce
jour de procédure ou d’outils précis qui pour-

raient quantifier efficacement ce phénomène.
Dans cette thèse, nous nous intéressons à

un écoulement 3d irrégulier, inspiré de la fonc-
tion de Weierstrass, intitulé « modèle WABC ».
On montre que des trajectoires lagrangienne
possèdent une dispersion en temps finiemême
dans la limite de dispersion initiale infinitési-
male. Cette observation directe de la stochas-
ticité spontanée est néanmoins impossible à
mettre en place dans les écoulements réels à
cause des contraintes numériques ou expéri-
mentales. Inspiré de notre modèle, nous pro-
posons un critère basé sur les probabilités de
transition pourmesurer en pratique la stochas-
ticité spontanée dans les écoulements réels.
On vérifie dans un premier temps si ce critère
est bien sensible à ce phénomène dans lemod-
èle WABC. On l’applique enfin à des données
expérimentales où des résultats préliminaires
mettent en évidence des traces de stochastic-
ité spontanée.
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Abstract: Chaotic systems are characterised
by exponential separation between close-by
trajectories, which in particular leads to deter-
ministic unpredictability over an infinite time-
window. It is now believed, that such butter-
fly effect is not fully relevant to account for
the type of randomness observed in turbu-
lence. For example, tracers in homogeneous
isotropic flows are observed to separate alge-
braically, following a universal cubic growth,
independent from the initial separation. This
regime, known as Richardon’s regime, sug-
gests that at the level of trajectories, and un-
like in chaos theory, randomness may in fact
emerge in finite-time. This phenomenon called
‘spontaneous stochasticity’ originates from the
singular nature of the underlying dynamics,
and provides a candidate framework for turbu-
lent randomness and transport. While spon-
taneous stochasticity has been mathematically
formalised in simplified turbulence models , a

precise and systematic tool for quantifying the
various facets of this phenomenon is to this day
missing.

We introduce in this thesis a 3d rough flow
inspired by the Weierstrass function, entitled
’the WABC model’. We show that Lagrangian
trajectories in this model have a finite-time dis-
persion, even in the limit of infinitesimal ini-
tial dispersion. This direct observation of spon-
taneous stochasticity is impossible to perform
in real flows due to numerical or experimen-
tal constraints. To circumvent this technical is-
sue, we adapt the definition of spontaneous
stochasticity in our model to create a criterion
based on transition probabilities. We show
that this criterion is more suited for the anal-
ysis of real flows. We verify its sensibility to
spontaneous stochasticity in the WABC model.
This criterion is then applied on experimental
data, where preliminary results tend to high-
light traces of spontaneous stochasticity.
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In ’Essai philosophique sur les probabilités’, published in 1814, Pierre Simon de Laplace
wrote: ’Une intelligence qui pour un instant donné, connaîtrait toutes les forces dont
la nature est animée, et la situation respective des êtres qui la composent, si d’ailleurs
elle était assez vaste pour soumettre ces données à l’analyse, embrasserait dans la même
formule les mouvements des plus grands corps de l’univers et ceux du plus léger atome :
rien ne serait incertain pour elle, et l’avenir comme le passé, serait présent à ses yeux.’.
For the large majority of scientists (like Laplace) of the time, physics was deterministic:
one cause could only lead to a single consequence. And as Laplace puts it: if we knew
every single forces in the universe, we would be able to predict exactly its whole evolution,
in all its details.

However, this perspective started to crackle when Brown observed in 1827 some ran-
dom rough movements of pollen grains. Thanks to some physicists such as Einstein, we
understood that those erratic dynamics could be formally explained by statistical tools.
He particularly thought that this movement was due to the collisions of molecules on the
grain. But at its core, nothing was considered to be truly stochastic: the dynamics of the
molecules was simply way too complex to comprehend with deterministic tools.

The final blow to determinism as a global paradigm was given by the emergence of
quantum mechanics. In this theory, statistics were elevated to the foundation of physics at
infinitely small scales. Physicists started to split, as some of them, like Bohr, considered
that this theory was proof of our incapacity of predicting the laws of Nature with an
infinite precision. Some others, like Einstein, still thought that this was just a theory and
that the world could not be intrinsically stochastic. This point of view was challenged
in the 60s when J. Bell enunciated a theorem that would prove, whether some hidden
variables, characteristic of a missing deterministic understanding, could be unveiled. And
in 1982, a brilliant experiment lead by A. Aspect proved that Bell’s inequalities were not
respected, shattering the last hopes promised by determinism1.

Quantum mechanics represent the exception though, as it only accounts for the dy-
namics at the infinitely small scales, and, quantum noise appears to be totally negligible
at a macroscopic level (at least in full generality). For a long time, researchers agreed
that the complexity of systems is at the core of their unpredictability. Especially, chaos
theory showed that in some deterministic systems a slight perturbation could lead to very
different dynamics. The unpredictability of turbulence, for instance, appeared for a long
time as our failure to solve its complex dynamics with great accuracy.

This last statement got challenged however by E. Lorenz in 1969, when he conjectured
that some too complex systems can show some extreme amplification of a small perturba-
tion. He presented what he called the ’butterfly effect’ and this phenomenon got confused
with chaos for a long time. We now know that it is stronger than chaos as even an in-
finitesimal noise could lead to completely different dynamics in a finite-time [67]. This
’real butterfly effect’ is concerning since, with the amplification of the quantum noise,
some macroscopic phenomenons (as climate) could truly be unpredictable by nature.

1A brief review of the history of unpredictability in physics can be found in an interesting paper
by F. Ladieu [58].
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In this thesis, we explore Lorenz’ statement and question if this ’real butterfly effect’
could occur in turbulence. We build a simple model of a flow reproducing Lorenz’ observa-
tions in order to understand what this phenomenon, named ’spontaneous stochasticity’, is
about. The approach that we adopt in this thesis is to experimentally observe and analyse
such phenomenon. To this aim, we use the above model as a source of inspiration to create
a criterion to investigate spontaneous stochasticity in experimental turbulence. We mainly
try to extend what has been explored theoretically so far to probe this phenomenon in
real flows.

After an introduction of unpredictability in turbulence in chapter 1, we introduce in
chapter 2 the main ingredient of spontaneous stochasticity: irregularities. We then de-
scribe the phenomenon in chapter 3, in order to analyse what is at its core. This detailed
description allows us to build a model of a flow that exhibits spontaneous stochasticity,
presented in chapter 4. We also give some of its important features, especially about tur-
bulent transport. The definition of spontaneous stochasticity in this model is presented in
chapter 5. We also analyse this definition and create our experimental criterion, called the
’transition deviation criterion’. It exploits the possible link that spontaneous stochasticity
has with the anomalous dissipation that can be observed in turbulence. After describing in
chapter 6 the mathematical tools that we used, we check numerically the presence of spon-
taneous stochasticity in our model. This is done in chapter 7, where we also test how our
criterion performs in this model. Finally, chapter 8 gives some insights regarding the use
of the transition deviation criterion in experimental data. While this study is incomplete,
it gives a proof of concept for investigating spontaneous stochasticity in experiments.

18



Part I

From unpredictability to
spontaneous stochasticity
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1 - Unpredictability of turbulence
For more than 200 years, physicists have been trying to predict turbulent flows. And

yet, we are still unable to forecast with high certainty the weather after a few days. This
comes as a surprise since we know the exact deterministic equations of motions for fluids,
which are the Navier-Stokes equations

∂u

∂t
+ (u.∇)u = −1

ρ
∇P + ν∆u+ F . (1.1)

In this thesis, we suppose that the fluid is incompressible (preserving the volume)

∇.u = 0. (1.2)

Equations (1.1) with this added condition are called the ’incompressible Navier-Stokes
equations’ (INSE). Those equations describe the evolution of the velocity field u in time
and space, when there is an external forcing F that continuously injects energy. The
injected energy is then dissipated by viscosity ν at the smallest scales.

An example of a flow slice is presented in Figure 1.1. We observe that a turbulent
flow: 1. is made of global structures, 2. involves different scales (see for instance the small
structures in the inset), 3. seems random or ’chaotic’. Taking into account all of those
features is the main challenge when it comes to weather forecasting for instance.

In the end, what is really at the origin of unpredictability in turbulence? In this
chapter, we will explore this question by first defining the concept of chaos from dynamical
systems theory. We will observe that chaos is not the driving factor in the apparent
stochasticity of turbulence. The latter will then be broached, exploring the influence of
thermal noise on the macroscopic dynamics. We will particularly see that the underlying
process is more complex than expected, implying intermittency and potential singular
events.

1.1 . Chaos and turbulence

1.1.1 . Dynamical systems
Definition – In the following, we call a smooth dynamical system, any dynamics

governed by the differential equation

ẋ = f(x(t)), (1.3)

where f is a C1(Rd+1) function, d being the dimension of space. We also introduce the
notion of continuous maps Φt as the morphisms, such as x(t) = Φt(x0), where x(t) is
solution of equation (1.3) with x0 the associated initial position. We also call those maps
’flows’.
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Figure 1.1: Slice across the x-axis of a turbulent velocity field. This was made from a
numerical simulation by Bitane et al. [6]. One can notice that turbulence is a multi-scale
phenomenon, implying structures over a wide range of scales.

Attractors and chaos – Particles can get trapped in certain regions of phase-space.
They could stop at a point, called a sink, or start having a periodic movement. We call
those areas ’attractors’ since the orbit stays in this subspace for some long-enough time1.
The trapped trajectories are robust: a small perturbation is generally not sufficient to
make the particle escape.

In some cases, the trapped trajectories can have a more complex and unpredictable
movement. We call those ’strange attractors’[73, 32] . As an example, we introduce the
Lorenz 63 system as 

dx
dt = σ(y − x)
dy
dt = ρx− y − xz
dz
dt = xy − βz.

(1.4)

This system has some fixed points, especially sinks, for many values of the parameters.
But some of them, like (σ, ρ, β) = (16, 45.92, 4), exhibit a non-trivial attractor. This is
depicted in Figure 1.2 which represents a trajectory in this ’butterfly’ attractor tracked
for a very long time. The unpredictability here lies in the impossibility to predict when
the tracked particle will switch from one ’wing’ of the attractor to another.

Such unpredictability is a signature of chaos. This phenomenon is characterised by
the loss of information about the long-term past. For long enough times, those systems
appear to behave randomly. This apparent randomness should not be confused with

1Some more precise mathematical definition can be found in [32, 83]. We here only give a
phenomenological one.
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Figure 1.2: The Lorenz 63 strange attractor. We represent here the tracking of a single
particle in time. Trajectories are trapped in this particular subspace. We also note that
it is impossible to predict when a particle will switch from one ’wing’ to another. This is
what we call ’chaos’.

true stochastic processes. In fact, the randomness here is only apparent since from one
initial condition, there exists only one possible outcome (being a consequence of Cauchy’s
theorem for smooth differential equations). Many simple systems exhibit great complexity
due to chaos (double pendulum, three-body problem, etc...).

Poincaré maps – In practice, it is often difficult to tell if a system is chaotic or not. A
qualitative evaluation is however possible through the analysis of Poincaré maps. Consider
a 3d trajectory represented by the points (xp(t), yp(t), zp(t)) for a given dynamical system
(the Lorenz63 model for instance). Then, pick a cut axis and position, for example zc = 1.
We can then obtain a set of points such that

Ps = {(xp(ti), yp(ti)) | zp(ti) = zc}. (1.5)

This corresponds to plotting a point on a x-y slice where the trajectory hits zp(t) = zc. In
the attractors, the trajectory has a coherent movement which translates into a coherent
structure in the Poincaré map. Scarcer points show places where the trajectory explores
this phase-space area only for a few times. This is often a signature of chaos, since small
perturbations of the system can quickly lead to extreme changes of behaviours.

We present in Figure 1.3, an example of a Poincaré map in the Lorenz 63 system. They
represent sections of the butterfly observed in Figure 1.2. There are less streamlines near
x = 0 and y = 0. A particle coming from one of the butterfly’s wings can spontaneously
be attracted by the other wing of the attractor. The few dots on the bottom of the x-z

23



(a) x-y section with z = 41 (b) x-z section with y = 0

(c) x-y section with x = 0

Figure 1.3: Poincaré sections of the Lorenz 63 system given in equations (1.4). The black
arrows indicate the points where the trajectories suddenly change wings, symbol of chaos.
A total of 20 particles were used to simulate the streamlines here.

and y-z sections show this very chaotic behaviour (indicated by the black arrows on the
figures).

1.1.2 . Lyapunov dispersion

The exponential amplification of small initial perturbations is a very important con-
sequence of chaos. This phenomenon is called here ’Lyapunov dispersion’.

Definition – Considering a perturbation around a reference trajectory x = xp + δx,
we obtain the linearised version of equation (1.3) such as:

˙δxi = δxj J
j
i (xp(t)), (1.6)
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where J j
i (xp(t)) = ∂jfi(xp(t)) is the Jacobian of the system evaluated at xp. The expo-

nential evolution of such perturbation at large times is prescribed by its maximum global
growth rate called ’Lyapunov exponent’:

λ =̇ lim
t→∞

1
t

log ||δx(t)||
||δx(0)|| (1.7)

By the Oseledets theorem, this coefficient exists and depends on the initial position [72]. In
practice, it gives the average rate of separation of two particles. If we consider two particles
x1(t) and x2(t) initially separated by D0 =̇ ||x2(0)−x1(0)||, then their separation at time
t is given by

D(t) =̇ ||x2(t)− x1(t)|| = D0 e
λt. (1.8)

In the following, we will refer to this phenomenon as ’Lyapunov dispersion’. As an example,
we give in Figure 1.4 the evolution of δx(t) as a function of t for the Lorenz 63 system.
We observe that on average, the pair dispersion has an exponential increase with time.

Instantaneous Lyapunov exponent – In practice, a dynamical system can have
several attractors. As a consequence, trajectories can jump from one onto another. The
infinite time limit seems therefore hard to reach since the tracked trajectory needs to
stay in the same attractor during the whole measurement. A way to circumvent this
difficulty is to define the ’instantaneous Lyapunov Exponent’ (iLE), which corresponds to
the short-time counterpart of the regular Lyapunov exponent. It is defined as:

λi(t) =̇ ∂

∂t

[
log ||δx(t)||
||δx(0)||

]
(1.9)

The Lyapunov exponent can therefore be understood as the time average of the iLE for
trajectories remaining in the same attractor:

λ = lim
t→∞

1
t

∫ t

0
λi(t′) dt′. (1.10)

As for the Lyapunov exponent, the iLE characterises the instantaneous dispersion rate of
pairs of particles at time t:

D(t+ dt) =
dt→0

D(t)eλi(t)t (1.11)

1.1.3 . Is turbulence chaotic?
Observations – From the above conclusions about chaos and Lyapunov dispersion,

we observe that chaos does not rule turbulence. This is illustrated in Figure 1.4, showing
the time evolution of pair dispersion in a turbulent flow. We notice two main differences
with the Lorenz 63 system:

• Pair dispersion in turbulence does not depend on initial position any more after
some characteristic time.

• The growth rate of the separation does not correspond to an exponential amplifica-
tion, but to an algebraic t3 law.
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Figure 1.4: Evolution of average square pair dispersion < D2 > as a function of time for
the Lorenz 63 system (Left) and a turbulent simulation [6] (Right). We observe that the
Lyapunov dispersion is driving the chaotic system. However turbulence seems to show a
regime that: 1. is not exponential, 2. do not seem to depend on initial separation. This
underlines that this regime (Richardson) cannot be explained by chaos only.

Historical context – The algebraic regime was first observed by Richardson in 1926
[71] for atmospheric tracers. This regime was later refined by Batchelor [10] who proved
that Richardson’s regime should emerge after a characteristic time tB (Batchelor’s time)
that depends on initial separation and average dissipation in the flow. The Batchelor
regime happening before that time is highly dependent on initial dispersion and shows
a t2 law. This regime would be much closer to Lyapunov dispersion in the case of an
infinitesimal t.

1.2 . Stochasticity in turbulence

1.2.1 . Stochasticity and unpredictability
Introduction to stochasticity – It appears that chaos is not the main driving phe-

nomenon in turbulence. If so, what is at the origin of unpredictability in turbulence? To
get a grasp of it, let us compare a turbulent signal with a chaotic (Lorenz 63) and a stochas-
tic one (Brownian motion). The turbulent signal is obtained from hot-wire measurements
in a wind tunnel [13]. We show those three time series in Figure 1.5.

We first observe that, macroscopically, the turbulent signal seems to be closer to a
Brownian motion. In contrast, the chaotic signal seems to be too regular: microscopic
fluctuations are totally absent (by construction) from the observed signal. Whether tur-
bulence is a real stochastic process or a more complex system than chaos, the use of
stochastic tools seems suited.

In addition, turbulence is a multi-scale phenomenon. We can observe this property
in the pair dispersion curve, since we can distinguish two regimes (low times and large
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(a) Lorenz 63 (b) Brownian motion

(c) Hot-Wire measurement

Figure 1.5: Comparison of time series from different types of processes, centred and nor-
malised by their standard deviation σ: a chaotic one (Lorenz 63), a purely stochastic one
(Brownian motion) and an experimental measurement (with a hot-wire) of a turbulent
velocity field (data from Modane experiment [13]). On this last one is represented an
arrow pointing at a burst of velocity, characteristic in turbulence which is intermittent.
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times). The hot-wire signal given in Figure 1.5 also shows both microscopic fluctuations
(i.e the fast changing velocities) and larger macroscopic changes.

Self-similarity and intermittency – The fluctuations are however not uniform
across the scales since at time t = 1.2s a larger perturbation arises, driving the sys-
tem towards 4σ. We say that turbulence is not ’self-similar’, in the sense that zooming in
the dynamics does not lead to exactly the same system.

To quantify such deviations, let us consider a turbulent flow from the perspective of
Euler (i.e. we follow the flow itself and not the particles). We build below the longitudinal
structure functions as

S∥
p(r) =

〈
(u∥(x+ r, t)− u∥(x, t))p

〉
(1.12)

where the < . > symbol refers to a spatial average and u∥ = u. r
||r||2 . One can also define

the structure functions in the transversal direction, that we note ST
p . In case of a self-

similar process, we should expect Sp ∼ rβp for both types, which was first derived by
Kolmogorov in 1941 [56]. However, experimental measurements (see Figure 1.6) tend to
show that

Sp(r) ∼ rζ(p), (1.13)

where approximately ζ(p) = αp2 + βp + γ with α ̸= 0. Such deviation from self-similar
behaviour is called intermittency, as it is connected with intermittent ’burst’ of fluctuations
in the velocity signal.

1.2.2 . Thermal noise: a microscopic paradox
Observations – From the previous observations, we wonder if turbulence can be driven

by microscopic noises. The small movement of molecules due to thermal fluctuations is
very small compared to the scales at which turbulence builds. One can evaluate the order
of magnitude at which thermal noise can have an effect compared to the inter-particle
distance lint such as [4]

l

lint
∼ (Ma)

−2
3 , (1.14)

where Ma = U/cs is the Mach number representing the ratio between the average flow
velocity compared to the speed of sound. For instance, in a teacup, average velocities can
reach ∼ 0.2m.s−1. The sound velocity in water is cs ∼ 1500m.s−1. As a result we deduce
that in a teacup, the scale at which thermal noise becomes important is approximately
l/lint ∼ 330. The inter-particle distance in water is of the order of several nm. Thermal
noise in this teacup has therefore an effect at most at the order of µm, way lower than the
cup scale. All stochastic effects therefore appear as negligible compared to the macroscopic
lengths. However, as G. Eyink argues, it still has an impact on eddies of comparable
size. A small perturbation could therefore lead to changes of the fluid dynamics, at
least microscopically. But as Lorenz conjectured in 1969 for atmospheric flows [60], those
fluctuations could have effects on the larger scales as well.
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(a) (b)

(c)

Figure 1.6: (a) and (b): transverse velocity structure functions (in arbitrary units) across
scales r/η from experimental data [22]. The curves range from p = 1 (purple) to p =
9 (yellow). The right picture corresponds to structure functions normalised by ST

3 , to
highlight deviations from self-similarity. In the latter case, all curves should be constant.
(c): evolution of ζ(p) from equation (1.13) as a function of p. The black dotted line
corresponds to the self-similar case.
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A paradox? – This conjecture was stated as:

[...] certain formally deterministic fluid systems which possess many scales
of motion are observationally indistinguishable from indeterministic systems;
specifically, that two states of the system differing initially by a small “ob-
servational error” will evolve into two states differing as greatly as randomly
chosen states of the system within a finite time interval, which cannot be
lengthened by reducing the amplitude of the initial error.

There is a paradox then, since thermal noise is supposed to be negligible compared to the
large scales dynamics of turbulence. In his paper, Lorenz explores this conjecture through
a model of atmospheric turbulence, looping back to Richardson’s first observations and
linking the loss of memory of the initial conditions to irregularities in the flow.

The 1969 Lorenz paper sets the ground of the ’true butterfly effect’ [67], by which an
infinitely small scale noise is amplified to the extreme. Such phenomenon explains why
modern forecasting relies on stochastic predictions. The measurement of thermal noise in
turbulence is of particular interest to that regard. A method for measuring such effects
is described in Appendix A. In this thesis, we focus on exploring the building of this
’true butterfly effect’ in multi-scale irregular systems. Next chapter will be dedicated to
introducing the necessary mathematical tools to both deal with the multi-scale property
of turbulence and the potential irregularities that can develop inside.
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2 - Turbulence and singularities

2.1 . Finite-time blow-ups

2.1.1 . Introduction
Intuitions – Chaos is not sufficient for explaining the unpredictability of turbulence.

It is however the only mechanism that can effectively produce entropy in smooth dynamical
systems (from an information theory perspective, see Appendix B). Consequently, either
an additional random forcing (thermal noise) is perturbing the flow, or turbulence is not
a smooth dynamical system.

As an introductory example, consider again the Richardson’s regime. Taking heuristic
square root, we get as an order of magnitude that δx = Ct3/2, where C is a constant.
Differentiating in time, we get:

δẋ = 3C
2 t1/2, (2.1)

and changing t for δx, we obtain

δẋ = 3C2/3

2 δx1/3. (2.2)

The flow on the right side becomes non-differentiable in space. We say it is ’irregular’.
This simple argument suggests that turbulent flows might indeed be non-smooth in the
Richardson regime.

Anomalous dissipation and Onsager’s conjecture – Interestingly enough, there
is another property of turbulence that points towards singular behaviours. Onsager, in
1949, was the first to emit this hypothesis after observing some curious phenomenon in
dissipation [66].

All energy injected at large scales in turbulence is transmitted to the smaller scales
(this is what we call ’Richardson’s cascade’). This energy is finally dissipated by viscous
forces around the smallest scale of turbulence, the Kolmogorov scale η. One may argue
that, if we lower viscosity ν to 0, we should not have any more dissipation. Experimental
observations contradict this statement. As depicted in Figure 2.1, when the Reynolds
number Re = UL

ν (i.e. ν large) is low, dissipation decreases in proportion to viscosity, as
expected. However, for large enough Reynolds number, dissipation does not decrease any
more and saturates towards a finite value. In other words, there is still some dissipation
in the limit of infinite Re, which is paradoxical regarding the negligible effect of viscous
forces in this limit.

To solve this paradox, Onsager conjectured the existence of irregularities that dissipate
energy. The corresponding phenomenon is called ’anomalous dissipation’. In the sequel,
we provide a more rigorous statement of this conjecture, using a formalism adapted from
Leray 1934 and Duchon and Robert 2000.
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Figure 2.1: Dissipation measured through torque Kp in Von Kàrman type flows as a
function of Re. The dotted lines indicated the range of Reynolds numbers investigated in
this thesis. Red symbols correspond to contra case, Blue symbols to non-bifurcated anti
case and Green symbols to bifurcated anti case. The ⋆ correspond to results obtained in
VK2 experiment with a mix of glycerol and water. The results from the same experiment
but with only water are displayed with the ■. The grey • represent results from the same
experiment but with turbines equipped with 16 blades instead of 8. The ◀ correspond to
Helium 4 at T = 2.3K while the ▷ to Helium 4 at T = 2K (superfluid phase) in SHREK
experiment. The ♦ correspond to unpublished work from the VKS collaboration (M. Faure,
N. Bonnefoy, S. Miralles, N. Plihon, J-F. Pinton, Ph. Odier, G. Verhille, M. Bourgoin,
S. Fauve, F. Petrelis, M. Berhanu, N. Mordant, B. Gallet, S. Aumaitre, F. Daviaud, A.
Chiffaudel, R. Monchaux, P. Gutierrez). Finally the ◦ correspond to numerical experiment
where white are DNS data and yellow LES data. Figure adapted from [30, 74].
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2.1.2 . Blow-ups in Euler
Intuitions – A typical case of singularity occurs when gradients are ill-defined or blow-

up. This situation is typical when viscosity is zero, i.e. for Euler flows. Indeed, consider
the enstrophy

Ω =
〈1

2 ||ω||
2
〉
, (2.3)

where ω = ∇× u is the vorticity. One can show that enstrophy is related to dissipation
ϵ[I] through energy balance (see Frisch [42]):

Ω = 1
2ν ϵ[I]. (2.4)

Since dissipation saturates when ν → 0, we expect Ω to diverge in ν−1. In the limit of
Euler equations (i.e. ν = 0), there is therefore a blow-up of enstrophy. This intuitive
argument goes in favour of observing blow-ups in Euler equations1.

Numerical investigations – The previous argument is only based on an empirical
law of turbulence, the anomalous dissipation. When it comes to mathematical proofs,
the situation is less clear, especially for the viscous case. There are however increasing
numerical evidences of the existence of finite-time blow-up for the Euler equations. For
example, Hou et. al. [54, 17] showed that in the case of axisymmetric inviscid flows, a
blow-up can occur at the axis, or near a stagnation point near the boundary.

An even clearer evidence of finite-time blow-up upon Euler equation has been recently
obtained by Campolina and Mailybaev [12, 68], for flows projected on a logarithmic lattice
(with exponential spacing).

