

# Study of centrifugal and resonance effects in the asymmetric and spherical top molecules: C2D4, ClO2, CD4, SiF4

Mariia Merkulova

## ► To cite this version:

Mariia Merkulova. Study of centrifugal and resonance effects in the asymmetric and spherical top molecules : C2D4, ClO2, CD4, SiF4. Optics [physics.optics]. Université Bourgogne Franche-Comté; Université polytechnique de Tomsk (Russie), 2024. English. NNT : 2024UBFCK078 . tel-04951222

# HAL Id: tel-04951222 https://theses.hal.science/tel-04951222v1

Submitted on 17 Feb 2025

**HAL** is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.



# UNIVERSITÉ BOURGOGNE FRANCHE-COMTÉ Laboratoire Interdisciplinaire Carnot de Bourgogne – UMR CNRS 6303

## TOMSK POLYTECHNIC UNIVERSITY Research School of High-Energy Physics

#### Study of centrifugal and resonance effects

#### in the asymmetric and spherical top molecules: C2D4, ClO2, CD4, SiF4

by

#### Mariia MERKULOVA

A Thesis in Physics Submitted for the Degree of Doctor of Philosophy Date of defence: December 20, 2024

| Mrs Maud ROTGER      | Professor<br>Université de Reims Champagne-Ardenne - GSMA                                       | Reviewer<br>President of the Jury |  |
|----------------------|-------------------------------------------------------------------------------------------------|-----------------------------------|--|
| Mr Pierre BÉJOT      | CNRS Researcher<br>Université Bourgogne                                                         | Examiner                          |  |
| Mr Valery PEREVALOV  | Professor<br>Institute of Atmospheric Optics, Siberian branch<br>of Russian Academy of Sciences | Examiner                          |  |
| Mrs Nina LAVRENTIEVA | Professor<br>Institute of Atmospheric Optics, Siberian branch<br>of Russian Academy of Sciences | Reviewer                          |  |
| Mrs Olga GROMOVA     | Professor<br>National Research Tomsk Polytechnic University -<br>RSHEP                          | Invited                           |  |
| Mr Vincent BOUDON    | CNRS Senior Researcher<br>Université Bourgogne - ICB Laboratoire                                | Supervisor                        |  |
| Mr Oleg ULENIKOV     | Professor<br>National Research Tomsk Polytechnic University -<br>RSHEP                          | Supervisor                        |  |

Laboratoire Interdisciplinaire Carnot de Bourgogne – UMR CNRS 6303 Université Bourgogne Franche-Comté, 9 Avenue A. Savary 21078 Dijon, France

Research School of High-Energy Physics Tomsk Polytechnic University, 30 Lenin Avenue, 634050 Tomsk, Russia

# Contents

| Introduction |
|--------------|
|--------------|

# Chapter 1

| Methods of theoretical study of vibrational-rotational molecular spectra | 6  |
|--------------------------------------------------------------------------|----|
| 1.1. The vibrational-rotational Hamiltonian of a molecule                | 6  |
| 1.2. Elements of isotopic substitution theory                            | 13 |
| 1.3. Irreducible tensor operators theory                                 | 17 |
| 1.4. The vibrational Hamiltonian considering tetrahedral splittings      | 20 |
| 1.5. Vibrational polyads                                                 | 21 |

# Chapter 2

| Theoretical study on high-resolution spectra of asymmetric tops: C <sub>2</sub> D <sub>4</sub> и ClO <sub>2</sub> molecules23 |
|-------------------------------------------------------------------------------------------------------------------------------|
| 2.1. Ethylene C <sub>2</sub> D <sub>4</sub>                                                                                   |
| 2.1.1. Description and theoretical background of the deuterated ethylene molecule                                             |
| 2.1.2. Results of the study of the vibrational-rotational structure of the spectra $of the C_2D_4$                            |
| molecule. $v_5 + v_{12}$ and $v_6 + v_{11}$ combination bands                                                                 |
| 2.2. Chlorine dioxide ClO <sub>2</sub>                                                                                        |
| 2.2.1. Theoretical description of molecules in non-singlet electronic states                                                  |
| 2.2.2. Analysis of the vibrational and rotational structure of the spectra of $ClO_2$ molecule.                               |
| Fundamental band $v_3$ and combination band $v_1 + v_3$                                                                       |

# Chapter 3

| <b>Theoretical study on high-resolution spectra of spherical tops: CD4, SiF4 and SiH4 molecules</b> 36 |
|--------------------------------------------------------------------------------------------------------|
| 3.1. Deuterated methane isotopologue CD <sub>4</sub>                                                   |
| 3.1.1. Theoretical methods for describing the spectra of spherical top molecule methane $CD_4$         |
|                                                                                                        |
| 3.1.2. Results of analysis of vibrational-rotational energies and line intensities of CD4 methane      |
| in the region of the $v_2/v_4$ dyad                                                                    |
| 3.2. Silicon tetrafluoride – silane SiF4                                                               |

| 3.2.1. Theoretical methods for describing the spectra of spherical top silane $SiF_4$    |
|------------------------------------------------------------------------------------------|
| molecule                                                                                 |
| 3.2.2. Analysis of combination bands spectra of SiF <sub>4</sub>                         |
| 3.3. Silane SiH <sub>4</sub>                                                             |
| 3.3.1. Study of the shape and absolute intensity of the spectrum lines of silane $SiH_4$ |
| Conclusion                                                                               |
| Publications on the thesis topic                                                         |
| Bibliography                                                                             |
| Appendix A. Figure for Chapter 1                                                         |
| Appendix B. Figures for Chapter 2                                                        |
| Appendix C. Tables for Chapter 2                                                         |
| Appendix D. Tables for Chapter 3                                                         |

#### Introduction

The study of rotational and vibrational-rotational spectra of polyatomic molecules in the gas phase has long been of fundamental importance for determining the exact molecular geometry in various vibrational states, for obtaining information on the internal force field, vibrational-rotational interaction parameters, dipole moments, calculating thermodynamic functions from structural and vibrational data, and, in general, for obtaining information on the relationship between the structure and physical properties of a molecule.

The importance of studying vibrational-rotational states of polyatomic molecules has recently increased markedly due to the advent of high-resolution spectroscopy and significant advances in theoretical and experimental studies of the fine structure of vibrational-rotational spectra of molecules.

The analysis of the electromagnetic spectrum of a molecule allows us to obtain information about its energy levels, and the position of these energy levels directly depends on the internal physical characteristics of the molecule. Thus, the analysis of molecular spectra makes it possible to extract a variety of physical parameters describing the internal properties of molecules. Moreover, the information obtained from spectra is characterized by a high degree of accuracy and is important for a deeper understanding of the internal properties of molecules [1].

The structure and properties of a molecule depend directly on its symmetry. This dependence is displayed in high-resolution spectra, and thus, the study of spectra of molecules of different symmetries requires the use of special methods and approaches, as well as taking into account known peculiarities and possible difficulties. For example, when studying the spectra of molecules belonging to the class of spherical top (for which all three moments of inertia are equal), traditional methods and approaches, such as the combination difference method, are inapplicable. Due to the high (e.g., tetrahedral,  $T_d$ ) symmetry of spherical tops, the spectra of such molecules exhibit the so-called "tetrahedral splitting", which greatly complicates the mathematical description of such spectra. The presence of "hot" bands in the spectra complicates the lines interpretation in the spectrum, since the spectrum becomes very dense; the lines are mixed and sometimes completely overlap.

Molecules belonging to the class of asymmetric top (all three moments of inertia are unequal) have a weak degree of symmetry. Their study can be complicated by the presence of lines belonging to the "hot" bands. A correct and complete study of such spectra requires specially selected experimental conditions capable of reducing the influence of the presence of hot bands.

Among molecules of the asymmetric top type, a particular place is occupied by molecules in degenerate electronic states. The study of such molecules requires a special approach to the description of non-singlet electronic states. At present, there is a lack of guaranteed accurate methods for describing the spectra of these molecules to fulfil the need for highly accurate quantitative information on the parameters of spectral lines. Therefore, there is a need to develop specific methods that can theoretically justify the behaviour of the current high-resolution experimental spectra of such molecules.

These difficulties, as well as the mentioned practical significance of the information obtained by analysing spectra for various fields of physics, chemistry, materials science, biology, astronomy and atmospheric optics determine the relevance of the topic of the research carried out within the framework of the thesis. The work is devoted to obtaining new high-precision information by investigating high-resolution spectra of spherical and asymmetric top molecules, as well as developing new and improving existing methods for analysing spectra of molecules in non-singlet electronic states. Thus, **the aim of this work** was formulated:

• Obtaining theoretical data on the line positions corresponding to vibrational-rotational transitions in the spectra of SiF<sub>4</sub>, CD<sub>4</sub>, C<sub>2</sub>D<sub>4</sub>, ClO<sub>2</sub> molecules and their isotopologues for further solution of the inverse spectroscopic problem and obtaining the parameters of the effective Hamiltonian for excited vibrational-rotational bands.

• Obtaining theoretical spectra of the "hot" bands of the SiF<sub>4</sub> molecule using the obtained experimental values of the effective Hamiltonian parameters of combination bands.

• Obtaining theoretical data on the line intensities corresponding to vibrational-rotational transitions in the spectrum of SiH<sub>4</sub> molecules to obtain dipole moment parameters.

Achieving the set goals requires the solution of several tasks:

1. To analyse the line positions of vibrational-rotational spectra of combination bands of SiF<sub>4</sub>, CD<sub>4</sub>, C<sub>2</sub>D<sub>4</sub>, ClO<sub>2</sub> molecules and their isotopologues.

2. Solve the inverse spectroscopic problem for the studied bands.

3. Using the obtained spectroscopic parameters for the SiF<sub>4</sub> combination bands and XTDS software package calculate the positions of the lines and construct the theoretical spectrum of the "hot" bands of this molecule up to 14 polyad.

4. Obtain new high-precision spectra of the ground state of SiH<sub>4</sub> molecule, analyse the intensities of the spectra lines to improve the data on the dipole moment parameters.

The methods of quantum mechanics, group theory and the apparatus of the theory of irreducible tensor operators were used to solve the set problems.

#### **Chapter 1**

#### Methods of theoretical study of vibrational-rotational molecular spectra

This chapter provides fundamental information related to the theory of vibrational-rotational spectroscopy of polyatomic molecules. In particular, the fundamental principles underlying the theoretical description of a molecule as a quantum system, on which the methods of theoretical modelling of the energy structure of molecules are based, are discussed, and tools for the analysis of molecular spectra with low and high degree of symmetry are reviewed. These aspects are considered to be an essential part of the overall methodology and are the basis for understanding the results and conclusions presented hereafter.

#### 1.1. The vibrational-rotational Hamiltonian of a molecule

Transitions between different quantum states of a molecule, which are studied in vibrational-rotational spectroscopy, represent the results of time-evolution of a molecular system during non-destructive interaction with electromagnetic radiation. For an isolated molecule, such processes can be described by the time-dependent Schrödinger equation:

$$i\hbar\frac{\partial\Psi}{\partial t} = \boldsymbol{H}\Psi \tag{1.1.1}$$

where  $\Psi$  is the total time-dependent wave function depending on the coordinates q of the system of particles and time t.

Typically, spectroscopy uses non-relativistic Hamiltonians that have the following form:

$$\boldsymbol{H} = T_{\text{nucl}} + T_{\text{el}} + \boldsymbol{V}, \tag{1.1.2}$$

where  $T_{\text{nucl}}$  and  $T_{\text{el}}$  are the operators describing the kinetic energy of nuclei and electrons; *V* is the potential energy operator of the molecule, which includes the electric attraction energy of electrons to nuclei and the repulsion energy between electrons and nuclei. As the potential energy operator *V* does not depend on time, we can use the time-independent Schrödinger equation. Let us write the operators  $T_{\text{nucl}}$ ,  $T_{\text{el}}$  and *V* as follows:

$$T_{nucl} = \frac{-h^2}{2} \sum_{N} \frac{1}{m_N} \left( \frac{\partial^2}{\partial x_N^2} + \frac{\partial^2}{\partial y_N^2} + \frac{\partial^2}{\partial z_N^2} \right), \tag{1.1.3}$$

$$T_{el} = \frac{-h^2}{2m_e} \sum_{i} \left( \frac{\partial^2}{\partial x_i^2} + \frac{\partial^2}{\partial y_i^2} + \frac{\partial^2}{\partial z_i^2} \right),$$
$$V = \sum_{\substack{i,j \ i>j}} \frac{e^2}{r_{ij}} + \sum_{\substack{N,N' \ N>N'}} \frac{Z_N Z_{N'}}{r_{NN'}} - \sum_{i,N} \frac{eZ_N}{r_{iN}},$$

where  $m_N$  and  $m_e$  are the masses of nuclei and electrons, respectively;  $z_N$  is the charge of the nuclei;  $r_{ab}$  is the distance between particles a and b. Note that  $x_N$ ,  $x_i$  are the coordinates of nuclei and electrons in the Cartesian space-fixed system (SFS).

Although expression (1.1.2) for the Hamiltonian in terms of space-fixed coordinates of atomic nuclei and electrons has a simple form, its numerical integration will be very complicated even for a simple molecular system. Furthermore, we know from physical experiments that bonding electrons hold the atomic nuclei of a molecule in a configuration with approximately fixed bond lengths and valence angles. From the point of view of classical mechanics, such a system of atomic nuclei and electrons can exhibit translational and rotational motion in space: the atomic nuclei can oscillate in the configuration given by the electronic structure of the molecule; the electrons of the molecule can move around the atomic nuclei.

The quantum mechanical description of these motions should yield the vibrational, rotational and electronic energy levels and the corresponding wave functions of the Schrödinger equation for this system. The most convenient approach to solving this problem is to develop a model for the motions of a molecule which would allow for description of such a system in terms of its translation, its overall rotation, the vibration of its atomic nuclei and its electronic motions. This can be achieved by replacing the space-fixed coordinates of the atomic nuclei and electrons with a new system of coordinates that refer to a movable system of x, y, z axes fixed at the centre of mass of the molecule. The movable system of x, y, z axes will follow the movement of the whole molecule and will be bound to the rigid equilibrium configuration with respect to the x, y, z axes will disappear. Therefore, we will call the system of x, y, z axes a molecular fixed system (MFS).

The resulting Hamiltonian then assumes a more complicated form than that corresponding to eq. (1.1.2), but a clear physical interpretation can be given to its individual terms occurring. Furthermore, successive approximations to the complete vibrational-rotational Hamiltonian can be found. This has the advantage that the Schrödinger equation in the simplest approximation frequently has a simple analytical solution which can be used in solving the problem to higher approximations by a standard perturbation or variational approach.

One of the most successful coordinate transformations, by which it becomes possible to separate different types of motions in a molecule, is the transformation [1]:

$$x_{N\alpha} = R_{\alpha} + \sum_{\beta} k_{\alpha\beta} \tilde{r}_{N\beta}, \qquad (1.1.4)$$
$$x_{i\alpha} = R_{\alpha} + \sum_{\beta} k_{\alpha\beta} \tilde{r}_{i\beta},$$

Here  $x_{N\alpha}$  and  $x_{i\alpha}$  are the components of the vector describing the N<sup>th</sup> atom and the *i*<sup>th</sup> electron in the Cartesian coordinate system;  $R_{\alpha}$  is the vector of the origin of the molecular-fixed coordinate system relative to the space-fixed system;  $k_{\alpha\beta}$  are the directional cosines matrices of the angles between the axes of the old and new coordinate systems (also known as the Euler angle functions). The molecular-fixed coordinate system is defined so that its origin is at the centre of mass of the whole molecule, which can be written as:

$$\sum_{N} m_N \tilde{r}_{N\beta} + \sum_{i} m_e \tilde{r}_{i\beta} = 0.$$
(1.1.5)

Here  $\tilde{r}_{i\beta}$  represents the coordinate component of the *i*<sup>th</sup> electron in the molecularly fixed system; we give below the expression for the coordinates  $\tilde{r}_{N\beta}$  of the *N*<sup>th</sup> atom:

$$\tilde{r}_{N\beta} = \tilde{r}_{N\beta}^{e} + \sum_{\lambda} m_{N}^{-\frac{1}{2}} l_{N\beta\lambda} Q_{\lambda}, \qquad (1.1.6)$$

where  $Q_{\lambda}$  represents the vibrational coordinates.

The constants  $\tilde{r}_{N\beta}$  and  $l_{N\beta\lambda}$  are usually arbitrary, but they are chosen based on mandatory conditions:

1.  $\tilde{r}_{N\beta}$  corresponds to  $\tilde{r}_{N\beta}^{e}$  when the configuration of the nuclei are in equilibrium;

2. the axes of the molecular fixed coordinate system coincide with the principal axes of inertia of the molecule when the configuration of the nuclei are in equilibrium;

3. the vibrations are normal;

4. the Eckart conditions are satisfied.

Since the coordinates of Q are independent, these conditions can be expressed mathematically as follows:

$$\sum_{N} m_N \tilde{r}^e_{N\beta} + \sum_{i} m_e \tilde{r}_{i\beta} = 0, \qquad (1.1.7)$$

$$\sum_{N} m_{N} \tilde{r}^{e}_{N\alpha} \tilde{r}^{e}_{N\beta} = 0, \alpha \neq \beta, \qquad (1.1.8)$$

$$\sum_{N,\alpha} l_{N\alpha\lambda} l_{N\alpha\mu} = \delta_{\lambda\mu}, \qquad (1.1.9)$$

$$\sum_{N} m_{N}^{\frac{1}{2}} l_{N\gamma\lambda} = 0, \qquad (1.1.10a)$$

$$\sum_{N\beta\gamma} \varepsilon_{\alpha\beta\gamma} m_N^{\frac{1}{2}} \tilde{r}_{N\beta}^e l_{N\gamma\lambda} = 0, \qquad (1.1.10b)$$

The conditions (1.1.10a) and (1.1.10b) are called the first and the second Eckart conditions [2]. Here  $\varepsilon_{\alpha\beta\gamma}$  is a completely antisymmetric tensor, i. e.:

$$\varepsilon_{\alpha\beta\gamma} = \begin{cases} 1 \text{ if } \alpha, \beta, \gamma \text{ is a cyclic permutation of indices } x, y, z; \\ 0, \text{ if } \alpha = \beta, \beta = \gamma \text{ or } \alpha = \gamma; \\ -1 \text{ for all other cases.} \end{cases}$$

Thus, the coordinate transformation (1.1.4) is given explicitly.

However, we note that the presented scheme for introducing new coordinates has a significant disadvantage: to determine the coordinates of electrons and nuclei, it is necessary at each moment to know not only the configuration of the nuclei, but also the location of all electrons with respect to the nuclei, since the position of the centre of the new coordinate system is located at the centre of mass of the entire molecule. As a result, the problem becomes much more complicated.

Therefore, the most correct definition of the new coordinates is when  $r_{N\beta}$  and  $r_{i\beta}$  are counted from the centre of mass of the nuclei rather than the whole molecule. In this case, the expressions for the transformation of coordinates will be written in the following form:

$$x_{N\alpha} = R_{\alpha} + \sum_{\beta} k_{\alpha\beta} \left( r_{N\beta}^{e} + \sum_{\lambda} m_{N}^{-\frac{1}{2}} l_{N\beta\lambda} Q_{\lambda} - \frac{m_{0}}{M} \sum_{i} r_{i\beta} \right),$$
(1.1.11)

and

$$x_{i\alpha} = R_{\alpha} + \sum_{\beta} k_{\alpha\beta} \left( r_{i\beta}^{e} - \frac{m_{e}}{M} \sum_{j} r_{j\beta} \right), \qquad (1.1.12)$$

where  $r_{N\beta}$  and  $r_{i\beta}$  are the positions of electrons and nuclei relative to the centre of mass of the molecule's nuclei.

Now that we know the mathematically expressed rules (1.1.11), (1.1.12) for the coordinate transformation, we can determine the transformation law for the momentum operators  $P_{N\alpha} = -i\hbar \frac{\partial}{\partial x_{N\alpha}}$  and  $P_{i\alpha} = -i\hbar \frac{\partial}{\partial x_{i\alpha}}$ . Let us use the fact that these formulas were obtained from the polynomial [3]:

$$L = \sum_{i} \frac{m_e}{2} \dot{x}_i^2 + \sum_{N} \frac{m_N}{2} \dot{x}_N^2 + V, \qquad (1.1.13)$$

The transformations for expressing the classical quantities  $P_{N\alpha}$  and  $P_{i\alpha}$  through the corresponding quantities in the molecular coordinate system are shown in detail in [4]. Thus, the expressions for the operators take the following form:

$$P_{i\alpha} = \frac{m_e}{M} P_{\alpha} + \sum_{\beta} k_{\alpha\beta} P_{i\beta}, \qquad (1.1.14)$$

$$P_{N\alpha} = \frac{m_N}{M} P_{\alpha} + \sum_{\beta} k_{\alpha\beta} \Biggl\{ \sum_{\lambda} m_N^{\frac{1}{2}} l_{N\beta\lambda} P_{\lambda} + \sum_{\gamma\delta} \sum_{\lambda\mu} m_N^{1/2} l_{N\beta\lambda} \xi_{\lambda\mu}^{\gamma} \mu_{\gamma\delta} Q_{\mu} N_{\delta} - (1.1.15) - m_N \sum_{\gamma\delta\chi} \varepsilon_{\beta\gamma\delta} r_{N\gamma}^e \mu_{\delta\chi} N_{\chi} - \sum_{\lambda} m_N^{1/2} Q_{\lambda} \sum_{\gamma\delta\chi} \varepsilon_{\beta\gamma\delta} l_{N\gamma\lambda} \mu_{\delta\chi} \times N_{\chi} - \frac{m_e}{M_N} \sum_j P_{j\beta} \Biggr\}.$$

Here  $M_N = \sum_N m_N$  is the total mass of all nuclei;  $P_{\alpha} = -i\hbar \frac{\partial}{\partial R_{\alpha}}$ ,  $P_{\lambda} = -i\hbar \frac{\partial}{\partial Q_{\lambda}}$ ;  $\mu_{\gamma\delta}$  are the elements of the matrix of inverse moments of inertia;  $\xi^{\alpha}_{\lambda\mu}$  are the Coriolis constants expressed through the constants of the oscillation forms:

$$\mu_{\alpha\beta}^{-1} = \sum_{\gamma\delta} I^{\prime\prime}{}_{\alpha\gamma} I^{e-1}_{\gamma\delta} I^{\prime\prime}_{\delta\beta} ; \qquad (1.1.16)$$

$$I_{\alpha\beta}^{\prime\prime} = \delta_{\alpha\beta} \sum_{N} m_{N} \sum_{\gamma} (r_{N\gamma}^{e})^{2} - \sum_{N} m_{N} r_{N\alpha}^{e} r_{N\beta}^{e} + \frac{1}{2} \sum_{\lambda} a_{\lambda}^{\alpha\beta} Q_{\lambda}; \qquad (1.1.17)$$

 $N_{\alpha}$  are operators having the form  $N_{\alpha} = J_{\alpha} - G_{\alpha} - L_{\alpha}$ , where  $J_{\alpha}$  expresses the components of the total angular momentum;  $G_{\alpha} = \sum_{\lambda\mu} \zeta^{\alpha}_{\lambda\mu} Q_{\lambda} P_{\mu}$  are components of the vibrational angular momentum;  $L_{\alpha} = \sum_{\beta\gamma} \varepsilon_{\alpha\beta\gamma} \sum_{i} r_{i\beta} P_{i\gamma}$  are components of the electronic angular momentum. It should be noted that the appearance of the last term in eq. (1.1.15) is due to the fact that the centre of mass of the whole molecule does not coincide with the centre of mass of the nuclei. However, in the further application of the Born-Oppenheimer approximation, the masses of electrons are assumed to be infinitesimal compared to the

masses of nuclei, and thus the centre of mass of the molecule coincides with the centre of mass of nuclei, and the last term in the formula disappears.

To obtain the Hamiltonian expressed through the coordinates of the molecular-fixed coordinate system, we will use directly the eq. (1.1.11), (1.1.12), (1.1.14) and (1.1.15). After the simplification procedure, taking into account the symmetry of the matrices (1.1.16) and (1.1.17), we obtain the final expression for the operators:

$$P_{N\alpha} = \frac{m_N}{M} P_{\alpha} + \sum_{\beta} k_{\alpha\beta} \left\{ \sum_{\lambda} m_N^{1/2} l_{N\beta\gamma} P_{\lambda} - \sum_{\gamma \delta \chi} m_N \varepsilon_{\beta\gamma\chi} r_{N\gamma}^e I_{\chi\delta}^{\prime\prime-1} N_{\delta} \right\}.$$
 (1.1.18)

Taking into account the fact that at transition to a new coordinate system the normalisation conditions of the wave functions change [5], the final Hamiltonian will take the following form:

$$H = \sum_{\alpha} \frac{P_{\alpha}^{2}}{2M} + \frac{1}{2m_{el}} \sum_{i\alpha} P_{i\alpha}^{2} + \frac{1}{2M_{N}} \sum_{\alpha} \left( \sum_{i} P_{i\alpha} \right)^{2} + \frac{1}{2} \sum_{\lambda} P_{\lambda}^{2} + (1.1.19) + \frac{1}{2} \sum_{\alpha\beta} (J_{\alpha} - G_{\alpha} - L_{\alpha}) \tilde{\mu}_{\alpha\beta} (J_{\beta} - G_{\beta} - L_{\beta}) + V.$$

Here, the first term describes the translational motion of the molecule as a whole; the second term describes the kinetic energy of the electrons; the third term, due to the difference between the centre of nuclei mass and the whole molecule, is responsible for the mass isotopic energy shift; the fourth and fifth terms describe the vibrational motion of the nuclear frame and its rotation in space, respectively; the operator *V* represents the potential energy operator of the electric attraction of electrons to nuclei and the repulsion energy between electrons and nuclei.

It should be remembered that the transformations of the Hamiltonian described above are valid only for nonlinear molecules. This is due to the fact that, unlike a nonlinear molecule, a linear molecule can be defined in space not by three but only by two coordinates, which essentially affects the formulas for transforming the coordinate and momentum operators; in addition, one of the moments of inertia of a linear molecule turns to zero.

As mentioned above, a molecule can be considered as a set of electrons and nuclei bound by Coulomb forces. The Schrödinger equation for such a general model of the molecule as a whole allows one to obtain spectroscopic information on molecular states, but it turns out to be inconvenient even for preliminary evaluations and qualitative discussions. Therefore, in such cases one turns to particular model which will be discussed further below [6].

The vibrational model describes a molecule as a set of material points bound together by elastic forces. The rotational model of a molecule can be thought of as a set of material points fixed relative to

each other in an equilibrium configuration. From the point of view of such a "rotational" model, the molecule can be considered as a spinning top.

The electron model assumes that nuclei are fixed in an equilibrium configuration and electrons move in their Coulomb field. In many cases it can be considered that the states of nuclei motion corresponding to a given electronic state are determined by the Schrödinger equation for nuclei, in which the potential energy operator is taken to be the corresponding adiabatic potential. In a two-atomic molecule, the displacements of the nuclei from the equilibrium position are described by a single coordinate defining the change of the internuclear distance, and, in this case, the adiabatic potentials are described as curves in the plane (Figure 1.1(a)). For a polyatomic molecule, the space of coordinates describing the displacements of the nuclei relative to each other is multidimensional, and the adiabatic potentials are hypersurfaces in this space (Figure 1.1 (b)).

The concept of potential hypersurfaces, the intramolecular potential function (IMPF) and the equilibrium structure of a molecule in quantum mechanics is described using the Born-Oppenheimer approximation.



a. Adiabatic potential of a diatomic molecule

b. Adiabatic potential of the captopril molecule [7]

Figure 1.1 – Graphical representation of IMPF.

In this approximation, it is assumed that the molecular wave function can be written as  $\Psi = \Psi_{el}\Psi_{vib}\Psi_{rot}$  and thus the energies due to each type of motion are additive:

$$E = E_{\rm el} + E_{\rm vib} + E_{\rm rot} \tag{1.1.20}$$

The application of the Born-Oppenheimer approximation leads naturally to the description of the molecule as a rigid rotor – the rotation is considered separately from the vibrational motion of the nuclei,

which will be further described as a perturbation. The largest contribution to the energy of the molecule is given by the electron motion around the nuclei, followed by the contribution of nuclear vibrations and, finally, by nuclear rotation. The basis for the possibility of such a classification is the comparative values of nuclear and electronic masses.

It can be shown that the Hamiltonian in such a case breaks into parts differing by the order of smallness:

$$H = H_e + H_1 + H_2 \tag{1.1.21}$$

where

$$H_e = \frac{1}{2}m_e \sum_{j\alpha} P_{j\alpha}^2 + V_{r,Q}(r,Q), \qquad (1.1.22)$$

$$H_{1} = \frac{1}{2} \sum_{\alpha\beta} \mu_{\alpha\beta} (J_{\alpha} - P_{\alpha}) (J_{\beta} - P_{\beta}) + \frac{1}{2} \sum_{\alpha} \frac{P_{\alpha}}{2M} + \frac{1}{2} \sum_{\lambda} P_{\lambda}^{2}, \qquad (1.1.23)$$

$$H_2 = \frac{1}{2M_N} \sum_{\alpha} \left( \sum_i P_{i\alpha} \right)^2 + \frac{1}{2} \sum_{\alpha\beta} \tilde{\mu}_{\alpha\beta} \left( L_{\alpha} L_{\beta} - (J_{\alpha} - G_{\alpha}) L_{\beta} - L_{\alpha} \left( J_{\beta} - G_{\beta} \right) \right).$$
(1.1.24)

Note that the obtained eigenfunctions and the values of the Hamiltonian  $H_e$  depend parametrically on the distance in  $\Delta r_{NK}$  of the molecule. The error introduced by using this approximation is much smaller than the errors introduced by other approximations.

The fact that in this approximation the IMPF is the same for all isotopic modifications of the molecule allows us to use experimental information on all possible isotopologues to analyse vibrationalrotational spectra, thereby increasing the accuracy of the spectroscopic problem being solved.

#### **1.2. Elements of isotopic substitution theory**

The concept of "isotopic effects" implies a change in certain properties of the molecules under study when one type of nuclei is changed from one to another. To solve many problems of vibrationalrotational spectroscopy, it is necessary to estimate spectroscopic parameters, spectral line parameters, and knowledge of molecular constants. One of the effective tools for obtaining this kind of information is the isotopic dependence of the mentioned parameters, which allows one to work under conditions with no initial data on the molecule under study.

The kinetic isotope effect arises mainly due to changes in the ground vibrational states caused by isotopic perturbation along the minimum energy path of the potential energy surface, which can only be explained by quantum mechanical treatment of the system.

The dependence of molecular parameters on atomic masses such as harmonic frequencies, anharmonic constants and others is determined in the potential function according to the fact that the normal coordinates

$$V = V_0 + \frac{1}{2} \sum_{\lambda} \omega_{\lambda} Q_{\lambda}^2 + \sum_{\lambda \mu \nu} K_{\lambda \mu \nu} Q_{\lambda} Q_{\mu} Q_{\nu} + \cdots$$
(1.2.1)

are functions of atomic masses. Consequently, if we find the relationship between the normal coordinates of isotopic molecules, we can obtain isotopic relations for the given constants in a general form. Thus, if we find the relationship between the normal coordinates of isotopic molecules, we can obtain isotopic relations for the above constants in a general form.

Let

$$H(x) = \sum_{N_{\alpha}} \frac{P_{N_{\alpha}}^{2}}{2m_{N}} + V(x_{N_{\alpha}}); \qquad (1.2.2)$$

and

$$H'(x) = \sum_{N_{\alpha}} \frac{P_{N_{\alpha}}^2}{2m'_N} + V(x_{N_{\alpha}}); \qquad (1.2.3)$$

are the Hamiltonian of the basic molecule and its arbitrary isotopic modification, respectively. Here  $x_{N_{\alpha}}$  is the coordinates of  $N^{\text{th}}$  nuclei of the molecule with  $m_N$  mass,  $P_{N_{\alpha}} = -i\hbar \frac{\partial}{\partial x_{N_{\alpha}}}$ . The Hamiltonians given in this form are convenient at studying isotope substitution, since only the kinetic part is a function of masses. The potential energy does not depend on masses and, hence, is invariant under isotope substitution.

Thus, the Hamiltonian of an isotope-substituted molecule can be represented as:

$$H'(x) = H(x) - \sum_{N_{\alpha}} \frac{m'_{N} - m_{N}}{2m'_{N}m_{N}} P_{N_{\alpha}}^{2} = H(x) + h, \qquad (1.2.4)$$

where the contribution responsible for all isotope substitution-related effects is explicitly identified. To solve the problem, it is necessary to make a transition from the Cartesian coordinates  $x_{N_{\alpha}}$  of the space-fixed coordinate system to the system associated with the molecule.

It is convenient if the corresponding molecular coordinate system satisfies the Eckart conditions and the requirement of normality of vibrational coordinates. It was shown in [8] that such a transformation leads the Hamiltonian H'(x) into the Watson Hamiltonian (see eq. (2.1.3)). Similar transformations of coordinates:

$$r'_{N\beta} = \sum_{\lambda} m'_{N}^{-\frac{1}{2}} l'_{N\beta\lambda} Q'_{\lambda}, \qquad (1.2.5)$$

$$x'_{N\alpha} = R'_{\alpha} + \sum_{\beta} K'_{\alpha\beta} r'_{N\beta}, \qquad (1.2.6)$$

transform the Hamiltonian of the isotope-substituted molecule H'(x) into the Hamiltonian of Watson's species. The transformation parameters (1.2.5), (1.2.6) satisfy the corresponding Eckart conditions (1.1.7)–(1.1.10) and the normality requirement of the coordinates for an isotope-substituted molecule  $(Q'_i)$ .

Note that such transformation of coordinates is not the only one leading to the Hamiltonian of the isotopomer in the Watson form. First one can perform any standard coordinate transformation and express the Hamiltonian H'(x) in these coordinates. The result will be the so-called "intermediate" Hamiltonian. In this case, following that the set of standard coordinate transformations forms a group, then, consequently, there will be such a transformation that will allow one to pass from the "intermediate" coordinates to a set of variables satisfying the Eckart conditions for the isotopologue of the molecule. In this case, the "intermediate" Hamiltonian is transformed to the Watson's one. Thus, the transition from the H'(x) operator to a Watson's operator can be carried out in several ways with obtaining some "intermediate" Hamiltonian. The possibility of gradual transformation of the Hamiltonian with introduction of an intermediate becomes important in connection with the following circumstances. As it was shown in [8], the Hamiltonian of an isotopologue can be represented in the form (1.2.4). Therefore, if the normal coordinates of the parent molecule are chosen as "intermediate" coordinates, the operator h will depend only on the constants of the parent molecule and the atomic masses, i. e., the constants of vibration forms  $l_{N\alpha\lambda}$ , the parameters of equilibrium configurations  $r^{e}_{N\alpha}$ , moments of inertia, harmonic frequencies, and anharmonic constants. By defining the second transformation, one can immediately obtain the Hamiltonian of the isotope-substituted molecule in Watson form. If we preserve the dependence of the "intermediate" Hamiltonian on the constants of the basic molecule, then, when comparing it with the Watson operator of the basic modification, we obtain the desired isotopic relations.

As noted in [8], in the theory of isotope substitution it is very important to know the relations between the vibration form constants of the basic and isotope-substituted modifications. In this case, these relations take on the form:

$$l'_{K\gamma\lambda} = \sum_{\alpha\mu} K^e_{\alpha\gamma} \frac{m_N^{\frac{1}{2}}}{m'_N} l_{K\alpha\mu} \beta_{\lambda\mu}.$$
(1.2.7)

Here indices *N*, *K* denote atoms of the molecule; parameters belonging to the substituted molecule are marked with " ' "; indices  $\alpha$ ,  $\beta$ ,  $\gamma$  denote *x*, *y* or *z* components of the corresponding vector quantity;  $\lambda$ ,  $\mu$ , *v* number different normal vibrational coordinates;  $m_N$  and  $m'_N$  represent the nuclear masses of the

original and isotope-substituted molecule, respectively. The values  $K_{\alpha\gamma}^e$  (the index "*e*" corresponds to the equilibrium nuclear configuration of the molecule) are the elements of the matrix defining the rotation of the molecular coordinate system during the transition from the original to the isotope-substituted modification. The  $\beta_{\lambda\mu}$  values are elements of the matrix inverse of the  $\alpha_{\lambda\mu}$  matrix, where the last defines the transition from the normal coordinates of the original isotopologue to the substituted one. The elements of the matrix  $\alpha$  can be determined from the following relations:

$$\sum_{\nu} \alpha_{\lambda\nu} \alpha_{\mu\nu} = A_{\lambda\mu} = \sum_{N_{\alpha}} \frac{m_N}{m'_N} l_{N\alpha\lambda} l_{N\alpha\mu},$$

$$\sum_{\nu} A_{\lambda\nu} W_{\nu} \alpha_{\nu\mu} = \alpha_{\lambda\mu} W'_{\mu},$$
(1.2.8)

leading to the known equation:

$$det\{AW - W'\} = 0. \tag{1.2.9}$$

Here *A* is a matrix with elements  $A_{\lambda\nu}$ ; *W* and *W'* are diagonal matrices with elements  $W_{\nu} = \omega_{\lambda}^2 \delta_{\lambda\nu}$  and  $W'_{\nu} = \omega'_{\lambda}^2 \delta_{\lambda\nu}$ , respectively;  $\omega_{\lambda}$  and  $\omega'_{\lambda}$  are the harmonic frequencies of the original and isotope-substituted molecules.

Using the isotope substitution theory, the Hamiltonian parameters were theoretically predicted to simplify the solution of the inverse spectroscopic problem. As an example, the parameter calculations for the vibrational state ( $v_5 = v_{12} = 1$ ) of the C<sub>2</sub>D<sub>4</sub> molecule are given.

Due to isotopic substitution, the spectroscopic parameters of the C<sub>2</sub>D<sub>4</sub> molecule vibrational states undergo significant changes relative to the corresponding parameters of the main modification. To control the solution of the inverse spectroscopic problem, the values of the main rotational parameters (*A*, *B*, and *C*) of the vibrational state ( $v_5 = v_{12} = 1$ ) were theoretically calculated.

Let us use the dependence [9] of rotational constants *A*, *B* and *C* on vibrational quantum numbers known in the literature:

$$B_{\beta} = B_{\beta}^{e} - \sum_{\lambda} \alpha_{\beta\lambda} \left( \nu_{\lambda} + \frac{d_{\lambda}}{2} \right) + \cdots$$
 (1.2.10)

The choice of axes is conditioned by the *I'*-representation ( $I_z < I_x < I_y$ ) of the *A*-reduced Watson operator.  $B_{\beta}^e$  are the values of the rotational constants for the equilibrium configuration,  $\alpha_{\beta\lambda}$  are the coefficients taking into account the anharmonicity corrections to the rotational constants,  $v_{\lambda}$  are the quantum numbers  $v_1, v_2, ..., v_{12}, d_{\lambda}$  is the degeneracy multiple of the  $\lambda^{\text{th}}$  vibration.

Numerical values of the rotational constants  $B_x^e = 0.976 \text{ cm}^{-1}$  (*A* parameter),  $B_y^e = 0.810 \text{ cm}^{-1}$  (*B* parameter),  $B_z^e = 4.776 \text{ cm}^{-1}$  (*C* parameter) for the main modification of C<sub>2</sub>H<sub>4</sub>, as well as  $\tilde{B}_x^e =$ 

0.716 cm<sup>-1</sup>,  $\tilde{B}_y^e = 0.551$  cm<sup>-1</sup>,  $\tilde{B}_z^e = 2.401$  cm<sup>-1</sup> for the isotopologue C<sub>2</sub>D<sub>4</sub> were obtained by solving the system of equations (1.10)–(1.14) from [4]. The values of the rotational constants A = 4.90502 cm<sup>-1</sup>, B = 1.006238 cm<sup>-1</sup>, C = 0.82347 cm<sup>-1</sup> of the v<sub>5</sub> + v<sub>12</sub> band for the main modification were taken from [10].

Let us take into account that in case of isotopic substitution of  $C_2D_4 \leftarrow C_2H_4$  the coefficient  $\alpha_{\beta\lambda}$  for the  $C_2D_4$  molecule is two times smaller than the corresponding coefficients  $\alpha_{\beta\lambda}$  for the  $C_2H_4$  molecule [10], i. e. the relation is valid:

$$\tilde{\alpha}_{\beta\lambda} = \frac{1}{2} \alpha_{\beta\lambda}.$$
(1.2.11)

Using equations (1.2.10), (1.2.11), as well as numerical values of equilibrium rotational constants for the main modification of C<sub>2</sub>H<sub>4</sub> and isotopologue C<sub>2</sub>D<sub>4</sub>, the values of rotational constants  $\tilde{A} =$ 2.47 cm<sup>-1</sup>,  $\tilde{B} = 0.73$  cm<sup>-1</sup>,  $\tilde{C} = 0.56$  cm<sup>-1</sup> for the vibrational state ( $v_5 = v_{12} = 1$ ) of the C<sub>2</sub>D<sub>4</sub> molecule were obtained. As can be seen, the  $B_\beta$  parameters for the main modification differ on average by a factor of 0.6 from the corresponding  $\tilde{B}_\beta$  parameters for the C<sub>2</sub>D<sub>4</sub> molecule, which further confirms the presence of a strong isotope substitution effect during deuterium-substitution.

#### **1.3. Irreducible tensor operators theory**

Describing quantum systems, the mathematical apparatus based on the theory of operators is used. The concept of operator is widely used in quantum mechanics and quantum field theory. For application to the problems of molecular spectroscopy, operators of physical quantities and wave functions are represented in the form of linear combinations, and such combinations can be transformed by irreducible representations from the symmetry group of the system under study. Symmetrized combinations of operators are called irreducible tensor operators. Mathematical operations with irreducible tensors differ from the rules of ordinary algebra. The greatest contribution to the development of the mathematical apparatus of irreducible tensor operators for application to the problems of molecular spectroscopy was made by K. T. Hecht [11, 12].

The set of orthonormal functions can be considered as a vector in the *n*-dimensional vector space  $L_n$ . At operations *g* from the group *G* of linear transformations of space *L*, an arbitrary vector *x* with components  $x_i$  (i = 1, 2, ..., n) transforms into some other vector x' = gx, which components are related to the components of the original vector by the transformation

$$x'_{i} = gx_{i} = \sum_{j} T_{ij}(g)x_{j}.$$
(1.3.1)

The products of two arbitrary vectors  $x(x_i)$  and  $y(y_i)$  of space  $L_n$  for operations  $g \in G$  will transform according to the law:

$$x'_{i}y'_{i} = g(x_{i}y_{i})_{i} = \sum_{k,l} T_{ki}(g) T_{lj}(g)x_{k}y_{l} = \sum_{k,l} T_{kl,ij}(g)x_{k}y_{l}, \qquad (1.3.2)$$

where matrix  $T_{kl,ij}(g)$  is the direct product of matrices  $T_{kl}$  and  $T_{ij}$ . The set of  $n^2$  quantities transformed by the operation g, as well as  $n^2$  products  $x_iy_i$  of the coordinates of two arbitrary vectors x and y of  $L_n$  is called a tensor of the second order. Hereafter we will denote it as  $A_{ij}$ .

A tensor  $A_{ij}$  is called symmetric if the equality  $A_{ij} = A_{ji}$  holds. If  $A_{ij} = -A_{ji}$ , the tensor  $A_{ij}$  is called antisymmetric. Any tensor  $A_{ij}$  of the second order can be represented as the sum of its symmetric and antisymmetric parts.

Similarly, we can introduce a  $l^{\text{th}}$  order tensor  $A_{i1il2...il}$ , defined as a set of n' quantities  $A_{i1il2...il} = \prod_{k=1}^{l} x_{jk}^{(k)}$ , changing at g transformations (1.3.1) of the vector space according to the law:

$$A'_{i_1 i_2 \dots i_l} = \sum_{i_1 i_2 \dots i_l} \left( \prod_{k=1}^l T_{j_k i_k}(g) \right) A_{i_1 i_2 \dots i_l}.$$
(1.3.3)

The entire set of transformation matrices (1.3.3) for different transformations  $g \in G$  forms a representation of the group G. Such a representation is called a  $l^{\text{th}}$  order tensor representation. This representation is in general reducible since it is a product of l *n*-dimensional representations of (1.3.1).

The irreducible symmetry tensor  $\Gamma$  of a group *G* of linear transformations is the set  $[\Gamma]$  of values  $\psi_i^{\Gamma}$  transformed under operations *g* of a group *G* by the irreducible representation  $T^{\Gamma}$  of a group *G*:

$$g\psi_i^{\Gamma} = \widetilde{\psi}_i^{\Gamma} = \sum_j T_{ji}^{\Gamma}(g)\psi_i^{\Gamma}, \qquad (1.3.4)$$

where  $[\Gamma]$  is the dimension of the representation. The set  $[\Gamma]$  of values  $\psi_i^{\Gamma}$  is called an irreducible tensor set of functions.

For irreducible tensors, algebraic operations such as tensor summation and tensor binding (convolution) are defined.

As a result of the summation of the tensors  $\phi_i^{\Gamma}$  and  $\psi_i^{\Gamma}$  transformed by the same irreducible representation  $T^{\Gamma}$  of the group *G*, we obtain an irreducible tensor, which is transformed according to the same irreducible representation  $T^{\Gamma}$ :  $\phi_i^{\Gamma} + \psi_i^{\Gamma} = \chi_i^{\Gamma}$ .

As a result of binding (convolution) the tensors  $\phi_i^{\gamma_1}$  and  $\psi_i^{\gamma_2}$ , we obtain an irreducible tensor transformed by an irreducible representation  $T^{\Gamma} \in D^{\gamma_1} \times D^{\gamma_2}$  in the form of

$$\chi_k^{\Gamma} \equiv [\phi^{\gamma_1} \times \psi^{\gamma_2}]_k^{\Gamma} = \sum_{ij} \phi_i^{\gamma_1} \psi_j^{\gamma_2} F_{\Gamma k}^{\gamma_1 i \gamma_2 j}, \qquad (1.3.5)$$

where  $F_{\Gamma k}^{\gamma_1 i \gamma_2 j}$  are the Clebsch–Gordan coefficients [13].

Similarly to the definition (1.3.3), a tensor operator is a set of operators linearly mutually transformable under linear transformations of the space in which these operators act.

An irreducible tensor operator is a set of operators  $P_i^{(\Gamma)}$  transformed under the operations *R* of the space symmetry group by the irreducible representation  $T^{\Gamma}$  of this group:

$$R^{-1}P_i^{(\Gamma)}R = \sum_k [T^{\Gamma}(R)]_i^k P_k^{(\Gamma)}.$$
 (1.3.6)

For irreducible tensor operators, summations and combining are also defined, which have exactly the same form as for irreducible tensors, if the quantities  $\phi_i^{\Gamma} + \psi_i^{\Gamma}$  and  $x^{\gamma}$  are treated as operators. It is clear that irreducible tensor operators can be multiplied by numerical constants.

Describing quantum phenomena, the advantages of using the formalism of irreducible tensor operators are largely determined by one of the main theorems of the formalism – the Wigner-Eckart theorem [14]. According to this theorem, any matrix element from the operator of any physical quantity can be divided into two factors: the Clebsch-Gordan coefficient and the so-called reduced matrix element, depending on a particular kind of operator basis:

$$\langle \Psi_{\nu_1 \sigma_1}^{\gamma_1} | P_s^{\Gamma} | \Psi_{\nu_2 \sigma_2}^{\gamma_2} \rangle = F_{\gamma_2 \sigma_2 \Gamma S}^{\gamma_1 \sigma_1} \langle \Psi_{\nu_1}^{\gamma_1} | P^{\Gamma} | \Psi_{\nu_2}^{\gamma_2} \rangle, \qquad (1.3.7)$$

where  $v_1$ ,  $v_2$  are all other, except for the symmetry indices  $\gamma$  and  $\sigma$ , indices characterising the function  $\psi$ . The value  $\langle \psi_{v_1}^{\gamma_1} | P^{\Gamma} | \psi_{v_2}^{\gamma_2} \rangle$  in equation (1.3.7) is called the reduced matrix element, which is the characteristic value of the set of matrix elements. Its value does not depend on the choice of the basis of the group representations. To calculate the reduced matrix element, it is enough to calculate the simplest, from the point of view of calculations, matrix element  $\langle \psi_{v_1\sigma_1}^{\gamma_1} | P_s^{\Gamma} | \psi_{v_2\sigma_2}^{\gamma_2} \rangle$ , and then, knowing the corresponding Clebsch-Gordan coefficients, by formula (1.3.7) we can calculate all other matrix elements with the given values of indices  $\gamma_1$ ,  $\gamma_2$  and  $\Gamma$ .

Thus, the Wigner-Eckart theorem provides a significant simplification of the procedure for computing matrix elements allowed by the symmetry of the problem and reduces this procedure to the computation of standard sums of products of Klebsch-Gordan coefficients.

#### 1.4. The vibrational Hamiltonian considering tetrahedral splittings

In the spectra of molecules possessing a high degree of symmetry (which symmetry groups are isomorphic, for example, to the  $T_d$  group), so-called "tetrahedral" splittings are observed. When describing the spectra of such molecules, it is necessary to use a mathematical model that takes into account these splittings. The Hamiltonian of a molecule, in accordance with the general vibrational-rotational theory, can be written in the form of a set of effective operators or the so-called effective operator matrices:

$$H^{\text{vib.-rot.}} = \sum_{\nu,\nu'} |\nu\rangle \langle \nu'| H^{\nu,\nu'}, \qquad (1.4.1)$$

where the operators  $H^{v,v'}$  depend only on the rotational operators  $J_{\alpha}$ , summing over all degenerate and interacting states;  $|v\rangle$  and  $\langle v'|$  are vibrational functions, which must have the properties of irreducible tensor sets belonging to the symmetry group of the molecule. In other words, the Hamiltonian can be written taking into account the symmetry properties of rotational operators and vibrational functions in the following form:

$$H^{\text{vib.-rot.}} = \sum_{\nu l\gamma, \nu' l'\gamma'} \sum_{n\Gamma} \left[ (|\nu l \gamma\rangle \otimes \langle \nu' l' \gamma'|)^{n\Gamma} \otimes H^{n\Gamma}_{\nu l\gamma, \nu' l'\gamma'} \right]^{A_1}, \tag{1.4.2}$$

where, according to the existence of five irreducible representations of the group  $T_d$ , the indices  $\gamma$ ,  $\gamma'$  and  $\Gamma$  can take the values  $A_1, A_2, E, F_1$  and  $F_2$ . Thus, different combinations of indices  $\gamma$ ,  $\gamma'$  and  $\Gamma$  in expression (1.4.2) lead to different kinds of rotational operators.

Further we consider in detail the problem of constructing the part of the Hamiltonian which is responsible for the tetrahedral splittings. In this case, the problem is solved using the operator perturbation theory, where the types of operators are determined from the conditions of the full symmetry of the Hamiltonian and the knowledge of the symmetry of vibrations.

From the rotational-vibrational theory, it is known that any molecule of *n* atoms has 3n - 6 vibrational degrees of freedom. However, due to symmetry in XY<sub>4</sub> type molecules, nine vibrational degrees of freedom correspond to four normal vibrations:  $v_1$ ,  $v_2$ ,  $v_3$  and  $v_4$  (this will be shown in more detail in section 3.1.1). As shown in [15], ten parameters of the tetrahedral splittings  $G_{22}$ ,  $G_{33}$ ,  $G_{34}$ ,  $G_{44}$ ,  $S_{34}$ ,  $T_{33}$ ,  $T_{34}$ ,  $T_{44}$ ,  $T_{23}$  and  $T_{24}$  are sufficient for a correct description. The required operators take the following form:

1. The operator responsible for  $G_{22}$ -type splittings:

$$H_1 = d_{2222} \left( Q_{2_1}^2 + Q_{2_2}^2 \right)^2 + V_3; \tag{1.4.3}$$

21

2. An operator that associates splittings with the parameter  $G_{33}$ ,  $G_{44}$ :

$$H_2 = B\zeta_{\lambda}^2 \sum_{\mu\nu} \varepsilon_{\lambda\mu\nu} \left( Q_{\mu}P_{\nu} + Q_{\nu}P_{\mu} \right) + d_{\lambda\lambda\lambda\lambda_x} \left( Q_{\lambda_x}^2 + Q_{\lambda_y}^2 + Q_{\lambda_z}^2 \right) + V_3, \qquad (1.4.4)$$

where  $\lambda = 3$  or 4,  $V_3$  is the cubic part of the intramolecular potential function  $V^{\text{anh}}$ , *B* is the equilibrium rotational parameter,  $\varepsilon_{\lambda\mu\nu}$  is a completely antisymmetric tensor, and  $d_{\lambda\lambda\lambda\lambda_x}$  is one of the quartic anharmonicity parameters (see [11, 12]);

3. The splittings associated with the parameter  $G_{34}$  are represented as:

$$H_3 = \frac{B}{2}\zeta_{34}^2 + 2B\zeta_3\zeta_4 + V_3; \tag{1.4.5}$$

4. The operator responsible for the  $T_{33}$  and  $T_{44}$  splittings is signed as:

$$H_{4} = d_{\lambda\lambda\lambda\lambda_{x}} \left( Q_{\lambda_{x}}^{4} + Q_{\lambda_{y}}^{4} + Q_{\lambda_{z}}^{4} - 3Q_{\lambda_{x}}^{2}Q_{\lambda_{y}}^{2} - 3Q_{\lambda_{x}}^{2}Q_{\lambda_{z}}^{2} - 3Q_{\lambda_{y}}^{2}Q_{\lambda_{z}}^{2} \right) + V_{3};$$
(1.4.6)

 $\lambda$  takes values of 3 or 4;

5. For  $T_{33}$  and  $T_{4\lambda}$  splittings, the operators take the following form ( $\lambda = 3; 4$ ):

$$H_{5a} = d_{3344_{\lambda}} [3Q_{4x}^2 Q_{3x}^2 + 3Q_{4y}^2 Q_{3y}^2 + 3Q_{4z}^2 Q_{3z}^2 - (1.4.7) - (Q_{3x}^2 + Q_{3y}^2 + Q_{3z}^2)(Q_{4x}^2 + Q_{4y}^2 + Q_{4z}^2) - (1.4.7) - 4Q_{3x}Q_{3y}Q_{4x}Q_{4y} - 4Q_{3x}Q_{3z}Q_{4x}Q_{4z} - 4Q_{3y}Q_{3z}Q_{4y}Q_{4z}] + V_3$$

and

$$H_{5b} = d_{2244_t} \Big[ Q_{12} Q_{22} \Big( Q_{\lambda x}^2 + Q_{\lambda y}^2 \Big) + (Q_{21}^2 - Q_{22}^2) \Big( Q_{\lambda x}^2 + Q_{\lambda y}^2 - 2Q_{\lambda z}^2 \Big) \Big] + V_3, \quad (1.4.8)$$

respectively;

6. The operator responsible for  $S_{34}$  type splits is written out as:

$$H_{6} = d_{3344_{x}} [(Q_{3x}Q_{4x} + Q_{3y}Q_{4y} + Q_{3z}Q_{4z})^{2} - (1.4.9) - \frac{1}{3} (Q_{3x}^{2} + Q_{3y}^{2} + Q_{3z}^{2}) (Q_{4x}^{2} + Q_{4y}^{2} + Q_{4z}^{2})] + V_{3}.$$

#### **1.5.** Vibrational polyads

Consider a molecule with *N* different normal modes of vibrations (which can be degenerate). The vibrational level ( $v_1, v_2, ..., v_N$ ) belongs to the polyad  $P_n$  if the vibrational quantum numbers  $v_i$  (i = 1, ..., N) satisfy the relation:

$$n = \sum_{i=1}^{N} i_i v_i, \tag{1.5.1}$$

where  $(i_1, i_2, ..., i_N)$  are *N* integers chosen to define the polyad scheme. A simple example is the methane molecule (CH<sub>4</sub>). This molecule has N = 4 normal modes of oscillation:  $v_1$  (non-generated),  $v_2$  (doubly degenerated),  $v_3$  and  $v_4$  (triply degenerated). It is known that their frequencies satisfy the approximate relation:

$$\mathbf{v}_1 \approx \mathbf{v}_3 \approx 2\mathbf{v}_2 \approx 2\mathbf{v}_4. \tag{1.5.2}$$

Thus, the vibrational levels of methane are grouped into polyads using a polyad scheme:

$$(i_1, i_2, i_3, i_4) = (2, 1, 2, 1),$$
 (1.5.3)

In other words, the polyad  $P_n$  describes all vibrational states satisfying the condition:

$$n = 2v_1 + v_2 + 2v_3 + v_4, \tag{1.5.4}$$

which leads to the standard polyads for methane (Figure 1.2; see Figure A.1 (Appendix A) for an example of polyads for the SiF<sub>4</sub> molecule):  $P_1$  with two vibrational levels (upper states of the  $v_2/v_4$  dyad),  $P_2$  with five levels (upper states of the  $v_1/v_3/2v_2/2v_4/v_2 + v_4$  pentad), etc.

The polyad scheme, defined by a set of integers  $(i_1, i_2, ..., i_N)$ , allows us to simplify the study of any system of vibrational levels, even for molecules that do not have a clear polyad scheme.



Figure 1.2 – Graphical representation of energy levels grouped into polyads  $P_0 - P_3$ .

#### Chapter 2

#### Theoretical study on high-resolution spectra of asymmetric tops: C<sub>2</sub>D<sub>4</sub> и ClO<sub>2</sub> molecules

This chapter is devoted to the theoretical study of asymmetric top molecules, namely, to the study of the vibrational-rotational spectra of the fully deuterated ethylene isotopologue  $C_2D_4$  and the molecule in the non-singlet electronic state chlorine dioxide ClO<sub>2</sub>. At the beginning of each section, a literature review is given, as well as information from the theory necessary to describe the spectra of asymmetric top molecules.

#### 2.1. Ethylene C<sub>2</sub>D<sub>4</sub>

As one of the most important objects of study in various fields of science, ethylene is of great interest for high-resolution spectroscopy. Found not only in the Earth's atmosphere, this gaseous substance has also been detected in interstellar space, planetary nebulae [16], the atmospheres of giant planets such as Saturn, Jupiter [17], and the atmosphere of Jupiter's satellite Titan [18, 19]. Ethylene plays a role as a hormone in plant biochemistry, naturally diffusing into the ambient air and affecting atmospheric chemistry and global climate [20–22]. Therefore, many laboratory studies have been devoted to analysing the positions and intensities of the spectral lines of this molecule [23–29]. Speaking of the fully deuterated ethylene isotopologue  $C_2D_4$ , along with other types of deuterated ethylene, it should always be taken into account for the correct determination of the intramolecular potential function of this molecule, as well as when analysing the distribution of H and D atoms in the process of isotopic substitution [30].

#### 2.1.1. Description and theoretical background of the deuterated ethylene molecule

The ethylene molecule  $C_2D_4$  is an asymmetric top molecule which asymmetry parameter is  $k \approx (2B - A - C)/(A - C) = -0.817$ , and the symmetry group is isomorphic to the point group  $D_{2h}$ . This group is characterised by the symmetry properties shown in Table 2.1, where columns 1–9 show the set of irreducible representations and characters of the  $D_{2h}$  group; column 10 shows the symmetries of the rotational operators  $J_{\alpha}$  and the directional cosines  $k_{z\alpha}$ , and column 11 shows the symmetries of each of the 12 vibrational coordinates  $q_{\lambda}$  of the molecule  $C_2D_4$ . Absorption transitions in this molecule are possible only between vibrational states whose symmetries  $\Gamma$  and  $\Gamma'$  have different indices "u" and "g" denoting, respectively, symmetric and antisymmetric vibrations with respect to the inversion centre *i*. In addition, transitions from the ground vibrational state are only allowed to the upper vibrational level with symmetry type  $B_{1u}$ ,  $B_{2u}$  or  $B_{3u}$ . Transitions to the upper vibrational level  $A_u$  are forbidden by

symmetry and can only occur in the spectrum as a result of Coriolis-type resonance. Column 10 also shows that transitions from the ground state to vibrational co-states like  $A_g$ ,  $B_{1g}$ ,  $B_{2g}$  or  $B_{3g}$  are completely forbidden due to symmetry properties and due to the absence of interaction between states with different indices "u" and "g".

By analysing Table 2.1, we can describe the selection rules and symmetry type for different bands:

1. The  $B_{1u} \leftarrow A_g$  bands belong to the *c*-type and are characterised by the following selection rules:  $\Delta J = 0, \pm 1; \Delta K_a = \text{odd}; \Delta K_c = \text{even}.$ 

2. The  $B_{2u} \leftarrow A_g$  bands belong to the *b*-type and are characterised by the following selection rules:  $\Delta J = 0, \pm 1; \Delta K_a = \Delta K_c = \text{odd.}$ 

3. The  $B_{3u} \leftarrow A_g$  bands belong to the *a*-type and are characterised by the following selection rules:  $\Delta J = 0, \pm 1; \Delta K_a = \text{even}; \Delta K_c = \text{odd}.$ 

| Repr.    | E | $\sigma_{xy}$ | $\sigma_{xz}$ | $\sigma_{yz}$ | i  | $C_2(z)$ | $C_2(y)$ | $C_2(x)$ | Rot.             | Vibr.                              |
|----------|---|---------------|---------------|---------------|----|----------|----------|----------|------------------|------------------------------------|
| 1        | 2 | 3             | 4             | 5             | 6  | 7        | 8        | 9        | 10               | 11                                 |
| $A_g$    | 1 | 1             | 1             | 1             | 1  | 1        | 1        | 1        |                  | <i>q</i> 1, <i>q</i> 2, <i>q</i> 3 |
| $A_u$    | 1 | -1            | -1            | -1            | -1 | 1        | 1        | 1        |                  | $q_4$                              |
| $B_{1g}$ | 1 | 1             | -1            | -1            | 1  | 1        | -1       | -1       | $J_{y}, k_{zy}$  | q5, q6                             |
| $B_{1u}$ | 1 | -1            | 1             | 1             | -1 | 1        | -1       | -1       |                  | $q_7$                              |
| $B_{2g}$ | 1 | -1            | 1             | -1            | 1  | -1       | 1        | -1       | $J_{x}, k_{zx}$  | $q_8$                              |
| $B_{2u}$ | 1 | 1             | -1            | 1             | -1 | -1       | 1        | -1       |                  | <b>q</b> 9, <b>q</b> 10            |
| $B_{3g}$ | 1 | -1            | -1            | 1             | 1  | -1       | -1       | 1        | $J_z$ , $k_{zz}$ |                                    |
| $B_{3u}$ | 1 | 1             | 1             | -1            | -1 | -1       | -1       | 1        |                  | <i>q</i> 11, <i>q</i> 12           |

Table 2.1 – Symmetry types and characters of irreducible representations of the  $D_{2h}$  group.

Thus, the studied states must be described using a Hamiltonian that takes into account resonance interactions between different vibrational states. This model of the Hamiltonian has the following form:

$$H^{\text{rot.-vib.}} = \sum_{\nu,\tilde{\nu}}^{2} |\nu\rangle \langle \tilde{\nu} | H^{\nu\tilde{\nu}}, \qquad (2.1.1)$$

where the summation is over all vibrational states, and  $H^{\nu\tilde{\nu}}$  is represented as follows:

$$H^{\nu\tilde{\nu}} = \begin{vmatrix} 1 & 2 & 3 \\ 1 & W & F & C \\ 2 & - & W & - \\ 3 & - & - & W \end{vmatrix},$$
(2.1.2)

where W are matrix elements of the diagonal operator; F is the Fermi resonance interaction operator; C is the Coriolis interaction operator. The diagonal blocks of the Hamiltonian describing the rotational structure of unperturbed vibrational states are taken in the form of the Watson operator [31]:

$$H^{\nu\tilde{\nu}} = E^{\nu} + \left[A^{\nu} - \frac{1}{2}(B^{\nu} + C^{\nu})\right]J_{z}^{2} + \frac{1}{2}(B^{\nu} + C^{\nu})J^{2} + \frac{1}{2}(B^{\nu} + C^{\nu})J_{xy}^{2} - (2.1.3)$$

$$-\Delta_{K}^{\nu}J_{z}^{4} - \Delta_{JK}^{\nu}J_{z}^{2}J^{2} - \Delta_{K}^{\nu}J^{4} - \delta_{K}^{\nu}\left[J_{z}^{2}, J_{xy}^{2}\right]_{+} - 2\delta_{J}^{\nu}J^{2}J_{xy}^{2} + (2.1.3)$$

$$+H_{K}^{\nu}J_{z}^{6} + H_{KJ}^{\nu}J_{z}^{4}J^{2} + H_{JK}^{\nu}J_{z}^{2}J^{4} + H_{J}^{\nu}J^{6} + \left[h_{K}^{\nu}J_{z}^{4} + h_{JK}^{\nu}J_{z}^{2}J^{2} + h_{J}^{\nu}J^{4}, J_{xy}^{2}\right]_{+} + (2.1.3)$$

$$+L_{K}^{\nu}J_{z}^{8} + L_{KKJ}^{\nu}J_{z}^{6}J^{2} + L_{JK}^{\nu}J_{z}^{4}J^{4} + L_{JJK}^{\nu}J_{z}^{2}J^{6} + L_{J}^{\nu}J_{z}^{8} + \left[J_{K}^{\nu}J_{z}^{6} + J_{JK}^{\nu}J_{z}^{2}J^{4} + J_{J}^{\nu}J^{6}, J_{xy}^{2}\right]_{+} + (2.1.3)$$

where  $J_{xy}^2 = J_x^2 - J_y^2$  and  $[A, B]_+ = AB + BA$ ;  $J_\alpha(\alpha = x, y, z)$  are the components of the angular momentum operator defined in the molecularly fixed coordinate system; *E* is the vibrational energy; *A*, *B*, *C* are rotational constants;  $\Delta_J, \Delta_{JK}, \Delta_K, \delta_K, \delta_{JK}$  are centrifugal distortion parameters of the fourth degree and  $H_K, H_{KJ}, H_{JK}, H_J, h_K, h_{JK}, h_J$  are centrifugal distortion parameters of the sixth degree.

As for non-diagonal blocks, based on symmetry considerations, it can be shown that the three operators describing the Coriolis interaction (resonance between states of different symmetries) should be written in the following form [31]:

$$H_{\nu,\tilde{\nu}}(\nu \neq \tilde{\nu}) = {}^{\nu\tilde{\nu}}F_0 + {}^{\nu\tilde{\nu}}F_K J_Z^2 + {}^{\nu\tilde{\nu}}F_J J^2 + \dots + {}^{\nu\tilde{\nu}}F_{xy} (J_x^2 - J_y^2) +$$

$$+ {}^{\nu\tilde{\nu}}F_{Kxy} \{J_z^2, (J_x^2 - J_y^2)\}_+ + 2{}^{\nu\tilde{\nu}}F_{Jxy} J^2 (J_x^2 - J_y^2) + \dots$$
(2.1.4)

1. Coriolis *a*-type interaction between the  $(v_{10} = 1, B_{2u})$  and  $(v_7 = 1, B_{1u})$  states:

$$H_{\nu,\tilde{\nu}} = iJ_{z}H_{\nu\tilde{\nu}}^{(1)} + [J_{x},J_{y}]_{+}H_{\nu\tilde{\nu}}^{(2)} + H_{\nu\tilde{\nu}}^{(2)}[J_{x},J_{y}] +$$

$$+ [iJ_{z},(J_{x}^{2}-J_{y}^{2})]_{+}H_{\nu\tilde{\nu}}^{(3)} + H_{\nu\tilde{\nu}}^{(3)}[iJ_{z},(J_{x}^{2}-J_{y}^{2})]_{+} + \cdots$$
(2.1.5)

2. Coriolis *b*-type interaction between the  $(v_{10} = 1, B_{2u})$  and  $(v_4 = 1, B_{3u})$  states:

$$H_{\nu,\tilde{\nu}} = iJ_{x}H_{\nu\tilde{\nu}}^{(1)} + H_{\nu\tilde{\nu}}^{(1)}iJ_{x} + [J_{y},J_{z}]_{+}H_{\nu\tilde{\nu}}^{(2)} + H_{\nu\tilde{\nu}}^{(2)}[J_{y},J_{z}] +$$

$$+ [iJ_{x},(J_{x}^{2} - J_{y}^{2})]_{+}H_{\nu\tilde{\nu}}^{(3)} + H_{\nu\tilde{\nu}}^{(3)}[iJ_{x},(J_{x}^{2} - J_{y}^{2})]_{+} + \cdots$$
(2.1.6)

3. Coriolis *c*-type interaction between the  $(v_{10} = 1, B_{2u})$  and  $(v_{12} = 1, B_{3u})$  states:

$$H_{\nu,\tilde{\nu}} = iJ_{\nu}H_{\nu\tilde{\nu}}^{(1)} + H_{\nu\tilde{\nu}}^{(1)}iJ_{\nu} + [J_{x},J_{z}]_{+}H_{\nu\tilde{\nu}}^{(2)} + H_{\nu\tilde{\nu}}^{(2)}[J_{x},J_{z}] +$$

$$+ [iJ_{\nu}, (J_{x}^{2} - J_{\nu}^{2})]_{+}H_{\nu\tilde{\nu}}^{(3)} + H_{\nu\tilde{\nu}}^{(3)}[iJ_{\nu}, (J_{x}^{2} - J_{\nu}^{2})]_{+} + \cdots$$
(2.1.7)

# 2.1.2. Results of the study of the vibrational-rotational structure of the spectra of the C<sub>2</sub>D<sub>4</sub> molecule. v<sub>5</sub> + v<sub>12</sub> and v<sub>6</sub> + v<sub>11</sub> combination bands

The spectra of the C<sub>2</sub>D<sub>4</sub> molecule were recorded in the wavelength range 2,900–3,500 cm<sup>-1</sup> using a Bruker IFS 125 HR Fourier spectrometer (Braunschweig, Germany) based on a Michelson interferometer with a resolution of 0.0025 cm<sup>-1</sup>. The investigated sample was in the gaseous state at room temperature and pressure of 1.05 mbar, the optical path length was 24 m, and the number of scans was 500. To increase the optical path length, the gas was placed in a stainless-steel White cell. The lines of the N<sub>2</sub>O molecule were used to calibrate the spectrum. The average deviation of the N<sub>2</sub>O line positions from the line positions published in the current HITRAN database is of the order of  $10^{-4}$  cm<sup>-1</sup>.

The recorded spectrum around the  $v_5 + v_{12}$  band is shown in Figure 2.1, with the centre of the band located around the value 3,386 cm<sup>-1</sup>. Figure 2.2 shows the spectrum of the band  $v_6 + v_{11}$  with the centre near the value 3,203 cm<sup>-1</sup>. Both bands belong to the *b*-type and are characterised by the presence of strong *R*- and *P*-branches and weak central *Q*-branches which lines are mostly overlapped by the lines of the neighbouring *R*- and *P*-branches. As described earlier, the following selection rules are used to analyse *b*-type bands:  $\Delta J = 0, \pm 1$ ;  $\Delta K_a = \Delta K_c = \pm (2n + 1)$ , where n = 0, 1, 2, ...

The spectra were analysed using the method of combination differences. Note that this method is one of the simplest, since the exact Rydberg–Ritz combination principle is the only method for line assignment without any mathematical model representation [32, 33]. The necessary data on the vibrational-rotational energies of the ground state was taken from [34]. The information on the assigned transitions was then used to determine the energy structure of the ( $v_5 = v_{12} = 1$ ) and ( $v_6 = v_{11} = 1$ ) states. The energies of excited vibrational-rotational levels were calculated as mean values of the energies of several transitions (*P*-, *Q*-, and *R*-branches) from the ground vibrational state. As an illustration, Tables C.1 and C.2 (Appendix C) present fragments from the list of assigned transitions for each studied combination band, where *J'*, *K'a*, *K'c* are quantum numbers of the ground vibrational state levels, *J*, *Ka*, *Kc* are quantum numbers of the excited vibrational state levels,  $\delta$  is the difference between the experimental value of line positions and the theoretically calculated one.

As an illustration of the performed assignment, i. e. association of quantum numbers with lines in the spectrum in Figures 2.1 and 2.2 one can observe the structure of *R*-branches of the studied band. The intersection of *R*-branches for series with different values of the quantum number  $K_a$  is clearly tracked. Along with this, it is necessary to note the following: during the search of  $JK_aJ - K_a$ 



on the fragments (b) and (c) the part of R-branch of  $v_5 + v_{12}$  band is shown.



series one could observe untypical behaviour of lines in *Q*-branches. For example, for series  $K_a = 5$  the distance between the lines of the spectrum corresponding to small quantum numbers decreases, and at J = 13 the *Q*-branch turns back. This situation appears at close arrangement of energy levels related to different vibrational states, i. e. in the presence of resonance.

This fact emphasizes the necessity of a comprehensive consideration of correctness of the study of vibrational states ( $v_5 = v_{12} = 1$ ) and ( $v_6 = v_{11} = 1$ ) as isolated ones. It is known from the general principles of vibrational-rotational theory [4] that the close proximity of bands can lead to a complex spectrum picture. Based on this, we can talk about the existence of interactions between the vibrational states ( $v_5 = v_{12} = 1$ ) and ( $v_6 = v_9 = 1$ ), which leads to the necessity to use an effective Hamiltonian that takes resonance interactions into account.

However, without correct theoretical predictions of the parameters of non-diagonal blocks (which is a nontrivial task), the resonance model of the effective Hamiltonian turns out to be no better (since the solution of the inverse problem becomes unstable and incorrect) than the model for the isolated state. At the same time, as shown by the theoretical calculation of the rotational parameters of the band using the isotope substitution theory method (as mentioned in Section 1.2), the parameters found by solving the inverse spectroscopic problem (at quantum numbers  $K_a \leq 12$ ,  $J \leq 22$ ) using the Hamiltonian that does not take resonance interactions into account and the parameters calculated by the isotope substitution theory differ insignificantly. On the basis of the above, it is sufficient to consider the investigated states as isolated ones in order to obtain an appropriate set of parameters.

At the initial stage of solving the inverse spectroscopic problem, the parameters of the ground vibrational state of the C<sub>2</sub>D<sub>4</sub> molecule were taken from [34] (column 3 in Tables C.3, C.4) as Hamiltonian parameters of the first approximation. Then, using a step-by-step substitution of experimental energies with a weight coefficient of 1, the optimum number of varying parameters was determined (Tables C.3, C.4, column 2). Thus, 2,080 transitions of the v<sub>5</sub> + v<sub>12</sub> band and 2,415 transitions of the v<sub>6</sub> + v<sub>11</sub> band were assigned to the values of the quantum numbers  $K_a^{max} = 12 \text{ w} K_a^{max} = 17$ , respectively. 529 exact values of the vibrational and rotational energies of the vibrational state ( $v_5 = v_{12} = 1$ ) and 181 values for the vibrational state ( $v_6 = v_{11} = 1$ ) were determined. The latter ones were used in the weight fitting of the parameters of the effective Hamiltonian.

The values of 12 parameters for the  $v_5 + v_{12}$  band and 8 parameters for the  $v_6 + v_{11}$  band obtained by the fitting method reproduce the experimental energy values with an accuracy of  $1.3 \cdot 10^{-3}$  cm<sup>-1</sup> for  $v_5 + v_{12}$  and  $1.5 \cdot 10^{-3}$  cm<sup>-1</sup> for  $v_6 + v_{11}$ , which is close to the experimental accuracy.

#### 2.2. Chlorine dioxide ClO<sub>2</sub>

Significant interest in the physical and chemical properties of chlorine-containing materials was observed after the discovery of extremely high concentrations of chlorine monoxide ClO at low altitudes in the stratosphere above Antarctica [35, 36]. Measurements showing the formation of ClO<sub>2</sub> at night-time [37] provided strong evidence that the evolution of the Antarctic ozone hole is chemically driven by chlorine. However, when viewed in another context, chlorine dioxide is of particular importance as a useful chemical. It is an oxidising agent that is one of the most effective and fast-acting disinfectants, capable of eliminating bacteria, viruses, biofilms and moulds [38]. Based on the above, chlorine dioxide ClO<sub>2</sub> has been the object of many laboratory studies in analysing rotational [39, 40], electronic [41–43] and low-resolution infrared vibrational spectra [44, 45]. As for the high-resolution spectra of the ClO<sub>2</sub> molecule, they have been considered in a number of papers [46–51], including a recent paper [52] devoted to studies of the fundamental  $v_1$  band.

#### 2.2.1. Theoretical description of molecules in non-singlet electronic states

The chlorine dioxide molecule  $ClO_2$  is a stable free radical with the ground electronic state  $X(^2B_1)$ , and its symmetry group in the equilibrium state is isomorphic to the point group  $C_{2\nu}$ . This group is characterised by the symmetry properties shown in Table 2.2.

| Repr. | E | $C_2$ | $\sigma_{yz}$ | $\sigma_{xz}$ | Basis    |
|-------|---|-------|---------------|---------------|----------|
| 1     | 2 | 3     | 4             | 5             | 6        |
| $A_1$ | 1 | 1     | 1             | 1             | Z.       |
| $A_2$ | 1 | 1     | -1            | -1            | $R_z$    |
| $B_1$ | 1 | -1    | -1            | 1             | $x, R_y$ |
| $B_2$ | 1 | -1    | 1             | -1            | $y, R_x$ |

Table 2.2 – Characters of irreducible representations of the group  $C_{2\nu}$ .

The theory and methods used to describe the vibrational-rotational structure of polyatomic molecules in singlet electronic states are well developed and widely approved in a large number of studies of high-resolution spectra. However, these methods cannot provide high accuracy of the results obtained when studying molecules in non-singlet electronic states because of the presence of strong interactions between the rotation of the molecule and the spin of the unpaired electron (or electrons). Therefore, for a correct description of the energy levels of such molecules it is necessary to use an improved, more complex model of the Hamiltonian, which takes into account spin-rotational interactions in asymmetric top molecules:

$$H^{\text{eff}} = H^{\text{rot.}} + H^{\text{sp.-rot.}} + H^{\text{sp.}}, \qquad (2.2.1)$$

where  $H^{\text{rot.}}$  is the usual vibrational-rotational Hamiltonian of the asymmetric top, corresponding to expressions (2.1.1)–(2.1.4). The most important in expression (2.2.1) is the second contribution, which describes various spin-rotational effects of interactions. It can be represented as summands of different order of smallness:

$$H^{\text{sp.-rot.}} = {}^{(2)}H^{\text{sp.-rot.}} + {}^{(4)}H^{\text{sp.-rot.}} + {}^{(6)}H^{\text{sp.-rot.}}.$$
 (2.2.2)

where each of the components can be written as:

$$^{(2)}H^{\text{sp.-rot.}} = a_0(NS) + aN_zS_z + b(N_xS_x - N_yS_y), \qquad (2.2.3)$$

$$^{(4)}H^{\text{sp.-rot.}} = \Delta_J^S N^2 (NS) + \frac{1}{2} \Delta_{NK}^S (N^2 N_Z S_Z + N_Z S_Z N^2) + \Delta_{KN}^S N_Z^2 (NS) + \Delta_K^S N_Z^3 S_Z + (2.2.4) + \delta_N^S (N_+^2 + N_-^2) (NS) + \frac{1}{2} \delta_K^S [(N_+^2 + N_-^2), N_Z S_Z],$$

$$^{(6)}H^{\text{sp.-rot.}} = H_J^S N^4 (NS) + \frac{1}{2} H_{NNK}^S [N^4, N_Z S_Z]_+ + H_{KNN}^S N_Z^2 N^2 (NS) + (2.2.5) + \frac{1}{2} H_{NKK}^S [N^2 N_Z^2, N_Z S_Z]_+ + H_{KKN}^S N_Z^4 (NS) + H_K^S N_Z^4 N_Z S_Z + (2.2.5) + \frac{1}{2} h_{NKK}^S [(N_+^2 + N_-^2), N_Z^2 (NS)]_+ + \frac{1}{2} h_{NK}^S [(N_+^2 + N_-^2)N^2, N_Z S_Z]_+ + h_{NN}^S (N_+^2 + N_-^2)N^2 (NS).$$

The notations correspond to those generally accepted for the description of spin-rotational interactions. Here  $N_+ = (N_x - N_y)/\sqrt{2}$  and  $N_- = (N_x + N_y)/\sqrt{2}$  are the rotational creation and annihilation operators, respectively; the coefficients  $\Delta_N^S$ ,  $\Delta_{NK}^S$ ,  $\Delta_{KN}^S$ ,  $\Delta_K^S$ ,  $\delta_N^S$  and  $\delta_K^S$  are introduced by analogy with the corresponding fourth-order centrifugal distortion coefficients of the rotational operator. The last, third component (2.2.5) depends only on the spin operators and affects only the vibrational energy, so it was not studied in this work. A more detailed derivation of the Hamiltonian and its matrix elements is described in [52].

The <sup>16</sup>O nucleus present in the molecule has zero spin and is thus a boson, and the allowed Pauli full wave function of the <sup>16</sup>O<sup>35</sup>Cl<sup>16</sup>O molecule must have  $A^+$  or  $A^-$  symmetry [53]. If we take into account the symmetry properties of the ground and excited vibrational states, it is easy to conclude that at the combination of quantum numbers  $K_a + K_c =$  "odd", only transitions of  $A_2(A^+)$  symmetry are allowed, and at  $K_a + K_c =$  "even", transitions of  $B_2(B^+)$  symmetry are observed in the spectrum. All other levels are absent in the spectrum. Thus, in the ClO<sub>2</sub> molecule only transitions of the *a*-type are possible for the bands investigated in this work. The selection rules in this case will be written as:  $\Delta N = 0, \pm 1$ ;

 $\Delta K_a$  = "even";  $\Delta K_c$  = "odd";  $\Delta J = 0, \pm 1$ ;  $\Delta S = 0, \pm 1$ . Note that the presence of a zero value of the spin of the <sup>16</sup>O nucleus leads to the absence of half of all possible transitions.

# 2.2.2. Analysis of the vibrational and rotational structure of the spectra of ClO<sub>2</sub> molecule. Fundamental band v<sub>3</sub> and combination band v<sub>1</sub> + v<sub>3</sub>

To study the  $v_3$  and  $v_1 + v_3$  bands, two spectra in the wavelength range 700–2,100 cm<sup>-1</sup> were recorded on a Bruker IFS 125 HR Fourier spectrometer (Braunschweig, Germany) with a resolution of 0.0015–0.0030 cm<sup>-1</sup>. The ClO<sub>2</sub> sample consisted of isotopologues of <sup>35</sup>ClO<sub>2</sub> and <sup>37</sup>ClO<sub>2</sub> in the ratio 3/1 and was placed in a White cell in the gaseous state at room temperature and pressures of 100 and 250 Pa for the first and second spectra, respectively. The water vapour (H<sub>2</sub>O), carbon monoxide (CO) and carbonyl sulphide (OCS) lines were used for calibration. The optical path lengths were 0.23 and 6.4 m and the number of scans were 400 and 2,000 for the first and second spectra, respectively.

Figures 2.3–2.5 show the spectra of the studied bands with the indication of their centres. As it was mentioned earlier, the studied bands are *a*-type bands, so they are characterised by strong *R*-, *P*-, and *Q*-branches. The spectra were assigned by the previously described combination difference method; the values of vibrational and rotational energies of the ground vibrational state were taken from [52]. Considering that in the recorded spectra a large number of lines are overlapped (due to numerous unresolved and weakly resolved doublets), the values of the upper spin-rotation energies were determined using only isolated, unsaturated and non-weak lines.

Thus, using the improved Hamiltonian model, 37 spectroscopic parameters of the v<sub>3</sub> band (vibrational energy, 3 rotational parameters, 18 centrifugal distortion parameters, and 15 spin-rotational parameters) were determined from 2,220 values of vibrational and rotational energies due to 5,200 transitions (Table C.5, Appendix C) with maximum values of quantum numbers  $K_a = 21$ . This set of parameters (Table C.6) allows us to reproduce the experimental values of the upper energy levels with an accuracy of  $d_{\rm rms} = 2.4 \cdot 10^{-4} \,{\rm cm}^{-1}$ .

Using the obtained data of the fundamental  $v_3$  band and data on the  $v_1$  band [52], 983 energy values were similarly obtained by analysing the  $v_1 + v_3$  band, due to more than 2,000 transitions with a maximum value of the quantum number  $K_a = 59$ . A set of 30 spectroscopic parameters (vibrational energy, 17 rotational and centrifugal and 12 spin-rotational parameters (Table C.7)) allows us to reproduce the values of experimental energies with a standard deviation  $d_{\rm rms} = 2.5 \cdot 10^{-4}$  cm<sup>-1</sup>, which exceeds the data known in the literature [51] by almost 35 times.









Transmittance

34



Figure 2.5 – Studied spectrum of the  $v_1 + v_3$  band of the ClO<sub>2</sub> (upper fragment); doublet structure of the *P*-branch of  $v_1 + v_3$  band (lower fragment).
### Chapter 3

# Theoretical study on high-resolution spectra of spherical tops: CD4, SiF4 and SiH4 molecules

This chapter presents the results of vibrational-rotational spectra analyses of spherical top molecules CD<sub>4</sub>, SiF<sub>4</sub>, and SiH<sub>4</sub>. At the beginning of each section, a literature review is given, as well as information from the theory of describing the spectra of spherical top molecules.

# 3.1. Deuterated methane isotopologue CD4

The methane molecule, observed in various regions of our Universe, has been the subject of highresolution molecular spectroscopy studies for many decades. More specifically, its spectroscopic properties play an important role in solving the problems of climate change in the Earth's atmosphere [54], in studies in astrophysics and planetology [55–60], in understanding chemical reactions in the atmospheres of exoplanets [61], and others. At the same time, many studies of the physical and chemical properties of the planets' atmospheres in the solar system and interstellar space require high-precision spectroscopic information not only about the CH<sub>4</sub> methane molecule itself, but also about its various isotopologues [62–64]. In the field of chemical physics, methane plays an important role as a prototype with fundamental importance for understanding the rotational dynamics of spherical top [65], for the development of chemical bonding theory [66] and intramolecular reactions [67], for understanding the structure of the potential hypersurface [68–70] and the fundamental dynamics of bimolecular reactions [71–73]. Isotopic substitution theory, being a powerful method for analysing the spectra of polyatomic molecules, initially requires highly accurate experimental data on both the basic and various isotopically substituted species of the molecule under study [74, 75].

## 3.1.1. Theoretical methods for describing the spectra of spherical top molecule methane CD4

 $CD_4$  is a spherical top molecule with a tetrahedral structure; its symmetry group is isomorphic to the  $T_d$  group. There are five representations in this symmetry group:  $A_1$ ,  $A_2$ , E,  $F_1$ ,  $F_2$ . All irreducible representations of the group are represented as characters in Table 3.1.

By reason of symmetry, molecules of XY<sub>4</sub> type have four normal vibrations:  $v_1$ ,  $v_2$ ,  $v_3$  and  $v_4$ . Two of them correspond to stretching vibrations ( $v_1(A_1)$  non-generate and  $v_3(F_2)$  triply degenerate) and two to deformation vibrations ( $v_2(E)$  doubly degenerate and  $v_4(F_2)$  triply degenerate).

Based on the  $T_d$  symmetry of the CD<sub>4</sub> molecule, transitions in the absorption spectra of this molecule are possible only between such vibrational states ( $v\Gamma$ ) and ( $v'\Gamma'$ ), for which the condition is fulfilled

$$\Gamma \otimes \Gamma' \in F_2. \tag{3.1.1}$$

Transitions that do not satisfy this relation are forbidden by the symmetry of the molecule, but they can occur in the absorption spectrum due to resonance interactions between allowed transitions. In this section, the "allowed"  $v_4$  band and the "symmetry forbidden"  $v_2$  band are presented.

| Repr. | E | $8C_{3}$ | $3C_2$ | 6 <i>S</i> <sub>4</sub> | $6\sigma_d$ | Basis                          |
|-------|---|----------|--------|-------------------------|-------------|--------------------------------|
| 1     | 2 | 3        | 4      | 5                       | 6           | 7                              |
| $A_1$ | 1 | 1        | 1      | 1                       | 1           |                                |
| $A_2$ | 1 | 1        | -1     | -1                      | -1          |                                |
| E     | 2 | -1       | 2      | 0                       | 0           |                                |
| $F_1$ | 3 | 0        | -1     | 1                       | -1          | $(R_x, R_y, R_z)$              |
| $F_2$ | 3 | 0        | -1     | -1                      | 1           | <i>x</i> , <i>y</i> , <i>z</i> |

Table 3.1 – Characters of irreducible representations of the  $T_d$  group.

The effective Hamiltonian (1.3.1) was used to describe the spectra of the CD<sub>4</sub> molecule in the region of the  $v_2/v_4$  dyad. For the dyad of interacting bands  $v_2$  and  $v_4$  of a molecule of XY<sub>4</sub> type (T<sub>d</sub> symmetry), the expression (1.3.1) can be represented in the form of:

$$H^{\text{vib.-rot.}} = H^{\text{vib.-rot.}}_{\text{GS}} + H^{\text{vib.-rot.}}_{\text{dyad}}$$
(3.1.2)

with

$$H_{\rm GS}^{\rm vib.-rot.} = \sum_{\Omega K} |0000, A_1\rangle \langle 0000, A_1| R^{\Omega(K,A_1)} Y_{(0000,A_1),(0000,A_1)}^{\Omega(K,A_1)}$$
(3.1.3)

$$H_{\text{dyad}}^{\text{vib.-rot.}} = \sum_{\Gamma} \sum_{\Omega K} |0100, E\rangle \otimes \langle 0100, E|R^{\Omega(K,\Gamma)}Y_{(0100,E),(0100,E)}^{\Omega(K,\Gamma)} +$$

$$+ \sum_{\Gamma} \sum_{\Omega K} [(|0001, F_{2}\rangle \otimes \langle 0001, F_{2}|)^{\Gamma} \otimes R^{\Omega(K,\Gamma)}]^{A_{1}}Y_{(0001,F_{2}),(0001,F_{2})}^{\Omega(K,\Gamma)} +$$

$$+ \sum_{\Gamma} \sum_{\Omega K} [(|0100, E\rangle \otimes \langle 0001, F_{2}|)^{\Gamma} \otimes R^{\Omega(K,\Gamma)}]^{A_{1}}Y_{(0100,E),(0001,F_{2})}^{\Omega(K,\Gamma)} +$$

$$+ \sum_{\Gamma} \sum_{\Omega K} [(|0001, F_{2}\rangle \otimes \langle 0100, E|)^{\Gamma} \otimes R^{\Omega(K,\Gamma)}]^{A_{1}}Y_{(0100,E),(0001,F_{2})}^{\Omega(K,\Gamma)}.$$
(3.1.4)

All notations in equations (3.1.4)–(3.1.5) are traditional:  $|0000, A_1\rangle$ ,  $|0100, E\rangle$  and  $|0001, F_2\rangle$  are the symmetrized vibrational functions of the ground and two single excited vibrational states;  $R^{\Omega(K,\Gamma)}$ are symmetrized rotational operators;  $\Omega$  is the total degree of the rotational operator  $J_{\alpha}$  ( $\alpha = x, y, z$ ) in the individual operator R; K is the rank of this operator,  $\Gamma$  is its symmetry in the group  $T_d$ . The sign  $\otimes$  denotes a tensor product, and the values  $Y_{\nu l\gamma,\nu' l'\gamma'}^{\Omega(K,\Gamma)}$  are different-type spectroscopic parameters (more details are given in [76–78]).

The shape and absolute line intensity were analysed to obtain the dipole moment parameters of the molecule. The intensity of an individual line was described as [78]:

$$S_{\nu_0} = \frac{8\pi^3 \nu_0}{4\pi\epsilon_0} \left[ 1 - exp\left(-\frac{hc\nu_0}{k_BT}\right) \right] N \frac{g_A}{Z(T)} exp\left(-\frac{E_A}{k_BT}\right) \mathcal{R}_A^B.$$
(3.1.5)

Here  $v_0 = (E_B - E_A)/hc$  is the wave number of the corresponding transition;  $E_B$  and  $E_A$  represent the energies of the excited and ground vibrational-rotational states of the transition;  $g_A$  is the statistical weight of the nuclear spin (for the CD<sub>4</sub> molecule we have  $g_{A1} = g_{A2} = 15$ ,  $g_E = 12$ , and  $g_{F1} = g_{F2} = 18$  for the rotational symmetry states  $A_1$ ,  $A_2$ , E,  $F_1$  and  $F_2$  [79]); Z(T) is the distribution function. The value of

$$\mathcal{R}^B_A = |\langle A | \mu_Z' | B \rangle|^2 \tag{3.1.6}$$

in equation (3.1.6) is the square of the matrix element of the effective dipole moment operator (more details are given in [80])

$$\mu_{Z}' = \sum_{\nu_{l}\gamma_{l},\nu_{u}\gamma_{u}} \sum_{\Gamma_{\nu}n\Gamma_{r}\Omega K\tilde{K}} \left( [|\nu_{l}\gamma_{l}\rangle \otimes \langle \nu_{u}\gamma_{u}|]^{(\Gamma_{\nu})} \otimes R^{\Omega K(\tilde{K},n\Gamma_{r})} \right)^{A_{2}} p_{\nu_{l}\gamma_{l},\nu_{u}\gamma_{u}}^{\Omega K(\tilde{K},n\Gamma_{r})}$$
(3.1.7)

on the symmetrized lower  $\langle A |$  and upper  $|B \rangle$  ro-vibrational wave functions of transition; the values  $p_{v_l\gamma_l,v_u\gamma_u}^{\Omega K(\tilde{K},n\Gamma_r)}$  are the so-called effective dipole moment parameters of the band  $(v_u\gamma_u) \leftarrow (v_l\gamma_l)$ ; indexes l and u are related to the lower and upper wave functions, and the effective operators  $R^{\Omega K(\tilde{K},n\Gamma_r)}$  have the form [81]:

$$R^{\Omega K(\widetilde{K},n\Gamma_r)} = \sum_{\mu} {}^{\widetilde{K}} G^{\mu}_{n\Gamma_r\sigma_r} R^{\Omega K(\widetilde{K})}_{\mu} = \sum_{\mu} {}^{\widetilde{K}} G^{\mu}_{n\Gamma_r\sigma_r} \big( R^{\Omega(K)} \otimes \lambda^{(1)} \big)^{\widetilde{K}}_{\mu}.$$
(3.1.8)

Here  $\tilde{K}$  takes the values K - 1, K or K + 1. From the three  $k_{Zx}$ ,  $k_{Zy}$ , and  $k_{Zz}$  direction cosines operators it is possible to easily constrain the irreducible tensorial operators  $\lambda^{(1)}$ , following the rules:

$$\lambda_0^{(1)} = k_{ZZ} = \cos\theta, \qquad (3.1.9)$$
$$\lambda_{\mp 1}^{(1)} = \frac{\pm (k_{ZX} \pm ik_{ZY})}{\sqrt{2}} = \mp \sin\theta e^{\frac{\mp i\chi}{\sqrt{2}}}.$$

The matrix elements  $\langle A | \mu_Z' | B \rangle$  can be calculated using the results of the theory of irreducible tensor sets [82, 83]. As shown in [81], in molecules of XY<sub>4</sub> type (of T<sub>d</sub> symmetry) for ro-vibrational transitions from the ground vibrational state these matrix elements can be written as:

$$\langle A|\mu_{Z}'|B\rangle = \sum_{n_{gr}\gamma_{gr}^{r}n_{u}\gamma_{u}} A^{C_{gr}S_{gr}}_{0_{A_{1}},J_{gr}n_{gr}\gamma_{gr}^{r}} B^{C_{u}S_{u}}_{\nu_{u}\Gamma_{u},J_{u}n_{u}\gamma_{u}^{r}} \mathcal{R}^{\nu_{u}\gamma_{u};J_{u}n_{u}\gamma_{u}^{r};C_{u}S_{u}}_{0A_{1};J_{gr}n_{gr}\gamma_{gr}^{r};C_{gr}S_{gr}}$$
(3.1.10)

In more details all transformations for obtaining matrix elements of dipole moment operators are presented in [82, 83].

# 3.1.2. Results of analysis of vibrational-rotational energies and line intensities of CD4 methane in the region of the v<sub>2</sub>/v<sub>4</sub> dyad

To analyse the positions and intensities of the lines, three spectra of gaseous CD<sub>4</sub> (with a percentage of the investigated gas sample more than 99 %) were recorded (Figure 3.1) using a Bruker IFS125HR Fourier Transform Infrared Spectrometer (Braunschweig, Germany) in the wavelength ranges from 800 to 1,400 cm<sup>-1</sup>. For this purpose, optical single-pass (spectrum I) and multi-pass White cells (spectrum II and III) [84], both made of stainless steel, were used. For all spectra a globar multiband infrared radiation source together with a KBr beam splitter and an MCT detector have been used at an optical resolution of 0.003 cm<sup>-1</sup>. The number of scans of at least 700 for each spectrum allowed to additionally improve the signal-to-noise ratio. For each of spectra I, II, and III the pressures were 80, 100, and 352 Pa, respectively; the optical path lengths were 230.500  $\pm$  0.200 mm, 4.052  $\pm$  0.002 m, and 24.052  $\pm$  0.012 m, respectively; and the aperture values were 1.7, 1.3, and 1.7 mm, respectively.

The total linewidth varied between 0.0030 and 0.0049 cm<sup>-1</sup>. The total line width is dominated by the Doppler effect, since the width of the pressure line can almost be neglected. Using the Beer–Bouguer–Lambert law, the line intensity *S* can be derived from the area of one  $A_{\text{line}}$  absorption line, the partial pressure *p* of the gas samples (<sup>12</sup>CD<sub>4</sub> and <sup>13</sup>CD<sub>4</sub>), the temperature *T* and the optical path length *L*:

$$S = \frac{k_B T}{PL} A_{\text{line}},\tag{3.1.11}$$

with

$$A_{\text{line}} = \frac{1}{\log(e)} \int \log\left(\frac{I_0(\nu)}{I(\nu)}\right) d\nu.$$
(3.1.12)



7ransmittance, %

Upper part presents the experimental spectra. Lower part presents the calculated ones.

Line intensities were obtained by direct integration of the measured effective line absorption, which can be well fitted by the Voigt or Hartmann-Tran line profile.

Previously, a study of the CD<sub>4</sub> molecule spectra in the region of the strong-interacting bands of the dyad  $v_2/v_4$  was first presented in [74]. New results on the investigation of the positions of the dyad lines of interacting states of the main modification are presented in [84]. In the process of analysis, it became clear that lines belonging to the <sup>13</sup>CD<sub>4</sub> isotopologue are present in the spectrum. For this reason, it was possible to analyse the positions and intensities of not only the basic but also the isotopole-substituted molecule.

At the beginning of the present analysis of experimental data, assignments of the <sup>13</sup>CD<sub>4</sub> molecule transitions have been made simultaneously with the fit of parameters  $Y_{vl\gamma,vl\gamma}^{\Omega(K,\Gamma)}$  of the effective Hamiltonian (3.1.2) using the SPHETOM software package [85], which was tailored specifically for such studies. In accordance with the general statements of the isotopic substitution theory, the higher order effective spectroscopic parameters<sup>13</sup>CD<sub>4</sub> molecule should be close to the values of corresponding parameters of  ${}^{12}CD_4$  (at least, the difference between the corresponding parameters of the  ${}^{12}CD_4$  and  ${}^{13}CD_4$ isotopologues should be no more than 8–10 %). For this reason (taking into account that the values of higher order parameters are very small), it is suitable to put initial values of such higher order spectroscopic parameters of [84] as an initial approximation when analysing the isotopologue substituted modification. The initial values of the main spectroscopic parameters (band centres, Coriolis interaction parameter, and additions to the rotational parameters of the upper vibrational states) have been numerically estimated on the basis of formulas and relations from [8]. On this basis, as the result of the analysis, the 689 transitions were assigned with a maximum value of the quantum number J = 23 (compared to the results known in the literature of 171 interpreted transitions with  $J^{\text{max}} = 12$  from [74]) for the v<sub>4</sub> band and 212 transitions were assigned with a maximum value of the quantum number J = 21 for the v<sub>2</sub> band (no data for this band in [74]). The derived result is a considerable extension of the information known from the preceding studies about spectroscopic properties of  $v_2/v_4$  bands of the <sup>13</sup>CD<sub>4</sub> molecule. The complete list of assigned experimental transitions for these bands within the study of the <sup>13</sup>CD<sub>4</sub> molecule spectra is given in the Table D.1 (Appendix D). The data are presented in the formulation of the STDS software package.

On the basis of the derived information about transition values, a weighted fit of parameters of the effective Hamiltonian was made. At the first step of the analysis both an assignment and a preliminary fit of parameters have been made by use of the SPHETOM code. However, the final fit was fulfilled using the XTDS software [86, 87]. As the result, 18 fitted parameters (1 parameter of the ground vibrational state, 8 and 4 parameters of the (0001,  $F_2$ ) and (0100, E) vibrational states, and 5 Coriolis interaction parameters) were obtained and are presented in Table D.2 column 5 together with their 1 $\sigma$  confidence statistical intervals (the latter are shown in parentheses). For comparison, column 6 presents

parameters previously known in the literature [74]. Column 4 present the parameters from [84], were the dyad for the main isotopologue <sup>12</sup>CD<sub>4</sub> was studied. The obtained spectroscopic parameters allow us to reproduce the experimental positions of the lines with an error of no more than  $d_{\rm rms} = 2.57 \cdot 10^{-4} \,{\rm cm}^{-1}$ , which is close to the value of the experimental error, despite the weak intensity of the studied lines (Figure 3.2). The accuracy of the obtained results is also confirmed by the consistency of the parameter values for the basic <sup>12</sup>CD<sub>4</sub> and isotope-substituted <sup>13</sup>CD<sub>4</sub> modifications of the deuterated methane molecule.

The absolute line intensities of the v<sub>4</sub> band of the <sup>12</sup>CD<sub>4</sub> molecule were analysed in spectrum I. Spectrum II was used to analyse the line intensities of the weaker v<sub>2</sub> band. In the first step of the analysis, the individual intensities of 777 unmixed unsaturated and not too weak transitions of the v<sub>4</sub> band and 780 transitions of the v<sub>2</sub> band were determined from fitting the contour of the lines to the Hartmann-Tran profile [88, 89] (as an illustration, Figure 3.3 shows a sample of the shape and intensity fit of an individual line belonging to the v<sub>4</sub> band). The experimental line intensities of the v<sub>4</sub> band of the <sup>13</sup>CD<sub>4</sub> molecule were similarly investigated (the transitions belonging to the v<sub>2</sub> band had too low intensities even in the strong II spectrum, so it was not possible to analyse them). In the Tables D.3, D.4 the experimental values of the lines' intensities of v<sub>2</sub>/v<sub>4</sub> dyad of the molecule <sup>12</sup>CD<sub>4</sub> and of v<sub>4</sub> band of the <sup>13</sup>CD<sub>4</sub> molecule, respectively, are presented. The data on the experiment absolute line intensities were then used to determine the effective dipole moment parameters  $p_{u_1 V_1 v_u V_u}^{\Omega K(\vec{R},n\Gamma_r)}$  of the v<sub>4</sub> and v<sub>2</sub> bands of the <sup>12</sup>CD<sub>4</sub> molecule and of the v<sub>4</sub> band of the <sup>13</sup>CD<sub>4</sub> molecule from the weighted fit procedure. The obtained values of the effective dipole moment parameters are presented in column 3 of Table D.5.



Figure 3.2 – Fit residuals for line position values and fit statistic for the  $v_2$  and  $v_4$  bands of  ${}^{13}CD_4$ .





Thus, the individual intensity values of the 131 transitions were determined from fitting their shape using the Hartmann-Tran profile and then determining the parameters  $p_{v_l\gamma_l,v_u\gamma_u}^{\Omega K(\tilde{K},n\Gamma_r)}$  of the effective dipole moment (column 4 of Table D.5). As can be seen from the data presented in Table D.5, only the main dipole moment parameter was varied for the v<sub>4</sub> band of the <sup>13</sup>CD<sub>4</sub> molecule, the values of the other parameters were fixed by the values of the corresponding parameters of the v<sub>4</sub> band of the <sup>12</sup>CD<sub>4</sub> molecule. The error in describing the experimental contours using the obtained parameters did not exceed 5 % for all bands and all isotopologues. The exact values of the errors are presented in the last row of Table D.5.

## 3.2. Silicon tetrafluoride – silane SiF4

Silicon tetrafluoride (SiF<sub>4</sub>) is interesting from both practical and theoretical points of view. It is used as a chemical reagent to produce high quality semi-conducting silicon epitaxial coatings [90]. This molecule is formed during volcanic activity [91], and since this gas is involved in the formation of extremely poisonous hydrogen fluoride (HF) when in contact with hot water and acids [92], it is necessary to be able to detect this compound in the atmosphere with high accuracy. Geothermal infrared spectroscopy, utilising radiation from the volcano itself, allows continuous monitoring of SiF<sub>4</sub> content in the air [93, 94]. Thus, better knowledge of spectroscopic parameters is necessary to determine the exact concentrations of this molecule.

From the theoretical point of view, the SiF<sub>4</sub> molecule is a spherical top molecule (STM). The particular features of STM, which were initially seen as difficulties to be removed, became the motivation that led to original modelling methods applicable to a wide range of spectroscopic problems [86]. One of the important and challenging problems in chemical physics is the accurate determination of the intramolecular multidimensional potential surface and dipole moment surface, which can be used in a variety of numerous applications. Therefore, knowledge of highly accurate spectroscopic information not only on the basic (<sup>28</sup>SiF<sub>4</sub>) but also on the isotopically substituted modifications (<sup>29</sup>SiF<sub>4</sub>, <sup>30</sup>SiF<sub>4</sub>) plays an important role in the complete description of the properties of molecules in the natural isotopic mixture [95].

One of the first theoretical and experimental studies of silicon tetrafluoride was carried out more than half a century ago [96–98], and mainly concerned not so much the spectroscopic data of the molecule itself as the construction of vibrational frequencies of XY<sub>4</sub> type molecules, the determination of force constants, and the re-examination of the molecular structure of gaseous SiF<sub>4</sub>. In later papers [99– 101], the authors describe the study of the fundamental  $v_3$  band and the  $3v_3$  band, which were analysed using diode laser spectroscopy with Doppler confinement and sub-Doppler saturation spectroscopy, attributed to infrared and microwave transitions. The next few years of work devoted to the study of this molecule cover some theoretical calculations, improvement of the Hamiltonian model, measurement of the double resonance and ground state enhancement with the  $v_3$  band [102, 103]. Thus, the main attention of researchers has long been focused on the study of the  $v_3$  band and the ground state, which has influenced the further development of theoretical and experimental methods to study this molecule.

Subsequently, the authors of [104] presented their results on the calculation of the equilibrium structure, thermodynamic and kinetic parameters of the silicon tetrafluoride molecule. With the development of experimental techniques and the theory of describing spherical top molecules [105], a number of recent works [106, 107] provided more accurate information on the spectroscopic parameters of the fundamental and overtone states and their combinations, leading to an accurate determination of the equilibrium Si-F bond length. The first fit of the dipole moment derivative for the  $v_3$  band of the fundamental isotopologue <sup>28</sup>SiF<sub>4</sub> was performed. Knowing the fundamental bands data, it became possible to investigate more complex combination bands of the molecule, which is presented in this section of the work.

## 3.2.1. Theoretical methods for describing the spectra of spherical top silane SiF4 molecule

Like the CD<sub>4</sub> molecule described earlier in this work, the SiF<sub>4</sub> molecule is a spherical top molecule with a tetrahedral structure, its symmetry group is isomorphic to the T<sub>d</sub> point group. Also, like the methane molecule, by symmetry, the SiF<sub>4</sub> molecule has four normal vibrations:  $v_1$ ,  $v_2$ ,  $v_3$  and  $v_4$ . Two of them correspond to valence vibrations ( $v_1(A_1)$  non-generate and  $v_3(F_2)$  triply degenerate) and two to stretching ( $v_2(E)$  doubly degenerate and  $v_4(F_2)$  triply degenerate).

Based on the theory of symmetry, group theory and their application to molecular spectroscopy, the basic theoretical model for the description of molecules belonging to one symmetry group (in this case a group isomorphic to the point group  $T_d$ ) has the same form, and therefore we will omit the repetition of the main statements from section 3.1. Instead, we will give some peculiarities encountered in the description of the heavy highly symmetric molecule SiF<sub>4</sub>.

As it has been said before, the silicon tetrafluoride molecule belongs to the type of spherical top by the ratio between the moments of inertia, and therefore the results of fundamental studies of the authors [108, 109], as well as the tensor formalism and methods of group theory from [86, 105] are used for its description. For this type of molecule, there exist approximate relations between the wave numbers of its normal vibrational modes, which can then be grouped into vibrational polyads. This approximate relation can be described through vibrational states:

$$k = 6v_1 + 2v_2 + 8v_3 + 3v_4, \tag{3.2.1}$$

which, thus, leads to polyads typical to the silane molecule (and its fully fluorinated version SiF<sub>4</sub>):  $P_0$  (ground state),  $P_1$  is absent in this case,  $P_2$  for the  $v_2$  band, etc. The complete list of vibrational levels grouped by polyads is shown graphically in Figure A.1 (Appendix A). It should also be noted that simple calculations in the first approximation by perturbation theory show that the contribution of interactions between different ro-vibrational modes is negligible for a SiF<sub>4</sub>-type molecule. Thus, its ro-vibrational bands can initially be analysed with sufficient accuracy using the isolated state model. Despite this, the presence of high symmetry leads to another problem, namely the previously mentioned tetrahedral splittings in both vibrational and vibrational-rotational states, which make it necessary to use a more complex Hamiltonian that takes these splittings into account. The Hamiltonian model used to describe the spectra of spherical top was presented earlier in Section 3.1.1.

#### 3.2.2. Analysis of combination bands spectra of SiF4

The spectra were recorded using synchrotron radiation to record the far-infrared range (100–600 cm<sup>-1</sup>) at the AILES station of the SOLEIL synchrotron, and using a broadband infrared source combined with a different collimator size for the mid-range (600–2,400 cm<sup>-1</sup>). The spectra were recorded using a Bruker 125HR Fourier transform spectrometer. Due to the weak intensity of many of the studied bands and the large number of "hot" bands, the sample was placed in a cryogenic cell with a long optical path with a maintained temperature of 163 K. The optical path length was 3 m (93 m for the spectra recorded in the v<sub>2</sub> + v<sub>4</sub> band region), and the resolution varied from 0.0015 to 0.004 cm<sup>-1</sup>. The sample pressure was chosen to avoid saturation in the spectra in the region of the v<sub>2</sub> band. The number of scans was varied from 90 to 1,920. The well-studied line data of the CO<sub>2</sub> and COS spectra were used for calibration.

At the initial stage of the study of combination bands spectra of the SiF<sub>4</sub> molecule, data on the fundamental bands [107] of this molecule were used as parameters of the effective Hamiltonian of the first approximation. The lines were assigned using the SPVEIW software package. The XTDS software package was used to analyse and calculate the energy structure of the vibrational states ( $v_1 = v_2 = 1$ ), ( $v_1 = v_3 = 1$ ), ( $v_2 = v_3 = 1$ ), ( $v_2 = v_4 = 1$ ) and ( $v_3 = v_4 = 1$ ). Both software packages were developed at the ICB interdisciplinary laboratory of the University of Burgundy (Dijon, France) [86, 87].

The main difficulty in studying the spectra is the presence of a large number of transitions belonging to the "hot" bands of the SiF<sub>4</sub> molecule, despite the experimental conditions chosen in such a way as to reduce the intensity of these lines in the studied spectra. The presence of "hot" bands can be clearly seen in the spectrum of the  $v_2 + v_4$  band (Figure 3.4). Despite the close location of the ro-vibrational bands centres, their interaction appears to be insignificant, and therefore all ro-vibrational bands, presented in this section, were analysed using a theoretical model for isolated states.





Statistics on the results of combination bands spectra analyses are given in Table 3.2 (column 5 represents the number of parameters fitted in this work).

| Band              | Band centre, cm <sup>-1</sup> | $J^{\max}$ | N <sub>transitions</sub> | N <sub>parameters</sub> | $d_{\rm rms} \cdot 10^{-3}, {\rm cm}^{-1}$ |
|-------------------|-------------------------------|------------|--------------------------|-------------------------|--------------------------------------------|
| 1                 | 2                             | 3          | 4                        | 5                       | 6                                          |
| $v_1 + v_2$       | 1064.2395                     | 78         | 1,141                    | 6                       | 0.398                                      |
| $v_1 + v_2 + v_4$ | 1454.8007                     | 16         | 135                      | 16                      | 0.429                                      |
| $v_1 + v_3$       | 1828.3546                     | 82         | 1,334                    | 9                       | 0.563                                      |
| $^{29}v_1 + v_3$  | 1819.3854                     | 45         | 198                      | 8                       | 0.665                                      |
| $^{30}v_1 + v_3$  | 1810.8235                     | 58         | 267                      | 11                      | 0.478                                      |
| $v_1 + v_4$       | 1189.9905                     | 58         | 1,131                    | 4                       | 0.417                                      |
| $v_2 + v_3$       | 1294.5825                     | 70         | 2,907                    | 22                      | 0.445                                      |
| $v_2 + v_4$       | 653.3963                      | 54         | 844                      | 19                      | 0.382                                      |
| $v_3 + v_4$       | 1418.5583                     | 60         | 2,194                    | 44                      | 0.633                                      |
| Total             |                               |            | 10,151                   |                         |                                            |

Table 3.2 – Statistical data on the results of combination band analysis of SiF<sub>4</sub> molecule.

For the  $v_1 + v_3$  band (Figure B.1, Appendix B), due to its high intensity, it was possible to analyse not only the transitions belonging to the main modification of the <sup>28</sup>SiF<sub>4</sub> molecule, but also for the isotopologues <sup>29</sup>SiF<sub>4</sub> and <sup>30</sup>SiF<sub>4</sub>. The study of the  $v_2 + v_4$  band was complicated by the presence of closely located transitions belonging to the "hot" band  $v_3 - v_4$  (see Figure 3.4), mixed and overlapped with the lines of the studied band. The spectrum of the  $v_3 + v_4$  band (Figure B.2) consists of four sublevels, which makes the spectrum very dense. Thus, analysing this band required taking into account the interaction of the closely spaced four sublevels, which made the task more difficult. The  $v_2 + v_3$  band (Figure B.3) was analysed up to a maximum value of quantum number J = 70; the spectra of this band do not contain lines belonging to "hot" bands or other combination bands. In the spectrum of the  $v_1 + v_4$  band (Figure B.4) it was possible to identify a band centre belonging to the <sup>29</sup>SiF4 isotopologue, but due to its weak intensity it was not possible to analysed. The spectrum of the weak band  $v_1 + v_2$  (Figure B.5), which centre is located quite close to the centre of the fundamental band  $v_3$  (less than 40 cm<sup>-1</sup>), was analysed, as well as other combination bands in this study, with a theoretical model that does not take resonance interactions into account. At the same time, the spectroscopic parameters obtained by fit allow us to reproduce the experimental positions of the lines with an accuracy no worse than the experimental one.

The obtained combination band parameters allow theoretical calculations of the spectra of "hot" bands, such as  $v_3 + v_1 - v_1$ ,  $v_3 + v_2 - v_2$  and  $v_3 + v_4 - v_4$  (Figure 3.5). The data on the positions of the lines corresponding to the "hot" transitions were recorded in the international spectroscopic database *TFSiCaSDa* [110].





Absorbance, a. u.

Therefore, the spectra of silicon tetrafluoride were analysed in the region of combination bands, and data on the energy structure of vibrational states ( $v_1 = v_2 = 1$ ), ( $v_1 = v_3 = 1$ ), ( $v_1 = v_4 = 1$ ), ( $v_2 = v_3 = 1$ ), ( $v_2 = v_4 = 1$ ) and ( $v_3 = v_4 = 1$ ) were obtained. The 10,151 transitions with a value of  $J^{\text{max}} = 82$  were assigned, which allowed to solve the inverse spectroscopic problem and obtain sets of parameters of the effective Hamiltonian (Tables D.6–D.12) describing the experimental positions of the lines with a standard deviation of a few 10<sup>-4</sup> cm<sup>-1</sup>. Fit residuals for certain combination bands are shown in Figure B.6. The results obtained are important for further high-precision semiempirical determination of the intramolecular potency function of the SiF4 molecule, as well as for subsequent analyses of the line intensities of this molecule.

# 3.3. Silane SiH4

Interest in studies of high-resolution spectra of silane SiH<sub>4</sub> is due to several reasons. First, studies of the high-resolution spectra of the SiH<sub>4</sub> molecule can be useful in studying the composition of the atmospheres of giant planets such as Jupiter and Saturn [111–114]. The main isotopologue <sup>28</sup>SiH<sub>4</sub> has been reported in the interstellar dust formation surrounding the star IRC+10216 [115, 116], which emission range lies in the far infrared region. Silane, like its tetrafluorinated analogue, plays an important role as a precursor for the chemical vapour deposition of silicon layers [117]. Therefore, high purity silicon production processes require control of gaseous silane [118], more often by spectroscopic methods. On this basis, silane SiH<sub>4</sub>, while being the lightest of all stable silicon compounds, has been the subject of numerous studies over the years [119], including high-resolution spectroscopic methods [120–125].

