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Abstract
The Earth’s climate is currently undergoing rapid and widespread changes. Human activities in
the industrial era, in particular the emission of CO2 into the atmosphere through the burning of
fossil fuels, have led to an enhanced greenhouse effect which has caused an increase in the global
average surface air temperature of 1.1 °C in 2011–2020 relative to 1850–1900. A further conse-
quence is the warming of the global ocean: it has absorbed over 90% of the excess energy stored in
the Earth system due to the increased radiative forcing.
This global ocean heat uptake (OHU) is a critical climate process and plays a dual role for an-

thropogenic climate change. On the one hand, OHU is a measure of the cumulative effects of
transient climate change, and scales with negative impacts such as sea level rise and the frequency
of oceanic extreme events. On the other hand, OHU provides a crucial service by shielding the
atmosphere from large amounts of heat that would otherwise causemuch greater global warming
than currently observed.
Despite their importance, many of the physical processes controlling OHU are still poorly un-

derstood, including in state-of-the-art numerical climate models used for international climate
change assessments. In this thesis, we address this problem using climate simulations of models
participating in the Coupled Model Intercomparison Project (CMIP). In a first study, we pro-
vide improved future projections of global OHU by the end of the 21st century by identifying an
emergent relationship across an ensemble of CMIPmodels linking the simulated baseline climate
state of the Southern Hemisphere to future global OHU. By combining this relationship with
observational data, we obtain constrained projections showing that future OHU is likely larger
than previously thought. In a second study, we clarify the processes involved in setting the ocean
heat uptake efficiency (OHUE) which quantifies the amount of OHU per degree of global sur-
face warming. We reconcile a number of previous attempts at explaining controls onOHUE, and
show that the upper ocean stratification in the Southern Ocean is a key property setting its value
in CMIP climate models. Last, we present an exploratory analysis combining the approaches of
these two studies, and perform a statistical analysis of simulations from a large multi-model en-
semble with the goal of constraining OHUE.
Beyond these concrete results concerning global OHU, we also discuss some of the method-

ological issues related to the interpretation of uncertainties arising from multi-model ensembles
more generally.
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Résumé
Le climat terrestre connaît actuellement des changements rapides et généralisés. Les activités humaines
depuis l’ère industrielle, en particulier les émissions de CO2 dans l’atmosphère dues à la combustion de
combustibles fossiles, ont intensifié l’effet de serre. Cela a entraîné une augmentation de la tempéra-
ture moyenne de l’air à la surface du globe de 1.1 °C en 2011–2020 par rapport à 1850–1900. Une
autre conséquence majeure est le réchauffement des océans mondiaux, qui ont absorbé plus de 90%
de l’énergie excédentaire accumulée dans le système climatique en raison de l’augmentation du forçage
radiatif.
L’absorption de chaleur par l’océan mondial (OHU) est un processus climatique clé qui joue un

double rôle dans le changement climatique d’origine anthropique. D’une part, l’OHU constitue en
soi une mesure clé du changement climatique, qui est directement associée à des impacts négatifs tels
que l’élévation du niveau de la mer et l’augmentation de la fréquence des événements extrêmes dans
l’océan. D’autre part, l’OHU fournit un service climatique essentiel en épargnant l’atmosphère de
grandes quantités de chaleur, sans lequel le réchauffement atmosphérique serait bien plus marqué que
celui que nous observons actuellement.
Malgré leur importance, de nombreux processus physiques qui contrôlent l’OHU restent mal com-

pris, même dans les modèles climatiques numériques utilisés dans les évaluations internationales du
changement climatique. Dans cette thèse, nous avançons sur ce problème en nous appuyant sur des
simulations climatiques issues de modèles participant au Projet d’intercomparaison des modèles cou-
plés (CMIP).
Dans une première étude, nous produisons des estimations améliorées de l’OHU global d’ici à la fin

du XXIe siècle en identifiant une relation émergente dans un ensemble de modèles CMIP, qui relie
l’état climatique présent de l’hémisphère sud à l’OHU futur. En combinant cette relation avec des
données d’observation, nous obtenons des projections mieux contraintes qui montrent que l’OHU
futur pourrait être plus important qu’estimé précédemment.
Dans une deuxième étude, nous clarifions les processus à l’origine de l’efficacité d’absorption de la

chaleur océanique (OHUE), qui quantifie la quantité d’OHU par degré de réchauffement de la sur-
face terrestre. Nous réconcilions plusieurs tentatives antérieures d’explication des facteurs influençant
l’OHUE, et montrons que la stratification de l’océan Austral supérieur est une propriété clé qui con-
trôle l’OHUE dans les modèles climatiques CMIP.
Enfin, nous présentons une analyse exploratoire combinant les approches de ces deux études, et

menons une analyse statistique des simulations d’un grand ensemblemulti-modèle dans le but de con-
traindre l’OHUE.
Au-delà de ces résultats concrets concernant l’OHU global, nous discutons également de certaines

questions méthodologiques liées à l’interprétation des incertitudes découlant des ensembles multi-
modèles de manière plus générale.
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Plain language summary
It is now an unequivocal fact that human activities in the industrial era (i.e., since around 1760)
have caused significant changes to Earth’s climate. The burning of fossil fuels and changes in
land use such as deforestation have led to the emission of greenhouse gases into the atmosphere.
These gases, which include carbondioxide (CO2) andmethane (CH4), act as an insulatingblanket
and reduce the radiation emitted from Earth to space, which in turn leads to increased surface
temperatures. The Intergovernmental Panel on Climate Change (IPCC) has recently assessed
that the globally averaged surface air temperature has warmed by 1.1 °C compared to its level in
the late 19th century. However, not only the air has warmed: the world’s oceans have taken up
over 90% of the additional heat energy trapped in the climate system. This is both due to the
ocean’s tremendous mass as well as the particularly high capacity of water to absorb energy.
This ocean heat uptake (OHU; measured in Joules) is the subject of this Ph.D. thesis. One the

one hand, OHU leads to widespread negative impacts: for example, the melting of ice sheets and
the expansion of water as it warms lead to sea level rise, and warmer ocean temperatures increase
the frequency of destructivemarine heatwaveswith harmful consequences formarine ecosystems.
On the other hand,OHUprovides a great service: it removes heat from the atmosphere and stores
it at depth, which greatly reduces the magnitude of the surface warming that humans experience
compared to a hypothetical world with zero OHU.
In this thesis, we use three-dimensional numerical computer models of the climate system to

better understand the physical processes contributing to OHU, as well as to obtain future OHU
projectionswith reduceduncertainties. In a first study,we combine simulations froman ensemble
of 28 different climatemodels with observational data to obtain constrainedOHUprojections by
the end of the 21st century, and show that future OHU will likely be greater than previously ap-
preciated. In a second study, we reconcile a number of previous studies which tried to identify the
physical mechanisms controlling the efficiency of OHU at removing heat from the atmosphere.
Last, we identify potential ways to constrain this efficiency by performing a statistical analysis of
simulation output from an ensemble of over 100 climate model simulations.

Beyond these concrete results concerning global OHU, we also discuss some of the method-
ological issues related to the interpretation of uncertainties arising from ensembles consisting of
different climate models more generally.
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Résumé simplifié
Il est désormais établi que les activités humaines de l’ère industrielle (c’est-à-dire depuis 1760 environ)
ont provoqué des changements significatifs dans le climat de la Terre. La combustion de combustibles
fossiles et les changements dans l’utilisation des sols, tels que la déforestation, ont entraîné l’émission
de gaz à effet de serre dans l’atmosphère. Ces gaz, qui comprennent le dioxyde de carbone (CO2) et le
méthane (CH4), agissent comme une couverture isolante et réduisent le rayonnement émis de la Terre
vers l’espace, ce qui entraîne une augmentation des températures de surface. Le groupe d’experts inter-
gouvernemental sur l’évolution du climat (GIEC) a récemment estimé que la température moyenne
de l’air à la surface du globe s’est réchauffée de 1,1 degré Celsius par rapport à son niveau de la fin du
XIXe siècle. Cependant, l’air n’est pas le seul à s’être réchauffé : les océans ont absorbé plus de 90% de
l’énergie thermique supplémentaire créée par le changement climatique. Ce phénomène est dû à la fois
à la masse considérable des océans et à la capacité particulièrement élevée de l’eau à absorber l’énergie.
Cette absorption de chaleur par les océans (OHU ; mesurée en joules) est le sujet de cette thèse

de doctorat. D’un côté, l’OHU a des effets négatifs considérables : par exemple, la fonte des calottes
glaciaires et l’expansion de l’eau lorsqu’elle se réchauffe entraînent une élévation du niveau de la mer,
et les températures océaniques plus élevées augmentent la fréquence des vagues de chaleur marine de-
structrices, avec des conséquences néfastes pour les écosystèmes marins. De l’autre côté, l’OHU rend
un grand service : il retire la chaleur de l’atmosphère et la stocke en profondeur, ce qui réduit consid-
érablement l’ampleur du réchauffement de surface que subissent les humains par rapport à un monde
hypothétique où l’OHU serait nulle.
Dans cette thèse, nous utilisons des modèles numériques tridimensionnels du système climatique

pourmieux comprendre les processus physiques contribuant à l’OHU, ainsi que pour obtenir des pro-
jections futures de l’OHU avec des incertitudes réduites. Dans une première étude, nous combinons
les simulations d’un ensemble de 28 modèles climatiques différents avec des données d’observation
pour obtenir des projections contraintes de l’OHU d’ici la fin du 21ème siècle, et nous montrons que
l’OHU futur sera probablement plus important que ce que l’on pensait jusqu’à présent. Dans une
deuxième étude, nous réconcilions un certain nombre d’études antérieures qui ont tenté d’identifier
les mécanismes physiques contrôlant l’efficacité de l’OHU à limiter le réchauffement de l’atmosphère.
Enfin, nous identifions des moyens potentiels de mieux connaîtrmieux connaître cette efficacité en
effectuant une analyse statistique des résultats d’un ensemble de plus de 100 simulations de modèles
climatiques.
Au-delà de ces résultats concrets concernant l’OHU global, nous discutons également de certaines

questions méthodologiques liées à l’interprétation des incertitudes découlant d’ensembles constitués
de différents modèles climatiques de manière plus générale.

xi



Scientific activities during the Ph.D.

Published/accepted articles
• L. Vogt, F. A. Burger, S. M. Griffies and T. L. Frölicher. 2022. “Local Drivers of Marine
Heatwaves: A Global Analysis With an Earth SystemModel.” Frontiers in Climate 4:847995.
https://doi.org/10.3389/fclim.2022.847995⊕

• SO-CHIC consortium, J.-B. Sallée et al. (including L. Vogt). 2023. “Southern Ocean Carbon
andHeat Impact on Climate.” Philosophical Transactions of the Royal Society A:Mathemati-
cal, Physical and Engineering Sciences 381 (2249): 20220056.
https://doi.org/10.1098/rsta.2022.0056. ⊕

• A. Minière, K. von Schuckmann, J.-B. Sallée, and L. Vogt. 2023. “Robust Acceleration of
Earth System Heating Observed over the Past Six Decades.” Scientific Reports 13 (1): 22975.
https://doi.org/10.1038/s41598-023-49353-1. ⊕

• J. Terhaar, L. Vogt, and N. P. Foukal. 2025. “Atlantic overturning inferred from air-sea heat
fluxes indicates no decline since 1960.” Nature Communications 16, 222.
https://doi.org/10.1038/s41467-024-55297-5⊕

• J. Terhaar, F. Burger, L. Vogt, T. L. Frölicher, and T. F. Stocker. “Record sea surface tempera-
ture jump in 2023/24 unlikely but not unexpected.” Accepted for publication inNature. ⊕

Articles in review
• L. Vogt, C. de Lavergne, J.-B. Sallée, L. Kwiatkowski, T. Frölicher, and J. Terhaar. In review.
“Increased future ocean heat uptake constrained by Antarctic sea ice extent.”
Preprint: https://doi.org/10.21203/rs.3.rs-3982037/v1

• L. Vogt, J.-B. Sallée, and C. de Lavergne. In review. “Stratification and overturning circulation
are intertwined controls on ocean heat uptake efficiency in climate models.”
Preprint: https://doi.org/10.5194/egusphere-2024-3442

Updated January 22, 2025. Studies marked by the symbol⊕were conducted at least in part during the time of the Ph.D.
project but are not included in this thesis.

xii

https://doi.org/10.3389/fclim.2022.847995
https://doi.org/10.1098/rsta.2022.0056
https://doi.org/10.1038/s41598-023-49353-1
https://doi.org/10.1038/s41467-024-55297-5
https://doi.org/10.21203/rs.3.rs-3982037/v1
https://doi.org/10.5194/egusphere-2024-3442


Summer schools
• Physics of the Ocean, Bad Honnef, Germany. July 2023, one week.

• Southern Ocean Summer School, Cargèse, Corsica (France). May 2024, two weeks.

Research visits
• Guest Student at Woods Hole Oceanographic Institution (WHOI), Woods Hole, USA.
March–May 2023. Host: Dr. Jens Terhaar

Seminars
• L. Vogt et al. 2024. Southern Ocean stratification and overturning circulation controls on
ocean heat uptake efficiency.
Oral presentation: SO-CHIC annual meeting 2024, Paris, France.

• L. Vogt et al. 2024. Understanding and constraining ocean heat uptake with climate models.
Invited talk: Max-Planck-Institute for Meteorology / University of Hamburg.

• L. Vogt et al. 2023. Antarctic sea ice predicts ocean heat uptake in climate simulations.
Oral presentation: SO-CHIC annual meeting 2023, Paris, France.

• L. Vogt et al. 2022. Stratification feedbacks on ocean heat uptake in CMIP6.
Oral presentation: SO-CHIC annual meeting 2022, Paris, France.

International conferences
• L. Vogt et al. 2024. Increased future ocean heat uptake constrained by Antarctic sea ice extent.
Oral presentation: European Geosciences Union 2024, Vienna, Austria.

• L. Vogt et al. 2022. Local Drivers of Marine Heatwaves: A Global Analysis With an Earth
SystemModel.
Oral presentation: European Geosciences Union 2022, Vienna, Austria.

• L. Vogt et al. 2022. Local Drivers of Marine Heatwaves: A Global Analysis With an Earth
SystemModel.
Oral presentation: Ocean Sciences Meeting 2022, virtual.

xiii





Contents

Acronyms xxv

1 Introduction andMethods 1
1.1 Ocean heat uptake and its role in the climate system . . . . . . . . . . . . . . 2

1.1.1 The ocean as a climate system component . . . . . . . . . . . . . . . 2
1.1.2 Two conceptions of ocean heat uptake . . . . . . . . . . . . . . . . . 4
1.1.3 Total ocean heat uptake . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1.4 Ocean heat uptake efficiency . . . . . . . . . . . . . . . . . . . . . . 14

1.2 Climate models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.2.1 Historical perspective . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.2.2 Structure of modern climate models . . . . . . . . . . . . . . . . . . 21
1.2.3 Using model ensembles as research tools . . . . . . . . . . . . . . . . 23
1.2.4 The CoupledModel Intercomparison Project (CMIP) . . . . . . . . . 33
1.2.5 Emergent constraints . . . . . . . . . . . . . . . . . . . . . . . . . . 36

1.3 Scientific aims and outline of this thesis . . . . . . . . . . . . . . . . . . . . . 42

Bibliography 45

2 Increased future ocean heat uptake constrained by Antarctic sea ice
extent 75
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
2.2 Uncertain future of OHU . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

2.3.1 Antarctic sea ice as an indicator of Southern Hemisphere climate . . . 79
2.3.2 Emergent constraints on future change . . . . . . . . . . . . . . . . . 82
2.3.3 Robustness of the emergent constraint . . . . . . . . . . . . . . . . . 85

2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
2.5 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Appendices 95
2.A Supplementary Information . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

xv



Contents

Bibliography 109

3 Stratificationandoverturningcirculationare intertwinedcontrols
on ocean heat uptake efficiency in climate models 119
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

3.2.1 CMIP6 model output . . . . . . . . . . . . . . . . . . . . . . . . . 123
3.2.2 Calculation of ocean variables . . . . . . . . . . . . . . . . . . . . . 123
3.2.3 Observation-based data . . . . . . . . . . . . . . . . . . . . . . . . . 125
3.2.4 Inter-model empirical orthogonal function analysis . . . . . . . . . . 125
3.2.5 Classification of vertical stratification profiles . . . . . . . . . . . . . 126

3.3 Global and local controls on ocean heat uptake efficiency . . . . . . . . . . . . 126
3.3.1 Global controls on OHUE . . . . . . . . . . . . . . . . . . . . . . . 126
3.3.2 Local upper ocean controls on OHUE . . . . . . . . . . . . . . . . . 127

3.4 Upper ocean controls on meridional overturning . . . . . . . . . . . . . . . . 129
3.5 Stratification model bias and inter-model spread . . . . . . . . . . . . . . . . 131

3.5.1 Ensemble mean stratification and bias relative to observations . . . . . 131
3.5.2 Regional coherence of stratification inter-model links . . . . . . . . . 132

3.6 Discussion and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
3.6.1 Schematic summaryofprincipal inter-model relationshipsbetweenvari-

ables controlling OHUE . . . . . . . . . . . . . . . . . . . . . . . . 134
3.6.2 Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

Appendices 141
3.A Supplementary Information . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

Bibliography 149

4 Outlook: Improvedconstraintsthroughstatisticalanalysisofalarge
multi-model ensemble 155
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
4.2 Model output for predictor and target variables . . . . . . . . . . . . . . . . . 156

4.2.1 Predictand variables . . . . . . . . . . . . . . . . . . . . . . . . . . 157
4.2.2 Predictor variables . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

4.3 Exploratory analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
4.3.1 Principal component analysis . . . . . . . . . . . . . . . . . . . . . . 163
4.3.2 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

xvi



4.3.3 Linear regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
4.3.4 Cross-validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

Bibliography 177

5 Discussion 179
5.1 Summary and discussion of main results . . . . . . . . . . . . . . . . . . . . 179

5.1.1 Chapter 2: How can we constrain future global OHU? . . . . . . . . 179
5.1.2 Chapter 3: What processes control the OHU efficiency? . . . . . . . . 180
5.1.3 Chapter 4: Can we use this process understanding to constrain OHU

(efficiency)? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
5.1.4 Overarching question: What is the effect of climate model biases on fu-

ture projections, and how do different biases relate to each other? . . . 182
5.2 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

5.2.1 Pattern effects on ocean heat uptake . . . . . . . . . . . . . . . . . . 183
5.2.2 Lagrangian approaches to model analysis . . . . . . . . . . . . . . . . 186
5.2.3 Extending parameter perturbation experiments to themulti-model setting188
5.2.4 The ocean heat-carbon nexus . . . . . . . . . . . . . . . . . . . . . . 189

Bibliography 193

A Appendix to front matter 201

B Appendix to Chapter 4 203





List of Figures

1.1 Observed changes in the Earth energy inventory for the period 1971–2020. . . 1
1.2 Schematic of the surface ocean circulation. . . . . . . . . . . . . . . . . . . 2
1.3 Schematic of the global overturning circulation. . . . . . . . . . . . . . . . . 3
1.4 Schematic timeline of the evolution of ocean heat content observing systems. . 8
1.5 Increasing number of ocean temperature measurements over time. . . . . . . 9
1.6 Geographic coverage of SST observations. . . . . . . . . . . . . . . . . . . . 10
1.7 Time series of observed and simulated global OHC change. . . . . . . . . . . 10
1.8 Geographical distribution of observed OHC change. . . . . . . . . . . . . . 11
1.9 Observeed deep ocean warming rates. . . . . . . . . . . . . . . . . . . . . . 12
1.10 Increased frequency MHWs under global warming and associated biological

impacts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.11 Gregory plot of climate model response to abrupt CO2 forcing. . . . . . . . . 15
1.12 Timeline of increasing climatemodel complexity through the inclusion of pro-

cesses and model components. . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.13 Software architecture diagram for the CESM1-BGCmodel. . . . . . . . . . . 22
1.14 Schematic of a typical GCM grid structure and relevant processes. . . . . . . 22
1.15 Types of future projection uncertainty in climate model projections. . . . . . 23
1.16 Idealized example of three types of model ensemble. . . . . . . . . . . . . . . 25
1.17 Fractional uncertainty as a function of time by uncertainty type. . . . . . . . 26
1.18 Example of an initial condition ensemble using the IPSL-CM6A-LR climate

model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.19 Example of a perturbed parameter ensemble using the MITgcm ocean model. 28
1.20 Example of a multi-model ensemble using the CMIP5 and CMIP6 ensembles. 30
1.21 Examples of inter-model relationships between quantities related to AMOC. . 32
1.22 Examples of inter-model relationships between AMOC and regional SST. . . 33
1.23 Schematic of the CMIP6 project structure and science goals. . . . . . . . . . 34
1.24 Horizontal resolution of the atmospheric and oceanic components of CMIP6

and HighResMIP GCMs. . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

xix



List of Figures

1.25 Atmospheric CO2 concentrations and global SAT change in different SSP sce-
narios. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

1.26 Illustration of the emergent constraint method. . . . . . . . . . . . . . . . . 38
1.27 Emergent constraint on snow albedo feedback. . . . . . . . . . . . . . . . . 39

2.1 Ocean heat uptake in CMIP6 models. . . . . . . . . . . . . . . . . . . . . . 78
2.2 Atmospheric and oceanic connections to Antarctic sea ice extent in the prein-

dustrial state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
2.3 Links between preindustrial Antarctic sea ice and Southern Hemisphere cli-

mate change. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
2.4 Emergent constraint on future global ocean heat uptake. . . . . . . . . . . . 83
2.5 Constrained distributions of global OHU, cloud feedback, and warming. . . . 84
2.A.1 Relationship between deep ocean temperature and preindustrial surface climate. 95
2.A.2 Changes in cloud cover. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
2.A.3 Zonal mean ocean warming related to preindustrial sea ice. . . . . . . . . . . 96
2.A.4 Relationship between the local cloud feedback and anomalies in sea ice extent

and OHU. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
2.A.5 Time evolution of sea ice–related climate change. . . . . . . . . . . . . . . . 97
2.A.6 Relationship between sea ice loss and historical and future OHU components. 98
2.A.7 Emergent constraint on future global ocean heat uptake under SSP2-4.5 and

SSP3-7.0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
2.A.8 Constraineddistributions of globalOHU, cloud feedback, andwarmingunder

SSP2-4.5 and SSP3-7.0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
2.A.9 Emergent constraints on previously published metrics. . . . . . . . . . . . . 101
2.A.10 Robustness of emergent constraint to parameter choices. . . . . . . . . . . . 102
2.A.11 Time series of observed and simulated Antarctic sea ice extent. . . . . . . . . 103
2.A.12 Sea ice –OHUcorrelation inCMIP5 andCMIP6 for different values ofOHU

time period. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
2.A.13 Robustness of sea ice – OHU correlation to removing extreme model values. . 105
2.A.14 Sensitivity of OHU constraint based on past warming. . . . . . . . . . . . . 106

3.1 Proposed controls on ocean heat uptake efficiency (OHUE). . . . . . . . . . 127
3.2 Local upper-ocean controls on ocean heat uptake efficiency (OHUE). . . . . 128
3.3 Local upper-ocean controls on meridional overturning strength in CMIP6. . . 130
3.4 Ensemble mean stratification and bias relative to observations. . . . . . . . . 131
3.5 Regional coherence of inter-model stratification spread. . . . . . . . . . . . . 133
3.6 Schematic illustrating the inter-model links between key ocean properties. . . 135

xx



List of Figures

3.A.1 Detailed stratification–OHUE inter-model correlation maps. . . . . . . . . . 142
3.A.2 Inter-model relation between stratification and overturning cells. . . . . . . . 143
3.A.3 Scatter plot between EOF1 loadings and global mean𝑁2. . . . . . . . . . . . 143
3.A.4 Modes 3 to 5 of the inter-model EOF analysis on preindustrial stratification. . 144
3.A.5 EOF analysis on temperature and salinity stratification. . . . . . . . . . . . . 145
3.A.6 Temperature–salinity stratification inter-model correlation maps. . . . . . . . 145
3.A.7 Classification of vertical stratification profiles. . . . . . . . . . . . . . . . . . 146
3.A.8 EOF analysis on preindustrial MLD. . . . . . . . . . . . . . . . . . . . . . 147
3.A.9 Relationship between local stratification and Newsom et al. pycnocline depth

metric. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

4.1 Global mean surface air temperature anomaly under SSP1-2.6 and SSP5-8.5. . 158
4.2 Global ocean heat uptake under SSP1-2.6 and SSP5-8.5. . . . . . . . . . . . 159
4.3 Ocean heat uptake efficiency under SSP1-2.6 and SSP5-8.5. . . . . . . . . . . 159
4.4 Global OHU plotted against global warming under SSP1-2.6 and SSP5-8.5

(time series). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
4.5 Global OHU plotted against global warming under SSP3-7.0 and SSP5-8.5

(scatter plot). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
4.6 Schematic of potential predictors. . . . . . . . . . . . . . . . . . . . . . . . 162
4.7 Principal component analysis of the predictor variables. . . . . . . . . . . . . 163
4.8 K-means clustering of principal components (2D). . . . . . . . . . . . . . . 164
4.9 K-means clustering of principal components (3D). . . . . . . . . . . . . . . 165
4.10 Cluster sizes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
4.11 Number of unique models in each cluster. . . . . . . . . . . . . . . . . . . . 166
4.12 Number of unique centers in each cluster. . . . . . . . . . . . . . . . . . . . 167
4.13 Number of unique ocean model components in each cluster. . . . . . . . . . 167
4.14 Preindustrial SSTSO-60-45 vs. future OHU. . . . . . . . . . . . . . . . . . . 169
4.15 Preindustrial SSTSO-60-45 vs. futureΔSAT. . . . . . . . . . . . . . . . . . . 170
4.16 Preindustrial AMOC vs. future OHUE. . . . . . . . . . . . . . . . . . . . . 171
4.17 Historical SSSnatl vs. historical AMOC. . . . . . . . . . . . . . . . . . . . . 171
4.18 Preindustrial SSTnatl vs. future OHUE. . . . . . . . . . . . . . . . . . . . . 172
4.19 Preindustrial SSSnatl vs. futureΔSAT. . . . . . . . . . . . . . . . . . . . . . 173
4.20 Preindustrial SSSnatl vs. future OHU. . . . . . . . . . . . . . . . . . . . . . 174
4.21 Grouped cross validation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

5.1 Sea surface temperature trends in observations and CMIP5/6 models. . . . . 184
5.2 Schematic of combined pattern effects on OHU. . . . . . . . . . . . . . . . 186

xxi



List of Figures

5.3 Observational subsurface float trajectories in the Atlantic binned by depth range.187
5.4 The cumulative global carbon budget from 1850 to 2022. . . . . . . . . . . . 189
5.5 Schematic representation of the link between carbon emissions and warming. 191

A.1 Original figure for title page illustration. . . . . . . . . . . . . . . . . . . . . 201

B.1 Global mean surface air temperature anomaly under SSP2-4.5 and SSP3-7.0 . 203
B.2 Global ocean heat uptake under SSP2-4.5 and SSP3-7.0. . . . . . . . . . . . 203
B.3 Ocean heat uptake efficiency under SSP2-4.5 and SSP3-7.0. . . . . . . . . . . 204
B.4 Global OHU plotted against global warming under SSP2-5.5 and SSP3-7.0

(time series). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
B.5 Global OHU plotted against global warming under SSP1-2.6 and SSP2-4.5

(scatter plot). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
B.6 AMOC strength anomaly at 26°N under SSP1-2.6 and SSP5-8.5. . . . . . . . 205
B.7 Principal component analysis of the predictor variables after intra-model aver-

aging. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
B.8 Spectral clustering of principal components. . . . . . . . . . . . . . . . . . 206
B.9 K-means clustering of principal components after intra-model averaging. . . . 207
B.10 Preindustrial SSSSO-60-45 vs. future OHUE. . . . . . . . . . . . . . . . . . . 207

xxii



List of Tables

2.A.1 CMIP6 models used in this study. . . . . . . . . . . . . . . . . . . . . . . . 107
2.A.2 Emergent constraints across scenarios. . . . . . . . . . . . . . . . . . . . . . 108

3.A.1 CMIP6 models used in this study. . . . . . . . . . . . . . . . . . . . . . . . 141

4.1 Predictands or target variables. . . . . . . . . . . . . . . . . . . . . . . . . . 157
4.2 Definition of geographical regions. . . . . . . . . . . . . . . . . . . . . . . 162
4.3 Predictors or feature variables. . . . . . . . . . . . . . . . . . . . . . . . . . 162

xxiii





Acronyms

AABW Antarctic BottomWater
AAIW Antarctic Intermediate Water
ACC Antarctic circumpolar current
AMOC Atlantic meridional overturning circulation
AOGCM Atmosphere-ocean general circulation model
CMIP CoupledModel Intercomparison Project
CMIP6 CMIP phase 6 (in general, CMIP𝑛 for phases 𝑛 = 1, 2, 3, 5, and 6)
EBM Energy balance model
EC Emergent constraint
ECS Equilibrium climate sensitivity
EEI Earth energy imbalance
EEP Eastern Equatorial Pacific
EffCS Effective climate sensitivity
ENSO El Niño–Southern Oscillation
ERF Effective radiative forcing
ESM Earth systemmodel
GCM General circulation model
GHG Greenhouse gas
GO-SHIP Global Ocean Shipbased Hydrographic Investigations Program
ICE Initial condition ensemble
IMR Inter-model relationship
IPCC Intergovernmental Panel on Climate Change
IPCCAR6 IPCC sixth assessment report
IPCCAR6WG1 IPCCAR6Working Group I (“The Physical Science Basis”)
MHW Marine heatwave
MIP Model intercomparison project
MME Multi-model ensemble
NADW North Atlantic DeepWater
NPP Net primary production

xxv



Acronyms

NWP Numerical weather prediction
OHC Ocean heat content
OHU Ocean heat uptake
OHUE Ocean heat uptake efficiency
PDO Pacific Decadal Oscillation
PPE Perturbed parameter ensemble
SAF Snow albedo feedback
SAMW Subantarctic ModeWater
SAT Surface air temperature
SLR Sea level rise
SST Sea surface temperature
TCRE Transient climate response to emissions
TEOS-10 Thermodynamic Equation of SeaWater 2010
TOA Top of the atmosphere
WEP Western Equatorial Pacific
WOCE World Ocean Circulation Experiment

xxvi



1 Introduction andMethods

Today, the reality of anthropogenic climate change is unequivocal (Masson-Delmotte et al. 2021a).

Human activities in the industrial era, in particular the burning of fossil fuels and changes in
land use, have caused increasing concentrations of greenhouse gases (GHGs) such as carbon diox-
ide (CO2), methane (CH4), and nitrous oxide (N2O) in the atmosphere. The resulting enhanced
greenhouse effecthas led to an effective radiative forcing at the topof the atmosphere of 2.72Wm−2

over 1750–2019, resulting in global mean surface warming of 1.09 °C in 2011–2020 relative to
1850–1900, and an additional 435 ZJ (Zettajoules, 1ZJ = 1021 J) of energy stored in the Earth
system over the period 1971–2018 (Forster et al. 2021). Over 90% of this energy has been stored in
the ocean through ocean heat uptake (OHU, Fig. 1.1; Schuckmann et al. 2020). The ocean thus plays
a crucial buffering role in contemporary climate change by absorbing and redistributing heat that
would otherwise warm the atmosphere.
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Figure 1.1: Observed changes in the Earth energy inventory for the period 1971–2020. Adapted from
Forster et al. (2023) (Fig. 4a).

This chapter is structured into two parts. In section 1.1, we review the role of OHU in the
climate system based on a conceptual distinction between two ways of thinking about OHU. In
section 1.2, we review the structure and functioning ofmodern numerical climatemodels, which
are the principal tools used in the main chapters of this thesis.
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1 Introduction andMethods

1.1 Ocean heat uptake and its role in the climate system

1.1.1 The ocean as a climate system component

Before turning to ocean heat uptake, we begin with an overview situating the functioning and
circulation of the ocean as a component of the full climate system, and introduce a number of
terms used throughout this thesis.
With a surface area of around 361million km2 (71% of the Earth’s surface area) and an average

depth of roughly 3730 meters, the global ocean contains 1.3 × 1018m3 of water, representing
more than 95% of the water available to participate in the global hydrological cycle (Stocker 2013).
Seawater has a high specific heat capacity of 𝑐𝑝 = 3992 J kg−1 K−1 and an average density of 𝜌w =1027 kgm−3 (compared to the values of around 𝑐𝑝 = 700 J kg−1 K−1 and 𝜌a = 1.2 kgm−3 for air),
making the ocean by far the largest reservoir of heat in the climate system (for a precise definition
of the concept of “heat content”, see Sec. 1.1.3.1 below), with the upper 100m having a heat
capacity around 30 times larger than that of the entire atmosphere (Canadell et al. 2021).

Figure 1.2: Schematic of the surface ocean circulation. Reprinted from Talley et al. (2011) (Fig. 14.1),
originally modified from Schmitz (1996).

At its surface, the ocean is in contact with the atmosphere and continually exchanges mass
(mainly water vapor), momentum (through winds), heat (through radiation as well as sensible
and latent heat fluxes), and gases including oxygen and carbon dioxyde. These exchanges span a
vast range of spatial and temporal scales, frommillimeters and seconds for turbulent gas exchange
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1.1 Ocean heat uptake and its role in the climate system

to global and multi-millenial scales for freshwater storage over glacial cycles, and they represent a
crucial group of processes for climate dynamics. For example, the supply of water vapor to the at-
mosphere is a key ingredient for the establishment of the natural greenhouse effectwhich increases
the average atmospheric surface temperature by around 33 °C compared to an equivalent planet
with no atmosphere (Marshall and Plumb 2008), and is thus partly responsible for the habitability
of Earth to organic life.

Figure 1.3: Schematic of the global overturning circulation centered on the Southern Ocean. Reprinted
from Talley (2013) (Fig. 4).

The action of winds on the surface ocean drives large scale currents in the upper ocean (Fig. 1.2;

Munk 1950). Since, unlike the atmosphere, the ocean is laterally bounded by continents at most
latitudes, surface wind stress leads to the formation of large-scale rotating gyres at subtropical
and subpolar latitudes in all major ocean basins (the red and blue streamlines in Fig. 1.2, respec-
tively), with intense currents at their western boundaries due to the effects of planetary rotation
(Stommel 1948). An exception to this behavior is found in the SouthernOcean, defined roughly as
the region south of 35°S, where strong westerly winds create the Antarctic Circumpolar Current
(ACC) which flows largely unimpeded by continental boundaries and represents around 173 Sv
(Donohue et al. 2016, Sverdrups, 1 Sv = 1 × 106m3 s−1) of volume transport, making it the strongest
ocean current globally. In addition to these wind-driven currents, air-sea fluxes of heat and fresh-
water force the ocean circulation by changing the density of seawater at the surface. Cooling and
evaporation of water in high latitude regions such as the Labrador Sea in the North Atlantic or

3



1 Introduction andMethods

theWeddell Sea in the SouthernOcean can cause the water column to become gravitationally un-
stable, triggering vertical convection. Together withwind-driven upwelling and turbulentmixing
in the ocean interior, this effect produces a large-scale meridional overturning cell in the Atlantic
known as the AtlanticMeridional Overturning Circulation (AMOC; Toggweiler and Samuels 1998;

Cimoli et al. 2023). The AMOC transports large amounts of mass and heat northwards in the At-
lantic surface ocean, and returns towards the Southern Ocean via a deeper southward branch of
North Atlantic Deep Water (NADW). In the Southern Ocean, divergent wind-induced surface
Ekman flow leads to upwelling of water from the deep oceanwhich returns to depth following ei-
ther the “upper cell” through the formation of SubantarcticModeWater (SAMW) andAntarctic
IntermediateWater (AAIW), or the “lower cell” which fills the abyssal ocean with cold and dense
Antarctic Bottom Water (AABW; Marshall and Speer 2012) This global overturning circulation is
depicted in Fig. 1.3 and regulates regional and global climate through the redistribution of heat,
carbon, and other tracers (Talley 2013). In particular, Fig. 1.3 highlights the role of the Southern
Ocean as a central hub connecting all major ocean basins, as well as the upper and deep oceans.
As we will see in Chapters 2 and 3, the Southern Ocean is also a key region for ocean heat uptake,
in large part due to its circulation features described above.

1.1.2 Two conceptions of ocean heat uptake

Although one can perhaps not ascribe a normative value to an abstract technical concept such
as OHU, there do exist two distinct views of thinking about OHU in the literature: in the first,
OHUis considered as “negative”or “detrimental”, and in the secondOHUis considered as “good”
or “beneficial”. These views are not contradictory, however, as theymerely consider two different
aspects of the role of OHU for the climate system.

The first view considersOHU simply as the total increase in ocean heat content (either locally or
globally integrated), measured in Joules, relative to some baseline. This definition directly mea-
sures the energy stored by the ocean through warming and is directly related to negative impacts
such as regional and global sea level rise, which is why OHU in this sense could be considered as
detrimental.
The second view defines the crucial ocean heat uptake efficiency (OHUE) metric, defined as

the amount of OHU per degree of global warming and measured in units of Wm−2 K−1, which
broadly quantifies the role of the ocean in buffering climate change by removing heat from the
atmosphere, and could thus be considered as beneficial.
These two views will structure the remainder of this thesis. The concept of total OHU is the

focus of chapter 2, where we present a novel emergent constraint on future total OHU by the
end of the century. The concept of OHUE is treated in chapter 3, where we analyze the oceanic
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controls onOHUE in climatemodels under idealized forcing. In the remainder of the present sec-
tion, wewill introduce these two notions inmore detail by reviewing existing studies on historical
observations and future projections of these quantities, as well as physical process understanding
and the research gaps addressed in chapters 2 and 3.

1.1.3 Total ocean heat uptake

1.1.3.1 Some definitions

For the sections that follow, it is necessary to define a few central terms, in particular the variables
ocean heat content (OHC) and ocean heat uptake (OHU).

§ Ocean heat content The term “heat content”—widely used in oceanography—may seem
unconventional at first, since, asmany introductory texts on thermodynamicswill emphasize, heat
is usually defined as a type of flux of energy between thermodynamic systems, not as the energy
content of any system. More precisely, heat is not a state function like temperature or volume, and
a parcel of seawater cannot classically be said to “have” or “contain” a certain amount of heat. This
is why in the first law of thermodynamics, which expresses the conservation of energy, the change
in heat𝑄 is sometimes expressed as an inexact differential (denoted here by 𝛿):

d𝑈 = 𝛿𝑄 − 𝑝 d𝑉 (1.1)

where d𝑈 is the exact differential of internal energy 𝑈, and 𝛿𝑊 = 𝑝 d𝑉 is the thermodynamic
work done by the system (due to a change in volume 𝑉 at pressure 𝑝). This notation emphasizes
the fact that the integrated change in internal energy, a state function, only depends on the initial
and final states of a thermodynamic process, while the integrated change in heat and work is path
dependent.
However, since seawater is nearly incompressible, work done on the ocean by pressure is small,

and furthermore kinetic energy is small relative to internal andpotential energy,making it possible
to find a sensible definition of “heat content” (Vallis 2017). The term heat content as it is used
in oceanography refers not to heat in the above sense, but refers to another quantity: potential
enthalpy. Enthalpy𝐻 is defined as𝐻 = 𝑈 + 𝑝𝑉. At constant pressure (d𝑝 = 0), this definition
implies that a change in enthalpy is equal to the amount of heat transferred:

d𝐻 = d𝑈 + d(𝑝𝑉) (1.1)= 𝛿𝑄. (1.2)

Enthalpy is preferred over internal energy𝑈 because the energy transfer between water parcels is
associated with a flux of enthalpy and not of internal energy, since enthalpy accounts for the work
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done by pressure forces and is not affected by effects such as cabbeling (McDougall 1987; Vallis

2017). Potential enthalpy is then defined as the enthalpy of a water parcel brought to a constant
reference pressure 𝑝ref = 0 at the sea surface without the exchange of heat or salt. The potential
enthalpy per unit mass is denoted by ℎ0. McDougall 2003 has shown that the use of potential
enthalpy as a measure of “heat content” has several advantages: (i) unlike internal energy, ℎ0 is
very nearly conservative except for negligible error terms (i.e. it is neither created nor destroyed
by mixing at constant pressure), (ii) interior fluxes of ℎ0 are balanced exactly by air-sea heat fluxes
(since the reference pressure 𝑝ref = 0 is at the sea surface) and nearly exactly by geothermal heating
at the ocean bottom, and (iii) ℎ0 almost exactly obeys a conservation equation of the form𝜌Dℎ0D𝑡 = ∇ ⋅ 𝐹⃗, (1.3)

where 𝜌 is in-situ density and 𝐹⃗ is the flux of potential enthalpy, such that 𝜌ℎ0 can be usefully
regarded as the “heat content” per unit volume (Vallis 2017). Based on potential enthalpy, Mc-

Dougall 2003 further defined conservative temperatureΘ, a highly conserved temperature variable
(Graham and McDougall 2013) which can be computed from observational data or ocean model
output using efficient algorithms (McDougall and Barker 2011) or directly inferred from potential
temperature (McDougall 2003; McDougall et al. 2021). Using conservative temperature, potential
enthalpy can be written as ℎ0 = 𝑐0𝑝Θ, where 𝑐0𝑝 = 3991.87 J kg−1 K−1 is a constant heat capacity
defined by the TEOS-10 standard (McDougall and Barker 2011), and ocean heat content in some
ocean volume𝐴 can be calculated in the following simple form (Griffies et al. 2016):

OHC = ∫𝛢 𝜌 𝑐0𝑝 Θ d𝑉. (1.4)

In practice, OHC can also be calculated according to the definition above using model output of
potential temperature 𝜃, which is the temperature of a water parcel when brought to the sea sur-
facewithout the exchange of heat and is used as the prognostic temperature variable inmanyocean
models, instead of conservative temperatureΘ (McDougall 2003; Griffies et al. 2016;McDougall et al.