Weak formulation – Since some solutions of Navier-Stokes (or Euler) equations are
possibly ill-defined because of finite-time blow-ups, we have to look at another space of
solutions. Those solutions were introduced by Leray in 1934 and termed ’weak solutions’
[59]. Physically, it corresponds to smoothing the ill-defined solutions with a filter in order
to limit blow-ups. Mathematically, we choose two test functions ψ(x, t) and Φ(x, t) in the
space of infinitely differentiable with compact support functions. We say that u is a weak
solution of the incompressible Navier-Stokes equations (without any external forcing) if
and only if u verifies∫

R3

∫
R
ui∂tψi +

∫
R3

∫
R
uiuj∂jψi = −1

ρ

∫
R3

∫
R
P∂iψi − ν

∫
R3

∫
R
ui∂k∂kψi, (2.5)

∫
R3

∫
R
ui∂iΦ = 0. (2.6)

The same formalism also applies to the incompressible Euler equations, by setting ν = 0.
In this thesis, we will extensively refer back to those solutions when differentiability in
space might be broken.

1We note that it is not necessarily a finite-time blow-up here. Some observations show that a
smooth initial flow can become singular in the limit of infinite Reynolds number for some numerical
setups [28].
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2.2 . How to detect the most irregular locations in a velocity field?

In this section, we summarise a technique developed in the SPHYNX group2 to detect
locations of the most irregular points in the flow. For this, we need to quantify the degree
of irregularity needed to observe anomalous dissipation. In this chapter, we rely on the
simple notion of Hölder continuity. We say that a function f is h-Hölder continuous if
and only if

∃C > 0, ∀(x, y) ∈ R2d, ||f(x)− f(y)|| ≤ C||x− y||h. (2.7)

From this definition, we get that f is Lipschitz continuous for h = 1. If f is differentiable,
then h ≥ 1. Physically, the larger the h, the more regular the function is.

2.2.1 . Duchon-Robert approach
In this thesis, we will heavily use a formalism introduced by Duchon and Robert in

2000 to help us detect the most irregular locations of the flow. We thus introduce a
smoothing function ψl infinitely differentiable, compact support, even and positive. Then
we define a smoothed velocity field such as

ul(x, t)=̇(u ∗ ψl)(x, t) =
∫
R3
u(x+ ξ)ψl(ξ) dξ, (2.8)

and also introduce the velocity increments δξu as

δξu =̇u(x+ ξ)− u(x). (2.9)

Using the filtered incompressible Navier-Stokes equations (INSE) and the definition of
velocity increments, we get:{

∂tu
l
i + ∂j(uiuj)l = −∂iP

l + ν∂k∂ku
l
i,

∂ju
l
j = 0.

(2.10)

Using this equation with the non-filtered INSE, one can deduce the energy budget that
Duchon and Robert [31] were able to obtain:

1
2∂tuiu

l
i + ∂iT

l
i = 1

2ν∂i∂j(uiu
l
i)− ν∂jui∂u

l
i −Πl, (2.11)

where
T l

i =̇ 1
2
[
uju

l
jui + P lui + Pul

i

]
+ 1

4
[
(uiujuj)l − (ujuj)lui

]
, (2.12)

represents spatial energy transport and

Πl =̇ 1
4

∫
∇ψl(ξ).δξu ||δξu||22 dξ (2.13)

the energy transfers towards scales below l. Duchon and Robert proved that Πl corre-
sponds, in the inviscid limit and l→ 0, to the anomalous dissipation:

lim
l→0

lim
ν→0

Πl = ϵ[I], (2.14)

2CEA Paris-Saclay.
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which can be physically interpreted as being the dissipation due to irregularities in the
flow. We note that Πl ≥ 0 and is a local quantity (i.e. we can compute it at any position
in space).

Weak Karman Monin Howarth energy balance – As noted by Paul Debue and
Bérengère Dubrulle [23, 30], equation (2.14) is, however, not suited for dealing with ex-
perimental flows. We introduce instead the weak Karmàn Howarth Monin equation (see
Dubrulle 2019 for further details) as

1
2∂tuiu

l
i + ∂iJ

l
i = −Dl

ν −Πl, (2.15)

where J l
i = T l

i − 1
2ν∂i

[
(ujuj)l + uju

l
j

]
+ ν(uj∂iu

l
j) and

Dl
ν =̇ ν

2

∫
∆ψl(ξ) ||δξu||22 dξ. (2.16)

This last term represents dissipation due to viscosity. We can then adapt equation 2.14
to get the following theorem

lim
l→0

lim
ν→0

(
Dl

ν + Πl
)

= ϵ[I]. (2.17)

In this thesis, we will extensively use Πl as an indicator for possible locations of dissi-
pative singularities in the flow by tracking points where this coefficient does not tend to
zero as l tends to zero.

Scalings with h – We can refine the degree of irregularities of the dissipative singu-
larities by simple dimensional arguments [31, 66]. Indeed, suppose that norm ||ξ|| ∼ l and
u is h-Hölder continuous. Then, we get ||δξu|| ∼ lh which therefore leads to the following
scaling laws for Πl and Dl

ν :
Πl = O(l3h−1), (2.18)

The dimensional argument shows that as soon as u is more regular than 1/3-Hölder, there
can be no anomalous dissipation [66]. Tracking areas where Πl does not converge to zero
as l is decreased therefore enables us to track dissipative singularities, with h ≤ 1/3.

From this point of view, we understand why Πl accounts only for irregularities with
Hölder exponent h ≤ 1/3: those are the only available h for which Πl does not go to 0
in the limit l → 0. Because of intermittency, turbulence does not have a unique Hölder
exponent h. We know from multi-fractal theory, introduced by Frisch, that h is a random
field, function of space and time. A Lagrangian particle travelling will therefore endure
different ’intensities’ of irregularities on its path. Only the irregularities showing h ≤ 1/3
are considered to be dissipative.

2.2.2 . Experimental observations
The application of this technique to experimental flows was initiated in the thesis of D.

Kuzzay [76, 57]. Measurements of experimental velocities were injected into the formula

35



(2.13), using a filter ψl with decreasing width. The corresponding value of Πl was then
tracked in space and time, to search for locations where this quantity took the highest
value, as the filter width was decreasing. The analysis of vorticity around these locations
showed that an interconnection between two vortices were happening at the same place.
A broader description of the structures next to those events can be found in Paul Debue’s
thesis [23]. Those events are rare and one needs a lot of data to achieve a good statistical
convergence.
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3 - Spontaneous stochasticity

3.1 . Introduction

3.1.1 . Introductory example
What does happen after a blow-up? In general, we cannot build solutions after those.

When the dynamics is filtered however, the blow-up gets regularised and the solutions
exist. The trajectories (or fields in the Eulerian point of view) obtained after a blow-up,
are weak solutions in the limit of vanishing regularisation. In this chapter, we introduce the
concept of spontaneous stochasticity, a transient phenomenon that explains what happens
for the weak solutions in the limit of a vanishing stochastic regularisation.

We here start with a simple example1 in order to get some intuition. We consider the
following rough potential (represented in Figure 3.1)

V (x) = (1− ||x||1+h)2. (3.1)

We consider specifically the over damped dynamic of a particle set in such potential:

ẋ = −∇xV. (3.2)

The above equation is well defined if h ≥ 1 since it is differentiable only for this range of h.
In particular, the h = 1 case corresponds to the classical over damped dynamic of a particle
inside a classical double well. This case is well-known: if no additional perturbation is
given, a particle starting exactly on top of the hill (x(0) = 0) will stay there indefinitely.
A random infinitesimal perturbation would push the particle to go in one of the wells.

If h < 1, equation (3.1) presents a singularity for x = 0. In order to define and solve the
dynamics (3.2) in the presence of a singularity, we regularise the potential by introducing
a cut-off norm such as:

||x||η =
{
|x| if |x| > η
x2

2η + η
2 if |x| ≤ η

. (3.3)

This corresponds to exploring the weak solutions of equation (3.2). In addition to that, we
also introduce a small noise ξ(t) that will act as a random perturbation that will trigger
the particle to fall into one of the wells:

ẋ = −∇xV +
√

2κξ(t). (3.4)

where κ is a diffusion term2. We consider a particle on top of this potential. Due to the
random perturbation, a particle will reach one of the wells’ bottom in a finite time. We
assume that the noise scales with regularisation as

1A candid example initially proposed in a private conversation by Simon Thalabard.
2This stochastic regularisation was already studied for other singular ODEs in the probability

theory literature [51, 3, 40].
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Figure 3.1: (Left): the singular double well potential defined in equation (3.1). The black
dotted curve is the true potential while the blue curve corresponds to the regularised
version using the norm defined by equation (3.3). A particle situated on top of the poten-
tial (in purple) cannot move unless there is an additional random force or perturbation.
(Right): the regularised norm defined in equation (3.3).

κ = η1+h. (3.5)

Let us now investigate what happens in the limit of vanishing regularisation in the case
where h < 1. In this limit, we expect to retrieve a similar behaviour as in the classical
case: the particle remaining stuck at x = 0. Instead we observe that the particle tends
to escape from x = 0 in a finite time, regardless of regularisation, as presented in Figure
3.2. This counter-intuitive result is what we call ’spontaneous stochasticity’. Physically, it
corresponds to a transient amplification of an infinitesimal perturbation (represented here
by the noise). It is a specific way to build the different non-unique weak solutions after a
finite-time blow-up.

3.1.2 . Historical context

First steps: the Kraichnan model – The notion of spontaneous stochasticity ap-
peared in the late 90’s. It originated from the study of pair dispersion in the Kraichnan
model [5]. In this model3, Lagrangian trajectories are advected by a random Gaussian
field with a specific correlation function

〈
vi(t, r)vj(t′, r′)

〉
=̇ (D0δi,j −Dij(r − r′))δ(t− t′), (3.6)

3The study of this model is not in the scope of this thesis. We note however that it is able to
reproduce many different aspects of Lagrangian turbulence. An interested reader could find some
additional information in [45].
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Figure 3.2: Evolution of exit time τη (average time to reach either −1 or 1) as a function of
regularisation η for the Lagrangian particle driven by the force derived from the potential
shown in Figure 3.1. The case h = 1 diverges as η → 0, which is to be expected since
τη =∞ for η = 0 in the classical double well potential. The cases h < 1 show a convergence
of this exit time, being a signature of spontaneous stochasticity.

where Dij(r) ∝ r2α, with α being the Hölder exponent here. One can then show that pair
dispersion obeys a Richardson algebraic law as:〈

δx(t)2
〉
∝ t

1
1−α . (3.7)

This example was further investigated later on, and a deterministic regime was found for a
given range of parameters. In this regime, the particles were not separating any more and
tended to stick together instead [82, 39]. It was proven that this model experiences phase
transitions between those different regimes. While the term of ’intrinsic stochasticity’
was first chosen to represent this unusual transient phenomenon, Falkovich introduced the
term of ’spontaneous stochasticity’ in 2001.

An Eulerian point of view – While spontaneous stochasticity was originally ob-
served in Lagrangian statistics, this phenomenon can also be observed in an Eulerian
context. We illustrate this point by taking the example of shell models. Those models are
representations in Fourier modes of PDEs. The existence of weak solutions was shown for
Sabra and Gledzer-Okhitani-Yamada (GOY) [19, 20] models, which are representations of
Navier-Stokes equations. In 2016, Mailybaev presented an adaptation of GOY model by
considering purely imaginary shells [61], leading to

dun

dt
=
(1

2kn−1un−1un−2 + 1
2knun+1un−1 − kn+1un+2un+1

)
− νk2

nun, (3.8)
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Figure 3.3: Evolution of modes u3 and u4 as a function of time for different infinitesimal
variation of viscosity µ. Trajectories, represented each by different colours, tend to stick
together until blow-up happens at time tB ∼ 2.35.

in which Navier-Stokes velocities ũ(k, t) in Fourier modes are discretised and represented
by the sequence {ui}1≤i≤N . Some boundary conditions, i.e. u0 = cte and u−1 = cte

are added and a cut-off N (considered to be large enough) is imposed. Mailybaev showed
that Sabra model exhibits a finite-time blow-up in the inviscid limit. To construct different
solutions of equation (3.8) after the blow-up, one may add a small regularisation by adding
a random viscous term of decreasing amplitude. The resulting Poincaré section (u3, u4)
is displayed in Figure 3.3. One observes that, before the blow-up time, all trajectories
collapse onto a single curve. After this time, they all diverge from each other, tracing the
different many possible solutions post blow-up. Then, the solution is not deterministic
any more, but can be represented by a probability distribution function, hence the name
of ’spontaneous stochasticity’.

Apart from shell models, other models exhibit the same behaviour in the Eulerian
framework such as the shear layer problem [79].

3.2 . Towards an experimental observation?

All previous examples are either theoretical or numerical, based on simulations of
Navier-Stokes or related equations. From an experimental point of view, however, evidence
of spontaneous stochasticity is lacking. In fact, even the simple Richardson regime has
never been observed. There are many technical reasons explaining such difficulties. In
this thesis, we address them thoroughly, and devise a procedure enabling the exploration
of spontaneous stochasticity in experimental flows. For this, we first need to discuss the
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necessary ingredient for observing spontaneous stochasticity.

3.2.1 . Ingredients
Characterisation – Let us first have a look at the models displaying spontaneous

stochasticity. We observe that they can involve some key features of turbulence such as
energy cascade (see shell models) or intermittency (see Kraichnan models). They can also
appear in simple Ordinary Differential Equations (as in our introductory model). From
their very core they can even be intrinsically stochastic (see Kraichan model) or not. We
can at least identify some important features to build spontaneous stochasticity:

• an irregularity that implies an irreversibility;

• a stochastic regularisation/perturbation (otherwise it does not work, see the Arnold’s
cat map example from Mailybaev [62]);

• a non-unicity of weak solutions.

Those ingredients are however not sufficient to fully characterise this transient phenomenon.
There is no general recipe to create a spontaneously stochastic model. This is paradoxical
since we know that chaotic systems and some stochastic processes can be characterised and
arranged by their complexity. The unpredictability of systems such as the ones presented
in Figure 1.5 can be decomposed and deeply understood. Since spontaneous stochasticity
seems to sit in between those two worlds, we wonder if we can characterise it the same
way.

Lagrangian determinism – In this thesis we will focus only on the Lagrangian point
of view of spontaneous stochasticity. The questions about its characterisation will not be
treated in the main text. An interested reader could find some interesting investigations in
Appendix B, in which we try to extend the notions of information theory to understand this
phenomenon. Instead, we focus here on building a toy model for spontaneous stochasticity
from which we can get intuitions to create a good observable for experimental data.

The most promising model so far is the Kraichnan model, inherently stochastic. Real
turbulence might be influenced by thermal noise, but it is still deterministic in its core
(as represented by Navier-Stokes equations). Some 1d spontaneous stochastic models for
Lagrangian spontaneous stochasticity have been developed in the past [29]. But there is
currently no 3d flow that shows similar results while being irregular everywhere. Such
model would be interesting to explore, especially to better understand the mechanisms of
the sweeping of small scales displacements, closer to a turbulent dispersion [15].

3.2.2 . Thesis plan
This thesis will be dedicated to building such a 3d deterministic flow that shows La-

grangian spontaneous stochasticity:

1. A first chapter is dedicated to justifying and defining this model, called ’WABC
model’. We will additionally present some of its interesting properties.
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2. This will lead us to a second chapter in which we will analyse what it means to
be spontaneously stochastic in this model. Especially, we will derive a promising
criterion to explore this phenomenon in both experimental or simulated flows.

3. A short chapter will follow explaining in details the statistical tools that we use to
quantitatively test for spontaneous stochasticity in the simulated WABC model.

4. A chapter dedicated to the numerical integration of the WABC model will then
be presented. We will first introduce the general numerical methods employed to
integrate the model. Results will come in the next chapter. In the process, we will
quantitatively test the built criterion to check if it is really related to spontaneous
stochasticity.

5. A final chapter will then present some observations on experimental and simulated
flows. We will first present the used data. Finally, we will introduce the results and
compare them with what was observed in our toy model.
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Part II

The WABC model:
definitions, criterium and

methodology
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4 - The WABC flow
We introduce in this chapter the WABC model which we build specifically to simulate

spontaneous stochasticity. We will start by introducing the ABC flow, a simple chaotic flow
that serves as a base for our model. We will then define the WABC model and introduce
a stochastic regularisation for the integration. Finally, we will discuss its properties and
see if we can observe Richardson’s regime in it.

4.1 . From chaos...

4.1.1 . Introduction
We here introduce the ’ABC flow’, a flow that was created by V. Arnold in 1965

following the work of E. Beltrami, S. Childress and himself. It is an important foundation
of our toy model [2]. It is defined as

U(x) =


A sin(z) + C cos(y)
B sin(x) +A cos(z)
C sin(y) +B cos(x),

(4.1)

where A, B and C are constants. This flow solves the incompressible stationary Euler
equations on the torus [0, 2π]3 and has the special property of having vorticity ω equal
to velocity (a simple case of Beltrami property where ω ∝ U). This solution of Euler
equation has the advantage of being simple and analytical.

As pointed out by Dombre et al. [24], the following system of equations for Lagrangian
particles 

ẋ = A sin(z) + C cos(y)
ẏ = B sin(x) +A cos(z)
ż = C sin(y) +B cos(x),

(4.2)

remains unchanged under the following symmetries
S1 : x→ x′, y → π − y′, z → −z′, t→ −t′

S2 : x→ −x′, y → y′, z → π − z′, t→ −t′

S3 : x→ π − x′, y → −y′, z → z′, t→ −t′.
(4.3)

A flow invariant under those transformations is considered to be time-reversible following
Birkhoff’s definition.

4.1.2 . Chaos and streamlines
Poincaré section – The ABC flow is of particular interest since Lagrangian chaos can

appear for some special A, B and C coefficients. Hénon et al. in 1966 [53] were first to
observe such properties when setting A =

√
3, B =

√
2 and C = 1. They use theoretical
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Figure 4.1: ||U ||2 slices of ABC flow.

and numerical analysis of streamlines to show that the flow is indeed chaotic. In the sequel,
we focus on the case where A =

√
3, B = 1.314 and C = 1 which were chosen arbitrarily.

We first test chaos by representing Poincaré sections of several streamlines, represented in
Figure 4.2.

We can see from those graphs the presence of attractors (the structured regions), where
the trajectories tend to get trapped for several moments, and chaotic areas in which the
streamlines wander in a random fashion (the dotted areas). This shows that the chosen
coefficients make the model chaotic as Hénon et al. showed in 1966 [53]. This also shows
that the Lyapunov exponent depends on initial position: a trajectory can end up in several
different attractors associated with different invariant measures.

Instantaneous Lyapunov exponent – To further illustrate this point, we present
here the computations of the instantaneous Lyapunov exponent λi. The results are pre-
sented in Figure 4.3. We observe that the distribution in space of the λi is not homoge-
neous: there are places where those coefficients are higher than others.

4.2 . The WABC model

4.2.1 . Model definition
The assumption of having a smooth dynamical setup has to be broken to build a

spontaneous stochastic model: we need irregularities. This idea is not new: as early as
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Figure 4.2: Poincarré sections of the ABC flow for z = π (left) and x = π (right) obtained
from 20 trajectories.

Figure 4.3: Slice for z = π of the ABC flow’s iLE field.
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(a) N = 2 (b) N = 4

(c) N = 6

Figure 4.4: ||uW ||2 slices of the WABC flow for increasing number of modes N .
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1926, Richardson introduced an irregular toy model to interpret his famous dispersion
law [71]. He took the example of an infinitesimal ’particle of air’ for which positions are
modelled by the Weierstrass’ function

va,b(t) =
+∞∑
i=0

ai cos(bit). (4.4)

This function has the particularity to be h0-Hölder continuous for any time t, where
h0 = − ln a/ ln b [84]. As a result, he showed that defining a velocity in that context is not
possible. This shows the necessity to use statistics as a smooth measurement of particles’
dispersion. In the present section, we build on Richardson’s idea and construct a 3d
’Weierstrass’ velocity field with irregularities in space. The elementary brick is the ABC
flow, having similarities with other models [33, 37]. We call this model the ’Weierstrass-
Arnold-Beltrami-Childress’ or ’WABC’ and define it as:

uW (x) =
+∞∑
i=1

ωi

ki
U(kix). (4.5)

where ki = λi and ωi = λ(1−h)i, having λ > 1.
The above velocity field is bounded by the exponential series ∑∞

i λ−hi which converges
if and only if h > 0. This stationary 3d flow is a succession of layers each representing a
smaller version of the ABC flow (see Figure 4.4).

We note that this flow does not solve Euler equations, even in its weak formulation,
since the non-linear term (uW .∇)uW breaks the superposition theorem. Also, since it
is deeply connected to the Weierstrass function, one can show that the WABC flow is
h-Hölder continuous. As a result, almost all spatial derivatives are undefined for h < 1.
This leads to an exploding vorticity in that range of Hölder exponents. This flow is still
incompressible for any h by linearity of divergence,

∇.uW =
+∞∑
i=1

ωi

ki
∇.U(kix) = 0. (4.6)

Since the flow is not differentiable, we need to introduce a regularisation in order to
solve the Lagrangian dynamics. We decide to impose a stochastic regularisation through
the addition of a cut-off scale k−1

max = k−1
N . This is modelled by a white noiseW (t) (Wiener

process) for which
E(Wi(t)Wj(t′)) = δi,jδ(t− t′). (4.7)

We can then transform the dynamics into a Langevin-type equation as follows

dxN (x, t) =
N∑

i=1

ωi

ki
U(kix)dt+

√
2κNdW (t), (4.8)

where κN is a diffusion term that should decrease with the ’number of modes’ N . This
kind of equation usually represents the dynamics of a particle that is affected by a small
random forcing fw(t) =

√
2κNdW (t) [43]. We will refer to equation (4.8) in the following

as ’Langevin-WABC’.
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(a) (b)

Figure 4.5: Eulerian structure functions Sp(r) = ||δru||p as a function of distance r, not
normalised (a) and normalised by S3(r)p/3 (b) for the WABC flow with h = 1/3 and
N = 14. Increasing p are displayed by colours, ranging from p = 1 (dark purple) to p = 10
(light orange). The dotted lines are linear fits displaying a 0.38 × p slope (close to the
expected slope of hp).

4.3 . General properties

4.3.1 . Symmetries
Symmetries S1, S2 and S3 are broken under the addition of modes of ABC flows.

Therefore, the WABC flow cannot be seen as time reversible contrary to the original ABC
model. 2π-periodicity is however conserved by linearity of the sum only in the case of an
integer λ.

Due to contributions of all modes, Beltrami’s property breaks for any h ̸= 1.

4.3.2 . Self-similarity
Structure functions – Even though the full self-similarity is broken, WABC model

still has a partial self-similarity property since:

uW (λx) = λh
(
uW (x) + λ−2hU(λ2x)

)
, (4.9)

which suggests that we could find self-similar structures. The analysis of Eulerian structure
functions Sp(r) = ||δruW ||p for the WABC flow with h = 1/3, presented in Figure 4.5,
confirms such expectations. We indeed see that the flow is self similar with exponent
ζ(p) = hp for scales larger than the cut-off (the inertial range of our flow).

Self-similar attractors – We can also observe the self-similar property with the at-
tractors that we can spot on the Poincaré sections in Figure 4.6. For a strong regularisation
(N = 2), we observe similar structures to those in the regular ABC flow. As N increases,
the flow becomes more and more chaotic, presenting smaller and smaller attractors until
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precision is not sufficient to distinguish them. This indicates that there will be, in the
limit of vanishing regularisation, an infinite amount of attractors. They all have their
own invariant measure and Lyapunov exponent. Consequently, Lagrangian trajectories
experience fast jumps from different attractors.

(a) N = 2 (b) N = 4

(c) N = 6

Figure 4.6: Poincaré x − y sections for z = π obtained from 20 trajectories and for
increasing number of modes N for the WABC flow where h = 1/3. The small structures
in N = 2 represent attractors of the flow: the trajectories stay in those areas for several
moments. Those structures are self-similar and appear in the N = 4 case as well. We
cannot distinguish them in the displayed observation window for the N = 6 case.

4.3.3 . Instantaneous Lyapunov exponents
To illustrate this last point, we present different maps of instantaneous Lyapunov

Exponent (iLE) in Figure 4.7. We also show in Figure 4.8 different projections of integrated
trajectories coloured by iLE for N = 8. The obtention of those coefficients is further
explained in Appendix D. We observe that the distribution of iLEs is far from being
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(a) N = 2 (b) N = 4

(c) N = 6

Figure 4.7: Slices on the z-axis of iLE fields for different number of modes in the WABC
model for h = 1/3. The structures are entirely self-similar.

homogeneous. As a result, trajectories experience very different intensities of dispersion
as they develop in the flow. We can therefore imagine that some trajectories could go
through more extreme dispersions than others.

4.3.4 . ’Anomalous dissipation’
Definition – The notion of anomalous dissipation can be extended to the WABC model

even though the flow is not a weak solution of either Navier-stokes or Euler equations.
Indeed, equation (2.13) is still defined but we loose its regular interpretation as being a
dissipative term. It is still sensitive to irregularities, as we recall that

Πl = O(l3h−1), (4.10)

where h is the WABC’s Hölder exponent. Therefore, for h > 1
3 , this coefficient tends to 0

in the limit of vanishing regularisation. In the dissipative case, i.e. h < 1
3 , this coefficient
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Figure 4.8: Typical trajectories projected onto the x−y plan of the WABC flow for h = 1/3
and N = 8, coloured by instantaneous Lyapunov exponent.

Figure 4.9: Evolution of anomalous dissipation
〈
Πl
〉

as a function of kmax for the WABC
model when: h = 1

3 (purple), h = 2
5 (blue) and h = 1 (green).
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(a) h = 1
3 (b) h = 2

5

Figure 4.10: Probability distribution of Duchon-Robert coefficient Πl as a function of N ,
ranging from N = 6 (dark purple) to N = 18 (yellow) for two different Hölder exponents
of the WABC flow.

is not bounded any more. Those observations were already studied in another similar
Weierstrass-type flow by G. Eyink [34].

Observations – We scale l with N by setting l = 2.8k−1
max = 2.8k−1

N . We show in
Figure 4.9 the evolution of < Πl > as a function of kmax for h = 1/3, h = 2/5 and
h = 1. As expected, for h > 1

3 , the curves tend to vanish in the limit of kmax → ∞.
For h = 1/3 the curve reaches a plateau of dissipation, coherent with the presence of
dissipative singularities1. This is confirmed by Figure 4.10 which shows the evolution of
p(Πl) as a function of N : the probability distributions become more and more peaked when
converging towards the inviscid limit. When h = 1

3 , the distributions seem to collapse onto
a unique non-Gaussian distribution. We identify N ≃ 9 to be the turning point where〈
Πl
〉

starts to decrease.