## 3.3.1. Study of the shape and absolute intensity of the spectrum lines of silane SiH4

A large cooled multireflective absorption cell was used to record the spectrum in combination with synchrotron radiation at the "AILES" station of the SOLEIL synchrotron (France). The optical path length was 93 m. Three spectra of pure gaseous SiH<sub>4</sub> were recorded at different pressures (12.5, 25 and 50 mbar) and at a temperature of about 160 K. Thus, spectra of both "cold" (ground state) and "hot" ( $v_3 - v_3$ ) rotational lines in the range 45–165 cm<sup>-1</sup> were obtained.

The absolute line intensities of silane SiH<sub>4</sub> were measured for this range for the first time. For this nonpolar molecule, the effective dipole moment is very small and is due to the effects of centrifugal distortion. In the initial stage of the analysis, the individual intensities of about one hundred unmixed, unsaturated, and non-weak lines were determined from fitting the contour of the lines to the Voigt profile. The experimentally derived absolute line intensity data were then used to determine the effective dipole moment parameters from the fit procedure with weighting coefficients. The experimental values of the shape and absolute line intensities allowed us to obtain a set of effective dipole moment parameters that describe the experimental characteristics of the spectral lines corresponding to the transitions between the ground state levels and the "hot" band transitions  $v_3 - v_3$  with an error of no more than 5.7 %.

Figure 3.6 shows an example of a cluster of cold transitions R(18) at different pressures compared to the theoretical calculation using the obtained effective dipole moment parameters (Table 3.3).

| $(v, \gamma) (v', \gamma')$ | $(\Omega, K, n\Gamma)$   | Value, D   |
|-----------------------------|--------------------------|------------|
| 1                           | 2                        | 3          |
| $(0000, A_1) (0000, A_1)$   | $2(2,0F2)10^5$           | 0.9946(78) |
|                             | $4(2,0F2)10^7$           | 0.1910(31) |
|                             | 6(2,0F2)10 <sup>10</sup> | 0.5829(28) |
| $d_{ m rms}$                | 5,67 %                   |            |

Table 3.3 – Parameters of the effective dipole moment of SiH<sub>4</sub> in the far infrared range.



Figure 3.6 – Comparison of experimental and calculated shape and line intensities in the region of *R*-branch between the levels of the ground vibrational state.

Experimental conditions are presented in the upper left part of the figure.

## Conclusion

This thesis presents the results of theoretical studies of the spectra of asymmetric and spherical top molecules in various regions of the far and mid-infrared ranges. An approach based on the theory of irreducible tensor operators to describe the high-resolution spectra of asymmetric wavelength molecules in doublet electronic states, which allows to improve the calculation of the positions of the spectral lines of the fundamental band of the  $ClO_2$  molecule by more than ten times, is proposed.

The following tasks were set and solved in the work:

• For the first time, the combination band transitions of the  $v_5 + v_{12}$  and  $v_6 + v_{11}$  bands of the C<sub>2</sub>D<sub>4</sub> molecule, about 4,500 in total, have been determined up to the maximum values of the quantum numbers  $K_a^{max} = 12$  and  $K_a^{max} = 17$  for the  $v_5 + v_{12}$  and  $v_6 + v_{11}$  bands, respectively.

• The spectroscopic parameters of the C<sub>2</sub>D<sub>4</sub> molecule have been determined for the first time by analysing the high-resolution ro-vibrational spectra of the  $v_5 + v_{12}$  and  $v_6 + v_{11}$  bands.

• The transitions of the fundamental  $v_3$  and combination  $v_1 + v_3$  bands of the ClO<sub>2</sub> molecule have been assigned for the first time, or with much higher accuracy, using a newly proposed approach based on the theory of irreducible tensor operators for an improved description of the spectra of asymmetric top molecules in the nonsinglet electronic state, 7,200 in total, up to a maximum value of the quantum numbers  $K_a = 21$  and  $K_a = 59$  for the fundamental and combination bands, respectively.

• The parameters of the effective Hamiltonian of the  $ClO_2$  molecule have been determined for the first time, or with much higher accuracy, based on the analysis of high-resolution vibrational-rotational spectra of the  $v_3$  and  $v_1 + v_3$  bands using the proposed approach to describe molecules in nonsinglet electronic states, which takes into account spin-rotational interactions in molecules of this type.

• The transitions corresponding to the  $v_2/v_4$  dyad of  ${}^{13}CD_4$  molecule have been assigned for the first time; the absolute intensities of the  $v_2/v_4$  dyad transitions of  ${}^{12}CD_4$  molecule have been determined with much higher accuracy, and for the first time for the  $v_4$  band of  ${}^{13}CD_4$  molecule.

• The spectroscopic parameters of the  ${}^{13}CD_4$  molecule have been determined for the first time, and the parameters of the effective dipole moment of the  $v_2/v_4$  dyad of  ${}^{12}CD_4$  molecule and for the first time for the  $v_4$  band of  ${}^{13}CD_4$  molecule have been determined for the first time, or with much higher accuracy.

• More than 10,000 transition of the combination bands  $v_1 + v_2$ ,  $v_1 + v_3$ ,  $v_1 + v_4$ ,  $v_2 + v_3$ ,  $v_2 + v_4$  and  $v_3 + v_4$  of the SiF<sub>4</sub> molecule have been assigned for the first time up to  $J^{\text{max}} = 78$ , 82, 58, 58, 70, 54 and 60, respectively;  $v_1 + v_3$  band transitions were also determined for the first time for the isotopologues <sup>29</sup>SiF<sub>4</sub> and <sup>30</sup>SiF<sub>4</sub>.

• The spectroscopic parameters of the combination bands  $v_1 + v_2$ ,  $v_1 + v_3$ ,  $v_1 + v_4$ ,  $v_2 + v_3$ ,  $v_2 + v_4$ and  $v_3 + v_4$  of the SiF<sub>4</sub> molecule have been determined for the first time by analysing high-resolution vibrational-rotational spectra. • For the first time for the SiF<sub>4</sub> molecule the positions of the lines were calculated and theoretical spectra of the "hot" bands  $v_3 + v_1 - v_1$ ,  $v_3 + v_2 - v_2$  and  $v_3 + v_4 - v_4$  were constructed with an accuracy not worse than the experimental one.

• The absolute intensities of the lines corresponding to the transitions between the levels of the ground vibrational state, as well as transitions of the "hot"  $v_3 - v_3$  band, have been determined for the SiH<sub>4</sub> molecule for the first time.

• For the first time, the parameters of the effective dipole moment of the SiH<sub>4</sub> molecule were determined in the far-infrared range, where the lines corresponding to the transitions between the ground state levels and the transitions of the "hot"  $v_3 - v_3$  band are located.

Practically, the obtained results can be used as follows:

• Information on the structure of high-resolution spectra of SiH<sub>4</sub>, SiF<sub>4</sub>, CD<sub>4</sub>, C<sub>2</sub>D<sub>4</sub>, ClO<sub>2</sub> and their isotopologues is an essential addition to existing databases of vibrational-rotational spectra of molecules and can be used in a wide range of practical applications of fine structure information on molecular spectra.

• The developed approach for the analysis of free radicals of the asymmetric tops in non-singlet electronic states can be used to analyse the spectra of various molecules belonging to the mentioned class.

Subsequent studies that serve to develop the selected topic include:

• The study of the combination bands  $2v_3$  and  $3v_3$  of the SiF<sub>4</sub> molecule, so the investigated range will cover 24 polyads of the SiF<sub>4</sub> molecule.

• Obtaining experimental values of intensities of individual lines belonging to the  $SiF_4$  molecule, which will complete the data on the dipole moment parameters of this molecule.

• Publication of papers on new data obtained.

## **Publications on the thesis topic**

Articles in journals included in the list of peer-reviewed scientific publications

1. Зятькова А. Г., Меркулова М. А., Конова Ю. В. Определение энергетической структуры и спектроскопических параметров колебательного состояния (*v*<sub>5</sub> = *v*<sub>12</sub> = 1) молекулы C<sub>2</sub>D<sub>4</sub> // Оптика и спектроскопия. – 2020. – Т. 128. – No. 5. – С. 583-588.

In the translated version, indexed by "Web of Science" and "Scopus"

Ziatkova A. G., Merkulova M. A., Konova Yu. V. Determination of the energy structure and spectroscopic parameters of the vibrational state ( $v_5 = v_{12} = 1$ ) of the C<sub>2</sub>D<sub>4</sub> molecule // Optics and Spectroscopy. – 2020. – Vol. 128. – No. 5. – P. 569-574.

2. Меркулова М. А., Какаулин А. Н., Громова О. В., Бехтерева Е. С. Анализ спектра высокого разрешения молекул в дублетных электронных состояниях: фундаментальная полоса  $v_3$  диоксида хлора (<sup>16</sup>O<sup>35</sup>Cl<sup>16</sup>O) в основном электронном состоянии  $X^2B_1$  // Оптика и спектроскопия. – 2021. – Т. 129. – No. 8. – С. 979-984.

In the translated version, indexed by "Web of Science" and "Scopus"

Merkulova M. A., Kakaulin A. N., Gromova O. V., Bekhtereva E. S. Analysis of the high-resolution spectrum of molecules in doublet electronic states: fundamental  $v_3$  band of chlorine dioxide ( ${}^{16}O^{35}Cl^{16}O$ ) in the ground electronic state  $X^2B_1$  // Optics and Spectroscopy. – 2021. – Vol. 129. – No. 10. – P. 1138-1144.

3. Бехтерева Е. С., Какаулин А. Н., Меркулова М. А., Громова О. В., Конова Ю. В., Зидо К. Спектроскопия высокого разрешения молекул типа асимметричного волчка в несинглетных электронных состояниях: полоса v<sub>1</sub> + v<sub>3</sub> молекулы ClO<sub>2</sub> // Оптика и спектроскопия. – 2022. – Т. 130. – No. 9. – С. 1327-1333.

In the translated version, indexed by "Web of Science" and "Scopus"

Bekhtereva E. S., Kakaulin A. N., Merkulova M. A., Gromova O. V., Konova Yu. V., Sydow C. High-resolution spectroscopy of asymmetric top molecules in non-singlet electronic states:  $v_1 + v_3$  band of the ClO<sub>2</sub> molecule // Optics and Spectroscopy. – 2022. – Vol. 130. – No. 7. – P. 425-432.

4. Merkulova M., Boudon V., Manceron L. Analysis of high-resolution spectra of SiF<sub>4</sub> combination bands // Journal of Molecular Spectroscopy. – 2023. – Vol. 391. – P. 111738.

5. Ulenikov O. N., Bekhtereva E. S., Gromova O. V., Kakaulin A. N., Merkulova M. A., Sydow C., Berezkin K. B., Bauerecker S. High resolution spectroscopy of asymmetric top molecules in nonsinglet electronic states: the  $v_3$  fundamental of chlorine dioxide ( $^{16}O^{35}Cl^{16}O$ ) free radical in the X<sup>2</sup>B<sub>1</sub> electronic ground state // Physical Chemistry Chemical Physics. – 2023. – Vol. 25. – No. 8. – P. 6270-6287.

6. Ulenikov O. N., Gromova O. V., Bekhtereva E. S., Nikolaeva N. I., Merkulova M. A., Morzhikova Y. B., Bauerecker S. Comparative line position and line strength analysis of the  $v_2/v_4$  dyad of  ${}^{12}CD_4$ and  ${}^{13}CD_4$  // Journal of Quantitative Spectroscopy and Radiative Transfer. – 2023. – Vol. 311. – P. 108770.

7. Richard C., Ben Fathallah O., Hardy P., Kamel R., Merkulova M., Ulenikov O., Boudon V. Casda24: Latest updates to the Dijon calculated spectroscopic databases // Journal of Molecular Spectroscopy. – 2024. – Vol. 327. – P. 109127.

Publications in conference collections

8. Меркулова М. А. Определение энергетической структуры и спектроскопических параметров колебательного состояния ( $v_5 = v_{12} = 1$ ) молекулы C<sub>2</sub>D<sub>4</sub> / Меркулова М. А. // Перспективы развития фундаментальных наук: сборник научных трудов XVII Международной конференции студентов, аспирантов и молодых ученых, ТПУ, Томск, Россия. – Сборник трудов: Изд-во ТПУ. – 2020. – Т.1: Физика. – С. 128-130, Томск. (21-24 апреля, 2020). = Merkulova M. A. Determination of the energy structure and spectroscopic parameters of the vibrational state ( $v_5 = v_{12} = 1$ ) of the C<sub>2</sub>D<sub>4</sub> molecule / Merkulova M. A. // Prospects for the development of fundamental sciences: book of abstracts of the XVII International Conference of students, postgraduates and young scientists, TPU, Tomsk, Russia. – Book of Abstracts: TPU Publishing House. – 2020. – V. 1: Physics. – P. 128-130, Tomsk. (21-24 April, 2020).

9. Меркулова М. А., Громова О. В., Бехтерева Е. С., Уленеков О. Н. Анализ спектра высокого разрешения молекул в дублетных электронных состояниях: фундаментальная полоса *v*<sub>3</sub> диоксида хлора (<sup>16</sup>O<sup>35</sup>Cl<sup>16</sup>O) в основном электронном состоянии / Меркулова М. А., Громова О. В., Бехтерева Е. С., Улеников О. Н. // Современные технологии, экономика и образование: сборник материалов II Всероссийской научно-методической конференции, ТПУ, Томск, Россия. – Сборник материалов: Изд-во ТПУ. – 2020. – С. 216-217, Томск. (2-4 сентября, 2020). = Merkulova M. А., Gromova O. V., Bekhtereva E. S., Ulenikov O. N. Analysis of high resolution spectra of molecules in nonsinglet electronic states: the v<sub>3</sub> fundamental of chlorine dioxide (<sup>16</sup>O<sup>35</sup>Cl<sup>16</sup>O) electronic ground state / Merkulova M. A., Gromova O. V., Bekhtereva E. S., Ulenikov O. N. // Modern technologies, economics and education: book of abstracts of II All-Russian scientific and methodological conference, TPU, Russia. – Book of Abstracts: TPU Publishing House. – 2020. – P. 216-217, Tomsk. (2-4 September, 2020).

10. Merkulova M., Boudon V., Manceron L. Analysis of high-resolution spectra of SiF<sub>4</sub> combination bands // New developments in high resolution molecular spectroscopy and outreach to modern applications: international workshop, Les Houches school of physics, Haute Savoie, France. – Book of Abstracts. – 2022. – P. 51-52, Les Houches. (29 May – 3 June, 2022).

11. Merkulova M., Boudon V., Manceron L. High-resolution spectroscopy and analysis of combination bands of SiF<sub>4</sub> // Edifices Moléculaires Isolés et Enironnés : international workshop, CNRS, Dunkerque, France. – Résumés. – 2022. – P. 76, Dunkerque. (14-17 Juin, 2022).

12. Merkulova M., Boudon V., Manceron L. High-resolution spectroscopy and analysis of combination bands of SiF<sub>4</sub> //  $15^{th}$  ASA Conference (united with  $16^{th}$  HITRAN Conference): international conference, URCA, Reims, France. – Book of Abstracts. – 2022. – P. 26, Reims. (24-26 August, 2022).

13. Merkulova M. Analysis of high-resolution spectra of SiF<sub>4</sub> combination bands / Merkulova M.,
Boudon V., Manceron L. // High Resolution Molecular Spectroscopy: book of abstracts of the 28<sup>th</sup> international colloquium, UBFC, Dijon, France. – Book of abstracts. – 2023. – P. 130, Dijon. (28 August – 1 september, 2023).

14. Merkulova M., Boudon V., Manceron L. New high-resolution combination bands of SiF<sub>4</sub>. Experiment and simulation // International symposium on molecular spectroscopy: book of abstracts of the 77<sup>th</sup> international symposium, UIUC, Urbana-Champaign, USA. – 2024. – P7564, Urbana-Champaign. (17-21 June, 2024).

## **Bibliography**

1. Макушкин Ю. С., Улеников О. Н., Чеглоков А. Е., Смирнов В. С. Симметрия и ее применения к задачам колебательно-вращательной спектроскопии молекул : в 2 Томах. Т. 2. — Изд-во Том. ун-та. — Томск, 1990. — 224 с.

2. Eckart C. Some Studies Concerning Rotating Axes and Polyatomic Molecules // Physical Review. — 1935. — Vol. 47. — No. 7. — P. 552-558.

3. Makushkin Yu. S., Ulenikov O. N. On the transformation of the complete electron-nuclear Hamiltonian of a polyatomic molecule to the intramolecular coordinates // Journal of Molecular Spectroscopy. — 1977. — Vol. 68. — No. 1. — P. 1-20.

4. Howard B. J., Moss R. E. The molecular hamiltonian: I. Non-linear molecules // Molecular Physics. — 1970. — Vol. 19. — No. 4. — P. 433-450.

5. Ландау Л. Д., Лифшиц Е. М. Квантовая механика (нерелятивистская теория) : в 10 Т. Т. III. — 4-е изд., испр. — М.: Наука, 1989. — 768 с.

6. Киселев А. А., Ляпцев А. В. Квантовомеханическая теория возмущений (диаграммный метод): Учебное пособие. — ЛГУ, 1989. — 357 с.

7. Zamarbide G., Estrada M., Zamora M., Torday L., Enriz R., Tomas-Vert F., Csizmadia I. An ab initio conformational study on captopril // Journal of Molecular Structure: THEOCHEM. — 2003. — Vol. 666. — P. 599-608.

8. Bykov A. D., Makushkin Yu. S., Ulenikov O. N. On the displacements of centres of vibrationrotation lines under isotope substitution in polyatomic molecules // Molecular Physics. — 1984. — Vol. 51. — No. 4. — P. 907-918.

9. Nielsen H. H. The Vibration-Rotation Energies of Molecules // Reviews of Modern Physics. — 1951. — Vol. 23. — No. 2. — P. 90-136.

10. Ulenikov O. N., Onopenko G. A., Bekhtereva E. S., Petrova T. M., Solodov A. M., Solodov A. A. High resolution study of the  $v_5 + v_{12}$  band of  $C_2H_4$  // Molecular Physics. — 2010. — Vol. 108. — No. 5. — P. 637-647.

11. Hecht K. T. The vibration-rotation energies of tetrahedral XY<sub>4</sub> molecules: Part I. Theory of spherical top molecules // Journal of Molecular Spectroscopy. — 1961. — Vol. 5. — No. 1. — P. 355-389.

12. Hecht K. T. Vibration-rotation energies of tetrahedral XY<sub>4</sub> molecules: Part II. The fundamental v<sub>3</sub> of CH<sub>4</sub> // Journal of Molecular Spectroscopy. — 1961. — Vol. 5. — No. 1. — P. 390-404.

13. Жилинский Б. И., Перевалов В. И., Тютерев В. Г. Метод неприводимых тензорных операторов в теории спектров молекул. — Новосибирск: Наука. — Новосибирск, 1987. — 233 с.

14. Suhonen J. Tensor Operators and the Wigner-Eckart Theorem // From Nucleons to Nucleus:
Concepts of Microscopic Nuclear Theory/ ed. J. Suhonen. — Berlin, Heidelberg: Springer, 2007. —
P. 23-38.

15. Распопова Н. И. Теоретическое исследование спектров молекул типа сферического волчка на основе формализма неприводимых тензорных операторов / Н. И. Распопова. — Томск: НИ ТПУ, 2018. — 162 с.

16. Kostiuk T., Romani P., Espenak F., Livengood T.A., Goldstein J. J. Temperature and abundances in the Jovian auroral stratosphere: 2. Ethylene as a probe of the microbar region // Journal of Geophysical Research: Planets. — 1993. — Vol. 98. — No. E10. — P. 18823-18830.

17. Bézard B., Moses J. I., Lacy J., Greathouse T., Richter M., Griffith C. Detection of Ethylene (C<sub>2</sub>H<sub>4</sub>) on Jupiter and Saturn in Non-Auroral Regions. — 2001. — Vol. 33. — P. 22.07.

18. Coustenis A., Achterberg R. K., Conrath B. J., Jennings D. E., Marten A., Gautier D., Nixon C. A., Flasar F. M., Teanby N. A., Bézard B., Samuelson R. E., Carlson R. C., Lellouch E., Bjoraker G. L., Romani P. N., Taylor F. W., Irwin P. G. J., Fouchet T., Hubert A., Orton G. S., Kunde V. G., Vinatier S., Mondellini J., Abbas M. M., Courtin R. The composition of Titan's stratosphere from Cassini / CIRS mid-infrared spectra // Icarus. — 2007. — Vol. 189. — No. 1. — P. 35-62.

19. Vervack R. J., Sandel B. R., Strobel D. F. New perspectives on Titan's upper atmosphere from a reanalysis of the Voyager 1 UVS solar occultations // Icarus. — 2004. — Vol. 170. — No. 1. — P. 91-112.

20. Abeles F. B., Heggestad H. E. Ethylene: An Urban Air Pollutant // Journal of the Air Pollution Control Association. — 1973. — Vol. 23. — No. 6. — P. 517-521.

21. Barry C. S., Giovannoni J. J. Ethylene and Fruit Ripening // Journal of Plant Growth Regulation. — 2007. — Vol. 26. — No. 2. — P. 143.

22. Lin Z., Zhong S., Grierson D. Recent advances in ethylene research // Journal of Experimental Botany. — 2009. — Vol. 60. — No. 12. — P. 3311-3336.

23. Flaud J.-M., Lafferty W. J., Sams R., Malathy Devi V. High resolution analysis of the ethylene1-13C spectrum in the 8.4–14.3-μm region // Journal of Molecular Spectroscopy. — 2010. — Vol. 259.
— No. 1. — P. 39-45.

24. Ben Hassen A., Kwabia Tchana F., Flaud J.-M., Lafferty W. J., Landsheere X., Aroui H. Absolute line intensities for ethylene from 1800 to 2350 cm<sup>-1</sup> // Journal of Molecular Spectroscopy. — 2012. — Vol. 282. — P. 30-33.

25. Lebron G. B., Tan T. L. Integrated Band Intensities of Ethylene ( $^{12}C_2H_4$ ) by Fourier Transform Infrared Spectroscopy // International Journal of Spectroscopy. — 2012. — Vol. 2012. — P. 5. 26. Tan T. L., Gabona M. G. Analysis of the Coriolis interaction between  $v_6$  and  $v_4$  bands of ethylene-*cis*-*d*<sub>2</sub>(*cis*-C<sub>2</sub>H<sub>2</sub>D<sub>2</sub>) by high-resolution FTIR spectroscopy // Journal of Molecular Spectroscopy. — 2012. — Vol. 272. — No. 1. — P. 51-54.

27. Tan T. L., Lebron G. B. The  $v_{12}$  band of ethylene-1-<sup>13</sup>C (<sup>13</sup>C<sup>12</sup>CH<sub>4</sub>) by high-resolution FTIR spectroscopy // Journal of Molecular Spectroscopy. — 2010. — Vol. 261. — No. 1. — P. 63-67.

28. Tan T. L., Lebron G. B. High-resolution infrared analysis of the  $v_7$  band of *cis*-ethylene- $d_2$  (*cis*- $C_2H_2D_2$ ) // Journal of Molecular Spectroscopy. — 2010. — Vol. 261. — No. 2. — P. 87-90.

29. Ulenikov O. N., Bekhtereva E. S., Gromova O. V., Kakaulin A. N., Sydow C., Bauerecker S. Extended analysis of the  $v_{12}$  band of  ${}^{12}C_2H_4$  for astrophysical applications: Line strengths, widths, and shifts // Journal of Quantitative Spectroscopy and Radiative Transfer. — 2019. — Vol. 233. — P. 57-66.

30. Conn G. K. T., Twigg G. H., Rideal E. K. Infra-red analysis applied to the exchange reaction between ethylene and deuteroethylene // Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences. — 1997. — Vol. 171. — No. 944. — P. 70-78.

31. Watson J. K. G. Determination of Centrifugal Distortion Coefficients of Asymmetric-Top Molecules // The Journal of Chemical Physics. — 1967. — Vol. 46. — No. 5. — P. 1935-1949.

32. Ulenikov O. N., Gromova O. V., Bekhtereva E. S., Fomchenko A. L., Sydow C., Bauerecker S. First high resolution analysis of the  $3v_1$  band of  ${}^{34}S^{16}O_2$  // Journal of Molecular Spectroscopy. — 2016. — Vol. 319. — P. 50-54.

33. Ulenikov O. N., Bekhtereva E. S., Gromova O. V., Buttersack T., Sydow C., Bauerecker S. High resolution FTIR study of  ${}^{34}S^{16}O_2$ : The bands  $2v_1$ ,  $v_1 + v_3$ ,  $v_1 + v_2 + v_3 - v_2$  and  $v_1 + v_2 + v_3 //$  Journal of Quantitative Spectroscopy and Radiative Transfer. — 2016. — Vol. 169. — P. 49-57.

34. Ulenikov O. N., Gromova O. V., Bekhtereva E. S., Fomchenko A. L., Zhang F., Sydow C., Maul C., Bauerecker S. High resolution analysis of  $C_2D_4$  in the region of 600–1150 cm<sup>-1</sup> // Journal of Quantitative Spectroscopy and Radiative Transfer. — 2016. — Vol. 182. — P. 55-70.

35. Solomon S. The mystery of the Antarctic Ozone "Hole" // Reviews of Geophysics. — 1988.
— Vol. 26. — No. 1. — P. 131-148.

36. Vaida V., Solomon S., Richard E.C., Rühl E., Jefferson A. Photoisomerization of OCIO: a possible mechanism for polar ozone depletion // Nature. — 1989. — Vol. 342. — No. 6248. — P. 405-408.

37. Canty T., Rivière E. D., Salawitch R. J., Berthet G., Renard J.-B., Pfeilsticker K., Dorf M., Butz A., Bösch H., Stimpfle R. M., Wilmouth D. M., Richard E. C., Fahey D. W., Popp P. J., Schoeberl M. R., Lait L. R., Bui T. P. Nighttime OClO in the winter Arctic vortex // Journal of Geophysical Research: Atmospheres. — 2005. — Vol. 110. — No. D1. — P. 2004JD005035. 38. Curl R. F., Heidelberg R. F., Kinsey J. L. Microwave Spectrum of Chlorine Dioxide. II. Analysis of Hyperfine Structure and the Spectrum of <sup>35</sup>Cl<sup>16</sup>O<sup>18</sup>O // Physical Review. — 1962. — Vol. 125. — No. 6. — P. 1993-1999.

39. Curl R. F. Microwave Spectrum of Chlorine Dioxide. III. Interpretation of the Hyperfine Coupling Constants Obtained in Terms of the Electronic Structure // The Journal of Chemical Physics. — 1962. — Vol. 37. — No. 4. — P. 779-784.

40. Tolles W. M., Kinsey J. L., Curl R. F., Heidelberg R. F. Microwave Spectrum of Chlorine Dioxide. V. The Stark and Zeeman Effects // The Journal of Chemical Physics. — 1962. — Vol. 37. — No. 5. — P. 927-930.

41. Brand J. C. D., Redding R. W., Richardson A. W. The 4750-Å band system of chlorine dioxide.
Rotational analysis, force field and intensity calculations // Journal of Molecular Spectroscopy. — 1970.
— Vol. 34. — No. 3. — P. 399-414.

42. Curl R. F., Abe K., Bissinger J., Bennett C., Tittel F. K. Fluorescence spectrum of chlorine dioxide induced by the 4765 Å argon-ion laser line // Journal of Molecular Spectroscopy. — 1973. — Vol. 48. — No. 1. — P. 72-85.

43. Hamada Y., Merer A. J., Michielsen S., Rice S. A. Rotational analysis of bands at the longwavelength end of the  $\tilde{A}^2A_2$ - $\tilde{X}^2B_1$  electronic transition of ClO<sub>2</sub> // Journal of Molecular Spectroscopy. — 1981. — Vol. 86. — No. 2. — P. 499-525.

44. Richardson A. W. Band contour analysis of the  $v_3$  band of chlorine dioxide // Journal of Molecular Spectroscopy. — 1970. — Vol. 35. — No. 1. — P. 43-48.

45. Benner D. C., Rinsland C. P. Identification and intensities of the "forbidden"  $3v_2$  band of  ${}^{12}C^{16}O_2$  // Journal of Molecular Spectroscopy. — 1985. — Vol. 112. — No. 1. — P. 18-25.

46. Hamada Y., Tsuboi M. High Resolution Infrared Spectrum of Chlorine Dioxide: The  $v_2$  Fundamental Band // Bulletin of the Chemical Society of Japan. — 1979. — Vol. 52. — No. 2. — P. 383-385.

47. Hamada Y., Tsuboi M. High-resolution infrared spectrum of chlorine dioxide: The  $v_1$  fundamental band // Journal of Molecular Spectroscopy. — 1980. — Vol. 83. — No. 2. — P. 373-390.

48. Tanaka K., Tanaka T.  $CO_2$  and  $N_2O$  laser Stark spectroscopy of the  $v_1$  band of the  $ClO_2$  radical // Journal of Molecular Spectroscopy. — 1983. — Vol. 98. — No. 2. — P. 425-452.

49. Ortigoso J., Escribano R., Burkholder J. B., Howard C. J., Lafferty W. J. High-resolution infrared spectrum of the  $v_1$  band of OClO // Journal of Molecular Spectroscopy. — 1991. — Vol. 148. — No. 2. — P. 346-370.

50. Ortigoso J., Escribano R., Burkholder J. B., Lafferty W. J. Intensities and dipole moment derivatives of the fundamental bands of  ${}^{35}$ ClO<sub>2</sub> and an intensity analysis of the v<sub>1</sub> band // Journal of Molecular Spectroscopy. — 1992. — Vol. 156. — No. 1. — P. 89-97. 51. Ortigoso J., Escribano R., Burkholder J. B., Lafferty W. J. Infrared Spectrum of OCIO in the 2000 cm<sup>-1</sup> Region: The  $2v_1$  and  $v_1 + v_3$  Bands // Journal of Molecular Spectroscopy. — 1993. — Vol. 158. — No. 2. — P. 347-356.

52. Ulenikov O. N., Bekhtereva E. S., Gromova O. V., Quack M., Berezkin K. B., Sydow C., Bauerecker S. High resolution ro-vibrational analysis of molecules in doublet electronic states: the  $v_1$ fundamental of chlorine dioxide ( ${}^{16}O^{35}Cl^{16}O$ ) in the X<sup>2</sup>B<sub>1</sub> electronic ground state // Physical Chemistry Chemical Physics. — 2021. — Vol. 23. — No. 8. — P. 4580-4596.

53. Quack M. Fundamental Symmetries and Symmetry Violations from High Resolution Spectroscopy // Handbook of High-resolution Spectroscopy / eds. M. Quack, F. Merkt. — Wiley, 2011.

54. Khalil M. a. K. Non-CO<sub>2</sub> greenhouse gases in the atmosphere // Annual Review of Environment and Resources. — 1999. — Vol. 24. — P. 645-661.

55. Guzmán Marmolejo A., Segura A. Methane in the Solar System // Boletín de la Sociedad Geológica Mexicana. — 2015. — Vol. 67. — No. 3. — P. 377-385.

56. Coradini A., Filacchione G., Capaccioni F., Cerroni P., Adriani A., Brown R. H., Langevin Y., Gondet B. CASSINI/VIMS-V at Jupiter: Radiometric calibration test and data results // Planetary and Space Science. — 2004. — Vol. 52. — No. 7. — P. 661-670.

57. Formisano V., Atreya S., Encrenaz T., Ignatiev N., Giuranna M. Detection of Methane in the Atmosphere of Mars // Science. — 2004. — Vol. 306. — No. 5702. — P. 1758-1761.

58. Irwin P. G. J., Sihra K., Bowles N., Taylor F. W., Calcutt S. B. Methane absorption in the atmosphere of Jupiter from 1800 to 9500 cm<sup>-1</sup> and implications for vertical cloud structure // Icarus. — 2005. — Vol. 176. — No. 2. — P. 255-271.

59. Negrão A., Coustenis A., Lellouch E., Maillard J.-P., Rannou P., Schmitt B., McKay C. P., Boudon V. Titan's surface albedo variations over a Titan season from near-infrared CFHT/FTS spectra: Surfaces and Atmospheres of the Outer Planets, their Satellites and Ring Systems from Cassini-Huygens Data // Planetary and Space Science. — 2006. — Vol. 54. — No. 12. — P. 1225-1246.

60. Hand E. NASA rover yet to find methane on Mars // Nature. — 2012. — Vol. 452. — P. 296-297.

61. Showman A. P. A whiff of methane // Nature. — 2008. — Vol. 452. — No. 7185. — P. 296-297.

62. Griffith C. A., Penteado P., Rannou P., Brown R., Boudon V., Baines K. H., Clark R., Drossart P., Buratti B., Nicholson P., McKay C. P., Coustenis A., Negrão A., Jaumann R. Evidence for a Polar Ethane Cloud on Titan // Science. — 2006. — Vol. 313. — No. 5793. — P. 1620-1622.

63. Coustenis A., Negrão A., Salama A., Schulz B., Lellouch E., Rannou P., Drossart P., Encrenaz T., Schmitt B., Boudon V., Nikitin A. Titan's 3-micron spectral region from ISO high-resolution spectroscopy // Icarus. — 2006. — Vol. 180. — No. 1. — P. 176-185.

64. Fowler M. M., Barr S. A long-range atmospheric tracer field test // Atmospheric Environment (1967). — 1983. — Vol. 17. — No. 9. — P. 1677-1685.

65. Zare R. N., Harter W. G. Angular Momentum: Understanding Spatial Aspects in Chemistry and Physics // Physics Today. — 1989. — Vol. 42. — No. 12. — P. 68-70.

66. Pauling L. The nature of the chemical bond. II. The one-electron bond and the tree-electron bond // ACS Publications. — 1931. — Vol. 53. — No. 9. — P. 3225-3237.

67. Quack M. Quantitative comparison between detailed (state selected) relative rate data and averaged (thermal) absolute rate data for complex forming reactions // ACS Publications. — 1979. — Vol. 83. — No. 1. — P. 150-158.

68. Marquardt R., Quack M. Global analytical potential hypersurfaces for large amplitude nuclear motion and reactions in methane. I. Formulation of the potentials and adjustment of parameters to ab initio data and experimental constraints // The Journal of Chemical Physics. — 1998. — Vol. 109. — No. 24. — P. 10628-10643.

69. Schwenke D. W. Towards accurate ab initio predictions of the vibrational spectrum of methane // Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. — 2002. — Vol. 58. — No. 4. — P. 849-861.

70. Marquardt R., Quack M. Global Analytical Potential Hypersurface for Large Amplitude Nuclear Motion and Reactions in Methane II. Characteristic Properties of the Potential and Comparison to Other Potentials and Experimental Information // The Journal of Physical Chemistry A. — 2004. — Vol. 108. — No. 15. — P. 3166-3181.

71. Camden J. P., Bechtel H. A., Ankeny Brown D. J., Zare R. N. Comparing reactions of H and Cl with C–H stretch-excited CHD<sub>3</sub> // The Journal of Chemical Physics. — 2006. — Vol. 124. — No. 3. — P. 034311.

72. Hu W., Lendvay G., Troya D., Schatz G. C., Camden J. P., Bechtel H. A., Brown D. J. A., Martin M. R., Zare R. N. H + CD<sub>4</sub> Abstraction Reaction Dynamics: Product Energy Partitioning // The Journal of Physical Chemistry A. — 2006. — Vol. 110. — No. 9. — P. 3017-3027.

73. Camden J. P., Bechtel H. A., Ankeny Brown D. J., Martin M. R., Zare R. N., Hu W., Lendvay G., Troya D., Schatz G. C. A Reinterpretation of the Mechanism of the Simplest Reaction at an sp<sub>3</sub>-Hybridized Carbon Atom:  $H + CD_4 \rightarrow CD_3 + HD$  // Journal of the American Chemical Society. — 2005. — Vol. 127. — No. 34. — P. 11898-11899.

74. Loëte M., Hilico J. C., Valentin A., Chazelas J., Henry L. Analysis of the  $v_2$  and  $v_4$  infrared bands of CD<sub>4</sub> // Journal of Molecular Spectroscopy. — 1983. — Vol. 99. — No. 1. — P. 63-86.

75. Touzani L., Loëte M., Lavorel B., Millot G. Measurement and Analysis of the Raman Intensities of <sup>12</sup>CD<sub>4</sub> // Journal of Molecular Spectroscopy. — 1995. — Vol. 171. — No. 1. — P. 58-85. 76. Boudon V., Champion J.-P., Gabard T., Loëte M., Michelot F., Pierre G., Rotger M., Wenger Ch., Rey M. Symmetry-adapted tensorial formalism to model rovibrational and rovibronic spectra of molecules pertaining to various point groups: Special Issue Dedicated to Dr. Jon T. Hougen on the Occasion of His 68<sup>th</sup> Birthday // Journal of Molecular Spectroscopy. — 2004. — Vol. 228. — No. 2. — P. 620-634.

77. Cheglokov A., Ulenikov O., Zhilyakov A., Cherepanov V., Makushkin Y., Malikova A. On the determination of spectroscopic constants as functions of intramolecular parameters // Journal of Physics B: Atomic, Molecular and Optical Physics. — 1989. — Vol. 22. — No. 7. — P. 997.

78. Flaud J. M., Camy-Peyret C. Vibration-rotation intensities in H<sub>2</sub>O-type molecules application to the  $2v_2$ ,  $v_1$ , and  $v_3$  bands of H<sub>2</sub><sup>16</sup>O // Journal of Molecular Spectroscopy. — 1975. — Vol. 55. — No. 1. — P. 278-310.

79. Herzberg G. Molecular spectra and molecular structure. Vol. 2: Infrared and Raman spectra of polyatomic molecules : in 2 Vol. Vol. 2. Molecular spectra and molecular structure. Vol.2. — Van Nostrand. — New York, 1956. — 644 p.

80. McDowell R. S. Rotational partition functions for spherical-top molecules // Journal of Quantitative Spectroscopy and Radiative Transfer. — 1987. — Vol. 38. — No. 5. — P. 337-346.

81. Saveliev V., Ulenikov O. Calculation of vibration-rotation line intensities of polyatomic molecules based on the formalism of irreducible tensorial sets // Journal of Physics B: Atomic and Molecular Physics. — 1987. — Vol. 20. — No. 1. — P. 67.

Fano U., Racah G. Irreducible Tensorial Sets. — First Edition. — New York: Academic Press,
 1959. — 171 p.

83. Wigner E.P. Quantum theory of angular momentum. — New York: Academic Press, 1965.

84. Bauerecker S., Sydow C., Maul C., Gromova O. V., Bekhtereva E. S., Nikolaeva N. I., Ulenikov O. N. Expanded ro–vibrational analysis of the dyad region of CD<sub>4</sub>: Line positions and energy levels // Journal of Quantitative Spectroscopy and Radiative Transfer. — 2022. — Vol. 288. — P. 108275.

85. Ulenikov O. N., Gromova O. V., Bekhtereva E. S., Raspopova N. I., Sennikov P. G., Koshelev M. A., Velmuzhova I. A., Velmuzhov A. P., Bulanov A. D. High resolution study of <sup>M</sup>GeH<sub>4</sub> (M = 76, 74) in the dyad region // Journal of Quantitative Spectroscopy and Radiative Transfer. — 2014. — Vol. 144. — P. 11-26.

86. Wenger Ch., Boudon V., Rotger M., Sanzharov M., Champion J.-P. XTDS and SPVIEW: Graphical tools for the analysis and simulation of high-resolution molecular spectra: Special issue dedicated to the pioneering work of Drs. Edward A. Cohen and Herbert M. Pickett on spectroscopy relevant to the Earth's atmosphere and astrophysics // Journal of Molecular Spectroscopy. — 2008. — Vol. 251. — No. 1. — P. 102-113. 87. Wenger Ch., Champion J. P. Spherical top data system (STDS) software for the simulation of spherical top spectra: Atmospheric Spectroscopy Applications 96 // Journal of Quantitative Spectroscopy and Radiative Transfer. — 1998. — Vol. 59. — No. 3. — P. 471-480.

88. Tran H., Ngo N. H., Hartmann J.-M. Efficient computation of some speed-dependent isolated line profiles // Journal of Quantitative Spectroscopy and Radiative Transfer. — 2013. — Vol. 129. — P. 199-203.

89. Tran H., Ngo N. H., Hartmann J.-M., Gamache R. R., Mondelain D., Kassi S., Campargue A., Gianfrani L., Castrillo A., Fasci E., Rohart F. Velocity effects on the shape of pure H<sub>2</sub>O isolated lines: Complementary tests of the partially correlated speed-dependent Keilson-Storer model // The Journal of Chemical Physics. — 2013. — Vol. 138. — No. 3. — P. 034302.

90. Rana T., Chandrashekhar M. V. S., Daniels K., Sudarshan T. SiC Homoepitaxy, Etching and Graphene Epitaxial Growth on SiC Substrates Using a Novel Fluorinated Si Precursor Gas (SiF<sub>4</sub>) // Journal of Electronic Materials. — 2016. — Vol. 45. — No. 4. — P. 2019-2024.

91. Taquet N., Meza Hernández I., Stremme W., Bezanilla A., Grutter M., Campion R., Palm M.,
Boulesteix T. Continuous measurements of SiF<sub>4</sub> and SO<sub>2</sub> by thermal emission spectroscopy: Insight from a 6-month survey at the Popocatépetl volcano // Journal of Volcanology and Geothermal Research.
2017. — Vol. 341. — P. 255-268.

92. Ignatov S. K., Sennikov P. G., Chuprov L. A., Razuvaev A. G. Thermodynamic and kinetic parameters of elementary steps in gas-phase hydrolysis of SiF<sub>4</sub>. Quantum-chemical and FTIR spectroscopic studies // Russian Chemical Bulletin. — 2003. — Vol. 52. — No. 4. — P. 837-845.

93. Krueger A., Stremme W., Harig R., Grutter M. Volcanic SO<sub>2</sub> and SiF<sub>4</sub> visualization using 2-D thermal emission spectroscopy; Part 2: Wind propagation and emission rates // Atmospheric Measurement Techniques. — 2013. — Vol. 6. — No. 1. — P. 47-61.

94. Stremme W., Krueger A., Harig R., Grutter M. Volcanic SO<sub>2</sub> and SiF<sub>4</sub> visualization using 2-D thermal emission spectroscopy; Part 1: Slant-columns and their ratios // Atmospheric Measurement Techniques. — 2012. — Vol. 5. — No. 2. — P. 275-288.

95. Etim E. E., Olagboye S. A., Godwin O. E., Atiatah I. M. Quantum Chemical studies on Silicon tetrafluoride and its protonated analogues // International Journal of Modern Chemistry — 2020. — Vol. 12. — No. 1. — P. 26-45.

96. Shimanouchi T., Nakagawa I., Hiraishi J., Ishii M. Force constants of CF<sub>4</sub>, SiF<sub>4</sub>, BF<sub>3</sub>, CH<sub>4</sub>, SiH<sub>4</sub>, NH<sub>3</sub>, and PH<sub>3</sub> // Journal of Molecular Spectroscopy. — 1966. — Vol. 19. — No. 1. — P. 78-107.

97. Hagen K., Hedberg K. Interatomic distances and rms amplitudes of vibration of gaseous SiF<sub>4</sub> from electron diffraction // The Journal of Chemical Physics. — 2003. — Vol. 59. — No. 3. — P. 1549-1550.

98. Königer F., Müller A. Molecular constants of SiF<sub>4</sub>, GeF<sub>4</sub>, and RuO<sub>4</sub> // Journal of Molecular Spectroscopy. — 1977. — Vol. 65. — No. 3. — P. 339-344.

99. Patterson C. W., McDowell R. S., Nereson N. G., Krohn B. J., Wells J. S., Petersen F. R. Tunable laser diode study of the  $v_3$  band of SiF<sub>4</sub> near 9.7  $\mu$ m // Journal of Molecular Spectroscopy. — 1982. — Vol. 91. — No. 2. — P. 416-423.

100. Patterson C. W., Pine A. S. Doppler-limited spectrum and analysis of the  $3v_3$  manifold of SiF<sub>4</sub> // Journal of Molecular Spectroscopy. — 1982. — Vol. 96. — No. 2. — P. 404-421.

101. Takami M., Kuze H. Infrared–microwave double resonance spectroscopy of the SiF<sub>4</sub> v<sub>3</sub> fundamental using a tunable diode laser // The Journal of Chemical Physics. — 1983. — Vol. 78. — No. 5.
— P. 2204-2209.

102. Halonen L. Stretching vibrational overtone and combination states in silicon tetrafluoride // Journal of Molecular Spectroscopy. — 1986. — Vol. 120. — No. 1. — P. 175-184.

103. Jörissen L., Kreiner W.A., Chen Y.-T., Oka T. Observation of ground state rotational transitions in silicon tetrafluoride // Journal of Molecular Spectroscopy. — 1986. — Vol. 120. — No. 1. — P. 233-235.

104. Breidung J., Demaison J., Margulès L., Thiel W. Equilibrium structure of SiF<sub>4</sub> // Chemical Physics Letters. — 1999. — Vol. 313. — No. 3. — P. 713-717.

105. Boudon V., Champion J.-P., Gabard T., Loëte M., Rotger M., Wenger C. Spherical Top Theory and Molecular Spectra // Handbook of High-resolution Spectroscopy. — John Wiley & Sons, Ltd, 2011.

106. Boudon V., Manceron L., Richard C. High-resolution spectroscopy and analysis of the  $v_3$ ,  $v_4$  and  $2v_4$  bands of SiF<sub>4</sub> in natural isotopic abundance // Journal of Quantitative Spectroscopy and Radiative Transfer. — 2020. — Vol. 253. — P. 107114.

107. Boudon V., Richard C., Manceron L. High-Resolution spectroscopy and analysis of the fundamental modes of <sup>28</sup>SiF<sub>4</sub>. Accurate experimental determination of the Si–F bond length // Journal of Molecular Spectroscopy. — 2022. — Vol. 383. — P. 111549.

108. Herranz J. The rotational structure of the fundamental infrared bands of methane-type molecules // Journal of Molecular Spectroscopy. — 1961. — Vol. 6. — P. 343-359.

109. Robiette A. G., Gray D. L., Birss F. W. The effective vibration-rotation hamiltonian for triplydegenerate fundamentals of tetrahedral XY<sub>4</sub> molecules // Molecular Physics. — 1976. — Vol. 32. — No. 6. — P. 1591-1607.

110. Richard C., Ben Fathallah O., Hardy P., Kamel R., Merkulova M., Rotger M., Ulenikov O. N., Boudon V. TFSiCaSDa data base : Calculated spectroscopic databases. — URL: https://vamdc.icb.cnrs.fr/PHP/SiF4.php (дата обращения: 28.08.2024).

111. Treffers R. R., Larson H. P., Fink U., Gautier T. N. Upper limits to trace constituents in Jupiter's atmosphere from an analysis of its 5-μm spectrum // Icarus. — 1978. — Vol. 34. — No. 2. — P. 331-343.

112. Larson H. P., Fink U., Smith H. A., Davis D. S. The middle-infrared spectrum of Saturn -Evidence for phosphine and upper limits to other trace atmospheric constituents // The Astrophysical Journal. — 1980. — Vol. 240. — P. 327.

113. Fegley B., Lodders K. Chemical Models of the Deep Atmospheres of Jupiter and Saturn // Icarus. — 1994. — Vol. 110. — No. 1. — P. 117-154.

114. Cochran A. L. Solar System Science Enabled with the Next Generation Space Telescope:
ASP Conference Series // Science With The NGST (Next Generation of Space Telescope). — 1998. — Vol. 133.
— P. 188.

115. Goldhaber D. M., Betz A. L. Silane in IRC +10216. // The Astrophysical Journal. — 1984. — Vol. 279. — P. L55-L58.

116. Monnier J. D., Danchi W. C., Hale D. S., Tuthill P. G., Townes C. H. Mid-Infrared Interferometry on Spectral Lines. III. Ammonia and Silane around IRC +10216 and VY Canis Majoris // The Astrophysical Journal. — 2000. — Vol. 543. — No. 2. — P. 868.

117. Allen W. D., Schaefer H. F. Geometrical structures, force constants, and vibrational spectra of SiH, SiH<sub>2</sub>, SiH<sub>3</sub>, and SiH<sub>4</sub> // Chemical Physics. — 1986. — Vol. 108. — No. 2. — P. 243-274.

118. Chuprov L. A., Sennikov P. G., Tokhadze K. G., Ignatov S. K., Schrems O. High-resolution Fourier-transform IR spectroscopic determination of impurities in silicon tetrafluoride and silane prepared from it // Inorganic Materials. — 2006. — Vol. 42. — No. 8. — P. 924-931.

119. Bartlome R., Feltrin, A., Ballif, C. Infrared laser-based monitoring of the silane dissociation during deposition of silicon thin films // Applies Physics Letters. — 2009. — Vol. 94. — No. 20. — P. 201501.

120. Boutahar A., Touzani L., Loëte M., Millot G., Lavorel B. Raman Intensities of the  $v_1/v_3$  Dyad of <sup>28</sup>SiH<sub>4</sub> // Journal of Molecular Spectroscopy. — 1995. — Vol. 169. — No. 1. — P. 38-57.

121. Terki-Hassaïne M., Claveau Ch., Valentin A., Pierre G. Analysis of the Infrared Fourier Transform Spectrum of the Spectra of Silane in the Range 2930–3300 cm<sup>-1</sup> // Journal of Molecular Spectroscopy. — 1999. — Vol. 197. — No. 2. — P. 307-321.

122. van Helden J. H., Lopatik D., Nave A., Lang N., Davies P.B., Röpcke J. High resolution spectroscopy of silane with an external-cavity quantum cascade laser: Absolute line strengths of the  $v_3$  fundamental band at 4.6  $\mu$ m // Journal of Quantitative Spectroscopy and Radiative Transfer. — 2015. — Vol. 151. — P. 287-294.

123. Ulenikov O. N., Gromova O. V., Bekhtereva E.S., Raspopova N. I., Fomchenko A. L., Sydow C., Bauerecker S. High resolution study of strongly interacting  $v_3(F_2)/v_1(A_1)$  bands of <sup>M</sup>SiH<sub>4</sub> (M = 28,

29, 30) // Journal of Quantitative Spectroscopy and Radiative Transfer. — 2017. — Vol. 201. — P. 35-44.

124. Ulenikov O. N., Gromova O. V., Bekhtereva E. S., Raspopova N. I., Sklyarova E. A., Sydow C., Berezkin K., Maul C., Bauerecker S. Line strengths, widths and shifts analysis of the  $2v_2$ ,  $v_2 + v_4$  and  $2v_4$  bands in <sup>28</sup>SiH<sub>4</sub>, <sup>29</sup>SiH<sub>4</sub> and <sup>30</sup>SiH<sub>4</sub> // Journal of Quantitative Spectroscopy and Radiative Transfer. — 2021. — Vol. 270. — P. 107683.

125. Pierre G., Valentin A., Henry L. Étude par transformée de Fourier, du spectre, du silane dans la région de 1000 cm<sup>-1</sup>. Analyse de la diade  $v_2$  et  $v_4$  // Canadian Journal of Physics. — 1986. — Vol. 64. — No. 3. — P. 341-350.



Appendix A. Figure for Chapter 1

Figure A.1 – Vibrational levels of SiF<sub>4</sub> molecule.

The red solid line indicates the previously investigated bands; the blue solid line – the bands that are planned to be investigated in the future; the dashed blue line – the transitions that cannot be investigated in the spectra registered for this work due to their weak intensity; the pink solid line – the bands investigated in this work and the dashed pink line – the theoretically calculated bands for which the spectroscopic parameters were not varied.



Appendix B. Figures for Chapter 2



Figure B.2 – Theoretical and experiment spectra of the  $v_3 + v_4$  band. The centres of the four sub-levels are located within 2.06 cm<sup>-1</sup>.



Figure B.3 – Comparison of the theoretically calculated and experimental spectra of the  $v_2 + v_3$  band. The lower part shows a fragment of the *P*-branch.


Figure B.4 – Theoretical and experimental spectra of the  $v_1 + v_4$  band. The fragments show a part of the *R*-branch and the centre of the band belonging to the <sup>29</sup>SiF<sub>4</sub> isotopologue.





Figure B.6 - Fit residuals for line positions for certain combination bands of SiF<sub>4</sub>.

## Appendix C. Tables for Chapter 2

|                         |                                               | Transition,        | Transmittance, | Energy,   | Mean value,        | $\delta \cdot 10^{-4}$ , |
|-------------------------|-----------------------------------------------|--------------------|----------------|-----------|--------------------|--------------------------|
| $J \Lambda_a \Lambda_c$ | <b>J Λ</b> <sub>a</sub> <b>Λ</b> <sub>c</sub> | $\mathrm{cm}^{-1}$ | %              | $cm^{-1}$ | $\mathrm{cm}^{-1}$ | $cm^{-1}$                |
| 13 7 6                  | 12 6 7                                        | 3427.5131          | 43.3           | 3593.7163 | 3593.7164          | 4                        |
|                         | 14 8 7                                        | 3342.3511          | 51.4           | 3593.7165 |                    |                          |
| 14 7 7                  | 13 6 8                                        | 3428.8283          | 48.3           | 3612.0575 | 3612.0586          | 9                        |
|                         | 14 6 8                                        | 3410.4701          | 54.8           | 3612.0589 |                    |                          |
|                         | 15 8 8                                        | 3341.0911          | 54.1           | 3612.0579 |                    |                          |
| 15 7 8                  | 14 6 9                                        | 3430.1396          | 52.9           | 3631.7258 | 3631.7265          | 9                        |
|                         | 16 8 9                                        | 3339.8375          | 55.4           | 3631.7272 |                    |                          |
| 16 7 9                  | 16 6 10                                       | 3410.4049          | 68.0           | 3652.7289 | 3652.7287          | 3                        |
|                         | 16 8 8                                        | 3360.8389          | 59.5           | 3652.7287 |                    |                          |
|                         | 17 8 10                                       | 3338.5913          | 57.9           | 3652.7284 |                    |                          |
| 12 8 4                  | 11 7 5                                        | 3430.0677          | 48.7           | 3603.7548 | 3603.7547          | -2                       |
|                         | 12 9 3                                        | 3357.2948          | 80.3           | 3603.7547 |                    |                          |
|                         | 13 9 5                                        | 3340.3448          | 56.3           | 3603.7544 |                    |                          |
| 13 8 5                  | 12 7 6                                        | 3431.3909          | 53.5           | 3620.7491 | 3620.7490          | 1                        |
|                         | 14 9 6                                        | 3339.0774          | 61.3           | 3620.7489 |                    |                          |
| 14 8 6                  | 13 7 7                                        | 3432.7139          | 56.6           | 3639.0619 | 3639.0619          | 5                        |
|                         | 14 9 5                                        | 3357.3902          | 73.4           | 3639.0618 |                    |                          |
|                         | 15 9 7                                        | 3337.8139          | 62.1           | 3639.0619 |                    |                          |
| 10 9 1                  | 982                                           | 3431.3075          | 39.0           | 3604.4008 | 3604.4008          | -7                       |
|                         | 11 10 2                                       | 3339.6535          | 48.3           | 3604.4007 |                    |                          |
| 11 9 2                  | 10 8 3                                        | 3432.6323          | 41.5           | 3618.7562 | 3618.7558          | -11                      |
|                         | 11 10 1                                       | 3354.0082          | 82.6           | 3618.7555 |                    |                          |
|                         | 12 10 3                                       | 3338.3795          | 50.1           | 3618.7559 |                    |                          |
| 12 9 3                  | 11 8 4                                        | 3433.9584          | 44.6           | 3634.4227 | 3634.4227          | -7                       |
|                         | 12 10 2                                       | 3354.0464          | 80.5           | 3634.4227 |                    |                          |
|                         | 13 10 4                                       | 3337.1089          | 50.9           | 3634.4226 |                    |                          |
| 11 10 1                 | 10 9 2                                        | 3436.5359          | 50.8           | 3653.0268 | 3653.0268          | -2                       |
|                         | 11 9 2                                        | 3422.2062          | 79.6           | 3653.0271 |                    |                          |
|                         | 12 11 2                                       | 3335.1695          | 59.8           | 3653.0264 |                    |                          |

Table C.1 – *B*-type transitions corresponding to the  $v_5 + v_{12}$  band of the C<sub>2</sub>D<sub>4</sub> molecule (part).

|                         |                                               | Transition,        | Transmittance, | Energy,   | Mean value,        | $\delta \cdot 10^{-4}$ , |
|-------------------------|-----------------------------------------------|--------------------|----------------|-----------|--------------------|--------------------------|
| $J \Lambda_a \Lambda_c$ | <b>J Λ</b> <sub>a</sub> <b>Λ</b> <sub>c</sub> | $\mathrm{cm}^{-1}$ | %              | $cm^{-1}$ | $\mathrm{cm}^{-1}$ | $cm^{-1}$                |
| 12 9 3                  | 11 8 4                                        | 3250.3321          | 52.1           | 3450.7964 | 3450.7963          | 1                        |
|                         | 12 10 2                                       | 3170.4201          | 58.2           | 3450.7964 |                    |                          |
|                         | 13 10 4                                       | 3153.4827          | 63.3           | 3450.7963 |                    |                          |
| 13 9 4                  | 12 8 5                                        | 3251.5536          | 55.1           | 3467.6702 | 3467.6701          | -3                       |
|                         | 13 10 3                                       | 3170.3564          | 83.5           | 3467.6701 |                    |                          |
|                         | 14 10 5                                       | 3152.1095          | 66.2           | 3467.6697 |                    |                          |
| 14 9 5                  | 13 8 6                                        | 3252.7683          | 57.5           | 3485.8511 | 3485.8510          | -5                       |
|                         | 14 10 4                                       | 3170.1901          | 82.4           | 3485.8510 |                    |                          |
|                         | 15 10 6                                       | 3150.7324          | 67.9           | 3485.8510 |                    |                          |
| 11 10 1                 | 10 9 2                                        | 3253.1920          | 56.8           | 3469.6828 | 3469.6826          | 2                        |
|                         | 11 11 0                                       | 3167.4468          | 94.0           | 3469.6824 |                    |                          |
|                         | 12 11 2                                       | 3151.8256          | 68.9           | 3469.6825 |                    |                          |
| 12 10 2                 | 11 9 3                                        | 3254.4283          | 59.8           | 3485.2493 | 3485.2491          | 2                        |
|                         | 12 11 1                                       | 3167.3919          | 91.7           | 3485.2489 |                    |                          |
|                         | 13 11 3                                       | 3150.4645          | 71.5           | 3485.2490 |                    |                          |
| 13 10 3                 | 12 9 4                                        | 3255.6585          | 61.7           | 3502.1184 | 3502.1181          | -1                       |
|                         | 13 11 2                                       | 3167.3336          | 87.2           | 3502.1181 |                    |                          |
|                         | 14 11 4                                       | 3149.0986          | 73.6           | 3502.1182 |                    |                          |
| 13 11 2                 | 12 10 3                                       | 3259.7588          | 57.8           | 3540.1351 | 3540.1350          | -2                       |
|                         | 13 12 1                                       | 3164.3211          | 91.9           | 3540.1348 |                    |                          |
|                         | 14 12 3                                       | 3146.0957          | 68.7           | 3540.1349 |                    |                          |
| 14 11 3                 | 13 10 4                                       | 3260.9769          | 61.5           | 3558.2905 | 3558.2904          | -1                       |
|                         | 14 12 2                                       | 3164.2512          | 91.5           | 3558.2904 |                    |                          |
|                         | 15 12 4                                       | 3144.7188          | 72.2           | 3558.2902 |                    |                          |
| 15 11 4                 | 14 10 5                                       | 3262.1860          | 62.3           | 3577.7465 | 3577.7469          | -2                       |
|                         | 15 12 3                                       | 3164.1755          | 89.5           | 3577.7470 |                    |                          |
|                         | 16 12 5                                       | 3143.3354          | 74.5           | 3577.7469 |                    |                          |

Table C.2 – *B*-type transitions corresponding to the  $v_6 + v_{11}$  band of the C<sub>2</sub>D<sub>4</sub> molecule (part).

| Parameter                | $(v_5 = v_{12} = 1) C_2 D_4, cm^{-1}*$ | $(v_{\rm GS} = 1) C_2 D_4,  {\rm cm}^{-1} [34]$ |
|--------------------------|----------------------------------------|-------------------------------------------------|
| 1                        | 2                                      | 3                                               |
| E                        | 3386.14881(69)                         | -                                               |
| A                        | 2.46485(25)                            | 2.44158560                                      |
| В                        | 0.737601(80)                           | 0.73492916                                      |
| С                        | 0.562587(93)                           | 0.5635243                                       |
| $\Delta_K \cdot 10^4$    | 0.4648(28)                             | 0.208659                                        |
| $\Delta_{JK} \cdot 10^4$ | 0.0049(13)                             | 0.026825                                        |
| $\Delta J \cdot 10^4$    | 0.01156(86)                            | 0.0080394                                       |
| $H_K \cdot 10^8$         | 0.08354                                | 0.08354                                         |
| $H_{KJ} \cdot 10^8$      | -0.01244                               | -0.01244                                        |
| $H_{JK} \cdot 10^8$      | 0.004030                               | 0.004030                                        |
| $H_J \cdot 10^8$         | 0.105(23)                              | 0.00008339                                      |
| $L_{K} \cdot 10^{12}$    | -0.02792                               | -0.02792                                        |
| $L_{JK} \cdot 10^{12}$   | -0.0005615                             | -0.0005615                                      |
| $L_{JJK} \cdot 10^{11}$  | -0.87(11)                              | -                                               |
| $L_J \cdot 10^{12}$      | -0.00000430                            | -0.00000430                                     |
| $P_K \cdot 10^{11}$      | -0.2370(62)                            | -                                               |
| $P_{KKJ} \cdot 10^{11}$  | 0.2407(37)                             | -                                               |
| $\delta_K \cdot 10^4$    | 0.038845                               | 0.038845                                        |
| $\delta_J \cdot 10^4$    | 0.0064(16)                             | 0.00214769                                      |
| $h_{K} \cdot 10^{8}$     | 0.06732                                | 0.06732                                         |
| $h_{JK} \cdot 10^8$      | 0.002895                               | 0.002895                                        |
| $h_J \cdot 10^8$         | 0.00004948                             | 0.00004948                                      |
| $d_{ m rms}$             | 0.0013                                 |                                                 |
| Nenergy                  | 176                                    | ]                                               |

Table C.3 – Spectroscopic parameters of the vibrational state ( $v_5 = v_{12} = 1$ ).

\**Here and further in the text*: in brackets in columns 2 and 3 are statistical confidence intervals of  $1\sigma$  relative to the last indicated numbers. The parameter values given without confidence intervals were fixed at the values of the corresponding parameters of the ground vibrational state and were not fit in the fitting procedure.

| Parameter                | $(v_6 = v_{11} = 1) C_2 D_4, cm^{-1}$ | $(v_{\rm GS} = 1) C_2 D_4,  {\rm cm}^{-1} [34]$ |
|--------------------------|---------------------------------------|-------------------------------------------------|
| 1                        | 2                                     | 3                                               |
| E                        | 3203.354284(77)                       | -                                               |
| A                        | 2.457560(84)                          | 2.44158560                                      |
| В                        | 0.762142(91)                          | 0.73492916                                      |
| С                        | 0.5991597(24)                         | 0.5635243                                       |
| $\Delta_K \cdot 10^4$    | 0.23854(90)                           | 0.208659                                        |
| $\Delta_{JK} \cdot 10^4$ | 0.0301(25)                            | 0.026825                                        |
| $\Delta J \cdot 10^4$    | 0.00782(27)                           | 0.0080394                                       |
| $H_K \cdot 10^8$         | 0.08354                               | 0.08354                                         |
| $H_{KJ} \cdot 10^8$      | -0.01244                              | -0.01244                                        |
| $H_{JK} \cdot 10^8$      | 0.00354(45)                           | 0.004030                                        |
| $H_J \cdot 10^8$         | 0.00008339                            | 0.00008339                                      |
| $L_{K} \cdot 10^{12}$    | -0.02792                              | -0.02792                                        |
| $L_{JK} \cdot 10^{12}$   | -0.0005615                            | -0.0005615                                      |
| $L_{JJK} \cdot 10^{11}$  | -                                     | -                                               |
| $L_J \cdot 10^{12}$      | -0.00000430                           | -0.00000430                                     |
| $P_{K} \cdot 10^{11}$    | -                                     | -                                               |
| $P_{KKJ} \cdot 10^{11}$  | -                                     | -                                               |
| $\delta_K \cdot 10^4$    | 0.038845                              | 0.038845                                        |
| $\delta_J \cdot 10^4$    | 0.00214769                            | 0.00214769                                      |
| $h_{K} \cdot 10^{8}$     | 0.06732                               | 0.06732                                         |
| $h_{JK} \cdot 10^8$      | 0.002895                              | 0.002895                                        |
| $h_J \cdot 10^8$         | 0.00004948                            | 0.00004948                                      |
| $d_{\rm rms}$            | 0.0015                                |                                                 |
| Nenergy                  | 181                                   | ]                                               |

Table C.4 – Spectroscopic parameters of the vibrational state ( $v_6 = v_{11} = 1$ ).

| Ν | Ka | Kc | J | Ε         | Δ | δ  | Ν  | Ka | Kc | J | Ε         | Δ | δ  | Ν  | Ka | Kc | J | Ε         | Δ | δ  | Ν  | Ka | Kc | J | Ε         | Δ | δ  | Ν  | Ka | Kc | J | Ε         | Δ | δ  |
|---|----|----|---|-----------|---|----|----|----|----|---|-----------|---|----|----|----|----|---|-----------|---|----|----|----|----|---|-----------|---|----|----|----|----|---|-----------|---|----|
|   | 1  |    |   | 2         | 3 | 4  |    | 1  |    |   | 2         | 3 | 4  |    | 1  |    |   | 2         | 3 | 4  |    | 1  |    |   | 2         | 3 | 4  |    | 1  |    |   | 2         | 3 | 4  |
| 1 | 1  | 1  | + | 1112.0921 |   | -2 | 10 | 8  | 2  | - | 1234.1396 | 2 | 0  | 14 | 14 | 0  | 1 | 1449.6311 |   | 0  | 18 | 4  | 14 | 1 | 1237.1718 |   | 0  | 20 | 20 | 0  | - | 1795.3224 |   | -1 |
| 2 | 0  | 2  | - | 1111.9306 | 2 | 0  | 10 | 8  | 2  | + | 1233.8316 | 1 | 0  | 14 | 14 | 0  | + | 1448.9879 | 0 | 1  | 18 | 4  | 14 | + | 1237.0579 | 1 | -1 | 20 | 20 | 0  | + | 1794.3961 | 2 | 0  |
| 2 | 0  | 2  | + | 1111.9219 | 1 | 0  | 10 | 9  | 1  | - | 1258.1144 | 1 | 1  | 15 | 1  | 15 | - | 1180.4505 | 2 | 0  | 18 | 5  | 13 | - | 1249.6795 | 2 | 0  | 21 | 1  | 21 | - | 1243.4513 | 1 | 0  |
| 2 | 1  | 1  | - | 1113.4440 |   | -3 | 10 | 9  | 1  | + | 1257.7366 | 1 | 0  | 15 | 1  | 15 | + | 1180.4310 | 0 | 0  | 18 | 5  | 13 | + | 1249.5478 | 2 | 0  | 21 | 1  | 21 | + | 1243.4318 | 1 | -1 |
| 2 | 1  | 1  | + | 1113.4121 | 1 | 0  | 10 | 10 | 0  | - | 1284.8649 | 1 | 0  | 15 | 2  | 14 | 1 | 1188.0529 | 5 | -1 | 18 | 6  | 12 | - | 1265.1554 |   | 0  | 21 | 2  | 20 | - | 1253.9089 |   | -1 |
| 2 | 2  | 0  | + | 1117.5655 |   | 1  | 10 | 10 | 0  | + | 1284.4100 | 1 | 0  | 15 | 2  | 14 | + | 1187.9948 | 2 | 1  | 18 | 6  | 12 | + | 1264.9985 | 3 | 1  | 21 | 2  | 20 | + | 1253.8459 | 2 | 0  |
| 3 | 1  | 3  | - | 1115.0140 | 2 | 0  | 11 | 1  | 11 | 1 | 1149.5856 | 2 | -1 | 15 | 3  | 13 | - | 1195.9747 |   | 0  | 18 | 7  | 11 | 1 | 1283.4860 | 1 | 0  | 21 | 3  | 19 | - | 1263.4667 | 2 | 0  |
| 3 | 1  | 3  | + | 1114.9951 |   | 1  | 11 | 1  | 11 | + | 1149.5669 | 1 | 0  | 15 | 3  | 13 | + | 1195.8896 |   | -1 | 18 | 7  | 11 | + | 1283.2984 | 1 | 1  | 21 | 3  | 19 | + | 1263.3700 | 2 | -1 |
| 3 | 2  | 2  | - | 1119.4538 |   | -3 | 11 | 2  | 10 | - | 1155.6881 |   | 1  | 15 | 4  | 12 | - | 1205.8932 | 2 | -1 | 18 | 8  | 10 | - | 1304.6383 | 1 | 1  | 21 | 4  | 18 | - | 1273.7561 | 3 | 1  |
| 3 | 2  | 2  | + | 1119.3895 | 3 | -2 | 11 | 2  | 10 | + | 1155.6343 | 1 | -2 | 15 | 4  | 12 | + | 1205.7877 | 1 | 1  | 18 | 8  | 10 | + | 1304.4147 | 1 | 0  | 21 | 4  | 18 | + | 1273.6375 | 4 | -1 |
| 3 | 3  | 1  | + | 1126.4481 | 1 | 0  | 11 | 3  | 9  | - | 1163.0618 |   | 0  | 15 | 5  | 11 | - | 1218.5697 |   | 0  | 18 | 9  | 9  | - | 1328.5911 | 1 | 1  | 21 | 5  | 17 | - | 1286.3258 | 1 | 0  |
| 4 | 0  | 4  | + | 1116.1446 | 2 | -1 | 11 | 3  | 9  | + | 1162.9835 | 2 | 1  | 15 | 5  | 11 | + | 1218.4392 | 2 | 2  | 18 | 9  | 9  | + | 1328.3269 | 2 | 0  | 21 | 5  | 17 | + | 1286.1897 | 2 | 0  |
| 4 | 1  | 3  | - | 1117.8745 | 0 | -1 | 11 | 4  | 8  | - | 1172.9633 | 0 | 0  | 15 | 6  | 10 | - | 1234.0974 | 1 | 1  | 18 | 10 | 8  | - | 1355.3265 | 1 | 0  | 21 | 6  | 16 | - | 1301.7373 | 0 | 0  |
| 4 | 1  | 3  | + | 1117.8403 | 2 | 0  | 11 | 4  | 8  | + | 1172.8578 | 1 | -1 | 15 | 6  | 10 | + | 1233.9355 | 1 | 0  | 18 | 10 | 8  | + | 1355.0171 | 1 | 0  | 21 | 6  | 16 | + | 1301.5801 | 2 | 1  |
| 4 | 2  | 2  | - | 1121.8978 | 1 | 0  | 11 | 5  | 7  | - | 1185.6932 | 2 | 0  | 15 | 7  | 9  | - | 1252.4552 | 1 | 1  | 18 | 11 | 7  | - | 1384.8272 | 1 | 0  | 21 | 7  | 15 | - | 1320.0246 | 1 | 0  |
| 4 | 2  | 2  | + | 1121.8403 | 1 | 0  | 11 | 5  | 7  | + | 1185.5533 | 1 | 0  | 15 | 7  | 9  | + | 1252.2562 | 1 | -1 | 18 | 11 | 7  | + | 1384.4679 | 1 | 0  | 21 | 7  | 15 | + | 1319.8413 | 2 | 0  |
| 4 | 3  | 1  | + | 1128.8862 |   | 0  | 11 | 6  | 6  | - | 1201.2549 | 1 | 0  | 15 | 8  | 8  | - | 1273.6233 | 1 | 0  | 18 | 12 | 6  | - | 1417.0757 | 1 | 0  | 21 | 8  | 14 | - | 1341.1511 | 1 | 0  |
| 4 | 4  | 0  | - | 1138.9400 |   | -1 | 11 | 6  | 6  | + | 1201.0728 | 1 | 0  | 15 | 8  | 8  | + | 1273.3819 | 1 | 0  | 18 | 12 | 6  | + | 1416.6619 | 2 | 1  | 21 | 8  | 14 | + | 1340.9372 | 0 | 0  |
| 4 | 4  | 0  | + | 1138.7662 | 2 | 0  | 11 | 7  | 5  | - | 1219.6335 | 1 | 0  | 15 | 9  | 7  | - | 1297.5859 | 1 | 0  | 18 | 13 | 5  | - | 1452.0534 | 1 | 0  | 21 | 9  | 13 | - | 1365.0886 | 1 | 0  |
| 5 | 1  | 5  | - | 1120.2225 | 0 | 0  | 11 | 7  | 5  | + | 1219.4016 | 1 | 0  | 15 | 9  | 7  | + | 1297.2960 | 1 | -1 | 18 | 13 | 5  | + | 1451.5806 | 1 | 1  | 21 | 9  | 13 | + | 1364.8399 | 1 | 0  |
| 5 | 1  | 5  | + | 1120.2055 | 2 | 0  | 11 | 8  | 4  | - | 1240.8153 |   | -2 | 15 | 10 | 6  | - | 1324.3270 | 2 | 0  | 18 | 14 | 4  | - | 1489.7412 | 0 | 0  | 21 | 10 | 12 | - | 1391.8154 | 1 | 0  |
| 5 | 2  | 4  | - | 1124.9022 | 1 | 1  | 11 | 8  | 4  | + | 1240.5266 | 1 | 1  | 15 | 10 | 6  | + | 1323.9834 | 1 | 0  | 18 | 14 | 4  | + | 1489.2049 | 0 | 0  | 21 | 10 | 12 | + | 1391.5277 |   | 1  |
| 5 | 2  | 4  | + | 1124.8497 | 0 | -1 | 11 | 9  | 3  | - | 1264.7876 | 1 | 0  | 15 | 11 | 5  | - | 1353.8306 | 1 | 0  | 18 | 15 | 3  | - | 1530.1187 | 2 | 0  | 21 | 11 | 11 | - | 1421.3120 | 0 | 0  |
| 5 | 3  | 3  | - | 1132.0232 |   | 0  | 11 | 9  | 3  | + | 1264.4345 | 2 | 0  | 15 | 11 | 5  | + | 1353.4278 |   | -1 | 18 | 15 | 3  | + | 1529.5148 | 0 | 0  | 21 | 11 | 11 | + | 1420.9809 | 2 | -1 |
| 5 | 3  | 3  | + | 1131.9296 | 1 | 0  | 11 | 10 | 2  | - | 1291.5357 |   | 0  | 15 | 12 | 4  | - | 1386.0800 | 2 | 1  | 18 | 16 | 2  | - | 1573.1647 | 1 | -1 | 21 | 12 | 10 | - | 1453.5594 | 1 | 0  |
| 5 | 4  | 2  | - | 1141.9628 | 1 | -1 | 11 | 10 | 2  | + | 1291.1116 | 1 | 0  | 15 | 12 | 4  | + | 1385.6128 | 2 | 0  | 18 | 16 | 2  | + | 1572.4889 | 1 | 0  | 21 | 12 | 10 | + | 1453.1813 | 1 | 0  |
| 5 | 4  | 2  | + | 1141.8133 | 1 | 0  | 11 | 11 | 1  | - | 1321.0446 | 2 | -1 | 15 | 13 | 3  | - | 1421.0568 | 2 | -1 | 18 | 17 | 1  | - | 1618.8571 | 1 | 0  | 21 | 13 | 9  | - | 1488.5385 | 2 | -1 |

Table C.5 – Ro-vibrational term values for the  $v_3$  band of the ClO<sub>2</sub> molecule (in cm<sup>-1</sup>).

Table C.5 – Continued.

| Ν | Ka | Kc | J | Ε         | Δ | δ  | Ν  | Ka | Kc | J | Ε         | Δ | δ  | Ν  | Ka | Kc | J | Ε         | Δ | δ  | Ν  | Ka | Kc | J | Ε         | Δ | δ  | Ν  | Ka | Kc | J | Ε         | Δ | δ  |
|---|----|----|---|-----------|---|----|----|----|----|---|-----------|---|----|----|----|----|---|-----------|---|----|----|----|----|---|-----------|---|----|----|----|----|---|-----------|---|----|
|   | 1  |    |   | 2         | 3 | 4  |    | 1  |    |   | 2         | 3 | 4  |    | 1  |    |   | 2         | 3 | 4  |    | 1  |    |   | 2         | 3 | 4  |    | 1  |    |   | 2         | 3 | 4  |
| 5 | 5  | 1  | - | 1154.7344 | 1 | 0  | 11 | 11 | 1  | + | 1320.5427 | 1 | 0  | 15 | 13 | 3  | + | 1420.5203 | 1 | 0  | 18 | 17 | 1  | + | 1618.1052 |   | 0  | 21 | 13 | 9  | + | 1488.1094 | 1 | 0  |
| 5 | 5  | 1  | + | 1154.5142 | 1 | 2  | 12 | 0  | 12 | - | 1156.1672 | 4 | 1  | 15 | 14 | 2  | - | 1458.7429 | 2 | 2  | 18 | 18 | 0  | - | 1667.1726 |   | -1 | 21 | 14 | 8  | - | 1526.2298 |   | 0  |
| 6 | 0  | 6  | + | 1122.7340 | 2 | -2 | 12 | 0  | 12 | + | 1156.1446 | 1 | 1  | 15 | 14 | 2  | + | 1458.1316 | 1 | -1 | 18 | 18 | 0  | + | 1666.3407 |   | 0  | 21 | 14 | 8  | + | 1525.7455 | 1 | 0  |
| 6 | 1  | 5  | - | 1124.8265 | 1 | 1  | 12 | 1  | 11 | - | 1160.5319 |   | 0  | 15 | 15 | 1  | - | 1499.1173 | 1 | 0  | 19 | 1  | 19 | - | 1220.2331 | 0 | 0  | 21 | 15 | 7  | - | 1566.6123 | 1 | 0  |
| 6 | 1  | 5  | + | 1124.7850 | 0 | -1 | 12 | 1  | 11 | + | 1160.4694 |   | -1 | 15 | 15 | 1  | + | 1498.4268 |   | 0  | 19 | 1  | 19 | + | 1220.2135 | 0 | 0  | 21 | 15 | 7  | + | 1566.0691 | 0 | 0  |
| 6 | 2  | 4  | - | 1128.6409 | 3 | 0  | 12 | 2  | 10 | - | 1164.1767 | 1 | 0  | 16 | 0  | 16 | - | 1189.4614 | 2 | 0  | 19 | 2  | 18 | - | 1229.6794 |   | 0  | 21 | 16 | 6  | - | 1609.6646 | 1 | -1 |
| 6 | 2  | 4  | + | 1128.5864 | 3 | 0  | 12 | 2  | 10 | + | 1164.1001 | 1 | 0  | 16 | 0  | 16 | + | 1189.4403 | 2 | 0  | 19 | 2  | 18 | + | 1229.6176 | 2 | 1  | 21 | 16 | 6  | + | 1609.0589 | 2 | 0  |
| 6 | 3  | 3  | - | 1135.6692 | 2 | 1  | 12 | 3  | 9  | - | 1170.5059 | 1 | 0  | 16 | 1  | 15 | - | 1196.2337 |   | -5 | 19 | 3  | 17 | - | 1238.5787 | 0 | 0  | 21 | 17 | 5  | - | 1655.3648 | 2 | 1  |
| 6 | 3  | 3  | + | 1135.5828 | 1 | 0  | 12 | 3  | 9  | + | 1170.4227 | 0 | -1 | 16 | 1  | 15 | + | 1196.1647 | 2 | 1  | 19 | 3  | 17 | + | 1238.4859 | 3 | -1 | 21 | 17 | 5  | + | 1654.6924 | 2 | 0  |
| 6 | 4  | 2  | - | 1145.5996 | 1 | 0  | 12 | 4  | 8  | - | 1180.2788 | 1 | -3 | 16 | 2  | 14 | - | 1200.7204 | 2 | 1  | 19 | 4  | 16 | - | 1248.6729 | 3 | 2  | 21 | 18 | 4  | - | 1703.6889 | 2 | 1  |
| 6 | 4  | 2  | + | 1145.4658 | 2 | 0  | 12 | 4  | 8  | + | 1180.1748 | 0 | 3  | 16 | 2  | 14 | + | 1200.6246 | 1 | 0  | 19 | 4  | 16 | + | 1248.5595 | 1 | -1 | 21 | 18 | 4  | + | 1702.9466 |   | 0  |
| 6 | 5  | 1  | - | 1158.3642 | 2 | 0  | 12 | 5  | 7  | - | 1192.9936 | 1 | 1  | 16 | 3  | 13 | - | 1206.3586 | 1 | 0  | 19 | 5  | 15 | - | 1261.2736 | 1 | 0  | 21 | 19 | 3  | - | 1754.6131 |   | 0  |
| 6 | 5  | 1  | + | 1158.1700 | 0 | 0  | 12 | 5  | 7  | + | 1192.8575 |   | 0  | 16 | 3  | 13 | + | 1206.2596 | 1 | 0  | 19 | 5  | 15 | + | 1261.1409 | 2 | 0  | 21 | 19 | 3  | + | 1753.7972 | 1 | 0  |
| 6 | 6  | 0  | - | 1173.9519 | 1 | 0  | 12 | 6  | 6  | - | 1208.5487 | 1 | 0  | 16 | 4  | 12 | - | 1215.7121 | 2 | 1  | 19 | 6  | 14 | - | 1276.7349 | 4 | 2  | 21 | 20 | 2  | - | 1808.1123 |   | -2 |
| 6 | 6  | 0  | + | 1173.6848 | 1 | 0  | 12 | 6  | 6  | + | 1208.3738 | 1 | 0  | 16 | 4  | 12 | + | 1215.6035 | 3 | 0  | 19 | 6  | 14 | + | 1276.5780 | 1 | 0  | 21 | 20 | 2  | + | 1807.2196 |   | 1  |
| 7 | 1  | 7  | - | 1127.7315 | 2 | -1 | 12 | 7  | 5  | - | 1226.9230 | 2 | 0  | 16 | 5  | 11 | - | 1228.3239 |   | -5 | 19 | 7  | 13 | - | 1295.0530 | 3 | -1 | 21 | 21 | 1  | - | 1864.1613 |   | -1 |
| 7 | 1  | 7  | + | 1127.7143 | 1 | 0  | 12 | 7  | 5  | + | 1226.7023 | 1 | 0  | 16 | 5  | 11 | + | 1228.1937 |   | -1 | 19 | 7  | 13 | + | 1294.8675 | 2 | 1  | 21 | 21 | 1  | + | 1863.1879 |   | 0  |
| 7 | 2  | 6  | - | 1132.7687 | 0 | -2 | 12 | 8  | 4  | - | 1248.1020 | 0 | 0  | 16 | 6  | 10 | - | 1243.8371 | 2 | -1 | 19 | 8  | 12 | - | 1316.1980 | 0 | 0  | 22 | 0  | 22 | - | 1255.8738 | 1 | 0  |
| 7 | 2  | 6  | + | 1132.7190 | 3 | 0  | 12 | 8  | 4  | + | 1247.8285 | 1 | 0  | 16 | 6  | 10 | + | 1243.6778 | 2 | 1  | 19 | 8  | 12 | + | 1315.9784 | 1 | 0  | 22 | 0  | 22 | + | 1255.8541 | 0 | -1 |
| 7 | 3  | 5  | - | 1139.9222 | 1 | 0  | 12 | 9  | 3  | - | 1272.0717 | 1 | 0  | 16 | 7  | 9  | - | 1262.1875 |   | 1  | 19 | 9  | 11 | - | 1340.1466 |   | 1  | 22 | 1  | 21 | - | 1266.4776 |   | 0  |
| 7 | 3  | 5  | + | 1139.8405 | 0 | 0  | 12 | 9  | 3  | + | 1271.7389 | 4 | 0  | 16 | 7  | 9  | + | 1261.9932 | 0 | 0  | 19 | 9  | 11 | + | 1339.8884 |   | 0  | 22 | 1  | 21 | + | 1266.4095 | 3 | 1  |
| 7 | 4  | 4  | - | 1149.8484 | 1 | 0  | 12 | 10 | 2  | - | 1298.8178 | 0 | 0  | 16 | 8  | 8  | - | 1283.3511 | 1 | 0  | 19 | 10 | 10 | - | 1366.8795 | 1 | 0  | 22 | 2  | 20 | - | 1274.0502 | 2 | -2 |
| 7 | 4  | 4  | + | 1149.7254 | 2 | 0  | 12 | 10 | 2  | + | 1298.4192 | 1 | 0  | 16 | 8  | 8  | + | 1283.1168 | 1 | 0  | 19 | 10 | 10 | + | 1366.5784 | 3 | 0  | 22 | 2  | 20 | + | 1273.9356 | 1 | 0  |
| 7 | 5  | 3  | - | 1162.6072 | 1 | 1  | 12 | 11 | 1  | - | 1328.3250 | 1 | 0  | 16 | 9  | 7  | - | 1307.3109 | 2 | 1  | 19 | 11 | 9  | - | 1396.3791 | 1 | 0  | 22 | 3  | 19 | - | 1279.7305 | 1 | 0  |
| 7 | 5  | 3  | + | 1162.4313 | 1 | 0  | 12 | 11 | 1  | + | 1327.8542 | 0 | 0  | 16 | 9  | 7  | + | 1307.0311 | 1 | 0  | 19 | 11 | 9  | + | 1396.0305 | 0 | 0  | 22 | 3  | 19 | + | 1279.5975 | 1 | 0  |
| 7 | 6  | 2  | - | 1178.1890 | 1 | -1 | 12 | 12 | 0  | - | 1360.5767 |   | 0  | 16 | 10 | 6  | - | 1334.0502 | 0 | 0  | 19 | 12 | 8  | - | 1428.6273 | 1 | 0  | 22 | 4  | 18 | - | 1287.7373 | 1 | 0  |
| 7 | 6  | 2  | + | 1177.9495 | 1 | 0  | 12 | 12 | 0  | + | 1360.0277 | 0 | 0  | 16 | 10 | 6  | + | 1333.7198 | 0 | 0  | 19 | 12 | 8  | + | 1428.2269 | 2 | 0  | 22 | 4  | 18 | + | 1287.6066 | 1 | 0  |
| 7 | 7  | 1  | - | 1196.5841 |   | 0  | 13 | 1  | 13 | - | 1163.8985 | 2 | -1 | 16 | 11 | 5  | - | 1363.5529 | 1 | 0  | 19 | 13 | 7  | - | 1463.6055 | 2 | 0  | 22 | 5  | 17 | - | 1299.8206 | 0 | 0  |
| 7 | 7  | 1  | + | 1196.2702 |   | 0  | 13 | 1  | 13 | + | 1163.8793 | 1 | 0  | 16 | 11 | 5  | + | 1363.1668 | 2 | 0  | 19 | 13 | 7  | + | 1463.1489 | 1 | -1 | 22 | 5  | 17 | + | 1299.6812 | 2 | -1 |

Table C.5 – Continued.

| Ν | Ka | Kc | J | Ε         | Δ | δ  | Ν  | Ka | Kc | J | Ε         | Δ | δ  | Ν  | Ka | Kc | J | E         | Δ | δ  | Ν  | Ka | Kc | J | Ε         | Δ | δ  | Ν  | Ka | Kc | J | Ε         | Δ | δ  |
|---|----|----|---|-----------|---|----|----|----|----|---|-----------|---|----|----|----|----|---|-----------|---|----|----|----|----|---|-----------|---|----|----|----|----|---|-----------|---|----|
|   | 1  |    |   | 2         | 3 | 4  |    | i  | 1  |   | 2         | 3 | 4  |    | 1  |    |   | 2         | 3 | 4  |    | 1  |    |   | 2         | 3 | 4  |    | 1  |    |   | 2         | 3 | 4  |
| 8 | 0  | 8  | - | 1131.6550 |   | 1  | 13 | 2  | 12 | - | 1170.7011 |   | 2  | 16 | 12 | 4  | - | 1395.8020 | 2 | 2  | 19 | 14 | 6  | - | 1501.2943 | 1 | 0  | 22 | 6  | 16 | - | 1315.1638 | 4 | -1 |
| 8 | 0  | 8  | + | 1131.6335 | 3 | 2  | 13 | 2  | 12 | + | 1170.6450 | 2 | -1 | 16 | 12 | 4  | + | 1395.3551 | 2 | 1  | 19 | 14 | 6  | + | 1500.7774 | 2 | 0  | 22 | 6  | 16 | + | 1315.0056 | 4 | 1  |
| 8 | 1  | 7  | - | 1134.2766 | 1 | 0  | 13 | 3  | 11 | - | 1178.2998 | 2 | 1  | 16 | 13 | 3  | - | 1430.7789 | 1 | 0  | 19 | 15 | 5  | - | 1541.6732 | 2 | -1 | 22 | 7  | 15 | - | 1333.4302 | 1 | 0  |
| 8 | 1  | 7  | + | 1134.2273 | 1 | -1 | 13 | 3  | 11 | + | 1178.2189 | 1 | 0  | 16 | 13 | 3  | + | 1430.2665 | 2 | 1  | 19 | 15 | 5  | + | 1541.0919 | 1 | 0  | 22 | 7  | 15 | + | 1333.2473 | 1 | 1  |
| 8 | 2  | 6  | - | 1137.9124 | 1 | 0  | 13 | 4  | 10 | - | 1188.1986 |   | -3 | 16 | 14 | 2  | - | 1468.4652 | 0 | 0  | 19 | 16 | 4  | - | 1584.7213 | 1 | 0  | 22 | 8  | 14 | - | 1354.5451 | 1 | 0  |
| 8 | 2  | 6  | + | 1137.8535 | 1 | 0  | 13 | 4  | 10 | + | 1188.0950 | 3 | 4  | 16 | 14 | 2  | + | 1467.8822 | 1 | -1 | 19 | 16 | 4  | + | 1584.0713 | 1 | 0  | 22 | 8  | 14 | + | 1354.3332 | 0 | 1  |
| 8 | 3  | 5  | - | 1144.8022 |   | 2  | 13 | 5  | 9  | - | 1200.9058 | 1 | 0  | 16 | 15 | 1  | - | 1508.8402 |   | -2 | 19 | 17 | 3  | - | 1630.4158 | 1 | -1 | 22 | 9  | 13 | - | 1378.4757 | 0 | 0  |
| 8 | 3  | 5  | + | 1144.7222 | 4 | -1 | 13 | 5  | 9  | + | 1200.7723 | 2 | -2 | 16 | 15 | 1  | + | 1508.1824 | 1 | 0  | 19 | 17 | 3  | + | 1629.6936 | 1 | 2  | 22 | 9  | 13 | + | 1378.2305 | 2 | 0  |
| 8 | 4  | 4  | - | 1154.7092 | 1 | 0  | 13 | 6  | 8  | - | 1216.4535 | 2 | 0  | 16 | 16 | 0  | - | 1551.8835 | 1 | 0  | 19 | 18 | 2  | - | 1678.7341 | 2 | 1  | 22 | 10 | 12 | - | 1405.1985 | 0 | 0  |
| 8 | 4  | 4  | + | 1154.5935 | 2 | 0  | 13 | 6  | 8  | + | 1216.2842 | 1 | 0  | 16 | 16 | 0  | + | 1551.1459 |   | 0  | 19 | 18 | 2  | + | 1677.9351 | 1 | 0  | 22 | 10 | 12 | + | 1404.9160 | 2 | 1  |
| 8 | 5  | 3  | - | 1167.4616 | 1 | -1 | 13 | 7  | 7  | - | 1234.8231 | 0 | 0  | 17 | 1  | 17 | - | 1199.2311 | 1 | 0  | 19 | 19 | 1  | - | 1729.6515 | 2 | 0  | 22 | 11 | 11 | - | 1434.6931 | 2 | 1  |
| 8 | 5  | 3  | + | 1167.2993 | 1 | 0  | 13 | 7  | 7  | + | 1234.6113 | 1 | 0  | 17 | 1  | 17 | + | 1199.2115 | 1 | 0  | 19 | 19 | 1  | + | 1728.7723 |   | 0  | 22 | 11 | 11 | + | 1434.3692 | 0 | 0  |
| 8 | 6  | 2  | - | 1183.0388 | 0 | 0  | 13 | 8  | 6  | - | 1255.9989 | 1 | 1  | 17 | 2  | 16 | - | 1207.7204 | 3 | 1  | 20 | 0  | 20 | - | 1231.5346 | 1 | 1  | 22 | 12 | 10 | - | 1466.9399 | 1 | 0  |
| 8 | 6  | 2  | + | 1182.8193 | 2 | -4 | 13 | 8  | 6  | + | 1255.7381 | 1 | 0  | 17 | 2  | 16 | + | 1207.6598 |   | -2 | 20 | 0  | 20 | + | 1231.5145 | 1 | -1 | 22 | 12 | 10 | + | 1466.5709 | 1 | 0  |
| 8 | 7  | 1  | - | 1201.4292 | 1 | 0  | 13 | 9  | 5  | - | 1279.9663 | 1 | 1  | 17 | 3  | 15 | - | 1216.0738 |   | -1 | 20 | 1  | 19 | - | 1240.8879 | 3 | -2 | 22 | 13 | 9  | - | 1501.9195 | 0 | 0  |
| 8 | 7  | 1  | + | 1201.1436 | 2 | -2 | 13 | 9  | 5  | + | 1279.6503 | 1 | 0  | 17 | 3  | 15 | + | 1215.9852 | 2 | 0  | 20 | 1  | 19 | + | 1240.8190 | 3 | 1  | 22 | 13 | 9  | + | 1501.5015 | 0 | -1 |
| 8 | 8  | 0  | - | 1222.6215 | 1 | 1  | 13 | 10 | 4  | - | 1306.7105 | 1 | 0  | 17 | 4  | 14 | - | 1226.0509 | 1 | 1  | 20 | 2  | 18 | - | 1247.2226 |   | -2 | 22 | 14 | 8  | - | 1539.6120 | 2 | 1  |
| 8 | 8  | 0  | + | 1222.2604 |   | -1 | 13 | 10 | 4  | + | 1306.3334 | 2 | 0  | 17 | 4  | 14 | + | 1225.9418 | 1 | -1 | 20 | 2  | 18 | + | 1247.1126 |   | 0  | 22 | 14 | 8  | + | 1539.1413 |   | 0  |
| 9 | 1  | 9  | - | 1137.5247 | 2 | -1 | 13 | 11 | 3  | - | 1336.2163 | 1 | 0  | 17 | 5  | 13 | - | 1238.6900 | 3 | -3 | 20 | 3  | 17 | - | 1252.6539 | 0 | -1 | 22 | 15 | 7  | - | 1579.9964 | 1 | 0  |
| 9 | 1  | 9  | + | 1137.5068 | 1 | 0  | 13 | 11 | 3  | + | 1335.7719 | 1 | 0  | 17 | 5  | 13 | + | 1238.5597 | 2 | 2  | 20 | 3  | 17 | + | 1252.5324 | 1 | 0  | 22 | 15 | 7  | + | 1579.4695 | 1 | 1  |
| 9 | 2  | 8  | - | 1143.0372 |   | 2  | 13 | 12 | 2  | - | 1368.4671 | 2 | 1  | 17 | 6  | 12 | - | 1254.1897 | 1 | 1  | 20 | 4  | 16 | - | 1261.1668 | 1 | 0  | 22 | 16 | 6  | - | 1623.0514 | 1 | 1  |
| 9 | 2  | 8  | + | 1142.9868 |   | 0  | 13 | 12 | 2  | + | 1367.9495 | 1 | 0  | 17 | 6  | 12 | + | 1254.0318 | 1 | 1  | 20 | 4  | 16 | + | 1261.0456 | 2 | 0  | 22 | 16 | 6  | + | 1622.4642 |   | 0  |
| 9 | 3  | 7  | - | 1150.2684 | 2 | 0  | 13 | 13 | 1  | - | 1403.4447 |   | 0  | 17 | 7  | 11 | - | 1272.5310 | 1 | 1  | 20 | 5  | 15 | - | 1273.5071 | 2 | 0  | 22 | 17 | 5  | - | 1668.7542 |   | 0  |
| 9 | 3  | 7  | + | 1150.1906 | 3 | 2  | 13 | 13 | 1  | + | 1402.8486 |   | 0  | 17 | 7  | 11 | + | 1272.3404 | 1 | 0  | 20 | 5  | 15 | + | 1273.3723 | 1 | -1 | 22 | 17 | 5  | + | 1668.1034 | 1 | -1 |
| 9 | 4  | 6  | - | 1160.1814 | 1 | 0  | 14 | 0  | 14 | - | 1171.7191 | 2 | 0  | 17 | 8  | 10 | - | 1293.6893 |   | 0  | 20 | 6  | 14 | - | 1288.9290 |   | -1 | 22 | 18 | 4  | - | 1717.0819 | 2 | 1  |
| 9 | 4  | 6  | + | 1160.0707 | 1 | 0  | 14 | 0  | 14 | + | 1171.6974 | 2 | 0  | 17 | 8  | 10 | + | 1293.4609 | 1 | -1 | 20 | 6  | 14 | + | 1288.7723 |   | 1  | 22 | 18 | 4  | + | 1716.3639 | 1 | 0  |
| 9 | 5  | 5  | - | 1172.9276 | 1 | 0  | 14 | 1  | 13 | - | 1177.2342 | 1 | 0  | 17 | 9  | 9  | - | 1317.6457 | 2 | -1 | 20 | 7  | 13 | - | 1307.2326 | 2 | 1  | 22 | 19 | 3  | - | 1768.0099 | 1 | 0  |
| 9 | 5  | 5  | + | 1172.7751 | 1 | 0  | 14 | 1  | 13 | + | 1177.1675 | 2 | -1 | 17 | 9  | 9  | + | 1317.3746 | 1 | 0  | 20 | 7  | 13 | + | 1307.0483 |   | 1  | 22 | 19 | 3  | + | 1767.2214 |   | 1  |
| 9 | 6  | 4  | - | 1188.5000 | 0 | 1  | 14 | 2  | 12 | - | 1181.1774 | 2 | -1 | 17 | 10 | 8  | - | 1344.3834 | 1 | 0  | 20 | 8  | 12 | - | 1328.3688 | 1 | 0  | 22 | 20 | 2  | - | 1821.5135 | 0 | 0  |

Table C.5 – Continued.

| Ν  | Ka | Kc | J | Ε         | Δ | δ  | Ν  | Ka | Kc | J | Ε         | Δ | δ  | Ν  | Ka | Kc | J | Ε         | Δ | δ  | Ν  | Ka | Kc | J | Ε         | Δ | δ  | Ν  | Ka | Kc | J | Ε         | Δ | δ  |
|----|----|----|---|-----------|---|----|----|----|----|---|-----------|---|----|----|----|----|---|-----------|---|----|----|----|----|---|-----------|---|----|----|----|----|---|-----------|---|----|
|    | 1  |    |   | 2         | 3 | 4  |    | 1  | 1  |   | 2         | 3 | 4  |    | 1  |    |   | 2         | 3 | 4  |    | 1  |    |   | 2         | 3 | 4  |    | 1  |    |   | 2         | 3 | 4  |
| 9  | 6  | 4  | + | 1188.2964 | 1 | -1 | 14 | 2  | 12 | + | 1181.0910 | 1 | 0  | 17 | 10 | 8  | + | 1344.0643 | 1 | 0  | 20 | 8  | 12 | + | 1328.1525 | 1 | 0  | 22 | 20 | 2  | + | 1820.6509 | 1 | 0  |
| 9  | 7  | 3  | - | 1206.8864 | 1 | 2  | 14 | 3  | 11 | - | 1187.1424 | 1 | 0  | 17 | 11 | 7  | - | 1373.8852 | 0 | 0  | 20 | 9  | 11 | - | 1352.3123 | 2 | 0  | 22 | 21 | 1  | - | 1877.5670 |   | 0  |
| 9  | 7  | 3  | + | 1206.6230 | 1 | 0  | 14 | 3  | 11 | + | 1187.0526 | 2 | 0  | 17 | 11 | 7  | + | 1373.5133 | 2 | -1 | 20 | 9  | 11 | + | 1352.0593 | 2 | 0  | 22 | 21 | 1  | + | 1876.6272 |   | 2  |
| 9  | 8  | 2  | - | 1228.0746 |   | 0  | 14 | 4  | 10 | - | 1196.7554 | 1 | -1 | 17 | 12 | 6  | - | 1406.1339 | 2 | 1  | 20 | 10 | 10 | - | 1379.0425 | 1 | 1  | 22 | 22 | 0  | - | 1936.1439 | 2 | 1  |
| 9  | 8  | 2  | + | 1227.7432 | 1 | 0  | 14 | 4  | 10 | + | 1196.6503 | 1 | 1  | 17 | 12 | 6  | + | 1405.7046 | 1 | 0  | 20 | 10 | 10 | + | 1378.7485 | 1 | 0  | 22 | 22 | 0  | + | 1935.1230 |   | 0  |
| 9  | 9  | 1  | - | 1252.0527 | 2 | 2  | 14 | 5  | 9  | - | 1209.4316 | 3 | 1  | 17 | 13 | 5  | - | 1441.1112 | 0 | 0  | 20 | 11 | 9  | - | 1408.5406 | 1 | 0  | 22 | 0  | 22 | - | 1255.8738 | 1 | 0  |
| 9  | 9  | 1  | + | 1251.6446 |   | 0  | 14 | 5  | 9  | + | 1209.2999 | 2 | 0  | 17 | 13 | 5  | + | 1440.6198 | 1 | 0  | 20 | 11 | 9  | + | 1408.2014 | 1 | -1 | 22 | 0  | 22 | + | 1255.8541 | 0 | -1 |
| 10 | 0  | 10 | - | 1142.8058 |   | 3  | 14 | 6  | 8  | - | 1224.9695 | 1 | -1 | 17 | 14 | 4  | - | 1478.7980 | 1 | -1 | 20 | 12 | 8  | - | 1440.7885 | 1 | 0  | 22 | 1  | 21 | - | 1266.4776 |   | 0  |
| 10 | 0  | 10 | + | 1142.7840 | 1 | 2  | 14 | 6  | 8  | + | 1224.8047 |   | 1  | 17 | 14 | 4  | + | 1478.2399 | 1 | 0  | 20 | 12 | 8  | + | 1440.4001 | 1 | 1  | 22 | 1  | 21 | + | 1266.4094 |   | 0  |
| 10 | 1  | 9  | - | 1146.1932 | 2 | 0  | 14 | 7  | 7  | - | 1243.3337 | 1 | 0  | 17 | 15 | 3  | - | 1519.1743 | 1 | 0  | 20 | 13 | 7  | - | 1475.7673 | 1 | 0  | 22 | 2  | 20 | - | 1274.0502 | 2 | -2 |
| 10 | 1  | 9  | + | 1146.1370 | 2 | 1  | 14 | 7  | 7  | + | 1243.1291 | 1 | 0  | 17 | 15 | 3  | + | 1518.5451 | 1 | 1  | 20 | 13 | 7  | + | 1475.3251 | 1 | -1 | 22 | 2  | 20 | + | 1273.9356 | 1 | 0  |
| 10 | 2  | 8  | - | 1149.7515 | 1 | 0  | 14 | 8  | 6  | - | 1264.5060 | 1 | 1  | 17 | 16 | 2  | - | 1562.2188 | 1 | 0  | 20 | 14 | 6  | - | 1513.4572 | 1 | 0  | 22 | 3  | 19 | - | 1279.7305 | 1 | 0  |
| 10 | 2  | 8  | + | 1149.6846 | 1 | 0  | 14 | 8  | 6  | + | 1264.2558 | 1 | 0  | 17 | 16 | 2  | + | 1561.5138 | 1 | 0  | 20 | 14 | 6  | + | 1512.9575 | 1 | 0  | 22 | 3  | 19 | + | 1279.5975 | 1 | 0  |
| 10 | 3  | 7  | - | 1156.4053 | 4 | 1  | 14 | 9  | 5  | - | 1288.4711 | 1 | 1  | 17 | 17 | 1  | - | 1607.9092 | 0 | 0  | 20 | 15 | 5  | - | 1553.8379 | 1 | 0  | 22 | 4  | 18 | - | 1287.7373 | 2 | 0  |
| 10 | 3  | 7  | + | 1156.3258 | 3 | 0  | 14 | 9  | 5  | + | 1288.1692 | 1 | -1 | 17 | 17 | 1  | + | 1607.1244 | 1 | 0  | 20 | 15 | 5  | + | 1553.2767 | 1 | 0  | 22 | 4  | 18 | + | 1287.6067 | 2 | 1  |
| 10 | 4  | 6  | - | 1166.2673 | 2 | 1  | 14 | 10 | 4  | - | 1315.2137 | 1 | 0  | 18 | 0  | 18 | - | 1209.3982 | 1 | 0  | 20 | 16 | 4  | - | 1596.8880 | 1 | 0  | 22 | 5  | 17 | - | 1299.8206 | 0 | 0  |
| 10 | 4  | 6  | + | 1166.1598 | 1 | 1  | 14 | 10 | 4  | + | 1314.8547 | 2 | 0  | 18 | 0  | 18 | + | 1209.3777 | 2 | -1 | 20 | 16 | 4  | + | 1596.2613 |   | 0  | 22 | 5  | 17 | + | 1299.6812 |   | -1 |
| 10 | 5  | 5  | - | 1179.0048 | 2 | 1  | 14 | 11 | 3  | - | 1344.7184 | 3 | 1  | 18 | 1  | 17 | - | 1217.4663 | 1 | -4 | 20 | 17 | 3  | - | 1642.5851 | 1 | 0  | 22 | 6  | 16 | - | 1315.1638 |   | -1 |
| 10 | 5  | 5  | + | 1178.8595 | 1 | 0  | 14 | 11 | 3  | + | 1344.2963 | 0 | 0  | 18 | 1  | 17 | + | 1217.3972 | 1 | 3  | 20 | 17 | 3  | + | 1641.8890 | 1 | -1 | 22 | 6  | 16 | + | 1315.0055 |   | 0  |
| 10 | 6  | 4  | - | 1194.5720 | 1 | 0  | 14 | 12 | 2  | - | 1376.9682 | 1 | 1  | 18 | 2  | 16 | - | 1222.7559 | 2 | 1  | 20 | 18 | 2  | - | 1690.9061 | 0 | 0  | 22 | 7  | 15 | - | 1333.4302 | 1 | 0  |
| 10 | 6  | 4  | + | 1194.3805 | 1 | -1 | 14 | 12 | 2  | + | 1376.4777 |   | 0  | 18 | 2  | 16 | + | 1222.6520 | 1 | 0  | 20 | 18 | 2  | + | 1690.1370 | 1 | 0  | 22 | 7  | 15 | + | 1333.2473 | 2 | 1  |
| 10 | 7  | 3  | - | 1212.9545 | 1 | 0  | 14 | 13 | 1  | - | 1411.9453 | 1 | -1 | 18 | 3  | 15 | - | 1228.1911 | 1 | -1 | 20 | 19 | 1  | - | 1741.8266 | 2 | -3 | 22 | 8  | 14 | - | 1354.5451 | 2 | 0  |
| 10 | 7  | 3  | + | 1212.7087 | 1 | 0  | 14 | 13 | 1  | + | 1411.3811 | 1 | 0  | 18 | 3  | 15 | + | 1228.0813 | 0 | 0  | 20 | 19 | 1  | + | 1740.9809 | 2 | 0  | 22 | 8  | 14 | + | 1354.3332 | 1 | 1  |
| 22 | 9  | 13 | - | 1378.4757 | 1 | 0  | 24 | 17 | 7  | - | 1697.3629 | 2 | 1  | 26 | 23 | 3  | - | 2056.9938 | 1 | 1  | 28 | 23 | 5  | + | 2089.6235 |   | 0  | 30 | 22 | 8  | - | 2065.4151 |   | 1  |
| 22 | 9  | 13 | + | 1378.2305 | 1 | 0  | 24 | 17 | 7  | + | 1696.7493 | 3 | 2  | 26 | 23 | 3  | + | 2056.0191 | 1 | 0  | 28 | 24 | 4  | - | 2154.1296 | 1 | 0  | 30 | 22 | 8  | + | 2064.5988 | 2 | 0  |
| 22 | 10 | 12 | - | 1405.1985 | 1 | 0  | 24 | 18 | 6  | - | 1745.6979 | 2 | 0  | 26 | 24 | 2  | - | 2120.5612 | 0 | 1  | 28 | 24 | 4  | + | 2153.1353 |   | 1  | 30 | 23 | 7  | - | 2126.5419 |   | 1  |
| 22 | 10 | 12 | + | 1404.9160 | 2 | 1  | 24 | 18 | 6  | + | 1745.0222 | 1 | 0  | 26 | 24 | 2  | + | 2119.5111 | 0 | 0  | 28 | 25 | 3  | - | 2220.1546 | 1 | 1  | 30 | 24 | 6  | - | 2190.1403 |   | -1 |
| 22 | 11 | 11 | - | 1434.6931 | 2 | 1  | 24 | 19 | 5  | - | 1796.6344 | 0 | -1 | 26 | 25 | 1  | - | 2186.5701 |   | -1 | 28 | 25 | 3  | + | 2219.0869 |   | 1  | 30 | 24 | 6  | + | 2189.1939 |   | 1  |
| 22 | 11 | 11 | + | 1434.3692 | 0 | 0  | 24 | 19 | 5  | + | 1795.8933 | 1 | 0  | 26 | 25 | 1  | + | 2185.4419 | 2 | -1 | 28 | 26 | 2  | + | 2287.4493 |   | -3 | 30 | 25 | 5  | - | 2256.1825 | 2 | 1  |

Table C.5 – Continued.

| Ν  | Ka | Kc | J | Ε         | Δ | δ  | Ν  | Ka | Kc | J | Ε         | Δ | δ  | Ν  | Ka | Kc | J | Ε         | Δ | δ  | Ν  | Ka | Kc | J | Ε         | Δ | δ  | Ν  | Ka | Kc | J | Ε         | Δ | δ  |
|----|----|----|---|-----------|---|----|----|----|----|---|-----------|---|----|----|----|----|---|-----------|---|----|----|----|----|---|-----------|---|----|----|----|----|---|-----------|---|----|
|    | 1  |    |   | 2         | 3 | 4  |    | 1  | 1  |   | 2         | 3 | 4  |    | 1  |    |   | 2         | 3 | 4  |    | 1  |    |   | 2         | 3 | 4  |    | 1  |    |   | 2         | 3 | 4  |
| 22 | 12 | 10 | - | 1466.9399 | 1 | 0  | 24 | 20 | 4  | - | 1850.1474 | 1 | 0  | 26 | 26 | 0  | - | 2254.9922 | 2 | -1 | 28 | 27 | 1  | - | 2359.4167 |   | 1  | 30 | 25 | 5  | + | 2255.1671 | 1 | 2  |
| 22 | 12 | 10 | + | 1466.5709 | 1 | 0  | 24 | 20 | 4  | + | 1849.3376 | 1 | 0  | 26 | 26 | 0  | + | 2253.7829 |   | -2 | 28 | 27 | 1  | + | 2358.1944 |   | -1 | 30 | 26 | 4  | - | 2324.6393 | 4 | 1  |
| 22 | 13 | 9  | - | 1501.9196 | 1 | 1  | 24 | 21 | 3  | + | 1905.3294 | 2 | 1  | 27 | 1  | 27 | - | 1326.3743 | 1 | 0  | 28 | 28 | 0  | - | 2432.5951 |   | -1 | 30 | 27 | 3  | - | 2395.4819 |   | 3  |
| 22 | 13 | 9  | + | 1501.5015 | 0 | -1 | 24 | 22 | 2  | - | 1964.7984 | 2 | 0  | 27 | 1  | 27 | + | 1326.3555 | 2 | 0  | 28 | 28 | 0  | + | 2431.2919 |   | -3 | 31 | 1  | 31 | - | 1392.6970 | 1 | 0  |
| 22 | 14 | 8  | - | 1539.6120 | 2 | 1  | 24 | 22 | 2  | + | 1963.8421 | 1 | 0  | 27 | 2  | 26 | - | 1340.0537 | 0 | 0  | 29 | 1  | 29 | - | 1358.4324 | 1 | 1  | 31 | 1  | 31 | + | 1392.6785 | 1 | -1 |
| 22 | 14 | 8  | + | 1539.1410 | 3 | -3 | 24 | 23 | 1  | - | 2025.8830 | 3 | 1  | 27 | 2  | 26 | + | 1339.9892 | 2 | 2  | 29 | 1  | 29 | + | 1358.4137 | 1 | -1 | 31 | 2  | 30 | - | 1408.5902 | 0 | -1 |
| 22 | 15 | 7  | - | 1579.9964 | 1 | 0  | 24 | 23 | 1  | + | 2024.8487 | 3 | 0  | 27 | 3  | 25 | - | 1352.1681 | 1 | 0  | 29 | 2  | 28 | - | 1373.2158 | 1 | -2 | 31 | 2  | 30 | + | 1408.5256 | 1 | 1  |
| 22 | 15 | 7  | + | 1579.4695 | 1 | 1  | 24 | 24 | 0  | - | 2089.4367 |   | 1  | 27 | 3  | 25 | + | 1352.0629 | 0 | 0  | 29 | 2  | 28 | + | 1373.1513 | 0 | 1  | 31 | 3  | 29 | - | 1422.7454 | 1 | 3  |
| 22 | 16 | 6  | - | 1623.0514 | 1 | 1  | 24 | 24 | 0  | + | 2088.3215 | 2 | -1 | 27 | 4  | 24 | - | 1363.6620 | 2 | 1  | 29 | 3  | 27 | - | 1386.3276 | 1 | 0  | 31 | 3  | 29 | + | 1422.6369 |   | 0  |
| 22 | 16 | 6  | + | 1622.4641 | 3 | -1 | 25 | 1  | 25 | - | 1296.5239 | 1 | 0  | 27 | 4  | 24 | + | 1363.5277 | 2 | -2 | 29 | 3  | 27 | + | 1386.2208 | 0 | 1  | 31 | 4  | 28 | - | 1435.6082 | 2 | 1  |
| 22 | 17 | 5  | - | 1668.7542 |   | 0  | 25 | 1  | 25 | + | 1296.5049 | 1 | 0  | 27 | 5  | 23 | - | 1376.3371 |   | 0  | 29 | 4  | 26 | - | 1398.4513 | 2 | 1  | 31 | 4  | 28 | + | 1435.4651 | 2 | -1 |
| 22 | 17 | 5  | + | 1668.1034 | 3 | -1 | 25 | 2  | 24 | - | 1309.1090 | 1 | -2 | 27 | 5  | 23 | + | 1376.1852 | 3 | -1 | 29 | 4  | 26 | + | 1398.3123 | 1 | -2 | 31 | 5  | 27 | - | 1448.7089 |   | 1  |
| 22 | 18 | 4  | - | 1717.0819 | 2 | 1  | 25 | 2  | 24 | + | 1309.0449 | 2 | 1  | 27 | 6  | 22 | - | 1391.5485 | 1 | 1  | 29 | 5  | 25 | - | 1411.2915 | 3 | 2  | 31 | 5  | 27 | + | 1448.5441 |   | 0  |
| 22 | 18 | 4  | + | 1716.3639 | 1 | 0  | 25 | 3  | 23 | - | 1320.2881 | 2 | 0  | 27 | 6  | 22 | + | 1391.3808 | 1 | 0  | 29 | 5  | 25 | + | 1411.1329 | 1 | -1 | 31 | 6  | 26 | - | 1463.8153 | 1 | 3  |
| 22 | 19 | 3  | - | 1768.0099 | 1 | 0  | 25 | 3  | 23 | + | 1320.1851 | 0 | -1 | 27 | 7  | 21 | - | 1409.6754 |   | 0  | 29 | 6  | 24 | - | 1426.4393 | 2 | 0  | 31 | 6  | 26 | + | 1463.6359 |   | 0  |
| 22 | 19 | 3  | + | 1767.2214 |   | 1  | 25 | 4  | 22 | - | 1331.2677 | 3 | 1  | 27 | 7  | 21 | + | 1409.4889 |   | 0  | 29 | 6  | 24 | + | 1426.2661 | 3 | -1 | 31 | 7  | 25 | - | 1481.7703 | 2 | 0  |
| 22 | 20 | 2  | - | 1821.5135 | 0 | 0  | 25 | 4  | 22 | + | 1331.1385 | 3 | -1 | 27 | 8  | 20 | - | 1430.7027 | 0 | 0  | 29 | 7  | 23 | - | 1444.4865 | 2 | -1 | 31 | 7  | 25 | + | 1481.5758 | 1 | 0  |
| 22 | 20 | 2  | + | 1820.6509 | 1 | 0  | 25 | 5  | 21 | - | 1343.8559 | 2 | 0  | 27 | 8  | 20 | + | 1430.4932 | 1 | 0  | 29 | 7  | 23 | + | 1444.2966 | 2 | 1  | 31 | 8  | 24 | - | 1502.6791 |   | 1  |
| 22 | 21 | 1  | - | 1877.5670 |   | 0  | 25 | 5  | 21 | + | 1343.7099 |   | 0  | 27 | 9  | 19 | 1 | 1454.5797 | 1 | 0  | 29 | 8  | 22 | 1 | 1465.4609 | 1 | 0  | 31 | 8  | 24 | + | 1502.4656 |   | 1  |
| 22 | 21 | 1  | + | 1876.6270 | 2 | 1  | 25 | 6  | 20 | - | 1359.1382 | 2 | 0  | 27 | 9  | 19 | + | 1454.3435 | 1 | 0  | 29 | 8  | 22 | + | 1465.2499 | 2 | 0  | 31 | 9  | 23 | - | 1526.4814 |   | 0  |
| 22 | 22 | 0  | - | 1936.1437 |   | -1 | 25 | 6  | 20 | + | 1358.9752 | 1 | 1  | 27 | 10 | 18 | - | 1481.2706 |   | 4  | 29 | 9  | 21 | - | 1489.3051 | 2 | 2  | 31 | 9  | 23 | + | 1526.2453 | 0 | 0  |
| 22 | 22 | 0  | + | 1935.1230 |   | 0  | 25 | 7  | 19 | - | 1377.3312 | 1 | -2 | 27 | 10 | 18 | + | 1481.0038 | 1 | 0  | 29 | 9  | 21 | + | 1489.0693 | 0 | 0  | 31 | 10 | 22 | - | 1553.1253 | 0 | 0  |
| 23 | 1  | 23 | - | 1268.8823 | 1 | 0  | 25 | 7  | 19 | + | 1377.1474 | 1 | 1  | 27 | 11 | 17 | - | 1510.7466 | 3 | -2 | 29 | 10 | 20 | - | 1515.9749 | 1 | 0  | 31 | 10 | 22 | + | 1552.8631 | 0 | 0  |
| 23 | 1  | 23 | + | 1268.8631 | 1 | 0  | 25 | 8  | 18 | - | 1398.4005 | 4 | 0  | 27 | 11 | 17 | + | 1510.4467 | 1 | 0  | 29 | 10 | 20 | + | 1515.7113 | 1 | -1 | 31 | 11 | 21 | - | 1582.5736 | 1 | 0  |
| 23 | 2  | 22 | - | 1280.3905 |   | 0  | 25 | 8  | 18 | + | 1398.1913 | 1 | 0  | 27 | 12 | 16 | - | 1542.9859 | 2 | 1  | 29 | 11 | 19 | - | 1545.4393 | 1 | 0  | 31 | 11 | 21 | + | 1582.2824 | 2 | 1  |
| 23 | 2  | 22 | + | 1280.3267 | 1 | 1  | 25 | 9  | 17 | - | 1422.3034 | 1 | 0  | 27 | 12 | 16 | + | 1542.6488 |   | 1  | 29 | 11 | 19 | + | 1545.1444 | 1 | 0  | 31 | 12 | 20 | - | 1614.7971 | 2 | 0  |
| 23 | 3  | 21 | - | 1290.7122 | 1 | 1  | 25 | 9  | 17 | + | 1422.0650 | 1 | 0  | 27 | 13 | 15 | - | 1577.9651 |   | 0  | 29 | 12 | 18 | - | 1577.6717 | 0 | -1 | 31 | 12 | 20 | + | 1614.4736 | 1 | 0  |
| 23 | 3  | 21 | + | 1290.6120 | 1 | -1 | 25 | 10 | 16 | - | 1449.0093 |   | -4 | 27 | 13 | 15 | + | 1577.5877 | 3 | -1 | 29 | 12 | 18 | + | 1577.3427 | 2 | 1  | 31 | 13 | 19 | - | 1649.7702 | 2 | 0  |
| 23 | 4  | 20 | - | 1301.2925 | 3 | 1  | 25 | 11 | 15 | - | 1478.4953 | 1 | 0  | 27 | 14 | 14 | - | 1615.6629 | 2 | -1 | 29 | 13 | 17 | - | 1612.6489 |   | 0  | 31 | 13 | 19 | + | 1649.4116 | 2 | -1 |