2021).

§ Ocean heat uptake Following this rather detailed definition of OHC, total ocean heat up-
take (OHU) can now be easily defined as the time rate of change of OHC. OHU at time 𝑡 is
defined as the increase in OHC relative to some baseline time 𝑡0,

OHU(𝑡) = OHC(𝑡) −OHC(𝑡0), (1.5)
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or, in some applications, relative to a baseline time period 𝑡0–𝑡1:
OHU(𝑡) = OHC(𝑡) − 1𝑡1 − 𝑡0 ∫𝑡1𝑡0 OHC(𝑡′) d𝑡′. (1.6)

This results in a value of OHU measured in Joules, the unit of OHC. Alternatively, OHU can
be expressed as an equivalent heat flux into the ocean in units ofWm−2 by dividing OHU by the
global ocean surface area𝐴oc and by the length of the considered time period:

OHUWm−2 s−1(𝑡) = 1𝐴oc(𝑡 − 𝑡0)OHUJ(𝑡), (1.7)

where OHUJ is the OHU measured in Joules from Eq. (1.5). These two unit conventions are
equivalent and are both used in the literature.

1.1.3.2 Historical observations and future projections

Total OHU is a key indicator of the rate of ongoing climate change. Anthropogenic GHG forc-
ing manifests itself fundamentally through anomalous radiative forcing at the top of the atmo-
sphere (TOA). This flux anomaly, the Earth energy imbalance (EEI), gives the rate of energy up-
take by the Earth system. The EEI has increased over recent decades, leading to an acceleration of
globalwarming (Forster et al. 2021;Minière et al. 2023). Themost accuratemethod ofmeasuring the
EEI consists of a stocktake of the energy budget of each of the climate system’s components (the
ocean, land, cryosphere, and atmosphere; Meyssignac et al. 2019). (Other approaches include measur-
ing energy fluxes at TOA or at the surface using satellites, or running climate model simulations.)
Around 91% of this energy flux over the period 1971–2018 has entered the ocean throughOHU,
making the ocean by far the dominant reservoir of excess heat in the climate system (Forster et al.

2021), while the atmosphere has taken up only 1.3%, and the land and cryosphere have taken up
5.0% and 2.7%, respectively (Fig. 1.1). This is a consequence of the ocean’s large heat capacity due
to the combination of the high specific heat capacity ofwater and the ocean’s tremendousmass, as
well as the ocean’s large surface area, low albedo, and relatively efficientmixing. Thus, total OHU
directly quantifies the amplitude of climate change, and the accuracy of EEI estimates obtained
by constraining each climate system reservoirs’ energy budgets relies principally on the accuracy
of OHC estimates.
There are four principal methods for observing OHC (Meyssignac et al. 2019): (i) in situ mea-

surements of seawater temperature and calculation of OHC through Eq. (1.4); (ii) satellite mea-
surements of air-sea heat fluxes at the ocean surface; (iii) satellite altimetry measurements of sea
level rise due to thermal expansion; and (iv) the construction of ocean reanalyses by combining
models and observations. The availability and relative importance of these methods has changed
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Figure 1.4: Schematic timeline of the evolution of ocean heat content observing systems. Reprinted from
Meyssignac et al. (2019) (Fig. 1).

over time due to the invention and deployment of new observation techniques. This is illustrated
in Fig. 1.4, which divides the history of OHC observations into three periods (Meyssignac et al.

2019): (i) an initial period with relatively sparse shipboard in situmeasurements; (ii) an interme-
diate period, starting with the deployment of satellite altimetry in 1993, characterized by a more
complementary observing system combining satellites, ships, autonomous platforms andmodels;
and finally (iii) an ongoing “golden era” of OHCmeasurements initiated by the start of the Argo
program (Wong et al. 2020) of autonomous profiling floats in the early 2000s. This development
is illustrated by the number of subsurface temperature measurements recorded each year which
has drastically increased in the early 2000s (Fig. 1.5a), with data coverage to increasing depths and
especially over the top 2000m covered by Argo floats (Fig. 1.5b). (Also visible in Fig. 1.5b is the
impact on international research campaigns of the two world wars in 1914–18 and 1939–45.)

The advancement of this observing system has been driven by the continuous introduction
and improvement of new measurement techniques and sensors. One of the first global sub-
surface ocean temperature observation campaigns was undertaken during the Challenger expe-
dition (1873–1876) which circumnavigated the globe and recorded surface-to-bottom tempera-
ture profiles (Abraham et al. 2013). Due to the instrumentation available at the time, temperature
measurements were time consuming and could only be taken at discrete depth levels, which re-
mained a general issue with ocean temperature observations until the invention of themechanical
bathythermograph (MBT) in 1939 and later the conductivity-temperature-depth (CTD) instru-
ments in 1955 (Abraham et al. 2013). Ageneral limitation of these shipboardmeasurements is their
geographical and seasonal bias, withmore observations available in theNorthern hemisphere and
during summer. This bias has decreased over time (see Fig. 1.6 for the geographical coverage of
SST observations) but remains a problem especially in difficult environments such as the South-
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a)

b)

Figure 1.5: Increasing number of ocean temperature measurements over time. a) Number of sub-
surface ocean temperature profiles per year over the period 1900–2017. BT, Bathythermograph; CTD,
Conductivity-Temperature-Depth; XCTD, Expendable CTD. b) Percentage of global data coverage
counted in 3° × 3° latitude-longitude boxes as a function of depth and time. Adapted from Meyssignac
et al. (2019) (Fig. 2).

ern Ocean during winter. The deployment of autonomous Argo floats since 2000 has improved
the global and seasonal coverage of upper ocean temperature measurements.

Fig. 1.7a shows time series of estimated upper ocean (0–2000m) OHU from 1955 to 2021
relative to a 2005–2019 baseline from a number of studies. The OHC above 2000m has in-
creased by an estimated 365 ZJ over the period 1971–2018, with 61% of this energy stored above
700m (Forster et al. 2021). The equivalent OHU has increased over time from 7.6 ZJ/yr over
1971–2018 to 9.6 ZJ/yr over 2006–2018 (Fig. 1.7b Forster et al. 2021), indicating an acceleration
of OHU (Minière et al. 2023). The observational uncertainty associated with these estimates has
decreased over time due to improved sensors and coverage and more consistent quality control
(Fig. 1.7a).
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Figure 1.6: Percentage ofmonthswith at least one sea surface temperaturemeasurement in2°×2° latitude-
longitude boxes in the International Comprehensive Ocean Atmosphere Data Set (Worley et al. 2005) for
the periods 1860–1879 and 1960–1979. Adapted fromDeser et al. (2010) (Fig. 3).

Climatemodel simulations of historical OHU agree reasonably well with these observed values
when averaged over the members of the CMIP5 or CMIP6 ensembles, but there is substantial
spread across members within each ensemble (Fig. 1.7b). Future projections of OHU strongly
depend on the assumed future emission scenario, with diverging OHU evolution between high-
and low-mitigation scenarios, and the inter-model spread for each scenario spans a wide range.

a) b)

Figure 1.7: a)Observed change in global 0–2000mOHC from 1955 to 2021 from various sources. Solid
and dashed lines are direct and indirect estimates, respectively, and shading indicates 90% confidence inter-
vals. b) Observed (1955–2021) and simulated (1955–2100) global 0–2000m OHU. Solid lines indicate
ensemble mean, shading represents 1𝜎 inter-model spread. Adapted from Cheng et al. (2022) (Fig. 2).

The observed increase in OHC is greatest in the Southern Ocean and the low- to mid-latitude
AtlanticOcean (Fig. 1.8a). The ocean south of 35°S accounts for around 36% of the total increase
in OHC, with warming concentrated to the north of the ACC, where mode and intermediate
water formation subducts large amounts of excess heat (Armour et al. 2016; Sallée 2018; Li et al. 2023).

In the Atlantic north of 35°S, warming is strongest in the Gulf Streamwhich displays the greatest
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warming rates of any region globally. The subpolar North Atlantic is the only major region with
marked cooling and displays a “warming hole” mostly attributed to heat redistribution due to
circulation changes (Keil et al. 2020).

a)

Figure 1.8: Observed local OHC trends from
1958–2019. Stippling indicates trends not signifi-
cantly different from zero at the 90% confidence level.
Adapted from Cheng et al. (2022) (Fig. 3).

However, OHU is not restricted to the
upper ocean. The ocean below 2000m has
taken up 31 ZJ or around 8% of the total
OHC increase over 1971–2018 (Forster et al.

2021). Deep ocean warming is detectable even
in Antarctic Bottom Water (AABW) below
4000m depth (Fig. 1.9; Purkey and Johnson

2010).

1.1.3.3 Physical,
biological, and socio-economic
impacts of ocean warming

One crucial reason for studying total ocean
heat uptake (as opposed to ocean heat uptake
efficiency, as discussed below in Sec. 1.1.4) is

that the magnitude of total OHUdirectly scales with a number of major negative impacts (Cheng
et al. 2022; Venegas et al. 2023). Ocean warming due to ocean heat uptake has widespread conse-
quences not only for the physical functioning of the ocean and coupled climate system, but also
for marine biogeochemical cycles, marine ecosystems, and ultimately the human socio-economic
systems that depend on their services.

§ Sea level rise One immediate impact of a warmer ocean is regional and global sea level rise
(SLR). Ocean warming causes SLR both directly through the thermal expansion of seawater as it
warms, as well as indirectly through freshwater input from land due to the melting of ice sheets
(Pritchard et al. 2012) and glaciers (Kochtitzky andCopland 2022),which are in turn partly caused by
oceanwarming. Thermosteric SLR (i.e., due to reducedwater density from thermal expansion;Gregory

et al. 2019) is responsible for around one third of global mean SLR over the period 1900–2018,
while the remaining two thirds are due to barystatic SLR (i.e., due to input of water mass from out-

side the ocean; Gregory et al. 2019), including the melting of glaciers, the Greenland and Antarctic
ice sheets, and changes in terrestrial water storage (Frederikse et al. 2020). In total, these contribu-
tions have resulted in global mean SLR of 0.20m over 1901–2018, with an accelerating trend of
3.7mmyr−1 over 2006–2018 compared to 2.3mmyr−1 over 1971–2018 (Fox-Kemper et al. 2021).

This SLR comes with negative consequences for humans, in particular for the over 10% of the
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world population living in low-elevation coastal zones (Reimann et al. 2023), since it causes changes
in shorelines due to coastal erosion, increasedmarine flooding, as well as salt-water intrusions into
coastal aquifers (FitzGerald et al. 2008; Cazenave and Cozannet 2014).

Figure 1.9: Observed mean warming rates below
4000m centered on 1992–2005. Stippling indicated
rates not significantly different from zero at 95% con-
fidence. The black lines show the paths of repeat
oceanographic transects from the WOCE and GO-
SHIP programs. Reprinted from Talley et al. (2016)
(Fig. 1), originally from Purkey and Johnson (2010).

§ Stratification, CO2, and oxygen The
observedmagnitude of oceanwarming is high-
est in the upper ocean and decays with depth
(Schuckmann et al. 2020); this has resulted in in-
creased upper ocean density stratification (Ya-

maguchi and Suga 2019; Li et al. 2020; Sallée et al.

2021; Olmedo et al. 2022). Increased stratifica-
tion has not only led to changes in the physi-
cal circulation of the ocean (e.g., intensified up-

per ocean currents, Peng et al. 2022), but also per-
turbs the supply of nutrients and oxygen to
marine ecosystems (Bopp et al. 2013). How-
ever, this is not the only mechanism through
which ocean warming impacts marine ecosys-
tems. Through changes in ocean circulation,
biologial processes, and reduced solubility of oxygen and carbon dioxide at higher temperatures,
ocean warming leads to deoxygenation (Keeling et al. 2010; Bopp et al. 2013; Deutsch et al. 2015;

Schmidtko et al. 2017) as well as reduced net uptake of CO2 by the ocean (DeVries 2022; Gruber et al.

2023; Müller et al. 2023).

§ Multiple stressors and biology The effect of ocean warming on marine ecosystems is com-
pounded by the convergence of multiple stressors (Breitburg andRiedel 2005; Bopp et al. 2013; Gun-
derson et al. 2016), including increased ocean acidification due to oceanic uptake of CO2. The
combined effect of ocean warming and other stressors has led to changed structure and geograph-
ical distribution of key marine habitats such as kelp forests (Smale 2020) and seagrasses (Nguyen

et al. 2021), as well as negative impacts on marine invertebrates at all developmental stages (Byrne
and Przeslawski 2013). Somemarine species adapt to ocean warming by shifting their geographical
range both in the horizontal (i.e., poleward Wernberg et al. 2011) and in the vertical (i.e., to greater
depths Jorda et al. 2020),with potentially distinct responses at different depth levels (Santana-Falcón
and Séférian 2022). Ocean warming has also resulted in decreased phytoplankton biomass (Boyce
et al. 2010), but the effects of ocean warming on phytoplankton are not fully understood due their
great ecological diversity (Huertas et al. 2011; Henson et al. 2021) and associated adaptation strate-
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gies (Thomas et al. 2012; Irwin et al. 2015), as well as the combination of multiple stressors (Winder

and Sommer 2012; Lewandowska et al. 2014). A decrease in net primary production (NPP; Behren-

feld et al. 2006), partly linked to OHU, has been inferred, but observational estimates and future
model projections of NPP still suffer from large uncertainties (Sarmiento et al. 2004; Kwiatkowski

et al. 2020; Tagliabue et al. 2021).

b)a)

Figure 1.10: Increased frequency of MHWs under global warming and associated biological impacts. a)
Global annual mean probability ratio ofMHWoccurrence under historical, RCP2.6 and RCP8.5 forcing
in 12 CMIP5 models. b)Overview of mass mortality events and habitat impacts due to MHWs. Panel a)
adapted from Frölicher et al. (2018) (Fig. 1), panel b) adapted from Smith et al. (2023) (Fig. 3).

§ Extreme events A further major consequence of ocean warming is the increased occurrence
of prolonged extremewarm seawater temperature events termedmarine heatwaves (MHWs; Oliver

et al. 2021). Marine heatwaves have become more frequent, more intense, and longer-lasting over
the past century (Fig. 1.10a; Frölicher et al. 2018; Oliver et al. 2018), which is attributed to the mean
increase in ocean temperatures (Frölicher and Laufkötter 2018; Oliver 2019). These extreme events
have had major biological and socio-economic consequences (Fig. 1.10b Smale et al. 2019; Smith

et al. 2021; 2023), including impacts on important foundation species (Wernberg et al. 2011; Arias-

Ortiz et al. 2018; Filbee-Dexter et al. 2020), coral bleaching (Hughes et al. 2017; 2018), range shifts of
marine species (Jacox et al. 2020; Santora et al. 2020), and impacts on fisheries (Cheung and Frölicher
2020). In addition, MHWs often occur as “compound events” in concert with extreme events in
other variables such as low chlorophyll concentration (LeGrix et al. 2021), decreased NPP (LeGrix

et al. 2022), acidification (Burger et al. 2022) and deoxygenation (Li et al. 2024), leading to increased
negative consequences on marine ecosystems (Gruber et al. 2021).

These impacts are all directly or indirectly caused by increasing ocean temperatures due to total
ocean heat uptake, a motivation for the quantification of future OHU undertaken in Chapter 2.

13



1 Introduction andMethods

1.1.4 Ocean heat uptake efficiency

We now turn to the ocean heat uptake efficiency, a key metric of transient climate change best
introduced using a basic model of global-mean climate change. The simplest model of the global
mean temperature response to CO2 forcing is the following zero-dimensional energy balance
model (EBM; all quantities are global means):𝑁 = 𝐹 + 𝜆𝑇, (1.8)

where 𝐹 is the instantaneous radiative forcing (in Wm−2) at the top of the atmosphere (TOA),𝑁 is the TOA radiative anomaly relative to the unperturbed state, 𝑇 is the surface temperature
anomaly, and 𝜆 is the climate feedback parameter (in Wm−2 K−1). On time scales relevant to
climate change, almost all of the energy is taken up by the ocean due to its large heat capacity
compared to the atmosphere, cryosphere, and land surface, so 𝑁 can be identified with ocean
heat uptake (Palmer and McNeall 2014). The term 𝜆𝑇 represents the radiation of energy back to
space at increased global mean temperatures due to climate feedbacks (it is essentially the first term
in a Taylor expansion of the radiative response as a function of𝑇; Roe 2009; Knutti and Rugenstein 2015;
Rose and Rayborn 2016). The radiative forcing 𝐹 is thus partitioned between heat loss to space
(𝜆𝑇) and OHU (𝑁; Raper et al. 2002). The value of 𝜆 assessed in the most recent IPCC AR6
is 𝜆 = −1.16Wm−2 K−1 (Forster et al. 2021, 90% confidence interval: -1.81 to −0.51Wm−2 K−1, ),

which implies a stabilizing net climate feedback under this sign convention. The principal stabi-
lizing process is the Planck feedback (enhanced thermal radiation to space at higher temperatures,𝜆Planck = −3.22Wm−2 K−1), while changes in water vapor, lapse rate, surface albedo and clouds
all contribute positive values which amplify the warming response. These contributions 𝜆𝑖 are
assumed to be independent to first order and summed to obtain the net feedback parameter 𝜆.

Assuming that 𝜆 is constant, one can compute the global warming at equilibrium (where𝑁 =0) resulting from any given radiative perturbation, for example the equilibrium climate sensitivity
(ECS) defined as the global mean surface temperature change at steady state following a doubling
of atmospheric CO2 concentration:

ECS = 𝑇2×CO2 = −𝐹2×CO2𝜆 . (1.9)

The ECS in this model depends on the strength of the initial perturbation, 𝐹, as well as of the
acting climate feedbacks as quantified by 𝜆. In coupled atmosphere-ocean general circulation
models (AOGCMs), ECS can be calculated by running simulations under perturbed forcing to
equilibrium (e.g., Stouffer andManabe 1999), but this is computationally expensive due to the long
equilibration time scale of the deep ocean. Alternatively, ECS can be estimated by coupling an at-
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mospheric GCM to a “slab” ocean model (a simplified zero-dimensional thermodynamic mixed layer

model, e.g.; Senior and Mitchell 2000), which is more computationally efficient than running the
full AOGCMbut neglects the effect of ocean dynamics on climate feedbacks (Winton et al. 2010).

Amore cost-effective and robustmethod is to compute an effective climate sensitivity (EffCS;Mur-

phy 1995; Watterson 2000) by fitting the radiative response to warming in a step-forcing run of an
AOGCM,which can be visualized in a𝑇–𝑁 graph sometimes called “Gregory plot” (Gregory et al.
2004; Rose and Rayborn 2016). An example of this is shown in Fig. 1.11 for data from the CESM
model and the CMIP5 ensemble.

Figure 1.11: Radiative imbalance𝑁 as a function of globalmean temperature𝑇 after abrupt quadrupling
of atmospheric CO2 concentrations (abrupt-4xCO2 experiment) in 22 CMIP5 models run for 150 years
(grey lines) and in a CESM simulation of 3675 years (black and colored dots). The linear fits for three
different time periods in CESM are shown as colored lines, their slope is the climate feedback parameter 𝜆
(Gregory et al. 2004). Reprinted from Knutti et al. (2017a) (Fig. 4).

The slope of the regression of𝑁 onto 𝑇 yields the climate feedback parameter 𝜆, while the 𝑦-
and 𝑥-intercept give the effective radiative forcing (ERF;Williams et al. 2008) and the EffCS, respec-
tively. The ERF includes not only the direct radiative forcing of CO2, but also considers “fast”
responses (on the order of months), such as adjustments in stratospheric temperature or aerosol-
cloud interactions that do not change surface temperature, as part of the forcing (instead of as part
of the response; Hansen et al. 1997; Knutti and Hegerl 2008; Sherwood et al. 2015; Smith et al. 2020).

However, it is clear from the curvature in Fig. 1.11 that 𝜆 diagnosed from this method is not con-
stant but tends to increase in time in all models, resulting in increasing EffCS with time (Senior
and Mitchell 2000). It has been shown that this behavior is intimately linked to OHU as well as
ocean surface warming patterns and their interaction with climate feedbacks. OHU influences
sea surface temperature (SST) patterns by damping surface warming more in regions of effective
heat uptake (Manabe et al. 1991; Marshall et al. 2015; Armour et al. 2016), especially in the high lat-
itudes where forcing is most impactful at driving climate change (Hansen et al. 1997; Rose et al.
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2014) through its impact on climate feedback and especially cloud feedback (Winton et al. 2010).

The time evolution of 𝜆 andEffCS is thus strongly influenced by evolvingOHUand SSTpatterns
as the climate system approaches equilibrium (e.g., the initial emergence and subsequent slow decay

of high latitude intensified OHU; Armour et al. 2013; Rose and Rayborn 2016). As a consequence, dis-
crepancies betweenmodelled and observed SSTpatterns lead to considerable biases in projections
of climate feedback and climate sensitivity (this is the so-called “pattern effect”, see also the discussion
section 5.2.1; Andrews et al. 2018; Dong et al. 2020; Zhou et al. 2021; Andrews et al. 2022; Alessi and

Rugenstein 2023; Rugenstein et al. 2023; Armour et al. 2024).

One way of formalizing this influence of OHU on the time-dependence of the climate feed-
back parameter is via the concept of forcing efficacy. In the context of radiative forcing from
GHGs, it has been found that some forcing agents are more effective (e.g., methane) or less ef-
fective (e.g., ozone) than CO2 at driving surface warming for a given amount of induced radiative
forcing (Hansen et al. 2005). Winton et al. (2010) proposed to apply this concept toOHU (thus con-
sidering OHU as a forcing instead of a response), and found that the efficacy of OHU in GCMs
is generally greater than 1, meaning that global warming is more sensitive to OHU than to CO2
forcing, which is attributed to the spatial pattern of OHU and its interaction with climate feed-
back.

An equivalent formulation (Watanabe et al. 2013) of this effect is via a time-dependent ocean heat
uptake efficiency, a term which we will introduce now. Under steadily increasing radiative forcing
(e.g., idealized CO2 forcing or 21st century emissions scenarios), the OHU term𝑁 in Eq. (1.8) is
nearly proportional to 𝑇with proportionality factor 𝜅:𝑁 = 𝜅𝑇. (1.10)

The factor 𝜅 = 𝑁/𝑇 defines the ocean heat uptake efficiency (OHUE; introduced by Gregory and

Mitchell 1997, although they did not yet use the term “efficiency”) and is assumed to be constant in
this approximation. OHUE is a concept inherently only applicable to transient climate change,
as the relationship in Eq. (1.10) breaks down as the climate approaches equilibrium (since𝑁→ 0
but 𝑇 → 𝑇eq ≠ 0). Combining Eqs. (1.8) and (1.10) gives𝑇 = 𝐹𝜆 + 𝜅, (1.11)

which is an expression for transient warming similar to Eq. 1.9 for equilibrium warming, except
that the OHUE 𝜅 is added to the climate feedback parameter 𝜆, damping the transient warming
compared to the equilibrium temperature response (Dufresne and Bony 2008). Another way of
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seeing this is to consider the fraction of realized warming relative to the equilibrium warming
(Raper et al. 2002) by dividing Eq. 1.11 by 𝑇eq = 𝐹/𝜆:𝑇𝑇eq

= 𝜆𝜆 + 𝜅 = 11 + 𝜅/𝜆 . (1.12)

Thus, at any given time, the fraction of realized warming relative to equilibrium is smaller for
a higher sensitivity (less negative 𝜆; Siegenthaler and Oeschger 1984; Hansen et al. 1985; Stouffer et al.

2006) as well as for more efficient OHU (larger 𝜅; Raper et al. 2002).
The physical interpretation of OHUE as an oceanic process can also be seen by considering a

simple two-layer model extension of the EBM (1.8):𝐶d𝑇
d𝑡 = 𝐹 + 𝜆𝑇 − 𝐻 (1.13)𝐶𝐷d𝑇𝐷d𝑡 = 𝐻, (1.14)

where 𝑇 and 𝑇𝐷 are the temperature anomalies of the upper and deep layer with heat capacities𝐶
and 𝐶𝐷, respectively (Gregory 2000; Held et al. 2010). The upper layer mainly represents the upper
ocean mixed layer but also includes the atmosphere and land surface which exchange with the
upper ocean on fast time scales and have negligible heat capacity compared to the upper and deep
oceans. The term 𝐻 = 𝛾(𝑇 − 𝑇𝐷) (1.15)

is the heat transfer between the upper and deep layer with thermal coupling coefficient 𝛾. In the
limit of a deep ocean with infinite heat capacity𝐶𝐷 → ∞, 𝑇𝐷 → 0 and𝛾 → 𝜅. (1.16)

The OHUE 𝜅 in this limit is equal to the thermal coupling coefficient 𝛾 (Yoshimori et al. 2016).

However, the assumption that OHUE is constant is often insufficient, since 𝜅 is found to de-
cline on long time scales in AOGCMs. The weakening of OHUE is an inevitable response to
increased stratification and reduced thermal coupling between the upper and deep oceans (Gior-
getta et al. 2013; Watanabe et al. 2013), although its value may be state dependent (Stolpe et al. 2019).
This contributes to the “cold start” effect of initially slower atmosphericwarming after perturbing
amodelwith increasingCO2 from steady state (Gregory et al. 2015), and increasedOHUEhas been
advanced as a cause for the 1998–2012 global warming hiatus (Easterling andWehner 2009;Meehl et

al. 2011; Watanabe et al. 2013; Chen and Tung 2014; Drijfhout 2018). In observations, OHUE has in-
stead been found to have increased since 1970 (Cael 2022), a finding attributed to increased vertical
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temperature gradients which lead tomore efficient downwardmixing of heat, althoughOHUE is
expected to eventually decline also in the real world as the ocean equilibrates to the imposed forc-
ing. Furthermore, Sohail et al. (2023)has found that the “aerosol-only” contribution toOHUEhas
decreased since 1980, meaning that the ocean cools less for a given aerosol-driven surface cooling.

Given the important role of climate feedbacks and OHU in transient and equilibrium climate
change, what is their relative importance for controlling inter-model spread in GCM warming
projections? Boé et al. (2009) found that polar mixed layer depths, which quantify vertical mixing
and are important for OHU, correlate with deep ocean warming and with the transient climate
response (TCR; the global mean surface air temperature anomaly at the time of CO2 doubling
under idealized exponentially increasing atmosphericCO2 concentration forcing) acrossCoupled
Model Intercomparison, phase 3 (CMIP3; see Sec. 1.2.4) models, with stronger correlations than
between TCR and ECS (which is a measure of climate feedback strength). This led the authors
to conclude thatOHU is as important as climate feedbacks for controlling the inter-model spread
in future warming, but the studymay have been influenced by outlier models (Kuhlbrodt andGre-
gory 2012). Dufresne and Bony (2008) have shown that OHU indeed has an impact on warming
projections which is comparable in size to the contribution of cloud feedback and of the com-
bined water vapor–lapse rate feedback, but the inter-model spread was found to be dominated by
differences in cloud feedback, and this result has continued to hold from the early days of coupled
climate modeling (Cess et al. 1990) to the most recent generation of climate models (Williams et al.

2020; Zelinka et al. 2020). Nevertheless, the ocean retains a key role in the transient climate response
to CO2 emissions, both due to its dominant mean response (taking up the vast majority of the
excess energy), and its secondary control on inter-model spread (second to cloud feedback, which
is influenced by surface ocean warming).

The inter-model spread in OHUE in particular has been the subject of a number of studies.
OHUE is an inherently oceanic quantity and is correlated with an effective deep ocean diffusion
parameter in simplifiedmodels (Wigley and Schlesinger 1985; Sokolov et al. 2003). It is sensitive to the
parameterization of mixing and mesoscale eddies (Winton et al. 2014; Romanou et al. 2017; Saenko

et al. 2018; Newsom et al. 2023) and to the resulting density stratification (Liu et al. 2023; Newsom

et al. 2023), in particular in the Southern Ocean (Kuhlbrodt and Gregory 2012; Bourgeois et al. 2022).

OHUE has also been found to correlate with AMOC strength across models (Rugenstein et al.

2013; Kostov et al. 2014; Winton et al. 2014; He et al. 2017; Romanou et al. 2017; Saenko et al. 2018),

although this is likely not due to the direct effect of AMOC on OHU, but due to their common
control by stratification and mixing (see Chapter 3; Gregory et al. 2023). Furthermore, OHUE is
influenced by surfacewarming patterns, withwarming at locationswith efficient ventilation (such
as in the SouthernOcean) leading to higher OHUE, although this effect cannot explain the inter-
model spread (Newsom et al. 2020).

18



1.2 Climate models

1.2 Climate models
Scientific practice is sometimes thought of as revolving around the interplay between two princi-
pal pillars of the scientific method: theory and experiment. According to this view, observing the
behavior of processes occuring in Nature allows scientists to inductively form hypotheses about
the presumed general rules governing these processes, which can be formalized into scientific the-
ories that can then be tested and potentially falsified through controlled experiments. However,
this step-by-step recipe for scientific research can be considered as too simplistic (Hepburn and

Andersen 2021), and this can be illustrated by the pivotal role of models, in particular numerical
computer models, in contemporary climate science (Storch 2010; Winsberg 2022). Thanks to the
exponential progress in computer technology since the mid-twentieth century, computer mod-
els have become essential tools not only for numerical weather prediction, but also for advancing
our basic understanding of the atmosphere, ocean, and other Earth system components. These
models do not neatly fall into either of the categories of theory or experiment: they are in large
parts explicitly constructed based on physical theory (e.g., the theory of geophysical fluid dynam-
ics), but at the same time they provide ameans of testing hypotheses through targeted simulations
that would be impossible to realize in the real world (and these simulations are in fact often referred

to as “experiments”; Sacks et al. 1989; Jebeile 2017). Although such models can not be verified in a
practical sense, since many of their projections are by definition currently unobservable, they can
be tested by comparison to observations (Oreskes et al. 1994; Hargreaves and Annan 2014), and find
a wide use in contexts such as climate prediction, hypothesis testing, process understanding, and
data assimilation (Storch 2010).

We start this section with a historical overview of the development of models of the climate
system (Sec. 1.2.1). We then review the notion of model ensembles (Sec. 1.2.3), which is central
for this thesis, before introducing the Coupled Model Intercomparison Project (Sec. 1.2.4) and
the method of emergent constraints (Sec. 1.2.5) which is used in Chapter 2.

1.2.1 Historical perspective

The complex numericalmodels currently used in climate research are the result of a long scientific
tradition of (climate)model development. (The term “model” as used here should be understood
to signify any representation of the climate system, whether conceptual, analytical, or numerical;
Frigg and Hartmann (2024).)

Climate modeling in this broad sense began already with the conceptual models of Earth’s cli-
mate proposed by ancient Greek philosophers (Edwards 2011). Eratosthenes (3rd century BC),
recognizing the implications of Earth’s spherical shape, divided the planet into several latitude
bands defined by their length of day (thus introducing the word “climate”; Heymann 2010; Edwards
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2011). This geographical view differed from the “causal” climatology previously described byHip-
pocrates (5th century BC), who focused on the effects of environmental factors on human health
(a subject still verymuch of relevance today; Cissé et al. 2022) as well as on cultural differences between
peoples (Heymann 2010). These and other ancient conceptual “models” of climate and weather,
especially as laid out in Aristotle’s treatiseMeteorologica (ca. 340 BC), remained highly influential
for many centuries until the “scientific revolution” of the 16th and 17th century (Frisinger 1973;

Heymann 2010). The first major conceptual advances in this era were obtained for the global at-
mospheric circulation by Halley in the 17th century and later amended by Hadley and Ferrel in
the two following centuries, yielding theHadley, Ferrel and polar cells now standard as conceptual
models of the global atmospheric overturning circulation (Edwards 2011).

The first mathematical models of climate were energy balance models (EBMs), i.e., sets of
analytically solvable equations for the atmospheric temperature which balance the radiative en-
ergy entering and leaving the Earth system based on simplified parameterizations of energy fluxes
(North et al. 1981). Arrhenius (1896) famously used this approach to investigate the influence of
atmospheric CO2 on temperature, resulting in the first estimate of equilibrium climate sensitiv-
ity of 5 °C–6 °C (determined with 10’000 to 100’000 manual calculations; Uppenbrink 1996). In the
1960s, a new type of zonal average EBMwas developed in parallel by Budyko (Budyko 1961; 1969)
and Sellers (Sellers 1969), and was used for example to show that small variations in the solar con-
stant could lead to the onset of a new ice age (Budyko 1969; Sellers 1969). This “Budyko–Sellers”
type of EBMproved very influential and was adapted and refined in the following decades (North

1975).

Figure 1.12: Timeline of increasing climate model complexity through the inclusion of processes and
model components. Reprinted from Jakob (2014) (Fig. 1).

It was around the same time that the first numerical AOGCMswere being developed. Numer-
ical climate modeling began in the form of numerical weather prediction (NWP) in the early 20th
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century. In 1922, Richardson performed a weather forecast through numerical integration of the
primitive equations laid out earlier by V. Bjerknes (Richardson 1922), but was unsuccessful due to
errors in the input observations and numerical instabilities in his method (and it took 6 weeks of

manual calculations to produce an 8-hour forecast; Pearce 2018). Following this failed attempt, NWP
was practically abandoned for two decades until the invention of digital computers in the 1940s.
In the 1950s, 60s, and 70s, several major modeling institutions were founded in the United States
with funding from US military and civilian agencies (Edwards 2011; Pearce 2018). These decades
saw the development of the first atmosphericGCM (Phillips 1956), the first 3Doceanmodel (Bryan
and Cox 1967), and finally the first coupled AOGCM (Manabe and Bryan 1969; Bryan et al. 1975;

Manabe et al. 1975). Following the development of several GCMs at different institutions, the At-
mospheric Model Intercomparison Project (AMIP) was born in 1989 (Gates et al. 1999), followed
by the first CoupledModel Intercomparison Project (CMIP) in 1996 (Meehl et al. 1997; 2000).

Fig. 1.12 shows the increase in model complexity over time as more processes were included in
GCMs. Starting from the atmosphere-only and later ocean-onlymodels of the 1960s, newmodel
components were developed and coupled to the existingmodels to producemore complete repre-
sentations of the climate system, including the effects of processes such as sea ice dynamics (Hibler

1979), sulphate aerosols (Jones et al. 1994), land vegetation (Henderson-Sellers 1993), and the carbon
cycle (Cox et al. 2000). This has resulted in the fully coupled Earth SystemModels (ESMs) used for
climate projections today, though it must be noted that “uncoupled” single model components
such as ocean models remain vital for process studies.

1.2.2 Structure of modern climate models

Modern climatemodels are constructed in amodular fashion,with several submodels for different
climate components combined via a “coupler”. Fig. 1.13 illustrates an example of this coupling
from Alexander and Easterbrook (2015) for the CESM1-BGC model (Lindsay et al. 2014), with the
size of each bubble corresponding to the amount of software code contained in each component.
In this model, the atmosphere, ocean, sea ice and land components are each simulated by a dis-
tinct submodel. These submodels communicate with each other through a coupler which han-
dles fluxes of energy, momentum and matter and ensures e.g. the correct interpolation of fluxes
to respect conservation laws. In addition, each submodel may contain further subcomponents,
such as a marine biogeochemistry (BGC) component in the ocean model (Fig. 1.13). However,
this is not the only possible configuration of model components, and there is a diversity of model
structures found in current climate models. For example, models may differ in their focus on par-
ticular components (as quantified by the amount of code), or couple certain components directly
without passing through a coupler (Alexander and Easterbrook 2015).
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Figure 1.13: Software architecture diagram for the
CESM1-BGC model (Lindsay et al. 2014). Reprinted
from Alexander and Easterbrook (2015) (Fig. 1).

Due to the historical emergence of climate
model development from NWP, the largest
GCM component is often the atmospheric
model (Alexander andEasterbrook2015),but for
the purpose of this introduction we will fo-
cus on the ocean component. Anoceanmodel
generally contains a dynamical core which nu-
merically solves the Navier–Stokes equations
of fluid motion, often in the primitive equa-
tions approximation (Griffies et al. 2000; Vallis

2017). These equations are discretized onto a
three-dimensional grid and solvednumerically
at discrete time intervals. Fig. 1.14 shows an il-
lustration of a regular latitude-longitude grid with vertical levels of constant altitude (for the at-
mosphere in this case). The model cannot resolve processes occuring at scales smaller than the
size of individual grid cells andmust rely on parameterizations (i.e., representations of unresolved
processes as a function of the resolved state; see Sec. 1.2.3.2). Examples of processes that are unre-
solved in coarse resolutionoceanmodels and thus require parameterization include verticalmixing
in the upper ocean (Large et al. 1994), advection and diffusion bymesoscale eddies (Redi 1982; Gent
andMcWilliams 1990), or the air-sea exchange of CO2 (Wanninkhof 1992).

Figure 1.14: Schematic of a typical GCM grid structure and relevant processes. Reprinted from Edwards
(2011) (Fig. 2).
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1.2.3 Using model ensembles as research tools

We have seen that today, large parts of the dynamics of the climate system are relatively well un-
derstood, and their representation in climatemodels is solidly based on classical (e.g., theNavier–
Stokes equations) and modern physics (e.g., radiative transfer). Despite this common basis, there
is currently a large number of different climate models being actively developed and used in cli-
mate research, and no single model can be considered ideal for all applications (or indeed for any
given application). Increasingly, modeling studies produce and analyze model output not from
single climate models, but from ensembles of several models or model configurations (called en-
semble members).

Future projection
uncertainty

Parameter uncertainty

Scenario uncertainty Response uncertainty

 Internal variability

Structural uncertainty

↳standardized scenarios 

↳PPEs

↳ICEs

↳MMEs

Figure 1.15: Types of future projectionuncertainty in climatemodel projections as classified by e.g.Parker
(2013), and types ofmodel ensembles used to quantify these uncertainties: perturbed parameter ensembles
(PPEs; Sec. 1.2.3.2), initial condition ensembles (ICEs; Sec. 1.2.3.1), and multi-model ensembles (MMEs;
Sec. 1.2.3.3).

There are diverse reasons for usingmodel ensembles as research tools, but fundamentally all en-
semblemodeling studies have in common that they allow to quantify and address certain types of
uncertainty. In the context of future climateprojections—which are the focusof this thesis—Parker

(2013) and others have offered a classification of the types of uncertainties affecting climate model
simulations (see the schematic in Fig. 1.15). As an example, consider the projection of future
global OHU by the end of the 21st century using state-of-the-art climate models (this is the goal
of Chapter 2). It is clear that the exact value of this quantity will strongly depend on the fu-
ture trajectory of anthropogenic greenhouse gas (GHG) emissions; a business-as-usual scenario
will have more GHG emissions and lead to increased energy storage in the ocean compared to
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a drastic mitigation scenario. This introduces scenario uncertainty into the projection, as these
GHG trajectories depend on future political choices and societal developments which are cur-
rently practically unknown. However, even if the future emissions trajectory of GHGs (and of
other agents such as aerosols) was known exactly, we could not obtain a perfect estimate of future
OHU, since we cannot fully predict the response of the climate system to these forcings. This
response uncertainty is illustrated by simulations of the recent historical period, for which we have
relatively accurate observational data for all anthropogenic and natural forcings (Meinshausen et al.

2017), but where many models struggle to accurately simulate the observed evolution of the cli-
mate system (Wills et al. 2022). Uncertainty in the response of the climate system to forcing stems
from several factors: (i) simulations are sensitive to initial conditions due to the chaotic nature
of the climate system, leading to initial condition uncertainty, (ii) simulations are sensitive to the
choice of unknown physical parameters, leading to parameter uncertainty, and (iii) it is unclear
how to best formulate an “ideal” climate model, leading to structural uncertainty. In practice,
these three types of uncertainty are each addressed using different ways of constructingmodel en-
sembles, which are separately discussed further below: initial condition uncertainty is quantified
with initial condition ensembles (ICEs; Sec. 1.2.3.1), parameter uncertainty is quantified with pa-
rameter perturbation ensembles (PPEs; Sec. 1.2.3.2), and structural uncertainty is quantified with
multi-model ensembles (MMEs; Sec. 1.2.3.3). In this thesis, wemake extensive use ofMMEs coor-
dinated by the CoupledModel Intercomparison Project (CMIP), which has also produced ICEs
and PPEs for individual models (see Sec. 1.2.4). It should be noted that one could consider our
limited theoretical understanding of certain climate processes (such as turbulence) to be a further
source of uncertainty (Knutti et al. 2010), but for the purposes of this discussion this is subsumed
under structural and parameter uncertainty.