4.3.5 . Trajectories and Richardson’s regime
To complete our tour of the general properties of the WABC flow, we test for Richard-

son’s regime in this flow. For a given initial separation D0, we integrate 1000 pairs of
particles. Their initial position in space is random, we make sure that the pairs them-
selves have a D0. The numerical integration procedure is explained in Chapter 7. The
results are displayed in Figure 4.12 and we also show in Figure 4.11 an example of some
trajectories coming from a same initial position. The time evolution of the pair dispersion
displays a cubic power law. We conclude that the WABC flow can develop the Richardson
regime for pair dispersion.

1We note that Πl should not necessarily be positive here since the positivity was only proven
for the Navier-Stokes and Euler equations.
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Figure 4.11: An example of trajectories all coming from a same initial position in the case
h = 1/3 and N = 20, illustrating the exploding dispersion observed in the WABC model.

Figure 4.12: Square pair dispersion D2 as a function of time for trajectories in the WABC
model for h = 1/3 and N = 14 and different initial separation D∗

0 = D0kN . We identify
here the typical cubic law of the Richardson regime.
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ABC Flow WABC Flow
Incompressibility x x
Differentiability x Only for h ≥ 1
Beltrami property x
Periodicity x Only for integer λ
S1, S2 and S3 symmetries x Broken
Self-similarity Partial
Chaos x x
Richardson regime x

Table 4.1: Summary of properties of ABC and WABC flows.

4.3.6 . Summary of properties
In this chapter, we built a promising model for simulating spontaneous stochasticity.

This needs to be numerically tested, which will be done in Chapter 7. As a summary,
we give in Table 4.1 a comparison between the WABC flow and the regular ABC model
regarding their properties.
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5 - Building a criterion for spontaneous stochastic-
ity

In this chapter we build a criterion to observe spontaneous stochasticity in experimen-
tal flows based on simple phenomenology. We first define and analyse what it means to
be spontaneously stochastic in the WABC model. We will then present the constraints
that make the use of this definition impossible in real flows. The identified problems will
then be solved by constructing a criterion based on transition probabilities, conditioned
to extreme events of dissipation. The numerical tools to compute all those observables
will be presented in next chapter.

5.1 . Spontaneous stochasticity in WABC

5.1.1 . Definition
Spontaneous stochasticity – We recall the regularised Lagrangian dynamics ’Langevin-

WABC’

dxN (x, t) =
N∑

i=1

ωi

ki
U(kix)dt+

√
2κNdW (t), (5.1)

where κN =
N→∞

0. We consider an initial density probability distribution pL
0 (x) = δ(x −

x0), where all particles start in x0. We define the density probability distribution at time
t with N modes pL

N (x, t).
We will therefore say that we have Lagrangian spontaneous stochasticity if and only

if, given a set of initial positions x0 such as, for any N , pN (x, 0) = pL
0 (x), we have for

h < 1
∃tx0

s > 0, ∀t > tx0
s lim

N→∞
pL

N (x, t) = pL(x, t) ̸= δ(x−m(t)), (5.2)

where
m(t) = E(x) =

∫
Rd
x pL(x, t) dx. (5.3)

This means that the solutions of equation (5.1) are still non-deterministic in the limit
N →∞ (vanishing noise), given that all particles start at the same initial position1.

Universality – We note that condition (5.2) is not restrictive and could be universal
under the change of several parameters in the WABC model.

• Universality of regularisation: Observations made on other spontaneously stochastic
models tend to show that the limiting probability distribution should not depend
on regularisation (or noise type) [29].

1We note that equation (5.2) depends on the initial position a priori where the spontaneous
stochastic characteristic time tx0

S depends on it.
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• Universality of continuity: We expect spontaneous stochasticity to happen for any
h-Hölder continuity where h < 1.

• Universality of initial position: Since the WABC model is non-differentiable every-
where, we expect it to be spontaneously stochastic for any initial position x0.

We shall check condition (5.2) and test those three universal conditions numerically.
The methods and results will be introduced in further chapters.

5.1.2 . Experimental constraints
From reading the above definition and conditions to match, any astute experimentalist

could argue that checking those conditions is impossible in a real experimental setting
since:

1. We cannot have the same exact initial state for each new measurement. It means
that we cannot compute the probability distributions depicted in condition (5.2).

2. Experiments are bounded either physically (walls) or by measurement’s constraints
(thin laser sheet). Consequently we cannot track particles for a very long time
t > tx0

s
2.

3. Due to the particle tracking method, we are able to either follow a lot of particles for
a short time or a few of them for a very long time. The first scenario is convenient
for statistics but only the second is needed to test condition (5.2).

Those constraints motivate the finding of a specific criterion that can be used in prac-
tice to test spontaneous stochasticity. From the above observations, we deduce that this
criterion would first need to be local in space and time in order to exploit the available
large number of short tracks. But more importantly, we would need this criterion to
overcome the limitation of having access to only one realisation of the same flow.

5.2 . The transition deviation criterion

5.2.1 . Locality
Introduction – We consider the following scenario: some Lagrangian trajectories, all

coming from a same initial position, move towards an isolated regularised singularity (see
Figure 5.1). This matches with the spontaneously stochastic scenario observed in the
non-Lipschitz dynamical system introduced by Drivas, Mailybaev and Raibekas [29].

In this model, particles emanating from x0 at time t = 0 are tracked until at least the
singular event has been passed. In real flows, the tracked Lagrangian trajectories have
many different initial positions. As a consequence, it is hard to isolate the ones that will go
through a singularity from the others: we have a continuum of possible initial positions.
A better idea would be to consider jumps from position x at time t to positions x′ at

2This is what prevents researchers to actually observe Richardson’s regime experimentally.
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Figure 5.1: Schematic of an isolated regularised singularity. We consider a particle reach-
ing a singularity (represented by the red dot) in a finite-time. The stochastic regularisation
allows for the emergence of post blow-up non-unique trajectories (in green). The com-
puting of probability transitions between two times, t1 and t2, allows for a more flexible
approach regarding the analysis of spontaneously stochastic events. This schematic was
largely inspired by Drivas, Mailybaev and Raibekas [29].

time t + τ , where τ would need to be sufficiently large to pass the singularity. In the
following we will introduce transition probabilities: a dedicated tool to study jumps3. We
then analyse how those can be connected to condition (5.2). Those discussions will be
lead onto the WABC model, which we will generalise to any flow.

Transition statistics – We consider two time-dependant random variables X(t) and
X ′(t) representing positions of two particles at time t. We introduce the density transition
probability p as the probability of a particle jumping from a position x at time t to a
position x′ at time t+ τ

p(t, x, t+ τ, x′) =̇ p(X ′(t+ τ) = x′ |X(t) = x). (5.4)

We note that by definition of conditional probabilities∫
Rd
p(t, x, t+ τ, x′) dx′ =

∫
Rd

p((X ′(t+ τ) = x′)⋂(X(t) = x))
p(X(t) = x) dx′ = 1. (5.5)

We define below what we will call in the following the ’transition average’

mτ (x, t) =̇
∫
Rd
x′ p(t, x, t+ τ, x′) dx′, (5.6)

and the ’transition standard deviation’

(στ (x, t))2 =̇
∫
Rd
||x′ −mτ (x, t)||2 p(t, x, t+ τ, x′) dx′. (5.7)

3Originated from the study of Markov processes [43].
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Link with spontaneous stochasticity – Since in the Langevin-WABC setup all
particles start from the initial position x0, we deduce that if spontaneous stochasticity
exists in this setup, using condition (5.2) then

∀τ > tx0
s , lim

N→∞
pN (x, τ) = lim

N→∞
pN (t, x0, t+ τ, x) = p(x, τ). (5.8)

Consequently, we also get for the transition standard deviation στ
N (x, t)

∀τ > tx0
s , lim

N→∞
στ

N (x0, t) > 0. (5.9)

This last equation is a convenient observable since it is local in space. This criterion is
however too local since in real flows, particles do not start with an identical initial position.
Thus we shall improve it by considering a filtering performed by a coarse-graining.

5.2.2 . Spontaneous stochasticity within a coarse-graining
We here introduce the formalism to take into account the coarse-graining for the

building of our criterion. We first introduce formally what we mean by ’coarse-graining’.
We then analyse its consequences on the measurement of spontaneous stochasticity.

Setup – We restrict our space to M ⊂ Rd, where M is bounded. We note µL the
Lebesgue measure (or volume in an Euclidean set) associated with M . Let us consider a
partition of M such as:

M =
Nϵ⋂
i=1

Ii, (5.10)

where ∀(i, j) ∈ J1, NϵK2, Ii ∩ Ij = ∅ and µL(Ii) = ϵd > 0. It corresponds to having a
regular grid with a spatial step ϵ, where Nϵ is the total number of cells (or ’voxels’ in 3d)
Ii. In the following, we refer to this partition as being the ’coarse-graining’ of M .

Within this setup, we define the coarse-grained transition probability as

∀i ∈ J1, NϵK, p(t, i, t+ τ, x′) =̇
∫

Ii

p(t, x, t+ τ, x′) dx, (5.11)

which corresponds to the probability of the particles situated in Ii at time t to jump to a
position x′ at time t + τ . This also leads to a new definition for the transition standard
deviation

σϵ,τ (i, t) =̇
∫

Ii

στ (x, t) dx. (5.12)

In the following, we would abusively associate i with the centre x of the cells Ii.

Artificial and intrinsic stochasticity – By imposing a coarse-graining, we lose in-
formation about the true dynamics of a system: several particles coming from a same cell
Ii can end up in different position x′ due to small velocity fluctuations within the cell. We
call this phenomenon ’artificial stochasticity’, since the coarse-graining represents the lack
of information we have about the true system. Spontaneous stochasticity, on the contrary,
represents an ’intrinsic stochasticity’.
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Figure 5.2: Schematic illustrating the distinction between the intrinsic and the artificial
stochasticity. The first is a result of the stochastic nature of the dynamics (either by
spontaneous stochasticity or any other random forcing). The second is imposed by the
coarse-graining of the considered system.

For a given coarse-graining (Ii)i∈J1, NϵK, it is impossible to distinguish the two types of
stochasticity (as illustrated in Figure 5.2). However, we note that

p(t, i, t+ τ, x′) ∼
ϵ→0

p(t, x, t+ τ, x′). (5.13)

As such, it is possible to distinguish the effect of spontaneous stochasticity from the coarse-
graining in their asymptotic behaviours. We shall therefore refine the condition (5.9) as:
if the WABC model develops spontaneous stochasticity, then

∀τ > tx0
s , lim

ϵ→0
lim

N→∞
σϵ,τ

N (x0, t) > 0. (5.14)

To ease the above limits, we set ϵ = αk−1
N →

N→∞
0 where α is a constant. We can do

the same trick in experiments by setting ϵ = α′η, where the same manner ϵ →
Re→∞

0.

A practical criterion – We can compute στ,ϵ at any time in any cell, provided that
we have enough particles cell-wise to have good convergence of the transition standard
deviation. We note so far that, for a given x0, spontaneous stochasticity implies condition
(5.14). The converse is also true: if in the limit N → ∞ (or Re → ∞), σϵ,τ (x0, t) = 0,
then there is almost surely no spontaneous stochasticity.

5.2.3 . Dissipation-based statistics
We identified that real flows are problematic since to two different Reynolds numbers

correspond two different flow configurations. This prevents us from correctly computing
the limits in condition (5.14) which requires to stay in the exact same setup (same initial
condition, same flow configuration). In this subsection, we propose a way to circumvent
this issue by introducing dissipation-based conditioned statistics, which will allow us to
extend the previous discussions to real flows.
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Intuitions – We know that, due to Lyapunov dispersion, two particles separate at an
exponential rate (for τ small)

δx(t+ τ) = δx(t)eλi(t)τ . (5.15)

The instantaneous Lyapunov exponents rely on the computation of gradients (assuming
they exist within a given regularisation). From equation (5.15), we understand that the
larger the gradients, the stronger the dispersion. We deduce that highly irregular places
participate more in the dispersion of particles than smooth places. This leads to a question:
is it possible to quantitatively group areas that share the same smoothness together?

Anomalous dissipation – To quantify the local smoothness, we use the two coeffi-
cients from Duchon and Robert theorem, introduced in Chapter 2. Since they are sensitive
to gradients (more exactly to velocity increments), a higher local Πl(x, t) implies a higher
σϵ,τ (x, t) as well. It was also already noted by Gawedzki or Eyink that there should exist
a relation between anomalous dissipation (Eulerian) and spontaneous stochasticity (La-
grangian) [38]. In particular, Drivas and Eyink were able to prove such relationship for
passive scalars in turbulence [26, 27]. From dimensional analysis, for a fine coarse-graining
ϵ << 1, we have

σϵ,τ ∼ δξuτ, (5.16)

where ||ξ|| ∼ ϵ and δξu = ||u(x + ξ, t) − u(x, t)||. Then, by definition of Πl and Dl
ν

(equations (2.13) and (2.16)),
Πl ∼ δξu3, (5.17)

and
Dν ∼ νδξu2. (5.18)

We therefore conclude that if we are able to group extreme events of dissipation together,
we should have, according to dimensional analysis:

σϵ,τ ∼ Πl1/3
, (5.19)

and
σϵ,τ ∼ Dl

ν
1/2
. (5.20)

In this thesis, we will test if those two relations are verified. More generally, we are
interested in the possibility to identify a common feature for the observed extreme events
of dissipation.

Transition deviation – We assume that indeed σϵ,τ is higher where dissipation is
large. We introduce the conditioned transition standard deviation that we will simply call
’transition deviation’:

⟨σϵ,τ ⟩Π (γ) =̇
∫

M
σϵ,τ (x, t) p(Πl(x, t) = γ) dx. (5.21)

By writing this definition, we question the possible connection between spontaneous
stochasticity and the anomalous dissipation. We know that the first cannot imply the
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second since spontaneous stochasticity can appear for h < 1 in full generality4, whereas
only singularities with h < 1/3 are dissipative.

In this thesis, we test if anomalous dissipation implies a spontaneously stochastic event.
If this is true, then we shall expect for the WABC model

∀γ > 0, lim
ϵ→0

lim
N→∞

⟨σϵ,τ
N ⟩Π (γ) > 0. (5.22)

For a given γ > 0, if ⟨σϵ,τ
N ⟩ > 0 in the limit of vanishing regularisation and coarse-graining,

then it indicates that trajectories, in average, do not fall onto a deterministic curve in
places of strong dissipation. As a consequence, it would clearly show that anomalous
dissipation implies spontaneous stochasticity.

In practice, we will test this criterion in the WABC flow on three different Hölder
exponents:

• h = 1/3, being an example of dissipative singularities;

• h = 2/5, being an example of non-dissipative singularities;

• h = 1, being our control reference to see if the criterion behaves the same way or
not in this case.

5.3 . Summary

In this chapter, we analysed what it means to be spontaneously stochastic in the
Lagrangian framework for the WABC model. We identified the key differences this model
has with experiments. With this knowledge, we were able to build a practical criterion
based on the WABC model. Those definitions were designed to also be applied to real
flows (DNS or experimental).

The transition deviation criterion however needs to be tested beforehand. We here
summarise the different steps that are needed to certify that the criterion works (see also
Figure 5.3 for a visual summary):

1. We will prove that the WABC model shows Lagrangian spontaneous stochasticity
for h = 1/3. (A)

2. We will verify for its universality under the change of regularisation type, Hölder
exponent and initial position.

3. We will check if the transition standard deviation relates to Duchon-Robert dissipa-
tion. If this is true, then it confirms the deep relation between transition statistics
and singularities. (B)

4. If all of the above conditions are verified, we will finally test whether or not anoma-
lous dissipation leads to events of spontaneous stochasticity. (C)

4This needs to be tested for the WABC model though.
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Figure 5.3: Illustration of this thesis’ plan. The strategy is to prove first that the WABC
model is spontaneously stochastic (A). In the meantime, we determine if the transition
deviation criterion is well defined and converges non-trivially towards non zero values (B).
Using the knowledge on the two above questions, we will finally test whether the transition
deviation criterion is sensitive or not to spontaneous stochasticity (C).

After checking those points, we will compare the results with experimental observa-
tions. Condition (5.22) will be tested and we will see to which scenario (h = 1/3, h = 2/5
or h = 1) from the WABC model we are the closest.

To achieve those goals, we will first introduce the numerical tools to compute probability
distributions and the transition deviation criterion. We will then present the results for
the WABC flow. The experimental and DNS data will then be presented an analysed in
the last chapter. We will discuss the results and compare with what was obtained in our
reference model.
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6 - Computational tools
In this chapter, we introduce the statistical tools that we need, to check spontaneous

stochasticity and the transition deviation criterion. We will first show how we can, in
practice, compute probability distributions to check their convergence into vanishing reg-
ularisation. We will then introduce the ’FlowHisto’ method that allows for efficient com-
putation of transition probabilities in real flows.

6.1 . Statistical tools for spontaneous stochasticity

6.1.1 . Standard deviation
Condition (5.2) is about whether probability distributions pN (t, x, y, z) converge triv-

ially or not. However, statistical convergence in dimensions larger than 2 is in general
very difficult to achieve. This phenomenon, known as ’curse of dimensionality’, largely
limits the investigations in d > 2: if 103 particles are needed to achieve convergence in
1d, we would then need the impossible amount of (103)3 = 109 particles for the 3d case.
A necessary condition for convergence can however be obtained through first and second
cumulant:

mx0
N (t) =̇

∫ ∫ ∫
x pN (t, x, y, z) dx dy dz, (6.1)

σx0
N (t)2 =̇

∫ ∫ ∫
||x−mx0

N (t)||2 pN (t, x, y, z) dx dy dz. (6.2)

If pN (x, y, z, t) →
N→∞

p(x, y, z, t) ̸= δ(x, y, z, t), then we have σx0
N (t) →

N→∞
α(t) > 0,

with α a function of time. In other words, we say that we observe traces of spontaneous
stochasticity if we observe a saturation of σx0

N (t) in the limit of N →∞. The calculation
of this coefficient is direct and can be computed for any time t. We will therefore use this
observable to identify the times at which we suspect the onset of spontaneous stochasticity.

6.1.2 . 1,2-point statistics
Diagnostics using bare standard deviations are limited, since we can have σx0

N (t) →
N→∞

α(t) while the distributions still change with increasing N . In order to get more details
about the statistics, we investigate also the one and two point probability distributions,
i.e.

pN (t, x) =̇
∫ ∫

pN (t, x, y, z) dy dz, (6.3)

pN (t, x, y) =̇
∫
pN (t, x, y, z) dz. (6.4)

If pN (x, y, z, t) →
N→∞

p(x, y, z, t) ̸= δ(x, y, z, t) as expressed by equation (5.2), then pN (t, x) →
N→∞

p(t, x) and pN (t, x, y) →
N→∞

p(t, x, y). The converse is also true: if the one/two point distri-
butions do not converge, then the full distribution pN (x, y, z, t) should not as well. How-
ever, this projection rigorously implies the following statement: if we observe convergence
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of one/two point statistics, we cannot be mathematically sure that the full convergence is
reached.

6.1.3 . Kullback-Leibler divergence
The n-point statistics give important visual information about convergence of prob-

ability distributions. We use Kullback-Leibler divergence to quantify it. It is defined as
follows (in 1d):

HKL(p, q) =
∫
p(x) ln p(x)

q(x)dx, (6.5)

where p and q are probability densities. This relative entropy is a divergence and is
therefore asymmetric. It also verifies{

HKL(p, q) ≥ 0
HKL(p, q) = 0 ⇔ ∀x ∈M, p(x) = q(x).

(6.6)

The latter property can be used as an identification tool. If pN →
N→∞

p, then we should
have

|pN − pN+1| →
N→+∞

0. (6.7)

We would therefore observe HKL(pN , pN+1) →
N→∞

0. The advantages of this divergence
are that: 1. it is simple to compute, 2. it is mathematically well defined, 3. it gives
information about numerical precision. Numerical error, from the numerical scheme or
because of the lack of statistics, implies small differences on equation (6.7). This results
in HKL not reaching 0 in the limit of N →∞.

Finally, we can also use Kullback-Leibler divergence to compare Langevin-WABC and
other types of regularisations when testing for noise universality.

6.1.4 . Computations of histograms
All histograms will be computed with linear or, in some cases, logarithmic binning.

No kernel (i.e. no statistical prior) will be used to smooth the results. We use a number
of bins depending on the number of particles simulated. We generally ensure to have at
least ∼ 100 particles per bin on average. The computations of Kullback-Leibler divergence
require a large enough number of bins and we made sure to select a thinner binning for
those calculations.

A summary of all statistical tools used is given in Table 6.1.

6.2 . FlowHisto: a coarse-grained method to evaluate probability tran-
sitions

6.2.1 . Introduction
To compute the transition deviation criterion, we must be able to compute transition

probabilities from Lagrangian data. Computing directly this quantity can be harmful
since we need the computer to store an almost empty 6d histogram (corresponding to
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σx0
N pN(t, x) HKL

Visual x x
Quantification x
Time analysis x

Binning x x

Table 6.1: Summary of properties of the used statistical tools.

Figure 6.1: Schematic illustrating the FlowHisto algorithm. The aim of this algorithm
is to deduce a possible evolution matrix from a given Lagrangian distribution (here dis-
placements). We first perform a Cartesian decomposition defined by equations from 6.9
to 6.12 on Lagrangian data. Ng points are then set into a 2d histogram. We can find an
evolution matrix by defining the associations between cells hi and Ij . Using a Cartesian
recomposition, we can then get the constructed real evolution matrix of the flow.
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all possible transitions between two times). In this section, we introduce the ’FlowHisto’
method that aims at performing this numerical task more efficiently.

Definition of evolution matrices – Before getting into the method presentation, we
here introduce the notion of evolution matrices, which we will be needed in the following.
We consider a discrete system (either deterministic or stochastic) SN . We define its
evolution to SN+1 as:

SN+1 = ΦNSN , (6.8)

where ΦN is an evolution matrix, characterising how the system should evolve if we know
in which state it originally was. In the case of a deterministic system, ΦN is unique,
corresponding to the flows from dynamical systems theory. In our case, ΦN is not unique
and is just one possible evolution. We can extend this notion in the case of systems that
are time continuous, where we would only consider the function Φt+τ

t .

Methodology – The full method is represented in Figure 6.1. It consists of three
steps:

1. Cartesian decomposition: sampling of positions x at time t1 and t2. It is the action
of coarse-graining the Lagrangian positions.

2. Histogram of transitions: building the transition probabilities in the whole space.
A possible transition for all particles, represented as an evolution matrix Φt+τ

t , is
given as an output.

3. Cartesian recomposition: building an Eulerian flow based on the evolution matrix
obtained at the end of the previous step.

At the end of step 3, we get one evolution matrix sent into real space. We can start again
at step 2 in order to get a new evolution matrix. The accumulation of those different
realisations can give an approximate evaluation of σϵ,τ (x, t). In the following, we will
introduce in more details all those steps and this final computation. A verification of the
method will finally be presented.

6.2.2 . Step 1: Cartesian decomposition
The idea is to flatten n-dimensional vectors into 1d numbers. We assume that d = 3

and our space has a defined coarse-graining (Nx, Ny, Nz). We assume our domain M to
be represented by the boundaries {(L−

x , L
+
x ), (L−

y , L
+
y ), (L−

z , L
+
z )} and we note a position

as x = (x, y, z).
We convert x (resp. y and z) into a number I (resp. J and K) such that

I =
⌊
x− L−

x

L+
x − L−

x
Nx

⌋
, (6.9)

J =
⌊
y − L−

y

L+
y − L−

y
Ny

⌋
, (6.10)
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K =
⌊
z − L−

z

L+
z − L−

z
Nz

⌋
. (6.11)

We can therefore form a new number that is an image of our position x

Ng =̇ I + JNx +KNxNy. (6.12)

This method works the same for any other number of dimensions, using the exact
same procedures. However, one also loses precision on computations from saving memory
and time. If the coarse-graining is too strong, i.e. one of the (Nx, Ny, Nz) is too low,
then the method fails to correctly encode the positions, resulting in highly discretised
flowmaps. Choosing a too fine coarse-graining can lead to having too few particles per
voxel preventing any statistical convergence.

6.2.3 . Step 2: Histogram of transitions
Histograms and transition probabilities – We note Ng

1 and Ng
2 the Cartesian

positions obtained at the end of the previous step. They represent all the Lagrangian
particles in this space moving from time t1 to time t2. We can then create a joint histogram
based on those two positions. It corresponds to all possible associations between positions
Ng

1 and Ng
2 . We call Hi,j a bin in this space. The associated edges to this bin are the hi

1
and hj

2, where the (hi
1)i and (hj

2)j represent the entire histogram’s edges.
We pick one hi

1, selecting all the particles with an initial position Ng
1 ∈ hi

1. Therefore
the bin Hi,j represents, for any j, the empirical probability to jump from hi

1 to hj
2 in a time

τ . In the real space, it corresponds to approximating the computation of p(t,x, t+ τ,x′).

Global transition – The approximation of p(t,x, t + τ,x′) is however poor and not
useful for computing the transition standard deviation. Instead, we build a random evo-
lution matrix Φt+τ

t , such as for any hi
1 we get the association hΦt+τ

t (i)
2 . It corresponds to a

possible global evolution of the system from time t to time t+ τ .

6.2.4 . Step 3: Cartesian recomposition
Methodology – We now want to send the evolution matrix back into the real space.

We note Nh,i
1 and N

h,Φt+τ
t (i)

2 the respective average values of the edges hi
1 and h

Φt+τ
t (i)

2 .
We therefore perform the inverse procedure of the one introduced in Step 1, i.e.

1. We isolate K by computing K =
⌊

Nh

NxNy

⌋
.

2. We then get zh by inverting eq. (6.11): zh = L−
z + K

Nz
(L+

z − L−
z ).