Table C.5 – Continued.

| Ν  | Ka | Kc | J | Ε         | Δ | δ  | Ν  | Ka | Kc | J | Ε         | Δ | δ  | Ν  | Ka | Kc | J | Ε         | Δ | δ  | Ν  | Ka | Kc | J | Ε         | Δ | δ  | Ν  | Ka | Kc | J | Ε         | Δ | δ  |
|----|----|----|---|-----------|---|----|----|----|----|---|-----------|---|----|----|----|----|---|-----------|---|----|----|----|----|---|-----------|---|----|----|----|----|---|-----------|---|----|
|    | 1  |    |   | 2         | 3 | 4  |    | 1  | 1  |   | 2         | 3 | 4  |    | 1  |    |   | 2         | 3 | 4  |    | 1  |    |   | 2         | 3 | 4  |    | 1  |    |   | 2         | 3 | 4  |
| 23 | 4  | 20 | + | 1301.1686 | 4 | -2 | 25 | 11 | 15 | + | 1478.1878 | 3 | 0  | 27 | 14 | 14 | + | 1615.2423 | 2 | 0  | 29 | 13 | 17 | + | 1612.2822 | 1 | 0  | 31 | 14 | 18 | - | 1687.4691 | 1 | 0  |
| 23 | 5  | 19 | - | 1313.8522 | 2 | 0  | 25 | 12 | 14 | - | 1510.7386 | 0 | 0  | 27 | 15 | 13 | - | 1656.0578 | 3 | 2  | 29 | 14 | 16 | - | 1650.3479 | 0 | 0  | 31 | 14 | 18 | + | 1687.0727 | 3 | 0  |
| 23 | 5  | 19 | + | 1313.7114 | 2 | -1 | 25 | 12 | 14 | + | 1510.3913 | 2 | 1  | 27 | 15 | 13 | + | 1655.5905 | 1 | 2  | 29 | 14 | 16 | + | 1649.9407 | 3 | 1  | 31 | 15 | 17 | - | 1727.8704 | 1 | 0  |
| 23 | 6  | 18 | - | 1329.2033 | 5 | 1  | 25 | 13 | 13 | - | 1545.7189 | 4 | 2  | 27 | 16 | 12 | - | 1699.1266 | 3 | 0  | 29 | 15 | 15 | - | 1690.7461 |   | 0  | 31 | 15 | 17 | + | 1727.4332 |   | 0  |
| 23 | 6  | 18 | + | 1329.0437 | 2 | 1  | 25 | 13 | 13 | + | 1545.3281 |   | 1  | 27 | 16 | 12 | + | 1698.6096 | 0 | 0  | 29 | 15 | 15 | + | 1690.2955 | 1 | 1  | 31 | 16 | 16 | - | 1770.9503 |   | -4 |
| 23 | 7  | 17 | - | 1347.4493 | 0 | 0  | 25 | 14 | 12 | - | 1583.4151 |   | 3  | 27 | 17 | 11 | - | 1744.8468 | 1 | 0  | 29 | 16 | 14 | - | 1733.8209 | 0 | 0  | 31 | 16 | 16 | + | 1770.4701 | 3 | 2  |
| 23 | 7  | 17 | + | 1347.2664 | 0 | 0  | 25 | 14 | 12 | + | 1582.9774 |   | 1  | 27 | 17 | 11 | + | 1744.2769 | 7 | -2 | 29 | 16 | 14 | + | 1733.3237 | 3 | 0  | 31 | 17 | 15 | - | 1816.6861 | 1 | 0  |
| 23 | 8  | 16 | - | 1368.5512 | 1 | 1  | 25 | 15 | 11 | - | 1623.8054 | 2 | 0  | 27 | 18 | 10 | - | 1793.1946 | 2 | 0  | 29 | 17 | 13 | - | 1779.5486 | 2 | 0  | 31 | 17 | 15 | + | 1816.1590 | 1 | 0  |
| 23 | 8  | 16 | + | 1368.3405 | 2 | 1  | 25 | 15 | 11 | + | 1623.3178 | 2 | 0  | 27 | 18 | 10 | + | 1792.5691 | 1 | 0  | 29 | 17 | 13 | + | 1779.0021 | 3 | -1 | 31 | 19 | 13 | - | 1916.0245 | 1 | -1 |
| 23 | 9  | 15 | - | 1392.4737 | 1 | 0  | 25 | 16 | 10 | - | 1666.8687 | 1 | 2  | 27 | 19 | 9  | - | 1844.1459 |   | 4  | 29 | 18 | 12 | - | 1827.9054 |   | -1 | 31 | 19 | 13 | + | 1915.3968 | 2 | -1 |
| 23 | 9  | 15 | + | 1392.2313 | 1 | 0  | 25 | 16 | 10 | + | 1666.3274 | 3 | -1 | 27 | 19 | 9  | + | 1843.4613 | 0 | 0  | 29 | 18 | 12 | + | 1827.3069 | 2 | 0  | 31 | 20 | 12 | - | 1969.5773 |   | 0  |
| 23 | 10 | 14 | - | 1419.1917 | 1 | -1 | 25 | 17 | 9  | - | 1712.5814 | 2 | -1 | 27 | 20 | 8  | - | 1897.6741 | 2 | -1 | 29 | 19 | 11 | - | 1878.8668 |   | 0  | 31 | 20 | 12 | + | 1968.8953 | 2 | 0  |
| 23 | 10 | 14 | + | 1418.9138 | 1 | 1  | 25 | 17 | 9  | + | 1711.9839 | 1 | 1  | 27 | 20 | 8  | + | 1896.9283 | 1 | 0  | 29 | 19 | 11 | + | 1878.2132 | 0 | 0  | 31 | 21 | 11 | - | 2025.6845 |   | 1  |
| 23 | 11 | 13 | - | 1448.6839 | 2 | 0  | 25 | 18 | 8  | - | 1760.9207 | 1 | 0  | 27 | 21 | 7  | - | 1953.7548 |   | -1 | 29 | 20 | 10 | - | 1932.4072 | 1 | 0  | 31 | 21 | 11 | + | 2024.9456 | 1 | 2  |
| 23 | 11 | 13 | + | 1448.3662 | 2 | -1 | 25 | 18 | 8  | + | 1760.2632 | 1 | 0  | 27 | 21 | 7  | + | 1952.9445 | 2 | 1  | 29 | 20 | 10 | + | 1931.6958 | 1 | 0  | 31 | 22 | 10 | - | 2084.3195 |   | 5  |
| 23 | 12 | 12 | - | 1480.9300 | 2 | 1  | 25 | 19 | 7  | - | 1811.8618 | 1 | 0  | 27 | 22 | 6  | - | 2012.3611 | 2 | 1  | 29 | 21 | 9  | - | 1988.5007 | 1 | 0  | 31 | 22 | 10 | + | 2083.5206 | 2 | 1  |
| 23 | 12 | 12 | + | 1480.5690 | 1 | 0  | 25 | 19 | 7  | + | 1811.1413 | 0 | 0  | 27 | 22 | 6  | + | 2011.4832 | 1 | 1  | 29 | 22 | 8  | - | 2047.1206 | 0 | 1  | 31 | 23 | 9  | - | 2145.4538 | 2 | 0  |
| 23 | 13 | 11 | - | 1515.9099 |   | 1  | 25 | 20 | 6  | - | 1865.3802 |   | 5  | 27 | 23 | 5  | - | 2073.4653 | 1 | 0  | 29 | 23 | 7  | - | 2108.2396 | 0 | 1  | 31 | 23 | 9  | + | 2144.5932 |   | -1 |
| 23 | 13 | 11 | + | 1515.5021 | 2 | 0  | 25 | 20 | 6  | + | 1864.5931 | 2 | 0  | 27 | 23 | 5  | + | 2072.5171 | 2 | 0  | 29 | 23 | 7  | + | 2107.3384 | 1 | 0  | 31 | 24 | 8  | - | 2209.0611 | 1 | 1  |
| 23 | 14 | 10 | - | 1553.6035 | 1 | 0  | 25 | 21 | 5  | + | 1920.5928 | 1 | 0  | 27 | 24 | 4  | - | 2137.0403 | 2 | 3  | 29 | 24 | 6  | - | 2171.8299 | 1 | 1  | 31 | 24 | 8  | + | 2208.1360 | 1 | 1  |
| 23 | 14 | 10 | + | 1553.1452 | 0 | 0  | 25 | 22 | 4  | - | 1980.0425 |   | 4  | 27 | 24 | 4  | + | 2136.0189 | 2 | 1  | 29 | 24 | 6  | + | 2170.8604 | 1 | 2  | 31 | 25 | 7  | - | 2275.1120 | 3 | -1 |
| 23 | 15 | 9  | - | 1593.9900 | 2 | 0  | 25 | 22 | 4  | + | 1979.1142 |   | 1  | 27 | 25 | 3  | - | 2203.0563 |   | -5 | 29 | 25 | 5  | - | 2237.8630 | 5 | -2 | 31 | 25 | 7  | + | 2274.1200 | 1 | 0  |
| 23 | 15 | 9  | + | 1593.4775 | 1 | 0  | 25 | 23 | 3  | - | 2041.1329 |   | 1  | 27 | 25 | 3  | + | 2201.9598 | 1 | -1 | 29 | 25 | 5  | + | 2236.8226 | 1 | 1  | 31 | 26 | 6  | - | 2343.5785 |   | 0  |
| 23 | 16 | 8  | - | 1637.0476 | 1 | 0  | 25 | 24 | 2  | - | 2104.6931 | 1 | -1 | 27 | 26 | 2  | - | 2271.4872 | 2 | 2  | 29 | 26 | 4  | - | 2306.3103 |   | -4 | 31 | 26 | 6  | + | 2342.5170 | 0 | 0  |
| 23 | 16 | 8  | + | 1636.4771 |   | -3 | 25 | 24 | 2  | + | 2103.6120 |   | 0  | 27 | 26 | 2  | + | 2270.3118 |   | 0  | 29 | 27 | 3  | + | 2375.9529 |   | -1 | 31 | 27 | 5  | - | 2414.4312 |   | 3  |
| 23 | 17 | 7  | - | 1682.7536 | 1 | -1 | 25 | 25 | 1  | - | 2170.6947 |   | -2 | 27 | 27 | 1  | - | 2342.3016 |   | 1  | 29 | 27 | 3  | - | 2377.1432 | 3 | -2 | 31 | 27 | 5  | + | 2413.2980 |   | 5  |
| 23 | 17 | 7  | + | 1682.1224 | 1 | 0  | 25 | 25 | 1  | + | 2169.5328 |   | -1 | 27 | 27 | 1  | + | 2341.0453 | 2 | -1 | 29 | 28 | 2  | + | 2449.0624 |   | -3 | 32 | 0  | 32 | - | 1410.6558 | 0 | 0  |
| 23 | 18 | 6  | - | 1731.0848 | 2 | -1 | 26 | 0  | 26 | - | 1311.1685 | 1 | 0  | 28 | 0  | 28 | - | 1342.1251 | 1 | 1  | 29 | 28 | 2  | - | 2450.3317 | 2 | 0  | 32 | 0  | 32 | + | 1410.6374 | 1 | -1 |
| 23 | 18 | 6  | + | 1730.3889 | 2 | -2 | 26 | 0  | 26 | + | 1311.1495 | 1 | 0  | 28 | 0  | 28 | + | 1342.1063 | 1 | 0  | 29 | 29 | 1  | + | 2524.4956 |   | -4 | 32 | 1  | 31 | - | 1427.0804 |   | -1 |

Table C.5 – Continued.

| Ν  | Ka | Kc | J | Ε         | Δ | δ  | Ν  | Ka | Kc | J | Ε         | Δ | δ  | Ν  | Ka | Kc | J | Ε         | Δ | δ  | Ν  | Ka | Kc | J | Ε         | Δ | δ  | Ν  | Ka | Kc | J | Ε         | Δ | δ  |
|----|----|----|---|-----------|---|----|----|----|----|---|-----------|---|----|----|----|----|---|-----------|---|----|----|----|----|---|-----------|---|----|----|----|----|---|-----------|---|----|
|    | 1  |    |   | 2         | 3 | 4  |    | 1  |    |   | 2         | 3 | 4  |    | 1  |    |   | 2         | 3 | 4  |    | 1  |    |   | 2         | 3 | 4  |    | 1  |    |   | 2         | 3 | 4  |
| 23 | 19 | 5  | - | 1782.0171 | 3 | 0  | 26 | 1  | 25 | - | 1324.1644 |   | 1  | 28 | 1  | 27 | - | 1356.2777 | 2 | -1 | 30 | 0  | 30 | - | 1375.2878 | 1 | 1  | 32 | 1  | 31 | + | 1427.0153 |   | 0  |
| 23 | 19 | 5  | + | 1781.2533 | 2 | 0  | 26 | 1  | 25 | + | 1324.0979 | 1 | 1  | 28 | 1  | 27 | + | 1356.2120 | 1 | 1  | 30 | 0  | 30 | + | 1375.2691 | 1 | -1 | 32 | 2  | 30 | - | 1441.3950 | 1 | -2 |
| 23 | 20 | 4  | - | 1835.5253 | 2 | 1  | 26 | 2  | 24 | - | 1334.4887 | 4 | -2 | 28 | 2  | 26 | - | 1367.9819 | 3 | 0  | 30 | 1  | 29 | - | 1390.5815 | 1 | -1 | 32 | 2  | 30 | + | 1441.2816 | 1 | 0  |
| 23 | 20 | 4  | + | 1834.6902 | 1 | 0  | 26 | 2  | 24 | + | 1334.3723 | 1 | 4  | 28 | 2  | 26 | + | 1367.8660 | 3 | 3  | 30 | 1  | 29 | + | 1390.5161 | 1 | 0  | 32 | 3  | 29 | - | 1452.3066 |   | 0  |
| 23 | 21 | 3  | - | 1891.5839 |   | 4  | 26 | 3  | 23 | - | 1341.5359 |   | -1 | 28 | 3  | 25 | - | 1376.1310 | 3 | -1 | 30 | 2  | 28 | - | 1403.6177 |   | -2 | 32 | 3  | 29 | + | 1452.1415 |   | 0  |
| 23 | 21 | 3  | + | 1890.6741 |   | 1  | 26 | 3  | 23 | + | 1341.3841 | 2 | 1  | 28 | 3  | 25 | + | 1375.9726 |   | 0  | 30 | 2  | 28 | + | 1403.5032 |   | 2  | 32 | 4  | 28 | - | 1460.1654 | 1 | 0  |
| 23 | 22 | 2  | - | 1950.1655 | 2 | 0  | 26 | 4  | 22 | - | 1348.7689 |   | 0  | 28 | 4  | 24 | - | 1383.2747 | 2 | 0  | 30 | 3  | 27 | - | 1413.0825 | 2 | 0  | 32 | 4  | 28 | + | 1459.9738 | 0 | 0  |
| 23 | 22 | 2  | + | 1949.1784 |   | 0  | 26 | 4  | 22 | + | 1348.6141 | 3 | -1 | 28 | 4  | 24 | + | 1383.1070 | 0 | 0  | 30 | 3  | 27 | + | 1412.9196 | 2 | 0  | 32 | 5  | 27 | - | 1469.5771 | 1 | 0  |
| 23 | 23 | 1  | - | 2011.2439 |   | -2 | 26 | 5  | 21 | - | 1359.9862 | 5 | -1 | 28 | 5  | 23 | - | 1393.8977 | 1 | 0  | 30 | 4  | 26 | - | 1420.4232 |   | -1 | 32 | 5  | 27 | + | 1469.3907 | 1 | 0  |
| 23 | 23 | 1  | + | 2010.1761 |   | -1 | 26 | 5  | 21 | + | 1359.8332 | 2 | -1 | 28 | 5  | 23 | + | 1393.7352 |   | -1 | 30 | 4  | 26 | + | 1420.2430 |   | 0  | 32 | 6  | 26 | - | 1483.5800 |   | 0  |
| 24 | 0  | 24 | - | 1282.4181 | 1 | 0  | 26 | 6  | 20 | - | 1375.0471 | 1 | 0  | 28 | 6  | 22 | - | 1408.7154 | 1 | 0  | 30 | 5  | 25 | - | 1430.4137 | 0 | 0  | 32 | 6  | 26 | + | 1483.3947 | 2 | 0  |
| 24 | 0  | 24 | + | 1282.3988 | 1 | -1 | 26 | 6  | 20 | + | 1374.8815 | 0 | 0  | 28 | 6  | 22 | + | 1408.5444 | 3 | 0  | 30 | 5  | 25 | + | 1430.2401 | 1 | 0  | 32 | 7  | 25 | - | 1501.3514 | 0 | 0  |
| 24 | 1  | 23 | - | 1294.2338 |   | -1 | 26 | 7  | 19 | - | 1393.1961 | 4 | 2  | 28 | 7  | 21 | - | 1426.7735 |   | -5 | 30 | 6  | 24 | - | 1444.8867 | 3 | 3  | 32 | 7  | 25 | + | 1501.1542 | 1 | 1  |
| 24 | 1  | 23 | + | 1294.1667 | 2 | 1  | 26 | 7  | 19 | + | 1393.0107 |   | 0  | 28 | 7  | 21 | + | 1426.5858 | 1 | 1  | 30 | 6  | 24 | + | 1444.7089 | 2 | 0  | 32 | 8  | 24 | - | 1522.2124 |   | 1  |
| 24 | 2  | 22 | - | 1303.1617 | 2 | -2 | 26 | 8  | 18 | - | 1414.2448 | 2 | 0  | 28 | 8  | 20 | - | 1447.7746 | 1 | 0  | 30 | 7  | 23 | - | 1462.8232 | 1 | -1 | 32 | 8  | 24 | + | 1521.9972 | 2 | 0  |
| 24 | 2  | 22 | + | 1303.0453 | 2 | 1  | 26 | 8  | 18 | + | 1414.0357 | 1 | 1  | 28 | 8  | 20 | + | 1447.5645 | 1 | 0  | 30 | 7  | 23 | + | 1462.6311 | 1 | 0  | 32 | 9  | 23 | - | 1545.9899 | 2 | 0  |
| 24 | 3  | 21 | - | 1309.3781 | 2 | 0  | 26 | 9  | 17 | - | 1438.1356 |   | 0  | 28 | 9  | 19 | - | 1471.6361 | 1 | 1  | 30 | 8  | 22 | - | 1483.7625 | 0 | 1  | 32 | 9  | 23 | + | 1545.7530 | 1 | 0  |
| 24 | 3  | 21 | + | 1309.2348 |   | 0  | 26 | 9  | 17 | + | 1437.8985 | 2 | 0  | 28 | 9  | 19 | + | 1471.4003 | 1 | 0  | 30 | 8  | 22 | + | 1483.5503 | 1 | 0  | 32 | 10 | 22 | - | 1572.6183 |   | 1  |
| 24 | 4  | 20 | - | 1316.9266 | 1 | -1 | 26 | 10 | 16 | - | 1464.8342 |   | -3 | 28 | 10 | 18 | - | 1498.3170 | 0 | 0  | 30 | 9  | 21 | - | 1507.5867 | 1 | 1  | 32 | 10 | 22 | + | 1572.3563 | 2 | 1  |
| 24 | 4  | 20 | + | 1316.7847 | 2 | 1  | 26 | 10 | 16 | + | 1464.5659 | 2 | -1 | 28 | 10 | 18 | + | 1498.0522 | 1 | 0  | 30 | 9  | 21 | + | 1507.3509 | 1 | 0  | 32 | 11 | 21 | - | 1602.0568 | 0 | 0  |
| 24 | 5  | 19 | - | 1328.6385 | 0 | 0  | 26 | 11 | 15 | - | 1494.3159 | 3 | -1 | 28 | 11 | 17 | - | 1527.7879 | 2 | 0  | 30 | 10 | 20 | - | 1534.2443 | 1 | 0  | 32 | 11 | 21 | + | 1601.7667 | 1 | 0  |
| 24 | 5  | 19 | + | 1328.4931 | 1 | 0  | 26 | 11 | 15 | + | 1494.0125 | 1 | 0  | 28 | 12 | 16 | - | 1560.0239 |   | 0  | 30 | 10 | 20 | + | 1533.9815 | 1 | -1 | 32 | 12 | 20 | - | 1634.2746 | 1 | 0  |
| 24 | 6  | 18 | - | 1343.8670 |   | 0  | 26 | 12 | 14 | - | 1526.5573 | 3 | -1 | 28 | 12 | 16 | + | 1559.6910 | 1 | 0  | 30 | 11 | 19 | - | 1563.7011 | 1 | 0  | 32 | 12 | 20 | + | 1633.9533 | 2 | -1 |
| 24 | 6  | 18 | + | 1343.7056 | 2 | -1 | 26 | 12 | 14 | + | 1526.2156 |   | 1  | 28 | 13 | 15 | - | 1595.0023 |   | 0  | 30 | 11 | 19 | + | 1563.4083 | 1 | 0  | 32 | 13 | 19 | - | 1669.2449 | 2 | -1 |
| 24 | 7  | 17 | - | 1362.0831 | 1 | 0  | 26 | 13 | 13 | - | 1561.5372 | 0 | 0  | 28 | 13 | 15 | + | 1594.6306 |   | 0  | 30 | 12 | 18 | - | 1595.9294 | 2 | -1 | 32 | 13 | 19 | + | 1668.8900 | 2 | 2  |
| 24 | 7  | 17 | + | 1361.8997 | 2 | 0  | 26 | 13 | 13 | + | 1561.1535 | 1 | -1 | 28 | 14 | 14 | - | 1632.7009 | 1 | 0  | 30 | 12 | 18 | + | 1595.6034 | 2 | 0  | 32 | 14 | 18 | - | 1706.9432 | 2 | -1 |
| 24 | 8  | 16 | - | 1383.1694 | 1 | 0  | 26 | 14 | 12 | - | 1599.2343 | 1 | 0  | 28 | 14 | 14 | + | 1632.2872 | 2 | 0  | 30 | 13 | 17 | - | 1630.9048 |   | -1 | 32 | 14 | 18 | + | 1706.5514 | 2 | 0  |
| 24 | 8  | 16 | + | 1382.9597 | 1 | 0  | 26 | 14 | 12 | + | 1598.8058 | 0 | 2  | 28 | 15 | 13 | - | 1673.0973 | 0 | -1 | 30 | 13 | 17 | + | 1630.5426 | 1 | 1  | 32 | 15 | 17 | - | 1747.3456 |   | -2 |
| 24 | 9  | 15 | - | 1407.0829 |   | 1  | 26 | 15 | 11 | - | 1639.6272 |   | 3  | 28 | 15 | 13 | + | 1672.6388 | 1 | 0  | 30 | 14 | 16 | - | 1668.6039 | 1 | -1 | 32 | 15 | 17 | + | 1746.9146 | 2 | 2  |

Table C.5 – Continued.

| Ν  | Ka | Kc | J | Ε         | Δ | δ  | Ν  | Ka | Kc | J | Ε         | Δ | δ  | Ν  | Ka | Kc | J | Ε         | Δ | δ  | Ν  | Ka | Kc | J | Ε         | Δ | δ  | Ν  | Ka | Kc | J | Ε         | Δ | δ  |
|----|----|----|---|-----------|---|----|----|----|----|---|-----------|---|----|----|----|----|---|-----------|---|----|----|----|----|---|-----------|---|----|----|----|----|---|-----------|---|----|
|    | 1  |    |   | 2         | 3 | 4  |    | 1  | 1  |   | 2         | 3 | 4  |    | 1  |    |   | 2         | 3 | 4  |    | 1  |    |   | 2         | 3 | 4  |    | 1  |    |   | 2         | 3 | 4  |
| 24 | 9  | 15 | + | 1406.8432 |   | 5  | 26 | 15 | 11 | + | 1639.1498 | 1 | -2 | 28 | 16 | 12 | - | 1716.1693 |   | 1  | 30 | 14 | 16 | + | 1668.2026 | 3 | 2  | 32 | 16 | 16 | - | 1790.4286 |   | -1 |
| 24 | 10 | 14 | - | 1433.7955 | 2 | 0  | 26 | 16 | 10 | - | 1682.6929 | 0 | 0  | 28 | 16 | 12 | + | 1715.6625 |   | -1 | 30 | 15 | 15 | - | 1709.0038 |   | 0  | 32 | 16 | 16 | + | 1789.9550 | 6 | 0  |
| 24 | 10 | 14 | + | 1433.5213 | 2 | 1  | 26 | 16 | 10 | + | 1682.1645 | 1 | 0  | 28 | 17 | 11 | - | 1761.8932 | 1 | 0  | 30 | 15 | 15 | + | 1708.5600 | 1 | -2 | 32 | 17 | 15 | - | 1836.1679 | 4 | 1  |
| 24 | 11 | 13 | - | 1463.2846 | 0 | 0  | 26 | 17 | 9  | - | 1728.4096 |   | 1  | 28 | 17 | 11 | + | 1761.3357 | 0 | 1  | 30 | 16 | 14 | - | 1752.0814 | 2 | 0  | 32 | 17 | 15 | + | 1835.6494 | 3 | 1  |
| 24 | 11 | 13 | + | 1462.9725 | 1 | 1  | 26 | 17 | 9  | + | 1727.8265 | 1 | 0  | 28 | 18 | 10 | - | 1810.2452 | 2 | -3 | 30 | 16 | 14 | + | 1751.5928 | 1 | 0  | 32 | 19 | 13 | - | 1935.5169 |   | 1  |
| 24 | 12 | 12 | - | 1495.5295 | 2 | 1  | 26 | 18 | 8  | - | 1776.7529 | 1 | 0  | 28 | 18 | 10 | + | 1809.6339 | 2 | -1 | 30 | 17 | 13 | - | 1797.8130 | 1 | 0  | 32 | 19 | 13 | + | 1934.9004 | 1 | -1 |
| 24 | 12 | 12 | + | 1495.1757 | 3 | 0  | 26 | 18 | 8  | + | 1776.1121 | 1 | -1 | 28 | 19 | 9  | - | 1861.2014 | 0 | -1 | 30 | 17 | 13 | + | 1797.2766 | 1 | 0  | 32 | 20 | 12 | - | 1989.0759 | 3 | 0  |
| 24 | 13 | 11 | - | 1530.5096 | 1 | 0  | 26 | 19 | 7  | - | 1827.6988 | 0 | 0  | 28 | 19 | 9  | + | 1860.5331 | 3 | -1 | 30 | 18 | 12 | - | 1846.1743 | 2 | -2 | 32 | 20 | 12 | + | 1988.4069 | 3 | 0  |
| 24 | 13 | 11 | + | 1530.1109 | 2 | 1  | 26 | 19 | 7  | + | 1826.9973 |   | 0  | 28 | 20 | 8  | - | 1914.7359 | 1 | -1 | 30 | 18 | 12 | + | 1845.5877 | 5 | 0  | 32 | 21 | 11 | - | 2045.1903 |   | 3  |
| 24 | 14 | 10 | - | 1568.2045 | 0 | 0  | 26 | 20 | 6  | - | 1881.2221 | 2 | 0  | 28 | 20 | 8  | + | 1914.0081 | 1 | 1  | 30 | 19 | 11 | - | 1897.1412 | 1 | -1 | 32 | 21 | 11 | + | 2044.4655 |   | -2 |
| 24 | 14 | 10 | + | 1567.7572 | 0 | 1  | 26 | 20 | 6  | + | 1880.4567 | 1 | 0  | 28 | 21 | 7  | - | 1970.8231 |   | 1  | 30 | 19 | 11 | + | 1896.5009 | 1 | -2 | 32 | 22 | 10 | - | 2103.8325 | 1 | 2  |
| 24 | 15 | 9  | - | 1608.5930 | 1 | 0  | 26 | 21 | 5  | - | 1937.2967 | 2 | 0  | 28 | 21 | 7  | + | 1970.0326 | 1 | 1  | 30 | 20 | 10 | - | 1950.6877 |   | 0  | 32 | 22 | 10 | + | 2103.0503 | 0 | 0  |
| 24 | 15 | 9  | + | 1608.0936 | 1 | 0  | 26 | 21 | 5  | + | 1936.4646 | 1 | 1  | 28 | 22 | 6  | - | 2029.4358 |   | 0  | 30 | 20 | 10 | + | 1949.9914 | 4 | -2 | 32 | 23 | 9  | - | 2164.9758 | 4 | 3  |
| 24 | 16 | 8  | - | 1651.6532 | 1 | -1 | 26 | 22 | 4  | - | 1995.8963 | 2 | 0  | 28 | 22 | 6  | + | 2028.5801 | 1 | 0  | 30 | 21 | 9  | - | 2006.7879 |   | 0  | 32 | 23 | 9  | + | 2164.1330 |   | -1 |
| 24 | 16 | 8  | + | 1651.0986 | 0 | 1  | 26 | 22 | 4  | + | 1994.9945 | 0 | 1  | 28 | 23 | 5  | - | 2090.5470 |   | -3 | 30 | 21 | 9  | + | 2006.0330 |   | 0  | 32 | 24 | 8  | - | 2228.5914 |   | -1 |
| 32 | 24 | 8  | + | 2227.6867 |   | 3  | 34 | 23 | 11 | - | 2205.8467 | 3 | 0  | 37 | 5  | 33 | - | 1575.5605 | 1 | 1  | 39 | 16 | 24 | - | 1943.8121 | 3 | 2  | 42 | 10 | 32 | - | 1801.2569 | 1 | 0  |
| 32 | 25 | 7  | - | 2294.6520 |   | 0  | 34 | 23 | 11 | + | 2205.0370 | 3 | -1 | 37 | 5  | 33 | + | 1575.3784 | 1 | -1 | 39 | 16 | 24 | + | 1943.3726 |   | 2  | 42 | 10 | 32 | + | 1800.9838 | 1 | 0  |
| 32 | 25 | 7  | + | 2293.6819 | 1 | 1  | 34 | 24 | 10 | - | 2269.4813 | 3 | 1  | 37 | 6  | 32 | 1 | 1590.8548 | 2 | 2  | 39 | 17 | 23 | - | 1989.5745 |   | 1  | 42 | 11 | 31 | - | 1830.5141 | 1 | 0  |
| 32 | 26 | 6  | - | 2363.1281 |   | -1 | 34 | 24 | 10 | + | 2268.6124 | 1 | 2  | 37 | 6  | 32 | + | 1590.6547 |   | -1 | 39 | 18 | 22 | - | 2037.9781 | 1 | 1  | 42 | 11 | 31 | + | 1830.2208 | 1 | 0  |
| 32 | 26 | 6  | + | 2362.0904 |   | -1 | 34 | 27 | 7  | - | 2474.9427 |   | -1 | 37 | 7  | 31 | - | 1608.5105 | 5 | 0  | 39 | 18 | 22 | + | 2037.4620 | 3 | -2 | 42 | 12 | 30 | - | 1862.6158 | 1 | -1 |
| 32 | 27 | 5  | - | 2433.9912 |   | 2  | 34 | 27 | 7  | + | 2473.8823 |   | 2  | 37 | 7  | 31 | + | 1608.2983 | 1 | 0  | 39 | 19 | 21 | - | 2088.9964 | 3 | 1  | 42 | 12 | 30 | + | 1862.2997 | 2 | -1 |
| 32 | 27 | 5  | + | 2432.8836 |   | 1  | 35 | 1  | 35 | - | 1467.8422 | 0 | 1  | 37 | 8  | 30 | - | 1629.1356 | 1 | -1 | 39 | 20 | 20 | + | 2142.0015 |   | -2 | 42 | 13 | 29 | - | 1897.5167 | 1 | -1 |
| 32 | 29 | 3  | + | 2581.5039 |   | 0  | 35 | 1  | 35 | + | 1467.8240 | 1 | 0  | 37 | 8  | 30 | + | 1628.9093 | 2 | 0  | 39 | 21 | 19 | - | 2198.7699 | 1 | -3 | 42 | 13 | 29 | + | 1897.1754 |   | 0  |
| 32 | 31 | 1  | - | 2740.7147 |   | 2  | 35 | 2  | 34 | - | 1485.9608 | 1 | 0  | 37 | 9  | 29 | 1 | 1652.7481 |   | 0  | 39 | 21 | 19 | + | 2198.1232 | 2 | -2 | 42 | 14 | 28 | - | 1935.1802 |   | -1 |
| 32 | 31 | 1  | + | 2739.3054 |   | 1  | 35 | 2  | 34 | + | 1485.8961 | 1 | 0  | 37 | 9  | 29 | + | 1652.5041 | 1 | 0  | 39 | 22 | 18 | - | 2257.4712 |   | -3 | 42 | 14 | 28 | + | 1934.8113 |   | 1  |
| 33 | 1  | 33 | - | 1429.1673 | 1 | 1  | 35 | 3  | 33 | - | 1502.2870 | 3 | -2 | 37 | 10 | 28 | - | 1679.2693 | 1 | 0  | 39 | 23 | 17 | - | 2318.6785 |   | -2 | 42 | 15 | 27 | - | 1975.5747 | 3 | 1  |
| 33 | 1  | 33 | + | 1429.1489 | 0 | -1 | 35 | 3  | 33 | + | 1502.1777 | 3 | 1  | 37 | 10 | 28 | + | 1679.0044 | 0 | 0  | 39 | 24 | 16 | - | 2382.3633 |   | -1 | 42 | 15 | 27 | + | 1975.1755 | 2 | 0  |
| 33 | 2  | 32 | - | 1446.1728 | 0 | 0  | 35 | 4  | 32 | - | 1516.9096 | 2 | 0  | 37 | 11 | 27 | - | 1708.6391 | 1 | 1  | 39 | 24 | 16 | + | 2381.5660 |   | -2 | 42 | 16 | 26 | - | 2018.6704 | 2 | 0  |
| 33 | 2  | 32 | + | 1446.1081 | 1 | 0  | 35 | 4  | 32 | + | 1516.7605 | 2 | 0  | 37 | 11 | 27 | + | 1708.3503 | 1 | 0  | 39 | 25 | 15 | + | 2447.6460 | 4 | 4  | 42 | 16 | 26 | + | 2018.2395 | 1 | 3  |

Table C.5 – Continued.

| Ν  | Ka | Kc | J | Ε         | Δ | δ  | Ν  | Ka | Kc | J | Ε         | Δ | δ  | Ν  | Ka | Kc | J | Ε         | Δ | δ  | Ν  | Ka | Kc | J | Ε         | Δ | δ  | Ν  | Ka | Kc | J | Ε         | Δ | δ  |
|----|----|----|---|-----------|---|----|----|----|----|---|-----------|---|----|----|----|----|---|-----------|---|----|----|----|----|---|-----------|---|----|----|----|----|---|-----------|---|----|
|    | 1  |    |   | 2         | 3 | 4  |    | 1  |    |   | 2         | 3 | 4  |    | 1  |    |   | 2         | 3 | 4  |    | 1  |    |   | 2         | 3 | 4  |    | 1  |    |   | 2         | 3 | 4  |
| 33 | 3  | 31 | - | 1461.4029 | 1 | 0  | 35 | 5  | 31 | - | 1530.8666 | 1 | 1  | 37 | 12 | 26 | - | 1740.8142 | 1 | 0  | 39 | 26 | 14 | - | 2517.0509 | 1 | 0  | 42 | 23 | 19 | + | 2392.9596 |   | -3 |
| 33 | 3  | 31 | + | 1461.2941 |   | 2  | 35 | 5  | 31 | + | 1530.6899 | 5 | 1  | 37 | 12 | 26 | + | 1740.4991 | 1 | 1  | 40 | 0  | 40 | - | 1574.1683 | 0 | 0  | 42 | 21 | 21 | + | 2273.0855 | 3 | -2 |
| 33 | 4  | 30 | - | 1475.1037 | 1 | 0  | 35 | 6  | 30 | - | 1546.0264 | 3 | 2  | 37 | 13 | 25 | - | 1775.7608 | 1 | -1 | 40 | 0  | 40 | + | 1574.1502 | 0 | -1 | 42 | 24 | 18 | - | 2457.3924 | 3 | 0  |
| 33 | 4  | 30 | + | 1474.9573 | 1 | -1 | 35 | 6  | 30 | + | 1545.8335 | 4 | 0  | 37 | 13 | 25 | + | 1775.4164 |   | 0  | 40 | 1  | 39 | + | 1595.0011 | 1 | 1  | 42 | 24 | 18 | + | 2456.6285 |   | 0  |
| 33 | 5  | 29 | - | 1488.5742 | 3 | 1  | 35 | 7  | 29 | - | 1563.7773 | 1 | 1  | 37 | 14 | 24 | - | 1813.4496 | 1 | -1 | 40 | 1  | 39 | - | 1595.0658 | 1 | 1  | 43 | 1  | 43 | - | 1644.5684 | 0 | 0  |
| 33 | 5  | 29 | + | 1488.4032 |   | -1 | 35 | 7  | 29 | + | 1563.5715 | 1 | -1 | 37 | 14 | 24 | + | 1813.0736 | 1 | 1  | 40 | 2  | 38 | + | 1614.0178 | 2 | 0  | 43 | 1  | 43 | + | 1644.5503 | 0 | -1 |
| 33 | 6  | 28 | - | 1503.6778 | 1 | 0  | 35 | 8  | 28 | - | 1584.5117 | 2 | -1 | 37 | 15 | 23 | - | 1853.8537 | 3 | 2  | 40 | 2  | 38 | - | 1614.1287 | 3 | -1 | 43 | 2  | 42 | - | 1667.1336 | 0 | 1  |
| 33 | 6  | 28 | + | 1503.4923 | 3 | 2  | 35 | 8  | 28 | + | 1584.2905 | 3 | 0  | 37 | 15 | 23 | + | 1853.4433 | 0 | 1  | 40 | 3  | 37 | + | 1630.6129 | 3 | 0  | 43 | 2  | 42 | + | 1667.0688 | 1 | 0  |
| 33 | 7  | 27 | - | 1521.5321 | 1 | 0  | 35 | 9  | 27 | - | 1608.1999 | 1 | 0  | 37 | 16 | 22 | - | 1896.9466 | 0 | 0  | 40 | 3  | 37 | - | 1630.7735 | 2 | 0  | 43 | 3  | 41 | - | 1687.9226 | 1 | -1 |
| 33 | 7  | 27 | + | 1521.3323 | 1 | 0  | 35 | 9  | 27 | + | 1607.9594 |   | 0  | 37 | 16 | 22 | + | 1896.4999 | 1 | 3  | 40 | 4  | 36 | + | 1643.3122 | 1 | 0  | 43 | 3  | 41 | + | 1687.8125 | 0 | 2  |
| 33 | 8  | 26 | - | 1542.3610 | 4 | -2 | 35 | 10 | 26 | - | 1634.7704 | 1 | -1 | 37 | 19 | 19 | + | 2041.5337 | 3 | 0  | 40 | 4  | 36 | - | 1643.5265 | 1 | -1 | 43 | 4  | 40 | - | 1706.7523 | 5 | 2  |
| 33 | 8  | 26 | + | 1542.1443 | 3 | 1  | 35 | 10 | 26 | + | 1634.5075 | 2 | 0  | 37 | 20 | 18 | + | 2095.0803 | 1 | 0  | 40 | 5  | 35 | - | 1652.9613 |   | -1 | 43 | 4  | 40 | + | 1706.5976 | 4 | 3  |
| 33 | 9  | 25 | - | 1566.1120 |   | -1 | 35 | 11 | 25 | - | 1664.1722 | 2 | 0  | 37 | 21 | 17 | - | 2151.8489 |   | 0  | 40 | 5  | 35 | + | 1652.7213 |   | 1  | 43 | 5  | 39 | - | 1723.7601 | 4 | 0  |
| 33 | 9  | 25 | + | 1565.8742 | 1 | 0  | 35 | 11 | 25 | + | 1663.8838 | 0 | 0  | 37 | 21 | 17 | + | 2151.1840 | 2 | 2  | 40 | 6  | 34 | + | 1663.9877 | 0 | 0  | 43 | 5  | 39 | + | 1723.5666 | 3 | 0  |
| 33 | 10 | 24 | - | 1592.7232 | 0 | 0  | 35 | 12 | 24 | - | 1696.3676 | 3 | 0  | 37 | 22 | 16 | + | 2209.8170 | 4 | 0  | 40 | 6  | 34 | - | 1664.2190 |   | 0  | 43 | 6  | 38 | - | 1740.0835 |   | 0  |
| 33 | 10 | 24 | + | 1592.4611 | 0 | 0  | 35 | 12 | 24 | + | 1696.0509 | 2 | 0  | 37 | 23 | 15 | - | 2271.7205 |   | 0  | 40 | 7  | 33 | + | 1680.2491 |   | 0  | 43 | 6  | 38 | + | 1739.8633 | 2 | -2 |
| 33 | 11 | 23 | - | 1622.1510 | 1 | 1  | 35 | 13 | 23 | - | 1731.3260 |   | 0  | 37 | 23 | 15 | + | 2270.9522 |   | 0  | 40 | 7  | 33 | - | 1680.4758 | 1 | 1  | 43 | 7  | 37 | - | 1757.6581 | 2 | 1  |
| 33 | 11 | 23 | + | 1621.8616 | 2 | 0  | 35 | 13 | 23 | + | 1730.9783 | 0 | 0  | 37 | 24 | 14 | - | 2335.3842 |   | -4 | 40 | 8  | 32 | - | 1700.7358 | 0 | 0  | 43 | 7  | 37 | + | 1757.4233 | 3 | -1 |
| 33 | 12 | 22 | - | 1654.3621 | 1 | 0  | 35 | 14 | 22 | - | 1769.0201 | 2 | 0  | 37 | 24 | 14 | + | 2334.5614 |   | 0  | 40 | 8  | 32 | + | 1700.5001 |   | -1 | 43 | 8  | 36 | - | 1777.8955 | 0 | 0  |
| 33 | 12 | 22 | + | 1654.0428 | 1 | 0  | 35 | 14 | 22 | + | 1768.6388 |   | -1 | 37 | 25 | 13 | - | 2401.4961 |   | 0  | 40 | 9  | 31 | - | 1724.1922 |   | 1  | 43 | 8  | 36 | + | 1777.6499 |   | -2 |
| 33 | 13 | 21 | - | 1689.3291 | 1 | -1 | 35 | 15 | 21 | - | 1809.4245 | 1 | 0  | 37 | 25 | 13 | + | 2400.6159 |   | 0  | 40 | 9  | 31 | + | 1723.9417 |   | 2  | 43 | 9  | 35 | - | 1801.1908 |   | 0  |
| 33 | 13 | 21 | + | 1688.9769 | 0 | 0  | 35 | 15 | 21 | + | 1809.0072 |   | 1  | 37 | 27 | 11 | - | 2540.9460 |   | 1  | 40 | 10 | 30 | + | 1750.3497 | 0 | -1 | 43 | 9  | 35 | + | 1800.9321 |   | 0  |
| 33 | 14 | 20 | - | 1727.0265 |   | -1 | 35 | 16 | 20 | - | 1852.5141 | 0 | -1 | 37 | 26 | 12 | + | 2469.0869 | 2 | 0  | 40 | 10 | 30 | - | 1750.6190 | 1 | 0  | 43 | 10 | 34 | - | 1827.4980 | 3 | -1 |
| 33 | 14 | 20 | + | 1726.6387 | 0 | 0  | 35 | 16 | 20 | + | 1852.0581 | 1 | 0  | 38 | 0  | 38 | - | 1529.9860 | 0 | 0  | 40 | 11 | 29 | - | 1779.9274 | 1 | 0  | 43 | 10 | 34 | + | 1827.2229 | 1 | 0  |
| 33 | 15 | 19 | - | 1767.4298 |   | -2 | 35 | 19 | 17 | - | 1997.6444 | 3 | -2 | 38 | 0  | 38 | + | 1529.9679 | 1 | -1 | 40 | 11 | 29 | + | 1779.6366 | 1 | 0  | 43 | 11 | 33 | - | 1856.7264 | 1 | 1  |
| 33 | 15 | 19 | + | 1767.0037 | 3 | -1 | 35 | 19 | 17 | + | 1997.0576 | 1 | -1 | 38 | 1  | 37 | - | 1549.7698 | 0 | 0  | 40 | 12 | 28 | - | 1812.0630 | 2 | 0  | 43 | 11 | 33 | + | 1856.4317 | 1 | 1  |
| 33 | 16 | 18 | - | 1810.5152 | 2 | -1 | 35 | 20 | 16 | - | 2051.2235 |   | -1 | 38 | 1  | 37 | + | 1549.7051 | 0 | 0  | 40 | 12 | 28 | + | 1811.7479 |   | 0  | 43 | 12 | 32 | - | 1888.8088 | 1 | 0  |
| 33 | 16 | 18 | + | 1810.0482 |   | 1  | 35 | 20 | 16 | + | 2050.5880 |   | -2 | 38 | 2  | 36 | - | 1567.6809 | 2 | -2 | 40 | 13 | 27 | - | 1846.9853 | 1 | 0  | 43 | 12 | 32 | + | 1888.4919 | 1 | 0  |
| 33 | 17 | 17 | - | 1856.2583 | 3 | 1  | 35 | 21 | 15 | - | 2107.3599 | 3 | 0  | 38 | 2  | 36 | + | 1567.5699 | 1 | 1  | 40 | 13 | 27 | + | 1846.6435 | 1 | 0  | 43 | 13 | 31 | - | 1923.6972 | 1 | -1 |

Table C.5 – Continued.

| Ν  | Ka | Kc | J | Ε         | Δ | δ  | Ν  | Ka | Kc | J | Ε         | Δ | δ  | Ν  | Ka | Kc | J | Ε         | Δ | δ  | Ν  | Ka | Kc | J | Ε         | Δ | δ  | Ν  | Ka | Kc | J | Ε         | Δ | δ  |
|----|----|----|---|-----------|---|----|----|----|----|---|-----------|---|----|----|----|----|---|-----------|---|----|----|----|----|---|-----------|---|----|----|----|----|---|-----------|---|----|
|    | 1  |    |   | 2         | 3 | 4  |    | l  | 1  |   | 2         | 3 | 4  |    | 1  |    |   | 2         | 3 | 4  |    | 1  |    |   | 2         | 3 | 4  |    | 1  |    |   | 2         | 3 | 4  |
| 33 | 17 | 17 | + | 1855.7475 |   | 1  | 35 | 21 | 15 | + | 2106.6737 | 2 | 0  | 38 | 3  | 35 | - | 1582.9760 | 3 | -1 | 40 | 14 | 26 | - | 1884.6612 | 1 | 0  | 43 | 13 | 31 | + | 1923.3558 | 1 | 0  |
| 33 | 19 | 15 | - | 1955.6174 | 1 | -2 | 35 | 22 | 14 | - | 2166.0265 | 1 | -1 | 38 | 3  | 35 | + | 1582.8140 |   | 2  | 40 | 14 | 26 | + | 1884.2901 | 1 | 0  | 43 | 14 | 30 | - | 1961.3533 | 3 | 1  |
| 33 | 19 | 15 | + | 1955.0119 | 2 | 0  | 35 | 22 | 14 | + | 2165.2871 | 0 | 0  | 38 | 4  | 34 | - | 1594.2024 |   | 2  | 40 | 15 | 25 | - | 1925.0609 |   | 0  | 43 | 14 | 30 | + | 1960.9848 | 0 | 0  |
| 33 | 20 | 14 | - | 2009.1832 |   | 0  | 35 | 23 | 13 | - | 2227.1960 |   | 1  | 38 | 4  | 34 | + | 1593.9900 | 3 | 2  | 40 | 15 | 25 | + | 1924.6584 |   | 1  | 43 | 15 | 29 | - | 2001.7438 | 1 | 0  |
| 33 | 20 | 14 | + | 2008.5263 | 1 | 0  | 35 | 23 | 13 | + | 2226.4011 |   | 1  | 38 | 5  | 33 | - | 1603.1511 | 1 | -1 | 40 | 16 | 24 | - | 1968.1568 | 1 | 0  | 43 | 15 | 29 | + | 2001.3464 | 3 | 2  |
| 33 | 21 | 13 | - | 2065.3050 | 5 | 4  | 35 | 24 | 12 | - | 2290.8403 | 3 | 2  | 38 | 6  | 32 | - | 1615.1004 | 1 | -1 | 40 | 16 | 24 | + | 1967.7204 | 3 | 0  | 43 | 16 | 28 | - | 2044.8391 | 1 | 2  |
| 33 | 21 | 13 | + | 2064.5940 |   | 0  | 35 | 25 | 11 | - | 2356.9306 | 3 | 2  | 38 | 6  | 32 | + | 1614.8831 | 0 | 0  | 41 | 1  | 41 | - | 1597.0850 | 0 | 0  | 43 | 16 | 28 | + | 2044.4105 | 1 | 6  |
| 33 | 22 | 12 | - | 2123.9551 | 3 | 2  | 35 | 25 | 11 | + | 2356.0178 | 1 | 1  | 38 | 7  | 31 | - | 1631.9116 |   | 0  | 41 | 1  | 41 | + | 1597.0669 | 0 | -1 | 43 | 20 | 24 | - | 2243.7038 |   | -3 |
| 33 | 22 | 12 | + | 2123.1880 | 3 | 0  | 35 | 26 | 10 | - | 2425.4385 | 3 | 4  | 38 | 7  | 31 | + | 1631.6939 |   | 0  | 41 | 2  | 40 | - | 1618.5400 | 0 | 0  | 43 | 23 | 21 | - | 2419.8886 | 1 | -3 |
| 33 | 23 | 11 | - | 2185.1065 |   | 0  | 35 | 26 | 10 | + | 2424.4631 | 3 | 0  | 38 | 8  | 30 | - | 1652.3841 | 1 | 0  | 41 | 2  | 40 | + | 1618.4753 | 0 | 0  | 43 | 23 | 21 | + | 2419.1821 | 1 | -2 |
| 33 | 23 | 11 | + | 2184.2811 | 1 | 0  | 35 | 27 | 9  | + | 2495.2946 |   | 0  | 38 | 8  | 30 | + | 1652.1548 | 1 | 1  | 41 | 3  | 39 | - | 1638.2097 |   | -1 | 43 | 24 | 20 | - | 2483.6172 | 3 | -2 |
| 33 | 24 | 10 | - | 2248.7317 | 0 | 1  | 35 | 29 | 7  | - | 2645.1723 |   | 3  | 38 | 9  | 29 | - | 1675.9464 | 1 | 1  | 41 | 3  | 39 | + | 1638.0996 |   | 1  | 43 | 24 | 20 | + | 2482.8629 |   | -3 |
| 33 | 24 | 10 | + | 2247.8452 |   | 0  | 35 | 29 | 7  | + | 2643.9972 | 1 | -1 | 38 | 9  | 29 | + | 1675.7002 |   | 0  | 41 | 4  | 38 | - | 1655.9385 | 2 | 3  | 43 | 25 | 19 | + | 2548.9943 | 2 | 0  |
| 33 | 25 | 9  | - | 2314.8021 |   | 3  | 36 | 0  | 36 | - | 1488.0059 | 1 | 0  | 38 | 10 | 28 | - | 1702.4386 | 1 | -1 | 41 | 4  | 38 | + | 1655.7840 | 1 | -2 | 43 | 26 | 18 | - | 2618.4017 |   | 0  |
| 33 | 25 | 9  | + | 2313.8521 |   | 0  | 36 | 0  | 36 | + | 1487.9877 | 0 | -1 | 38 | 10 | 28 | + | 1702.1725 | 1 | 0  | 41 | 5  | 37 | - | 1672.0374 | 2 | 1  | 44 | 0  | 44 | - | 1669.1350 | 0 | 0  |
| 33 | 26 | 8  | - | 2383.2885 |   | 3  | 36 | 1  | 35 | - | 1506.6736 | 1 | -1 | 38 | 11 | 27 | - | 1731.7899 | 2 | 0  | 41 | 5  | 37 | + | 1671.8469 | 2 | 0  | 44 | 0  | 44 | + | 1669.1169 | 0 | 0  |
| 33 | 26 | 8  | + | 2382.2730 |   | 2  | 36 | 1  | 35 | + | 1506.6089 | 1 | 0  | 38 | 11 | 27 | + | 1731.5007 | 2 | 0  | 41 | 6  | 36 | - | 1687.9024 | 1 | 1  | 44 | 1  | 43 | - | 1692.2541 | 1 | 0  |
| 33 | 27 | 7  | - | 2454.1618 |   | 1  | 36 | 2  | 34 | - | 1523.4151 |   | -2 | 38 | 12 | 26 | - | 1763.9532 | 2 | 0  | 41 | 6  | 36 | + | 1687.6885 | 3 | -1 | 44 | 1  | 43 | + | 1692.1894 | 0 | 0  |
| 33 | 27 | 7  | + | 2453.0782 |   | -1 | 36 | 2  | 34 | + | 1523.3036 | 1 | 2  | 38 | 12 | 26 | + | 1763.6382 | 1 | 0  | 41 | 7  | 35 | - | 1705.4517 | 1 | 1  | 44 | 2  | 42 | - | 1713.5874 | 2 | 0  |
| 33 | 29 | 5  | - | 2602.9515 |   | -1 | 36 | 3  | 33 | - | 1537.2936 |   | 1  | 38 | 13 | 25 | - | 1798.8927 | 1 | 0  | 41 | 8  | 34 | - | 1725.8228 | 0 | 0  | 44 | 2  | 42 | + | 1713.4769 | 1 | 2  |
| 33 | 28 | 6  | + | 2526.2390 |   | -2 | 36 | 3  | 33 | + | 1537.1295 | 3 | 0  | 38 | 13 | 25 | + | 1798.5494 | 0 | 0  | 41 | 8  | 34 | + | 1725.5842 | 1 | -1 | 44 | 3  | 41 | - | 1732.7610 | 1 | 0  |
| 33 | 30 | 4  | - | 2680.8084 |   | 0  | 36 | 4  | 32 | - | 1547.1405 |   | -1 | 38 | 14 | 24 | - | 1836.5779 | 2 | 0  | 41 | 9  | 33 | - | 1749.2397 |   | 1  | 44 | 3  | 41 | + | 1732.6029 | 3 | 0  |
| 33 | 31 | 3  | - | 2760.9330 |   | -3 | 36 | 4  | 32 | + | 1546.9327 | 1 | 0  | 38 | 14 | 24 | + | 1836.2037 | 2 | 0  | 41 | 9  | 33 | + | 1748.9863 | 4 | -2 | 44 | 4  | 40 | - | 1748.6612 | 3 | 0  |
| 33 | 31 | 3  | + | 2759.5563 |   | 1  | 36 | 5  | 31 | - | 1555.9531 | 2 | 0  | 38 | 15 | 23 | - | 1876.9808 | 0 | -1 | 41 | 10 | 32 | - | 1775.6305 | 0 | 0  | 44 | 4  | 40 | + | 1748.4489 | 3 | -1 |
| 34 | 0  | 34 | - | 1448.2288 | 1 | 0  | 36 | 5  | 31 | + | 1555.7385 | 0 | 1  | 38 | 15 | 23 | + | 1876.5736 | 2 | 1  | 41 | 10 | 32 | + | 1775.3595 | 1 | 0  | 44 | 5  | 39 | - | 1760.1040 |   | 0  |
| 34 | 0  | 34 | + | 1448.2106 | 1 | -1 | 36 | 6  | 30 | - | 1568.6492 | 1 | 0  | 38 | 16 | 22 | - | 1920.0752 | 0 | 0  | 41 | 11 | 31 | - | 1804.9145 | 1 | 0  | 44 | 5  | 39 | + | 1759.8463 |   | 0  |
| 34 | 1  | 33 | - | 1465.7773 | 1 | -1 | 36 | 6  | 30 | + | 1568.4441 | 1 | 0  | 38 | 16 | 22 | + | 1919.6322 | 1 | 1  | 41 | 11 | 31 | + | 1804.6224 |   | -2 | 44 | 6  | 38 | - | 1770.5628 | 1 | -1 |
| 34 | 1  | 33 | + | 1465.7124 | 0 | 0  | 36 | 7  | 29 | - | 1585.8822 |   | 0  | 38 | 19 | 19 | + | 2064.6826 | 5 | -1 | 41 | 12 | 30 | - | 1837.0339 | 0 | -1 | 44 | 6  | 38 | + | 1770.3012 | 1 | 0  |
| 34 | 2  | 32 | - | 1481.3235 | 2 | 0  | 36 | 7  | 29 | + | 1585.6722 |   | 0  | 38 | 20 | 18 | + | 2118.2373 | 3 | -1 | 41 | 12 | 30 | + | 1836.7185 | 1 | 0  | 44 | 7  | 37 | - | 1785.3238 | 1 | 1  |

Table C.5 – Continued.

| Ν  | Ka | Kc | J | Ε         | Δ | δ  | Ν  | Ka | Kc | J | Ε         | Δ | δ  | Ν  | Ka | Kc | J | Ε         | Δ | δ  | Ν  | Ka | Kc | J | Ε         | Δ | δ  | Ν  | Ka | Kc | J | Ε         | Δ | δ  |
|----|----|----|---|-----------|---|----|----|----|----|---|-----------|---|----|----|----|----|---|-----------|---|----|----|----|----|---|-----------|---|----|----|----|----|---|-----------|---|----|
|    | 1  |    |   | 2         | 3 | 4  |    | 1  |    |   | 2         | 3 | 4  |    | 1  |    |   | 2         | 3 | 4  |    | 1  |    |   | 2         | 3 | 4  |    | 1  |    |   | 2         | 3 | 4  |
| 34 | 2  | 32 | + | 1481.2110 |   | 1  | 36 | 8  | 28 | - | 1606.5176 | 3 | 0  | 38 | 21 | 17 | + | 2174.3499 | 3 | -1 | 41 | 13 | 29 | - | 1871.9462 | 2 | 0  | 44 | 7  | 37 | + | 1785.0754 | 1 | 1  |
| 34 | 3  | 31 | - | 1493.7282 | 2 | 0  | 36 | 8  | 28 | + | 1606.2938 | 2 | 1  | 38 | 22 | 16 | + | 2232.9932 |   | 0  | 41 | 13 | 29 | + | 1871.6047 | 1 | 0  | 44 | 8  | 36 | - | 1804.9334 | 1 | 1  |
| 34 | 3  | 31 | + | 1493.5631 | 2 | 1  | 36 | 9  | 27 | - | 1630.1665 |   | 1  | 38 | 23 | 15 | - | 2294.8953 |   | -2 | 41 | 14 | 28 | - | 1909.6162 | 0 | -1 | 44 | 8  | 36 | + | 1804.6826 | 2 | -4 |
| 34 | 4  | 30 | - | 1502.4317 |   | 0  | 36 | 9  | 27 | + | 1629.9242 | 1 | 0  | 38 | 23 | 15 | + | 2294.1395 | 4 | 2  | 41 | 14 | 28 | + | 1909.2464 | 2 | 0  | 44 | 9  | 35 | - | 1828.0996 |   | 0  |
| 34 | 4  | 30 | + | 1502.2309 | 1 | 0  | 36 | 10 | 26 | - | 1656.7133 | 0 | 0  | 38 | 24 | 14 | - | 2358.5697 | 3 | -1 | 41 | 15 | 27 | - | 1950.0136 | 1 | 0  | 44 | 9  | 35 | + | 1827.8378 |   | 0  |
| 34 | 5  | 29 | - | 1511.4204 | 2 | -2 | 36 | 10 | 26 | + | 1656.4495 | 2 | 0  | 38 | 24 | 14 | + | 2357.7601 |   | 1  | 41 | 15 | 27 | + | 1949.6130 | 1 | 1  | 44 | 10 | 34 | - | 1854.3547 |   | -3 |
| 34 | 5  | 29 | + | 1511.2202 | 1 | 0  | 36 | 11 | 25 | - | 1686.0999 | 1 | 0  | 39 | 1  | 39 | - | 1551.8021 | 1 | 0  | 41 | 16 | 26 | - | 1993.1095 | 3 | -1 | 44 | 10 | 34 | + | 1854.0777 |   | 2  |
| 34 | 6  | 28 | - | 1524.8228 | 2 | 0  | 36 | 11 | 25 | + | 1685.8114 | 2 | 0  | 39 | 1  | 39 | + | 1551.7839 | 0 | -1 | 41 | 16 | 26 | + | 1992.6758 | 3 | -2 | 44 | 11 | 33 | - | 1883.5514 | 2 | 0  |
| 34 | 6  | 28 | + | 1524.6283 | 2 | -1 | 36 | 12 | 24 | - | 1718.2857 | 0 | 0  | 39 | 2  | 38 | - | 1572.1459 | 1 | 1  | 41 | 20 | 22 | + | 2191.3514 |   | -1 | 44 | 11 | 33 | + | 1883.2549 |   | -2 |
| 34 | 7  | 27 | - | 1542.3673 | 1 | 1  | 36 | 12 | 24 | + | 1717.9698 | 1 | -1 | 39 | 2  | 38 | + | 1572.0812 | 0 | 0  | 41 | 21 | 21 | - | 2248.1222 |   | -2 | 44 | 12 | 32 | - | 1915.6128 |   | 0  |
| 34 | 7  | 27 | + | 1542.1639 | 1 | -1 | 36 | 13 | 23 | - | 1753.2386 | 0 | -1 | 39 | 3  | 37 | - | 1590.6969 | 2 | -1 | 41 | 21 | 21 | + | 2247.4914 |   | 0  | 44 | 12 | 32 | + | 1915.2952 | 1 | 2  |
| 34 | 8  | 26 | - | 1563.1291 |   | 1  | 36 | 13 | 23 | + | 1752.8928 | 1 | 0  | 39 | 3  | 37 | + | 1590.5869 | 1 | 2  | 41 | 22 | 20 | - | 2306.8417 | 5 | 0  | 44 | 13 | 31 | - | 1950.4875 | 0 | 0  |
| 34 | 8  | 26 | + | 1562.9099 | 1 | 0  | 36 | 14 | 22 | - | 1790.9304 |   | 0  | 39 | 4  | 36 | - | 1607.3485 | 3 | 0  | 41 | 22 | 20 | + | 2306.1649 | 2 | 0  | 44 | 13 | 31 | + | 1950.1455 |   | -3 |
| 34 | 9  | 25 | - | 1586.8488 | 1 | 0  | 36 | 14 | 22 | + | 1790.5519 | 1 | 0  | 39 | 4  | 36 | + | 1607.1951 | 1 | 1  | 41 | 23 | 19 | - | 2368.0687 | 2 | 0  | 44 | 14 | 30 | - | 1988.1351 | 1 | 0  |
| 34 | 9  | 25 | + | 1586.6097 | 1 | 1  | 36 | 15 | 21 | - | 1831.3347 | 2 | 0  | 39 | 5  | 35 | - | 1622.6273 | 1 | -1 | 41 | 23 | 19 | + | 2367.3441 |   | 0  | 44 | 14 | 30 | + | 1987.7671 | 1 | 0  |
| 34 | 10 | 24 | - | 1613.4405 | 0 | 0  | 36 | 15 | 21 | + | 1830.9212 | 1 | 1  | 39 | 5  | 35 | + | 1622.4407 | 0 | -2 | 41 | 24 | 18 | - | 2431.7748 |   | -2 | 44 | 15 | 29 | - | 2028.5214 |   | 1  |
| 34 | 10 | 24 | + | 1613.1781 | 2 | 0  | 36 | 16 | 20 | - | 1874.4262 | 1 | 0  | 39 | 6  | 34 | - | 1638.1523 | 2 | 2  | 41 | 24 | 18 | + | 2431.0005 | 4 | -1 | 44 | 15 | 29 | + | 2028.1252 |   | 4  |
| 34 | 11 | 23 | - | 1642.8560 |   | 0  | 36 | 16 | 20 | + | 1873.9750 | 2 | 1  | 39 | 6  | 34 | + | 1637.9450 | 3 | -2 | 41 | 25 | 17 | + | 2497.1057 |   | 1  | 44 | 16 | 28 | - | 2071.6155 | 3 | 2  |
| 34 | 11 | 23 | + | 1642.5672 | 5 | 0  | 36 | 19 | 17 | + | 2018.9919 | 2 | -1 | 39 | 7  | 33 | 1 | 1655.7350 | 3 | 0  | 42 | 0  | 42 | 1 | 1620.5517 | 1 | 0  | 44 | 16 | 28 | + | 2071.1886 | 1 | 5  |
| 34 | 12 | 22 | - | 1675.0600 |   | 2  | 36 | 20 | 16 | - | 2073.1561 | 3 | -2 | 39 | 7  | 33 | + | 1655.5157 | 1 | 0  | 42 | 0  | 42 | + | 1620.5336 | 1 | -1 | 45 | 1  | 45 | - | 1694.2513 | 0 | 0  |
| 34 | 12 | 22 | + | 1674.7420 | 2 | 1  | 36 | 20 | 16 | + | 2072.5303 |   | -2 | 39 | 8  | 32 | - | 1676.2378 | 1 | 0  | 42 | 1  | 41 | - | 1642.5608 | 0 | 1  | 45 | 1  | 45 | + | 1694.2331 | 1 | 0  |
| 34 | 13 | 21 | - | 1710.0227 | 2 | -1 | 36 | 21 | 15 | - | 2129.3001 | 4 | -2 | 39 | 8  | 32 | + | 1676.0056 | 1 | 0  | 42 | 1  | 41 | + | 1642.4960 | 0 | 0  | 45 | 2  | 44 | - | 1717.9253 | 0 | 0  |
| 34 | 13 | 21 | + | 1709.6730 |   | -1 | 36 | 21 | 15 | + | 2128.6251 | 3 | 1  | 39 | 9  | 31 | - | 1699.7601 |   | 0  | 42 | 2  | 40 | - | 1662.7633 | 3 | 0  | 45 | 2  | 44 | + | 1717.8606 | 0 | 0  |
| 34 | 14 | 20 | - | 1747.7188 | 3 | -1 | 36 | 22 | 14 | - | 2187.9753 |   | -1 | 39 | 9  | 31 | + | 1699.5118 |   | 0  | 42 | 2  | 40 | + | 1662.6526 | 1 | 1  | 45 | 3  | 43 | - | 1739.8330 | 3 | 0  |
| 34 | 14 | 20 | + | 1747.3345 | 1 | 0  | 36 | 23 | 13 | - | 2249.1539 |   | 0  | 39 | 10 | 30 | 1 | 1726.2219 | 2 | 1  | 42 | 3  | 39 | 1 | 1680.6967 | 3 | 0  | 45 | 3  | 43 | + | 1739.7227 |   | 1  |
| 34 | 15 | 19 | - | 1788.1229 | 1 | 0  | 36 | 23 | 13 | + | 2248.3729 | 1 | 1  | 39 | 10 | 30 | + | 1725.9542 | 1 | 0  | 42 | 3  | 39 | + | 1680.5375 | 2 | -1 | 45 | 4  | 42 | - | 1759.7782 | 6 | 0  |
| 34 | 15 | 19 | + | 1787.7014 | 1 | 0  | 36 | 24 | 12 | - | 2312.8080 |   | 1  | 39 | 11 | 29 | - | 1755.5527 | 2 | 1  | 42 | 4  | 38 | - | 1695.0327 | 1 | 0  | 45 | 4  | 42 | + | 1759.6231 |   | 0  |
| 34 | 16 | 18 | - | 1831.2105 | 0 | 0  | 36 | 24 | 12 | + | 2311.9706 | 1 | 1  | 39 | 11 | 29 | + | 1755.2626 | 0 | -1 | 42 | 4  | 38 | + | 1694.8186 | 4 | 1  | 45 | 5  | 41 | - | 1777.7678 | 3 | 2  |
| 34 | 16 | 18 | + | 1830.7491 | 1 | 0  | 37 | 1  | 37 | - | 1508.7208 | 1 | 0  | 39 | 12 | 28 | - | 1787.7028 |   | 0  | 42 | 5  | 37 | + | 1705.0585 | 1 | 0  | 45 | 5  | 41 | + | 1777.5718 | 5 | 2  |

Table C.5 – Continued.

| Ν  | Ka | Kc | J | Ε         | Δ | δ  | Ν  | Ka | Kc | J | Ε         | Δ | δ  | Ν  | Ka | Kc | J | Ε         | Δ | δ  | Ν  | Ka | Kc | J | Ε         | Δ | δ  | Ν  | Ka | Kc | J | Ε         | Δ | δ  |
|----|----|----|---|-----------|---|----|----|----|----|---|-----------|---|----|----|----|----|---|-----------|---|----|----|----|----|---|-----------|---|----|----|----|----|---|-----------|---|----|
|    | 1  |    |   | 2         | 3 | 4  |    | 1  | !  |   | 2         | 3 | 4  |    | 1  |    |   | 2         | 3 | 4  |    | 1  |    |   | 2         | 3 | 4  |    | 1  |    |   | 2         | 3 | 4  |
| 34 | 17 | 17 | - | 1876.9571 | 1 | 1  | 37 | 1  | 37 | + | 1508.7026 | 0 | -1 | 39 | 12 | 28 | + | 1787.3878 | 1 | 0  | 42 | 6  | 36 | - | 1716.0369 | 3 | -1 | 45 | 6  | 40 | - | 1794.6695 | 3 | 1  |
| 34 | 19 | 15 | - | 1976.3267 | 1 | -2 | 37 | 2  | 36 | - | 1527.9523 | 0 | 0  | 39 | 13 | 27 | - | 1822.6342 | 2 | 0  | 42 | 6  | 36 | + | 1715.7906 | 1 | 0  | 45 | 6  | 40 | + | 1794.4436 | 1 | -1 |
| 34 | 19 | 15 | + | 1975.7306 |   | -4 | 37 | 2  | 36 | + | 1527.8877 | 0 | 1  | 39 | 13 | 27 | + | 1822.2918 | 2 | 1  | 42 | 7  | 35 | - | 1731.6016 | 2 | 0  | 45 | 7  | 39 | - | 1812.3477 | 0 | 3  |
| 34 | 21 | 13 | - | 2086.0279 | 1 | -1 | 37 | 3  | 35 | - | 1545.3878 | 4 | 1  | 39 | 14 | 26 | - | 1860.3150 | 1 | -1 | 42 | 8  | 34 | - | 1751.5818 | 1 | 1  | 45 | 7  | 39 | + | 1812.1051 | 3 | -1 |
| 34 | 21 | 13 | + | 2085.3299 | 1 | -1 | 37 | 3  | 35 | + | 1545.2777 | 1 | 0  | 39 | 14 | 26 | + | 1859.9428 | 3 | 2  | 42 | 8  | 34 | + | 1751.3391 | 3 | 0  | 45 | 8  | 38 | - | 1832.4595 |   | 1  |
| 34 | 22 | 12 | - | 2144.6867 |   | 4  | 37 | 4  | 34 | - | 1560.9991 | 2 | 0  | 39 | 15 | 25 | - | 1900.7167 | 1 | 0  | 42 | 9  | 33 | - | 1774.9081 | 2 | -2 | 45 | 8  | 38 | + | 1832.2067 |   | -1 |
| 34 | 22 | 12 | + | 2143.9335 |   | -2 | 37 | 4  | 34 | + | 1560.8478 | 2 | 0  | 39 | 15 | 25 | + | 1900.3118 | 2 | 0  | 42 | 9  | 33 | + | 1774.6522 | 2 | -2 | 45 | 9  | 37 | - | 1855.6177 |   | 1  |
| 45 | 9  | 37 | + | 1855.3529 |   | 0  | 48 | 15 | 33 | + | 2141.3189 | 2 | 4  | 52 | 10 | 42 | - | 2091.4158 |   | -2 | 56 | 7  | 49 | - | 2163.9251 | 1 | -1 | 60 | 8  | 52 | - | 2324.8998 | 3 | 0  |
| 45 | 10 | 36 | - | 1881.8270 | 1 | -1 | 48 | 16 | 32 | - | 2184.7963 | 3 | 0  | 52 | 10 | 42 | + | 2091.1152 | 3 | -3 | 56 | 7  | 49 | + | 2163.5881 | 2 | 1  | 60 | 8  | 52 | + | 2324.5453 | 4 | -1 |
| 45 | 10 | 36 | + | 1881.5471 |   | -2 | 49 | 1  | 49 | - | 1800.2100 | 0 | -1 | 52 | 11 | 41 | - | 2120.2453 |   | -1 | 56 | 8  | 48 | - | 2178.9191 | 3 | -1 | 60 | 9  | 51 | + | 2343.5243 | 0 | 1  |
| 45 | 11 | 35 | - | 1910.9896 | 1 | 0  | 49 | 1  | 49 | + | 1800.1918 | 0 | 0  | 52 | 11 | 41 | + | 2119.9312 | 2 | 0  | 56 | 8  | 48 | + | 2178.5982 | 5 | 1  | 60 | 10 | 50 | - | 2368.1803 | 5 | -1 |
| 45 | 11 | 35 | + | 1910.6914 | 1 | -1 | 49 | 2  | 48 | - | 1826.0985 | 0 | 1  | 52 | 12 | 40 | - | 2152.0611 | 1 | -1 | 56 | 9  | 47 | - | 2199.6657 | 3 | 3  | 60 | 10 | 50 | + | 2367.8491 | 3 | -4 |
| 45 | 12 | 34 | - | 1943.0282 | 1 | 1  | 49 | 2  | 48 | + | 1826.0338 | 1 | 0  | 52 | 12 | 40 | + | 2151.7303 | 1 | 0  | 56 | 9  | 47 | + | 2199.3553 | 3 | 2  | 60 | 11 | 49 | - | 2396.3233 |   | 1  |
| 45 | 12 | 34 | + | 1942.7090 |   | -2 | 49 | 3  | 47 | - | 1850.2378 | 3 | -1 | 52 | 13 | 39 | - | 2186.7709 |   | 3  | 56 | 10 | 46 | - | 2224.8082 |   | -2 | 60 | 11 | 49 | + | 2395.9848 | 4 | -1 |
| 45 | 13 | 33 | - | 1977.8877 | 1 | 0  | 49 | 3  | 47 | + | 1850.1278 | 1 | 0  | 52 | 13 | 39 | + | 2186.4204 | 2 | -1 | 56 | 10 | 46 | + | 2224.4936 | 1 | 0  | 60 | 12 | 48 | + | 2427.3526 | 1 | 0  |
| 45 | 13 | 33 | + | 1977.5455 | 0 | 0  | 49 | 4  | 46 | + | 1872.2789 |   | -1 | 52 | 14 | 38 | - | 2224.3104 | 0 | 1  | 56 | 11 | 45 | + | 2253.0243 | 3 | -1 | 60 | 13 | 47 | - | 2462.1148 | 4 | 1  |
| 45 | 14 | 32 | - | 2015.5259 | 3 | 0  | 49 | 5  | 45 | - | 1892.5386 | 2 | -2 | 52 | 14 | 38 | + | 2223.9393 | 2 | 4  | 56 | 12 | 44 | - | 2284.9777 | 2 | 2  | 60 | 13 | 47 | + | 2461.7497 | 1 | 1  |
| 45 | 14 | 32 | + | 2015.1582 | 1 | 1  | 49 | 5  | 45 | + | 1892.3398 | 2 | -2 | 52 | 15 | 37 | 1 | 2264.6321 |   | 5  | 56 | 12 | 44 | + | 2284.6374 | 1 | -1 | 60 | 14 | 46 | - | 2499.4503 | 1 | 2  |
| 45 | 15 | 31 | - | 2055.9073 | 3 | 2  | 49 | 6  | 44 | - | 1910.9363 | 6 | 0  | 52 | 15 | 37 | + | 2264.2371 |   | 3  | 56 | 13 | 43 | - | 2319.5580 | 3 | -1 | 61 | 1  | 61 | - | 2170.7326 | 1 | 0  |
| 45 | 15 | 31 | + | 2055.5115 | 3 | 1  | 49 | 6  | 44 | + | 1910.7017 | 1 | 0  | 53 | 1  | 53 | - | 1914.9509 | 1 | 0  | 56 | 13 | 43 | + | 2319.2013 | 2 | 2  | 61 | 1  | 61 | + | 2170.7146 | 2 | 0  |
| 45 | 16 | 30 | - | 2098.9996 | 2 | 3  | 49 | 7  | 43 | - | 1929.1230 | 2 | 1  | 53 | 1  | 53 | + | 1914.9326 | 1 | 0  | 56 | 14 | 42 | 1 | 2357.0102 | 3 | 1  | 61 | 2  | 60 | - | 2203.2350 |   | 3  |
| 45 | 16 | 30 | + | 2098.5734 |   | -3 | 49 | 7  | 43 | + | 1928.8657 |   | -3 | 53 | 2  | 52 | - | 1943.0488 | 2 | 0  | 56 | 14 | 42 | + | 2356.6342 | 2 | 4  | 61 | 2  | 60 | + | 2203.1733 |   | -1 |
| 46 | 0  | 46 | - | 1719.9170 | 0 | 0  | 49 | 8  | 42 | - | 1949.0677 | 1 | 1  | 53 | 2  | 52 | + | 1942.9846 | 1 | 0  | 57 | 1  | 57 | - | 2038.4627 | 2 | 1  | 61 | 3  | 59 | + | 2233.9136 |   | 1  |
| 46 | 0  | 46 | + | 1719.8989 | 1 | 0  | 49 | 8  | 42 | + | 1948.7986 |   | 0  | 53 | 3  | 51 | - | 1969.4117 | 3 | 0  | 57 | 1  | 57 | + | 2038.4443 |   | 1  | 61 | 4  | 58 | - | 2262.9429 |   | -2 |
| 46 | 1  | 45 | - | 1744.1448 | 1 | 1  | 49 | 9  | 41 | + | 1971.6372 |   | 1  | 53 | 3  | 51 | + | 1969.3023 | 1 | 0  | 57 | 2  | 56 | - | 2068.7651 | 3 | 0  | 61 | 4  | 58 | + | 2262.7932 | 3 | -2 |
| 46 | 1  | 45 | + | 1744.0801 | 1 | 1  | 49 | 10 | 40 | - | 1997.8823 | 2 | 0  | 53 | 4  | 50 | - | 1993.8616 | 2 | -1 | 57 | 2  | 56 | + | 2068.7017 | 0 | -2 | 61 | 5  | 57 | - | 2289.8138 |   | 0  |
| 46 | 2  | 44 | - | 1766.6024 | 1 | -1 | 49 | 10 | 40 | + | 1997.5913 | 4 | -1 | 53 | 4  | 50 | + | 1993.7070 | 2 | -1 | 57 | 3  | 55 | + | 2097.2351 |   | 2  | 61 | 5  | 57 | + | 2289.6183 | 1 | -3 |
| 46 | 2  | 44 | + | 1766.4921 | 0 | 1  | 49 | 11 | 39 | - | 2026.8783 | 1 | -1 | 53 | 5  | 49 | + | 2015.9945 |   | -3 | 57 | 4  | 54 | - | 2124.0368 |   | 3  | 61 | 7  | 55 | - | 2336.8657 |   | 0  |
| 46 | 3  | 43 | - | 1786.9802 | 1 | 1  | 49 | 11 | 39 | + | 2026.5719 |   | 0  | 53 | 6  | 48 | + | 2036.2172 | 1 | -1 | 57 | 4  | 54 | + | 2123.8838 |   | 1  | 61 | 7  | 55 | + | 2336.5839 | 3 | 2  |

Table C.5 – Continued.

| Ν  | Ka | Kc | J | Ε         | Δ | δ  | Ν  | Ka | Kc | J | Ε         | Δ | δ  | Ν  | Ka | Kc | J | Ε         | Δ | δ  | Ν  | Ka | Kc | J | Ε         | Δ | δ  | Ν  | Ka | Kc | J | Ε         | Δ | δ  |
|----|----|----|---|-----------|---|----|----|----|----|---|-----------|---|----|----|----|----|---|-----------|---|----|----|----|----|---|-----------|---|----|----|----|----|---|-----------|---|----|
|    | 1  |    |   | 2         | 3 | 4  |    | i  | !  |   | 2         | 3 | 4  |    | 1  |    |   | 2         | 3 | 4  |    | 1  |    |   | 2         | 3 | 4  |    | 1  |    |   | 2         | 3 | 4  |
| 46 | 3  | 43 | + | 1786.8224 |   | -4 | 49 | 12 | 38 | - | 2058.8042 | 1 | -1 | 53 | 7  | 47 | - | 2055.6220 |   | 3  | 57 | 5  | 53 | - | 2148.6373 | 9 | 1  | 61 | 8  | 54 | - | 2358.2277 |   | -3 |
| 46 | 4  | 42 | - | 1804.3826 | 2 | -1 | 49 | 12 | 38 | + | 2058.4793 | 0 | -1 | 53 | 7  | 47 | + | 2055.3524 |   | -1 | 57 | 5  | 53 | + | 2148.4389 | 5 | 1  | 61 | 8  | 54 | + | 2357.9172 | 2 | 0  |
| 46 | 4  | 42 | + | 1804.1723 | 4 | -1 | 49 | 13 | 37 | - | 2093.5883 | 2 | -2 | 53 | 8  | 46 | - | 2075.6319 | 1 | 1  | 57 | 6  | 52 | + | 2170.7669 |   | -1 | 61 | 10 | 52 | - | 2405.4616 |   | -3 |
| 46 | 5  | 41 | - | 1817.2511 |   | 1  | 49 | 13 | 37 | + | 2093.2427 | 1 | 0  | 53 | 8  | 46 | + | 2075.3472 | 1 | 0  | 57 | 7  | 51 | - | 2191.6203 | 4 | 3  | 61 | 10 | 52 | + | 2405.1288 |   | -4 |
| 46 | 6  | 40 | - | 1827.7726 | 1 | -2 | 49 | 14 | 36 | - | 2131.1781 | 1 | 0  | 53 | 9  | 45 | - | 2098.1635 | 2 | 0  | 57 | 7  | 51 | + | 2191.3420 | 2 | 0  | 61 | 11 | 51 | - | 2433.5993 | 2 | -1 |
| 46 | 6  | 40 | + | 1827.4965 | 2 | 0  | 49 | 14 | 36 | + | 2130.8093 | 1 | 2  | 53 | 9  | 45 | + | 2097.8701 |   | 0  | 57 | 8  | 50 | - | 2212.0720 |   | 4  | 61 | 11 | 51 | + | 2433.2578 | 3 | -3 |
| 46 | 7  | 39 | - | 1841.6829 |   | -2 | 49 | 15 | 35 | - | 2171.5307 |   | 0  | 53 | 10 | 44 | + | 2123.5184 | 3 | 0  | 57 | 8  | 50 | + | 2211.7724 |   | 0  | 61 | 12 | 50 | - | 2464.9171 | 6 | -3 |
| 46 | 7  | 39 | + | 1841.4214 | 1 | 0  | 49 | 15 | 35 | + | 2171.1366 | 4 | 1  | 53 | 11 | 43 | - | 2152.5970 |   | -1 | 57 | 9  | 49 | - | 2234.3770 | 5 | 1  | 61 | 12 | 50 | + | 2464.5644 | 1 | -1 |
| 46 | 8  | 38 | - | 1860.8059 |   | 1  | 49 | 16 | 34 | - | 2214.6100 |   | 0  | 53 | 11 | 43 | + | 2152.2802 | 3 | 0  | 57 | 9  | 49 | + | 2234.0672 |   | 0  | 61 | 13 | 49 | - | 2499.2804 | 2 | -3 |
| 46 | 8  | 38 | + | 1860.5468 |   | 0  | 50 | 0  | 50 | - | 1828.0723 | 1 | 0  | 53 | 12 | 42 | - | 2184.3711 | 2 | -1 | 57 | 10 | 48 | - | 2259.6739 | 3 | -2 | 61 | 13 | 49 | + | 2498.9137 | 2 | 2  |
| 46 | 9  | 37 | - | 1883.7717 | 1 | 0  | 50 | 0  | 50 | + | 1828.0541 | 1 | 0  | 53 | 12 | 42 | + | 2184.0382 |   | 0  | 57 | 10 | 48 | + | 2259.3561 | 3 | -1 | 61 | 14 | 48 | - | 2536.5819 |   | 0  |
| 46 | 9  | 37 | + | 1883.5034 | 4 | -1 | 50 | 1  | 49 | - | 1854.5135 | 2 | 1  | 53 | 13 | 41 | - | 2219.0519 |   | 1  | 57 | 11 | 47 | - | 2288.1636 | 7 | -3 | 61 | 14 | 48 | + | 2536.1976 |   | -3 |
| 46 | 10 | 36 | - | 1909.9160 |   | -4 | 50 | 1  | 49 | + | 1854.4489 | 1 | 0  | 53 | 13 | 41 | + | 2218.7002 | 1 | 0  | 57 | 11 | 47 | + | 2287.8353 | 2 | 0  | 62 | 0  | 62 | - | 2205.1670 | 1 | 0  |
| 46 | 10 | 36 | + | 1909.6340 |   | 1  | 50 | 2  | 48 | - | 1879.2069 | 1 | -1 | 53 | 14 | 40 | - | 2256.5720 | 3 | 0  | 57 | 12 | 46 | - | 2319.7385 |   | -1 | 62 | 0  | 62 | + | 2205.1493 | 2 | 0  |
| 46 | 11 | 35 | - | 1939.0411 |   | -1 | 50 | 2  | 48 | + | 1879.0970 | 1 | 1  | 53 | 14 | 40 | + | 2256.1999 | 2 | 3  | 57 | 12 | 46 | + | 2319.3959 |   | -2 | 62 | 1  | 61 | - | 2238.2180 | 3 | -2 |
| 46 | 11 | 35 | + | 1938.7412 |   | 0  | 50 | 4  | 46 | - | 1922.0986 | 3 | -1 | 53 | 15 | 39 | - | 2296.8809 | 6 | 1  | 57 | 13 | 45 | - | 2354.2812 | 2 | 0  | 62 | 1  | 61 | + | 2238.1574 | 1 | -1 |
| 46 | 12 | 34 | - | 1971.0547 | 2 | -1 | 50 | 4  | 46 | + | 1921.8925 | 4 | -4 | 54 | 0  | 54 | - | 1945.0071 |   | 1  | 57 | 13 | 45 | + | 2353.9224 | 1 | 1  | 62 | 2  | 60 | + | 2269.4482 |   | 0  |
| 46 | 12 | 34 | + | 1970.7345 | 1 | 0  | 50 | 5  | 45 | - | 1938.2250 | 4 | -1 | 54 | 0  | 54 | + | 1944.9889 |   | 2  | 57 | 14 | 44 | 1 | 2391.7070 | 2 | 0  | 62 | 3  | 59 | - | 2299.0310 | 2 | 2  |
| 46 | 13 | 33 | - | 2005.8980 | 2 | 1  | 50 | 5  | 45 | + | 1937.9612 | 3 | -2 | 54 | 1  | 53 | - | 1973.6566 | 2 | 1  | 57 | 15 | 43 | + | 2431.5550 |   | 4  | 62 | 3  | 59 | + | 2298.8819 |   | -3 |
| 46 | 13 | 33 | + | 2005.5549 | 1 | 0  | 50 | 6  | 44 | - | 1949.9992 |   | -2 | 54 | 1  | 53 | + | 1973.5926 | 1 | 1  | 58 | 0  | 58 | - | 2070.7094 | 0 | 0  | 62 | 4  | 58 | - | 2326.4419 | 3 | 0  |
| 46 | 14 | 32 | - | 2043.5256 | 1 | 0  | 50 | 6  | 44 | + | 1949.6991 | 1 | 0  | 54 | 2  | 52 | - | 2000.5731 | 2 | 0  | 58 | 0  | 58 | + | 2070.6913 | 1 | 1  | 62 | 4  | 58 | + | 2326.2474 | 3 | 0  |
| 46 | 14 | 32 | + | 2043.1580 | 1 | 2  | 50 | 7  | 43 | - | 1962.4719 | 2 | 0  | 54 | 2  | 52 | + | 2000.4640 | 1 | 0  | 58 | 1  | 57 | - | 2101.5624 |   | 1  | 62 | 5  | 57 | - | 2351.3519 |   | 0  |
| 46 | 15 | 31 | - | 2083.9013 |   | 4  | 50 | 7  | 43 | + | 1962.1795 | 2 | 1  | 54 | 3  | 51 | - | 2025.5697 |   | 0  | 58 | 1  | 57 | + | 2101.4996 | 1 | 0  | 62 | 5  | 57 | + | 2363.6681 |   | 3  |
| 46 | 15 | 31 | + | 2083.5064 |   | 5  | 50 | 8  | 42 | - | 1980.2008 |   | 0  | 54 | 3  | 51 | + | 2025.4154 | 3 | 2  | 58 | 2  | 56 | 1 | 2130.6922 | 7 | 1  | 62 | 7  | 55 | - | 2388.3397 | 6 | 3  |
| 47 | 1  | 47 | - | 1746.1322 | 1 | 0  | 50 | 8  | 42 | + | 1979.9212 | 2 | -1 | 54 | 4  | 50 | + | 2048.0761 | 4 | 2  | 58 | 2  | 56 | + | 2130.5848 | 3 | -1 | 62 | 7  | 55 | + | 2387.9785 | 6 | 0  |
| 47 | 1  | 47 | + | 1746.1140 | 0 | 0  | 50 | 9  | 41 | - | 2002.5879 |   | 2  | 54 | 5  | 49 | - | 2067.6440 | 3 | -1 | 58 | 3  | 55 | - | 2157.9397 | 5 | -1 | 62 | 8  | 54 | - | 2401.9634 |   | 1  |
| 47 | 2  | 46 | - | 1770.9140 | 1 | 0  | 50 | 9  | 41 | + | 2002.3050 |   | 2  | 54 | 5  | 49 | + | 2067.3864 | 2 | 3  | 58 | 3  | 55 | + | 2157.7875 | 2 | 0  | 62 | 8  | 54 | + | 2401.5930 |   | 0  |
| 47 | 2  | 46 | + | 1770.8493 | 1 | 0  | 50 | 10 | 40 | - | 2028.4428 |   | 0  | 54 | 6  | 48 | - | 2082.0386 | 2 | 1  | 58 | 4  | 54 | - | 2183.0376 |   | -2 | 62 | 11 | 51 | - | 2471.5203 |   | 1  |
| 47 | 3  | 45 | - | 1793.9386 |   | 0  | 50 | 10 | 40 | + | 2028.1488 | 3 | 0  | 54 | 6  | 48 | + | 2081.7262 | 2 | 1  | 58 | 4  | 54 | + | 2182.8390 | 3 | 0  | 62 | 11 | 51 | + | 2471.1751 | 3 | -2 |

Table C.5 – Continued.

| Ν  | Ka | Kc | J | Ε         | Δ | δ  | Ν  | Ka | Kc | J | Ε         | Δ | δ  | Ν  | Ka | Kc | J | Ε         | Δ | δ  | Ν  | Ka | Kc | J | Ε         | Δ | δ  | Ν  | Ka | Kc | J | Ε         | Δ | δ  |
|----|----|----|---|-----------|---|----|----|----|----|---|-----------|---|----|----|----|----|---|-----------|---|----|----|----|----|---|-----------|---|----|----|----|----|---|-----------|---|----|
|    | 1  |    |   | 2         | 3 | 4  |    | 1  | l  |   | 2         | 3 | 4  |    | 1  |    |   | 2         | 3 | 4  |    | 1  |    |   | 2         | 3 | 4  |    | 1  |    |   | 2         | 3 | 4  |
| 47 | 3  | 45 | + | 1793.8283 | 3 | 0  | 50 | 11 | 39 | - | 2057.3861 | 1 | 0  | 54 | 7  | 47 | - | 2094.1127 | 3 | -1 | 58 | 5  | 53 | - | 2205.3207 |   | -1 | 62 | 12 | 50 | - | 2502.7481 | 2 | 2  |
| 47 | 4  | 44 | - | 1815.0077 | 5 | -1 | 50 | 11 | 39 | + | 2057.0769 | 1 | -2 | 54 | 7  | 47 | + | 2093.7890 | 3 | 2  | 58 | 6  | 52 | + | 2222.7832 | 2 | 1  | 62 | 12 | 50 | + | 2502.3922 |   | -1 |
| 47 | 4  | 44 | + | 1814.8525 | 3 | 1  | 50 | 12 | 38 | - | 2089.2777 | 2 | -1 | 54 | 8  | 46 | - | 2110.0097 | 5 | -2 | 58 | 7  | 51 | - | 2236.3006 |   | 0  | 62 | 13 | 49 | - | 2537.0575 |   | -2 |
| 47 | 5  | 43 | - | 1834.0344 | 3 | 1  | 50 | 12 | 38 | + | 2088.9509 |   | -1 | 54 | 8  | 46 | + | 2109.7042 | 3 | 0  | 58 | 7  | 51 | + | 2235.9519 | 1 | 1  | 62 | 13 | 49 | + | 2536.6885 | 2 | 1  |
| 47 | 5  | 43 | + | 1833.8366 |   | 0  | 50 | 13 | 37 | - | 2124.0389 | 0 | -1 | 54 | 9  | 45 | - | 2131.4373 | 4 | -1 | 58 | 8  | 50 | - | 2250.5452 | 5 | 0  | 62 | 14 | 48 | - | 2574.3225 |   | 2  |
| 47 | 6  | 42 | - | 1851.6309 | 4 | 2  | 50 | 13 | 37 | + | 2123.6919 | 1 | 1  | 54 | 9  | 45 | + | 2131.1371 |   | 0  | 58 | 8  | 50 | + | 2250.2076 | 3 | 0  | 63 | 1  | 63 | - | 2240.1479 | 1 | -1 |
| 47 | 6  | 42 | + | 1851.4000 | 1 | -1 | 50 | 14 | 36 | - | 2161.6136 | 1 | 3  | 54 | 10 | 44 | - | 2156.8692 | 3 | 1  | 58 | 9  | 49 | - | 2270.4616 |   | 3  | 63 | 1  | 63 | + | 2240.1302 | 1 | 0  |
| 47 | 7  | 41 | - | 1869.5082 | 1 | 1  | 50 | 14 | 36 | + | 2161.2438 | 2 | 1  | 54 | 10 | 44 | + | 2156.5617 |   | 0  | 58 | 9  | 49 | + | 2270.1399 |   | 0  | 63 | 2  | 62 | + | 2273.6876 |   | -1 |
| 47 | 7  | 41 | + | 1869.2583 |   | 0  | 50 | 15 | 35 | - | 2201.9566 | 4 | 1  | 54 | 11 | 43 | - | 2185.5660 | 3 | 2  | 58 | 10 | 48 | - | 2295.2418 | 3 | -2 | 63 | 3  | 61 | + | 2305.5286 | 2 | 1  |
| 47 | 8  | 40 | - | 1889.5170 | 1 | 2  | 50 | 15 | 35 | + | 2201.5625 | 4 | 2  | 54 | 11 | 43 | + | 2185.2460 | 3 | 0  | 58 | 10 | 48 | + | 2294.9190 | 3 | -4 | 63 | 4  | 60 | - | 2335.6667 | 8 | 1  |
| 47 | 8  | 40 | + | 1889.2567 | 4 | 0  | 51 | 1  | 51 | - | 1856.4834 | 1 | 0  | 54 | 12 | 42 | - | 2217.2938 | 2 | -1 | 58 | 11 | 47 | - | 2323.6013 |   | 0  | 63 | 4  | 60 | + | 2335.5191 | 2 | 0  |
| 47 | 9  | 39 | - | 1912.5245 | 1 | 0  | 51 | 1  | 51 | + | 1856.4651 | 1 | 0  | 54 | 12 | 42 | + | 2216.9586 | 1 | -1 | 58 | 11 | 47 | + | 2323.2691 |   | -3 | 63 | 5  | 59 | + | 2363.4749 | 2 | -1 |
| 47 | 9  | 39 | + | 1912.2532 |   | 0  | 51 | 2  | 50 | - | 1883.4771 | 1 | 0  | 54 | 13 | 41 | - | 2251.9434 | 1 | 0  | 58 | 12 | 46 | - | 2355.1132 | 2 | -1 | 63 | 7  | 57 | + | 2412.5995 |   | 1  |
| 47 | 10 | 38 | - | 1938.6207 |   | -1 | 51 | 2  | 50 | + | 1883.4126 | 0 | 0  | 54 | 13 | 41 | + | 2251.5902 | 1 | 1  | 58 | 12 | 46 | + | 2354.7682 | 1 | 0  | 63 | 10 | 54 | - | 2482.0850 |   | -4 |
| 47 | 10 | 38 | + | 1938.3355 | 1 | -2 | 51 | 3  | 49 | - | 1908.7295 | 3 | 1  | 54 | 14 | 40 | - | 2289.4428 | 1 | 2  | 58 | 13 | 45 | - | 2389.6151 | 3 | 1  | 63 | 11 | 53 | - | 2510.0241 |   | -4 |
| 47 | 11 | 37 | - | 1967.7063 | 1 | -1 | 51 | 3  | 49 | + | 1908.6197 | 3 | 1  | 54 | 14 | 40 | + | 2289.0690 | 4 | 0  | 58 | 13 | 45 | + | 2389.2538 | 3 | -2 | 63 | 11 | 53 | + | 2509.6766 | 2 | -2 |
| 47 | 11 | 37 | + | 1967.4042 | 0 | -1 | 51 | 4  | 48 | + | 1931.8982 |   | -1 | 54 | 15 | 39 | - | 2329.7380 |   | 4  | 59 | 1  | 59 | - | 2103.5036 | 1 | 0  | 63 | 12 | 52 | + | 2540.8316 |   | -2 |
| 47 | 12 | 36 | - | 1999.6929 | 1 | -1 | 51 | 5  | 47 | - | 1953.2634 |   | 0  | 55 | 1  | 55 | - | 1975.6110 | 0 | -2 | 59 | 1  | 59 | + | 2103.4855 | 1 | 1  | 63 | 13 | 51 | - | 2575.4453 | 3 | -3 |
| 47 | 12 | 36 | + | 1999.3713 | 1 | 0  | 51 | 5  | 47 | + | 1953.0638 |   | -2 | 55 | 1  | 55 | + | 1975.5928 | 1 | 0  | 59 | 2  | 58 | - | 2134.9066 | 4 | 1  | 63 | 13 | 51 | + | 2575.0743 | 1 | 2  |
| 47 | 13 | 35 | - | 2034.5181 | 2 | 1  | 51 | 6  | 46 | + | 1972.3170 | 3 | -2 | 55 | 2  | 54 | - | 2004.8121 | 2 | 1  | 59 | 2  | 58 | + | 2134.8442 | 1 | 0  | 63 | 14 | 50 | - | 2612.6712 | 2 | -1 |
| 47 | 13 | 35 | + | 2034.1742 | 2 | -1 | 51 | 7  | 45 | - | 1991.1697 | 3 | 0  | 55 | 2  | 54 | + | 2004.7483 | 1 | 1  | 59 | 3  | 57 | - | 2164.5882 | 4 | -2 | 63 | 14 | 50 | + | 2612.2841 |   | 0  |
| 47 | 14 | 34 | - | 2072.1342 | 1 | 0  | 51 | 7  | 45 | + | 1990.9061 | 1 | -1 | 55 | 3  | 53 | - | 2032.2834 |   | 1  | 59 | 3  | 57 | + | 2164.4816 | 2 | -1 | 64 | 0  | 64 | - | 2275.6749 | 1 | 0  |
| 47 | 14 | 34 | + | 2071.7663 | 1 | 1  | 51 | 8  | 44 | - | 2011.1085 | 2 | 0  | 55 | 3  | 53 | + | 2032.1746 | 3 | 0  | 59 | 4  | 56 | - | 2192.3991 | 4 | -1 | 64 | 0  | 64 | + | 2275.6575 | 1 | 0  |
| 47 | 15 | 33 | - | 2112.5030 | 1 | 2  | 51 | 8  | 44 | + | 2010.8317 | 2 | -1 | 55 | 4  | 52 | - | 2057.8568 | 3 | 0  | 59 | 4  | 56 | + | 2192.2477 | 3 | 0  | 64 | 1  | 63 | + | 2309.7640 |   | 2  |
| 47 | 15 | 33 | + | 2112.1088 | 2 | 5  | 51 | 9  | 43 | - | 2033.7944 | 1 | 2  | 55 | 4  | 52 | + | 2057.7030 | 2 | 1  | 59 | 5  | 55 | - | 2218.1357 | 1 | -3 | 64 | 2  | 62 | + | 2342.1543 | 0 | 1  |
| 47 | 16 | 32 | - | 2155.5902 | 3 | 3  | 51 | 9  | 43 | + | 2033.5086 | 1 | 1  | 55 | 5  | 51 | - | 2081.3210 |   | -5 | 59 | 5  | 55 | + | 2217.9389 | 2 | 0  | 64 | 3  | 61 | + | 2372.6980 | 1 | 0  |
| 48 | 0  | 48 | - | 1772.8966 | 1 | 0  | 51 | 10 | 42 | - | 2059.6148 |   | -1 | 55 | 5  | 51 | + | 2081.1225 | 5 | 2  | 59 | 6  | 54 | - | 2241.6162 |   | 2  | 64 | 4  | 60 | + | 2401.2021 | 3 | -3 |
| 48 | 0  | 48 | + | 1772.8784 | 0 | 0  | 51 | 10 | 42 | + | 2059.3177 | 2 | -1 | 55 | 6  | 50 | - | 2102.6165 | 5 | -1 | 59 | 6  | 50 | + | 2241.3741 | 3 | 0  | 64 | 5  | 59 | + | 2427.3044 | 4 | -1 |
| 48 | 1  | 47 | - | 1798.2316 | 1 | 0  | 51 | 11 | 41 | - | 2088.5076 | 1 | -3 | 55 | 6  | 50 | + | 2102.3748 |   | -2 | 59 | 7  | 53 | - | 2263.1027 |   | 2  | 64 | 7  | 57 | + | 2491.1253 | 3 | 1  |

Table C.5 – Continued.

| Ν  | Ka | Kc | J | Ε         | Δ | δ  | Ν  | Ka | Kc | J | Ε         | Δ | δ  | Ν  | Ka | Kc | J | Ε         | Δ | δ  | Ν  | Ka | Kc | J | Ε         | Δ | δ  | Ν  | Ka | Kc | J | Ε         | Δ         | δ  |
|----|----|----|---|-----------|---|----|----|----|----|---|-----------|---|----|----|----|----|---|-----------|---|----|----|----|----|---|-----------|---|----|----|----|----|---|-----------|-----------|----|
|    | 1  |    |   | 2         | 3 | 4  |    | i  | 1  |   | 2         | 3 | 4  |    | 1  |    |   | 2         | 3 | 4  |    | 1  |    |   | 2         | 3 | 4  |    | 1  |    |   | 2         | 3         | 4  |
| 48 | 1  | 47 | + | 1798.1669 | 1 | -1 | 51 | 11 | 41 | + | 2088.1963 | 2 | -1 | 55 | 7  | 49 | + | 2122.1748 | 2 | -1 | 59 | 7  | 53 | + | 2262.8219 |   | 1  | 64 | 5  | 59 | + | 2427.3044 | 4         | -1 |
| 48 | 2  | 46 | - | 1821.8094 | 5 | 1  | 51 | 12 | 40 | - | 2120.3633 | 1 | -1 | 55 | 8  | 48 | - | 2142.6254 | 5 | 1  | 59 | 8  | 52 | + | 2283.6425 | 4 | -1 | 64 | 10 | 54 | - | 2521.6319 | $\square$ | -1 |
| 48 | 2  | 46 | + | 1821.6989 | 1 | 0  | 51 | 12 | 40 | + | 2120.0346 |   | 0  | 55 | 8  | 48 | + | 2142.3330 | 2 | -2 | 59 | 9  | 51 | - | 2306.2157 |   | -1 | 64 | 10 | 54 | + | 2521.2828 | $\square$ | 0  |
| 48 | 3  | 45 | - | 1843.3643 | 3 | -2 | 51 | 13 | 39 | - | 2155.0996 | 2 | 0  | 55 | 9  | 47 | - | 2165.0248 | 4 | 0  | 59 | 9  | 51 | + | 2305.8984 |   | 1  | 64 | 11 | 53 | - | 2549.1980 | $\square$ | 1  |
| 48 | 3  | 45 | + | 1843.2081 | 2 | 1  | 51 | 13 | 39 | + | 2154.7512 | 4 | 1  | 55 | 9  | 47 | + | 2164.7235 | 4 | -3 | 59 | 10 | 50 | - | 2331.3250 | 4 | 1  | 64 | 11 | 53 | + | 2548.8459 | 3         | -4 |
| 48 | 4  | 44 | - | 1862.1913 | 1 | 0  | 51 | 14 | 38 | - | 2192.6574 | 1 | 0  | 55 | 10 | 46 | - | 2190.5073 |   | -1 | 59 | 10 | 50 | + | 2330.9993 | 4 | -4 | 64 | 12 | 52 | + | 2579.8897 | 7         | 0  |
| 48 | 4  | 44 | + | 1861.9833 | 5 | -1 | 51 | 14 | 38 | + | 2192.2872 | 2 | 3  | 55 | 10 | 46 | + | 2190.1966 | 2 | -2 | 59 | 11 | 49 | - | 2359.6467 |   | 0  | 64 | 13 | 51 | - | 2614.4448 | $\square$ | 0  |
| 48 | 5  | 43 | - | 1876.6535 |   | -1 | 51 | 15 | 37 | - | 2232.9903 | 3 | 1  | 55 | 11 | 45 | - | 2219.1482 |   | 0  | 59 | 11 | 49 | + | 2359.3115 |   | -3 | 64 | 14 | 50 | - | 2651.6289 | 2         | -1 |
| 48 | 5  | 43 | + | 1876.3892 |   | -2 | 51 | 15 | 37 | + | 2232.5958 | 5 | 1  | 55 | 11 | 45 | + | 2218.8256 | 3 | 0  | 59 | 12 | 48 | - | 2391.1010 | 2 | 2  | 65 | 1  | 65 | - | 2311.7480 | 1         | 0  |
| 48 | 6  | 42 | - | 1887.6109 | 2 | 0  | 52 | 0  | 52 | - | 1885.4430 | 1 | 0  | 55 | 12 | 44 | - | 2250.8293 | 1 | 1  | 59 | 12 | 48 | + | 2390.7531 | 1 | -1 | 65 | 1  | 65 | + | 2311.7305 | 0         | 0  |
| 48 | 6  | 42 | + | 1887.3221 |   | 1  | 52 | 0  | 52 | + | 1885.4248 | 1 | 1  | 55 | 12 | 44 | + | 2250.4914 | 2 | -2 | 59 | 13 | 47 | - | 2425.5595 | 4 | 1  | 65 | 2  | 64 | - | 2346.4440 | 7         | 1  |
| 48 | 7  | 41 | - | 1900.7216 | 2 | -1 | 52 | 1  | 51 | - | 1912.9890 | 1 | 1  | 55 | 13 | 43 | - | 2285.4456 |   | 1  | 59 | 13 | 47 | + | 2425.1966 | 3 | 2  | 65 | 2  | 64 | + | 2346.3853 | 6         | -1 |
| 48 | 7  | 41 | + | 1900.4452 | 2 | 0  | 52 | 1  | 51 | + | 1912.9246 | 1 | 1  | 55 | 13 | 43 | + | 2285.0905 | 3 | 1  | 59 | 14 | 46 | + | 2462.5465 | 2 | 2  | 65 | 3  | 63 | - | 2379.4258 | $\square$ | -2 |
| 48 | 8  | 40 | - | 1919.2195 |   | 1  | 52 | 2  | 50 | - | 1938.7953 | 3 | 0  | 55 | 14 | 42 | - | 2322.9219 | 5 | -1 | 60 | 0  | 60 | - | 2136.8445 | 2 | -1 | 65 | 3  | 63 | + | 2379.3248 | $\square$ | -1 |
| 48 | 8  | 40 | + | 1918.9507 |   | 0  | 52 | 2  | 50 | + | 1938.6857 | 1 | 0  | 55 | 14 | 42 | + | 2322.5475 | 2 | 5  | 60 | 0  | 60 | + | 2136.8265 | 0 | -1 | 65 | 4  | 62 | + | 2410.4230 | $\square$ | -1 |
| 48 | 9  | 39 | - | 1941.9315 | 3 | 0  | 52 | 3  | 49 | - | 1962.6558 |   | -1 | 55 | 15 | 41 | - | 2363.2019 |   | -1 | 60 | 1  | 59 | - | 2168.7975 | 4 | 1  | 65 | 5  | 61 | - | 2439.6950 | $\square$ | -2 |
| 48 | 9  | 39 | + | 1941.6563 | 2 | 0  | 52 | 3  | 49 | + | 1962.5006 |   | 0  | 56 | 0  | 56 | - | 2006.7630 | 1 | 0  | 60 | 1  | 59 | + | 2168.7355 | 1 | 0  | 65 | 5  | 61 | + | 2439.5054 | $\square$ | -1 |
| 48 | 10 | 38 | - | 1967.9443 | 3 | -1 | 52 | 4  | 48 | - | 1984.1219 | 3 | -2 | 56 | 0  | 56 | + | 2006.7448 | 2 | 0  | 60 | 2  | 58 | + | 2198.9246 | 3 | 1  | 65 | 9  | 57 | + | 2490.8442 | $\square$ | 1  |
| 48 | 10 | 38 | + | 1967.6565 | 3 | 1  | 52 | 4  | 48 | + | 1983.9182 |   | 0  | 56 | 1  | 55 | - | 2036.5150 | 2 | 1  | 60 | 3  | 57 | - | 2227.3958 |   | 2  | 65 | 10 | 56 | - | 2561.1934 | 3         | -1 |
| 48 | 11 | 37 | - | 1996.9854 |   | 0  | 52 | 5  | 47 | - | 2001.9005 | 5 | -1 | 56 | 1  | 55 | + | 2036.4515 | 1 | 1  | 60 | 3  | 57 | + | 2227.2447 | 1 | -2 | 65 | 11 | 55 | - | 2588.9250 | $\square$ | 5  |
| 48 | 11 | 37 | + | 1996.6813 | 3 | 1  | 52 | 5  | 47 | + | 2001.6391 | 5 | -1 | 56 | 2  | 54 | + | 2064.4310 |   | 1  | 60 | 4  | 56 | - | 2253.6569 | 4 | -2 | 65 | 11 | 55 | + | 2588.5700 | 2         | -5 |
| 48 | 12 | 36 | - | 2028.9427 | 1 | -1 | 52 | 6  | 46 | - | 2014.8417 | 3 | -2 | 56 | 3  | 53 | + | 2090.5112 | 3 | 4  | 60 | 4  | 56 | + | 2253.4603 | 1 | 0  | 65 | 12 | 54 | - | 2619.9204 | Π         | 1  |
| 48 | 12 | 36 | + | 2028.6195 | 1 | 0  | 52 | 6  | 46 | + | 2014.5343 |   | 1  | 56 | 4  | 52 | - | 2114.5799 | 3 | -3 | 60 | 5  | 55 | - | 2277.2829 |   | 3  | 65 | 12 | 54 | + | 2619.5567 | $\square$ | -2 |
| 48 | 13 | 35 | - | 2063.7481 | 1 | -1 | 52 | 7  | 45 | - | 2026.9431 |   | -1 | 56 | 4  | 52 | + | 2114.3796 |   | -1 | 60 | 5  | 55 | + | 2277.0355 |   | 2  | 66 | 0  | 66 | - | 2348.3665 | 1         | 0  |
| 48 | 13 | 35 | + | 2063.4035 | 1 | 0  | 52 | 8  | 44 | - | 2043.7842 | 2 | 0  | 56 | 5  | 51 | - | 2135.4476 |   | 2  | 60 | 6  | 54 | - | 2296.7926 | 6 | 2  | 66 | 0  | 66 | + | 2348.3494 | 2         | 0  |
| 48 | 14 | 34 | - | 2101.3517 |   | 0  | 52 | 8  | 44 | + | 2043.4922 | 2 | -2 | 56 | 5  | 51 | + | 2135.1933 |   | 3  | 60 | 6  | 54 | + | 2296.4834 |   | 0  | 66 | 1  | 65 | + | 2383.5524 | $\square$ | 0  |
| 48 | 14 | 34 | + | 2100.9833 |   | 0  | 52 | 9  | 43 | - | 2065.7515 | 3 | 1  | 56 | 6  | 50 | - | 2151.4874 | 2 | 2  | 60 | 7  | 53 | - | 2311.1403 | 2 | 0  | 66 | 2  | 64 | - | 2417.1407 | Π         | 3  |
| 48 | 15 | 33 | - | 2141.7130 | 1 | 2  | 52 | 9  | 43 | + | 2065.4602 | 0 | 0  | 56 | 6  | 50 | + | 2151.1732 | 3 | -1 | 60 | 7  | 53 | + | 2310.7839 |   | 2  | 66 | 2  | 64 | + | 2417.0407 | $\square$ | 1  |
| 66 | 3  | 63 | + | 2448.6909 |   | 0  | 68 | 0  | 68 | + | 2423.2233 | 1 | -1 | 70 | 0  | 70 | + | 2500.2772 | 2 | -1 | 72 | 1  | 71 | - | 2618.0451 | 1 | -2 | 76 | 1  | 75 | - | 2785.2099 | $\square$ | -2 |

| <b>T</b> 11 |       | $\alpha$ $\cdot$ | 1            |
|-------------|-------|------------------|--------------|
| Ighle       | 1.5   | Continue         | $\mathbf{a}$ |
| raute       | U.J - | – Comunuc        | u.           |

| Ν  | Ka | Kc | J | Ε         | Δ | δ  | Ν  | Ka | Kc | J | Ε         | Δ | δ  | Ν  | Ka | Kc | J | Ε         | Δ | δ  | Ν  | Ka | Kc | J | Ε         | Δ | δ  | Ν  | Ka | Kc | J | Ε         | Δ | δ  |
|----|----|----|---|-----------|---|----|----|----|----|---|-----------|---|----|----|----|----|---|-----------|---|----|----|----|----|---|-----------|---|----|----|----|----|---|-----------|---|----|
|    | 1  |    |   | 2         | 3 | 4  |    | i  |    |   | 2         | 3 | 4  |    | 1  |    |   | 2         | 3 | 4  |    | 1  |    |   | 2         | 3 | 4  |    | 1  |    |   | 2         | 3 | 4  |
| 66 | 4  | 62 | + | 2478.3261 |   | 1  | 68 | 1  | 67 | - | 2459.5775 |   | 0  | 70 | 1  | 69 | - | 2537.7230 |   | -2 | 72 | 1  | 71 | + | 2617.9924 | 1 | 1  | 76 | 1  | 75 | + | 2785.1580 | 8 | -1 |
| 66 | 5  | 61 | - | 2505.8724 | 1 | 2  | 68 | 1  | 67 | + | 2459.5214 |   | 0  | 70 | 1  | 69 | + | 2537.6689 | 1 | 1  | 72 | 2  | 70 | + | 2654.7628 |   | 3  | 77 | 1  | 77 | - | 2787.1233 | 1 | -2 |
| 66 | 5  | 61 | + | 2505.6363 | 6 | -1 | 68 | 2  | 66 | - | 2494.2028 |   | 3  | 70 | 2  | 68 | - | 2573.4411 | 5 | 2  | 73 | 1  | 73 | - | 2619.9583 | 2 | 0  | 77 | 1  | 77 | + | 2787.1047 |   | 0  |
| 66 | 6  | 60 | - | 2530.1226 | 3 | 0  | 68 | 2  | 66 | + | 2494.1052 |   | -4 | 70 | 2  | 68 | + | 2573.3470 | 1 | 1  | 73 | 1  | 73 | + | 2619.9413 |   | 0  | 78 | 0  | 78 | - | 2830.2724 | 2 | 1  |
| 66 | 7  | 59 | - | 2536.2106 | 1 | -2 | 68 | 3  | 65 | - | 2526.9987 |   | 1  | 70 | 5  | 65 | + | 2668.7368 | 1 | 1  | 74 | 0  | 74 | - | 2660.9343 | 2 | 1  | 78 | 0  | 78 | + | 2830.2531 | 1 | 0  |
| 66 | 7  | 59 | + | 2571.5753 | 3 | -2 | 68 | 3  | 65 | + | 2526.8593 | 2 | 1  | 70 | 7  | 63 | - | 2701.9176 |   | 1  | 74 | 0  | 74 | + | 2660.9174 |   | 0  | 79 | 1  | 79 | - | 2873.9643 | 3 | 0  |
| 66 | 10 | 56 | - | 2602.1879 |   | -4 | 68 | 5  | 63 | - | 2617.8640 | 1 | 2  | 71 | 1  | 71 | - | 2539.6378 | 2 | -1 | 74 | 1  | 73 | - | 2700.5414 |   | -2 | 79 | 1  | 79 | + | 2873.9436 |   | 3  |
| 67 | 1  | 67 | - | 2385.5308 |   | 0  | 68 | 7  | 61 | + | 2654.2160 | 2 | 3  | 71 | 1  | 71 | + | 2539.6209 | 2 | -1 | 74 | 1  | 73 | + | 2700.4895 | 4 | 0  | 80 | 0  | 80 | - | 2918.1982 | 2 | 0  |
| 67 | 1  | 67 | + | 2385.5136 | 2 | 0  | 69 | 1  | 69 | - | 2461.4948 |   | 0  | 71 | 2  | 70 | + | 2577.5588 |   | 2  | 74 | 2  | 72 | + | 2738.3501 |   | 2  | 80 | 0  | 80 | + | 2918.1764 |   | 2  |
| 67 | 2  | 66 | + | 2421.2645 |   | 0  | 69 | 1  | 69 | + | 2461.4778 |   | 0  | 71 | 3  | 69 | - | 2613.8756 | 3 | 1  | 75 | 1  | 75 | - | 2702.4541 | 2 | 0  | 81 | 1  | 81 | - | 2962.9748 | 4 | 0  |
| 67 | 3  | 65 | + | 2455.3010 |   | 1  | 69 | 2  | 68 | + | 2498.3230 |   | 1  | 71 | 3  | 69 | + | 2613.7829 | 3 | -1 | 75 | 1  | 75 | + | 2702.4366 |   | 0  | 81 | 1  | 81 | + | 2962.9504 |   | 2  |
| 67 | 4  | 64 | + | 2487.5036 |   | 0  | 69 | 3  | 67 | + | 2533.4545 |   | 2  | 72 | 0  | 72 | - | 2579.5260 |   | 2  | 76 | 0  | 76 | - | 2744.5171 | 1 | 1  | 83 | 1  | 83 | + | 3054.1230 | 4 | 0  |
| 67 | 5  | 63 | + | 2517.7080 |   | -1 | 69 | 5  | 65 | + | 2598.0808 |   | 0  | 72 | 0  | 72 | + | 2579.5093 |   | -1 | 76 | 0  | 76 | + | 2744.4995 |   | 1  | 84 | 0  | 84 | - | 3100.5542 |   | 4  |
| 68 | 0  | 68 | - | 2423.2402 | 1 | 1  | 70 | 0  | 70 | - | 2500.2939 | 2 | 1  |    |    |    |   |           |   |    |    |    |    |   |           |   |    |    |    |    |   |           |   |    |