The relative importance of these sources of uncertainty is not fixed in time. Fig. 1.17 shows the
fraction of total uncertainty contributed by scenario, structural, and initial condition uncertainty
as a function of time in simulations of future surface air temperature (SAT) over 2020–2100using
20 climate models under six scenarios (fromWatson-Parris (2021)). (Note that this decomposition
does not explicitly include parameter uncertainty, which should be understood to be a part of
structural uncertainty in this case.) On short timescales of around 0–10 years, initial condition
uncertainty is the dominant contribution: this is the timescale of weather forecasting and decadal
climate prediction, where synoptic weather systems and interannual climate variability dominate
differences across models and scenarios. On centennial timescales, the relative role of initial con-
dition uncertainty vanishes, and the dominant factor is scenario uncertainty (for the range of sce-
narios considered inWatson-Parris (2021)), as diverging trajectories of atmospheric GHG concen-
trations become more important than differences in internal variability. Structural uncertainty is
largest at intermediate timescales of ca. 20–30 years, but remains substantial (ca. 20%) even until
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a) b)

c)

Figure 1.16: Idealized example of three types of model ensemble. Adapted from Chen et al. (2021)
(Fig. 1.21).

the end of the century, such that inter-model differences are the main source of uncertainty for
any given scenario on long timescales.

1.2.3.1 Initial condition ensembles (ICEs)

Ever since the seminal work of E. Lorenz in the 1960s, it is recognized that the climate system is
chaotic. This is to say that, although the (coupled and nonlinear) differential equations governing
the fluid dynamics of the atmosphere and ocean—the Navier–Stokes equations—are determin-
istic, their solutions are highly dependent on the initial conditions (Lorenz 1963), a behavior pop-
ularly known as the “butterfly effect” (Palmer 2024). As a consequence, when initializing e.g. an
atmospheric model for numerical weather prediction (NWP), even small observational errors in
the initial state will increase exponentially over the course of the simulation, leading to large errors
after a finite period of time (Lorenz 1965),which is the main reason why weather forecasts are not
trustworthy for lead times of more than a few days. This is because errors in the unresolved small
scales will eventually feed back onto the larger scales resolved by the model, but even increasing
the model resolution indefinitely will not achieve perfect forecast skill (Lorenz 1969; Palmer 2024).

This problem does not only beset atmospheric NWPmodels, but also and especially global cli-
mate models, which couple more processes and typically have coarser grid resolutions. In order
to quantify initial condition uncertainty and to obtain more accurate projections, climate mod-
els can be run as initial condition ensembles (ICEs). For this, a single model is run several times
under identical forcing but initialized with slightly different initial conditions, such as taken from
different starting points in a control simulation (e.g., Bonnet et al. 2021) or from different days in
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Figure 1.17: Fractional uncertainty as a function of time in future projections of global annualmean sur-
face air temperature in 20CMIP6models across six scenarios, due to structural uncertainty (“model”), sce-
nario uncertainty, and internal variability (“variance”). Figure reprinted fromWatson-Parris (2021) (Fig. 1),
original method byHawkins and Sutton (2009).

the observational record (e.g., Deser et al. 2012). The resulting spread in projections can be solely
attributed to differences in internal variability in each member, since other factors such as model
version and forcing are held constant. This approach can be used for studies aiming at the de-
tection and attribution of climate changes to anthropogenic activity (e.g., Silvy et al. 2022), as the
spread between ensemble members provides an envelope of natural variability outside of which
changes can be considered as likely caused by external forcing. Using the average output of many
ensemble members (as single model initial-condition large ensembles or “SMILEs”; Maher et al. 2021)

can also increase the fidelity of future projections since fluctuations due to internal variability are
“averaged out” for a sufficient number of members (Krishnamurti et al. 2000).

Fig. 1.18 shows an example of such an ICE from Bonnet et al. (2021). The IPSL-CM6A-LR
climate model is run under preindustrial forcing to obtain a long quasi-stationary control simu-
lation exhibiting a bicentennial mode of global temperature variability (orange and red curves in
Fig. 1.18a). From this, 32 ensemble members are initialized at different points in the control run
and run under historical forcing. This results in considerable spread in the simulated global mean
SATover the historical period (Fig. 1.18b) which persists over the whole course of the simulation.

1.2.3.2 Perturbed parameter ensembles (PPEs)

The dynamical equations governing the climate system must be discretized onto finite grids in
order to be solved by numerical models. As the computational cost of running such simulations

26



1.2 Climate models

a)

b)

Figure 1.18: Example of an initial condition ensemble using the IPSL-CM6A-LR climate model. a)The
initialisation procedure, where ensemble members are branched off at different points (brown circles) of
a preindustrial control simulation (grey circles). b) Global annual mean surface air temperature anomaly
relative to 1880–2018 for each member (grey lines) compared to observations (blue and brown lines), as
well as the ensemble member closest to observations (green line). Figure reprinted from Bonnet et al. (2021)
(Figs. 1 and 3).

increases with increasing grid resolution as well as with the number of processes included in the
model, most climate models currently used for long-term climate simulations employ horizon-
tal grid resolutions on the order of 50–100 km in the ocean and 100–200 km in the atmosphere
(Gutiérrez and Treguier 2021). (Ocean models require higher resolution than their atmospheric counter-

parts because of the smaller Rossby radius of the ocean compared to the atmosphere; Vallis 2017) This
means that processes occuring at spatial scales that are comparable or smaller than the size of the
individual grid cells are not explicitly resolved by these models. Examples for such processes in-
clude turbulent heat transfer in the atmospheric boundary layer and (sub-)mesoscale eddies in
the ocean. These processes must be accounted for using parameterizations, that is, theoretical
or quasi-empirical representations of the effects of unresolved processes given the resolved large
scales (these are also termed closures).

In the case of oceanic mesoscale eddies, which arise from flow instabilities e.g. from horizontal
shear, a large number of ocean models employ a parameterization scheme developed by Gent and
McWilliams (1990) which quantifies the effect of eddies on resolved circulation and stratification
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by flattening the slope of isopycnal layers and effectively introducing an “eddy-induced velocity”.
The strength of this parameterized effect crucially depends on the value of the parameter 𝜅GM,
sometimes termed “thickness diffusivity” parameter (Gent 2011), which was introduced in the
formulation of the Gent andMcWilliams (1990) scheme.

Figure 1.19: Example of a perturbed parameter en-
semble using the MITgcm ocean model. The cir-
cles give the strength of the simulatedAtlanticMerid-
ionalOverturningCirculation (AMOC) inMITgcm
members forced by identical surface fields but using
different values of the Gent-McWilliams parameter𝜅GM and of the vertical diffusion coefficient 𝜅v. Fig-
ure adapted fromHuber and Zanna (2017) (Fig. 4).

The dependence on parameter values such
as 𝜅GM is a fundamental property of parame-
terizations. Fully coupled climate models em-
ploy a diversity of parameterizations of unre-
solved processes in all model components, re-
sulting in tens to hundreds of uncertain pa-
rameters (Parker 2013), some of which are not
simple constants but vary in space (as is the
case for 𝜅GM in modern ocean models). As
these parameters havemajor impacts on the re-
sulting climate simulations (Kawai et al. 2022),
an important question is how to choose their
values. It is often unclear which parameter
value results in the most accurate results, as
(i) some parameters, such as 𝜅GM, are ideal-
ized constructions and do not have a “true”
value which could be measured in reality, and
(ii) even parameters which directly correspond tomeasureable quantities, such as the fall speed of
ice crystals in clouds, do not necessarily give the best simulation results when set to their “true”
values (Parker 2010). This is because the imperfect representation of the underlying behavior can
cause an improvement in one parameterization to be offset by a deterioration in another parame-
terization or resolved process.

In order to quantify the sensitivity of climate simulations to such parameter choices, studies
employ perturbed-parameter ensembles (PPEs). In such an ensemble, a single model is run sev-
eral times under identical forcing and initial conditions, but with the value of one or several pa-
rameters in question set to a different value for each ensemble member. The resulting spread in
simulations can be used to determine which parameters are most impactful on the overall simula-
tion characteritics, to produce probabilistic estimates of unknown quantities (e.g., Piani et al. 2005;
Murphy et al. 2007; Wagman and Jackson 2018), or to “tune” parameters to their ideal values (Hour-

din et al. 2017). PPEs can also include ICEs in their setup, where each parameter choice is runwith
several perturbed initial conditions, which can further isolate the role of parameter choices rela-
tive to internal variability. However, it is important to acknowledge that a PPE based on a single
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model cannot account for structural bias in the model, i.e., errors inherent in the model configu-
ration that cannot be reduced for any parameter choice (McNeall et al. 2016; Sanderson et al. 2021);

this issue can only be addressed (albeit only partially) in multi-model ensembles (see Sec. 1.2.3.3
below).

Fig. 1.19 shows an example of a PPE fromHuber and Zanna (2017). In this study, the MITgcm
ocean model was run several times using identical surface forcing fields (of temperature, salinity,
and fluxes of heat, momentum and freshwater), but using different value choices for the Gent-
McWilliams parameter 𝜅GM and for the vertical diffusion coefficient 𝜅v (each parameterwas varied
separately). The red and green points in Fig. 1.19 indicate that the simulated AtlanticMeridional
Overturning Circulation (AMOC) strength increases with increasing vertical diffusion and de-
creases with increasing 𝜅GM. We do not discuss these results further here, but it should be noted
that this dependence of the AMOC strength on mixing parameters also has important implica-
tions for OHU (Newsom et al. 2023), see Chapter 3.

1.2.3.3 Multi-model ensembles (MMEs)

We now turn to multi-model ensembles (MMEs), the main type of ensemble coordinated by the
Coupled Model Intercomparison Project (CMIP; see Sec. 1.2.4), and the one used most exten-
sively in this thesis. MMEs consist of several differentmodels, either developed by separatemodel-
ing groups or representing distinct versions of the samemodel (e.g. obtained by coupling different
model components), run under identical forcing and initial conditions. The ensemble members
may thus differ in the processes they include, their grid resolution, the parameterizations and pa-
rameter values they employ (see Sec. 1.2.3.2 above), as well as their numerical implementation
and the computer hardware they are run on (Parker 2013). The multi-model average of a simu-
lated quantity is often more accurate (when referenced to observations) than the output of any
single model, especially when optimizing the accuracy of multiple target variables simultaneously
(Hagedorn et al. 2005; Knutti et al. 2010). MMEs further allow to explore the sensitivity of simula-
tions to model structure, which, as we have seen (Fig. 1.17), is the leading source of uncertainty
in future climate projections on long scales for a given scenario.

§ Inferring response uncertainty and best estimates from MMEs Given a MME of sim-
ulations of a climate quantity, such as future OHU by the end of the 21st century (as in Sec. 2),
how can we quantify both the quantity’s central estimate as well as its uncertainty?
The most common approach to obtain a central estimate is to simply average each member’s

predictionwith equalweight in a kind of “model democracy”where eachmember is considered as
providing an independent estimate (Knutti 2010). However, this method can be problematic for
some applications as the ensemblemembers are oftennot truly independent (see the paragraphbe-
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low) and since somemembers could be consideredmore useful than others based on their perfor-
mance and agreement with observations (Abramowitz et al. 2019). For this reason, several methods
have been developed to select subsets of models with desirable properties such as agreement with
observations andmodel independence (e.g., Chiew et al. 2009; Ruane andMcDermid 2017; Herger et

al. 2018). Another approach is to compute a weighted average of each member’s prediction, with
the weights again based on model performance (e.g., Gillett 2015; Haughton et al. 2015; Knutti et al.

2017b; Eyring et al. 2019). In addition, more advanced statistical (in particular Bayesian) methods
have been developed to combine climate model simulations with information from observations
(e.g., Forest et al. 2002; Giorgi andMearns 2002), including the method of emergent constraints (Hall

and Qu 2006) introduced in Sec. 1.2.5 and used in Chapter 2.

Figure 1.20: Example of a multi-model ensemble
using theCMIP5 (blue) andCMIP6 (orange) ensem-
bles. The circles give the equilibrium climate sensi-
tivity (ECS) in K for each ensemble member. Figure
adapted from Zelinka et al. (2020) (Fig. 1).

There are several approaches to infer un-
certainty from a MME Parker (2013): (i) the
spread between ensemble members can be
considered a lower bound on the true uncer-
tainty range since factors other than model
structure are expected to add additional uncer-
tainty (Hourdin et al. 2023), (ii) one can com-
pute formal statistical probabilities of future
changes based on information from observa-
tions (e.g., the emergent constraint method),
or (iii) information from models can be com-
bined with other lines of evidence such as ex-
pert judgement to produce confidence inter-
vals (e.g., Sherwood et al. 2020;Masson-Delmotte

et al. 2021a).

§ Methodological issues of MMEs Although the use of MMEs for climate projections and
process studies has become increasingly widespread, there exist several potentially problematic
methodological issues concerning the construction and interpretation of MMEs.
When computing a multi-model average of some simulated quantity as described above, the

average can exhibit characteristics not found in any of the individual members: for example, a
nonlinear relationship between two variables can be obscured by averaging, or the amplitude of
a response underestimated due to the averaging of positive and negative contributions of greater
magnitude (Knutti et al. 2010).
More fundamentally, when constructing a model ensemble for a study addressing structural

uncertainty, it is unclear how to best sample this uncertainty space (Parker 2010; 2013). For PPEs
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(Sec. 1.2.3.2), the parameter space is usually an interval of real numbers (e.g., Fig. 1.19) which
can be sampled systematically usingwell-defined statistical procedures (e.g.,MacDougall andKnutti

2016). In contrast, the space of possibleMMEmembers consists in principle of all possible model
configurations, including all possible combinations of model components, processes, parameter-
izations and numerical settings. It is clear that this space cannot be sampled systematically, not
least because of computational limits. Instead, MMEs are always “ensembles of opportunity”,
which consist of a number of currently available models that may differ or resemble each other in
systematic ways (Tebaldi andKnutti 2007). Modeling groups often only publish their “best”model
versions (Knutti et al. 2010) while withholding alternative model versions and thus reducing the
amount of outlier or extreme models in the resulting MME (Hourdin et al. 2023).

Ensemble members in common MMEs such as CMIP cannot be considered to give indepen-
dent estimates, since allmodels are developedbasedon shared literature anduse similar or identical
parameterizations and observational evaluation data sets, and in some cases even sharemodel code
(Sanderson et al. 2015a; Abramowitz et al. 2019). As a consequence, model biases relative to observa-
tions can be correlated, such that a multi-model mean bias persists even when adding more mod-
els to the ensemble and even in the theoretical limit of an infinite number of models (Knutti et al.
2010). Anotherway of expressing this is that the “effective number” ofmodels in aMME is smaller
than the actual number of models included (Jun et al. 2008; Pennell and Reichler 2011). This effect
has been shown byMasson and Knutti (2011) and Knutti et al. (2013) for the CMIP3 and CMIP5
MMEs, respectively. Using unsupervised hierarchical clustering onpreindustrial surface tempera-
ture and precipitation output from thesemodel ensembles, they showed thatmodel output tends
to be similar formodels developed by the same group, formodels sharingmodel components, and
for successive versions of a single model (Masson and Knutti 2011). Rauser et al. (2015) has thus ar-
gued for the use of cross-generational multi-model ensembles, e.g. by combining models from
successive CMIP phases, since models are too similar across generations. Nevertheless,Annan and
Hargreaves (2010) have argued that MMEs should be interpreted under the paradigm of a statisti-
cally indistinguishable ensemble, i.e., by assuming that the real climate system is drawn from the
same statistical distribution as the models in an MME. They showed that under this framework,
the CMIP3 MME can be considered a relatively “good” sample in terms of statistical properties,
in contrast to the traditional paradigm where MME members are assumed to be drawn from a
distribution centered on the truth and which suffers from the above mentioned issues (Annan
andHargreaves 2010), although these two paradigmsmay be complementary (Sanderson and Knutti
2012). In addition, weightingmethods have been devised which takemodel interdependence into
account (Bishop and Abramowitz 2013; Abramowitz and Bishop 2015; Sanderson et al. 2015b; 2017).
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§ The notion of inter-model relationships A crucial concept used in this thesis is that of an
inter-model relationship (IMR) between two variables. An IMR exists when two simulated vari-
ables 𝑥 and 𝑦 (for example, AMOC strength and OHUE as in Chapter 3) covary across ensemble
members of a MME. This is similar but conceptually distinct from the kind of relationship in
Fig. 1.19, which showed the dependence of a simulated climate quantity (AMOC strength) on
model parameters (𝜅GM and 𝜅v). It is also separate from the relationship between two variables
across time or space, for example the relationship between the ENSO index and remote precipita-
tion as determined from observations or model simulations (e.g., Alexander et al. 2002).
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Figure 1.21: Examples of inter-model relationships between quantities related to AMOC. a) AMOC
weakening in 31 CMIP6 model simulations after abrupt quadrupling of atmospheric CO2 (abrupt-
4xCO2 simulation), with lines colored by climatological preindustrial AMOC strength. b) Scatter plot
between AMOC strength and AMOC depth (defined as the average depth of the 5 Sv and 10 Sv stream-
lines north of 35°S in the Atlantic) in eight CMIP5models over 150 years of abrupt-4xCO2 forcing. The
correlation is 𝑟 = 0.92 (𝑝 < 0.01). Panel a) adapted from Lin et al. (2023) (Fig. 1), panel b) adapted from
Kostov et al. (2014) (Fig. 3).

In the simplest case, an IMR can be quantified as a linear correlation between two variables
across MMEmembers and can be visualized e.g. in a scatter plot. As an illustration, we will con-
sider examples from the literature that have identified inter-model relationships between AMOC
strength and other climate variables. Fig. 1.21a shows timeseries of AMOC strength anomaly in
31 CMIP6 models forced by an abrupt quadrupling of atmospheric CO2 concentrations (Lin et
al. 2023). The lines are divided into three groups according to eachmodel’s climatological (unper-
turbed) AMOC strength. It is apparent that models with strong climatological AMOC tend to
have a greater AMOC decrease under this forcing than models with a weak initial AMOC. This
result, which Lin et al. (2023) show is related to stratification and mixing in the Labrador sea, is
a first example of an IMR between two quantities (climatological AMOC strength and future
AMOC decline), although this is shown only visually in Fig. 1.21a and not quantified statisti-
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cally. In Fig. 1.21b, AMOC strength in eight CMIP5 models is plotted against the depth of the
AMOCoverturning cell (Kostov et al. 2014). Models with a stronger AMOC tend to have a deeper
AMOC, as these two variables are highly correlated (Pearson’s 𝑟 = 0.92).
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Figure 1.22: Examples of inter-model relationships between AMOC and regional SST. a) Scatter plot
between historical AMOC strength and North Atlantic SST bias relative to observations in 22 CMIP5
models. b) As panel a), but between North Atlantic SST bias and North Pacific SST bias. Adapted from
Wang et al. (2014) (Fig. 2).

However, IMRs are not restricted to relationships between intrinsically linked variables (such
as AMOC strength, depth, and future decline), but can appear between any two physically linked
variables (relationships occurringdue to chance are of coursenot of interest). Keeping theAMOC
as an example,Wang et al. (2014) found a significant IMR between AMOC strength and SST bias
in the North Atlantic in an ensemble of 22 CMIP5 models (Fig. 1.22a). Models with a weaker
AMOCwere found to have a more negative (cold) SST bias, which is consistent with the role of
the AMOC in transporting heat from low latitudes to the subpolar North Atlantic, and has been
used to construct AMOC proxies based on SST in this region (Caesar et al. 2018). The North
Atlantic SST bias was in turn found to be correlated with the SST bias in the North Pacific
(Fig. 1.22b). These results illustrate the important point that climate model biases can be linked
between variables and across remote geographical regions. This means that improving model bi-
ases in a specific variable or in a single region can have remote effects due to the coupled nature of
the (simulated) climate system (Wang et al. 2014).

1.2.4 The CoupledModel Intercomparison Project (CMIP)

The CoupledModel Intercomparison Project (CMIP) was established in 1995 by theWorld Cli-
mate Research Programme (Meehl et al. 1997). Its purpose is to coordinate climate simulations us-
ing coupled general circulation models (GCMs) under standardized forcing protocols and make
the model output freely available in order to advance our understanding of the climate system
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and inform the development and improvement of GCMs. In addition, CMIP also provides cru-
cial information to the assessment reports of the Intergovernmental Panel on Climate Change
(IPCC) of theUnitedNations, which informpolicymakers about the scientific consensus knowl-
edge on the physical basis of climate change as well as its impacts and related adaptation and mit-
igation strategies (Meehl 2023). Like the cycles of the IPCC, CMIP is organized in phases: the
first phase (CMIP1) began in 1996 (Meehl et al. 1997), and successive phases were initiated in 1997
(CMIP2; Meehl et al. 2000), 2003 (CMIP3; Meehl et al. 2007), 2008 (CMIP5; Taylor et al. 2012) and
2013 (CMIP6; Eyring et al. 2016). The intermediate CMIP4was not amajor CMIP phase and only
consisted of simulations supplementary to CMIP3 (Stouffer et al. 2017). The next phase, CMIP7,
is currently in planning (e.g., Funke et al. 2024).

Figure 1.23: Schematic of theCMIP6project struc-
ture and science goals. The core historical andDECK
experiments are mandatory, the outer topics are ad-
dressed by endorsed MIPs. Reprinted from Eyring et
al. (2016) (Fig. 2).

In this thesis, we make extensive use of
model simulations from the most recent
CMIP6 phase (Meehl et al. 2014; Eyring et al.

2016), on which we will focus here. CMIP6
has a federated structure (Fig. 1.23), with a
number of core experiments including a his-
torical simulation and a group of simulations
called DECK (for Diagnostic, Evaluation and
Characterization of Klima) which are manda-
tory for any model participating in the ex-
cercise, and a number of endorsed secondary
model intercomparison projects (MIPs) ad-
dressing more specialized research questions.
The CMIP6 historical simulations span
the period 1850–2014 and use a forcing
dataset of historical atmospheric GHG con-
centrations for 43 GHG species (Meinshausen

et al. 2017) as well as observed anthropogenic
and natural forcings (e.g., land use change, solar forcing, and stratospheric aerosol from volcanic activ-

ity; Zanchettin et al. 2016; Matthes et al. 2017; Hoesly et al. 2018; Ma et al. 2020). The DECK consists
of four experiments: (i) an amip experiment (for Atmospheric Model Intercomparison Project; Gates

et al. 1999) where each GCM’s atmospheric model component is forced by observed SSTs and
sea ice concentrations over the period 1979–2014; (ii) a piControl control experiment where
the coupled GCMs are forced by preindustrial GHG concentrations for at least 500 simulation
years; (iii) an abrupt-4xCO2 experiment where atmospheric CO2 concentrations are abruptly
quadrupled from their preindustrial value and the coupled GCMs run for at least 150 years; and
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(iv) a 1pctCO2 experiment where atmospheric CO2 concentrations rise exponentially from their
preindustrial value at a rate of 1% per year for at least 150 years.

Over 130models from 53modeling centers contributed output to CMIP6 (Durack et al. 2014),

providing a wide variety of model configurations and grid resolutions (Fig. 1.24). Importantly,
all GCMs are subjected to identical forcing fields for any given CMIP experiment, such that dif-
ferences in the resulting simulations are principally due to structural differences between models
(see Sec. 1.2.3.3). Modeling centers may additionally choose to perform a given experiment with
multiple ensemble members initialized with perturbed initial conditions (Sec. 1.2.3.1) or with
different physical parameter choices (Sec. 1.2.3.2).

Figure 1.24: Horizontal resolution of the atmo-
spheric and oceanic components of CMIP6 and
HighResMIP GCMs. Reprinted from Chen et al.
(2021) (Fig. 1.19).

These CMIP6 standard experiments are in-
tended to serve distinct but complementary
purposes. The historical experiment al-
lows model output to be compared with ob-
servations, thus enabling systematic model
evaluation andobservational constraintmethod-
ologies (see Sec. 1.2.5). The amip experiment
is designed for atmospheric model intercom-
parison and can be used to quantify differ-
ences between forced and fully coupled sim-
ulations of the same GCM (e.g. Andrews et al.

2022). The preindustrial control experiment
(piControl) is used to quantify unforced in-
ternal variability in eachGCM and is used as a
baseline to compute anomalies of climate vari-
ables under the GHG forcing of other CMIP

experiments. Finally, the abrupt-4xCO2 and 1pctCO2 experiments are idealized representations
ofCO2-driven climate change and can be used to calculate idealized climate properties such as the
effective climate sensitivity (EffCS; Gregory et al. 2004) and the transient climate response (Raper et
al. 2002).

In addition to these mandatory historical and DECK experiments, CMIP6 includes 21 “en-
dorsed” secondary MIPs which address a variety of more specialized topics. For example, the
OceanModel Intercomparison Project (Griffies et al. 2016; Orr et al. 2017; Tsujino et al. 2020) defines
an experimental protocol for ocean model simulations forced by common atmospheric surface
fields, analogous to AMIP for the atmospheric components, and a set of supplementary physi-
cal and biogeochemical output variables requested from participating models. Other endorsed
MIPs focus on topics such as cloud feedback (CFMIP; Webb et al. 2017), high resolution simula-
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tions (HighResMIP; Haarsma et al. 2016), paleoclimate (PMIP; Kageyama et al. 2018), or the carbon
cycle (Jones et al. 2016, C4MIP, ).

b)a)

Figure 1.25: a) Atmospheric CO2 concentrations and b) global SAT change in different SSP scenarios.
Panel a) adapted fromMeinshausen et al. (2020) (Fig. 3), panelb) adapted fromMasson-Delmotte et al. (2021b)
(Fig. SPM.8).

The MIP most important for future climate projections and in particular for informing the
IPCC is the ScenarioMIP (O’Neill et al. 2016). For ScenarioMIP, a number of future GHG emis-
sion trajectories were created based on socioeconomic scenarios obtained from integrated assess-
mentmodels (simplifiednumericalmodels of physical, economical and social interactions). These
scenarios consist of Shared Socioeconomic Pathways (SSPs; Riahi et al. 2017; Gidden et al. 2019;

Meinshausen et al. 2020) which are an update of the Representative Concentration Pathways of
atmospheric GHG concentrations used in CMIP5 (RCPs; Vuuren et al. 2011). They span a range
fromthe “2°C scenario” SSP1-2.6 (the “sustainability” SSP1pathwaywith approximately 2.6Wm−2

of radiative forcing anomaly by 2100) to the “business as usual scenario” SSP5-8.5 (the “fossil-
fuel development” SSP5 pathway with approximately 8.5Wm−2 of radiative forcing anomaly by
2100). Fig. 1.25 shows the atmospheric CO2 concentrations used in each SSP (Fig. 1.25a), and
the resulting globalmean surface air temperature evolution over the 21st century (Fig. 1.25b). The
ensemble spread across scenarios in themulti-model ensemble orwithin a givenGCMcanbe used
to quantify scenario uncertainty and provide future projections under plausible future develop-
ment pathways or at given global warming levels. In particular, it can be exploited via the method
of emergent constraints, which are introduced in the following section.

1.2.5 Emergent constraints

Comparing the output of model simulations to real-world observations is a fundamental part of
model evaluation and a prerequisite for their confident use for future projections (Hall et al. 2019).

Even before model evaluation, observations are already used to inform the model development
process when tuning parameters (Hourdin et al. 2017). Although model performance has steadily
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increased with successive CMIP phases and IPCC reports (Chen et al. 2021), the ensemble spread
in certain key future climate variables has hardly decreased. A prominent example is equilibrium
climate sensitivity (ECS; Knutti and Hegerl 2008), the global mean surface temperature change at
steady state following a doubling of atmospheric CO2 concentration, whose uncertainty has re-
mained stubbornly large across CMIP cycles and IPCC assessment reports (Maslin and Austin

2012). Inter-model spread in ECS has even increased inCMIP6 compared to previousmodel gen-
erations (Meehl et al. 2020), and the very likely range (>90% probability) assessed by IPCCAR6 of
2K to 5K is similar to the range assessed in the “Charney report” in 1979 (1.5 K–4.5 K; National

Research Council 1979),which is due to persistent uncertainties in the climate feedback parameter𝜆 (Zelinka et al. 2020).
Although ECS is an idealized quantity, it quantifies the climate system’s sensitivity to CO2

forcing and thus has direct implications for more plausible future scenarios of climate change;
hence, there is a crucial need to reduce its uncertainty. However, it has been argued that, from the
perspective of ensemble modeling, reducing inter-model spread is less important than increasing
model independence (Jebeile andBarberousse 2021). Reduced ensemble spread alone does not guar-
antee robustness, since the participatingmodels may suffer from common biases. Instead, greater
model independence may initially lead to increased ensemble spread, but also enables the use of
sophisticated methods to reduce projection uncertainty by incorporating information from ob-
servations. Currently most prominent among these is the method of emergent constraints (ECs),
which we use in Chapter 2 to reduce uncertainties in future global OHU, and which we now
introduce in the present section.

1.2.5.1 Concept

Consider a situation with a climate variable of interest, 𝑌, whose projection from an MME has
considerable ensemble spread due to structural uncertainty. This variable may be difficult to ob-
serve in the present climate or an inherently unobservable response to future forcing such as global
OHU by the end of the 21st century (as in Chapter 2). An emergent constraint consists of identi-
fying a relationship between a predictor variable,𝑋, and the variable of interest𝑌 (the predictand),
across the members of the MME. This relationship is of the general form𝑌 = 𝑓(𝑋) + 𝜀, (1.17)

where 𝑓 is the functional form of the relationship and 𝜀 is a small random error term. If the pre-
dictor𝑋 is an observable quantity of the present-day or historical climate, observations of𝑋 can
be combined with Eq. (1.17) to obtain a constrained estimate of 𝑌. The relationship (1.17) is
not contained in any single model, but “emerges” from the combination of structurally different
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Y
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Figure 1.26: Illustration of the emergent constraint method. The emergent relationship 𝑓 (red) is com-
bined with the observational distribution of the predictor𝑋 (blue) to obtain an estimate of the predictand𝑌 (left 𝑦-axis) that is more constrained than the prior multi-model mean (right 𝑦-axis). Adapted fromChen
et al. (2021) (Fig. 1.23), originally from Eyring et al. (2019) (Box 1).

models of anMME (the first use of the term emergent constraint in the context of climate projec-
tions is likely due toAllen and Ingram (2002)). In order for an EC to be trustworthy, it is important
that the underlying relationship is based on a verifiable physicalmechanism and not due to chance
(Hall et al. 2019, this is discussed in more detail below, Sec. 1.2.5.5). Given the relationship (1.17) and
an observational estimate (including observational uncertainty) of the predictor 𝑋, an updated
estimate of 𝑌 can be obtained using statistical methods. The simplest and most used approach
(and the approach adopted in Chapter 2) is to estimate 𝑓 using linear regression and to simply
project the distribution of 𝑋 onto the 𝑌-axis using the estimate of 𝑓 (see Fig. 1.26), taking into
account uncertainty in the observations of𝑋 and in the regression model for 𝑓 (Eyring et al. 2019;

Brient 2020; Chen et al. 2021). However, since this method of statistical inference has a number of
potential shortcomings (as will be discussed below; Sec. 1.2.5.6), more sophisticated methods of
obtaining constrained estimates from 𝑋 and 𝑓 have been developed, such as methods based on
Bayesian inference (e.g., Hargreaves et al. 2012; Renoult et al. 2020) or on information theory (e.g.,
Brient and Schneider 2016).
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1.2.5.2 Examples of published ECs

Figure 1.27: Emergent constraint on snow albedo
feedback (SAF), defined here as the response of snow
albedo Δ𝛼s (in %) to surface warming Δ𝑇s (in K).
The SAF under future climate change (𝑦-axis) is con-
strained using observations of SAF in the seasonal cy-
cle (𝑥-axis) based on a linear inter-model regression
(orange line; compare Fig. 1.26). Figure reprinted
fromHall and Qu (2006) (Fig. 3).

Perhaps the first successful application of the
EC method to climate projections is due to
Hall and Qu (2006). In that study, the strength
of future snow albedo feedback (SAF, increased
surface warming due tomelting of snow caused by

an initial warming; Thackeray and Fletcher 2016)

was constrained using observations of the
strength of SAF in the context of the seasonal
cycle, whichwas shown to be highly correlated
across models with future SAF (Fig. 1.27; Hall

andQu2006;Qu andHall 2014). Since then, the
EC method has been applied to a wide range
of uncertain climate variables, in particular to
ECS and related quantities such as cloud feed-
back (see Brient (2020) for an exhaustive list
of ECs published before 2020, and Knutti et

al. (2017a) for constraints on ECS). The EC
method was also considered in IPCCAR5 for

projections of near-term global warming until 2035 (Kirtman et al. 2013; Gillett 2015), and in the
most recent IPCC AR6 to constrain e.g. ECS (Forster et al. 2021) and quantities related to the
carbon cycle (Canadell et al. 2021).

1.2.5.3 Types of ECs

Although the fundamental idea of ECs is the same for all of the above examples, there is a large di-
versity in the literature in the statistical methods employed to obtain constrained estimates as well
as in the types of observable variables chosen as predictors. Sanderson et al. (2021) have proposed a
classification of ECs into three kinds: (i) “bias persistence” or trend-on-trend ECs, where𝑋 and𝑌
are of the same nature (e.g., past warming and futurewarming; Tokarska et al. 2020; Lyu et al. 2021), and
the model bias in𝑋 is assumed to persist into the future; (ii) process-based ECs, where a leading-
order physical process is identified which controls 𝑌 and whose strength can be quantified with𝑋 (e.g., ocean surface density constraining Arctic Ocean acidification Terhaar et al. 2020); and (iii) “fre-
quency substitution” or variability-basedECs, where the future response of𝑌 is constrainedusing
its response to shorter-term forcing quantified by 𝑋 (e.g., the seasonal cycle, interannual variability,

or volcanic and paleo forcing Hall and Qu 2006; Renoult et al. 2020). In Chapter 2, we make use of a
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process-based EC to constrain future globalOHU, improving on previous approaches employing
trend-on-trend constraints.

1.2.5.4 Why do ECs “emerge” frommodel ensembles?

It is natural to ask why functional relationships between climate variables such as 𝑓 in Eq. 1.17
appear to be found so frequently inMMEs. Brient (2020) noted that ECs arise due to the interac-
tion of local structural uncertainties and (possibly remote, e.g., Wang et al. 2014) biases in large-scale
dynamics. A trivial possibility is that such relationships can appear simply by chance: due to
the high dimensionality of GCMs, which include hundreds of variables on millions of gridcells
(Williamson et al. 2021), significant correlations between pairs of variables can be found by data
mining especially in the presence of model interdependence (Caldwell et al. 2014), even though
these relationships may often not be grounded on physical processes and thus not applicable to
reduce uncertainties in the predictand. Hall et al. (2019) have instead proposed two physically-
based sources for the emergence of ECs fromMMEs. The first source relies on the Fluctuation-
Dissipation Theorem, a fundamental result from statistical physics which relates variability in a
variable to its sensitivity to forcing (Callen andWelton 1951; Kubo 1966; Leith 1975;Williamson et al.

2018). This principle is especially applicable to GCM ensembles in the presence of conservation
principles (Hall et al. 2019) such as global mean radiative balance imposed by model tuning (Siler
et al. 2018; Brient 2020). The second source of emergent relationships between variables across
GCMsmentioned inHall et al. (2019) is the potential similarity between the response of a variable
to forcing on short timescales (e.g., over the seasonal cycle) to its response to forcing on longer and
slower timescales. This is the reasoning behind variability-based constraints introduced above. A
more mathematical view has been advanced byHuntingford et al. (2023), who suggested that ECs
are fundamentally due to the implicit presence of large-scale bulk differential equations describing
the Earth system which arise from an aggregation of the effect of physics coded into the model at
the grid scale. In this view, the application of an EC amounts to determining the implicit value of
a parameter contained in such a bulk differential equation.

1.2.5.5 Validity criteria

The possibility of spurious ECs arising due to chance calls for solid criteria for the evaluation
of the validity of any proposed EC. Such criteria have been previously proposed (e.g., Klein and

Hall 2015; Hall et al. 2019; Brient 2020; Sanderson et al. 2021), and can be summarized as three ma-
jor points: (i) an EC requires the identification of a plausible and verifiable physical mechanism
which explains the relationship between predictor and predictand; (ii) observations of the predic-
tor must be sufficiently constrained and adequately compared to GCM values; and (iii) the EC
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should be robust to out-of-sample testing. A proposed constraint fulfilling these criteria could be
considered to be a “confirmed” EC (Hall et al. 2019), although ECs can never be fully confirmed
due to the possibility of missing processes in GCMs or biased sampling of structural uncertainty
in MMEs. First, the verification of a proposed mechanism can be attempted through additional
analysis ofmodel output (as inChapter 2) or through targeted simulations such as PPEs, although
the greater structural diversity in MMEs compared to PPEs lends greater confidence to ECs aris-
ing fromMMEs (Klein and Hall 2015). Such analysis must explain how and why the inter-model
spread relates in a similar way to both the predictor and the predictand. Second, observations
of the predictor must be sufficiently constrained to allow a narrowing of the predictands uncer-
tainty, and in particular should not encompass the entire inter-model spread (Knutti andTomassini

2008). The observational periodmust be long enough and sufficiently resolved to capture the time
scale of the mechanism or feedback at play in the longer future projection (e.g., Wittenberg 2009).

Furthermore, observations of the predictor must be directly comparable to simulated values of
the predictor, e.g. when using pixel-level data for a large-scale predictor (Winkler et al. 2019) or
when comparing satellite cloud observations to GCM output (e.g., Myers et al. 2021), which re-
quires the use of satellite simulators for faithful comparison (Bodas-Salcedo et al. 2011). Third and
last, a proposed EC must hold in an out-of-sample test, e.g. by replication in a different model
ensemble (such as the CMIP5 ensemble for a constraint proposed using CMIP6, see Chapter 2),
which ensures that the identified relationship is not due to sampling bias in the chosen MME.
Numerous previously proposed ECs have been subsequently shown to be weaker or invalid in
newerMMEs (e.g., Schlund et al. 2020;Williamson et al. 2024),while others have been replicated and
thus strengthened in their trustworthiness using newer ensembles (e.g., Bracegirdle and Stephenson
2012).

1.2.5.6 Potential issues

Despite their recent success and increased use as a research method, ECs are subject to a number
of potential issues impacting their applicability and credibility. Fundamentally, in many cases it
is unknown whether model performance is stationary in the sense that present model behavior
can be used to infer future model behavior (Abe et al. 2009). The processes controlling the pre-
dictand may be state dependent or change with time (Klein and Hall 2015), for example due to
the emergence of slowly acting feedbacks (Eyring et al. 2019). For example,Marvel et al. (2018) have
found that constraints on ECS based on the historical record are generally biased low, because
historical climate feedback has been weaker than that expected under long-term climate change
(e.g., Andrews et al. 2018; 2022). Since models in “ensembles of opportunity” such as the CMIP6
MME are not independent (see Sec. 1.2.3.3), the inclusion of similar or nearly duplicate mod-
els in an EC can artificially increase the correlation between predictor and predictand without
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adding independent information (Sanderson et al. 2015a; 2021). The participatingmodels may also
all have a commondeficiency, such as amissing process or a shared parameterization, which causes
a systematic bias in the prediction (Klein and Hall 2015). Still, an EC allows to reduce at least one
source of model error, but the results should be carefully interpreted. A related issue is that some
observational products such as reanalysis estimates of cloud properties rely themselves on param-
eterizations or model assumptions to produce their output, challenging their use as independent
estimates in ECs (Brient 2020). Considering the statistical inference method applied to estimate
the predictand, using a linear regression to estimate 𝑓 in Eq. 1.17 can give outsize influence to
outlier models which are inconsistent with observations of the predictand, and little weight to
models consistent with observations but lying off the regression line (Brient 2020). A possible so-
lution is to use methods not based on linear regression as detailed above (e.g., Brient and Schneider
2016). However, any statisticalmethod can potentially be impacted by selection bias since analysis
parameters may be actively chosen by researchers to maximize the correlation between predictor
and predictand, which leads to an underestimation of the fit uncertainty. Lastly, in the case where
multiple variables influence the predictand (which is especially the case for compound variables
such as ECS), errors in each of the influences may compensate each other, again leading to uncer-
tainty underestimation. For this case, approaches have been developed to use multiple predictors
using multivariate methods (e.g., Renoult et al. 2020) or to combine existing ECs (e.g., Bretherton
and Caldwell 2020).

Despite these potential issues, a careful application of the EC methodology remains a pow-
erful tool to constrain future projections of important climate quantities, and can help identify
priorities for model development and observational programs.