3. We do Nh ← Nh −KNxNy.

4. We do steps 1 to 3 again to get yh (dividing by only Nx this time), and finally xh.
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With this, we get a global evolution of the system1:

xh
2 = Φt+τ

t xh
1 . (6.13)

Transition standard deviation – One can repeat the procedure from step 2 as many
times as needed. Each time, we would obtain a different possible evolution Φt+τ

t . Locally,
several realisations of Φt+τ

t (x, t) give the ensemble of possible evolutions from position x,
which can be used to compute the transition standard deviation as

σϵ,τ (x, t)2 ≈
〈∣∣∣∣∣∣Φt+τ

t (x, t)−
〈
Φt+τ

t (x, t)
〉

Φ

∣∣∣∣∣∣2
2

〉
Φ
. (6.14)

The amount of necessary realisations to effectively compute equation (6.14) is not obvious.
A convergence test is performed for the WABC model and the experimental data and is
presented in Appendix E

6.2.5 . Verifying the method
Since the ABC flow (represented by velocity field U) is a deterministic field, there

exists one unique evolution matrix, given by:

Φt+τ
t (x) = x+

∫ t+τ

t
U(x(t′))dt′ (6.15)

We use this relation to verify the FlowHisto methodology. The obtained evolution matrices
are compared to the theoretical ones, calculated using a Runge-Kutta scheme of order 8
(DOP853). We choose to work on a grid Nx = Ny = Nz = 100 with 10M particles, leading
to an average density of 10 particles per voxel. Slices of absolute values of φt+τ

t (x) =
Φt+τ

t (x) − x are presented in Figure 6.2. We observe that the method performs well
globally, exhibiting a small error (up to around 10%). The method fails when lots of
scales need to be resolved. It fails to correctly capture the band of zero values as depicted
on the maps.

6.3 . Computation of Duchon-Robert coefficients

6.3.1 . Procedure and conventions
Introduction – In this thesis, we will adopt the same procedure as in Paul Debue’s

thesis [23] regarding the computation of Πl and Dl
ν . Those two coefficients will be com-

puted using wavelet transforms with a Gaussian kernel:

ψl(x) =
(

a

2πl2
)d/2

e− a||x||2

2l2 , (6.16)

where we choose a = 30. Further details can be found in Paul Debue’s thesis [23].
We finally note that the Eulerian grid on which those observables are computed is

different from the one in the FlowHisto method. We call ϵΠ the spatial step for this grid.
1For simplicity, we here confound Φt+τ

t in the Cartesian space and in the real space. Do note
the difference: in the Cartesian space, Φt+τ

t is a function of indices, and in the real space it is a
real matrix.
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Figure 6.2: Slices of |φτ
x| for z = π in ABC flow. FlowHisto methodology (top left) is

compared to theoretical value (top right). The comparison between the two maps through
their difference is provided on the lower picture.

Matching the scales – The FlowHisto method imposes a coarse-graining, which filters
all scales below the spatial precision. One can show that the characteristic length scale of
this filtering (at a -2dB cut-off) is2:

lc = 2.8ϵ (6.17)

In comparison, the -2dB cut-off of the Fourier transform of equation (6.16) (which we
recall is also a Gaussian) is:

ls = π

a log 2 lϵΠ. (6.18)

In order to have comparable scales between the FlowHisto method and the filtering from
the wavelet transform, we therefore need to select l such as:

l ≈ 2.8a log 2
π

ϵ

ϵΠ
. (6.19)

2One has to consider the coarse-graining to be a series of door functions, which are cardinal
sinus in Fourier space. The 2.8 coefficient corresponds to -2dB cut-off of the cardinal sinus function.
See [41, 48] for further details.
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Figure 6.3: Schematic illustrating the evaluation of correlation between < σϵ,τ > and Πl as
a function of time τ . Correlations appear for a range of optimal times. This time is found
to be the result of a battle between the isolation of elementary dissipations in trajectories
and the rarefaction of spontaneous stochastic events.

In the analysis of the data, we would pick l depending on the ratio between FlowHisto
grid size ϵ and the dissipation grid size ϵΠ.

6.3.2 . UV locality
In the process, a lot of scales are filtered out, especially if lc is in the inertial range.

As Paul Debue pointed out, we can invoke the UV criterium introduced by Eyink [35].
In case of lc >> dpart where dpart is the inter-particular distance, we can assume that
contributions to Πl and Dl

ν come from scales close to lc only.
In our case, we make sure to have a large enough number of particles per voxel dϵ

to ensure statistical convergence of standard deviations. Since dpart ∼ ϵ
dϵ

, in most cases
where dϵ > 6 (which is what we aim for), the UV criterion is respected. For cases where
dϵ ∼ 1, we expect Duchon-Robert coefficients to be underestimated as lc ∼ dϵ.

6.4 . Paths and transitions

6.4.1 . Dissipation and paths
So far, we did not establish what τ we should choose for the computations of σϵ,τ . In

the WABC model, spontaneous stochasticity could be observed macroscopically only for
τ > tx0

s (see Condition (5.2) in Chapter 5). A priori, tx0
s depends on initial position. As

such, we should choose τ = τ∗ such as

∀x0 ∈M, τ∗ > tx0
s , (6.20)

in order to take into account all positions. This is however not a good choice. In the
argumentation we developed in Chapter 5, we assumed that spontaneous stochasticity
occurs at an isolated singularity. If τ is too large, this assumption breaks and one has
to consider the whole history of Πl (or Dl

ν in experiments) to account for the possible
encounter of many different singularities.

On the other hand, τ should not be too low since we would limit the number of initial
positions where spontaneous stochasticity developed, i.e. the x0 such as τ > tx0

s . These two
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constraints are summarised in Figure 6.3. In the following, we choose the ’good τ ’ noted
τ o heuristically, in between these two limits, as we did not find any clear mathematical
criterion to select it.

6.4.2 . Normalisation
We additionally note that the correlation times τc in both the WABC model and the

experimental data decreases with N or Re 3. As such we should scale τ with N or Re in
order to limit the path influence as cited above. We then choose to keep a constant ratio
τ/τc. For the WABC flow, we consider τc = 1

ωN
. For the experimental data, we consider

τc = τη, the limit of Lagrangian ballistic regime.

3It also seems that, in experiments, the more extreme the dissipation is, the faster the decorre-
lation happens. See Appendix F for further information.
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Part III

Results
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7 - Observations in the WABC flow

7.1 . Numerical integration

In order to simulate the different realisations of equation (5.1) we use a Monte-Carlo
method. We here introduce the corresponding numerical methods and the possible issues
that one can encounter when using those.

7.1.1 . Strong and weak convergence
Algorithms can be ranked by their weak and strong order of convergence. While weak

convergence is related to accuracy of probability distributions and their moments, strong
convergence is related to accuracy of the trajectories themselves. Those convergences
deeply depend on both time-stepping (just as for Ordinary Differential Equations) and
the number of trajectories, at the core of statistical convergence. We note xt the theoret-
ical points from trajectories at time t, and yn the discrete approximation of xt obtained
numerically with a time step τ = t/n. We will say that we strongly converge at time t to
xt with order α if there exist Cs > 0 and δtmax > 0 such as

E(||yn − xt||) ≤ Csτα ∀τ ≤ δtmax (7.1)

Similarly, we will say that we weakly converge at time t to xt with order β with respect
to a class of functions C if, for each f ∈ C there exist Cw

f > 0 and δtmax > 0 such as

||E(f(yn))− E(f(xt))|| ≤ Cw
f τ

β ∀τ ≤ δtmax. (7.2)

In the following, we choose the L2-norm and we pick f = 1 for convenience. Good
statistical accuracy is crucial when investigating spontaneous stochasticity. This requires
numerical schemes that have good weak convergence. We shall particularly show that the
number of particles has an important role regarding the convergence of averages.

7.1.2 . Numerical scheme
In case of Langevin-WABC, we use a stochastic method to integrate Lagrangian tra-

jectories following equation (5.1), sticking to Ito’s representation.
We use the stochastic solver ’SRA3’ from the SciML library, programmed in Julia.

This method relies on an optimised Runge-Kutta scheme of strong order 1.5 [69] and
claimed to be of weak order 3. Since our noise is diagonal, there is no problem with using
this scheme as the diffusion term perfectly commutes. Integration is performed with a
fixed time step dtN to make sure that it scales properly with cut-off N . Later we compare
the performances of this algorithm with Euler-Mayurama method. Finally, a series of
sampling times ti are given and used to compare the different simulations. Since the ti
are not necessarily proportional to dtN , a linear interpolation is performed in order to get
the positions at any ti.
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Figure 7.1: Computation time benchmark for integrating the WABC model with the SRA3
algorithm for parameters N = 12 and a = 0.012. CPU computations are performed for 40
and 80 cores on an Intel Xeon 2.1 GHz. GPU computations are performed in 32 and 64
bits floating point numbers on a Nvidia Tesla V-100.

7.1.3 . GPU accelerated computations
GPU computations – Computations can become heavy when increasing the number

of modes N , especially since a large number of particles is needed to ensure weak conver-
gence. For those reasons, CPU1 computations can be limiting and we decided to switch to
GPU2 computations. Such components are more fitted to handle a large number of paral-
lel tasks. We made use of Julia’s library ’DiffEqGPU’ combined with the ’EnsembleArray’
method, which is a flexible hybrid option using both CPU and GPU.

Precision – The 32 bits precision floats is the norm for GPUs. However, for some
parameters (large N , small dt), this precision is limiting. As an example: with N = 14
and a = 0.012, typical parameters detailed below, the time step dt ∼ 7.34 × 10−7 ends
up being too close to the lowest possible 32 bits precision, i.e. 1.19× 10−7. We therefore
switched to a 64 bits precision floats, imposing slower methods than in the 32 bits case.

Benchmark – Switching from CPU to GPU hugely accelerates computations as shown
in Figure 7.1. As expected, those computations show an optimal number of tasks to be
executed at the same time for GPUs. We evaluate this number to be 216 ∼ 65 000,
right before the ratio time / Number of particles rises. We decide to use this optimal
number of tasks to batch them and not overload the GPU. We finally noticed that a multi-

1Central Processing Unit.
2Graphics Processing Unit.
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threaded version of the above method was also helping a lot during phases of intense CPU
computations, especially when sending data to the GPU.

7.2 . Tests of the methods

7.2.1 . Weak convergence on Ornstein-Ulhenbeck process
Definitions – We verify that SciML algorithms give the expected weak convergences.

We use as a reference a standard 3d Ornstein-Ulhenbeck equation with diagonal noise

dX = −θ(X − µ)dt+ σdW (7.3)

which we integrate for a fixed time step. The theoretical expectation value for this system
is given by [43]

E(X) = X0e
−θt + µ(1− e−θt), (7.4)

which can be compared to results from simulations.

Observations – Tests of weak convergence of both Euler-Mayurama (EM) and SRA3
algorithm using the definition given by equation (7.2) are presented in Figure 7.2. We
observe that EM algorithm performs as expected, showing a weak order 1. However
SRA3 algorithm performs better than expected compared to the announced weak order
3. This algorithm will be used in the following since, in the case of WABC, it is at least
as performant as EM.

Figure 7.2 also shows that the lower dt gets, the larger the required number of particles
to display weak order convergence. As a consequence, for a given dt, the number of
particles can be limiting when it comes to quantifying weak convergence.

7.2.2 . Sweeping and noise
On a dimensional argument, it would be natural to set dtN ∼ ω−1

N . However this leads
to incorrect results. In fact, a displacement with such a time step would be δx ∼ ω−1

N ,
essentially carried by the large scales. That way, the particles would not feel the smallest
scales for large N, leading to an undesired sweeping effect. Please note that the WABC
model does have a zero average velocity field and we refer here to local sweeping due to the
specific construction of it by layers. Such phenomenon has been first observed by Thomson
[81, 37]. In a similar flow, they observe that a local sweeping can lead to incorrect pair-
dispersion law as initially found by Eliott and Majda [33]. The desired displacement here
should be δx ∼ k−1

N . Consequently, we decide to set the time step to dtN = ak−1
N .

We define the diffusion term in equation (5.1) as

κN = b2 ω
2
N

k2.4
N

, (7.5)

where b =
√
a. Since dW ∼ 1√

a
, the noise term explodes when sending a→ 0. b acts as a

corrective factor to counterbalance the diverging effect of a. This ensures that the noise
always dominates at approximately the same scale. When testing weak convergence, we
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Figure 7.2: Comparison between theory and simulations for Euler-Mayurama (brown
curve) and SRA3 (blue curves) for an increasing number of particles Np, ranging from
Np = 104 to Np = 107 (from light to deep blue). EM algorithm shows a weak order 1 as
expected while SRA3 shows a higher weak order than the announced 3.

must set b = 1. Otherwise, the integration scheme changes as we decrease a. Numerical
convergence is tested both when setting b = 1 (the standard way) and b =

√
a (specific to

this model).
We note that the particular noise scaling introduced here was deduced from a com-

parison with another noise type for h = 1/3. The optimisation procedure and the corre-
sponding results are given in Appendix H.

7.2.3 . Weak convergence on the WABC model
Testing integration precision – We now introduce the tests of convergence for the

WABC model to check that algorithms behave well. We also want to find the optimal a
coefficient that leads to both good accuracy and low calculation time.

Early trials showed that the initial position x∗
0 = (3.3492, 2.8988, 0.7665) results in a

larger dispersion for solutions computed on t ∈ [0, 1]. We set the initial position x∗
0 and we

integrate an increasing number of trajectories Np (from 211 to 220) using a decreasing time-
stepping coefficient a. We use a number of modes N = 14, already converging towards
non-trivial distributions for large enough times.
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Figure 7.3: One-point statistics of the WABC model where h = 1/3 and N = 14,
with decreasing a coefficient for checking numerical convergence of schemes with: Euler-
Mayurama (Left) and SRA3 (Right) algorithms when b = 1 and varying a (indicated by
the colour bar). From top to bottom, the one points statistics for the 3 coordinates x, y
and z are displayed.
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Figure 7.4: One-point statistics of the WABC model where h = 1/3 and N = 14
with, decreasing a coefficient for checking numerical convergence of schemes with: Euler-
Mayurama (Left) and SRA3 (Right) algorithms when b =

√
a and varying a (indicated by

the colour bar). From top to bottom, the one points statistics for the 3 coordinates x, y
and z are displayed.
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Figure 7.5: Comparison of one-point statistics for different algorithms and setups: Euler-
Mayurama in Langevin setup (Purple), SRA3 in Langevin setup (Green) at small enough
a for the WABC model with h = 1/3 and N = 14. From top to bottom, the one points
statistics for the 3 coordinates x, y and z are displayed.

Figure 7.3 shows convergence of one point probability distributions for EM and SRA3
when b = 1 and decreasing a (i.e. the time step). We first observe that the distributions
look similar between the two. A side by side comparison between the two stochastic solvers
is displayed in Figure 7.5 and tends to confirm this tendency. We also note that the range
of a tested does not seem to have a large influence on accuracy here.

This is further tested in Figure 7.4 where one point statistics of EM and SRA3 are
compared in the case b =

√
a with varying coefficient a. We observe here that a has a

small impact on integration accuracy. Convergence appears to be slower than for the b = 1
case.

Testing the number of particles – We now want to evaluate the number of particles
necessary to achieve statistical convergence. To that aim, we integrate different numbers
of trajectories Np, all emanating from x∗

0 using three different time steps: a0 = 0.012,
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Figure 7.6: Kullback-Leibler divergence between one-point distributions of increasing num-
ber of particles for the WABC model where h = 1/3 and N = 14. All plots show a N−1

p

power-law represented by dotted lines.

a+ = 4a0 = 0.048 and a− = a0
4 = 0.003. We then compute the Kullback-Leibler divergence

HKL(PN i+1
p , PN i

p) between distributions of increasing number of particles. We finally
compare results between the three time steps to identify if the fluctuations observed in
the other figures are due to numerical integration or statistical convergence. Results are
presented in Figure 7.6.

The number of particles does indeed decrease statistical error. However, the integration
constant a has very little effect on those plots as no saturation or change of regime is
observed as a increases.

7.2.4 . Presentation of data

Checking for spontaneous stochasticity – We will first test for spontaneous stochas-
ticity by simulating trajectories starting from x0∗, with h set to 1/3. From the analysis of
weak convergence above, we selected a = 0.012 and Np = 220 which is a good compromise
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h = 1/3 h = 2/5 h = 1
S.S. ? x x
Dissipative x
Density 6 6 6
lc (kmax) 3 3 3 Domain size

τ ∗/τN

N = 6 0.32 0.17 5× 10−4 π
N = 8 0.32 0.17 5× 10−4 π/4
N = 10 0.3 0.16 5× 10−4 π/16
N = 12 0.38 0.15 5× 10−4 π/64
N = 14 0.32 0.17 5× 10−4 π/256

Table 7.1: Summary of WABC flow parameters and investigated scales. Density
being the number of particles per voxel.

between computation time and accuracy of integration3.

Checking the criterion – In order to test the transition deviation criterion, we per-
form many ensemble simulations on WABC flow for an increasing number of modes. We
use the SRA3 algorithm with precision a = 0.012 and without any noise. We carry those
studies on h = 1

3 (rough dissipative case), h = 2
5 (rough non dissipative case) and h = 1

(smooth case). In this scenario, we sample Np = 40M particles on a smaller and smaller
domain [0, π/2N−6] so that by defining

kmax = kN = 2−N , (7.6)

we are always looking at the same scale lc compared to the lowest one:

lc
kmax

= 2.8 ϵ

kmax
= 3. (7.7)

We get trajectories on a time span (0, 0.1), leading to 200 time steps.
We choose to have a grid for histograms where Nx = Ny = Nz = 188, which corre-

sponds to having ϵ = 2π
Nx

. Coupled with the large number of particles generated, we obtain
a high density per voxel dϵ ≈ 6.

Duchon-Robert’s coefficient Πl is evaluated using the theoretical field. A grid NΠ
x =

NΠ
y = NΠ

z = 400 is used in order to correctly compute this coefficient. Sides are trimmed
up to 16 voxels on each boundary, in order to avoid any numerical artefacts. Using relation
6.19, we deduce l = 2.8 is needed to have ls ≈ lc.

A summary of chosen parameters is given in Table 7.1.

7.3 . Results regarding spontaneous stochasticity
3We could have chosen a higher a in order to save some valuable computation time: no effect

from integration is detected for that Np. This indicates that the main source of error comes from
the lack of particles.
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(a) (b)

Figure 7.7: Evolution of standard deviation σN (Left) and its rate of convergence δσN =
|σN+1−σN |

σN+1
(Right) as a function of both number of modes N and time t for the WABC

model with h = 1/3 and initial position x∗
0. The dashed line represents the τN = 1

ωN

slope.

7.3.1 . Standard deviation study
We now present the evaluation of σx0

N computed on the Monte-Carlo simulations. It
is summarised in Figure 7.7a. This graph shows a clear change of behaviour for approxi-
mately t > 0.1, from which standard deviation σN seems to remain constant asN increases.
This is confirmed with Figure 7.7b which shows the rate of convergence δσN = |σN+1−σN |

σN+1
.

In the following, we decide to evaluate probability distributions at time t = 0.875 > 0.1
to quantitatively verify the convergence of statistics.

Finally, those two graphs also indicate a saturation of σx0
N for N ≥ 12. We should

therefore expect convergence of statistics for N ≥ 12.

7.3.2 . One,two-points statistics
Qualitative approach – We show here the evolution of one and two-points statistics

as the number of modes N increases. Figure 7.8 introduces results of the one-point statis-
tics for the different axes x, y and z. The two-point statistics are represented by slices
(x− y, x− z and y − z) in Figure 7.9, Figure 7.10 and Figure 7.11.

One can notice that both one-point and two-points statistics seem to converge onto
unique curves for increasing N . More specifically, the limiting probability is reached for
N ≥ 12, confirming our initial guess using standard deviation. The limit distributions
appear to be notably non-trivial.

Kullback-Leibler divergence – We quantify this convergence through the analysis
of Kullback-Leibler divergence between one-point statistics. Those results are presented in
Figure 7.12 for axes x, y and z. All curves decrease as N increases, and reach a plateau for
N ≥ 14. This saturation was expected, as it corresponds to the non-negligible numerical
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Figure 7.8: Evolution of one-point statistics through the number of modes N for the
Langevin-WABC problem with h = 1/3 on the three different axes x, y and z.
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(a) N = 10 (b) N = 12

(c) N = 14 (d) N = 16

Figure 7.9: Evolution of two-points statistics through the number of modes N for the
Langevin-WABC problem for the XY-slice and h = 1/3.
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(a) N = 10 (b) N = 12

(c) N = 14 (d) N = 16

Figure 7.10: Evolution of two-points statistics through the number of modes N for the
Langevin-WABC problem for the XZ-slice and h = 1/3.
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(a) N = 10 (b) N = 12

(c) N = 14 (d) N = 16

Figure 7.11: Evolution of two-points statistics through the number of modes N for the
Langevin-WABC problem for the YZ-slice and h = 1/3.
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Figure 7.12: Evolution of the Kullback-Leibler divergence between one-point statistics of
increasing number of modes N as a function of N for Langevin-WABC with h = 1/3 for
the x-axis (purple), the y-axis (blue) and the z-axis (green).

errors. In particular, from the results of the previous section, the number of simulated
particles is the limiting factor here.

7.4 . Discussions and testing universality

7.4.1 . Analysis of the results
The previous results, obtained for h = 1/3, show a convergence of statistics in the limit

of numerical errors. The two-points probability distributions are also well converged at
the considered N . The limit distributions are highly non-trivial and distinct from simple
Diracs. From those results, we conclude that the WABC model can build Lagrangian spon-
taneous stochasticity in the sense that Lagrangian trajectories appear to be still stochastic
in the limit of vanishing noise.

Computational burdens limited us to Np = 220, which is, at the present, the main
limiting factor to the convergence of the Kullback-Leibler divergence. In the event where
computational resources increases, allowing for higher values of Np, the scheme accuracy
would become the main limiting factor.

7.4.2 . Influence of noise type
Knowing that spontaneous stochasticity exists in this model, is it possible to extend

those results to any other type of noise? This would test universality of the model under
the change of regularisation.
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Definition – We investigate this possibility by introducing the ensemble of Cauchy
problems {

dxN (x, t) = ∑N
i=1

ωi
ki
U(kix)dt

with {x(0) = x0 |x0 ∈ B(x∗
0, ηN )},

(7.8)

where ηN denotes the ball radius. Since the uncertainty on the initial position represents
the stochastic regularisation, ηN should decrease with the number of modes N . We choose
to have in particular ηN = 10

kN

4. We refer to this setup as ’Cauchy-WABC’. We intro-
duce the probability distribution pC

N where initial conditions are assumed to be uniformly
distributed inside the ball B(x∗

0, ηN )

pC
N (x, 0) = 1

VηN

ΘH(ηN − ||x− x∗
0||2) (7.9)

with ΘH the Heaviside function and VηN the ball volume. In the same way as for Langevin-
WABC, we say that spontaneous stochasticity occurs if and only if pC

N verifies condition
5.2.

Observations – We integrate this problem with a Runge-Kutta method of strong
order 4/5 for the same number of particles Np = 220. The results presented in Figure
7.13 and Figure 7.14 show comparisons of one and two-points statistics between Langevin
and Cauchy-WABC. Additional results showing convergence of Cauchy’s regularisation are
available in Appendix G. We reach identical conclusions as for the Langevin-WABC case:
the statistics appear to be converged for N ≥ 12. The distributions for both regularisations
look notably similar, providing evidence of universality of spontaneous stochasticity with
respect to regularisation.

7.4.3 . Hölder exponent influence
We showed that the WABC model is spontaneously stochastic for h = 1/3. This

conclusion should be valid for any other Hölder exponent h < 1. We here test this
hypothesis by computing one-point statistics for two other Hölder exponents: h = 1/5
and h = 2/5. We keep the same simulation characteristics as before: we only change the
Hölder exponent. We did not test higher coefficients because spontaneous stochasticity
appears at longer times for those. The associated results are presented in Figure 7.15.

We note that both cases seem to converge, in the limit of statistical errors. The case
h = 2/5 does not seem as clear as the h = 1/5 case though. Integrating trajectories up
to those times comes as a challenge as a larger h requires a large number of particles
to reach statistical convergence. We nevertheless conclude that WABC model should be
spontaneously stochastic for at least h ≤ 2

5 and initial position x∗
0.

Finally, the noise scaling in equation (7.5) was chosen for the h = 1/3 case. So far, no
theory was built to derive this scaling properly and it was deduced heuristically for the

4An elementary cell in this model is given by its smallest scale k−1
N . All particles starting in

this cell will have the same initial velocity. The resulting trajectories would inevitably be totally
identical for up to a certain time. This phenomenon would ask for longer integration and false
durations for the appearance of spontaneous stochasticity.
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Figure 7.13: Comparison of one-point statistics between Langevin-WABC (Blue) and
Cauchy-WABC (Black) for N = 16 and h = 1/3 on the three different axes x, y and
z.
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(a) (b)

(c) (d)

(e) (f)

Figure 7.14: Comparison of two-point statistics between Langevin-WABC (Left) and
Cauchy-WABC (Right) for N = 16 and h = 1/3 on the three different slices x − y,
y − z and x− z.
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Figure 7.15: One point statistics of WABC-Cauchy problem at t = 0.875 where h = 1/5
(Left) and h = 2/5 (Right). The x, y and z axes are displayed from top to bottom.
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Figure 7.16: Evolution of one point statistics through the number of modes N for initial
position xπ

0 at time t = 0.875 for the WABC model with h = 1/3.

case h=1/3, under the hypothesis that non-linearities produce non trivial scaling. More
investigations are needed to test the scaling and its dependence with respect to h.

7.4.4 . Initial position dependence
First approach – Since the model is singular everywhere, it should present sponta-

neous stochasticity for any other initial position. This hypothesis can be tested by starting
the trajectories from another initial position xπ

0 = (π, π, π). The corresponding one-point
statistics evaluated at t = 0.875 are depicted in Figure 7.16. At a similar time, statistics
in this case appear less converged than with the other initial condition, suggesting that
the time to reach convergence depends on initial position: tx

π
0

s > t
x∗

0
s .

This makes investigations harder, as we need to integrate the trajectories on longer
times. Also, particles tend to disperse more, making the construction of histograms harder
(having less particles per bins).

Average analysis – To overcome such limitations, we use a simpler procedure to
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Figure 7.17: Evolution of standard deviation ⟨σx0
N ⟩x0 (Left) and rate of convergence

⟨δσx0
N ⟩x0 (Right) averaged over all selected initial position as a function of time and num-

ber of modes. Isocontours are represented in dotted lines. The closer to 0, the faster
convergence is.

investigate the onset of spontaneous stochasticity: we randomly pick 1000 initial positions
within the domain and generate 1000 trajectories for each. We then compute the standard
deviation σx0

N and its rate of convergence δσx0
N for each of those initial positions. We finally

calculate an average of those two quantities over positions ⟨σx0
N ⟩x0 and ⟨δσx0

N ⟩x0 . This gives
us a global rate of convergence for which results are presented in Figure 7.17.