In Table C.5,  $\Delta$  is the experimental uncertainty of the energy value, equal to one standard uncertainty in units of  $10^{-4}$  cm<sup>-1</sup>;  $\delta$  is the difference,  $E^{exp} - E^{calc}$  also in units of  $10^{-4}$  cm<sup>-1</sup>. When the  $\Delta$ -value is absent, the corresponding energy level was obtained from a single transition; J is the quantum number of the ground vibrational state (J = N + 1/2 is denoted as "+", J = N - 1/2 is denoted as "–").

| Parameter                                | $(v_3 = 1)$ ClO <sub>2</sub> , cm <sup>-1</sup> | $(v_{\rm GS} = 1)$ ClO <sub>2</sub> , cm <sup>-1</sup> [52] |
|------------------------------------------|-------------------------------------------------|-------------------------------------------------------------|
| 1                                        | 2                                               | 3                                                           |
| Ε                                        | 1110.106659(12)                                 |                                                             |
| Α                                        | 1.72118217(28)                                  | 1.7372487(18)                                               |
| В                                        | 0.330166907(53)                                 | 0.33198801(36)                                              |
| С                                        | 0.276569335(54)                                 | 0.27799915(31)                                              |
| $\Delta K / 10^{-4}$                     | 0.684340(22)                                    | 0.68542(14)                                                 |
| $\Delta_{NK}/10^{-4}$                    | -0.0412950(42)                                  | -0.038169(38)                                               |
| $\Delta_N/10^{-4}$                       | 0.00299496(29)                                  | 0.0029576(29)                                               |
| $\delta_{\rm K}/10^{-4}$                 | 0.0093636(48)                                   | 0.010435(66)                                                |
| δ <sub>N</sub> /10 <sup>-4</sup>         | 0.00078045(13)                                  | 0.00077094(54)                                              |
| $H_{K}/10^{-8}$                          | 0.92520(70)                                     | 0.9449(61)                                                  |
| $H_{KN}/10^{-8}$                         | -0.073301(93)                                   | -0.0867(35)                                                 |
| $H_{NK}/10^{-8}$                         | -0.006162(32)                                   | 0.00664(92)                                                 |
| $H_N/10^{-8}$                            | 0.00013197(77)                                  | 0.0001349(98)                                               |
| <i>h</i> <sub>K</sub> /10 <sup>-8</sup>  | 0.27125(71)                                     | 0.294(35)                                                   |
| h <sub>N</sub> /10 <sup>-8</sup>         | 0.00003913(22)                                  | 0.0000391(23)                                               |
| $L_{K}/10^{-12}$                         | -1.9486(92)                                     | -2.001(90)                                                  |
| $L_{KKN}/10^{-12}$                       | 0.1063                                          | 0.1063(66)                                                  |
| $L_{KNN}/10^{-12}$                       | 0.000168(38)                                    |                                                             |
| $L_N/10^{-12}$                           | -0.00003727(73)                                 | -0.0000401(83)                                              |
| <i>l</i> <sub>K</sub> /10 <sup>-12</sup> | -0.1703(61)                                     | -0.251(70)                                                  |
| $l_{KN}/10^{-12}$                        |                                                 |                                                             |
| $l_{NK}/10^{-12}$                        | 0.009753(28)                                    | 0.01054(91)                                                 |
| <i>l</i> <sub>N</sub> /10 <sup>-12</sup> |                                                 |                                                             |
| $P_{K}/10^{-16}$                         | 3.570(42)                                       | 4.22(56)                                                    |
| $P_{KKN}/10^{-16}$                       | 0.3792(96)                                      |                                                             |
| $a_0/10^{-2}$                            | -0.355150(92)                                   | -0.35128(57)                                                |
| a/10 <sup>-2</sup>                       | -4.35940(37)                                    | -4.2778(12)                                                 |
| <i>b</i> /10 <sup>-2</sup>               | 0.375633(60)                                    | 0.369986(60)                                                |
| $\Delta^{S}_{K}/10^{-5}$                 | 0.3975(17)                                      | 0.4023(87)                                                  |
| $\Delta^{S}_{KN}/10^{-5}$                | -5.821(23)                                      | -5.882(91)                                                  |
| $\Delta^{S}_{NK}/10^{-5}$                | 5.406(22)                                       | 5.465(85)                                                   |
| $\Delta^{S}N/10^{-5}$                    | -0.004518(88)                                   | -0.00315(34)                                                |
| $\delta^{S}$ K/10 <sup>-5</sup>          | -0.1847(76)                                     |                                                             |
| $\delta^{S}N/10^{-5}$                    |                                                 |                                                             |
| $H^{S}_{K}/10^{-8}$                      |                                                 |                                                             |
| $H^{S}_{KKN}/10^{-8}$                    | -0.2236(19)                                     | -0.2471(79)                                                 |
| $H^{S}_{NKK}/10^{-8}$                    |                                                 |                                                             |
| $H^{S}_{KNN}/10^{-8}$                    | 0.2577(30)                                      | 0.2588(86)                                                  |
| $H^{S}_{NNK}/10^{-8}$                    | -0.00935(24)                                    |                                                             |
| $H^{S}N/10^{-8}$                         | 0.000152(17)                                    |                                                             |
| $h^{S}_{KN}/10^{-8}$                     | -0.5209(43)                                     | -0.491(29)                                                  |
| $h^{S}_{NK}/10^{-8}$                     | 0.5313(25)                                      | 0.512(25)                                                   |
| $h^{S}_{NN}/10^{-8}$                     | 0.0000151(26)                                   |                                                             |

Table C.6 – Spectroscopic parameters of the ( $v_3 = 1$ ) vibrational state.

| Parameter                                       | $(v_1 = v_3 = 1)$ ClO <sub>2</sub> , cm <sup>-1</sup> | $(v_{\rm GS} = 1)$ ClO <sub>2</sub> , cm <sup>-1</sup> [52] |
|-------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------|
| 1                                               | 2                                                     | 3                                                           |
| Ε                                               | 2038.933801(30)                                       |                                                             |
| Α                                               | 1.7191685(18)                                         | 1.7372487(18)                                               |
| В                                               | 0.32817231(29)                                        | 0.33198801(36)                                              |
| С                                               | 0.27474737(23)                                        | 0.27799915(31)                                              |
| $\Delta K / 10^{-4}$                            | 0.693(29)                                             | 0.68542(14)                                                 |
| <i>∆<sub>NK</sub></i> /10 <sup>-4</sup>         | -0.040123(22)                                         | -0.038169(38)                                               |
| $\Delta_N/10^{-4}$                              | 0.0030229(21)                                         | 0.0029576(29)                                               |
| $\delta_{\rm K}/10^{-4}$                        | 0.010185(13)                                          | 0.010435(66)                                                |
| $\delta_{N}/10^{-4}$                            | 0.00078647(19)                                        | 0.00077094(54)                                              |
| $H_{K}/10^{-8}$                                 | 1.0290(92)                                            | 0.9449(61)                                                  |
| H <sub>KN</sub> /10 <sup>-8</sup>               | -0.06223(28)                                          | -0.0867(35)                                                 |
| H <sub>NK</sub> /10 <sup>-8</sup>               |                                                       | 0.00664(92)                                                 |
| H <sub>N</sub> /10 <sup>-8</sup>                | 0.0003534(87)                                         | 0.0001349(98)                                               |
| <i>h</i> <sub>K</sub> /10 <sup>-8</sup>         | 0.294                                                 | 0.294(35)                                                   |
| <i>h<sub>NK</sub></i> /10 <sup>-8</sup>         | 0.00432                                               | 0.00432                                                     |
| <i>h</i> <sub>N</sub> /10 <sup>-8</sup>         | 0.0001140(81)                                         | 0.0000391(23)                                               |
| <i>L</i> <sub><i>K</i></sub> /10 <sup>-12</sup> | -2.49(33)                                             | -2.001(90)                                                  |
| $L_{KKN}/10^{-12}$                              | 0.524(88)                                             | 0.1063(66)                                                  |
| $L_N/10^{-12}$                                  | -0.000622(20)                                         | -0.0000401(83)                                              |
| <i>l<sub>NK</sub></i> /10 <sup>-12</sup>        | -0.0143                                               | -0.0143(28)                                                 |
| <i>l</i> <sub>N</sub> /10 <sup>-12</sup>        | -0.000237(16)                                         |                                                             |
| $P_{KKKN}/10^{-16}$                             | 0.0913                                                | 0.0913                                                      |
| $P_{KKN}/10^{-16}$                              | -0.0299(13)                                           |                                                             |
| <i>P<sub>K</sub></i> /10 <sup>-16</sup>         | 4.22                                                  | 4.22(56)                                                    |
|                                                 |                                                       |                                                             |
| $a_0/10^{-2}$                                   | -0.36125(27)                                          | -0.35128(57)                                                |
| a/10 <sup>-2</sup>                              | -4.3890(15)                                           | -4.2778(12)                                                 |
| <i>b</i> /10 <sup>-2</sup>                      | 0.38215(15)                                           | 0.369986(60)                                                |
| $\Delta^{S}_{K}/10^{-5}$                        | 0.490(18)                                             | 0.4023(87)                                                  |
| $\Delta^{S}_{KN}/10^{-5}$                       | -6.683(93)                                            | -5.882(91)                                                  |
| $\Delta^{S}_{NK}/10^{-5}$                       | 6.194(82)                                             | 5.465(85)                                                   |
| $\Delta^{S}N/10^{-5}$                           | -0.003272(76)                                         | -0.00315(34)                                                |
| $\delta^{S}$ K/10 <sup>-5</sup>                 | -0.2739(84)                                           |                                                             |
| $\delta^{S}_{N}/10^{-5}$                        |                                                       |                                                             |
| $H^{S}_{K}/10^{-8}$                             |                                                       |                                                             |
| $H^{S}_{KKN}/10^{-8}$                           | -0.281(30)                                            | -0.2471(79)                                                 |
| $H^S_{NKK}/10^{-8}$                             |                                                       |                                                             |
| $H^{S}_{KNN}/10^{-8}$                           | 0.3325(79)                                            | 0.2588(86)                                                  |
| $H^{S}_{NNK}/10^{-8}$                           |                                                       |                                                             |
| $H^{S}N/10^{-8}$                                |                                                       |                                                             |
| $h^{S}_{KN}/10^{-8}$                            | -0.797(37)                                            | -0.491(29)                                                  |
| $h^{S}_{NK}/10^{-8}$                            | 0.922(52)                                             | 0.512(25)                                                   |

Table C.7 – Spectroscopic parameters of the ( $v_1 = v_3 = 1$ ) vibrational state.

| I  |                     | 10 | <i>I'</i> |                | <i>n</i> ′ | v <sup>exp</sup> , | Transmittance, | $\delta \cdot 10^{-4}$ , | Band       | Spectre |
|----|---------------------|----|-----------|----------------|------------|--------------------|----------------|--------------------------|------------|---------|
| J  | γ                   | п  | J         | γ              | п          | $\mathrm{cm}^{-1}$ | %              | $\mathrm{cm}^{-1}$       | Dallu      | specua  |
|    | 1                   | n  |           | 2              | -          | 3                  | 4              | 5                        | 6          | 7       |
| 19 | F <sub>2</sub>      | 6  | 20        | F <sub>1</sub> | 3          | 869.02016          | 97.8           | -2.8                     | $\nu_4$    | III     |
| 18 | $F_1$               | 6  | 19        | F <sub>2</sub> | 3          | 870.41776          | 97.1           | -0.7                     | $\nu_4$    | III     |
| 19 | $A_2$               | 3  | 20        | $A_1$          | 2          | 873.72646          | 98.0           | -0.1                     | $\nu_4$    | III     |
| 18 | $A_2$               | 2  | 19        | $A_1$          | 1          | 875.95377          | 98.0           | -1.7                     | $\nu_4$    | III     |
| 18 | $F_2$               | 7  | 19        | $F_1$          | 3          | 876.02580          | 98.0           | -1.7                     | $\nu_4$    | III     |
| 18 | Е                   | 5  | 19        | Е              | 2          | 876.05385          | 98.1           | -3.2                     | $\nu_4$    | III     |
| 17 | $F_2$               | 6  | 18        | $F_1$          | 2          | 877.60614          | 97.2           | 0.9                      | $\nu_4$    | III     |
| 17 | $A_2$               | 3  | 18        | $A_1$          | 1          | 877.61941          | 97.8           | 4.4                      | $\nu_4$    | III     |
| 18 | $F_2$               | 8  | 19        | $F_1$          | 4          | 880.38255          | 97.2           | 1.7                      | $\nu_4$    | III     |
| 19 | F <sub>2</sub>      | 9  | 20        | $F_1$          | 4          | 881.09433          | 98.2           | -4.5                     | $\nu_4$    | III     |
| 23 | $F_1$               | 15 | 24        | $F_2$          | 4          | 882.02471          | 97.6           | 7.2                      | $\nu_4$    | III     |
| 17 | F <sub>2</sub>      | 7  | 18        | F <sub>1</sub> | 3          | 882.88062          | 96.9           | -2.2                     | $\nu_4$    | III     |
| 17 | $F_1$               | 6  | 18        | $F_2$          | 3          | 882.98258          | 96.0           | -0.7                     | $\nu_4$    | III     |
| 13 | F <sub>1</sub>      | 3  | 14        | $F_2$          | 3          | 884.27607          | 94.3           | -1.1                     | $\nu_4$    | III     |
| 16 | F <sub>1</sub>      | 5  | 17        | F <sub>2</sub> | 2          | 884.72092          | 96.5           | -3.5                     | $\nu_4$    | III     |
| 16 | F <sub>2</sub>      | 6  | 17        | $F_1$          | 3          | 884.74118          | 96.4           | 0.5                      | $\nu_4$    | III     |
| 18 | $A_1$               | 3  | 19        | $A_2$          | 2          | 884.75148          | 95.8           | 1.1                      | $\nu_4$    | III     |
| 22 | $F_1$               | 13 | 23        | $F_2$          | 5          | 885.49071          | 97.1           | 1.6                      | $\nu_4$    | III     |
| 18 | F <sub>2</sub>      | 9  | 19        | $F_1$          | 4          | 886.26416          | 97.4           | -0.1                     | $\nu_4$    | III     |
| 17 | $F_1$               | 7  | 18        | $F_2$          | 4          | 886.81760          | 98.2           | -2.3                     | $\nu_4$    | III     |
| 22 | $A_1$               | 5  | 23        | $A_2$          | 2          | 887.02960          | 96.9           | 3.6                      | $\nu_4$    | III     |
| 17 | Е                   | 5  | 18        | Е              | 3          | 887.05425          | 97.6           | 0.5                      | $\nu_4$    | III     |
| 22 | F <sub>1</sub>      | 14 | 23        | F <sub>2</sub> | 4          | 888.15222          | 96.6           | 1.6                      | $\nu_4$    | III     |
| 22 | F <sub>2</sub>      | 14 | 23        | $F_1$          | 4          | 888.65975          | 95.6           | 0.9                      | $\nu_4$    | III     |
| 21 | $A_2$               | 5  | 22        | $A_1$          | 2          | 889.58122          | 95.4           | 0.4                      | $\nu_4$    | III     |
| 16 | $F_1$               | 6  | 17        | $F_2$          | 3          | 889.75071          | 94.7           | -4.9                     | $\nu_4$    | III     |
| 16 | A <sub>1</sub>      | 3  | 17        | $A_2$          | 1          | 889.90776          | 95.9           | 1.5                      | $\nu_4$    | III     |
| 21 | $F_2$               | 13 | 22        | $F_1$          | 4          | 889.99905          | 95.1           | 1.2                      | $\nu_4$    | III     |
| 21 | F <sub>1</sub>      | 12 | 22        | F <sub>2</sub> | 5          | 890.50439          | 95.0           | -0.9                     | $\nu_4$    | III     |
| 12 | $F_2$               | 2  | 13        | $F_1$          | 4          | 891.34041          | 97.3           | -1.1                     | $\nu_4$    | III     |
| 22 | A <sub>2</sub>      | 5  | 23        | A <sub>1</sub> | 1          | 891.38936          | 97.1           | 3.8                      | $v_{4}$    | III     |
| 21 | $A_1$               | 4  | 22        | $A_2$          | 2          | 891.43602          | 95.9           | 1.9                      | V4         | III     |
| 14 | F <sub>1</sub>      | 4  | 15        | F <sub>2</sub> | 2          | 891.50952          | 94.0           | -2.9                     | V4         | III     |
| 14 | $A_1$               | 2  | 15        | $A_2$          | 1          | 891.51457          | 95.6           | 2.6                      | $v_4$      | III     |
| 19 | F <sub>1</sub>      | 11 | 20        | F <sub>2</sub> | 5          | 891.52234          | 86.5           | 2.3                      | V4         | III     |
| 22 | $F_2$               | 15 | 23        | F <sub>1</sub> | 3          | 891.56500          | 96.5           | 2.5                      | V4         | III     |
| 22 | E                   | 10 | 23        | E              | 2          | 891.64111          | 97.0           | 4.1                      | v4<br>V4   | III     |
| 15 |                     | 6  | 16        | E <sub>2</sub> | 2          | 891.78815          | 95 3           | 1.6                      | v 4<br>V 4 | III     |
| 15 | E                   | 4  | 16        | E E            | 2          | 891 80349          | 95.3           | -1.6                     | V.         | III     |
| 17 | E<br>F <sub>2</sub> | 9  | 18        | E Fi           | 3          | 891.892.03         | 96 7           | 33                       | v 4<br>V 4 | III     |
| 19 | F <sub>2</sub>      | 10 | 20        | F1             | 5          | 891.99271          | 85.5           | 2.9                      | v4<br>V4   | III     |

Table D.1 – Experimental values of  $v_2/v_4$  dyad line positions of  ${}^{13}CD_4$  molecule.

| J  | ν              | n              | J' | ν'                    | n'           | $v^{exp}$ ,            | Transmittance, | $\delta \cdot 10^{-4}$ , | Band                  | Spectra |
|----|----------------|----------------|----|-----------------------|--------------|------------------------|----------------|--------------------------|-----------------------|---------|
|    |                |                | Ű  | /                     |              | <u>cm<sup>-1</sup></u> | %              | cm <sup>-1</sup>         | Dunu                  |         |
|    | 1              | 1              |    | 2                     |              | 3                      | 4              | 5                        | 6                     | 7       |
| 12 | $A_1$          | 1              | 13 | $A_2$                 | 1            | 892.00148              | 96.3           | 0.4                      | $\nu_4$               | III     |
| 21 | $F_1$          | 13             | 22 | $F_2$                 | 4            | 892.94963              | 94.5           | 0.7                      | $\nu_4$               | III     |
| 21 | E              | 9              | 22 | E                     | 3            | 893.26307              | 95.3           | -0.1                     | $\nu_4$               | III     |
| 21 | $F_1$          | 14             | 22 | F <sub>2</sub>        | 3            | 895.94707              | 93.7           | -1.4                     | $\nu_4$               | III     |
| 16 | F <sub>2</sub> | 8              | 17 | F <sub>1</sub>        | 4            | 896.19918              | 96.3           | 0.9                      | $\nu_4$               | III     |
| 15 | F <sub>2</sub> | 5              | 16 | $F_1$                 | 3            | 896.35804              | 96.6           | 1.1                      | $\nu_4$               | III     |
| 18 | $F_2$          | 10             | 19 | $F_1$                 | 5            | 897.63350              | 79.3           | 1.1                      | $\nu_4$               | III     |
| 18 | E              | 7              | 19 | E                     | 3            | 897.88238              | 83.3           | 0.4                      | $\nu_4$               | III     |
| 20 | $F_2$          | 13             | 21 | $F_1$                 | 4            | 897.90568              | 91.2           | -1.0                     | $\nu_4$               | III     |
| 18 | F <sub>1</sub> | 10             | 19 | F <sub>2</sub>        | 5            | 898.13426              | 78.3           | 3.4                      | $\nu_4$               | III     |
| 14 | $F_1$          | 5              | 15 | $F_2$                 | 3            | 898.73465              | 94.3           | 0.7                      | $\nu_4$               | III     |
| 14 | $F_2$          | 5              | 15 | F <sub>1</sub>        | 2            | 898.78884              | 93.8           | 1.0                      | $\nu_4$               | III     |
| 13 | F <sub>2</sub> | 4              | 14 | F <sub>1</sub>        | 1            | 898.94651              | 92.7           | 1.8                      | $\nu_4$               | III     |
| 13 | F <sub>1</sub> | 4              | 14 | $F_2$                 | 2            | 898.95371              | 93.4           | 1.6                      | $\nu_4$               | III     |
| 11 | $A_2$          | 1              | 12 | $A_1$                 | 2            | 899.15957              | 96.0           | 4.0                      | $\nu_4$               | III     |
| 11 | $F_1$          | 2              | 12 | $F_2$                 | 3            | 899.60406              | 97.3           | -1.8                     | $\nu_4$               | III     |
| 21 | $F_2$          | 15             | 22 | F <sub>1</sub>        | 2            | 899.67384              | 90.7           | 2.0                      | $\nu_4$               | III     |
| 20 | Е              | 9              | 21 | Е                     | 2            | 899.87352              | 94.0           | 0.2                      | $\nu_4$               | III     |
| 20 | F <sub>1</sub> | 13             | 21 | F <sub>2</sub>        | 3            | 900.08900              | 87.5           | 1.1                      | $\nu_4$               | III     |
| 19 | $F_1$          | 12             | 20 | $F_2$                 | 4            | 900.26373              | 86.9           | -1.1                     | $\nu_4$               | III     |
| 20 | $A_1$          | 5              | 21 | $A_2$                 | 1            | 900.42939              | 89.9           | -0.6                     | $\nu_4$               | III     |
| 22 | Е              | 11             | 23 | Е                     | 1            | 900.53645              | 91.4           | 4.8                      | $\nu_4$               | III     |
| 15 | $A_2$          | 2              | 16 | $A_1$                 | 2            | 900.86026              | 91.0           | -1.3                     | $\nu_4$               | III     |
| 19 | Е              | 8              | 20 | Е                     | 3            | 900.94577              | 90.9           | -0.6                     | $\nu_4$               | III     |
| 15 | $F_1$          | 8              | 16 | $F_2$                 | 3            | 902.40210              | 96.5           | -0.7                     | $\nu_4$               | III     |
| 23 | $A_2$          | 6              | 24 | $A_1$                 | 1            | 902.71557              | 93.5           | -0.8                     | $\nu_4$               | III     |
| 23 | Е              | 12             | 24 | Е                     | 1            | 902.71557              | 93.5           | -0.8                     | $\nu_4$               | III     |
| 23 | F <sub>2</sub> | 17             | 24 | F <sub>1</sub>        | 1            | 902.71557              | 93.5           | -0.8                     | $\nu_4$               | III     |
| 14 | $A_2$          | 2              | 15 | $A_1$                 | 1            | 902.73720              | 96.8           | 1.1                      | $\mathbf{v}_{4}$      | III     |
| 19 | $A_2$          | 4              | 20 | A <sub>1</sub>        | 2            | 902.76640              | 86.9           | -2.3                     | $\nu_4$               | III     |
| 15 | $A_1$          | 3              | 16 | $A_2$                 | 1            | 902.84797              | 97.0           | 4.9                      | $\nu_4$               | III     |
| 14 | F <sub>2</sub> | 6              | 15 | F <sub>1</sub>        | 3            | 903.06270              | 96.3           | 0.7                      | $v_4$                 | III     |
| 14 | Ē              | 4              | 15 | E                     | 2            | 903.24069              | 95.6           | 2.4                      | V4                    | III     |
| 17 | $A_2$          | 4              | 18 | $A_1$                 | 2            | 903.51036              | 73.6           | 0.7                      | V4                    | III     |
| 20 | $F_2$          | 14             | 21 | $F_1$                 | 3            | 903.74568              | 90.6           | 0.1                      | $v_4$                 | III     |
| 17 | $F_2$          | 10             | 18 | F <sub>1</sub>        | 4            | 903.76501              | 69.9           | 0.7                      | v.                    | III     |
| 17 | $F_1$          | 9              | 18 | $F_2$                 | 5            | 904.03248              | 70.0           | 1.0                      | v <sub>4</sub>        | III     |
| 19 | F <sub>2</sub> | 12             | 20 | <b>F</b> <sub>1</sub> | 3            | 904 14154              | 87.0           | -0.7                     | V4                    | III     |
| 17 | A <sub>1</sub> | 3              | 18 | A <sub>2</sub>        | 2            | 904.31790              | 70.5           | 2.1                      | $v_4$                 | III     |
| 21 | F <sub>2</sub> | 16             | 22 | F <sub>1</sub>        | 1            | 904.36703              | 89 7           | 8.4                      | v4<br>V4              | III     |
| 19 | F <sub>1</sub> | 13             | 20 | F <sub>2</sub>        | 3            | 904.60042              | 85.8           | -2.3                     | v 4<br>V 4            | III     |
| 18 | A.             | 13<br>4        | 19 | A <sub>2</sub>        | 2            | 905 28158              | 81.9           | 0.0                      | v 4<br>V -            | III     |
| 13 | $F_2$          | - <del>-</del> | 14 | <b>F</b> <sub>1</sub> | 2            | 905 64102              | 92.3           | 3.7                      | v4<br>V4              | III     |
| 18 | F.             | 11             | 10 | F <sub>2</sub>        | <u>~</u><br> | 905 78362              | 80.0           | 03                       | V 4                   | III     |
| 12 | F <sub>2</sub> | 11             | 13 | <b>F</b> .            | 2            | 906 29301              | a2 5           | 2.8                      | <u>v</u> <sub>4</sub> | III     |
| 14 | <b>-</b> 2     | -              | 15 | *1                    | 4            | 200.22501              | 14.5           | 2.0                      | <b>v</b> 4            |         |

| J  | γ              | п  | J' | γ'                  | n' | $v^{exp}$ , | Transmittance, | $\delta \cdot 10^{-4}$ , | Band               | Spectra   |
|----|----------------|----|----|---------------------|----|-------------|----------------|--------------------------|--------------------|-----------|
|    | ,              |    |    | 2                   |    | 2           | %              | <u>cm</u> 1              | 6                  | 7         |
| 10 |                | 2  | 10 |                     | 1  | 3           | 4              | <u> </u>                 | 0                  | /         |
| 12 | E              | 3  | 13 | E                   | 1  | 906.29852   | 94.2           | -0.8                     | $\nu_4$            |           |
| 22 | Г <sub>1</sub> | 17 | 23 | <u>Г</u> 2<br>Е     | 1  | 906.31602   | 91.7           | -1.5                     | $\nu_4$            |           |
| 22 | Г <sub>2</sub> | 17 | 23 | <u>г</u> 1          | 1  | 900.31002   | 91.7           | -1.0                     | $\nu_4$            |           |
| 14 | Г <sub>2</sub> | /  | 15 | Г <sub>1</sub><br>Е | 3  | 900.72803   | 93.8           | 1.9                      | $\nu_4$            |           |
| 10 | Г <sub>2</sub> | 2  | 11 | <u>г</u> 1          | 3  | 907.20321   | 96.4           | -2.9                     | $\nu_4$            |           |
| 10 | E<br>A         | 1  | 10 | E<br>A              | 2  | 907.27464   | 97.1           | -2.0                     | $\nu_4$            |           |
| 18 | A <sub>2</sub> | 4  | 19 | А <sub>1</sub>      | 1  | 907.38032   | 81.4           | 0.0                      | $\nu_4$            | 111<br>TT |
| 14 | E<br>A         | 5  | 15 | E<br>A              | 2  | 907.60879   | 94.6           | 2.5                      | $\nu_4$            |           |
| 19 | $A_1$          | 5  | 20 | $A_2$               | 1  | 907.04439   | 87.9           | -0.4                     | $\nu_4$            |           |
| 19 | E              | 9  | 20 | E                   | 2  | 907.81666   | 90.2           | -0.1                     | $\nu_4$            |           |
| 10 | <u>Г</u> 1     | 2  | 11 | $\Gamma_2$          | 3  | 908.21076   | 95.6           | -4.4                     | $\nu_4$            |           |
| 18 | $\mathbf{F}_2$ | 12 | 19 | $\Gamma_1$          | 3  | 908.72432   | 78.2           | -0.9                     | $\nu_4$            |           |
| 18 | E              | 8  | 19 | E                   | 2  | 909.00490   | 84.3           | -1.4                     | $\nu_4$            |           |
| 13 | $\mathbf{F}_2$ | 6  | 14 | $\Gamma_1$          | 3  | 909.30802   | 93.2           | 2.8                      | $\nu_4$            |           |
| 16 | $\mathbf{F}_2$ | 9  | 17 | $\Gamma_1$          | 5  | 909.52165   | 58.4           | 0.4                      | $\nu_4$            |           |
| 13 | $F_1$          | 5  | 14 | $F_2$               | 3  | 909.73880   | 93.6           | 0.3                      | $\nu_4$            |           |
| 16 | E              | 6  | 17 | E                   | 3  | 909.79049   | 69.1           | 0.4                      | $\nu_4$            |           |
| 21 | $A_1$          | 5  | 22 | $A_2$               | 1  | 909.91244   | 82.5           | -0.6                     | $\nu_4$            | <br>      |
| 21 | E              | 11 | 22 | E                   | 1  | 909.91244   | 82.5           | -1.0                     | $\nu_4$            | III       |
| 21 | $F_1$          | 16 | 22 | $F_2$               | 1  | 909.91244   | 82.5           | -0.9                     | $\nu_4$            | III       |
| 16 | F <sub>1</sub> | 9  | 17 | $F_2$               | 4  | 910.09866   | 54.8           | -0.4                     | $\nu_4$            | III       |
| 17 | E              | 7  | 18 | E                   | 3  | 911.10884   | 78.0           | -2.0                     | $\nu_4$            | III       |
| 18 | F <sub>1</sub> | 12 | 19 | $F_2$               | 3  | 911.72330   | 78.7           | -0.7                     | $\nu_4$            | III       |
| 18 | $F_2$          | 13 | 19 | $F_1$               | 2  | 911.90765   | 78.5           | -1.1                     | $\nu_4$            | III       |
| 19 | F <sub>2</sub> | 13 | 20 | F <sub>1</sub>      | 2  | 912.01786   | 83.5           | -0.4                     | $\nu_4$            | III       |
| 19 | F <sub>1</sub> | 15 | 20 | $F_2$               | 1  | 912.02675   | 83.4           | -0.9                     | $\nu_4$            | III       |
| 17 | F <sub>2</sub> | 11 | 18 | F <sub>1</sub>      | 3  | 912.24062   | 71.6           | -1.3                     | $\nu_4$            | III       |
| 13 | E              | 4  | 14 | E                   | 2  | 912.72022   | 96.3           | -1.7                     | $\nu_4$            | III       |
| 17 | F <sub>1</sub> | 11 | 18 | F <sub>2</sub>      | 3  | 913.44277   | 70.7           | -1.5                     | $\nu_4$            | III       |
| 11 | F <sub>2</sub> | 3  | 12 | F <sub>1</sub>      | 2  | 913.51542   | 90.1           | 2.3                      | $\nu_4$            | III       |
| 15 | $F_1$          | 9  | 16 | F <sub>2</sub>      | 4  | 915.27422   | 38.5           | -1.3                     | $\nu_4$            | III       |
| 15 | E              | 6  | 16 | E                   | 3  | 915.58060   | 49.7           | -0.8                     | $\nu_4$            | III       |
| 17 | E              | 8  | 18 | E                   | 2  | 915.74657   | 78.3           | -0.7                     | $\nu_4$            | III       |
| 12 | F <sub>1</sub> | 5  | 13 | F <sub>2</sub>      | 3  | 915.80593   | 96.7           | 3.4                      | $\nu_4$            | III       |
| 18 | E              | 9  | 19 | E                   | 1  | 915.83812   | 82.5           | -0.6                     | $\nu_4$            | III       |
| 18 | F <sub>1</sub> | 13 | 19 | F <sub>2</sub>      | 2  | 915.84681   | 75.3           | -0.1                     | $\nu_4$            | III       |
| 18 | $A_1$          | 5  | 19 | $A_2$               | 1  | 915.86373   | 78.7           | -0.8                     | $\nu_4$            | III       |
| 17 | $F_2$          | 12 | 18 | $F_1$               | 2  | 915.88759   | 64.1           | -0.7                     | $\nu_4$            | III       |
| 15 | $F_2$          | 8  | 16 | F <sub>1</sub>      | 4  | 915.89353   | 37.8           | 1.1                      | $\nu_4$            | III       |
| 17 | $A_2$          | 5  | 18 | $A_1$               | 1  | 916.12110   | 72.8           | -1.0                     | $\nu_4$            | III       |
| 16 | E              | 7  | 17 | E                   | 2  | 916.63567   | 68.7           | -2.0                     | $\nu_4$            | III       |
| 12 | $A_1$          | 2  | 13 | $A_2$               | 1  | 916.73439   | 89.2           | 0.5                      | $\nu_4$            | III       |
| 19 | $A_2$          | 5  | 20 | $A_1$               | 1  | 917.09136   | 63.7           | -2.9                     | $\overline{\nu_4}$ | III       |
| 19 | F <sub>2</sub> | 14 | 20 | F <sub>1</sub>      | 1  | 917.09136   | 63.7           | -0.5                     | $\nu_4$            | III       |
| 19 | Е              | 10 | 20 | Е                   | 1  | 917.09136   | 63.7           | 0.7                      | $\nu_4$            | III       |

| J   | γ              | п  | J' | γ'                    | n' | $v^{exp}$ , | Transmittance, | $\delta \cdot 10^{-4}$ , | Band           | Spectra |
|-----|----------------|----|----|-----------------------|----|-------------|----------------|--------------------------|----------------|---------|
|     | ,              |    |    | ,<br>                 |    | <u>cm</u> · | %              | cm <sup>1</sup>          | (              | 7       |
| 1.6 |                | 10 | 17 |                       | 2  | 3           | 4              |                          | 0              | /       |
| 16  | Γ <sub>1</sub> | 10 | 17 | <b>F</b> <sub>2</sub> | 3  | 917.13093   | 59.9           | -1.2                     | $\nu_4$        |         |
| 16  | $A_1$          | 4  | 17 | $A_2$                 | 1  | 918.08524   | 64.3           | -1.4                     | $\nu_4$        |         |
| 12  | $\mathbf{F}_2$ | 6  | 13 | $\Gamma_1$            | 3  | 918.39127   | 95.0           | -2.1                     | $\nu_4$        |         |
| 11  | $F_1$          | 5  | 12 | $F_2$                 | 2  | 919.04/99   | 92.2           | 0.4                      | $\nu_4$        |         |
| 11  | E              | 3  | 12 | E                     | 2  | 919.15579   | 92.0           | 0.9                      | $\nu_4$        |         |
| 17  | $F_2$          | 13 | 18 | $F_1$                 | 1  | 919.65378   | 67.0           | -0.5                     | $\nu_4$        |         |
| 17  | $F_1$          | 12 | 18 | $F_2$                 | 2  | 919.68437   | 67.2           | -0.4                     | $\nu_4$        | <br>    |
| 16  | $F_1$          | 11 | 17 | $F_2$                 | 2  | 919.78887   | 58.5           | -0.9                     | $\nu_4$        | III     |
| 16  | $F_2$          | 11 | 17 | $F_1$                 | 3  | 920.12198   | 57.2           | -0.9                     | $\nu_4$        |         |
| 10  | E              | 2  | 11 | E                     | 1  | 920.61801   | 92.6           | 1.6                      | $\nu_4$        | III     |
| 15  | $A_2$          | 3  | 16 | $A_1$                 | 2  | 920.62521   | 54.3           | -1.3                     | $\nu_4$        | III     |
| 10  | $F_1$          | 3  | 11 | F <sub>2</sub>        | 2  | 920.63509   | 90.2           | 3.4                      | $\nu_4$        | III     |
| 10  | $A_1$          | 2  | 11 | $A_2$                 | 1  | 920.66853   | 89.7           | 3.8                      | $\nu_4$        | III     |
| 18  | F <sub>2</sub> | 14 | 19 | F <sub>1</sub>        | 1  | 920.67335   | 54.4           | -2.7                     | $\nu_4$        | III     |
| 18  | F <sub>1</sub> | 14 | 19 | F <sub>2</sub>        | 1  | 920.67335   | 54.4           | 3.0                      | $\nu_4$        | III     |
| 14  | $A_1$          | 3  | 15 | $A_2$                 | 2  | 920.75524   | 39.0           | 0.0                      | $\nu_4$        | III     |
| 14  | F <sub>2</sub> | 8  | 15 | F <sub>1</sub>        | 4  | 921.38274   | 32.5           | 0.1                      | $\nu_4$        | III     |
| 14  | $A_2$          | 3  | 15 | $A_1$                 | 1  | 921.76923   | 39.3           | 0.3                      | $\nu_4$        | III     |
| 11  | F <sub>1</sub> | 6  | 12 | F <sub>2</sub>        | 2  | 922.63783   | 90.8           | -0.7                     | $\nu_4$        | III     |
| 15  | $A_1$          | 4  | 16 | $A_2$                 | 1  | 923.37635   | 49.1           | -2.5                     | $\nu_4$        | III     |
| 16  | $F_2$          | 12 | 17 | F <sub>1</sub>        | 2  | 923.49006   | 55.2           | -0.4                     | $\nu_4$        | III     |
| 16  | E              | 8  | 17 | E                     | 1  | 923.51552   | 66.1           | -0.4                     | $\nu_4$        | III     |
| 15  | F <sub>1</sub> | 11 | 16 | F <sub>2</sub>        | 2  | 924.06498   | 41.2           | 1.0                      | $\nu_4$        | III     |
| 17  | $A_1$          | 4  | 18 | $A_2$                 | 1  | 924.24966   | 39.0           | 9.7                      | $\nu_4$        | III     |
| 17  | E              | 9  | 18 | E                     | 1  | 924.24966   | 39.0           | -8.4                     | $\nu_4$        | III     |
| 17  | $F_1$          | 13 | 18 | $F_2$                 | 1  | 924.24966   | 39.0           | -2.3                     | $\nu_4$        | III     |
| 15  | E              | 7  | 16 | Е                     | 2  | 924.27259   | 58.8           | -0.9                     | $\nu_4$        | III     |
| 10  | F <sub>1</sub> | 4  | 11 | F <sub>2</sub>        | 3  | 925.40465   | 93.1           | 2.1                      | $\nu_4$        | III     |
| 10  | $F_2$          | 4  | 11 | $F_1$                 | 2  | 925.69167   | 89.6           | 0.4                      | $\nu_4$        | III     |
| 14  | $F_2$          | 9  | 15 | F <sub>1</sub>        | 3  | 925.93735   | 29.6           | 1.4                      | $\nu_4$        | III     |
| 14  | Е              | 6  | 15 | Е                     | 2  | 926.29655   | 48.3           | -0.6                     | $\nu_4$        | III     |
| 13  | F <sub>1</sub> | 7  | 14 | $F_2$                 | 4  | 926.38676   | 90.7           | -1.9                     | $\nu_4$        | II      |
| 13  | E              | 5  | 14 | Е                     | 3  | 926.69385   | 33.7           | -0.8                     | $\nu_4$        | III     |
| 15  | $F_2$          | 10 | 16 | F <sub>1</sub>        | 2  | 927.26655   | 41.5           | -0.2                     | $\nu_4$        | III     |
| 15  | F <sub>1</sub> | 12 | 16 | F <sub>2</sub>        | 1  | 927.35075   | 42.1           | -0.3                     | $\nu_4$        | III     |
| 9   | F <sub>1</sub> | 3  | 10 | F <sub>2</sub>        | 2  | 927.63436   | 85.5           | 1.4                      | $\nu_4$        | III     |
| 14  | $F_1$          | 9  | 15 | F <sub>2</sub>        | 3  | 927.69223   | 33.1           | -0.6                     | $\nu_4$        | III     |
| 10  | $F_2$          | 5  | 11 | $F_1$                 | 2  | 928.21584   | 93.4           | 1.1                      | $\nu_4$        | III     |
| 14  | F <sub>2</sub> | 10 | 15 | F <sub>1</sub>        | 2  | 928.44738   | 32.5           | -0.8                     | $\nu_4$        | III     |
| 10  | Е              | 3  | 11 | Е                     | 2  | 928.58996   | 96.3           | 0.7                      | $\nu_4$        | III     |
| 13  | F <sub>1</sub> | 8  | 14 | F <sub>2</sub>        | 3  | 930.73671   | 91.3           | -1.2                     | $v_4$          | II      |
| 14  | E              | 7  | 15 | E                     | 1  | 931.06375   | 45.0           | -0.1                     | ν.             | III     |
| 14  | F <sub>1</sub> | 10 | 15 | $F_2$                 | 2  | 931.12896   | 25.0           | -2.7                     | V <sub>4</sub> | III     |
| 14  | A <sub>1</sub> | 4  | 15 | A <sub>2</sub>        | 1  | 931.24559   | 36.6           | -0.2                     | ν <sub>4</sub> | III     |
| 15  | $F_2$          | 11 | 16 | <b>F</b> <sub>1</sub> | 1  | 931.38541   | 31.3           | -5.1                     | ν <sub>4</sub> | III     |
|     | _              |    |    | -                     |    |             |                |                          | -              |         |

| I         2         3         4         5         6         7           15 $A_2$ 4         16 $A_1$ 1931.39035         45.0         0.7 $v_4$ III           12 $F_5$ 7         13 $F_1$ 4         931.71156         88.1         -0.2 $v_4$ II           13 $E$ 6         14 $E$ 2         931.71156         88.1         -0.2 $v_4$ II           13 $E_6$ 14 $E$ 2         932.08807         91.6         -1.0 $v_4$ II           13 $A_2$ 4         14 $A_1$ 1         932.79643         92.2         -1.9 $v_4$ II           13 $A_2$ 4         10 $F_2$ 3         944.4235         88.0         3.3 $v_4$ III           13 $F_2$ 10         14 $F_1$ 1         934.94414         23.0         -0.5 $v_4$ III           14 $F_2$ 1935.04144         23.0         3.0 <td< th=""><th>J</th><th>γ</th><th>n</th><th>J'</th><th>γ'</th><th>n'</th><th><math>v^{exp}</math>,</th><th>Transmittance,</th><th><math>\delta \cdot 10^{-4}</math>,</th><th>Band</th><th>Spectra</th></td<>                                                                                                                                                                                                                                             | J  | γ                     | n      | J' | γ'                  | n' | $v^{exp}$ , | Transmittance, | $\delta \cdot 10^{-4}$ , | Band           | Spectra        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----------------------|--------|----|---------------------|----|-------------|----------------|--------------------------|----------------|----------------|
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    | 1                     |        |    | 2                   |    | 3           |                | 5                        | 6              | 7              |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 15 |                       | 4      | 16 | 2                   | 1  | 031 30035   | 4              | 0.7                      | 0              | /<br>III       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 13 | <b>A</b> <sub>2</sub> | 4      | 10 | A <sub>1</sub>      | 1  | 931.39033   | 43.0           | -0.2                     | V <sub>4</sub> | 111<br>TT      |
| 13         E         0         14         E         2         931.7949         95.7         0.3 $v_4$ II           12         E         5         13         E         2         932.08907         91.6         -1.0 $v_4$ II           13         F <sub>2</sub> 9         14         F <sub>1</sub> 2         932.1809         90.5         -1.4 $v_4$ II           13         A <sub>2</sub> 4         14         A <sub>3</sub> 1         932.46976         88.0         -1.8 $v_4$ II           9         F <sub>1</sub> 4         10         F <sub>2</sub> 3         934.28000         93.6         -1.4 $v_4$ III           8         E         2         9         F         1         934.42435         88.0         3.3 $v_4$ III           13         F <sub>2</sub> 10         14         F <sub>1</sub> 1         934.9485         26.0         0.4 $v_4$ III           14         F <sub>2</sub> 1         935.9783         97.1         -0.5 $v_4$ II           12         F <sub>1</sub> 8         13 <td>12</td> <td>Г<sub>2</sub><br/>Е</td> <td>6</td> <td>13</td> <td>Г<sub>1</sub><br/>Е</td> <td>4</td> <td>931.71130</td> <td><u>88.1</u></td> <td>-0.2</td> <td><math>v_4</math></td> <td>11<br/>11</td> | 12 | Г <sub>2</sub><br>Е   | 6      | 13 | Г <sub>1</sub><br>Е | 4  | 931.71130   | <u>88.1</u>    | -0.2                     | $v_4$          | 11<br>11       |
| 12         E         2         952.0860         91.6         -1.0 $\vee_4$ II           13         F <sub>2</sub> 9         14         F <sub>1</sub> 2         932.18109         90.5         -1.4 $\vee_4$ II           13         A <sub>2</sub> 4         14         A <sub>1</sub> 1         932.46976         88.0         -1.4 $\vee_4$ II           9         F <sub>1</sub> 4         10         F <sub>2</sub> 3         932.46976         88.0         -1.4 $\vee_4$ II           9         F <sub>1</sub> 4         10         F <sub>2</sub> 3         94.42435         88.0         -1.4 $\vee_4$ III           8         E         2         9         E         1         934.4235         88.0         -3.3 $\vee_4$ III           13         F <sub>2</sub> 10         14         F <sub>1</sub> 1         934.4235         88.0         -3.3 $\vee_4$ III           14         F <sub>1</sub> 11         15         F <sub>1</sub> 1         934.4235         20.0         0.4 $\vee_4$ III           12         F <sub>1</sub> 8                                                                                                                                                                              | 13 |                       | 0<br>5 | 14 | E                   | 2  | 931.78949   | 93.7           | 0.5                      | $v_4$          | 11<br>TT       |
| 15 $F_2$ 9         14 $F_1$ 2         952.16109         90.3 $-1.4$ $V_4$ II           13 $A_2$ 4         14 $A_1$ 1         932.79643         92.2 $-1.8$ $V_4$ II           9 $F_1$ 4         10 $F_2$ 3         932.42000         93.6 $-1.4$ $V_4$ III           8 $E_2$ 3         9 $F_1$ 2         934.4209         90.5         3.1 $V_4$ III           13 $F_2$ 10         14 $F_1$ 1         934.84776         90.3 $-0.5$ $V_4$ III           14 $F_2$ 10         14 $F_1$ 1         934.9485         26.0         0.4 $V_4$ III           14 $F_2$ 11         15 $F_1$ 1         934.9485         26.0         0.4 $V_4$ II           12 $A_1$ $B_2.5235272         90.1         -1.2 V_4         II           12         A_1 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12 | E                     | 5      | 13 | E                   | 2  | 932.08807   | 91.6           | -1.0                     | $\nu_4$        | 11<br>11       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 13 | Г <sub>2</sub>        | 9      | 14 | Г <sub>1</sub>      | 2  | 932.18109   | 90.5           | <sup>-1.4</sup>          | $\nu_4$        | 11<br>TT       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12 | Γ <sub>1</sub>        | /      | 13 | Γ <sub>2</sub>      | 3  | 932.40970   | 88.0           | -1.8                     | $\nu_4$        | <u>II</u><br>П |
| 9 $F_1$ 4         10 $F_2$ 3         934,2000         95.6 $-1.4$ $V_a$ III           8 $F_2$ 3         9 $F_1$ 2         934,47099         90.5         3.1 $V_a$ III           13 $F_2$ 10         14 $F_1$ 1         934,94141         23.0         3.0 $V_a$ III           14 $F_1$ 1         15 $F_1$ 1         934,94885         26.0         0.4 $V_a$ III           12 $A_1$ 3         13 $A_2$ 1         935,32572         90.1 $-1.2$ $V_4$ III           12 $F_1$ 8         13 $F_2$ 2         936,01528         88.6 $-1.2$ $V_4$ III           11 $A_2$ 12 $A_1$ 2         936,01528         86.1         0.9 $v_4$ II           12 $F_2$ 8         13 $F_1$ 3         936,54830         86.1         0.9 $v_4$ II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 13 | A <sub>2</sub>        | 4      | 14 | $\mathbf{A}_1$      | 1  | 932.79043   | 92.2           | -1.9                     | $\nu_4$        | 11<br>TT       |
| 8 $F_2$ 3         9 $F_1$ 2         9.4.4.2433         88.0         5.3 $V_4$ III           13 $F_2$ 10         14 $F_1$ 1         934.87747         90.3         -0.5 $V_4$ III           14 $F_1$ 11         15 $F_1$ 1         934.47099         90.5         3.1 $V_4$ III           14 $F_2$ 10         14 $F_2$ 2         935.03143         79.4         -0.9 $V_4$ III           12 $F_1$ 8         13 $F_2$ 2         935.03143         79.4         -0.9 $V_4$ II           12 $F_1$ 8         13 $F_2$ 2         936.01528         88.6         -1.2 $V_4$ II           12 $F_2$ 8         13 $F_2$ 2         936.74235         86.1         -0.9 $V_4$ II           11 $A_1$ 2         937.07443         85.4         -0.8 $V_4$ II           11 $F_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9  | Г <sub>1</sub>        | 4      | 10 | $\mathbf{F}_2$      | 3  | 934.28000   | 93.6           | -1.4                     | $\nu_4$        |                |
| 8         E         2         9         E         1         934,47099         90,5         3.1 $v_4$ III           13 $F_2$ 10         14 $F_1$ 1         934,94141         23.0         3.0 $v_4$ III           14 $F_1$ 11         15 $F_1$ 1         934,94885         26.0         0.4 $v_4$ III           13 $F_1$ 9         14 $F_2$ 2         935,03143         79,4         -0.9 $v_4$ II           12 $F_1$ 8         13 $F_2$ 2         936,01528         88.6         -1.2 $v_4$ II           12 $F_1$ 8         13 $F_2$ 2         936,01528         88.6         -1.2 $v_4$ II           11 $A_2$ 2         12 $A_1$ 2         936,74235         86.1         0.9 $v_4$ II           11 $A_1$ 3         12 $F_2$ 3         937,0743         85,4         -0.8 $v_4$ II <td>8</td> <td><math>\Gamma_2</math></td> <td>3</td> <td>9</td> <td>Г<sub>1</sub></td> <td>2</td> <td>934.42433</td> <td>88.0</td> <td>2.1</td> <td><math>\nu_4</math></td> <td></td>                                                                                                                                                                                                                                                         | 8  | $\Gamma_2$            | 3      | 9  | Г <sub>1</sub>      | 2  | 934.42433   | 88.0           | 2.1                      | $\nu_4$        |                |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8  | E                     | 2      | 9  | E                   | 1  | 934.47099   | 90.5           | 3.1                      | $\nu_4$        | <u>Ш</u>       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 13 | <b>F</b> <sub>2</sub> | 10     | 14 | <u>Г</u> 1          | 1  | 934.85/4/   | 90.3           | -0.5                     | $\nu_4$        | <br>           |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 14 | $\Gamma_1$            | 11     | 15 | $\mathbf{F}_2$      | 1  | 934.94141   | 23.0           | 3.0                      | $\nu_4$        |                |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 14 | <b>F</b> <sub>2</sub> | 11     | 15 | $\Gamma_1$          | 1  | 934.94885   | 26.0           | 0.4                      | $\nu_4$        |                |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 13 | $\mathbf{F}_1$        | 9      | 14 | $\mathbf{F}_2$      | 2  | 935.03143   | 79.4           | -0.9                     | $\nu_4$        |                |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12 | $A_1$                 | 3      | 13 | $A_2$               | 1  | 935.32572   | 90.1           | -1.2                     | $\nu_4$        |                |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12 | $F_1$                 | 8      | 13 | $F_2$               | 3  | 935.97834   | 97.1           | -0.5                     | $\nu_4$        |                |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12 | $F_1$                 | 8      | 13 | $F_2$               | 2  | 936.01528   | 88.6           | -1.2                     | $\nu_4$        | II             |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12 | F <sub>2</sub>        | 8      | 13 | $F_1$               | 3  | 936.54830   | 88.1           | -1.5                     | $\nu_4$        | II             |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11 | $A_2$                 | 2      | 12 | $A_1$               | 2  | 936.74235   | 86.1           | 0.9                      | $\nu_4$        | II             |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11 | $F_2$                 | 6      | 12 | $F_1$               | 3  | 937.07443   | 85.4           | -0.8                     | $\nu_4$        | II             |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11 | $F_1$                 | 7      | 12 | F <sub>2</sub>      | 3  | 937.46769   | 85.3           | -0.3                     | $\nu_4$        | II             |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11 | $A_1$                 | 3      | 12 | $A_2$               | 1  | 938.00684   | 87.1           | -0.4                     | $\nu_4$        | II             |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8  | $F_2$                 | 4      | 9  | $F_1$               | 3  | 938.42141   | 87.2           | 2.5                      | $\nu_4$        | III            |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 13 | $A_1$                 | 3      | 14 | $A_2$               | 1  | 938.48430   | 87.5           | -3.0                     | $\nu_4$        | II             |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12 | $F_2$                 | 9      | 13 | $F_1$               | 2  | 938.77114   | 87.4           | -0.7                     | $\nu_4$        | II             |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12 | E                     | 6      | 13 | E                   | 1  | 938.88598   | 91.1           | 0.6                      | $\nu_4$        | II             |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8  | $F_1$                 | 4      | 9  | $F_2$               | 2  | 939.77191   | 88.8           | 3.9                      | $\nu_4$        | III            |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20 | $A_1$                 | 2      | 20 | $A_2$               | 1  | 940.13302   | 97.9           | -1.2                     | $\nu_4$        | III            |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20 | F <sub>1</sub>        | 4      | 20 | F <sub>2</sub>      | 2  | 940.13985   | 97.5           | -2.6                     | $\nu_4$        | III            |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 21 | $A_2$                 | 2      | 21 | $A_1$               | 1  | 940.14859   | 96.1           | 5.8                      | $\nu_4$        | III            |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 21 | F <sub>2</sub>        | 5      | 21 | $F_1$               | 2  | 940.14859   | 96.1           | -0.5                     | $\nu_4$        | III            |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11 | F <sub>1</sub>        | 8      | 12 | $F_2$               | 2  | 940.43168   | 85.5           | -0.8                     | $\nu_4$        | II             |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11 | E                     | 5      | 12 | E                   | 2  | 940.73307   | 88.8           | -0.4                     | $\nu_4$        | II             |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7  | $F_2$                 | 2      | 8  | $F_1$               | 2  | 941.00296   | 90.0           | 0.3                      | $\nu_4$        | III            |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7  | $F_1$                 | 3      | 8  | $F_2$               | 1  | 941.14602   | 85.6           | 1.8                      | $\nu_4$        | III            |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10 | $F_2$                 | 6      | 11 | $F_1$               | 3  | 941.94000   | 81.8           | 0.0                      | $\nu_4$        | II             |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12 | F <sub>2</sub>        | 10     | 13 | F <sub>1</sub>      | 1  | 942.05498   | 86.8           | 0.6                      | $\nu_4$        | II             |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10 | Е                     | 4      | 11 | Е                   | 2  | 942.25919   | 87.3           | 0.4                      | $\nu_4$        | II             |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11 | $F_1$                 | 9      | 12 | F <sub>2</sub>      | 1  | 942.75111   | 84.9           | -0.6                     | $\nu_4$        | II             |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10 | F <sub>1</sub>        | 6      | 11 | $F_2$               | 3  | 942.80837   | 81.9           | 0.0                      | $\nu_4$        | II             |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7  | F <sub>1</sub>        | 4      | 8  | F <sub>2</sub>      | 1  | 944.12504   | 95.1           | -0.6                     | $\nu_4$        | III            |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 18 | $A_2$                 | 1      | 18 | A <sub>1</sub>      | 1  | 945.22215   | 96.9           | 2.0                      | $\nu_4$        | III            |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11 | E                     | 6      | 12 | Ē                   | 1  | 945.56736   | 88.3           | 0.4                      | $\nu_4$        | II             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11 | F <sub>2</sub>        | 8      | 12 | F <sub>1</sub>      | 1  | 945.58446   | 83.3           | 0.5                      | $\nu_4$        | II             |
| $  11   A_2   5   12   A_1   1   945.01/00   85.4   0.1   v_4   11$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11 | $A_2$                 | 3      | 12 | A <sub>1</sub>      | 1  | 945.61700   | 85.4           | 0.1                      | $\nu_4$        | II             |

| J     | γ                   | n        | J'       | γ'                  | n'       | $v^{exp}$ , | Transmittance, | $\delta \cdot 10^{-4}$ , | Band                  | Spectra   |
|-------|---------------------|----------|----------|---------------------|----------|-------------|----------------|--------------------------|-----------------------|-----------|
|       |                     |          |          | ,                   |          |             | %              | cm <sup>-1</sup>         |                       | 1 7       |
|       | 1                   |          |          | 2                   |          | 3           | 4              | 3                        | 6                     | /         |
| 10    | E                   | 5        | 11       | E                   | 1        | 946.16/53   | 84.8           | -2.9                     | $\nu_4$               | <u>  </u> |
| 10    | $F_1$               | 7        | 11       | $F_2$               | 2        | 946.39984   | 81.0           | 0.4                      | $\nu_4$               | II<br>II  |
| 10    | $A_1$               | 3        | 11       | $A_2$               | 1        | 946.73987   | 84.2           | -0.4                     | $\nu_4$               | <u> </u>  |
| 9     | $F_1$               | 5        | 10       | F <sub>2</sub>      | 3        | 946.79047   | 78.4           | -0.1                     | $\nu_4$               | II        |
| 9     | E                   | 4        | 10       | E                   | 2        | 947.23554   | 85.0           | -0.3                     | $\nu_4$               | II        |
| 6     | E                   | 2        | 7        | E                   | 1        | 947.43426   | 94.5           | 0.0                      | $\nu_4$               | III       |
| 6     | $F_1$               | 2        | 7        | $F_2$               | 2        | 947.53463   | 89.1           | -2.5                     | $\nu_4$               | III       |
| 9     | F <sub>2</sub>      | 6        | 10       | $F_1$               | 2        | 947.65293   | 78.6           | 0.1                      | $\nu_4$               | II        |
| 10    | $F_1$               | 8        | 11       | F <sub>2</sub>      | 1        | 949.09212   | 80.5           | 0.5                      | $\nu_4$               | II        |
| 10    | $F_2$               | 8        | 11       | $F_1$               | 1        | 949.14290   | 80.1           | 0.8                      | $\nu_4$               | II        |
| 9     | $A_2$               | 3        | 10       | $A_1$               | 1        | 949.16915   | 81.8           | -0.4                     | $\nu_4$               | II        |
| 9     | $F_2$               | 7        | 10       | F <sub>1</sub>      | 2        | 949.98682   | 93.1           | 0.8                      | $\nu_4$               | III       |
| 9     | F <sub>2</sub>      | 7        | 10       | F <sub>1</sub>      | 1        | 950.00536   | 78.5           | 0.0                      | $\nu_4$               | II        |
| 16    | E                   | 2        | 16       | E                   | 2        | 950.23874   | 94.0           | -0.2                     | $\nu_4$               | III       |
| 16    | F <sub>1</sub>      | 3        | 16       | $F_2$               | 2        | 950.24420   | 93.5           | 4.1                      | $\nu_4$               | III       |
| 16    | $A_1$               | 2        | 16       | $A_2$               | 1        | 950.24876   | 94.2           | 3.2                      | $\nu_4$               | III       |
| 9     | $F_1$               | 6        | 10       | $F_2$               | 2        | 950.39625   | 78.5           | -0.1                     | $\nu_4$               | II        |
| 8     | $A_1$               | 2        | 9        | $A_2$               | 1        | 951.35457   | 78.8           | -0.1                     | $\nu_4$               | II        |
| 8     | F <sub>1</sub>      | 5        | 9        | F <sub>2</sub>      | 2        | 951.70074   | 75.5           | 0.0                      | $\nu_4$               | II        |
| 8     | $F_2$               | 5        | 9        | $F_1$               | 3        | 952.11998   | 75.5           | 0.1                      | $\nu_4$               | II        |
| 16    | F <sub>2</sub>      | 4        | 16       | F <sub>1</sub>      | 2        | 952.21465   | 86.5           | 3.4                      | $\nu_4$               | III       |
| 16    | F <sub>1</sub>      | 4        | 16       | F <sub>2</sub>      | 1        | 952.21465   | 86.5           | -2.0                     | $v_4$                 | III       |
| 21    | $F_2$               | 6        | 21       | $F_1$               | 1        | 952.47540   | 82.4           | -4.5                     | $\nu_4$               | III       |
| 21    | F <sub>1</sub>      | 6        | 21       | F <sub>2</sub>      | 1        | 952.47540   | 82.4           | -4.2                     | $\nu_4$               | III       |
| 9     | A <sub>1</sub>      | 2        | 10       | $A_2$               | 1        | 952.56266   | 80.4           | 0.4                      | $v_{4}$               | II        |
| 9     | F <sub>1</sub>      | 7        | 10       | $F_2$               | 1        | 952.64544   | 77.0           | 0.4                      | $\nu_4$               | II        |
| 9     | E                   | 5        | 10       | E                   | 1        | 952.68205   | 84.1           | 1.2                      | $v_{4}$               | II        |
| 15    | F <sub>1</sub>      | 3        | 15       | F <sub>2</sub>      | 3        | 952.74486   | 91.3           | -5.4                     | $\nu_4$               | III       |
| 8     | A <sub>2</sub>      | 2        | 9        | A <sub>1</sub>      | 1        | 952.86729   | 78.7           | 0.1                      | v <sub>4</sub>        | II        |
| 8     | $F_2$               | 6        | 9        | F <sub>1</sub>      | 2        | 954.03985   | 75.8           | 0.3                      | V4                    | II        |
| 8     | Ē                   | 4        | 9        | E                   | 1        | 954.25349   | 81.3           | 0.6                      | V4                    | Π         |
| 15    | Е                   | 3        | 15       | Е                   | 1        | 954.56648   | 79.1           | -6.9                     | v4                    | III       |
| 15    | $\overline{F_1}$    | 4        | 15       | F <sub>2</sub>      | 2        | 954.56648   | 79.1           | -3.2                     | $v_4$                 | III       |
| 15    | A <sub>1</sub>      | 1        | 15       | A <sub>2</sub>      | 1        | 954.56648   | 79.1           | 6.9                      | v.4                   | Ш         |
| 20    | $F_2$               | 6        | 20       | F1                  | 1        | 955.18050   | 66.9           | -1.4                     | v4<br>V4              | III       |
| 20    | F                   | 1        | 20       | F                   | 1        | 955 18050   | 66.9           | -1.2                     | V4                    | III       |
| 20    | A <sub>2</sub>      | 2        | 20       | A.                  | 1        | 955 18050   | 66.9           | -1.9                     | <b>v</b> <sub>4</sub> | III       |
| 20    | F.                  | 5        | 20       | E.                  | 2        | 956.092/13  | 73.0           | 0.1                      | v <sub>4</sub>        | П         |
| /<br> | F.                  | 7        | 0        | F.                  | <br>1    | 956 21923   | 73.0           | 0.1                      | V <sub>4</sub>        | П         |
| 7     | F                   | 2        | <i>y</i> | F                   | 2        | 956 37010   | 91.1           | 0.2                      | V4                    | п<br>П    |
| 7     | E<br>F              | <u> </u> | 0        | E<br>F              | 2        | 950.57919   | 01.1           | 0.3                      | v <sub>4</sub>        | П         |
| 12    | Г <sub>2</sub><br>Е | 4        | 0        | г <sub>1</sub><br>Е | 2        | 057 6 A1 A7 | / 3.0          | _ 1.0                    | V <sub>4</sub>        | 11<br>111 |
| 15    | <u>г</u> 2<br>Б     | 2        | 15       | Г <sub>1</sub><br>Б | <u>5</u> | 937.0414/   | <u>80.8</u>    | -1.9                     | <u>v</u> <sub>4</sub> |           |
| 19    | <u>г</u> 1          | 0        | 19       | <u>г</u> 2          | 1        | 731.83888   | 01.8           | -0.3                     | $\nu_4$               | <br>      |
| 19    | Г <sub>2</sub>      | 5        | 19       | Г <sub>1</sub>      |          | 957.83888   | 61.8           | -1.0                     | $\nu_4$               | Ш         |
| 1     | $\mathbf{F}_1$      | 6        | 8        | $\mathbf{F}_2$      | 1        | 938.09/55   | 72.8           | 0.8                      | $\nu_4$               | 11        |

| J        | γ                     | п        | J'      | γ'                  | n'       | $v^{exp}$ , | Transmittance, | $\delta \cdot 10^{-4}$ , | Band           | Spectra        |
|----------|-----------------------|----------|---------|---------------------|----------|-------------|----------------|--------------------------|----------------|----------------|
|          | ,                     |          |         | ,<br>               |          | <u> </u>    | %              | cm <sup>1</sup>          | (              | 7              |
| 10       |                       | 2        | 10      |                     | 1        | 3           | 4              | 5                        | 0              | /              |
| 13       | E                     | 2        | 13      | E                   | 1        | 959.20870   | 88.7           | -0.7                     | $\nu_4$        |                |
| 13       | <b>F</b> <sub>2</sub> | 3        | 13      | Γ <sub>1</sub>      | 2        | 959.21289   | 87.3           | -l.l                     | $\nu_4$        |                |
| 13       | $A_2$                 | 2        | 13      | $A_1$               | 1        | 959.22051   | 89.3           | 1.1                      | $\nu_4$        |                |
| 7        | <b>F</b> <sub>2</sub> | 5        | 8       | Γ <sub>1</sub>      | 1        | 959.68042   | 71.9           | 0.9                      | $\nu_4$        | II<br>II       |
| /        | A <sub>2</sub>        | 2        | 8       | $A_1$               | 1        | 959.80984   | /5.5           | 0.7                      | $\nu_4$        |                |
| 4        | <b>F</b> <sub>2</sub> | 2        | 5       | $\Gamma_1$          | 2        | 959.87264   | 94.3           | -0.1                     | $\nu_4$        |                |
| 4        |                       | <br>     | 5       | E                   | 1        | 960.08383   | 93.0           | 1.8                      | $\nu_4$        |                |
| 18       | Γ <sub>1</sub>        | 5        | 18      | Γ <sub>2</sub>      | 1        | 960.44484   | 32.4           | 0.4                      | $\nu_4$        |                |
| 18       | $\mathbf{A}_1$        | 2        | 18      | $A_2$               | 1        | 960.44484   | 32.4           | 0.8                      | $\nu_4$        |                |
| 18       | E                     | 4        | 18      | E                   | 1        | 960.44484   | 32.4           | 0.2                      | $\nu_4$        | <u>Ш</u>       |
| 6        | $\Gamma_2$            | 4        | /       | Г <sub>1</sub>      | 2        | 960.46108   | 71.0           | 0.4                      | $\nu_4$        | 11<br>11       |
| 6        | E                     | 3        | /       | E                   | 1        | 960.96652   | 79.3           | 0.4                      | $\nu_4$        | <u>II</u><br>П |
| 6        | Γ <sub>1</sub>        | 4        | /       | Γ <sub>2</sub>      | <u> </u> | 901.32807   | /1.4           | 0.5                      | $\nu_4$        | 11<br>TT       |
| 0<br>17  | $\mathbf{A}_1$        | 2        | /       | $A_2$               | 1        | 962.02922   | /5.1           | 0.5                      | $\nu_4$        |                |
| 17       | Г <sub>1</sub>        | 5        | 17      | <u>г</u> 2          | 1        | 902.99170   | 33.0           | 1.1                      | $\nu_4$        |                |
| 1/       | Г <sub>2</sub>        | 5<br>5   | 1/      | Г <sub>1</sub>      | 1        | 962.99170   | 33.0           | 1.5                      | $\nu_4$        | 111<br>TT      |
| 6        | Г <sub>1</sub>        | 5        | /       | $\Gamma_2$          | 1        | 903.08/8/   | /0./           | 1.0                      | $\nu_4$        | 11<br>11       |
| 0        | Γ <sub>2</sub>        | 5        | /       | Γ <sub>1</sub>      | 1        | 963.27009   | 69.7           | 0.4                      | $\nu_4$        |                |
| 11       | $\mathbf{A}_1$        | 1        | 11      | $A_2$               | 1        | 903.73374   | 85.3           | 0.4                      | $\nu_4$        |                |
| <u> </u> | Γ <sub>1</sub>        | 3        | 11      | Γ <sub>2</sub>      | 2        | 963.78430   | 85.5           | -1.5                     | $\nu_4$        | 111<br>TT      |
| 5        | $A_2$                 | 2        | 6       | $A_1$               | 1        | 964.57778   | /4.8           | 0.5                      | $\nu_4$        | <u>II</u><br>П |
| 5        | Г <sub>2</sub>        | 4        | 0       | <u>г</u> 1          | 1        | 904.92409   | 70.8           | 0.8                      | $\nu_4$        | 11<br>TT       |
| 3        | Г <sub>1</sub>        | 5        | 0       | $\Gamma_2$          | 2        | 965.30443   | /0./           | 0.9                      | $\nu_4$        | 11<br>11       |
| 10       | Г <sub>2</sub>        | 2        | 10      | <u>г</u> 1          | 1        | 903.47194   | 88.9           | 0.0                      | $\nu_4$        | п              |
| 10       |                       | 3        | 10      |                     | 1        | 965.47194   | 88.9           | -1.0                     | $\nu_4$        |                |
| 10       | <b>A</b> <sub>2</sub> | 2        | 10      | F A1                | 1        | 905.47194   | 84.2           | _7.2                     | V <sub>4</sub> |                |
| 10       | Г <sub>1</sub><br>Б   | 2        | 10      | Г <sub>2</sub><br>Е |          | 900.01990   | 84.2           | -7.2                     | $v_4$          |                |
| 10       | 1 <sup>2</sup>        | 3        | 10      | Γ <sub>1</sub>      | 1        | 900.00404   | 89.0           | 1.0                      | V <sub>4</sub> | 111<br>TT      |
| 5        | $\mathbf{A}_1$        | 1        | 0       | $\mathbf{A}_2$      | 1        | 900.29970   | 74.7           | 1.0                      | $v_4$          | 11<br>11       |
| <u> </u> | F                     | 4        | 0       | Г <u>2</u><br>Е     | 1        | 900.08849   | 70.4           | 0.0                      | V <sub>4</sub> |                |
| 9        | 1 <sup>2</sup>        | 1        | 9       | Γ <sub>1</sub>      | 3        | 907.22273   | 94.7<br>50.9   | 4.4                      | V <sub>4</sub> |                |
| 19       | $\mathbf{F}$          | 5        | 19      | F                   | 1        | 967 70295   | 50.8           | 2.7                      | V <sub>4</sub> |                |
| 19       | E<br>E                | 4        | 19      | E<br>E              | 1        | 967 70205   | 50.8           | 0.8                      | V_4            |                |
| 19       | F                     | 7        | 19      | F                   | <br>1    | 967 87782   | 30.8<br>87.6   | -2.4                     | V <sub>4</sub> | III<br>II      |
| 15       | F                     | 3        | 15      | <b>F</b>            | 1        | 967.87782   | 87.0<br>87.6   | 4.2                      | V_4            | 11<br>11       |
| 13       | Г <sub>2</sub><br>Е   | 4        | 15      | F                   | 1        | 907.87782   | 07.0           | 4.2                      | V <sub>4</sub> |                |
| 9        | 1 <sup>2</sup>        | <br>1    | 9       | Λ<br>Λ              |          | 908.28347   | 08.9           | -1.5                     | V_4            | 111<br>11      |
| 9        | F                     | 1        | 9       | $\mathbf{F}$        | 1        | 908.33830   | 90.0           | 0.7                      | V <sub>4</sub> | 11<br>11       |
| 4        | F                     | <u> </u> | 5       | F                   |          | 960.00716   | 72.0           | 1.6                      | V_4            | 11<br>11       |
| 4<br>10  | E<br>F                | <u> </u> | )<br>10 | E<br>F              | 1        | 960 85621   | /9.4           | -1.0                     | $v_4$          | III            |
| 10       | <b>F</b>              | 0<br>4   | 10      | F<br>F              | 1<br>2   | 060 85621   | 40.3           | 1.7                      | V <sub>4</sub> | III            |
| 10       | F                     | 2        | 10      | <b>F</b>            | ∠<br>1   | 969.03031   | 40.3           | 4.1<br>1 0               | V <sub>4</sub> | Ш              |
| 4<br>1   | F                     | <u> </u> | 5       | F                   | 1        | 970 211 47  | /1./           | 0.0                      | v <sub>4</sub> | П              |
| 12       | <b>F</b>              | 4        | 12      | F                   | 1        | 970.31147   | 10.1<br>87.6   | 0.9                      | V <sub>4</sub> | П              |
| 15       | 1.5                   | 4        | 13      | 1.1                 | 1        | 712.42000   | 07.0           | 0.0                      | $v_4$          | 11             |

| J   | ν                   | n  | J'  | ν'                  | n'       | $v^{exp}$ ,            | Transmittance, | $\delta \cdot 10^{-4}$ , | Band                  | Spectra  |
|-----|---------------------|----|-----|---------------------|----------|------------------------|----------------|--------------------------|-----------------------|----------|
|     |                     |    | Ŭ   | /                   |          | <u>cm<sup>-1</sup></u> | %              | cm <sup>-1</sup>         | Dunu                  |          |
|     | 1                   | 1  |     | 2                   |          | 3                      | 4              | 5                        | 6                     | 7        |
| 13  | $F_1$               | 4  | 13  | $F_2$               | 1        | 972.43066              | 87.7           | 1.7                      | $\nu_4$               | II       |
| 3   | $F_1$               | 3  | 4   | $F_2$               | 1        | 972.78515              | 73.7           | 0.3                      | $\nu_4$               | II       |
| 3   | E                   | 2  | 4   | E                   | 1        | 973.38536              | 81.8           | 0.4                      | $\nu_4$               | II       |
| 3   | $F_2$               | 2  | 4   | F <sub>1</sub>      | 1        | 973.60651              | 74.0           | 1.2                      | $\nu_4$               | II       |
| 19  | F <sub>1</sub>      | 8  | 19  | F <sub>2</sub>      | 3        | 973.61585              | 73.9           | -2.8                     | $\nu_4$               | III      |
| 16  | F <sub>1</sub>      | 5  | 16  | $F_2$               | 1        | 973.79832              | 46.8           | 0.2                      | $\nu_4$               | III      |
| 16  | $F_2$               | 6  | 16  | $F_1$               | 2        | 973.80669              | 41.5           | 1.3                      | $\nu_4$               | III      |
| 3   | $A_2$               | 1  | 4   | $A_1$               | 1        | 973.88983              | 66.4           | 7.5                      | $\nu_4$               | II       |
| 12  | $A_2$               | 1  | 12  | $A_1$               | 1        | 974.54511              | 86.6           | 1.5                      | $\nu_4$               | II       |
| 12  | $F_2$               | 4  | 12  | F <sub>1</sub>      | 1        | 974.55285              | 84.4           | 0.8                      | $\nu_4$               | II       |
| 12  | Е                   | 3  | 12  | Е                   | 1        | 974.55684              | 89.0           | 1.4                      | $\nu_4$               | II       |
| 23  | F <sub>1</sub>      | 10 | 23  | F <sub>2</sub>      | 4        | 975.27430              | 92.8           | -0.3                     | $\nu_4$               | III      |
| 18  | $A_2$               | 2  | 18  | $A_1$               | 1        | 975.40627              | 67.8           | -6.8                     | $\nu_4$               | III      |
| 18  | F <sub>2</sub>      | 7  | 18  | F <sub>1</sub>      | 2        | 975.43282              | 51.4           | -7.1                     | $\nu_4$               | III      |
| 15  | $A_1$               | 2  | 15  | $A_2$               | 1        | 975.64626              | 40.9           | 0.5                      | $\nu_4$               | III      |
| 15  | F <sub>1</sub>      | 6  | 15  | F <sub>2</sub>      | 2        | 975.66482              | 33.3           | 0.4                      | $\nu_4$               | III      |
| 15  | Е                   | 4  | 15  | Е                   | 1        | 975.67382              | 41.1           | -3.1                     | $\mathbf{v}_{4}$      | III      |
| 20  | F <sub>1</sub>      | 8  | 20  | F <sub>2</sub>      | 3        | 976.37759              | 86.0           | 1.0                      | $v_{4}$               | III      |
| 20  | F <sub>2</sub>      | 8  | 20  | $F_1$               | 3        | 976.43936              | 81.9           | -2.6                     | $v_{4}$               | III      |
| 2   | $A_1$               | 1  | 3   | A <sub>2</sub>      | 1        | 976.48305              | 76.6           | 5.2                      | $v_4$                 | II       |
| 11  | $F_2$               | 3  | 11  | $F_1$               | 1        | 976.55293              | 79.6           | 1.3                      | V4                    | Π        |
| 2   | $F_1$               | 2  | 3   | $F_2$               | 1        | 976.88222              | 79.1           | 0.5                      | $v_4$                 | II       |
| 2.2 | A <sub>1</sub>      | 4  | 2.2 | A <sub>2</sub>      | 2        | 977.06210              | 89.7           | 2.4                      | V4                    | III      |
| 17  | $F_2$               | 7  | 17  | $F_1$               | 3        | 977.14099              | 48.5           | 3.9                      | $v_4$                 | III      |
| 19  | $F_2$               | 7  | 19  | F <sub>1</sub>      | 3        | 978.06922              | 72.8           | 0.7                      | V4                    | III      |
| 19  | A2                  | 3  | 19  | $A_1$               | 1        | 978.20556              | 77.1           | -0.7                     | V4                    | III      |
| 10  | Ē                   | 2  | 10  | E                   | 1        | 978.42441              | 84.0           | 0.6                      | V4                    | П        |
| 10  | E <sub>1</sub>      | 3  | 10  | E<br>F <sub>2</sub> | 1        | 978.43863              | 76.8           | 0.2                      | V4                    | II       |
| 10  | A <sub>1</sub>      | 2  | 10  | A <sub>2</sub>      | 1        | 978 46776              | 80.9           | 0.5                      | V4                    | П        |
| 16  | A <sub>1</sub>      | 3  | 16  | A2                  | 1        | 978 92617              | 31.3           | -4.6                     | V4                    | III      |
| 13  | F <sub>2</sub>      | 5  | 13  | F.                  | 2        | 979 10668              | 88.4           | -0.6                     | V4                    | П        |
| 13  | Δ <sub>2</sub>      | 3  | 13  | Δ.                  | 1        | 979.17889              | 90.2           | -0.3                     | <b>v</b> <sub>4</sub> | П        |
| 20  | A.                  | 3  | 20  | <b>A</b> .          | 2        | 979 71492              | 90.2<br>84.2   | -0.6                     | V4                    | III      |
| 18  | E.                  | 9  | 18  | E.                  | 2        | 979.71492              | 65.1           | -0.9                     | v4                    | III      |
| 20  | Fa                  | 0  | 20  | F.                  | 3        | 980.05731              | 84.0           | 2.4                      | <u>v</u> <sub>4</sub> | III      |
| 20  | F.                  | 3  | 20  | F.                  | 1        | 980 1/776              | 73.0           | -0.3                     | v <sub>4</sub>        | П        |
| 9   | F                   | 2  | 9   | F.                  | 1        | 080 10033              | 73.5           | 0.5                      | v <sub>4</sub>        | П        |
| 9   |                     | 5  | 9   | <b>F</b>            | 1        | 980.19933              | /4.1           | -0.5                     | V <sub>4</sub>        | 11<br>11 |
| 15  | Г <sub>2</sub><br>Е | 5  | 15  | Г <sub>1</sub>      | <u>∠</u> | 980.23407              | 91.7           | -0.5                     | V <sub>4</sub>        | 11<br>TT |
| 12  | $\Gamma_1$          | 1  | 12  | $\Gamma_2$          | 1        | 980.43402              | /4.3           | 7.0                      | $v_4$                 | 11<br>TT |
| 12  | Г <sub>1</sub>      | 4  | 12  | <u>г</u> 2          | 1        | 980.39813              | 85.0           | -0.4                     | $\nu_4$               | 11<br>11 |
|     |                     | 1  | 12  |                     | 1        | 960.02293              | 89.2           | <sup>-1.1</sup>          | $\nu_4$               | Ш        |
| 12  | Г <sub>2</sub>      | 5  | 12  | Г <sub>1</sub>      | 2        | 980.72082              | 85.2           | <sup>-1.1</sup>          | $\nu_4$               |          |
| 19  | Γ <sub>2</sub>      | 8  | 19  | Г <sub>1</sub>      | 4        | 981.1/3/2              | /4.0           | 1.8                      | $\nu_4$               |          |
| 17  | E                   | 5  | 17  | E                   | 2        | 981.25017              | 63.4           | -2.4                     | $\nu_4$               |          |
| 19  | $\mathbf{F}_2$      | 8  | 19  | $F_1$               | 3        | 981.25572              | 93.6           | -6.7                     | $\nu_4$               | 111      |

| J        | γ                     | п        | J'      | γ'                  | n'       | $v^{exp}$ ,    | Transmittance, | $\delta \cdot 10^{-4}$ , | Band                  | Spectra         |
|----------|-----------------------|----------|---------|---------------------|----------|----------------|----------------|--------------------------|-----------------------|-----------------|
|          | ,                     |          |         | ,<br>               |          | <u> </u>       | %              | cm <sup>1</sup>          | (                     | 7               |
| 1.4      | 1                     | 2        | 1.4     | 2                   | 1        | J<br>001 45604 | 4              | 5                        | 0                     | /<br>H          |
| 14       | $A_2$                 | 2        | 14      | $A_1$               | 1        | 981.45684      | 91.9           | 0.8                      | $\nu_4$               | 11<br>11        |
| 8        | A <sub>2</sub>        | l        | 8       | $A_1$               | 1        | 981.00014      | /4.9           | 0.4                      | $\nu_4$               | <u>II</u><br>П  |
| 14       | Г <sub>2</sub>        | 6        | 14      | Г <sub>1</sub>      | 2        | 981.72474      | 90.9           | -1.5                     | $\nu_4$               | 11<br>11        |
| 8        | $\mathbf{F}_2$        | 3        | 8       | $\Gamma_1$          | 1        | 981.74936      | <u>69.9</u>    | 0.3                      | $\nu_4$               | 11<br>11        |
| 8        | E                     | 2        | 8       | E                   | 1        | 981.79391      | /9.6           | -0.6                     | $\nu_4$               | 11<br>TT        |
| 11       | Г <sub>1</sub>        | 5        | 11      | $\Gamma_2$          | 2        | 982.07399      | /9.4           | 2.1                      | $\nu_4$               |                 |
| 16       | Г <sub>1</sub>        | /        | 16      | <u>Г</u> 2          | 3        | 982.10394      | 37.7           | 0.0                      | $\nu_4$               | 111<br>TT       |
| 11       | E                     | 3        | 11      | E                   | 1        | 982.17551      | /9.6           | -0.6                     | $\nu_4$               |                 |
| 20       | Г <sub>1</sub>        | 9        | 20      | $\Gamma_2$          | 4        | 982.21120      | 67.7           | 1.4                      | $\nu_4$               |                 |
| 18       | Г <sub>1</sub>        | 8        | 18      | $\Gamma_2$          | 5        | 982.48988      | 93.8           | 1./                      | $\nu_4$               | <u>Ш</u>        |
| 13       | Γ <sub>2</sub>        | 6        | 13      | Γ <sub>1</sub>      | 3        | 982.79083      | 87.5           | -0.9                     | $\nu_4$               | 11<br>TT        |
| 19       | $A_1$                 | 4        | 19      | $A_2$               | 2        | 982.91588      | //.1           | -0.9                     | $\nu_4$               | <u>Ш</u>        |
| 12       | Г <sub>2</sub>        | 2        | /       | <u>г</u> 1          | 1        | 983.08300      | 67.1           | 2.7                      | $\nu_4$               | 11<br>TT        |
| 13       | Г <sub>1</sub>        | 5        | 13      | $\Gamma_2$          | 3        | 983.14627      | 84.9           | 2.7                      | $\nu_4$               | <u>Ш</u>        |
| 15       | E                     | <u> </u> | 15      | E                   | 2        | 983.13049      | 93.0           | -0.9                     | $\nu_4$               | 11<br>11        |
| 13       | <u>Г</u> 1            | 5        | 13      | $\Gamma_2$          | 2        | 983.18292      | 88.2           | -0.9                     | $\nu_4$               | 11<br>TT        |
| 10       | <b>F</b> <sub>1</sub> | 4        | 10      | $F_2$               | 2        | 983.21380      | 76.5           | -1.2                     | $\nu_4$               | 11<br>11        |
| /        | Г <sub>1</sub>        | 3        | /       | $\Gamma_2$          | 1        | 983.22284      | 68.9           | -0.4                     | $\nu_4$               |                 |
| 17       | <b>F</b> <sub>2</sub> | 8        | 17      | $\Gamma_1$          | 4        | 983.23346      | 50.3           | -0.3                     | $\nu_4$               |                 |
| 10       | Γ <sub>2</sub>        | 4        | 10      | Г <sub>1</sub>      | 2        | 983.46447      | 80.4           | 3.0                      | $\nu_4$               |                 |
| 20       | <b>F</b> <sub>2</sub> | 10       | 20      | $\mathbf{F}_1$      | 5        | 983.81357      | 81.4           | -2.6                     | $\nu_4$               |                 |
| 16       | $A_2$                 | 3        | 16      | $A_1$               | 2        | 983.86897      | 41.7           | 2.5                      | $\nu_4$               |                 |
| 18       | $A_1$                 | 3        | 18      | $A_2$               | 2        | 984.01094      | 63.3           | 0.9                      | $\nu_4$               | III<br>II       |
| 6        | E                     | 2        | 6       | E                   | 1        | 984.20513      | 62.9           | -1.0                     | $\nu_4$               | 11<br>11        |
| 9        | E                     | 3        | 9       | E                   | 1        | 984.20313      | 62.9           | 2.0                      | $\nu_4$               | 11<br>11        |
| 6        | Г <sub>1</sub>        | 2        | 0       | <u>г</u> 2          | 1        | 984.30414      | 66.9           | -0.1                     | $\nu_4$               | 11<br>TT        |
| 9        | Г <sub>2</sub>        | 4        | 9       | Г <sub>1</sub><br>Е | 2        | 984.43734      | /4.3           | -0.4                     | $\nu_4$               |                 |
| 19       | <u>г</u> 1            | 10       | 19      | Γ <sub>2</sub>      | 4        | 984.43982      | 88.7           | 0.1                      | $\nu_4$               | <u>III</u><br>П |
| <u> </u> | A <sub>1</sub>        | 1        | 0<br>12 | A2                  | 1        | 984.01411      | /2.0           | -0.1                     | $\nu_4$               | П               |
| 15       | A1                    | 2        | 15      | A2                  | 1        | 984.04101      | 88.2           | -0.0                     | $v_4$                 | 11<br>TTT       |
| 15       | A <sub>2</sub>        | 2        | 15      | $\mathbf{A}_1$      | 1        | 984.04944      | 33.2           | -5.2                     | $\nu_4$               |                 |
| 20       |                       | /        | 20      |                     | 4        | 984.00283      | 87.0           | 1.4                      | $\nu_4$               | 111<br>TT       |
| 11       | $\Gamma_2$            | 4        | 11      | $\Gamma_1$          | <u>∠</u> | 984.09213      | 62.0           | 0.8                      | $v_4$                 | 11<br>TTT       |
| 17       | <u>г</u> 1            | 8        | 17      | Γ <sub>2</sub>      | 4        | 984.70037      | 53.0<br>96.1   | -0.8                     | $\nu_4$               | 111<br>TT       |
| 12       | A1                    | 2        | 12      | A2                  | 1        | 984.94004      | <u>80.1</u>    | -3.3                     | $v_4$                 | 11<br>TT        |
| 9        | <b>A</b> <sub>2</sub> | 2        | 9       | $\mathbf{A}_1$      | 1        | 964.97732      | 78.1           | -1.0                     | V <sub>4</sub>        | 11<br>11        |
| <u> </u> | $\Gamma_1$            | 3        | 0       | $\Gamma_2$          | 1        | 965.13393      | /0.0           | -0.1                     | $v_4$                 | 11<br>TTT       |
| 10       | Г <sub>2</sub><br>Е   | 8<br>2   | 10      | Г <sub>1</sub><br>Е | 4        | 70J.14094      | 41.4           | _1.7                     | $\nu_4$               |                 |
| J<br>14  | Г <sub>2</sub><br>Е   |          | 3<br>14 | г <sub>1</sub><br>Б | 1        | 703.23400      | 07.2           | -1.2                     | V <sub>4</sub>        | П               |
| 14       | Г <sub>2</sub><br>Е   | /        | 14      | Г <sub>1</sub><br>Б | 5        | 903.32303      | 89.8<br>75.6   | -0.4                     | $\nu_4$               |                 |
| 19       | Г <sub>2</sub><br>Б   | 9        | 19      | г <sub>1</sub><br>Б | )<br>    | 703.41073      | / 3.0          | _1.0                     | V <sub>4</sub>        |                 |
| 18       | Г <sub>2</sub><br>Е   | 9        | 18      | Г <sub>1</sub><br>Е | 4        | 703.4/0/3      | 48.4           | -1.9                     | $\nu_4$               |                 |
| 1/       | E<br>E                | 0        | 1/      | E<br>E              | 2<br>2   | 703.37031      | <u> </u>       |                          | V <sub>4</sub>        | Ш               |
| 11       | Г <sub>1</sub><br>С   | 0        | 11      | <u>г</u> 2<br>Е     | 3        | 703.02000      | /9.1           | _1.5                     | <u>V</u> <sub>4</sub> | П               |
| 15       | <b>г</b> 1            | 0        | 15      | <b>Γ</b> 2          | 5        | 702.02719      | 87.3           | $^{-1.0}$                | $\nu_4$               | 11              |

| J   | γ                     | n | J'  | γ'                    | n' | $v^{exp}$ , | Transmittance, | $\delta \cdot 10^{-4}$ , | Band    | Spectra        |
|-----|-----------------------|---|-----|-----------------------|----|-------------|----------------|--------------------------|---------|----------------|
|     | ,                     |   |     | ,<br>                 |    | 2 cm -      | %              | <u>cm</u> 1              | 6       | 7              |
| 1.5 |                       | 7 | 1.5 | 2<br>E                | 4  | 3           | 4              | 3                        | 0       | /              |
| 15  | Γ <sub>2</sub>        | / | 15  | Γ <sub>1</sub>        | 4  | 985.00011   | 87.1           | 3.0                      | $\nu_4$ | <u>II</u><br>П |
| /   | $A_1$                 | 2 | /   | A <sub>2</sub>        | 1  | 985.70648   | /1.0           | 0.1                      | $\nu_4$ |                |
| 8   | Γ <sub>2</sub>        | 4 | 8   | <u>Г</u> 1            | 2  | 985.74113   | /0.0           | -0.7                     | $\nu_4$ |                |
| 15  | <b>F</b> <sub>2</sub> | 7 | 15  | <b>F</b> <sub>1</sub> | 2  | 985.77435   | 40.2           | 5.9                      | $\nu_4$ |                |
| 4   | A <sub>2</sub>        | 1 | 4   | $A_1$                 | I  | 985.88461   | 73.2           | -0.4                     | $\nu_4$ |                |
| 17  | $\mathbf{F}_2$        | 9 | 17  | $\Gamma_1$            | 5  | 985.93803   | 53.9           | -0.1                     | $\nu_4$ |                |
| 10  | <b>F</b> <sub>2</sub> | 5 | 10  | Γ <sub>1</sub>        | 2  | 985.98/91   | 71.4           | -3.0                     | $\nu_4$ |                |
| 10  | $F_2$                 | 5 | 10  | $F_1$                 | 1  | 986.00686   | 77.2           | 0.3                      | $\nu_4$ |                |
| 10  | $\Gamma_1$            | 4 | 10  | $F_2$                 | 2  | 986.19223   | 61.9           | -5.5                     | $\nu_4$ |                |
| 10  | E                     | 3 | 10  | E                     | 2  | 986.37920   | 74.0           | -5.7                     | $\nu_4$ |                |
| 1   | E                     | 2 | 1   | E                     | 1  | 986.50591   | /1./           | 2.0                      | $\nu_4$ |                |
| 12  | $F_2$                 | 6 | 12  | $F_1$                 | 3  | 986.57349   | 82.9           | -0.4                     | $\nu_4$ |                |
| 11  | E                     | 4 | 11  | E                     | 2  | 986.58128   | 85.0           | -2.7                     | $\nu_4$ | II<br>T        |
| 3   | $F_2$                 | 1 | 3   | $F_1$                 | 1  | 986.64045   | 69.6           | -1.1                     | $\nu_4$ |                |
| 13  | $F_2$                 | 7 | 13  | $F_1$                 | 4  | 986.69028   | 85.4           | 0.2                      | $\nu_4$ |                |
| 9   | $F_1$                 | 4 | 9   | $F_2$                 | 2  | 986.83790   | 72.6           | -0.5                     | $\nu_4$ | <u> </u>       |
| 8   | E                     | 3 | 8   | E                     | 2  | 986.84592   | 78.5           | -0.8                     | $\nu_4$ | II             |
| 11  | $F_2$                 | 5 | 11  | $F_1$                 | 3  | 986.86354   | 52.6           | -1.7                     | $\nu_4$ | II             |
| 12  | $A_2$                 | 2 | 12  | $A_1$                 | 2  | 986.96172   | 79.0           | 9.5                      | $\nu_4$ | II             |
| 3   | F <sub>1</sub>        | 2 | 3   | $F_2$                 | 1  | 986.97416   | 71.8           | 0.2                      | $\nu_4$ | II             |
| 6   | $F_2$                 | 3 | 6   | $F_1$                 | 1  | 986.98632   | 63.2           | -1.5                     | $\nu_4$ | II             |
| 5   | E                     | 2 | 5   | E                     | 1  | 987.01667   | 75.6           | -1.0                     | $\nu_4$ | II             |
| 2   | E                     | 1 | 2   | E                     | 1  | 987.04211   | 84.2           | 0.4                      | $\nu_4$ | II             |
| 2   | F <sub>1</sub>        | 1 | 2   | $F_2$                 | 1  | 987.20802   | 48.6           | 0.8                      | $\nu_4$ | II             |
| 7   | F <sub>2</sub>        | 3 | 7   | $F_1$                 | 2  | 987.20802   | 48.6           | -1.5                     | $\nu_4$ | II             |
| 5   | $F_2$                 | 3 | 5   | $F_1$                 | 2  | 987.21414   | 66.9           | -1.2                     | $\nu_4$ | II             |
| 9   | $A_1$                 | 1 | 9   | $A_2$                 | 1  | 987.22208   | 76.0           | -0.5                     | $\nu_4$ | II             |
| 1   | F <sub>2</sub>        | 1 | 1   | $F_1$                 | 1  | 987.30138   | 85.0           | 1.2                      | $\nu_4$ | II             |
| 4   | F <sub>1</sub>        | 2 | 4   | F <sub>2</sub>        | 1  | 987.32172   | 64.6           | -0.7                     | $\nu_4$ | II             |
| 6   | $A_2$                 | 1 | 6   | $A_1$                 | 1  | 987.38212   | 70.7           | -1.0                     | $\nu_4$ | II             |
| 3   | $A_1$                 | 1 | 3   | $A_2$                 | 1  | 987.45508   | 76.4           | -0.8                     | $\nu_4$ | II             |
| 1   | $A_2$                 | 1 | 0   | $A_1$                 | 1  | 990.69485   | 86.0           | 0.4                      | $\nu_4$ | II             |
| 2   | $F_2$                 | 1 | 1   | $F_1$                 | 1  | 993.94075   | 76.1           | -1.2                     | $\nu_4$ | II             |
| 3   | $F_1$                 | 1 | 2   | F <sub>2</sub>        | 1  | 997.09968   | 71.0           | -1.3                     | $\nu_4$ | II             |
| 3   | E                     | 1 | 2   | E                     | 1  | 997.14339   | 79.5           | -1.3                     | $\nu_4$ | II             |
| 6   | F <sub>2</sub>        | 4 | 6   | F <sub>1</sub>        | 1  | 997.28734   | 94.5           | 0.0                      | $\nu_4$ | III            |
| 6   | E                     | 3 | 6   | E                     | 1  | 997.79760   | 92.8           | 0.9                      | $\nu_4$ | III            |
| 6   | F <sub>1</sub>        | 4 | 6   | F <sub>2</sub>        | 1  | 998.15810   | 71.7           | 2.1                      | $\nu_4$ | III            |
| 5   | E                     | 3 | 5   | E                     | 1  | 998.36065   | 95.2           | 4.0                      | $\nu_4$ | III            |
| 7   | E                     | 3 | 7   | E                     | 1  | 998.45423   | 91.6           | 0.5                      | $\nu_4$ | III            |
| 17  | A <sub>1</sub>        | 3 | 17  | $A_2$                 | 1  | 998.65605   | 94.2           | 1.0                      | $\nu_4$ | III            |
| 6   | $A_1$                 | 2 | 6   | $A_2$                 | 1  | 998.85498   | 78.7           | 2.6                      | $\nu_4$ | III            |
| 7   | $F_2$                 | 4 | 7   | $F_1$                 | 1  | 999.15397   | 86.1           | 1.5                      | $v_4$   | III            |
| 9   | F <sub>1</sub>        | 5 | 9   | $F_2$                 | 2  | 999.34834   | 95.0           | 0.4                      | $\nu_4$ | III            |
| 10  | $F_2$                 | 6 | 10  | $F_1$                 | 2  | 999.73540   | 95.6           | 1.4                      | $\nu_4$ | III            |

| J  | γ              | п  | J' | γ'             | n' | $v^{exp}$ ,     | Transmittance, | $\delta \cdot 10^{-4}$ , | Band    | Spectra  |
|----|----------------|----|----|----------------|----|-----------------|----------------|--------------------------|---------|----------|
|    | , í            |    |    |                |    | cm <sup>1</sup> | %              | cm <sup>-1</sup>         |         | 1 7      |
|    |                |    | -  | 2              |    | 3               | 4              | 5                        | 0       | /        |
| 9  | E              | 4  | 9  | E              | 1  | 999.80633       | 92.8           | 0.1                      | $\nu_4$ |          |
| 4  | $A_1$          | 1  | 3  | $A_2$          | 1  | 1000.08859      | 71.0           | -1.8                     | $\nu_4$ |          |
| 7  | $F_1$          | 6  | 7  | $F_2$          | 2  | 1000.16525      | 89.5           | 1.1                      | $\nu_4$ |          |
| 7  | $F_1$          | 6  | 7  | $F_2$          | 1  | 1000.17449      | 81.4           | -0.2                     | $\nu_4$ | III<br>T |
| 4  | $F_1$          | 1  | 3  | $F_2$          | 1  | 1000.20129      | 66.2           | -1.5                     | $\nu_4$ | <br>     |
| 9  | $F_2$          | 6  | 9  | $F_1$          | 2  | 1000.21959      | 90.3           | 4.7                      | $\nu_4$ |          |
| 4  | F <sub>2</sub> | 1  | 3  | $F_1$          | 1  | 1000.298/3      | 66.4           | -1.7                     | $\nu_4$ |          |
| 11 | $F_1$          | 7  | 11 | $F_2$          | 2  | 1000.52037      | 84.7           | 3.0                      | $\nu_4$ |          |
| 13 | $F_2$          | 8  | 13 | $F_1$          | 3  | 1000.59634      | 92.7           | 2.6                      | $\nu_4$ |          |
| 10 | $F_1$          | 6  | 10 | $F_2$          | 2  | 1000.61766      | 81.9           | -1.9                     | $\nu_4$ | III      |
| 12 | $F_1$          | 7  | 12 | F <sub>2</sub> | 1  | 1000.76229      | 86.8           | -1.5                     | $\nu_4$ | III      |
| 11 | $A_1$          | 3  | 11 | $A_2$          | 1  | 1001.05607      | 88.8           | 0.1                      | $\nu_4$ | III      |
| 8  | $F_2$          | 6  | 8  | $F_1$          | 2  | 1001.34764      | 65.5           | 0.3                      | $\nu_4$ | III      |
| 8  | E              | 4  | 8  | E              | 2  | 1001.55594      | 93.5           | 3.6                      | $\nu_4$ | III      |
| 9  | $F_2$          | 7  | 9  | $F_1$          | 1  | 1002.57482      | 85.2           | 0.4                      | $\nu_4$ | III      |
| 10 | F <sub>2</sub> | 7  | 10 | F <sub>1</sub> | 2  | 1002.66426      | 81.7           | 0.3                      | $\nu_4$ | III      |
| 10 | $F_2$          | 7  | 10 | F <sub>1</sub> | 1  | 1002.68288      | 84.0           | 0.3                      | $\nu_4$ | III      |
| 9  | $F_1$          | 6  | 9  | $F_2$          | 2  | 1002.92592      | 92.4           | 2.9                      | $\nu_4$ | III      |
| 9  | $F_1$          | 6  | 9  | F <sub>2</sub> | 1  | 1002.96161      | 79.0           | 2.5                      | $\nu_4$ | III      |
| 5  | F <sub>1</sub> | 1  | 4  | F <sub>2</sub> | 1  | 1003.08626      | 58.7           | -4.7                     | $\nu_4$ | II       |
| 5  | E              | 1  | 4  | E              | 1  | 1003.29493      | 73.9           | -2.0                     | $\nu_4$ | II       |
| 5  | F <sub>2</sub> | 1  | 4  | F <sub>1</sub> | 1  | 1003.37419      | 59.4           | -1.5                     | $\nu_4$ | II       |
| 11 | F <sub>1</sub> | 8  | 11 | F <sub>2</sub> | 3  | 1003.42288      | 82.8           | 0.1                      | $\nu_4$ | III      |
| 11 | F <sub>1</sub> | 8  | 11 | F <sub>2</sub> | 2  | 1003.45746      | 88.5           | -1.3                     | $\nu_4$ | III      |
| 5  | $A_2$          | 1  | 4  | $A_1$          | 1  | 1003.48926      | 68.9           | -1.9                     | $\nu_4$ | II       |
| 11 | E              | 5  | 11 | E              | 2  | 1003.71488      | 91.2           | -1.6                     | $\nu_4$ | III      |
| 11 | E              | 5  | 11 | E              | 1  | 1003.75313      | 54.5           | 1.7                      | $\nu_4$ | III      |
| 13 | F <sub>1</sub> | 8  | 13 | F <sub>2</sub> | 3  | 1004.14404      | 81.4           | -0.1                     | $\nu_4$ | III      |
| 10 | F <sub>1</sub> | 7  | 10 | F <sub>2</sub> | 2  | 1004.17469      | 94.2           | 1.3                      | $\nu_4$ | III      |
| 10 | F <sub>1</sub> | 7  | 10 | F <sub>2</sub> | 1  | 1004.20381      | 80.9           | 1.4                      | $\nu_4$ | III      |
| 15 | $A_2$          | 3  | 15 | $A_1$          | 1  | 1004.41506      | 77.5           | 3.5                      | $\nu_4$ | III      |
| 12 | $F_2$          | 8  | 12 | F <sub>1</sub> | 2  | 1004.79187      | 80.8           | 1.8                      | $\nu_4$ | III      |
| 15 | $F_2$          | 9  | 15 | F <sub>1</sub> | 4  | 1004.98182      | 86.0           | -2.8                     | $\nu_4$ | III      |
| 13 | Е              | 6  | 13 | Е              | 1  | 1005.26381      | 86.8           | 3.0                      | $\nu_4$ | III      |
| 17 | Е              | 7  | 17 | Е              | 2  | 1005.30502      | 95.8           | -2.3                     | $\nu_4$ | III      |
| 15 | F <sub>1</sub> | 10 | 15 | F <sub>2</sub> | 4  | 1005.55560      | 83.7           | -1.7                     | $\nu_4$ | III      |
| 16 | Е              | 7  | 16 | Е              | 3  | 1005.55560      | 83.7           | -3.8                     | $\nu_4$ | III      |
| 13 | $F_2$          | 9  | 13 | F <sub>1</sub> | 2  | 1005.64728      | 86.2           | -0.5                     | $\nu_4$ | III      |
| 16 | Е              | 7  | 16 | Е              | 2  | 1005.70942      | 93.4           | 2.0                      | $\nu_4$ | III      |
| 11 | F <sub>1</sub> | 9  | 11 | $F_2$          | 1  | 1005.78364      | 78.2           | -2.3                     | $\nu_4$ | III      |
| 19 | F <sub>2</sub> | 11 | 19 | F <sub>1</sub> | 5  | 1005.78364      | 78.2           | 3.3                      | $\nu_4$ | III      |
| 6  | F <sub>2</sub> | 1  | 5  | F <sub>1</sub> | 2  | 1005.99350      | 63.0           | -1.6                     | $\nu_4$ | II       |
| 6  | Е              | 1  | 5  | Е              | 1  | 1006.05538      | 70.0           | -1.3                     | $\nu_4$ | II       |
| 16 | F <sub>1</sub> | 10 | 16 | F <sub>2</sub> | 2  | 1006.18696      | 87.5           | -2.4                     | $\nu_4$ | III      |
| 13 | $A_2$          | 4  | 13 | A <sub>1</sub> | 1  | 1006.24824      | 79.8           | -3.7                     | $\nu_4$ | III      |
| J  | γ                     | п   | J' | γ'             | n' | $v^{exp}$ ,     | Transmittance, | $\delta \cdot 10^{-4}$ , | Band           | Spectra  |
|----|-----------------------|-----|----|----------------|----|-----------------|----------------|--------------------------|----------------|----------|
|    | ,                     |     |    |                |    | 2 cm -          | %              | cm <sup>1</sup>          | (              | 7        |
| 17 |                       | 1.1 | 17 | 2<br>E         | ~  | 3<br>1006 28675 | 4              | 2.5                      | 0              | /        |
| 1/ | Γ <sub>2</sub>        | 11  | 1/ | Г <sub>1</sub> | 5  | 1006.286/5      | 90.9           | -3.5                     | $\nu_4$        |          |
| 6  | <b>F</b> <sub>1</sub> | 1   | 5  | $\mathbf{F}_2$ |    | 1006.384/1      | 63.0           | -1.9                     | $\nu_4$        | 11<br>11 |
| 6  | $\mathbf{F}_2$        | 2   | 5  | $\mathbf{F}_1$ | 1  | 1006.53847      | 50.3           | -2.7                     | $\nu_4$        |          |
| 12 | $A_2$                 | 3   | 12 | $A_1$          | 1  | 1006.72718      | 82.2           | -1.1                     | $\nu_4$        |          |
| 16 | $A_1$                 | 4   | 16 | $A_2$          | 1  | 1007.10425      | 89.2           | -1.4                     | $\nu_4$        |          |
| 14 | $F_2$                 | 10  | 14 | $F_1$          | 1  | 1007.11534      | 78.5           | 3.0                      | $\nu_4$        |          |
| 12 | E                     | 6   | 12 | E              | 1  | 1007.14355      | 86.2           | -4.7                     | $\nu_4$        |          |
| 15 | $A_1$                 | 4   | 15 | $A_2$          | 1  | 1007.27005      | 85.1           | -2.1                     | $\nu_4$        | III      |
| 18 | $F_2$                 | 12  | 18 | $F_1$          | 2  | 1008.13169      | 93.0           | -2.7                     | $\nu_4$        | III      |
| 15 | E                     | 7   | 15 | E              | 1  | 1008.14306      | 92.1           | -1.0                     | $\nu_4$        | III      |
| 18 | E                     | 8   | 18 | E              | 2  | 1008.39726      | 95.1           | -2.2                     | $\nu_4$        | III      |
| 13 | $F_1$                 | 9   | 13 | $F_2$          | 1  | 1008.50846      | 87.6           | 0.1                      | $\nu_4$        | III      |
| 19 | $F_2$                 | 12  | 19 | $F_1$          | 2  | 1008.72908      | 95.0           | 0.8                      | $\nu_4$        | III      |
| 7  | $A_2$                 | 1   | 6  | $A_1$          | 1  | 1008.76393      | 67.7           | -1.7                     | $\nu_4$        | II       |
| 7  | F <sub>2</sub>        | 1   | 6  | F <sub>1</sub> | 1  | 1008.85849      | 63.7           | -1.8                     | $\nu_4$        | II       |
| 7  | $F_1$                 | 1   | 6  | $F_2$          | 2  | 1008.97025      | 64.0           | -1.8                     | $\nu_4$        | II       |
| 7  | $A_1$                 | 1   | 6  | $A_2$          | 1  | 1009.39510      | 68.8           | -1.9                     | $\nu_4$        | II       |
| 7  | $F_1$                 | 2   | 6  | $F_2$          | 1  | 1009.54529      | 63.7           | -2.0                     | $\nu_4$        | II       |
| 7  | E                     | 1   | 6  | E              | 1  | 1009.59447      | 74.1           | -1.8                     | $\nu_4$        | Π        |
| 14 | E                     | 7   | 14 | E              | 1  | 1009.75526      | 92.1           | -1.5                     | $\nu_4$        | III      |
| 14 | F <sub>1</sub>        | 10  | 14 | $F_2$          | 1  | 1009.81912      | 88.6           | -2.4                     | $\nu_4$        | III      |
| 17 | F <sub>2</sub>        | 12  | 17 | F <sub>1</sub> | 2  | 1010.14416      | 78.2           | -0.7                     | $\nu_4$        | III      |
| 15 | $F_2$                 | 10  | 15 | F <sub>1</sub> | 1  | 1011.16168      | 82.2           | -2.8                     | $\nu_4$        | III      |
| 18 | F <sub>1</sub>        | 12  | 18 | $F_2$          | 2  | 1011.16168      | 82.2           | 2.4                      | $\nu_4$        | III      |
| 8  | $F_2$                 | 1   | 7  | $F_1$          | 2  | 1011.55494      | 61.7           | 2.5                      | $\nu_4$        | II       |
| 8  | $F_1$                 | 1   | 7  | $F_2$          | 2  | 1011.80317      | 62.8           | -0.9                     | $\nu_4$        | II       |
| 8  | $A_1$                 | 1   | 7  | $A_2$          | 1  | 1012.00620      | 68.7           | 0.3                      | $\nu_4$        | II       |
| 8  | F <sub>1</sub>        | 2   | 7  | $F_2$          | 1  | 1012.54399      | 65.0           | -2.4                     | $\nu_4$        | II       |
| 16 | Е                     | 8   | 16 | Е              | 1  | 1012.60450      | 28.1           | -3.1                     | $\nu_4$        | III      |
| 8  | $F_2$                 | 2   | 7  | F <sub>1</sub> | 1  | 1012.62758      | 65.1           | -1.4                     | $\nu_4$        | II       |
| 20 | $F_2$                 | 14  | 20 | $F_1$          | 2  | 1013.50067      | 95.2           | 3.0                      | $\nu_4$        | III      |
| 15 | Е                     | 9   | 16 | Е              | 1  | 1013.67357      | 84.9           | -3.8                     | $\nu_2$        | III      |
| 15 | $A_2$                 | 5   | 16 | $A_1$          | 1  | 1013.67357      | 84.9           | -7.3                     | $\nu_2$        | III      |
| 15 | $F_2$                 | 13  | 16 | F <sub>1</sub> | 1  | 1013.67357      | 84.9           | -5.0                     | $\nu_2$        | III      |
| 9  | F <sub>1</sub>        | 1   | 8  | F <sub>2</sub> | 2  | 1014.26298      | 68.3           | -1.3                     | $\nu_4$        | II       |
| 9  | Е                     | 1   | 8  | Е              | 2  | 1014.32754      | 77.2           | -1.6                     | $\nu_4$        | II       |
| 9  | F <sub>2</sub>        | 1   | 8  | F <sub>1</sub> | 2  | 1014.54223      | 64.4           | -1.2                     | $\nu_4$        | II       |
| 9  | $F_1$                 | 2   | 8  | $F_2$          | 1  | 1014.81533      | 57.8           | 0.7                      | $\nu_4$        | II       |
| 15 | F <sub>2</sub>        | 14  | 16 | $F_1$          | 2  | 1015.26652      | 83.5           | -1.6                     | $v_2$          | III      |
| 9  | Е                     | 2   | 8  | Е              | 1  | 1015.57535      | 77.6           | -2.3                     | $v_{4}$        | II       |
| 9  | F <sub>2</sub>        | 2   | 8  | F <sub>1</sub> | 1  | 1015.61058      | 68.3           | -1.9                     | $\nu_{4}$      | II       |
| 10 | F <sub>1</sub>        | 1   | 9  | F <sub>2</sub> | 2  | 1016.94448      | 71.5           | -1.1                     | ν <sub>4</sub> | II       |
| 10 | F <sub>2</sub>        | 1   | 9  | F <sub>1</sub> | 3  | 1017.04361      | 72.1           | -1.0                     | V4             | II       |
| 10 | A <sub>2</sub>        | 1   | 9  | A <sub>1</sub> | 1  | 1017.28592      | 75.8           | -1.3                     | V4             | II       |
| 19 | $F_2$                 | 23  | 20 | F <sub>1</sub> | 2  | 1017.47317      | 96.7           | -0.8                     | $v_{2}$        | III      |
|    | -                     |     |    | •              |    | /               |                | -                        | · 4            | 1        |