1.3 Scientific aims and outline of this thesis

1. How can we constrain future global OHU?

Given themajor role of total OHU as an indicator of past and future climate change (Sec. 1.1.3.2)
as well as its direct connection towidespread climate impacts (Sec. 1.1.3.3), accurate futureOHU
projections are of vital importance. However, there remains substantial uncertainty in projections
of future OHU over the 21st century, both due to scenario uncertainty and due to structural un-
certainty across climatemodels for a given scenario (Cheng et al. 2022). Following our discussion of
the emergent constraint method in Section 1.2.5, it is therefore tempting to search for potential
predictor variables to be used in a formal observational constraint on futureOHU.This is the goal
of Chapter 2, where we identify a physics-based emergent constraint amongCMIP5/6models on
future OHU by the end of the 21st century under various emissions scenarios. This constraint is
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based on interlinked climate model biases in the Southern Hemisphere including Antarctic sea
ice extent, Southern Ocean cloud cover, and the temperature of waters upwelling from the deep
ocean to the surface. We find that the historical state of these variables precondition eachmodel’s
response to future climate change, in particular through global-scale cloud feedbacks, such that
observations of present-day sea ice extent can be used to predict future OHU. The underlying
mechanism also carries implications for global surface warming and cloud feedback, and predicts
slightly more OHU, higher warming, and stronger cloud feedback than the raw CMIP6 predic-
tions. These conclusions are at oddswith previously published constraints based on pastwarming
trends (Tokarska et al. 2020; Lyu et al. 2021), and this is discussed in Chapter 2.
At the time of writing (January 18, 2025), this article is under review at Science Advances (sub-

mitted on June 6, 2024).

2. What processes control the OHU efficiency?

Recalling the conceptual split between total OHU and OHU efficiency (OHUE) introduced in
Section 1.1.2, we aim to obtain process understanding also for OHUE, which could then po-
tentially be used in a separate constraint on OHUE. Total OHU and OHUE are not necessarily
determined by the same processes, since total OHU integrates the amplitude of climate feedbacks
and surfacewarming, whereas the definition ofOHUEpartly “normalizes” these effects by scaling
OHU by global warming (see Eq. 1.10). Furthermore, the processes controlling OHUE are less
explored in the literature and partly inconsistent (e.g., Boé et al. 2009; Kostov et al. 2014; Gregory et al.
2023), although recent studies are converging on the importance of upper ocean density stratifi-
cation and mesoscale eddy parameterizations on setting OHUE in climate models (Gregory et al.
2023; Liu et al. 2023; Newsom et al. 2023). In Chapter 3, we thus investigate the linkages between
proposed controls on OHUE in an ensemble of climate models. This analysis reveals how inter-
hemispheric connections of model biases, especially in ocean stratification, can explain and partly
reconcile these proposed mechanisms.
At the time of writing (January 18, 2025), this article is under review atOcean Science (submit-

ted on November 5, 2024).

3. Can we use this process understanding to constrain OHU (efficiency)?

Following the analysis of the factors controlling OHUE in climate models in Chapter 3, it is then
natural to look for an emergent constraint on OHUE based on these variables. Due to the rela-
tively large number of potential predictors found in Chapter 3, their interdependence, as well as
the confounding influence ofmodel interdependence (Sec. 1.2.5.6), we opt for a systematic statis-
tical approach using a maximum number of available model members. This preliminary analysis
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is presented in the Outlook Chapter 4, where we process model output of around ten predic-
tors for over 100 CMIP6 members in each of four scenarios, and apply both unsupervised and
supervised statistical learning methods to better understand the ensemble structure as well as to
potentially obtain constrained projections of OHUE.

4. What is the effect of climate model biases on future projections, and
how do different biases relate to each other?
A more general overarching issue pervading all chapters of this thesis is the impact of climate
model biases on future projections, and in particular their linkage across different models and
model members. Although enormous progress has been made in all areas of climate model de-
velopment (see Sec. 1.2.1), the representation of the climate system in even the most advanced
models still suffers from substantial errors and biases which form the subject of ongoing research.
While we do not propose explicit measures to directly alleviate these biases in this thesis, we an-
alyze their implications in detail and provide both conceptual and quantitative advances in their
understanding. In Chapter 2, we exploit the inter-model spread in a number of Southern Hemi-
sphere variables to obtain improved future OHUprojections; in Chapter 3, we analyze how such
biases can be linked across hemispheres and impact the global climate response; and in Chapter
4, we make use of dimensionality reduction and clustering techniques to analyze the structure of
inter-ensemble variance in key climate variables.
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2 Increased future ocean heat uptake constrained by Antarctic sea ice extent

Abstract

The ocean moderates global warming by absorbing most of the excess heat from anthropogenic
climate change. However, ocean heat uptake (OHU) projections still strongly differ between cli-
mate models despite their importance for informing climate policy. Here, we provide improved
globalOHUprojections by identifying a relationship betweenpresent-dayAntarctic sea ice extent
and future OHU across an ensemble of 28 state-of-the-art climate models. Combining this rela-
tionship with satellite observations of Antarctic sea ice reduces the uncertainty of OHU projec-
tions under future emissions scenarios by 12–33%. Moreover, we show that an underestimation
of present-day Antarctic sea ice in the latest generation of climate models results in an underesti-
mationof futureOHUby3–14%, of global cloud feedbackby19–32%, andof global atmospheric
warmingby6–7%. Ourmechanism-based constraint reveals how thepresent-day SouthernHemi-
sphere state impacts future climate change, and contrasts with previous constraints based solely
on past warming trends.

2.1 Introduction

Since the beginning of the industrial period, the ocean has taken up over 90% of the excess heat
generatedbyhuman-caused climate change (Forster et al. 2021). This oceanheat uptake (OHU)has
limited the rate of atmospheric temperature increase (Liu et al. 2016), but the widespread warm-
ing of the ocean (Johnson and Lyman 2020) has had cascading negative consequences for humans
and marine ecosystems. Ocean warming contributes to sea level rise through thermal expansion
and the melting of marine-terminating glaciers (Cazenave and Llovel 2010). Sea level rise and ocean
warming create risks for coastal communities due to increased flooding andmore destructive trop-
ical cyclones (Sun et al. 2017; Pörtner et al. 2022). Higher upper ocean temperatures also lead to
changes in stratification and the supply of nutrients and oxygen to marine ecosystems (Bopp et al.
2013; Sallée et al. 2021; Morée et al. 2023), impacting fish stocks (Cheung et al. 2016) and perturbing
the global carbon cycle (Joos et al. 1999). Furthermore, ocean warming drives more frequent and
intense marine heatwaves, potentially causing widespread collapses of foundation species includ-
ing corals, kelps, and seagrasses (Frölicher et al. 2018; Smith et al. 2023).

The extent of future OHU primarily depends on cumulative greenhouse gas emissions, and
thus on the effectiveness of mitigation policies (Fox-Kemper et al. 2021). However, OHU is also
influenced by atmospheric feedbacks and warming rates as well as oceanic ventilation and over-
turning (Marshall et al. 2015; Zelinka et al. 2020). Climate feedbacks such as cloud and albedo feed-
backs alter the radiative balance of the Earth and thus affect the transient climate response, climate
sensitivity, and future ocean heat storage (Williams et al. 2020; Zelinka et al. 2020). Additionally, the
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2.2 Uncertain future of OHU

efficiency at which the ocean transports heat from the surface layer to the deep ocean influences
its capacity for heat storage and canmodulate climate feedbacks by affecting surface warming pat-
terns (Winton et al. 2010; Armour et al. 2013; Andrews et al. 2022).

The majority of OHU occurs in the Southern Ocean (Frölicher et al. 2015), which accounts
for around 67% of global OHU between 1871 and 2017 in an observation-based reconstruction
(Zanna et al. 2019). In climate model simulations from phase 6 of the Coupled Model Intercom-
parison Project (CMIP6; Methods), the Southern Ocean south of 30°S is responsible for 84%
(68–99%) of the global historical OHU from 1850 to 2024, 53% (38–62%) of future OHU from
2024 to 2100 under the low-emissions SSP1-2.6 scenario, and 48% (42–52%) under the high-
emissions SSP5-8.5 scenario (inter-model uncertainty is expressed as 66% likely ranges) (Frölicher
et al. 2015; Shi et al. 2018). The disproportionately large heat uptake in the Southern Ocean is a
direct consequence of the vigorous deep-reaching overturning in this region (Armour et al. 2016).

The overturning in the high-latitude Southern Ocean is driven by strong westerly winds which
provoke upwelling of large volumes of cold water from the deep ocean (Marshall and Speer 2012).

Much of this upwelled water is warmed by the atmosphere before being subducted back into the
ocean interior further northward asmode and intermediate waters, following the upper cell of the
Southern Ocean meridional overturning circulation (Armour et al. 2016; Sallée 2018).

2.2 Uncertain future of OHU
Although robust and precise projections of OHU are paramount for informing climate mitiga-
tion and adaptationmeasures, accurately projectingOHU remains challenging (Cheng et al. 2022)
(Fig. 2.1). The uncertainty of the future cumulative global OHU from 2024 to 2100 is 23–28%
of the multi-model mean (depending on emissions scenario), and the ranges of cumulative OHU
projections for 2100 overlap across scenarios (Fig. 2.1). Uncertainties in futureOHUare large be-
cause cloud feedbacks and oceanic heat sequestration by ocean ventilation andmixing remain no-
toriously challenging to correctly simulate (Frölicher et al. 2015; Ceppi et al. 2017; Zelinka et al. 2020;
Terhaar et al. 2021). The SouthernOcean overturning is particularly difficult to faithfully simulate
in Earth systemmodels (ESMs) such as those participating in CMIP6 (Beadling et al. 2020). Biases
in the baseline state of ESMs are known to have global repercussions on projected climate change,
notably by preconditioning future cloud feedback (Siler et al. 2018; Kajtar et al. 2021; Shin et al. 2023)
and Southern Ocean ventilation (Terhaar et al. 2021; Bourgeois et al. 2022).

One approach to reducing inter-model uncertainties is the method of emergent constraints
(Hall et al. 2019). An emergent constraint identifies a physically grounded relationship between an
observable historical climate variable and an uncertain future climate variable, across an ensemble
of models. Combining this quantitative relationship with observations of the historical variable
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Figure 2.1: Ocean heat uptake in CMIP6 models. Globally integrated cumulative historical and fu-
ture ocean heat uptake relative to the year 2024 under different scenarios and the associated global mean
sea level rise through thermal expansion (see Methods). Thin lines are individual models, while the thick
lines and shading depict respectively the ensemble mean and standard deviation for each scenario. The
coloured bars on the right indicate the 95% confidence interval around the mean OHU in 2100 for each
scenario. Coloured bars are shown for four scenarios (SSP5-8.5 in dark red, SSP3-7.0 in bright red, SSP2-
4.5 in orange, SSP1-2.6 in dark blue), whereas the time series are shown only for the historical period and
the SSP1-2.6 and SSP5-8.5 scenarios. The black curve and grey shading show the observed changes over
1960–2020.

yields a constrained estimate of the uncertain future variable. Emergent constraints canbebroadly
divided into three categories (Sanderson et al. 2021): (i) trend-on-trend constraints that assume a
time invariant model bias that has existed over the historical period and will continue in the fu-
ture (Jiménez-de-la-Cuesta and Mauritsen 2019; Nijsse et al. 2020; Tokarska et al. 2020; Lyu et al. 2021),

(ii) process-based constraints that identify a physical or biochemical bias that causes a mechanis-
tically linked bias in projections of the considered variable (Terhaar et al. 2020; 2021; Bourgeois et al.
2022), and (iii) sensitivity-based constraints where the sensitivity of a system to changes on short
timescales, such as seasonal changes, is related to the response of a system to climate change (Cox
et al. 2013; Kwiatkowski et al. 2017). Trend-on-trend constraints have previously indicated smaller
future OHU and atmospheric warming compared to the unconstrained mean of CMIP6 pro-
jections (Tokarska et al. 2020; Lyu et al. 2021). However, trend-on-trend constraints can fail if the
historically-observed trend is not representative of a time invariant bias. This can occur either be-
cause the past trend has been strongly affected by a particular phase of natural variability (England
et al. 2014; Marvel et al. 2018; Armour et al. 2024), or because the constrained system undergoes a
profound change over the 21st century so that the identified past bias does not persist in the fu-
ture or becomes dwarfed by a larger bias that only emerges in a changing climate (Sanderson et al.
2021). In particular, climate change over recent decades has been characterized by relativelymuted
radiative feedbacks, likely biasing low constrained estimates of future warming based on observed
warming trends (Andrews et al. 2022; Armour et al. 2024).
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Here we show that global OHU undergoes such a profound change over the 21st century that
model biases in pastOHUmay be unable to explain differences in projectedOHU.To narrow the
spread in projectedOHUwe propose a process-based andmechanistically interpretable emergent
relationship. This relationship makes it possible to reduce uncertainties in future OHU by ac-
counting forESMbiases in the baseline state of the SouthernHemisphere as quantifiedbyAntarc-
tic summer sea ice extent.

2.3 Results

2.3.1 Antarctic sea ice as an indicator of Southern Hemisphere climate

Antarctic sea ice extent is an indicator of the climate state of the extratropical Southern Hemi-
sphere. Models with greater sea ice extent under preindustrial conditions tend to have colder sea
surface temperatures across the Southern Ocean (Fig. 2.2b) as well as more cloud cover over the
mid-latitude Southern Ocean (Kajtar et al. 2021; Shin et al. 2023) (Fig. 2.2a), which modulates ra-
diative heat transfer by reducing downwelling shortwave radiation and enhancing downwelling
longwave radiation. Greater sea ice extent is also associated with colder temperatures across the
global deep ocean (Fig. 2.2b), including in deep Atlantic layers mainly ventilated from the North
Atlantic (Fig. 2.A.1). Biases in the temperature of deep ocean waters, much of which ultimately
upwell in the high-latitude Southern Ocean, can thus have cascading effects on Southern Hemi-
sphere sea ice, surface temperatures, and clouds (Luo et al. 2023).
Under future global warming, ESMs with higher present-day sea ice extent have the potential

to lose more sea ice (Kajtar et al. 2021). In particular, under the SSP5-8.5 scenario, many ESMs lose
virtually all of their Antarctic summer (January–February) sea ice by 2100, so that summer sea
ice loss in 2100 is almost equivalent to baseline sea ice extent (Fig. 2.3a). Similarly, models with
greater preindustrial extratropical and equatorial cloud cover simulate a greater future reduction
in cloud cover at these latitudes (Fig. 2.A.2). As a consequence of these links betweenpreindustrial
baseline climate and future changes, ESMswith higher preindustrial Antarctic sea ice extent tend
to experience a greater shift in their simulated Southern Hemisphere climate in the future. This
shift in climate manifests itself through greater warming of the surface atmosphere and ocean
(Fig. 2.3b,c), a more positive global cloud feedback (Fig. 2.3d), and consequently greater OHU
(Fig. 2.4). This additional OHU in models with higher preindustrial Antarctic sea ice extent is
particularly pronounced in the SouthernHemisphere mode and intermediate waters (Fig. 2.A.3)
which tend to transport heat northwards and into the interior ocean (Armour et al. 2016).

The cloud feedback connects Antarctic sea ice extent loss and global OHU. Across the ESM
ensemble, this connection is globally apparent by the end of the 21st century as strong correla-
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Figure 2.2: Atmospheric and oceanic connections to Antarctic sea ice extent in the preindustrial
state. a, Inter-model correlation between preindustrial annual-meanAntarctic sea ice extent and preindus-
trial total cloud cover in the Southern Hemisphere. In red areas, local cloud cover is increased for models
with higher sea ice extent. b, Inter-model correlation between preindustrial annual-mean Antarctic sea ice
extent and preindustrial zonal mean ocean temperature across all ocean basins. In blue areas, local seawater
is colder for models with higher sea ice extent. Black contours show zonal mean potential density relative
to a reference pressure of 2000 dbar from observations (Boyer, Tim P. et al. 2023). In both panels, stippling
indicates regions where the correlation is not significant (𝑝 ≥ 0.05, two-sided).
tions between cloud feedback and Antarctic sea ice extent loss (Fig. 2.A.4a), and between cloud
feedback and global OHU (Fig. 2.A.4b). The global extent of this relationship betweenAntarctic
sea ice loss, cloud feedback and OHU is the result of a northward propagation originating in the
Southern Ocean. The surface warming signal in the ocean and atmosphere related to sea ice loss
first emerges in the southern high latitudes around 1990–2010, gradually spreading northwards
and coveringmost of the SouthernHemisphere by 2030–2050 under SSP5-8.5 (Fig. 2.A.5). This
causes a concomitant spreading of sea ice–related local cloud feedback starting from the South-
ern Ocean and attaining its near-global extent by mid-century (Fig. 2.A.5). Although cloud feed-
back is in general controlled by a number of contributions including cloud amount, altitude, and
optical depth (Zelinka et al. 2016; Ceppi et al. 2017), the signal is apparent in total cloud amount
(Fig. 2.A.2). The northward propagation of these significant inter-model relationships likely re-
sults from anomalous heat transport in the ocean and/or the atmosphere (England et al. 2020a;

England et al. 2020b; Ayres et al. 2022).
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C D

Figure 2.3: Links between preindustrial Antarctic sea ice and Southern Hemisphere climate
change. CMIP6 inter-model relationship between preindustrial Antarctic summer (January–February)
sea ice extent and future sea ice extent loss (a), Southern Hemisphere surface air temperature increase (b),
SouthernHemisphere sea surface temperature increase (c), and global mean cloud feedback parameter (d).
In each panel, the black line shows the least squares linear regression fit, and the Pearson correlation coeffi-
cient 𝑟 and two-sided𝑝-value are given in the upper left corner. The y-axis of all panels represents anomalies
between years 2080–2100 of the high-emissions SSP5-8.5 scenario and the preindustrial state.

Decomposing cloud feedback into its shortwave and longwave radiative components reveals
that the global relationship between sea ice loss and cloud feedback is mostly mediated by the
shortwave component (Fig. 2.A.4c–d), whereas the longwave component remains restricted to
the Southern Ocean by the end of the 21st century. Furthermore, partitioning the excess OHU
into its individual air-sea heat flux components demonstrates that the higherOHUinmodelswith
greater Antarctic sea ice loss is mainly due to increased shortwave-driven OHU in the Southern
Hemisphere and globally increased sensible OHU (Fig. 2.A.6). The increased sensible OHU is a
direct consequence of the stronger atmospheric warming in models with more Antarctic sea ice
loss. The increased shortwave-induced and sensible OHU associated with larger Antarctic sea ice
loss is slightly counteracted by a reduced latent air-sea heat flux at low latitudes (Fig. 2.A.6h). As
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sea ice loss strongly accelerates after 2024, these relationships emerge only for future (2024–2100)
OHU and are not apparent for OHU over the historical (1850–2024) period.
In addition to the connection ofAntarctic sea ice loss with global warming and cloud feedback,

the loss of sea ice itself also has direct local influences (Kay et al. 2014). Any reduction of white sea
ice cover exposes the underlying ocean, allowing more heat to be absorbed. While the additional
OHUunder the previously covered sea ice is small compared to the global OHU (about 6% in the
multi-model mean), this additional warming close to the sea ice edge further accelerates the loss
of sea ice cover through surface albedo feedback.

2.3.2 Emergent constraints on future change

Themechanistic understanding and inter-model relationships presented show that model bias in
baseline sea ice extent in austral summer is a physical indicator of future sea ice loss, surface warm-
ing, and cloud feedback (Fig. 2.3). As cloud feedback mediates future OHU (Fig. 2.A.4), histor-
ical observations of Antarctic sea ice can be used to constrain future OHU (Fig. 2.4). Using the
1980–2020 summer sea ice extent from theOSI SAF satellite observational product (EUMETSAT

Ocean and Sea Ice Satellite Application Facility 2024a) of 4.41 ± 1.00 × 106 km2 to constrain future
OHU results in an estimate of future global OHU between 2024–2100 of 1244 ± 141 ZJ under
SSP1-2.6 (Fig. 2.4a-b) and 2595 ± 209 ZJ under SSP5-8.5 (Fig. 2.4c-d, results for SSP2-4.5 and
SSP3-7.0 are shown in Fig. 2.A.7 and detailed in Table 2.A.2). The constrained median estimate
is 3% higher and 14% less uncertain than the CMIP6 ensemble prior median under SSP1-2.6, and
14% higher and 33% less uncertain under SSP5-8.5.
In all four SSPs considered, the correlation between 1980–2020 sea ice extent and futureOHU

is above 0.6 and statistically significant at the 𝑝 < 0.05 level according to a two-sided Student’s 𝑡-
test (Table 2.A.2). This suggests that the presentedmechanism is robust and explains a substantial
fraction of inter-model spread in future OHU irrespective of the scenario. Given our conserva-
tive choice of predictor uncertainty and available model ensemble sizes (Methods), the difference
between unconstrained and constrainedOHUmean values is statistically significant under SSP2-
4.5 and SSP5-8.5 but not under SSP1-2.6 (𝑝 = 0.11) and SSP3-7.0 (𝑝 = 0.09) according to a
two-sided two-sample Student’s 𝑡-test (Table 2.A.2).

The higher OHU estimates directly translate to greater than currently anticipated future sea
level rise due to thermal expansion. Under SSP1-2.6 the constrained thermosteric global mean
sea level rise from 2024 to 2100 is 15.2 ± 1.7 cm, assuming a constant conversion factor between
OHU and thermosteric sea level rise (see Methods). Under SSP5-8.5, the constrained estimate
is 31.6 ± 2.5 cm. Both estimates are higher and less uncertain than the respective unconstrained
estimates of 14.5 ± 2.0 cm and 29.5 ± 3.8 cm (Table 2.A.2).
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Figure 2.4: Emergent constraint on future global ocean heat uptake. a, Inter-model relationship
between 1980-2020Antarctic summer (January–February) sea ice extent and cumulative globalOHUover
2024–2100 under the SSP1-2.6 scenario. The blue line and shading show the least squares linear regres-
sion fit and its uncertainty (seeMethods), with the Pearson’s correlation coefficient 𝑟 and two-sided 𝑝-value
given in the upper left corner. The dashed vertical line shows satellite observations ofAntarctic summer sea
ice extent averaged over 1980–2020 (EUMETSAT Ocean and Sea Ice Satellite Application Facility 2024a) and
the grey shading shows the associated uncertainty of 1 × 106 km2; this relatively large observational uncer-
tainty ensures we derive a conservative emergent constraint (Methods). b, Unconstrained prior (black) and
constrained posterior (blue) probability density functions of 2024–2100 globalOHU. In greywe show the
prior histogram for 2024–2100 OHU (Methods). c, as panel a but for the SSP5-8.5 scenario. d, as panel b
but for the SSP5-8.5 scenario.
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Themechanismunderlyingour emergent constraint alsohas direct implications for the strength
of cloud feedback and the magnitude of global warming by the end of the 21st century. Present-
dayAntarctic sea ice extent is significantly correlatedwith future cloud feedback and globalwarm-
ing in all four SSPs considered (Table 2.A.2). Using 1980–2020 summer sea ice extent as a predic-
tor, globalmean cloud feedback is constrained to be 19% and 31%higher than theCMIP6median
under SSP1-2.6 and SSP5-8.5, respectively (Fig. 2.5b). Future global mean surface air warming
is constrained to be 3–7% greater than the CMIP6 median (Fig. 2.5c). The uncertainty in the
estimates is reduced by 18% for cloud feedback and by 11% for surface warming under SSP5-8.5
(results for other SSPs are shown in Fig. 2.A.8 and detailed in Table 2.A.2). Present-day sea ice
extent is more strongly correlated with futureOHU (𝑟 = 0.87 under SSP5-8.5) thanwith end-of-
century cloud feedback (𝑟 = 0.71) or surface air warming (𝑟 = 0.61), which iswhy the uncertainty
reduction is larger for OHU.
The tighter constraint onOHUmaybe explained by two factors. First, the correlation between

Antarctic sea ice extent and local cloud feedback is particularly strong over the southern mid-
latitudes where OHU is most efficient (Armour et al. 2016) (Fig. 2.A.4) and where much of the
additional OHU occurs (Fig. 2.A.3). Second, larger baseline Antarctic sea ice is associated with
colder deepwaters (Fig. 2.2b), whose exposure to thewarming atmosphere in the SouthernOcean
can promote OHU through sensible heat flux (Fig. 2.A.6).

A B C

Figure 2.5: Constrained distributions of global OHU, cloud feedback, and warming. Prior and
constrained distributions of (a) cumulative global OHU from 2024 to 2100, (b) global mean cloud feed-
back parameter in 2080–2100, and (c) globalmean surface air temperature (GSAT) anomaly in 2080–2100
relative to the preindustrial. In each panel, distributions are shown for SSP1-2.6 (left) and SSP5-8.5 (right).
The grey circles and grey boxplots show the prior distribution of model values, and the blue and red box-
plots show the constraineddistributions for SSP1-2.6 andSSP5-8.5, respectively. In eachboxplot, thewhite
line shows themedian, the central box spans the likely range (66%), and the whiskers extend to a 95% confi-
dence interval. The constrained values are normally distributed by construction (Methods). Note that the𝑦-axis scale is different between the two SSPs in panels a and c.

To facilitate comparison with previous studies which used past warming trends as predictors
to constrain future OHU (Lyu et al. 2021) or global surface warming (Tokarska et al. 2020),we now
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apply our emergent constraint to the same uncertain variables considered in these two studies.
For future 0–2000m OHU under SSP5-8.5 in 2081–2100 relative to 2005–2019 as in Lyu et al.

(2021),weobtain a constrained estimatewhich is 16% (9%) higher than the unconstrainedCMIP6
median (mean), in contrast to Lyu et al. (2021) whose constrained OHU estimate was lower than
the prior mean (Fig. 2.A.9a–b). Historical Antarctic sea ice extent provides higher predictive skill
for future 0–2000m OHU (𝑟 = 0.9) than does past 0–2000m OHU (𝑟 = 0.72 in Lyu et al.

(2021)). For future global surface air temperature warming under SSP5-8.5 in 2081–2100 rela-
tive to 1850–1900 as in Tokarska et al. (2020), we obtain a constrained estimate which is 5% (7%)
higher than the unconstrained CMIP6 median (mean), again in contrast to the constrained esti-
mate from Tokarska et al. (2020)which was lower than the prior mean (Fig. 2.A.9c–d).

2.3.3 Robustness of the emergent constraint

In these constrained projections we used the satellite-observed summer (January-February) sea
ice extent averaged over 1980-2020 as the observable climate variable. Similar results are obtained
when alternative definitions of the observable variable are employed (Fig. 2.A.10). Different satel-
lite observational products lead to very minor shifts in the constrained OHU projection, indi-
cating that observational uncertainty in present-day sea ice extent is sufficiently small (much less
than the specified uncertainty of 1 × 106 km2 in Fig. 2.4) to obtain robust uncertainty reduction
(Fig. 2.A.10a,d and Methods). Using annual mean sea ice extent or different definitions of the
summer season also yield broadly consistent uncertainty reductions (from −13% to −38%) and
OHU increases (from +3% to +11%) under SSP5-8.5 (Fig. 2.A.10c).

Antarctic sea ice cover shows both inter-annual and multi-decadal variability over the satel-
lite record (Fig. 2.A.11), so that the choice of baseline period can affect our emergent constraint.
Choosing 1980-2000, 1990-2010 or 2000-2020 instead of 1980-2020 as baseline periods within
the satellite record yields constrained OHU estimates of +5%, +8% or +9% above the uncon-
strainedmean, respectively. This relatively small sensitivity stems fromthe large inter-model spread
in Antarctic sea ice extent compared to observed variability since 1980 (Fig. 2.A.11). Reconstruc-
tions of Antarctic sea ice cover over earlier parts of the 20th century and preceding centuries pos-
sess larger uncertainties (Titchner andRayner 2014; Fogt et al. 2022; Dalaiden et al. 2023), yet they also
indicate a negative bias of the multi-model mean annually averaged extent (Fig. 2.A.11). Conse-
quently, choosing different 40-year baseline periods between 1920 and 2000 in these reconstruc-
tions (Methods) leads to a constrained heat uptake between 3–12% higher than the CMIP6mean
under the SSP5-8.5 scenario (Fig. 2.A.10b).

For further robustness testing, we examine the correlation between historical sea ice extent and
future OHU (Fig. 2.4a,c) in an out-of-sample test using 16 models from the CMIP5 ensemble,
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andwe probe the sensitivity of this correlation to the chosenOHU time period and sea ice season-
ality in bothCMIP5 andCMIP6 ensembles (Fig. 2.A.12). In theCMIP6 ensemble, maximal cor-
relation between historical sea ice extent and futureOHUunder SSP5-8.5 is obtained for summer
sea ice extent together with an OHU time period starting at any year after 1850 and ending after
approximately 2070 (Fig. 2.A.12a–b). For time periods ending prior to 2030 the correlation be-
comes statistically insignificant, underlining the fact that themechanismunderlying the emergent
relationship occurs only under future forcing. In the CMIP5 ensemble, correlations are higher
for annual mean sea ice extent, but the temporal structure is similar to CMIP6 with maximal
correlations for OHU periods extending towards the end of the 21st century (Fig. 2.A.12c–d).

The correlation between historical sea ice extent and future OHU is not an artifact of out-
liers or caused by individual model values of sea ice extent or OHU far from the center of the
multi-model distribution (Fig. 2.A.13). A significant positive correlation persists across all con-
sidered SSPs evenwhendiscarding severalmodelswith the highest or lowest values of sea ice extent
(Fig. 2.A.13a,c) andOHU (Fig. 2.A.13b,d). Furthermore, using aHuber loss function instead of
ordinary least squares (OLS) in order to reduce the influence of outliers yields an almost identical
regression slope (131 × 10−6 ZJ/km2 for OLS, 130 × 10−6 ZJ/km2 for Huber) and coefficient of
determination (𝑟2 = 0.75 for both methods under SSP5-8.5).
The robustness of the constrained results can further be corroborated by observations of cloud

cover and deep-ocean temperatures. Though these observations are not readily used as formal pre-
dictors in an emergent constraint (seeMethods), they show that ensemble mean simulated global
deep-ocean temperatures are 7% higher than observations and that simulatedmid-latitude South-
ern Ocean (30–50°S) cloud cover is 7% less than in satellite observations. The underestimation
of cloud cover and overestimation of deep ocean temperatures in ESMs concur with a negative
bias in Antarctic sea ice extent (Fig. 2.2), and with underestimated cloud feedback, atmospheric
warming, andOHUover the 21st century in the unconstrainedCMIP6 ensemblemean (Figs. 2.3
and 2.5).

2.4 Discussion
The increased estimates of OHU and global warming found here contrast with previous studies
that suggest an overestimation of the future warming by CMIP6 ESMs based on past warming
andOHU trends (Jiménez-de-la-Cuesta andMauritsen 2019; Nijsse et al. 2020; Tokarska et al. 2020; Lyu

et al. 2021). Apossible explanation for this difference is the limited length and representativeness of
the observational records from 1980 to 2015 employed in these studies for the underlying long-
term climate change (Andrews et al. 2022; Armour et al. 2024). The 1980-2015 period has been
marked by patterns of sea surface temperature change associated with weaker climate feedbacks
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than expectedunder long-termclimate change (Andrews et al. 2022). Thesepatterns,which include
surface cooling in the eastern tropical Pacific and parts of the Southern Ocean, are less likely than
5% across CMIP5 andCMIP6 simulations (Wills et al. 2022). This mismatch betweenmodels and
observations can bias emergent constraints that use trends over the 1980-2015 period (Andrews

et al. 2022; Armour et al. 2024). More generally, climate variability is a critical confounding factor
when short-length observational records are employed to constrain projections. As an example,
shifting the 2005–2019 observational period for past OHU trends used in Lyu et al. (2021) only
six years earlier (1999–2013) results in statistically insignificant relationship between past OHU
trend and future OHU (Fig. 2.A.14).

By the same token, satellite observations of Antarctic sea ice could coincide with a period of
anomalously large or small sea ice extent, biasing our emergent constraint. To test our results for
such potential bias, we used different baseline periods for sea ice extent, including periods before
the satellite era for which reconstructions of Antarctic sea ice are available (Titchner and Rayner

2014; Fogt et al. 2022; Dalaiden et al. 2023). We find that our mechanism-based emergent constraint
consistently reduces uncertainty and increasesOHUprojections, evenwith the substantial uncer-
tainty we attribute to the predictor (Methods). This robustness of our constraint stems from the
use of an observable mean-state variable—instead of observable trends, which tend to be more
sensitive to transient (decadal) anomalies—and from the strength of the emergent relationship of
Fig. 2.4c (𝑟 = 0.87).

Another potential factor for the difference between present and previous estimates of OHU
and atmospheric warming (Jiménez-de-la-Cuesta and Mauritsen 2019; Nijsse et al. 2020; Tokarska et

al. 2020; Lyu et al. 2021) is the inability of past trends to account for a future regime shift in the
climate system (Marvel et al. 2018; Armour et al. 2024; Liang et al. 2024). The climatic relationships
and feedbacks underpinning our emergent constraint are dependent on a shift in the Southern
Hemisphere climate state under pronounced greenhouse forcing, epitomized by the near-total
disappearance of Antarctic summer sea ice under a high-emissions scenario (Fig. 2.3a). Indeed,
the constraint is stronger for higher emissions scenarios (Fig. 2.4), and is invalid for past OHU
(Methods), indicating that the processes presented here dominate inter-model spread only under
moderate to strong forcing. Similarly, the OHU constraint based on past warming trends (Lyu et
al. 2021) is insignificant for initial time periods ending before 2010 but becomes stronger for time
periods chosen later in the 21st century (Fig. 2.A.14), which suggests that the potential regime
shift connected to cloud feedback (Fig. 2.A.5) is necessary for obtaining a strong constraint. Al-
thoughAntarctic sea ice extent has long seemed relatively unresponsive to anthropogenic forcing,
the recently observed abrupt sea ice loss in 2016 and the historical minimum extent anomaly in
2023 have highlighted the possibility of an ongoing regime shift (Hobbs et al. 2024). These ob-
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served sea-ice changes could foreshadow stronger Southern Hemisphere climate feedbacks and
ocean warming in coming decades (Kang et al. 2023).
While our results suggest higher warming and heat uptake than theCMIP6multi-model mean

and not smaller warming and heat uptake as previously suggested (Nijsse et al. 2020; Tokarska et al.

2020; Lyu et al. 2021), they do not invalidate previous results indicating that the very strong warm-
ing, cloud feedback and climate sensitivity of high-endCMIP6 projections is unlikely (Jiménez-de-

la-Cuesta and Mauritsen 2019; Nijsse et al. 2020; Tokarska et al. 2020; Cesana and Del Genio 2021; Lyu

et al. 2021; Myers et al. 2021). Instead, our results show that accounting for biases in the Southern
Ocean mean state in the latest generation of climate models implies larger future climate warm-
ing. Other shared biases inCMIP6models could potentially imply additional positive or negative
biases in CMIP6 climate projections. Endeavours to identify and correct such biases thus remain
of utmost importance.

The relationships betweenoceanic, cryospheric and atmospheric variables revealed in this study
provide guidance for the reduction of important mean state biases in ESMs. Specifically, they
highlight the need for an accurate representation of clouds in ESMs, but also demonstrate the
crucial role of the deep-ocean overturning circulation. Deep ocean temperatures explain an im-
portant part of differences in present-day Antarctic sea ice and clouds (Fig. 2.2) and thereby influ-
ence the future climate change in CMIP6models. Improving ocean circulation and hydrography
for climate projections therefore requires additional attention (Luo et al. 2023), alongside efforts
to improve the simulation of clouds (Hyder et al. 2018; Zelinka et al. 2020).

Overall, our results imply that potent feedback mechanisms at mid to high southern latitudes
may cause future ocean heat uptake to be higher than expected from previous assessments. In-
creased ocean heat uptake would cause more thermosteric sea level rise, more damage to marine
ecosystems and create additional risks to socio-economic systems. This prospect calls for improved
projections of coupled ocean-atmosphere climate feedbacks, as well as continued monitoring of
variability and trends across the Southern Ocean.

2.5 Methods
§ Model output We use output from 28 Earth system models participating in the Coupled
Model Intercomparisonproject, phase 6 (CMIP6; Table 2.A.1) (Eyring et al. 2016). Weselected one
ensemble member per model based on the availability of necessary output variables in the prein-
dustrial, historical and SSP5-8.5 CMIP6 experiments, although output from SSP1-2.6, SSP2-4.5
and SSP3-7.0 scenario experiments is also used. Anomalies relative to the preindustrial state for
variables such as heat fluxes, sea ice extent, or thermal expansionwere computedby subtracting the
matching preindustrial-experiment period from the historical and future variable output starting
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from the correct experiment branch point. Note that the raw preindustrial model output was
directly subtracted from the historical and SSP output, without prior processing such as fitting a
polynomial regression (Silvy et al. 2022). This procedure removes the effect of model drift in the
calculated changes (Gupta et al. 2013).

Past and future OHU are defined as OHU over the periods 1850–2024 and 2024–2100, re-
spectively. Since the CMIP6 historical scenario covers 1850–2014 and the SSP scenarios start
from 2015, the historical OHU is extended until 2024 using the SSP5-8.5 scenario. Using differ-
ent future scenarios yields similar results as the differences across SSP experiments are small over
the 2015-2024 period (Riahi et al. 2017).

OHUis defined as the anomalous net air-sea heat flux (CMIPvariablehfds) integrated in space
and cumulatively integrated in time:

OHU(𝑡) = ∫𝑡𝑡0 ∫𝒜 𝜙(𝑥, 𝑦, 𝑡′) d𝑥 d𝑦 d𝑡′, (2.1)

where 𝜙 is the anomalous net heat flux into the ocean relative to the preindustrial period (units of
Wm−2), 𝑥 and 𝑦 are longitude and latitude,𝒜 is the surface area of the ocean, and 𝑡0 = 2024 for
future OHU.
Antarctic sea ice extent is defined as the total area in which the monthly mean sea ice concen-

tration (CMIP variable siconc) exceeds 15%.

§ Estimation of sea level rise due to thermal expansion Weuse global mean thermal expan-
sion (CMIP variable zostoga) as ameasure of the direct effect ofOHUon sea level. This variable
is available for 20 out of the 28 models. Future global mean sea level rise is strongly correlated to
future OHU (𝑟 = 0.97, 𝑝 < 0.05 two-sided), allowing a direct conversion of OHU to sea level
rise based on their ratio of 1.22 × 10−25mJ−1.

§ Climate feedback parameters For the quantification of cloud feedback and other radiative
feedbacks, we compute spatially resolved climate feedbackparameters under the SSP5-8.5 scenario
using the radiative kernelmethod (Soden andHeld2006)withkernels basedon theERA5 reanalysis
(Huang and Huang 2023). The cloud feedback parameter is computed by correcting the cloud
radiative effect (CRE) for non-cloud contributions from other feedback terms such as surface
albedo and water vapor (Soden et al. 2008).

§ Emergent constraint The posterior probability density functions (PDFs) of ocean heat
uptake constrained by sea ice extent observations were calculated using a previously established
method (Cox et al. 2013; Kwiatkowski et al. 2017; Cox et al. 2018). Given a set of𝑁 response variables
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𝑦𝑖 with the predictors 𝑥𝑖 and their least-squares linear fit 𝑓(𝑥) = 𝑎 + 𝑏𝑦, the prediction error is
(Cox et al. 2018) 𝜎𝑓(𝑥) = 𝑠√1 + 1𝑁 + (𝑥 − 𝑥̄)2𝑁𝜎2𝑥 . (2.2)

In the above equation, 𝑠2 is the quantity minimized by the linear fit,

𝑠2 = 1𝑁 − 2 𝛮∑𝑖=1 (𝑦𝑖 − 𝑓(𝑥𝑖))2, (2.3)

while 𝑥̄ and 𝜎2𝑥 are the ensemble mean and variance of the predictors, respectively. Finally, the
constrained PDF 𝑃(𝑦) can be calculated as𝑃(𝑦) = ∫∞−∞ 𝑃(𝑦|𝑥)𝑃(𝑥) d𝑥, (2.4)

where 𝑃(𝑥) is the observational distribution of the predictor, and𝑃(𝑦|𝑥) = 1√2𝜋𝜎𝑓(𝑥) exp(−(𝑦 − 𝑓(𝑥))22𝜎𝑓(𝑥)2 ) (2.5)

is the conditional probability density of 𝑦 given 𝑥.
Theobservational distribution𝑃(𝑥) is assumed tobenormalwithmean and standarddeviation

from observations. Where the uncertainty of the observations is not available, an uncertainty
is conservatively estimated. For the emergent constraint on future OHU using summer sea ice
extent from OSI SAF satellite observations (Fig. 2.4), we use 𝜎obs = 1 × 106 km2 (see below for
a discussion of this uncertainty). Our results are robust to reasonable changes of this parameter
(Fig. 2.A.10d).

§ Observational data Our principal source of sea ice extent observations for use in the emer-
gent constraint is the OSI SAF Sea Ice index (EUMETSAT Ocean and Sea Ice Satellite Application

Facility 2024b) which is based on Advanced Microwave Scanning Radiometer (AMSR) and Spe-
cial Sensor Microwave Imager/Sounder (SSMIS) instruments, with daily data available starting
in 1978. For the sensitivity analysis (Fig. 2.A.10), we use two additional satellite microwave ra-
diometry products covering the period 1978–2023 (the NASATeam (DiGirolamo et al. 2022) and
Bootstrap (Comiso and Gersten 2023) products), as well as reconstructions of past sea ice extent
fromHadISST2.2 (Titchner and Rayner 2014; Hobbs et al. 2016) and refs. (Fogt et al. 2022; Dalaiden

et al. 2023).
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Interior ocean temperature and salinitywere obtained from theWorldOceanAtlas 2018 (Boyer,
Tim P. et al. 2023), and potential density calculated from these variables using the Gibbs Seawater
(GSW) toolbox for Python (McDougall and Barker 2011).

