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Résumé Substantiel de la Thèse en Français
Cette thèse aborde les limitations des méthodologies d’évaluation en apprentissage automa-

tique en appliquant des approches statistiques rigoureuses adaptées de l’économétrie. Nous
démontrons comment les outils statistiques, en particulier la régression linéaire, l’ANOVA et
la régression logistique, peuvent fournir une meilleure compréhension du comportement et
de la performance des modèles à travers divers domaines d’apprentissage automatique. Nos
travaux couvrent trois domaines distincts, chacun présentant des défis d’évaluation uniques et
des opportunités d’innovation méthodologique.

Dans le domaine de l’apprentissage incrémental sans exemplaires, où les modèles doivent
apprendre en continu de nouvelles classes sans accès aux données d’entraînement précédentes,
notre analyse révèle plusieurs résultats importants. À travers une évaluation statistique
approfondie sur plusieurs jeux de données et architectures, nous montrons que le choix de la
méthode de pré-entraînement a un impact plus important sur la performance que le choix de
l’algorithme d’apprentissage incrémental. Cette découverte remet en question les approches
d’évaluation traditionnelles qui se concentrent principalement sur la comparaison des stratégies
d’apprentissage incrémental. Nos résultats soulignent notamment que le pré-entraînement
auto-supervisé peut considérablement améliorer les performances, particulièrement lorsque le
modèle pré-entraîné est affiné sur les classes initiales.

Dans les systèmes de reconnaissance faciale, nous traitons la question des biais démo-
graphiques dans les algorithmes de vérification. En combinant régression logistique et ANOVA,
nous quantifions précisément l’influence des différents facteurs démographiques sur la per-
formance des modèles. Nous proposons DCFace, une nouvelle approche pour générer des
données d’entraînement synthétiques démographiquement équilibrées, qui permet de réduire
significativement les écarts de performance entre groupes ethniques. Notre analyse montre
que les modèles entraînés sur ces données maintiennent une précision compétitive tout en
réduisant considérablement les biais, bénéficiant particulièrement aux populations tradition-
nellement sous-représentées.

Dans le domaine des systèmes de recommandation, nous introduisons de nouvelles mesures
fondées sur la théorie de l’information pour analyser les variations de performance selon les
profils d’utilisateurs. Ces travaux comprennent le développement de Vis2Rec, un nouveau jeu de
données pour la recommandation de visites touristiques. Notre analyse révèle que les méthodes
d’apprentissage profond ne surpassent pas systématiquement les approches traditionnelles de
factorisation matricielle. Nous proposons deux nouvelles mesures, la Surprise et la Surprise
Conditionnelle, qui quantifient différents aspects du comportement des utilisateurs et fournissent
un cadre générique pour évaluer l’efficacité des recommandations.

Cette thèse apporte plusieurs contributions méthodologiques qui s’étendent au-delà de ces
domaines spécifiques. Elle montre comment les outils statistiques peuvent être adaptés pour
fournir des évaluations plus nuancées et fiables des systèmes d’apprentissage automatique.
Elle introduit des cadres pour quantifier l’importance relative de différents facteurs dans
la performance des modèles, fournissant des méthodes pour isoler les effets causaux dans les
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systèmes d’apprentissage complexes. Ces approches permettent une comparaison plus rigoureuse
des modèles à travers différentes architectures et paradigmes d’entraînement tout en tenant
compte des variables confondantes et des effets d’interaction.

Cette approche complète de l’évaluation de l’apprentissage automatique améliore non
seulement notre compréhension du comportement des modèles et des disparités de performance,
mais fournit également des idées pratiques pour améliorer les méthodologies d’évaluation à
travers diverses applications d’apprentissage automatique.
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When a measure becomes a target, it ceases to be a good
measure.

— Marilyn Strathern’s version of Goodhart’s law

1
Introduction

1.1 The Evolution of Machine Learning Evaluation
The field of machine learning has undergone a remarkable transformation over the past

few decades, evolving from simple statistical models to complex, multi-layered neural networks
capable of tackling increasingly sophisticated tasks [Schmidhuber, 2015; Goodfellow et al.,
2016]. This evolution has been driven by advances in computational power [Amodei and
Hernandez, 2018], the availability of large-scale datasets [Sun et al., 2017b], and breakthroughs
in model architectures and training techniques [LeCun et al., 2015; Vaswani et al., 2023]. As
machine learning models have grown in complexity and capability, so too has the challenge
of accurately evaluating their performance and understanding their behavior [Doshi-Velez
and Kim, 2017; Lipton, 2017].