| J  | γ                     | п  | J' | γ'                    | n' | $v^{exp}$ , | Transmittance, | $\delta \cdot 10^{-4}$ , | Band           | Spectra  |
|----|-----------------------|----|----|-----------------------|----|-------------|----------------|--------------------------|----------------|----------|
|    | ,                     |    |    | ,<br>                 |    | 2 cm -      | %              | cm <sup>1</sup>          | 6              | 7        |
| 10 |                       |    | 0  |                       |    | J           | 4              | 5                        | 0              | /<br>H   |
| 10 | Γ <sub>2</sub>        | 2  | 9  | Г <sub>1</sub>        | 2  | 1017.56480  | /1.8           | -1.5                     | $\nu_4$        | 11<br>11 |
| 10 | E                     | 1  | 9  | E                     | 1  | 1017.63531  | 80.2           | -1.6                     | $\nu_4$        |          |
| 6  | $\Gamma_1$            | 3  | 5  | $\mathbf{F}_2$        | 1  | 1018.17619  | 83.1           | -0.9                     | $\nu_4$        |          |
| 10 | $F_2$                 | 3  | 9  | $F_1$                 | 1  | 1018.63384  | 72.4           | -2.1                     | $\nu_4$        |          |
| 11 | $F_1$                 | 1  | 10 | $F_2$                 | 3  | 1019.49596  | 75.3           | -0.5                     | $\nu_4$        |          |
| 11 | E                     | 1  | 10 | E                     | 2  | 1019.59807  | 72.8           | 10.0                     | $\nu_4$        |          |
| 11 | <b>F</b> <sub>2</sub> | 1  | 10 | <b>F</b> <sub>1</sub> | 2  | 1019.69233  | 73.2           | -0.2                     | $\nu_4$        |          |
| 14 | $A_1$                 | 5  | 15 | $A_2$                 | 1  | 1019.86411  | 94.5           | 4.8                      | $v_2$          | III      |
| 11 | $A_2$                 | 1  | 10 | $A_1$                 | 1  | 1019.98004  | 79.0           | -0.4                     | $\nu_4$        | <u> </u> |
| 11 | $F_2$                 | 2  | 10 | $F_1$                 | 1  | 1020.30777  | 75.6           | -1.4                     | $\nu_4$        | II       |
| 11 | $F_1$                 | 2  | 10 | $\mathbf{F}_2$        | 2  | 1020.43122  | 75.5           | -1.3                     | $\nu_4$        | II       |
| 11 | $A_1$                 | 1  | 10 | $A_2$                 | 1  | 1021.55514  | 79.2           | -1.2                     | $\nu_4$        | II       |
| 11 | $F_1$                 | 3  | 10 | $F_2$                 | 1  | 1021.58831  | 75.8           | -1.8                     | $\nu_4$        | II       |
| 11 | E                     | 2  | 10 | E                     | 1  | 1021.60373  | 83.1           | -1.9                     | $\nu_4$        | II       |
| 12 | F <sub>2</sub>        | 1  | 11 | F <sub>1</sub>        | 3  | 1022.05576  | 79.7           | -0.3                     | $\nu_4$        | II       |
| 12 | E                     | 1  | 11 | E                     | 2  | 1022.11298  | 82.0           | 0.3                      | $\nu_4$        | II       |
| 12 | F <sub>1</sub>        | 1  | 11 | F <sub>2</sub>        | 3  | 1022.25119  | 79.6           | -0.4                     | $\nu_4$        | II       |
| 7  | $A_1$                 | 2  | 6  | $A_2$                 | 1  | 1022.53184  | 86.4           | -1.8                     | $\nu_4$        | III      |
| 12 | F <sub>2</sub>        | 2  | 11 | F <sub>1</sub>        | 2  | 1022.61270  | 41.8           | 0.8                      | $\nu_4$        | Π        |
| 7  | F <sub>1</sub>        | 4  | 6  | F <sub>2</sub>        | 1  | 1023.02196  | 90.2           | -0.9                     | $\nu_4$        | III      |
| 12 | E                     | 2  | 11 | E                     | 1  | 1023.10121  | 85.9           | -0.4                     | $\nu_4$        | II       |
| 12 | F <sub>1</sub>        | 2  | 11 | F <sub>2</sub>        | 2  | 1023.16390  | 78.5           | 1.2                      | $\nu_4$        | Π        |
| 12 | $A_1$                 | 1  | 11 | $A_2$                 | 1  | 1023.26313  | 82.7           | -1.2                     | $\nu_4$        | II       |
| 7  | E                     | 2  | 6  | E                     | 1  | 1023.33689  | 91.1           | 1.5                      | $\nu_4$        | III      |
| 13 | $F_2$                 | 12 | 14 | $F_1$                 | 1  | 1024.29898  | 93.6           | 1.9                      | $v_2$          | III      |
| 12 | F <sub>1</sub>        | 3  | 11 | $F_2$                 | 1  | 1024.53255  | 80.3           | -1.6                     | $\nu_4$        | II       |
| 13 | $A_2$                 | 1  | 12 | $A_1$                 | 2  | 1024.54122  | 79.4           | 2.1                      | $\nu_4$        | II       |
| 12 | $F_2$                 | 3  | 11 | F <sub>1</sub>        | 1  | 1024.55258  | 80.0           | -1.5                     | $\nu_4$        | II       |
| 16 | E                     | 12 | 17 | E                     | 3  | 1024.57801  | 87.4           | -1.2                     | $\nu_2$        | III      |
| 13 | $F_2$                 | 1  | 12 | F <sub>1</sub>        | 3  | 1024.59955  | 83.4           | 0.2                      | $\nu_4$        | II       |
| 13 | $A_1$                 | 1  | 12 | $A_2$                 | 1  | 1024.81810  | 79.5           | -4.3                     | $\nu_4$        | II       |
| 13 | F <sub>1</sub>        | 2  | 12 | $F_2$                 | 2  | 1025.18458  | 83.9           | 0.1                      | $\nu_4$        | II       |
| 16 | F <sub>1</sub>        | 20 | 17 | $F_2$                 | 2  | 1025.28032  | 87.3           | -1.1                     | $\nu_2$        | III      |
| 13 | $F_2$                 | 2  | 12 | F <sub>1</sub>        | 2  | 1025.88486  | 84.0           | -0.4                     | $\nu_4$        | II       |
| 13 | F <sub>1</sub>        | 3  | 12 | F <sub>2</sub>        | 1  | 1025.97588  | 83.6           | -0.3                     | $\nu_4$        | II       |
| 14 | F <sub>2</sub>        | 1  | 13 | F <sub>1</sub>        | 4  | 1027.04695  | 87.0           | 1.8                      | $\nu_4$        | II       |
| 8  | $F_1$                 | 3  | 7  | F <sub>2</sub>        | 1  | 1027.21284  | 80.6           | -1.6                     | $\nu_4$        | III      |
| 15 | $F_1$                 | 17 | 16 | $F_2$                 | 4  | 1027.40888  | 86.2           | 2.3                      | V <sub>2</sub> | III      |
| 13 | F <sub>2</sub>        | 3  | 12 | F <sub>1</sub>        | 1  | 1027.47300  | 78.4           | -0.4                     | $\nu_4$        | II       |
| 14 | A <sub>1</sub>        | 1  | 13 | $A_2$                 | 1  | 1027.53749  | 89.4           | 0.9                      | $\nu_4$        | II       |
| 15 | $F_2$                 | 18 | 16 | F <sub>1</sub>        | 4  | 1027.66384  | 87.9           | 3.9                      | v <sub>2</sub> | III      |
| 12 | F <sub>1</sub>        | 11 | 13 | $F_2$                 | 1  | 1027.69329  | 82.3           | -3.3                     | v <sub>2</sub> | III      |
| 15 | F <sub>1</sub>        | 18 | 16 | <b>F</b> <sub>2</sub> | 3  | 1027.72905  | 86.9           | 2.2                      | V2             | III      |
| 15 | F <sub>2</sub>        | 18 | 16 |                       | 3  | 1027.73467  | 86.4           | -3.5                     | V2             | III      |
| 14 | <u> </u>              | 2  | 13 | <b>F</b> <sub>2</sub> | 2  | 1027.75471  | 87.2           | 0.2                      | V4             | II       |
|    | -                     |    |    |                       |    |             |                |                          | -              |          |

| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| I         2         3         4         5         6         7           8 $F_2$ 4         7 $F_1$ 1         1027.82377         74.5         0.2 $v_4$ III           14 $F_2$ 2         13 $F_1$ 3         1027.88281         85.0         1.4 $v_4$ III           15 $A_1$ 6         16 $A_2$ 1         1028.12667         87.5 $-0.7$ $v_2$ III           15 $F_1$ 19         16 $F_2$ 2         1028.13187         85.4 $-2.8$ $v_2$ III           14 $A_2$ 1         13 $A_1$ 1         1028.61774         89.3 $-0.1$ $v_4$ II           14 $F_2$ 3         13 $F_1$ 2         1028.68300         87.1         0.3 $v_4$ II           14 $F_2$ 3         1.3 $F_1$ 2         1028.78153         82.7         2.5 $v_2$ III           15 $F_1$ 1                                                                                                                                                                                                                                                                                        |
| 8 $F_2$ 4         7 $F_1$ 1 $1027.82377$ $74.5$ $0.2$ $v_4$ III           14 $F_2$ 2         13 $F_1$ 3 $1027.88281$ $85.0$ $1.4$ $v_4$ III           15 $A_1$ 6         16 $A_2$ 1 $1028.12667$ $87.5$ $-0.7$ $v_2$ III           15 $F_1$ 19         16 $F_2$ 2 $1028.13187$ $85.4$ $-2.8$ $v_2$ III           14 $A_2$ 1         13 $A_1$ 1 $1028.61774$ $89.3$ $-0.1$ $v_4$ II           14 $F_2$ 3         13 $F_1$ 2 $1028.61774$ $89.3$ $-0.1$ $v_4$ II           14 $F_2$ 3         13 $F_1$ 2 $1028.61774$ $89.3$ $-0.1$ $v_4$ II           14 $F_2$ 3         13 $F_1$ 2 $1028.78153$ $82.7$                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 15         A <sub>1</sub> 6         16         A <sub>2</sub> 1         1028.12667         87.5         -0.7 $v_2$ III           15         F <sub>1</sub> 19         16         F <sub>2</sub> 2         1028.13187         85.4         -2.8 $v_2$ III           15         E         13         16         E         2         1028.13187         85.4         -4.6 $v_2$ III           14         A <sub>2</sub> 1         13         A <sub>1</sub> 1         1028.61774         89.3         -0.1 $v_4$ II           14         F <sub>2</sub> 3         13         F <sub>1</sub> 2         1028.68300         87.1         0.3 $v_4$ II           14         E         2         13         E         1         1028.71104         87.3         1.9 $v_4$ II           12         A <sub>2</sub> 4         13         A <sub>1</sub> 1         1028.78153         82.7         2.5 $v_2$ III           15         F <sub>1</sub> 1         14         F <sub>1</sub> 3         1029.63653         89.9         1.7 $v_4$ II      < |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 15         E         13         16         E         2         1028.13187         85.4         -4.6 $v_2$ III           14 $A_2$ 1         13 $A_1$ 1         1028.61774         89.3         -0.1 $v_4$ II           14 $F_2$ 3         13 $F_1$ 2         1028.68300         87.1         0.3 $v_4$ II           14         E         2         13         E         1         1028.71104         87.3         1.9 $v_4$ II           12 $A_2$ 4         13 $A_1$ 1         1028.78153         82.7         2.5 $v_2$ III           15 $F_1$ 1         14 $F_2$ 4         1029.50070         89.6         1.5 $v_4$ II           15 $F_1$ 2         14 $F_2$ 3         1030.03827         90.1         -0.1 $v_4$ II           14 $A_1$ 6         15 $A_2$ 2         1030.33992         79.0         8.1 $v_2$ III </td                                                                                                                                                                                                                  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 14 $F_2$ 3         13 $F_1$ 2         1028.68300         87.1         0.3 $v_4$ II           14         E         2         13         E         1         1028.71104         87.3         1.9 $v_4$ II           12 $A_2$ 4         13 $A_1$ 1         1028.78153         82.7         2.5 $v_2$ III           15 $F_1$ 1         14 $F_2$ 4         1029.50070         89.6         1.5 $v_4$ II           15 $F_2$ 1         14 $F_1$ 3         1029.63653         89.9         1.7 $v_4$ II           15 $F_1$ 2         14 $F_2$ 3         1030.03827         90.1 $-0.1$ $v_4$ II           14 $A_1$ 6         15 $A_2$ 2         1030.33992         79.0         8.1 $v_2$ III           14 $F_2$ 4         13 $F_1$ 1         1030.37440         86.9 $-1.1$ $v_4$ II                                                                                                                                                                                                                                                              |
| 14         E         2         13         E         1         1028.71104         87.3         1.9 $v_4$ II           12 $A_2$ 4         13 $A_1$ 1         1028.78153         82.7         2.5 $v_2$ III           15 $F_1$ 1         14 $F_2$ 4         1029.50070         89.6         1.5 $v_4$ II           15 $F_2$ 1         14 $F_1$ 3         1029.63653         89.9         1.7 $v_4$ II           15 $F_1$ 2         14 $F_2$ 3         1030.03827         90.1         -0.1 $v_4$ II           14 $A_1$ 6         15 $A_2$ 2         1030.33992         79.0         8.1 $v_2$ III           14 $F_1$ 3         13 $F_2$ 1         1030.37440         86.9         -1.1 $v_4$ II           14 $F_2$ 16         15 $F_1$ 4         1030.42246         85.1         1.0 $v_2$ III                                                                                                                                                                                                                                                |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 15 $F_2$ 3       14 $F_1$ 1       1031.39307       90.4       0.7 $v_4$ II         15 $F_1$ 3       14 $F_2$ 2       1031.42970       90.3       0.0 $v_4$ II         9 $F_4$ 3       8 $F_6$ 1       1031.58810       81.4       -0.6 $v_6$ III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 15 $F_1$ 3     14 $F_2$ 2     1031.42970     90.3     0.0 $v_4$ II       9     E     3     8     E     1     1031.58810     81.4     -0.6 $v_4$ II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $  9   E   3   8   E   1   1031 58810   814   -0.6   v_{1}   III$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 16 $A_1$ 1     15 $A_2$ 2     1031.90211     30.2     2.2 $v_4$ III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 16 $F_2$ 1     15 $F_1$ 4     1032.00222     26.8     2.4 $v_4$ III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 16 $A_2$ 1     15 $A_1$ 1     1032.09211     26.0     4.0 $v_4$ III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 16 $F_2$ 2         15 $F_1$ 3         1032.48557         20.6 $-0.5$ $v_4$ III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 16 E 1 15 E 2 1032.55428 36.0 2.2 v <sub>4</sub> III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 15 $A_1$ 1         14 $A_2$ 1         1033.25317         91.6         0.7 $v_4$ II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 15 $F_1$ 4 14 $F_2$ 1 1033.25745 87.1 5.3 $v_4$ II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 13 $F_1$ 15 14 $F_2$ 4 1033.42840 79.5 3.6 $v_2$ III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 13 E 10 14 E 3 1033.46449 83.3 3.0 v <sub>2</sub> III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 13 $F_2$ 15 14 $F_1$ 3 1033.59034 32.0 0.0 $v_2$ III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 13 $F_1$ 16 14 $F_2$ 3 1033.72703 77.1 -0.8 $v_2$ III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 13 E 11 14 E 2 1034.07163 95.3 -2.1 v <sub>2</sub> II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 16 E 2 15 E 1 1034.10933 32.9 0.9 $v_4$ III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 16 $F_1$ 3 15 $F_2$ 2 1034.12060 25.8 0.1 $v_4$ III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 17 $F_1$ 1 16 $F_2$ 4 1034.32142 35.4 3.0 $v_4$ III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 17 E 1 16 E 3 1034.37275 51.4 2.1 $v_4$ III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 17 $F_2$ 1 16 $F_1$ 4 1034.42582 93.9 2.0 $v_4$ II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 17 $F_2$ 2 16 $F_1$ 3 1034.93622 35.0 -1.9 $v_4$ III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

| J  | v              | n  | J' | $\nu'$ $n'$         |   | $v^{exp}$ ,            | Transmittance, | $\delta \cdot 10^{-4}$ , | Band             | Spectra |
|----|----------------|----|----|---------------------|---|------------------------|----------------|--------------------------|------------------|---------|
| •  | /              |    | Ŭ  |                     |   | <u>cm<sup>-1</sup></u> | %              | cm <sup>-1</sup>         | Dunio            |         |
|    | 1              | 1  |    | 2                   | [ | 3                      | 4              | 5                        | 6                | 7       |
| 17 | E              | 2  | 16 | E                   | 2 | 1035.67618             | 13.6           | 2.1                      | $\nu_4$          | III     |
| 10 | F <sub>1</sub> | 4  | 9  | $F_2$               | 1 | 1035.77914             | 73.9           | 1.2                      | $\nu_4$          | III     |
| 10 | F <sub>2</sub> | 4  | 9  | $F_1$               | 1 | 1036.05275             | 69.4           | 6.0                      | $\nu_4$          | III     |
| 18 | $F_2$          | 1  | 17 | F <sub>1</sub>      | 5 | 1036.70258             | 48.8           | 1.3                      | $\nu_4$          | III     |
| 18 | E              | 1  | 17 | Е                   | 3 | 1036.73742             | 53.2           | -2.8                     | $\nu_4$          | III     |
| 12 | $A_1$          | 5  | 13 | $A_2$               | 1 | 1036.91729             | 78.4           | -0.3                     | $\nu_2$          | III     |
| 18 | $F_2$          | 2  | 17 | $F_1$               | 4 | 1037.18318             | 46.7           | -1.4                     | $\nu_4$          | III     |
| 10 | $F_2$          | 10 | 11 | $F_1$               | 1 | 1037.26915             | 92.2           | -1.8                     | $\nu_2$          | III     |
| 18 | F <sub>1</sub> | 2  | 17 | F <sub>2</sub>      | 3 | 1037.49461             | 50.9           | 5.2                      | $\nu_4$          | III     |
| 18 | F <sub>2</sub> | 3  | 17 | F <sub>1</sub>      | 3 | 1038.23633             | 53.8           | 2.6                      | $\nu_4$          | III     |
| 19 | $A_2$          | 1  | 18 | $A_1$               | 2 | 1039.04656             | 69.9           | 1.4                      | $\nu_4$          | III     |
| 19 | F <sub>2</sub> | 1  | 18 | F <sub>1</sub>      | 4 | 1039.08022             | 62.2           | 2.1                      | $\nu_4$          | III     |
| 19 | F <sub>1</sub> | 1  | 18 | F <sub>2</sub>      | 5 | 1039.12299             | 43.6           | 4.5                      | $\nu_4$          | III     |
| 19 | $A_1$          | 1  | 18 | $A_2$               | 2 | 1039.18857             | 66.9           | 0.1                      | $\nu_4$          | III     |
| 18 | $A_2$          | 1  | 17 | $A_1$               | 1 | 1039.46878             | 57.8           | 2.2                      | $\nu_4$          | III     |
| 19 | $F_1$          | 2  | 18 | $F_2$               | 4 | 1039.54409             | 61.9           | 5.6                      | $\nu_4$          | III     |
| 19 | Е              | 1  | 18 | Е                   | 3 | 1039.59978             | 70.5           | 2.9                      | $\nu_4$          | III     |
| 11 | F <sub>1</sub> | 5  | 10 | F <sub>2</sub>      | 1 | 1039.87768             | 77.8           | 0.4                      | $\nu_4$          | III     |
| 19 | F <sub>2</sub> | 2  | 18 | F <sub>1</sub>      | 3 | 1039.92591             | 58.4           | 8.1                      | $\nu_4$          | III     |
| 11 | Е              | 3  | 10 | Е                   | 1 | 1039.98206             | 84.3           | 0.0                      | $v_4$            | III     |
| 11 | $F_2$          | 13 | 12 | $F_1$               | 3 | 1039.99983             | 67.1           | -4.3                     | V <sub>2</sub>   | III     |
| 19 | F <sub>1</sub> | 3  | 18 | F <sub>2</sub>      | 3 | 1040.03319             | 65.6           | 3.4                      | $v_4$            | III     |
| 11 | $F_1$          | 13 | 12 | $F_2$               | 3 | 1040.08381             | 76.1           | 2.5                      | ν <sub>2</sub>   | III     |
| 11 | A <sub>1</sub> | 5  | 12 | $A_2$               | 1 | 1040.33155             | 82.1           | 2.8                      | v <sub>2</sub>   | III     |
| 11 | $F_1$          | 14 | 12 | $F_2$               | 2 | 1040.45252             | 67.9           | 0.0                      | V <sub>2</sub>   | III     |
| 11 | Е              | 9  | 12 | Е                   | 2 | 1040.48700             | 86.3           | 2.9                      | $v_2$            | III     |
| 8  | $A_1$          | 2  | 7  | $A_2$               | 1 | 1040.75367             | 87.7           | -2.2                     | $\nu_4$          | III     |
| 19 | F <sub>2</sub> | 3  | 18 | $F_1$               | 2 | 1040.77375             | 62.1           | -3.1                     | $\nu_4$          | III     |
| 20 | Е              | 1  | 19 | Е                   | 3 | 1041.44607             | 70.8           | 0.9                      | $\nu_4$          | III     |
| 20 | F <sub>1</sub> | 1  | 19 | $F_2$               | 5 | 1041.48706             | 74.0           | -0.4                     | $\nu_4$          | III     |
| 18 | $F_2$          | 5  | 17 | $F_1$               | 1 | 1041.72800             | 28.3           | -0.4                     | $\mathbf{v}_{4}$ | III     |
| 18 | F <sub>1</sub> | 4  | 17 | F <sub>2</sub>      | 1 | 1041.72800             | 28.3           | 3.0                      | $v_{4}$          | III     |
| 20 | A <sub>1</sub> | 1  | 19 | $A_2$               | 2 | 1041.78923             | 71.9           | -0.7                     | $\nu_4$          | III     |
| 20 | F <sub>1</sub> | 2  | 19 | F <sub>2</sub>      | 4 | 1041.91207             | 72.7           | 0.3                      | $v_{4}$          | III     |
| 20 | F <sub>2</sub> | 2  | 19 | $F_1$               | 4 | 1041.99747             | 77.3           | 1.7                      | V <sub>4</sub>   | III     |
| 20 | $A_2$          | 1  | 19 | A <sub>1</sub>      | 1 | 1042.38745             | 64.0           | -1.6                     | V4               | III     |
| 20 | $F_2$          | 4  | 19 | F <sub>1</sub>      | 2 | 1043.32152             | 73.7           | 0.9                      | V4               | III     |
| 10 | Ē              | 8  | 11 | E                   | 2 | 1043.49954             | 49.4           | 3.4                      | v <sub>2</sub>   | III     |
| 12 | <br>F1         | 4  | 11 | F <sub>2</sub>      | 1 | 1043.63011             | 38.3           | -7.5                     | $v_4$            | III     |
| 12 | $F_2$          | 5  | 11 | F <sub>1</sub>      | 1 | 1043.75887             | 32.5           | 3.3                      | v4               | III     |
| 10 | F <sub>2</sub> | 13 | 11 | F <sub>1</sub>      | 2 | 1043.86994             | 77.6           | 3.4                      | $v_2$            | III     |
| 21 | F <sub>1</sub> | 2  | 20 | F <sub>2</sub>      | 4 | 1044.11751             | 82.4           | -0.5                     | v.               | III     |
| 10 | E              | 9  | 11 | E                   | 1 | 1044.40936             | 86 5           | 2.3                      | $v_4$            | III     |
| 10 | <br>A1         | 5  | 11 | -<br>A <sub>2</sub> | 1 | 1044.43690             | 71.6           | 1.7                      | v <sub>2</sub>   | III     |
| 19 | A <sub>1</sub> | 2  | 18 | A2                  | 1 | 1044.49373             | 40.1           | 2.1                      | $v_{4}$          | III     |
|    | -1             | _  | -0 | -2                  | - |                        |                | =                        | • 4              | 1       |

| J  | ν                     | n  | J' | $\nu'$ $n'$     |          | $v^{exp}$ ,            | Transmittance, | $\delta \cdot 10^{-4}$ , | Band                  | Spectra   |
|----|-----------------------|----|----|-----------------|----------|------------------------|----------------|--------------------------|-----------------------|-----------|
|    | /                     |    | Ŭ  | /               |          | <u>cm<sup>-1</sup></u> | %              | cm <sup>-1</sup>         | Dunio                 |           |
|    | 1                     | 1  |    | 2               |          | 3                      | 4              | 5                        | 6                     | 7         |
| 19 | $F_1$                 | 5  | 18 | $F_2$           | 1        | 1044.49373             | 40.1           | 0.9                      | $\nu_4$               | III       |
| 19 | E                     | 3  | 18 | E               | 1        | 1044.49373             | 40.1           | 0.4                      | $\nu_4$               | III       |
| 21 | F <sub>1</sub>        | 3  | 20 | F <sub>2</sub>  | 3        | 1044.93440             | 69.7           | 3.3                      | $\nu_4$               | III       |
| 22 | $A_2$                 | 1  | 21 | $A_1$           | 2        | 1046.17088             | 87.2           | -4.7                     | $\nu_4$               | III       |
| 9  | $F_1$                 | 5  | 8  | $F_2$           | 1        | 1046.67550             | 87.9           | 0.4                      | $\nu_4$               | III       |
| 22 | F <sub>2</sub>        | 3  | 21 | $F_1$           | 4        | 1046.79847             | 84.2           | -3.6                     | $\nu_4$               | III       |
| 8  | F <sub>2</sub>        | 8  | 9  | $F_1$           | 1        | 1046.90624             | 89.9           | 3.9                      | $\nu_2$               | III       |
| 12 | F <sub>1</sub>        | 5  | 11 | F <sub>2</sub>  | 2        | 1047.08936             | 77.6           | 5.7                      | $\nu_4$               | III       |
| 9  | Е                     | 8  | 10 | Е               | 2        | 1047.21945             | 83.4           | 2.1                      | $v_2$                 | III       |
| 20 | F <sub>2</sub>        | 5  | 19 | $F_1$           | 1        | 1047.22937             | 62.1           | 0.5                      | $\nu_4$               | III       |
| 20 | F <sub>1</sub>        | 5  | 19 | F <sub>2</sub>  | 1        | 1047.22937             | 62.1           | 0.8                      | $\nu_4$               | III       |
| 8  | A <sub>2</sub>        | 3  | 9  | A <sub>1</sub>  | 1        | 1047.25768             | 92.2           | 3.4                      | V2                    | III       |
| 21 | $F_1$                 | 5  | 20 | F <sub>2</sub>  | 1        | 1047.33892             | 67.2           | -5.0                     | <b>v</b> <sub>4</sub> | III       |
| 21 | $F_2$                 | 4  | 20 | F <sub>1</sub>  | 2        | 1047.33892             | 67.2           | -0.4                     | V4                    | III       |
| 13 | $F_2$                 | 5  | 12 | F <sub>1</sub>  | 1        | 1047.36652             | 74.8           | -2.6                     | V4                    | III       |
| 13 | A <sub>2</sub>        | 3  | 12 | A <sub>1</sub>  | 1        | 1047 44332             | 95.3           | -3.0                     | v <sub>4</sub>        | II        |
| 0  | E <sub>2</sub>        | 12 | 10 | E.              | 1        | 1047 86350             | 74.5           | -3.7                     | <b>v</b> <sub>4</sub> | Ш         |
| 9  | F <sub>1</sub>        | 12 | 10 | F <sub>2</sub>  | 2        | 1047.89281             | 83.6           | -5.7                     | v <sub>2</sub>        | III       |
| 22 | F.                    | 12 | 22 | F.              | <u> </u> | 1047.07201             | 85.0           | -0.9                     | v <sub>2</sub>        |           |
| 23 | 1 <sup>2</sup>        | 1  | 22 | Λ               | 4        | 1048.01490             | 88.0           | -0.9                     | V <sub>4</sub>        |           |
| 23 | <b>A</b> 2            | 1  | 22 |                 | 2        | 1040.01490             | 00.9           | <i>9.9</i>               | V <sub>4</sub>        |           |
| 23 | <u>г</u> 1            | 4  | 22 | <u>г</u> 2<br>Е | 3        | 1049.81922             | 85.1           | -0.9                     | $\nu_4$               |           |
| 22 |                       | 3  | 21 |                 | 1        | 1049.91470             | 74.3           | -2.4                     | $\nu_4$               | 111<br>TT |
| 22 | $A_2$                 | 2  | 21 | $A_1$           | 1        | 1049.91470             | 74.3           | 2.8                      | $\nu_4$               |           |
| 22 | <b>F</b> <sub>2</sub> | 5  | 21 | $\mathbf{F}_1$  | 2        | 1049.91470             | /4.3           | -0.7                     | $\nu_4$               |           |
| 21 | A <sub>2</sub>        | 2  | 20 | $A_1$           | 1        | 1049.93439             | 68.6           | 0.5                      | $\nu_4$               |           |
| 21 | E                     | 4  | 20 | E               | 1        | 1049.93439             | 68.6           | 0.7                      | $\nu_4$               |           |
| 21 | $F_2$                 | 5  | 20 | $F_1$           | 1        | 1049.93439             | 68.6           | 0.7                      | $\nu_4$               |           |
| 8  | $A_1$                 | 4  | 9  | $A_2$           | 1        | 1050.78260             | 70.5           | 1.6                      | v <sub>2</sub>        |           |
| 8  | $F_1$                 | 10 | 9  | $F_2$           | 2        | 1050.89571             | 60.6           | 8.7                      | $\nu_2$               | III       |
| 14 | $F_1$                 | 5  | 13 | $F_2$           | 1        | 1050.89571             | 60.6           | -1.1                     | $\nu_4$               | III       |
| 8  | F <sub>2</sub>        | 10 | 9  | $F_1$           | 3        | 1050.99915             | 75.9           | -3.1                     | $\nu_2$               | III       |
| 13 | F <sub>2</sub>        | 6  | 12 | $F_1$           | 2        | 1051.04034             | 83.1           | 1.8                      | $\nu_4$               | III       |
| 22 | F <sub>1</sub>        | 5  | 21 | F <sub>2</sub>  | 1        | 1052.60790             | 77.8           | -3.2                     | $\nu_4$               | III       |
| 22 | F <sub>2</sub>        | 6  | 21 | F <sub>1</sub>  | 1        | 1052.60790             | 77.8           | -3.3                     | $\nu_4$               | III       |
| 15 | $A_1$                 | 2  | 14 | $A_2$           | 1        | 1054.33342             | 74.3           | -1.0                     | $\nu_4$               | III       |
| 15 | $F_1$                 | 6  | 14 | $F_2$           | 1        | 1054.35496             | 81.3           | 0.4                      | $\nu_4$               | III       |
| 7  | F <sub>1</sub>        | 9  | 8  | $F_2$           | 2        | 1054.76663             | 79.4           | 2.6                      | $\nu_2$               | III       |
| 14 | $A_2$                 | 2  | 13 | $A_1$           | 1        | 1054.90899             | 85.1           | 2.3                      | $v_4$                 | III       |
| 7  | F <sub>2</sub>        | 9  | 8  | $F_1$           | 2        | 1055.17986             | 78.5           | -3.6                     | $v_2$                 | III       |
| 14 | F <sub>2</sub>        | 6  | 13 | F <sub>1</sub>  | 2        | 1055.19104             | 87.4           | 0.6                      | $\nu_4$               | III       |
| 11 | $A_2$                 | 2  | 10 | $A_1$           | 1        | 1057.56308             | 91.5           | -0.9                     | $\nu_4$               | III       |
| 6  | $F_2$                 | 8  | 7  | F <sub>1</sub>  | 2        | 1058.81828             | 81.8           | 2.2                      | v <sub>2</sub>        | III       |
| 6  | Ē                     | 6  | 7  | Ē               | 1        | 1059.07982             | 86.5           | -5.6                     | V2                    | III       |
| 15 | F <sub>1</sub>        | 7  | 14 | F <sub>2</sub>  | 2        | 1059.12175             | 85.6           | 3.6                      | ν <sub>4</sub>        | III       |
| 6  | F <sub>1</sub>        | 8  | 7  | F <sub>2</sub>  | 2        | 1059.13014             | 85.8           | 3.4                      | V2                    | III       |
| -  |                       | ,  |    | 4               | -        |                        |                |                          | 4                     | 1         |

| J  | ν                  | n             | J' | ν'                  | n' | $v^{exp}$ ,            | Transmittance, | $\delta \cdot 10^{-4}$ , | Band             | Spectra |
|----|--------------------|---------------|----|---------------------|----|------------------------|----------------|--------------------------|------------------|---------|
|    | /                  |               | v  | 2                   |    | <u>cm<sup>-1</sup></u> | %              | cm <sup>-1</sup>         | Dunu             |         |
|    | 1                  | Γ             |    | 2                   | [  | 3                      | 4              | 5                        | 6                | 7       |
| 6  | $A_1$              | 3             | 7  | $A_2$               | 1  | 1059.19761             | 79.5           | 2.1                      | $\nu_2$          | III     |
| 17 | F <sub>2</sub>     | 6             | 16 | F <sub>1</sub>      | 1  | 1060.95241             | 84.1           | -4.0                     | $\nu_4$          | III     |
| 17 | $A_2$              | 3             | 16 | $A_1$               | 1  | 1060.95770             | 88.8           | -0.4                     | $\nu_4$          | III     |
| 11 | $F_1$              | 8             | 10 | $F_2$               | 2  | 1061.23213             | 93.4           | -2.2                     | $\nu_4$          | III     |
| 5  | $A_1$              | 2             | 6  | $A_2$               | 1  | 1061.24025             | 93.7           | 2.4                      | $\nu_2$          | III     |
| 15 | E                  | 5             | 14 | E                   | 2  | 1061.80620             | 92.3           | 4.0                      | $\nu_4$          | III     |
| 5  | $A_2$              | 3             | 6  | $A_1$               | 1  | 1063.01011             | 76.3           | -4.7                     | $\nu_2$          | III     |
| 5  | $F_1$              | 7             | 6  | F <sub>2</sub>      | 2  | 1063.25173             | 85.1           | 1.1                      | $\nu_2$          | III     |
| 17 | $F_2$              | 7             | 16 | F <sub>1</sub>      | 2  | 1066.20644             | 88.6           | 4.1                      | $\nu_4$          | III     |
| 17 | $F_1$              | 6             | 16 | F <sub>2</sub>      | 1  | 1066.27697             | 82.6           | 2.2                      | $\nu_4$          | III     |
| 4  | $F_1$              | 5             | 5  | F <sub>2</sub>      | 1  | 1066.51270             | 93.1           | -6.9                     | $\nu_2$          | III     |
| 19 | F <sub>1</sub>     | 7             | 18 | F <sub>2</sub>      | 1  | 1067.24953             | 81.2           | 1.0                      | $\nu_4$          | III     |
| 19 | $A_1$              | 3             | 18 | $A_2$               | 1  | 1067.24953             | 81.2           | 8.7                      | $\nu_4$          | III     |
| 19 | E                  | 4             | 18 | E                   | 1  | 1067.24953             | 81.2           | -2.9                     | $\nu_4$          | III     |
| 4  | $F_2$              | 6             | 5  | F <sub>1</sub>      | 2  | 1067.48803             | 83.1           | -7.3                     | $v_2$            | III     |
| 13 | $F_1$              | 7             | 12 | $F_2$               | 2  | 1068.09845             | 92.6           | 3.1                      | $\nu_4$          | III     |
| 18 | $A_2$              | 2             | 17 | $A_1$               | 1  | 1069.65376             | 88.3           | 2.0                      | $\nu_4$          | III     |
| 18 | F <sub>2</sub>     | 7             | 17 | F <sub>1</sub>      | 2  | 1069.68987             | 76.5           | -2.3                     | $\nu_4$          | III     |
| 20 | $F_2$              | 7             | 19 | $F_1$               | 1  | 1070.30705             | 87.1           | -2.3                     | $\nu_4$          | III     |
| 20 | $F_1$              | 6             | 19 | $F_2$               | 1  | 1070.30705             | 87.1           | 0.1                      | $\nu_4$          | III     |
| 3  | $F_1$              | 5             | 4  | F <sub>2</sub>      | 1  | 1071.99964             | 91.6           | 0.7                      | $v_2$            | III     |
| 20 | $A_1$              | 3             | 19 | $A_2$               | 1  | 1076.32595             | 89.6           | 5.0                      | $\nu_4$          | III     |
| 19 | $A_2$              | 3             | 18 | $A_1$               | 1  | 1077.65775             | 91.9           | -8.8                     | $\nu_4$          | III     |
| 16 | F <sub>2</sub>     | 9             | 15 | F <sub>1</sub>      | 3  | 1082.45305             | 95.9           | 0.8                      | $\nu_4$          | III     |
| 16 | Е                  | 6             | 15 | Е                   | 2  | 1082.72436             | 96.3           | -1.4                     | $\nu_4$          | III     |
| 15 | $A_2$              | 3             | 14 | $A_1$               | 1  | 1083.13383             | 90.1           | -5.6                     | $\nu_4$          | III     |
| 15 | $F_2$              | 9             | 14 | $F_1$               | 2  | 1083.69828             | 89.0           | -1.5                     | $\nu_4$          | III     |
| 22 | F <sub>1</sub>     | 8             | 21 | F <sub>2</sub>      | 2  | 1087.67557             | 96.7           | -0.3                     | $\nu_4$          | III     |
| 16 | $F_2$              | 10            | 15 | $F_1$               | 2  | 1088.67894             | 89.0           | -6.0                     | $\mathbf{v}_{4}$ | III     |
| 6  | $A_2$              | 2             | 6  | A <sub>1</sub>      | 1  | 1092.52864             | 92.8           | -4.9                     | ν <sub>2</sub>   | III     |
| 3  | F <sub>2</sub>     | 4             | 3  | F <sub>1</sub>      | 1  | 1092.69313             | 93.8           | -0.5                     | V2               | III     |
| 5  | F <sub>2</sub>     | 6             | 5  | F <sub>1</sub>      | 1  | 1093.67796             | 92.7           | 1.3                      | v <sub>2</sub>   | III     |
| 4  | $F_2$              | 6             | 4  | F <sub>1</sub>      | 1  | 1093.80611             | 95.1           | -0.4                     | V2               | III     |
| 6  | Ē                  | 5             | 6  | E                   | 1  | 1094.07925             | 87.1           | -4.4                     | v <sub>2</sub>   | III     |
| 8  | <br>F <sub>2</sub> | 8             | 8  | F <sub>1</sub>      | 2  | 1094.19215             | 96.4           | 3.5                      | $v_2$            | II      |
| 6  | F <sub>1</sub>     | 7             | 6  | F <sub>2</sub>      | 2  | 1094.24901             | 93.4           | 2.7                      | v <sub>2</sub>   | III     |
| 9  | A <sub>1</sub>     | 3             | 9  | A2                  | 1  | 1094.37931             | 93.4           | -1.2                     | V2               | III     |
| 7  | F <sub>1</sub>     | 8             | 7  | F <sub>2</sub>      | 2  | 1094.79992             | 92.9           | 0.9                      | V2               | III     |
| 7  | F1                 | 8             | 7  | $F_2$               | 1  | 1094.80910             | 92.0           | -1.0                     | $v_2$            | III     |
| 5  | F <sub>1</sub>     | 7             | 5  | F <sub>2</sub>      | 1  | 1094.82573             | 90.0           | 2.6                      | v <sub>2</sub>   | III     |
| 8  | E                  | 6             | 8  | E                   | 2  | 1095.37358             | 95.0           | 0.5                      | v <sub>2</sub>   | III     |
| 6  | E                  | 6             | 6  | E                   | 1  | 1095 91087             | 87.9           | -5.3                     | V2<br>V2         | III     |
| 10 | F <sub>1</sub>     | 10            | 10 | E<br>F <sub>2</sub> | 2  | 1095 93086             | 94 5           | -3.3                     | v <sub>2</sub>   | III     |
| 11 | A.                 | 10            | 11 | A <sub>2</sub>      | 1  | 1096 98731             | 80 <i>Δ</i>    | -7.4                     | v <sub>2</sub>   | III     |
| 10 |                    | <u>т</u><br>Д | 10 | A.                  | 1  | 1097 14889             | 90.0           | -0.9                     | v <sub>2</sub>   | III     |
| 10 | 2                  | -             | 10 | 4 4 1               | 1  | 1077114007             | 70.0           | 0.7                      | <b>v</b> 2       |         |

| J  | v                     | п        | J' | ν'               | n'       | $v^{exp}$ ,      | Transmittance, | $\delta \cdot 10^{-4}$ , | Band           | Spectra   |
|----|-----------------------|----------|----|------------------|----------|------------------|----------------|--------------------------|----------------|-----------|
| -  | /                     |          |    |                  |          | cm <sup>-1</sup> | %              | $cm^{-1}$                | Dunu           | Specia    |
|    | 1                     | -        |    | 2                | 1        | 3                | 4              | 5                        | 6              | 7         |
| 7  | $F_1$                 | 10       | 7  | $F_2$            | 1        | 1097.33065       | 82.0           | 0.9                      | $v_2$          | III       |
| 11 | E                     | 8        | 11 | E                | 1        | 1097.75577       | 94.3           | 1.2                      | $\nu_2$        | III       |
| 12 | $F_2$                 | 13       | 12 | $F_1$            | 2        | 1098.45270       | 92.9           | -0.3                     | $\nu_2$        | III       |
| 13 | E                     | 9        | 13 | E                | 1        | 1098.57697       | 95.2           | -0.6                     | $\nu_2$        | III       |
| 13 | $F_2$                 | 13       | 13 | $F_1$            | 2        | 1098.67919       | 93.8           | -3.8                     | $\nu_2$        | III       |
| 12 | $F_1$                 | 13       | 12 | $F_2$            | 2        | 1098.71889       | 91.6           | 0.9                      | $v_2$          | III       |
| 8  | $A_2$                 | 4        | 8  | $A_1$            | 1        | 1098.74955       | 75.0           | -2.3                     | $\nu_2$        | III       |
| 8  | $F_2$                 | 11       | 8  | F <sub>1</sub>   | 1        | 1098.80158       | 77.6           | -0.2                     | $v_2$          | III       |
| 8  | Е                     | 7        | 8  | Е                | 1        | 1098.82079       | 84.0           | 1.0                      | $v_2$          | III       |
| 14 | $A_2$                 | 5        | 14 | $A_1$            | 1        | 1099.79518       | 93.1           | 2.1                      | V <sub>2</sub> | III       |
| 9  | $F_2$                 | 11       | 9  | F <sub>1</sub>   | 2        | 1099.86383       | 91.9           | 1.1                      | V2             | III       |
| 9  | A <sub>2</sub>        | 4        | 9  | A <sub>1</sub>   | 1        | 1099.97226       | 88.5           | -5.2                     | v <sub>2</sub> | III       |
| 14 | Ē                     | 10       | 14 | E                | 2        | 1100.35030       | 95.5           | 2.3                      | $v_2$          | III       |
| 9  | F <sub>2</sub>        | 12       | 9  | F1               | 1        | 1100.43337       | 75.0           | 0.8                      | V2             | Ш         |
| 9  | <b>F</b> <sub>1</sub> | 12       | 9  | F <sub>2</sub>   | 1        | 1100.45859       | 76.8           | 11                       | V <sub>2</sub> | III       |
| 10 | F <sub>2</sub>        | 12       | 10 | F.               | 2        | 1101 64211       | 93.9           | 0.2                      | V-             | III       |
| 10 | F.                    | 13       | 10 | F.               | 1        | 1101.66123       | 97.0           | 5.4                      | v <sub>2</sub> | III       |
| 10 | F.                    | 15       | 16 | F.               | 2        | 1101.68722       | 05.6           | -1.2                     | V <sub>2</sub> | III       |
| 10 | F                     | 10       | 10 | F                | <u> </u> | 1101.00722       | 95.0<br>75.5   | 0.4                      | V <sub>2</sub> |           |
| 10 | Λ<br>Λ                | 15       | 10 | 1 <sup>-</sup> 2 | 1        | 1102.22304       | 73.5           | 0.4                      | V <sub>2</sub> |           |
| 10 | A1                    | 5        | 10 | A2               | 1        | 1102.23034       | /8.5           | 0.5                      | V <sub>2</sub> | 111<br>TT |
| 10 | $A_1$                 | <u> </u> | 10 | $A_2$            |          | 1103.38048       | 90.2           | 0.4                      | $\nu_2$        |           |
| 18 | Г <sub>1</sub>        | 18       | 18 | Γ <sub>2</sub>   | 3        | 1103.80000       | 96.7           | 0.2                      | $\nu_2$        |           |
| 18 | E                     | 13       | 18 | E                | 3        | 1104.0566/       | 93.6           | 4.0                      | $v_2$          |           |
| 12 | $A_1$                 | 5        | 12 | $A_2$            | 1        | 1105.13034       | 94.3           | 3.8                      | $v_2$          |           |
| 12 | $F_1$                 | 15       | 12 | $F_2$            | 1        | 1105.44302       | 89.1           | 0.6                      | $v_2$          |           |
| 12 | $\mathbf{F}_2$        | 16       | 12 | $F_1$            | 1        | 1106.11502       | 62.8           | -4.4                     | $v_2$          |           |
| 13 | $F_2$                 | 15       | 13 | $F_1$            | 3        | 1107.07967       | 95.8           | 1.5                      | $\nu_2$        |           |
| 13 | <b>F</b> <sub>2</sub> | 16       | 13 | $\mathbf{F}_1$   | 2        | 1107.55175       | 87.5           | -0.6                     | $\nu_2$        | 111       |
| 13 | $A_2$                 | 6        | 13 | $A_1$            | 1        | 1107.56114       | 86.6           | 1.0                      | $v_2$          | III       |
| 13 | $F_2$                 | 17       | 13 | $F_1$            | 1        | 1108.20616       | 67.1           | -1.8                     | $v_2$          | III       |
| 13 | F <sub>1</sub>        | 17       | 13 | F <sub>2</sub>   | 1        | 1108.20616       | 67.1           | 2.1                      | $\nu_2$        | III       |
| 14 | $F_2$                 | 18       | 14 | $F_1$            | 1        | 1109.73484       | 86.6           | -6.9                     | $v_2$          | III       |
| 14 | $F_1$                 | 17       | 14 | $F_2$            | 2        | 1109.74126       | 80.7           | 3.7                      | $v_2$          | III       |
| 14 | $A_1$                 | 7        | 14 | $A_2$            | 1        | 1110.37748       | 67.1           | 8.0                      | $\nu_2$        | III       |
| 14 | E                     | 12       | 14 | E                | 1        | 1110.37748       | 67.1           | -8.1                     | $\nu_2$        | III       |
| 14 | $F_1$                 | 18       | 14 | $F_2$            | 1        | 1110.37748       | 67.1           | -2.8                     | $v_2$          | III       |
| 15 | F <sub>1</sub>        | 18       | 15 | $F_2$            | 3        | 1111.57768       | 94.6           | -2.4                     | $v_2$          | III       |
| 15 | $F_2$                 | 18       | 15 | $F_1$            | 2        | 1111.61096       | 94.2           | -2.5                     | $\nu_2$        | III       |
| 15 | F <sub>1</sub>        | 19       | 15 | $F_2$            | 2        | 1112.00907       | 91.2           | 1.3                      | $\nu_2$        | III       |
| 15 | $A_1$                 | 6        | 15 | $A_2$            | 1        | 1112.02049       | 92.9           | 1.0                      | $v_2$          | III       |
| 15 | F <sub>2</sub>        | 19       | 15 | $F_1$            | 1        | 1112.62007       | 71.3           | -3.2                     | $\nu_2$        | III       |
| 15 | F <sub>1</sub>        | 20       | 15 | $F_2$            | 1        | 1112.62007       | 71.3           | 4.3                      | $v_2$          | III       |
| 16 | F <sub>1</sub>        | 19       | 16 | F <sub>2</sub>   | 2        | 1113.97770       | 95.0           | -3.9                     | $v_2$          | III       |
| 16 | Е                     | 13       | 16 | Е                | 2        | 1114.00119       | 95.1           | 1.9                      | V <sub>2</sub> | III       |
| 16 | Е                     | 14       | 16 | Е                | 1        | 1114.92343       | 67.1           | -2.8                     | $v_2$          | III       |

| J   | ν              | n        | J' | ν'                    | n' | $v^{exp}$ ,            | Transmittance, | $\delta \cdot 10^{-4}$ , | Band           | Spectra   |
|-----|----------------|----------|----|-----------------------|----|------------------------|----------------|--------------------------|----------------|-----------|
|     | /              |          | Ŭ  |                       |    | <u>cm<sup>-1</sup></u> | %              | cm <sup>-1</sup>         | Dunio          |           |
|     | 1              | 1        |    | 2                     |    | 3                      | 4              | 5                        | 6              | 7         |
| 16  | $F_2$          | 21       | 16 | $F_1$                 | 1  | 1114.92343             | 67.1           | -2.1                     | $v_2$          | III       |
| 16  | $A_2$          | 7        | 16 | $A_1$                 | 1  | 1114.92343             | 67.1           | -0.8                     | $\nu_2$        | III       |
| 17  | F <sub>2</sub> | 22       | 17 | F <sub>1</sub>        | 1  | 1117.28043             | 85.5           | 4.9                      | $\nu_2$        | III       |
| 17  | F <sub>1</sub> | 22       | 17 | $F_2$                 | 1  | 1117.28043             | 85.5           | -6.9                     | $v_2$          | III       |
| 18  | $F_2$          | 22       | 18 | $F_1$                 | 1  | 1119.14943             | 97.6           | -2.2                     | $v_2$          | III       |
| 18  | $F_1$          | 21       | 18 | $F_2$                 | 2  | 1119.19395             | 97.6           | 3.4                      | $\nu_2$        | III       |
| 18  | F <sub>1</sub> | 23       | 18 | $F_2$                 | 1  | 1119.68504             | 84.3           | -1.1                     | $\nu_2$        | III       |
| 18  | Е              | 16       | 18 | Е                     | 1  | 1119.68504             | 84.3           | 1.2                      | $v_2$          | III       |
| 18  | $A_1$          | 8        | 18 | $A_2$                 | 1  | 1119.68504             | 84.3           | -5.6                     | $v_2$          | III       |
| 19  | $A_1$          | 8        | 19 | $A_2$                 | 1  | 1121.70644             | 96.1           | 2.4                      | V <sub>2</sub> | III       |
| 19  | F <sub>1</sub> | 24       | 19 | $F_2$                 | 1  | 1122.13070             | 94.1           | -2.7                     | v <sub>2</sub> | III       |
| 20  | F <sub>2</sub> | 24       | 20 | $F_1$                 | 1  | 1124.57563             | 94.1           | -4.1                     | v <sub>2</sub> | III       |
| 20  | Ē              | 16       | 20 | E                     | 1  | 1124.57563             | 94.1           | -9.5                     | V2             | III       |
| 2.0 | A <sub>2</sub> | 8        | 20 | A <sub>1</sub>        | 1  | 1124.57563             | 94.1           | 4.6                      | V2             | III       |
| 6   | $F_2$          | 7        | 5  | $F_1$                 | 2  | 1125.33906             | 92.9           | 1.8                      | v <sub>2</sub> | III       |
| 6   | <b>F</b> 1     | 7        | 5  | F <sub>2</sub>        | 1  | 1125 82268             | 94.6           | 1.0                      | V2             | III       |
| 21  | F <sub>2</sub> | 24       | 21 | F.                    | 1  | 1127.07753             | 97.5           | -2.3                     | v2<br>V-       | III       |
| 6   | F <sub>2</sub> | 24<br>8  | 5  | F.                    | 1  | 1127.07733             | 9/ 8           | -0.4                     | v <sub>2</sub> | III       |
| 7   | Δ.             | 3        | 5  | Δ.                    | 1  | 1131 07777             | 90.4           | 0.1                      | v <sub>2</sub> | III       |
| 7   | E              | <u> </u> | 6  | E.                    | 1  | 1131.07777             | 90.4           | -1.8                     | V <sub>2</sub> | III       |
| /   | 1 <sup>2</sup> | 0        | 7  | 1 <sup>-1</sup>       | 1  | 1131.41400             | 91.0           | _2 1                     | V <sub>2</sub> |           |
| 8   | $\mathbf{A}_1$ | 3        | 7  | <b>A</b> <sub>2</sub> | 1  | 1135.10091             | 96.6           | -3.1                     | V <sub>2</sub> |           |
| 8   | $\Gamma_2$     | 8        | /  | Г <sub>1</sub>        | 2  | 1127 25 416            | 96.5           | 3.0                      | V <sub>2</sub> | 111<br>TT |
| 8   | <u>Г</u> 2     | 9        | /  | <u>Г</u> 1            | 2  | 1137.23410             | 86.6           | -2.7                     | $\nu_2$        |           |
| 8   | Γ <sub>1</sub> | 9        | /  | Γ <sub>2</sub>        | 2  | 1137.00092             | 89.0           | -4.2                     | $\nu_2$        |           |
| 8   | $A_1$          | 4        | /  | $A_2$                 | 1  | 1140.18206             | 94.6           | 3.1                      | $v_2$          |           |
| 8   | Γ <sub>2</sub> | 10       | /  | Γ <sub>1</sub>        | 1  | 1140.40213             | 94.9           | 1.0                      | $v_2$          |           |
| 9   | $F_1$          | 10       | 8  | $F_2$                 | 2  | 1143.22616             | 89.7           | -0.4                     | $\nu_2$        |           |
| 9   | E              | 7        | 8  | E                     | 2  | 1143.48661             | 93.9           | -1.9                     | $\nu_2$        |           |
| 9   | $F_2$          | 10       | 8  | $F_1$                 | 2  | 1143.62482             | 86.3           | 0.4                      | v <sub>2</sub> |           |
| 9   | $F_1$          | 11       | 8  | $F_2$                 | 1  | 1146.93567             | 92.9           | 1.5                      | v <sub>2</sub> | 111       |
| 9   | $F_2$          | 11       | 8  | $F_1$                 | 1  | 1147.18947             | 94.3           | 4.4                      | $v_2$          | III       |
| 9   | $A_2$          | 4        | 8  | $A_1$                 | 1  | 1147.30485             | 95.0           | -3.4                     | $\nu_2$        | III       |
| 10  | $F_2$          | 10       | 9  | $F_1$                 | 3  | 1147.53343             | 95.5           | 0.6                      | $\nu_2$        | III       |
| 10  | $A_1$          | 4        | 9  | $A_2$                 | 1  | 1149.12388             | 87.5           | -6.4                     | $\nu_2$        | III       |
| 10  | F <sub>2</sub> | 11       | 9  | $F_1$                 | 3  | 1149.56157             | 91.3           | 0.3                      | $\nu_2$        | III       |
| 10  | $A_2$          | 4        | 9  | $A_1$                 | 1  | 1149.69987             | 92.1           | 0.1                      | $v_2$          | III       |
| 11  | $F_2$          | 10       | 10 | $F_1$                 | 2  | 1153.13569             | 97.2           | -2.7                     | $\nu_2$        | III       |
| 11  | $A_2$          | 4        | 10 | $A_1$                 | 1  | 1153.21008             | 89.0           | -5.8                     | $\nu_2$        | III       |
| 10  | E              | 8        | 9  | E                     | 1  | 1153.86010             | 96.0           | 2.8                      | $\nu_2$        | III       |
| 10  | F <sub>2</sub> | 13       | 9  | F <sub>1</sub>        | 1  | 1154.23025             | 95.5           | 1.3                      | $v_2$          | III       |
| 11  | F <sub>1</sub> | 12       | 10 | $F_2$                 | 3  | 1155.35359             | 90.8           | 0.1                      | $v_2$          | III       |
| 11  | Е              | 8        | 10 | Е                     | 2  | 1155.50758             | 92.8           | -0.2                     | $v_2$          | III       |
| 11  | $F_2$          | 12       | 10 | $F_1$                 | 2  | 1155.66769             | 91.4           | 2.2                      | $\nu_2$        | III       |
| 12  | F <sub>2</sub> | 11       | 11 | F <sub>1</sub>        | 2  | 1158.82790             | 95.8           | 0.8                      | $\nu_2$        | III       |
| 11  | F <sub>1</sub> | 13       | 10 | $F_2$                 | 2  | 1160.91089             | 95.2           | 2.3                      | $\nu_2$        | III       |

| J  | γ                     | п  | J' | γ'                    | n' | $v^{exp}$ ,      | Transmittance, | $\delta \cdot 10^{-4}$ , | Band                  | Spectra   |
|----|-----------------------|----|----|-----------------------|----|------------------|----------------|--------------------------|-----------------------|-----------|
|    | , '                   |    |    |                       |    | cm <sup>-1</sup> | %              | cm <sup>-1</sup>         |                       | 1 7       |
|    |                       |    |    | 2                     |    | 3                | 4              | 5                        | 6                     | /         |
| 11 | $A_1$                 | 5  | 10 | $A_2$                 | 1  | 1161.18023       | 96.5           | 2.2                      | v <sub>2</sub>        |           |
| 11 | E                     | 9  | 10 | E                     | 1  | 1161.31320       | 96.2           | 1.4                      | $\nu_2$               | III       |
| 12 | $F_2$                 | 13 | 11 | $F_1$                 | 3  | 1161.40498       | 90.3           | -1.8                     | $\nu_2$               | III       |
| 12 | E                     | 9  | 11 | E                     | 2  | 1161.60643       | 94.3           | 0.5                      | $\nu_2$               | III       |
| 12 | F <sub>1</sub>        | 13 | 11 | $F_2$                 | 3  | 1161.71004       | 88.2           | 1.4                      | $\nu_2$               | III       |
| 13 | $A_2$                 | 5  | 12 | $A_1$                 | 2  | 1167.38101       | 91.8           | -2.3                     | $\nu_2$               | III       |
| 13 | F <sub>2</sub>        | 14 | 12 | F <sub>1</sub>        | 3  | 1167.59662       | 92.4           | -0.5                     | $\nu_2$               | III       |
| 13 | $A_1$                 | 5  | 12 | $A_2$                 | 1  | 1167.82655       | 93.7           | -0.3                     | $\nu_2$               | III       |
| 12 | F <sub>2</sub>        | 14 | 11 | F <sub>1</sub>        | 2  | 1167.89264       | 94.6           | 4.2                      | $\nu_2$               | III       |
| 12 | $F_1$                 | 14 | 11 | $F_2$                 | 2  | 1168.06455       | 94.7           | 2.7                      | $\nu_2$               | III       |
| 12 | $A_1$                 | 5  | 11 | $A_2$                 | 1  | 1168.17922       | 95.7           | 0.9                      | $\nu_2$               | III       |
| 12 | $F_2$                 | 15 | 11 | $F_1$                 | 1  | 1168.51383       | 95.5           | 2.7                      | $v_2$                 | III       |
| 14 | $F_2$                 | 13 | 13 | $F_1$                 | 3  | 1170.16601       | 97.5           | -2.5                     | $v_2$                 | III       |
| 14 | $F_2$                 | 15 | 13 | $F_1$                 | 4  | 1173.61166       | 93.8           | -1.2                     | $v_2$                 | III       |
| 14 | Е                     | 10 | 13 | Е                     | 2  | 1173.73131       | 94.8           | 1.7                      | $v_2$                 | III       |
| 14 | $F_1$                 | 15 | 13 | $F_2$                 | 3  | 1173.85549       | 94.0           | -3.0                     | V <sub>2</sub>        | III       |
| 13 | F <sub>1</sub>        | 15 | 12 | F <sub>2</sub>        | 2  | 1175.13953       | 96.3           | 3.1                      | v <sub>2</sub>        | III       |
| 13 | E                     | 10 | 12 | Ē                     | 2  | 1175.17584       | 96.8           | 2.9                      | V2                    | III       |
| 13 | F <sub>2</sub>        | 15 | 12 | F <sub>1</sub>        | 2  | 1175.32314       | 96.7           | 3.8                      | V2                    | III       |
| 13 | F <sub>1</sub>        | 16 | 12 | $F_2$                 | 1  | 1175.42702       | 95.9           | 1.8                      | v <sub>2</sub>        | III       |
| 15 | F <sub>1</sub>        | 14 | 14 | F <sub>2</sub>        | 3  | 1177 57003       | 97.2           | -2.4                     | V2                    | III       |
| 15 | F <sub>1</sub>        | 14 | 14 | F <sub>2</sub>        | 4  | 1179 68327       | 94.3           | -0.2                     | v <sub>2</sub>        | III       |
| 15 | F                     | 11 | 14 | F                     | 3  | 1179 85294       | 96.1           | -4.3                     | v2<br>V-              | III       |
| 15 | E<br>F <sub>2</sub>   | 16 | 14 | E<br>Fı               | 3  | 1179 93089       | 94.4           | 0.9                      | v <sub>2</sub>        | III       |
| 14 | A.                    | 6  | 13 | A                     | 1  | 1182 46821       | 96.9           | 0.7                      | v2<br>V-              | III       |
| 14 | E.                    | 16 | 13 | F <sub>2</sub>        | 2  | 1182 51 532      | 97.0           | 0.7                      | v <sub>2</sub>        | III       |
| 14 | F.                    | 16 | 13 | F.                    | 2  | 1182 56297       | 96.5           | 1.3                      | v <sub>2</sub>        | III       |
| 14 | F <sub>2</sub>        | 10 | 13 | E.                    | 2  | 1182.30257       | 96.5           | 3.3                      | <u>v</u> <sub>2</sub> | III       |
| 14 | F                     | 17 | 13 | F                     | 1  | 1182.70494       | 90.0           | 0.8                      | v <sub>2</sub>        |           |
| 14 | E<br>E                | 11 | 15 | E<br>E                | 1  | 1182.79884       | 97.3           | 2.5                      | v <sub>2</sub>        |           |
| 10 |                       | 17 | 15 | <b>F</b>              | 4  | 1185.07586       | 90.0           | _1 2                     | V <sub>2</sub>        |           |
| 10 | Γ <sub>2</sub>        | 17 | 15 | Γ <sub>1</sub>        | 4  | 1185.97380       | 95.4           | -1.5                     | V <sub>2</sub>        |           |
| 10 | <b>A</b> <sub>2</sub> | 0  | 15 | $\mathbf{A}_1$        |    | 1180.03033       | 96.1           | 5.8                      | V <sub>2</sub>        |           |
| 17 | Г <sub>1</sub>        | 10 | 10 | <u>г</u> 2            | 3  | 1100.02442       | 98.9           | 3.8                      | $\nu_2$               | 111<br>TT |
| 15 | Γ <sub>2</sub>        | 1/ | 14 | Γ <sub>1</sub>        | 2  | 1190.03443       | 97.4           | -0.8                     | $v_2$                 |           |
| 15 | $A_2$                 | 6  | 14 | $A_1$                 | 1  | 1190.05968       | 97.4           | 2.9                      | $v_2$                 |           |
| 15 | $\Gamma_1$            | 18 | 14 | $\mathbf{F}_2$        | 2  | 1190.26245       | 97.1           | 2.3                      | $v_2$                 |           |
| 15 | <b>F</b> <sub>2</sub> | 18 | 14 | $F_1$                 | 1  | 1190.27908       | 97.5           | 2.9                      | v <sub>2</sub>        | 111       |
| 17 | A <sub>2</sub>        | 6  | 16 | A <sub>1</sub>        | 2  | 1190.56513       | 97.6           | -4.2                     | v <sub>2</sub>        |           |
| 17 | $F_1$                 | 17 | 16 | $F_2$                 | 4  | 1191.42110       | 98.1           | 0.8                      | $\nu_2$               | 111       |
| 17 | E                     | 12 | 16 | E                     | 3  | 1192.00047       | 96.9           | 1.0                      | $\nu_2$               |           |
| 17 | $F_2$                 | 18 | 16 | <b>F</b> <sub>1</sub> | 4  | 1192.11029       | 96.8           | 1.1                      | $\nu_2$               | III       |
| 18 | F <sub>2</sub>        | 17 | 17 | F <sub>1</sub>        | 4  | 1196.47483       | 97.1           | -4.4                     | $\nu_2$               | III       |
| 16 | F <sub>2</sub>        | 19 | 15 | F <sub>1</sub>        | 2  | 1197.58740       | 94.3           | 4.7                      | v <sub>2</sub>        | III       |
| 18 | <b>F</b> <sub>2</sub> | 19 | 17 | F <sub>1</sub>        | 5  | 1197.96656       | 97.1           | 3.1                      | $\nu_2$               | III       |
| 18 | E                     | 13 | 17 | E                     | 3  | 1198.14450       | 98.2           | 3.1                      | $v_2$                 | III       |

| J  | γ     | n  | J' | γ'             | n' | $v^{exp},$<br>$cm^{-1}$ | Transmittance,<br>% | $\delta \cdot 10^{-4},\ \mathrm{cm}^{-1}$ | Band    | Spectra |
|----|-------|----|----|----------------|----|-------------------------|---------------------|-------------------------------------------|---------|---------|
|    | 1 2   |    |    | 3              | 4  | 5                       | 6                   | 7                                         |         |         |
| 18 | $F_1$ | 19 | 17 | F <sub>2</sub> | 4  | 1198.19220              | 97.6                | 3.4                                       | $\nu_2$ | III     |
| 19 | $F_1$ | 20 | 18 | F <sub>2</sub> | 5  | 1204.25853              | 98.2                | 4.4                                       | $\nu_2$ | III     |
| 19 | $A_1$ | 7  | 18 | $A_2$          | 2  | 1204.31583              | 97.9                | 2.2                                       | $\nu_2$ | III     |
| 17 | $A_2$ | 7  | 16 | $A_1$          | 2  | 1205.13411              | 97.6                | -5.0                                      | $\nu_2$ | III     |
| 17 | $F_2$ | 19 | 16 | F <sub>1</sub> | 3  | 1205.13411              | 97.6                | 1.5                                       | $\nu_2$ | III     |

Table D.1 – Continued.

| (υ, γ)            | (v', y')          | $\Omega(K, n\Gamma)$                          | $^{12}\text{CD}_4, \text{cm}^{-1}$ [84] | $^{13}\text{CD}_4,\text{cm}^{-1}$ | $^{13}\text{CD}_4, \text{cm}^{-1}[74]$ |
|-------------------|-------------------|-----------------------------------------------|-----------------------------------------|-----------------------------------|----------------------------------------|
| 1                 | 2                 | 3                                             | 4                                       | 5                                 | 6                                      |
| $(0000, A_1)$     | $(0000, A_1)$     | $2(0,0A_1)$                                   | 2.63271835(22)                          | 2.6389325(12)                     | 2.632729(8)                            |
| $(0000, A_1)$     | $(0000, A_1)$     | $4(0,0A_1)10^5$                               | -2.758924(83)                           | -2.758924                         | -2.7635(45)                            |
| $(0000, A_1)$     | $(0000, A_1)$     | $4(4,0A_1)10^7$                               | -7.45145(13)                            | -7.45145                          | -7.4563(4)                             |
| $(0000, A_1)$     | $(0000, A_1)$     | $6(0,0A_1)10^{10}$                            | 7.842(13)                               | 7.842                             | 8.69(90)                               |
| $(0000, A_1)$     | $(0000, A_1)$     | $6(4,0A_1)10^{11}$                            | -1.9056(11)                             | -1.9056                           | -1.9577(43)                            |
| $(0000, A_1)$     | $(0000, A_1)$     | $6(6,0A_1)10^{12}$                            | -6.3876(90)                             | -6.3876                           | -6.1767(87)                            |
| $(0000, A_1)$     | $(0000, A_1)$     | 8(0,0A1)10 <sup>14</sup>                      | -2.337(69)                              | -2.337                            |                                        |
| $(0000, A_1)$     | $(0000, A_1)$     | 8(4,0A1)10 <sup>16</sup>                      |                                         |                                   |                                        |
| $(0000, A_1)$     | $(0000, A_1)$     | 8(6,0A1)10 <sup>16</sup>                      | -2.802(61)                              | -2.802                            |                                        |
| $(0000, A_1)$     | $(0000, A_1)$     | 8(8,0A1)10 <sup>17</sup>                      |                                         |                                   |                                        |
| (0100, E)         | (0100, E)         | $0(0,0A_1)$                                   | 1091.6516918(56)                        | 1091.801144(12)                   | 1091.6619(7)                           |
| (0100, E)         | (0100, E)         | $2(0,0A_1)10^3$                               | 3.110896(55)                            | 2.86032(11)                       | -0.725(7)                              |
| (0100, E)         | (0100, E)         | $2(2,0E)10^3$                                 | -6.64627(17)                            | -6.87031(19)                      | -9.987(5)                              |
| (0100, E)         | (0100, E)         | $3(3,0A_2)10^5$                               | -8.2625(51)                             | -8.1621(29)                       | -1.66(10)                              |
| (0100, E)         | (0100, E)         | $4(0,0A_1)10^7$                               | 1.016(24)                               | 1.016                             |                                        |
| (0100, E)         | (0100, E)         | $4(2,0E)10^7$                                 | -3.697(17)                              | -3.697                            |                                        |
| (0100, E)         | (0100, E)         | $4(4,0A_1)10^7$                               | -1.1614(82)                             | -1.1614                           |                                        |
| (0100, E)         | (0100, <i>E</i> ) | $4(4,0E)10^7$                                 | 1.7659(78)                              | 1.7659                            |                                        |
| (0100, <i>E</i> ) | (0100, <i>E</i> ) | $5(3,0A_2)10^9$                               |                                         |                                   | 1                                      |
| (0100, E)         | $(0001, F_1)$     | $1(1,0F_1)$                                   | -5.1543227(23)                          | -5.0766147(35)                    | -5.233                                 |
| (0100, E)         | $(0001, F_1)$     | $2(2,0F_2)10^2$                               | -1.49348(34)                            | -1.47603(22)                      | -1.695(7)                              |
| (0100, E)         | $(0001, F_1)$     | $3(1,0F_1)10^5$                               | -4.2580(69)                             | -4.0097(19)                       | -6.90(7)                               |
| (0100, E)         | $(0001, F_1)$     | $3(3,0F_1)10^5$                               | 4.0037(41)                              | 4.2716(19)                        | 1.38(7)                                |
| (0100, E)         | $(0001, F_1)$     | $3(3,0F_2)10^5$                               | 3.6873(19)                              | 3.9029(11)                        | -1.64(5)                               |
| (0100, E)         | $(0001, F_1)$     | $4(2,0F_2)10^7$                               | -3.7924(37)                             | -3.7924                           |                                        |
| (0100, E)         | $(0001, F_1)$     | $4(4,0F_1)10^7$                               | 2.3788(34)                              | 2.3788                            |                                        |
| (0100, E)         | $(0001, F_1)$     | $4(4,0F_2)10^7$                               | 2.1929(46)                              | 2.1929                            |                                        |
| (0100, E)         | $(0001, F_1)$     | $5(1,0F_1)10^9$                               |                                         |                                   |                                        |
| (0100, E)         | $(0001, F_1)$     | $5(3,0F_1)10^{10}$                            | 8.947(28)                               | 8.947                             |                                        |
| (0100, <i>E</i> ) | $(0001, F_1)$     | $5(3,0F_2)10^9$                               | 1.4010(19)                              | 1.4010                            |                                        |
| (0100, E)         | $(0001, F_1)$     | $5(5,0F_1)10^9$                               | -1.0681(32)                             | -1.0681                           |                                        |
| (0100, E)         | $(0001, F_1)$     | $5(5,0F_1)10^{10}$                            | -5.814(21)                              | -5.814                            |                                        |
| (0100, E)         | $(0001, F_1)$     | $5(5,0F_2)10^{10}$                            |                                         |                                   |                                        |
| $(0001, F_2)$     | $(0001, F_2)$     | $0(0,0A_1)$                                   | 997.8711014(46)                         | 989.2502435(70)                   | 989.2509(4)                            |
| $(0001, F_2)$     | $(0001, F_2)$     | $1(1,0F_1)$                                   | 3.83980418(95)                          | 4.0296197(13)                     | 4.03241(8)                             |
| $(0001, F_2)$     | $(0001, F_2)$     | $2(0,0A_1)10^3$                               | -2.266577(54)                           | -2.361540(82)                     | 0.004(4)                               |
| $(0001, F_2)$     | $(0001, F_2)$     | $2(2,0E)10^3$                                 |                                         |                                   |                                        |
| $(0001, F_2)$     | $(0001, F_2)$     | $2(2,0F_2)10^2$                               | -1.357487(13)                           | -1.345759(12)                     | -1.0539(4)                             |
| $(0001, F_2)$     | $(0001, F_2)$     | $3(1,0F_1)10^4$                               | 1.66880(74)                             | 1.67052(41)                       | 0.796(4)                               |
| $(0001, F_2)$     | $(0001, F_2)$     | $3(3,0F_1)10^4$                               | 1.00493(68)                             | 0.99070(38)                       | 0.201(3)                               |
| $(0001, F_2)$     | $(0001, F_2)$     | $4(0,0A_1)10^7$                               | -6.125(16)                              | -6.0173(16)                       |                                        |
| $(0001, F_2)$     | $(0001, F_2)$     | $4(2,0E)10^8$                                 | 7.68(18)                                | 7.68                              |                                        |
| $(0001, F_2)$     | $(0001, F_2)$     | $4(2,0F_2)10^9$                               |                                         |                                   |                                        |
| $(0001, F_2)$     | $(0001, F_2)$     | $4(4,0A_1)10^8$                               | 5.661(66)                               | 5.661                             |                                        |
| $(0001, F_2)$     | $(0001, F_2)$     | $4(4,0E)10^7$                                 | -1.915(12)                              | -1.8173(17)                       |                                        |
| $(0001, F_2)$     | $(0001, F_2)$     | $4(4,0F_2)10^7$                               |                                         |                                   |                                        |
| $(0001, F_2)$     | $(0001, F_2)$     | $5(1,0F_1)10^9$                               | 1.0936(17)                              | 1.0936                            |                                        |
| $(0001, F_2)$     | $(0001, F_2)$     | $5(3,0F_1)10^{10}$                            | 5.307(53)                               | 5.307                             |                                        |
| $(0001, F_2)$     | $(0001, F_2)$     | $5(5,0F_1)10^9$                               | 1.2916(63)                              | 1.2916                            |                                        |
| $(0001, F_2)$     | $(0001, F_2)$     | $5(5,1F_1)10^8$                               |                                         |                                   |                                        |
| $(0001, F_2)$     | $(0001, F_2)$     | 6(0,0 <i>A</i> <sub>1</sub> )10 <sup>11</sup> | 2.467(11)                               | 2.467                             |                                        |
| $(0001, F_2)$     | $(0001, F_2)$     | $6(2,0F_2)10^{12}$                            | -4.393(66)                              | -4.393                            |                                        |
| $d_{ m rms}$      |                   |                                               | 1.83                                    | 2.59                              | 3448                                   |

Table D.2-Spectroscopic parameters of the  $\nu_2/\nu_4$  dyad of the  $CD_4$  molecule.

The data in the table are presented using STDS format notations [87]

| J  | γ              | n  | J' | γ'             | n' | $v^{exp}$ ,<br>cm <sup>-1</sup> | $S_{\nu}^{\exp}$ , cm <sup>-2</sup> · atm <sup>-1</sup> | $\delta, \\ \%$ | Band |
|----|----------------|----|----|----------------|----|---------------------------------|---------------------------------------------------------|-----------------|------|
|    | 1              |    |    | 2              |    | 3                               | 4                                                       | 5               | 6    |
| 21 | F <sub>1</sub> | 11 | 22 | F <sub>2</sub> | 6  | 883.8316                        | 0.0029                                                  | 4.4             | ν4   |
| 21 | Е              | 8  | 22 | Е              | 4  | 884.0828                        | 0.0018                                                  | -2.6            | ν4   |
| 21 | F <sub>2</sub> | 12 | 22 | F <sub>1</sub> | 5  | 884.3305                        | 0.0027                                                  | 3.1             | ν4   |
| 20 | A <sub>1</sub> | 4  | 21 | A <sub>2</sub> | 2  | 890.1693                        | 0.0044                                                  | 10.1            | ν4   |
| 20 | F <sub>1</sub> | 11 | 21 | F <sub>2</sub> | 5  | 890.4368                        | 0.0046                                                  | 0.3             | ν4   |
| 20 | F <sub>2</sub> | 11 | 21 | F <sub>1</sub> | 6  | 890.6932                        | 0.0049                                                  | 6.0             | ν4   |
| 20 | A <sub>2</sub> | 4  | 21 | A <sub>1</sub> | 2  | 890.9418                        | 0.0038                                                  | 1.7             | ν4   |
| 22 | F <sub>2</sub> | 13 | 23 | F <sub>1</sub> | 5  | 891.2513                        | 0.0012                                                  | 2.9             | ν4   |
| 22 | F <sub>1</sub> | 13 | 23 | F <sub>2</sub> | 5  | 892.1703                        | 0.0012                                                  | -0.3            | ν4   |
| 16 | F <sub>1</sub> | 5  | 17 | F <sub>2</sub> | 2  | 892.4152                        | 0.0016                                                  | -5.1            | ν4   |
| 16 | F <sub>2</sub> | 6  | 17 | F <sub>1</sub> | 3  | 892.4309                        | 0.0017                                                  | -1.5            | ν4   |
| 22 | A <sub>1</sub> | 5  | 23 | A <sub>2</sub> | 2  | 893.5006                        | 0.0013                                                  | 5.4             | ν4   |
| 18 | F <sub>2</sub> | 9  | 19 | F <sub>1</sub> | 4  | 894.2043                        | 0.0010                                                  | 8.1             | ν4   |
| 22 | F <sub>1</sub> | 14 | 23 | F <sub>2</sub> | 4  | 894.5922                        | 0.0016                                                  | 8.3             | ν4   |
| 17 | F <sub>1</sub> | 7  | 18 | F <sub>2</sub> | 4  | 894.7152                        | 0.0009                                                  | 8.2             | ν4   |
| 18 | A <sub>2</sub> | 3  | 19 | A <sub>1</sub> | 1  | 894.7366                        | 0.0010                                                  | 8.1             | ν4   |
| 17 | Е              | 5  | 18 | Е              | 3  | 894.9045                        | 0.0013                                                  | 12.5            | ν4   |
| 19 | F <sub>1</sub> | 11 | 20 | F <sub>2</sub> | 5  | 896.6932                        | 0.0079                                                  | 1.0             | ν4   |
| 21 | F <sub>2</sub> | 13 | 22 | F <sub>1</sub> | 4  | 896.6981                        | 0.0021                                                  | -3.9            | ν4   |
| 19 | Е              | 7  | 20 | Е              | 4  | 896.9652                        | 0.0049                                                  | -3.1            | ν4   |
| 21 | F <sub>1</sub> | 12 | 22 | F <sub>2</sub> | 5  | 897.1657                        | 0.0022                                                  | -1.7            | ν4   |
| 19 | F <sub>2</sub> | 10 | 20 | F <sub>1</sub> | 5  | 897.2289                        | 0.0073                                                  | -3.2            | ν4   |
| 16 | Е              | 4  | 17 | Е              | 2  | 897.5391                        | 0.0012                                                  | 2.2             | ν4   |
| 16 | F <sub>1</sub> | 6  | 17 | F <sub>2</sub> | 3  | 897.5960                        | 0.0020                                                  | 8.3             | ν4   |
| 16 | A <sub>1</sub> | 3  | 17 | A <sub>2</sub> | 1  | 897.7151                        | 0.0021                                                  | -2.1            | ν4   |
| 22 | A <sub>2</sub> | 5  | 23 | A <sub>1</sub> | 1  | 897.7380                        | 0.0013                                                  | 3.3             | ν4   |
| 21 | A <sub>1</sub> | 4  | 22 | A <sub>2</sub> | 2  | 898.0575                        | 0.0018                                                  | -2.5            | ν4   |
| 17 | F <sub>1</sub> | 8  | 18 | F <sub>2</sub> | 4  | 898.5474                        | 0.0023                                                  | 2.4             | ν4   |
| 21 | F <sub>1</sub> | 13 | 22 | F <sub>2</sub> | 4  | 899.4246                        | 0.0029                                                  | 12.0            | ν4   |
| 15 | F <sub>1</sub> | 6  | 16 | F <sub>2</sub> | 2  | 899.5440                        | 0.0024                                                  | 0.5             | ν4   |
| 21 | Е              | 9  | 22 | Е              | 3  | 899.7140                        | 0.0018                                                  | 4.2             | ν4   |
| 12 | A <sub>1</sub> | 1  | 13 | A <sub>2</sub> | 1  | 901.2696                        | 0.0018                                                  | 7.2             | ν4   |
| 16 | F <sub>2</sub> | 7  | 17 | F <sub>1</sub> | 4  | 901.5461                        | 0.0018                                                  | -3.3            | ν4   |
| 20 | F <sub>2</sub> | 12 | 21 | F <sub>1</sub> | 5  | 901.7539                        | 0.0041                                                  | 7.8             | ν4   |
| 22 | $F_1$          | 15 | 23 | F <sub>2</sub> | 3  | 901.8883                        | 0.0016                                                  | -7.5            | ν4   |
| 22 | F <sub>2</sub> | 16 | 23 | $F_1$          | 2  | 901.8975                        | 0.0018                                                  | 1.3             | ν4   |
| 21 | F <sub>2</sub> | 14 | 22 | $F_1$          | 3  | 902.0732                        | 0.0030                                                  | 8.1             | ν4   |
| 20 | Е              | 8  | 21 | Е              | 3  | 902.0928                        | 0.0028                                                  | 6.5             | ν4   |
| 21 | $F_1$          | 14 | 22 | F <sub>2</sub> | 3  | 902.3160                        | 0.0026                                                  | -7.2            | ν4   |
| 12 | F <sub>1</sub> | 3  | 13 | F <sub>2</sub> | 2  | 902.5740                        | 0.0011                                                  | 11.6            | ν4   |

Table D.3 – Experimental line positions and strengths in the  $v_2/v_4$  dyad of  $^{12}CD_4$ .

Table D.3 – Continued.

| J  | γ              | п  | J' | γ'             | n' | $v^{exp}$ , | $S_{\nu}^{exp}$ ,                          | $\delta, $ | Band           |
|----|----------------|----|----|----------------|----|-------------|--------------------------------------------|------------|----------------|
|    | 1              |    |    | 2              |    | 3           | $\frac{\text{cm}^2 \cdot \text{atm}^4}{4}$ | %<br>5     | 6              |
| 20 | F1             | 12 | 21 | E <sub>2</sub> | 4  | 902.9338    | 0.0041                                     | 3.0        | V4             |
| 18 | F <sub>2</sub> | 10 | 19 | F <sub>1</sub> | 5  | 902.9889    | 0.0124                                     | -1.4       | V4<br>V4       |
| 18 | E              | 7  | 19 | E              | 3  | 903.2709    | 0.0080                                     | -2.7       | V4             |
| 18 | F1             | 10 | 19 | F <sub>2</sub> | 5  | 903.5531    | 0.0125                                     | 2.2        | V4             |
| 16 | F <sub>2</sub> | 8  | 17 | F <sub>1</sub> | 4  | 904.2583    | 0.0022                                     | -3.1       | V4             |
| 20 | F2             | 13 | 21 | F1             | 4  | 904.4259    | 0.0049                                     | 9.3        | V4             |
| 16 | E              | 5  | 17 | E              | 2  | 904 7910    | 0.0014                                     | 14         | V4             |
| 21 | E              | 10 | 22 | E              | 2  | 906.0061    | 0.0019                                     | -9.4       | V4<br>V4       |
| 21 | F <sub>2</sub> | 15 | 22 | F1             | 2  | 906.0190    | 0.0032                                     | 6.1        | V4             |
| 21 | A2             | 6  | 22 | A <sub>1</sub> | 1  | 906.0439    | 0.0027                                     | 6.6        | V4             |
| 13 | F2             | 4  | 14 | F <sub>1</sub> | 1  | 906.1053    | 0.0035                                     | 0.9        | V4             |
| 13 | F1             | 4  | 14 | F <sub>2</sub> | 2  | 906.1114    | 0.0035                                     | -0.9       | V4             |
| 20 | E              | 9  | 21 | E              | 2  | 906.3569    | 0.0031                                     | 1.6        | V4             |
| 20 | F1             | 13 | 21 | F <sub>2</sub> | 3  | 906.5560    | 0.0047                                     | 0.8        | V4             |
| 14 | F1             | 5  | 15 | F <sub>2</sub> | 3  | 906.5740    | 0.0033                                     | 4.2        | V4             |
| 14 | F <sub>2</sub> | 5  | 15 | F <sub>1</sub> | 2  | 906.6179    | 0.0033                                     | -2.7       | V4             |
| 20 | A              | 5  | 21 | A <sub>2</sub> | 1  | 906.8714    | 0.0040                                     | 0.0        | V4             |
| 19 | F <sub>1</sub> | 12 | 20 | F <sub>2</sub> | 4  | 906.9517    | 0.0065                                     | -0.2       | V4             |
| 19 | E              | 8  | 20 | E              | 3  | 907.5959    | 0.0043                                     | -2.4       | V4             |
| 19 | F <sub>2</sub> | 11 | 20 | <br>F1         | 4  | 908.0897    | 0.0068                                     | 0.2        | V4             |
| 15 | A <sub>2</sub> | 2  | 16 | A              | 2  | 908.8531    | 0.0049                                     | 7.1        | V4             |
| 17 | A <sub>2</sub> | 4  | 18 | A <sub>1</sub> | 2  | 909.0336    | 0.0167                                     | 1.3        | V4             |
| 17 | F <sub>2</sub> | 10 | 18 | F <sub>1</sub> | 4  | 909.3288    | 0.0192                                     | -1.9       | ν4             |
| 19 | A <sub>2</sub> | 4  | 20 | A <sub>1</sub> | 2  | 909.3508    | 0.0064                                     | 3.2        | ν4             |
| 17 | F <sub>1</sub> | 9  | 18 | F <sub>2</sub> | 5  | 909.6282    | 0.0188                                     | -2.8       | ν4             |
| 17 | A <sub>1</sub> | 3  | 18 | A <sub>2</sub> | 2  | 909.9361    | 0.0159                                     | -0.7       | ν4             |
| 20 | F <sub>1</sub> | 14 | 21 | F <sub>2</sub> | 2  | 910.1237    | 0.0047                                     | -7.6       | ν4             |
| 20 | F <sub>2</sub> | 14 | 21 | F <sub>1</sub> | 3  | 910.1781    | 0.0049                                     | -5.7       | ν4             |
| 19 | F <sub>2</sub> | 12 | 20 | F <sub>1</sub> | 3  | 910.6981    | 0.0076                                     | -0.1       | ν4             |
| 14 | A <sub>2</sub> | 2  | 15 | A <sub>1</sub> | 1  | 910.8265    | 0.0018                                     | 6.0        | ν4             |
| 14 | F <sub>2</sub> | 6  | 15 | F <sub>1</sub> | 3  | 911.1168    | 0.0024                                     | 2.0        | ν4             |
| 19 | F <sub>1</sub> | 13 | 20 | F <sub>2</sub> | 3  | 911.1420    | 0.0079                                     | 1.9        | ν4             |
| 15 | A <sub>1</sub> | 3  | 16 | A <sub>2</sub> | 1  | 911.1529    | 0.0014                                     | -5.4       | ν4             |
| 14 | Е              | 4  | 15 | Е              | 2  | 911.2697    | 0.0028                                     | 4.7        | ν4             |
| 18 | A <sub>1</sub> | 4  | 19 | A <sub>2</sub> | 2  | 911.9931    | 0.0088                                     | -1.1       | ν <sub>4</sub> |
| 18 | F <sub>1</sub> | 11 | 19 | F <sub>2</sub> | 4  | 912.4723    | 0.0105                                     | -3.9       | ν <sub>4</sub> |
| 18 | F <sub>2</sub> | 11 | 19 | F <sub>1</sub> | 4  | 913.0286    | 0.0112                                     | 0.0        | ν4             |
| 13 | Е              | 3  | 14 | Е              | 2  | 913.5310    | 0.0030                                     | 12.6       | ν4             |
| 13 | F <sub>2</sub> | 5  | 14 | F <sub>1</sub> | 2  | 913.5662    | 0.0045                                     | 8.3        | ν4             |
| 12 | A <sub>2</sub> | 1  | 13 | A <sub>1</sub> | 1  | 913.6128    | 0.0039                                     | 4.6        | ν4             |
| 12 | Е              | 3  | 13 | Е              | 1  | 913.6286    | 0.0031                                     | 0.2        | V4             |
| 13 | A <sub>2</sub> | 3  | 14 | A <sub>1</sub> | 1  | 913.6368    | 0.0046                                     | 7.3        | ν4             |
| 19 | A <sub>1</sub> | 5  | 20 | A <sub>2</sub> | 1  | 914.1825    | 0.0068                                     | -0.6       | ν4             |

Table D.3 – Continued.

| J  | γ              | п  | J' | γ'                    | n' | $v^{exp}$ ,     | $S_{\nu}^{exp}$ ,        | δ,   | Band           |
|----|----------------|----|----|-----------------------|----|-----------------|--------------------------|------|----------------|
|    | ,              |    |    |                       |    | cm <sup>1</sup> | $cm^{-2} \cdot atm^{-1}$ | %    | 6              |
| 10 | 1              | 4  | 10 | 2                     | 1  | 3<br>014 0176   | 4                        | 3    | 0              |
| 18 | A <sub>2</sub> | 4  | 19 | A <sub>1</sub>        | 1  | 914.2170        | 0.0096                   | 0.9  | V4             |
| 19 | Г1<br>Е        | 14 | 20 | Г2<br>Е               | 2  | 914.2917        | 0.0080                   | -4.2 | V4             |
| 19 | E              | 9  | 20 | E                     | 2  | 914.3415        | 0.0053                   | -5.5 | ν <sub>4</sub> |
| 20 | A <sub>2</sub> | 3  | 21 | A <sub>1</sub>        | 1  | 914.6596        | 0.0047                   | -1.4 | V4             |
| 14 | F <sub>2</sub> | /  | 15 | <b>F</b> <sub>1</sub> | 3  | 914.9007        | 0.0043                   | 5.8  | ν4             |
| 16 | F <sub>2</sub> | 9  | 17 | F <sub>1</sub>        | 5  | 915.2622        | 0.0297                   | -1.2 | ν4             |
| 18 | F <sub>2</sub> | 12 | 19 | F <sub>1</sub>        | 3  | 915.3560        | 0.0122                   | -0.3 | ν <sub>4</sub> |
| 16 | E              | 6  | 17 | E                     | 3  | 915.5709        | 0.0195                   | -1.0 | ν4             |
| 18 | E              | 8  | 19 | E                     | 2  | 915.6328        | 0.0082                   | -0.8 | ν4             |
| 16 | F <sub>1</sub> | 9  | 17 | F <sub>2</sub>        | 4  | 915.9042        | 0.0293                   | -0.6 | ν4             |
| 14 | F <sub>1</sub> | 7  | 15 | F <sub>2</sub>        | 3  | 916.3079        | 0.0018                   | -6.5 | ν4             |
| 10 | F <sub>2</sub> | 2  | 11 | F <sub>1</sub>        | 3  | 916.4387        | 0.0018                   | 8.6  | ν <sub>4</sub> |
| 17 | F <sub>1</sub> | 10 | 18 | F <sub>2</sub>        | 4  | 917.4625        | 0.0171                   | -1.9 | ν4             |
| 13 | F <sub>2</sub> | 6  | 14 | F <sub>1</sub>        | 3  | 917.4865        | 0.0019                   | -8.7 | ν4             |
| 10 | F <sub>2</sub> | 3  | 11 | F <sub>1</sub>        | 2  | 917.5680        | 0.0019                   | 3.6  | ν4             |
| 17 | Е              | 7  | 18 | Е                     | 3  | 917.8376        | 0.0115                   | -3.1 | ν4             |
| 13 | F <sub>1</sub> | 5  | 14 | F <sub>2</sub>        | 3  | 917.8920        | 0.0040                   | -8.2 | ν4             |
| 18 | $F_1$          | 12 | 19 | $F_2$                 | 3  | 918.3480        | 0.0132                   | 0.5  | $\nu_4$        |
| 18 | F <sub>2</sub> | 13 | 19 | $F_1$                 | 2  | 918.5270        | 0.0131                   | -2.1 | ν4             |
| 19 | $F_2$          | 13 | 20 | $F_1$                 | 2  | 918.5866        | 0.0090                   | -2.8 | $\nu_4$        |
| 19 | $F_1$          | 15 | 20 | F <sub>2</sub>        | 1  | 918.5942        | 0.0098                   | 5.3  | $\nu_4$        |
| 17 | $F_2$          | 11 | 18 | $F_1$                 | 3  | 918.9410        | 0.0178                   | -2.2 | ν4             |
| 17 | $F_1$          | 11 | 18 | F <sub>2</sub>        | 3  | 920.1600        | 0.0195                   | 0.8  | $\nu_4$        |
| 12 | F <sub>1</sub> | 4  | 13 | F <sub>2</sub>        | 2  | 920.3789        | 0.0038                   | -5.9 | ν4             |
| 12 | F <sub>2</sub> | 5  | 13 | F <sub>1</sub>        | 3  | 920.4945        | 0.0061                   | 3.7  | ν4             |
| 13 | F <sub>1</sub> | 6  | 14 | F <sub>2</sub>        | 3  | 920.5535        | 0.0039                   | 8.7  | ν4             |
| 11 | F <sub>2</sub> | 3  | 12 | F <sub>1</sub>        | 2  | 921.0214        | 0.0057                   | 2.2  | $\nu_4$        |
| 11 | F <sub>1</sub> | 4  | 12 | F <sub>2</sub>        | 1  | 921.0392        | 0.0063                   | 7.1  | ν4             |
| 15 | F <sub>1</sub> | 9  | 16 | F <sub>2</sub>        | 4  | 921.2183        | 0.0445                   | 0.2  | ν4             |
| 15 | Е              | 6  | 16 | Е                     | 3  | 921.5599        | 0.0295                   | 0.3  | $\nu_4$        |
| 15 | F <sub>2</sub> | 8  | 16 | $F_1$                 | 4  | 921.9060        | 0.0433                   | -0.6 | ν4             |
| 17 | Е              | 8  | 18 | Е                     | 2  | 922.4616        | 0.0134                   | -1.3 | ν4             |
| 18 | Е              | 9  | 19 | Е                     | 1  | 922.5085        | 0.0097                   | -0.6 | ν4             |
| 18 | F <sub>1</sub> | 13 | 19 | F <sub>2</sub>        | 2  | 922.5165        | 0.0145                   | -0.7 | ν4             |
| 18 | A <sub>1</sub> | 5  | 19 | A <sub>2</sub>        | 1  | 922.5321        | 0.0124                   | 1.1  | ν4             |
| 16 | F <sub>2</sub> | 10 | 17 | F <sub>1</sub>        | 4  | 922.5749        | 0.0270                   | -0.6 | ν4             |
| 17 | F <sub>2</sub> | 12 | 18 | F <sub>1</sub>        | 2  | 922.6034        | 0.0205                   | -0.1 | ν4             |
| 17 | A <sub>2</sub> | 5  | 18 | A <sub>1</sub>        | 1  | 922.8379        | 0.0168                   | -3.0 | ν4             |
| 16 | Е              | 7  | 17 | Е                     | 2  | 923.4106        | 0.0188                   | 1.3  | ν4             |
| 12 | Е              | 4  | 13 | Е                     | 2  | 923.8471        | 0.0013                   | -2.6 | ν4             |
| 16 | F <sub>1</sub> | 10 | 17 | F <sub>2</sub>        | 3  | 923.9130        | 0.0282                   | -0.1 | ν4             |
| 12 | F <sub>1</sub> | 5  | 13 | F <sub>2</sub>        | 3  | 924.0859        | 0.0016                   | -3.8 | ν4             |
| 12 | F <sub>1</sub> | 5  | 13 | F <sub>2</sub>        | 2  | 924.1230        | 0.0016                   | 1.3  | ν4             |

Table D.3 – Continued.

| J  | γ              | п  | J' | γ'             | n' | $v^{exp}$ , | $S_{\nu}^{exp}$ ,        | δ,   | Band           |
|----|----------------|----|----|----------------|----|-------------|--------------------------|------|----------------|
|    | ,              |    |    | · ·            |    |             | $cm^{-2} \cdot atm^{-1}$ | %    | 6              |
| 0  | <i>І</i><br>Е  | 2  | 10 | Z              | 2  | 3           | 4                        | 3    | 0              |
| 9  | Γ <sub>1</sub> | 2  | 10 | Γ <sub>2</sub> | 3  | 924.1449    | 0.0023                   | 8.2  | V4             |
| 10 | A1             | 4  | 17 | A2             | 1  | 924.8934    | 0.0244                   | -0.9 | V4             |
| 12 | A <sub>1</sub> | 2  | 10 | A <sub>2</sub> | 1  | 924.9476    | 0.0088                   | 9.5  | ν <sub>4</sub> |
| 9  | A <sub>2</sub> | I  | 10 | A <sub>1</sub> | 1  | 925.0556    | 0.0020                   | 4.9  | ν4             |
| 12 | F <sub>1</sub> | 6  | 13 | F <sub>2</sub> | 2  | 926.3131    | 0.0030                   | 7.9  | ν4             |
| 17 | F <sub>2</sub> | 13 | 18 | F <sub>1</sub> | I  | 926.4257    | 0.0221                   | -1.9 | ν4             |
| 17 | F <sub>1</sub> | 12 | 18 | F <sub>2</sub> | 2  | 926.4555    | 0.0223                   | -1.4 | ν4             |
| 16 | F <sub>1</sub> | 11 | 17 | F <sub>2</sub> | 2  | 926.5954    | 0.0304                   | -0.7 | ν4             |
| 14 | A <sub>1</sub> | 3  | 15 | A <sub>2</sub> | 2  | 926.8824    | 0.0552                   | 2.9  | ν4             |
| 16 | F <sub>2</sub> | 11 | 17 | F <sub>1</sub> | 3  | 926.9371    | 0.0308                   | -0.9 | ν4             |
| 11 | A <sub>1</sub> | 2  | 12 | A <sub>2</sub> | 1  | 927.0018    | 0.0037                   | 5.1  | ν4             |
| 11 | F <sub>1</sub> | 5  | 12 | F <sub>2</sub> | 2  | 927.1840    | 0.0056                   | 10.4 | ν4             |
| 14 | F <sub>1</sub> | 8  | 15 | F <sub>2</sub> | 4  | 927.2227    | 0.0631                   | -0.8 | ν4             |
| 11 | Е              | 3  | 12 | Е              | 2  | 927.2807    | 0.0051                   | 6.3  | ν4             |
| 12 | A <sub>2</sub> | 2  | 13 | A <sub>1</sub> | 1  | 927.3156    | 0.0016                   | 0.4  | $\nu_4$        |
| 15 | A <sub>2</sub> | 3  | 16 | A <sub>1</sub> | 2  | 927.4911    | 0.0333                   | -1.9 | ν4             |
| 14 | F <sub>2</sub> | 8  | 15 | F <sub>1</sub> | 4  | 927.5902    | 0.0627                   | -0.3 | ν4             |
| 14 | $A_2$          | 3  | 15 | A <sub>1</sub> | 1  | 928.0033    | 0.0523                   | -0.4 | $\nu_4$        |
| 15 | $F_2$          | 9  | 16 | F <sub>1</sub> | 3  | 928.0748    | 0.0412                   | -0.4 | ν4             |
| 10 | E              | 2  | 11 | Е              | 1  | 928.2987    | 0.0040                   | -7.8 | $\nu_4$        |
| 10 | $F_1$          | 3  | 11 | F <sub>2</sub> | 2  | 928.3139    | 0.0071                   | 4.5  | $\nu_4$        |
| 10 | A <sub>1</sub> | 2  | 11 | A <sub>2</sub> | 1  | 928.3438    | 0.0065                   | 4.3  | ν4             |
| 15 | F <sub>1</sub> | 10 | 16 | F <sub>2</sub> | 3  | 928.6750    | 0.0425                   | 0.9  | ν4             |
| 15 | A <sub>1</sub> | 4  | 16 | A <sub>2</sub> | 1  | 930.2455    | 0.0358                   | -2.0 | ν4             |
| 16 | A <sub>2</sub> | 4  | 17 | A <sub>1</sub> | 1  | 930.3095    | 0.0286                   | 1.9  | ν4             |
| 16 | F <sub>2</sub> | 12 | 17 | F <sub>1</sub> | 2  | 930.3638    | 0.0333                   | -1.5 | ν4             |
| 16 | Е              | 8  | 17 | Е              | 1  | 930.3896    | 0.0230                   | 2.0  | ν4             |
| 11 | F <sub>1</sub> | 6  | 12 | F <sub>2</sub> | 3  | 930.9649    | 0.0028                   | 2.1  | ν4             |
| 15 | F <sub>1</sub> | 11 | 16 | F <sub>2</sub> | 2  | 930.9735    | 0.0445                   | -1.1 | ν4             |
| 11 | F <sub>1</sub> | 6  | 12 | F <sub>2</sub> | 2  | 930.9916    | 0.0052                   | 6.6  | ν4             |
| 15 | Е              | 7  | 16 | Е              | 2  | 931.1892    | 0.0313                   | 3.2  | ν4             |
| 8  | $A_1$          | 1  | 9  | A <sub>2</sub> | 1  | 931.7948    | 0.0018                   | -7.0 | ν4             |
| 13 | F <sub>1</sub> | 7  | 14 | F <sub>2</sub> | 4  | 932.7452    | 0.0877                   | -1.7 | ν4             |
| 14 | F <sub>2</sub> | 9  | 15 | F <sub>1</sub> | 3  | 932.8891    | 0.0593                   | -1.0 | ν4             |
| 13 | Е              | 5  | 14 | Е              | 3  | 933.0973    | 0.0588                   | 0.3  | ν4             |
| 14 | Е              | 6  | 15 | Е              | 2  | 933.2598    | 0.0398                   | -1.8 | ν4             |
| 13 | F <sub>2</sub> | 8  | 14 | F <sub>1</sub> | 3  | 933.5428    | 0.0866                   | -1.6 | ν4             |
| 10 | F <sub>1</sub> | 4  | 11 | F <sub>2</sub> | 3  | 933.6582    | 0.0048                   | 8.1  | ν4             |
| 10 | F <sub>2</sub> | 4  | 11 | F <sub>1</sub> | 2  | 933.9320    | 0.0075                   | 0.3  | ν4             |
| 15 | F <sub>2</sub> | 10 | 16 | F <sub>1</sub> | 2  | 934.2410    | 0.0485                   | -1.0 | ν4             |
| 15 | F <sub>1</sub> | 12 | 16 | F <sub>2</sub> | 1  | 934.3287    | 0.0490                   | -0.4 | ν4             |
| 14 | F <sub>1</sub> | 9  | 15 | F <sub>2</sub> | 3  | 934.6638    | 0.0621                   | -1.2 | ν4             |
| 9  | F <sub>2</sub> | 3  | 10 | F <sub>1</sub> | 1  | 935.4316    | 0.0071                   | 3.8  | ν4             |

Table D.3 – Continued.

| J   | γ                | n        | J' | γ'             | n' | $v^{\exp}$ , | $S_{\nu}^{exp}$ ,  | $\delta, \delta'$ | Band           |
|-----|------------------|----------|----|----------------|----|--------------|--------------------|-------------------|----------------|
|     | 1                |          |    | 2              |    | 2            | $cm^2 \cdot atm^4$ | %<br>5            | 6              |
| 1.4 | I<br>E.          | 10       | 15 | 2<br>E.        | 2  | 025 4695     | 4                  | 5                 | 0              |
| 0   | Г2<br>Е.         | 10       | 10 | Γ]<br>Fa       | 2  | 935.4085     | 0.0047             | 5.7               | V4             |
| 10  | F <sub>2</sub>   | 5        | 10 | 12<br>E.       | 2  | 036 6703     | 0.0088             | 0.4               | V4             |
| 10  | 1 <sup>-</sup> 2 | 2        | 11 |                | 2  | 930.0703     | 0.0038             | 11.7              | V4             |
| 10  | E<br>E.          | <u> </u> | 11 | E<br>E         | 2  | 937.0031     | 0.0026             | -1.4              | V4             |
| 13  |                  | 0<br>7   | 14 | Г2<br>Е        | 3  | 937.7943     | 0.0830             | -1.4              | V4             |
| 14  | E                | /        | 15 | E              | 1  | 938.1390     | 0.0459             | -0.5              | ν <sub>4</sub> |
| 14  |                  | 10       | 15 | F <sub>2</sub> | 2  | 938.2086     | 0.0686             | -1.1              | ν <sub>4</sub> |
| 12  | F <sub>2</sub>   | /        | 13 | F <sub>1</sub> | 4  | 938.2808     | 0.1182             | -1.9              | ν <sub>4</sub> |
| 14  | A <sub>1</sub>   | 4        | 15 | A <sub>2</sub> | l  | 938.3318     | 0.0576             | -0.9              | ν4             |
| 12  | E                | 5        | 13 | E              | 2  | 938.7007     | 0.0817             | 2.3               | ν4             |
| 13  | E                | 6        | 14 | Е              | 2  | 938.8574     | 0.0575             | -0.6              | ν4             |
| 12  | F <sub>1</sub>   | 7        | 13 | F <sub>2</sub> | 3  | 939.1252     | 0.1157             | -2.1              | ν4             |
| 13  | F <sub>2</sub>   | 9        | 14 | $F_1$          | 2  | 939.2738     | 0.0866             | -1.6              | ν4             |
| 13  | A <sub>2</sub>   | 4        | 14 | A <sub>1</sub> | 1  | 939.9314     | 0.0750             | -0.1              | ν4             |
| 9   | E                | 3        | 10 | Е              | 2  | 940.0538     | 0.0025             | 2.1               | ν4             |
| 9   | F <sub>2</sub>   | 4        | 10 | F <sub>1</sub> | 2  | 940.2293     | 0.0042             | 2.9               | ν4             |
| 9   | A <sub>2</sub>   | 2        | 10 | A <sub>1</sub> | 1  | 940.7610     | 0.0107             | 1.6               | ν4             |
| 13  | F <sub>2</sub>   | 10       | 14 | F <sub>1</sub> | 1  | 942.0337     | 0.0940             | -0.7              | $\nu_4$        |
| 14  | F <sub>1</sub>   | 11       | 15 | F <sub>2</sub> | 1  | 942.1508     | 0.0762             | -0.8              | ν4             |
| 14  | F <sub>2</sub>   | 11       | 15 | F <sub>1</sub> | 1  | 942.1589     | 0.0746             | -3.0              | ν4             |
| 13  | F <sub>1</sub>   | 9        | 14 | F <sub>2</sub> | 2  | 942.2205     | 0.0940             | -1.6              | ν4             |
| 8   | A <sub>2</sub>   | 1        | 9  | A <sub>1</sub> | 1  | 942.3552     | 0.0054             | -2.9              | $\nu_4$        |
| 12  | A <sub>1</sub>   | 3        | 13 | $A_2$          | 1  | 942.4910     | 0.0935             | -2.6              | $\nu_4$        |
| 9   | $F_1$            | 4        | 10 | $F_2$          | 3  | 942.8448     | 0.0015             | 0.6               | $\nu_4$        |
| 9   | F <sub>1</sub>   | 4        | 10 | $F_2$          | 2  | 942.8732     | 0.0013             | 6.3               | $\nu_4$        |
| 12  | $F_1$            | 8        | 13 | $F_2$          | 2  | 943.1939     | 0.1146             | -1.6              | $\nu_4$        |
| 11  | A <sub>2</sub>   | 2        | 12 | A <sub>1</sub> | 2  | 943.4958     | 0.1305             | -1.3              | ν4             |
| 12  | F <sub>2</sub>   | 8        | 13 | $F_1$          | 3  | 943.7559     | 0.1166             | -1.9              | ν4             |
| 11  | F <sub>2</sub>   | 6        | 12 | F <sub>1</sub> | 3  | 943.8773     | 0.1529             | -2.7              | ν4             |
| 11  | F <sub>1</sub>   | 7        | 12 | F <sub>2</sub> | 3  | 944.3178     | 0.1521             | -2.0              | ν4             |
| 11  | A <sub>1</sub>   | 3        | 12 | A <sub>2</sub> | 1  | 944.8949     | 0.1308             | 0.0               | ν4             |
| 12  | A <sub>2</sub>   | 3        | 13 | A <sub>1</sub> | 1  | 945.7205     | 0.1028             | -1.6              | ν4             |
| 13  | A <sub>1</sub>   | 3        | 14 | A <sub>2</sub> | 1  | 945.7973     | 0.0862             | -1.4              | ν4             |
| 13  | F <sub>1</sub>   | 10       | 14 | F <sub>2</sub> | 1  | 945.8115     | 0.1051             | 0.2               | ν4             |
| 13  | Е                | 7        | 14 | Е              | 1  | 945.8184     | 0.0671             | -4.2              | ν4             |
| 12  | $F_2$            | 9        | 13 | $F_1$          | 2  | 946.0591     | 0.1240             | -1.9              | ν4             |
| 12  | Е                | 6        | 13 | Е              | 1  | 946.1831     | 0.0845             | -0.2              | ν4             |
| 8   | F <sub>2</sub>   | 4        | 9  | F <sub>1</sub> | 3  | 946.8744     | 0.0063             | 10.1              | ν4             |
| 8   | F <sub>2</sub>   | 4        | 9  | F <sub>1</sub> | 2  | 946.8867     | 0.0033             | -1.4              | ν4             |
| 11  | F <sub>1</sub>   | 8        | 12 | F <sub>2</sub> | 2  | 947.7297     | 0.1499             | -1.9              | ν4             |
| 11  | Е                | 5        | 12 | Е              | 2  | 948.0513     | 0.1022             | -1.1              | ν4             |
| 8   | Е                | 3        | 9  | Е              | 1  | 948.1400     | 0.0011             | -0.9              | ν4             |
| 10  | F <sub>2</sub>   | 6        | 11 | F <sub>1</sub> | 3  | 948.9261     | 0.1939             | -2.9              | ν4             |

Table D.3 – Continued.

| J  | γ              | n  | J'      | γ'             | n' | $v^{exp}$ , | $S_{\nu}^{exp}$ ,                          | $\delta, \delta'$ | Band           |
|----|----------------|----|---------|----------------|----|-------------|--------------------------------------------|-------------------|----------------|
|    | 1              |    |         | 2              |    | 3           | $\frac{\text{cm}^2 \cdot \text{atm}^4}{4}$ | %<br>5            | 6              |
| 10 | F              | 4  | 11      | F              | 2  | 949 2956    | 0.1315                                     | 0.1               | V4             |
| 7  | F1             | 3  | 8       | E<br>F2        | 1  | 949.3210    | 0.0096                                     | 2.7               | V4             |
| 12 | F1             | 9  | 13      | F <sub>2</sub> | 1  | 949 4497    | 0.1376                                     | -0.9              | V4             |
| 12 | F              | 10 | 13      | F <sub>1</sub> | 1  | 949 4730    | 0.1364                                     | -2.0              | V4             |
| 11 | F <sub>2</sub> | 7  | 12      | F <sub>1</sub> | 2  | 949 7518    | 0.1504                                     | -0.2              | V4             |
| 10 | F1             | 6  | 11      | Fa             | 3  | 9/9 897/    | 0.1010                                     | -2.7              | V4             |
| 11 | F.             | 0  | 12      | Fa             | 1  | 050 1586    | 0.1520                                     | _2.7              | V4             |
| 10 | Fa             | 9  | 12      | 12<br>E        | 2  | 950.1580    | 0.0012                                     | 2.3<br>-4.4       | V4             |
| 19 | 1.2<br>E.      | 4  | 19      | Г]<br>Е.       | 2  | 951.0772    | 0.0012                                     | -1.9              | V4             |
| 10 | Г2<br>Е        | /  | 0       | Г]<br>Е.       | 2  | 952.5208    | 0.1914                                     | -1.0              | V4             |
| 7  | Г1<br>Е        | 4  | <u></u> | <u>Г2</u>      |    | 952.0558    | 0.0018                                     | -4.0              | V4             |
| 7  | Г1<br>Г        | 4  | 0       | Г2<br>Г        | 1  | 952.0038    | 0.0023                                     | -1.5              | V4             |
| /  | E              | 2  | 8       | E              | 2  | 952.9870    | 0.0039                                     | 9.5               | ν <sub>4</sub> |
| 11 | E              | 6  | 12      | E              | 1  | 953.0860    | 0.1180                                     | -0./              | ν4             |
| 11 | F <sub>2</sub> | 8  | 12      | F <sub>1</sub> | 1  | 953.1048    | 0.1751                                     | -1.9              | ν4             |
| 11 | A <sub>2</sub> | 3  | 12      | A <sub>1</sub> | 1  | 953.1405    | 0.1459                                     | -2.0              | ν4             |
| 10 | E              | 5  | 11      | E              | 1  | 953.6413    | 0.1323                                     | -1.7              | ν4             |
| 10 | $F_1$          | 1  | 11      | F <sub>2</sub> | 2  | 953.8964    | 0.1967                                     | -3.3              | ν4             |
| 9  | F <sub>1</sub> | 5  | 10      | F <sub>2</sub> | 3  | 953.9790    | 0.2354                                     | -3.4              | ν4             |
| 10 | A <sub>1</sub> | 3  | 11      | A <sub>2</sub> | 1  | 954.2677    | 0.1670                                     | -2.6              | ν4             |
| 9  | E              | 4  | 10      | E              | 2  | 954.4777    | 0.1591                                     | -1.6              | ν4             |
| 9  | F <sub>2</sub> | 6  | 10      | F <sub>1</sub> | 2  | 954.9483    | 0.2333                                     | -2.3              | ν4             |
| 9  | F <sub>2</sub> | 6  | 10      | F <sub>1</sub> | 1  | 954.9669    | 0.0037                                     | 10.3              | ν4             |
| 6  | E              | 2  | 7       | E              | 1  | 955.7539    | 0.0037                                     | 7.0               | ν4             |
| 6  | F <sub>1</sub> | 2  | 7       | F <sub>2</sub> | 2  | 955.8568    | 0.0063                                     | -3.3              | ν4             |
| 10 | F <sub>1</sub> | 8  | 11      | F <sub>2</sub> | 1  | 956.7126    | 0.2147                                     | -3.0              | ν4             |
| 9  | A <sub>2</sub> | 3  | 10      | A <sub>1</sub> | 1  | 956.7228    | 0.1940                                     | -2.2              | ν4             |
| 10 | F <sub>2</sub> | 8  | 11      | F <sub>1</sub> | 1  | 956.7687    | 0.2153                                     | -2.9              | ν4             |
| 9  | F <sub>2</sub> | 7  | 10      | $F_1$          | 2  | 957.5719    | 0.0026                                     | -2.9              | ν4             |
| 9  | F <sub>2</sub> | 7  | 10      | $F_1$          | 1  | 957.5905    | 0.2358                                     | -2.5              | ν4             |
| 9  | $F_1$          | 6  | 10      | $F_2$          | 2  | 958.0151    | 0.2380                                     | -3.6              | $\nu_4$        |
| 8  | $A_1$          | 2  | 9       | $A_2$          | 1  | 958.7150    | 0.2322                                     | -3.1              | ν4             |
| 6  | $F_2$          | 3  | 7       | $F_1$          | 2  | 958.7928    | 0.0020                                     | -7.3              | $\nu_4$        |
| 8  | $F_1$          | 5  | 9       | F <sub>2</sub> | 2  | 959.1134    | 0.2737                                     | -4.2              | $\nu_4$        |
| 8  | $F_2$          | 5  | 9       | $F_1$          | 3  | 959.5882    | 0.2769                                     | -1.7              | ν4             |
| 9  | A <sub>1</sub> | 2  | 10      | A <sub>2</sub> | 1  | 960.2790    | 0.2155                                     | -2.4              | ν4             |
| 9  | F <sub>1</sub> | 7  | 10      | F <sub>2</sub> | 1  | 960.3715    | 0.2579                                     | -2.9              | ν4             |
| 8  | A <sub>2</sub> | 2  | 9       | A <sub>1</sub> | 1  | 960.3922    | 0.2360                                     | -1.6              | ν4             |
| 9  | Е              | 5  | 10      | Е              | 1  | 960.4119    | 0.1731                                     | -2.3              | ν4             |
| 8  | F <sub>2</sub> | 6  | 9       | F <sub>1</sub> | 2  | 961.7525    | 0.2726                                     | -4.0              | ν4             |
| 8  | Е              | 4  | 9       | Е              | 1  | 961.9855    | 0.1902                                     | -0.7              | ν4             |
| 15 | F <sub>1</sub> | 3  | 15      | F <sub>2</sub> | 3  | 962.0107    | 0.0031                                     | 5.4               | ν4             |
| 5  | F <sub>2</sub> | 2  | 6       | F <sub>1</sub> | 1  | 962.1022    | 0.0031                                     | 4.1               | ν4             |
| 5  | F <sub>1</sub> | 2  | 6       | F <sub>2</sub> | 2  | 962.4378    | 0.0082                                     | 10.6              | ν4             |