Ocean heat uptake estimates are from a recent analysis of ocean heat content products (Minière

et al. 2023) including the Global Climate Observing System (Schuckmann et al. 2020).

§ Uncertainty in sea ice extent observations An estimate of the total uncertainty in daily sea
ice concentration due to algorithm and ‘smearing’ effects from grid interpolation is provided in
the OSI SAF sea ice concentration data (EUMETSATOcean and Sea Ice Satellite Application Facility

2024a). However, this uncertainty cannot be simply propagated to the calculation of sea ice ex-
tent due to spatial and temporal error correlations (Wernecke et al. 2022). An assessment of Arctic
sea ice extent uncertainty from a similar satellite observation product has found that the uncer-
tainty inminimum sea ice area in the Arctic is only half of the inter-product spread. Additionally,
instrument uncertainties have previously been found to be only 0.036 × 106 km2 for Antarctic
February sea ice extent in comparable satellite-based sea ice products (Meier and Stewart 2019).

An alternative approach to gauge the uncertainty of the sea ice extent estimate is to assess the
spread of estimates computed fromdifferent products. The three satellite-based sea ice concentra-
tion products we testedwhich use theOSI SAF (EUMETSATOcean and Sea Ice Satellite Application

Facility 2024a), Bootstrap (Comiso and Gersten 2023), and NASA Team (DiGirolamo et al. 2022) al-
gorithms only differ by 0.38 ± 0.23 × 106 km2 in their January-February sea ice extent on average.

Reconstructions of sea ice extent covering decades and centuries preceding the satellite era have
larger uncertainties, as illustrated by the spread across the three products (Fig. 2.A.11). Nonethe-
less, there is good agreement between the reconstruction of Fogt et al. (2022) and that of Dalaiden

et al. (2023) over the overlapping period, whereas the HadISST2.2 reconstruction shows large,
likely spurious step-like variability. We therefore deem the reconstructions of refs. (Fogt et al.

2022; Dalaiden et al. 2023) to be the most reliable. We use these two reconstructions of annual
mean sea ice extent to estimate the range of multi-decadal variability across 40-year periods. We
find a maximum difference in sea ice extent between 40-year periods of 0.23 × 106 km2 for the
period 1850–1980 in the reconstruction of Dalaiden et al. (2023), and a maximum difference of0.13 × 106 km2 for the period 1905–1980 in the reconstruction of Fogt et al. (2022). This is com-
parable to the CMIP6 multi-model average of historical sea ice extent standard deviation across
40-year periods between 1850–1980 of 0.26 × 106 km2. This measure of sea ice multi-decadal in-
ternal variability in observations andmodels is an order ofmagnitude smaller than the inter-model
standard deviation of 1850–1980 mean sea ice extent of 3.3 × 106 km2.

In summary, our best estimate of the uncertainty of sea ice extent would be the sum of the un-
certainty estimated from the spread between different products (0.38 ± 0.23 × 106 km2) and the
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2 Increased future ocean heat uptake constrained by Antarctic sea ice extent

uncertainty that arises from internal variability (0.23 × 106 km2). Here we choose a rather large
observational uncertainty of 𝜎obs = 1 × 106 km2 to derive a conservative emergent constraint.
Varying this parameter does not change the central constrained estimate but influences the uncer-
tainty reduction (Fig. 2.A.10d).

§ Constraint on past ocean heat uptake We find no significant emergent relationship be-
tween baseline Antarctic sea ice and past historical OHU. The inter-model correlation coefficient
between January-February Antarctic sea ice extent and 1850–2024 OHU is 𝑟 = −0.03 for prein-
dustrial mean sea ice extent and 𝑟 = −0.04 for 1980–2020 mean sea ice extent.

§ Alternative predictors The robustness of the constrained result could further be tested by
using Southern Ocean cloud cover or deep-ocean temperatures as predictors to constrain OHU,
as both are mechanistically linked to Antarctic sea ice extent (Fig. 2.2). However, a direct com-
parison between observed and modelled cloud cover requires sampling the CMIP6 ESMs at the
same time and location as satellites do. Although this can be done with satellite simulators in
ESMs, only 5 out of the 28 ESMs considered here provide this output. In the case of mean deep-
ocean temperature, the limited spatio-temporal density of historical temperature measurements
below 2000meters depth entails that such a predictor would have sizeable uncertainty. Moreover,
we find that the relationship between mean deep-ocean temperature and future OHU across the
model ensemble (𝑟 = −0.44, 𝑝 < 0.05) is not as strong and linear as the presently used emergent
relationship.
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Data availability

Observational and model data used in this study are available at the following locations:

• CMIP6 model output: https://esgf-node.llnl.gov/projects/cmip6/

• World Ocean Atlas ocean temperature and salinity data: https://www.ncei.noaa.go
v/archive/accession/NCEI-WOA18

• Radiative kernels fromHuang and Huang (2023): https://doi.org/10.17632/vmg3s
67568

• Ocean heat content dataset from Minière et al. (2023): available from the corresponding
author upon request.

• Cloud cover observational data: https://doi.org/10.24381/cds.68653055

• OSI SAF sea ice extent data: https://doi.org/10.24381/cds.3cd8b812

• HadISST2.2 sea ice extent data: https://www.metoffice.gov.uk/hadobs/hadiss
t2/data/download.html

• Sea ice extent reconstruction from Fogt et al. (2022): https://doi.org/10.6084/m9.f
igshare.c.5709767.v1.

• Bootstrap algorithm sea ice extent data: https://nsidc.org/data/nsidc-0079/ve
rsions/4#anchor-1.
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2 Increased future ocean heat uptake constrained by Antarctic sea ice extent

• NASA Team algorithm sea ice extent data: https://climatedataguide.ucar.edu/
climate-data/sea-ice-concentration-data-nasa-goddard-and-nsidc-bas
ed-nasa-team-algorithm
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Figure 2.A.1: Relationship between deep ocean temperature and preindustrial surface climate. a,
Inter-model correlation between preindustrial local deep ocean temperature (averaged over 2000-4000 m
depth) and preindustrial Antarctic annual mean sea ice extent. b, Inter-model correlation between prein-
dustrial globalmeandeep ocean temperature (averaged over 2000-4000mdepth) andpreindustrial local to-
tal cloud cover. In bothpanels, stippling indicates regionswhere the correlation is not significant (𝑝 ≥ 0.05,
two-sided).
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Figure 2.A.2: Changes in cloud cover. a, Change in total cloud cover in 2080-2100 under SSP5-8.5
relative to preindustrial. b, Inter-model correlation between local preindustrial cloud cover and local cloud
cover change. Blue regions indicate that models with high local initial cloud cover lose more local cloud
cover. In panel a, the unit of % is the unit of total cloud cover and does not refer to a relative change. In
panel b, stippling indicates regions where the correlation is not significant (𝑝 ≥ 0.05, two-sided).
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Figure 2.A.3: Zonal mean ocean warming related to preindustrial sea ice. Correlation coefficient
across the ensemble of CMIP6 models between preindustrial annual mean Antarctic sea ice extent and
zonal mean ocean warming in 2080–2100 under SSP5-8.5 relative to preindustrial. Red shading indicates
regions where models with more preindustrial sea ice tend to have more ocean warming in the future sce-
nario. Stippling indicates regions where the correlation is not significant (𝑝 ≥ 0.05, two-sided).
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Figure 2.A.4: Relationship between the local cloud feedback and anomalies in sea ice extent and
OHU. Inter-model correlation across CMIP6models under SSP5-8.5 between a, local net cloud feedback
parameter and Antarctic summer sea ice extent loss by 2080-2100; b, local net cloud feedback parameter
and total ocean heat uptake from2024–2100; c, as for a butwith shortwave cloud feedback parameter; and
d, as for a but with longwave cloud feedback parameter. Stippling indicates regions where the correlation
is not significant (𝑝 ≥ 0.05, two-sided). In panels a, c and d, red areas indicate locations wheremodels with
greater Antarctic sea ice loss tend to have more positive local cloud feedback. In panel b, red areas indicate
locations where models with more positive local cloud feedback tend to have greater global 2024–2100
OHU.
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Figure 2.A.5: Time evolution of sea ice–related climate change. Inter-model correlation across
CMIP6 models under SSP5-8.5 between preindustrial Antarctic summer sea ice extent and (left column)
local surface air temperature anomaly, (middle column) local sea surface temperature anomaly, and (right
column) local cloud feedback parameter during progressive 20-year periods between 1970 and 2050. In all
panels, stippling indicates regions where the correlation is not significant (𝑝 ≥ 0.05, two-sided).
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Figure 2.A.6: Relationship between sea ice loss and historical and future OHU components. Left
column: Inter-model correlation between total Antarctic summer sea ice loss and historical 1850–2024
total OHU (a) as well as OHU from shortwave (c), longwave (e), latent (g), and sensible heat fluxes (i).
Right column: As left column, but for the future 2024–2100 period. In all panels, stippling indicates
regions where the correlation is not significant (𝑝 ≥ 0.05, two-sided).

98



2.A Supplementary Information

D
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Figure 2.A.7: Emergent constraint on future global ocean heat uptake under SSP2-4.5 and SSP3-
7.0. a, Inter-model relationship between 1980-2020 Antarctic summer (January–February) sea ice extent
and cumulative global OHU over 2024–2100 under the SSP2-4.5 scenario. The orange line and shading
show the least squares linear regression fit and its uncertainty (seeMethods), with the Pearson’s correlation
coefficient 𝑟 and two-sided 𝑝-value given in the upper left corner. The dashed vertical line shows satellite
observations of Antarctic summer sea ice extent averaged over 1980–2020 EUMETSAT Ocean and Sea Ice
Satellite Application Facility 2024a and the grey shading shows the associated uncertainty of 1 × 106 km2;
this relatively large observational uncertainty ensures we derive a conservative emergent constraint (Meth-
ods). b, Unconstrained prior (black) and constrained posterior (orange) probability density functions of
2024–2100 globalOHU. In greywe show the prior histogram for 2024–2100OHU(Methods). c, as panel
a but for the SSP3-7.0 scenario. d, as panel b but for the SSP3-7.0 scenario.
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A B C

Figure 2.A.8: Constrained distributions of global OHU, cloud feedback, and warming under
SSP2-4.5 and SSP3-7.0. Prior and constrained distributions of (a) cumulative global OHU from 2024
to 2100, (b) global mean cloud feedback parameter in 2080–2100, and (c) global mean surface air temper-
ature (GSAT) anomaly in 2080–2100 relative to the preindustrial. In each panel, distributions are shown
for SSP2-4.5 (left) and SSP3-7.0 (right). The grey circles and grey boxplots show the prior distribution of
model values, and the yellow and red boxplots show the constrained distributions for SSP2-4.5 and SSP3-
7.0, respectively. In each boxplot, the white line shows the median, the central box spans the likely range
(66%), and the whiskers extend to a 95% confidence interval. The constrained values are normally dis-
tributed by construction (Methods). Note that the 𝑦-axis scale is different between the two SSPs in panels
a and c.
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Figure 2.A.9: Emergent constraints on previously publishedmetrics. a, Inter-model relationshipbe-
tween 1980-2020Antarctic summer (January–February) sea ice extent and 0–2000mOHU in 2081–2100
relative to 2005–2019 under the SSP5-8.5 scenario (as in ref. Lyu et al. 2021). The red line and shading show
the least squares linear regression fit and its uncertainty (see Methods), with the Pearson’s correlation co-
efficient 𝑟 and two-sided 𝑝-value given in the upper left corner. The dashed vertical line shows satellite
observations of Antarctic summer sea ice extent averaged over 1980–2020 EUMETSAT Ocean and Sea Ice
Satellite Application Facility 2024a and the grey shading shows the associated uncertainty of 1 × 106 km2.
b, Unconstrained prior (black) and constrained posterior (red) probability density functions of 0–2000m
global OHU. In grey we show the prior histogram for 0–2000m OHU. c, as panel a but for global mean
atmospheric surface warming in 2081–2100 relative to 1850–1900 under the SSP5-8.5 scenario (as in
ref. Tokarska et al. 2020). d, as panel b but for global mean atmospheric surface warming as in panel c.
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A B

C D

Figure 2.A.10: Robustness of emergent constraint to parameter choices. Prior OHU histograms
and probability density functions (PDFs) as in Fig. 2.4, and posterior PDFs obtained fromdifferent param-
eter choices. a, Different satellite January–February sea ice extent observation sources: OSI SAF (blue),
Bootstrap (orange), and NASA Team (green) using different time periods (solid: 1980–2000, dashed:
1990–2010, dotted: 2000–2020). b, Different pre-satellite era yearly sea ice extent observation sources:
HadISST2.2 (blue), and reconstructions from ref.Dalaiden et al. 2023 (red) and ref.Fogt et al. 2022 (orange),
using different time periods (solid: 1920–1960, dashed: 1940–1980, dotted: 1960–2000). c, Differ-
ent season definitions for sea ice extent baseline from the OSI SAF satellite product EUMETSAT Ocean
and Sea Ice Satellite Application Facility 2024a: yearly (blue), January-February–March (orange), February-
March (green), January-February (red), July-August-September (purple). d, Different observational un-
certainties for January–February sea ice extent from the OSI SAF satellite product: 0.2 × 106 km2 (blue),
0.5 × 106 km2 (orange), 1 × 106 km2 (green), 1.5 × 106 km2 (red), 2 × 106 km2 (purple), 3 × 106 km2

(brown).
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Figure 2.A.11: Time series of observed and simulated Antarctic sea ice extent. Antarctic sea ice
extent simulated by individual CMIP6models (thin grey lines) and in the ensemblemean (bold black line),
and in observational products (colored lines). Model time series extend to 2100 under SSP1-2.6 (a,b) and
SSP5-8.5 (c,d). Yearly values are calculated for (left column) January–February, and (right column) the
annual mean.
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Figure 2.A.12: Sea ice – OHU correlation in CMIP5 and CMIP6 for different values of OHU
time period. Heatmaps of the correlation coefficient between 1980–2020 Antarctic (left column) annual
or (right column) January–February sea ice extent andglobalOHUin (a–b)CMIP5underRCP8.5 forcing
and (c–d) CMIP6 under SSP5-8.5 forcing, for different OHU time periods. Stippling indicates parameter
values where the sea ice – OHU correlation is not statistically significant (𝑝 >= 0.05, two-sided).
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Figure 2.A.13: Robustness of sea ice – OHU correlation to removing extreme model values.
Heatmaps of the correlation coefficient between 1980–2020 Antarctic summer sea ice extent and future
(2024–2100) global OHU under (a–b) SSP1-2.6 and (c–d) SSP5-8.5 when removing a number of mod-
els with the highest or lowest sea ice extent (left column), and the highest or lowest future OHU (right
column). Stippling indicates parameter values where the sea ice – OHU correlation is not statistically sig-
nificant (𝑝 >= 0.05, two-sided).
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Figure 2.A.14: Sensitivity of OHU constraint based on past warming. Heatmap of the correlation
coefficient between pastOHUand future (2081–2100 vs. past)OHUamongCMIP6models under SSP5-
8.5 forcing for different choices of the start and end year of the past time period.
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Model Modeling center Reference missing SSPs1

CanESM5 CCCma Swart et al. 2019 —
CanESM5-CanOE2 —
CMCC-CM2-SR5 CMCC Cherchi et al. 2019 —
CMCC-ESM2 Lovato et al. 2022 —
CNRM-CM6-1 CNRM-CERFACS Voldoire et al. 2019 —
CNRM-CM6-1-HR —
CNRM-ESM2-1 Séférian et al. 2019 —
ACCESS-ESM1-5 CSIRO Ziehn et al. 2020 —
ACCESS-CM2 CSIRO-ARCCSS Bi et al. 2020 —
EC-Earth3 EC-Earth-Consortium Döscher et al. 2022 —
EC-Earth3-CC ssp126, ssp245, ssp370
EC-Earth3-Veg —
EC-Earth3-Veg-LR —
IPSL-CM6A-LR IPSL Boucher et al. 2020 —
MIROC6 MIROC Tatebe et al. 2019 —
HadGEM3-GC31-LL MOHC Andrews et al. 2020 ssp370
HadGEM3-GC31-MM ssp245, ssp370
UKESM1-0-LL Sellar et al. 2019 —
MPI-ESM1-2-HR MPI-M Gutjahr et al. 2019 —
MPI-ESM1-2-LR —
MRI-ESM2-0 MRI Yukimoto et al. 2019 —
GISS-E2-1-G NASA-GISS Kelley et al. 2020 —
CESM2 NCAR Danabasoglu et al. 2020 —
CESM2-WACCM —
NorESM2-LM NCC Seland et al. 2020 —
NorESM2-MM —
GFDL-CM4 NOAA-GFDL Held et al. 2019 ssp126, ssp370
GFDL-ESM4 Dunne et al. 2020 ssp126

Table 2.A.1: CMIP6 models used in this study. 1Models for which essential output variables (hfds
and siconc) are unavailable for any of the SSP1-2.6, SSP2-4.5, or SSP3-7.0 scenarios.
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2 Increased future ocean heat uptake constrained by Antarctic sea ice extent

Future scenario OHU (ZJ) SLR (cm) ΔGSAT (°C) 𝜆cloud (Wm−2 K−1)
SSP1-2.6
(𝑛 = 25) corr(𝑋, SIE) 𝑟 = 0.66∗ 𝑟 = 0.66∗ 𝑟 = 0.45∗ 𝑟 = 0.64∗

prior 1205 ± 163 14.7 ± 2.0 2.25 ± 0.52 0.43 ± 0.47
constrained 1244 ± 141 15.2 ± 1.7 2.36 ± 0.51 0.51 ± 0.41

SSP2-4.5
(𝑛 = 26) corr(𝑋, SIE) 𝑟 = 0.82∗ 𝑟 = 0.82∗ 𝑟 = 0.56∗ 𝑟 = 0.66∗

prior 1528 ± 178 18.6 ± 2.2 3.20 ± 0.63 0.40 ± 0.43
constrained 1678∗ ± 129 20.5∗ ± 1.6 3.36 ± 0.58 0.48 ± 0.37

SSP3-7.0
(𝑛 = 24) corr(𝑋, SIE) 𝑟 = 0.64∗ 𝑟 = 0.64∗ 𝑟 = 0.62∗ 𝑟 = 0.63∗

prior 1981 ± 308 24.2 ± 3.8 4.17 ± 0.82 0.24 ± 0.48
constrained 2193 ± 270 26.7 ± 3.3 4.48 ± 0.73 0.42 ± 0.42

SSP5-8.5
(𝑛 = 28) corr(𝑋, SIE) 𝑟 = 0.87∗ 𝑟 = 0.87∗ 𝑟 = 0.61∗ 𝑟 = 0.71∗

prior 2273 ± 314 27.7 ± 3.8 5.36 ± 0.93 0.48 ± 0.42
constrained 2595∗ ± 208 31.6∗ ± 2.5 5.52 ± 0.83 0.63∗ ± 0.35

Table 2.A.2: Emergent constraints across scenarios. For each variable and each SSP, this table gives
the inter-model correlation (Pearson’s 𝑟-value) between 1980–2020 Antarctic summer sea ice extent (SIE)
and the respective future variable (𝑋), as well as the unconstrained and constrained median values of 𝑋.
Correlation 𝑟-values with an asterisk indicate significant correlations at the 𝑝 < 0.05 level according to
a two-sided Student’s 𝑡-test. Constrained values with an asterisk indicate significant difference between
unconstrained and constrained mean values at the 𝑝 < 0.05 level according to a two-sided Student’s 𝑡-
test. Uncertainty ranges express the 66% likely range. Variable abbreviations stand for ocean heat uptake
(OHU), global mean sea level rise from thermal expansion (SLR), global mean surface air temperature
warming (ΔGSAT), and global mean cloud feedback parameter (𝜆cloud); see Methods.
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Abstract

The global ocean takes up over 90% of the added heat in the climate system due to anthropogenic
emissions, thereby buffering climate change at the Earth’s surface. A key metric to quantify the
role of the oceanic processes removing this heat from the atmosphere and storing it in the ocean is
the ocean heat uptake efficiency (OHUE), defined as the amount of ocean heat uptake per degree
of global surfacewarming. Despite the importance ofOHUE, there remain substantial uncertain-
ties concerning the physical mechanisms controlling its magnitude in global climate model simu-
lations: oceanmixed layer depth, Atlanticmeridional overturning circulation (AMOC) strength,
and upper ocean stratification strength have all been previously proposed as controlling factors.
In this study, we analyze model output from an ensemble of 28 climate models from the Cou-

pledModel Intercomparison Project, phase 6 (CMIP6), in order to resolve these apparently diver-
gent explanations. We find that stratification in the mid-latitude Southern Ocean is a key model
property setting the value of OHUE due to its influence on Southern Ocean overturning. The
previously proposed role of theAMOCforOHUE is explainedby a linkage of stratificationmodel
biases between the subpolarNorthAtlantic and the SouthernOcean. Our analysis thus reconciles
previous attempts at explaining controls onOHUE, and highlights the importance of interlinked
model biases across variables and geographical regions.

3.1 Introduction

The global ocean buffers anthropogenic climate change by taking up excess heat and carbon from
the atmosphere. Since the preindustrial era, over 90% of the additional heat that has entered the
Earth system as a result of changes in the Earth’s radiative balance has been stored in the ocean
(Schuckmann et al. 2020; Forster et al. 2021). This ocean heat uptake (OHU) is a key process deter-
mining the sensitivity of the climate system to external perturbations, in particular to radiative
forcing from increased atmospheric greenhouse gas concentrations.
More than half of the observed increase in ocean heat content (OHC) is concentrated inwaters

shallower than 700m depth (Schuckmann et al. 2020). Under increased radiative forcing, anoma-
lous air-sea heat fluxes enter the ocean through its surface and quickly warm the oceanmixed layer
on seasonal to interannual timescales, whereas the deep ocean (below 2000m depth) is more iso-
lated from the atmosphere and is warmed on timescales of decades to centuries (Cheng et al. 2022).
Heat is fluxed towards the deep ocean through a multitude of processes, including subduction
from the mixed layer (Marzocchi et al. 2021), mean downwelling flows and vertical mixing (Exar-
chou et al. 2015), and (sub-)mesoscale eddy processes contributing notably to isopycnal mixing
(Gregory 2000; Morrison et al. 2016).
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3.1 Introduction

A key metric to quantify the efficiency of these processes at hiding heat from the atmosphere
under transient climate change is theOHU efficiency (OHUE), defined as the rate of global OHU
per degree of globalmean surfacewarming (e.g., Gregory andMitchell 1997; Gregory et al. 2023),with
units of Wm−2K−1:

OHUE = OHU/Δ𝑇, (3.1)

where OHU is the increase in OHC relative to preindustrial levels expressed as a flux of energy
per unit global surface area, and Δ𝑇 is the global mean surface air temperature anomaly relative
to preindustrial levels.

In global climatemodel (GCM) simulations of transient climate change,OHUEestimates span
a factor of two across different models (Gregory et al. 2023), due to inter-model spread in both
OHU (e.g., Vogt et al. 2024) and transient surface warming projections (e.g.,Meehl et al. 2020). In an
attempt to determine the source of this uncertainty and tofindpotential observational constraints
on OHUE, previous studies have proposed a number of oceanic metrics that control OHUE in
GCMs participating in successive phases of theCoupledModel Intercomparison Project ((CMIP;

Eyring et al. 2016)). High-latitude ocean mixed layer depths were first identified as a possible con-
trol of transient warming rates in the ocean and atmosphere using the CMIP3 ensemble (Boé et al.
2009). Subsequently, the strength of the Atlantic Meridional Overturning Circulation (AMOC)
in the preindustrial baseline climate has been found to correlate well with OHUE across CMIP5
multi-model ensembles (Kostov et al. 2014; Winton et al. 2014) as well as across parameter perturba-
tion ensembles (Romanou et al. 2017; Saenko et al. 2018) and initial condition ensembles (He et al.

2017), each based on a single model. However, the actual amount of anomalous heat entering
the North Atlantic and being subducted by the AMOC is small compared to the OHU occur-
ring in the mid-latitude Southern Ocean (Frölicher et al. 2015; Cheng et al. 2022). This is explained
by aerosol-induced cooling in the North Atlantic and higher subduction rates in the Southern
Ocean (Williams et al. 2024). Furthermore, OHUE actually decreases when the AMOC strength-
ens under transient forcing (Stolpe et al. 2018). Gregory et al. (2023) have thus postulated that the
correlation between AMOC and OHUE may originate from a common dependence on a third
factor thatwould characterize the preindustrial ocean state of amodel and influence bothAMOC
and OHUE.

Apromising candidate that potentially controls bothAMOCandOHUE is the strength of the
upper ocean stratification (Kuhlbrodt andGregory 2012), i.e. the density difference between the up-
per and deeper ocean, which is the main reason for the deep ocean’s relative isolation from other
parts of the climate system. Because large-scale ocean currents and smaller-scale mixing processes
occur preferentially along isopycnal surfaces, stratification impedes the exchange of properties be-
tween the upper and deep oceans (e.g., McDougall et al. 2014). Recent studies have highlighted
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the impact of upper ocean stratification on OHUE in GCMs. Bourgeois et al. (2022) constrained
oceanic heat and carbon uptake in the Southern Ocean using observed and CMIP6-simulated
stratification profiles in the region between 30°S and 55°S. Similarly, Liu et al. (2023) underscored
the importance of salinity stratification in influencing OHUE in CMIP6models and used global
sea surface salinity observations to estimate OHU efficiency through an emergent constraint. Fi-
nally, Newsom et al. (2023) showed that the depth of the global pycnocline, used as a metric to
quantify upper ocean stratification, is strongly correlated with OHUE across CMIP5/6 models
and across a parameter perturbation ensemble of a single model.

It remainsunclear, however, how to reconcile theseproposedOHUEcontrols basedonAMOC
strength, mixed layer depth (MLD), and stratification. This is not least due to the fact that these
variables are interconnected: a deeper mixed layer translates to reduced stratification and vice
versa, andNorthAtlanticMLDand stratification condition theAMOC (Jackson et al. 2023;Nayak

et al. 2024). Furthermore, climate model biases can be linked between remote regions of the Earth
(Wang et al. 2014; Luo et al. 2023), complicating the analysis and interpretation of regional climate
metrics in GCMs. For instance, the extratropical oceans, in particular the subpolar North At-
lantic and the Southern Ocean, have an outsize role in ventilating the global ocean and in storing
heat and carbon (Frölicher et al. 2015; Shi et al. 2018). In these regions, the stratification is directly
related to the large-scale global ocean circulation since the upper and deep oceans are connected
via upwards-sloping isopycnals (Kuhlbrodt et al. 2007; Kamenkovich and Radko 2011; Morrison et al.

2022). Apotential link between SouthernOcean and subpolarNorthAtlantic stratification could
therefore provide insight into the control of upper ocean stratification on OHUE in GCMs.
In this study, we use an ensemble of CMIP6 models under idealized CO2 forcing as well as

a global ocean state estimate in order to analyze the inter-model relationships and biases in up-
per ocean properties (stratification and mixed layer depth) and meridional overturning metrics
(AMOCandSouthernOceanoverturning strength), aswell as their combined influenceonOHUE.
In particular, we aim to answer the following questions:

• In which oceanic regions does stratification control OHUE?

• How do temperature and salinity stratification differ in their control on OHUE?

• How are local stratification biases linked across geographically distant regions, and how
does this influence OHUE?

• What explains thepositive correlationbetweenAMOCstrength andOHUEacrossCMIP6
models?

• What is the role of meridional overturning in the Southern Ocean for OHUE?
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3.2 Methods

The remainder of this article is organized as follows: In Sect. 3.2, we present the data andmeth-
ods used in this study. In Sect. 3.3, we analyze the dependence of OHUE on upper ocean prop-
erties and meridional overturning metrics both from a global (Sect. 3.3.1) and a local perspective
(Sect. 3.3.2). In Sect. 3.4, we then present the inter-model relationships between these upper
ocean properties on one hand and the meridional overturning metrics on the other hand. In
Sect. 3.5, we analyze the ensemble mean and inter-model spread of historical stratification and
its bias relative to observations, including a link between GCM stratification biases between the
Southern Ocean and the subpolar North Atlantic (Sect. 3.5.2). Finally, in Sect. 3.6 we offer a
schematic picture of all major inter-model relationships explored in this study and conclude by
answering the five questions posed above.

3.2 Methods

3.2.1 CMIP6 model output

Weusemodel output froma set of 28 climatemodels from14modeling centers run in twoCMIP6
experiments: a baseline experimentwith preindustrial forcings (piControl experiment), and a per-
turbed scenario forced by an idealized CO2 increase of 1% per year during 150 years (1pctCO2
experiment). We use one ensemble member per model, with the 1pctCO2 run branching off
from the piControl run (Table 3.A.1). All model output used for the analysis (principally ocean
potential temperature and ocean salinity) is regridded onto a regular 1°× 1°latitude–longitude grid
in order to allow the calculation of local inter-model correlations at each grid cell. Anomalies of
variables in the 1pctCO2 experiment relative to the piControl run are calculated by subtracting
the appropriate piControl period from the 1pctCO2data; since piControl runs are extended over
the 150-year period of the 1pctCO2 experiment, this method removes the effect of model drift.

3.2.2 Calculation of ocean variables

Ocean heat content per unit volume is defined as OHC = 𝜌0𝐶𝑝𝜃, where 𝜌0 = 1035 kg m−3 is
a reference density, 𝐶𝑝 = 3992.1J kg−1 K−1 is a reference heat capacity ((as in e.g. Huguenin et al.

2022)), and 𝜃 is potential temperature. Global OHU in the 1pctCO2 experiment is then calcu-
lated as the time derivative of the three-dimensional integral of the OHC anomaly relative to the
preindustrial state.
Oceanheat uptake efficiency (OHUE) is defined as inGregory et al. 2023: the totalOHUdivided

by 1.5 times the globalmean sea surface temperature anomaly at years 60–80 in the 1pctCO2 run,
which is the 20-year period around the time of CO2 doubling relative to the preindustrial.
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The AMOC strength is calculated using the overturning streamfunction variables in latitude–
depth coordinates from theCMIP6 output and is defined as the streamfunctionmaximum in the
Atlantic basin at 26.5°N and below 500 m depth.

Stratification is defined as the squared buoyancy frequency𝑁2 integrated in depth between 0
and 1500m, resulting in units of m s−2. The squared buoyancy frequency𝑁2 is calculated using
theTEOS-10 software toolbox (McDougall andBarker 2011). The depth of 1500m is chosen to en-
compass the mixed layer as well as the internal pycnocline (Gnanadesikan 1999; Klocker et al. 2023).
The main results of this study are tested with different values of this maximal depth (spanning
a range from 400m to 2500m and will be shown to be only weakly sensitive to this particular
choice. The stratification is further decomposed into contributions from temperature and salin-
ity, according to 𝑁2 = 𝑁2𝛵 + 𝑁2𝑆 = −𝑔𝛼𝜕𝜃𝜕𝑧 + 𝑔𝛽𝜕𝑆𝜕𝑧 (3.2)

where 𝛼 is the thermal expansion coefficient, 𝛽 the haline contraction coefficient, 𝑔 the vertical
acceleration due to gravity, and 𝑆 salinity. The sum of these two terms reproduces the total𝑁2
exactly.

Mixed layer depth is defined as the minimum depth where the monthly potential density 𝜎0
deviates by 0.03 kg m−3 from its value at 5m depth (BoyerMontégut et al. 2004). For consistency,
this definition is used even formodels that have theMLDvariable mlotst available as part of their
CMIP output.

To calculate the strength of the upper Southern Ocean overturning cell, we first calculate the
time-mean overturning streamfunction in latitude–density coordinates from time-mean merid-
ional ocean velocity and potential density referenced to 2000 dbars (𝜎2) ((e.g. Farneti et al. 2015)):ΨSO(𝑦, 𝜎2) = −∫∫𝑧̄(𝑥,𝑦,𝜎2)−𝛨 𝑣̄(𝑥, 𝑦, 𝑧′) d𝑧′d𝑥, (3.3)

where 𝑥, 𝑦, and 𝑧 are longitude, latitude, and depth;𝐻(𝑥, 𝑦) is the depth of the ocean bottom; 𝑣
is residual mean meridional mass transport (CMIP variable vmo, including resolved and parame-
terized transport); and 𝑧̄(𝑥, 𝑦, 𝜎2) is the local depth of the isopycnal 𝜎2. The strength of the upper
cell𝑀SO is then defined as the time-mean streamfunction maximum within the 1034 kg m−3 <𝜎2 < 1038 kg m−3 density range and between 35°S and 40°S.

For a complementary quantification of Southern Ocean overturning, we compute surface flux
water mass transformation (SFWMT), a measure of overturning inferred from surface buoyancy
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fluxes, following Jackson and Petit (2023). The SFWMT is the derivative of the area-integrated
surface buoyancy flux into the Southern Ocean south of 30°S with respect to density:Ψ(𝜎2) = 𝜕𝜕𝜎2𝐵𝛢(𝜎2), (3.4)

where the surface buoyancy flux into the area𝐴 is a sum of heat and freshwater terms:𝐵𝛢(𝜎2) = ∫ d𝐴′ (−𝛼 𝑄𝐶𝑝 − 𝛽 𝑠𝑊1 − 𝑠). (3.5)

In this equation, 𝑠 is non-dimensional sea surface salinity, and 𝑊 is the surface freshwater flux
(CMIP variable wfo) in units of kg m−2 s−1. As a single measure of Southern Ocean overturning
strength inferred from surface buoyancy fluxes, we choose the difference𝑀WMT = max𝜎2 Ψ −min𝜎2 Ψ. (3.6)

3.2.3 Observation-based data

For comparison of model fields with observationally constrained data, we use potential temper-
ature and salinity data from the ECCO Version 4 global state estimate (Forget et al. 2015; ECCO
Consortium et al. 2024)with data coverage from 1992 to 2017. To calculate stratification strength
and MLD, the ECCO output fields are regridded and processed in the same way as the CMIP6
model output.

3.2.4 Inter-model empirical orthogonal function analysis

An empirical orthogonal function (EOF) algorithm (Dawson 2016) is applied to two-dimensional
model fields to construct inter-model EOF patterns, expressed as the correlation across models
between the principal component value and the input field at each grid cell. This corresponds to
a standard EOF analysis, but with the variance maximized by each EOF being measured across
models instead of in time (e.g. Hu et al. 2020).

For the EOF analysis of preindustrial mixed layer depth (Fig. 3.A.8), a number of outlier mod-
els with extreme values of the first principal component were identified and removed from the
analysis in order to facilitate interpretation. For this, the EOF algorithm was iteratively applied
five times to the preindustrial annualmeanMLDfields of all models and themodel with themost
extreme value of the first principal component was removed.
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3.2.5 Classification of vertical stratification profiles

An unsupervised ocean profile classification algorithm (Maze et al. 2017; Maze 2020) is applied to
vertical profiles of𝑁2𝛵 and𝑁2𝑆 to obtain a pre-specified number of 8 representative classes charac-
terized by the shape and amplitude of temperature and salinity stratification profiles. As input to
the classification procedure, the preindustrial time-mean𝑁2𝛵 and𝑁2𝑆 profiles are pooled together
from all grid cells and from all models.

3.3 Global and local controls on ocean heat uptake efficiency

We begin by investigating the main proposed controls on OHUE in our set of 28 CMIP6 GCMs
in the preindustrial state. These variables belong to two categories: upper ocean properties (i.e.,
stratification and mixed layer depth), and meridional overturning strength (i.e., AMOC,𝑀SO,
and𝑀WMT).

3.3.1 Global controls on OHUE

We first establish how the two upper ocean properties are related to OHUE in the global mean
(Fig. 3.1a–b). Preindustrial global mean upper ocean stratification is not significantly correlated
with OHUE at the 𝑝 = 0.05 level across our ensemble of 28 CMIP6 models (Fig. 3.1a). In con-
trast, preindustrial globalmeanMLD is positively correlatedwithOHUEwith a linear correlation
coefficient of 𝑟 = 0.56 (Fig. 3.1b), i.e., models with a deeper global meanmixed layer tend to have
a higher OHUE.

Turning now to the three overturning strength metrics (Fig. 3.1c–e), preindustrial AMOC
strength is positively correlated acrossmodels withOHUE (Fig. 3.1c, 𝑟 = 0.61). This is consistent
with previous findings, but we obtain a smaller correlation coefficient for our ensemble of 28
CMIP6 models than for the mixed model ensemble of Gregory et al. (2023) which included 19
CMIP5 models and 14 CMIP6 models (their 𝑟 = 0.81). A slightly stronger relationship is found
for the Southern Ocean upper cell (Fig. 3.1d): 𝑀SO and OHUE are also positively correlated
(𝑟 = 0.64). The model MRI-ESM2-0 is an outlier with high OHUE but only moderate𝑀SO,
removing this model from the linear fit results in a correlation of 𝑟 = 0.86. As an alternative
to the overturning metric𝑀SO computed in latitude–density coordinates, we also consider the
Southern Ocean overturning strength inferred from surface buoyancy fluxes,𝑀WMT (Fig. 3.1e).
Thismetric is not significantly correlatedwithOHUEat the𝑝 = 0.05 level in ourmodel ensemble
(𝑟 = 0.39, 𝑝 = 0.08).
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Figure 3.1: Proposed controls on ocean heat uptake efficiency (OHUE). Scatter plot between OHUE
and (a) preindustrial global mean upper ocean (0–1500 m) stratification (𝑁2), (b) preindustrial global
mean mixed layer depth (MLD), (c) preindustrial mean AMOC strength, (d) Southern Ocean upper cell
strength, and (e) SouthernOcean surface buoyancy flux inferred overturning. In panels (c)–(e), only a sub-
set of models is included due to output availability (see Table 3.A.1).

3.3.2 Local upper ocean controls on OHUE

The fact that global mean upper ocean stratification is not significantly correlated with OHUE
acrossmodelsmay at first sight appear to contradict previous findings highlighting the importance
of stratification forOHUE (Bourgeois et al. 2022; Liu et al. 2023; Newsom et al. 2023). This is because
globally averaged stratification orMLD are relatively crude bulk measures of the simulated upper
ocean state. We now therefore extend this analysis to the local level by considering inter-model
correlations between the two upper ocean variables and OHUE at each model grid cell (Fig. 3.2).

Figure 3.2a shows the inter-model correlation coefficient between OHUE and local preindus-
trial annual mean upper ocean (0–1500 m) stratification. Unlike global average stratification
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Figure 3.2: Local upper-ocean controls on ocean heat uptake efficiency (OHUE). Maps of inter-model
Pearson correlation coefficient across 28 CMIP6 models between OHUE and local preindustrial annual
mean (a)upper ocean (0–1500 m) stratification and (b)mixed layer depth. Stippling indicates regionwhere
the least squares linear regression slope is not significantly different from zero (𝑝 ≥ 0.05, Wald test with𝑡-distribution). In panel (a), regions where the bathymetry is less than 1500 m deep are shaded in grey.

(Fig. 3.2a), local stratification is significantly anticorrelated with OHUE in several locations. Sig-
nificant correlations (𝑝 < 0.05) are found in two primary regions: the subpolar North Atlantic
and themid-latitude SouthernOcean. In both regions, the correlation is negative, indicating that
models with greater (more stable) preindustrial stratification in these regions have a lowerOHUE.
In the Southern Ocean, significant negative correlations are found particularly in the Pacific and
Indian sectors, whereas the signal in the southern Atlantic Ocean is less widespread. This zon-
ally asymmetric pattern is consistent with the geography of Subantarctic Mode Water formation
(McCartney 1979; Hanawa and D.Talley 2001) and subduction (Sallée et al. 2010). Apart from these
two regions, a smaller patch of significant negative correlations is found in the eastern tropical Pa-
cific. These patterns are partly dependent on the choice of the depth range overwhich the squared
buoyancy frequency𝑁2 is integrated (Fig. 3.A.1). The negative correlation in the subpolarNorth
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Atlantic is present for all depth choices from 0–400 m to 0–2500 m, but the negative correlation
in the mid-latitude Southern Ocean is absent for 0–400 m stratification and only emerges grad-
ually for 0–1500 m and deeper depth ranges. The decomposition of stratification into its tem-
perature and salinity contributions (Eq. 3.2) shows that the subpolar North Atlantic control on
OHUE is due to salinity stratification, whereas temperature stratification in this region is posi-
tively correlated with OHUE (Fig. 3.A.1). In the Southern Ocean, both temperature and salinity
contribute to the negative correlation with OHUE (Fig. 3.A.1), and only their combination to
total stratification results in the broad-scale signal found across the Southern Ocean in Fig. 3.2a.
An analogous analysis for local preindustrial annual mean MLD is shown in Figure 3.2b. Sig-

nificant positive correlations are found in the subpolarNorthAtlantic as well as at low latitudes in
all ocean basins; higher OHUE is thus associated with deeper mixed layers in these regions. How-
ever, in contrast to stratification, there are no significant correlations betweenMLD and OHUE
in the mid-latitude Southern Ocean.

3.4 Upper ocean controls on meridional overturning
In the previous section, we have found significant inter-model correlations with OHUE not only
for meridional overturning metrics (Fig. 3.1c,d), but also for regional upper ocean properties
(Fig. 3.2). It is therefore worthwhile to investigate the potential linkages between these two cat-
egories of variables across the model ensemble, i.e. between stratification and MLD on the one
hand, and overturning metrics on the other hand, as shown in Figure 3.3.