Finally, we pick a threshold δσmax
N = 10−1 and evaluate the times τσ at which δσx0

Nτσ
<

δσmax
N for each Nτσ > N . This acts as a biased rough criterion for convergence: if no time

is found to follow the above condition, then the corresponding initial position is discarded.
We thus only use this crude criterion to estimate the probability distributions of those
times. This will give information about whether those statistics are peaked or spread.
The corresponding results are presented in Figure 7.18.

We observe that the global standard deviation seems to converge towards non-zero
values, as expected. A clear dependence on the number of modes N appears on the rate
of convergence plot. Isocontours show a similar scaling as time increases, seemingly being
∼ 1

ω0.5
N

, larger than characteristic time τN ∼ 1
ωN

. This suggests that non-linearities and
chaos have a large impact on the scaling properties of the observed phenomenon. This
also suggests that spontaneous stochasticity takes less and less time to build up in this
model as N →∞.

Distributions of criterion times τσ are definitely not peaked but quite spread out as
Figure 7.18 depicts. This suggests a high dependence on initial position regarding conver-
gence time, despite the biases brought by the above criterion.

7.5 . Results regarding transition deviation
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Figure 7.18: Probability distributions of convergence time based on threshold value
δσmax

N = 10−1 and Hölder exponent h = 1/3 for the WABC model. The lighter the
colour, the higher the mode N (from N = 9 to N = 13).

We showed that the WABC model is spontaneously stochastic. We now move on
to testing the transition deviation criterion to see whether it is sensitive to spontaneous
stochasticity or not. We will conclude from those observations if our criterion can be used
in real flows or not.

7.5.1 . Joint probabilities
We introduce joint probability distributions between σϵ,τo

N and Πl for h = 1/3 and
h = 1 in Figure 7.19. For h = 1/3 and N = 6, we observe that the joint probability
distribution is wider for low Πl and σϵ,τo

N . It becomes thinner for larger Πl and σϵ,τo

N ,
showing a correlation between the two quantities. The expected regime (Πl) 1

3 seems to be
respected (for large enough Πl and σϵ,τo

N at least). We note that the distributions do not
seem to change drastically when N increases, keeping to the (Πl) 1

3 law. We do not observe
the same behaviour in the h = 1 case however. For low N , we observe a similar correlation
between the two quantities. When N increases, the distributions start to elongate in the
direction of small Πl. This shows that as N increases, Πl and σϵ,τo

N decorrelate. The
expected regime (Πl) 1

3 ceases to match the data for N = 14 in that case.

7.5.2 . Transition deviation criterion
The transition deviation criterion < σϵ,τo

N >Π as a function of Πl is given in Figure 7.20.
We observe in all cases that the curves are flat for low Πl, which confirms the decorrelation
between σϵ,τo

N and Πl observed in the study of the joint probabilities. For h < 1, we note
that the curves become non-flat for a large enough Πl, for any N . The expected law (Πl) 1

3
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(a) h = 1
3 and N = 6 (b) h = 1 and N = 6

(c) h = 1
3 and N = 10 (d) h = 1 and N = 10

(e) h = 1
3 and N = 14 (f) h = 1 and N = 14

Figure 7.19: Joint probability distribution between σϵ,τo and Πl for increasing N and two
different Hölder exponents h. The dashed lines correspond to the scaling law provided by
equation (5.19).
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(a) h = 1
3 (b) h = 2

5

(c) h = 1

Figure 7.20: Conditioned average
〈
σϵ,τo〉

Π as a function of Πl for an increasing number of
modes N for the WABC model with three different h. The dotted curve corresponds to
the 1

3 determined by equation (5.19).
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never seems to be respected. For h = 1, a different behaviour appears: as N increases,
the curves flatten totally. This underlines the decorrelation already observed for N = 14
in the study of joint probabilities.

We finally observe a subtle decrease of the maximum Πl in the h = 2/5 case. This
is expected since the irregularities in that case are non-dissipative: < Πl > diminishes as
N →∞.

7.5.3 . Discussion
As expected, the larger Πl are more correlated to σϵ,τo

N . In this scope, we observed
that the cases h < 1 are showing a correlation between the two quantities that do not
seem to change with N . This comes in total opposition with what is observed in the case
h = 1 where the curves show an important dependence on N . We therefore conclude
that the transition criterion < σϵ,τo

N >Π> 0 in the limit N → ∞ works for h = 1/3
or h = 2/5. Since we showed that the WABC model is spontaneously stochastic for
h = 1/3 and h = 2/5 we also conclude that the transition deviation criterion is sensitive
to spontaneous stochasticity.

7.6 . Conclusions

We built a model that presents spontaneously stochastic behaviour within the limits
of integration and statistical convergence. The main difficulty with this model is to reach
weak convergence. The high number of modes and particles represents a challenge re-
garding both computation time and storage. Switching to GPU computations allows for a
tremendous reduction of computation time. Further reduction in computational cost may
be achieved by switching to 32 bits, or by optimising time steps.

This model is universal with respect to change of regularisation. We showed that both
Langevin-WABC and Cauchy-WABC converge onto similar distributions in the case of h =
1/3. Universality with respect to change of Hölder exponent has also been investigated, by
both lowering and increasing h, without noticeable influence on the results. Due to time
limitation, we were however not able to test whether spontaneous stochasticity develops
for the whole interval 0 < h < 1. It is also unclear if the noise scaling should depend
on h. However, performing such investigations requires the ability to simulate more than
N = 18 modes, with a large number of particles, in a reasonable computing time.

Using the fact that the WABC model was found to develop Lagrangian spontaneous
stochasticity, we were able to check if the transition deviation criterion (5.22) was mean-
ingful. We observed that in the case of an irregular flow (h = 1/3 and h = 2/5), the
criterion reaches non-zero values for large ’dissipation’ Πl, even in the limit of vanishing
regularisation. On the contrary, for the regular case h = 1, a clear decorrelation appears
between the criterion and Πl, as expected. We concluded that this criterion is well-defined
in the inviscid limit and is sensitive to spontaneous stochasticity.

Thanks to this results, we shall now adapt the transition criterion to the experimental
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data and compare them with the cases h = 1/3 or h = 1 obtained for the WABC flow.
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8 - Observations in real flows
In this chapter, we introduce the numerical and experimental data that we use to

study the transition deviation criterion. We then briefly present the methodology to get
the experimental Lagrangian trajectories from the fast movement of the tiny particles in
the experiment. An algorithm designed to compute the Eulerian velocity field from the
Lagrangian data is then broached.

A last part is dedicated to the analysis of the data. Due to a lack of time, we only
present preliminary results. We intend to only give a proof of concept of our methodology.
A more detailed study of the transition deviation criterion will be provided for an upcoming
publication.

8.1 . Presentation of the data

8.1.1 . Numerical data
Experimental results are plagued with uncertainties due to noise, either due to the

experimental set-up or to the chain of measurements and data processing. To control
them, we use a comparison with numerical simulations provided by J-P. Laval, in which
Lagrangian tracers are advected by a 3d homogeneous flow field computed on the torus
[0, 2π]3.

The simulation corresponds to a very well resolved Direct Numerical Simulation (DNS)
of decaying turbulence starting from a Taylor Green initial solution. A pseudo-spectral
scheme on a 768 periodic cubic box of length 2π is used to solve the Navier-Stokes equa-
tions. It provides us synthetic data onto which we can apply our whole chain of processing,
allowing us to separate the contribution due to experimental noise. We select times where
Re changes the least to ensure the non-variability of our measurements. We also pick
times that are statistically independent. We focus on the case of Re ∼ 137 with 60M
particles advected. We define here a grid Nx = Ny = Nz for histograms that we adapt to
the scale we want to investigate.

The computation of local standard deviations requires a minimum amount of particles
for convergence of statistics. We arbitrarily select voxels that have at least dϵ = 8 particles

Re Reλ Nx lc (η) Density τ ∗ / τη

137.1 60 200 3.9 7.5 0.2
150 5.2 17.8 0.2
100 7.8 60 0.2
70 10.7 175 0.2
50 15.6 480 0.2

Table 8.1: Summary of DNS parameters and investigated scales. Density here being
the number of particles per voxel.
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Figure 8.1: Picture of the ’Giant Von Kármán’ experiment. The black motors on the left
drive the belts above and below the aluminium case, rotating the impellers inside.

regardless of the grid size. The large density in this simulation allows us to study a large
range of scales that are reported in Table 8.1.

8.1.2 . Experimental data

Presentation of the experimental setup – We use experimental data partly ob-
tained from the ’Giant Von Kármán’ (GVK) experiment in the Saclay laboratory. GVK is
a 1.5m high cylindrical experiment with radius R = 0.5m. Two impellers, situated on top
and bottom of the experiment, are rotating in opposite directions, moving a ton of water.
The created mean flow is, in the simplest case, divided into two circulation cells with a
shear layer oscillating in the middle of the cylinder (see Figure 8.2). The resulting flow in
the centre of the experiment is close from homogeneous and isotropic turbulence. Optical
measurements are taken at this location. Because of the first law of thermodynamics,
dissipation is converted into heat in the experiment, which can induce spurious variation
of the viscosity due to temperature increase. The flow is therefore cooled down by two
cooling systems situated above and below each turbine, keeping the water at constant
temperature at all times. Two configurations are available in this setup: the contra and
anti configurations with their two associated mean torques. When the impellers are in
contra-rotation, the back of the curved blades pushes water. When the impellers are in
anti-rotation, the front of the curved blades pushes water. The latter case can lead to a
random bifurcation in the flow (for constant motor velocity inputs) where the two cells
can merge, forming one turbulent cell as depicted on Figure 8.2 [70, 64, 74]. We made sure
to look at data from non-bifurcated runs in order to keep the same two cells configuration
as in the contra case.
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Figure 8.2: Flow configurations in the Von Karmàn setup. The non-bifurcated case (Left)
is a symmetric flow composed of two circulation cells (red arrows). In the anti-rotation
case, the flow might bifurcate. This leads to one of the two configurations (Middle and
Right) where the two circulation cells merge together. Either the bottom impeller gets
carried by the top one (Middle) or the opposite (Right). Schematics taken from Damien
Geneste’s thesis [48].

In the following, we also used data from the ’Small Von Kármán’ (SVK) experiment
that is 5 times smaller than the GVK. Consequently, at the same rotation rate, η becomes
5 times smaller than before while Re becomes 5 times larger. The created flow is identical
and totally comparable to the one obtained in GVK. Since we must look at different
scales and Reynolds numbers, the two experiments are complementary. In particular, we
have two cases from SVK that have the same Reynolds number but two different flow
configurations (anti and contra). It will give us some information about the influence of
the flow configuration on the transition deviation criterion.

Lagrangian tracers are particles of diameter ∼ 10µm and about the same density as
water and are placed inside the tank1. A high frequency laser, points at the internal tank,
providing an intense light sheet of size 0.05× 0.044× 0.006m3. The laser light, scattered
by the particles within the flow, is then retrieved by four cameras situated on the sides
of the experiment (see Figure 8.3). The light is then diffracted on the camera aperture,
resulting in typical diffraction pattern, i.e. Airy disk, representing the particle image,
encoding both intensity and position.

Using the images from the four cameras, we are able to reconstruct the 3d positions
of Lagrangian particles in time (see Figure 8.4). This is done by using the commercial
algorithm ’Shake-the-Box’ (STB), from ’LaVision’. See Damien Geneste’s thesis for further
information[48, 14].

Parametrisation – The different Reynolds numbers and associated investigated scales

1The type of particle and their diameter depends on the experiment and what is needed to
achieve specific densities. Further information can be found in Paul Debue’s thesis [23].
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Figure 8.3: Experimental setup for ’Particle Tracking Velocimetry’ (PTV) measurements.
A laser is calibrated using optics to be focused to form a sheet. Particles, placed inside
the flow, scatter the incoming light. The red area is recorded by cameras outside the
experiment. Particle tracking post-processing leads to the 3d reconstruction of particle
trajectories. Schematic by Damien Geneste [48].

Cases C7-1 C7-2 C7-3 C7-4 C15-1 C15-2 C15-3
lc (η) 7.78 7.72 7.76 7.78 15.3 15.6 15.3
Type anti contra anti contra anti contra contra
Re 6300 6300 39 000 157 000 6300 31 000 157 000
Nx 48 37 38 100 24 62 50

Density 2.6 5.7 5.2 1.0 12.5 1.0 12
τ ∗/τη 0.17 0.21 0.21 0.22 0.17 0.2 0.22

dϵ chosen 6 8 6 5 8 8 6

Table 8.2: Summary of GVK/SVK parameters and investigated scales. Density here
being the number of particles per voxel.

are summarised in Table 8.2. For the computation of the histogram’s grid, we set Nx and
deduce Ny and Nz from the domain defined by the laser sheet. We have Ny = 0.88Nx and
Nz = 0.12Nx. To compute the transition deviation criterion, we must select voxels that
have enough particles inside, to have meaningful standard deviations. For that, we set a
threshold dϵ such that if the local density d < dϵ, then the associated voxel is discarded.
We note that in some experimental cases, on average, the number of particles per voxel
can get very low (see Table 8.2). As a result, we decrease dϵ a bit, case-by-case, in order
to capture more voxels for the final statistics. This can potentially alter the value of
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Figure 8.4: Lagrangian trajectories from the SVK experiment coloured by their velocity.
Only 10 percent of the trajectories are represented here.

transition standard deviations, possibly leading to errors in the final results.
We only look at times that are considered to be statistically independent from each

others just as for synthetic data. We note that densities here are way lower than in DNS.
We can indeed reach at most 90 000 particles per instant, limiting the number of possible
investigated scales.

Finally, the Eulerian grid NΠ
x , NΠ

y and NΠ
z was chosen to be the one used by D.

Geneste, performing at a density of 0.05 particles per voxel [16].

STB Limitations – The Shake-the-Box algorithm may induce the outcome of outliers
in the Lagrangian data. Those outliers can, for instance, have large displacement vectors
(in norm) compared to the other particles. Taking the minimum and maximum of particle
displacements to define the Cartesian decomposition can lead to wrong results: more
weight is given to the larger values (thus not representing the whole data). We shall
perform an outlier detection first in order to remove the spurious vectors. This method is
explained in Appendix I.

8.2 . FlowMapFit: from trajectories to Eulerian fields

8.2.1 . Introduction
Presentation – We presented above the way to get Lagrangian trajectories from PTV

measurements. We also need the Eulerian velocity field for the calculations of Πl and
Dl

ν . To get it, we use the Lagrangian data that we interpolate onto an Eulerian grid.
The FlowHisto method is able to do this task but is a highly coarse-grained method,
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Figure 8.5: Schematic illustrating the FlowMapFit algorithm. The aim of this algorithm
is to deduce an Eulerian field (here φτ ) from a given Lagrangian distribution (here dis-
placements). We select a grid which will represent the B-Splines centers. The Eulerian
field is then deduced from an optimisation problem. The goal is to find the best ci,j,k

coefficients so that the Eulerian field is as close as possible as the Lagrangian one, under
some constraints.

as such, the computations of velocity increments are very noisy. Instead, we opt for an
interpolation of the local displacements of particles using B-spline interpolations. We
introduce the displacement field φt+τ

t (called flowmap in the following) such as: if we
consider any particle that starts at position x1 at t and ends at position x2 at t + τ , we
have

φt+τ
t (x1) = x2 − x1. (8.1)

For the sake of simplicity, we omit the t dependence in the following: φτ = φt+τ
t . We

therefore deduce the approximation for τ small

u ≃
τ→0

φτ/τ (8.2)

This subsection will be dedicated to introducing the full methodology to obtain φτ from
Lagrangian particles. A test on the ABC flow will then be presented.

Methodology – We consider particle trajectories with associated positions along time
xi

tr(t). We also consider an Eulerian grid of dimensions NΠ
x , NΠ

y , NΠ
z and grid width ϵΠ

where ξi,j,k will be the corresponding reference centres of B-splines. We call ’weights’, the
cτ

i,j,k coefficients such that, multiplied by B-splines, they perform an interpolation of all
local advections performed by the considered flowmap:
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φτ (xt0) = xt+τ − xt =
Nx∑
i=1

Ny∑
j=1

Nz∑
k=1

cτ
i,j,k

3∏
n=1

b3(X̃n
i,j,k), (8.3)

where X̃n
i,j,k = xn−ξi,j,k

Nnϵ the distance between the particle and nodes, Nn ∈ (NΠ
x , N

Π
y , N

Π
z ),

and

b3(y) =


4
6 − |y|

2 + 1
2 if y ≤ ϵ

1
6(2− |y|2) if ϵ < y ≤ 2ϵ
0 otherwise.

(8.4)

The goal is to learn the weights cτ
i,j,k from the positions of particles at each considered

time. Their small displacement serves as a reference that we shall try to reproduce with
the interpolation. This becomes an optimisation problem with the following functional:

F [φτ ] =
Ntr∑
i=1

∣∣∣∣∣∣xi
tr(t+ τ)−φτ (xi

tr(t))
∣∣∣∣∣∣2

2
+ λhfFhf (φτ ), (8.5)

where the velocity u ≈
τ→0
±φττ . A summary of the method can be found in Figure 8.5.

A regularisation using a low-pass filter which is used to limit the effect of high frequencies
on the computations of the flowmap. It has been proven to be efficient in order to limit
experimental noise contamination [8, 49]. It is defined as follows:

Fhf (φτ ) =̇
Nx,Ny ,Nz∑

i,j,k

||c̃i,j,k||22 , (8.6)

with

c̃i,j,k = 1
3

3ci,j,k −
1∑

l=−1
w(l + 2)(ci+l,j,k + ci,j+l,k + ci,j,k+l)

 , (8.7)

which corresponds to a spatial low-pass filter with a kernel w =
[

1
4 ,

1
2 ,

1
4

]
.

Hyperparameters and regression – The hyperparameter λhf should be determined
by learning them from the data either using some physical arguments or by using some
training data [63]. Such study has not been lead though, and we arbitrarily chose our
parameter in order to match with the PTV data for experiments. In most cases, the
choice of λhf = 1 was qualitatively ideal.

We use a least-square algorithm to optimise the resulting linear functional. We make
sure to have this method converge before a limiting number of steps. We observe that a
tolerance of 10−8 was generally a good choice for both good performances and reasonable
computation time.

With the regularisation of the high frequencies, one is able to reconstruct the Eulerian
field with a low density of particles [78]. This is particularly convenient in experiments
since we cannot track as many particles as we want and the Eulerian field is harder to get
from direct measurements.
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8.2.2 . Verifying the method
We here verify the methodology by comparing with the integrated ABC flow, using

the relation
φτ (x) =

∫ t+τ

t
u(x(t′))dt′ (8.8)

We choose λhf = 1. Slices of absolute value of φτ
x are presented in Figure 8.6. We observe

that both flowmaps are almost identical with an overall error of 10%. Sides of the the
domain are less correct due to a lack of data on the borders. Just like the FlowHisto
method, the range of scales that can be correctly modelled is limited. This effect can be
observed on the under-resolved band of zeros depicted on the maps.

Figure 8.6: Slices of |φτ
x| for z = π in ABC flow. The FlowMapFit methodology (top left)

is compared to the theoretical value (top right). The comparison between the two maps
through their difference is provided on the lower picture.
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8.3 . DNS and Experimental results

This section is dedicated to the analysis of the results regarding the study of the
transition standard deviation compared to Πl and Dl

ν . We first analyse the structures and
then move on to studying the statistics of σϵ,τo . Some discussions and comparison with
the WABC will be presented in the end of this section.

8.3.1 . Main results
Structures analysis – As a preliminary approach, we analyse the structures of the

transition standard deviation and compare them with the terms in Duchon-Robert’s the-
orem. We perform this study on the DNS data only: the lack of particles and the strong
coarse-graining prevented us from studying the structures in the current experimental data
we have. We present in Figure 8.7, slices (at z = π) of Dl

ν , Πl, (Πl +Dl
ν) and σϵ,τo at one

instant for lc = 3.9η. We observe that places of strong σϵ,τo correspond mostly to places of
strong Πl and Dl

ν . In particular, we notice similar structures between (Πl +Dl
ν) and σϵ,τo .

Those two seem more similar than with Πl or Dl
ν alone. We note that subtle differences

can still be observed between the two maps, in particular for low (Πl +Dl
ν).

Analysis of joint probabilities – We here analyse the joint probabilities between
Duchon-Robert coefficients and the transition standard deviation. We present the cases
where lc ∼ 15.5η (beginning of inertial range) in Figure 8.8.

The DNS provides less statistics for the joint probability distributions than the experi-
mental data. We however notice that without the experimental noise, the joint probability
distribution between σϵ,τo and Dl

ν seems more centred around the 1/2 law from equation
(5.20). Overall, the distributions are more centred for the comparison with Dl

ν than with
Πl. In particular, we notice that the distributions stretch for the low Πl, indicating that
only the largest Πl correlate with the transition standard deviation. The σϵ,τo associated
with the largest Πl appear to stick close to the 1/3 scaling from equation (5.19).

The Re = 31 000 case shows however very round distributions, a very different be-
haviour from the others Reynolds numbers which we believe is due to the lack of statistics
in this case. Regardless of this case, we observe that the distributions seem to be similar
regardless of the Reynolds number.
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Figure 8.7: Slices of Dl
ν/ϵ[I] (top left), Πl/ϵ[I] (top right), (Dl

ν + Πl)/ϵ[I] (bottom left)
and σϵ,τo

/
〈
σϵ,τo〉 (bottom right) for z = π and lc = 3.9η in the numerical simulation.
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(a) Dl
ν in DNS, Re = 137.1 (b) Πl in DNS, Re = 137.1

(c) Dl
ν in C15-1, Re = 6300 (d) Πl in C15-1, Re = 6300

(e) Dl
ν in C15-2, Re = 31 000 (f) Πl in C15-2, Re = 31 000

(g) Dl
ν in C15-3, Re = 157 000 (h) Πl in C15-3, Re = 157 000

Figure 8.8: Joint probability distributions between σϵ,τo and dissipative terms Dl
ν/ϵ[I] and

Πl/ϵ[I] for the different experiments and the numerical simulation in the case lc ∼ 15.5η.
The dashed lines correspond to the respective 1

2 and 1
3 laws determined by equations (5.20)

and (5.19).
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Figure 8.9: Conditioned averages
〈
σϵ,τo〉

Dν
(Left) and

〈
σϵ,τo〉

Π (Right) as a function of
respectively Πl/ϵ[I] and Dl

ν/ϵ[I] for an increasing Reynolds number Re, in the case lc =
15.5η. The dashed lines correspond to the respective 1

2 and 1
3 laws determined by equations

(5.20) and (5.19).

Transition deviation criterion – All of the above observations can be summarised
with the conditioned statistics, available in Figure 8.9. As in the WABC model, in the
comparison with Πl, we observe that the curves are flat for low Πl and becomes non-flat
for large Πl. This change of behaviour is seemingly independent of the Reynolds number.
On the contrary, the comparison with Dl

ν is non-flat even for low Dl
ν as already observed

in the study of joint probability distributions. The different curves in the comparison with
Dl

ν seem to collapse onto a single one, regardless of the Reynolds number. The DNS data
appears to especially follow the same law.

In the two comparisons (Πl and Dl
ν), the curves seems to be close (but not equal) to

the respective scaling laws given in equations (5.19) and (5.20). We note though that the
scaling law fits better in the comparison with Dl

ν .

8.3.2 . Discussions
Preliminary conclusions – In the experimental results shown in the previous sub-

section, we identified that the transition deviation criterion seemed independent of the
Reynolds number. In fact, we observed from the analysis of joint probability distributions
and conditioned statistics that the curves were looking similar under normalisation. This
is especially the case in the comparison with Dl

ν where strong correlation can be observed
with

〈
σϵ,τo〉

Dν
. This is particularly noticeable in the DNS data where experimental noise

is absent.
We also observed that

〈
σϵ,τo〉

Π > 0 regardless of the Reynolds number and for the
available probed scale. This conclusion was already reached in the study of Lagrangian
trajectories in the WABC flow, for the irregular case h < 1. We therefore conclude that
the SVK and GVK data are displaying a similar scenario as in the h = 1/3 case from
the WABC model. In the range of the investigated Reynolds numbers, we are close to
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Figure 8.10: Conditioned averages
〈
σϵ,τo〉

Dν
(Left) and

〈
σϵ,τo〉

Π (Right) as a function of
respectively Πl/ϵ[I] and Dl

ν/ϵ[I] for the DNS with an increasing investigated scale lc. The
dashed lines correspond to the respective 1

2 and 1
3 laws determined by equations 5.20 and

5.19.

reaching the convergence in Duchon-Robert theorem (see Figure 2.1). We can therefore
deduce that we almost reached the vanishing regularisation limit imposed in the transition
deviation criterion.

The lack of statistics in our data prevents us from truly concluding about the existence
of spontaneously stochastic events for the experimental trajectories. We should first com-
fort the observed tendencies in the low Reynolds numbers (Re ≤ 31 000). We should then
include more cases with higher Reynolds numbers in order to derive quantitative evolution
laws.

Scale dependence – One may argue that the observed results are only valid in the
inertial range. We here test this remark by analysing the influence of scales on the tran-
sition deviation criterion. This is performed on the DNS data which presents a very large
amount of particles. The results are shown in Figure 8.10. We observe that all the curves
in the comparison with Dl

ν appear close to each other. We note that the lower lc, the
closer the curves are to the 1/2 scaling law. Similarly, the comparison with Πl gets closer
to the 1/3 scaling law as lc decreases. The dependence on l appears to be more important
in the comparison with Πl than with Dl

ν . Finally, all the curves seem to show the typical
change of regime above a common critical Πl.

We now check if the transition deviation criterion shows similar results across the
Reynolds numbers for lc = 7.75η, i.e. in the dissipative range. The results regarding
the joint probability distributions are displayed in Figure 8.11. The associated condi-
tioned statistics are represented in Figure 8.12. We observe that, overall, the distributions
are more centred around their respective scaling laws than in the lc = 15.5η case. The
comparison with Dl

ν still shows a better correlation than the comparison with Πl. This
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can be particularly observed in the DNS where the correlation is clear between
〈
σϵ,τo〉 and

Dl
ν .