Table D.3 – Continued.

| J  | γ              | п | J' | γ'             | n' | $v^{exp}$ , | $S_{\nu}^{exp}$ ,                          | $\delta, $ | Band       |
|----|----------------|---|----|----------------|----|-------------|--------------------------------------------|------------|------------|
|    | 1              |   |    | 2              |    | 3           | $\frac{\text{cm}^2 \cdot \text{atm}^4}{4}$ | %<br>5     | 6          |
| 7  | F1             | 5 | 8  | E2             | 2  | 963 6704    | 0 3072                                     | -5.0       | V4         |
| 8  | F1             | 6 | 9  | F <sub>2</sub> | 1  | 963.9278    | 0.2936                                     | -4.3       | V4         |
| 7  | E              | 3 | 8  | E              | 2  | 964.0042    | 0.2069                                     | -3.0       | V4         |
| 8  | F <sub>2</sub> | 7 | 9  | F1             | 1  | 964.0535    | 0.2925                                     | -5.0       | V4         |
| 14 | A2             | 1 | 14 | A <sub>1</sub> | 1  | 964.4434    | 0.0035                                     | 6.5        | V4         |
| 14 | F <sub>2</sub> | 3 | 14 | F1             | 2  | 964.4890    | 0.0034                                     | 7.8        | V4         |
| 14 | E              | 2 | 14 | E              | 2  | 964 5069    | 0.0022                                     | 10.5       | V4         |
| 7  | E<br>F2        | 4 | 8  | F <sub>1</sub> | 2  | 964.7615    | 0.3068                                     | -5.1       | V4         |
| 13 | A              | 1 | 13 | A <sub>2</sub> | 1  | 965.8763    | 0.0020                                     | 8.1        | V4         |
| 7  | F <sub>1</sub> | 6 | 8  | F <sub>2</sub> | 1  | 965.9432    | 0.3065                                     | -4.8       | V4         |
| 13 | F <sub>2</sub> | 2 | 13 | F <sub>1</sub> | 3  | 966.9143    | 0.0037                                     | -2.6       | ν4         |
| 13 | F <sub>1</sub> | 3 | 13 | F <sub>2</sub> | 2  | 966.9897    | 0.0026                                     | 5.1        | ν4         |
| 7  | E              | 4 | 8  | E              | 1  | 967.5201    | 0.2195                                     | -3.2       | ν4         |
| 7  | F <sub>2</sub> | 5 | 8  | F <sub>1</sub> | 1  | 967.6108    | 0.3224                                     | -5.6       | ν4         |
| 7  | A <sub>2</sub> | 2 | 8  | A <sub>1</sub> | 1  | 967.7539    | 0.2726                                     | -4.6       | ν4         |
| 6  | F <sub>2</sub> | 4 | 7  | F <sub>1</sub> | 2  | 968.2174    | 0.3341                                     | -4.0       | ν4         |
| 12 | F <sub>1</sub> | 1 | 12 | F <sub>2</sub> | 2  | 968.5121    | 0.0016                                     | 9.6        | ν4         |
| 13 | Е              | 2 | 13 | Е              | 1  | 968.5396    | 0.0061                                     | 8.3        | ν4         |
| 13 | F <sub>2</sub> | 3 | 13 | F <sub>1</sub> | 2  | 968.5437    | 0.0078                                     | -5.6       | ν4         |
| 13 | A <sub>2</sub> | 2 | 13 | A <sub>1</sub> | 1  | 968.5508    | 0.0068                                     | 0.2        | ν4         |
| 4  | Е              | 1 | 5  | Е              | 1  | 968.6528    | 0.0036                                     | -7.3       | ν4         |
| 6  | Е              | 3 | 7  | Е              | 1  | 968.7832    | 0.2241                                     | -3.4       | ν4         |
| 6  | F <sub>1</sub> | 4 | 7  | F <sub>2</sub> | 2  | 969.1952    | 0.3299                                     | -4.4       | ν4         |
| 6  | A <sub>1</sub> | 2 | 7  | A <sub>2</sub> | 1  | 969.9986    | 0.2769                                     | -3.9       | ν4         |
| 12 | F <sub>1</sub> | 3 | 12 | F <sub>2</sub> | 1  | 970.8249    | 0.0088                                     | -2.4       | ν4         |
| 12 | F <sub>2</sub> | 3 | 12 | F <sub>1</sub> | 2  | 970.8404    | 0.0092                                     | 5.8        | ν4         |
| 6  | F <sub>1</sub> | 5 | 7  | F <sub>2</sub> | 1  | 971.1092    | 0.3505                                     | -2.8       | ν4         |
| 6  | F <sub>2</sub> | 5 | 7  | F <sub>1</sub> | 1  | 971.3114    | 0.3485                                     | -4.3       | ν4         |
| 11 | F <sub>1</sub> | 2 | 11 | F <sub>2</sub> | 3  | 971.8735    | 0.0025                                     | 11.3       | ν4         |
| 5  | A <sub>2</sub> | 2 | 6  | A <sub>1</sub> | 1  | 972.4829    | 0.2877                                     | -3.5       | ν4         |
| 5  | F <sub>2</sub> | 4 | 6  | F <sub>1</sub> | 1  | 972.8792    | 0.3389                                     | -4.8       | ν4         |
| 11 | A <sub>1</sub> | 1 | 11 | A <sub>2</sub> | 1  | 973.0651    | 0.0087                                     | 6.7        | ν4         |
| 11 | F <sub>1</sub> | 3 | 11 | F <sub>2</sub> | 2  | 973.0956    | 0.0093                                     | 6.2        | ν4         |
| 11 | Е              | 2 | 11 | Е              | 1  | 973.1092    | 0.0059                                     | 4.8        | ν4         |
| 5  | F <sub>1</sub> | 3 | 6  | F <sub>2</sub> | 2  | 973.3105    | 0.3357                                     | -5.1       | ν4         |
| 10 | A <sub>2</sub> | 1 | 10 | A <sub>1</sub> | 1  | 973.9576    | 0.0042                                     | 3.8        | ν4         |
| 5  | A <sub>1</sub> | 1 | 6  | A <sub>2</sub> | 1  | 974.3796    | 0.2943                                     | -3.9       | ν4         |
| 3  | F <sub>1</sub> | 2 | 4  | F <sub>2</sub> | 1  | 974.5687    | 0.0027                                     | 8.2        | ν4         |
| 5  | F <sub>1</sub> | 4 | 6  | F <sub>2</sub> | 1  | 974.8222    | 0.3505                                     | -4.4       | ν4         |
| 5  | Е              | 3 | 6  | Е              | 1  | 974.9388    | 0.2371                                     | -3.5       | ν4         |
| 10 | F <sub>1</sub> | 2 | 10 | F <sub>2</sub> | 2  | 975.3079    | 0.0096                                     | 6.3        | <b>v</b> 4 |
| 10 | F <sub>2</sub> | 3 | 10 | F <sub>1</sub> | 1  | 975.3552    | 0.0072                                     | 0.3        | ν4         |
| 9  | F <sub>2</sub> | 1 | 9  | $F_1$          | 2  | 976.4325    | 0.0015                                     | -6.5       | ν4         |

Table D.3 – Continued.

| J  | γ              | п      | J' | γ'             | n' | $v^{exp}$ ,      | $S_{\nu}^{exp}$ ,        | δ,   | Band       |
|----|----------------|--------|----|----------------|----|------------------|--------------------------|------|------------|
|    | ,              |        |    | ,              |    | cm <sup>-1</sup> | $cm^{-2} \cdot atm^{-1}$ | %    | (          |
|    | 1              | 2      | -  | 2              |    | 3                | 4                        | 5    | 0          |
| 4  | F <sub>2</sub> | 3      | 5  | F <sub>1</sub> | 2  | 976.9651         | 0.3261                   | -5.1 | ν4         |
| 4  | E              | 2      | 5  | E              | 1  | 977.2257         | 0.2238                   | -1.5 | ν4         |
| 21 | F <sub>1</sub> | 7      | 21 | F <sub>2</sub> | 2  | 977.2821         | 0.0045                   | 1.0  | ν4         |
| 21 | F <sub>2</sub> | 8      | 21 | F <sub>1</sub> | 3  | 977.2876         | 0.0042                   | -6.4 | ν4         |
| 9  | E              | 2      | 9  | E              | 1  | 977.5087         | 0.0056                   | 1.0  | ν4         |
| 9  | F <sub>2</sub> | 2      | 9  | F <sub>1</sub> | 2  | 977.5449         | 0.0073                   | 8.3  | ν4         |
| 9  | A <sub>2</sub> | 1      | 9  | A <sub>1</sub> | 1  | 977.6029         | 0.0051                   | 0.7  | ν4         |
| 4  | F <sub>1</sub> | 3      | 5  | F <sub>2</sub> | 1  | 978.1265         | 0.3342                   | -4.8 | ν4         |
| 23 | F <sub>2</sub> | 8      | 23 | F <sub>1</sub> | 3  | 978.2794         | 0.0014                   | -8.4 | ν4         |
| 4  | F <sub>2</sub> | 4      | 5  | F <sub>1</sub> | 1  | 978.5589         | 0.3355                   | -4.6 | ν4         |
| 8  | F <sub>2</sub> | 2      | 8  | F <sub>1</sub> | 2  | 979.7716         | 0.0053                   | 6.3  | ν4         |
| 22 | F <sub>2</sub> | 9      | 22 | F <sub>1</sub> | 3  | 980.2258         | 0.0025                   | -7.9 | ν4         |
| 22 | F <sub>1</sub> | 8      | 22 | F <sub>2</sub> | 3  | 980.2487         | 0.0030                   | 9.1  | $\nu_4$    |
| 3  | F <sub>1</sub> | 3      | 4  | F <sub>2</sub> | 1  | 981.0228         | 0.2925                   | -4.3 | $\nu_4$    |
| 16 | F <sub>1</sub> | 5      | 16 | F <sub>2</sub> | 1  | 981.4863         | 0.0444                   | 5.8  | $\nu_4$    |
| 16 | F <sub>2</sub> | 6      | 16 | $F_1$          | 2  | 981.4903         | 0.0396                   | -5.8 | $\nu_4$    |
| 3  | Е              | 2      | 4  | Е              | 1  | 981.6837         | 0.2032                   | -1.6 | $\nu_4$    |
| 7  | A <sub>1</sub> | 1      | 7  | A <sub>2</sub> | 1  | 981.7353         | 0.0066                   | 3.7  | ν4         |
| 12 | A <sub>2</sub> | 1      | 12 | A <sub>1</sub> | 1  | 981.8729         | 0.1403                   | 1.9  | $\nu_4$    |
| 12 | F <sub>2</sub> | 4      | 12 | F <sub>1</sub> | 1  | 981.8792         | 0.1760                   | 6.1  | $\nu_4$    |
| 3  | F <sub>2</sub> | 2      | 4  | F <sub>1</sub> | 1  | 981.9316         | 0.2987                   | -3.8 | $\nu_4$    |
| 21 | Е              | 6      | 21 | Е              | 2  | 982.1351         | 0.0029                   | -8.7 | ν4         |
| 21 | F <sub>1</sub> | 8      | 21 | F <sub>2</sub> | 3  | 982.1417         | 0.0043                   | -7.6 | $\nu_4$    |
| 3  | A <sub>2</sub> | 1      | 4  | A <sub>1</sub> | 1  | 982.2444         | 0.2542                   | -2.2 | ν4         |
| 23 | F <sub>1</sub> | 10     | 23 | F <sub>2</sub> | 4  | 982.5539         | 0.0013                   | 0.3  | ν4         |
| 18 | A <sub>2</sub> | 2      | 18 | A <sub>1</sub> | 1  | 983.0947         | 0.0171                   | 4.6  | ν4         |
| 18 | F <sub>2</sub> | 7      | 18 | F <sub>1</sub> | 2  | 983.1060         | 0.0198                   | 1.9  | ν4         |
| 18 | Е              | 5      | 18 | Е              | 2  | 983.1112         | 0.0129                   | -0.5 | ν4         |
| 15 | A <sub>1</sub> | 2      | 15 | A <sub>2</sub> | 1  | 983.4034         | 0.0505                   | -1.5 | ν4         |
| 15 | F <sub>1</sub> | 6      | 15 | F <sub>2</sub> | 2  | 983.4152         | 0.0638                   | 3.9  | ν4         |
| 15 | Е              | 4      | 15 | Е              | 1  | 983.4211         | 0.0386                   | -5.9 | ν4         |
| 6  | F <sub>1</sub> | 1      | 6  | F <sub>2</sub> | 2  | 983.9322         | 0.0037                   | -1.8 | ν4         |
| 20 | F <sub>1</sub> | 8      | 20 | F <sub>2</sub> | 3  | 983.9685         | 0.0081                   | 1.9  | ν4         |
| 20 | F <sub>2</sub> | 8      | 20 | F <sub>1</sub> | 3  | 983.9882         | 0.0080                   | 7.4  | ν4         |
| 11 | F <sub>2</sub> | 3      | 11 | F <sub>1</sub> | 1  | 984.0548         | 0.2075                   | -1.3 | ν4         |
| 11 | F <sub>1</sub> | 4      | 11 | F <sub>2</sub> | 1  | 984.0677         | 0.2104                   | 0.2  | ν4         |
| 22 | F1             | 9      | 22 | F <sub>2</sub> | 4  | 984.3938         | 0.0024                   | -0.6 | V4         |
| 2  | A <sub>1</sub> | 1      | 3  | A <sub>2</sub> | 1  | 984.8366         | 0.1992                   | -2.2 | V4         |
| 17 | F2             | 7      | 17 | -<br>F1        | 3  | 984,9011         | 0.0308                   | 1.7  | V4         |
| 17 | F1             | ,<br>6 | 17 | F <sub>2</sub> | 2  | 984 9368         | 0.0298                   | 0.7  | <br>V4     |
| 14 | F1             | 5      | 14 | F <sub>2</sub> | 2  | 985,2531         | 0.0900                   | 2.9  | ν4<br>V4   |
| 2  | F1             | 2      | 3  | F <sub>2</sub> | 1  | 985 2848         | 0.2287                   | -7.0 | V4         |
| 2  | E <sub>2</sub> | 2      | 3  | E.             | 1  | 085 6156         | 0.2207                   | -2.5 | V4         |
| 4  | 1.5            | 4      | 5  | 1.1            | 1  | 202.0120         | 0.2402                   | 2.3  | <b>v</b> 4 |

Table D.3 – Continued.

| J  | γ              | п | J' | γ'             | n' | $v^{exp}$ , | $S_{\nu}^{exp}$ ,                          | $\delta$ , 04 | Band           |
|----|----------------|---|----|----------------|----|-------------|--------------------------------------------|---------------|----------------|
|    | 1              |   |    | 2              |    | 3           | $\frac{\text{cm}^2 \cdot \text{atm}^4}{4}$ | %<br>5        | 6              |
| 19 | E              | 5 | 19 | E              | 2  | 985 6980    | 0.0092                                     | 39            | V4             |
| 19 | A <sub>2</sub> | 3 | 19 | A              | 1  | 985.8010    | 0.0111                                     | 2.4           | V4<br>V4       |
| 23 | A              | 4 | 23 | A <sub>2</sub> | 2  | 986.0385    | 0.0015                                     | -10.8         | V4             |
| 10 | E              | 2 | 10 | E              | 1  | 986.1013    | 0.1755                                     | 1.7           | V4             |
| 10 | <br>F1         | 3 | 10 | F <sub>2</sub> | 1  | 986.1139    | 0.2550                                     | -1.4          | V4             |
| 10 | A <sub>1</sub> | 2 | 10 | A <sub>2</sub> | 1  | 986,1394    | 0.2123                                     | -1.3          | V4             |
| 16 | E              | 4 | 16 | E              | 2  | 986 6065    | 0.0316                                     | 3.4           | V4             |
| 16 | F1             | 6 | 16 | E<br>F2        | 2  | 986.6462    | 0.0437                                     | -2.1          | V4<br>V4       |
| 16 | A              | 3 | 16 | A <sub>2</sub> | 1  | 986.7282    | 0.0380                                     | 0.8           | V4             |
| 13 | E              | 3 | 13 | E              | 1  | 987.0001    | 0.0816                                     | 1.4           | V4             |
| 13 | F <sub>2</sub> | 5 | 13 | <br>F1         | 2  | 987.0274    | 0.1207                                     | 0.7           | V4             |
| 13 | A2             | 3 | 13 | A              | 1  | 987.0839    | 0.1012                                     | 1.4           | V4             |
| 18 | F1             | 7 | 18 | F <sub>2</sub> | 3  | 987.3083    | 0.0221                                     | 4.0           | V4             |
| 20 | F <sub>2</sub> | 9 | 20 | F1             | 4  | 987.7185    | 0.0077                                     | 0.6           | V4             |
| 20 | F <sub>2</sub> | 9 | 20 | F <sub>1</sub> | 3  | 987.8265    | 0.0008                                     | -1.1          | V4             |
| 20 | E              | 6 | 20 | E              | 3  | 987.8675    | 0.0053                                     | 2.2           | V4             |
| 9  | F <sub>2</sub> | 3 | 9  | <br>F1         | 1  | 987.9975    | 0.3014                                     | -2.2          | V4             |
| 9  |                | 3 | 9  | F <sub>2</sub> | 1  | 988.0447    | 0.2972                                     | -3.3          | V4             |
| 15 | F <sub>2</sub> | 5 | 15 | F1             | 2  | 988.1944    | 0.0671                                     | -0.1          | V4             |
| 15 | F1             | 7 | 15 | F <sub>2</sub> | 3  | 988.3524    | 0.0689                                     | 4.5           | V4             |
| 12 | F <sub>1</sub> | 4 | 12 | F <sub>2</sub> | 1  | 988.6298    | 0.1611                                     | -0.1          | V4             |
| 17 | A <sub>1</sub> | 2 | 17 | A2             | 1  | 988.6606    | 0.0283                                     | -2.3          | V4             |
| 12 | F <sub>2</sub> | 5 | 12 | F <sub>1</sub> | 2  | 988.7332    | 0.1581                                     | -1.1          | ν4             |
| 17 | F <sub>1</sub> | 7 | 17 | F <sub>2</sub> | 3  | 988.9280    | 0.0319                                     | 0.8           | ν4             |
| 1  | F <sub>1</sub> | 1 | 2  | F <sub>2</sub> | 1  | 988.9443    | 0.1613                                     | 1.4           | ν4             |
| 19 | F <sub>2</sub> | 8 | 19 | F <sub>1</sub> | 4  | 989.0115    | 0.0143                                     | 6.2           | ν4             |
| 1  | Е              | 1 | 2  | Е              | 1  | 989.1555    | 0.1111                                     | 4.3           | ν4             |
| 19 | F <sub>1</sub> | 9 | 19 | F <sub>2</sub> | 5  | 989.3057    | 0.0014                                     | -6.7          | ν4             |
| 19 | F <sub>1</sub> | 9 | 19 | F <sub>2</sub> | 4  | 989.4351    | 0.0130                                     | 2.5           | ν4             |
| 14 | A <sub>2</sub> | 2 | 14 | A <sub>1</sub> | 1  | 989.5409    | 0.0826                                     | 0.9           | ν4             |
| 8  | A <sub>2</sub> | 1 | 8  | A <sub>1</sub> | 1  | 989.6844    | 0.2889                                     | -2.6          | ν4             |
| 8  | F <sub>2</sub> | 3 | 8  | $F_1$          | 1  | 989.7642    | 0.3383                                     | -4.2          | ν4             |
| 14 | F <sub>2</sub> | 6 | 14 | F <sub>1</sub> | 2  | 989.7738    | 0.0937                                     | -0.2          | ν4             |
| 8  | Е              | 2 | 8  | Е              | 1  | 989.8066    | 0.2349                                     | 0.3           | ν4             |
| 14 | Е              | 4 | 14 | Е              | 2  | 989.9137    | 0.0626                                     | 1.5           | ν <sub>4</sub> |
| 11 | A <sub>1</sub> | 2 | 11 | A <sub>2</sub> | 1  | 990.0468    | 0.1786                                     | 1.3           | ν4             |
| 20 | F <sub>1</sub> | 9 | 20 | F <sub>2</sub> | 4  | 990.0764    | 0.0104                                     | 7.1           | ν4             |
| 16 | F <sub>1</sub> | 7 | 16 | F <sub>2</sub> | 3  | 990.1393    | 0.0495                                     | 0.2           | ν4             |
| 11 | F <sub>1</sub> | 5 | 11 | F <sub>2</sub> | 2  | 990.2057    | 0.2051                                     | -0.9          | ν4             |
| 11 | Е              | 3 | 11 | Е              | 1  | 990.2963    | 0.1396                                     | 1.9           | ν4             |
| 18 | F <sub>1</sub> | 8 | 18 | F <sub>2</sub> | 4  | 990.5343    | 0.0237                                     | 8.9           | ν4             |
| 16 | F <sub>2</sub> | 7 | 16 | F <sub>1</sub> | 3  | 990.5616    | 0.0458                                     | -0.2          | ν4             |
| 19 | A <sub>1</sub> | 4 | 19 | A <sub>2</sub> | 2  | 990.9053    | 0.0136                                     | 0.9           | ν4             |

Table D.3 – Continued.

| J  | γ              | n  | J' | γ'             | n' | $v^{exp}$ , $cm^{-1}$ | $S_{\nu}^{exp}$ , $am^{-2}$ $atm^{-1}$ | $\delta$ , % | Band    |
|----|----------------|----|----|----------------|----|-----------------------|----------------------------------------|--------------|---------|
|    | 1              |    |    | 2              |    | 3                     | <u>4</u>                               | 5            | 6       |
| 13 | F <sub>2</sub> | 6  | 13 | -<br>F1        | 3  | 990.9708              | 0.1349                                 | 1.7          | V4      |
| 7  | F <sub>2</sub> | 2  | 7  | F <sub>1</sub> | 1  | 991.2596              | 0.3771                                 | -3.7         | ν4      |
| 20 | F <sub>2</sub> | 10 | 20 | F <sub>1</sub> | 5  | 991.2782              | 0.0066                                 | -12.4        | V4      |
| 15 | E              | 5  | 15 | E              | 2  | 991.3093              | 0.0510                                 | 2.1          | V4      |
| 13 | F <sub>1</sub> | 5  | 13 | F <sub>2</sub> | 2  | 991.3313              | 0.1203                                 | -3.3         | ν4      |
| 7  | F <sub>1</sub> | 3  | 7  | F <sub>2</sub> | 1  | 991.3952              | 0.3679                                 | -4.8         | V4      |
| 10 | F1             | 4  | 10 | F <sub>2</sub> | 2  | 991.4638              | 0.2561                                 | -2.4         | V4      |
| 15 | F <sub>2</sub> | 6  | 15 | F <sub>1</sub> | 3  | 991.5794              | 0.0741                                 | 5.2          | ν4      |
| 18 | A <sub>1</sub> | 3  | 18 | A <sub>2</sub> | 2  | 991.6538              | 0.0175                                 | 3.9          | ν4      |
| 10 | F <sub>2</sub> | 4  | 10 | F <sub>1</sub> | 2  | 991.7007              | 0.0076                                 | 8.2          | ν4      |
| 10 | F <sub>2</sub> | 4  | 10 | F <sub>1</sub> | 1  | 991.7193              | 0.2557                                 | 1.2          | ν4      |
| 21 | F <sub>1</sub> | 10 | 21 | F <sub>2</sub> | 5  | 991.8993              | 0.0045                                 | -3.3         | ν4      |
| 16 | A <sub>2</sub> | 3  | 16 | A <sub>1</sub> | 2  | 992.0609              | 0.0480                                 | 3.9          | ν4      |
| 12 | Е              | 4  | 12 | Е              | 2  | 992.1080              | 0.1180                                 | -0.8         | ν4      |
| 12 | F <sub>1</sub> | 5  | 12 | F <sub>2</sub> | 2  | 992.3388              | 0.1762                                 | 3.0          | ν4      |
| 19 | Е              | 6  | 19 | Е              | 3  | 992.5474              | 0.0084                                 | -4.7         | ν4      |
| 6  | Е              | 2  | 6  | Е              | 1  | 992.5826              | 0.2716                                 | -1.5         | ν4      |
| 0  | F <sub>2</sub> | 1  | 1  | F <sub>1</sub> | 1  | 992.6059              | 0.0566                                 | 1.2          | ν4      |
| 9  | Е              | 3  | 9  | Е              | 1  | 992.6210              | 0.2127                                 | 0.8          | ν4      |
| 15 | A <sub>2</sub> | 2  | 15 | A <sub>1</sub> | 1  | 992.6368              | 0.0568                                 | 0.5          | ν4      |
| 17 | F <sub>1</sub> | 8  | 17 | F <sub>2</sub> | 4  | 992.6454              | 0.0310                                 | -0.6         | ν4      |
| 6  | F <sub>1</sub> | 2  | 6  | F <sub>2</sub> | 1  | 992.6836              | 0.3938                                 | -3.9         | ν4      |
| 9  | F <sub>2</sub> | 4  | 9  | F <sub>1</sub> | 2  | 992.7919              | 0.3051                                 | -1.4         | ν4      |
| 18 | F <sub>1</sub> | 9  | 18 | F <sub>2</sub> | 5  | 992.8468              | 0.0212                                 | 7.3          | ν4      |
| 6  | A <sub>1</sub> | 1  | 6  | A <sub>2</sub> | 1  | 992.9326              | 0.3305                                 | -2.4         | ν4      |
| 13 | A <sub>1</sub> | 2  | 13 | A <sub>2</sub> | 1  | 992.9856              | 0.1210                                 | 0.6          | ν4      |
| 11 | F <sub>2</sub> | 4  | 11 | F <sub>1</sub> | 2  | 993.0700              | 0.2242                                 | -2.1         | ν4      |
| 12 | A <sub>1</sub> | 2  | 12 | A <sub>2</sub> | 1  | 993.1557              | 0.1409                                 | 0.3          | ν4      |
| 16 | F <sub>2</sub> | 8  | 16 | F <sub>1</sub> | 4  | 993.2022              | 0.0445                                 | -0.7         | ν4      |
| 16 | F <sub>2</sub> | 8  | 16 | $F_1$          | 3  | 993.2736              | 0.0060                                 | -5.4         | $\nu_4$ |
| 9  | A <sub>2</sub> | 2  | 9  | A <sub>1</sub> | 1  | 993.3083              | 0.2485                                 | -3.1         | $\nu_4$ |
| 18 | F <sub>2</sub> | 9  | 18 | $F_1$          | 4  | 993.4104              | 0.0229                                 | 4.5          | $\nu_4$ |
| 14 | $F_2$          | 7  | 14 | $F_1$          | 3  | 993.4926              | 0.0965                                 | 0.0          | $\nu_4$ |
| 8  | F <sub>1</sub> | 3  | 8  | $F_2$          | 1  | 993.5876              | 0.3532                                 | -3.5         | $\nu_4$ |
| 17 | Е              | 6  | 17 | Е              | 3  | 993.6506              | 0.0241                                 | 9.3          | $\nu_4$ |
| 5  | F <sub>2</sub> | 2  | 5  | $F_1$          | 1  | 993.6758              | 0.3946                                 | -5.0         | $\nu_4$ |
| 10 | A <sub>2</sub> | 2  | 10 | A <sub>1</sub> | 1  | 993.7096              | 0.2226                                 | -5.9         | ν4      |
| 17 | Е              | 6  | 17 | Е              | 2  | 993.7591              | 0.0022                                 | 8.8          | ν4      |
| 15 | F <sub>2</sub> | 7  | 15 | F <sub>1</sub> | 4  | 993.8531              | 0.0683                                 | -0.2         | ν4      |
| 18 | A <sub>2</sub> | 3  | 18 | A <sub>1</sub> | 2  | 993.8930              | 0.0198                                 | 2.9          | ν4      |
| 15 | F <sub>2</sub> | 7  | 15 | $F_1$          | 3  | 993.9071              | 0.0060                                 | 8.7          | ν4      |
| 13 | F <sub>1</sub> | 6  | 13 | F <sub>2</sub> | 3  | 993.9559              | 0.1282                                 | 0.2          | ν4      |
| 11 | F <sub>1</sub> | 6  | 11 | F <sub>2</sub> | 3  | 993.9784              | 0.2189                                 | 0.0          | ν4      |

Table D.3 – Continued.

| J  | γ              | п | J' | γ'             | n'  | $v^{exp}$ , | $S_{\nu}^{exp}$ ,                          | $\delta, $ | Band     |
|----|----------------|---|----|----------------|-----|-------------|--------------------------------------------|------------|----------|
|    | 1              |   |    | 2              |     | 3           | $\frac{\text{cm}^2 \cdot \text{atm}^4}{4}$ | %<br>5     | 6        |
| 5  | F1             | 2 | 5  | E <sub>2</sub> | 1   | 994 0095    | 0 4043                                     | -1 4       | V4       |
| 17 | F <sub>2</sub> | 9 | 17 | F <sub>1</sub> | 5   | 994.0164    | 0.0322                                     | -8.3       | V4<br>V4 |
| 8  | F <sub>2</sub> | 4 | 8  | F1             | 2   | 994,1913    | 0.3428                                     | -4.8       | V4       |
| 7  | A1             | 2 | 7  | A <sub>2</sub> | 1   | 994.2300    | 0.3257                                     | -3.4       | V4       |
| 4  | A <sub>2</sub> | 1 | 4  | A <sub>1</sub> | 1   | 994.4143    | 0.3186                                     | -2.7       | V4       |
| 13 | E              | 4 | 13 | E              | 2   | 994.4247    | 0.0929                                     | 0.9        | V4       |
| 10 | E<br>F2        | 5 | 10 | E <sub>1</sub> | 2   | 994 4389    | 0.2669                                     | -0.6       | V4       |
| 10 | F <sub>2</sub> | 5 | 10 | F1             | 1   | 994.4575    | 0.0116                                     | 10.1       | V4<br>V4 |
| 12 | F1             | 6 | 12 | F <sub>2</sub> | 3   | 994.5023    | 0.1711                                     | -2.0       | V4       |
| 14 | E              | 5 | 14 | E              | 3   | 994.5101    | 0.0635                                     | -7.3       | V4       |
| 12 | <br>F1         | 6 | 12 | F <sub>2</sub> | 2   | 994.5289    | 0.0092                                     | 8.1        | V4       |
| 7  | F <sub>1</sub> | 4 | 7  | F <sub>2</sub> | 2   | 994.7305    | 0.3780                                     | -5.5       | V4       |
| 4  | F <sub>2</sub> | 2 | 4  | F <sub>1</sub> | 1   | 994,7419    | 0.3758                                     | -3.6       | V4       |
| 9  | F2             | 5 | 9  | F <sub>1</sub> | 3   | 994.9284    | 0.3194                                     | -1.5       | V4       |
| 9  | F <sub>2</sub> | 5 | 9  | F1             | 2   | 994,9407    | 0.0074                                     | -3.1       | V4       |
| 4  | E              | 1 | 4  | E              | - 1 | 994,9676    | 0.2549                                     | -1.4       | V4       |
| 12 | E <sub>2</sub> | 6 | 12 | F1             | 3   | 995.0126    | 0.1834                                     | -1.0       | V4       |
| 7  | E              | 2 | 7  | E              | 1   | 995.0592    | 0.2619                                     | -2.5       | V4       |
| 11 | E              | 4 | 11 | E              | 2   | 995.0694    | 0.1529                                     | -1.3       | V4       |
| 13 | E<br>F2        | 7 | 13 | F1             | 4   | 995.1097    | 0.1482                                     | 2.8        | V4<br>V4 |
| 6  | F <sub>1</sub> | 3 | 6  | F <sub>2</sub> | 2   | 995.2008    | 0.4008                                     | -5.1       | V4       |
| 3  | F <sub>2</sub> | 1 | 3  | F1             | 1   | 995.2579    | 0.3273                                     | -3.9       | V4       |
| 11 | F <sub>2</sub> | 5 | 11 | F <sub>1</sub> | 3   | 995.3744    | 0.2334                                     | -1.4       | V4       |
| 9  | F <sub>1</sub> | 4 | 9  | F <sub>2</sub> | 2   | 995.3991    | 0.3252                                     | -3.2       | V4       |
| 8  | E              | 3 | 8  | E              | 2   | 995.4389    | 0.2481                                     | -2.0       | V4       |
| 12 | A <sub>2</sub> | 2 | 12 | Aı             | 2   | 995.4524    | 0.1560                                     | -1.8       | v4       |
| 10 | F <sub>1</sub> | 5 | 10 | F <sub>2</sub> | 3   | 995.5659    | 0.2804                                     | -3.3       | ν4       |
| 6  | F <sub>2</sub> | 3 | 6  | F <sub>1</sub> | 1   | 995.6166    | 0.4077                                     | -4.9       | ν4       |
| 3  | F <sub>1</sub> | 2 | 3  | F <sub>2</sub> | 1   | 995.6242    | 0.3167                                     | -7.1       | ν4       |
| 5  | Е              | 2 | 5  | Е              | 1   | 995.6698    | 0.2764                                     | -2.3       | ν4       |
| 8  | F <sub>1</sub> | 4 | 8  | F <sub>2</sub> | 2   | 995.7009    | 0.3650                                     | -4.8       | ν4       |
| 2  | Е              | 1 | 2  | Е              | 1   | 995.7127    | 0.1760                                     | -0.1       | ν4       |
| 9  | A <sub>1</sub> | 1 | 9  | A <sub>2</sub> | 1   | 995.8312    | 0.2778                                     | -2.8       | ν4       |
| 7  | F <sub>2</sub> | 3 | 7  | F <sub>1</sub> | 2   | 995.8539    | 0.4014                                     | -4.0       | ν4       |
| 5  | F <sub>2</sub> | 3 | 5  | F <sub>1</sub> | 2   | 995.8833    | 0.4071                                     | -4.5       | ν4       |
| 2  | F <sub>1</sub> | 1 | 2  | F <sub>2</sub> | 1   | 995.8951    | 0.2591                                     | -1.9       | ν4       |
| 1  | F <sub>2</sub> | 1 | 1  | F <sub>1</sub> | 1   | 996.0051    | 0.1671                                     | -0.2       | ν4       |
| 4  | F <sub>1</sub> | 2 | 4  | F <sub>2</sub> | 1   | 996.0140    | 0.3786                                     | -5.1       | ν4       |
| 6  | A <sub>2</sub> | 1 | 6  | A <sub>1</sub> | 1   | 996.0599    | 0.3495                                     | -3.8       | ν4       |
| 3  | A <sub>1</sub> | 1 | 3  | A <sub>2</sub> | 1   | 996.1678    | 0.2810                                     | -2.1       | ν4       |
| 1  | A <sub>2</sub> | 1 | 0  | A <sub>1</sub> | 1   | 999.4944    | 0.1448                                     | 1.2        | ν4       |
| 3  | F <sub>1</sub> | 3 | 3  | F <sub>2</sub> | 1   | 1002.0782   | 0.0032                                     | 3.5        | ν4       |
| 2  | F <sub>2</sub> | 1 | 1  | F <sub>1</sub> | 1   | 1002.8181   | 0.2735                                     | -1.7       | ν4       |

| J  | γ              | п      | J' | γ'             | n' | $v^{exp}$ ,     | $S_{\nu}^{exp}$ ,  | $\delta, \delta, \delta$ | Band           |
|----|----------------|--------|----|----------------|----|-----------------|--------------------|--------------------------|----------------|
|    | 1              |        |    | 2              |    | cm <sup>1</sup> | $cm^2 \cdot atm^4$ | %                        | 6              |
| 4  | I<br>E.        | 2      | 4  | Z<br>E.        | 1  | J<br>1002 2807  | 4                  |                          | 0              |
| 4  | Г2<br>Е        | 2      | 4  |                | 1  | 1003.2807       | 0.0050             | -4.0                     | V4             |
| 5  | E<br>E         |        | 5  | E<br>E         | 1  | 1003.3400       | 0.0039             | 9.7<br>2.1               | V4             |
| 5  | Г2<br>Е        | 4      | 5  | Г]<br>Е.       | 1  | 1004.4330       | 0.0041             | 2.1                      | V4             |
| 5  | Г1<br>Е        | 2      | 5  | Г2<br>Е        | 1  | 1004.8823       | 0.0111             | 0.5<br>4.2               | V4             |
| 0  | E              | 3      | 0  | E              | 1  | 1005.0117       | 0.0033             | 4.5                      | V4             |
| 0  |                | 4      | 0  | F <sub>2</sub> | 1  | 1006.0220       | 0.0091             | 4.2                      | ν <sub>4</sub> |
| 3  |                | 1      | 2  | F <sub>2</sub> | 1  | 1006.0451       | 0.3530             | -4.4                     | ν4             |
| 3  | E              | ۱<br>ټ | 2  | E              | 1  | 1006.0932       | 0.2430             | -1.1                     | ν4             |
| 8  | F <sub>1</sub> | 5      | 8  | $F_2$          | 1  | 1006.4374       | 0.0041             | 6.1                      | ν4             |
| 9  | $F_1$          | 5      | 9  | F <sub>2</sub> | 2  | 1006.5334       | 0.0028             | 4.3                      | ν4             |
| 7  | F <sub>2</sub> | 4      | 7  | $F_1$          | 1  | 1006.8413       | 0.0106             | 0.5                      | ν4             |
| 11 | F <sub>2</sub> | 6      | 11 | F <sub>1</sub> | 3  | 1006.8867       | 0.0015             | 4.3                      | ν4             |
| 8  | F <sub>2</sub> | 5      | 8  | F <sub>1</sub> | 2  | 1006.9051       | 0.0094             | 7.9                      | ν4             |
| 13 | F <sub>2</sub> | 8      | 13 | $F_1$          | 3  | 1007.0270       | 0.0046             | 2.8                      | ν4             |
| 9  | Е              | 4      | 9  | Е              | 1  | 1007.0450       | 0.0055             | 9.1                      | $\nu_4$        |
| 11 | F <sub>1</sub> | 7      | 11 | F <sub>2</sub> | 3  | 1007.3312       | 0.0040             | 2.3                      | ν4             |
| 9  | F <sub>2</sub> | 6      | 9  | F <sub>1</sub> | 1  | 1007.5328       | 0.0023             | -7.4                     | ν4             |
| 10 | F <sub>1</sub> | 6      | 10 | F <sub>2</sub> | 2  | 1007.6979       | 0.0089             | -1.1                     | ν4             |
| 8  | A <sub>2</sub> | 2      | 8  | A <sub>1</sub> | 1  | 1007.7214       | 0.0104             | 6.5                      | $\nu_4$        |
| 11 | A <sub>1</sub> | 3      | 11 | A <sub>2</sub> | 1  | 1007.9399       | 0.0084             | -0.1                     | $\nu_4$        |
| 7  | $F_1$          | 6      | 7  | $F_2$          | 2  | 1008.0081       | 0.0060             | -3.1                     | $\nu_4$        |
| 7  | F <sub>1</sub> | 6      | 7  | F <sub>2</sub> | 1  | 1008.0174       | 0.0135             | -2.9                     | $\nu_4$        |
| 8  | $F_2$          | 6      | 8  | $F_1$          | 2  | 1009.0571       | 0.0093             | 2.3                      | $\nu_4$        |
| 4  | A <sub>1</sub> | 1      | 3  | A <sub>2</sub> | 1  | 1009.0862       | 0.3512             | -3.7                     | $\nu_4$        |
| 4  | F <sub>1</sub> | 1      | 3  | $F_2$          | 1  | 1009.2080       | 0.4153             | -5.1                     | ν4             |
| 9  | $A_2$          | 3      | 9  | A <sub>1</sub> | 1  | 1009.2702       | 0.0217             | 0.9                      | $\nu_4$        |
| 8  | Е              | 4      | 8  | Е              | 2  | 1009.2845       | 0.0028             | 3.0                      | $\nu_4$        |
| 4  | F <sub>2</sub> | 1      | 3  | F <sub>1</sub> | 1  | 1009.3146       | 0.4157             | -5.0                     | ν4             |
| 10 | $F_2$          | 7      | 10 | $F_1$          | 2  | 1010.0895       | 0.0129             | 2.7                      | ν4             |
| 10 | F <sub>2</sub> | 7      | 10 | F <sub>1</sub> | 1  | 1010.1081       | 0.0124             | 2.4                      | ν4             |
| 9  | F <sub>2</sub> | 7      | 9  | F <sub>1</sub> | 3  | 1010.1224       | 0.0068             | 8.5                      | ν4             |
| 9  | F <sub>2</sub> | 7      | 9  | $F_1$          | 1  | 1010.1565       | 0.0108             | -1.7                     | ν4             |
| 9  | F <sub>1</sub> | 6      | 9  | F <sub>2</sub> | 2  | 1010.5410       | 0.0031             | -1.8                     | ν4             |
| 9  | F <sub>1</sub> | 6      | 9  | F <sub>2</sub> | 1  | 1010.5767       | 0.0153             | 0.7                      | ν4             |
| 12 | A <sub>1</sub> | 3      | 12 | A <sub>2</sub> | 1  | 1010.6991       | 0.0195             | 3.3                      | ν4             |
| 11 | F <sub>1</sub> | 8      | 11 | F <sub>2</sub> | 3  | 1010.7166       | 0.0152             | 3.7                      | ν4             |
| 11 | F <sub>1</sub> | 8      | 11 | F <sub>2</sub> | 2  | 1010.7513       | 0.0091             | 7.7                      | ν4             |
| 21 | A <sub>2</sub> | 5      | 21 | A <sub>1</sub> | 2  | 1010.9104       | 0.0019             | -7.9                     | ν4             |
| 11 | Е              | 5      | 11 | Е              | 2  | 1011.0290       | 0.0049             | 0.0                      | ν4             |
| 13 | F <sub>1</sub> | 8      | 13 | F <sub>2</sub> | 3  | 1011.1968       | 0.0146             | 4.9                      | ν4             |
| 20 | F <sub>2</sub> | 12     | 20 | F <sub>1</sub> | 5  | 1011.2376       | 0.0034             | 0.9                      | ν4             |
| 18 | A <sub>1</sub> | 4      | 18 | A <sub>2</sub> | 2  | 1011.2459       | 0.0058             | 0.5                      | ν4             |
| 15 | A <sub>2</sub> | 3      | 15 | A <sub>1</sub> | 1  | 1011.2749       | 0.0120             | -1.0                     | ν4             |

Table D.3 – Continued.

| J  | γ              | n  | J' | γ'             | n'     | $v^{\exp}$ ,    | $S_{\nu}^{exp}$ ,                          | $\delta, \delta'$ | Band           |
|----|----------------|----|----|----------------|--------|-----------------|--------------------------------------------|-------------------|----------------|
|    | 1              |    |    | 2              |        | cm <sup>1</sup> | $\frac{\text{cm}^2 \cdot \text{atm}^4}{4}$ | %                 | 6              |
| 10 | I<br>E.        | 12 | 10 | Z<br>E.        | 5      | 1011 2226       | 4                                          | _16               | 0              |
| 19 | Г]<br>Е.       | 12 | 19 | Г2<br>Еа       | 3<br>2 | 1011.5250       | 0.0044                                     | -14.0             | V4             |
| 14 | F <sub>2</sub> | 0  | 14 | 12<br>E.       | 2      | 1011.4097       | 0.0020                                     | 5.8               | V4             |
| 14 | Г2<br>Е.       | 9  | 14 | Г]<br>Е.       | 3      | 1011.4010       | 0.0140                                     |                   | V4             |
| 10 | Г2<br>Е.       | 10 | 10 | Г1<br>Еа       | 4      | 1011.5188       | 0.0094                                     | -1.5              | V4             |
| 17 |                | 10 | 17 | Г2<br>Е        | 4      | 1011.5005       | 0.0073                                     | -0.1              | V4             |
| 10 | F <sub>2</sub> | 10 | 10 |                | 3      | 1011.5905       | 0.0020                                     | 0.8               | ν <sub>4</sub> |
| 10 |                | /  | 10 | F <sub>2</sub> | 3      | 1011.6388       | 0.0027                                     | -10.2             | ν <sub>4</sub> |
| 10 |                | 1  | 10 | F <sub>2</sub> | 1      | 1011.6964       | 0.0131                                     | 2.4               | ν <sub>4</sub> |
| 14 | E              | 6  | 14 | E              | 2      | 1011.9038       | 0.0055                                     | 2.2               | ν4             |
| 12 | F <sub>2</sub> | 8  | 12 | F <sub>1</sub> | 2      | 1011.9946       | 0.0139                                     | 4.0               | ν4             |
| 10 | A <sub>1</sub> | 3  | 10 | A <sub>2</sub> | l      | 1012.0634       | 0.0128                                     | 0.9               | ν4             |
| 5  | F <sub>1</sub> | 1  | 4  | F <sub>2</sub> | 1      | 1012.1358       | 0.4490                                     | -6.8              | ν4             |
| 5  | E              | 1  | 4  | E              | 1      | 1012.3596       | 0.3103                                     | -2.6              | ν4             |
| 18 | F <sub>2</sub> | 11 | 18 | F <sub>1</sub> | 3      | 1012.3896       | 0.0019                                     | -3.0              | ν4             |
| 15 | F <sub>1</sub> | 10 | 15 | F <sub>2</sub> | 4      | 1012.4194       | 0.0062                                     | 1.9               | ν4             |
| 5  | F <sub>2</sub> | 1  | 4  | F <sub>1</sub> | 1      | 1012.4462       | 0.4505                                     | -6.1              | ν4             |
| 16 | E              | 7  | 16 | Е              | 2      | 1012.4780       | 0.0022                                     | -6.1              | ν4             |
| 15 | F <sub>1</sub> | 10 | 15 | F <sub>2</sub> | 3      | 1012.5184       | 0.0067                                     | 4.0               | ν4             |
| 21 | A <sub>1</sub> | 4  | 21 | A <sub>2</sub> | 2      | 1012.5542       | 0.0016                                     | 3.5               | ν4             |
| 5  | A <sub>2</sub> | 1  | 4  | A <sub>1</sub> | 1      | 1012.5731       | 0.3825                                     | -4.5              | ν4             |
| 13 | F <sub>2</sub> | 9  | 13 | F <sub>1</sub> | 4      | 1012.6394       | 0.0047                                     | -3.5              | ν4             |
| 13 | F <sub>2</sub> | 9  | 13 | F <sub>1</sub> | 2      | 1012.7350       | 0.0095                                     | 0.6               | ν4             |
| 11 | F <sub>2</sub> | 7  | 11 | F <sub>1</sub> | 1      | 1012.7852       | 0.0117                                     | 1.8               | ν4             |
| 16 | F <sub>1</sub> | 10 | 16 | F <sub>2</sub> | 4      | 1012.8101       | 0.0046                                     | -3.3              | ν4             |
| 16 | F <sub>1</sub> | 10 | 16 | F <sub>2</sub> | 2      | 1012.9632       | 0.0037                                     | -0.9              | ν4             |
| 17 | F <sub>2</sub> | 11 | 17 | F <sub>1</sub> | 5      | 1012.9810       | 0.0049                                     | 0.0               | ν4             |
| 11 | $F_1$          | 9  | 11 | $F_2$          | 1      | 1013.1870       | 0.0124                                     | 0.6               | $\nu_4$        |
| 17 | F <sub>2</sub> | 11 | 17 | $F_1$          | 3      | 1013.1945       | 0.0031                                     | -0.7              | ν4             |
| 14 | $F_1$          | 9  | 14 | $F_2$          | 4      | 1013.2060       | 0.0062                                     | 1.5               | $\nu_4$        |
| 13 | A <sub>2</sub> | 4  | 13 | A <sub>1</sub> | 1      | 1013.3785       | 0.0105                                     | -11.2             | $\nu_4$        |
| 12 | A <sub>2</sub> | 3  | 12 | A <sub>1</sub> | 2      | 1013.8572       | 0.0040                                     | 1.4               | ν4             |
| 16 | A <sub>1</sub> | 4  | 16 | $A_2$          | 1      | 1013.9085       | 0.0067                                     | 1.6               | ν4             |
| 15 | A <sub>1</sub> | 4  | 15 | A <sub>2</sub> | 2      | 1013.9422       | 0.0047                                     | -1.5              | ν4             |
| 12 | F <sub>2</sub> | 9  | 12 | F <sub>1</sub> | 1      | 1014.3146       | 0.0109                                     | 7.1               | ν4             |
| 15 | F <sub>1</sub> | 11 | 15 | F <sub>2</sub> | 2      | 1014.8447       | 0.0065                                     | -3.0              | ν4             |
| 15 | Е              | 7  | 15 | Е              | 1      | 1015.0541       | 0.0049                                     | -2.3              | ν4             |
| 6  | F <sub>2</sub> | 1  | 5  | F <sub>1</sub> | 2      | 1015.0856       | 0.4639                                     | -6.8              | ν4             |
| 6  | Е              | 1  | 5  | Е              | 1      | 1015.1518       | 0.3181                                     | -3.8              | ν4             |
| 6  | F <sub>1</sub> | 1  | 5  | F <sub>2</sub> | 1      | 1015.5039       | 0.4692                                     | -4.9              | ν4             |
| 6  | F <sub>2</sub> | 2  | 5  | F <sub>1</sub> | 1      | 1015.6730       | 0.4727                                     | -4.6              | ν4             |
| 15 | F <sub>2</sub> | 14 | 16 | F <sub>1</sub> | 2      | 1015.7772       | 0.0018                                     | 3.9               | v <sub>2</sub> |
| 14 | Е              | 7  | 14 | Е              | 1      | 1016.8254       | 0.0046                                     | 4.5               | ν4             |
| 17 | F <sub>2</sub> | 12 | 17 | F <sub>1</sub> | 2      | 1016.8537       | 0.0042                                     | 4.4               | ν4             |

Table D.3 – Continued.

| J  | γ              | n  | J' | γ'             | n'     | $v^{exp}$ ,      | $S_{\nu}^{exp}$ ,        | δ,     | Band           |
|----|----------------|----|----|----------------|--------|------------------|--------------------------|--------|----------------|
|    | ,              |    |    | ,              |        | cm <sup>-1</sup> | $cm^{-2} \cdot atm^{-1}$ | %<br>- |                |
|    | 1              |    |    | 2              |        | 3                | 4                        | 5      | 6              |
| 18 | F <sub>1</sub> | 12 | 18 | F <sub>2</sub> | 2      | 1017.7794        | 0.0026                   | -4.8   | ν4             |
| 1  | A <sub>2</sub> | l  | 6  | A <sub>1</sub> | 1      | 1017.8888        | 0.3881                   | -4.7   | ν4             |
| 18 | F <sub>2</sub> | 13 | 18 | $F_1$          | 1      | 1017.9490        | 0.0030                   | 2.5    | ν4             |
| 7  | F <sub>2</sub> | 1  | 6  | F <sub>1</sub> | 1      | 1017.9886        | 0.4553                   | -6.9   | ν4             |
| 7  | F <sub>1</sub> | 1  | 6  | F <sub>2</sub> | 2      | 1018.1072        | 0.4637                   | -4.8   | ν4             |
| 15 | F <sub>1</sub> | 12 | 15 | F <sub>2</sub> | 1      | 1018.2160        | 0.0051                   | 1.3    | ν4             |
| 7  | A <sub>1</sub> | 1  | 6  | A <sub>2</sub> | 1      | 1018.5583        | 0.3848                   | -4.2   | ν4             |
| 7  | F <sub>1</sub> | 2  | 6  | F <sub>2</sub> | 1      | 1018.7228        | 0.4540                   | -6.5   | ν4             |
| 7  | E              | 1  | 6  | Е              | 1      | 1018.7766        | 0.3106                   | -4.0   | ν4             |
| 19 | E              | 9  | 19 | Е              | 1      | 1018.9311        | 0.0013                   | -3.6   | ν4             |
| 19 | F <sub>2</sub> | 23 | 20 | F <sub>1</sub> | 5      | 1019.1656        | 0.0019                   | -15.4  | $\nu_2$        |
| 19 | F <sub>1</sub> | 24 | 20 | F <sub>2</sub> | 5      | 1019.2187        | 0.0016                   | -1.9   | $v_2$          |
| 16 | F <sub>2</sub> | 12 | 16 | $F_1$          | 1      | 1019.4481        | 0.0038                   | 4.1    | $\nu_4$        |
| 16 | Е              | 8  | 16 | Е              | 1      | 1019.4729        | 0.0024                   | -2.3   | $\nu_4$        |
| 14 | F <sub>1</sub> | 13 | 15 | $F_2$          | 2      | 1020.2725        | 0.0021                   | 0.6    | $\nu_2$        |
| 8  | F <sub>2</sub> | 1  | 7  | F <sub>1</sub> | 2      | 1020.7118        | 0.4281                   | -7.1   | ν4             |
| 8  | Е              | 1  | 7  | Е              | 1      | 1020.8653        | 0.2954                   | -3.1   | ν4             |
| 8  | F <sub>1</sub> | 1  | 7  | F <sub>2</sub> | 2      | 1020.9726        | 0.4309                   | -5.9   | ν4             |
| 8  | A <sub>1</sub> | 1  | 7  | A <sub>2</sub> | 1      | 1021.1881        | 0.3662                   | -4.1   | ν4             |
| 18 | F <sub>2</sub> | 21 | 19 | F <sub>1</sub> | 5      | 1021.2865        | 0.0016                   | -14.2  | ν <sub>2</sub> |
| 18 | A <sub>1</sub> | 7  | 19 | A <sub>2</sub> | 2      | 1021.3335        | 0.0027                   | 2.0    | v <sub>2</sub> |
| 18 | F <sub>1</sub> | 20 | 19 | F <sub>2</sub> | 4      | 1021.3680        | 0.0025                   | -7.2   | v <sub>2</sub> |
| 18 | Е              | 15 | 19 | Е              | 3      | 1021.5834        | 0.0016                   | 0.3    | v <sub>2</sub> |
| 8  | F <sub>1</sub> | 2  | 7  | F <sub>2</sub> | 1      | 1021.7602        | 0.4250                   | -6.4   | ν4             |
| 8  | F <sub>2</sub> | 2  | 7  | F <sub>1</sub> | 1      | 1021.8512        | 0.4251                   | -6.7   | ν4             |
| 13 | F <sub>1</sub> | 12 | 14 | F <sub>2</sub> | 1      | 1023.2315        | 0.0025                   | 3.6    | v <sub>2</sub> |
| 9  | F <sub>1</sub> | 1  | 8  | F <sub>2</sub> | 2      | 1023.4467        | 0.3905                   | -6.1   | ν4             |
| 9  | Е              | 1  | 8  | Е              | 2      | 1023.5137        | 0.2683                   | -2.8   | ν4             |
| 9  | F <sub>2</sub> | 1  | 8  | F <sub>1</sub> | 2      | 1023.7371        | 0.3913                   | -5.1   | ν4             |
| 17 | F <sub>1</sub> | 19 | 18 | F <sub>2</sub> | 4      | 1023.9128        | 0.0033                   | -8.7   | ν <sub>2</sub> |
| 17 | Е              | 13 | 18 | Е              | 3      | 1023.9613        | 0.0027                   | -3.7   | ν <sub>2</sub> |
| 9  | F <sub>1</sub> | 2  | 8  | F <sub>2</sub> | 1      | 1024.0231        | 0.3966                   | -4.0   | ν4             |
| 17 | F <sub>1</sub> | 20 | 18 | F <sub>2</sub> | 3      | 1024.0798        | 0.0017                   | -11.2  | ν <sub>2</sub> |
| 17 | F <sub>1</sub> | 21 | 18 | F <sub>2</sub> | 3      | 1024.2773        | 0.0017                   | -5.0   | ν <sub>2</sub> |
| 9  | E              | 2  | 8  | E              | 1      | 1024.8289        | 0.2639                   | -2.7   | V4             |
| 9  | F <sub>2</sub> | 2  | 8  | F1             | 1      | 1024.8669        | 0.3871                   | -5.2   | V4             |
| 9  | A2             | 1  | 8  | A1             | 1      | 1024 9321        | 0 3274                   | -3.9   | V4             |
| 10 | A1             | 1  | 9  | A <sub>2</sub> | 1      | 1026.0734        | 0.2901                   | -3.8   | V4             |
| 10 | F1             | 1  | 9  | F2             | 2      | 1026.1517        | 0.3438                   | -4.9   | ν              |
| 10 | E <sub>2</sub> | 1  | 0  | F1             | 3      | 1026 2538        | 0.3424                   | -5.1   | V4             |
| 16 | F <sub>2</sub> | 18 | 17 | F1             | 5      | 1026.2338        | 0.0460                   | -63    | v4<br>V2       |
| 16 | F              | 12 | 17 | F              | 3      | 1026/382         | 0.0000                   | 0.5    | v2             |
| 10 |                | 12 | 1/ | 12<br>A .      | )<br>1 | 1020.4302        | 0.0036                   | 0.9    | v2             |
| 10 | A2             | 1  | 9  | $A_1$          | 1      | 1020.3030        | 0.2899                   | -2.1   | <b>v</b> 4     |

Table D.3 – Continued.

| J  | γ                | п  | J' | γ'             | n'     | $v^{exp}$ ,     | $S_{\nu}^{exp}$ ,                          | $\delta$ ,   | Band           |
|----|------------------|----|----|----------------|--------|-----------------|--------------------------------------------|--------------|----------------|
|    | 1                |    |    | 2              |        | cm <sup>1</sup> | $\frac{\text{cm}^2 \cdot \text{atm}^4}{4}$ | %<br>5       | 6              |
| 16 | T<br>Fa          | 10 | 17 | E              | 4      | 1026 5819       | 0.0058                                     | 17           | 1/2            |
| 10 | F <sub>2</sub>   | 2  | 9  | F <sub>1</sub> | 2      | 1026.3017       | 0.3458                                     | -3.5         | V2             |
| 16 | F <sub>1</sub>   | 19 | 17 | Fa             | 3      | 1026.8393       | 0.0038                                     | -4.1         | V4             |
| 10 | F                | 1  | 9  | F              | 1      | 1026.8661       | 0.2368                                     | -0.8         | V2             |
| 10 | E<br>F1          | 2  | 9  | E<br>Fa        | 1      | 1020.8001       | 0.2308                                     | -4.2         | V4             |
| 10 | Fa               | 2  | 0  | F:             | 1      | 1027.0004       | 0.3381                                     | - <u>4</u> 3 | V4             |
| 10 | Г <u>2</u><br>Е. | 1  | 10 | Г]<br>Б.       | 2      | 1027.9211       | 0.3381                                     | -2 7         | V4             |
| 11 |                  | 1  | 10 | Г2<br>Е        | 3<br>2 | 1028.7217       | 0.2931                                     | -1.4         | V4             |
| 11 | E<br>E           | 1  | 10 | E<br>E.        | 2      | 1028.8273       | 0.1993                                     | -4.2         | V4             |
| 11 | Γ2<br>Δ          | 1  | 10 | Γ <u>1</u>     | 1      | 1020.9223       | 0.2901                                     | -4.2         | V4             |
| 12 | A <sub>2</sub>   | 12 | 15 | A <sub>1</sub> | 2      | 1029.1500       | 0.0027                                     | -3.2         | V2             |
| 13 | E                | 12 | 10 | E              | 3      | 1029.1084       | 0.0060                                     | 0.5          | V2             |
| 11 | A <sub>2</sub>   | 10 | 10 | A <sub>1</sub> | 1      | 1029.2129       | 0.2461                                     | -2.4         | ν <sub>4</sub> |
| 15 | F <sub>2</sub>   | 18 | 16 |                | 3      | 1029.4945       | 0.0057                                     | 2.4          | V <sub>2</sub> |
| 11 | F <sub>2</sub>   | 2  | 10 | F <sub>1</sub> | 1      | 1029.5527       | 0.2914                                     | -2.8         | ν4             |
| 11 | F <sub>1</sub>   | 2  | 10 | F <sub>2</sub> | 2      | 1029.6791       | 0.2902                                     | -3.2         | ν4             |
| 15 | A <sub>1</sub>   | 6  | 16 | A <sub>2</sub> | 1      | 1029.9630       | 0.0046                                     | -1.7         | v <sub>2</sub> |
| 11 | A <sub>1</sub>   | l  | 10 | A <sub>2</sub> | 1      | 1030.8608       | 0.2388                                     | -2.5         | ν4             |
| 11 | F <sub>1</sub>   | 3  | 10 | F <sub>2</sub> | 1      | 1030.8956       | 0.2919                                     | -0.8         | ν4             |
| 11 | Е                | 2  | 10 | Е              | 1      | 1030.9118       | 0.1959                                     | -0.2         | ν4             |
| 7  | A <sub>1</sub>   | 2  | 6  | A <sub>2</sub> | 1      | 1031.0531       | 0.0095                                     | -0.8         | ν4             |
| 12 | F <sub>2</sub>   | 1  | 11 | F <sub>1</sub> | 3      | 1031.2996       | 0.2409                                     | -2.7         | ν4             |
| 12 | Е                | 1  | 11 | Е              | 2      | 1031.3572       | 0.1634                                     | -0.8         | ν4             |
| 12 | F <sub>1</sub>   | 1  | 11 | F <sub>2</sub> | 3      | 1031.4990       | 0.2408                                     | -2.2         | ν4             |
| 7  | F <sub>1</sub>   | 4  | 6  | F <sub>2</sub> | 1      | 1031.5574       | 0.0066                                     | -5.3         | ν4             |
| 12 | F <sub>2</sub>   | 2  | 11 | F <sub>1</sub> | 2      | 1031.8569       | 0.2413                                     | -1.7         | ν4             |
| 14 | F <sub>1</sub>   | 16 | 15 | F <sub>2</sub> | 4      | 1031.9297       | 0.0114                                     | -1.7         | v <sub>2</sub> |
| 14 | F <sub>2</sub>   | 16 | 15 | F <sub>1</sub> | 4      | 1031.9849       | 0.0100                                     | -2.7         | ν <sub>2</sub> |
| 14 | F <sub>2</sub>   | 17 | 15 | F <sub>1</sub> | 3      | 1032.2635       | 0.0080                                     | -7.2         | $\nu_2$        |
| 12 | E                | 2  | 11 | Е              | 1      | 1032.3606       | 0.1597                                     | -1.2         | ν4             |
| 12 | F <sub>1</sub>   | 2  | 11 | F <sub>2</sub> | 2      | 1032.4229       | 0.2380                                     | -1.8         | ν4             |
| 12 | A <sub>1</sub>   | 1  | 11 | A <sub>2</sub> | 1      | 1032.5226       | 0.1989                                     | -1.6         | ν4             |
| 14 | F <sub>2</sub>   | 18 | 15 | F <sub>1</sub> | 2      | 1032.7407       | 0.0070                                     | 1.2          | v <sub>2</sub> |
| 11 | F <sub>2</sub>   | 11 | 12 | F <sub>1</sub> | 2      | 1033.7610       | 0.0030                                     | -7.9         | v <sub>2</sub> |
| 13 | A <sub>2</sub>   | 1  | 12 | A <sub>1</sub> | 2      | 1033.8011       | 0.1611                                     | -1.1         | $\nu_4$        |
| 12 | F <sub>1</sub>   | 3  | 11 | $F_2$          | 1      | 1033.8534       | 0.2378                                     | 0.3          | $\nu_4$        |
| 13 | $F_2$            | 1  | 12 | $F_1$          | 3      | 1033.8600       | 0.1833                                     | -6.4         | $\nu_4$        |
| 12 | F <sub>2</sub>   | 3  | 11 | F <sub>1</sub> | 1      | 1033.8738       | 0.2318                                     | -2.4         | ν4             |
| 13 | F <sub>1</sub>   | 1  | 12 | F <sub>2</sub> | 3      | 1033.9373       | 0.1936                                     | -0.4         | V4             |
| 11 | F <sub>1</sub>   | 11 | 12 | F <sub>2</sub> | 1      | 1033.9832       | 0.0021                                     | 2.2          | v <sub>2</sub> |
| 13 | A <sub>1</sub>   | 1  | 12 | A <sub>2</sub> | 1      | 1034.0844       | 0.1605                                     | -0.6         | ν4             |
| 13 | F <sub>1</sub>   | 2  | 12 | F <sub>2</sub> | 2      | 1034.4377       | 0.1890                                     | -2.0         | ν4             |
| 13 | Е                | 1  | 12 | Е              | 2      | 1034.5113       | 0.1275                                     | -0.8         | ν4             |
| 13 | F <sub>1</sub>   | 15 | 14 | F <sub>2</sub> | 4      | 1034.8215       | 0.0139                                     | -4.5         | v <sub>2</sub> |

Table D.3 – Continued.

| J  | γ              | п   | J' | γ'             | n' | $v^{exp}$ ,     | $S_{\nu}^{exp}$ ,  | δ,   | Band           |
|----|----------------|-----|----|----------------|----|-----------------|--------------------|------|----------------|
|    | 1              |     |    | 2              |    | cm <sup>1</sup> | $cm^2 \cdot atm^4$ | %    | 6              |
| 13 | F              | 10  | 14 | E E            | 3  | 1034 8648       | 0.0095             | 31   | 1/2            |
| 13 | E<br>F2        | 15  | 14 | E<br>F1        | 3  | 1035.0089       | 0.0093             | 2.0  | v2<br>V2       |
| 13 | F <sub>2</sub> | 2   | 12 | F <sub>1</sub> | 2  | 1035 1530       | 0.1870             | -1.4 | V2             |
| 13 | F1             | 3   | 12 | Fa             | 1  | 1035 2406       | 0.1861             | -2.0 | V4             |
| 13 | F              | 11  | 14 | F              | 2  | 1035 5662       | 0.0059             | -2.0 | V4             |
| 15 | E<br>E         | 2   | 7  | E              | 2  | 1035.5002       | 0.0039             | _0.8 | V2             |
| 0  |                | 2   | 7  | 12<br>E        | 1  | 1025 6619       | 0.0018             | 0.8  | V4             |
| 0  | Г1<br>Еа       | 3   | 7  | Г2<br>Е.       | 1  | 1035.0018       | 0.0121             | 2.7  | V4             |
| 0  | 1.2<br>E.      | - 4 | 12 | Г]<br>Е.       | 1  | 1036.2711       | 0.0100             | 0.0  | V4             |
| 14 | Г2<br>Г        | 1   | 13 |                | 4  | 1030.3225       | 0.1479             | -0.9 | ν <sub>4</sub> |
| 14 | E              | 1   | 13 | E              | 2  | 1036.3954       | 0.0991             | -0.1 | ν <sub>4</sub> |
| 14 | F <sub>1</sub> | 1   | 13 | F <sub>2</sub> | 3  | 1036.4678       | 0.1473             | -0.5 | ν <sub>4</sub> |
| 6  | F <sub>2</sub> | 4   | 5  | F <sub>1</sub> | 1  | 1036.6150       | 0.0035             | 8.3  | ν <sub>4</sub> |
| 13 | F <sub>2</sub> | 3   | 12 | F <sub>1</sub> | 1  | 1036.7991       | 0.1761             | -5.0 | ν4             |
| 13 | A <sub>2</sub> | 2   | 12 | A <sub>1</sub> | l  | 1036.8109       | 0.1522             | -1.3 | ν4             |
| 14 | F <sub>1</sub> | 2   | 13 | F <sub>2</sub> | 2  | 1037.0150       | 0.1454             | -0.8 | ν4             |
| 14 | F <sub>2</sub> | 2   | 13 | F <sub>1</sub> | 3  | 1037.1389       | 0.1479             | 0.9  | ν4             |
| 12 | F <sub>2</sub> | 14  | 13 | F <sub>1</sub> | 4  | 1037.8553       | 0.0171             | 0.2  | ν <sub>2</sub> |
| 14 | A <sub>2</sub> | 1   | 13 | A <sub>1</sub> | 1  | 1037.8905       | 0.1198             | -0.1 | ν4             |
| 14 | F <sub>2</sub> | 3   | 13 | F <sub>1</sub> | 2  | 1037.9502       | 0.1443             | 0.3  | ν4             |
| 14 | Е              | 2   | 13 | Е              | 1  | 1037.9760       | 0.0962             | 0.3  | ν4             |
| 12 | F <sub>1</sub> | 14  | 13 | F <sub>2</sub> | 3  | 1038.0415       | 0.0136             | -4.4 | v <sub>2</sub> |
| 12 | A <sub>1</sub> | 5   | 13 | A <sub>2</sub> | 1  | 1038.2013       | 0.0114             | -5.0 | v <sub>2</sub> |
| 10 | F <sub>1</sub> | 10  | 11 | F <sub>2</sub> | 2  | 1038.4350       | 0.0021             | -1.3 | ν <sub>2</sub> |
| 12 | F <sub>1</sub> | 15  | 13 | F <sub>2</sub> | 2  | 1038.5062       | 0.0107             | -1.4 | ν <sub>2</sub> |
| 12 | F <sub>2</sub> | 15  | 13 | F <sub>1</sub> | 3  | 1038.5601       | 0.0110             | -3.3 | v <sub>2</sub> |
| 15 | F <sub>1</sub> | 1   | 14 | F <sub>2</sub> | 4  | 1038.7915       | 0.1107             | 0.0  | ν4             |
| 15 | Е              | 1   | 14 | Е              | 3  | 1038.8367       | 0.0738             | 0.4  | ν4             |
| 15 | F <sub>2</sub> | 1   | 14 | F <sub>1</sub> | 3  | 1038.9299       | 0.1110             | 0.8  | $\nu_4$        |
| 15 | $F_1$          | 2   | 14 | $F_2$          | 3  | 1039.2977       | 0.1093             | -0.1 | $\nu_4$        |
| 15 | Е              | 2   | 14 | Е              | 2  | 1039.6365       | 0.0727             | 0.9  | $\nu_4$        |
| 14 | F <sub>1</sub> | 3   | 13 | $F_2$          | 1  | 1039.6972       | 0.1433             | 2.6  | ν4             |
| 15 | A <sub>2</sub> | 1   | 14 | A <sub>1</sub> | 1  | 1039.8112       | 0.0905             | 0.5  | $\nu_4$        |
| 9  | Е              | 3   | 8  | Е              | 1  | 1039.9411       | 0.0103             | 0.1  | $\nu_4$        |
| 9  | F <sub>2</sub> | 4   | 8  | $F_1$          | 1  | 1040.1141       | 0.0141             | 0.6  | ν4             |
| 9  | A <sub>2</sub> | 2   | 8  | A <sub>1</sub> | 1  | 1040.6376       | 0.0112             | -0.8 | ν4             |
| 15 | F <sub>2</sub> | 3   | 14 | F <sub>1</sub> | 1  | 1040.6580       | 0.1055             | -0.2 | ν4             |
| 15 | F <sub>1</sub> | 3   | 14 | F <sub>2</sub> | 2  | 1040.6897       | 0.1063             | 0.6  | ν4             |
| 11 | A <sub>2</sub> | 5   | 12 | A <sub>1</sub> | 2  | 1041.0003       | 0.0155             | -4.3 | v <sub>2</sub> |
| 11 | F <sub>2</sub> | 13  | 12 | F <sub>1</sub> | 3  | 1041.0834       | 0.0184             | -0.5 | v <sub>2</sub> |
| 11 | F <sub>1</sub> | 13  | 12 | F <sub>2</sub> | 3  | 1041.1793       | 0.0161             | -3.4 | v <sub>2</sub> |
| 16 | A <sub>1</sub> | 1   | 15 | A <sub>2</sub> | 2  | 1041.2076       | 0.0681             | 2.3  | ν4             |
| 16 | F <sub>1</sub> | 1   | 15 | F <sub>2</sub> | 4  | 1041.2515       | 0.0793             | -0.3 | ν4             |
| 16 | F <sub>2</sub> | 1   | 15 | F <sub>1</sub> | 4  | 1041.3082       | 0.0798             | 1.0  | ν4             |

Table D.3 – Continued.

| 1         2         3         4         5         6           16 $A_2$ 1         15 $A_1$ 1         1041.4038         0.0666         0.5 $v_4$ 11 $A_1$ 5         12 $A_2$ 1         1041.4002         0.0118 $-4.5$ $v_2$ 11 $F_1$ 14         12 $F_2$ 2         1041.6003         0.0127 $-2.7$ $v_2$ 16 $F_2$ 2         15 $F_1$ 3         1041.7496         0.0735         0.7 $v_4$ 16 $F_1$ 2         15 $F_2$ 3         1042.2558         0.0077 $-0.2$ $v_2$ 16 $F_1$ 2         15 $F_2$ 1         1043.3632         0.00749 $-0.5$ $v_4$ 16 $F_1$ 3         15 $F_2$ 1043.3720         0.0749 $-0.5$ $v_4$ 16 $F_1$ 3         1043.643         0.0551 $-1.0$ $v_4$ 17 $F_2$ 1 <th>J</th> <th>γ</th> <th>п</th> <th>J'</th> <th>γ'</th> <th>n'</th> <th><math>v^{exp}</math>,</th> <th><math>S_{\nu}^{exp}</math>,</th> <th>δ,</th> <th>Band</th>                                                                                                                                                                                                                                                                         | J   | γ              | п  | J'  | γ'             | n' | $v^{exp}$ , | $S_{\nu}^{exp}$ ,        | δ,   | Band           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----------------|----|-----|----------------|----|-------------|--------------------------|------|----------------|
| 1 $-2$ 3         4         3         0           16 $A_2$ 1         1041.4038         0.0666         0.5 $v_4$ 11 $F_1$ 14         12 $F_2$ 2         1041.6003         0.0127 $-2.7$ $v_2$ 16 $F_2$ 2         15 $F_1$ 3         1041.7496         0.0785         0.7 $v_4$ 16 $E$ 1         15 $E$ 2         1041.8130         0.0526         0.6 $v_4$ 9 $E$ 6         10 $E$ 1         1042.2188         0.0077 $-0.2$ $v_2$ 16 $F_1$ 2         15 $F_1$ 2         1042.3518         0.0075 $-0.4$ $v_2$ 16 $F_2$ 3         15 $F_2$ 2         1043.3720         0.00749 $-0.5$ $v_4$ 16 $F_1$ 3         15 $F_2$ 1         1043.3749         0.0371         0.3 $v_4$ 17 $F_1$                                                                                                                                                                                                                                                                                                                                                                                                                                               |     | ,              |    |     |                |    |             | $cm^{-2} \cdot atm^{-1}$ | %    | 6              |
| 16 $A_2$ 1         15 $A_1$ 1         1041.4038         0.00666         0.5 $v_4$ 11 $A_1$ 12 $A_2$ 1         1041.4003         0.0118 $-4.5$ $v_2$ 16 $F_2$ 2         15 $F_1$ 3         1041.7496         0.0785         0.7 $v_4$ 16 $F_2$ 2         15 $F_2$ 3         1042.2108         0.0020 $-7.4$ $v_2$ 16 $F_1$ 2         15 $F_2$ 3         1042.2588         0.00775 $-0.3$ $v_4$ 11 $F_2$ 14         12 $F_1$ 2         1042.3518         0.00751 $-0.2$ $v_2$ 16 $F_1$ 3         15 $F_2$ 1         1043.352         0.0511 $-0.5$ $v_4$ 16 $F_1$ 3         15 $F_2$ 1         1043.3532         0.0511 $-0.5$ $v_4$ 16 $A_1$ $2$ 16 $F_2$ 1043.3643                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.6 |                |    | 1.5 | 2              |    | 3           | 4                        | 5    | 0              |
| 11 $\mathbf{A}_1$ $\mathbf{A}_2$ 1 $1041,4002$ $0.0118$ $-4.3$ $\mathbf{v}_2$ 11 $\mathbf{F}_1$ 14         12 $\mathbf{F}_2$ 2 $1041,6003$ $0.0127$ $-2.7$ $\mathbf{v}_2$ 16 $\mathbf{E}_2$ 2         15 $\mathbf{F}_1$ 3 $1041,7496$ $0.0785$ $0.7$ $\mathbf{v}_4$ 16 $\mathbf{E}_2$ 1 $155$ $\mathbf{E}$ 2 $1041,3130$ $0.0526$ $0.6$ $\mathbf{v}_1$ 9 $\mathbf{E}$ 6         10 $\mathbf{E}$ 1 $1042,2108$ $0.0077$ $-0.2$ $\mathbf{v}_2$ 16 $\mathbf{F}_1$ 14         12 $\mathbf{F}_1$ 2 $1042,3175$ $0.0075$ $-0.4$ $\mathbf{v}_2$ 16 $\mathbf{F}_2$ 3         15 $\mathbf{F}_1$ 2 $1042,3720$ $0.0749$ $-0.5$ $\mathbf{v}_4$ 16 $\mathbf{A}_1$ 2         1043,6943 $0.0631$ $0.5$ $\mathbf{v}_4$ 17 $\mathbf{F}_1$ 16 $\mathbf{F}_1$ 14043,641                                                                                                                                                                                                                                                                                                                                                                             | 16  | A <sub>2</sub> | 1  | 15  | A <sub>1</sub> | 1  | 1041.4038   | 0.0666                   | 0.5  | ν4             |
| 11 $F_1$ 14         122 $F_2$ 2         1041.7096         0.0127 $-2.7$ $v_2$ 16 $F_2$ 2         15 $F_1$ 3         1041.7496         0.0785         0.7 $v_4$ 16 $F_1$ 1         15 $F_2$ 1041.8130         0.0020 $-7.4$ $v_2$ 16 $F_1$ 2         15 $F_2$ 3         1042.2558         0.0075         0.3 $v_4$ 11 $F_2$ 14         12 $F_1$ 2         1042.3158         0.00773         0.2 $v_4$ 16 $F_2$ 3         15 $F_1$ 2         1043.352         0.0501 $-0.2$ $v_4$ 16 $A_1$ 2         15 $F_2$ 1         1043.3588         0.0631         0.5 $v_4$ 17 $F_1$ 1         16 $F_2$ 1         1043.3888         0.0371         0.0 $v_4$ 17 $F_2$ 1         16 $F_1$ 1         1                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11  | A <sub>1</sub> | 5  | 12  | A <sub>2</sub> | 1  | 1041.4602   | 0.0118                   | -4.5 | V <sub>2</sub> |
| 16 $F_2$ 2         15 $F_1$ 3         1041.7496         0.0785         0.7.7 $v_4$ 16         E         1         15         E         2         1041.8130         0.0526         0.6 $v_4$ 9         E         6         10         E         1         1042.2558         0.0075         0.3 $v_4$ 11         F_2         14         12         F_1         2         1042.3045         0.0077         -0.2 $v_7$ 16         F_2         3         15         F_2         1042.3175         0.0073         0.2 $v_4$ 16         E         2         15         E         1         1043.3632         0.0501         -0.2 $v_4$ 16         A1         2         15         A2         1         1043.3632         0.0511         -0.5 $v_4$ 16         A1         2         15         A2         1         1043.3638         0.0631         0.5 $v_4$ 17         F_1         1         16         F1         4         1043.3749         0.0547         0.0 <td>11</td> <td>F<sub>1</sub></td> <td>14</td> <td>12</td> <td>F<sub>2</sub></td> <td>2</td> <td>1041.6003</td> <td>0.0127</td> <td>-2.7</td> <td>v<sub>2</sub></td> | 11  | F <sub>1</sub> | 14 | 12  | F <sub>2</sub> | 2  | 1041.6003   | 0.0127                   | -2.7 | v <sub>2</sub> |
| 16         E         1         15         E         2         1041,31:30         0.0526         0.6 $v_4$ 9         E         6         10         E         1         1042,2108         0.0020         -7.4 $v_2$ 16         F1         2         15         F2         3         1042,23045         0.0077         -0.2 $v_2$ 11         F2         14         12         F1         2         1042,3045         0.0073         -0.4 $v_2$ 16         F2         3         15         F1         2         1042,3720         0.0749         -0.5 $v_4$ 16         A1         2         15         A2         1         1043,3720         0.0749         -0.5 $v_4$ 16         A1         2         15         A2         1         1043,6413         0.0551         -1.0 $v_4$ 17         F1         1         16         F1         4         1043,6413         0.0547         0.0 $v_4$ 10         F1         4         1043,6943         0.0371         0.3 $v_4$                                                                                                                                                            | 16  | F <sub>2</sub> | 2  | 15  | F <sub>1</sub> | 3  | 1041.7496   | 0.0785                   | 0.7  | ν4             |
| 9         E         6         10         E         1         1042.2108         0.0020 $-7.4$ $v_2$ 16         F1         2         15         F2         3         1042.2558         0.0075         0.3 $v_2$ 11         F2         14         12         F1         2         1042.3518         0.0077 $-0.2$ $v_2$ 16         F2         3         15         F1         2         1042.3518         0.0073 $0.2$ $v_4$ 16         F1         3         15         F2         2         1043.352         0.00749 $-0.5$ $v_4$ 16         A1         2         15         A2         1         1043.388         0.0031 $0.5$ $v_4$ 17         F1         1         16         F2         4         1043.7479         0.0547         0.0 $v_4$ 10         F1         4         9         F2         1         1044.054         0.0182         1.3 $v_4$ 17         F2         2         16         F1         3         1042.055         0.0130                                                                                                                                                                                   | 16  | E              | 1  | 15  | E              | 2  | 1041.8130   | 0.0526                   | 0.6  | ν4             |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9   | E              | 6  | 10  | E              | 1  | 1042.2108   | 0.0020                   | -7.4 | ν <sub>2</sub> |
| 11 $F_2$ 14         12 $F_1$ 2         1042.3045         0.0077         -0.2 $v_2$ 11 $F_1$ 12 $F_2$ 1         1042.3175         0.0075         -0.4 $v_2$ 16 $F_2$ 3         15 $F_1$ 2         1042.3518         0.0773         0.2 $v_4$ 16 $F_1$ 3         15 $F_2$ 2         1043.3522         0.0501         -0.5 $v_4$ 16 $F_1$ 3         15 $F_2$ 2         1043.3532         0.0511         -0.5 $v_4$ 16 $A_1$ 2         15 $A_2$ 1         1043.6943         0.0371         0.3 $v_4$ 17 $F_2$ 1         16 $F_1$ 4         1044.0254         0.0182         1.3 $v_4$ 17 $F_2$ 2         16 $F_1$ 3         1044.0254         0.0469         2.0 $v_4$ 10 $F_2$ 4         9 $F_1$ 1         1044.326<                                                                                                                                                                                                                                                                                                                                                                                                                 | 16  | F <sub>1</sub> | 2  | 15  | F <sub>2</sub> | 3  | 1042.2558   | 0.0775                   | 0.3  | ν4             |
| 11 $F_1$ 15         12 $F_2$ 1         1042.3175         0.0075         -0.4 $v_2$ 16 $F_2$ 3         15 $F_1$ 2         1042.318         0.0773         0.2 $v_4$ 16 $F_1$ 3         15 $F_2$ 2         1043.3622         0.0501         -0.2 $v_4$ 16 $A_1$ 2         15 $A_2$ 1         1043.3720         0.0749         -0.5 $v_4$ 17 $F_1$ 1         16 $F_2$ 2         1043.6413         0.0551         -1.0 $v_4$ 17 $F_2$ 1         16 $F_1$ 4         1043.7479         0.0547         0.0 $v_4$ 10 $F_1$ 4         1043.7479         0.0542         0.8 $v_4$ 17 $F_2$ 2         16 $F_1$ 3         1044.2045         0.0542         0.8 $v_4$ 10 $F_2$ 4         9 $F_1$ 1         1044.2852         0.0130         2.                                                                                                                                                                                                                                                                                                                                                                                                 | 11  | F <sub>2</sub> | 14 | 12  | F <sub>1</sub> | 2  | 1042.3045   | 0.0077                   | -0.2 | v <sub>2</sub> |
| 16 $F_2$ 3         15 $F_1$ 2         1042.3518         0.0773         0.2 $v_4$ 16         E         2         15         E         1         1043.3622         0.0501 $-0.2$ $v_4$ 16 $F_1$ 2         15 $A_2$ 1         1043.3720         0.0749 $-0.5$ $v_4$ 16 $A_1$ 2         15 $A_2$ 1         1043.388         0.0631 $0.5$ $v_4$ 17 $F_1$ 1         16 $F_2$ 4         1043.7479         0.0547         0.0 $v_4$ 10 $F_1$ 4         9 $F_2$ 1         1044.0254         0.0182         1.3 $v_4$ 10 $F_2$ 2         16 $F_1$ 3         1044.2055         0.0542         0.8 $v_4$ 10 $F_2$ 16 $F_2$ 3         1044.2852         0.0130         2.3 $v_2$ 10 $F_1$ 12         11         1044.2854         0.0482         6.6 </td <td>11</td> <td>F<sub>1</sub></td> <td>15</td> <td>12</td> <td>F<sub>2</sub></td> <td>1</td> <td>1042.3175</td> <td>0.0075</td> <td>-0.4</td> <td><math>\nu_2</math></td>                                                                                                                                                                                                            | 11  | F <sub>1</sub> | 15 | 12  | F <sub>2</sub> | 1  | 1042.3175   | 0.0075                   | -0.4 | $\nu_2$        |
| 16         E         1 $1043.3632$ $0.0501$ $-0.2$ $v_4$ 16 $F_1$ 3         15 $F_2$ 2 $1043.3720$ $0.0749$ $-0.5$ $v_4$ 16 $A_1$ 2         15 $A_2$ 1 $1043.3888$ $0.0631$ $0.5$ $v_4$ 17 $F_1$ 1         16 $F_2$ 4 $1043.6943$ $0.0371$ $0.3$ $v_4$ 17 $F_5$ 1         16 $F_1$ 4 $1043.6943$ $0.0371$ $0.0$ $v_4$ 10 $F_1$ 4         9 $F_2$ 1 $1044.0254$ $0.0182$ $1.3$ $v_4$ 10 $F_2$ 2         16 $F_1$ 3 $1044.2852$ $0.0154$ $0.9$ $v_4$ 10 $F_2$ 4         9 $F_1$ 1 $1044.2852$ $0.0150$ $-1.2$ $v_2$ 17 $A_1$ 16 $A_2$ 1 $1044.8284$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 16  | F <sub>2</sub> | 3  | 15  | $F_1$          | 2  | 1042.3518   | 0.0773                   | 0.2  | ν4             |
| 16 $F_1$ 3         15 $F_2$ 2         1043.3720         0.0749         -0.5 $v_4$ 16 $A_1$ 2         15 $A_2$ 1         1043.3888         0.0631         0.5 $v_4$ 17 $F_1$ 1         16 $F_2$ 4         1043.6413         0.0371         0.3 $v_4$ 17 $F_2$ 1         16 $F_1$ 4         1043.7479         0.0547         0.0 $v_4$ 10 $F_1$ 4         9 $F_2$ 1         1044.0254         0.0182         1.3 $v_4$ 17 $A_2$ 1         16 $A_1$ 2         1044.0254         0.0542         0.8 $v_4$ 10 $F_2$ 4         9 $F_1$ 1         1044.2852         0.0175         4.8 $v_4$ 10 $F_2$ 4         9 $F_1$ 1         1044.2852         0.0130         2.3 $v_2$ 10 $F_1$ 12         11 $F_2$ 3                                                                                                                                                                                                                                                                                                                                                                                                                              | 16  | Е              | 2  | 15  | Е              | 1  | 1043.3632   | 0.0501                   | -0.2 | ν4             |
| 16         A <sub>1</sub> 2         15         A <sub>2</sub> 1         1043.3888         0.0631         0.5 $v_4$ 17         F <sub>1</sub> 1         16         F <sub>2</sub> 4         1043.6413         0.0551         -1.0 $v_4$ 17         E         1         16         F <sub>1</sub> 4         1043.6943         0.0371         0.3 $v_4$ 17         F <sub>2</sub> 1         16         F <sub>1</sub> 4         1043.7479         0.0547         0.0 $v_4$ 10         F <sub>1</sub> 4         9         F <sub>2</sub> 1         1044.0254         0.0182         1.3 $v_4$ 17         F <sub>2</sub> 2         16         F <sub>1</sub> 3         1044.2055         0.0175         4.8 $v_4$ 10         F <sub>2</sub> 4         9         F <sub>1</sub> 1         1044.2852         0.0175         4.8 $v_4$ 10         F <sub>1</sub> 12         11         F <sub>2</sub> 3         1044.8284         0.0482         6.6 $v_4$ 10         F <sub>1</sub> 13         11         F <sub>1</sub> 2         1044.8284                                                                                             | 16  | F <sub>1</sub> | 3  | 15  | F <sub>2</sub> | 2  | 1043.3720   | 0.0749                   | -0.5 | ν4             |
| 17 $F_1$ 1         16 $F_2$ 4         1043.6413         0.0551         -1.0 $v_4$ 17         E         1         16         E         3         1043.6943         0.0371         0.3 $v_4$ 17 $F_2$ 1         166 $F_1$ 4         1043.7479         0.0547         0.0 $v_4$ 10 $F_1$ 4         9 $F_2$ 1         1044.0254         0.0182         1.3 $v_4$ 17 $A_2$ 1         16 $A_1$ 2         1044.0254         0.0169         2.0 $v_4$ 10 $F_2$ 4         9 $F_1$ 1         1044.2055         0.0542         0.8 $v_4$ 10 $E$ 8         111 $E$ 2         1044.4276         0.0130         2.3 $v_2$ 10 $F_1$ 12         11 $F_2$ 3         1044.8284         0.0482         6.6 $v_4$ 10 $F_2$ 13         11 $F_1$ 2         104                                                                                                                                                                                                                                                                                                                                                                                          | 16  | A <sub>1</sub> | 2  | 15  | $A_2$          | 1  | 1043.3888   | 0.0631                   | 0.5  | $\nu_4$        |
| 17E116E31043.69430.03710.3 $v_4$ 17 $F_2$ 116 $F_1$ 41043.74790.05470.0 $v_4$ 10 $F_1$ 49 $F_2$ 11044.02540.01821.3 $v_4$ 17 $A_2$ 116 $A_1$ 21044.04540.04692.0 $v_4$ 17 $F_2$ 216 $F_1$ 31044.20550.05420.8 $v_4$ 10 $F_2$ 49 $F_1$ 11044.28520.01754.8 $v_4$ 17 $F_1$ 216 $F_2$ 31044.30560.05440.9 $v_4$ 10E811E21044.42760.01302.3 $v_2$ 10 $F_1$ 1211 $F_2$ 31044.6310.0159 $-1.2$ $v_2$ 17 $A_1$ 116 $A_2$ 11044.8240.04826.6 $v_4$ 10 $F_2$ 1311 $F_1$ 21044.8380.0150 $-1.7$ $v_2$ 17 $A_1$ 316 $F_2$ 21044.8490.004826.6 $v_4$ 10 $F_2$ 1311 $F_2$ 21044.8490.0050 $-1.7$ $v_2$ 17 $F_1$ 316 $F_2$ 11045.45860.00591.1 $v_2$ 10 $A_1$ 511 $A_2$ 11045.45890.00764.0<                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 17  | $F_1$          | 1  | 16  | $F_2$          | 4  | 1043.6413   | 0.0551                   | -1.0 | $\nu_4$        |
| 17 $F_2$ 116 $F_1$ 41043.74790.05470.0 $v_4$ 10 $F_1$ 49 $F_2$ 11044.02540.01821.3 $v_4$ 17 $A_2$ 116 $A_1$ 21044.04540.04692.0 $v_4$ 17 $F_2$ 216 $F_1$ 31044.20450.05420.8 $v_4$ 10 $F_2$ 49 $F_1$ 11044.28520.01754.8 $v_4$ 17 $F_1$ 216 $F_2$ 31044.30560.05440.9 $v_4$ 10 $E$ 811 $E$ 21044.42760.01302.3 $v_2$ 10 $F_1$ 1211 $F_2$ 31044.68310.0159 $-1.2$ $v_2$ 17 $A_1$ 16 $A_2$ 11044.8240.04826.6 $v_4$ 10 $F_2$ 1311 $F_1$ 21044.8380.0150 $-1.7$ $v_2$ 17 $A_1$ 1316 $F_2$ 21044.84960.0150 $-1.7$ $v_2$ 10 $F_1$ 1311 $F_2$ 21044.84960.0050 $1.1$ $v_4$ 10 $E$ 911 $E$ 11045.45860.00591.1 $v_4$ 10 $A_1$ 511 $A_2$ 11045.45890.00764.0 $v_2$ 10 $A_1$ 511 $A_2$ 11046.04550.0502                                                                                                                                                                                                                                                                                                                                                                                                                                   | 17  | Е              | 1  | 16  | Е              | 3  | 1043.6943   | 0.0371                   | 0.3  | $\nu_4$        |
| 10 $F_1$ 49 $F_2$ 11044.02540.01821.3 $v_4$ 17 $A_2$ 116 $A_1$ 21044.04540.04692.0 $v_4$ 17 $F_2$ 216 $F_1$ 31044.20450.05420.8 $v_4$ 10 $F_2$ 49 $F_1$ 11044.28520.01754.8 $v_4$ 17 $F_1$ 216 $F_2$ 31044.30560.05440.9 $v_4$ 10E811E2104.42760.01302.3 $v_2$ 10 $F_1$ 1211 $F_2$ 31044.68310.0159 $-1.2$ $v_2$ 17 $A_1$ 116 $A_2$ 11044.82440.04826.6 $v_4$ 10 $F_2$ 1311 $F_1$ 21044.8980.05330.5 $v_4$ 17 $F_1$ 316 $F_2$ 21044.8980.05330.5 $v_4$ 10 $F_2$ 1311 $F_1$ 21045.45860.00591.1 $v_2$ 17 $F_1$ 1311 $F_2$ 21045.45860.00591.1 $v_2$ 10 $F_1$ 1311 $F_2$ 11045.45860.00591.1 $v_2$ 10 $A_1$ 511 $A_2$ 11045.45890.00764.0 $v_2$ 17 $F_1$ 416 $F_2$ 11046.04650.0502 <td< td=""><td>17</td><td>F<sub>2</sub></td><td>1</td><td>16</td><td>F<sub>1</sub></td><td>4</td><td>1043.7479</td><td>0.0547</td><td>0.0</td><td>ν4</td></td<>                                                                                                                                                                                                                                                                                 | 17  | F <sub>2</sub> | 1  | 16  | F <sub>1</sub> | 4  | 1043.7479   | 0.0547                   | 0.0  | ν4             |
| 17 $A_2$ 116 $A_1$ 21044.04540.04692.0 $v_4$ 17 $F_2$ 216 $F_1$ 31044.20450.05420.8 $v_4$ 10 $F_2$ 49 $F_1$ 11044.28520.01754.8 $v_4$ 17 $F_1$ 216 $F_2$ 31044.30560.05440.9 $v_4$ 10E811E2104.42760.01302.3 $v_2$ 10 $F_1$ 1211 $F_2$ 31044.68310.0159 $-1.2$ $v_2$ 17 $A_1$ 116 $A_2$ 11044.82440.04826.6 $v_4$ 10 $F_2$ 1311 $F_1$ 21044.8960.0150 $-1.7$ $v_2$ 17 $F_1$ 316 $F_2$ 21044.8980.05330.5 $v_4$ 10 $F_2$ 1311 $F_1$ 21045.45860.00591.1 $v_2$ 17 $F_1$ 316 $F_2$ 21044.81940.03611.4 $v_4$ 10 $E$ 911 $E$ 11045.45860.00591.1 $v_2$ 10 $A_1$ 511 $A_2$ 11045.45890.00764.0 $v_2$ 10 $A_1$ 511 $A_2$ 11045.45990.00764.0 $v_2$ 10 $A_1$ 511 $A_2$ 11046.04650.0502                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10  | F <sub>1</sub> | 4  | 9   | F <sub>2</sub> | 1  | 1044.0254   | 0.0182                   | 1.3  | $\nu_4$        |
| 17 $F_2$ 216 $F_1$ 31044.20450.05420.8 $v_4$ 10 $F_2$ 49 $F_1$ 11044.28520.01754.8 $v_4$ 17 $F_1$ 216 $F_2$ 31044.30560.05440.9 $v_4$ 10E811E21044.42760.01302.3 $v_2$ 10 $F_1$ 1211 $F_2$ 31044.68310.0159 $-1.2$ $v_2$ 17 $A_1$ 116 $A_2$ 11044.82440.04826.6 $v_4$ 10 $F_2$ 1311 $F_1$ 21044.8960.0150 $-1.7$ $v_2$ 17 $F_1$ 316 $F_2$ 21044.8980.05330.5 $v_4$ 10E911E11045.45860.00591.1 $v_2$ 10 $F_1$ 1311 $F_2$ 21045.46990.00870.2 $v_2$ 10 $A_1$ 511 $A_2$ 11045.45890.00764.0 $v_2$ 17 $F_1$ 416 $F_2$ 11046.04550.0502 $-3.7$ $v_4$ 18E117 $F_2$ 41046.04580.0374 $-0.1$ $v_4$ 18F_1117 $F_2$ 41046.14130.0374 $-0.4$ $v_4$ 18 $F_1$ 217 $F_1$ 41046.4780.03610.                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 17  | A <sub>2</sub> | 1  | 16  | A <sub>1</sub> | 2  | 1044.0454   | 0.0469                   | 2.0  | ν4             |
| 10 $F_2$ 49 $F_1$ 11044.28520.01754.8v417 $F_1$ 216 $F_2$ 31044.30560.05440.9v410E811E21044.42760.01302.3v210 $F_1$ 1211 $F_2$ 31044.68310.0159 $-1.2$ v217 $A_1$ 116 $A_2$ 11044.82840.04826.6v410 $F_2$ 1311 $F_1$ 21044.84960.0150 $-1.7$ v217 $F_1$ 316 $F_2$ 21044.84960.005330.5v410E216E21044.91470.03611.4v410E911E11045.45860.00591.1v210 $F_1$ 1311 $F_2$ 21044.81990.00870.2v210 $A_1$ 511 $A_2$ 11045.45890.00764.0v210 $A_1$ 511 $A_2$ 11046.04550.0502 $-3.7$ v418 $E$ 117 $E_2$ 41046.14130.0374 $-0.1$ v418 $F_1$ 117 $F_2$ 31046.6760.0241 $-0.4$ v418 $F_1$ 217 $F_1$ 41046.44780.03610.5v418 $F$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 17  | F <sub>2</sub> | 2  | 16  | F <sub>1</sub> | 3  | 1044.2045   | 0.0542                   | 0.8  | ν <sub>4</sub> |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10  | F <sub>2</sub> | 4  | 9   | F <sub>1</sub> | 1  | 1044.2852   | 0.0175                   | 4.8  | ν4             |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 17  | F <sub>1</sub> | 2  | 16  | F <sub>2</sub> | 3  | 1044.3056   | 0.0544                   | 0.9  | ν4             |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10  | Е              | 8  | 11  | Е              | 2  | 1044.4276   | 0.0130                   | 2.3  | ν <sub>2</sub> |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10  | F <sub>1</sub> | 12 | 11  | F <sub>2</sub> | 3  | 1044.6831   | 0.0159                   | -1.2 | v <sub>2</sub> |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 17  | A <sub>1</sub> | 1  | 16  | A <sub>2</sub> | 1  | 1044.8284   | 0.0482                   | 6.6  | ν4             |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10  | F <sub>2</sub> | 13 | 11  | F <sub>1</sub> | 2  | 1044.8496   | 0.0150                   | -1.7 | v <sub>2</sub> |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 17  | F <sub>1</sub> | 3  | 16  | F <sub>2</sub> | 2  | 1044.8898   | 0.0533                   | 0.5  | ν <sub>4</sub> |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 17  | Е              | 2  | 16  | Е              | 2  | 1044.9147   | 0.0361                   | 1.4  | ν4             |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10  | Е              | 9  | 11  | Е              | 1  | 1045.4586   | 0.0059                   | 1.1  | ν <sub>2</sub> |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10  | F <sub>1</sub> | 13 | 11  | F <sub>2</sub> | 2  | 1045.4699   | 0.0087                   | 0.2  | ν <sub>2</sub> |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10  | A <sub>1</sub> | 5  | 11  | A <sub>2</sub> | 1  | 1045.4899   | 0.0076                   | 4.0  | v <sub>2</sub> |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 17  | F <sub>1</sub> | 4  | 16  | F <sub>2</sub> | 1  | 1046.0465   | 0.0502                   | -3.7 | ν4             |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 18  | Е              | 1  | 17  | Е              | 3  | 1046.0717   | 0.0261                   | 5.1  | ν4             |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 18  | F <sub>1</sub> | 1  | 17  | F <sub>2</sub> | 4  | 1046.1413   | 0.0374                   | -0.1 | ν4             |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10  | A <sub>2</sub> | 2  | 9   | A <sub>1</sub> | 1  | 1046.2569   | 0.0076                   | 3.7  | ν4             |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 18  | F <sub>2</sub> | 2  | 17  | F <sub>1</sub> | 4  | 1046.4478   | 0.0378                   | 1.3  | ν4             |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 18  | Е              | 2  | 17  | Е              | 2  | 1046.6976   | 0.0241                   | -0.4 | ν4             |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 18  | F <sub>1</sub> | 2  | 17  | F <sub>2</sub> | 3  | 1046.7508   | 0.0361                   | 0.5  | ν4             |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8   | F <sub>1</sub> | 8  | 9   | F <sub>2</sub> | 1  | 1046.8130   | 0.0037                   | 2.6  | v <sub>2</sub> |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 18  | A <sub>1</sub> | 1  | 17  | A <sub>2</sub> | 1  | 1046.8379   | 0.0306                   | -0.5 | ν4             |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8   | A <sub>2</sub> | 3  | 9   | A <sub>1</sub> | 1  | 1047.4014   | 0.0048                   | 3.4  | v <sub>2</sub> |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10  | E              | 3  | 9   | E              | 1  | 1047.4184   | 0.0035                   | 9.7  | ν <sub>4</sub> |
| 18 F <sub>2</sub> 3 17 F <sub>1</sub> 3 1047.4636 0.0360 0.3 v <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 18  | F <sub>1</sub> | 3  | 17  | F <sub>2</sub> | 2  | 1047.4373   | 0.0361                   | 1.2  | ν4             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 18  | F <sub>2</sub> | 3  | 17  | F <sub>1</sub> | 3  | 1047.4636   | 0.0360                   | 0.3  | ν4             |

Table D.3 – Continued.

| J  | γ              | п      | J' | γ'             | n' | $v^{exp}$ ,     | $S_{\nu}^{exp}$ ,        | δ,    | Band           |
|----|----------------|--------|----|----------------|----|-----------------|--------------------------|-------|----------------|
|    | ,              |        |    | ว              |    | cm <sup>1</sup> | $cm^{-2} \cdot atm^{-1}$ | %     | 6              |
| 0  |                | 11     | 10 | Z              | 2  | J               | 4                        | 3     | 0              |
| 9  | Γ1             | 2      | 10 | F2             | 3  | 1047.8137       | 0.0209                   | 2.7   | V <sub>2</sub> |
| 11 |                | 2      | 10 | A <sub>2</sub> | 1  | 1047.0423       | 0.0108                   | -11.0 | V4             |
| 0  | E              | 3      | 10 | E              | 1  | 1040.0900       | 0.0113                   | -11.9 | V4             |
| 9  | A2             | 4      | 10 | A1             | 1  | 1048.2362       | 0.0133                   | -0.2  | V <sub>2</sub> |
| 19 | A <sub>2</sub> | 1      | 10 | A <sub>1</sub> | 2  | 1048.3932       | 0.0211                   | 1./   | V4             |
| 19 | F <sub>2</sub> | 1      | 18 | F <sub>1</sub> | 4  | 1048.4289       | 0.0246                   | 0.4   | ν <sub>4</sub> |
| 19 | F <sub>1</sub> | ۱<br>۲ | 18 | F <sub>2</sub> | 5  | 1048.4722       | 0.0241                   | 1.2   | ν4             |
| 8  | F <sub>1</sub> | 5      | 10 | F <sub>2</sub> | 1  | 1048.5116       | 0.0023                   | 8.1   | ν4             |
| 19 | A <sub>1</sub> | 1      | 18 | A <sub>2</sub> | 2  | 1048.5520       | 0.0212                   | 1.0   | ν4             |
| 9  | F <sub>2</sub> | 12     | 10 | F <sub>1</sub> | 1  | 1048.7360       | 0.0097                   | 3.6   | ν <sub>2</sub> |
| 9  | F <sub>1</sub> | 12     | 10 | F <sub>2</sub> | 2  | 1048.7694       | 0.0097                   | 0.5   | ν <sub>2</sub> |
| 19 | F <sub>1</sub> | 2      | 18 | F <sub>2</sub> | 4  | 1048.8132       | 0.0239                   | 2.0   | ν4             |
| 19 | E              | 1      | 18 | Е              | 3  | 1048.8580       | 0.0163                   | 0.0   | ν4             |
| 19 | F <sub>2</sub> | 2      | 18 | $F_1$          | 3  | 1049.1939       | 0.0240                   | 1.3   | ν4             |
| 19 | F <sub>1</sub> | 3      | 18 | F <sub>2</sub> | 3  | 1049.2619       | 0.0237                   | 0.3   | $\nu_4$        |
| 19 | Е              | 2      | 18 | Е              | 2  | 1049.9867       | 0.0166                   | 5.3   | ν4             |
| 19 | F <sub>2</sub> | 3      | 18 | F <sub>1</sub> | 2  | 1049.9926       | 0.0224                   | -4.5  | ν4             |
| 19 | A <sub>2</sub> | 2      | 18 | A <sub>1</sub> | 1  | 1050.0030       | 0.0199                   | 2.3   | ν4             |
| 20 | F <sub>2</sub> | 1      | 19 | F <sub>1</sub> | 5  | 1050.7658       | 0.0154                   | -0.8  | $\nu_4$        |
| 20 | Е              | 1      | 19 | Е              | 3  | 1050.8102       | 0.0106                   | 2.2   | $\nu_4$        |
| 11 | F <sub>2</sub> | 4      | 10 | $F_1$          | 2  | 1050.8386       | 0.0027                   | 6.1   | $\nu_4$        |
| 20 | F <sub>1</sub> | 1      | 19 | F <sub>2</sub> | 5  | 1050.8497       | 0.0135                   | -3.9  | ν4             |
| 11 | $F_2$          | 4      | 10 | $F_1$          | 1  | 1050.8573       | 0.0064                   | -3.6  | $\nu_4$        |
| 20 | A <sub>1</sub> | 1      | 19 | A <sub>2</sub> | 2  | 1051.0563       | 0.0137                   | 3.9   | $\nu_4$        |
| 20 | F <sub>1</sub> | 2      | 19 | $F_2$          | 5  | 1051.0636       | 0.0022                   | 2.2   | $\nu_4$        |
| 20 | $F_1$          | 2      | 19 | $F_2$          | 4  | 1051.1930       | 0.0137                   | 0.1   | $\nu_4$        |
| 20 | F <sub>2</sub> | 2      | 19 | F <sub>1</sub> | 4  | 1051.2474       | 0.0141                   | -0.5  | ν4             |
| 8  | A <sub>1</sub> | 4      | 9  | A <sub>2</sub> | 1  | 1051.3900       | 0.0169                   | 1.8   | $\nu_2$        |
| 8  | F <sub>2</sub> | 10     | 9  | $F_1$          | 3  | 1051.6374       | 0.0156                   | -1.7  | $\nu_2$        |
| 20 | Е              | 2      | 19 | Е              | 2  | 1051.7080       | 0.0103                   | 4.0   | $\nu_4$        |
| 12 | F <sub>2</sub> | 5      | 11 | F <sub>1</sub> | 1  | 1051.7666       | 0.0199                   | 1.1   | ν4             |
| 11 | F <sub>1</sub> | 6      | 10 | $F_2$          | 2  | 1051.7841       | 0.0073                   | 5.6   | $\nu_4$        |
| 8  | A <sub>2</sub> | 4      | 9  | A <sub>1</sub> | 1  | 1052.1118       | 0.0083                   | -4.1  | $\nu_2$        |
| 8  | F <sub>2</sub> | 11     | 9  | F <sub>1</sub> | 2  | 1052.1781       | 0.0099                   | 1.2   | v <sub>2</sub> |
| 8  | Е              | 7      | 9  | Е              | 1  | 1052.2019       | 0.0069                   | 2.2   | v <sub>2</sub> |
| 7  | A <sub>2</sub> | 3      | 8  | A <sub>1</sub> | 1  | 1052.3378       | 0.0021                   | -4.7  | v <sub>2</sub> |
| 21 | F <sub>1</sub> | 1      | 20 | F <sub>2</sub> | 5  | 1053.1058       | 0.0088                   | -6.2  | ν4             |
| 21 | Е              | 1      | 20 | Е              | 4  | 1053.1263       | 0.0057                   | 1.5   | ν4             |
| 21 | F <sub>2</sub> | 1      | 20 | F <sub>1</sub> | 5  | 1053.1972       | 0.0084                   | -4.1  | ν4             |
| 21 | F <sub>1</sub> | 2      | 20 | F <sub>2</sub> | 4  | 1053.3809       | 0.0099                   | 3.3   | ν4             |
| 21 | Е              | 2      | 20 | Е              | 3  | 1053.6108       | 0.0058                   | 6.2   | ν4             |
| 21 | F <sub>2</sub> | 2      | 20 | F <sub>1</sub> | 4  | 1053.6213       | 0.0080                   | 5.2   | ν4             |
| 9  | F <sub>1</sub> | 5      | 8  | F <sub>2</sub> | 1  | 1053.8573       | 0.0059                   | 4.0   | ν4             |

Table D.3 – Continued.

| J  | γ              | п  | J' | γ'             | n' | $v^{exp}$ ,      | $S_{\nu}^{exp}$ ,        | δ,   | Band           |
|----|----------------|----|----|----------------|----|------------------|--------------------------|------|----------------|
|    | ,              |    |    | ,              |    | cm <sup>-1</sup> | $cm^{-2} \cdot atm^{-1}$ | %    | <i>.</i>       |
|    | 1              |    |    | 2              |    | 3                | 4                        | 5    | 6              |
| 12 | E              | 4  | 11 | E              | 1  | 1055.1237        | 0.0059                   | -1.7 | ν4             |
| 7  | F <sub>1</sub> | 9  | 8  | F <sub>2</sub> | 2  | 1055.2401        | 0.0163                   | -1.5 | V2             |
| 13 | E              | 3  | 12 | E              | 1  | 1055.2537        | 0.0131                   | 1.5  | ν4             |
| 13 | F <sub>2</sub> | 5  | 12 | F <sub>1</sub> | 1  | 1055.2828        | 0.0192                   | -0.1 | ν4             |
| 7  | E              | 6  | 8  | E              | 2  | 1055.3088        | 0.0102                   | -2.9 | ν <sub>2</sub> |
| 12 | F <sub>1</sub> | 5  | 11 | F <sub>2</sub> | 3  | 1055.3257        | 0.0019                   | 9.6  | ν4             |
| 13 | A <sub>2</sub> | 3  | 12 | A <sub>1</sub> | 1  | 1055.3440        | 0.0162                   | 1.5  | $\nu_4$        |
| 12 | F <sub>1</sub> | 5  | 11 | F <sub>2</sub> | 2  | 1055.3604        | 0.0079                   | 2.3  | ν4             |
| 22 | A <sub>1</sub> | 1  | 21 | A <sub>2</sub> | 2  | 1055.4067        | 0.0048                   | 5.0  | ν4             |
| 22 | F <sub>1</sub> | 1  | 21 | F <sub>2</sub> | 5  | 1055.4277        | 0.0048                   | -2.2 | ν4             |
| 22 | A <sub>2</sub> | 1  | 21 | A <sub>1</sub> | 2  | 1055.5928        | 0.0056                   | 7.9  | ν4             |
| 22 | $F_2$          | 1  | 21 | $F_1$          | 5  | 1055.6176        | 0.0035                   | 9.6  | $\nu_4$        |
| 7  | F <sub>2</sub> | 9  | 8  | $F_1$          | 2  | 1055.7113        | 0.0106                   | 4.5  | $\nu_2$        |
| 22 | $F_1$          | 2  | 21 | $F_2$          | 5  | 1055.7868        | 0.0010                   | -1.4 | $\nu_4$        |
| 7  | F <sub>1</sub> | 10 | 8  | F <sub>2</sub> | 1  | 1055.7941        | 0.0099                   | 0.5  | $\nu_2$        |
| 7  | F <sub>1</sub> | 10 | 8  | F <sub>2</sub> | 1  | 1055.7941        | 0.0101                   | 2.6  | v <sub>2</sub> |
| 22 | F <sub>1</sub> | 2  | 21 | F <sub>2</sub> | 4  | 1056.0214        | 0.0047                   | -1.6 | ν4             |
| 22 | F <sub>2</sub> | 3  | 21 | F <sub>1</sub> | 4  | 1056.0464        | 0.0038                   | -3.9 | ν4             |
| 12 | A <sub>1</sub> | 2  | 11 | A <sub>2</sub> | 1  | 1056.2007        | 0.0074                   | 1.9  | ν4             |
| 6  | F <sub>1</sub> | 6  | 7  | F <sub>2</sub> | 2  | 1056.3912        | 0.0015                   | 4.8  | ν <sub>2</sub> |
| 6  | F <sub>1</sub> | 6  | 7  | F <sub>2</sub> | 1  | 1056.4005        | 0.0031                   | 9.0  | v <sub>2</sub> |
| 6  | F <sub>2</sub> | 7  | 7  | F <sub>1</sub> | 1  | 1057.0372        | 0.0023                   | 2.8  | V2             |
| 6  | Е              | 5  | 7  | Е              | 1  | 1057.3750        | 0.0018                   | 6.0  | v <sub>2</sub> |
| 12 | F <sub>1</sub> | 6  | 11 | F <sub>2</sub> | 3  | 1057.5158        | 0.0020                   | -6.4 | ν4             |
| 6  | F <sub>1</sub> | 7  | 7  | F <sub>2</sub> | 2  | 1057.5775        | 0.0009                   | 10.9 | V2             |
| 9  | F <sub>1</sub> | 6  | 8  | F <sub>2</sub> | 2  | 1057.8550        | 0.0014                   | -3.8 | ν4             |
| 23 | A <sub>2</sub> | 1  | 22 | A <sub>1</sub> | 2  | 1057.8727        | 0.0031                   | 7.0  | ν4             |
| 23 | F <sub>2</sub> | 1  | 22 | F <sub>1</sub> | 4  | 1057.9066        | 0.0025                   | -7.8 | ν4             |
| 14 | F <sub>1</sub> | 5  | 13 | F <sub>2</sub> | 1  | 1058.7251        | 0.0180                   | 1.3  | ν4             |
| 14 | F <sub>2</sub> | 5  | 13 | F <sub>1</sub> | 1  | 1058.7558        | 0.0185                   | 4.2  | ν4             |
| 23 | F <sub>2</sub> | 3  | 22 | F <sub>1</sub> | 3  | 1059.0036        | 0.0036                   | 10.6 | ν4             |
| 23 | F <sub>1</sub> | 4  | 22 | F <sub>2</sub> | 3  | 1059.0226        | 0.0032                   | 10.9 | ν4             |
| 6  | F <sub>2</sub> | 8  | 7  | F <sub>1</sub> | 2  | 1059.1552        | 0.0144                   | 2.0  | ν2             |
| 13 | F <sub>2</sub> | 6  | 12 | F <sub>1</sub> | 2  | 1059.2094        | 0.0095                   | -2.3 | ν4             |
| 6  | Е              | 6  | 7  | Е              | 1  | 1059.4550        | 0.0061                   | -5.6 | ν2             |
| 6  | Е              | 6  | 7  | Е              | 1  | 1059.4550        | 0.0065                   | 1.8  | V2             |
| 6  | F1             | 8  | 7  | F <sub>2</sub> | 2  | 1059.5111        | 0.0091                   | 0.1  | 2<br>V2        |
| 13 | F1             | 5  | 12 | F2             | 1  | 1059.5823        | 0.0092                   | 5.3  | V4             |
| 6  | A <sub>1</sub> | 3  | 7  | A <sub>2</sub> | 1  | 1059,5877        | 0.0072                   | -2.6 | νı             |
| 6  | A1             | 3  | 7  | A2             | 1  | 1059 5877        | 0.0074                   | 0.0  | ν <sub>2</sub> |
| 10 | E              | 4  | 9  | E              | 1  | 1059.6488        | 0.0032                   | 4.6  | • 2<br>V4      |
| 5  |                | 6  | 6  | E<br>F2        | 2  | 1061 6683        | 0.0002                   | 11.5 | V2             |
| 5  | E1             | 6  | 6  | F <sub>2</sub> | 1  | 1061 6735        | 0.0007                   | 2 /  | ¥2             |
| 5  | 11             | U  | 0  | 12             | 1  | 1001.0755        | 0.001/                   | ∠.+  | v Z            |

Table D.3 – Continued.