The left column of Figure 3.3 shows the inter-model correlations between local preindustrial
meanupperocean stratification andpreindustrialAMOC,𝑀SO or𝑀WMT. PreindustrialAMOC
strength is anticorrelated with subpolar North Atlantic total stratification, and weakly positively
correlatedwith total stratification in thewestern Pacific (Fig. 3.3a). While the signal in thewestern
Pacific is unclear and due to both temperature and salinity stratification, the negative correlation
in the subpolar North Atlantic can be attributed to salinity stratification, since the temperature
contribution is of the opposite sign (Fig. 3.A.2b–c).
The Southern Ocean upper cell strength,𝑀SO, computed in latitude–density coordinates is

anticorrelatedwith total stratificationmostly in the SouthernOcean at the latitudes of theAntarc-
tic Circumpolar Current (ACC; Fig. 3.3c). This can mostly be attributed to temperature strati-
fication (Fig. 3.A.2e), which has significant negative correlations extending up to subtropical lat-
itudes in the Pacific and Indian oceans.
The Southern Ocean upper cell strength𝑀WMT inferred from surface buoyancy fluxes is also

negatively correlatedwith total stratification in the SouthernOcean, and its correlations are higher
and extend over a greater surface area (Fig. 3.3e) than for the upper cell computed in latitude–
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Figure 3.3: Local upper-ocean controls on meridional overturning strength in CMIP6. Left column:
maps of inter-model Pearson correlation coefficient across 28 CMIP6 models between local preindus-
trial annual mean upper ocean (0–1500 m) stratification and (a) preindustrial mean AMOC strength, (c)
Southern Ocean upper cell strength, and (e) Southern Ocean surface buoyancy flux inferred overturning.
Right column [(b), (d), (f )]: as left column, but for local preindustrial annual mean mixed layer depth.

density coordinates. However, for this metric, the inter-model link to stratification can be at-
tributed solely to salinity stratification (Fig. 3.A.2i), while temperature stratification shows no
significant correlation to𝑀WMT in any of the major ocean basins (Fig. 3.A.2h).

We now turn to the links between these overturning strength metrics and local preindustrial
mean MLD, shown in the right column of Figure 3.3. AMOC strength is positively correlated
withMLD in the subpolar North Atlantic as well as at tropical latitudes in all ocean basins. This
closely resembles the pattern found for theMLD–OHUE link in Figure 3.2b, which is a point to
which we will return in the conclusions (Sect. 3.6).

For the two SouthernOcean overturningmetrics𝑀SO and𝑀WMT, a potential link toMLD is
overallmuch less clear than for theAMOC.While𝑀SO is positively correlatedwithMLDin some
regions in the tropical and subtropical Pacific, it is negatively correlatedwithMLDalong the Polar
Front in the Southern Ocean. Furthermore, the Southern Ocean overturning metric inferred
from surface buoyancy fluxes, 𝑀WMT, exhibits no large-scale regions of significant correlations
withMLD.
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3.5 Stratification model bias and inter-model spread

3.5.1 Ensemble mean stratification and bias relative to observations

Although we found global mean stratification to be unrelated to OHUE (Fig. 3.1), there are sig-
nificant links between regional stratification and OHUE in the subpolar North Atlantic and the
mid-latitude SouthernOcean (Fig. 3.2a). In addition, stratification in each of these two regions is
in turn related to the AMOC and Southern Ocean overturning, respectively (Fig. 3.4). Potential
model biases in these regions would thus have direct implications for OHUE. Beyond the forego-
ing analysis of inter-model relationships between variables, it is thus insightful to investigate also
the mean state, inter-model spread, and bias relative to observations of simulated upper ocean
stratification; this is shown in Figure 3.4.

Figure 3.4: Ensemble mean stratification and bias relative to observations. (a) CMIP6 ensemble mean
total historical stratification integrated over the 0–1500 m depth range. (b), Inter-model coefficient of
variation (ratio of ensemble standard deviation to ensemble mean) of total stratification. (c), Bias in total
stratification between CMIP6 ensemble mean and the ECCO state estimate. (d)–(f ), As (a)–(c) but for
temperature stratification. (g)–(i), As (a)–(c) but for salinity stratification. For both the model ensemble
and the state estimate, stratification is averaged over the historical period 1992–2017.

The ensemble mean total stratification (Fig. 3.4a) has a distinct equator-to-pole gradient, with
a highly stratified water column in the tropics, and lowest stratification in the Southern Ocean
and subpolar North Atlantic. Consequently, the largest relative inter-model spread in total strat-
ification (Fig. 3.4b) is found in regions with low stratification commonly associated with deep
convection: the Weddell and Ross Seas in the Southern Hemisphere and the subpolar North At-
lantic andNordic Seas in the NorthernHemisphere, where the inter-model standard deviation is
larger than 50% of the ensemble mean. Compared to the ECCO state estimate, the CMIP6 en-
semble is too stratified over most of the ocean (Fig. 3.4c), especially in the equatorial Pacific and
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Atlantic, where the bias reaches values of up to 10%of the ensemblemean, and in themid-latitude
Southern Ocean.

The temperature contribution to stratification dominates the magnitude and pattern of the
ensemble mean total stratification in the low-to-mid latitudes (Fig. 3.4d), while the mean salin-
ity contribution is responsible for stabilizing the high latitude oceans (Fig. 3.4g). This is a conse-
quence of the nonlinear equation of state for seawater which diminishes the influence of tempera-
ture on density in coldwater (Roquet et al. 2015). Relative to the average total stratification, there is
a larger inter-model spread in salinity stratification than in temperature stratification (Fig. 3.4e,h),
especially in the high-latitude Southern Ocean around Antarctica and in the North Atlantic sub-
polar gyre and Nordic Seas. Despite its subordinate role in setting the mean global stratification,
the salinity contribution is thus a deciding factor in the inter-model spread in total stratification.
Furthermore, salinity stratification also dominates the model bias relative to the state estimate
(Fig. 3.4i), with relatively large positive salinity stratification biases in the Southern Ocean and
subpolarNorthAtlantic, while temperature stratification biases are small inmagnitude except for
a negative bias in the Atlantic basin (Fig. 3.4f). It should be recalled that the biases documented
here are those of the CMIP6 ensemble mean; individual model biases may differ.

3.5.2 Regional coherence of stratification inter-model links

The fact that OHUE is unrelated to global mean stratification (Fig. 3.1a) and instead sensitive to
stratification in disconnected regions of both theNorthern and SouthernHemispheres (Fig. 3.2a)
which additionally exhibit common biases relative to observations (Fig. 3.4) motivates a closer
analysis of the inter-model spread in regional stratification patterns.

An inter-model empirical orthogonal function (EOF) analysis on the model ensemble’s prein-
dustrial annual mean stratification patterns reveals two principal modes of inter-model spread
(Fig. 3.5), which together explain 55%of the inter-model variance (the third leadingmode explains
only 5.6% of the variance). The first EOF (Fig. 3.5a) explains 39% of the inter-model variance and
consists of a broadly uniform large-scale coherence including the Pacific and Indian ocean basins
and the Southern Ocean, but with no signal in the North Atlantic. This means that, to first or-
der, model biases in preindustrial stratification in the Pacific, Indian, and Southern oceans tend
to covary acrossmodels, whereas theNorthAtlantic stratification varies independently. The first-
order independence of North Atlantic stratification from other regions can also be seen from an
unsupervised classification of vertical stratification profiles (Fig. 3.A.7), where theNorthAtlantic
is associated with a stratification profile not found in any other ocean basin or in the Southern
Hemisphere. The same pattern as in the first EOF can be seen by considering the preindustrial
inter-model correlation of local stratification with global mean stratification (Fig. 3.5b). Global
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Figure 3.5: Regional coherence of inter-model stratification spread. Panels (a) and (c) show respectively
the first and second mode of inter-model EOF analysis on preindustrial annual mean upper ocean stratifi-
cation (see Methods). The violin plots in panels (a) and (c) show the ensemble distribution of the nor-
malized loadings for each EOF. In panel (c), stippling indicates areas with surface density in the range25.75 kg m−3 < 𝜎0 < 27 kg m−3. Panels (b) and (d) show the inter-model correlation between the lo-
cal preindustrial stratification and either (b) the global mean preindustrial stratification or (d) the subpolar
North Atlantic mean preindustrial stratification. The subpolar North Atlantic region used in panel (d) is
indicated by the blue contour.

mean stratification is correlated with local stratification across the Pacific, Indian, and Southern
oceans, but not in the North Atlantic. This shows that the principal component associated with
the first EOF (Fig. 3.5a) is strongly correlated to the global mean stratification (Fig. 3.A.3).

The second EOF (Fig. 3.5c) explains 16% of the inter-model variance in preindustrial stratifi-
cation. It mainly consists of a coherence including the mid-latitude Southern Ocean, subpolar
North Atlantic, and eastern tropical Pacific, and a signal of opposite sign in the western trop-
ical Pacific. This suggests that, to second order, preindustrial stratification model biases in the
Southern Ocean and subpolar North Atlantic tend to be linked. Although these two regions are
geographically far apart, they are physically connected by the outcropping of the same isopycnals
in the range 25.75 kg m−3 < 𝜎0 < 27 kg m−3, as indicated by the stippling of sea surface density
in Figure 3.5c. This link is further illustrated by the inter-model correlation of local stratification
with stratification averaged over the subpolar North Atlantic (indicated by the contour in Figure
3.5d). Apart from a trivial positive correlation in the subpolar North Atlantic itself, we find a
circumpolar band of positive inter-model correlation in the mid-latitude Southern Ocean.

Further EOF modes are not explored in detail here since they each explain less than 6% of the
inter-model variance. Still, the three following EOFs all have a signal of the same sign in the South-
ern Ocean and subpolar North Atlantic (Fig. 3.A.4), strengthening the inter-model link between
these regions found in the second EOF.
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The distinct role of temperature and salinity stratification at setting these patterns of inter-
model spread can be seen by applying the EOF analysis to temperature and salinity stratification
separately (Fig. 3.A.5). It is apparent that the first two inter-model EOFs in total stratification
(Fig. 3.5a,c) resemble the first two EOFs of salinity stratification (Fig. 3.A.5b,d). In contrast, the
first EOF of temperature stratification (Fig. 3.A.5a) consists of a broad low- to mid-latitude pat-
tern including theNorthAtlantic, and the secondEOF (Fig. 3.A.5c) shows an approximate hemi-
spheric dipole signal with opposite sign between the Southern Ocean and the Northern Hemi-
sphere oceans. This implies that inter-model spread inpatterns of salinity stratification are decisive
for setting the patterns of total stratification, which in turn control OHUE (Fig. 3.2a).

It is furthermore interesting to note that temperature and salinity stratification (𝑁2𝛵 and𝑁2𝑆 ) do
not vary independently across the model ensemble: inter-model biases in temperature and salin-
ity stratification tend to compensate each other in the high-latitude Southern Ocean and in the
North Atlantic, meaning that models with strong salinity stratification tend to have weak tem-
perature stratification at these locations, and vice versa (Fig. 3.A.6a). In addition, a difference in
total stratification between twomodels tends to coincide with a difference in salinity stratification
of the same sign across almost all of the global ocean (Fig. 3.A.6c), while temperature stratifica-
tion is positively correlated with total stratification only over of the low- to mid-latitude oceans
(Fig. 3.A.6b). These findings partly explain the success of the emergent constraint by Liu et al.

(2023) between sea surface salinity as a proxy for𝑁2𝑆 and OHUE.

3.6 Discussion and conclusions

3.6.1 Schematic summary of principal inter-model relationships
between variables controlling OHUE

The schematic inFigure 3.6 summarizes the inter-model relationships found in this studybetween
local upper ocean stratification, local mixed layer depth, various meridional overturning strength
metrics, and OHUE. We now summarize our findings for the most important connections, de-
picted as arrows and labelled with lowercase letters in Figure 3.6.

a) Subpolar North Atlantic stratification (𝑁2
N.Atl.) and Southern Ocean stratification

(𝑁2
SO)

We have identified a coherent pattern of inter-model spread in preindustrial stratification linking
the subpolar North Atlantic and the mid-latitude Southern Ocean (Fig. 3.5c,d). Although this
mode of inter-model variability explains only 16% of inter-model variance in preindustrial stratifi-
cation (compared to 39% for the leadingmode), it is key for driving differences inOHUEbetween
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(a)

(f) (g)

(h)

(d)

(e)(c)

(b)

Figure 3.6: Schematic illustrating the inter-model links between key ocean properties. Arrows indicate
the identified physically-based inter-model relationships, and the dashed arrow labelled (e) indicates the
unclear relationship between𝑀WMT and OHUE.

models. Indeed, the loadings of this second EOF are correlated with OHUE across the model en-
semble (Pearson 𝑟 = 0.57, 𝑝 < 0.05). This pattern ofNorth Atlantic–SouthernOcean coherence
is also found in the inter-model correlation between total preindustrial stratification and OHUE
(Fig. 3.2a), and in the ensemblemean bias of historical total and salinity stratificationwith respect
to observations (Fig. 3.4c,i).

The physical link between stratification in the mid-latitude Southern Ocean and the subpo-
lar North Atlantic is illustrated by the outcropping of the same isopycnals in these two regions
(Fig. 3.5c). In both regions, permanent stratification is dominated by the internal pycnocline of
the global ocean, which separates the shallownorthward anddeep southward limbs of theAMOC
(Gnanadesikan 1999; Klocker et al. 2023). An inter-hemispheric connection via the AMOChas also
been shown to explain common temperature biases in the Southern Ocean of CMIP6 models
(Luo et al. 2023). Certain characteristics of the subpolar North Atlantic can thus be proxies for
those of the Southern Ocean and vice versa.

b) Southern Ocean stratification (𝑁2
SO) and upper cell strength (MOCSO)

SouthernOcean stratification impacts the strength of the SouthernOcean upper overturning cell𝑀SO computed in latitude–density coordinates (Fig. 3.3c). However, this correlation is relatively
weak (𝑟 < 0.6 at most locations) and its spatial pattern is rather discontinuous, although con-
sistent with the documented regions of water-mass formation feeding the upper overturning cell
(east Indian and east Pacific basins in the latitude range 40°S–60°S; e.g., Sallée et al. 2010).
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c) Southern Ocean stratification (𝑁2
SO) and upper cell strength inferred from surface

buoyancy fluxes (MOCWMT)

The upper cell strength inferred from surface buoyancy fluxes, 𝑀WMT, was used as an alterna-
tive measure of Southern Ocean overturning. It is impacted by stratification across the Southern
Ocean and from latitudes of the ACC up to the subtropics (Fig. 3.3g), with higher correlations
than for the alternative metric𝑀SO.

d) Upper cell strength (MOCSO) and OHUE

The strength of the Southern Ocean upper overturning cell𝑀SO computed in latitude–density
coordinates is well correlatedwithOHUE (Fig. 3.1d), andwhen ignoring the outliermodelMRI-
ESM2-0, the correlation coefficient (𝑟 = 0.86) is much higher than that for AMOC (𝑟 = 0.61).
(In adifferentmodel ensemble,Gregory et al. (2023) founda correlation coefficientbetweenAMOC
and OHUE of 𝑟 = 0.83.)
e) Upper cell strength inferred from surface buoyancy fluxes (MOCWMT) and OHUE

The upper cell strength inferred from surface buoyancy fluxes,𝑀WMT, was found to be not sig-
nificantly correlated with OHUE (𝑟 = 0.39, 𝑝 = 0.08).
f) Subpolar North Atlantic stratification (𝑁2

N.Atl.) and AMOC

Preindustrial upper ocean stratification in the subpolarNorthAtlantic is anticorrelatedwithprein-
dustrial AMOC strength (Fig. 3.3a). This is consistent with theoretical understanding and mod-
eling results from previous studies which have shown that AMOC strength in CMIP6 is influ-
enced by North Atlantic stratification (Nayak et al. 2024), especially in the Labrador Sea and due
to salinity stratification (Jackson and Petit 2023; Jackson et al. 2023; Lin et al. 2023). This is because
stratification in this region inhibits the formation of North Atlantic DeepWater which feeds the
southward branch of the AMOC,mostly via open ocean deep convection in these models (Heuzé

2021).

g) AMOC and low-latitude mixed layer depth (MLDlow−lat)
Preindustrial AMOC strength is positively correlated with preindustrial MLD in the subpolar
North Atlantic as well as in the low latitudes in all ocean basins (Fig. 3.3b). Subpolar North At-
lanticMLD is a proxy for deep convection (Heuzé 2021; Jackson and Petit 2023), and its connection
toAMOCstrength is consistentwith process understanding and related to point f) above (Jackson
et al. 2023).
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However, the reason for the link between AMOC and low-latitude mixed layer depths is un-
clear. Since significant positive correlations are not only found in the Atlantic, but also extend
across the Pacific and Indian basins, it is possible that this relationship is not directly caused by a
physical mechanism, but rather due to the spatial coherence of inter-model MLD spread, analo-
gous to stratification in Section 3.5.2. Indeed, an inter-model EOF analysis applied to preindus-
trial annual mean MLD reveals a first-order coherence between subpolar North Atlantic MLD
and global MLDs including the tropics (Fig. 3.A.8a), with the second- and third-order EOFs re-
spectively containing the variance in the high and low latitudes separately (Fig. 3.A.8b–c).

h) Low–latitude mixed layer depth (MLDlow−lat) and OHUE

Preindustrial mixed layer depth in the low latitudes is positively correlated to OHUE (Fig. 3.2b).
Onehypothesis to explain this is that themixed layer depth at these latitudes quantifies the thermal
capacity of the ocean, since most of the radiative forcing is applied to the ocean surface at these
latitudes (Gregory et al. 2023) and deeper mixed layers have a higher heat capacity. Furthermore,
since sea surface temperatures are high and vertical temperature gradients are strong in the low
latitudes, themodeledmixed layer depth theremay be sensitive to the parameterization of vertical
mixing of heat in these models. The representation of this mixing also impacts OHUE (Newsom

et al. 2023), possibly contributing to the link between low-latitude MLD and OHUE.

3.6.2 Synthesis
We are now in a position to answer the questions posed in the Introduction of this study.

3.6.2.1 In which oceanic regions does stratification control OHUE?

The key regions where preindustrial stratification controls OHUE are the subpolar North At-
lantic and the mid-latitude Southern Ocean (Fig. 3.2a). These two regions are linked together via
the second-order mode of inter-model stratification spread (Fig. 3.5), and they are precisely the
regions where ensemblemean historical stratification is biased high (Fig. 3.4c) due to biased salin-
ity stratification (Fig. 3.4i). This is consistent with the findings of Liu et al. (2023) who showed
that CMIP6models tend to overestimate salinity stratification, particularly in these regions (their
Figure 3a), and that salinity stratification approximated via sea surface salinity can be used to con-
strain OHUE. Our results demonstrate that it is possible that only the Southern Ocean stratifica-
tion has a direct effect on OHUE through its influence on the large scale overturning circulation
(Fig. 3.3d–i); the subpolar North Atlantic stratification could be anticorrelated with OHUE due
to its connection with Southern Ocean stratification (Fig. 3.5) rather than due to a direct influ-
ence onOHUE.This would be consistentwith previous findings showing that the actual amount
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of anomalous heat entering theNorthAtlantic and being subducted by the AMOC is small com-
pared to the OHU occurring in the mid-latitude Southern Ocean (Frölicher et al. 2015; Cheng et al.

2022), and that changes in the strength of OHUE and AMOC under transient forcing are un-
correlated (Stolpe et al. 2018). The direct link between OHUE and Southern Ocean stratification,
rather thanNorthAtlantic stratification, is further illustrated by a comparison of the upper ocean
stratification definition used here with the pycnocline depth index defined byNewsom et al. (2023)

(Fig. 3.A.9). This near-global (60°S–60°N) pycnocline depth index has been shown to nicely con-
strain OHUE (Newsom et al. 2023), and we show here that it is strongly anticorrelated with local
stratification in the Southern Ocean but not in the subpolar North Atlantic (Fig. 3.A.9a).

3.6.2.2 How do temperature and salinity stratification differ in their control on
OHUE?

Salinity stratification has a dominant role for OHUE due to several reasons. First, the inter-
model spread in total stratification in key regions is dominated by spread in salinity stratifica-
tion (Fig. 3.4h). Second, salinity stratification sets the spatial patterns of inter-model stratification
spread as determined by the inter-model EOF analysis (Figs. 3.5 and 3.A.5). Finally, the pattern
of the bias of CMIP6 ensemble mean stratification with respect to the ECCO state estimate is
driven by the bias in salinity stratification (Fig. 3.4c,i). This is consistent with the dominant role
of salinity stratification for OHUE found by Liu et al. (2023). However, temperature stratification
also plays a role, in particular for setting the mean strength of global total stratification.

3.6.2.3 Is there any regional coherence of the inter-model spread in stratification, and
how does this influence OHUE?

The inter-model EOFanalysis has revealed twodominantmodes of inter-model variation inprein-
dustrial stratification (Fig. 3.5). The first mode consists of a broad coherence between all ocean
basins except the North Atlantic and dominates inter-model variance. However, it is the sec-
ond mode which connects stratification biases in the Southern Ocean and the North Atlantic,
and which allows to interpret the meaning of North Atlantic stratification for OHUE (Section
3.6.2.1).

3.6.2.4 What explains the positive correlation between AMOC strength and OHUE
across CMIP6 models?

AMOCstrength is directly controlled by subpolarNorthAtlantic stratification. The positive cor-
relation of AMOCwith OHUE can be explained by two factors: i) North Atlantic stratification
is connected to Southern Ocean stratification physically via the internal pycnocline (separating
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shallow northward and deep southward limbs of the global overturning) and statistically via the
second EOF of inter-model stratification spread. We argue that Southern Ocean stratification in-
fluences in turn OHUE via the overturning circulation; ii) both AMOC and OHUE are related
to low-latitude MLD as a proxy of thermal capacity.

These two factors represent the upper and lower branches connecting AMOC to OHUE in
the schematic in Figure 3.6, and presumably they both contribute to the positive correlation be-
tween AMOC and OHUE. Our analysis thus supports the hypothesis that the AMOC is not
the mechanism actively controlling OHUE (Gregory et al. 2023). This hypothesis concurs with
the observation that the amount of heat entering the North Atlantic and being subducted by the
AMOC is relatively small compared to Southern Ocean OHU (Frölicher et al. 2015; Cheng et al.

2022), due to aerosol-induced cooling in the North Atlantic and larger subduction rates in the
Southern Ocean (Williams et al. 2024).

3.6.2.5 What is the role of meridional overturning in the Southern Ocean for OHUE?

Our results make it clear that the AMOC might not be the ocean circulation directly affecting
OHUE by transporting heat into the ocean interior, and that, instead, it is the Southern Ocean
upper overturning cell which has a direct impact onOHUE.However, the link between Southern
Ocean stratification to OHUE via Southern Ocean overturning is difficult to quantify. The con-
nection between SouthernOcean stratification and SouthernOcean overturning is clearest when
using an overturning metric inferred from surface buoyancy fluxes (𝑀WMT, Fig. 3.3c,e), but the
link from Southern Ocean overturning to OHUE is only significant when using an overturning
metric calculated directly frommeridional velocities in latitude–density coordinates (Fig. 3.1d,e).
This highlights the fundamental difficulties in pinning down the physical controls on Southern
Ocean overturning in global climate models, especially at the regional level, and calls for the in-
clusion of more detailed overturning metrics in future CMIP exercises.

3.6.2.6 Code and data availability

All model output and observational data used in this study are freely available. CMIP6 model
output is available from the Earth System Grid Federation at https://esgf-node.llnl.gov
/projects/cmip6/. Data from the ECCO state estimate are available at https://www.ecco
-group.org/products-ECCO-V4r4.htm.

The processed data and Python code used to produce the figures in this study are available at
<Zenodo URL to be provided upon acceptance>
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3.A Supplementary Information

Model piControl 1pctCO2 Data available for
AMOC/𝑀SO/𝑀WMT

CanESM5 r1i1p1f1 r1i1p1f1 Y/Y/Y
CanESM5-CanOE r1i1p2f1 r1i1p2f1 Y/Y/Y
CMCC-CM2-SR5 r1i1p1f1 r1i1p1f1 Y/Y/Y
CMCC-ESM2 r1i1p1f1 r1i1p1f1 Y/Y/Y
CNRM-CM6-1 r1i1p1f2 r1i1p1f2 Y/Y/Y
CNRM-CM6-1-HR r1i1p1f2 r1i1p1f2 Y/N/Y
CNRM-ESM2-1 r1i1p1f2 r1i1p1f2 Y/Y/Y
ACCESS-ESM1-5 r1i1p1f1 r1i1p1f1 Y/Y/Y
ACCESS-CM2 r1i1p1f1 r1i1p1f1 Y/Y/Y
EC-Earth3 r1i1p1f1 r3i1p1f1 N/Y/N
EC-Earth3-CC r1i1p1f1 r1i1p1f1 Y/Y/Y
EC-Earth3-Veg r1i1p1f1 r1i1p1f1 Y/Y/N
EC-Earth3-Veg-LR r1i1p1f1 r1i1p1f1 N/Y/N
IPSL-CM6A-LR r1i1p1f1 r1i1p1f1 Y/Y/Y
MIROC6 r1i1p1f1 r1i1p1f1 Y/Y/Y
HadGEM3-GC31-LL r1i1p1f1 r1i1p1f3 Y/Y/Y
HadGEM3-GC31-MM r1i1p1f1 r1i1p1f3 Y/N/Y
UKESM1-0-LL r1i1p1f2 r1i1p1f2 Y/Y/Y
MPI-ESM1-2-HR r1i1p1f1 r1i1p1f1 Y/Y/Y
MPI-ESM1-2-LR r1i1p1f1 r1i1p1f1 Y/Y/Y
MRI-ESM2-0 r1i1p1f1 r1i1p1f1 Y/Y/Y
GISS-E2-1-G r1i1p1f2 r1i1p1f1 N/Y/N
CESM2 r1i1p1f1 r1i1p1f1 Y/N/N
CESM2-WACCM r1i1p1f1 r1i1p1f1 Y/N/N
NorESM2-LM r1i1p1f1 r1i1p1f1 Y/Y/N
NorESM2-MM r1i1p1f1 r1i1p1f1 Y/Y/Y
GFDL-CM4 r1i1p1f1 r1i1p1f1 Y/N/Y
GFDL-ESM4 r1i1p1f1 r1i1p1f1 Y/N/Y

Table 3.A.1: CMIP6 models used in this study.
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Figure 3.A.1: Maps of inter-model Pearson correlation coefficient between OHUE and local preindus-
trial annual mean total (left column), temperature (middle column), and total (right column) stratifica-
tion across 28 CMIP6 models, with stratification in the depth ranges (a)–(c) 0–400 m, (d)–(f ) 0–750 m,
(g)–(i) 0–1000 m, (j)–(l) 0–1500 m, (m)–(o) 0–2000 m, and (p)–(r) 0–2500 m. Stippling indicates re-
gionwhere the linear slope is not significantly different from zero (𝑝 ≥ 0.05, Wald test with 𝑡-distribution).
Regions where the bathymetry is less than 1500 m deep are shaded in grey.
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(a) (b)

(g) (h)

(c)

(i)

(d) (e) (f)

Figure 3.A.2: Inter-model relation between stratification and overturning cells. (a)–(c): inter-model
correlation between preindustrial 0–1500m stratification andAMOC for total (left column), temperature
(middle column), and salinity (right column) stratification. (d)–(f ): as in (a)–(c) but for the Southern
Ocean upper cell in density coordinates. (g)–(i): as in (a)–(c) but for the Southern Ocean overturning
strength inferred from surface buoyancy fluxes (see Methods). Note that the first column of this figure is
the same as the first column of Fig. 3.3 in the main text.

Figure 3.A.3: Scatter plot between the first principal component of the inter-model EOF analysis on
preindustrial stratification (see Sect. 3.5.2) and global mean preindustrial stratification for each CMIP6
model.
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Figure 3.A.4: Modes 3 to 5 of inter-model empirical orthogonal function analysis onpreindustrial annual
mean upper ocean stratification.
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Figure 3.A.5: Left column: first and secondmode of inter-model empirical orthogonal function analysis
on preindustrial annual mean upper ocean temperature stratification. Right column: as left column, but
for salinity stratification.

(c)(b)

(a)

Figure 3.A.6: (a), Map of inter-model correlation between preindustrial local 0–1500 m temperature
stratification and salinity stratification. (b), Same as (a) but between total stratification and temperature
stratification. (c), Same as (a) but between total stratification and salinity stratification.
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(a)

(b) (c) (d)

Figure 3.A.7: Classification of vertical stratification profiles. (a), map showing the geographical location
of identified classes. (b)–(d), median vertical stratification profiles of each class (for total, temperature, and
salinity stratification).

146



3.A Supplementary Information

Figure 3.A.8: EOFanalysis on preindustrialMLD. First threemodes of inter-model empirical orthogonal
function analysis on preindustrial annual meanMLD after removing 5 outlier models (see Methods).
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Figure 3.A.9: Inter-model correlation across 28 CMIP6 models between the pycnocline depth metric
defined by Newsom et al. (2023) and local preindustrial annual mean (a) total, (b) temperature, and (c)
salinity stratification.
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4 Outlook: Improved constraints
through statistical analysis of a
large multi-model ensemble

4.1 Introduction

In Chapter 2, we have already found an emergent constraint on total future OHU, and in
Chapter 3, we determined the most important variables and regions controlling the inter-model
spread in OHUE. A natural extension of these results would thus be to search for an emergent
constraint on OHUE in the CMIP6 ensemble. Although related by definition, total OHU and
OHUE are not controlled by the same processes: total OHU integrates the strength of radiative
forcing and climate feedbacks (Sec. 1.1.2) and correlates with global warming (Gregory et al. 2023),
while OHUE is defined by scaling total OHU by this global warming (Eq. 1.10), thus remov-
ing some of this atmospheric influence and yielding a more purely oceanic metric. Indeed, total
OHU and OHUE are not correlated across CMIP5/6 models, and only OHUE correlates with
preindustrial AMOC strength (Gregory et al. 2023).

Future OHUE has been previously constrained using global mean sea surface salinity (SSS) as
a predictor chosen as a proxy for upper ocean stratification (Liu et al. 2023), but the underlying
correlation was rather dependent on outlier models, and global mean SSS is a rather crude phys-
ical metric considering the rich spatial structure and multivariate nature of inter-model controls
on OHUE spread shown in Chapter 3; it also does not explicitly take into account the much-
discussed relationbetweenAMOCstrength andOHUE (Winton et al. 2014). Similarly, theOHUE
constraint of Bourgeois et al. (2022) based on Southern Ocean stratification is, although consistent
with the conclusions of Chapter 3, only regional in nature and thus not directly applicable for
a global OHUE constraint. In this outlook chapter, we therefore attempt to leverage the multi-
variate and spatially resolved information gained in Chapter 3 to search for a potential emergent
constraint on OHUE.

The analysis in this chapter is very loosely inspired by an (unpublished) collaboration with B.B. Cael and J. Terhaar.
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4 Outlook: Improved constraints through statistical analysis of a large multi-model ensemble

In Chapters 2 and 3, only one initial condition ensemblemember was used per CMIP6model,
under the implicit assumption (also widely employed in multi-model studies in the literature)
that initial condition and parameter uncertainty are less important than structural uncertainty
on long time scales (Fig. 1.17 in the Introduction). In this chapter, we instead choose to use the
maximum number of initial condition and parameter perturbation members available for each
model in the CMIP6 archive in order to better sample these sources of uncertainty. The vast
majority of archived single-model ensembles for individual CMIP6 models are initial condition
ensembles, although a few models provide ensembles with members differing in the choice of
certain model components (e.g., for aerosol chemistry) and therefore sample a form of parameter
uncertainty. We choose to use only widely available output variables (SST, SSS and meridional
overturning streamfunctions) as predictors, since the full-depth ocean temperature and salinity
fields needed for the calculation of stratification andMLD are often not included in the archived
model output of all ensemble members. We also include total OHU and global mean surface
warming as predictands to bepotentially constrained, since these variables are relatedbydefinition
to OHUE.
With the greater number of members per model compared to the previous chapters, struc-

tural similarities can be investigated among and acrossmembers originating from the same climate
model, modeling center, or sharing the same ocean or atmospheric model component. Further-
more, the greater total number of members retained (ca. 120 members per SSP, see below) allows
for a more robust application of statistical analysis techniques, both to understand the ensemble
structure of the predictors as well as to perform regression to constrain the predictands.
The rest of this chapter is structured into two parts: Section 4.2 details the regional predictor

variables and global predictand variables used in Section 4.3, which presents preliminary results
of an analysis of this data.

4.2 Model output for predictor and target variables
We use 127 members from 21 models for SSP1-2.6, 160 members from 21 models for SSP2-
4.5, 115 members from 11 models for SSP3-7.0, and 130 members from 23 models for SSP5-
8.5, according to the availability of the necessary model output (including the predictor variables
of Sec. 4.2.2) in the CMIP6 archive (the number of members shown in the figures below can
slightly differ from these a priori available members due to minor issues in the archived model
output.) These members are mostly initial condition ensemble members as described above, but
also include different versions of the GISS-E2-1-Gmodel (with the aerosol chemistry component set

to different versions or omitted; NASA/GISS 2018), as well as the CanESM5 large ensemble with 50
members in total, which is split into two 25-member sub-ensembles each employing one of two
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4.2 Model output for predictor and target variables

choices for remapping wind stress onto the ocean model grid, which can influence local ocean
dynamics (Swart et al. 2019).

4.2.1 Predictand variables

Weuse totalOHU, globalmean surface air temperature anomalyΔSAT, andOHUEas predictors
to be potentially constrained in this Chapter; these variables are detailed in Table 4.1. Anomalies
of OHU and surface air temperature are computed by subtracting the average over the full prein-
dustrial experiment for the parent simulation of each historical and SSPmember, since the prein-
dustrial period exactly corresponding to each historical or SSP member (as in Chapters 2 and 3)
is not available for all models. Anomalies are averaged over the years 2080–2100 in each SSP sce-
nario, andOHUE is defined asOHUE = OHU/ΔSAT (unlikeOHUE = OHU/(1.5 ⋅ΔSST) as
in Chapter 3 andGregory et al. 2023) for a more direct definitional relationship between the three
predictands (OHU,ΔSAT, andOHU/ΔSAT).
Predictand Description

OHU Global ocean heat uptake defined as global mean air-sea heat flux anomaly, in Wm−2ΔSAT Global mean surface air temperature anomaly, in K
OHUE Ocean heat uptake efficiency defined asOHU/ΔSAT, in Wm−2 K−1

Table 4.1: Variables used as predictands/targets for the statistical analysis in this chapter. All variables are
annualmean anomalies relative to the preindustrial mean averaged over the years 2080–2100 in a given SSP
scenarios.

4.2.1.1 Global surface warming and ocean heat uptake

Figure 4.1 shows time series of global meanΔSAT for the high-mitigation SSP1-2.6 and the low-
mitigation SSP5-8.5 scenarios (here and in the following, the SSP2-4.5 and SSP3-7.0 scenarios are
depicted in corresponding figures inAppendix B). In each panel, the simulations over theCMIP6
historical period (until 2014) are identical and branch off into different scenario projections
after 2014. Under SSP1-2.6, the increase in global mean ΔSAT stagnates after around 2050 in
most members and even reverses towards the end of the century in some members (Fig. 4.1a),
while it continues increasing under the other three SSP scenarios (Figs. 4.1b and B.1). The en-
semble mean ΔSAT over 2080–2100 under SSP1-2.6 averaged over all members is 2.51 ± 0.99K
(95% confidence interval approximated as 1.96 ⋅ 𝜎̂, where 𝜎̂ is the sample standard deviation), and
under SSP5-8.5 it is 5.89 ± 2.34K. The relative inter-model spread (𝜎̂ divided by the ensemble
mean) is relatively constant across the four SSPs considered with values from 0.19 to 0.24. How-
ever, these estimates are biased since climate models with more members (such as CanESM5) are
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overrepresented. Calculating the multi-model mean after averaging over each model’s members
separately first leads to an ensemble mean ΔSAT projections of 2.27 ± 1.07K for SSP1-2.6 and
5.17 ± 2.00K for SSP5-8.5, which are both smaller than the raw average over all members, while
the relative inter-model spread remains in the same range as for the raw members.

Figure 4.1: Global mean surface air temperature anomaly ΔSAT under the SSP1-2.6 and SSP5-8.5 sce-
narios. The dashed vertical line indicates the year 2014 where the SSP runs branch off from the historical
run in each ensemble member. The corresponding figure for SSP2-4.5 and SSP3-7.0 is shown in Fig. B.1
in Appendix B.

Figure 4.2 shows the analogous time series for globalOHU,where the ensemblemean in2080–2100
over allmembers is 1.10 ± 0.35Wm−2 for SSP1-2.6 and4.31 ± 1.21Wm−2 for SSP5-8.5. The rel-
ative inter-model spread in OHU is smaller than for ΔSAT and is between 0.12 and 0.16 across
the four SSPs. The multi-model mean obtained after averaging each model’s members separately
first is 1.19 ± 0.44Wm−2 for SSP1-2.6 and 3.89 ± 1.09Wm−2 for SSP5-8.5 (i.e., higher than the
raw average for SSP1-2.6 and lower for SSP5-8.5), and the relative inter-model spread is generally
higher (between 0.13 and 0.19). The increase in global OHU stagnates towards the end of the
century under SSP1-2.6 and SSP2-4.5, while it continues to increase under SSP3-7.0 and SSP5-
8.5.

4.2.1.2 Ocean heat uptake efficiency

The OHUE time series resulting from these ΔSAT and OHU time series is shown in Fig. 4.3.
OHUE generally declines over time (Figs. 4.3 and B.3). Under SSP5-8.5, the ensemble mean
OHUEover 2080–2100 is 0.76 ± 0.16Wm−2 K−1 averagedover allmembers and0.80 ± 0.21Wm−2 K−1

averaged over separate model means, with a relative inter-model spread of 0.11. For the scenarios
with weaker forcing (SSP1-2.6 and potentially SSP2-4.5), the OHUE concept is not applicable,
since bothΔSAT andOHU cease their steady increase at some point after 2050. This can be seen
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4.2 Model output for predictor and target variables

Figure 4.2: Global ocean heat uptake (OHU) under the SSP1-2.6 and SSP5-8.5 scenarios. The dashed
vertical line indicates the year 2014 where the SSP runs branch off from the historical run in each ensemble
member. The corresponding figure for SSP2-4.5 and SSP3-7.0 is shown in Fig. B.2 in Appendix B.

in a visualization ofOHUplotted againstΔSAT (Fig. 4.4, where the slope of each curve isOHUE,
and the underlying blue shading are the same as in Fig. 4.3): under SSP1-2.6,ΔSAT approaches a
(model-dependent) equilibrium value while OHU continues to decrease, which is shown by the
“fingers” in Fig. 4.4a descending at values ofΔSAT between 1.5 and 3K. A similar but less drastic
behavior is seen for SSP2-4.5 (Fig. B.4). Under the stronger forcing of SSP3-7.0 and SSP5-8.5,
on the other hand, bothΔSAT and OHU continually increase through to 2100, and the OHUE
concept is valid. The decrease in OHUE with time can be seen in Fig. 4.4b as the decrease in the
slope of OHU as a function ofΔSATwith increasingΔSAT.

Figure 4.3: Ocean heat uptake efficiency (OHUE) under the SSP1-2.6 and SSP5-8.5 scenarios (20-year
running mean). The dashed vertical line indicates the year 2014 where the SSP runs branch off from the
historical run in each ensemble member. The corresponding figure for SSP2-4.5 and SSP3-7.0 is shown in
Fig. B.3 in Appendix B.
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Figure 4.4: GlobalOHUplotted against globalΔSATunder the SSP1-2.6 andSSP5-8.5 scenarios (20-year
running mean). The blue shading and labeled contours indicate the resulting OHU efficiency (OHUE =
OHU/ΔSAT). The corresponding figure for SSP2-4.5 and SSP3-7.0 is shown in Fig. B.4 in Appendix B.
Figure 4.5 shows a scatter plot of OHU versus ΔSAT averaged over 2080–2100 for SSP3-7.0

and SSP5-8.5 (the two SSP scenarios for which theOHUE concept is fully applicable throughout
the 21st century). The markers are colored according to the climate model of each member, and
the marker shape corresponds to the ocean model component used in each climate model (see
the legend in Fig. 4.5). Since more models have supplied output for SSP5-8.5 than for SSP3-7.0,
we will focus on the low-mitigation SSP5-8.5 scenario here, additionally benefitting from a larger
signal-to-noise ratio. An inspection of Figure 4.5b permits several observations: (i) there is sub-
stantial inter-model spread along directions of constant OHUE, meaning that OHU and ΔSAT
partly compensate each other across models; (ii) at least visually, intra-model spread (i.e., among
members of a single model) is generally contained in OHU, while ΔSAT variations are smaller
(leading to vertical spreading ofmodel members in theΔSAT–OHUplane of Fig. 4.5); (iii) intra-
model spread is generally smaller than inter-model spread, but can be comparable (e.g., the intra-
model spread of CNRM-ESM2-1 is greater than the inter-model distance between NorESM2-
MM and MPI-ESM1-2-LR); and finally, (iv) members with NEMO ocean components gener-
ally have smaller OHUE, although with greatly varying (and compensating) values of OHU andΔSAT.
4.2.2 Predictor variables

We now turn to the predictor variables used in this chapter, i.e., the variables used to potentially
constrain the future predictand variables ΔSAT, OHU, and OHUE introduced above. Fig. 4.6
shows a schematic of the employed predictor variables, which are also detailed in Table 4.3: re-
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4.2 Model output for predictor and target variables

Figure 4.5: Global OHU plotted against global ΔSAT (averaged over 2080–2100 in the SSP3-7.0
and SSP5-8.5 scenarios). The blue shading and labeled contours indicate the resulting OHU efficiency
(OHUE = OHU/ΔSAT). The marker colors indicate the different climate models, and the marker shape
indicate their ocean model component. The corresponding figure for SSP1-2.6 and SSP2-4.5 is shown in
Fig. B.5 in Appendix B.

gional SST (in six regions detailed inTab. 4.2), regional SSS, andAMOCstrength. These variables
are evaluated over 1850–1900 in each model’s historical experiment, since the greater num-
ber of historical over preindustrial simulations yields a larger sample size. As an example, Fig. B.6
shows AMOC time series for SSP1-2.6 and SSP5-8.5. The reasoning for choosing these variables
as potential predictors is that, for each of them, there is a plausible connection to at least one of the
predictands (ΔSAT, OHU, orOHUE): (i) AMOC strength is related toOHUE (Chapter 3) and
toΔSAT (Gregory et al. 2023); (ii) SSTandSSS in the SouthernOcean and subpolarNorthAtlantic
contribute to stratification and are thus related to OHUE (Chapter 3); (iii) SST in the tropical
Pacific and Southern Ocean influences climate feedback (e.g., Ceppi and Gregory 2017; Kang et al.