From the conditioned statistics, we observe that the transition deviation criterion
appears to be closer to the respective scaling laws for large Πl and Dl

ν , as already observed
in the DNS above. We particularly note that those curves seem to collapse onto single
ones. This underlines the fact those do not change when the Reynolds number increases,
which confirms the preliminary observations reached in the inertial case.
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(a) Dl
ν in DNS, Re = 137.1 (b) Πl in DNS, Re = 137.1

(c) Dl
ν in C7-1, Re = 6300 (d) Πl in C7-1, Re = 6300

(e) Dl
ν in C7-3, Re = 39 000 (f) Πl in C7-3, Re = 39 000

(g) Dl
ν in C7-4, Re = 157 000 (h) Πl in C7-4, Re = 157 000

Figure 8.11: Joint probability distributions between σϵ,τo and dissipative terms Dl
ν/ϵ[I]

and Πl/ϵ[I] for the different experiments and the numerical simulation in the case lc ∼
7.75η. The dashed lines correspond to the respective 1

2 and 1
3 laws determined by equations

(5.20) and (5.19).
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Figure 8.12: Conditioned averages
〈
σϵ,τo〉

Dν
(Left) and

〈
σϵ,τo〉

Π (Right) as a function
of respectively Πl/ϵ[I] and Dl

ν/ϵ[I] for an increasing Reynolds number Re, in the case
lc = 7.75η. The dotted curves correspond to the respective 1

2 and 1
3 laws determined by

equations 5.20 and 5.19.

Flow dependence – We also check here if switching flow type also changes the transi-
tion deviation criterion. We check this on cases C7-1 (anti configuration) and C7-2 (contra
configuration) that share the same Reynolds number. Results are displayed in Figure 8.12.
We observe that from the conditioned average perspective, the two curves seem identi-
cal. This highlights that this criterion gives similar results in both the contra and anti
configurations, at least at the small investigated scales.

8.4 . Conclusions

In this chapter, we analysed data from two Von Kármán experiments and from a DNS.
We were able to compute the transition deviation criterion for different Reynolds numbers
and probed scales. We identified a strong correlation between large anomalous dissipation
and the transition standard deviation. In particular, we observed that this correlation
appears to be independent of the Reynolds number, similar to what was obtained for the
rough WABC model. As global dissipation almost becomes anomalous for the largest Re
investigated, we therefore conclude that the transition deviation criterion might be point-
ing at spontaneously stochastic events. It is the first observation of traces of Lagrangian
spontaneous stochasticity in experimental data.

Some tests were performed in order to check that the investigation scale does not
change the results. We observed that the lower this scale is, the closer the transition
deviation criterion is from the expected scaling laws (i.e. (Πl)1/3 and (Dl

ν)1/2). We saw
that the evolution through the Reynolds numbers is unchanged when the investigation
scale is lowered.

The obtained results need though to be refined in order to confirm the above obser-
vations. We should gather more experimental data to quantify the convergence of the
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transition deviation criterion through the Reynolds numbers. In particular, we note that
a high density of particles is needed in order to correctly evaluate the transition standard
deviation with the FlowHisto algorithm. Switching this method for a convolution-based
method could probably allow for more experiments to be represented for the same scale.
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Part IV

Conclusions and perspectives
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In this thesis, we explored the real physics behind the notion of spontaneous stochas-
ticity. Our goal was to create a criterion that would allow us to experimentally observe
such phenomenon. From Richardson’s intuitions to Onsager’s conjecture, we identified the
potential relationship between irregularities and the Lagrangian dispersion. The criterion
we propose is based on this relationship.

To get some insights and verify the correctness of our reasoning, we built a model
based on the Weierstrass irregular function. The WABC flow, was shown to be irregular
everywhere and to exhibit some of fundamental properties of turbulence. We observed
for instance the presence of a Richardson regime for pair dispersion, in the long-time
dynamics. Using numerical stochastic methods, we were able to simulate regularised
Lagrangian trajectories in the WABC flow. In the limit of vanishing regularisation, these
trajectories appeared to remain stochastic. This was confirmed by their statistical analysis,
which exhibit convergence to non-trivial distributions (i.e. non Dirac distributions) in the
same limit. Altogether, this prompt us to conclude that the WABC flow builds Lagrangian
spontaneous stochasticity. We numerically verified that this conclusion was universal under
the change of regularisation type, initial position, or Hölder exponent. One would need
however to dig deeper in order to quantitatively verify those conclusions.

We note that the A, B and C for the WABC model were chosen to display chaotic
behaviour even in the regular case. It is still unclear whether chaos is absolutely necessary
for this model to display spontaneous stochasticity. Heuristic models [80, 10] show that
the Richardson regime can be produced from accumulation of ballistic motions with Lya-
punov dispersion. If this is the case, the possible necessary condition for the occurrence of
spontaneous stochasticity in this WABC model could be to have positive diverging Lya-
punov exponents but not necessarily chaos. To check such a conjecture, one should lead
a systematic investigation by varying the parameters A,B and C that control the chaotic
properties of the basic flow. This could also be helpful in searching for transition towards
spontaneous stochasticity in the context of a deterministic flow. This transition has, so
far, only be observed in the Kraichnan model.

In the framework of this thesis, the WABC flow helped us identify the traps hindering
the evidence of spontaneous stochasticity in experiments. Using transition probabilities
and coarse-graining, we were able to build a candidate criterion that can be computed
in real flows. The transition deviation criterion was then tested in the WABC flow. We
showed that it is well-defined and is sensitive to spontaneous stochasticity: the criterion
fails, as expected, when the flow becomes regular. We applied this criterion to experimen-
tal data obtained from Von Kármán experiments. We showed that experimental results
display similar features than in the case of the rough WABC flow, which is spontaneously
stochastic. This result can thus be seen as the first qualitative experimental evidence of
spontaneous stochasticity in turbulence. More cases with higher Reynolds numbers are
needed in order to quantitatively confirm what was observed.

Comparison with numerical data showed that experimental noise is not the main
trouble-shooter in the quest for statistical convergence. The main limitation for appli-
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cation of this criterion to experimental data is in fact the density of the particle tracers,
that needs to be high enough for the convergence of the statistics within each voxels. This
particle density also drives the range of scales that are accessible for the analysis. With
the method described in the present thesis, and the present experimental tracer densities,
we were only able to compute a very limited amount of scales. This makes the gathering
of several results with different Reynolds numbers difficult. One needs to change the nu-
merical methodology to compute the transition deviation criterion in order to overcome
this difficulty. In particular, the use of kernel filtering might give some smooth evaluation
of local transition standard deviation.

In the end, this thesis represents a proof of concept for exploring spontaneous stochas-
ticity experimentally. This could be useful in order to test the incoming thrilling theories
and numerical properties. Many outstanding interesting questions regarding Lagrangian
spontaneous stochasticity remain also to be explored, both from a numerical and experi-
mental point of view, such as the influence of the particle path history, or the dependence
on the initial position. This may require adaptation of our transition deviation criterion,
using the WABC flow as a useful guide for intuition.
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A - Measuring thermal noise in turbulence

A.1 . Introduction

A.1.1 . Theoretical considerations
If spontaneous stochasticity exists in real turbulence, then it is thermal noise that

regularises the smallest scales. It was shown by G. Eyink [4], using arguments from
statistical physics, that this noise should appear at

kthη ≈ 10. (A.1)

The dissipative regime in the energy spectrum (characterised by an exponential decrease)
should break at this length scale, where energy is injected again by thermal fluctuations
(with the typical k2 law). For now, those considerations are only theoretical, and one may
wonder why such regime has never been observed experimentally?

A.1.2 . Scales and measurements
While the PTV (Particle Tracking Velocimetry) techniques are very useful to precisely

get the Lagrangian or Eulerian fields, they fail to correctly solve the smallest scales. It
is a chimera for now to consider reaching the scale (A.1) with those methods. A more
successful technique to reach small scales is hot-wire measurements. Crudely, a current
goes through a thin tin wire which heats up due to Joule’s heat. This heat is dissipated
due to convection when this wire is placed inside a flow. In CTA (Constant Temperature
Anemometry) mode, the difference of tension e needed to keep the wire at the same
temperature is an image of the flow’s velocity through King’s law:

e =
√
α+ β

√
u, (A.2)

where α and β are two constants dependant on the experimental setup (geometry, mean
velocity, Prandtl number, etc.). The smallest length scale measured by a hot-wire is given
by its dimensions ∼ 100µm− 1mm

In most cases however, this technique is insufficient to reach scales below (A.1). In
most wind tunnels (like Modane, see Figure A.2 [9, 50]), η ∼ 1µm. The creation of a wire
that small is impossible in practice. However, in the GVK experiment (see Chapter 8),
η ∼ 1 mm. As such, it would be possible, with the proper hot-wire, to reach the desired
scales.

A.2 . Experimental issues

One should note that in practice, such technique is hard to set up. A good calibration
is first needed to correctly find the α and β coefficients in the King’s law. This step is
important in order to get proper results, in particular because it is a non-linear law. In
addition, measuring thermal noise come with some new constraints:
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Figure A.1: Image taken from G. Eyink’s paper representing the theoretical energy spec-
trum of atmospheric turbulence. The full line represents the scenario where thermal noise
is considered in the computations. The dash line is the classical dissipative spectrum.
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Figure A.2: Evolution of the thermal-noise’s cut-off scale dxcoup = k−1
th as a function of

the velocity in the Modane wind tunnel [9, 50]. The blue zone corresponds to the scale
actually investigated with their hot-wires. In orange is represented the Kolmogorov scale
as an indication.
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• Limits of sampling: In the dissipative regime, we need to be able to resolve ener-
gies at an exponential rate. This is highly problematic since the ADC1 can only
sample data on a finite range (usually in laboratories, on 14 to 16 bits). An under-
sampled signal appears to be noisy and saturated, which can be confused with real
experimental noise.

• Electrical noise: The power grid experiences fluctuations in time which can affect
such precise measurements. The use of batteries is, in that case, recommended.

• Internal noise: The CTA retroaction device is made from various non-linear elec-
trical components. As such they can alter the velocity spectrum. This needs to be
controlled and filtered.

• Heat noise: For short wires, the King’s law may be altered due to unperfect convec-
tive dissipation. This can also have a large impact on the desired energy spectrum.

• Burning wire: A high temperature combined with the stress imposed by the flow can
break the wire. The CTA device needs to be tweaked in order to precisely control
temperature and avoid any damage made to the wire.

A.3 . Perspectives

Taking into account the above constraints, we propose here some technical solutions to
perform such measurements in the GVK experiment. To characterise the noise induced by
both the unperfect convection and the retroaction device, we would impose a modulated
laser to artificially heat the wire (without any flow). Knowing the laser’s modulating
signal, we could therefore determine the transfer function of the whole setup [8]. This
would give us insightful information about the frequencies that are affected by the device.

The measurements would be achieved with a home-made retroaction CTA device that
is presented in Figure A.3. It includes a decoupling of frequencies in order to treat low
scales independently (to limit sampling errors). This device should also be accessible in
order to tweak the components and ease the control of the wire’s temperature.

1Analog-Digital Converter.
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Figure A.3: Schematic of the desired CTA device designed specifically for measuring
thermal noise in turbulence. The retroaction loop is performed with the Wheatstone
bridge which checks any changes of resistance (i.e. temperature) in the wire (on the
left). The difference of tension is then sent to an amplifier to limit the CTA’s non-linear
components to affect the signal. A decoupling of the latter is then performed, isolating the
small scales from the large scales. The acquisition is therefore performed on two different
ADCs, with another potential amplification. This final amplification could matter, in
order to isolate the scales that would show the k2 law from equipartition of energy.
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B - Unpredictability and entropies

B.1 . Introduction

B.1.1 . Preamble
From a classical physics perspective, deterministic and stochastic phenomena lie at two

different ends on the spectrum of complexity. Deterministic processes characterise the be-
haviour of small systems, allowing for predictions through ordinary differential equations
and smooth dynamical systems. In contrast, stochastic phenomena, characterised by ran-
domness, reveal a level of complexity that arises from coarse-graining over an underlying,
often incomputable many-body Hamiltonian dynamics. For example, diffusion processes
including but not limited to Brownian motion and standard Wiener processes, can for-
mally be derived from microscopic dynamics within the Mori-Zwanzig framework. We saw
in Chapter 1 that even low-dimensional systems may spontaneously generate randomness.
We observed that chaos involve the exponentiation of nearby trajectories and their con-
vergence onto a strange attractor [32]. This means that long time limits of such chaotic
systems need to be described in terms of probability measures. The stochastic framework
there offers a natural language for describing long-time limits as invariant measures, which
loosely said quantify amounts of time typical trajectories spend in a given attractor. It also
provides a selection mechanism to identify the physically meaningful measures as those
resistant to noise perturbations.

The complexity of dynamical systems can be quantified and those can then be cate-
gorised. The underlying theorems allowing for such classification are of stochastic nature.
The quantification of complexity could then be extended to stochastic systems, provided
the stationarity of the processes [44]. Spontaneous stochasticity appears to lie in be-
tween the deterministic and stochastic worlds. In this Appendix, written in collaboration
with Simon Thalabard, we question the possibility of quantifying and characterising the
complexity of spontaneously stochastic processes. This work intends to provide some in-
tuitions on the deep connections between dynamical systems theory, stochastic processes
and spontaneous stochasticity.

B.1.2 . Scope
We wish to study in particular the distinction between chaotic and spontaneously

stochastic randomness in terms of the concept of ϵ−entropies. Those entropies are close
analogues to Shannon entropy in information theory and have been used in a series of
recent works to classify the complexity of arbitrary physical signals, in terms of their level of
randomness when probed with a small, but finite ϵ precision. Such metric is sensitive to the
strength of the stochastic component of the underlying dynamics. In particular, it diverges
for continuous-time random signals, including but not limited to Markov processes, and
takes finite values for low-dimensional smooth deterministic systems, where it is prescribed
by the fractal geometries of the attractors. We here extend the classification to include
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spontaneously stochastic systems. We characterise by direct or numerical means the ϵ-
entropies of a variety of systems possessing such mechanism, obtained by considering
various types of particles trapped in rough wells. We particularly show that relative
entropies are more useful tools in the continuous limit. Those can be used to compare
experimental data with spontaneously stochastic models (e.g. the Kraichnan model).

B.2 . From Shannon to Epsilon entropy for stochastic systems

This section provides a short background on information theory, and defines entropy
rates of stochastic processes as suitably defined conditional Shannon entropies. Those
definitions will serve as a basis for understanding both chaos and spontaneous stochasticity.

B.2.1 . Stochastic setup
Countable random variables – Given a probability space (Ω,P) 1 , the Shannon

entropy of a (discrete) random variable X : Ω→ Z, is defined as

H[X] = −
∑
i∈Z

PX(i) logPX(i) =̇ − EX logP(X) (B.1)

in terms of the distribution PX(i) = P(X = i) and the expectation EX [21]. It quantifies
the amount of randomness of X. For example, H[X] = −p log p − (1 − p) log(1 − p) for a
Bernouilli distribution PX = p1X=0 + (1 − p)1X=1, ranging from 0 for the deterministic
cases (p = 0 and p = 1) to log 2 for the uniform case p = 1/2.

Definition B.1 naturally extends to the case of a joint variable X = (X1, X2) as

H[X1, X2] = −
∑

i,j∈Z
PX1,X2(i, j) logPX1,X2(i, j)=̇− EX logP(X), (B.2)

from which we define the conditional entropy

H[X1|X2] = H[X1, X2]−H[X2] (B.3)

and the mutual information

I[X1, X2] = H[X1, X2]−H[X1]−H[X2] (B.4)

The vocabulary stems from the usual framework of information theory [21]. One interprets
the conditional entropy (B.3) as the uncertainty ofX1 givenX2 and the mutual information
(B.4) as the reduction of uncertainty of X1 knowing X2.

B.2.2 . Case of stochastic processes
Discrete-time (countable) stochastic process – We can now extend the definitions

(B.1),(B.3), (B.4) to define entropy rates associated to discrete-time stochastic processes
1As in Frisch, we choose not introduce σ-algebras in order to avoid discussing measure-theoretic

issues.
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defined on a countable set, that is a sequence X = (Xi, i ∈ N) where each of the Xi : Ω→ Z
are countable random variables. Writing X≤n the joint distribution up to time n, that is

X≤n = (X0, X1 · · ·Xn), (B.5)

we define the entropy rate as
h(n) = H[Xn+1|X≤n] (B.6)

In words, the entropy rate quantifies the uncertainty of the state Xn+1 knowing the history
X≤n. We observe that combining Definition (B.6) with equations (B.1),(B.4), we identify

h(n) = H[X≤n+1|X≤n] = H[X≤n+1]−H[X≤n] (B.7)

For example, the deterministic process such that ∀iXi = X0 prescribed by the realisa-
tion at time 0, has constant h(n) = 0, while the white-in-time process with independent
Xi ∼ X0 has constant h(n) = H[X0]. Introducing Markov property as:

P (Xn|Xn−1, . . . , X0) = P (Xn|Xn−1), (B.8)

one can prove that entropy follows the same property using relation B.3

H(Xn|Xn−1, . . . , X0) = H(Xn|Xn−1). (B.9)

In the case of a Markov chain, the entropy rate then is

h(n) = H(X≤n+1)−H(X≤n) = H(Xn+1|Xn, . . . , X0)+H(Xn, . . . , X0)−H(X≤n), (B.10)

which is, using (B.9)
h(n) = H(Xn+1|Xn). (B.11)

The homogeneous case simply becomes h(n) = H(X1|X0).

Continuous Stochastic processes – For continuous output, one cannot introduce a
meaningful entropy unless some type of space discretization is introduced. To that end,
given a random variable X : Ω→ R, with distribution PX , we introduce the ϵ-entropy as

Hϵ[X] = −
∫
R
PX(dx) logPX [B(x, ϵ)], B(x, ϵ)=̇ {y ∈ R, |x− y| ≤ ϵ} , (B.12)

where we use the shorthand PX(dx)=̇P (X ∈ B(x, dx)).
Similarly, for a joint process X = (X1, X2)

Hϵ[X] = −
∫
R2
PX(dx1, dx2) logPX [B(x, ϵ)], B(x, ϵ) =̇

{
y ∈ R2, ∥x− y∥2 ≤ ϵ

}
;

(B.13)
The conditional and mutual ϵ-entropies between X1 and X2 are then respectively:

Hϵ[X1|X2] = Hϵ[X]−Hϵ[X2], and Iϵ[X1, X2] = Hϵ[X]−Hϵ[X1]−Hϵ[X2]. (B.14)

We can define the same way an entropy rate being

h(n, ϵ) = Hϵ(X≤n+1)−Hϵ(X≤n). (B.15)
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Figure B.1: Schematic illustrating the coarse-graining methodology for the (ϵ, τ)-entropy.

We finally consider the case of continuous-time stochastic process: X = (Xt, t ∈ R+).
We first discretise time (as illustrated in Figure B.1), define the discrete-time process
X̂τ = (Xiτ , i ∈ N) and use the above definitions

h(n, ϵ, τ) =̇ 1
τ

(
Hϵ(X̂τ

≤n+1)−Hϵ(X̂τ
≤n)

)
(B.16)

B.2.3 . Computations and limitations
Monte-Carlo estimates – The numerical and analytical estimations of the above

entropies are not simple in the general case. Some algorithms can however give either
boundaries or estimates of those quantities. They essentially rely on Monte-Carlo simula-
tions. Among the different available methods we have:

• The Cohen-Procaccia methodology introduced in details in Appendix C.

• The Abel-Biferale [1] methodology which uses exit-times to estimate (ϵ, τ) entropies.
They evaluate the time tϵ for a trajectory to escape a box of size ϵ which they show
to be related to entropy production by h(n, ϵ, τ) ∼ 1

<tϵ> using Shannon-McMillan-
Breiman theorem (introduced later). This method has the advantage to be com-
putationally efficient while giving pretty good boundaries for the estimation of the
above entropies.

Examples of direct computations – The epsilon-tau entropy defined that way quan-
tifies the amount of uncertainty created per unit time, as explained by Gaspard and Wang
[44]. We introduce below some direct examples:

• X ∼ U([0, 1]): then PX [B(x, ϵ)] ≃
ϵ→0

ϵ1B(x,ϵ), which leads to Hϵ(X) = log(1/ϵ) for
ϵ << 1.
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• X ∼ N (0, σ): then PX [B(x, ϵ)] ≃
ϵ→0

ϵ√
2πσ2 e

−x2
2σ2 , leading to Hϵ(X) = log(

√
2πσ2/ϵ)

for ϵ << 1.

• Diffusions: extending the result of Markov chains to Markov processes, we deduce
that entropy rate for those Gaussian processes are given by probability densities
transitions. Writing YX = (Y |X) for a jump in time τ , we have

PYX
[B(x, ϵ)] ≃

ϵ→0

ϵ√
2πDτ

e
−(x−y)2

2Dτ . (B.17)

All calculations done, one obtains an entropy rate that does not depend on time nτ
any more

h(n, ϵ, τ) ≃ 1 + log
(

ϵ√
2πDτ

)
. (B.18)

We note that this last result is however false when the number of considered states
is low enough compared to ϵ. As Gaspard and Wang observed in the context of
Gaussian processes, for small enough τ , correlations become much stronger and
make the approximation in equation (B.17) fail. This was already reported by
Kolmogorov who identified the influence of correlations as a need to push the Taylor
expansion in ϵ of (ϵ, τ)-entropy further in case of ϵ → 0. In the case of Gaussian
processes, one can therefore observe the rise of ϵ2 scaling in the limit of finer and
finer coarse-graining [47, 44].

B.2.4 . Numerical results
Yaglom process – We test here the numerical computation of the (ϵ, τ)-entropy

through the Cohen-Procaccia methodology with the Yaglom processes. Those are sta-
tionary centred Gaussian processes with a correlation function prescribed by:

CH(r) =̇ 1
ZH
|r|HKH(|r|), (B.19)

where KH is a modified Bessel function of the second kind and

ZH =
{

Γ(H)2H−1 for H > 0
1 if H = 0.

(B.20)

We note that the H coefficient is called the ’Hurst exponent’ and characterises the smooth-
ness of a random process (just as the Hölder exponent h does for deterministic systems).
It was shown by Gaspard and Wang that the (ϵ, τ)-entropy should be for those processes:

h(ϵ, τ) ∼
ϵ→0

ϵ−
1
H . (B.21)
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Figure B.2: Left: Realisations of Yaglom processes with H = 0.35 (black), H = 0.5 (blue)
and H = 0.8 (purple). Right: Associated auto-correlation functions ρ(t).

Figure B.3: (ϵ, τ)-entropy as a function of ϵ for the Yaglom processes with H = 0.35
(black), H = 0.5 (blue) and H = 0.8 (purple). Those are numerical computations obtained
with the Cohen-Procaccia methodology (see Appendix C). The dashed lines correspond
to the ϵ−1/H predictions given by Gaspard and Wang [44].
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Observations – We show in Figure B.2 three realisation of Yaglom processes for H =
0.35, H = 0.5 and H = 0.8 and their auto-correlation functions. Intuitively, we can
observe that the more regular the realisation, the ’less complex’ it appears. We verify
this statement by computing their respective (ϵ, τ)-entropies with the Cohen-Procaccia
algorithm. Those results are displayed in Figure B.3.

We observe that the predicted scaling (B.21) seems to be satisfied in the cases H = 0.35
and H = 0.5. The case H = 0.8 does not seem to be converged however, probably because
of the long-time correlations of the process. We nonetheless note that the larger H, the
larger h(ϵ, τ) gets for small ϵ. The entropy production is therefore linked to the apparent
complexity of the signals.

Those observations could even be extended in the case of non-stationary processes as
expressed by M. Abel and L. Biferale [1] as they show that their exit times are deeply
related to multi-fractal exponents that they derive using large deviations theory. Applying
those computations to turbulent data, they find a scaling in ϵ that follows the above
conclusion with a mean Hurst exponent being the one derived from K41 theory h = 1/3.

B.2.5 . Conclusions
In this section, we defined the statistical tools that are necessary to quantify the

amount of information created by a stochastic process per unit of time. They particularly
offer a quantification of the apparent complexity of signals. We however observed that
the computation of (ϵ, τ)-entropies are not trivial in the general case. Numerical tools can
help getting some estimates of those entropies. The inner correlations of the system is
the main limiting factor to obtain proper analytical or numerical results. Those entropies
are however important since they characterise the dynamical systems, as we shall now
investigate.

B.3 . Chaos, the long smooth road

We previously observed that the complexity of signals can be measured and quantified
using analogues of Shannon entropies. For smooth dynamical systems, the connection
between complexity and path entropy is mathematically well defined. One can cite for
instance Pesin’s theorem, which relates the geometry of attractors to entropy production
through the use of Lyapunov spectrum.

As in the case of stochastic processes, we need to be able to define stationary measures.
In dynamical system theory, this is achieved by taking large enough time in order to let
the system evolve towards an attractor in which it will be (almost) stuck. Once those so
called invariant measures defined or computed, one is able to calculate entropy production
using the same framework as the one introduced in the previous section. Some useful
theorems, that will be presented below, prove the good existence of such mathematical
objects. In practice, those entropies are more easily computed through the evaluation of
the Lyapunov spectrum or Cohen-Proccacia methodology.
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More importantly, mathematicians were able to prove that entropy production in such
cases is unique and should not change if the system is transformed by any isomorphism.
This characterisation is essential in dynamical system theory as it allows one to classify
systems using their complexity. An extension of this was proposed by Gaspard and Wang,
where they introduce a ranking of stochastic processes by their entropy production. While
this classification goes beyond chaos and dynamical system theory, it is still evaluated for
the long-time dynamics.

B.3.1 . Definitions
Lyapunov spectrum – The definition of Lyapunov exponent can be generalised to

the different other growth directions. We assume that Φt is actually a diffeomorphism
and, to that regard, we define the evolution matrix Tx,t such as T i,j

x,t = ∂iΦj
t . Using the

multiplicative Oseledets theorem [72], we can define the following matrix,

Λx =̇ lim
t→∞

(T †
x,tTx,t)1/2t, (B.22)

from which we can get the logarithmic values of its eigenvalues λ1 ≤ . . . λd. Those coeffi-
cients represent growth rate in every eigen-direction, and are called ’characteristic expo-
nents’ (often confused as ’Lyapunov exponents’). In the case of an ergodic measure µ, one
can show that Lyapunov exponents are invariant under the change of initial position and
characterise the geometry of local attractors.