| J  | γ              | n | J' | γ'                    | n'  | $v^{exp}$ ,      | $S_{\nu}^{exp}$ ,        | δ,   | Band           |
|----|----------------|---|----|-----------------------|-----|------------------|--------------------------|------|----------------|
|    | 1              |   |    | ,                     |     | cm <sup>-1</sup> | $cm^{-2} \cdot atm^{-1}$ | %    | (              |
|    |                |   |    | 2                     |     | 3                | 4                        | 5    | 0              |
| 5  | E              | 4 | 6  | E                     | 1   | 1061.9094        | 0.0012                   | 3.0  | v <sub>2</sub> |
| 15 | A <sub>1</sub> | 2 | 14 | A <sub>2</sub>        | 1   | 1062.0854        | 0.0128                   | -2.1 | ν <sub>4</sub> |
| 15 | F <sub>1</sub> | 6 | 14 | F <sub>2</sub>        | 1   | 1062.1001        | 0.0158                   | 1.0  | ν4             |
| 15 | E              | 4 | 14 | E                     | 1   | 1062.1075        | 0.0098                   | -6.6 | ν4             |
| 5  | F <sub>2</sub> | 6 | 6  | <b>F</b> <sub>1</sub> | 1   | 1062.1881        | 0.0014                   | 1.9  | v <sub>2</sub> |
| 14 | A <sub>2</sub> | 2 | 13 | A <sub>1</sub>        | I   | 1062.9880        | 0.0085                   | 2.2  | ν4             |
| 5  | A <sub>2</sub> | 3 | 6  | A <sub>1</sub>        | 1   | 1063.2211        | 0.0095                   | 1.5  | v <sub>2</sub> |
| 14 | F <sub>2</sub> | 6 | 13 | $F_1$                 | 2   | 1063.2350        | 0.0097                   | 3.7  | ν4             |
| 14 | E              | 4 | 13 | Е                     | 1   | 1063.3829        | 0.0064                   | 2.7  | ν4             |
| 5  | F <sub>2</sub> | 7 | 6  | F <sub>1</sub>        | 1   | 1063.4033        | 0.0080                   | -4.7 | v <sub>2</sub> |
| 5  | F <sub>2</sub> | 7 | 6  | F <sub>1</sub>        | 1   | 1063.4033        | 0.0085                   | 1.6  | v <sub>2</sub> |
| 5  | F <sub>1</sub> | 7 | 6  | F <sub>2</sub>        | 2   | 1063.4969        | 0.0076                   | 2.5  | v <sub>2</sub> |
| 5  | F <sub>1</sub> | 7 | 6  | F <sub>2</sub>        | 2   | 1063.4969        | 0.0077                   | 2.7  | v <sub>2</sub> |
| 11 | A <sub>2</sub> | 2 | 10 | A <sub>1</sub>        | 1   | 1064.3087        | 0.0055                   | 3.3  | ν4             |
| 10 | A <sub>1</sub> | 3 | 9  | A <sub>2</sub>        | 1   | 1064.5590        | 0.0022                   | 6.2  | ν4             |
| 11 | F <sub>2</sub> | 6 | 10 | F <sub>1</sub>        | 1   | 1064.6967        | 0.0033                   | -7.4 | $\nu_4$        |
| 11 | $F_1$          | 7 | 10 | $F_2$                 | 2   | 1065.1368        | 0.0026                   | -3.2 | $\nu_4$        |
| 16 | F <sub>1</sub> | 5 | 15 | $F_2$                 | 1   | 1065.3736        | 0.0134                   | 2.0  | ν4             |
| 16 | F <sub>2</sub> | 6 | 15 | $F_1$                 | 1   | 1065.3801        | 0.0129                   | -1.5 | ν4             |
| 14 | F <sub>1</sub> | 6 | 13 | F <sub>2</sub>        | 3   | 1065.7137        | 0.0020                   | 8.2  | ν4             |
| 4  | Е              | 3 | 5  | Е                     | 1   | 1065.7421        | 0.0002                   | 8.4  | v <sub>2</sub> |
| 14 | F <sub>1</sub> | 6 | 13 | F <sub>2</sub>        | 2   | 1065.7506        | 0.0026                   | 3.6  | ν <sub>4</sub> |
| 4  | F <sub>1</sub> | 5 | 5  | F <sub>2</sub>        | 1   | 1066.4888        | 0.0020                   | 2.6  | v <sub>2</sub> |
| 15 | F <sub>2</sub> | 5 | 14 | F <sub>1</sub>        | 1   | 1066.8567        | 0.0087                   | -2.2 | ν <sub>4</sub> |
| 14 | F <sub>2</sub> | 7 | 13 | F <sub>1</sub>        | 3   | 1066.9769        | 0.0032                   | -4.1 | ν4             |
| 15 | F <sub>1</sub> | 7 | 14 | F <sub>2</sub>        | 2   | 1067.0315        | 0.0090                   | 0.7  | ν <sub>4</sub> |
| 4  | F <sub>2</sub> | 6 | 5  | $F_1$                 | 2   | 1067.6056        | 0.0061                   | -0.6 | v <sub>2</sub> |
| 4  | F <sub>2</sub> | 6 | 5  | $F_1$                 | 2   | 1067.6056        | 0.0064                   | 3.1  | v <sub>2</sub> |
| 4  | Е              | 4 | 5  | Е                     | 1   | 1067.6528        | 0.0041                   | 2.9  | v <sub>2</sub> |
| 4  | Е              | 4 | 5  | Е                     | 1   | 1067.6528        | 0.0038                   | -3.1 | v <sub>2</sub> |
| 12 | F <sub>2</sub> | 7 | 11 | F <sub>1</sub>        | 2   | 1069.5441        | 0.0048                   | -5.2 | ν4             |
| 15 | F <sub>2</sub> | 6 | 14 | $F_1$                 | 2   | 1070.2364        | 0.0029                   | -1.5 | ν4             |
| 16 | Е              | 4 | 15 | Е                     | 1   | 1070.4714        | 0.0051                   | -2.8 | ν4             |
| 16 | F <sub>1</sub> | 6 | 15 | F <sub>2</sub>        | 2   | 1070.5174        | 0.0082                   | 3.3  | ν4             |
| 16 | A <sub>1</sub> | 3 | 15 | A <sub>2</sub>        | 1   | 1070.6162        | 0.0068                   | 2.3  | ν4             |
| 15 | A <sub>2</sub> | 2 | 14 | A <sub>1</sub>        | 1   | 1071.3513        | 0.0036                   | 2.6  | ν4             |
| 3  | Е              | 3 | 4  | Е                     | 1   | 1071.3949        | 0.0012                   | -0.5 | v <sub>2</sub> |
| 3  | F <sub>2</sub> | 4 | 4  | F <sub>1</sub>        | 1   | 1071.6052        | 0.0008                   | 0.6  | v <sub>2</sub> |
| 3  | F <sub>1</sub> | 5 | 4  | F <sub>2</sub>        | 1   | 1072.0203        | 0.0040                   | -0.9 | v <sub>2</sub> |
| 3  | F <sub>1</sub> | 5 | 4  | F <sub>2</sub>        | 1   | 1072.0203        | 0.0041                   | 1.6  | ν <sub>2</sub> |
| 12 | A              | 3 | 11 | A2                    | - 1 | 1073.7441        | 0.0034                   | 4.6  | V4             |
| 17 | F2             | 7 | 16 | -<br>F1               | 2   | 1073.9606        | 0.0065                   | -2.2 | V4             |
| 16 | - 2<br>F1      | 7 | 15 | F <sub>2</sub>        | 3   | 1073.9828        | 0.0038                   | 0.9  | ν.             |
| 10 | * 1            | , | 10 | - 2                   | 5   | 10701020         | 0.0050                   | 0.7  | • 4            |

Table D.3 – Continued.

| J  | γ                                | n      | J' | γ'             | n'     | $v^{exp}$ ,     | $S_{\nu}^{exp}$ ,        | δ,              | Band           |
|----|----------------------------------|--------|----|----------------|--------|-----------------|--------------------------|-----------------|----------------|
|    | 1                                |        |    |                |        | cm <sup>1</sup> | $cm^{-2} \cdot atm^{-1}$ | %               | 6              |
| 17 | I<br>E                           | 6      | 16 | Z<br>E         | 1      | J               | 4                        | 2.0             | 0              |
| 17 | Г]<br>Е.                         | 7      | 10 | Г2<br>Еа       | 1<br>2 | 1074.0078       | 0.0009                   | 5.9             | V4             |
| 2  |                                  | 2      | 3  | 12             | 1      | 1076 6210       | 0.0040                   | 2.4             | V4             |
| 18 |                                  | 2      | 17 | A.             | 1      | 1077.3350       | 0.0017                   | 2. <del>4</del> | V2             |
| 10 | A <sub>2</sub><br>E <sub>2</sub> | 2      | 17 |                | 1<br>2 | 1077.3550       | 0.0047                   | -1.1            | V4             |
| 10 | Г2<br>Е                          | /<br>5 | 17 |                | 1      | 1077.3303       | 0.0032                   | -1.1            | V4             |
| 18 | E                                | 3      | 17 | E              | 1      | 1077.5070       | 0.0037                   | 3.2             | V4             |
| 17 | A <sub>1</sub>                   | 2      | 16 | A <sub>2</sub> | 1      | 1077.0792       | 0.0027                   | -12.0           | ν4             |
| 1/ | F <sub>1</sub>                   | /      | 10 | F <sub>2</sub> | 2      | 1077.9782       | 0.0031                   | -2.6            | ν <sub>4</sub> |
| 14 | F <sub>1</sub>                   | 8      | 13 | F <sub>2</sub> | 2      | 1079.3498       | 0.0028                   | 0.0             | ν4             |
| 14 | F <sub>2</sub>                   | 8      | 13 | F <sub>1</sub> | 3      | 1079.7205       | 0.0019                   | 1.1             | ν4             |
| 19 | F <sub>2</sub>                   | 6      | 18 | F <sub>1</sub> | 1      | 1080.6441       | 0.0039                   | -3.9            | ν4             |
| 19 | F <sub>1</sub>                   | 8      | 18 | F <sub>2</sub> | 2      | 1080.6524       | 0.0041                   | 2.1             | ν4             |
| 18 | F <sub>2</sub>                   | 8      | 17 | $F_1$          | 3      | 1081.7302       | 0.0030                   | -1.1            | ν4             |
| 15 | E                                | 6      | 14 | E              | 2      | 1084.1039       | 0.0013                   | 7.2             | ν4             |
| 14 | F <sub>2</sub>                   | 9      | 13 | $F_1$          | 3      | 1084.9653       | 0.0013                   | -2.2            | ν4             |
| 14 | F <sub>2</sub>                   | 9      | 13 | F <sub>1</sub> | 2      | 1085.0072       | 0.0014                   | 1.9             | ν4             |
| 19 | A <sub>2</sub>                   | 3      | 18 | A <sub>1</sub> | 1      | 1085.2474       | 0.0022                   | 5.8             | ν4             |
| 16 | F <sub>2</sub>                   | 9      | 15 | F <sub>1</sub> | 3      | 1088.1820       | 0.0021                   | 0.6             | ν4             |
| 20 | F <sub>2</sub>                   | 8      | 19 | F <sub>1</sub> | 2      | 1088.5686       | 0.0020                   | 9.0             | $\nu_4$        |
| 2  | Е                                | 2      | 2  | Е              | 1      | 1092.0320       | 0.0007                   | 6.4             | $\nu_2$        |
| 4  | Е                                | 3      | 4  | Е              | 1      | 1092.0567       | 0.0003                   | -12.6           | $v_2$          |
| 3  | F <sub>1</sub>                   | 4      | 3  | F <sub>2</sub> | 1      | 1092.1596       | 0.0005                   | 2.1             | $\nu_2$        |
| 2  | F <sub>1</sub>                   | 3      | 2  | F <sub>2</sub> | 1      | 1092.2244       | 0.0006                   | 10.7            | $v_2$          |
| 6  | A <sub>2</sub>                   | 2      | 6  | A <sub>1</sub> | 1      | 1092.4214       | 0.0014                   | -2.7            | $\nu_2$        |
| 6  | F <sub>2</sub>                   | 6      | 6  | F <sub>1</sub> | 1      | 1092.4906       | 0.0009                   | 9.1             | v <sub>2</sub> |
| 3  | F <sub>2</sub>                   | 4      | 3  | $F_1$          | 1      | 1092.6596       | 0.0028                   | 0.6             | $\nu_2$        |
| 7  | F <sub>2</sub>                   | 6      | 7  | $F_1$          | 2      | 1092.6711       | 0.0013                   | -3.1            | $\nu_2$        |
| 4  | F <sub>1</sub>                   | 5      | 4  | F <sub>2</sub> | 1      | 1092.8005       | 0.0007                   | 8.5             | v <sub>2</sub> |
| 4  | F <sub>2</sub>                   | 5      | 4  | F <sub>1</sub> | 1      | 1093.0426       | 0.0026                   | 3.0             | v <sub>2</sub> |
| 4  | F <sub>2</sub>                   | 5      | 4  | F <sub>1</sub> | 1      | 1093.0426       | 0.0025                   | -2.9            | v <sub>2</sub> |
| 3  | F <sub>1</sub>                   | 5      | 3  | F <sub>2</sub> | 1      | 1093.0758       | 0.0011                   | 0.0             | v <sub>2</sub> |
| 5  | F <sub>1</sub>                   | 6      | 5  | F <sub>2</sub> | 1      | 1093.2401       | 0.0008                   | 5.7             | v <sub>2</sub> |
| 4  | A <sub>2</sub>                   | 2      | 4  | A <sub>1</sub> | 1      | 1093.3149       | 0.0058                   | 1.0             | v <sub>2</sub> |
| 4  | A <sub>2</sub>                   | 2      | 4  | A <sub>1</sub> | 1      | 1093.3149       | 0.0058                   | 1.5             | v <sub>2</sub> |
| 5  | Е                                | 4      | 5  | Е              | 1      | 1093.4732       | 0.0020                   | 3.0             | v <sub>2</sub> |
| 6  | F <sub>2</sub>                   | 7      | 6  | F <sub>1</sub> | 1      | 1093.8473       | 0.0012                   | -2.3            | v <sub>2</sub> |
| 4  | F <sub>2</sub>                   | 6      | 4  | F <sub>1</sub> | 1      | 1093.9213       | 0.0024                   | -12.2           | v <sub>2</sub> |
| 4  | Е                                | 4      | 4  | Е              | 1      | 1093.9677       | 0.0024                   | 2.1             | v <sub>2</sub> |
| 8  | F <sub>1</sub>                   | 8      | 8  | F <sub>2</sub> | 2      | 1094.0913       | 0.0020                   | -3.4            | v <sub>2</sub> |
| 8  | F <sub>1</sub>                   | 8      | 8  | F <sub>2</sub> | 2      | 1094.0913       | 0.0021                   | 0.6             | v <sub>2</sub> |
| 6  | E                                | 5      | 6  | E              | 1      | 1094.2035       | 0.0026                   | -9.8            | v <sub>2</sub> |
| 6  | Е                                | 5      | 6  | Е              | 1      | 1094.2035       | 0.0030                   | 4.7             | v <sub>2</sub> |
| 8  | F <sub>2</sub>                   | 8      | 8  | F <sub>1</sub> | 2      | 1094.2819       | 0.0009                   | 11.6            | v <sub>2</sub> |

| J  | γ              | п  | J' | γ'             | n' | v <sup>exp</sup> , | $S_{\nu}^{exp}$ ,        | $\delta$ , | Band           |
|----|----------------|----|----|----------------|----|--------------------|--------------------------|------------|----------------|
|    | ,              |    |    | ,              |    | cm <sup>-1</sup>   | $cm^{-2} \cdot atm^{-1}$ | %<br>-     |                |
| 0  | 1              | 0  | -  | 2              |    | 3                  | 4                        | 5          | 0              |
| 8  | F <sub>2</sub> | 8  | 8  | F <sub>1</sub> | 1  | 1094.2996          | 0.0008                   | 5.4        | v <sub>2</sub> |
| 0  | Γ <sub>1</sub> | 2  | 0  | F2             | 1  | 1094.3989          | 0.0037                   | 2.0        | V <sub>2</sub> |
| 9  | A <sub>1</sub> | 3  | 9  | A <sub>2</sub> | 1  | 1094.4679          | 0.0030                   | 9.1        | V <sub>2</sub> |
| 14 | A <sub>2</sub> | 4  | 14 | A <sub>1</sub> | 1  | 1094.4851          | 0.0001                   | -10.9      | v <sub>2</sub> |
| 9  | F <sub>1</sub> | 9  | 9  | F <sub>2</sub> | 2  | 1094.6123          | 0.0018                   | 2.2        | v <sub>2</sub> |
| 9  | E              | 6  | 9  | E              | I  | 1094.7235          | 0.0007                   | 1.4        | v <sub>2</sub> |
| 8  | A <sub>2</sub> | 3  | 8  | A <sub>1</sub> | 1  | 1094.7306          | 0.0037                   | 7.2        | v <sub>2</sub> |
| 7  | F <sub>2</sub> | 8  | 7  | $F_1$          | 1  | 1094.7806          | 0.0034                   | 9.6        | v <sub>2</sub> |
| 7  | F <sub>2</sub> | 8  | 7  | F <sub>1</sub> | 1  | 1094.7806          | 0.0032                   | 3.9        | v <sub>2</sub> |
| 5  | F <sub>2</sub> | 7  | 5  | $F_1$          | 1  | 1094.9771          | 0.0056                   | 11.0       | v <sub>2</sub> |
| 10 | F <sub>1</sub> | 9  | 10 | F <sub>2</sub> | 3  | 1094.9984          | 0.0024                   | 4.1        | v <sub>2</sub> |
| 7  | F <sub>1</sub> | 8  | 7  | F <sub>2</sub> | 2  | 1095.0089          | 0.0041                   | 8.0        | ν <sub>2</sub> |
| 5  | F <sub>1</sub> | 7  | 5  | F <sub>2</sub> | 1  | 1095.0687          | 0.0069                   | -0.9       | v <sub>2</sub> |
| 5  | F <sub>1</sub> | 7  | 5  | F <sub>2</sub> | 1  | 1095.0687          | 0.0070                   | -0.2       | v <sub>2</sub> |
| 10 | F <sub>2</sub> | 10 | 10 | F <sub>1</sub> | 1  | 1095.1482          | 0.0003                   | 1.7        | v <sub>2</sub> |
| 7  | A <sub>1</sub> | 3  | 7  | A <sub>2</sub> | 1  | 1095.2225          | 0.0084                   | 0.4        | v <sub>2</sub> |
| 7  | A <sub>1</sub> | 3  | 7  | A <sub>2</sub> | 1  | 1095.2225          | 0.0078                   | -6.5       | $\nu_2$        |
| 9  | $F_2$          | 9  | 9  | $F_1$          | 2  | 1095.4161          | 0.0007                   | -5.1       | $\nu_2$        |
| 8  | $F_2$          | 9  | 8  | $F_1$          | 2  | 1095.4276          | 0.0009                   | -3.8       | $\nu_2$        |
| 8  | $F_2$          | 9  | 8  | $F_1$          | 1  | 1095.4451          | 0.0027                   | 3.6        | $v_2$          |
| 8  | F <sub>2</sub> | 9  | 8  | $F_1$          | 1  | 1095.4451          | 0.0027                   | 2.2        | $\nu_2$        |
| 11 | Е              | 7  | 11 | Е              | 2  | 1095.4787          | 0.0011                   | 2.4        | v <sub>2</sub> |
| 11 | $F_2$          | 10 | 11 | $F_1$          | 3  | 1095.5100          | 0.0009                   | -3.9       | $v_2$          |
| 11 | F <sub>2</sub> | 10 | 11 | $F_1$          | 2  | 1095.5329          | 0.0004                   | -4.4       | $\nu_2$        |
| 8  | Е              | 6  | 8  | Е              | 1  | 1095.6645          | 0.0019                   | 1.5        | v <sub>2</sub> |
| 8  | $F_1$          | 9  | 8  | $F_2$          | 2  | 1095.8832          | 0.0003                   | 7.5        | $\nu_2$        |
| 8  | $F_1$          | 9  | 8  | F <sub>2</sub> | 1  | 1095.8929          | 0.0089                   | 3.5        | $\nu_2$        |
| 8  | F <sub>1</sub> | 9  | 8  | F <sub>2</sub> | 1  | 1095.8929          | 0.0087                   | 1.3        | v <sub>2</sub> |
| 6  | $F_2$          | 8  | 6  | $F_1$          | 1  | 1095.9791          | 0.0011                   | 0.2        | $\nu_2$        |
| 12 | F <sub>1</sub> | 11 | 12 | F <sub>2</sub> | 2  | 1095.9863          | 0.0005                   | -7.4       | v <sub>2</sub> |
| 10 | Е              | 7  | 10 | Е              | 2  | 1096.0503          | 0.0015                   | 1.8        | v <sub>2</sub> |
| 10 | Е              | 7  | 10 | Е              | 1  | 1096.1049          | 0.0020                   | 2.2        | v <sub>2</sub> |
| 10 | F <sub>1</sub> | 10 | 10 | F <sub>2</sub> | 3  | 1096.1775          | 0.0005                   | -6.4       | v <sub>2</sub> |
| 10 | F <sub>1</sub> | 10 | 10 | F <sub>2</sub> | 2  | 1096.2059          | 0.0023                   | 6.7        | v <sub>2</sub> |
| 9  | F <sub>1</sub> | 10 | 9  | F <sub>2</sub> | 1  | 1096.2675          | 0.0024                   | -2.3       | v <sub>2</sub> |
| 6  | Е              | 6  | 6  | Е              | 1  | 1096.2836          | 0.0062                   | -5.2       | v <sub>2</sub> |
| 6  | Е              | 6  | 6  | Е              | 1  | 1096.2836          | 0.0065                   | 0.3        | v <sub>2</sub> |
| 6  | F <sub>1</sub> | 8  | 6  | F <sub>2</sub> | 1  | 1096.3379          | 0.0095                   | 0.5        | $v_2$          |
| 6  | F <sub>1</sub> | 8  | 6  | F <sub>2</sub> | 1  | 1096.3379          | 0.0098                   | 3.7        | v <sub>2</sub> |
| 6  | A <sub>1</sub> | 3  | 6  | A <sub>2</sub> | 1  | 1096.4108          | 0.0096                   | 1.5        | v <sub>2</sub> |
| 6  | A <sub>1</sub> | 3  | 6  | A <sub>2</sub> | 1  | 1096.4108          | 0.0091                   | -4.2       | v <sub>2</sub> |
| 13 | F <sub>1</sub> | 12 | 13 | F <sub>2</sub> | 2  | 1096.4888          | 0.0003                   | 10.8       | v <sub>2</sub> |
| 9  | Е              | 7  | 9  | Е              | 1  | 1096.5413          | 0.0048                   | 2.2        | v <sub>2</sub> |

Table D.3 – Continued.

| J  | γ              | n  | J' | γ'             | n'     | $v^{exp}$ , | $S_{\nu}^{exp}$ ,  | $\delta, \delta'$ | Band           |
|----|----------------|----|----|----------------|--------|-------------|--------------------|-------------------|----------------|
|    | 1              |    |    | 2              |        | 2           | $cm^2 \cdot atm^4$ | %<br>5            | 6              |
| 0  | I<br>E.        | 10 | 0  | 2<br>E.        | 2      | 1006 6812   | 4                  | 0.6               | 0              |
| 9  | Г2<br>Еа       | 10 | 9  | Г]<br>Е.       | 3      | 1090.0812   | 0.0021             | -5.2              | V2             |
| 9  | 1.2<br>E.      | 10 | 9  | Г]<br>Е.       | 3<br>2 | 1090.0812   | 0.0020             | 0.0               | V2             |
| 9  | Г2<br>Е        | 10 | 9  | Г]<br>Е        | 2      | 1090.0933   | 0.0003             | 0.0               | V2             |
| 11 | Г2<br>Е-       | 11 | 11 | Г1<br>Е.       | 3      | 1096.7092   | 0.0020             | 2.0               | V2             |
| 11 | Г2<br>Е        | 11 | 11 | Г]<br>Е        | 1      | 1090.7944   | 0.0023             | 1.0               | V2             |
| 11 | F <sub>2</sub> | 11 | 11 |                | 1      | 1096.7944   | 0.0024             | -2.0              | V2             |
| 11 | F <sub>1</sub> | 11 | 11 | F <sub>2</sub> | 2      | 1096.9696   | 0.0017             | 4./               | v <sub>2</sub> |
| 10 | F <sub>1</sub> | 11 | 11 | F <sub>2</sub> | 1      | 1097.0117   | 0.0019             | 2.8               | v <sub>2</sub> |
| 10 | A <sub>1</sub> | 4  | 10 | A <sub>2</sub> | l      | 1097.0182   | 0.0017             | -0.6              | ν <sub>2</sub> |
| 12 | A <sub>2</sub> | 4  | 12 | A <sub>1</sub> | 2      | 1097.2673   | 0.0023             | -3.5              | v <sub>2</sub> |
| 10 | F <sub>1</sub> | 11 | 10 | F <sub>2</sub> | 2      | 1097.2917   | 0.0050             | 4.9               | ν <sub>2</sub> |
| 11 | A <sub>1</sub> | 4  | 11 | A <sub>2</sub> | 1      | 1097.3720   | 0.0057             | 0.2               | v <sub>2</sub> |
| 11 | A <sub>1</sub> | 4  | 11 | A <sub>2</sub> | 1      | 1097.3720   | 0.0057             | -0.4              | v <sub>2</sub> |
| 7  | E              | 6  | 7  | Е              | 1      | 1097.3810   | 0.0020             | -7.1              | ν <sub>2</sub> |
| 7  | Е              | 6  | 7  | Е              | 1      | 1097.3810   | 0.0022             | 1.2               | ν <sub>2</sub> |
| 12 | A <sub>2</sub> | 4  | 12 | A <sub>1</sub> | 1      | 1097.3907   | 0.0017             | -5.1              | ν <sub>2</sub> |
| 12 | A <sub>2</sub> | 4  | 12 | A <sub>1</sub> | 1      | 1097.3907   | 0.0018             | 1.4               | ν <sub>2</sub> |
| 12 | F <sub>2</sub> | 12 | 12 | F <sub>1</sub> | 3      | 1097.4462   | 0.0016             | 10.6              | $\nu_2$        |
| 10 | F <sub>2</sub> | 11 | 10 | F <sub>1</sub> | 2      | 1097.4556   | 0.0021             | 1.7               | $\nu_2$        |
| 10 | F <sub>2</sub> | 11 | 10 | F <sub>1</sub> | 1      | 1097.4742   | 0.0056             | 4.2               | v <sub>2</sub> |
| 10 | F <sub>2</sub> | 11 | 10 | $F_1$          | 1      | 1097.4742   | 0.0058             | 7.3               | $\nu_2$        |
| 12 | F <sub>2</sub> | 12 | 12 | $F_1$          | 2      | 1097.5073   | 0.0004             | 3.7               | $\nu_2$        |
| 12 | F <sub>2</sub> | 12 | 12 | $F_1$          | 1      | 1097.5660   | 0.0020             | 5.1               | $\nu_2$        |
| 12 | Е              | 8  | 12 | Е              | 2      | 1097.5950   | 0.0008             | 4.3               | v <sub>2</sub> |
| 10 | A <sub>2</sub> | 4  | 10 | A <sub>1</sub> | 1      | 1097.6157   | 0.0075             | 0.0               | v <sub>2</sub> |
| 10 | A <sub>2</sub> | 4  | 10 | A <sub>1</sub> | 1      | 1097.6157   | 0.0073             | -2.9              | $\nu_2$        |
| 12 | Е              | 8  | 12 | Е              | 1      | 1097.6808   | 0.0012             | 1.1               | v <sub>2</sub> |
| 7  | F <sub>2</sub> | 9  | 7  | F <sub>1</sub> | 1      | 1097.7910   | 0.0141             | 0.8               | v <sub>2</sub> |
| 7  | F <sub>2</sub> | 9  | 7  | F <sub>1</sub> | 1      | 1097.7910   | 0.0145             | 3.9               | v <sub>2</sub> |
| 7  | F <sub>1</sub> | 10 | 7  | F <sub>2</sub> | 2      | 1097.8589   | 0.0012             | 10.9              | ν <sub>2</sub> |
| 7  | F <sub>1</sub> | 10 | 7  | F <sub>2</sub> | 1      | 1097.8683   | 0.0137             | 0.4               | ν <sub>2</sub> |
| 7  | F <sub>1</sub> | 10 | 7  | F <sub>2</sub> | 1      | 1097.8683   | 0.0137             | 0.6               | v <sub>2</sub> |
| 13 | F <sub>2</sub> | 12 | 13 | F <sub>1</sub> | 4      | 1098.0165   | 0.0018             | 5.2               | ν <sub>2</sub> |
| 11 | F <sub>1</sub> | 12 | 11 | F <sub>2</sub> | 2      | 1098.1067   | 0.0037             | -4.7              | ν <sub>2</sub> |
| 11 | F <sub>1</sub> | 12 | 11 | F <sub>2</sub> | 2      | 1098.1067   | 0.0039             | 1.7               | ν <sub>2</sub> |
| 13 | F <sub>2</sub> | 12 | 13 | F <sub>1</sub> | 1      | 1098.1856   | 0.0017             | 5.7               | v <sub>2</sub> |
| 12 | F <sub>1</sub> | 12 | 12 | F <sub>2</sub> | 3      | 1098.1974   | 0.0007             | 8.6               | ν <sub>2</sub> |
| 13 | F <sub>1</sub> | 13 | 13 | F <sub>2</sub> | 2      | 1098.2076   | 0.0005             | 11.9              | v <sub>2</sub> |
| 12 | F <sub>1</sub> | 12 | 12 | F <sub>2</sub> | 2      | 1098.2240   | 0.0004             | 2.0               | ν2             |
| 12 | F1             | 12 | 12 | -<br>F2        | 1      | 1098.2591   | 0.0050             | -4.5              | -<br>V2        |
| 12 | F1             | 12 | 12 | F2             | 1      | 1098.2591   | 0.0053             | 0.8               | V2             |
| 13 | F1             | 13 | 13 | F2             | 1      | 1098,3307   | 0.0016             | 9.1               | V2             |
| 11 | F <sub>2</sub> | 12 | 11 | F1             | 2      | 1098 4355   | 0.0075             | 0.9               | ν <sub>2</sub> |
|    |                |    |    |                | · -    |             |                    | U.7               | • 2            |

Table D.3 – Continued.

| Image: Constraint of the | J  | γ              | п  | J' | $\gamma'$      | n' | $v^{exp}$ , | $S_{\nu}^{exp}$ ,                          | $\delta$ , | Band           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----------------|----|----|----------------|----|-------------|--------------------------------------------|------------|----------------|
| 1 $F_2$ 1 $F_1$ 2         1 $F_1$ 2         1 $F_2$ 1 $F_1$ 14         E         9         14         E         3         1098.6981         0.0006         2.0 $v_2$ 14         F_1         13         14 $F_2$ 4         1098.7286         0.0006         -10.5 $v_2$ 14         F_1         13         14 $F_2$ 3         1098.7286         0.0007         4.1 $v_2$ 8         F_1         10         8 $F_2$ 1         1098.8423         0.0007         4.1 $v_2$ 13         E         9         13         E         2         1099.0076         0.00028         2.9 $v_2$ 13         F_2         13         13         F_1         3         1099.1792         0.0016         1.4 $v_2$ 12         F         9         12         E         2         1099.3419         0.0056         -1.0 $v_2$ 12         F_1         13         12         F_2         1099.3419                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    | 1              |    |    | 2              |    | 3           | $\frac{\text{cm}^2 \cdot \text{atm}^4}{4}$ | %<br>5     | 6              |
| 11         12         11         11         11         12         1098.3.53         0.0007         6.5 $v_2$ 14         Fi         13         14         F2         3         1098.6981         0.0007         6.5 $v_2$ 14         Fi         13         14         F2         3         1098.7286         0.0004         11.8 $v_2$ 8         F1         10         8         F2         1         1098.8236         0.0009         8.3 $v_2$ 13         E         9         13         E         2         1099.0076         0.0009         7.6 $v_2$ 13         E         9         13         E         1         1099.1005         0.0028         2.9 $v_2$ 13         F2         13         13         F1         3         1099.172         0.0016         1.4 $v_2$ 12         E         9         12         E         2         1099.333         0.0038         -0.4 $v_2$ 12         F1         13         12         F2         2         1099.3928         0.00056         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11 | Fa             | 12 | 11 | E.             | 2  | 1008 / 355  | 0.0076                                     | 2.0        | 0              |
| 14         15         14         15         14         16         1000,000         -0.000         -0.000 $\sqrt{2}$ 14         F1         13         14         F2         4         1098,7256         0.00004         11.8 $\sqrt{2}$ 14         F1         13         14         F2         3         1098,7752         0.0004         11.8 $\sqrt{2}$ 14         E         9         14         E         1         1098,8236         0.0009         8.3 $\sqrt{2}$ 13         E         9         13         E         1         1099,1005         0.0028         2.9 $\sqrt{2}$ 13         F2         9         12         E         2         1099,2333         0.0038         -0.4 $\sqrt{2}$ 12         E         9         12         E         2         1099,2333         0.0038         -1.8 $\sqrt{2}$ 12         F1         13         12         F2         2         1099,319         0.0056         -1.0 $\sqrt{2}$ 12         F1         13         12         F2         14         1099,310         0.0003<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11 | F              | 0  | 11 | F              | 3  | 1098.4355   | 0.0070                                     | 6.5        | V2             |
| 14         11         13         14 $F_2$ 14         1000,200         1000,200         11.8 $v_2$ 14         F1         10         8         F2         1         1008,8423         0.0027         4.1 $v_2$ 14         E         9         14         E         1         1008,8423         0.0027         4.1 $v_2$ 13         E         9         13         E         1         1009,1005         0.0009         7.6 $v_2$ 13         E         9         13         E         1         1099,1005         0.0016         1.4 $v_2$ 12         E         9         12         E         2         1099,2333         0.0038 $-0.4$ $v_2$ 12         F1         13         12         F2         2         1099,3419         0.0056 $-1.0$ $v_2$ 12         F1         13         12         F2         2         1099,3419         0.00054 $-4.7$ $v_2$ 15         F2         14         15         F1         4         1099,3419         0.0004 <td>14</td> <td>E<br/>E</td> <td>13</td> <td>14</td> <td>E</td> <td>1</td> <td>1098 7286</td> <td>0.0007</td> <td>-10.5</td> <td>V2</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 14 | E<br>E         | 13 | 14 | E              | 1  | 1098 7286   | 0.0007                                     | -10.5      | V2             |
| 14         13         14         12         13         100, 13         100, 14         12         13         100, 14         102           14         E         9         14         E         1         1098,9236         0.0007         4.1 $v_2$ 13         E         9         13         E         2         1099,076         0.0009         7.6 $v_2$ 13         E         9         13         E         1         1099,1005         0.0028         2.9 $v_2$ 13         F2         13         13         F1         3         1099,2333         0.0038 $-0.4$ $v_2$ 12         E         9         12         E         2         1099,3155         0.0008         12.5 $v_2$ 12         F1         13         12         F2         2         1099,3419         0.0056 $-1.0$ $v_2$ 15         F2         14         15         F1         4         1099,328         0.0003 $-5.5$ $v_2$ 15         F2         14         15         F1         3         1099,4242                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 14 | F1             | 13 | 14 | F <sub>2</sub> |    | 1098.7250   | 0.0004                                     | 11.9       | V2             |
| a         1         10         a         12         1         1098.9236 $0.0027$ 4.1 $v_2$ 14         E         9         14         E         1         1098.9236 $0.0009$ 8.3 $v_2$ 13         E         9         13         E         1         1099.1005 $0.0028$ 2.9 $v_2$ 13         F2         13         13         F1         3         1099.1792 $0.0016$ 1.4 $v_2$ 12         E         9         12         E         2         1099.2333 $0.0038$ $-1.8$ $v_2$ 12         F1         13         12         F2         3         1099.3155 $0.0008$ 12.5 $v_2$ 12         F1         13         12         F2         2         1099.3419 $0.0054$ $-4.7$ $v_2$ 15         F2         14         15         F1         4         1099.328 $0.0003$ $-5.5$ $v_2$ 15         F2         14         15         F1         3         1099.422                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8  | F <sub>1</sub> | 10 | 14 | F <sub>2</sub> | 1  | 1098.7732   | 0.0004                                     | 11.0       | V2             |
| 14         12         14         12         1039920         0.0009         3.5 $v_2$ 13         E         9         13         E         2         10990076         0.0009         7.6 $v_2$ 13         E         9         13         E         1         10991055         0.0028         2.9 $v_2$ 13         F2         13         13         F1         3         1099.1792         0.0016         1.4 $v_2$ 12         E         9         12         E         2         1099.333         0.0038         -0.4 $v_2$ 12         F1         13         12         F2         2         1099.3419         0.0056         -1.0 $v_2$ 12         F1         13         12         F2         2         1099.3419         0.0054         -4.7 $v_2$ 15         F2         14         15         F1         4         1099.328         0.0003         -5.5 $v_2$ 15         F1         14         15         F1         3         1099.422         0.0004         2.5 $v_2$ <td>14</td> <td>F</td> <td>0</td> <td>14</td> <td>12<br/>E</td> <td>1</td> <td>1098.0423</td> <td>0.0027</td> <td>4.1</td> <td>V2</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 14 | F              | 0  | 14 | 12<br>E        | 1  | 1098.0423   | 0.0027                                     | 4.1        | V2             |
| 15E913E21099,00780.00097.8 $\forall 2$ 13E913E11099,10050.00282.9 $v_2$ 13F21313F131099,17920.00161.4 $v_2$ 12E912E21099,23330.0038 $-0.4$ $v_2$ 12E912E21099,34190.0056 $-1.0$ $v_2$ 12F11312F221099,34190.0056 $-1.0$ $v_2$ 12F11312F221099,34190.0054 $-4.7$ $v_2$ 15F21415F141099,37000.00058.9 $v_2$ 15F21415F131099,42420.00042.5 $v_2$ 8A248A111099,4020.01711.2 $v_2$ 8F2118F111099,5020.01711.2 $v_2$ 8F2118F111099,5020.01742.8 $v_2$ 15F21415F111099,5020.0113 $-2.7$ $v_2$ 8F2118F111099,5020.0114 $-1.4$ $v_2$ 15F21415F111099,5020.0114 $-1.4$ $v_2$ 16F2148<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 14 | E              | 9  | 14 | E              | 2  | 1098.9230   | 0.0009                                     | 0.5        | V2             |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 13 | E              | 9  | 13 | E              | 1  | 1099.0076   | 0.0009                                     | 7.0        | V2             |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 13 | E              | 12 | 13 | E              | 1  | 1099.1005   | 0.0028                                     | 2.9        | V2             |
| 12E912E21099.23330.0038 $-0.4$ $v_2$ 12E912E21099.23330.0038 $-1.8$ $v_2$ 12F11312F231099.31550.000812.5 $v_2$ 12F11312F221099.34190.0056 $-1.0$ $v_2$ 15F21415F141099.37000.00054 $-4.7$ $v_2$ 15F11415F241099.3280.0003 $-5.5$ $v_2$ 15F21415F131099.42420.00042.5 $v_2$ 8A248A111099.50020.01711.2 $v_2$ 8F2118F111099.5020.01742.8 $v_2$ 8F2118F111099.5210.0113 $-2.7$ $v_2$ 8F21415F111099.5210.0114 $-1.4$ $v_2$ 15F21415F111099.66710.0009 $-4.7$ $v_2$ 16F11414F221099.6130.00211.2 $v_2$ 13A2513A111099.6430.00211.2 $v_2$ 14F11414F221099.6130.00336.7 $v_2$ 13F214<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 13 | $F_2$          | 13 | 13 | F <sub>1</sub> | 3  | 1099.1792   | 0.0016                                     | 1.4        | v <sub>2</sub> |
| 12E912E21099.23330.0038-1.8 $v_2$ 12F11312F231099.31550.000812.5 $v_2$ 12F11312F221099.34190.0056-1.0 $v_2$ 12F11312F221099.34190.0054-4.7 $v_2$ 15F21415F141099.37000.00058.9 $v_2$ 15F11415F241099.3280.0003-5.5 $v_2$ 15F21415F131099.42420.00042.5 $v_2$ 8A248A111099.4110.01482.4 $v_2$ 8F2118F111099.5020.01711.2 $v_2$ 8F2118F111099.5020.01742.8 $v_2$ 8F2118F111099.5210.0113-2.7 $v_2$ 8E78E11099.5210.0114-1.4 $v_2$ 15F21415F111099.5210.0114-1.4 $v_2$ 14F11414F221099.6130.0029-6.4 $v_2$ 13A2513A111099.90450.00311.6 $v_2$ 14F114F13<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12 | E              | 9  | 12 | E              | 2  | 1099.2333   | 0.0038                                     | -0.4       | V2             |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12 | E              | 9  | 12 | E              | 2  | 1099.2333   | 0.0038                                     | -1.8       | v <sub>2</sub> |
| 12 $F_1$ 1312 $F_2$ 21099.34190.0056 $-1.0$ $v_2$ 12 $F_1$ 1312 $F_2$ 21099.34190.0054 $-4.7$ $v_2$ 15 $F_2$ 1415 $F_1$ 41099.37000.0005 $8.9$ $v_2$ 15 $F_1$ 1415 $F_2$ 41099.39280.0003 $-5.5$ $v_2$ 15 $F_2$ 1415 $F_1$ 31099.42420.0004 $2.5$ $v_2$ 8 $A_2$ 48 $A_1$ 11099.4110.0148 $2.4$ $v_2$ 8 $F_2$ 118 $F_1$ 21099.48270.0007 $4.2$ $v_2$ 8 $F_2$ 118 $F_1$ 11099.50020.0171 $1.2$ $v_2$ 8 $F_2$ 118 $F_1$ 11099.50210.0113 $-2.7$ $v_2$ 8 $F_2$ 118 $F_1$ 11099.52210.0113 $-2.7$ $v_2$ 15 $F_2$ 1415 $F_1$ 11099.66710.0009 $-4.7$ $v_2$ 14 $F_1$ 1414 $F_2$ 21099.4630.0021 $1.2$ $v_2$ 14 $F_1$ 1414 $F_2$ 21099.96130.0029 $-6.4$ $v_2$ 13 $A_2$ 513 $A_1$ 11099.90450.0021 $1.2$ $v_2$ 14 $F_1$ 14 $F_1$ $3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12 | F <sub>1</sub> | 13 | 12 | F <sub>2</sub> | 3  | 1099.3155   | 0.0008                                     | 12.5       | ν <sub>2</sub> |
| 12 $F_1$ 1312 $F_2$ 21099.34190.0054 $-4.7$ $v_2$ 15 $F_2$ 1415 $F_1$ 41099.37000.00058.9 $v_2$ 15 $F_1$ 1415 $F_2$ 41099.39280.0003 $-5.5$ $v_2$ 15 $F_2$ 1415 $F_1$ 31099.42420.00042.5 $v_2$ 8 $A_2$ 48 $A_1$ 11099.4110.01482.4 $v_2$ 8 $F_2$ 118 $F_1$ 21099.48270.00074.2 $v_2$ 8 $F_2$ 118 $F_1$ 11099.50020.01711.2 $v_2$ 8 $F_2$ 118 $F_1$ 11099.50020.01742.8 $v_2$ 8 $F_2$ 118 $F_1$ 11099.5020.01742.8 $v_2$ 8 $E$ 78 $E$ 11099.52210.0113 $-2.7$ $v_2$ 15 $F_2$ 1415 $F_1$ 11099.66710.0099 $-4.7$ $v_2$ 14 $F_1$ 1414 $F_2$ 21099.90450.00211.2 $v_2$ 14 $F_1$ 1414 $F_2$ 21099.96130.00321.6 $v_2$ 14 $F_1$ 1414 $F_1$ 31100.04550.00036.7 $v_2$ 13 $F_2$ 1413 $F_1$ 31100.0930.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 12 | $F_1$          | 13 | 12 | F <sub>2</sub> | 2  | 1099.3419   | 0.0056                                     | -1.0       | v <sub>2</sub> |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12 | F <sub>1</sub> | 13 | 12 | F <sub>2</sub> | 2  | 1099.3419   | 0.0054                                     | -4.7       | ν <sub>2</sub> |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 15 | F <sub>2</sub> | 14 | 15 | F <sub>1</sub> | 4  | 1099.3700   | 0.0005                                     | 8.9        | v <sub>2</sub> |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 15 | F <sub>1</sub> | 14 | 15 | F <sub>2</sub> | 4  | 1099.3928   | 0.0003                                     | -5.5       | v <sub>2</sub> |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 15 | F <sub>2</sub> | 14 | 15 | F <sub>1</sub> | 3  | 1099.4242   | 0.0004                                     | 2.5        | v <sub>2</sub> |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8  | A <sub>2</sub> | 4  | 8  | A <sub>1</sub> | 1  | 1099.4411   | 0.0148                                     | 2.4        | ν <sub>2</sub> |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8  | F <sub>2</sub> | 11 | 8  | F <sub>1</sub> | 2  | 1099.4827   | 0.0007                                     | 4.2        | $\nu_2$        |
| 8 $F_2$ 118 $F_1$ 11099.50020.01742.8 $v_2$ 8E78E11099.5210.0113 $-2.7$ $v_2$ 8E78E11099.5210.0114 $-1.4$ $v_2$ 15 $F_2$ 1415 $F_1$ 11099.66710.0009 $-4.7$ $v_2$ 14 $F_1$ 1414 $F_2$ 41099.82440.00114.5 $v_2$ 13 $A_2$ 513 $A_1$ 11099.90450.00211.2 $v_2$ 14 $F_1$ 1414 $F_2$ 21099.96130.0029 $-6.4$ $v_2$ 14 $F_1$ 1414 $F_2$ 21099.96130.00321.6 $v_2$ 13 $F_2$ 1413 $F_1$ 31100.02450.00036.7 $v_2$ 13 $F_2$ 1413 $F_1$ 31100.09930.0035 $-9.9$ $v_2$ 13 $F_2$ 1413 $F_1$ 31100.09930.00391.1 $v_2$ 13 $F_2$ 1413 $F_1$ 11100.14880.0023 $-4.2$ $v_2$ 14 $F_2$ 1414 $F_1$ 11100.14880.0023 $-4.2$ $v_2$ 13 $F_1$ 1414 $F_1$ 11100.14880.0023 $-4.2$ $v_2$ 14 $F_2$ 1414 $F_1$ 11100.1488<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8  | F <sub>2</sub> | 11 | 8  | F <sub>1</sub> | 1  | 1099.5002   | 0.0171                                     | 1.2        | ν <sub>2</sub> |
| 8E78E1 $1099.5221$ $0.0113$ $-2.7$ $v_2$ 8E78E1 $1099.5221$ $0.0114$ $-1.4$ $v_2$ 15 $F_2$ 1415 $F_1$ 1 $1099.6671$ $0.0009$ $-4.7$ $v_2$ 14 $F_1$ 1414 $F_2$ 4 $1099.8244$ $0.0011$ $4.5$ $v_2$ 13 $A_2$ 513 $A_1$ 1 $1099.9045$ $0.0021$ $1.2$ $v_2$ 14 $F_1$ 1414 $F_2$ 2 $1099.9613$ $0.0029$ $-6.4$ $v_2$ 14 $F_1$ 1414 $F_2$ 2 $1099.9613$ $0.0029$ $-6.4$ $v_2$ 14 $F_1$ 1414 $F_2$ 2 $1099.9613$ $0.0029$ $-6.4$ $v_2$ 14 $F_2$ 1414 $F_2$ 2 $1099.9613$ $0.0029$ $-6.4$ $v_2$ 13 $F_2$ 1414 $F_2$ 2 $1099.9613$ $0.0032$ $1.6$ $v_2$ 13 $F_2$ 1413 $F_1$ 3 $1100.0245$ $0.0003$ $6.7$ $v_2$ 13 $F_2$ 1413 $F_1$ 3 $1100.0993$ $0.0035$ $-9.9$ $v_2$ 13 $F_2$ 1413 $F_1$ 3 $1100.0993$ $0.0024$ $0.1$ $v_2$ 14 $F_2$ 1414 $F_1$ 1 $1100.1488$ $0.0023$ $-4.2$ $v_2$ 14 $F$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8  | F <sub>2</sub> | 11 | 8  | F <sub>1</sub> | 1  | 1099.5002   | 0.0174                                     | 2.8        | v <sub>2</sub> |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8  | Е              | 7  | 8  | E              | 1  | 1099.5221   | 0.0113                                     | -2.7       | v <sub>2</sub> |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8  | Е              | 7  | 8  | Е              | 1  | 1099.5221   | 0.0114                                     | -1.4       | v <sub>2</sub> |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 15 | F <sub>2</sub> | 14 | 15 | $F_1$          | 1  | 1099.6671   | 0.0009                                     | -4.7       | $\nu_2$        |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 14 | F <sub>1</sub> | 14 | 14 | F <sub>2</sub> | 4  | 1099.8244   | 0.0011                                     | 4.5        | $\nu_2$        |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 13 | A <sub>2</sub> | 5  | 13 | A <sub>1</sub> | 1  | 1099.9045   | 0.0021                                     | 1.2        | $\nu_2$        |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 14 | $F_1$          | 14 | 14 | $F_2$          | 2  | 1099.9613   | 0.0029                                     | -6.4       | $\nu_2$        |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 14 | $F_1$          | 14 | 14 | F <sub>2</sub> | 2  | 1099.9613   | 0.0032                                     | 1.6        | $\nu_2$        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 14 | F <sub>2</sub> | 14 | 14 | F <sub>1</sub> | 3  | 1100.0245   | 0.0003                                     | 6.7        | $\nu_2$        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 13 | F <sub>2</sub> | 14 | 13 | F <sub>1</sub> | 4  | 1100.0455   | 0.0003                                     | 10.6       | $\nu_2$        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 13 | F <sub>2</sub> | 14 | 13 | F <sub>1</sub> | 3  | 1100.0993   | 0.0035                                     | -9.9       | $\nu_2$        |
| $            \begin{array}{c cccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 13 | F <sub>2</sub> | 14 | 13 | F <sub>1</sub> | 3  | 1100.0993   | 0.0039                                     | 1.1        | $\nu_2$        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 14 | F <sub>2</sub> | 14 | 14 | F <sub>1</sub> | 1  | 1100.1488   | 0.0024                                     | 0.1        | v <sub>2</sub> |
| 13         F1         14         13         F2         3         1100.1933         0.0006         -4.8         v2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 14 | F <sub>2</sub> | 14 | 14 | F <sub>1</sub> | 1  | 1100.1488   | 0.0023                                     | -4.2       | v <sub>2</sub> |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 13 | F <sub>1</sub> | 14 | 13 | F <sub>2</sub> | 3  | 1100.1933   | 0.0006                                     | -4.8       | v <sub>2</sub> |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 13 | F <sub>1</sub> | 14 | 13 | F <sub>2</sub> | 2  | 1100.2303   | 0.0045                                     | 0.9        | ν <sub>2</sub> |
| 13 F <sub>1</sub> 14 13 F <sub>2</sub> 2 1100.2303 0.0043 -4.8 v <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 13 | F <sub>1</sub> | 14 | 13 | F <sub>2</sub> | 2  | 1100.2303   | 0.0043                                     | -4.8       | ν <sub>2</sub> |
| 13 A <sub>1</sub> 5 13 A <sub>2</sub> 1 1100.3276 0.0047 0.5 v <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 13 | A <sub>1</sub> | 5  | 13 | A <sub>2</sub> | 1  | 1100.3276   | 0.0047                                     | 0.5        | v <sub>2</sub> |
| 9 F <sub>1</sub> 11 9 F <sub>2</sub> 2 1100.3680 0.0008 6.9 v <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9  | F <sub>1</sub> | 11 | 9  | F <sub>2</sub> | 2  | 1100.3680   | 0.0008                                     | 6.9        | V2             |
| 14 A <sub>2</sub> 5 14 A <sub>1</sub> 1 1100.4463 0.0045 1.1 v <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 14 | A <sub>2</sub> | 5  | 14 | A <sub>1</sub> | 1  | 1100.4463   | 0.0045                                     | 1.1        | v <sub>2</sub> |
| 15 A <sub>1</sub> 5 15 A <sub>2</sub> 2 1100.5627 0.0011 -5.7 v <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 15 | A <sub>1</sub> | 5  | 15 | A <sub>2</sub> | 2  | 1100.5627   | 0.0011                                     | -5.7       | v <sub>2</sub> |
| 9 E 8 9 E 1 1100.5732 0.0035 2.2 v <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9  | Е              | 8  | 9  | Е              | 1  | 1100.5732   | 0.0035                                     | 2.2        | ν2             |
| 9 E 8 9 E 1 1100.5732 0.0035 2.9 v <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9  | Е              | 8  | 9  | Е              | 1  | 1100.5732   | 0.0035                                     | 2.9        | v <sub>2</sub> |

Table D.3 – Continued.

| J  | γ              | п  | J' | γ'             | n' | $v^{exp}$ ,      | $S_{\nu}^{exp}$ ,        | δ,   | Band           |
|----|----------------|----|----|----------------|----|------------------|--------------------------|------|----------------|
|    | 1              |    |    | ,              |    | cm <sup>-1</sup> | $cm^{-2} \cdot atm^{-1}$ | %    | (              |
| -  | 1              |    |    | 2              | 2  | 3                | 4                        | 5    | 0              |
| 9  | F <sub>2</sub> | 11 | 9  | F1             | 3  | 1100.6455        | 0.0017                   | 12.1 | v <sub>2</sub> |
| 9  | F <sub>2</sub> | 11 | 9  |                | 2  | 1100.6578        | 0.0051                   | 9.5  | V2             |
| 15 | F <sub>1</sub> | 15 | 15 | F <sub>2</sub> | 4  | 1100.7000        | 0.0006                   | -8.0 | v <sub>2</sub> |
| 15 | A <sub>1</sub> | 5  | 15 | A <sub>2</sub> | 1  | 1100.7540        | 0.0021                   | -1.9 | v <sub>2</sub> |
| 9  | A <sub>2</sub> | 4  | 9  | A <sub>1</sub> | 1  | 1100.7836        | 0.0064                   | -3.8 | v <sub>2</sub> |
| 9  | A <sub>2</sub> | 4  | 9  | $A_1$          | 1  | 1100.7836        | 0.0068                   | 1.9  | v <sub>2</sub> |
| 15 | F <sub>1</sub> | 15 | 15 | F <sub>2</sub> | 3  | 1100.7993        | 0.0003                   | 4.2  | v <sub>2</sub> |
| 15 | F <sub>1</sub> | 15 | 15 | F <sub>2</sub> | 2  | 1100.8851        | 0.0022                   | 2.7  | v <sub>2</sub> |
| 15 | Е              | 10 | 15 | E              | 1  | 1100.9697        | 0.0013                   | -2.2 | $\nu_2$        |
| 15 | E              | 10 | 15 | Е              | 1  | 1100.9697        | 0.0014                   | 4.9  | v <sub>2</sub> |
| 14 | F <sub>2</sub> | 15 | 14 | $F_1$          | 2  | 1101.0042        | 0.0030                   | 0.0  | ν <sub>2</sub> |
| 14 | F <sub>2</sub> | 15 | 14 | $F_1$          | 2  | 1101.0042        | 0.0029                   | -3.1 | v <sub>2</sub> |
| 14 | E              | 10 | 14 | E              | 2  | 1101.1283        | 0.0021                   | -3.1 | $\nu_2$        |
| 14 | Е              | 10 | 14 | Е              | 2  | 1101.1283        | 0.0020                   | -9.0 | $v_2$          |
| 17 | F <sub>2</sub> | 15 | 17 | $F_1$          | 1  | 1101.1893        | 0.0005                   | 5.4  | $v_2$          |
| 14 | F <sub>1</sub> | 15 | 14 | F <sub>2</sub> | 3  | 1101.2404        | 0.0042                   | -3.5 | $\nu_2$        |
| 14 | F <sub>1</sub> | 15 | 14 | $F_2$          | 3  | 1101.2404        | 0.0045                   | 3.0  | $\nu_2$        |
| 9  | F <sub>2</sub> | 12 | 9  | $F_1$          | 1  | 1101.3019        | 0.0191                   | -0.2 | v <sub>2</sub> |
| 9  | F <sub>2</sub> | 12 | 9  | $F_1$          | 1  | 1101.3019        | 0.0192                   | 0.5  | v <sub>2</sub> |
| 9  | F <sub>1</sub> | 12 | 9  | F <sub>2</sub> | 1  | 1101.3309        | 0.0195                   | -0.4 | v <sub>2</sub> |
| 9  | F <sub>1</sub> | 12 | 9  | F <sub>2</sub> | 1  | 1101.3309        | 0.0197                   | 0.9  | v <sub>2</sub> |
| 15 | F <sub>2</sub> | 15 | 15 | F <sub>1</sub> | 2  | 1101.4552        | 0.0039                   | 0.5  | ν <sub>2</sub> |
| 15 | F <sub>2</sub> | 15 | 15 | $F_1$          | 2  | 1101.4552        | 0.0040                   | 2.8  | ν <sub>2</sub> |
| 16 | F <sub>1</sub> | 15 | 16 | F <sub>2</sub> | 1  | 1101.7016        | 0.0017                   | -0.9 | ν <sub>2</sub> |
| 16 | F <sub>2</sub> | 16 | 16 | $F_1$          | 2  | 1101.7723        | 0.0014                   | -3.7 | v <sub>2</sub> |
| 15 | Е              | 11 | 15 | Е              | 2  | 1102.1331        | 0.0021                   | -0.9 | v <sub>2</sub> |
| 15 | Е              | 11 | 15 | Е              | 2  | 1102.1331        | 0.0021                   | -4.3 | v <sub>2</sub> |
| 10 | F <sub>2</sub> | 12 | 10 | F <sub>1</sub> | 1  | 1102.1733        | 0.0003                   | -8.8 | ν <sub>2</sub> |
| 15 | F <sub>2</sub> | 16 | 15 | F <sub>1</sub> | 3  | 1102.2089        | 0.0033                   | 1.9  | v <sub>2</sub> |
| 10 | Е              | 8  | 10 | Е              | 2  | 1102.2137        | 0.0012                   | 0.1  | v <sub>2</sub> |
| 16 | Е              | 11 | 16 | Е              | 2  | 1102.4289        | 0.0018                   | -7.1 | v <sub>2</sub> |
| 10 | F <sub>1</sub> | 12 | 10 | F <sub>2</sub> | 2  | 1102.4888        | 0.0070                   | 2.0  | v <sub>2</sub> |
| 10 | F <sub>1</sub> | 12 | 10 | F <sub>2</sub> | 2  | 1102.4888        | 0.0064                   | -6.6 | v <sub>2</sub> |
| 16 | F <sub>1</sub> | 16 | 16 | F <sub>2</sub> | 2  | 1102.5082        | 0.0025                   | 0.3  | ν <sub>2</sub> |
| 16 | F <sub>1</sub> | 16 | 16 | F <sub>2</sub> | 2  | 1102.5082        | 0.0024                   | -2.6 | ν <sub>2</sub> |
| 10 | F <sub>2</sub> | 13 | 10 | F <sub>1</sub> | 2  | 1102.6182        | 0.0022                   | 1.0  | ν2             |
| 10 | F2             | 13 | 10 | F1             | 1  | 1102.6368        | 0.0064                   | 1.1  | -<br>V2        |
| 16 | F <sub>1</sub> | 17 | 16 | F <sub>2</sub> | 3  | 1103.0664        | 0.0022                   | 0.6  | ν <sub>2</sub> |
| 16 | F2             | 17 | 16 | -<br>Fı        | 3  | 1103.1612        | 0.0026                   | 6.8  | -<br>V2        |
| 16 | A2             | 6  | 16 | A <sub>1</sub> | 2  | 1103.2304        | 0.0023                   | 3.1  | 2<br>V2        |
| 16 | A2             | 6  | 16 | A <sub>1</sub> | 2  | 1103.2304        | 0.0022                   | -0.3 | v2             |
| 10 | E              | 9  | 10 | E              | 1  | 1103 2612        | 0.0134                   | 0.3  | V2             |
| 10 | F              | 0  | 10 | F              | 1  | 1103 2612        | 0.0133                   | -0.6 | v2             |
| 10 |                |    | 10 | ப              | 1  | 1103.2012        | 0.0155                   | 0.0  | v ∠            |
Table D.3 – Continued.

| J  | γ              | п  | J' | γ'             | n' | $v^{exp}$ , | $S_{\nu}^{exp}$ ,        | δ,    | Band                  |
|----|----------------|----|----|----------------|----|-------------|--------------------------|-------|-----------------------|
|    | 1              |    |    | 2              |    |             | $cm^{-2} \cdot atm^{-1}$ | %     | 6                     |
| 10 | Fi             | 13 | 10 | Ea             | 1  | 1103 2699   |                          | -4.0  | 10                    |
| 10 | F <sub>1</sub> | 13 | 10 | F <sub>2</sub> | 1  | 1103.2699   | 0.0207                   | 2.5   | v2<br>V2              |
| 10 | A1             | 5  | 10 | A2             | 1  | 1103.2856   | 0.0176                   | 3.0   | V2<br>V2              |
| 10 |                | 5  | 10 | Δ2             | 1  | 1103.2856   | 0.0170                   | -2.0  | V2                    |
| 17 | E2             | 17 | 17 | F <sub>1</sub> | 3  | 1103.2000   | 0.0019                   | -1.5  | V2<br>V2              |
| 17 | F <sub>2</sub> | 17 | 17 | E1             | 3  | 1103.4187   | 0.0019                   | -2.9  | V2                    |
| 17 | E.             | 17 | 17 | Fa             | 3  | 1103.4107   | 0.0012                   | 2.9   | V2                    |
| 17 |                | 17 | 17 | Г2<br>Е.       | 1  | 1103.4269   | 0.0002                   | 3.0   | V2                    |
| 10 | <b>F</b> .     | 17 | 10 | F.             | 2  | 1103.4310   | 0.0008                   | 4.7   | V2                    |
| 10 | Г]             | 17 | 10 | Г2<br>Е        | 2  | 1103.4640   | 0.0008                   | -1.5  | V2                    |
| 17 | Г1<br>Е        | 17 | 17 | F2             | 2  | 1103.5084   | 0.0016                   | 1.3   | V2                    |
| 17 | Γ <sub>1</sub> | 1/ | 17 | F2             | 1  | 1103.5084   | 0.0016                   | -0.2  | V2                    |
| 17 | A <sub>1</sub> | 0  | 17 | A <sub>2</sub> | 1  | 1103.7768   | 0.0023                   | 3.7   | v <sub>2</sub>        |
| 1/ |                | 18 | 1/ | F <sub>2</sub> | 3  | 1104.0242   | 0.0016                   | -4.3  | v <sub>2</sub>        |
| 11 | F <sub>2</sub> | 13 | 11 | F <sub>1</sub> | 3  | 1104.0929   | 0.0003                   | 5.5   | v <sub>2</sub>        |
| 17 | E              | 12 | 17 | E              | 2  | 1104.1111   | 0.0010                   | -4.2  | V2                    |
| 11 | F <sub>1</sub> | 13 | 11 | F <sub>2</sub> | 3  | 1104.1927   | 0.0019                   | -6.7  | V2                    |
| 11 | F <sub>1</sub> | 13 | 11 | F <sub>2</sub> | 3  | 1104.1927   | 0.0021                   | 5.0   | V2                    |
| 17 | F <sub>2</sub> | 18 | 17 | $F_1$          | 4  | 1104.2004   | 0.0019                   | -0.3  | ν <sub>2</sub>        |
| 17 | F <sub>2</sub> | 18 | 17 | F <sub>1</sub> | 4  | 1104.2004   | 0.0019                   | -2.9  | V2                    |
| 11 | F <sub>1</sub> | 13 | 11 | F <sub>2</sub> | 2  | 1104.2274   | 0.0007                   | 9.8   | ν <sub>2</sub>        |
| 19 | F <sub>1</sub> | 18 | 19 | F <sub>2</sub> | 2  | 1104.3561   | 0.0005                   | 3.8   | ν <sub>2</sub>        |
| 19 | A <sub>1</sub> | 6  | 19 | A <sub>2</sub> | 1  | 1104.3969   | 0.0005                   | 9.1   | v <sub>2</sub>        |
| 18 | E              | 12 | 18 | Е              | 2  | 1104.4109   | 0.0007                   | -0.2  | ν <sub>2</sub>        |
| 18 | F <sub>2</sub> | 18 | 18 | F <sub>1</sub> | 2  | 1104.4154   | 0.0013                   | 8.2   | ν2                    |
| 18 | A <sub>2</sub> | 6  | 18 | A <sub>1</sub> | 1  | 1104.4230   | 0.0012                   | -5.3  | $\nu_2$               |
| 11 | A <sub>1</sub> | 5  | 11 | A <sub>2</sub> | 1  | 1104.5052   | 0.0063                   | -4.6  | v <sub>2</sub>        |
| 11 | A <sub>1</sub> | 5  | 11 | A <sub>2</sub> | 1  | 1104.5052   | 0.0067                   | 1.7   | v <sub>2</sub>        |
| 11 | F <sub>1</sub> | 14 | 11 | F <sub>2</sub> | 3  | 1104.5871   | 0.0014                   | -1.7  | V2                    |
| 11 | F <sub>1</sub> | 14 | 11 | F <sub>2</sub> | 2  | 1104.6219   | 0.0072                   | -0.6  | V2                    |
| 11 | Е              | 9  | 11 | Е              | 1  | 1104.6554   | 0.0055                   | 1.1   | V2                    |
| 11 | Е              | 9  | 11 | Е              | 1  | 1104.6554   | 0.0056                   | 3.4   | v <sub>2</sub>        |
| 18 | $F_1$          | 18 | 18 | $F_2$          | 3  | 1104.8675   | 0.0019                   | 6.7   | ν <sub>2</sub>        |
| 18 | $F_1$          | 18 | 18 | $F_2$          | 3  | 1104.8675   | 0.0016                   | -12.7 | $\nu_2$               |
| 19 | F <sub>2</sub> | 18 | 19 | $F_1$          | 5  | 1105.0385   | 0.0002                   | 3.1   | $\nu_2$               |
| 18 | Е              | 13 | 18 | Е              | 3  | 1105.1631   | 0.0009                   | 0.0   | $\nu_2$               |
| 18 | F <sub>1</sub> | 19 | 18 | F <sub>2</sub> | 4  | 1105.2071   | 0.0013                   | -5.5  | <b>v</b> <sub>2</sub> |
| 20 | F <sub>1</sub> | 18 | 20 | F <sub>2</sub> | 1  | 1105.2786   | 0.0004                   | 6.3   | v <sub>2</sub>        |
| 19 | F <sub>1</sub> | 19 | 19 | F <sub>2</sub> | 3  | 1105.3228   | 0.0008                   | 8.2   | v <sub>2</sub>        |
| 11 | F <sub>2</sub> | 14 | 11 | $F_1$          | 1  | 1105.3378   | 0.0192                   | -2.4  | ν2                    |
| 11 | F <sub>2</sub> | 14 | 11 | F <sub>1</sub> | 1  | 1105.3378   | 0.0197                   | 0.2   | v <sub>2</sub>        |
| 11 | F <sub>1</sub> | 15 | 11 | F <sub>2</sub> | 1  | 1105.3460   | 0.0193                   | -2.4  | v <sub>2</sub>        |
| 11 | F <sub>1</sub> | 15 | 11 | F <sub>2</sub> | 1  | 1105.3460   | 0.0195                   | -1.4  | v <sub>2</sub>        |
| 19 | F <sub>2</sub> | 19 | 19 | F <sub>1</sub> | 3  | 1105.9393   | 0.0012                   | 12.7  | v <sub>2</sub>        |

Table D.3 – Continued.

| J  | γ              | п  | J' | γ'             | n' | $v^{exp}$ , | $S_{\nu}^{exp}$ , | $\delta$ , 04 | Band           |
|----|----------------|----|----|----------------|----|-------------|-------------------|---------------|----------------|
|    | 1              |    |    | 2              |    | 3           | <u>4</u>          | 5             | 6              |
| 19 | E              | 13 | 19 | E              | 2  | 1105.9494   | 0.0008            | -3.7          | V2             |
| 20 | F <sub>1</sub> | 19 | 20 | F <sub>2</sub> | 2  | 1106.3147   | 0.0005            | -0.6          | v <sub>2</sub> |
| 12 | F <sub>1</sub> | 14 | 12 | F <sub>2</sub> | 1  | 1106.3295   | 0.0005            | 3.8           | v <sub>2</sub> |
| 20 | E              | 13 | 20 | E              | 2  | 1106.3769   | 0.0004            | 7.0           | V2             |
| 12 | A <sub>1</sub> | 5  | 12 | A <sub>2</sub> | 1  | 1106.4094   | 0.0034            | 0.3           | v <sub>2</sub> |
| 12 | A              | 5  | 12 | A <sub>2</sub> | 1  | 1106.4094   | 0.0034            | -0.1          | V2             |
| 12 | F1             | 15 | 12 | <br>F2         | 3  | 1106.6955   | 0.0007            | 0.3           | <br>V2         |
| 12 | F <sub>1</sub> | 15 | 12 | F <sub>2</sub> | 2  | 1106.7222   | 0.0003            | -4.7          | V2             |
| 12 | F <sub>2</sub> | 15 | 12 | F <sub>1</sub> | 3  | 1106.7377   | 0.0004            | -10.8         | v <sub>2</sub> |
| 12 | F1             | 15 | 12 | F <sub>2</sub> | 1  | 1106.7572   | 0.0076            | 0.0           | <br>V2         |
| 12 | F <sub>1</sub> | 15 | 12 | F <sub>2</sub> | 1  | 1106.7572   | 0.0072            | -5.7          | v <sub>2</sub> |
| 12 | F <sub>2</sub> | 15 | 12 | F1             | 2  | 1106.7988   | 0.0086            | 0.2           | V2             |
| 12 | F <sub>2</sub> | 15 | 12 | F <sub>1</sub> | 2  | 1106.7988   | 0.0078            | -9.4          | V2             |
| 20 | F <sub>1</sub> | 20 | 20 | F <sub>2</sub> | 3  | 1107.0532   | 0.0008            | 0.8           | V2             |
| 20 | A <sub>2</sub> | 7  | 20 | Aı             | 2  | 1107.2651   | 0.0008            | 1.6           | <br>V2         |
| 21 | F1             | 21 | 21 | F <sub>2</sub> | 3  | 1107.8829   | 0.0002            | -0.7          | V2             |
| 3  | F <sub>1</sub> | 4  | 2  | F <sub>2</sub> | 1  | 1107.9528   | 0.0010            | 0.8           | V2             |
| 21 | F <sub>2</sub> | 22 | 21 | <br>F1         | 5  | 1108.3674   | 0.0004            | 3.5           | <br>V2         |
| 13 | F2             | 15 | 13 | F1             | 3  | 1108.4932   | 0.0024            | 5.4           | V2             |
| 13 | F <sub>1</sub> | 16 | 13 | F <sub>2</sub> | 3  | 1108.5781   | 0.0018            | 8.5           | V2             |
| 13 | F <sub>1</sub> | 16 | 13 | F <sub>2</sub> | 2  | 1108.6151   | 0.0020            | -1.1          | V2             |
| 13 | F1             | 16 | 13 | F <sub>2</sub> | 2  | 1108.6151   | 0.0020            | -2.8          | <br>V2         |
| 13 | E              | 11 | 13 | E              | 1  | 1109.0354   | 0.0053            | 2.9           | v <sub>2</sub> |
| 13 | Е              | 11 | 13 | Е              | 1  | 1109.0354   | 0.0052            | 1.5           | v <sub>2</sub> |
| 13 | F <sub>2</sub> | 16 | 13 | F <sub>1</sub> | 2  | 1109.0451   | 0.0077            | -1.4          | ν2             |
| 13 | F <sub>2</sub> | 16 | 13 | F <sub>1</sub> | 2  | 1109.0451   | 0.0076            | -2.1          | ν <sub>2</sub> |
| 13 | A <sub>2</sub> | 6  | 13 | A <sub>1</sub> | 1  | 1109.0607   | 0.0069            | -2.1          | ν <sub>2</sub> |
| 13 | A <sub>2</sub> | 6  | 13 | A <sub>1</sub> | 1  | 1109.0607   | 0.0065            | -8.9          | ν <sub>2</sub> |
| 22 | A <sub>2</sub> | 8  | 22 | A <sub>1</sub> | 2  | 1109.4736   | 0.0003            | 4.8           | v <sub>2</sub> |
| 22 | F <sub>1</sub> | 23 | 22 | F <sub>2</sub> | 4  | 1109.6845   | 0.0002            | 0.5           | v <sub>2</sub> |
| 14 | F <sub>2</sub> | 17 | 14 | F <sub>1</sub> | 3  | 1110.8555   | 0.0010            | 12.8          | v <sub>2</sub> |
| 14 | A <sub>2</sub> | 6  | 14 | A <sub>1</sub> | 1  | 1110.8598   | 0.0021            | 1.0           | v <sub>2</sub> |
| 14 | F <sub>2</sub> | 17 | 14 | F <sub>1</sub> | 2  | 1110.9205   | 0.0023            | 1.2           | ν <sub>2</sub> |
| 14 | F <sub>2</sub> | 17 | 14 | F <sub>1</sub> | 2  | 1110.9205   | 0.0023            | 0.7           | v <sub>2</sub> |
| 14 | Е              | 11 | 14 | Е              | 2  | 1110.9350   | 0.0018            | -2.0          | ν <sub>2</sub> |
| 15 | Е              | 12 | 15 | Е              | 2  | 1113.0685   | 0.0004            | -0.5          | ν <sub>2</sub> |
| 15 | A <sub>2</sub> | 6  | 15 | A <sub>1</sub> | 1  | 1113.0810   | 0.0014            | 5.1           | ν <sub>2</sub> |
| 15 | F <sub>2</sub> | 18 | 15 | F <sub>1</sub> | 4  | 1113.2573   | 0.0004            | 6.3           | v <sub>2</sub> |
| 15 | F <sub>1</sub> | 18 | 15 | F <sub>2</sub> | 3  | 1113.3518   | 0.0027            | -1.2          | v <sub>2</sub> |
| 15 | F <sub>2</sub> | 18 | 15 | F <sub>1</sub> | 2  | 1113.3651   | 0.0023            | 1.3           | v <sub>2</sub> |
| 15 | F <sub>2</sub> | 18 | 15 | F <sub>1</sub> | 2  | 1113.3651   | 0.0023            | 1.6           | v <sub>2</sub> |
| 4  | A <sub>1</sub> | 2  | 3  | A <sub>2</sub> | 1  | 1113.4655   | 0.0023            | 3.1           | v <sub>2</sub> |
| 4  | A <sub>1</sub> | 2  | 3  | A <sub>2</sub> | 1  | 1113.4655   | 0.0023            | 2.3           | v <sub>2</sub> |

Table D.3 – Continued.

| J  | γ              | n  | J' | γ'             | n'  | $v^{exp}$ , | $S_{\nu}^{exp}$ ,                          | $\delta, \delta'$ | Band           |
|----|----------------|----|----|----------------|-----|-------------|--------------------------------------------|-------------------|----------------|
|    | 1              |    |    | 2              |     | 3           | $\frac{\text{cm}^2 \cdot \text{atm}^4}{4}$ | %<br>5            | 6              |
| 15 | E              | 13 | 15 | Ē              | 1   | 1113 8372   | 0.0043                                     | 4.8               | V2             |
| 15 | F1             | 19 | 15 | E<br>F2        | 2   | 1113.8420   | 0.0057                                     | -5.8              | V2             |
| 15 | A <sub>1</sub> | 6  | 15 | A <sub>2</sub> | 1   | 1113.8511   | 0.0049                                     | 1.1               | V2             |
| 4  | F1             | 5  | 3  | F2             | 1   | 1113.8559   | 0.0018                                     | -3.9              | V2             |
| 4  | F1             | 5  | 3  | F2             | 1   | 1113.8559   | 0.0018                                     | -5.1              | V2             |
| 4  | F <sub>2</sub> | 5  | 3  | F1             | 1   | 1114.0970   | 0.0015                                     | 8.6               | V2             |
| 4  | F <sub>2</sub> | 6  | 3  | F1             | 1   | 1114 9757   | 0.0003                                     | 2.8               | V2             |
| 16 | F <sub>2</sub> | 19 | 16 | F1             | 4   | 1115.5258   | 0.0007                                     | 8.9               | v <sub>2</sub> |
| 16 | F <sub>2</sub> | 19 | 16 | F1             | 3   | 1115.5974   | 0.0005                                     | -8.7              | V2             |
| 16 | A1             | 7  | 16 | A <sub>2</sub> | 1   | 1115.8327   | 0.0023                                     | 3.7               | V2             |
| 16 | F1             | 19 | 16 | F <sub>2</sub> | 2   | 1115.8895   | 0.0022                                     | 2.8               | V2             |
| 16 | E              | 13 | 16 | E              | 2   | 1115 9109   | 0.0014                                     | 1.2               | V2             |
| 16 | E              | 13 | 16 | E              | 2   | 1115 9109   | 0.0014                                     | -3.7              | V2             |
| 16 | E<br>F2        | 20 | 16 | E<br>F1        | 2   | 1116 3446   | 0.0045                                     | -8.1              | v2<br>V2       |
| 16 | F <sub>2</sub> | 20 | 16 | F1             | 2   | 1116 3446   | 0.0050                                     | 2.2               | V2             |
| 16 | F1             | 20 | 16 | Fa             | 1   | 1116 3540   | 0.0042                                     | -12.6             | V2             |
| 16 | F <sub>1</sub> | 20 | 16 | F <sub>2</sub> | 1   | 1116 3540   | 0.0042                                     | -1.1              | v2<br>V2       |
| 17 | F              | 13 | 17 | F              | 2   | 1118 1511   | 0.0005                                     | 5.5               | V2             |
| 17 | E E            | 20 | 17 | E              | 3   | 1118 2112   | 0.0005                                     | -7.9              | V2             |
| 17 | F1             | 20 | 17 | F <sub>2</sub> | 2   | 1118 4880   | 0.0000                                     | 1.1               | V2             |
| 17 | Fa             | 20 | 17 | F <sub>1</sub> | 3   | 1118 5233   | 0.0017                                     | -0.2              | V2             |
| 17 | F <sub>2</sub> | 20 | 17 | F <sub>1</sub> | 3   | 1118 5233   | 0.0017                                     | -2.3              | V2             |
| 5  | F <sub>1</sub> | 6  | 4  | F2             | 1   | 1119 5516   | 0.0010                                     | 5.0               | V2<br>V2       |
| 5  | F1             | 6  | 4  | Fa             | 1   | 1119.5516   | 0.0034                                     | 2.9               | V2             |
| 5  | F              | 4  | 4  | F              | 1   | 1119.5510   | 0.0021                                     | 1.5               | V2             |
| 5  | E<br>F2        | 6  | 4  | E<br>F1        | 1   | 1120.0740   | 0.0021                                     | 4.2               | v2<br>V2       |
| 5  | F <sub>2</sub> | 6  | 4  | F <sub>1</sub> | 1   | 1120.0740   | 0.0021                                     | 4.0               | V2             |
| 5  | A2             | 3  | 4  | A1             | 1   | 1121 1083   | 0.0019                                     | 4.4               | V2             |
| 18 | A <sub>2</sub> | 7  | 18 | A              | 1   | 1121.1826   | 0.0011                                     | -2.3              | V2             |
| 18 | F <sub>2</sub> | 22 | 18 | F1             | 2   | 1121.2005   | 0.0010                                     | -2.5              | V2             |
| 18 | E              | 15 | 18 | E              | 2   | 1121 2156   | 0.0007                                     | 12.2              | V2             |
| 18 | F1             | 22 | 18 | E<br>F2        | 2   | 1121.5292   | 0.0027                                     | 0.3               | V2             |
| 18 | F1             | 22 | 18 | F2             | 2   | 1121.5292   | 0.0025                                     | -5.3              | V2             |
| 19 | F1             | 22 | 19 | F <sub>2</sub> | 3   | 1123 6059   | 0.0006                                     | 2.2               | V2             |
| 19 | F <sub>2</sub> | 22 | 19 | F1             | 2   | 1123.8775   | 0.0009                                     | -3.2              | V2             |
| 19 | F1             | 24 | 19 | F <sub>2</sub> | - 3 | 1124,0975   | 0.0002                                     | 3.1               | V2             |
| 6  | E              | 4  | 5  | E E            | 1   | 1124 1052   | 0.0011                                     | 4 5               | v2             |
| 19 | E              | 15 | 19 | E              | 1   | 1124.1346   | 0.0006                                     | -1.5              | v2             |
| 19 | F1             | 23 | 19 | F <sub>2</sub> | 2   | 1124 1511   | 0.0012                                     | 0.9               | v2             |
| 19 | Δ1             | 8  | 19 | A2             | 1   | 1124 1710   | 0.0012                                     | -1.5              | V2             |
| 19 | F1             | 25 | 19 | F <sub>2</sub> | 1   | 1124,6908   | 0.0030                                     | 3.9               | v2<br>V2       |
| 19 | F <sub>2</sub> | 24 | 19 | F1             | 1   | 1124 6942   | 0.0027                                     | -4 3              | v2             |
| 6  | F2             | 7  | 5  | F1             | 2   | 1125,4175   | 0.0055                                     | 1.7               | V2             |
| -  |                |    |    | - i            | . – |             |                                            | ֥/                | • 4            |

Table D.3 – Continued.

| J  | γ              | п  | J' | γ'             | n'  | $v^{exp}$ , | $S_{\nu}^{exp}$ ,                          | $\delta, $ | Band           |
|----|----------------|----|----|----------------|-----|-------------|--------------------------------------------|------------|----------------|
|    | 1              |    |    | 2              |     | 3           | $\frac{\text{cm}^2 \cdot \text{atm}^4}{4}$ | %<br>5     | 6              |
| 6  | F <sub>2</sub> | 7  | 5  | E1             | 2   | 1125 4175   | 0.0057                                     | 4.8        | v2             |
| 6  | E              | 5  | 5  | E              | 1   | 1125.7672   | 0.0025                                     | -5.8       | V2             |
| 6  | E              | 5  | 5  | E              | 1   | 1125.7672   | 0.0027                                     | 2.4        | V2             |
| 6  | F1             | 7  | 5  | F <sub>2</sub> | 1   | 1125.9707   | 0.0037                                     | 2.5        | V2             |
| 6  | F1             | 7  | 5  | F2             | 1   | 1125.9707   | 0.0036                                     | 0.5        | V2             |
| 20 | A <sub>1</sub> | 8  | 20 | A2             | 1   | 1126.3011   | 0.0005                                     | -1.2       | V2             |
| 20 | F <sub>1</sub> | 22 | 20 | F <sub>2</sub> | 2   | 1126 3112   | 0.0003                                     | 4.4        | V2             |
| 20 | F1             | 23 | 20 | F <sub>2</sub> | 1   | 1126.8350   | 0.0009                                     | -8.3       | v <sub>2</sub> |
| 20 | F <sub>2</sub> | 24 | 20 | F1             | 2   | 1126.9050   | 0.0008                                     | -2.7       | V2             |
| 20 | A2             | 8  | 20 | A              | 1   | 1127.2829   | 0.0015                                     | -5.7       | V2             |
| 20 | F2             | 25 | 20 | F <sub>1</sub> | 1   | 1127.3135   | 0.0017                                     | -2.5       | V2             |
| 20 | E              | 17 | 20 | E              | 1   | 1127.3218   | 0.0012                                     | -2.4       | V2             |
| 6  | F <sub>2</sub> | 8  | 5  | F1             | 1   | 1127.5529   | 0.0031                                     | 10.9       | V2             |
| 7  | F <sub>2</sub> | 6  | 6  | F <sub>1</sub> | 1   | 1129.4950   | 0.0007                                     | 1.3        | V2             |
| 7  | F1             | 7  | 6  | F <sub>2</sub> | 2   | 1129.5510   | 0.0018                                     | 8.6        | V2             |
| 21 | F <sub>2</sub> | 25 | 21 | F1             | - 1 | 1129 9302   | 0.0010                                     | -3.2       | V2             |
| 21 | F <sub>1</sub> | 25 | 21 | F <sub>2</sub> | 1   | 1129.9519   | 0.0010                                     | -3.4       | V2             |
| 7  | F <sub>2</sub> | 7  | 6  | F1             | 1   | 1130 5708   | 0.0009                                     | -0.3       | V2             |
| 7  | A2             | 3  | 6  | A <sub>1</sub> | 1   | 1131 2084   | 0.0071                                     | 2.8        | V2             |
| 7  | A2             | 3  | 6  | A <sub>1</sub> | 1   | 1131.2084   | 0.0069                                     | 0.1        | v2<br>V2       |
| 7  | F <sub>2</sub> | 8  | 6  | F1             | 1   | 1131 5907   | 0.0058                                     | -1 3       | V2             |
| 7  | F <sub>2</sub> | 8  | 6  | F1             | 1   | 1131 5907   | 0.0059                                     | 0.8        | V2             |
| 7  | F <sub>1</sub> | 8  | 6  | F <sub>2</sub> | 2   | 1131.8304   | 0.0050                                     | 11.5       | v2<br>V2       |
| 7  | A1             | 3  | 6  | A2             | - 1 | 1132.0456   | 0.0040                                     | 1.8        | V2             |
| 7  | A <sub>1</sub> | 3  | 6  | A2             | 1   | 1132.0456   | 0.0038                                     | -2.3       | V2             |
| 22 | E              | 17 | 22 | E              | 1   | 1132.6067   | 0.0004                                     | 2.4        | V2             |
| 7  | F <sub>1</sub> | 9  | 6  | E2             | 2   | 1134 1364   | 0.0009                                     | 0.4        | V2             |
| 7  | F1             | 9  | 6  | F <sub>2</sub> | - 1 | 1134.1417   | 0.0027                                     | -1.8       | v2             |
| 7  | E              | 6  | 6  | E              | 1   | 1134.2096   | 0.0023                                     | 3.5        | V2             |
| 8  | Е              | 5  | 7  | Е              | 1   | 1134.9727   | 0.0008                                     | 4.3        | V2             |
| 8  | Е              | 5  | 7  | Е              | 1   | 1134.9727   | 0.0008                                     | 1.6        | V2             |
| 8  | F <sub>1</sub> | 7  | 7  | F <sub>2</sub> | 2   | 1134.9899   | 0.0013                                     | -4.6       | v <sub>2</sub> |
| 8  | F <sub>1</sub> | 7  | 7  | F <sub>2</sub> | 2   | 1134.9899   | 0.0013                                     | -2.0       | ν <sub>2</sub> |
| 8  | A              | 3  | 7  | A <sub>2</sub> | 1   | 1135.0274   | 0.0020                                     | 3.1        | ν <sub>2</sub> |
| 23 | F <sub>2</sub> | 25 | 23 | F <sub>1</sub> | 1   | 1135.2501   | 0.0005                                     | 2.9        | v <sub>2</sub> |
| 8  | F <sub>1</sub> | 8  | 7  | F <sub>2</sub> | 2   | 1136.1661   | 0.0006                                     | 4.7        | ν <sub>2</sub> |
| 8  | F1             | 8  | 7  | -<br>F2        | 1   | 1136.1760   | 0.0002                                     | -1.9       | -<br>V2        |
| 8  | F <sub>2</sub> | 8  | 7  | F <sub>1</sub> | 2   | 1136.3481   | 0.0019                                     | 0.2        | v <sub>2</sub> |
| 8  | F <sub>2</sub> | 8  | 7  | F <sub>1</sub> | 1   | 1136.3617   | 0.0002                                     | 5.7        | ν <sub>2</sub> |
| 8  | F2             | 9  | 7  | -<br>F1        | 2   | 1137.4936   | 0.0074                                     | 0.6        | -<br>V2        |
| 8  | F <sub>2</sub> | 9  | 7  | F <sub>1</sub> | 2   | 1137.4936   | 0.0067                                     | -9.5       | v <sub>2</sub> |
| 8  | E              | 6  | 7  | E              | 1   | 1137.7156   | 0.0048                                     | 0.4        | -<br>V2        |
| 8  | Е              | 6  | 7  | Е              | 1   | 1137.7156   | 0.0051                                     | 5.1        | v <sub>2</sub> |

Table D.3 – Continued.

| J  | ν              | п  | J' | v'             | n' | $v^{exp}$ ,      | $S_{\nu}^{exp}$ ,        | δ,   | Band           |
|----|----------------|----|----|----------------|----|------------------|--------------------------|------|----------------|
|    | ,              |    |    | ,              |    | cm <sup>-1</sup> | $cm^{-2} \cdot atm^{-1}$ | %    | <i>.</i>       |
|    | 1              |    |    | 2              |    | 3                | 4                        | 5    | 6              |
| 8  | F <sub>1</sub> | 9  | 7  | F <sub>2</sub> | 2  | 1137.9578        | 0.0046                   | -4.1 | ν <sub>2</sub> |
| 8  | F <sub>1</sub> | 9  | 7  | F <sub>2</sub> | 2  | 1137.9578        | 0.0049                   | 0.7  | v <sub>2</sub> |
| 8  | F <sub>1</sub> | 9  | 7  | F <sub>2</sub> | 1  | 1137.9671        | 0.0014                   | -1.8 | v <sub>2</sub> |
| 9  | F <sub>2</sub> | 8  | 8  | F <sub>1</sub> | 2  | 1140.4545        | 0.0012                   | -8.3 | $\nu_2$        |
| 9  | F <sub>1</sub> | 8  | 8  | F <sub>2</sub> | 1  | 1140.4776        | 0.0019                   | 3.7  | $\nu_2$        |
| 8  | A <sub>1</sub> | 4  | 7  | A <sub>2</sub> | 1  | 1140.7834        | 0.0038                   | 1.1  | V2             |
| 8  | A <sub>1</sub> | 4  | 7  | A <sub>2</sub> | 1  | 1140.7834        | 0.0038                   | 2.1  | $\nu_2$        |
| 8  | F <sub>1</sub> | 10 | 7  | F <sub>2</sub> | 2  | 1140.9072        | 0.0012                   | -1.2 | $\nu_2$        |
| 8  | F <sub>1</sub> | 10 | 7  | F <sub>2</sub> | 1  | 1140.9165        | 0.0027                   | -0.3 | v <sub>2</sub> |
| 8  | F <sub>1</sub> | 10 | 7  | F <sub>2</sub> | 1  | 1140.9165        | 0.0027                   | 2.8  | ν <sub>2</sub> |
| 8  | F <sub>2</sub> | 10 | 7  | F <sub>1</sub> | 1  | 1141.0341        | 0.0036                   | 5.1  | ν <sub>2</sub> |
| 8  | F <sub>2</sub> | 10 | 7  | F <sub>1</sub> | 1  | 1141.0341        | 0.0034                   | -0.5 | v <sub>2</sub> |
| 9  | F <sub>1</sub> | 9  | 8  | F <sub>2</sub> | 2  | 1141.9264        | 0.0011                   | 1.8  | V2             |
| 9  | F <sub>1</sub> | 9  | 8  | F <sub>2</sub> | 1  | 1141.9364        | 0.0007                   | 4.0  | V2             |
| 9  | Е              | 6  | 8  | Е              | 2  | 1142.0225        | 0.0018                   | 0.9  | ν <sub>2</sub> |
| 9  | F <sub>1</sub> | 10 | 8  | F <sub>2</sub> | 2  | 1143.5458        | 0.0089                   | 0.9  | <b>v</b> 2     |
| 9  | F <sub>1</sub> | 10 | 8  | F <sub>2</sub> | 2  | 1143.5458        | 0.0088                   | -0.1 | v <sub>2</sub> |
| 9  | Е              | 7  | 8  | Е              | 2  | 1143.8403        | 0.0042                   | 0.8  | ν2             |
| 9  | Е              | 7  | 8  | Е              | 2  | 1143.8403        | 0.0039                   | -7.8 | V2             |
| 9  | F <sub>2</sub> | 10 | 8  | F <sub>1</sub> | 2  | 1143.9981        | 0.0069                   | 1.3  | v <sub>2</sub> |
| 9  | F <sub>2</sub> | 10 | 8  | F <sub>1</sub> | 2  | 1143.9981        | 0.0070                   | 2.6  | ν <sub>2</sub> |
| 9  | F <sub>2</sub> | 10 | 8  | F <sub>1</sub> | 1  | 1144.0157        | 0.0005                   | 9.1  | ν2             |
| 10 | A <sub>2</sub> | 3  | 9  | A <sub>1</sub> | 1  | 1145.9337        | 0.0012                   | 8.9  | ν <sub>2</sub> |
| 10 | F <sub>2</sub> | 9  | 9  | F <sub>1</sub> | 2  | 1145.9499        | 0.0015                   | 3.4  | <b>v</b> 2     |
| 10 | Е              | 6  | 9  | Е              | 1  | 1145.9564        | 0.0011                   | -4.9 | ν <sub>2</sub> |
| 10 | Е              | 6  | 9  | Е              | 1  | 1145.9564        | 0.0012                   | 0.5  | ν2             |
| 10 | F <sub>1</sub> | 9  | 9  | F <sub>2</sub> | 2  | 1147.5527        | 0.0010                   | 3.2  | ν2             |
| 10 | F <sub>2</sub> | 10 | 9  | F <sub>1</sub> | 3  | 1147.6799        | 0.0023                   | 3.2  | ν2             |
| 9  | Е              | 8  | 8  | Е              | 1  | 1147.8933        | 0.0020                   | 1.3  | V2             |
| 9  | F <sub>2</sub> | 11 | 8  | F <sub>1</sub> | 1  | 1147.9800        | 0.0033                   | 4.4  | ν2             |
| 9  | F <sub>2</sub> | 11 | 8  | F <sub>1</sub> | 1  | 1147.9800        | 0.0032                   | 2.8  | ν2             |
| 9  | A <sub>2</sub> | 4  | 8  | A <sub>1</sub> | 1  | 1148.1129        | 0.0030                   | 0.0  | ν2             |
| 9  | A <sub>2</sub> | 4  | 8  | A <sub>1</sub> | 1  | 1148.1129        | 0.0029                   | -5.4 | ν <sub>2</sub> |
| 10 | Е              | 7  | 9  | Е              | 1  | 1148.6175        | 0.0006                   | 8.1  | ν2             |
| 10 | F <sub>1</sub> | 10 | 9  | F <sub>2</sub> | 2  | 1148.7318        | 0.0010                   | -1.0 | V2             |
| 10 | F <sub>1</sub> | 10 | 9  | F <sub>2</sub> | 1  | 1148.7675        | 0.0004                   | 1.3  | ν2             |
| 10 | A <sub>1</sub> | 4  | 9  | A <sub>2</sub> | 1  | 1149.5137        | 0.0083                   | -2.9 | V2             |
| 10 | A <sub>1</sub> | 4  | 9  | A <sub>2</sub> | 1  | 1149.5137        | 0.0085                   | -0.3 | v <sub>2</sub> |
| 10 | F <sub>1</sub> | 11 | 9  | F <sub>2</sub> | 2  | 1149.8175        | 0.0076                   | -0.8 | V2             |
| 10 | F <sub>1</sub> | 11 | 9  | F <sub>2</sub> | 2  | 1149.8175        | 0.0077                   | -0.2 | V2             |
| 10 | F <sub>1</sub> | 11 | 9  | F <sub>2</sub> | 1  | 1149.8533        | 0.0005                   | 8.5  | v <sub>2</sub> |
| 10 | F <sub>2</sub> | 11 | 9  | F <sub>1</sub> | 3  | 1150.0061        | 0.0066                   | 0.4  | v <sub>2</sub> |
| 10 | F <sub>2</sub> | 11 | 9  | F <sub>1</sub> | 3  | 1150.0061        | 0.0061                   | -6.9 | V2             |

Table D.3 – Continued.

| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| 1 $2$ $1$ $2$ $1$ $2$ $1$ $1$ $2$ $1$ $1$ $2$ $1$ $1$ $2$ $1$ $1$ $2$ $1$ $1$ $2$ $1$ $1$ $2$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$                                                                                                                                                                                                                                                                                                                     | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 |
| $10$ $12$ $11$ $2$ $1150,163$ $0.0010$ $25$ $12$ $10$ $A_2$ $4$ $9$ $A_1$ $1$ $1150,1630$ $0.0065$ $3.1$ $v_2$ $10$ $A_2$ $4$ $9$ $A_1$ $1$ $1150,1630$ $0.0063$ $-0.1$ $v_2$ $11$ $F_2$ $9$ $10$ $F_1$ $1$ $1151,431$ $0.0014$ $5.4$ $v_2$ $11$ $F_1$ $10$ $F_2$ $2$ $1151,4431$ $0.0016$ $2.3$ $v_2$ $11$ $F_1$ $10$ $F_2$ $2$ $1151,4431$ $0.0016$ $2.3$ $v_2$ $11$ $F_1$ $10$ $F_2$ $2$ $1151,4431$ $0.0016$ $2.3$ $v_2$ $11$ $F_2$ $10$ $10$ $F_1$ $2$ $1153,3015$ $0.0016$ $2.2$ $v_2$ $11$ $F_2$ $10$ $10$ $F_1$ $2$ $1153,3015$ $0.0016$ $2.2$ $v_2$ $11$ $F_2$ $10$ $10$ $F_1$ $1$ $1153,3015$ $0.0016$ $2.2$ $v_2$ $11$ $F_2$ $10$ $10$ $F_1$ $1$ $1153,3015$ $0.0005$ $12.5$ $v_2$ $11$ $F_2$ $11$ $10$ $F_1$ $2$ $1154,507$ $0.0006$ $6.3$ $v_2$ $11$ $F_2$ $11$ $10$ $F_1$ $1$ $1154,7052$ $0.0006$ $6.3$ $v_2$ $10$ $F_2$ $12$ $9$ $F_1$ $2$ $1154,7174$ $0.0038$ <t< td=""><td>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2</td></t<> | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 |
| $10$ $A_2$ $4$ $9$ $A_1$ $1$ $115.1630$ $0.0003$ $-0.1$ $v_2$ $11$ $F_2$ $9$ $10$ $F_1$ $1$ $1150.1630$ $0.0063$ $-0.1$ $v_2$ $11$ $F_2$ $9$ $10$ $F_1$ $1$ $1151.4317$ $0.0014$ $5.4$ $v_2$ $11$ $F_1$ $10$ $10$ $F_2$ $2$ $1151.4431$ $0.0016$ $2.3$ $v_2$ $11$ $F_1$ $10$ $10$ $F_2$ $2$ $1151.4431$ $0.0016$ $2.3$ $v_2$ $11$ $E$ $7$ $10$ $E$ $2$ $1153.2646$ $0.0010$ $3.8$ $v_2$ $11$ $F_2$ $10$ $10$ $F_1$ $2$ $1153.3015$ $0.0016$ $2.2$ $v_2$ $11$ $F_2$ $10$ $10$ $F_1$ $1$ $1153.3201$ $0.0005$ $12.5$ $v_2$ $11$ $F_2$ $10$ $10$ $F_1$ $1$ $1153.3901$ $0.0030$ $-0.6$ $v_2$ $11$ $F_2$ $11$ $10$ $F_1$ $2$ $1154.507$ $0.0006$ $8.8$ $v_2$ $11$ $F_2$ $11$ $10$ $F_1$ $1$ $1154.5192$ $0.0006$ $8.8$ $v_2$ $11$ $F_2$ $11$ $10$ $F_1$ $2$ $1154.7174$ $0.0038$ $1.1$ $v_2$ $10$ $F_2$ $12$ $9$ $F_1$ $2$ $1154.7174$ $0.0038$ $0.7$ $v_2$ $10$ $F_2$ $13$ $9$                                                                                                                                           | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 |
| 11F11010F221151.44310.00102.37211F11010F221151.44310.0015-3.0 $v_2$ 11E710E21153.26460.00103.8 $v_2$ 11F21010F121153.30150.00162.2 $v_2$ 11F21010F111153.32010.000512.5 $v_2$ 11F21010F111153.39010.0030-0.6 $v_2$ 11F21110F121154.50070.00066.3 $v_2$ 11F21110F111154.51920.00068.8 $v_2$ 10F2129F131154.71520.00060.0 $v_2$ 11F11110F231154.71220.00172.5 $v_2$ 10F2129F121154.71740.00381.1 $v_2$ 10F2129F121154.71740.00380.7 $v_2$ 10F2139F111154.78090.0027-8.9 $v_2$ 10F2139F111155.0070.00322.0 $v_2$ 10F2139F111155.84910.0078-0.5 $v_2$ 11F11210 <t< td=""><td>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2</td></t<>                                                                                                                                                                                                                                                                                                                      | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 |
| 11 $F_1$ 10 $F_2$ $2$ $F_1(1,4,4,3)$ $0.0013$ $-5.0$ $72$ 11E710E2 $1153.2646$ $0.0010$ $3.8$ $v_2$ 11 $F_2$ 1010 $F_1$ 2 $1153.3015$ $0.0016$ $2.2$ $v_2$ 11 $F_2$ 1010 $F_1$ 1 $1153.3201$ $0.0005$ $12.5$ $v_2$ 11 $A_2$ 410 $A_1$ 1 $1153.3901$ $0.0030$ $-0.6$ $v_2$ 11 $F_2$ 1110 $F_1$ 2 $1154.5007$ $0.0006$ $6.3$ $v_2$ 11 $F_2$ 1110 $F_1$ 1 $1154.5007$ $0.0006$ $6.3$ $v_2$ 11 $F_2$ 1110 $F_1$ 1 $1154.7052$ $0.0006$ $8.8$ $v_2$ 10 $F_2$ 129 $F_1$ 3 $1154.7122$ $0.0017$ $2.5$ $v_2$ 10 $F_2$ 129 $F_1$ 2 $1154.7174$ $0.0038$ $1.1$ $v_2$ 10 $F_2$ 129 $F_1$ 2 $1154.7174$ $0.0038$ $0.7$ $v_2$ 10 $F_2$ 129 $F_1$ 1 $1154.7809$ $0.0027$ $-8.9$ $v_2$ 10 $F_2$ 139 $F_1$ 1 $1155.0504$ $0.0028$ $1.3$ $v_2$ 10 $F_2$ 139 $F_1$ 1 $1155.0504$ $0.0028$ $1.3$ $v_2$ 10 $F_2$ </td <td>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2</td>                                                                                              | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 |
| 11E710E21133.26460.00103.8 $v_2$ 11F21010F121153.30150.00162.2 $v_2$ 11F21010F111153.32010.000512.5 $v_2$ 11A2410A111153.39010.0030 $-0.6$ $v_2$ 11F21110F121154.50070.00066.3 $v_2$ 11F21110F111154.51920.00068.8 $v_2$ 10F2129F131154.70520.00060.0 $v_2$ 11F11110F231154.71220.00172.5 $v_2$ 10F2129F121154.71740.00381.1 $v_2$ 10F2129F121154.71740.00380.7 $v_2$ 10F2129F121154.71740.00380.7 $v_2$ 10E89E11155.05040.0027-8.9 $v_2$ 10F2139F111155.05040.00281.3 $v_2$ 10F2139F111155.05040.00281.3 $v_2$ 11F11210F231155.84910.00790.9 $v_2$ 11F11210 <td< td=""><td>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2</td></td<>                                                                                                                                                                                                                                                                                                                  | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 |
| 11 $F_2$ 1010 $F_1$ 21133.30150.00162.2 $V_2$ 11 $F_2$ 1010 $F_1$ 11153.32010.000512.5 $v_2$ 11 $A_2$ 410 $A_1$ 11153.39010.0030 $-0.6$ $v_2$ 11 $F_2$ 1110 $F_1$ 21154.50070.00066.3 $v_2$ 11 $F_2$ 1110 $F_1$ 11154.51920.00068.8 $v_2$ 10 $F_2$ 129 $F_1$ 31154.70520.00060.0 $v_2$ 11 $F_1$ 1110 $F_2$ 31154.71220.00172.5 $v_2$ 10 $F_2$ 129 $F_1$ 21154.71740.00380.7 $v_2$ 10 $F_2$ 129 $F_1$ 21154.71740.00380.7 $v_2$ 10 $F_2$ 129 $F_1$ 21154.71740.00380.7 $v_2$ 10 $F_2$ 129 $F_1$ 11154.78090.0027 $-8.9$ $v_2$ 10 $F_1$ 129 $F_2$ 11155.05040.00281.3 $v_2$ 10 $F_2$ 139 $F_1$ 11155.20270.00322.0 $v_2$ 11 $F_1$ 1210 $F_2$ 31155.84910.0078 $-0.5$ $v_2$ 11 $F_1$ 1210 $F_2$ 21155.8774<                                                                                                                                                                                                                                                                                                              | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 |
| 11 $F_2$ 1010 $F_1$ 11153.32010.000512.5 $V_2$ 11 $A_2$ 410 $A_1$ 11153.39010.0030 $-0.6$ $v_2$ 11 $F_2$ 1110 $F_1$ 21154.50070.0006 $6.3$ $v_2$ 11 $F_2$ 1110 $F_1$ 11154.51920.0006 $8.8$ $v_2$ 10 $F_2$ 129 $F_1$ 31154.70520.0006 $0.0$ $v_2$ 11 $F_1$ 1110 $F_2$ 31154.7122 $0.0017$ $2.5$ $v_2$ 10 $F_2$ 129 $F_1$ 21154.7174 $0.0038$ $1.1$ $v_2$ 10 $F_2$ 129 $F_1$ 21154.7174 $0.0038$ $0.7$ $v_2$ 10 $F_2$ 129 $F_1$ 21154.7174 $0.0038$ $0.7$ $v_2$ 10 $F_2$ 129 $F_1$ 21154.7174 $0.0038$ $0.7$ $v_2$ 10 $F_2$ 129 $F_1$ 11154.7809 $0.0027$ $-8.9$ $v_2$ 10 $F_1$ 129 $F_2$ 11155.0504 $0.0028$ $1.3$ $v_2$ 10 $F_2$ 139 $F_1$ 11155.2027 $0.0032$ $2.0$ $v_2$ 11 $F_1$ 1210 $F_2$ 31155.8491 $0.0078$ $-0.5$ $v_2$ 11 $F_1$ 1210<                                                                                                                                                                                                                                                                       | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 |
| 11 $A_2$ 410 $A_1$ 11153.39010.0030-0.6 $v_2$ 11 $F_2$ 1110 $F_1$ 21154.50070.00066.3 $v_2$ 11 $F_2$ 1110 $F_1$ 11154.51920.00068.8 $v_2$ 10 $F_2$ 129 $F_1$ 31154.70520.00060.0 $v_2$ 11 $F_1$ 1110 $F_2$ 31154.71220.00172.5 $v_2$ 10 $F_2$ 129 $F_1$ 21154.71740.00381.1 $v_2$ 10 $F_2$ 129 $F_1$ 21154.71740.00380.7 $v_2$ 10 $F_2$ 129 $F_1$ 21154.71740.00380.7 $v_2$ 10 $F_2$ 129 $F_1$ 21154.71740.00380.7 $v_2$ 10 $F_2$ 129 $F_1$ 11154.78090.0027-8.9 $v_2$ 10 $E$ 89 $E$ 11154.78090.00301.9 $v_2$ 10 $F_1$ 129 $F_2$ 11155.05040.00281.3 $v_2$ 10 $F_2$ 139 $F_1$ 11155.84910.0078-0.5 $v_2$ 11 $F_1$ 1210 $F_2$ 31155.84910.00790.9 $v_2$ 11 $F_1$ 1210 $F_2$ 21155.87740.0003                                                                                                                                                                                                                                                                                                                          | 2<br>2<br>2<br>2                                                                            |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2<br>2<br>2                                                                                 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2                                                                                           |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ?                                                                                           |
| 11 $F_1$ 1110 $F_2$ 31154.71220.00172.5 $v_2$ 10 $F_2$ 129 $F_1$ 21154.71740.00381.1 $v_2$ 10 $F_2$ 129 $F_1$ 21154.71740.00380.7 $v_2$ 10 $E$ 89 $E$ 11154.78090.0027 $-8.9$ $v_2$ 10 $E$ 89 $E$ 11154.78090.00301.9 $v_2$ 10 $E$ 89 $E$ 11155.05040.00281.3 $v_2$ 10 $F_1$ 129 $F_2$ 11155.20270.00322.0 $v_2$ 11 $F_1$ 1210 $F_2$ 31155.84910.0078 $-0.5$ $v_2$ 11 $F_1$ 1210 $F_2$ 21155.87740.00037.6 $v_2$ 11 $F_1$ 1210 $F_2$ 21155.87740.00037.6 $v_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                             |
| 10 $F_2$ 129 $F_1$ 21154.71740.00381.1 $v_2$ 10 $F_2$ 129 $F_1$ 21154.71740.00380.7 $v_2$ 10E89E11154.78090.0027 $-8.9$ $v_2$ 10E89E11154.78090.00301.9 $v_2$ 10F1129F211155.05040.00281.3 $v_2$ 10F2139F111155.20270.00322.0 $v_2$ 11F11210F231155.84910.0078 $-0.5$ $v_2$ 11F11210F221155.87740.00037.6 $v_2$ 11F11210F221155.87740.00037.6 $v_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ?                                                                                           |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2                                                                                           |
| 10E89E11154.7809 $0.0027$ $-8.9$ $v_2$ 10E89E1 $1154.7809$ $0.0030$ $1.9$ $v_2$ 10F1129F21 $1155.0504$ $0.0028$ $1.3$ $v_2$ 10F2139F11 $1155.2027$ $0.0032$ $2.0$ $v_2$ 11F11210F23 $1155.8491$ $0.0078$ $-0.5$ $v_2$ 11F11210F22 $1155.8491$ $0.0079$ $0.9$ $v_2$ 11F11210F22 $1155.8774$ $0.0003$ $7.6$ $v_2$ 11F11210F22 $1155.9068$ $0.0003$ $7.6$ $v_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                                                                           |
| 10E89E11154.78090.00301.9 $v_2$ 10F1129F211155.05040.00281.3 $v_2$ 10F2139F111155.20270.00322.0 $v_2$ 11F11210F231155.84910.0078 $-0.5$ $v_2$ 11F11210F231155.84910.00790.9 $v_2$ 11F11210F221155.87740.00037.6 $v_2$ 11F11210F221155.87740.00037.6 $v_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                                                                                           |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2                                                                                           |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2                                                                                           |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2                                                                                           |
| 11         F1         12         10         F2         3         1155.8491         0.0079         0.9 $v_2$ 11         F1         12         10         F2         2         1155.8774         0.0003         7.6 $v_2$ 11         F2         10         F2         2         1155.8774         0.0003         7.6 $v_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                                                                                           |
| 11         F1         12         10         F2         2         1155.8774         0.0003         7.6 $v_2$ 11         F         12         10         F         1         1155.8774         0.0003         7.6 $v_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                                                                                           |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2                                                                                           |
| 11 E 8 10 E 2 1156.0240 0.0049 -6.4 v <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2                                                                                           |
| 11 E 8 10 E 2 1156.0240 0.0052 -1.4 v <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2                                                                                           |
| 11 $F_2$ 12         10 $F_1$ 2         1156.2041         0.0062         0.1 $v_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2                                                                                           |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2                                                                                           |
| 11 $F_2$ 12         10 $F_1$ 1         1156.2227         0.0012         -2.9 $v_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2                                                                                           |
| 12 F <sub>1</sub> 10 11 F <sub>2</sub> 2 1156.9337 0.0013 0.8 v <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                                                                           |
| 12 A <sub>1</sub> 4 11 A <sub>2</sub> 1 1156.9395 0.0011 -1.7 v <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                                                                           |
| 12 F <sub>1</sub> 11 11 F <sub>2</sub> 3 1158.9731 0.0014 -0.6 v <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                                                                                           |
| 12 F <sub>2</sub> 11 11 F <sub>1</sub> 2 1159.0262 0.0023 1.6 v <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                                                                           |
| 12 F <sub>2</sub> 11 11 F <sub>1</sub> 2 1159.0262 0.0021 -9.0 v <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                                                                                           |
| 12 F <sub>2</sub> 12 11 F <sub>1</sub> 3 1160.4555 0.0009 8.6 v <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                                                                           |
| 12 F <sub>2</sub> 12 11 F <sub>1</sub> 2 1160.4783 0.0010 0.4 v <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                             |
| 12 E 8 11 E 2 1160.5729 0.0016 1.5 v <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2                                                                                           |
| 12 E 8 11 E 2 1160.5729 0.0015 0.1 v <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2                                                                                           |
| 12 E 8 11 E 1 1160.6106 0.0005 0.8 v <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2                                                                                           |
| 12 $F_1$ 12 11 $F_2$ 2 1161.2455 0.0005 -4.8 $v_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2<br>2<br>2<br>2                                                                            |
| 12 F <sub>1</sub> 12 11 F <sub>2</sub> 1 1161.2876 0.0005 10.5 v <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2<br>2<br>2<br>2<br>2                                                                       |
| 11 A <sub>2</sub> 5 10 A <sub>1</sub> 1 1161.8132 0.0033 -4.6 v <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 |

Table D.3 – Continued.

| J  | γ              | п  | J' | γ'             | n' | $v^{exp}$ , | $S_{\nu}^{exp}$ ,        | $\delta$ , | Band           |
|----|----------------|----|----|----------------|----|-------------|--------------------------|------------|----------------|
|    | 1              |    |    | 2              |    |             | $cm^{-2} \cdot atm^{-1}$ | %<br>5     | 6              |
| 11 | Fa             | 13 | 10 | E              | 2  | 1161.88/2   | 4                        | 19         | 1/2            |
| 11 | F <sub>2</sub> | 13 | 10 | F <sub>1</sub> | 1  | 1161 9029   | 0.0007                   | 1.5        | V2<br>V2       |
| 11 | F <sub>2</sub> | 13 | 10 | F <sub>1</sub> | 1  | 1161 9029   | 0.0033                   | -0.1       | V2             |
| 12 | F <sub>2</sub> | 13 | 11 | F <sub>1</sub> | 3  | 1161 9872   | 0.0077                   | -1.8       | V2             |
| 12 | F <sub>2</sub> | 13 | 11 | F <sub>1</sub> | 3  | 1161 9872   | 0.0081                   | 2.7        | v2<br>V2       |
| 11 | F1             | 13 | 10 | Fa             | 2  | 1161 9983   | 0.0035                   | -6.3       | V2             |
| 11 | F.             | 13 | 10 | F <sub>2</sub> | 2  | 1161 0083   | 0.0035                   | -1.1       | V2             |
| 12 | F              | 0  | 10 | 12<br>F        | 2  | 1162 2110   | 0.0030                   | 0.1        | V2             |
| 12 | E              | 0  | 11 | E              | 2  | 1162.2110   | 0.0040                   | 3.5        | V2             |
| 12 | E              | 9  | 11 | E              | 1  | 1162.2110   | 0.0041                   | 1.4        | V2             |
| 12 |                | 9  | 10 | E<br>Aa        | 1  | 1162.2469   | 0.0007                   | 1.4        | V2             |
| 12 |                | 12 | 10 | R <sub>2</sub> | 2  | 1162.3009   | 0.0021                   | -1.1       | V2             |
| 12 | Г1<br>Г        | 13 | 11 | Г2<br>Е        | 2  | 1102.3288   | 0.0066                   | -1.1       | V2             |
| 12 | F <sub>1</sub> | 13 | 10 | F <sub>2</sub> | 3  | 1162.3288   | 0.0069                   | 3.5        | V <sub>2</sub> |
| 11 |                | 14 | 10 | F <sub>2</sub> | 2  | 1162.3928   | 0.0003                   | 9.3        | V2             |
| 11 | E              | 9  | 10 | E              | 2  | 1162.4037   | 0.0003                   | 2.7        | ν <sub>2</sub> |
| 13 | F <sub>2</sub> | 11 | 12 | F <sub>1</sub> | 2  | 1162.4305   | 0.0010                   | -6.3       | v <sub>2</sub> |
| 13 | F <sub>1</sub> | 11 | 12 | F <sub>2</sub> | I  | 1162.4356   | 0.0011                   | 1.1        | ν <sub>2</sub> |
| 11 | E              | 9  | 10 | E              | 1  | 1162.4580   | 0.0020                   | 5.8        | V2             |
| 11 | E              | 9  | 10 | E              | 1  | 1162.4580   | 0.0019                   | 4.6        | ν <sub>2</sub> |
| 13 | A <sub>1</sub> | 4  | 12 | $A_2$          | 1  | 1164.6668   | 0.0011                   | -1.1       | V2             |
| 13 | F <sub>1</sub> | 12 | 12 | F <sub>2</sub> | 2  | 1164.7046   | 0.0014                   | -1.5       | v <sub>2</sub> |
| 13 | F <sub>1</sub> | 12 | 12 | F <sub>2</sub> | 2  | 1164.7046   | 0.0015                   | -0.3       | v <sub>2</sub> |
| 13 | E              | 8  | 12 | E              | 2  | 1164.7175   | 0.0012                   | -5.3       | v <sub>2</sub> |
| 13 | F <sub>2</sub> | 12 | 12 | F <sub>1</sub> | 3  | 1166.2476   | 0.0008                   | 0.6        | ν <sub>2</sub> |
| 13 | F <sub>1</sub> | 13 | 12 | F <sub>2</sub> | 3  | 1166.3970   | 0.0015                   | 1.4        | $\nu_2$        |
| 13 | F <sub>1</sub> | 13 | 12 | F <sub>2</sub> | 3  | 1166.3970   | 0.0014                   | -2.1       | ν <sub>2</sub> |
| 13 | F <sub>1</sub> | 13 | 12 | F <sub>2</sub> | 2  | 1166.4235   | 0.0013                   | 1.1        | $\nu_2$        |
| 13 | Е              | 9  | 12 | Е              | 2  | 1167.2684   | 0.0006                   | 3.7        | v <sub>2</sub> |
| 13 | F <sub>2</sub> | 13 | 12 | F <sub>1</sub> | 2  | 1167.4179   | 0.0007                   | -3.8       | v <sub>2</sub> |
| 14 | A <sub>2</sub> | 4  | 13 | $A_1$          | 1  | 1167.9322   | 0.0007                   | -7.8       | $v_2$          |
| 13 | A <sub>2</sub> | 5  | 12 | A <sub>1</sub> | 2  | 1168.0412   | 0.0061                   | -4.1       | $\nu_2$        |
| 13 | A <sub>2</sub> | 5  | 12 | A <sub>1</sub> | 2  | 1168.0412   | 0.0063                   | -1.4       | $\nu_2$        |
| 13 | $F_2$          | 14 | 12 | $F_1$          | 3  | 1168.2768   | 0.0060                   | -0.3       | $\nu_2$        |
| 13 | F <sub>2</sub> | 14 | 12 | $F_1$          | 3  | 1168.2768   | 0.0061                   | 1.3        | $\nu_2$        |
| 13 | F <sub>2</sub> | 14 | 12 | $F_1$          | 2  | 1168.3381   | 0.0005                   | -4.9       | $\nu_2$        |
| 13 | F <sub>1</sub> | 14 | 12 | F <sub>2</sub> | 3  | 1168.4195   | 0.0051                   | -9.7       | $\nu_2$        |
| 13 | F <sub>1</sub> | 14 | 12 | F <sub>2</sub> | 3  | 1168.4195   | 0.0056                   | -0.8       | v <sub>2</sub> |
| 13 | F <sub>1</sub> | 14 | 12 | F <sub>2</sub> | 2  | 1168.4461   | 0.0005                   | 2.9        | v <sub>2</sub> |
| 13 | F <sub>1</sub> | 14 | 12 | F <sub>2</sub> | 1  | 1168.4813   | 0.0003                   | 9.2        | $v_2$          |
| 13 | A <sub>1</sub> | 5  | 12 | A <sub>2</sub> | 1  | 1168.5357   | 0.0049                   | -4.7       | v <sub>2</sub> |
| 13 | A <sub>1</sub> | 5  | 12 | A <sub>2</sub> | 1  | 1168.5357   | 0.0051                   | -1.0       | v <sub>2</sub> |
| 12 | F <sub>2</sub> | 14 | 11 | F <sub>1</sub> | 2  | 1169.1187   | 0.0035                   | 0.1        | v <sub>2</sub> |
| 12 | Е              | 10 | 11 | Е              | 2  | 1169.2052   | 0.0003                   | -6.1       | v <sub>2</sub> |