2023, as well as Chapter 2) and thusΔSAT as well as OHU (see also the Perspective section 5.2.1 in
the Discussion).

161



4 Outlook: Improved constraints through statistical analysis of a large multi-model ensemble

Figure 4.6: Schematic of potential predictors used for the statistical analysis in this chapter. The colored
areas indicate the longitude–latitude boxes defined in Table 4.2 as well as the North Atlantic region, and
the thick red arrow represents the AMOC.

Region name Definition

global global mean
natl North Atlantic north of 40°N, see Fig. 4.6.
SO-60-45 Southern Ocean, 60–45°S, 0–360°E.
SO-45-30 Southern Ocean, 45–30°S, 0–360°E.
EEP Eastern Equatorial Pacific, 5°S–5°N, 180–80°W, as in Rugenstein et al. (2023).
WEP Western Equatorial Pacific, 5°S–5°N, 110°E–180°, as in Rugenstein et al. (2023).

Table 4.2: Definition of geographical regions used to compute sea surface temperature and salinity time
series in this chapter.

Predictor Description

AMOC AMOC strength at 26°N from overturning streamfunction model output below
500m.

Regional SST Sea surface temperature averaged over the regions specified in Table 4.2.
Regional SSS Sea surface salinity averaged over the regions specified in Table 4.2, except for EEP

and WEP.

Table 4.3: Variables used as potential predictors/features for the statistical analysis in this chapter. All
variables are annual means averaged over the years 1850–1900 in the historical experiment.
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4.3 Exploratory analysis

4.3 Exploratory analysis
In this section, we present a preliminary analysis of the inter-member spread and relationships of
the 11 predictor variables (SST in 6 regions, SSS in 4 regions, and AMOC), as well as the three
predictand variables (ΔSAT, OHU, and OHUE).

4.3.1 Principal component analysis
Since the chosenpredictors are clearly expected to be correlated (e.g., model SSTbias in the nearby
SO-60-45 and SO-45-30 regions), we first perform a principal component analysis (PCA) on the
11 predictor variables. The input variables are first standardized to unit variance to account for
their different scales and units. The resulting principal components (PCs) are uncorrelated by
construction and determine the most important directions (in predictor space) of inter-member
variance. The PCs can then also themselves be used as a more restricted set of predictors for the
predictands of interest, amethod known as principal component regression (however, although the
PCs are constructed to contain maximal inter-member variance in the predictors, this is not guaranteed to

translate to maximal inter-member variance in the predictands; Hastie et al. 2009).

a) b)

Figure 4.7: Principal component analysis of the predictor variables. a) Principal component loadings for
the first three PCs. The numbers in parentheses at the bottom give the fraction of total variance explained
by each PC. b) Cumulative variance explained by principal components. A corresponding figure where
the predictor variables are first averaged over eachmulti-member ensemble for individual climate models is
shown in Fig. B.7 in Appendix B.

Fig. 4.7a shows the loadings (i.e., how each of the 11 original variables contributes to each PC)
for the first three PCs. The first PC (PC0) accounts for 54% of inter-member variance and rep-
resents a broad contribution of most predictors except Southern Ocean SSS and SST in the WEP
region. This indicates (as is indeed the case) that many of these variables are pairwise correlated,
and that their common inter-member spread already accounts formore than half of the predictor
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variance. The next two PCs (PC1 with 21% of variance and PC2 with 14% of variance) are more
heterogeneous: positive values of both PC1 and PC2 are associated with a colder WEP region, but
PC1 has a more saline SO-60-45 region, while PC2 has a fresher SO-45-30 region. The next PC
(PC3) accounts for only 4% of inter-member variance, and the remaining PCs together for 11%
(Fig. 4.7b). These characteristics do not change qualitatively when the predictor variables are first
averaged over eachmulti-member ensemble for individual climatemodels (Fig. B.7), although the
quantitative values of the loadings for individual variables are different.

4.3.2 Clustering

In order to identify similarities amongmembers of this large multi-model ensemble, we apply the𝑘-means clustering algorithm to the principal components obtained above for the set of historical
(1850–1900) predictor variables. Using the PCs (obtained from normalized predictors) as input
variables to the clustering procedure avoids potential issues due to pairwise correlations among
predictor variables. The resulting clusters (for a choice of 𝑘 = 7) are shown in a two-dimensional
view in Fig. 4.8, where each cluster is shown in a different color, and marker shapes are chosen to
represent each climate model. The loadings of the first two PCs (given in Fig. 4.7), which span
the two axes in this figure, are shown as arrows in Fig. 4.8.

Figure 4.8: Clustering of principal components projected onto the first two PCs. 𝑘 = 7 clusters were ob-
tained through K-means clustering on the first 10 principal components of the predictors. A correspond-
ing figure where the predictor variables are first averaged over each multi-member ensemble for individual
climate models is shown in Fig. B.9, and using spectral clustering instead of K-means in Fig. B.8, both in
Appendix B.
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The 𝑘-means clustering is clearly successful in identifying a number of visually distinct clusters
(“visually” to be understood here in this two-dimensional space spanned by the first two PCs).
Since the chosen number of clusters (𝑘 = 7) is smaller than the number of climate models, some
clusters necessarily contain members from different climate models, such as cluster 0 which con-
tains all ensemble members from the UKESM1-0-LL andHadGEM3-GC31-LL climate models.
Nevertheless, there is a clear tendency for members of the same climate model to be assigned to
the same cluster. For example, all 50 CanESM5 members belong to cluster 1 (colored in blue in
Fig. 4.8), and the five MPI-ESM1-2-LR form a separte cluster (cluster 4, colored in orange).

Althoughmost clusters formvisually distinct units in this two-dimensional space, some clusters
are spread relatively far apart (such as cluster 5 with a large distance between the nine ACCESS-
ESM1-5 members and the single MIROC6 member), while some members that are nearby on
Fig. 4.8 are assigned to different clusters (such as the GFDL-CM4 member and the MPI-ESM1-
2-LRmembers belonging to clusters 3 and 4, respectively). This is because all of the first ten PCs
were used as input to the clustering procedure, such that members from a single cluster can also
differ in their scores in higher-order PCs; this can be seen by projecting the clusters onto the first
three PCs as in Fig. 4.9.

Figure 4.9: Clustering of principal components projected onto the first three PCs. 𝑘 = 7 clusters were
obtained throughK-means clustering on the first 10 principal components of the predictors. These are the
same clusters as the ones shown in Fig. 4.8.

The three-dimensional view of Fig. 4.9 shows why the GFDL-CM4 member and the MPI-
ESM1-2-LRmembers were not assigned to the same cluster, since they greatly differ in their value
of the third PC (PC2; the vertical axis in Fig. 4.9). Further spread apparent in Fig. 4.9 ofmembers
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belonging to the same cluster may similarly be explained by higher-order PCs, although this can
not be easily visualized in analogy to Figs. 4.8 and 4.9.

Figure 4.10: Cluster sizes (number of mem-
bers assigned to each cluster).

The cluster sizes resulting from the 𝑘-means pro-
cedure are clearly uneven, and this is quantified in
Fig. 4.10: cluster 1 is by far the largest cluster and
contains 58 members, while the remaining clusters
all contain between five and twelve members. This
is because, as noted above, cluster 1 contains all 50
members of the CanESM5 ensemble, while other
models in themulti-model ensemble usedhere have
each provided a smaller number of ensemblemem-
bers.

Although simulation output from 18 distinct
climate models was included, the identified clus-
ters contain members from at most five different
climate models (Fig. 4.11). Furthermore, only the
IPSL-CM6A-LRensemble is spread overmultiple clusters (clusters 1 and 3), whilemembers from
all other climate models are uniquely assigned to single clusters. This highlights the fact that, al-
though information concerning the climate models having produced each simulation was not
used in the clustering procedure, the resulting clusters can still clearly identify similarities in en-
semble members originating from the same model, implying that inter-member differences due
to internal variability are subordinate to structural differences across models.

Figure 4.11: Number of unique climate models in each clus-
ter.
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Figure 4.12: Number of unique climate modeling centers in
each cluster.

Similar considerations hold for
the number of distinct modeling
centers (such as IPSL for the IPSL-
CM6A-LRmodel, orNOAA-GFDL
for the GFDL-CM4model) present
in each cluster (Fig. 4.12). The
identified clusters contain members
from at most four different model-
ing centers (cluster 2), with cluster 0
and cluster 4 each containing mem-
bers from only one center. This
is because both the UKESM1-0-LL
model and the HadGEM3-GC31-

LL model are developed by the Met Office Hadley Center (MOHC), although this modeling
center is also present in cluster 2 for the HadGEM3-GC31-MMmodel. This illustrates that two
versions of the same model differing in their spatial resolution (in this case, LL for low resolu-
tion andMM for medium resolution) can be more dissimilar in their simulation output of major
climate variables than two distinct models developed at the same institution.

Figure 4.13: Number of unique ocean model components in
each cluster.

Beyond climate model and mod-
eling center membership, more de-
tailed information canbe considered
to compare intra- and inter-cluster
similarities across ensemble mem-
bers. An example for this is given
in Fig. 4.13, which shows the num-
ber of unique ocean model compo-
nents present in each cluster. This
data was obtained from Annex 2 to
the IPCCAR6WG1 report (Gutiér-
rez and Treguier 2021), which among
other details also contains informa-
tion about atmospheric model com-

ponents and spatialmodel resolutionof theCMIP6members usedhere. For thepresent purposes,
different versions of the sameoceanmodel (such as theNEMOmodel;Madec et al. 2023)were consid-
ered to represent the same model component. Although ten different ocean model components
are employed by members of the model ensemble of this chapter, the identified clusters contain
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members from at most two different ocean models, with three clusters (clusters 1, 2, and 4) con-
tainingmembers using a single oceanmodel each. This is likely at least in part due to the relatively
small number of distinct ocean models present in the model ensemble as well as the dispropor-
tionately large number ofmembers employing theNEMOoceanmodel, but nevertheless suggests
that models sharing the same ocean model also share certain behavior, as was already found for
the case of OHUE above (Fig. 4.5).

4.3.3 Linear regression

Following the above analysis of inter-model spread and ensemble structure in the predictor vari-
ables, we now consider their application to potential constraints of the future predictand variables
of interest (OHU, ΔSAT, and OHUE). Since the analysis in this chapter is of a preliminary na-
ture, we will limit ourselves to a selection of salient univariate inter-model relationships in the
SSP5-8.5 scenario, especially those relating to the results of chapters 2 and 3.

4.3.3.1 Link to chapter 2

Wefirst consider inter-model links relevant to chapter 2, i.e., between the baseline SouthernOcean
climate and future OHU and global warming. In Chapter 2, we showed that the preindustrial
baseline climate state in the Southern Ocean is linked to future global OHU and ΔSAT in a
CMIP6 ensemble of 28 models. Here, we can replicate some of this analysis in a multi-model en-
semblewith amuch greater number ofmembers, although the number of distinct climatemodels
considered here is smaller than in Chapter 2 due to data availability constraints. Fig. 4.14 shows a
scatter plot of preindustrial SST averaged over the Southern Ocean SO-60-45 region (Table 4.2)
against future global OHU in 2080–2100 under the SSP5-8.5 scenario. These two variables are
anticorrelated across the ensemble, i.e., models with warmer preindustrial Southern Ocean SSTs
simulate less global OHU in the future. The coefficient of determination for an ordinary least
squares linear regression across all members is 𝑅2 = 0.68, although this fit is biased due to the
overrepresentation of models supplying more members to our ensemble (e.g., the 50 CanESM5
members). Averaging ensemble members for each climate model before performing the regres-
sion yields 𝑅2 = 0.23, and averaging over members from each modeling center results in linear
slope that is statstically not significantly different from zero at the 𝑝 = 0.05 level, with𝑅2 = 0.22.
This result is consistent withChapter 2, and correlations using local preindustrial SSTs are higher
(more negative) than the ones captured by the relatively broad latitude range of 60°S–45°S used
here. As most climate models have produced only one or two preindustrial piControl runs,
intra-model spread for any given climate model is mostly along the OHU axis (i.e., vertically in
Fig. 4.14), and can be attributed to internal variability.
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Figure 4.14: Preindustrial mean SST in the SO-60-45 region scattered against future global OHU across
the model ensemble. Themarker colors indicate the climate models which generated each ensemble mem-
ber simulation, and the marker shapes indicate the ocean model component used in each model. The
straight lines show the ordinary least squares (OLS) regression obtained from all members (black), from
averages over members from each climate model (red), and from averages over members from each mod-
eling center (blue). The given 𝑝-values are for a two-sided Wald test with 𝑡-distribution for the hypothesis
that the linear slope is different from zero.

Fig. 4.15 shows a similar plot for preindustrial Southern Ocean SST scattered against future
global ΔSAT in 2080–2100 under the SSP5-8.5 scenario. As for future global OHU, the inter-
member correlation is negative, i.e., models with warmer preindustrial Southern Ocean SST sim-
ulate smaller future global ΔSAT, consistent with Chapter 2. The linear regression fit over all
members has𝑅2 = 0.82, and the regressions obtained after averaging over climatemodels ormod-
eling centers remain statistically significant at the 𝑝 = 0.05 level (with 𝑅2 = 0.52 and 𝑅2 = 0.58,
respectively). Notably, all members using the NEMO ocean component haveΔSAT > 5 °C.
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Figure 4.15: Preindustrial mean SST in the SO-60-45 region scattered against future globalΔSAT across
the model ensemble. Marker colors and shapes correspond to climate models and ocean model compo-
nents, respectively, as given in the legend of Fig. 4.14.

4.3.3.2 Link to chapter 3

We now consider inter-member relationships relevant to Chapter 3, i.e., between baseline ocean
circulation and stratification metrics and future OHUE.

Fig. 4.16 shows the inter-member relationship between preindustrial AMOC strength at 26°N
and future projected OHUE in 2080–2100 under the SSP5-8.5 scenario. Future OHUE is posi-
tively correlated with AMOC across the ensemble, consistent with Chapter 3 and e.g. Gregory et
al. (2023). However, the linear regression slope is strongly influenced by the GISS-E2-1-G model,
which was not included in Chapter 3 due to data availability issues and whose members are out-
liers to the linear relationship with a strong AMOC but an OHUE only slightly above the multi-
model average. The reason for this behavior would require more in-depth analysis of this model’s
full simulation output (as in Chapter 3) and is therefore outside of the scope of this exploratory
outlook chapter.

In order to study the influence of mid- to high-latitude ocean stratification on overturning
circulation, sea surface salinity (SSS) can be used as a proxy for upper ocean stratification (e.g., Ter-

haar et al. 2021; Liu et al. 2023). Fig. 4.17 shows the inter-member relationship between historical
(1850–1900)meanSSS in the subpolarNorthAtlanticnatl region against historical (1850–1900)
AMOC strength. Here we use historical averages instead of averages over the preindustrial simu-

170



4.3 Exploratory analysis

Figure 4.16: Preindustrial mean AMOC scattered against future OHUE across the model ensemble.
Marker colors and shapes correspond to climate models and ocean model components, respectively, as
given in the legend of Fig. 4.14.

Figure 4.17: Historical (1850–1900) mean SSS in the natl region scattered against historical
(1850–1900) AMOC strength across the model ensemble. Marker colors and shapes correspond to cli-
mate models and ocean model components, respectively, as given in the legend of Fig. 4.14.
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lation for each member in order to reveal also the inter-member relationship between these vari-
ables for differentmembers of single climatemodels which typically only supply one preindustrial
simulation. Consistent with Chapter 3, Fig. 4.17 reveals a high correlation between SSSnatl and
AMOC strength, i.e., higher surface salinity is associated with a stronger AMOC,with𝑅2 = 0.80
for the linear fit across all members. Interestingly, this correlation also holds for several initial con-
dition ensembles of single models, such as for the large CanESM5 ensemble (green squares in the
lower left quadrant of Fig. 4.17) and theMPI-ESM1-2-LR ensemble (dark blue pentagons in the
upper part of Fig. 4.17).

Figure 4.18: Preindustrial mean SST in the natl region scattered against futureOHUE across themodel
ensemble. Marker colors and shapes correspond to climate models and ocean model components, respec-
tively, as given in the legend of Fig. 4.14.

As explored in depth in Chapter 3, the link between AMOC andOHUE arises from the com-
mon dependence of AMOC and OHUE on stratification in the subpolar North Atlantic and
mid-latitude Southern Ocean. Fig. 4.18 shows the inter-member relationship between preindus-
trial subpolar North Atlantic SSS and future OHUE. Consistent with Chapter 3, there is a sig-
nificant positive inter-member correlation, indicating that models with weaker subpolar North
Atlantic stratification (quantified by higher SSSnatl) have greater OHUE. As already noted for
Fig. 4.5, the models using the NEMO ocean component all have relatively low OHUE and thus
almost exclusively lie in the lower half of Fig. 4.18. An analogous analysis for Southern Ocean
SSS in the SO-60-45 region (Fig. B.10) shows a much weaker correlation, with statistically in-
significant linear slopes for regressions of model and modeling center averages. This is likely due
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to the relatively broad definition of the SO-60-45 region and represents a fundamental weakness
of the large-scale regional approach of this chapter compared to the local analysis of Chapter 3 of
inter-model relationships at the grid cell level.

Figure 4.19: Preindustrial mean SSS in the natl region scattered against future global ΔSAT across the
model ensemble. Marker colors and shapes correspond to climate models and ocean model components,
respectively, as given in the legend of Fig. 4.14.

Going beyond the impact of stratification metrics on OHUE (OHU/ΔSAT) as in Chapter
3, we can also consider their role for ΔSAT and OHU separately. Scatter plots between subpolar
SSSnatl andΔSAT (Fig. 4.19) and between subpolarNorthAtlantic SSSnatl andOHU (Fig.4.20)
show negative correlations for both variables, i.e., a less stratified subpolar North Atlantic trans-
lates to both lower ΔSAT and less OHU, although the correlation for OHU is weaker than forΔSAT. The stratification–OHUE linkmust thus arise from the control of (salinity) stratification
on surface warming and not OHU, as already noted by Liu et al. (2023).

4.3.4 Cross-validation

If the framework developed in this chapter is to be combined with observational data to obtain
constrained projections of future OHU, ΔSAT, and OHUE, a systematic cross-validation pro-
cedure is needed to ensure the robustness of the multiple linear regression of these predictands
onto the 11 predictors. An adequate validation procedure would need to take into account the
ensemble structure information revealed in the clustering analysis above. A potential such ap-
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Figure 4.20: Preindustrial mean SSS in the natl region scattered against future global OHU across the
model ensemble. Marker colors and shapes correspond to climate models and ocean model components,
respectively, as given in the legend of Fig. 4.14.

proach is offered by grouped 𝑘-fold cross-validation, as depicted schematically in Fig. 4.21. In this
approach, the set of 𝑝 = 11 predictands for𝑁 ≈ 100 ensemble members is repeatedly split (𝑘 = 5
times in the case of Fig. 4.21) into a training set and a test set. The regression model is then fit to
the training set and evaluated on the test set. The information of climate model membership (or
modeling center membership and ocean component) can be used to ensure that ensemble mem-
bers belonging to the same climate model are not present in both the training set and the test set
to avoid an overestimation of the quality of the regression fit. In Fig. 4.21, the “Group” label
corresponds to climate model membership, and the training/test split over the 𝑘 = 5 iterations
clearly respects these group boundaries.

4.4 Discussion
As mentioned in the introduction, the analysis conducted in this chapter is of an exploratory
nature, and its findings are preliminary. We have presented a number of results which could form
the foundation for a systematic approach to constraining future OHU,ΔSAT, and OHUE.
The clustering analysis in Section4.3.2has shown systematic features of the structure ofCMIP6

multi-model ensembles: simulations of key quantities tend to behave similarly for ensemblemem-
bers belonging to the same climatemodel ormodeling center, or using the sameoceanmodel. This
analysis could be extended to include further pieces of information characterizing each ensem-
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ble member, including other model components (e.g., the atmospheric component), measures
of model complexity, or of code similarity. Furthermore, instead of 𝑘-means clustering, a hierar-
chical clustering method could be used, which would allow the identification of sub-groups of
ensemble members at different levels of granularity (e.g., as in the “model genealogy” of Masson and

Knutti 2011).

Figure 4.21: Schematic of grouped 𝑘-fold cross val-
idation. Adapted from https://scikit-learn.o
rg/stable/auto_examples/model_selectio
n/plot_cv_indices.html

The findings obtained from the clustering
analysis could also be used to inform the re-
gression of the predictands onto the set of
predictors. For instance, after having ob-
tained and carefully analyzed a set ofmeaning-
ful ensemblemember clusters, thepredictands
could be first averaged over these clusters (in-
stead of averaging over members of the same
model ormodeling center). This could poten-
tially reduce problems associated with model
interdependence (see Sec. 1.2.3). Addition-
ally, instead of ordinary least squares (OLS),
more sophisticated versions of linear regres-
sion could be used to predict the future vari-
ables of interest, such as Lasso orRidge regres-
sion. These methods differ from OLS by in-
troducing a penalty term for the size of the re-
gression coefficients, which can yieldmore sta-
ble models, and in the case of Lasso regression

can improve model interpretability by setting some coefficients to zero (Hastie et al. 2009).
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5 Discussion

5.1 Summary and discussion of main results

In this section, we will summarize the main results found in chapters 2–4 of this thesis, and pro-
vide responses to the scientific questions posed at the end of the Introduction chapter (Sec. 1.3).

5.1.1 Chapter 2: How can we constrain future global OHU?

We answered this question in Chapter 2 by explicitly identifying and applying an emergent con-
straint on future OHU. We found a strong inter-model correlation between historical Antarc-
tic sea ice extent and future global OHU by the end of the 21st century in an ensemble of 28
CMIP6 models. This relationship allowed us to use satellite observations of sea ice concentra-
tions to constrain future OHU, leading to OHU estimates that are 12–33% less uncertain than
the unconstrained prior model average, depending on emissions scenario. Our constraint fulfils
the three validity criteria for emergent constraints introduced in Sec. 1.2.5.5: (i) the predictor–
predictand relationship is based on a verifiable physical mechanism, as summarized below; (ii) the
observational data is sufficiently well constrained to allow meaningful uncertainty reduction (as
confirmed with substantial robustness testing in Chapter 2); and (iii) the constraint is robust to
out-of-sample testing (as confirmedby a replication in an ensemble of 16CMIP5models inChap-
ter 2).
The emergent constraint is supported by a physical mechanism originating frommodel biases

in the extratropical Southern Hemisphere. We found that, in the preindustrial state across the
model ensemble, there is a strong connection between deep ocean temperatures, SouthernOcean
surface temperatures, Southern Ocean cloud cover, and Antarctic sea ice extent. These variables
are physically linked and together quantify the baseline climate state of the SouthernHemisphere
in each model. Crucially, we showed that this baseline state influences the modelled climate evo-
lution under anthropogenic forcing: models with an initially colder state have higher cloud feed-
back, more OHU, and stronger global warming under future emissions scenarios than models
with an initially warmer state. The initial climate state represents a potential for the amplitude of
future climate changes, and sea ice extent was essentially used as a “thermometer” of this initial
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state. Using observed Antarctic sea ice extent over 1980–2020 as a predictor therefore amounted
to measuring the potential of the actual climate system for these changes, thus constraining the
amplitude of these changes expected under various future emissions scenarios.

Chapter 2 thus offers a partial answer to the question of constraining future global OHU. It
is only partial because mechanisms other than the one we have identified might influence future
OHU, cloud feedback, and global warming in amplifying or compensating ways. However, our
constraint is likely more robust than a number of major previously published constraints which
were based on the use of warming trends over the recent past as predictors for future (ocean)
warming (e.g., Tokarska et al. 2020; Lyu et al. 2021). The observational time periods employed in
these studies coincide with a period of anomalously weak observed climate feedback due to sur-
face warming patterns not captured in climatemodels, leading to biased trend-on-trend emergent
constraints (Wills et al. 2022; Alessi and Rugenstein 2023; Armour et al. 2024, see also the perspective

on the “pattern effect” in Sec. 5.2.1 below). This is less critical for our constraint since it is based on
a physical mechanism and uses a long time-average instead of shorter-term trends as a predictor
(and this was shown in extensive sensitivity tests). Furthermore, constraints based on past trends
cannot incorporate the possibility of potential regime shifts in the climate system, such as the
progression to a future warm state in the SouthernHemispere in initially “cold”models shown in
Chapter 2.

5.1.2 Chapter 3: What processes control the OHU efficiency?

We addressed this question in Chapter 3 by considering the major controlling factors on OHU
efficiency (OHUE) previously proposed in the literature (e.g.; Boé et al. 2009; Winton et al. 2014;

Liu et al. 2023; Newsom et al. 2023, and others) and systematically analyzing their inter-model rela-
tionships at the global and regional levels. These proposed controlling factors include the depth
of the upper ocean mixed layer, the strength of upper ocean (0–1500m) density stratification, as
well as the magnitude of the meridional overturning cells of the Atlantic and Southern Ocean.

By calculating inter-model correlations across an ensemble of 28 CMIP6 models, we showed
that the global meanMLD as well as the strength of the AMOC and Southern Ocean upper cell
in the preindustrial climate are all correlated with the magnitude of OHUE under an idealized
scenario with exponentially increasing atmospheric CO2 concentrations. Although the global
meanupper ocean stratification is uncorrelatedwithOHUE, local correlations at the grid cell level
revealed that stronger stratification in the subpolar North Atlantic and mid-latitude Southern
Ocean is associatedwith a smallerOHUE, suggestingphysical links to the overturning circulations
generated in these regions. This was further supported by an analysis of the links between local
stratification and overturning strength across the model ensemble, which showed a link between
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subpolar North Atlantic stratification and AMOC, and between Southern Ocean stratification
and the Southern Ocean upper cell. A closer look at the ensemble mean bias and inter-model
spread in regional stratification then revealed the existence of salient salinity stratification biases
in the North Atlantic and Southern Ocean – the two key regions for overturning and OHUE.
The synthesis of these results supports a central control on OHUE of upper ocean stratifi-

cation, primarily through the key subpolar North Atlantic and mid-latitude Southern Ocean
regions which are the gatekeepers of the global overturning circulations. Our analysis added a
regional focus to the importance of salinity stratification for OHUE (Liu et al. 2023) despite its
subordinate role to temperature in setting the mean stratification strength. Furthermore, our
findings give more detailed insight to the suggestion by Gregory et al. (2023) that the AMOC is
not the active process determining OHUE, but that AMOC and OHUE are both controlled by
stratification. The key role of preindustrial model biases in geographically distant regions high-
lights the complexity of the inter-model spread in currently available climate models, and calls for
renewed focus on the parameterization and tuning choices affecting ocean stratification (Newsom

et al. 2023).

5.1.3 Chapter 4: Can we use this process understanding to constrain
OHU (efficiency)?

In Chapter 4, we attempted to provide an answer to this question by performing an exploratory
analysis of inter-member linkages in a large CMIP6 multi-model ensemble. We defined a set of
11 variables (AMOC strength, regional SST, and regional SSS) which could potentially serve as
predictors in amulti-variable emergent constraint on future global OHU, surface air temperature
anomaly (ΔSAT), and OHUE. As these variables are more commonly available from the CMIP
archive than the detailed model output used in Chapters 2 and 3, we obtained over 110 ensemble
members for both the historical period and each of four SSP scenarios. This relatively large num-
ber of simulations compared to the previous chapters more easily lends itself to popular statistical
analysis procedures, both in the “unsupervised” setting (i.e., to analyze the statistical properties
and ensemble structure of the predictors themselves), as well as in the “supervised” setting (i.e., to
perform regression of the predictands onto these predictors; Hastie et al. 2009).

In the unsupervised setting, we applied a clustering algorithm on the 11 predictors across the
model ensemble which revealed clear links between cluster assignment and climate model mem-
bership, modeling center, and the ocean model component employed in each ensemble member.
Even though the clustering procedure was applied without reference to this additional informa-
tion, it revealed how ensemble members from the same climate model, from the same modeling
center, and using the same ocean model component all tend to exhibit similar characteristics in
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their simulation of crucial ocean variables. Notably, we found that climate models employing the
NEMO ocean model as their ocean component (the most common ocean model in our ensemble;

Madec et al. 2023) tend to have a lower OHUE than climate models with different ocean compo-
nents.
In the supervised setting, we revisited the analysis of Chapters 2 and 3 by calculating univari-

ate correlations between salient predictor–predictand pairs, which confirmed the previously ob-
tained results summarized above. For example, beyond correlations computed across singlemem-
bers of different climatemodels, we found that the relationship between subpolarNorthAtlantic
salinity stratification and AMOC also holds for initial condition members of individual climate
models, further supporting the interpretation of the results of Chapter 3.

5.1.4 Overarching question: What is the effect of climate model biases
on future projections, and how do different biases relate to each
other?

Throughout this thesis, we have performed extensive analyses of simulation output from a range
of numerical climate models, in order to both produce projections of future climate changes and
to obtain an improved understanding of the involved physical climate system processes. No cli-
mate model is perfect, and different climate models are biased with respect to the true climate
system in different ways. Although this fact introduces uncertainties in the projections obtained
from model ensembles (see Sec. 1.2.3), the systematic comparison of climate model biases across
ensemble members also provides a unique opportunity to understand and constrain climate vari-
ables of interest. In particular, emergent inter-model relationships between variables acrossmulti-
model ensembles (Sec. 1.2.3.3) can be used to infer behavior not explicitly contained in any single
climatemodel. We used this idea in Chapter 2 where we combined such an emergent relationship
involving oceanic, atmospheric, and cryospheric climate variables with observational data in or-
der to constrain future OHU projections, and in Chapter 3 where we disentangled a number of
previously reported inter-model relationships that control OHU efficiency in climate models.
Future climate models, such as those being prepared for the upcoming CMIP7 exercise, are ex-

pected to improve on current models on many fronts including increased spatial resolution (Fox-

Kemper et al. 2019), the inclusion of previously unresolved processes (e.g., Schmidt et al. 2023), as
well as the use of improved parameterizations and hybrid machine learning-based modeling ap-
proaches (Eyring et al. 2024). These developments will alleviate some of the biases plaguing current
models, but will certainly not eradicate them all, and may even lead to new biases appearing in
previously well-simulated areas (e.g., Meehl et al. 2020). As new ensembles of increasingly complex
Earth systemmodels will become available in the future, the approaches adopted in this thesis will
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therefore remain vital for model intercomparison, climate projections, and process understand-
ing.

5.2 Perspectives
In this last section, we will discuss a number of potential extensions of the present work to related
questions.

5.2.1 Pattern effects on ocean heat uptake

Aswe have seen throughout this thesis, the ocean plays not only a passive role in climate change by
responding to atmospheric changes, but also an eminently active role through its direct involve-
ment in climate feedbacks (Chapter 2) and its buffering effect on surface warming (Chapter 3).
One aspect of this active oceanic influence on climate change which has garnered major scientific
interest in recent years is the influence of sea surface warming patterns on global climate feedback.
As the ocean takes upheat from the atmosphere, the resulting surfacewarming is not spatially uni-
form (see Fig. 5.1a for the period 1981–2014). For example, the observed warming is amplified in
theWestern Equatorial Pacific (WEP), while the Eastern Equatorial Pacific (EEP) and parts of the
Southern Ocean have shownmuted warming and even cooling trends over this period. Warming
at the Southern Ocean surface is slowed by the upwelling of century-old water masses and the
efficient transport of heat into the ocean interior (Armour et al. 2016), and the zonally heteroge-
neous warming in the Pacific is characteristic of the Pacific Decadal Oscillation (PDO) mode of
internal variability (although the full picture is more complicated and not of primary importance for this

discussion; e.g., McGregor et al. 2014). In the tropical Pacific, the atmosphere and ocean are tightly
coupled through atmospheric convection, giving rise to phenomena such as ENSO.This coupling
also has implications for climate feedback: zonal temperature gradients in the tropical Pacific in-
fluence the stability of the troposphere, which affects cloud feedback, mainly through changes in
marine low cloud coverage, as well as the lapse-rate feedback (e.g., Ceppi andGregory 2017). Warm-
ing trends in the SouthernOcean can further feed into this effect through teleconnections via the
Southeast Pacific involving cloud feedback (Kang et al. 2023a; b).

5.2.1.1 The atmospheric pattern effect

Despite this importance of SST warming patterns for climate feedback (and ultimately climate
sensitivity), current climate models are unable to correcly simulate these observed trends (Wills et

al. 2022). Under historical forcing, CMIP5/6 models simulate warming patterns which are much
more spatially uniform than observed, with some muted warming in the Southern Ocean but an
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a)

c)b)

Figure 5.1: Sea surface temperature trends in observations andCMIP5/6models. a)Observed trends over
1981–2014. b)Trends simulatedbyCMIP5/6models over years 1–150of theabrupt-4xCO2 experiment.
c)Trends simulated by CMIP5/6models over years 1981–2014 of the historical experiment. Adapted
from Armour et al. (2024) (Fig. 2).

almost completely absent zonal warming gradient in the tropical Pacific (Fig. 5.1c). This pattern
is similar to the eventual equilibrium warming pattern as simulated in abrupt CO2 quadrupling
experiments (Fig. 5.1b), where maximal warming is expected to be found in the Southern Ocean
and the EEP, which are precisely the regions with the smallest observed warming. This model-
observation mismatch in surface warming patterns over the recent historical period thus leads to
a simulated historical climate feedback parameter which is too weak (with the inferred climate
sensitivity too low), an issue which has been termed the “pattern effect” (e.g., Andrews et al. 2018;
2022; Alessi and Rugenstein 2023; Armour et al. 2024).

5.2.1.2 An oceanic pattern effect

Since the surface ocean is the interface between the atmosphere and the deep ocean, changes at
the surface do not only impact the atmosphere above, but also the deeper ocean layers below. In
particular, patterns of ocean surface warming can influence the efficiency of heat transport to the
deep ocean, since surface warming in regions of efficient vertical exchange (such as the Southern
Ocean) lead to more heat subduction than surface warming in highly stratified regions (such as
the tropical oceans). This effect was quantified in a study by Newsom et al. (2020), who forced a
Green’s function representation of the steady-state ocean circulation with varying surface warm-
ing patterns, and found that the pattern simulated by CMIP5 models (see Fig. 5.1c) damps the
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“passive” ocean heat uptake efficiency by 24% compared to spatially uniform warming, since re-
gions of strong ventilation tend to have smaller surface warming. A similar approach using a full
3D ocean model proved a substantial sensitivity of modelled AMOC strength and total OHU
to imposed surface heat fluxes (Huber and Zanna 2017), but Newsom et al. (2020) did not find a
significant control of inter-model variation in warming patterns on passive OHUE in CMIP5.
AlthoughNewsom et al. (2020) did not investigate the implications of model biases relative to ob-
served warming as discussed for the atmospheric case above, it can be hypothesized that, for ex-
ample, the enhanced Southern Ocean warming in models compared to observations should lead
to an overestimation of OHUE from model simulations (compare Figs. 5.1a,c), giving rise to an
oceanic “pattern effect”. (It should be noted that both pattern effects introduced here are intrinsi-
cally coupled phenomena since both the atmosphere and ocean contribute to the establishment of
warming patterns, but we stress here the distinction between the effect of these patterns on either
atmospheric or oceanic processes in each case.) An oceanic pattern effect of this type has recently
been shown to have played an important role in the deglaciation after the last glacial maximum,
ca. 21 ka ago (Zhu et al. 2024).

5.2.1.3 Combining atmospheric and oceanic pattern effects on ocean heat uptake

In light of this dual influence of surface warming patterns on both atmospheric feedbacks above
and oceanic heat uptake below, it would be interesting to investigate the combined effect of these
two pattern effects on both total OHU and OHUE (see the schematic in Fig. 5.2). A potential
study of this combined effect could adopt a systematic approach of forcing steady-state repre-
sentations of both the ocean and atmosphere with a specified set of surface warming patterns,
including the observed pattern (Fig. 5.1a), the ensemble mean simulated pattern (Fig. 5.1c), the
simulated patterns from individual CMIP5/6 models, as well as a baseline spatially uniform pat-
tern. The steady-state representations of the ocean and atmosphere could be either the same for
all experiments, or created for eachmodel individually to also incorporate inter-model differences
in ocean circulation, although this approach would be more complex (for model-specific Green’s
functions, see e.g.Kang et al. (2023a) for the atmosphere andChamberlain et al. (2019) for the ocean).

The OHU and OHUE estimates resulting from these different imposed surface warming pat-
terns (and potentially different ocean circulation representations) would show whether the two
pattern effects amplify or compensate each other at the global scale. Since both the tropical Pa-
cific and SouthernOcean are key regions for the atmospheric pattern effect, but only the Southern
Ocean is key for the oceanic effect, it would be interesting to investigate the potential coupling of
SSTmodel biases in these two regions, and to see how this impacts the amplification or compen-
sation of the two pattern effects on OHU(E).
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Figure 5.2: Schematic of the proposed combination of atmospheric and oceanic pattern effects onOHU.
Surface oceanwarming trends in theWestern and Eastern Equatorial Pacific (WEP and EEP) impact atmo-
spheric stability, cloud feedback, and ultimately OHU (Ceppi and Gregory 2017). Southern Ocean (SO)
warming trends control OHU through heat subduction, and communicate with the EEP via atmospheric
teleconnections (Kang et al. 2023a).

5.2.2 Lagrangian approaches to model analysis

All analyses in this thesis were conducted in an Eulerian reference frame, that is, on model grids
which are fixed in space and where fluid and tracer fluxes are represented as exchanges between
fixed grid boxes. An alternative to this framework is offered by the Lagrangian viewpoint, where
the reference frame follows each fluid parcel as it moves through space. Although these two view-
points are equivalent, this second viewpoint is in some ways more natural than the Eulerian case,
since the equations of motion fundamentally apply to each fluid parcel itself (Vallis 2017), and not
to arbitrary fluid regions fixed by amodel grid. Importantly, the Lagrangian approach can be used
to analyze velocity fields obtained from observational data or model output, and can yield infor-
mation on the physics and statistics of flow trajectories and timescales that are hard or impossible
to obtain from a purely Eulerian standpoint (the major Eulerian alternative to study such questions is

the use of purposeful dye tracers in model simulations; e.g., Marzocchi et al. 2021). Ocean models can
be constructed in a native Lagrangian fashion (e.g., Haertel and Fedorov 2012), but amore common
approach is to “release” virtual particles into Eulerian models, which are then advected by the re-
solved currents (and potentially by imposed subgrid-scale diffusion; Sebille et al. 2018). These particles

186



5.2 Perspectives

can be added either “online” during the model integration, or “offline” using the velocity fields
output by the model run.

Figure 5.3: Observational subsurface float trajectories in the Atlantic binned by depth range from the
AOML PhOD subsurface drifter database (Ramsey et al. 2018). These floats are advected by ocean currents
and thus naturally follow Langrangian pathways. Reprinted from Bower et al. (2019) (Fig. 12).

Models participating in CMIP generally provide output for Eulerian overturning streamfunc-
tions computed online on themodel grid. This output is commonly used to calculate theAMOC
strength at specific latitudes in the Atlantic. However, it is potentially unsuitable for calculating
overturning strength in e.g. the subpolar North Atlantic or the Southern Ocean, where the den-
sity surfaces, along which the circulation is mostly aligned, are tilted vertically in the meridional
direction, such that zonal integration yields unphysical overturning cells not associatedwith tracer
transport (e.g., theDeacon cell in the SouthernOcean;Döös andWebb1994). InChapter 3, we thus re-
sorted to overturning streamfunctions computed in density coordinates, which circumvents this
issue. These streamfunctions are only supplied by a limited number of CMIP6 models and thus
had to be calculated from monthly-resolution velocity, temperature, and salinity model output.
Furthermore, this overturning metric proved to be problematic for model intercomparison, not
least because it is unclear how to identify a single suitable metric for “overturning strength” given
these streamfunctions.
Lagrangian analysis provides a potential solution to these problems. It has been successfully

used to study the ventilation of the Southern Ocean (Viglione and Thompson 2016; Tamsitt et al.