Fractal dimension – In that sense, the fractal dimension D of attractors can be
related to characteristic exponents using the Kaplan-Yorke conjecture: by arranging them
in increasing order λ1 ≥ λ2 ≥ · · · ≥ λd and defining index k such as ∑k

i=1 λi > 0 and∑d
i=k+1 λi < 0, we define

D = k +
∑k

i=1 λi

|λk+1|
. (B.23)

Kolmogorov-Sinai entropy – To extend the definitions of entropies above, we in-
troduce a small stochastic perturbation of the dynamical system, modifying the dynamics
equation 1.3 into Langevin-type equation:

dx = f(x(t))dt+
√

2κ dW , (B.24)

where we recover the initial system by taking the limit of vanishing diffusion κ → 0.
Using the above definition for continuous stochastic processes, we define entropy rate for
the modified dynamics (B.24) such as:

hκ(n, ϵ, τ) =̇ 1
τ

(
Hκ

ϵ (X̂τ
≤n+1)−Hκ

ϵ (X̂τ
≤n)

)
(B.25)

The characteristic entropy rate of attractors is however represented by the so-called
Kolmogorov-Sinai entropy which can be obtained by taking the following limits (assuming
they exist):

hKS =̇ lim
ϵ→0

lim
κ→0

lim
n→∞

hκ(n, ϵ, τ) (B.26)

Two observations arise from this definition:
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Figure B.4: Schematic summarising the deep connection between chaos, information the-
ory and geometry of attractors in dynamical systems.

• While it is not the usual way to define this entropy in ergodic theory, we should
note that both definitions shall be equivalent. Let us consider a system with a
single basin of attraction (such as the Lorenz system). In the limit of vanishing
noise κ → 0, trajectories tend to get trapped in the system’s basin of attraction,
having the probabilistic stationary measure µκ converging to the invariant measure
µ. This convergence provides a physical measure, also called ’Kolmogorov measure’
[32]. As such, entropies defined by the probability measure or the invariant one
are equal in the limit of vanishing noise. The general case is however more difficult
to study since a small fluctuation can always make the trajectories jump from one
basin of attraction to another, which makes the definition of an invariant measure
in this context complicated. In practice, for small enough noise, the system will
remain in the same basin of attraction as long as the prescribed simulation duration
is not too high. In that sense, we shall converge to an invariant measure in this
context and fall back on the above remark. To that reason, we assume in the above
definition that we always converge to a Kolmogorov measure, bridging with ergodic
theory’s definition.

• In the limit ϵ→ 0, this entropy does not depend on τ any more as we study smooth
deterministic systems [7].

B.3.2 . Properties/Theorems
The existence of hKS is in general provided by two theorems: given the existence

of an invariant measure µ, Shannon-McMillan-Breiman and Kolmogorov-Sinai theorems
justify the respective convergence of limits n→∞ and ϵ→ 0. One can particularly show
that this entropy is invariant under any transformation of the dynamical system by an
isomorphism. In other words, dynamical systems are entirely characterised by their rate
of information production. Assuming that we can write ∀A, µ(A) =

∫
A ρ(x)dxd, i.e that

µ admits a density ρ, then Pesin’s theorem states that geometry of attractors is related to
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the Kolmogorov-Sinai entropy by the following formula:

hKS =
∑

λi>0
λi, (B.27)

where the sum is over the positive Lyapunov exponents only. This shows the intimate
relation between production of information and chaos, falling under the mantra: the more
chaotic, the more unpredictable. But with Kaplan-Yorke’s interpretation, we can also see
how deep is the link between creation of information and local geometry of attractors.
We summarise the link between chaos, information theory and geometry of attractors in
a schematic presented in Figure B.4.

To determine Kolmogorov-Sinai entropy in practice, one can either compute Lyapunov
exponents and use Pesin’s formula or use Cohen-Procaccia method.

B.3.3 . Two illustrations: Lorenz 63 and the ABC model
We illustrate here some of the properties and theorems broached above. We first come

back to the Lorenz 63 system (defined in Chapter 1) which we explore from the scope
of entropies. We then analyse the ABC flow case, which shows the limitations of the
introduced entropies.

Lorenz 63: a well known system – Once on the attractor, the distribution of
positions falls into the invariant measure of the system. The Kolmogorov-Sinai theorem
can be applied and we can determine entropy production using Pesin’s formula. We set
(σ, ρ, β) = (16, 45.92, 4) and compute (ϵ, τ)-entropy using Cohen-Proccacia methodology
to compare with Pesin’s formula, for which results are presented in Figure B.5. Several
curves are displayed, where we used an increasing number of points for the statistics,
ranging from 107 to 1.6× 108 particles.

We observe that the curves reach a supremum, being equal to the dashed line. This
corresponds to the computed positive Lyapunov exponent. We can therefore see a good
agreement between Pesin’s formula and the Cohen-Procaccia estimates. In practice, it is
way easier to compute the Lyapunov exponents (∼ 1h) than entropies directly (∼ 2 weeks
parallelised).

ABC model: first limitations – As presented in Chapter 4, determining the ABC
model’s Lyapunov exponents is a challenge. The system presents many different attractors.
As such, the selected trajectory used for computing the spectrum, eventually ends up in
another attractor for long enough time. This is why we opted for short-time statistics
like the instantaneous Lyapunov exponents to analyse the WABC flow’s properties. In
practice, the long-time limit is therefore not suited for systems that possess more than one
invariant measure.

B.3.4 . The GW classification: a generalisation towards stochastic pro-
cesses?

In their 1995’s article [44], Gaspard and Wang proposed a classification of dynamical
systems based on the Kolmogorov-Sinai entropy. The invariance of this entropy under the
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Figure B.5: (ϵ, τ)-entropy as a function of coarse-graining ϵ of the Lorenz system in the
chaotic case (σ, ρ, β) = (16, 45.92, 4). The curves use a number of points ranging from
Np = 107 (light purple) to Np = 1.6 × 108 (deep purple). The dashed line corresponds
to the only positive Lyapunov exponent, determined numerically with equation (B.22).
We here verify Pesin’s formula where the supremum of h(ϵ, τ) corresponds to the sum of
positive Lyapunov exponents.

141



effect of any isomorphism justifies these observations. As such, we can divide dynamical
systems into two groups: the non-chaotic systems for which the Kolmogorov-Sinai entropy
is 0 and the chaotic ones for which this entropy is non-zero. One can scale the different
complexities of chaotic systems by comparing the entropies. In that sense, a numerical
determination of those quantities can be useful when studying an unknown system, using
Monte-Carlo methods.

Since those methods are well defined for stochastic processes, one may wonder if it is
possible to reach the same classification for such systems? In other words, is it possible to
classify complexity of stochastic processes, and especially in the so common non-stationary
case?

B.4 . Spontaneous stochasticity, the short rough road

Gaspard and Wang, in their article, try to tackle the problem of classifying complexity
of stochastic processes. They first observe that the absence of local attractors in such
systems inevitably leads to a diverging Kolmogorov-Sinai entropy. They however argue
that even though those entropies shall diverge, their way of diverging should implicitly de-
termine the complexity of those systems. As such, evaluating their asymptotic behaviours
in the limit of vanishing scales could be categorised as well.

While the scope of Gaspard and Wang goes beyond chaos (i.e. smooth dynamical sys-
tems), complexity is still evaluated for long times. No observations has indeed been lead
regarding non-stationary systems for which evaluating complexity is still to be correctly
understood. Here we would like to discuss the evaluation of complexity for a transient
stochastic behaviour that can arise from some deterministic settings: spontaneous stochas-
ticity.

An analysis over simple examples will be lead in order to uncover the eventual failures
of the determination of the Kolmogorov entropy in this framework. The failures and
needed properties would be analysed to give some crude answers to the above problems.

B.4.1 . Examples with direct but gentle estimates
We recall the definition of the singular double well potential (represented in Figure

B.6):
V (x) = (1− ||x||1+h)2. (B.28)

In the following series of examples, we consider a damped particle of mass m under the
effect of the above potential:

mẍ = −∇xV − γmẋ+
√

2κ ξ(t), (B.29)

where ω is the damping coefficient. We would like to study the effect such potential has
on entropy determination through different simple cases:

1. When we are considering the over-damped dynamics in one dimension (γ >> 1).
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Figure B.6: Singular double-well potential.

2. When we are considering a massive particle that has its energy conserved exactly,
being equal to the energy barrier (γ = 0), still in one dimension.

3. When we are considering the same case but in two dimensions (Mexican hat style).

Over-damped dynamics – We suppose that the damping is leading the dynamics,
γ >> 1. We consider a particle on top of the potential. As we have already seen, we are
able to find a correct scaling for which a transient stochasticity appears in the limit of
vanishing noise: an infinitesimal perturbation will make the particle jump into one of the
two wells. At time t = 0, the particle is able to choose between two paths that become
deterministic at infinite time (the particle stays in the chosen well), corresponding to all
possible realisations. We therefore deduce that entropy in the spontaneously stochastic
limit is exactly

H = ΘH(t) log 2, (B.30)

with ΘH the Heaviside function. The entropy rate is thus zero unless in t = 0 where:

Ḣ = δ(t) log 2. (B.31)

In Gaspard-Wang’s definition (i.e. the one from dynamical system theory), one finds that
entropy rate in that case is 0 as the t→∞ cancels H = cte. Spontaneous stochasticity is
not necessarily a stationary process, which complicates its study.

1D conserved dynamics – We suppose this time that energy Em is conserved, i.e.
γ = 0 and that Em = V (0). We consider the initial position x0 = −1 with an initial
velocity pointing at the barrier.
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Figure B.7: Singular Mexican hat potential.

In the case of h = 1, in such situation, a particle would take an infinite amount of
time to change well. But in the case h < 1, a particle would not only take a finite amount
of time to reach the top but then will have two possible paths to choose, just as in the
previous example. We will therefore have an amount of possible paths that depends on
the number of times we reached the top, therefore leading to an entropy

H ∼
⌊
t

Tp

⌋
log 2, (B.32)

where Tp is the time period for a particle to stay in one well. In the case of Gaspard and
Wang, we have to impose a coarse-graining ϵ to compute this entropy. One can however
show that this entropy goes to infinity in the limit of vanishing ϵ.

2D conserved dynamics – We suppose here that x is instead of dimension 2 (which
is represented in Figure B.7). We take the example of a particle on top of the potential
and that has therefore an infinity of angles where to fall. The probability of a path is not
finite any more and one should consider probability densities instead. This example shows
that our definition of entropy struggles in correctly describing the singularity as it shall
be infinite as well.

A good measure of complexity should give us something similar as in the previous
example, which is H ∼

⌊
t

Tp

⌋
. The same way as in the other two cases, following Gaspard

and Wang’s point of view leads to a diverging entropy for the limit ϵ→ 0.

Conclusions and requirements – Through those three different examples we were
not always able to capture the spontaneous stochastic event occurring in the dynamic.
Especially, Gaspard and Wang’s point of view was totally unable to get the right measure
of complexity of those transient regimes. They were mainly interested in knowing the
stationary measure in those systems. However, we are interested in evaluating transition
probabilities, finite-time quantities that could eventually require to be in a continuous
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description of space. As such, spontaneous stochasticity differs from chaos and therefore
inevitably makes ergodic theory fail in those regimes.

The main issue that one faces in spontaneous stochasticity is to determine if the
considered regularised processes (such as 3.1) are still stochastic in the limit of vanishing
noises. The study of properties of such transient systems is in full generality hard.

One may though want to characterise such behaviours in an approximate fashion.
Our definition of entropy was not suitable to describe complexity in the case of the two
dimensional double well potential. The argument was actually made clear by Jaynes in the
70’s [55]. He showed that the Shannon entropy is ill-defined in the continuous limit and
an additional normalisation term should be added. The good normalisation to consider is
however not trivial.

One way to avoid this problem is to having a look into inference theory. Using tools like
the Kullback-Leibler entropy, one may compare measurements to an inferred model. As
such, in our case, if we infer that the probability measure to be expected is p ∼ 2π, then
our entropy becomes finite or eventually 0. The physical interpretation should equally
be changed. The computation of those relative entropies answer the question: ’Is my
considered system more complex than my reference one?’. A diverging relative entropy
would therefore mean that the two processes are not comparable in terms of complexity.
As such we should find a model that has a comparable complexity compared to the studied
system.

B.4.2 . Turbulent-inspired models: more violent estimates
Following the ideas from inference theory, it is possible to check for spontaneous

stochasticity in turbulence by comparing with well-chosen models. We only give, in this
thesis, some perspectives which we did not have time to fully check.

Pair dispersion – As an example, we know that the Kraichnan model is able to
reproduce faithfully the statistics of pair dispersions in turbulence. The 1d distributions
of pair dispersion can be modelled by Richardson’s distribution [77]:

PRic(r, t) ∝
r2

⟨r2(t)⟩3/2 exp

−b
(

r

⟨r2(t)⟩1/2

)2−ξ
 , (B.33)

where r(t) = ||x2(t)− x1(t)|| ∼ t2/(2−ξ) the pair dispersion, which imposes ξ = 4/3. This
distribution can be formally recovered in the Kraichan model [39, 46] and was observed
in DNS [75]. We could extend those investigations by considering the whole random
process. The Kraichan model can indeed serve as a reference model, which n-times statis-
tics are written pn

Ric(r0, . . . , rn−1) 2. The underlying random process in pair dispersion
pn

exp(r0, . . . , rn−1) would then be compared numerically to this model, as we now know

2For the sake of simplicity, the random variables will be forgotten in this part. We aim at giving
some insights only.
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that

HKL(pn
exp, p

n
Ric) = 0 ⇔ ∀(r1, . . . , rn) ∈ Rn, pn

exp(r1, . . . , rn) = pn
Ric(r1, . . . , rn).

(B.34)

Markov hypothesis – The n-times statistics are hard to compute in practice. Instead
we would rely on using a Markov hypothesis, which simplifies the above entropy as we shall
now introduce. We consider the general case where we compare two n-times probability
distributions p(ρ0, . . . , ρn−1) and q(ρ0, . . . , ρn−1). We assume that the Markov hypothesis
applies here. Therefore :

∀i p(ρi|ρi−1ρi−2 . . . ρ0) =̇ p(ρi|ρi−1). (B.35)

Also, we note that for any function f ,

∀i
∑

ρ0, ..., ρn−1

p(ρi+1 . . . ρn−1|ρ0 . . . ρi)f(ρ0 . . . ρi) =
∑

ρ0...ρi

f(ρ0 . . . ρi) (B.36)

since that all possible paths starting at a time iτ does not depend on previous paths.
Using Bayes scheme and the above property of Markov processes, we obtain the following
simplification :

p(ρ0ρ1 . . . ρn−1) = p(ρ0)
n−1∏
i=0

p(ρi+1|ρi). (B.37)

This leads to consider a separation in two terms of the entropy :

HKL(p, q) =
∫
dρ0 . . .

∫
dρn−1 p(ρ0 . . . ρn−1)[log p(ρ0)

q(ρ0) +
n−1∑
i=0

log p(ρi+1|ρi)
q(ρi+1|ρi)

]. (B.38)

Since p(ρ0, . . . , ρn−1) = p(ρ1 . . . ρn−1|ρ0)p(ρ0), the first term can be actually reduced to
only ∑ρ0 p(ρ0) log p(ρ0)

q(ρ0) using property (B.36). Thus :

HKL(p, q) =
∫
dρ0 p(ρ0) log p(ρ0)

q(ρ0) −
n−1∑
i=0

∫
dρ0 . . .

∫
dρn−1 p(ρ0 . . . ρn−1) log p(ρi+1|ρi)

q(ρi+1|ρi)
.

(B.39)
We note Ki =

∫
p(ρ0 . . . ρn−1) log p(ρi+1|ρi)

q(ρi+1|ρi) . Let us focus on K3. We have :

K3 =
∫

ρ0...ρn−1
p(ρ0 . . . ρN−1) log p(ρ4|ρ3)

q(ρ4|ρ3)

=
∫

ρ0...ρn−1
[p(ρ5 . . . ρN−1|ρ4 . . . ρ0) p(ρ1ρ2|ρ3ρ4) p(ρ4|ρ3) p(ρ3|ρ0) p(ρ0)] log p(ρ4|ρ3)

q(ρ4|ρ3) .

(B.40)

When using property (B.36), we then obtain that :

K3 =
∫ ∫ ∫

ρ0ρ3ρ4
p(ρ4|ρ3)p(ρ3|ρ0)p(ρ0) log p(ρ4|ρ3)

q(ρ4|ρ3) . (B.41)
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More generally, we deduce that

Ki =
∫
dρ0

∫
dρi

∫
dρi+1 p(ρi+1|ρi)p(ρi|ρ0)p(ρ0) log p(ρi+1|ρi)

q(ρi+1|ρi)
, (B.42)

and

HKL(p, q) =
∫
dρ0 p(ρ0) log p(ρ0)

q(ρ0) −
n−1∑
i=0

Ki. (B.43)

Perspectives – Using the Markov property, we could therefore evaluate the deep
difference between the Kraichnan model and the turbulent pair dispersion. One could
indeed only evaluate the transition probabilities and use equation (B.43) to compare the
two processes. This comparison would be interesting to perform since the Kraichnan
model is known to present Lagrangian spontaneous stochasticity. Also, its solvability could
lead to interesting developments towards finding new ways to analyse the experimental
Lagrangian data, especially in the perspective of unveiling spontaneous stochasticity.

B.5 . General discussion: Spontaneous stochasticity versus Chaos

From the above analysis of those singular potential examples, we were unable to dis-
tinguish systems that are chaotic from those that are spontaneous stochastic using path
entropies in a general way. We always had to adapt our definitions to the system that
we were studying. In particular, spontaneous stochasticity is, in most generality, a non-
stationary process. As a consequence, we need to be able to probe finite-time non-vanishing
Shannon entropies, which goes beyond the ergodic theory.

It seems that there is no clear frontier between those two worlds, and the reality is
probably showing a continuous evolution of complexity going from purely stochastic pro-
cesses to deterministic systems having somewhere in between both chaos and spontaneous
stochasticity. We can however say that the latter is expected to be more complex than
chaotic systems as two trajectories would still separate in finite-time in case of vanishing
initial separation.

As underlined above, one should instead compare systems using inference theory and
relative entropy, from which a more useful information would be extracted. In particular,
we proposed a methodology to have a deeper analyse of turbulent pair dispersion. The link
with the Kraichnan model should be exploited, as this model would serve as a reference
in the entropy computations. A vanishing Kullback-Leibler divergence in that case would
indicate a true correspondence between the model and the experiment.
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C - Cohen-Procaccia entropy

Figure C.1: Illustration of the Cohen-Proccacia methodology for computing (ϵ, τ)-
entropies. Among all realisations, we count only the ones (purple) that are close to the
reference trajectory (black) within a precision ϵ. We note that in the case of dynamical
systems, a long trajectory is divided into pieces. They are seen as realisations of a same
process, falling back onto the stochastic method.

In case of a stationary process, Monte-Carlo simulations can give an estimate of
Pϵ(X≤n) =̇PX≤n

[B(x, ϵ)]. We consider R reference paths Xr
≤n (r ∈ [1, R]) which are

chosen randomly, i.e. they should constitute typical paths the system can take, such that
we efficiently coarse-grain the above probability. We define a L∞ distance between two
paths such that:

Dn(X≤n, X
′
≤n) =̇ max{||X1 −X ′

1||, . . . , ||Xn −X ′
n||}. (C.1)

We observe that the norm ||.|| can be chosen freely and does not have an impact on the
results [52]. A good estimate of the above probability, for a given reference path, should
therefore be given by the number of paths generated by Monte-Carlo method that are
close up to ϵ to the reference one (assuming convergence of statistics):

Pϵ(Xr
≤n) ≃

#{X≤n | Dn(X≤n, X
r
≤n) ≤ ϵ}MC

#{X≤n}MC
(C.2)

If R is large enough, one can also estimate (ϵ, τ)-entropy by taking the average over the

149



chosen reference paths:

H(ϵ, τ, n) ≃ −Er(logPϵ(Xr
≤n)) = − 1

R

∑
r

logPϵ(Xr
≤n), (C.3)

which can then be used to compute the entropy rate of this process.
In the case of dynamical systems, Cohen and Procaccia have proved that such strategy

can also be used to efficiently compute estimates of (ϵ, τ)-entropies [18]. Instead of consid-
ering several realisations of the process however, they consider a very long trajectory (in
the style of dense orbit) that is assumed to remain on the attractor. Sequences of this long
trajectory are chosen and, under the use of the invariant measure, act as the independent
paths used in the Monte-Carlo methodology. Dynamical systems are therefore seen as
stochastic processes, and as such, this lighter method can also be used to analyse any
stationary process.

One should however note that those methods largely rely on paths length and, to
that regard, one should choose sequences that are large enough compared to the typical
evolution time of the system. In other words, Nτ should be way larger than min

λ>0

(
1
λ

)
for

chaotic systems or correlation time for stochastic processes in order to correctly quantify
complexity in the considered dynamics. Similarly, more statistics should be required as
complexity increases.
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D - Computation of instantaneous Lyapunov expo-
nent in the WABC flow

In order to compute the instantaneous Lyapunov Exponent (iLE) λi in practice, we
use an approximation by Nolan et al. In this section, we first introduce the notion of
Finite Time Lyapunov Exponent (FTLE) and then give an approximated formula for the
iLE in the WABC flow.

D.1 . Finite-time Lyapunov exponent

From the definition of flows given in Chapter 1, we here introduce the notion of
’flowmap’, where

Φt+τ
t (x) = x+

∫ t+τ

t
u(Φt′

t (x), t′) dt′, (D.1)

where u is the velocity field. From this, we can define the right Cauchy-Green strain
tensor:

Ct+τ
t (x) = (∇Φt+τ

t (x))⊤∇Φt+τ
t (x). (D.2)

We define the c̃i(x) as being the eigenvalues of Ct+τ
t (x). Since Ct+τ

t (x) is symmetric, by
spectral theorem we conclude that the c̃i(x) are real and can be ordered:

c̃1 ≤ c̃2 ≤ · · · ≤ c̃d. (D.3)

We can therefore define the Finite-Time Lyapunov exponent (FTLE) as:

λF T LE
τ = 1

2τ log c̃d. (D.4)

We know that one can get the iLE by having: limτ→0 λ
F T LE
τ = λi. Introducing the

rate-of-strain tensor
S(x, t) = 1

2
(
∇u(x, t) + (∇u(x, t))⊤

)
(D.5)

with its ordered eigenvalues (since it is symmetric): s1 ≤ s2 ≤ · · · ≤ sd, Nolan et. al.
[65] showed that the Taylor expansion of the right Cauchy-Green strain tensor can lead
to useful simplifications for the computation of iLEs. In particular, for the eigenvalues
(hence the iLE), we get:

λi =
τ→0

sd + o(1) (D.6)

D.2 . WABC flow
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This approximation is very convenient in the case of the WABC flow, since it is sta-
tionary. As such, we get

S(x, t) =
N∑

n=1

ωn

2

 0 B cos(knx)− C sin(kny) A cos(knz)−B sin(knx)
B cos(knx)− C sin(kny) 0 C cos(kny)−A sin(knz)
A cos(knz)−B sin(knx) C cos(kny)−A sin(knz) 0

 .
(D.7)

One can diagonalise numerically this matrix to get the eigenvalues si. Since the WABC
flow is stationary, the maximum eigenvalue sd directly gives the iLE using approximation
(D.6).
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E - Convergence of standard deviation with FlowHisto
To ensure statistical convergence of the transition standard deviation, we need to

evaluate the number of realisations NF M required from the FlowHisto method. To that
aim, we compute the spatial average of the transition standard deviation

⟨σϵ,τ ⟩ =
∫

M
σϵ,τ (x) dx, (E.1)

for different NF M for the WABC flow, the DNS and the experimental data. We say that
we are converged, when ⟨σϵ,τ ⟩ reaches a plateau qualitatively. Results are presented in
Figure E.1.

We observe in all cases that the case NF M ∼ 5000 seems to be a good trade-off between
computational time and statistical convergence. We also note that this does not seem to
strongly depend on grid size or particle density. We therefore chose to have for all data
NF M = 5000.
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(a) (b)

(c)

Figure E.1: Evolution of < σϵ,τ > as a function of number of generated realisations NF M

for the GVK experiment (a), the DNS (b) and the WABC flow (c). See data presentation
(Chapters 7 and 8) for further details.
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F - Decorrelations and Markov processes

F.1 . Introduction

F.1.1 . Correlations and anomalous dissipation
We introduce the auto-correlation function

C(τ) =

〈
uL(t).uL(t+ τ)

〉
⟨uL(t).uL(t)⟩ , (F.1)

where uL is the Lagrangian velocity and C(0) = 1. It is often assumed that spontaneous
stochasticity is related to a loss of memory of the trajectories’ history, being a sign of a
Markov property. This necessarily implies that Lagrangian velocities should decorrelate
faster in places where there are spontaneously stochastic events. In this thesis, we wanted
to check whether spontaneous stochasticity is experimentally related to anomalous dissi-
pation. A way to challenge this hypothesis, is actually to check whether decorrelation is
faster in places of strong anomalous dissipation.

F.1.2 . Methodology
F.1.3 . Drivas’ theorem –

To evaluate the anomalous dissipation in the Lagrangian point of view, we make use
of Drivas’ theorem introduced in 2019 [25, 16]. This theorem relates the difference of the
particle’s backward and forward dispersions with anomalous dissipation. We define the
deviation δrXt0,t(x) = Xt0,t(x+ r)−Xt0,t(x), where Xt0,t(x) represents the position of
a particle at time t knowing it was at position x at time t0. We can then introduce the
smoothed dispersion coefficient:

∆±τ
l (x, t) =

∫
dξΦl(ξ) ||δξXt,t+τ (x)− δξXt,t(x)||2 , (F.2)

where Φl(xi) is a smoothing function (just as for the Duchon-Robert theorem). Φl is here
chosen to be a Heaviside function (see [16] for further details). Introducing the Lagrangian
irreversibility indicator

Iτ,l
L =̇ ∆−τ

l −∆τ
l

4τ3 , (F.3)

T. Drivas was able to prove that it is related to anomalous dissipation as:

lim
l→0

lim
τ→0

lim
ν→0
Iτ

L = ϵ[I]. (F.4)

It corresponds to the Lagrangian counterpart of Duchon-Robert’s theorem.

155



Figure F.1: Evolution of auto-correlation function C(τ) conditioned by dissipation Iτ
L as

a function of time τ . Left: data from DNS with Re = 131.7 and lc = 11.8η, Right: data
from the SVK experiment with Re = 157 000 and lc = 28η.

Conditioned averages – To check whether decorrelation is faster in places of strong
anomalous dissipation, we compute the Lagrangian auto-correlation function for all tra-
jectories in the SVK and DNS data (see Chapter 8 for more information about this data).
We then compute the conditioned average of those functions ⟨C(τ)⟩I over the Iτ

L felt by
the particles at their initial position in the flow. We then see if, in average, correlations
decay much faster near strong ϵl[I].