Table D.3 – Continued.

| J  | γ              | п  | J' | γ'             | n'  | $v^{exp}$ , | $S_{\nu}^{exp}$ ,        | δ,    | Band           |
|----|----------------|----|----|----------------|-----|-------------|--------------------------|-------|----------------|
|    | 1              |    |    | ,              |     |             | $cm^{-2} \cdot atm^{-1}$ | %     | (              |
| 10 |                | 10 |    | 2              |     | 3           | 4                        | 5     | 0              |
| 12 | E              | 10 | 11 | E              | 1   | 1169.2432   | 0.0020                   | 6.6   | v <sub>2</sub> |
| 12 | E              | 10 | 11 | E              | 1   | 1169.2432   | 0.0018                   | -4.9  | V2             |
| 12 | F <sub>1</sub> | 14 | 11 | F <sub>2</sub> | 3   | 1169.2814   | 0.0002                   | -1.0  | v <sub>2</sub> |
| 12 | F <sub>1</sub> | 14 | 11 | F <sub>2</sub> | 2   | 1169.3159   | 0.0030                   | -0.8  | v <sub>2</sub> |
| 12 | F <sub>1</sub> | 14 | 11 | F <sub>2</sub> | 2   | 1169.3159   | 0.0027                   | -11.0 | v <sub>2</sub> |
| 12 | A <sub>1</sub> | 5  | 11 | A <sub>2</sub> | I   | 1169.4544   | 0.0031                   | -0.5  | v <sub>2</sub> |
| 12 | A <sub>1</sub> | 5  | 11 | $A_2$          | 1   | 1169.4544   | 0.0029                   | -9.3  | ν <sub>2</sub> |
| 12 | F <sub>1</sub> | 15 | 11 | F <sub>2</sub> | 1   | 1169.7857   | 0.0021                   | 0.0   | V2             |
| 12 | F <sub>1</sub> | 15 | 11 | F <sub>2</sub> | 1   | 1169.7857   | 0.0021                   | -0.4  | v <sub>2</sub> |
| 12 | F <sub>2</sub> | 15 | 11 | $F_1$          | 1   | 1169.8322   | 0.0023                   | -1.8  | v <sub>2</sub> |
| 14 | F <sub>1</sub> | 12 | 13 | F <sub>2</sub> | 3   | 1170.3664   | 0.0002                   | 0.6   | v <sub>2</sub> |
| 14 | F <sub>1</sub> | 12 | 13 | $F_2$          | 2   | 1170.4033   | 0.0012                   | 1.6   | v <sub>2</sub> |
| 14 | F <sub>2</sub> | 13 | 13 | $F_1$          | 3   | 1170.4180   | 0.0015                   | -0.5  | $\nu_2$        |
| 14 | E              | 9  | 13 | Е              | 2   | 1172.1391   | 0.0006                   | -1.4  | $\nu_2$        |
| 14 | F <sub>1</sub> | 13 | 13 | $F_2$          | 3   | 1172.1775   | 0.0009                   | -1.5  | v <sub>2</sub> |
| 14 | F <sub>1</sub> | 13 | 13 | $F_2$          | 2   | 1172.2146   | 0.0006                   | -7.1  | $\nu_2$        |
| 14 | A <sub>1</sub> | 5  | 13 | $A_2$          | 1   | 1172.2820   | 0.0024                   | 1.9   | $\nu_2$        |
| 14 | F <sub>1</sub> | 14 | 13 | $F_2$          | 3   | 1173.2733   | 0.0003                   | 8.3   | $\nu_2$        |
| 14 | F <sub>1</sub> | 14 | 13 | F <sub>2</sub> | 2   | 1173.3104   | 0.0006                   | 1.4   | v <sub>2</sub> |
| 14 | F <sub>2</sub> | 14 | 13 | $F_1$          | 4   | 1173.4551   | 0.0011                   | 0.2   | $\nu_2$        |
| 14 | F <sub>2</sub> | 14 | 13 | $F_1$          | 3   | 1173.5087   | 0.0006                   | 1.7   | v <sub>2</sub> |
| 14 | F <sub>2</sub> | 14 | 13 | $F_1$          | 2   | 1173.5507   | 0.0003                   | 9.0   | v <sub>2</sub> |
| 14 | A <sub>2</sub> | 5  | 13 | A <sub>1</sub> | 1   | 1173.8935   | 0.0011                   | 6.5   | v <sub>2</sub> |
| 14 | F <sub>2</sub> | 15 | 13 | $F_1$          | 4   | 1174.3698   | 0.0052                   | 0.5   | v <sub>2</sub> |
| 14 | F <sub>2</sub> | 15 | 13 | $F_1$          | 4   | 1174.3698   | 0.0056                   | 6.4   | v <sub>2</sub> |
| 14 | F <sub>2</sub> | 15 | 13 | $F_1$          | 3   | 1174.4238   | 0.0002                   | 2.5   | v <sub>2</sub> |
| 14 | F <sub>2</sub> | 15 | 13 | F <sub>1</sub> | 2   | 1174.4655   | 0.0003                   | 5.9   | ν <sub>2</sub> |
| 14 | Е              | 10 | 13 | Е              | 2   | 1174.5045   | 0.0035                   | -0.8  | v <sub>2</sub> |
| 14 | Е              | 10 | 13 | Е              | 2   | 1174.5045   | 0.0035                   | -2.2  | ν <sub>2</sub> |
| 14 | F <sub>1</sub> | 15 | 13 | F <sub>2</sub> | 3   | 1174.6427   | 0.0047                   | -1.0  | ν <sub>2</sub> |
| 14 | F <sub>1</sub> | 15 | 13 | F <sub>2</sub> | 3   | 1174.6427   | 0.0048                   | 1.4   | v <sub>2</sub> |
| 14 | F <sub>1</sub> | 15 | 13 | F <sub>2</sub> | 2   | 1174.6797   | 0.0005                   | 6.8   | v <sub>2</sub> |
| 15 | Е              | 9  | 14 | Е              | 2   | 1176.1155   | 0.0007                   | -7.6  | v <sub>2</sub> |
| 15 | F <sub>2</sub> | 13 | 14 | F <sub>1</sub> | 2   | 1176.1224   | 0.0011                   | -0.4  | v <sub>2</sub> |
| 15 | A <sub>2</sub> | 5  | 14 | A <sub>1</sub> | 1   | 1176.1335   | 0.0010                   | -4.7  | v <sub>2</sub> |
| 13 | F <sub>1</sub> | 15 | 12 | F <sub>2</sub> | 2   | 1176.5233   | 0.0027                   | 0.4   | v <sub>2</sub> |
| 13 | F <sub>1</sub> | 15 | 12 | F <sub>2</sub> | 2   | 1176.5233   | 0.0026                   | -1.0  | v <sub>2</sub> |
| 13 | Е              | 10 | 12 | Е              | 2   | 1176.5667   | 0.0019                   | 0.4   | v <sub>2</sub> |
| 13 | F <sub>2</sub> | 15 | 12 | F <sub>1</sub> | 2   | 1176.7319   | 0.0023                   | -1.1  | ν2             |
| 13 | F <sub>1</sub> | 16 | 12 | F <sub>2</sub> | 1   | 1176.8660   | 0.0029                   | -0.9  | ν <sub>2</sub> |
| 13 | F1             | 16 | 12 | F2             | - 1 | 1176.8660   | 0.0028                   | -1.3  | V2             |
| 13 | Ē              | 11 | 12 | Ē              | 1   | 1177.2890   | 0.0012                   | -0.4  | -<br>V2        |
| 13 | <br>F2         | 16 | 12 | F1             | - 1 | 1177.3006   | 0.0019                   | 3.4   | V2             |
| -  | . ~            | -  |    | -              |     |             |                          |       | -              |

Table D.3 – Continued.

| J  | γ              | п  | J' | γ'             | n' | $v^{exp}$ , $cm^{-1}$ | $S_{\nu}^{exp}$ ,                          | $\delta$ , 04 | Band           |
|----|----------------|----|----|----------------|----|-----------------------|--------------------------------------------|---------------|----------------|
|    | 1              |    |    | 2              |    | 3                     | $\frac{\text{cm}^2 \cdot \text{atm}^4}{4}$ | %<br>5        | 6              |
| 13 | F <sub>2</sub> | 16 | 12 | E1             | 1  | 1177 3006             | 0.0019                                     | 62            | V2             |
| 13 | A2             | 6  | 12 | A <sub>1</sub> | 1  | 1177.3209             | 0.0015                                     | -5.9          | V2             |
| 13 | A2             | 6  | 12 | A              | 1  | 1177.3209             | 0.0016                                     | 3.8           | V2             |
| 15 | F2             | 14 | 14 | F1             | 3  | 1178.0160             | 0.0009                                     | -2.6          | V2             |
| 15 | F <sub>1</sub> | 14 | 14 | F <sub>2</sub> | 3  | 1178.0808             | 0.0017                                     | 5.6           | V2             |
| 15 | F1             | 15 | 14 | F2             | 4  | 1179.3412             | 0.0005                                     | -6.8          | V2             |
| 15 | F1             | 15 | 14 | F <sub>2</sub> | 3  | 1179 3877             | 0.0007                                     | 1.4           | V2             |
| 15 | E              | 10 | 14 | E              | 3  | 1179.4308             | 0.0009                                     | -0.9          | V2             |
| 15 | Е              | 10 | 14 | Е              | 2  | 1179.4956             | 0.0005                                     | -4.1          | V2             |
| 15 | F <sub>2</sub> | 15 | 14 | F1             | 2  | 1180.0583             | 0.0005                                     | -1.8          | V2             |
| 15 | F <sub>2</sub> | 15 | 14 | F <sub>1</sub> | 1  | 1180.1174             | 0.0005                                     | 1.2           | V2             |
| 15 | F1             | 16 | 14 | F <sub>2</sub> | 4  | 1180.5284             | 0.0045                                     | -1.5          | V2             |
| 15 | F1             | 16 | 14 | F2             | 4  | 1180.5284             | 0.0043                                     | -5.2          | V2             |
| 15 | E              | 11 | 14 | E              | 3  | 1180.7122             | 0.0025                                     | 2.4           | V2             |
| 15 | Е              | 11 | 14 | Е              | 3  | 1180.7122             | 0.0026                                     | 7.6           | 2<br>V2        |
| 15 | E              | 11 | 14 | E              | 2  | 1180.7772             | 0.0004                                     | -1.6          | V2             |
| 15 | F <sub>2</sub> | 16 | 14 | <br>F1         | 3  | 1180.8008             | 0.0040                                     | -2.4          | V2             |
| 15 | F <sub>2</sub> | 16 | 14 | F <sub>1</sub> | 3  | 1180.8008             | 0.0039                                     | -4.4          | V2             |
| 16 | F1             | 14 | 15 | F <sub>2</sub> | 3  | 1181.8321             | 0.0009                                     | 1.3           | V2             |
| 16 | F <sub>2</sub> | 14 | 15 | F1             | 2  | 1181.8448             | 0.0009                                     | 6.8           | V2             |
| 16 | F <sub>2</sub> | 15 | 15 | F <sub>1</sub> | 3  | 1183.9248             | 0.0008                                     | 1.0           | V2             |
| 16 | E              | 10 | 15 | E              | 2  | 1183.9333             | 0.0008                                     | -1.3          | 2<br>V2        |
| 14 | A <sub>1</sub> | 6  | 13 | A <sub>2</sub> | 1  | 1184.0021             | 0.0019                                     | -1.4          | v <sub>2</sub> |
| 14 | A <sub>1</sub> | 6  | 13 | A <sub>2</sub> | 1  | 1184.0021             | 0.0019                                     | 1.9           | ν <sub>2</sub> |
| 14 | F <sub>1</sub> | 16 | 13 | F <sub>2</sub> | 2  | 1184.0569             | 0.0018                                     | -14.5         | ν <sub>2</sub> |
| 14 | F <sub>1</sub> | 16 | 13 | F <sub>2</sub> | 2  | 1184.0569             | 0.0020                                     | -1.7          | ν <sub>2</sub> |
| 14 | F <sub>2</sub> | 16 | 13 | F <sub>1</sub> | 3  | 1184.1152             | 0.0020                                     | -12.0         | ν <sub>2</sub> |
| 14 | F <sub>2</sub> | 16 | 13 | F <sub>1</sub> | 3  | 1184.1152             | 0.0022                                     | 0.5           | ν <sub>2</sub> |
| 14 | A <sub>2</sub> | 6  | 13 | A <sub>1</sub> | 1  | 1184.3068             | 0.0015                                     | 5.0           | v <sub>2</sub> |
| 14 | A <sub>2</sub> | 6  | 13 | A <sub>1</sub> | 1  | 1184.3068             | 0.0015                                     | 8.9           | v <sub>2</sub> |
| 14 | F <sub>2</sub> | 17 | 13 | F <sub>1</sub> | 2  | 1184.3817             | 0.0021                                     | 1.1           | v <sub>2</sub> |
| 14 | F <sub>2</sub> | 17 | 13 | F <sub>1</sub> | 2  | 1184.3817             | 0.0023                                     | 9.7           | v <sub>2</sub> |
| 14 | Е              | 11 | 13 | Е              | 1  | 1184.4041             | 0.0015                                     | -2.2          | v <sub>2</sub> |
| 16 | F <sub>1</sub> | 15 | 15 | F <sub>2</sub> | 4  | 1185.2874             | 0.0005                                     | 1.4           | v <sub>2</sub> |
| 16 | F <sub>2</sub> | 16 | 15 | F <sub>1</sub> | 4  | 1185.3652             | 0.0007                                     | -3.2          | ν <sub>2</sub> |
| 16 | F <sub>2</sub> | 16 | 15 | F <sub>1</sub> | 3  | 1185.4193             | 0.0009                                     | -2.0          | ν <sub>2</sub> |
| 16 | Е              | 11 | 15 | Е              | 2  | 1186.1757             | 0.0004                                     | 0.6           | v <sub>2</sub> |
| 16 | F <sub>1</sub> | 16 | 15 | F <sub>2</sub> | 4  | 1186.1944             | 0.0005                                     | 1.0           | $\nu_2$        |
| 16 | A <sub>1</sub> | 6  | 15 | A <sub>2</sub> | 2  | 1186.5952             | 0.0034                                     | 2.2           | v <sub>2</sub> |
| 16 | A <sub>1</sub> | 6  | 15 | A <sub>2</sub> | 2  | 1186.5952             | 0.0032                                     | -3.1          | v <sub>2</sub> |
| 16 | F <sub>1</sub> | 17 | 15 | F <sub>2</sub> | 4  | 1186.8109             | 0.0029                                     | -5.2          | v <sub>2</sub> |
| 16 | F <sub>1</sub> | 17 | 15 | F <sub>2</sub> | 4  | 1186.8109             | 0.0029                                     | -2.7          | $\nu_2$        |
| 16 | F <sub>1</sub> | 17 | 15 | F <sub>2</sub> | 3  | 1186.9098             | 0.0003                                     | 3.4           | v <sub>2</sub> |

Table D.3 – Continued.

| I  | 11             | n  | 1' | ·              | n' | v <sup>exp</sup> , | $S_{v}^{exp}$ ,          | δ,    | Band           |
|----|----------------|----|----|----------------|----|--------------------|--------------------------|-------|----------------|
| J  | Ŷ              | п  | J  | Ŷ              | п  | $cm^{-1}$          | $cm^{-2} \cdot atm^{-1}$ | %     | Danu           |
|    | 1              |    |    | 2              |    | 3                  | 4                        | 5     | 6              |
| 16 | F <sub>2</sub> | 17 | 15 | $F_1$          | 4  | 1186.9238          | 0.0030                   | -1.2  | ν <sub>2</sub> |
| 16 | F <sub>2</sub> | 17 | 15 | F <sub>1</sub> | 4  | 1186.9238          | 0.0030                   | -2.0  | v <sub>2</sub> |
| 16 | A <sub>2</sub> | 6  | 15 | A <sub>1</sub> | 1  | 1187.0141          | 0.0026                   | -3.9  | $\nu_2$        |
| 16 | A <sub>2</sub> | 6  | 15 | A <sub>1</sub> | 1  | 1187.0141          | 0.0027                   | -1.6  | $\nu_2$        |
| 17 | $A_1$          | 5  | 16 | A <sub>2</sub> | 1  | 1187.5471          | 0.0006                   | 6.6   | $v_2$          |
| 17 | $F_1$          | 15 | 16 | $F_2$          | 2  | 1187.5604          | 0.0006                   | 1.8   | $v_2$          |
| 17 | $F_2$          | 15 | 16 | $F_1$          | 4  | 1189.7142          | 0.0002                   | -11.5 | $\nu_2$        |
| 17 | $F_2$          | 15 | 16 | $F_1$          | 3  | 1189.7858          | 0.0006                   | -4.7  | $\nu_2$        |
| 17 | $F_1$          | 16 | 16 | $F_2$          | 3  | 1189.7921          | 0.0008                   | -1.6  | $\nu_2$        |
| 17 | Е              | 11 | 16 | Е              | 3  | 1191.2875          | 0.0003                   | -7.3  | $\nu_2$        |
| 17 | $F_2$          | 16 | 16 | $F_1$          | 4  | 1191.2942          | 0.0005                   | 0.5   | $\nu_2$        |
| 17 | $A_2$          | 6  | 16 | A <sub>1</sub> | 2  | 1191.3551          | 0.0012                   | -3.8  | $v_2$          |
| 17 | $F_2$          | 16 | 16 | $F_1$          | 3  | 1191.3658          | 0.0004                   | 2.3   | $\nu_2$        |
| 15 | $F_1$          | 17 | 14 | $F_2$          | 3  | 1191.6345          | 0.0018                   | 4.5   | $\nu_2$        |
| 15 | $F_1$          | 17 | 14 | F <sub>2</sub> | 3  | 1191.6345          | 0.0017                   | 0.4   | $\nu_2$        |
| 15 | Е              | 12 | 14 | Е              | 2  | 1191.7124          | 0.0010                   | 5.2   | $\nu_2$        |
| 15 | $F_2$          | 17 | 14 | $F_1$          | 2  | 1191.7458          | 0.0016                   | -1.6  | $\nu_2$        |
| 15 | $A_2$          | 6  | 14 | A <sub>1</sub> | 1  | 1191.7955          | 0.0017                   | -0.6  | $\nu_2$        |
| 15 | A <sub>2</sub> | 6  | 14 | A <sub>1</sub> | 1  | 1191.7955          | 0.0019                   | 6.6   | $\nu_2$        |
| 15 | $F_1$          | 18 | 14 | $F_2$          | 2  | 1192.0304          | 0.0015                   | -6.1  | $v_2$          |
| 17 | F <sub>2</sub> | 17 | 16 | F <sub>1</sub> | 3  | 1192.3083          | 0.0003                   | 5.8   | v <sub>2</sub> |
| 17 | $F_1$          | 17 | 16 | F <sub>2</sub> | 4  | 1192.3261          | 0.0008                   | 0.7   | v <sub>2</sub> |
| 17 | $F_1$          | 17 | 16 | F <sub>2</sub> | 3  | 1192.4208          | 0.0003                   | 1.6   | $\nu_2$        |
| 15 | $A_1$          | 6  | 14 | A <sub>2</sub> | 1  | 1192.5331          | 0.0008                   | 2.2   | $\nu_2$        |
| 17 | A <sub>1</sub> | 6  | 16 | $A_2$          | 1  | 1192.7898          | 0.0007                   | 1.0   | $\nu_2$        |
| 17 | $F_1$          | 18 | 16 | $F_2$          | 4  | 1192.9214          | 0.0020                   | -4.1  | $\nu_2$        |
| 17 | Е              | 12 | 16 | Е              | 3  | 1193.0251          | 0.0014                   | -10.7 | $\nu_2$        |
| 17 | Е              | 12 | 16 | Е              | 3  | 1193.0251          | 0.0015                   | -3.8  | $\nu_2$        |
| 17 | $F_2$          | 18 | 16 | $F_1$          | 4  | 1193.1443          | 0.0022                   | -0.4  | $\nu_2$        |
| 17 | $F_2$          | 18 | 16 | $F_1$          | 4  | 1193.1443          | 0.0022                   | -1.7  | $\nu_2$        |
| 18 | $F_1$          | 15 | 17 | F <sub>2</sub> | 2  | 1193.2798          | 0.0004                   | -10.6 | $\nu_2$        |
| 18 | $F_2$          | 16 | 17 | F <sub>1</sub> | 3  | 1193.2883          | 0.0004                   | -2.4  | $\nu_2$        |
| 18 | Е              | 11 | 17 | E              | 2  | 1195.6467          | 0.0004                   | 7.5   | $v_2$          |
| 18 | $F_1$          | 16 | 17 | $F_2$          | 3  | 1195.6546          | 0.0005                   | -3.6  | $\nu_2$        |
| 18 | A <sub>1</sub> | 6  | 17 | A <sub>2</sub> | 1  | 1195.6688          | 0.0005                   | -0.1  | $\nu_2$        |
| 18 | F <sub>1</sub> | 17 | 17 | F <sub>2</sub> | 4  | 1197.2587          | 0.0005                   | -1.8  | v <sub>2</sub> |
| 18 | F <sub>2</sub> | 17 | 17 | $F_1$          | 4  | 1197.3049          | 0.0009                   | 8.6   | v <sub>2</sub> |
| 18 | F <sub>2</sub> | 18 | 17 | $F_1$          | 5  | 1198.3329          | 0.0004                   | 7.0   | v <sub>2</sub> |
| 18 | Е              | 12 | 17 | Е              | 3  | 1198.3369          | 0.0005                   | 4.9   | v <sub>2</sub> |
| 18 | F <sub>2</sub> | 18 | 17 | $F_1$          | 4  | 1198.4202          | 0.0002                   | -2.5  | v <sub>2</sub> |
| 18 | Е              | 12 | 17 | Е              | 2  | 1198.4453          | 0.0002                   | -0.5  | v <sub>2</sub> |
| 18 | $F_1$          | 18 | 17 | F <sub>2</sub> | 3  | 1198.9989          | 0.0003                   | -0.2  | v <sub>2</sub> |
| 19 | F <sub>2</sub> | 16 | 18 | F <sub>1</sub> | 2  | 1199.0109          | 0.0003                   | 7.3   | v <sub>2</sub> |

Table D.3 – Continued.

| J  | γ                                | n  | J' | γ'             | n'     | $v^{exp}$ ,    | $S_{\nu}^{exp}$ ,        | δ,    | Band                  |
|----|----------------------------------|----|----|----------------|--------|----------------|--------------------------|-------|-----------------------|
|    | 1                                |    |    | 2              |        |                | $cm^{-2} \cdot atm^{-1}$ | %     | 6                     |
| 10 | 1                                | 6  | 10 | Δ.             | 1      | J<br>1100.0197 | 4                        | 10.4  | 0                     |
| 19 | A <sub>2</sub><br>E <sub>2</sub> | 10 | 10 |                | 5      | 1199.018/      | 0.0003                   | -5.0  | V2                    |
| 18 | F <sub>2</sub>                   | 19 | 17 | F.             | 5      | 1199.0584      | 0.0010                   | -3.2  | V2                    |
| 18 | 12<br>E                          | 19 | 17 | Fa             | 2      | 1199.0304      | 0.0017                   | 7.6   | V2                    |
| 10 | F                                | 10 | 17 | 12<br>F        | 2      | 1199.0785      | 0.0003                   | 2.8   | V2                    |
| 10 | E<br>E.                          | 10 | 17 | E<br>E         | 3      | 1199.2447      | 0.0009                   | -2.0  | V2                    |
| 10 |                                  | 19 | 17 | 12<br>E        | 4      | 1199.3031      | 0.0010                   | 2.9   | <b>V</b> 2            |
| 10 | Г2<br>Е                          | 10 | 15 | Г1<br>Е        | 2<br>2 | 1199.3470      | 0.0012                   | -2.8  | V2                    |
| 16 | E<br>E                           | 12 | 15 | E<br>E.        | 2      | 1199.3007      | 0.0009                   | 9.4   | V2                    |
| 10 | Г2<br>Е                          | 19 | 15 | Г1<br>Е        | 2      | 1199.4081      | 0.0014                   | 0.5   | V2                    |
| 10 | Γ1                               | 18 | 15 | F2             | 3      | 1199.4732      | 0.0010                   | -2.1  | V2                    |
| 10 | A <sub>1</sub>                   | /  | 15 | A <sub>2</sub> | 1      | 1199.7208      | 0.0010                   | -4.0  | V2                    |
| 10 |                                  | 19 | 15 | F <sub>2</sub> | 1      | 1199.7606      | 0.0010                   | -1./  | V2                    |
| 16 | E                                | 13 | 15 | E              | 1      | 1199.7759      | 0.0006                   | -/.9  | v <sub>2</sub>        |
| 16 | F <sub>2</sub>                   | 20 | 15 | F <sub>1</sub> | 1      | 1200.2344      | 0.0007                   | -3.0  | v <sub>2</sub>        |
| 16 | F <sub>1</sub>                   | 20 | 15 | F <sub>2</sub> | l      | 1200.2414      | 0.0007                   | -6.4  | v <sub>2</sub>        |
| 19 | F <sub>2</sub>                   | 17 | 18 | F <sub>1</sub> | 3      | 1201.5086      | 0.0004                   | -3.8  | V2                    |
| 19 | F <sub>1</sub>                   | 17 | 18 | F <sub>2</sub> | 3      | 1201.5358      | 0.0004                   | 4.1   | V2                    |
| 19 | A <sub>1</sub>                   | 6  | 18 | A <sub>2</sub> | 2      | 1203.2185      | 0.0003                   | -11.9 | ν <sub>2</sub>        |
| 19 | E                                | 12 | 18 | E              | 3      | 1203.2671      | 0.0003                   | -6.8  | v <sub>2</sub>        |
| 19 | F <sub>1</sub>                   | 18 | 18 | F <sub>2</sub> | 4      | 1203.2751      | 0.0004                   | 6.5   | ν <sub>2</sub>        |
| 19 | F <sub>1</sub>                   | 19 | 18 | F <sub>2</sub> | 5      | 1204.3283      | 0.0004                   | -7.4  | v <sub>2</sub>        |
| 19 | F <sub>2</sub>                   | 18 | 18 | F <sub>1</sub> | 4      | 1204.4024      | 0.0004                   | -1.7  | <b>v</b> <sub>2</sub> |
| 19 | F <sub>1</sub>                   | 19 | 18 | F <sub>2</sub> | 4      | 1204.4303      | 0.0004                   | 2.9   | ν <sub>2</sub>        |
| 20 | F <sub>1</sub>                   | 17 | 19 | F <sub>2</sub> | 3      | 1204.7351      | 0.0002                   | 7.5   | <b>v</b> <sub>2</sub> |
| 20 | F <sub>2</sub>                   | 17 | 19 | F <sub>1</sub> | 2      | 1204.7432      | 0.0002                   | -2.9  | V2                    |
| 19 | F <sub>2</sub>                   | 20 | 18 | F <sub>1</sub> | 4      | 1205.3681      | 0.0007                   | -3.1  | <b>v</b> <sub>2</sub> |
| 19 | F <sub>1</sub>                   | 20 | 18 | F <sub>2</sub> | 5      | 1205.4411      | 0.0010                   | 1.4   | V2                    |
| 19 | A <sub>1</sub>                   | 7  | 18 | A <sub>2</sub> | 2      | 1205.5099      | 0.0009                   | -0.3  | v <sub>2</sub>        |
| 17 | F <sub>2</sub>                   | 19 | 16 | F <sub>1</sub> | 3      | 1207.1364      | 0.0008                   | -3.3  | V2                    |
| 17 | F <sub>1</sub>                   | 19 | 16 | F <sub>2</sub> | 2      | 1207.1758      | 0.0004                   | -9.3  | ν <sub>2</sub>        |
| 17 | F <sub>1</sub>                   | 20 | 16 | F <sub>2</sub> | 3      | 1207.2031      | 0.0002                   | 2.2   | v <sub>2</sub>        |
| 17 | E                                | 13 | 16 | Е              | 2      | 1207.2185      | 0.0007                   | 2.2   | ν <sub>2</sub>        |
| 17 | F <sub>1</sub>                   | 20 | 16 | F <sub>2</sub> | 2      | 1207.2613      | 0.0004                   | -3.4  | v <sub>2</sub>        |
| 17 | A <sub>1</sub>                   | 7  | 16 | A <sub>2</sub> | 1      | 1207.3690      | 0.0005                   | -1.1  | $\nu_2$               |
| 17 | F <sub>1</sub>                   | 21 | 16 | F <sub>2</sub> | 1      | 1207.5590      | 0.0006                   | 6.7   | <b>v</b> <sub>2</sub> |
| 17 | F <sub>2</sub>                   | 20 | 16 | F <sub>1</sub> | 2      | 1207.5826      | 0.0007                   | -0.3  | v <sub>2</sub>        |
| 20 | F <sub>2</sub>                   | 19 | 19 | F <sub>1</sub> | 4      | 1209.2295      | 0.0003                   | -8.2  | ν2                    |
| 20 | F <sub>1</sub>                   | 18 | 19 | F <sub>2</sub> | 4      | 1209.2381      | 0.0002                   | -14.1 | <b>v</b> <sub>2</sub> |
| 20 | F <sub>1</sub>                   | 19 | 19 | F <sub>2</sub> | 5      | 1210.3657      | 0.0003                   | -3.2  | V2                    |
| 20 | A <sub>1</sub>                   | 7  | 19 | A <sub>2</sub> | 2      | 1210.3772      | 0.0004                   | -6.7  | v <sub>2</sub>        |
| 20 | F <sub>1</sub>                   | 19 | 19 | F <sub>2</sub> | 4      | 1210.4951      | 0.0002                   | 2.9   | v <sub>2</sub>        |
| 20 | F <sub>2</sub>                   | 20 | 19 | $F_1$          | 5      | 1211.0526      | 0.0007                   | -6.9  | v <sub>2</sub>        |
| 20 | F <sub>2</sub>                   | 21 | 19 | $F_1$          | 5      | 1211.5390      | 0.0003                   | 4.2   | v <sub>2</sub>        |

| J  | γ              | п  | J' | γ'             | n' | $v^{exp}$ ,<br>$cm^{-1}$ | $S_{\nu}^{exp}$ , cm <sup>-2</sup> · atm <sup>-1</sup> | δ,<br>% | Band           |
|----|----------------|----|----|----------------|----|--------------------------|--------------------------------------------------------|---------|----------------|
|    | 1              |    |    | 2              |    | 3                        | 4                                                      | 5       | 6              |
| 20 | Е              | 14 | 19 | Е              | 3  | 1211.5494                | 0.0004                                                 | -3.0    | v <sub>2</sub> |
| 20 | F <sub>1</sub> | 21 | 19 | F <sub>2</sub> | 5  | 1211.6628                | 0.0006                                                 | -1.4    | v <sub>2</sub> |
| 18 | F <sub>1</sub> | 20 | 17 | F <sub>2</sub> | 3  | 1214.9130                | 0.0004                                                 | -7.8    | ν <sub>2</sub> |
| 18 | A <sub>1</sub> | 7  | 17 | A <sub>2</sub> | 1  | 1214.9184                | 0.0007                                                 | 2.0     | ν <sub>2</sub> |
| 18 | F <sub>2</sub> | 21 | 17 | F <sub>1</sub> | 4  | 1214.9331                | 0.0005                                                 | 0.4     | v <sub>2</sub> |
| 18 | F <sub>1</sub> | 20 | 17 | F <sub>2</sub> | 2  | 1214.9923                | 0.0004                                                 | 8.0     | ν <sub>2</sub> |
| 18 | F <sub>2</sub> | 20 | 17 | F <sub>1</sub> | 3  | 1215.0142                | 0.0006                                                 | 0.9     | ν <sub>2</sub> |
| 18 | A <sub>2</sub> | 7  | 17 | A <sub>1</sub> | 1  | 1215.4230                | 0.0005                                                 | 10.0    | v <sub>2</sub> |
| 18 | F <sub>2</sub> | 22 | 17 | F <sub>1</sub> | 2  | 1215.4508                | 0.0004                                                 | 7.6     | ν <sub>2</sub> |
| 21 | F <sub>1</sub> | 21 | 20 | F <sub>2</sub> | 5  | 1217.1293                | 0.0005                                                 | 0.9     | ν <sub>2</sub> |
| 19 | F <sub>1</sub> | 21 | 18 | F <sub>2</sub> | 3  | 1222.7611                | 0.0004                                                 | -2.4    | v <sub>2</sub> |
| 19 | A <sub>2</sub> | 8  | 18 | A <sub>1</sub> | 1  | 1222.8368                | 0.0004                                                 | 8.9     | ν <sub>2</sub> |

Table D.3 – Continued.

Temperature is 293.85 K.

|    |                |    |     | 1                     |    | 1                |                          |      |
|----|----------------|----|-----|-----------------------|----|------------------|--------------------------|------|
| J  | ν              | n  | .J' | ν'                    | n' | $v^{exp}$ ,      | $S_{\nu}^{exp}$ ,        | δ,   |
|    | ,              |    | -   | ,                     |    | cm <sup>-1</sup> | $cm^{-2} \cdot atm^{-1}$ | %    |
|    | 1              |    | 10  | 2                     |    | 3                | 4                        | 5    |
| 12 | A <sub>1</sub> | 3  | 13  | A <sub>2</sub>        | 1  | 935.3257         | 0.0884                   | -6.6 |
| 12 | $F_1$          | 8  | 13  | F <sub>2</sub>        | 2  | 936.0153         | 0.1130                   | -0.9 |
| 11 | $F_2$          | 6  | 12  | $F_1$                 | 3  | 937.0744         | 0.1475                   | -3.0 |
| 11 | F <sub>1</sub> | 7  | 12  | F <sub>2</sub>        | 3  | 937.4677         | 0.1470                   | -2.4 |
| 11 | $A_1$          | 3  | 12  | $A_2$                 | 1  | 938.0068         | 0.1238                   | -2.2 |
| 11 | F <sub>1</sub> | 8  | 12  | F <sub>2</sub>        | 2  | 940.4317         | 0.1493                   | 0.2  |
| 10 | F <sub>2</sub> | 6  | 11  | $F_1$                 | 3  | 941.9400         | 0.1874                   | -2.6 |
| 12 | F <sub>2</sub> | 10 | 13  | F <sub>1</sub>        | 1  | 942.0550         | 0.1295                   | -1.9 |
| 10 | E              | 4  | 11  | E                     | 2  | 942.2592         | 0.1262                   | -0.7 |
| 11 | F <sub>1</sub> | 9  | 12  | F <sub>2</sub>        | 1  | 942.7511         | 0.1566                   | -0.4 |
| 10 | F <sub>1</sub> | 6  | 11  | F <sub>2</sub>        | 3  | 942.8084         | 0.1812                   | -5.4 |
| 11 | E              | 6  | 12  | E                     | 1  | 945.5674         | 0.1093                   | -3.0 |
| 11 | F <sub>2</sub> | 8  | 12  | <b>F</b> <sub>1</sub> | 1  | 945.5845         | 0.1694                   | 0.2  |
| 10 | F <sub>1</sub> | 7  | 11  | F <sub>2</sub>        | 2  | 946.3998         | 0.1987                   | 1.8  |
| 10 | A1             | 3  | 11  | A <sub>2</sub>        | 1  | 946.7399         | 0.1605                   | -2.3 |
| 9  | F <sub>1</sub> | 5  | 10  | F <sub>2</sub>        | 3  | 946.7905         | 0.2299                   | -1.7 |
| 9  | E              | 4  | 10  | E                     | 2  | 947.2355         | 0.1549                   | -0.4 |
| 9  | F <sub>2</sub> | 6  | 10  | F <sub>1</sub>        | 2  | 947.6529         | 0.2192                   | -5.2 |
| 10 | F <sub>1</sub> | 8  | 11  | F <sub>2</sub>        | 1  | 949.0921         | 0.2060                   | -1.7 |
| 10 | F <sub>2</sub> | 8  | 11  | $F_1$                 | 1  | 949.1429         | 0.2181                   | 3.8  |
| 9  | A <sub>2</sub> | 3  | 10  | A1                    | 1  | 949.1691         | 0.1846                   | -3.8 |
| 9  | F <sub>2</sub> | 7  | 10  | F <sub>1</sub>        | 1  | 950.0054         | 0.2317                   | -0.6 |
| 9  | F <sub>1</sub> | 6  | 10  | F <sub>2</sub>        | 2  | 950.3963         | 0.2357                   | -0.3 |
| 8  | A1             | 2  | 9   | A <sub>2</sub>        | 1  | 951.3546         | 0.2266                   | -1.1 |
| 8  | F <sub>1</sub> | 5  | 9   | F <sub>2</sub>        | 2  | 951.7007         | 0.2682                   | -1.9 |
| 8  | F <sub>2</sub> | 5  | 9   | F <sub>1</sub>        | 3  | 952.1200         | 0.2629                   | -3.1 |
| 9  | A1             | 2  | 10  | A <sub>2</sub>        | 1  | 952.5627         | 0.2120                   | 1.4  |
| 9  | F <sub>1</sub> | 7  | 10  | F <sub>2</sub>        | 1  | 952.6454         | 0.2444                   | -2.8 |
| 9  | E              | 5  | 10  | E                     | 1  | 952.6820         | 0.1609                   | -4.2 |
| 8  | $A_2$          | 2  | 9   | A1                    | 1  | 952.8673         | 0.2207                   | -3.9 |
| 8  | F <sub>2</sub> | 6  | 9   | F <sub>1</sub>        | 2  | 954.0399         | 0.2903                   | 6.1  |
| 7  | $F_1$          | 5  | 8   | F <sub>2</sub>        | 2  | 956.0924         | 0.2953                   | -4.3 |
| 8  | F <sub>2</sub> | 7  | 9   | F <sub>1</sub>        | 1  | 956.2192         | 0.2814                   | -3.2 |
| 7  | Е              | 3  | 8   | Е                     | 2  | 956.3792         | 0.1994                   | -2.4 |
| 7  | $F_2$          | 4  | 8   | $F_1$                 | 2  | 957.0713         | 0.3061                   | -0.7 |
| 7  | $F_1$          | 6  | 8   | $F_2$                 | 1  | 958.0975         | 0.3491                   | 12.0 |
| 7  | F <sub>2</sub> | 5  | 8   | F <sub>1</sub>        | 1  | 959.6804         | 0.3193                   | -0.9 |
| 7  | A <sub>2</sub> | 2  | 8   | $A_1$                 | 1  | 959.8098         | 0.2664                   | -1.2 |
| 6  | F <sub>2</sub> | 4  | 7   | $F_1$                 | 2  | 960.4611         | 0.3317                   | 0.2  |
| 6  | E              | 3  | 7   | E                     | 1  | 960.9665         | 0.2147                   | -2.8 |
| 6  | A <sub>1</sub> | 2  | 7   | A <sub>2</sub>        | 1  | 962.0292         | 0.2683                   | -2.4 |

Table D.4 – Experimental values of absolute line strengths of the  $v_4$  band of  ${}^{13}CD_4$ .

Table D.4 – Continued.

| T  |                | 10 | 1' | ·.'            |   | v <sup>exp</sup> , | $S_{\nu}^{exp}$ ,        | δ,   |
|----|----------------|----|----|----------------|---|--------------------|--------------------------|------|
| J  | γ              | n  | J  | γ              | n | $cm^{-1}$          | $cm^{-2} \cdot atm^{-1}$ | %    |
|    | 1              |    | 2  |                | 3 | 4                  | 5                        |      |
| 6  | F <sub>1</sub> | 5  | 7  | F <sub>2</sub> | 1 | 963.0879           | 0.3284                   | -3.9 |
| 6  | F <sub>2</sub> | 5  | 7  | $F_1$          | 1 | 963.2707           | 0.3642                   | 5.7  |
| 5  | A <sub>2</sub> | 2  | 6  | $A_1$          | 1 | 964.5778           | 0.2967                   | 4.8  |
| 5  | F <sub>2</sub> | 4  | 6  | F <sub>1</sub> | 1 | 964.9241           | 0.3327                   | -1.6 |
| 5  | F <sub>1</sub> | 3  | 6  | $F_2$          | 2 | 965.3044           | 0.3490                   | 3.7  |
| 5  | A <sub>1</sub> | 1  | 6  | A <sub>2</sub> | 1 | 966.2997           | 0.2849                   | -1.4 |
| 5  | F <sub>1</sub> | 4  | 6  | F <sub>2</sub> | 1 | 966.6885           | 0.3416                   | -1.3 |
| 4  | F <sub>2</sub> | 3  | 5  | $F_1$          | 2 | 968.8714           | 0.3153                   | -3.1 |
| 4  | F <sub>1</sub> | 3  | 5  | F <sub>2</sub> | 1 | 969.9266           | 0.3272                   | -1.1 |
| 4  | F <sub>2</sub> | 4  | 5  | F <sub>1</sub> | 1 | 970.3115           | 0.3315                   | 0.0  |
| 3  | Е              | 2  | 4  | Е              | 1 | 973.3854           | 0.1991                   | 2.2  |
| 12 | A <sub>2</sub> | 1  | 12 | A <sub>1</sub> | 1 | 974.5451           | 0.1382                   | 3.6  |
| 12 | F <sub>2</sub> | 4  | 12 | F <sub>1</sub> | 1 | 974.5529           | 0.1670                   | 4.3  |
| 12 | Е              | 3  | 12 | Е              | 1 | 974.5568           | 0.1115                   | 4.5  |
| 15 | A <sub>1</sub> | 2  | 15 | A <sub>2</sub> | 1 | 975.6463           | 0.0494                   | -4.4 |
| 15 | F <sub>1</sub> | 6  | 15 | F <sub>2</sub> | 2 | 975.6648           | 0.0679                   | 9.0  |
| 11 | F <sub>2</sub> | 3  | 11 | F <sub>1</sub> | 1 | 976.5529           | 0.2269                   | 10.5 |
| 2  | F <sub>1</sub> | 2  | 3  | F <sub>2</sub> | 1 | 976.8822           | 0.2336                   | 1.2  |
| 10 | Е              | 2  | 10 | Е              | 1 | 978.4244           | 0.1779                   | 6.5  |
| 10 | $F_1$          | 3  | 10 | F <sub>2</sub> | 1 | 978.4386           | 0.2654                   | 6.1  |
| 10 | A <sub>1</sub> | 2  | 10 | $A_2$          | 1 | 978.4678           | 0.2196                   | 5.6  |
| 13 | F <sub>2</sub> | 5  | 13 | $F_1$          | 2 | 979.1067           | 0.1169                   | -1.8 |
| 9  | $F_2$          | 3  | 9  | F <sub>1</sub> | 1 | 980.1477           | 0.2886                   | -2.6 |
| 9  | F <sub>1</sub> | 3  | 9  | F <sub>2</sub> | 1 | 980.1993           | 0.2992                   | 1.3  |
| 12 | F <sub>1</sub> | 4  | 12 | F <sub>2</sub> | 1 | 980.5981           | 0.1536                   | -3.4 |
| 12 | F <sub>2</sub> | 5  | 12 | F <sub>1</sub> | 2 | 980.7208           | 0.1604                   | 1.7  |
| 8  | A <sub>2</sub> | 1  | 8  | A <sub>1</sub> | 1 | 981.6661           | 0.2765                   | -2.6 |
| 14 | F <sub>2</sub> | 6  | 14 | F <sub>1</sub> | 2 | 981.7247           | 0.0908                   | -2.0 |
| 8  | F <sub>2</sub> | 3  | 8  | F <sub>1</sub> | 1 | 981.7494           | 0.3602                   | 6.1  |
| 8  | Е              | 2  | 8  | Е              | 1 | 981.7939           | 0.2213                   | -1.6 |
| 13 | F <sub>2</sub> | 6  | 13 | F <sub>1</sub> | 3 | 982.7968           | 0.1217                   | -5.9 |
| 7  | F <sub>2</sub> | 2  | 7  | F <sub>1</sub> | 1 | 983.0856           | 0.3823                   | 2.2  |
| 13 | F <sub>1</sub> | 5  | 13 | F <sub>2</sub> | 2 | 983.1829           | 0.1245                   | 1.1  |
| 7  | F <sub>1</sub> | 3  | 7  | F <sub>2</sub> | 1 | 983.2228           | 0.3569                   | -3.5 |
| 6  | A <sub>1</sub> | 1  | 6  | $A_2$          | 1 | 984.6141           | 0.3267                   | 0.9  |
| 13 | A <sub>1</sub> | 2  | 13 | A <sub>2</sub> | 1 | 984.6416           | 0.1278                   | 10.3 |
| 9  | A <sub>2</sub> | 2  | 9  | A <sub>1</sub> | 1 | 984.9775           | 0.2489                   | 0.2  |
| 8  | F <sub>1</sub> | 3  | 8  | F <sub>2</sub> | 1 | 985.1359           | 0.3795                   | 7.9  |
| 5  | F <sub>2</sub> | 2  | 5  | F <sub>1</sub> | 1 | 985.2349           | 0.3870                   | -1.7 |
| 4  | A <sub>2</sub> | 1  | 4  | A1             | 1 | 985.8846           | 0.3172                   | 2.6  |
| 9  | F <sub>1</sub> | 4  | 9  | $F_2$          | 2 | 986.8379           | 0.3107                   | -2.6 |
| 8  | Е              | 3  | 8  | Е              | 2 | 986.8459           | 0.2234                   | -7.4 |
| 3  | F <sub>1</sub> | 2  | 3  | F <sub>2</sub> | 1 | 986.9742           | 0.3290                   | 2.5  |

Table D.4 – Continued.

| T  |                | 10 | 1' | ·.'            |   | v <sup>exp</sup> , | $S_{v}^{exp}$ ,          | δ,   |
|----|----------------|----|----|----------------|---|--------------------|--------------------------|------|
| J  | γ              | n  | J  | γ              | n | $cm^{-1}$          | $cm^{-2} \cdot atm^{-1}$ | %    |
|    | 1              |    | 2  |                | 3 | 4                  | 5                        |      |
| 9  | A <sub>1</sub> | 1  | 9  | $A_2$          | 1 | 987.2221           | 0.2554                   | -5.7 |
| 3  | $A_1$          | 1  | 3  | $A_2$          | 1 | 987.4551           | 0.2844                   | 5.0  |
| 3  | F <sub>1</sub> | 1  | 2  | F <sub>2</sub> | 1 | 997.0997           | 0.3540                   | 1.9  |
| 3  | Е              | 1  | 2  | Е              | 1 | 997.1434           | 0.2315                   | 0.0  |
| 4  | F <sub>1</sub> | 1  | 3  | $F_2$          | 1 | 1000.2013          | 0.4246                   | 3.1  |
| 5  | A <sub>2</sub> | 1  | 4  | $A_1$          | 1 | 1003.4893          | 0.3780                   | 0.3  |
| 6  | F <sub>2</sub> | 1  | 5  | $F_1$          | 2 | 1005.9935          | 0.4651                   | -0.5 |
| 7  | A <sub>2</sub> | 1  | 6  | A <sub>1</sub> | 1 | 1008.7639          | 0.3999                   | 4.1  |
| 7  | F <sub>2</sub> | 1  | 6  | $F_1$          | 1 | 1008.8585          | 0.4574                   | -0.5 |
| 7  | F <sub>1</sub> | 1  | 6  | F <sub>2</sub> | 2 | 1008.9702          | 0.4547                   | -1.0 |
| 7  | F <sub>1</sub> | 2  | 6  | F <sub>2</sub> | 1 | 1009.5453          | 0.4880                   | 6.1  |
| 7  | Е              | 1  | 6  | Е              | 1 | 1009.5945          | 0.2939                   | -4.0 |
| 8  | F <sub>1</sub> | 1  | 7  | F <sub>2</sub> | 2 | 1011.8032          | 0.4925                   | 12.3 |
| 8  | F <sub>1</sub> | 2  | 7  | F <sub>2</sub> | 1 | 1012.5440          | 0.4566                   | 5.9  |
| 9  | F <sub>1</sub> | 1  | 8  | F <sub>2</sub> | 2 | 1014.2630          | 0.3887                   | -0.8 |
| 9  | Е              | 2  | 8  | Е              | 1 | 1015.5753          | 0.2596                   | 0.5  |
| 9  | F <sub>2</sub> | 2  | 8  | F <sub>1</sub> | 1 | 1015.6106          | 0.4172                   | 7.0  |
| 10 | F <sub>2</sub> | 1  | 9  | F <sub>1</sub> | 3 | 1017.0436          | 0.3448                   | 1.1  |
| 10 | A <sub>2</sub> | 1  | 9  | A1             | 1 | 1017.2859          | 0.2834                   | 0.3  |
| 10 | F <sub>2</sub> | 2  | 9  | F <sub>1</sub> | 2 | 1017.5648          | 0.3403                   | 0.1  |
| 10 | Е              | 1  | 9  | Е              | 1 | 1017.6353          | 0.2189                   | -3.6 |
| 10 | F <sub>2</sub> | 3  | 9  | F <sub>1</sub> | 1 | 1018.6338          | 0.3404                   | 0.9  |
| 11 | F <sub>1</sub> | 1  | 10 | F <sub>2</sub> | 3 | 1019.4960          | 0.2784                   | -3.4 |
| 11 | F <sub>2</sub> | 1  | 10 | F <sub>1</sub> | 2 | 1019.6923          | 0.3283                   | 12.6 |
| 11 | A <sub>2</sub> | 1  | 10 | A <sub>1</sub> | 1 | 1019.9800          | 0.2326                   | -2.9 |
| 11 | F <sub>2</sub> | 2  | 10 | F <sub>1</sub> | 1 | 1020.3078          | 0.2814                   | -1.4 |
| 11 | F <sub>1</sub> | 2  | 10 | F <sub>2</sub> | 2 | 1020.4312          | 0.2832                   | -0.8 |
| 11 | F <sub>1</sub> | 3  | 10 | F <sub>2</sub> | 1 | 1021.5883          | 0.2842                   | 0.5  |
| 11 | Е              | 2  | 10 | Е              | 1 | 1021.6037          | 0.1894                   | 0.4  |
| 12 | F <sub>2</sub> | 1  | 11 | F <sub>1</sub> | 3 | 1022.0558          | 0.2258                   | -3.9 |
| 12 | F <sub>1</sub> | 1  | 11 | F <sub>2</sub> | 3 | 1022.2512          | 0.2381                   | 1.9  |
| 12 | Е              | 2  | 11 | Е              | 1 | 1023.1012          | 0.1499                   | -3.0 |
| 12 | A <sub>1</sub> | 1  | 11 | $A_2$          | 1 | 1023.2631          | 0.1910                   | -1.2 |
| 12 | F <sub>1</sub> | 3  | 11 | F <sub>2</sub> | 1 | 1024.5325          | 0.2201                   | -4.0 |
| 12 | F <sub>2</sub> | 3  | 11 | $F_1$          | 1 | 1024.5526          | 0.2245                   | -2.1 |
| 13 | F <sub>1</sub> | 2  | 12 | F <sub>2</sub> | 2 | 1025.1846          | 0.1814                   | -1.3 |
| 13 | F <sub>2</sub> | 2  | 12 | F <sub>1</sub> | 2 | 1025.8849          | 0.1823                   | 0.2  |
| 13 | F <sub>1</sub> | 3  | 12 | F <sub>2</sub> | 1 | 1025.9759          | 0.1715                   | -6.2 |
| 14 | A <sub>1</sub> | 1  | 13 | A <sub>2</sub> | 1 | 1027.5375          | 0.1131                   | -3.9 |
| 14 | $F_1$          | 2  | 13 | F <sub>2</sub> | 2 | 1027.7547          | 0.1448                   | 3.2  |
| 14 | A <sub>2</sub> | 1  | 13 | $A_1$          | 1 | 1028.6177          | 0.1202                   | 4.0  |
| 14 | F <sub>2</sub> | 3  | 13 | $F_1$          | 2 | 1028.6830          | 0.1509                   | 8.2  |
| 15 | $F_2$          | 1  | 14 | $F_1$          | 3 | 1029.6365          | 0.1012                   | -3.6 |

Table D.4 – Continued.

| J  | γ                | п | J' | γ'             | n' | $v^{exp}$ ,<br>cm <sup>-1</sup> | $S_{v}^{exp}$ ,<br>cm <sup>-2</sup> · atm <sup>-1</sup> | δ,<br>% |
|----|------------------|---|----|----------------|----|---------------------------------|---------------------------------------------------------|---------|
|    | 1                |   |    | 2              |    | 3                               | 4                                                       | 5       |
| 15 | F <sub>2</sub>   | 2 | 14 | F <sub>1</sub> | 2  | 1030.4452                       | 0.1020                                                  | -1.6    |
| 15 | A <sub>2</sub>   | 1 | 14 | A1             | 1  | 1030.5627                       | 0.0951                                                  | 9.1     |
| 15 | F <sub>2</sub>   | 3 | 14 | F <sub>1</sub> | 1  | 1031.3931                       | 0.1144                                                  | 10.7    |
| 15 | $\overline{F_1}$ | 3 | 14 | $F_2$          | 2  | 1031.4297                       | 0.0994                                                  | -2.8    |

Temperature is 293.85 K.

| $(v_u, \Gamma_u)$ | $(\Omega, K, n\Gamma)$ | $^{12}$ CD4, D | $^{13}CD_4, D$ |
|-------------------|------------------------|----------------|----------------|
| 1                 | 2                      | 3              | 4              |
| $(0001, F_1)$     | $(0, 0, A_1)$          | 0.088707(29)   | 0.086582(38)   |
|                   | $(1, 1, F_1)10^3$      | 0.15368(92)    | 0.15336        |
|                   | $(2, 0, A_1)10^5$      | -0.2413(41)    | -0.2413        |
|                   | $(2, 2, F_2)10^5$      | -0.1570(32)    | -0.1570        |
| (0100, <i>E</i> ) | $(1, 1, F_1)10^4$      | 0.5054(30)     | 0.5054         |
|                   | $(2, 2, F_2)10^5$      | -0.1148(16)    | -0.1148        |
| $d_{ m rms}$      |                        | 4.79 %         | 4.21 %         |

Table D.5 – Effective dipole parameters  $p_{v_l \gamma_l, v_u \gamma_u}^{\Omega K(\vec{K}, n \Gamma_r)}$  of the moment of the CD<sub>4</sub> molecule.

| Level                                          | (υ, γ)            | (v', y')          | $\Omega(K, n\Gamma)$             | Value, cm <sup>-1</sup> |
|------------------------------------------------|-------------------|-------------------|----------------------------------|-------------------------|
| 1                                              | 2                 | 3                 | 4                                | 5                       |
| GS                                             | $(0000, A_1)$     | $(0000, A_1)$     | $2(0,0A_1)$                      | 0.13778054(57)          |
|                                                | $(0000, A_1)$     | $(0000, A_1)$     | $4(0,0A_1)10^7$                  | -0.4138(03)             |
|                                                | $(0000, A_1)$     | $(0000, A_1)$     | $4(4,0A_1)10^8$                  | -0.336051(05)           |
|                                                | $(0000, A_1)$     | $(0000, A_1)$     | $6(0,0A_1)10^{13}$               | -0.2102(62)             |
|                                                | $(0000, A_1)$     | $(0000, A_1)$     | $6(4,0A_1)10^{14}$               | 0.214(86)               |
|                                                | $(0000, A_1)$     | $(0000, A_1)$     | $6(6,0A_1)10^{15}$               | 0.353(87)               |
|                                                | $(0000, A_1)$     | $(0000, A_1)$     | 8(0,0A1)10 <sup>16</sup>         | 0.101(54)               |
|                                                | $(0000, A_1)$     | $(0000, A_1)$     | 8(4,0A1)10 <sup>18</sup>         | 0.115(72)               |
|                                                | $(0000, A_1)$     | $(0000, A_1)$     | 8(6,0A1)10 <sup>19</sup>         | 0.36(24)                |
|                                                | $(0000, A_1)$     | $(0000, A_1)$     | 8(8,0A1)10 <sup>19</sup>         | -0.544(04)              |
| $v_1$                                          | $(1000, A_1)$     | $(1000, A_1)$     | $0(0,0A_1)$                      | 800.66566(20)           |
|                                                | $(1000, A_1)$     | $(1000, A_1)$     | $2(0,0A_1)10^3$                  | -0.15877(75)            |
|                                                | $(1000, A_1)$     | $(1000, A_1)$     | $4(0,0A_1)10^9$                  | 0.67(08)                |
|                                                | $(1000, A_1)$     | $(1000, A_1)$     | $4(4,0A_1)10^{10}$               | 0.469(99)               |
| <b>v</b> <sub>2</sub>                          | (0100, <i>E</i> ) | (0100, <i>E</i> ) | $0(0,0A_1)$                      | 264.219525(37)          |
|                                                | (0100, <i>E</i> ) | (0100, <i>E</i> ) | $2(0,0A_1)10^3$                  | -0.143083(55)           |
|                                                | (0100, <i>E</i> ) | (0100, <i>E</i> ) | $2(2,0E)10^4$                    | -0.46789(32)            |
|                                                | (0100, <i>E</i> ) | (0100, <i>E</i> ) | $3(3,0A_2)10^6$                  | 0.14181(26)             |
|                                                | (0100, <i>E</i> ) | (0100, <i>E</i> ) | $4(0,0A_1)10^9$                  | 0.3910(69)              |
|                                                | (0100, <i>E</i> ) | (0100, <i>E</i> ) | $4(2,0E)10^9$                    | -0.1008(99)             |
|                                                | (0100, <i>E</i> ) | (0100, <i>E</i> ) | $4(4,0A_1)10^{10}$               | 0.3535(32)              |
|                                                | (0100, <i>E</i> ) | (0100, <i>E</i> ) | $4(4,0E)10^{10}$                 | -0.774(58)              |
|                                                | (0100, <i>E</i> ) | (0100, <i>E</i> ) | $5(3,0A_2)10^{12}$               | 0.322(58)               |
| $v_1 + v_2$                                    | (1100, <i>E</i> ) | (1100, <i>E</i> ) | $0(0,0A_1)$                      | -2.40189(89)            |
|                                                | (1100, <i>E</i> ) | (1100, <i>E</i> ) | $2(0,0A_1)10^5$                  | 7.50(11)                |
|                                                | (1100, <i>E</i> ) | (1100, <i>E</i> ) | $2(2,0E)10^5$                    | 5.21(12)                |
|                                                | (1100, <i>E</i> ) | (1100, <i>E</i> ) | $3(3,0A_2)10^7$                  | -1.918(27)              |
|                                                | (1100, <i>E</i> ) | (1100, <i>E</i> ) | $4(0,0A_1)10^9$                  | 3.14(29)                |
|                                                | (1100, <i>E</i> ) | (1100, <i>E</i> ) | 4(2,0 <i>E</i> )10 <sup>10</sup> |                         |
|                                                | (1100, <i>E</i> ) | (1100, <i>E</i> ) | $4(4,0A_1)10^{10}$               | -4.97(60)               |
|                                                | (1100, <i>E</i> ) | (1100, <i>E</i> ) | 4(4,0 <i>E</i> )10 <sup>10</sup> |                         |
| $d_{\rm rms} \cdot 10^{-3}$ , cm <sup>-1</sup> | 0.398             |                   |                                  |                         |

Table D.6 – Spectroscopic parameters of the  $\nu_1+\nu_2$  band of SiF4 molecule.

| Level          | (υ, γ)            | (v', y')                 | $\Omega(K, n\Gamma)$                          | Value, cm <sup>-1</sup> |
|----------------|-------------------|--------------------------|-----------------------------------------------|-------------------------|
| 1              | 2                 | 3                        | 4                                             | 5                       |
| GS             | $(0000, A_1)$     | $(0000, A_1)$            | $2(0,0A_1)$                                   | 0.13778054(57)          |
|                | $(0000, A_1)$     | $(0000, A_1)$            | $4(0,0A_1)10^7$                               | -0.4138(03)             |
|                | $(0000, A_1)$     | $(0000, A_1)$            | $4(4,0A_1)10^8$                               | -0.336051(05)           |
|                | $(0000, A_1)$     | $(0000, A_1)$            | $6(0,0A_1)10^{13}$                            | -0.2102(62)             |
|                | $(0000, A_1)$     | $(0000, A_1)$            | $6(4,0A_1)10^{14}$                            | 0.214(86)               |
|                | $(0000, A_1)$     | $(0000, A_1)$            | $6(6,0A_1)10^{15}$                            | 0.353(87)               |
|                | $(0000, A_1)$     | $(0000, A_1)$            | $8(0,0A_1)10^{16}$                            | 0.101(54)               |
|                | $(0000, A_1)$     | $(0000, A_1)$            | $8(4,0A_1)10^{18}$                            | 0.115(72)               |
|                | $(0000, A_1)$     | $(0000, A_1)$            | 8(6,0 <i>A</i> <sub>1</sub> )10 <sup>19</sup> | 0.36(24)                |
|                | $(0000, A_1)$     | $(0000, A_1)$            | 8(8,0A1)10 <sup>19</sup>                      | -0.544(04)              |
| ν <sub>1</sub> | $(1000, A_1)$     | $(1000, A_1)$            | $0(0,0A_1)$                                   | 800.66566(20)           |
|                | $(1000, A_1)$     | $(1000, A_1)$            | $2(0,0A_1)10^3$                               | -0.15877(75)            |
|                | $(1000, A_1)$     | $(1000, A_1)$            | $4(0,0A_1)10^9$                               | 0.67(08)                |
|                | $(1000, A_1)$     | $(1000, A_1)$            | $4(4,0A_1)10^{10}$                            | 0.469(99)               |
| v <sub>2</sub> | (0100, <i>E</i> ) | (0100, <i>E</i> )        | $0(0,0A_1)$                                   | 264.219525(37)          |
|                | (0100, <i>E</i> ) | (0100, <i>E</i> )        | $2(0,0A_1)10^3$                               | -0.143083(55)           |
|                | (0100, <i>E</i> ) | (0100, <i>E</i> )        | $2(2,0E)10^4$                                 | -0.46789(32)            |
|                | (0100, <i>E</i> ) | (0100, <i>E</i> )        | $3(3,0A_2)10^6$                               | 0.14181(26)             |
|                | (0100, <i>E</i> ) | (0100, <i>E</i> )        | $4(0,0A_1)10^9$                               | 0.3910(69)              |
|                | (0100, <i>E</i> ) | (0100, <i>E</i> )        | $4(2,0E)10^9$                                 | -0.1008(99)             |
|                | (0100, <i>E</i> ) | (0100, <i>E</i> )        | $4(4,0A_1)10^{10}$                            | 0.3535(32)              |
|                | (0100, <i>E</i> ) | (0100, <i>E</i> )        | $4(4,0E)10^{10}$                              | -0.774(58)              |
|                | (0100, <i>E</i> ) | (0100, <i>E</i> )        | $5(3,0A_2)10^{12}$                            | 0.322(58)               |
| ν4             | $(0001, F_2)$     | $(0001, F_2)$            | $0(0,0A_1)$                                   | 388.433275(29)          |
|                | $(0001, F_2)$     | $(0001, F_2)$            | $1(1,0F_1)10^1$                               | -0.275717(17)           |
|                | $(0001, F_2)$     | $(0001, F_2)$            | $2(0,0A_1)10^3$                               | 0.168545(22)            |
|                | $(0001, F_2)$     | $(0001, F_2)$            | $2(2,0E)10^3$                                 | -0.117473(42)           |
|                | $(0001, F_2)$     | $(0001, F_2)$            | $2(2,0F_2)10^4$                               | 0.55406(41)             |
|                | $(0001, F_2)$     | $(0001, F_2)$            | $3(1,0F_1)10^6$                               | -0.11535(25)            |
|                | $(0001, F_2)$     | $(0001, F_2)$            | $3(3,0F_1)10^6$                               | -0.20262(12)            |
|                | $(0001, F_2)$     | $(0001, F_2)$            | $4(0,0A_1)10^9$                               | -0.2638(35)             |
|                | $(0001, F_2)$     | $(0001, F_2)$            | $4(2,0E)10^9$                                 | -0.1842(37)             |
|                | $(0001, F_2)$     | $(0001, F_2)$            | $4(2,0F_2)10^{10}$                            | 0.787(42)               |
|                | $(0001, F_2)$     | $(0001, F_2)$            | $4(4,0A_1)10^{10}$                            | -0.1291(76)             |
|                | $(0001, F_2)$     | $(0001, F_2)$            | $4(4,0E)10^{10}$                              | 0.821(30)               |
|                | $(0001, F_2)$     | $(0001, F_2)$            | $4(4,0F_2)10^{10}$                            | 0.189(21)               |
| $v_1 + v_2$    | (1100, <i>E</i> ) | (1100, <i>E</i> )        | $0(0,0A_1)$                                   | -0.240182(85)           |
|                | (1100, <i>E</i> ) | (1100, <i>E</i> )        | $2(0,0A_1)10^5$                               | 0.7515(92)              |
|                | (1100, <i>E</i> ) | (1100, <i>E</i> )        | $2(2,0E)10^5$                                 | 0.5265(93)              |
|                | (1100, <i>E</i> ) | (1100, E)                | $3(3,0A_2)\overline{10^7}$                    | -0.1918(22)             |
|                | (1100, <i>E</i> ) | (1100, E)                | $4(0,0A_1)10^9$                               | 0.298(27)               |
|                | (1100, <i>E</i> ) | (1100, E)                | $4(2,0E)10^{10}$                              | -0.11(19)               |
|                | (1100, <i>E</i> ) | (1100, E)                | $4(4,0A_1)10^{10}$                            | -0.524(76)              |
|                | (1100, E)         | (1100, E)                | $4(4,0E)10^{10}$                              | 0.75(12)                |
| $v_1 + v_4$    | $(1001, F_2)$     | $(1001, F_2)$            | $0(0,0A_1)$                                   | 0.891585                |
|                | $(1001, F_2)$     | $(1001, \overline{F_2})$ | $1(1,0F_1)\overline{10^2}$                    | 0.2397                  |

Table D.7 – Spectroscopic band parameters  $v_1 + v_2 + v_4$  of SiF<sub>4</sub> molecule.

Table D.7 – Continued.

|                                            | $(1001, F_2)$ | $(1001, F_2)$ | $2(0,0A_1)10^4$ | 0.1627(18)  |
|--------------------------------------------|---------------|---------------|-----------------|-------------|
|                                            | $(1001, F_2)$ | $(1001, F_2)$ | $2(2,0E)10^4$   | -0.1108(32) |
|                                            | $(1001, F_2)$ | $(1001, F_2)$ | $2(2,0F_2)10^5$ | 0.221(44)   |
|                                            | $(1001, F_2)$ | $(1001, F_2)$ | $3(1,0F_1)10^7$ | 0.1054(80)  |
| $v_2 + v_4$                                | $(0101, F_1)$ | $(0101, F_1)$ | $0(0,0A_1)$     | 0.42552(33) |
|                                            | $(0101, F_1)$ | $(0101, F_1)$ | $1(1,0F_1)10^3$ | 0.699(26)   |
|                                            | $(0101, F_1)$ | $(0101, F_1)$ | $2(0,0A_1)10^4$ | 0.1878(99)  |
|                                            | $(0101, F_1)$ | $(0101, F_1)$ | $2(2,0E)10^5$   | -0.268(92)  |
|                                            | $(0101, F_1)$ | $(0101, F_1)$ | $2(2,0F_2)10^5$ | -0.89(10)   |
|                                            | $(0101, F_1)$ | $(0101, F_1)$ | $3(1,0F_1)10^7$ | 0.882(85)   |
|                                            | $(0101, F_1)$ | $(0101, F_1)$ | $4(0,0A_1)10^7$ | -0.1169(23) |
|                                            | $(0101, F_1)$ | $(0101, F_1)$ | $4(2,0E)10^{8}$ | -0.547(21)  |
|                                            | $(0101, F_1)$ | $(0101, F_1)$ | $4(4,0E)10^{8}$ | -0.159(15)  |
|                                            | $(0101, F_1)$ | $(0101, F_1)$ | $4(4,0F_2)10^8$ | 0.449(22)   |
|                                            | $(0101, F_1)$ | $(0101, F_2)$ | $1(1,0F_1)10^3$ | -0.655(26)  |
|                                            | $(0101, F_1)$ | $(0101, F_2)$ | $2(2,0E)10^4$   | -0.1564(63) |
|                                            | $(0101, F_1)$ | $(0101, F_2)$ | $3(1,0F_1)10^6$ | -0.2671(53) |
|                                            | $(0101, F_1)$ | $(0101, F_2)$ | $4(2,0E)10^{8}$ | -0.270(11)  |
|                                            | $(0101, F_1)$ | $(0101, F_2)$ | $4(4,0E)10^8$   | 0.281(12)   |
|                                            | $(0101, F_1)$ | $(0101, F_2)$ | $4(4,0F_2)10^9$ | -0.253(60)  |
|                                            | $(0101, F_2)$ | $(0101, F_2)$ | $0(0,0A_1)$     | 0.64666(16) |
|                                            | $(0101, F_2)$ | $(0101, F_2)$ | $1(1,0F_1)10^2$ | -0.1190(14) |
|                                            | $(0101, F_2)$ | $(0101, F_2)$ | $2(0,0A_1)10^4$ | -0.1783(72) |
|                                            | $(0101, F_2)$ | $(0101, F_2)$ | $2(2,0E)10^4$   | -0.1425(82) |
|                                            | $(0101, F_2)$ | $(0101, F_2)$ | $2(2,0F_2)10^5$ | 0.611(72)   |
|                                            | $(0101, F_2)$ | $(0101, F_2)$ | $3(1,0F_1)10^6$ | 0.1369(56)  |
|                                            | $(0101, F_2)$ | $(0101, F_2)$ | $4(2,0E)10^{8}$ | -0.243(17)  |
|                                            | $(0101, F_2)$ | $(0101, F_2)$ | $4(4,0E)10^8$   | 0.275(16)   |
| $v_1 + v_2 + v_4$                          | $(1101, F_1)$ | $(1101, F_1)$ | $0(0,0A_1)$     | 0.9649(20)  |
|                                            | $(1101, F_1)$ | $(1101, F_1)$ | $1(1,0F_1)$     | -0.585(24)  |
|                                            | $(1101, F_1)$ | $(1101, F_1)$ | $2(0,0A_1)10^2$ | 0.194(44)   |
|                                            | $(1101, F_1)$ | $(1101, F_1)$ | $2(2,0F_2)10^4$ | -0.420(60)  |
|                                            | $(1101, F_1)$ | $(1101, F_1)$ | $3(1,0F_1)10^4$ | -0.292(15)  |
|                                            | $(1101, F_1)$ | $(1101, F_1)$ | $3(1,0F_1)10^5$ | -0.1148(94) |
|                                            | $(1101, F_1)$ | $(1101, F_2)$ | $1(1,0F_1)10^2$ | 0.135(13)   |
|                                            | $(1101, F_1)$ | $(1101, F_2)$ | $2(2,0E)10^4$   | 0.163(24)   |
|                                            | $(1101, F_1)$ | $(1101, F_2)$ | $3(3,0A_2)10^6$ | 0.94034(48) |
|                                            | $(1101, F_2)$ | $(1101, F_2)$ | $0(0,0A_1)$     | -0.1040(49) |
|                                            | $(1101, F_2)$ | $(1101, F_2)$ | $1(1,0F_1)10^2$ | -0.420(32)  |
|                                            | $(1101, F_2)$ | $(1101, F_2)$ | $2(0,0A_1)10^4$ | -0.228(48)  |
|                                            | $(1101, F_2)$ | $(1101, F_2)$ | $2(2,0F_2)10^4$ | -0.208(54)  |
|                                            | $(1101, F_2)$ | $(1101, F_2)$ | $3(1,0F_1)10^6$ | 0.221(13)   |
| $d_{\rm rms} \cdot 10^{-3}, {\rm cm}^{-1}$ | 0.429         |               |                 |             |

| Lvl                          | (υ, γ)                         | <i>(υ', γ')</i> | $\Omega(K, n\Gamma)$                          | $^{28}$ SiF <sub>4</sub> , cm <sup>-1</sup> | $^{29}$ SiF <sub>4</sub> , cm <sup>-1</sup> | $^{30}$ SiF <sub>4</sub> , cm <sup>-1</sup> |
|------------------------------|--------------------------------|-----------------|-----------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|
| 1                            | 2                              | 3               | 4                                             | 5                                           | 6                                           | 7                                           |
| GS                           | $(0000, A_1)$                  | $(0000, A_1)$   | $2(0,0A_1)$                                   | 0.13778054(14)                              | 0.13778094(13)                              |                                             |
|                              | $(0000, A_1)$                  | $(0000, A_1)$   | $4(0,0A_1)10^7$                               | -0.4138(11)                                 | -0.4218(31)                                 |                                             |
|                              | $(0000, A_1)$                  | $(0000, A_1)$   | $4(4,0A_1)10^8$                               | -0.336051(68)                               | -0.340228(70)                               |                                             |
|                              | $(0000, A_1)$                  | $(0000, A_1)$   | $6(0,0A_1)10^{13}$                            | -0.2102(26)                                 |                                             |                                             |
|                              | $(0000, A_1)$                  | $(0000, A_1)$   | $6(4,0A_1)10^{14}$                            | 0.214(23)                                   |                                             |                                             |
|                              | $(0000, A_1)$                  | $(0000, A_1)$   | $6(6,0A_1)10^{15}$                            | 0.353(49)                                   |                                             |                                             |
|                              | $(0000, A_1)$                  | $(0000, A_1)$   | 8(0,0A1)10 <sup>16</sup>                      | 0.101(17)                                   |                                             |                                             |
|                              | $(0000, A_1)$                  | $(0000, A_1)$   | 8(4,0 <i>A</i> <sub>1</sub> )10 <sup>18</sup> | 0.115(13)                                   |                                             |                                             |
|                              | $(0000, A_1)$                  | $(0000, A_1)$   | 8(6,0 <i>A</i> <sub>1</sub> )10 <sup>19</sup> | 0.36(18)                                    |                                             |                                             |
|                              | $(0000, A_1)$                  | $(0000, A_1)$   | 8(8,0A1)10 <sup>19</sup>                      | -0.544(74)                                  |                                             |                                             |
| ν <sub>1</sub>               | $(1000, A_1)$                  | $(1000, A_1)$   | $0(0,0A_1)$                                   | 800.66566(11)                               |                                             |                                             |
|                              | $(1000, A_1)$                  | $(1000, A_1)$   | $2(0,0A_1)10^3$                               | -0.15877(24)                                |                                             |                                             |
|                              | $(1000, A_1)$                  | $(1000, A_1)$   | $4(0,0A_1)10^9$                               | 0.67(11)                                    |                                             |                                             |
|                              | $(1000, A_1)$                  | $(1000, A_1)$   | $4(4,0A_1)10^{10}$                            | 0.469(70)                                   |                                             |                                             |
| ν <sub>3</sub>               | $(0010, F_2)$                  | $(0010, F_2)$   | $0(0,0A_1)$                                   | 1031.544438(65)                             | 1022.575194(94)                             | 1014.164534(80)                             |
|                              | $(0010, F_2)$                  | $(0010, F_2)$   | $1(1,0F_1)$                                   | 0.31312443(17)                              | 0.307421(10)                                | 0.301736(67)                                |
|                              | $(0010, F_2)$                  | $(0010, F_2)$   | $2(0,0A_1)10^3$                               | -0.29725(13)                                | -0.29208(30)                                | -0.28761(25)                                |
|                              | $(0010, F_2)$                  | $(0010, F_2)$   | $2(2,0E)10^3$                                 | 0.2531815(74)                               | 0.24735(46)                                 | 0.24274(26)                                 |
|                              | $(0010, F_2)$                  | $(0010, F_2)$   | $2(2,0F_2)10^4$                               | -0.996048(77)                               | -0.9656(53)                                 | -0.9396(36)                                 |
|                              | $(0010, F_2)$                  | $(0010, F_2)$   | $3(1,0F_1)10^6$                               | 0.10540(54)                                 | 0.1037(68)                                  | 0.1018(32)                                  |
|                              | $(0010, F_2)$                  | $(0010, F_2)$   | $3(3,0F_1)10^7$                               | -0.246(14)                                  | -0.246                                      | -0.246                                      |
|                              | $(0010, F_2)$                  | $(0010, F_2)$   | $4(2,0E)10^8$                                 | -0.574(32)                                  | -0.574(86)                                  | -0.479(28)                                  |
|                              | $(0010, F_2)$                  | $(0010, F_2)$   | $4(2,0F_2)10^8$                               | 0.626(32)                                   | 0.631(88)                                   | 0.631                                       |
|                              | $(0010, F_2)$                  | $(0010, F_2)$   | $4(4,0A_1)10^{10}$                            | 0.871(60)                                   | 0.871                                       | 0.871                                       |
|                              | $(0010, F_2)$                  | $(0010, F_2)$   | $4(4,0E)10^8$                                 | 0.920(48)                                   | 0.920                                       | 0.920                                       |
|                              | $(0010, F_2)$                  | $(0010, F_2)$   | $4(4,0F_2)10^8$                               | 0.671(36)                                   | 0.671                                       | 0.671                                       |
|                              | $(0010, F_2)$                  | $(0010, F_2)$   | $5(1,0F_1)10^{11}$                            | -0.989(40)                                  | -0.989                                      | -0.989                                      |
|                              | $(0010, F_2)$                  | $(0010, F_2)$   | $5(3,0F_1)10^{11}$                            | -0.198(61)                                  | -0.198                                      | -0.198                                      |
|                              | $(0010, F_2)$                  | $(0010, F_2)$   | $5(5,0F_1)10^{11}$                            | 0.471(68)                                   | 0.471                                       | 0.471                                       |
|                              | $(0010, F_2)$                  | $(0010, F_2)$   | $5(5,1F_1)10^{11}$                            | -0.913(57)                                  | -0.913                                      | -0.913                                      |
|                              | $(0010, F_2)$                  | $(0010, F_2)$   | $6(0,0A_1)10^{12}$                            | -0.132(13)                                  | -0.132                                      | -0.132                                      |
|                              | $(0010, F_2)$                  | $(0010, F_2)$   | $6(2,0E)10^{12}$                              | -0.1462(98)                                 | -0.1462                                     | -0.1462                                     |
|                              | $(0010, F_2)$                  | $(0010, F_2)$   | $6(2,0F_2)10^{12}$                            | 0.144(10)                                   | 0.144                                       | 0.144                                       |
|                              | $(0010, F_2)$                  | $(0010, F_2)$   | $6(4,0A_1)10^{14}$                            | -0.826(79)                                  | -0.484                                      | -0.484                                      |
|                              | $(0010, F_2)$                  | $(0010, F_2)$   | $6(4,0E)10^{12}$                              | 0.240(15)                                   | 0.240                                       | 0.240                                       |
|                              | $(0010, F_2)$                  | $(0010, F_2)$   | $6(4,0F_2)10^{12}$                            | 0.174(11)                                   | 0.174                                       | 0.174                                       |
| $v_1 + v_3$                  | $(1010, F_2)$                  | $(1010, F_2)$   | $0(0,0A_1)$                                   | -3.855453(66)                               | -3.94525(20)                                | -4.00663(17)                                |
|                              | $(1010, F_2)$                  | $(1010, F_2)$   | $1(1,0F_1)10^2$                               | -2.9117(45)                                 | -2.553(22)                                  | -2.366(11)                                  |
|                              | $(1010, F_2)$                  | $(1010, F_2)$   | $2(0,0A_1)10^3$                               | -1.472(85)                                  | -1.320(68)                                  | -1.278(43)                                  |
|                              | $(1010, F_2)$                  | $(1010, F_2)$   | $2(2,0E)10^3$                                 | 3.368(42)                                   | 2.16(42)                                    | 2.16                                        |
|                              | $(1010, F_2)$                  | $(1010, F_2)$   | $2(2,0F_2)10^4$                               | -1.258(14)                                  | -1.072(73)                                  | -1.036(82)                                  |
|                              | $(1010, F_2)$                  | $(1010, F_2)$   | $5(1,0F_1)10'$                                | -1.296(88)                                  | 1.25(17)                                    | 1.25                                        |
|                              | $(1010, F_2)$                  | $(1010, F_2)$   | $5(3,0F_1)10'$                                | 1.646(69)                                   | 1.646                                       | 1.646                                       |
|                              | $(1010, F_2)$                  | $(1010, F_2)$   | $4(0,0A_1)10^{7}$                             | 5.55(22)                                    | 3.33                                        | 3.33                                        |
|                              | $(1010, F_2)$                  | $(1010, F_2)$   | $4(2,0F_2)10^3$                               | -4.06(21)                                   | -4.06                                       | -4.06                                       |
| $  d_{\rm rms} \cdot 10^{-}$ | <sup>-3</sup> cm <sup>-1</sup> |                 |                                               | 0.563                                       | 0.665                                       | 0.478                                       |

Table D.8-Spectroscopic parameters of the  $\nu_1+\nu_3$  band of  $SiF_4$  molecule.

| Level                                      | (υ, γ)        | (v', y')      | $\Omega(K, n\Gamma)$             | Value, cm <sup>-1</sup> |
|--------------------------------------------|---------------|---------------|----------------------------------|-------------------------|
| 1                                          | 2             | 3             | 4                                | 5                       |
| GS                                         | $(0000, A_1)$ | $(0000, A_1)$ | $2(0,0A_1)$                      | 0.13778054(14)          |
|                                            | $(0000, A_1)$ | $(0000, A_1)$ | $4(0,0A_1)10^7$                  | -0.4138(11)             |
|                                            | $(0000, A_1)$ | $(0000, A_1)$ | $4(4,0A_1)10^8$                  | -0.336051(68)           |
|                                            | $(0000, A_1)$ | $(0000, A_1)$ | $6(0,0A_1)10^{13}$               | -0.2102(26)             |
|                                            | $(0000, A_1)$ | $(0000, A_1)$ | $6(4,0A_1)10^{14}$               | 0.214(23)               |
|                                            | $(0000, A_1)$ | $(0000, A_1)$ | $6(6,0A_1)10^{15}$               | 0.353(49)               |
|                                            | $(0000, A_1)$ | $(0000, A_1)$ | 8(0,0A1)10 <sup>16</sup>         | 0.101(17)               |
|                                            | $(0000, A_1)$ | $(0000, A_1)$ | 8(4,0A1)10 <sup>18</sup>         | 0.115(13)               |
|                                            | $(0000, A_1)$ | $(0000, A_1)$ | 8(6,0A1)10 <sup>19</sup>         | 0.36(18)                |
|                                            | $(0000, A_1)$ | $(0000, A_1)$ | 8(8,0A1)10 <sup>19</sup>         | -0.544(74)              |
| v1                                         | $(1000, A_1)$ | $(1000, A_1)$ | $0(0,0A_1)$                      | 800.66566(11)           |
|                                            | $(1000, A_1)$ | $(1000, A_1)$ | $2(0,0A_1)10^3$                  | -0.15877(24)            |
|                                            | $(1000, A_1)$ | $(1000, A_1)$ | $4(0,0A_1)10^9$                  | 0.67(11)                |
|                                            | $(1000, A_1)$ | $(1000, A_1)$ | $4(4,0A_1)10^{10}$               | 0.469(70)               |
| ν4                                         | $(0001, F_2)$ | $(0001, F_2)$ | $0(0,0A_1)$                      | 388.433275(29)          |
|                                            | $(0001, F_2)$ | $(0001, F_2)$ | $1(1,0F_1)10^1$                  | -0.275717(17)           |
|                                            | $(0001, F_2)$ | $(0001, F_2)$ | $2(0,0A_1)10^3$                  | 0.168545(22)            |
|                                            | $(0001, F_2)$ | $(0001, F_2)$ | $2(2,0E)10^3$                    | -0.117473(42)           |
|                                            | $(0001, F_2)$ | $(0001, F_2)$ | $2(2,0F_2)10^4$                  | 0.55406(41)             |
|                                            | $(0001, F_2)$ | $(0001, F_2)$ | $3(1,0F_1)10^6$                  | -0.11535(25)            |
|                                            | $(0001, F_2)$ | $(0001, F_2)$ | $3(3,0F_1)10^6$                  | -0.20262(12)            |
|                                            | $(0001, F_2)$ | $(0001, F_2)$ | $4(0,0A_1)10^9$                  | -0.2638(35)             |
|                                            | $(0001, F_2)$ | $(0001, F_2)$ | 4(2,0 <i>E</i> )10 <sup>9</sup>  | -0.1842(37)             |
|                                            | $(0001, F_2)$ | $(0001, F_2)$ | $4(2,0F_2)10^{10}$               | 0.787(42)               |
|                                            | $(0001, F_2)$ | $(0001, F_2)$ | $4(4,0A_1)10^{10}$               | -0.1291(76)             |
|                                            | $(0001, F_2)$ | $(0001, F_2)$ | 4(4,0 <i>E</i> )10 <sup>10</sup> | 0.821(30)               |
|                                            | $(0001, F_2)$ | $(0001, F_2)$ | $4(4,0F_2)10^{10}$               | 0.189(21)               |
| $v_1 + v_4$                                | $(1001, F_2)$ | $(1001, F_2)$ | $0(0,0A_1)$                      | 0.891585(83)            |
|                                            | $(1001, F_2)$ | $(1001, F_2)$ | $1(1,0F_1)10^2$                  | 0.2397(34)              |
|                                            | $(1001, F_2)$ | $(1001, F_2)$ | $2(0,0A_1)10^4$                  | 1.628(18)               |
|                                            | $(1001, F_2)$ | $(1001, F_2)$ | $2(2,0E)10^4$                    | -1.109(32)              |
|                                            | $(1001, F_2)$ | $(1001, F_2)$ | $2(2,0F_2)10^5$                  | 2.21(44)                |
|                                            | $(1001, F_2)$ | $(1001, F_2)$ | $3(1,0F_1)10^7$                  | 1.054(80)               |
| $d_{\rm rms} \cdot 10^{-3}, {\rm cm}^{-1}$ | 0.417         |               | •                                |                         |

Table D.9 – Spectroscopic parameters of the  $\nu_1+\nu_4$  band of SiF4 molecule.

| Level                 | (υ, γ)            | (v', y')          | $\Omega(K, n\Gamma)$                  | Value, cm <sup>-1</sup> |
|-----------------------|-------------------|-------------------|---------------------------------------|-------------------------|
| 1                     | 2                 | 3                 | 4                                     | 5                       |
| GS                    | $(0000, A_1)$     | $(0000, A_1)$     | $2(0,0A_1)$                           | 0.13778054(14)          |
|                       | $(0000, A_1)$     | $(0000, A_1)$     | $4(0,0A_1)10^7$                       | -0.4138(11)             |
|                       | $(0000, A_1)$     | $(0000, A_1)$     | $4(4,0A_1)10^8$                       | -0.336051(68)           |
|                       | $(0000, A_1)$     | $(0000, A_1)$     | $6(0,0A_1)10^{13}$                    | -0.2102(26)             |
|                       | $(0000, A_1)$     | $(0000, A_1)$     | $6(4,0A_1)10^{14}$                    | 0.214(23)               |
|                       | $(0000, A_1)$     | $(0000, A_1)$     | $6(6,0A_1)10^{15}$                    | 0.353(49)               |
|                       | $(0000, A_1)$     | $(0000, A_1)$     | 8(0,0A1)10 <sup>16</sup>              | 0.101(17)               |
|                       | $(0000, A_1)$     | $(0000, A_1)$     | $8(4,0A_1)10^{18}$                    | 0.115(13)               |
|                       | $(0000, A_1)$     | $(0000, A_1)$     | 8(6,0A <sub>1</sub> )10 <sup>19</sup> | 0.36(18)                |
|                       | $(0000, A_1)$     | $(0000, A_1)$     | 8(8,0A <sub>1</sub> )10 <sup>19</sup> | -0.544(74)              |
| v <sub>2</sub>        | (0100, <i>E</i> ) | (0100, <i>E</i> ) | $0(0,0A_1)$                           | 264.219525(37)          |
|                       | (0100, <i>E</i> ) | (0100, <i>E</i> ) | $2(0,0A_1)10^3$                       | -0.143083(55)           |
|                       | (0100, <i>E</i> ) | (0100, <i>E</i> ) | $2(2,0E)10^4$                         | -0.46789(32)            |
|                       | (0100, <i>E</i> ) | (0100, <i>E</i> ) | $3(3,0A_2)10^6$                       | 0.14181(26)             |
|                       | (0100, <i>E</i> ) | (0100, <i>E</i> ) | $4(0,0A_1)10^9$                       | 0.3910(69)              |
|                       | (0100, <i>E</i> ) | (0100, <i>E</i> ) | $4(2,0E)10^9$                         | -0.1008(99)             |
|                       | (0100, <i>E</i> ) | (0100, <i>E</i> ) | $4(4,0A_1)10^{10}$                    | 0.3535(32)              |
|                       | (0100, <i>E</i> ) | (0100, <i>E</i> ) | $4(4,0E)10^{10}$                      | -0.774(58)              |
|                       | (0100, <i>E</i> ) | (0100, <i>E</i> ) | $5(3,0A_2)10^{12}$                    | 0.322(58)               |
| <b>v</b> <sub>3</sub> | $(0010, F_2)$     | $(0010, F_2)$     | $0(0,0A_1)$                           | 1031.544438(65)         |
|                       | $(0010, F_2)$     | $(0010, F_2)$     | $1(1,0F_1)$                           | 0.31312443(17)          |
|                       | $(0010, F_2)$     | $(0010, F_2)$     | $2(0,0A_1)10^3$                       | -0.29725(13)            |
|                       | $(0010, F_2)$     | $(0010, F_2)$     | $2(2,0E)10^3$                         | 0.2531815(74)           |
|                       | $(0010, F_2)$     | $(0010, F_2)$     | $2(2,0F_2)10^4$                       | -0.996048(77)           |
|                       | $(0010, F_2)$     | $(0010, F_2)$     | $3(1,0F_1)10^6$                       | 0.10540(54)             |
|                       | $(0010, F_2)$     | $(0010, F_2)$     | $3(3,0F_1)10^7$                       | -0.246(14)              |
|                       | $(0010, F_2)$     | $(0010, F_2)$     | $4(2,0E)10^{8}$                       | -0.574(32)              |
|                       | $(0010, F_2)$     | $(0010, F_2)$     | $4(2,0F_2)10^8$                       | 0.626(32)               |
|                       | $(0010, F_2)$     | $(0010, F_2)$     | $4(4,0A_1)10^{10}$                    | 0.871(60)               |
|                       | $(0010, F_2)$     | $(0010, F_2)$     | $4(4,0E)10^{8}$                       | 0.920(48)               |
|                       | $(0010, F_2)$     | $(0010, F_2)$     | $4(4,0F_2)10^8$                       | 0.671(36)               |
|                       | $(0010, F_2)$     | $(0010, F_2)$     | $5(1,0F_1)10^{11}$                    | -0.989(40)              |
|                       | $(0010, F_2)$     | $(0010, F_2)$     | $5(3,0F_1)10^{11}$                    | -0.198(61)              |
|                       | $(0010, F_2)$     | $(0010, F_2)$     | $5(5,0F_1)10^{11}$                    | 0.471(68)               |
|                       | $(0010, F_2)$     | $(0010, F_2)$     | $5(5,1F_1)10^{11}$                    | -0.913(57)              |
|                       | $(0010, F_2)$     | $(0010, F_2)$     | $6(0,0A_1)10^{12}$                    | -0.132(13)              |
|                       | $(0010, F_2)$     | $(0010, F_2)$     | $6(2,0E)10^{12}$                      | -0.1462(98)             |
|                       | $(0010, F_2)$     | $(0010, F_2)$     | $6(2,0F_2)10^{12}$                    | 0.144(10)               |
|                       | $(0010, F_2)$     | $(0010, F_2)$     | $6(4,0A_1)10^{14}$                    | -0.826(79)              |
|                       | $(0010, F_2)$     | $(0010, F_2)$     | $6(4,0E)10^{12}$                      | 0.240(15)               |
|                       | $(0010, F_2)$     | $(0010, F_2)$     | $6(4,0F_2)10^{12}$                    | 0.174(11)               |
| $v_2 + v_3$           | $(0110, F_1)$     | $(0110, F_1)$     | $0(0,0A_1)$                           | -3.0661(27)             |
|                       | $(0110, F_1)$     | $(0110, F_1)$     | $1(1,0F_1)10^2$                       | 0.2079(20)              |
|                       | $(0110, F_1)$     | $(0110, F_1)$     | $3(1,0F_1)10^7$                       | -1.24(16)               |
|                       | $(0110, F_1)$     | $(0110, F_1)$     | $3(3,0F_1)10^{\circ}$                 | -1.31(16)               |
|                       | $(0110, F_1)$     | $(0110, F_1)$     | $4(2,0F_2)10^9$                       | 0.289(25)               |

Table  $D.10-Spectroscopic parameters of the <math display="inline">\nu_2+\nu_3$  band of  $SiF_4$  molecule.

Table D.10 – Continued.

|                                            | $(0110, F_1)$ | $(0110, F_2)$ | $1(1,0F_1)10^3$ | 0.307(86)    |
|--------------------------------------------|---------------|---------------|-----------------|--------------|
|                                            | $(0110, F_1)$ | $(0110, F_2)$ | $2(2,0F_2)10^5$ | 0.595(31)    |
|                                            | $(0110, F_1)$ | $(0110, F_2)$ | $3(1,0F_1)10^7$ | -0.123(30)   |
|                                            | $(0110, F_1)$ | $(0110, F_2)$ | $3(3,0A_2)10^8$ | 0.867(67)    |
|                                            | $(0110, F_2)$ | $(0110, F_2)$ | $0(0,0A_1)$     | -1.84054(13) |
|                                            | $(0110, F_2)$ | $(0110, F_2)$ | $1(1,0F_1)10^2$ | 0.6149(16)   |
|                                            | $(0110, F_2)$ | $(0110, F_2)$ | $2(2,0F_2)10^4$ | -0.123(49)   |
|                                            | $(0110, F_2)$ | $(0110, F_2)$ | $3(1,0F_1)10^6$ | 0.126(16)    |
| $d_{\rm rms} \cdot 10^{-3}, {\rm cm}^{-1}$ | 0.445         |               |                 |              |

| Level       | (υ, γ)            | (v', y')                 | $\Omega(K, n\Gamma)$                          | Value, cm <sup>-1</sup> |
|-------------|-------------------|--------------------------|-----------------------------------------------|-------------------------|
| 1           | 2                 | 3                        | 4                                             | 5                       |
| GS          | $(0000, A_1)$     | $(0000, A_1)$            | $2(0,0A_1)$                                   | 0.13778054(14)          |
|             | $(0000, A_1)$     | $(0000, A_1)$            | $4(0,0A_1)10^7$                               | -0.4138(11)             |
|             | $(0000, A_1)$     | $(0000, A_1)$            | $4(4,0A_1)10^8$                               | -0.336051(68)           |
|             | $(0000, A_1)$     | $(0000, A_1)$            | $6(0,0A_1)10^{13}$                            | -0.2102(26)             |
|             | $(0000, A_1)$     | $(0000, A_1)$            | $6(4,0A_1)10^{14}$                            | 0.214(23)               |
|             | $(0000, A_1)$     | $(0000, A_1)$            | $6(6,0A_1)10^{15}$                            | 0.353(49)               |
|             | $(0000, A_1)$     | $(0000, A_1)$            | 8(0,0A1)10 <sup>16</sup>                      | 0.101(17)               |
|             | $(0000, A_1)$     | $(0000, A_1)$            | $8(4,0A_1)10^{18}$                            | 0.115(13)               |
|             | $(0000, A_1)$     | $(0000, A_1)$            | 8(6,0 <i>A</i> <sub>1</sub> )10 <sup>19</sup> | 0.36(18)                |
|             | $(0000, A_1)$     | $(0000, A_1)$            | 8(8,0A1)10 <sup>19</sup>                      | -0.544(74)              |
| V2          | (0100, <i>E</i> ) | (0100, <i>E</i> )        | $0(0,0A_1)$                                   | 264.219525(37)          |
|             | (0100, <i>E</i> ) | (0100, <i>E</i> )        | $2(0,0A_1)10^3$                               | -0.143083(55)           |
|             | (0100, <i>E</i> ) | (0100, <i>E</i> )        | $2(2,0E)10^4$                                 | -0.46789(32)            |
|             | (0100, <i>E</i> ) | (0100, <i>E</i> )        | $3(3,0A_2)10^6$                               | 0.14181(26)             |
|             | (0100, <i>E</i> ) | (0100, <i>E</i> )        | $4(0,0A_1)10^9$                               | 0.3910(69)              |
|             | (0100, <i>E</i> ) | (0100, <i>E</i> )        | $4(2,0E)10^9$                                 | -0.1008(99)             |
|             | (0100, <i>E</i> ) | (0100, <i>E</i> )        | $4(4,0A_1)10^{10}$                            | 0.3535(32)              |
|             | (0100, <i>E</i> ) | (0100, <i>E</i> )        | $4(4,0E)10^{10}$                              | -0.774(58)              |
|             | (0100, <i>E</i> ) | (0100, <i>E</i> )        | $5(3,0A_2)10^{12}$                            | 0.322(58)               |
| ν4          | $(0001, F_2)$     | $(0001, F_2)$            | $0(0,0A_1)$                                   | 388.433275(29)          |
|             | $(0001, F_2)$     | $(0001, F_2)$            | $1(1,0F_1)10^1$                               | -0.275717(17)           |
|             | $(0001, F_2)$     | $(0001, F_2)$            | $2(0,0A_1)10^3$                               | 0.168545(22)            |
|             | $(0001, F_2)$     | $(0001, F_2)$            | $2(2,0E)10^3$                                 | -0.117473(42)           |
|             | $(0001, F_2)$     | $(0001, F_2)$            | $2(2,0F_2)10^4$                               | 0.55406(41)             |
|             | $(0001, F_2)$     | $(0001, F_2)$            | $3(1,0F_1)10^6$                               | -0.11535(25)            |
|             | $(0001, F_2)$     | $(0001, F_2)$            | $3(3,0F_1)10^6$                               | -0.20262(12)            |
|             | $(0001, F_2)$     | $(0001, F_2)$            | $4(0,0A_1)10^9$                               | -0.2638(35)             |
|             | $(0001, F_2)$     | $(0001, F_2)$            | $4(2,0F_2)10^{10}$                            | 0.787(42)               |
|             | $(0001, F_2)$     | $(0001, F_2)$            | $4(4,0A_1)10^{10}$                            | -0.1291(76)             |
|             | $(0001, F_2)$     | $(0001, F_2)$            | $4(4,0E)10^{10}$                              | 0.821(30)               |
|             | $(0001, F_2)$     | $(0001, F_2)$            | $4(4,0F_2)10^{10}$                            | 0.189(21)               |
| $v_2 + v_4$ | $(0101, F_1)$     | $(0101, F_1)$            | $0(0,0A_1)$                                   | 0.42553(33)             |
|             | $(0101, F_1)$     | $(0101, F_1)$            | $1(1,0F_1)10^3$                               | 0.700(26)               |
|             | $(0101, F_1)$     | $(0101, F_1)$            | $2(0,0A_1)10^4$                               | 0.1879(99)              |
|             | $(0101, F_1)$     | $(0101, F_1)$            | $2(2,0E)10^5$                                 | -0.268(92)              |
|             | $(0101, F_1)$     | $(0101, F_1)$            | $3(1,0F_1)10^7$                               | 0.883(85)               |
|             | $(0101, F_1)$     | $(0101, F_1)$            | $4(0,0A_1)10^7$                               | -0.1169(23)             |
|             | $(0101, F_1)$     | $(0101, F_1)$            | $4(2,0E)10^8$                                 | -0.547(21)              |
|             | $(0101, F_1)$     | $(0101, F_1)$            | 4(4,0 <i>E</i> )10 <sup>8</sup>               | -0.159(15)              |
|             | $(0101, F_1)$     | $(0101, F_1)$            | $4(4,0F_2)10^8$                               | 0.450(22)               |
|             | $(0101, F_1)$     | $(0101, F_2)$            | $1(1,0F_1)10^3$                               | -0.655(26)              |
|             | $(0101, F_1)$     | $(0101, F_2)$            | $2(2,0E)10^4$                                 | -0.1565(63)             |
|             | $(0101, F_1)$     | $(0101, F_2)$            | $3(1,0F_1)10^6$                               | -0.2672(53)             |
|             | $(0101, F_1)$     | $(0101, \overline{F_2})$ | $4(2,0E)\overline{10^8}$                      | -0.271(11)              |
|             | $(0101, F_1)$     | $(0101, \overline{F_2})$ | $4(4,0E)\overline{10^8}$                      | 0.282(12)               |
|             | $(0101, F_1)$     | $(0101, F_2)$            | $4(4,0F_2)10^9$                               | $-0.25\overline{3(60)}$ |

Table D.11 – Spectroscopic parameters of the  $\nu_2+\nu_4$  band of the SiF4 molecule.

169

Table D.11 – Continued.

|                                            | $(0101, F_2)$ | $(0101, F_2)$ | $0(0,0A_1)$     | 0.64666(16) |
|--------------------------------------------|---------------|---------------|-----------------|-------------|
|                                            | $(0101, F_2)$ | $(0101, F_2)$ | $1(1,0F_1)10^2$ | -0.1191(14) |
|                                            | $(0101, F_2)$ | $(0101, F_2)$ | $2(0,0A_1)10^4$ | -0.1784(72) |
|                                            | $(0101, F_2)$ | $(0101, F_2)$ | $2(2,0E)10^4$   | -0.1425(82) |
|                                            | $(0101, F_2)$ | $(0101, F_2)$ | $2(2,0F_2)10^5$ | 0.612(72)   |
|                                            | $(0101, F_2)$ | $(0101, F_2)$ | $3(1,0F_1)10^6$ | 0.1369(56)  |
|                                            | $(0101, F_2)$ | $(0101, F_2)$ | $4(2,0E)10^8$   | -0.243(17)  |
|                                            | $(0101, F_2)$ | $(0101, F_2)$ | $4(4,0E)10^8$   | 0.275(16)   |
| $d_{\rm rms} \cdot 10^{-3}, {\rm cm}^{-1}$ | 0.382         |               |                 |             |

| Level       | (υ, γ)        | $(v', \gamma')$ | $\Omega(K, n\Gamma)$             | Value, cm <sup>-1</sup> |
|-------------|---------------|-----------------|----------------------------------|-------------------------|
| 1           | 2             | 3               | 4                                | 5                       |
| GS          | $(0000, A_1)$ | $(0000, A_1)$   | $2(0,0A_1)$                      | 0.13778054(14)          |
|             | $(0000, A_1)$ | $(0000, A_1)$   | $4(0,0A_1)10^{-7}$               | -0.4138(11)             |
|             | $(0000, A_1)$ | $(0000, A_1)$   | $4(4,0A_1)10^{-8}$               | -0.336051(68)           |
|             | $(0000, A_1)$ | $(0000, A_1)$   | $6(0,0A_1)10^{-13}$              | -0.2102(26)             |
|             | $(0000, A_1)$ | $(0000, A_1)$   | $6(4,0A_1)10^{-14}$              | 0.214(23)               |
|             | $(0000, A_1)$ | $(0000, A_1)$   | $6(6,0A_1)10^{-15}$              | 0.353(49)               |
|             | $(0000, A_1)$ | $(0000, A_1)$   | $8(0,0A_1)10^{-16}$              | 0.101(17)               |
|             | $(0000, A_1)$ | $(0000, A_1)$   | $8(4,0A_1)10^{-18}$              | 0.115(13)               |
|             | $(0000, A_1)$ | $(0000, A_1)$   | $8(6,0A_1)10^{-19}$              | 0.36(18)                |
|             | $(0000, A_1)$ | $(0000, A_1)$   | $8(8,0A_1)10^{-19}$              | -0.544(74)              |
| V3          | $(0010, F_2)$ | $(0010, F_2)$   | $0(0,0A_1)$                      | 1031.544438(65)         |
|             | $(0010, F_2)$ | $(0010, F_2)$   | $1(1,0F_1)$                      | 0.31312443(17)          |
|             | $(0010, F_2)$ | $(0010, F_2)$   | $2(0,0A_1)10^3$                  | -0.29725(13)            |
|             | $(0010, F_2)$ | $(0010, F_2)$   | $2(2,0E)10^3$                    | 0.2531815(74)           |
|             | $(0010, F_2)$ | $(0010, F_2)$   | $2(2,0F_2)10^4$                  | -0.996048(77)           |
|             | $(0010, F_2)$ | $(0010, F_2)$   | $3(1,0F_1)10^6$                  | 0.10540(54)             |
|             | $(0010, F_2)$ | $(0010, F_2)$   | $3(3,0F_1)10^7$                  | -0.246(14)              |
|             | $(0010, F_2)$ | $(0010, F_2)$   | $4(2,0E)10^8$                    | -0.574(32)              |
|             | $(0010, F_2)$ | $(0010, F_2)$   | $4(2,0F_2)10^8$                  | 0.626(32)               |
|             | $(0010, F_2)$ | $(0010, F_2)$   | $4(4,0A_1)10^{10}$               | 0.871(60)               |
|             | $(0010, F_2)$ | $(0010, F_2)$   | $4(4,0E)10^8$                    | 0.920(48)               |
|             | $(0010, F_2)$ | $(0010, F_2)$   | $4(4,0F_2)10^8$                  | 0.671(36)               |
|             | $(0010, F_2)$ | $(0010, F_2)$   | $5(1,0F_1)10^{11}$               | -0.989(40)              |
|             | $(0010, F_2)$ | $(0010, F_2)$   | $5(3,0F_1)10^{11}$               | -0.198(61)              |
|             | $(0010, F_2)$ | $(0010, F_2)$   | $5(5,0F_1)10^{11}$               | 0.471(68)               |
|             | $(0010, F_2)$ | $(0010, F_2)$   | $5(5,1F_1)10^{11}$               | -0.913(57)              |
|             | $(0010, F_2)$ | $(0010, F_2)$   | $6(0,0A_1)10^{12}$               | -0.132(13)              |
|             | $(0010, F_2)$ | $(0010, F_2)$   | $6(2,0E)10^{12}$                 | -0.1462(98)             |
|             | $(0010, F_2)$ | $(0010, F_2)$   | $6(2,0F_2)10^{12}$               | 0.144(10)               |
|             | $(0010, F_2)$ | $(0010, F_2)$   | $6(4,0A_1)10^{14}$               | -0.826(79)              |
|             | $(0010, F_2)$ | $(0010, F_2)$   | 6(4,0 <i>E</i> )10 <sup>12</sup> | 0.240(15)               |
|             | $(0010, F_2)$ | $(0010, F_2)$   | $6(4,0F_2)10^{12}$               | 0.174(11)               |
| ν4          | $(0001, F_2)$ | $(0001, F_2)$   | $0(0,0A_1)$                      | 388.433275(29)          |
|             | $(0001, F_2)$ | $(0001, F_2)$   | $1(1,0F_1)10^1$                  | -0.275717(17)           |
|             | $(0001, F_2)$ | $(0001, F_2)$   | $2(0,0A_1)10^3$                  | 0.168545(22)            |
|             | $(0001, F_2)$ | $(0001, F_2)$   | $2(2,0E)10^3$                    | -0.117473(42)           |
|             | $(0001, F_2)$ | $(0001, F_2)$   | $2(2,0F_2)10^4$                  | 0.55406(41)             |
|             | $(0001, F_2)$ | $(0001, F_2)$   | $3(1,0F_1)10^6$                  | -0.11535(25)            |
|             | $(0001, F_2)$ | $(0001, F_2)$   | $3(3,0F_1)10^6$                  | -0.20262(12)            |
|             | $(0001, F_2)$ | $(0001, F_2)$   | $4(0,0A_1)10^9$                  | -0.2638(35)             |
|             | $(0001, F_2)$ | $(0001, F_2)$   | $4(2,0F_2)10^{10}$               | 0.787(42)               |
| $v_3 + v_4$ | $(0011, A_1)$ | $(0011, A_1)$   | $0(0,0A_1)$                      | -0.5210(26)             |
|             | $(0011, A_1)$ | $(0011, A_1)$   | $2(0,0A_1)10^2$                  | 0.1185(70)              |
|             | $(0011, A_1)$ | $(0011, A_1)$   | $4(0,0A_1)10^6$                  | -0.2279(48)             |
|             | $(0011, A_1)$ | $(0011, A_1)$   | $4(4,0A_1)10^7$                  | -0.212(16)              |
|             | $(0011, A_1)$ | (0011, E)       | $2(2,0E)10^3$                    | 0.185(33)               |

Table D.12 – Spectroscopic parameters of the  $\nu_3+\nu_4$  band of SiF4 molecule.

Table D.12 – Continued.

|                                            | $(0011, A_1)$            | (0011, <i>E</i> )        | $4(2,0E)10^7$   | -0.157(25)    |
|--------------------------------------------|--------------------------|--------------------------|-----------------|---------------|
|                                            | $(0011, A_1)$            | (0011, <i>E</i> )        | $4(4,0E)10^8$   | 0.434(89)     |
|                                            | $(0011, A_1)$            | $(0011, F_1)$            | $1(1,0F_1)10^2$ | -0.682(42)    |
|                                            | $(0011, A_1)$            | $(0011, F_1)$            | $3(1,0F_1)10^5$ | 0.394(85)     |
|                                            | $(0011, A_1)$            | $(0011, F_1)$            | $3(3,0F_1)10^5$ | 0.164(20)     |
|                                            | $(0011, A_1)$            | $(0011, F_1)$            | $4(4,0F_1)10^7$ | -0.223(21)    |
|                                            | $(0011, A_1)$            | $(0011, F_2)$            | $2(2,0F_2)10^3$ | 0.415(29)     |
|                                            | $(0011, A_1)$            | $(0011, F_2)$            | $3(3,0F_2)10^5$ | 0.119(33)     |
|                                            | (0011, E)                | (0011, <i>E</i> )        | $0(0,0A_1)$     | -0.258662(30) |
|                                            | (0011, <i>E</i> )        | (0011, <i>E</i> )        | $3(3,0A_2)10^6$ | 0.169(25)     |
|                                            | (0011, E)                | $(0011, F_2)$            | $1(1,0F_1)10^2$ | -0.191(84)    |
|                                            | (0011, <i>E</i> )        | $(0011, F_2)$            | $4(4,0F_1)10^8$ | 0.204(57)     |
|                                            | $(0011, F_1)$            | $(0011, F_1)$            | $0(0,0A_1)$     | -0.110913(34) |
|                                            | $(0011, F_1)$            | $(0011, F_1)$            | $1(1,0F_1)10^2$ | -0.1852(93)   |
|                                            | $(0011, F_1)$            | $(0011, F_1)$            | $2(0,0A_1)10^3$ | -0.378(34)    |
|                                            | $(0011, F_1)$            | $(0011, F_1)$            | $2(2,0E)10^3$   | 0.448(49)     |
|                                            | $(0011, F_1)$            | $(0011, F_1)$            | $2(2,0F_2)10^3$ | 0.939(59)     |
|                                            | $(0011, F_1)$            | $(0011, F_1)$            | $4(2,0E)10^8$   | -0.159(60)    |
|                                            | $(0011, F_1)$            | $(0011, F_2)$            | $1(1,0F_1)10^2$ | 0.1273(39)    |
|                                            | $(0011, F_1)$            | $(0011, F_2)$            | $2(2,0E)10^5$   | -0.185(13)    |
|                                            | $(0011, F_1)$            | $(0011, F_2)$            | $2(2,0F_2)10^3$ | -0.129(16)    |
|                                            | $(0011, F_1)$            | $(0011, F_2)$            | $4(2,0F_2)10^8$ | 0.175(34)     |
|                                            | $(0011, F_2)$            | $(0011, F_2)$            | $0(0,0A_1)$     | -0.136510(24) |
|                                            | $(0011, F_2)$            | $(0011, F_2)$            | $1(1,0F_1)10^2$ | -0.1166(71)   |
|                                            | $(0011, F_2)$            | $(0011, F_2)$            | $3(1,0F_1)10^6$ | -0.136(25)    |
|                                            | $(\overline{0011}, F_2)$ | $(\overline{0011}, F_2)$ | $3(3,0F_1)10^6$ | -0.179(24)    |
|                                            | $(0011, F_2)$            | $(0011, F_2)$            | $4(0,0A_1)10^8$ | 0.426(52)     |
|                                            | $(0011, F_2)$            | $(0011, F_2)$            | $4(2,0F_2)10^8$ | 0.549(79)     |
| $d_{\rm rms} \cdot 10^{-3}, {\rm cm}^{-1}$ | 0.633                    |                          |                 |               |

The work is devoted to obtaining new high-precision information by studying high-resolution spectra of molecules of the spherical and asymmetric top type, as well as developing new and improving existing methods for analyzing the spectra of molecules in non-singlet electronic states. The study of rotational and vibrational-rotational spectra of polyatomic molecules in the gas phase has long been of fundamental importance for determining the exact molecular geometry in various vibrational states, for obtaining information on the internal force field, vibrational-rotational interaction parameters, dipole moments, calculating thermodynamic functions and, in general, for obtaining information on the relationship between the structure and physical properties of the molecule. In this work, the analysis of the positions of vibrational-rotational spectra lines of combination bands of the SiF4, CD4, C2D4, ClO2 molecules and their isotopologues was performed for the first time. The inverse spectroscopic problem was solved for the studied bands. The obtained sets of spectroscopic parameters allow reproducing the values of excited energy levels with an accuracy not worse than the experiment. Using the obtained spectroscopic parameters of the combination bands of the  $SiF_4$  molecule and the XTDS software package, the calculation of the line positions was performed for the first time and theoretical spectra of the "hot" bands of this molecule, up to the 14<sup>th</sup> polyad, were calculated. In addition, new high-precision spectra of the SiH<sub>4</sub> molecule were obtained and analysed to improve the data on the dipole moment parameters.

La thèse est consacrée à l'obtention de nouvelles informations de haute précision par l'étude de spectres à haute résolution de molécules de type sphérique et asymétrique, ainsi qu'au développement de nouvelles méthodes et à l'amélioration des méthodes existantes pour l'analyse des spectres de molécules dans des états électroniques non singlés. L'étude des spectres rotationnels et ro-vibrationnels des molécules polyatomiques en phase gazeuse est depuis longtemps d'une importance fondamentale pour déterminer la géométrie moléculaire exacte dans différents états vibrationnels, pour obtenir des informations sur le champ de force interne, les paramètres d'interaction vibrationnelle-rotationnelle, les moments dipolaires, pour calculer les fonctions thermodynamiques et, en général, pour obtenir des informations sur la relation entre la structure et les propriétés physiques de la molécule. Dans ce travail, l'analyse des positions des raies spectrales vibrationnelles-rotationnelles des bandes de combinaison des molécules SiF<sub>4</sub>, CD<sub>4</sub>, C<sub>2</sub>D<sub>4</sub>, ClO<sub>2</sub> et de leurs isotopologues a été réalisée pour la première fois. Le problème spectroscopique inverse a été résolu pour les bandes étudiées. Les ensembles de paramètres spectroscopiques obtenus permettent de reproduire les valeurs des niveaux d'énergie excités avec une précision qui n'est pas inférieure à l'expérimente. En utilisant les paramètres spectroscopiques obtenus pour les bandes combinées de la molécule SiF<sub>4</sub> et le progiciel XTDS, le calcul des positions des raies a été effectué pour la première fois et les spectres théoriques des bandes « chaudes » de cette molécule, jusqu'à la 14<sup>ème</sup> polyade, ont été calculés. De plus, de nouveaux spectres de haute précision de la molécule SiH4 ont été obtenus et analysés pour améliorer les données sur les paramètres du moment dipolaire.