2017; Drake et al. 2018; Tamsitt et al. 2018; Styles et al. 2024; Xie et al. 2024) as well as the AMOC
and global overturning circulation (e.g., Speich et al. 2007; Bower et al. 2019; Rousselet et al. 2021).

A potential Lagrangian multi-model study of OHU and OHUE could inject offline particles
into ocean model velocity fields from the CMIP archive, and build a global inventory of La-
grangian overturning and subduction pathways and their relation to OHU(E). This would re-
quire an implementation of subgrid-scale heat diffusion for a correct heat budget (e.g., using the
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Parcels framework in Python; Delandmeter and Sebille 2019), although an analysis of resolved path-
ways and timescales could already prove instructive. The issue of Southern Ocean overturning
encountered in Chapter 3 and discussed above could then more easily be interpreted through
an inspection of the precise heat subduction pathways exhibited by each model, which could be
compared to available estimates from observational drifters (Fig. 5.3) which naturally follow La-
grangian trajectories. As the spatial resolution of ocean models is expected to increase in future
CMIP generations, this approach will be able to more accurate resolve the ventilation of heat and
other tracers from the surface to the deep ocean (MacGilchrist et al. 2017).

5.2.3 Extending parameter perturbation experiments to the multi-model
setting

In Chapters 2 and 3 of this thesis, we used a single member per climate model to conduct multi-
model analyses, and in Chapter 4 we included several initial condition members per model to
enhance statistical robustness and include the effect of internal variability. Recalling our discus-
sion of model ensemble uncertainty in the Introduction (Sec. 1.2.3), it would be interesting to
explicitly consider also the impact of parameter uncertainty for each model in a multi-model en-
semble (MME). Amajority of climate modeling studies aimed at process understanding typically
employ one of two types ofmodel ensemble: (i)MMEswith either one or several initial condition
members per model, or (ii) parameter perturbation ensembles from a single model. However, the
usage of systematic parameter perturbation for eachmember of anMME is less common. In par-
ticular, while the CMIP6 archive contains some simulations with different physical setups for a
given model (as indicated by the physics index “p” in the CMIP6 member_id, e.g. “r1i1p1f1”),
these simulations typically only differ in their specification of certainmodel components (e.g., for
aerosol chemistry), and do not represent systematic parameter perturbation ensembles (PPEs).

Single-model PPEs have been used to studyOHU in the simulations ofHuber and Zanna (2017)

and Newsom et al. (2023), which explored the impact of varying the vertical diffusivity parameter𝜅v and the Gent-McWilliams parameter 𝜅GM. Generalizing this approach to the multi-model set-
ting, perhaps through a coordinatedMIP in a future CMIP cycle, would enable much enhanced
process understanding that would not be limited to the particular structure of a single model. As
model resolution will increase with increasing computing power in the future, some models may
choose to disable or modify some of their subgrid-scale parameterizations (e.g., Styles et al. 2023),
calling for a more detailed investigation of the ensuing implications for stratification and ocean
heat uptake.
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5.2.4 The ocean heat-carbon nexus

The focus of this thesis has been on ocean heat uptake, but there is a second major way in which
the ocean regulates climate change: through the uptake of anthropogenic carbon (Cant). Since
1850, the ocean has taken up 180 ± 35GtC (gigatonnes of carbon, i.e., 1012 kg of carbon), which
is 26% of the cumulative Cant emissions due to the burning of fossil fuels and land-use change
over this period (Friedlingstein et al. 2023, see Fig. 5.4). Over the same period, the terrestrial carbon
sink (i.e., the land biosphere) has taken up 225 ± 55GtC or 32% of the total emissions (Friedling-
stein et al. 2023). Taken together, the land and ocean sinks have therefore removed 58% of the cu-
mulative anthropogenic carbon emissions from the atmosphere, thus substantially reducing the
anthropogenic greenhouse effect that would result if all emissions remained in the atmosphere.
The dual role of the ocean in taking up both anthropogenic heat and carbon (including related
climate and carbon feedbacks, as discussed below) has been termed the “ocean heat-carbon nexus”
(Canadell et al. 2021; Séférian et al. 2024).

Figure 5.4: The cumulative global carbon budget
as a function of time from 1850 to 2022. CO2 emis-
sions from fossil and land-use change contributions
are balanced by increasing atmospheric CO2 and by
the land and ocean carbon sinks. The dashed red
line mirrors the total CO2 emissions indicated by the
soldi red line. Adapted from Friedlingstein et al. (2023)
(Fig. 3).

Ocean heat and Cant uptake share a num-
ber of similarities, but they are not completely
analogous. Both heat and CO2 enter the
ocean through air-sea fluxes at the surface,
and are then transported by large-scale cur-
rents and mixing processes into the ocean in-
terior. However, due to the distinctive car-
bonate chemistry of seawater, only 0.5% of
Cant is stored in the ocean in the form of
dissolved CO2 or carbonic acid (H2CO3),
since almost all of the CO2 is dissociated into
bicarbonate (HCO−3 ) and carbonate (CO2−3 )
ions (Sarmiento and Gruber 2006), and this fact
greatly enhances the carbon storage capacity
of the ocean. A further difference stems from
the fact that, unlike Cant, heat is an active
tracer, meaning that it influences the den-
sity of seawater, which is why OHU leads to
changes inocean circulation and stratification.
These circulation changes then impact both
heat and Cant uptake and storage by redis-

tributing these tracers across preexisting gradients in their oceanic inventories (e.g., Banks and Gre-
gory 2006), although this effect is more pronounced for heat than for Cant (Winton et al. 2013).
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Nevertheless, there is a fundamental similarity between the oceanic uptake of heat and Cant, and
this was used in a study byBronselaer andZanna (2020)who showed that the spatial patterns ofCant

storage are closely related to patterns of “added heat” (i.e., the OHU resulting from transport by
the preexisting ocean circulation), such that observations of Cant storage can be exploited to infer
the patterns of added and “redistributed heat” (i.e., the OHU resulting from changes in ocean
circulation alone).

Heat and carbon uptake are not only connected through their oceanic storage patterns, but
also, and perhaps more importantly, through their combined effect on climate. The effect of Cant

emissions on global warming can be quantified by the transient climate response to emissions
(TCRE), which quantifies the global mean surface warming resulting for a given quantity of cu-
mulative anthropogenic carbon emissions (in units of e.g. KGtC−1). It has been shown that the
relationship between cumulative emissions and global warming is nearly linear (Allen et al. 2009;

Matthews et al. 2009; Zickfeld et al. 2009) and path-independent (Krasting et al. 2014; MacDougall

2017), implying that the TCRE is nearly constant and thus a useful and policy-relevant metric,
e.g., to prescribe remaining carbon budgets for a given warming target (Zickfeld et al. 2009; Lahn
2020). (This linearity may break down on millenial time scales (Paynter and Frölicher 2015) or un-
der negative emissions from carbon dioxide removal; Zickfeld et al. 2016.) Despite being a simple
climate change metric to define (or perhaps because of this), the TCRE is controlled by a com-
plex set of processes involving the whole Earth system. A number of complementary frameworks
have been proposed to decompose the TCRE into its controlling factors (e.g., Goodwin et al. 2015;
Williams et al. 2016), emphasizing both the role of the atmosphere and ocean (Katavouta et al. 2018).

Here we cite the form used byWilliams et al. (2020):

TCRE = Δ𝑇(𝑡)𝐼em(𝑡) = (Δ𝑇(𝑡)Δ𝐹(𝑡) )⏟
thermal processes

⋅ ( Δ𝐹(𝑡)Δ𝐼atmos(𝑡))⏟
radiative forcing

⋅ (Δ𝐼atmos(𝑡)𝐼em )⏟
airborne fraction

. (5.1)

In this equation, Δ𝑇 is the global mean surface temperature anomaly in K, 𝐼em the cumulative
carbon emissions in GtC, Δ𝐹 the radiative forcing in Wm−2, and 𝐼atmos the atmospheric car-
bon inventory in GtC. Although this decomposition is mathematically trivial, it is highly use-
ful and reveals the influence of distinct processes on TCRE as depicted in Fig. 5.5: (i) the termΔ𝑇/Δ𝐹 represents the surface warming resulting from a given radiative forcing and is therefore
controlled by thermal processes such as climate feedbacks and OHU; (ii) the term Δ𝐹/Δ𝐼atmos

represents the radiative forcing arising from a given atmospheric CO2 concentration; and (iii) the
term Δ𝐼atmos/Δ𝐼em is the airborne fraction, i.e., the fraction of Cant emissions remaining in the
atmosphere, and is thus controlled by the biogeochemical processes that set the land and ocean
carbon sinks. In particular, the constancy of TCRE has been found to arise from a compensation
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between a strengthening of the thermal part (i.e., weaker OHU and stronger climate feedbacks
over time) and a weakening of the radiative forcing part (i.e., a saturation of radiative forcing with

increasing atmospheric CO2 concentrations; Williams et al. 2016). This further underlines the central
connection between the ocean heat and carbon sinks, as well as the climatic importance of the
“ocean heat-carbon nexus”.

Surface
warming

dependence
on radiative

forcing

Radiative
forcing

dependence
on atm. CO2

Atm. CO2

dependence
on CO2

emissions

Figure 5.5: Schematic representation of the link between carbon emissions and warming. Adapted from
Williams et al. (2016) (Fig. 1b).

There remains uncertainty in the processes contributing to each of three terms in Eq. (5.1).
The first term is affected by uncertainties in cloud feedback (Zelinka et al. 2020) and OHU, whose
inter-model spread only partly compensate each other, and represent the dominant uncertainty
on a 100-year time scale (Williams et al. 2020). The second term results from the absorbtion spec-
trumofCO2 and can be approximated as a logarithmic function ofCO2 concentration (Romps et

al. 2022), but is still variable acrossmodels due to differences in carbon sink efficiency and radiative
forcing. The last term (the airborne fraction) is affected by carbon cycle feedbacks which modu-
late the amount of carbon remaining in the atmosphere and can make the TCRE rate dependent
(MacDougall and Friedlingstein 2015). These feedbacks are overall stable and result from a combina-
tion of negative (e.g., increased carbon sinks under increasing atmosphericCO2) and positive con-
tributions (e.g., decreased carbon sinks due to warming;Williams et al. 2019; Arora et al. 2020; Katavouta

andWilliams 2021), but they require interactive carbon cycle models and emissions-driven scenar-
ios to be appropriately quantified, and this is not yet standard in the current generation of CMIP
models.

A potential study on these uncertainties in the TCRE could extend the approaches used in
this thesis—observational constraints as in Chapter 2 and mechanistic inter-model analyses as in
Chapter 3—to include the effects of oceanic carbon uptake, redistribution, and storage on global
warming. The analogies between ocean heat and carbon uptake identified by Bronselaer and Zanna
(2020) could be further investigated by incorporating new observations of further tracers such
as oxygen or chlorofluorocarbon (CFC) species. This would potentially allow a more mechanis-
tic understanding of the biogeochemical processes affecting the efficiency of carbon and oxygen
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fluxes (which are irrelevant for heat), as well as the physical processes affecting all tracers similarly.
By eventually constraining the storage patterns of these tracers, this information could then also
feed back into the pattern effect issue discussed above (Sec. 5.2.1).

192



Bibliography

Alessi, M. J. and M.A. A. Rugenstein (2023). “Surface Temperature Pattern Scenarios Suggest
HigherWarmingRatesThanCurrentProjections”.GeophysicalResearchLetters 50:23. _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1029/2023GL105795, e2023GL105795. issn: 1944-
8007. doi: 10.1029/2023GL105795.

Allen,M.R. et al. (2009). “Warming causedby cumulative carbon emissions towards the trillionth
tonne”.Nature 458:7242. Publisher: Nature Publishing Group, pp. 1163–1166. issn: 1476-
4687. doi: 10.1038/nature08019.

Andrews, T. et al. (2018). “Accounting for Changing Temperature Patterns Increases Historical
Estimates of Climate Sensitivity”.Geophysical Research Letters 45:16. _eprint: https://onlineli-
brary.wiley.com/doi/pdf/10.1029/2018GL078887, pp. 8490–8499. issn: 1944-8007. doi: 1
0.1029/2018GL078887.

Andrews, T. et al. (2022). “On the Effect of Historical SST Patterns on Radiative Feedback”.
Journal ofGeophysicalResearch:Atmospheres 127:18. _eprint: https://onlinelibrary.wiley.com/-
doi/pdf/10.1029/2022JD036675, e2022JD036675. issn: 2169-8996. doi: 10.1029/2022
JD036675.

Armour,K. C., J.Marshall, J. R. Scott,A.Donohoe, andE. R.Newsom (2016). “SouthernOcean
warming delayed by circumpolar upwelling and equatorward transport”. Nature Geoscience
9:7. Number: 7 Publisher: Nature Publishing Group, pp. 549–554. issn: 1752-0908. doi: 10
.1038/ngeo2731.

Armour, K. C. et al. (2024). “Sea-surface temperature pattern effects have slowed global warm-
ing and biased warming-based constraints on climate sensitivity”. Proceedings of the National
Academy of Sciences 121:12.Publisher: Proceedings of theNationalAcademyof Sciences, e2312093121.
doi: 10.1073/pnas.2312093121.

Arora,V. K. et al. (2020). “Carbon–concentration and carbon–climate feedbacks inCMIP6mod-
els and their comparison toCMIP5models”.Biogeosciences 17:16.Publisher:CopernicusGmbH,
pp. 4173–4222. issn: 1726-4170. doi: 10.5194/bg-17-4173-2020.

Banks, H. T. and J.M. Gregory (2006). “Mechanisms of ocean heat uptake in a coupled climate
model and the implications for tracer based predictions of ocean heat uptake”.Geophysical Re-

193

http://dx.doi.org/10.1029/2023GL105795
http://dx.doi.org/10.1038/nature08019
http://dx.doi.org/10.1029/2018GL078887
http://dx.doi.org/10.1029/2018GL078887
http://dx.doi.org/10.1029/2022JD036675
http://dx.doi.org/10.1029/2022JD036675
http://dx.doi.org/10.1038/ngeo2731
http://dx.doi.org/10.1038/ngeo2731
http://dx.doi.org/10.1073/pnas.2312093121
http://dx.doi.org/10.5194/bg-17-4173-2020


Bibliography

searchLetters 33:7. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/2005GL025352.
issn: 1944-8007. doi: 10.1029/2005GL025352.

Boé, J., A. Hall, and X. Qu (2009). “Deep ocean heat uptake as a major source of spread in tran-
sient climate change simulations”.GeophysicalResearchLetters 36:22. _eprint: https://onlineli-
brary.wiley.com/doi/pdf/10.1029/2009GL040845. issn: 1944-8007. doi: 10 . 1029 / 2009
GL040845.

Bower, A. et al. (2019). “Lagrangian Views of the Pathways of the Atlantic Meridional Over-
turning Circulation”. Journal of Geophysical Research: Oceans 124:8. _eprint: https://onlineli-
brary.wiley.com/doi/pdf/10.1029/2019JC015014, pp. 5313–5335. issn: 2169-9291. doi: 10
.1029/2019JC015014.

Bronselaer, B. and L. Zanna (2020). “Heat and carbon coupling reveals oceanwarming due to cir-
culation changes”. Nature 584:7820. Bandiera_abtest: a Cg_type: Nature Research Journals
Number: 7820 Primary_atype: Research Publisher: Nature Publishing Group Subject_term:
Attribution;Physical oceanography;Projection andpredictionSubject_term_id: attribution;physical-
oceanography;projection-and-prediction, pp. 227–233. issn: 1476-4687. doi: 10.1038/s41
586-020-2573-5.

Canadell, J. G. et al. (2021). “Global carbon and other biogeochemical cycles and feedbacks”.
In: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the
Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Ed. by V. Masson-
Delmotte et al. CambridgeUniversity Press, Cambridge, UnitedKingdom andNewYork,NY,
USA, pp. 673–816. doi: 10.1017/9781009157896.001.

Ceppi, P. and J.M. Gregory (2017). “Relationship of tropospheric stability to climate sensitivity
andEarth’s observed radiationbudget”.Proceedings of theNationalAcademy of Sciences 114:50.
Publisher: Proceedings of the National Academy of Sciences, pp. 13126–13131. doi: 10.107
3/pnas.1714308114.

Chamberlain,M. A., R. J.Matear,M.Holzer, D. Bi, and S. J.Marsland (2019). “Transportmatri-
ces fromstandardocean-model output andquantifying circulation response to climate change”.
OceanModelling 135, pp. 1–13. issn: 1463-5003. doi: 10.1016/j.ocemod.2019.01.005.

Delandmeter, P. and E. van Sebille (2019). “The Parcels v2.0 Lagrangian framework: new field
interpolation schemes”.GeoscientificModelDevelopment 12:8. Publisher: CopernicusGmbH,
pp. 3571–3584. issn: 1991-959X. doi: 10.5194/gmd-12-3571-2019.

Döös, K. andD. J.Webb (1994). “TheDeaconCell and theOtherMeridional Cells of the South-
ern Ocean”. Journal of Physical Oceanography 24:2. Publisher: American Meteorological So-
ciety Section: Journal of Physical Oceanography, pp. 429–442. issn: 0022-3670, 1520-0485.
doi: 10.1175/1520-0485(1994)024<0429:TDCATO>2.0.CO;2.

194

http://dx.doi.org/10.1029/2005GL025352
http://dx.doi.org/10.1029/2009GL040845
http://dx.doi.org/10.1029/2009GL040845
http://dx.doi.org/10.1029/2019JC015014
http://dx.doi.org/10.1029/2019JC015014
http://dx.doi.org/10.1038/s41586-020-2573-5
http://dx.doi.org/10.1038/s41586-020-2573-5
http://dx.doi.org/10.1017/9781009157896.001
http://dx.doi.org/10.1073/pnas.1714308114
http://dx.doi.org/10.1073/pnas.1714308114
http://dx.doi.org/10.1016/j.ocemod.2019.01.005
http://dx.doi.org/10.5194/gmd-12-3571-2019
http://dx.doi.org/10.1175/1520-0485(1994)024<0429:TDCATO>2.0.CO;2


Bibliography

Drake, H. F. et al. (2018). “Lagrangian Timescales of Southern Ocean Upwelling in a Hierar-
chyofModelResolutions”.GeophysicalResearchLetters 45:2. _eprint: https://onlinelibrary.wi-
ley.com/doi/pdf/10.1002/2017GL076045, pp. 891–898. issn: 1944-8007. doi: 10.1002/2
017GL076045.

Eyring, V. et al. (2024). “Pushing the frontiers in climate modelling and analysis with machine
learning”. Nature Climate Change 14:9. Publisher: Nature Publishing Group, pp. 916–928.
issn: 1758-6798. doi: 10.1038/s41558-024-02095-y.

Fox-Kemper, B. et al. (2019). “Challenges and Prospects inOceanCirculationModels”. Frontiers
inMarine Science 6. Publisher: Frontiers. issn: 2296-7745. doi: 10.3389/fmars.2019.00
065.

Friedlingstein, P. et al. (2023). “Global Carbon Budget 2023”. Earth System Science Data 15:12.
Publisher: Copernicus GmbH, pp. 5301–5369. issn: 1866-3508. doi: 10.5194/essd-15-
5301-2023.

Goodwin, P., R. G. Williams, and A. Ridgwell (2015). “Sensitivity of climate to cumulative car-
bon emissions due to compensation of ocean heat and carbon uptake”.Nature Geoscience 8:1.
Publisher:Nature PublishingGroup, pp. 29–34. issn: 1752-0908. doi: 10.1038/ngeo2304.

Gregory, J.M. et al. (2023). “A new conceptual model of global ocean heat uptake”.Climate Dy-
namics. issn: 1432-0894. doi: 10.1007/s00382-023-06989-z.

Haertel, P. andA. Fedorov (2012). “TheVentilatedOcean”. Section: Journal of PhysicalOceanog-
raphy. doi: 10.1175/2011JPO4590.1.

Hastie, T., R. Tibshirani, and J. Friedman (2009). The Elements of Statistical Learning. Springer
Series in Statistics. Springer New York, New York, NY. isbn: 978-0-387-84857-0 978-0-387-
84858-7. doi: 10.1007/978-0-387-84858-7.

Huber, M. B. and L. Zanna (2017). “Drivers of uncertainty in simulated ocean circulation and
heatuptake”.GeophysicalResearchLetters 44:3. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/2016GL071587,
pp. 1402–1413. issn: 1944-8007. doi: 10.1002/2016GL071587.

Kang, S.M., P. Ceppi, Y. Yu, and I.-S. Kang (2023a). “Recent global climate feedback controlled
by SouthernOcean cooling”.NatureGeoscience 16:9.Number: 9 Publisher:Nature Publishing
Group, pp. 775–780. issn: 1752-0908. doi: 10.1038/s41561-023-01256-6.

Kang, S.M. et al. (2023b). “Global impacts of recent Southern Ocean cooling”. Proceedings of
the National Academy of Sciences 120:30. Publisher: Proceedings of the National Academy of
Sciences, e2300881120. doi: 10.1073/pnas.2300881120.

Katavouta, A. andR.G.Williams (2021). “Ocean carbon cycle feedbacks inCMIP6models: con-
tributions fromdifferentbasins”.Biogeosciences 18:10.Publisher:CopernicusGmbH,pp. 3189–
3218. issn: 1726-4170. doi: 10.5194/bg-18-3189-2021.

195

http://dx.doi.org/10.1002/2017GL076045
http://dx.doi.org/10.1002/2017GL076045
http://dx.doi.org/10.1038/s41558-024-02095-y
http://dx.doi.org/10.3389/fmars.2019.00065
http://dx.doi.org/10.3389/fmars.2019.00065
http://dx.doi.org/10.5194/essd-15-5301-2023
http://dx.doi.org/10.5194/essd-15-5301-2023
http://dx.doi.org/10.1038/ngeo2304
http://dx.doi.org/10.1007/s00382-023-06989-z
http://dx.doi.org/10.1175/2011JPO4590.1
http://dx.doi.org/10.1007/978-0-387-84858-7
http://dx.doi.org/10.1002/2016GL071587
http://dx.doi.org/10.1038/s41561-023-01256-6
http://dx.doi.org/10.1073/pnas.2300881120
http://dx.doi.org/10.5194/bg-18-3189-2021


Bibliography

Katavouta,A.,R. G.Williams, P.Goodwin, andV.Roussenov (2018). “ReconcilingAtmospheric
andOceanicViews of theTransientClimateResponse toEmissions”.GeophysicalResearchLet-
ters 45:12. _eprint: https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2018GL077849,
pp. 6205–6214. issn: 1944-8007. doi: 10.1029/2018GL077849.

Krasting, J. P., J. P. Dunne, E. Shevliakova, andR. J. Stouffer (2014). “Trajectory sensitivity of the
transient climate response to cumulative carbon emissions”.Geophysical Research Letters 41:7.
_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/2013GL059141, pp. 2520–2527. issn:
1944-8007. doi: 10.1002/2013GL059141.

Lahn, B. (2020). “A history of the global carbon budget”.WIREs Climate Change 11:3. _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/wcc.636, e636. issn: 1757-7799. doi: 10.1
002/wcc.636.

Liu, M., B. J. Soden, G. A. Vecchi, and C. Wang (2023). “The Spread of Ocean Heat Uptake
Efficiency Traced to Ocean Salinity”. Geophysical Research Letters 50:4. _eprint: https://on-
linelibrary.wiley.com/doi/pdf/10.1029/2022GL100171, e2022GL100171. issn: 1944-8007.
doi: 10.1029/2022GL100171.

Lyu, K., X. Zhang, and J. A. Church (2021). “Projected ocean warming constrained by the ocean
observational record”.Nature Climate Change 11:10.Number: 10 Publisher: Nature Publish-
ing Group, pp. 834–839. issn: 1758-6798. doi: 10.1038/s41558-021-01151-1.

MacDougall, A.H. (2017). “The oceanic origin of path-independent carbon budgets”. Scientific
Reports 7:1. Publisher: Nature Publishing Group, p. 10373. issn: 2045-2322. doi: 10.1038
/s41598-017-10557-x.

MacDougall, A.H. and P. Friedlingstein (2015). “TheOrigin and Limits of theNear Proportion-
ality between Climate Warming and Cumulative CO2 Emissions”. Journal of Climate 28:10,
pp. 4217–4230. issn: 0894-8755, 1520-0442. doi: 10.1175/JCLI-D-14-00036.1.

MacGilchrist, G. A., D. P. Marshall, H. L. Johnson, C. Lique, and M. Thomas (2017). “Char-
acterizing the chaotic nature of ocean ventilation”. Journal of Geophysical Research: Oceans
122:9. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/2017JC012875, pp. 7577–
7594. issn: 2169-9291. doi: 10.1002/2017JC012875.

Madec, G. et al. (2023). “NEMOOcean Engine Reference Manual”. Publisher: Zenodo. doi: 1
0.5281/zenodo.8167700.

Marzocchi, A., A. J. G. Nurser, L. Clément, and E. L. McDonagh (2021). “Surface atmospheric
forcing as the driver of long-term pathways and timescales of ocean ventilation”.Ocean Science
17:4, pp. 935–952. issn: 1812-0792. doi: 10.5194/os-17-935-2021.

Matthews,H.D.,N. P.Gillett, P. A. Stott, andK. Zickfeld (2009). “The proportionality of global
warming to cumulative carbon emissions”. Nature 459:7248. Publisher: Nature Publishing
Group, pp. 829–832. issn: 1476-4687. doi: 10.1038/nature08047.

196

http://dx.doi.org/10.1029/2018GL077849
http://dx.doi.org/10.1002/2013GL059141
http://dx.doi.org/10.1002/wcc.636
http://dx.doi.org/10.1002/wcc.636
http://dx.doi.org/10.1029/2022GL100171
http://dx.doi.org/10.1038/s41558-021-01151-1
http://dx.doi.org/10.1038/s41598-017-10557-x
http://dx.doi.org/10.1038/s41598-017-10557-x
http://dx.doi.org/10.1175/JCLI-D-14-00036.1
http://dx.doi.org/10.1002/2017JC012875
http://dx.doi.org/10.5281/zenodo.8167700
http://dx.doi.org/10.5281/zenodo.8167700
http://dx.doi.org/10.5194/os-17-935-2021
http://dx.doi.org/10.1038/nature08047


Bibliography

McGregor, S. et al. (2014). “Recent Walker circulation strengthening and Pacific cooling ampli-
fied byAtlanticwarming”.NatureClimateChange 4:10. Publisher:Nature PublishingGroup,
pp. 888–892. issn: 1758-6798. doi: 10.1038/nclimate2330.

Meehl, G. A. et al. (2020). “Context for interpreting equilibrium climate sensitivity and transient
climate response from the CMIP6 Earth system models”. Science Advances 6:26. Publisher:
American Association for the Advancement of Science, eaba1981. doi: 10.1126/sciadv
.aba1981.

Newsom, E., L. Zanna, and J. Gregory (2023). “Background Pycnocline Depth Constrains Fu-
ture Ocean Heat Uptake Efficiency”. Geophysical Research Letters 50:22. _eprint: https://on-
linelibrary.wiley.com/doi/pdf/10.1029/2023GL105673, e2023GL105673. issn: 1944-8007.
doi: 10.1029/2023GL105673.

Newsom, E., L. Zanna, S. Khatiwala, and J.M. Gregory (2020). “The Influence ofWarming Pat-
terns on Passive Ocean Heat Uptake”.Geophysical Research Letters 47:18. _eprint: https://on-
linelibrary.wiley.com/doi/pdf/10.1029/2020GL088429, e2020GL088429. issn: 1944-8007.
doi: 10.1029/2020GL088429.

Paynter,D. andT. L. Frölicher (2015). “Sensitivity of radiative forcing, ocean heat uptake, and cli-
mate feedback to changes in anthropogenic greenhouse gases and aerosols”. Journal ofGeophysi-
calResearch:Atmospheres 120:19. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/2015JD023364,
pp. 9837–9854. issn: 2169-8996. doi: 10.1002/2015JD023364.

Ramsey, A. L., H.H. Furey, andA. S. Bower (2018). “Deep Floats Reveal ComplexOceanCircu-
lation Patterns”. Eos 99. issn: 2324-9250. doi: 10.1029/2018EO105549.

Romps,D.M., J. T. Seeley, and J. P.Edman (2022). “Why theForcing fromCarbonDioxide Scales
as the Logarithm of Its Concentration”. Section: Journal of Climate. doi: 10.1175/JCLI-
D-21-0275.1.

Rousselet, L., P. Cessi, and G. Forget (2021). “Coupling of the mid-depth and abyssal compo-
nents of the global overturning circulation according to a state estimate”. Science Advances.
Publisher: American Association for the Advancement of Science. doi: 10.1126/sciadv.a
bf5478.

Sarmiento, J. L. and N. Gruber (2006). Ocean Biogeochemical Dynamics. Princeton University
Press. isbn: 978-1-4008-4907-9 978-0-691-01707-5. doi: 10.2307/j.ctt3fgxqx.

Schmidt, G. A. et al. (2023). “Anomalous Meltwater From Ice Sheets and Ice Shelves Is a His-
torical Forcing”.Geophysical Research Letters 50:24. _eprint: https://onlinelibrary.wiley.com/-
doi/pdf/10.1029/2023GL106530, e2023GL106530. issn: 1944-8007. doi: 10.1029/2023
GL106530.

Sebille, E. van et al. (2018). “Lagrangianocean analysis: Fundamentals andpractices”.OceanMod-
elling 121, pp. 49–75. issn: 1463-5003. doi: 10.1016/j.ocemod.2017.11.008.

197

http://dx.doi.org/10.1038/nclimate2330
http://dx.doi.org/10.1126/sciadv.aba1981
http://dx.doi.org/10.1126/sciadv.aba1981
http://dx.doi.org/10.1029/2023GL105673
http://dx.doi.org/10.1029/2020GL088429
http://dx.doi.org/10.1002/2015JD023364
http://dx.doi.org/10.1029/2018EO105549
http://dx.doi.org/10.1175/JCLI-D-21-0275.1
http://dx.doi.org/10.1175/JCLI-D-21-0275.1
http://dx.doi.org/10.1126/sciadv.abf5478
http://dx.doi.org/10.1126/sciadv.abf5478
http://dx.doi.org/10.2307/j.ctt3fgxqx
http://dx.doi.org/10.1029/2023GL106530
http://dx.doi.org/10.1029/2023GL106530
http://dx.doi.org/10.1016/j.ocemod.2017.11.008


Bibliography

Séférian, R. et al. (2024). “Physical inconsistencies in the representation of the ocean heat-carbon
nexus in simple climate models”. Communications Earth & Environment 5:1. Publisher: Na-
ture Publishing Group, pp. 1–10. issn: 2662-4435. doi: 10.1038/s43247-024-01464-x.

Speich, S., B. Blanke, and W. Cai (2007). “Atlantic meridional overturning circulation and the
SouthernHemisphere supergyre”.GeophysicalResearchLetters 34:23. _eprint: https://onlineli-
brary.wiley.com/doi/pdf/10.1029/2007GL031583. issn: 1944-8007. doi: 10 . 1029 / 2007
GL031583.

Styles,A. F.,M. J. Bell, andD. P.Marshall (2023). “The Sensitivity of an IdealizedWeddellGyre to
Horizontal Resolution”. Journal of Geophysical Research: Oceans 128:10. _eprint: https://on-
linelibrary.wiley.com/doi/pdf/10.1029/2023JC019711, e2023JC019711. issn: 2169-9291.doi:1
0.1029/2023JC019711.

Styles, A. F., G. A.MacGilchrist,M. J. Bell, andD. P.Marshall (2024). “Spatial andTemporal Pat-
terns of Southern Ocean Ventilation”. Geophysical Research Letters 51:4. _eprint: https://on-
linelibrary.wiley.com/doi/pdf/10.1029/2023GL106716, e2023GL106716. issn: 1944-8007.
doi: 10.1029/2023GL106716.

Tamsitt, V., R. P. Abernathey, M.R. Mazloff, J. Wang, and L.D. Talley (2018). “Transformation
ofDeepWaterMasses Along LagrangianUpwelling Pathways in the SouthernOcean”. Journal
ofGeophysicalResearch:Oceans 123:3. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/2017JC013409,
pp. 1994–2017. issn: 2169-9291. doi: 10.1002/2017JC013409.

Tamsitt, V. et al. (2017). “Spiraling pathways of global deep waters to the surface of the Southern
Ocean”.NatureCommunications 8:1.Number: 1 Publisher:Nature PublishingGroup, p. 172.
issn: 2041-1723. doi: 10.1038/s41467-017-00197-0.

Tokarska, K. B. et al. (2020). “Past warming trend constrains future warming in CMIP6 mod-
els”. Science Advances 6:12. Publisher: American Association for the Advancement of Science,
eaaz9549. doi: 10.1126/sciadv.aaz9549.

Vallis, G. K. (2017).Atmospheric and oceanic fluid dynamics: Fundamentals and large-scale circu-
lation. 2nd ed. Cambridge University Press, Cambridge.

Viglione, G. A. and A. F. Thompson (2016). “Lagrangian pathways of upwelling in the South-
ern Ocean”. Journal of Geophysical Research: Oceans 121:8. _eprint: https://onlinelibrary.wi-
ley.com/doi/pdf/10.1002/2016JC011773, pp. 6295–6309. issn: 2169-9291. doi: 10.1002
/2016JC011773.

Williams, R. G., P. Ceppi, and A. Katavouta (2020). “Controls of the transient climate response
to emissions by physical feedbacks, heat uptake and carbon cycling”. Environmental Research
Letters 15:9. Publisher: IOP Publishing, p. 0940c1. issn: 1748-9326. doi: 10.1088/1748-9
326/ab97c9.

198

http://dx.doi.org/10.1038/s43247-024-01464-x
http://dx.doi.org/10.1029/2007GL031583
http://dx.doi.org/10.1029/2007GL031583
http://dx.doi.org/10.1029/2023JC019711
http://dx.doi.org/10.1029/2023JC019711
http://dx.doi.org/10.1029/2023GL106716
http://dx.doi.org/10.1002/2017JC013409
http://dx.doi.org/10.1038/s41467-017-00197-0
http://dx.doi.org/10.1126/sciadv.aaz9549
http://dx.doi.org/10.1002/2016JC011773
http://dx.doi.org/10.1002/2016JC011773
http://dx.doi.org/10.1088/1748-9326/ab97c9
http://dx.doi.org/10.1088/1748-9326/ab97c9


Bibliography

Williams,R. G., P.Goodwin,V.M.Roussenov, andL.Bopp (2016). “A framework tounderstand
the transient climate response to emissions”. Environmental Research Letters 11:1. Publisher:
IOP Publishing, p. 015003. issn: 1748-9326. doi: 10.1088/1748-9326/11/1/015003.

Williams, R. G., A. Katavouta, and P. Goodwin (2019). “Carbon-Cycle Feedbacks Operating in
the Climate System”. Current Climate Change Reports 5:4, pp. 282–295. issn: 2198-6061.
doi: 10.1007/s40641-019-00144-9.

Wills, R. C. J., Y. Dong, C. Proistosecu, K. C. Armour, andD. S. Battisti (2022). “Systematic Cli-
mate Model Biases in the Large-Scale Patterns of Recent Sea-Surface Temperature and Sea-
Level Pressure Change”. Geophysical Research Letters 49:17. _eprint: https://onlinelibrary.wi-
ley.com/doi/pdf/10.1029/2022GL100011, e2022GL100011. issn: 1944-8007. doi: 10.102
9/2022GL100011.

Winton, M., S.M. Griffies, B. L. Samuels, J. L. Sarmiento, and T. L. Frölicher (2013). “Connect-
ingChangingOceanCirculationwithChangingClimate”. Journal of Climate 26:7. Publisher:
American Meteorological Society Section: Journal of Climate, pp. 2268–2278. issn: 0894-
8755, 1520-0442. doi: 10.1175/JCLI-D-12-00296.1.

Winton,M. et al. (2014). “Has coarse ocean resolution biased simulations of transient climate sen-
sitivity?”GeophysicalResearchLetters 41:23. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/2014GL061523,
pp. 8522–8529. issn: 1944-8007. doi: 10.1002/2014GL061523.

Xie, Y. et al. (2024). “Euphotic Zone Residence Time of Antarctic Bottom Water”. Geophysical
ResearchLetters 51:10. _eprint: https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2023GL106342,
e2023GL106342. issn: 1944-8007. doi: 10.1029/2023GL106342.

Zelinka,M.D. et al. (2020). “Causes ofHigher Climate Sensitivity in CMIP6Models”.Geophysi-
calResearchLetters 47:1. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/2019GL085782,
e2019GL085782. issn: 1944-8007. doi: 10.1029/2019GL085782.

Zhu,C. et al. (2024). “Enhanced oceanheat storage efficiency during the last deglaciation”. Science
Advances 10:38. Publisher: American Association for the Advancement of Science, eadp5156.
doi: 10.1126/sciadv.adp5156.

Zickfeld, K., M. Eby, H.D. Matthews, and A. J. Weaver (2009). “Setting cumulative emissions
targets to reduce the risk of dangerous climate change”. Proceedings of the National Academy
of Sciences 106:38. Publisher: Proceedings of the National Academy of Sciences, pp. 16129–
16134. doi: 10.1073/pnas.0805800106.

Zickfeld, K., A.H. MacDougall, and H.D. Matthews (2016). “On the proportionality between
global temperature change and cumulativeCO2 emissions during periods of net negativeCO2
emissions”. Environmental Research Letters 11:5. Publisher: IOP Publishing, p. 055006. issn:
1748-9326. doi: 10.1088/1748-9326/11/5/055006.

199

http://dx.doi.org/10.1088/1748-9326/11/1/015003
http://dx.doi.org/10.1007/s40641-019-00144-9
http://dx.doi.org/10.1029/2022GL100011
http://dx.doi.org/10.1029/2022GL100011
http://dx.doi.org/10.1175/JCLI-D-12-00296.1
http://dx.doi.org/10.1002/2014GL061523
http://dx.doi.org/10.1029/2023GL106342
http://dx.doi.org/10.1029/2019GL085782
http://dx.doi.org/10.1126/sciadv.adp5156
http://dx.doi.org/10.1073/pnas.0805800106
http://dx.doi.org/10.1088/1748-9326/11/5/055006




A Appendix to front matter

Figure A.1: Global mean sea surface temperature anomalies from 1850 to 2023 relative to a 1961–2010
mean baseline, from https://showyourstripes.info/c/ocean/all (Prof. EdHawkins, University of Reading).
This is the original figure that was adapted for the title pages of this thesis.
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B Appendix to Chapter 4

Figure B.1: Global mean surface air temperature anomaly ΔSAT under the SSP2-4.5 and SSP3-7.0 sce-
narios. The dashed vertical line indicates the year 2014 where the SSP runs branch off from the historical
run in each ensemble member.

Figure B.2: Global ocean heat uptake (OHU) under the SSP2-4.5 and SSP3-7.0 scenarios. The dashed
vertical line indicates the year 2014 where the SSP runs branch off from the historical run in each ensemble
member.
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B Appendix to Chapter 4

Figure B.3: Ocean heat uptake efficiency (OHUE) under the SSP2-4.5 and SSP3-7.0 scenarios (20-year
running mean). The dashed vertical line indicates the year 2014 where the SSP runs branch off from the
historical run in each ensemble member.

Figure B.4: Global OHU plotted against global ΔSAT under the SSP2-4.5 and SSP3-7.0 scenarios
(20-year running mean). The blue shading and labeled contours indicate the resulting OHU efficiency
(OHUE = OHU/ΔSAT).
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Figure B.5: Global OHU plotted against global ΔSAT (averaged over 2080–2100 in the SSP1-2.6
and SSP2-4.5 scenarios). The blue shading and labeled contours indicate the resulting OHU efficiency
(OHUE = OHU/ΔSAT). The marker colors indicate the different climate models, and the marker shape
indicate their ocean model component.

Figure B.6: AMOC strength anomaly at 26°N under the SSP1-2.6 and SSP5-8.5 scenarios. The dashed
vertical line indicates the year 2014 where the SSP runs branch off from the historical run in each ensemble
member.
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B Appendix to Chapter 4

a) b)

Figure B.7: Principal component analysis of the predictor variables. As in Fig. 4.7, but the predictor vari-
ables were first averaged over multi-member ensembles for individual climate models. a) Principal compo-
nent loadings for thefirst fourPCs. Thenumbers inparentheses give the fractionof total variance explained
by each PC. b)Cumulative variance explained by principal components.

Figure B.8: Clustering of principal components. As in Fig. 4.8, but with spectral clustering instead of
K-means clustering.
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Figure B.9: Clustering of principal components. As in Fig. 4.8, but with input variables first averaged
over each multi-member ensemble for individual climate models.

Figure B.10: Preindustrial mean SSS in the SO-60-45 region scattered against future OHUE across the
model ensemble. Marker colors and shapes correspond to climate models and ocean model components,
respectively, as given in the legend of Fig. 4.14.
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