We note that, in practice, the Iτ
L can present some artefacts due to a lack of particles

locally. As such, we perform a time averaging of Iτ
L over some instants before and after t

in order to smooth the potential artefacts.

F.2 . Results

We present in Figure F.1 the conditioned correlation functions ⟨C(τ)⟩I for the DNS
and the SVK experiment. We note that the investigated scales here are lc = 11.2η for
the DNS and lc = 28η for the experimental data. We observe that the average correlation
function decreases faster when Iτ

L is larger. Those results tend to show that, indeed,
places of extreme events of dissipation tend to decorrelate faster the Lagrangian velocities.
This goes in favour of a scenario where spontaneous stochasticity is linked to anomalous
dissipation.
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G - Convergence of the Cauchy-WABC problem

G.1 . Introduction

We here provide the results concerning the convergence of the Cauchy-WABC’s proba-
bility distributions, a sign of spontaneous stochasticity. We recall that the initial positions
x0 are taken randomly within a ball B(x∗

0, ηN ), with ηN = 10
kN

. All trajectories are in-
tegrated using a Runge-Kutta method of strong order 4/5. See Chapter 7 for further
information.

G.2 . Results

G.2.1 . 1,2-points statistics
Qualitative approach – We introduce first the evolution of one and two-points statis-

tics as N increases. The one-point statistics are presented in Figure G.1. The two-points
ones are then introduced (by slices) in Figure G.2, Figure G.3 and Figure G.4.

We observe that in both cases, the distributions seem to converge onto non-trivial
curves as in the Langevin-WABC case. Again we notice that convergence seems achieved
for N ≥ 12.

Kullback-Leibler divergence – Just as for the Langevin-WABC, we quantify this
convergence using the Kullback-Leibler divergence HKL(pN+1, pN ). We present those
results in Figure G.5. We observe that this entropy decreases with N until reaching a
plateau due to numerical errors.

G.2.2 . Discussions
As in the Langevin-WABC case, we observe a convergence of statistics towards non-

Dirac distributions. We conclude that for this regularisation, the WABC model also shows
spontaneous stochasticity, up to numerical errors. We note, again, that the limiting factor
remains the number of particles.

157



Figure G.1: Evolution of one-point statistics through the number of modes N for the
Cauchy-WABC problem for h = 1/3 on the three different axes x, y and z.
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(a) N = 10 (b) N = 12

(c) N = 14 (d) N = 16

Figure G.2: Evolution of two point statistics through the number of modes N for the
Cauchy-WABC problem for the XY-slice and h = 1/3.

159



(a) N = 10 (b) N = 12

(c) N = 14 (d) N = 16

Figure G.3: Evolution of two point statistics through the number of modes N for the
Cauchy-WABC problem for the XZ-slice and h = 1/3.
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(a) N = 10 (b) N = 12

(c) N = 14 (d) N = 16

Figure G.4: Evolution of two point statistics through the number of modes N for the
Cauchy-WABC problem for the YZ-slice and h = 1/3.
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Figure G.5: Evolution of Kullback-Leibler between one-point statistics of increasing num-
ber of modes N as a function of N for Cauchy-WABC with h = 1/3 for the x-axis (purple),
the y-axis (blue) and the z-axis (green).
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H - WABC flow’s noise scaling

H.1 . A non-trivial scaling

H.1.1 . A wrong scaling
Introduction – In equation (5.1), the noise term κN needs to decrease as N goes to

infinity. Spontaneous stochasticity might not show up however if this scaling decreases
too fast or too slowly compared to the cut-off. The choice for this scaling is however not
obvious due to the non-linear effects in the WABC model. To illustrate this point, we
derive a scaling law for κN based on dimensional analysis. We want the noise to scale
accordingly with the smallest scale in the WABC flow. At this scale, the velocity felt is
of the order ωN

kN
. We recall that the smallest displacement in this model was chosen to be

dxN = k−1
N . As such, since dW ∼

√
dtN , this means that we should have

κN ∼
ω2

N

k2
N

dtN = ω2
N

k3
N

. (H.1)

Results – We recall that for the WABC flow, we introduced two types of regularisations
called respectively: Cauchy-WABC (uncertainty on initial position) and Langevin-WABC
(stochastic process). We should expect the two regularisations to give the same results
(i.e. the same probability distributions) in the limit of vanishing regularisation.

Since the Cauchy-WABC converges for N ≥ 12, we expect the Langevin-WABC to
be converged at approximately the same number of modes. We show in Figure H.3 (Left
pictures) a comparison between Cauchy-WABC and Langevin-WABC’s 1d probability
distributions (for N = 16) with the noise scaling given in equation (H.1). We observe
that the curves are mostly different between the two regularisations. In addition, we tend
to observe the the probability distributions for the Langevin-WABC do not converge as
N increases. We show indeed the evolution of the convergence of the Kullback-Leibler
divergence HKL(pN+1, pN ) in Figure H.1. We observe that after a reaching a plateau, this
criterion rises again, symbol of non-convergence.

H.1.2 . Methodology
From the above observations, we want to find a good scaling κN for the Langevin-

WABC problem. We introduce a general noise scaling:

ϵN = b2 ω2
N

k
p(h)
N

. (H.2)

Our goal is to determine the function p(h). We here focus on h = 1/3. We will use
the Kullback-Leibler divergence HKL in order to compare the 1d probability distributions
from: Cauchy pC and Langevin pL. We recall that the lowest HKL(pC , pL), the clos-
est the two distributions are. As such, we should find the correct p(1/3) when we find
HKL(pC , pL) ≈ 0 (up to numerical errors).
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Figure H.1: Evolution of the Kullback-Leibler divergence between one point statistics of
increasing number of modes N as a function of N for Langevin-WABC with h = 1/3 in
the case of a noise scaling given by equation (H.1). The three axes are represented by
different colours: purple for the x-axis, blue for the y-axis and green for the z-axis.

H.2 . Results

We perform different simulations for p ∈ [2, 3] and evaluate the one-point probability
distributions at time t = 0.875. The numerical methods for the integration are given in
Chapter 7. Results are summarised in Figure H.2.

We notice that, within the error induced by the convergence of statistics (and numerical
scheme), the curves are not flat and present some minima for all axes. The initial value
p = 3, guessed from dimensional analysis, appears to be far from the minimum. A simple
second order polynomial fit gives us a minimum value for each coordinate, all situated at
p ≃ 2.4. The non-linearity and intrinsic chaos of such model could explain why dimensional
analysis fails here, leading to non-trivial noise scalings.

H.2.1 . Discussions
In the above observations, we implicitly assumed that only one scaling should make the

model converge. This assumption is based on the results obtained for the other models of
spontaneous stochasticity. There is no obvious reason so far that this would always be the
case however. We could for instance have a range of possible good scalings that ensures
convergence of the model. We can mention for instance the work of Eyink and Bandak
[36]. In their analysis of a simple model, using the renormalisation group they were able
to derive a phase diagram showing the interconnection between the regularisation and
the noise part. If the noise grows too fast compared to the regularisation, the dynamics
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Figure H.2: Kullback-Leibler divergence between Langevin and Cauchy one-point statis-
tics’ (at time t = 0.875) for different exponents p in the case of N = 16 and h = 1/3. Axes
are displayed by different colours: x-axis is purple, y-axis is blue and z-axis is green.

becomes essentially flooded by the noisy fluctuations. On the contrary, if the regularisa-
tion wins, the convergence towards a spontaneously stochastic phase ask for a very low
regularisation. This scenario is not convenient as we could reach technical limits for the
numerical simulations: large computation times, saturation of memory... Consequently,
the above optimisation procedure could be used to determine a good scaling to quicker
reach convergence.

We also note, that so far, there is no obvious reason that p(h) = p(1/3). This would
need to be further investigated. It could also depend on the A, B and C coefficients that
control the appearance of chaos in the WABC model.
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Figure H.3: Comparison of one point statistics between Cauchy-WABC (black) and
Langevin-WABC (blue) for p = 3 (Left) and p = 2.4 (Right), with h = 1/3 and N = 16.
The different axes x, y and z are displayed from top to bottom.
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I - Outlier detection for experimental data

I.1 . Experimental issues

We introduced in Chapter 8 the STB algorithm that is able to reconstruct the La-
grangian trajectories from camera images. The reconstructed particles can be outliers,
which we need to identify. In this Appendix, we introduce a methodology to determine
and filter out a subtype of outliers: the reconstructed particles that have abnormal dis-
placements norms. Those are indeed responsible for the FlowHisto method (introduced
in Chapter 6) to fail: the maximum displacement among particles is too large and do not
represent the real data. As a consequence, the coarse-graining becomes too rough for the
real data, which leads to really low-defined Eulerian grids.

To identify those outliers, we first compute the norm of displacements and build its
global probability distribution. Using a specific threshold, we are able to filter out all of
the problematic outliers. This technique however filters out too many particles that we
consider to be meaningful. We thus introduce, in a second part, a refined method, that is
called ’Local outlier factor’ (LOF), which gives a score to the particles according to how
different they are from the others.

I.2 . Norm histogram

We define the particles’ displacements as a 3d vector δx = (δx, δy, δz). We consider
its norm, that we note δR = ||δx||2. As exemplified in Figure I.1, we build the probability
distribution p(δR). The extreme values outliers are visible on the right side. We observe in
fact some noise next to the large decrease of probability, which corresponds to the outliers’
noise. We therefore impose a threshold δRth (represented by the red dashed lines on the
plots), where particles having δR > δRth are filtered out. This also gives what we call
’the contamination factor’ cf . It corresponds to the chance of picking an outlier when
randomly choosing a particle.

I.3 . Local outlier factor

As presented in Figure I.1, the norm histogram method is not sufficient as it can filter
out too many particles that we consider to be real. Instead, we refine our outlier detection
using the ’Local outlier factor’ (LOF) algorithm. This method was first introduced by
Breunig et al. in 2000 [11]. For each particle, we evaluate its number of neighbours and
how far they are in the space of δx. A score is then attributed to those particles: an
isolated particle in this space gets a poor score compare to a particle surrounded by very
close neighbours.

Therefore, a particle that has an extreme δR will necessarily be isolated from the other
particles in the space of δx. As such, its score given by the LOF algorithm will be low.
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Figure I.1: Distribution of δR for a run of the GVK experiment. The noise on the right
side of the histogram corresponds to the norm outliers. We automatically set a threshold
(represented by the red dashed line) left to the noise.

Comparing this score to the contamination factor allows one to discriminate the particles
to keep from the others.

The method works quite well for our dataset as illustrated in Figure I.2. The blue dots
correspond to the detected outliers, which are the particles that we expect to be filtered
out.

I.4 . Conclusions

The presented method works in our case to filter out the outliers that might drive
the FlowHisto algorithm to fail. We note that this does not eliminate all outliers. In
particular, the wrong vectors that have a reasonable norm are still selected. This is not a
problem in our case since those are smoothed by the statistical analysis afterward.
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Figure I.2: Example of displacements of particles in the space of δx. The red dashed circle
corresponds to the threshold set in the distribution of δR. We notice that it filters out
too many good particles (see right top corner). The blue particles are the ones identified
as outliers par the LOF algorithm.
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J - French summary

Depuis la découverte des systèmes chaotiques, physiciens et mathématiciens se sont
succédés pour tenter d’enfin comprendre un mystère qui perdure : la turbulence. Dans
cet état, les fluides présentent des structures aléatoires voire chaotiques. A ce titre, il
ferait sens d’essayer de comprendre ces phénomènes au travers de nos connaissances sur
les systèmes chaotiques, eux aussi semblant aléatoires dans les limites de temps longs.
On observe que la turbulence échappe cependant toujours aux théories des systèmes dy-
namiques. Par exemple, on sait que deux solutions initialement distantes d’une amplitude
ϵ vont se séparer dans l’espace des phases à un taux exponentiellement croissant dans le
temps. On sait en outre que cette distance est directement proportionnelle à ϵ : les deux
solutions deviennent identiques quand ϵ tend vers 0. Ce phénomène n’est pourtant pas
observé en turbulence. A la place, on observe que les solutions se séparent en temps longs
de manière linéaire indépendamment de la perturbation initiale ϵ donnée [79].

Cette observation fait écho à une remarque de Lorenz en 1969 [60, 67] sur le fait que
certains systèmes (et particulièrement les fluides) atteindraient un plafond de verre de
prédictibilité lorsque la perturbation initiale ϵ tend vers 0. Cet article met l’accent sur
l’influence de la pluralité des échelles dans ces systèmes pour la construction de ces régimes
paradoxaux. On sait depuis les travaux effectués dans le modèle de Kraichnan [45, 82, 39]
qu’un tel phénomène est bien réel et s’apparente physiquement à une extrême amplification
de bruits infinitésimaux due à la présence de singularités dans l’écoulement. Le nom de
« Stochasticité Spontanée » a ainsi été donnée pour appeler ce type de comportements.

A l’heure actuelle, ces systèmes ne sont que partiellement compris. On sait qu’il est
au moins nécessaire d’avoir des irrégularités, qu’elles soient régularisées localement et
qu’un bruit infinitésimal soit rajouté pour obtenir un modèle présentant de tels comporte-
ments. Ainsi, dans ces systèmes, la dynamique apparaît toujours stochastique malgré que
la régularisation et le bruit soient envoyés vers 0. Dans le cas lagrangien, la distribu-
tion des positions des particules semble devenir indépendante du bruit initial, à l’image
des observations de Lorenz. Il apparaît cependant que ces ingrédients sont nécessaires
mais pas suffisants : certains systèmes possédant ces caractéristiques ne sont pourtant pas
spontanément stochastiques. On peut notamment questionner l’influence du chaos sur la
construction d’un tel phénomène.

On notera enfin que la stochasticité spontanée est très difficile à observer expérimen-
talement. En effet, dans le cas Lagrangien, ce phénomène pourrait se manifester au travers
de la célèbre loi de Richardson où les paires de particules semblent en moyenne se séparer
selon une loi cubique en temps, indépendamment de la séparation initiale. Cette loi n’est
pourtant pas, à ce jour, observée rigoureusement en turbulence expérimentale. Ceci est
dû au fait que cette loi apparaît pour des temps trop longs par rapport au temps que
les particules mettent pour sortir de la zone de mesure. Pourtant l’investigation de ces
propriétés d’un point de vue expérimental est fondamental pour pouvoir confirmer ou in-
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firmer les théories émergentes sur ce sujet. Il est donc important de considérer un critère
spécifique de stochasticité spontanée qui pourrait être appliqué en expériences.

Dans cette thèse, nous nous intéressons à élaborer un tel critère à partir de proba-
bilités de transition (issues des théories markoviennes). Pour vérifier son efficacité, nous
introduisons un écoulement jouet, intitulé « modèle WABC », qui nous sert de terrain de
jeu pour tester ces idées. Après avoir introduit ce modèle et ses propriétés dans une pre-
mière partie, nous poursuivons en introduisant la définition de la stochasticité spontanée
lagrangienne pour cet écoulement. En nous inspirant de cette définition, nous arrivons à
élaborer notre critère, intitulé « déviation de transition ». C’est ce critère qui est testé dans
le modèle WABC. Mais avant cela, nous vérifions en amont que ce modèle présente bien
de la stochasticité spontanée lagrangienne. Pour ce faire, nous introduisons d’abord, dans
une partie dédiée, tous les outils statistiques nécessaires pour le calcul du critère ainsi
que la vérification quantitative (et pratique) de la convergence non-triviale des statis-
tiques. Ces outils sont ensuite directement appliqués dans le cadre de la vérification de
la stochasticité spontanée lagrangienne dans le modèle WABC, présenté dans une partie
dédiée. Dans cette dernière, on introduit en détail la méthode d’intégration des équations
stochastiques décrivant le mouvement des particules. On montre ainsi, au travers d’une
analyse numérique que les statistiques convergent, où les trajectoires restent stochastiques
même dans les limites de régularisation et de bruit nul. Une comparaison entre ce qui est
observé dans le modèle WABC et les écoulements expérimentaux du comportement du
critère de déviation de transition est enfin présentée.

Le modèle WABC uW est un écoulement stationnaire correspondant à une somme
infinie d’écoulements ABC [2] de plus en plus fins :

U(x) =


A sin(z) + C cos(y)
B sin(x) +A cos(z)
C sin(y) +B cos(x),

(J.1)

uW (x) =
+∞∑
i=1

ωi

ki
U(kix). (J.2)

On montre que cet écoulement 3d est irrégulier partout et brise quelques symétries ob-
servées dans l’écoulement constituant. On observe en outre que, lorsque les coefficients
A, B et C de l’écoulement ABC sont choisis de telle sorte à avoir du chaos lagrangien,
l’écoulement WABC résultant voit également apparaître du chaos lagrangien. En toute
généralité, il apparaît que les attracteurs sous-jacents semblent devenir de plus en plus
nombreux (et plus petits) lorsque la somme d’écoulements ABC devient de plus en plus
grande. Ceci est dû en partie à la présence d’une auto-similarité partielle de l’écoulement.

Pour ce modèle, on peut aussi définir une « dissipation anormale » non physique
comme déjà observé par G. Eyink en 1994 [34]. Cette dissipation, différente de celle
due à la viscosité, correspond conceptuellement dans les bonnes limites à l’anomalie de
dissipation observée expérimentalement en turbulence. Le théorème de Duchon et Robert
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permet de démontrer le lien entre les irrégularités et l’anomalie de dissipation [31]. Bien
qu’ici cette définition n’ai pas de sens physique, elle permet de distinguer deux types de
singularités : celles dissipatives (avec un coefficient de Hölder h ≤ 1/3) et celles non-
dissipative (avec un coefficient de Hölder h > 1/3). On montre que pour l’écoulement
WABC avec h = 1/3, la dissipation symbolisée par le coefficient de Duchon et Robert
converge vers une valeur finie pour une régularisation nulle.

Dans le cadre de la simulation de la stochasticité spontanée lagrangienne, on définit
les équations régissant le mouvement des particules dans le champ WABC. Ces équations
font intervenir un bruit qui peut être choisi de la manière que l’on souhaite : il est ad-
mis que les statistiques ne devraient pas dépendre du type de bruit qui est choisi dans
les limites de régularisation nulle. Nous définissons donc le « Langevin-WABC » et le «
Cauchy-WABC », deux types de simulations lagrangiennes pour ce modèle. On dit alors
que l’on observera de la stochasticité spontanée lagrangienne dans cet écoulement si et
seulement si, en considérant que toutes nos particules partent d’une même position ini-
tiale (ou boule initiale dans le cas de Cauchy-WABC), il existe un temps tx0

S tel que les
distributions des positions de particules à un temps t > tx0

S , notées pL
N (x, t), convergent

vers des distributions qui ne sont pas celles de Dirac dans la limite de régularisation et
bruit nul :

∃tx0
s > 0, ∀t > tx0

s lim
N→∞

pL
N (x, t) = pL(x, t) ̸= δ(x−m(t)), (J.3)

où

m(t) = E(x) =
∫
Rd
x pL(x, t) dx. (J.4)

Pour construire notre critère de mesure de stochasticité spontanée en expérience, on
adapte cette définition aux contraintes expérimentales : nous avons besoin d’un outil
local en temps et en espace capable d’aller au-delà de la limitation de la non-répétabilité
exacte (non pas au sens statistique) de l’expérience lorsque l’on change le nombre de
Reynolds (représentant la régularisation en turbulence). On définit un écart-type des
déplacements de particules pendant un temps τ . On dit alors qu’il y a des traces de
stochasticité spontanée si et seulement si cet écart-type ne tend pas vers 0 dans la limite de
régularisation et bruit nuls. Ceci indiquerait en effet que, dans ces limites, les probabilités
de transition ne convergent pas de manière triviale vers la distribution de Dirac, d’écart-
type strictement nul. On écarterait ainsi le scénario d’une dynamique déterministe dans le
cas d’une viscosité nulle. Ce critère est par la suite légèrement raffiné de sorte à prendre en
compte à la fois le caractère non-reproductible de l’expérience et l’échantillonnage spatial
imposé par les techniques de mesures PIV/PTV. Ceci nous a poussé à conditionner les
statistiques sur les événements extrêmes de dissipation liés à l’irrégularité du champ. Bien
qu’il y ai des indices pointant dans cette direction, il n’existe pour le moment aucune preuve
démontrant une relation entre stochasticité spontanée et anomalie de dissipation du champ
de vitesse. Dans cette thèse, nous explorons cette hypothèse dans le modèle WABC en
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même temps que l’efficacité de notre critère pour déceler des événements spontanément
stochastiques.

On vérifie d’abord numériquement si le modèle WABC pour h = 1/3 montre des signes
de stochasticité spontanée lagrangienne. Pour ce faire, on choisit une intégration stochas-
tique dont on vérifie en amont sa précision (via l’évaluation de son ordre de convergence
faible). Les distributions de probabilités sur lesquelles sont effectuées les analyses quali-
tatives et quantitatives sont calculées à partir des positions de particules pour un temps
t donné. Des projections à un et deux points de ces distributions sont proposées de sorte
à éviter toute malédiction de dimensionnalité. On montre ainsi que, dans les précisions
numériques (statistique ou d’intégration) choisies, les probabilités de distributions sem-
blent converger non-trivialement dans les limites de bruit et de régularisation nulles (voir
Figure J.1). Nous vérifions ceci aussi de manière quantitative au travers de l’évaluation de
la convergence des distributions de probabilités à un point. On montre ainsi numérique-
ment que les trajectoires lagrangiennes sont toujours stochastiques même dans les limites
de bruit nul. Ceci indique donc que le modèle WABC présente de la stochasticité spontanée
lagrangienne pour les paramètres A, B et C choisis (ici présentant du chaos).

On remarque en outre que les deux schémas d’intégration, « Langevin-WABC » et
« Cauchy-WABC » présentent les mêmes distributions de probabilités dans la limite
de régularisation nulle. Ceci illustre donc les observations selon lesquelles le type de
bruit/régularisation ne devrait pas avoir d’influence sur les statistiques.

On a enfin testé si un changement de coefficient de Hölder h ou de position initiale
changeait la convergence des statistiques. Pour les valeurs testées (h = 2/5 par exemple),
on observe peu de changements par rapport au cas testé avec h = 1/3. Ceci pointe donc
dans la direction d’une universalité de cette stochasticité spontanée pour n’importe quel
paramètre de simulation. Cette étude n’est cependant pas assez complète pour conclure
pleinement sur le cadre de cette universalité dans ce modèle.

On note enfin, que nous ne testons pas dans cette thèse l’influence du chaos sur
l’établissement (ou non) de la stochasticité spontanée lagrangienne. Ceci pourrait pour-
tant être raisonnablement testé en changeant les paramètres A, B et C qui permettent de
contrôler la présence de chaos lagrangien ou non. Cette perspective serait intéressante à
explorer puisque qu’il n’est pas encore certain que la stochasticité spontanée puisse exister
sans qu’il y ai de chaos.

Nous testons enfin le critère développé précédemment, d’abord dans le modèle WABC
et ensuite en expérience. L’expérience utilisée ici correspond au « Giant Von Kármán »
qui est capable de créer un écoulement quasiment homogène et isotrope en son centre. Les
techniques de PTV nous permettent de reconstruire en 3d les trajectoires de particules de
polystyrène, traceurs de l’écoulement. On utilise en particulier des données produites par
P. Debue et D. Geneste [23, 48].

Pour tester le lien entre la déviation de transition et la stochasticité spontanée, on
compare trois scénarios : le cas h = 1/3 dissipatif et spontanément stochastique, le cas
h = 2/5 non-dissipatif et spontanément stochastique et le cas h = 1 non-dissipatif et
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Figure J.1: Évolution des distributions de probabilité à un point selon l’axe x selon le
nombre de modes N , pour des simulations de Langevin-WABC avec h = 1/3. On note
que les distributions semblent converger vers une unique courbe pour N suffisamment
grand, signe de stochasticité spontanée.

non spontanément stochastique. Dans chacun des cas, on augmente progressivement le
nombre de modes et on conditionne les statistiques sur les événements de fortes dissipations
(toujours selon Duchon et Robert). Dans cette étude préliminaire, on observe que dans les
cas où la stochasticité spontanée devrait apparaître, notre critère semble rester identique
peu importe le nombre de modes. Cependant pour le cas h = 1, notre critère semble
changer avec le nombre de modes, se décorrélant totalement des événements de fortes
dissipation. Cette observation met en évidence le lien fort entre notre critère et la présence
de stochasticité spontanée lagrangienne.

On observe dans les expériences analysées dans cette thèse que le critère calculé semble
être insensible à des nombres de Reynolds suffisamment grands. Ceci semble être le cas
quand on considère des échelles inertielles. Mais des échelles considérées plus proches de
la zone dissipative semblent mieux fonctionner. Tout indique un scénario similaire à ce
qui a été observé dans le cas h = 1/3 pour le modèle WABC. Cette étude préliminaire
pointe donc dans la direction d’une toute première observation de stochasticité spontanée
lagrangienne en expérience (voir Figure J.2). On note cependant que le manque de données
expérimentales ne nous permet pas de conclure parfaitement.

En résumé, ce travail a permis la réalisation d’un écoulement 3d développant de la
stochasticité spontanée lagrangienne. Cet écoulement est facilement réalisable et permet-
trait d’étudier en détail l’influence du chaos sur l’établissement d’un tel phénomène. En
outre, sa simplicité permet de tester des idées simples pour l’analyse de la stochastic-
ité spontanée. En particulier, nous avons pu développer un critère de mesure pour la
turbulence expérimentale. Nous avons pu vérifier de manière qualitative que ce critère
fonctionne. Il nous a permis d’identifier dans une étude préliminaire des similarités entre
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(a) WABC, h = 1
3 (b) WABC, h = 1

3

(c) Expérience GVK, ⟨h⟩ = 1/3

Figure J.2: Le critère de déviation de transition
〈
σϵ,τo〉

Π comme fonction de la dissipation
due aux irrégularités Πl pour : le modèle WABC avec h = 1/3 (gauche) et h = 1 (droite)
et l’expérience (bas). Ces courbes sont représentées pour une régularisation de plus en
plus faible, c’est à dire pour N croissant pour le modèle WABC et Re croissant pour
l’expérience.

les observations expérimentales et le comportement spontanément stochastique des partic-
ules advectées dans le modèle WABC. Une étude plus approfondie permettrait d’affirmer
ou infirmer les premières observations allant dans ce sens.
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