1.1.1 From Simple Metrics to Complex Performance Assessment
In the early days of machine learning, model evaluation often relied on straightforward

metrics such as accuracy for classification tasks or mean squared error for regression problems
[Sokolova and Lapalme, 2009]. These metrics provided a clear, easily interpretable measure of
model performance that was sufficient for the relatively simple models of the time. However,
as the field progressed, particularly with the advent of deep learning, the limitations of these
basic metrics became increasingly apparent [Bouthillier et al., 2021].

Deep neural networks, with their ability to learn hierarchical representations from data,
introduced new dimensions of complexity to the evaluation process. The sheer number of
parameters in these models, often in the millions or billions, makes it challenging to understand
how they arrive at their predictions. This "black box" nature of deep learning models, which
prevents researchers from having strong theoretical guarantees of their models, necessitates more
sophisticated evaluation approaches that could provide insights beyond simple performance
numbers [Doshi-Velez and Kim, 2017].

The machine learning community responded to this challenge by developing various new
metrics and evaluation techniques. For instance, in classification tasks, newer metrics like
Expected Calibration Error (ECE) and Maximum Calibration Error (MCE) emerged as
a way to measure how well a model’s predicted probabilities align with actual frequencies
of correct predictions [Nixon et al., 2019]. In natural language processing, new evaluation
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protocols were introduced to evaluate the quality of machine-generated text and go beyond
standard metrics such as BLEU or ROUGE [Liu et al., 2016]. However, even these more
advanced metrics and benchmarks often fail to capture the full complexity of model behavior,
particularly in real-world applications where performance can vary significantly across different
subgroups or contexts [Koh et al., 2020].

1.1.2 The Challenge of Comparing Diverse Models and Architectures
As machine learning has matured, it has given rise to a diverse ecosystem of model

architectures, each with its own strengths and weaknesses. Convolutional Neural Networks
(CNNs) [LeCun et al., 2010] have shown remarkable success in computer vision tasks, while
Recurrent Neural Networks (RNNs) [Hochreiter and Schmidhuber, 1997], and more recently,
Transformer models [Vaswani et al., 2023], have pushed the boundaries of natural language
processing, and were then widely adopted in computer vision [Dosovitskiy et al., 2021]. This
diversity, while driving progress in the field, has also made fair and meaningful comparisons
between different approaches increasingly difficult.

The challenge of model comparison is further increased by the rise of transfer learning and
pre-trained models [Tan et al., 2018]. Large-scale pre-trained models like BERT and GPT for
natural language processing [Devlin et al., 2019; Achiam et al., 2023] or DINOv2 for computer
vision [Oquab et al., 2023] have become the foundation for many state-of-the-art systems.
These models, often trained on massive datasets with substantial computational resources, have
raised questions about how to fairly evaluate and compare models that leverage pre-training
versus those trained from scratch [Neyshabur et al., 2021].

Moreover, the growing trend of multi-modal models that can handle diverse types of
input data (e.g., text, images, and audio) [Radford et al., 2021] has further complicated the
evaluation landscape. Traditional metrics designed for single-modality tasks often fall short
when assessing these complex, multi-faceted models. This has led to a growing recognition in
the field that we need more holistic evaluation frameworks capable of providing meaningful
comparisons across diverse model architectures and training paradigms [Ethayarajh and Jurafsky,
2021; Ribeiro et al., 2020].

1.1.3 The Need for Context-Aware Evaluation Methods
A significant challenge in modern machine learning evaluation is the need for methods

that can account for the diverse contexts in which models are deployed. As machine learning
systems are increasingly used in real-world applications, from healthcare diagnostics to financial
forecasting to autonomous driving, it has become clear that performance in controlled benchmark
settings does not always translate to real-world effectiveness [Hutchinson et al., 2022].

A model’s performance can vary dramatically depending on the specific dataset it encounters,
the task it is applied to, or the real-world scenario in which it operates [Taori et al., 2020].
Traditional evaluation methods often fail to capture these contextual nuances, leading to
potential misunderstandings of a model’s true capabilities and limitations. For example, the
performance of pre-trained vision models is still frequently illustrated by their performance
on the ImageNet dataset [Deng et al., 2009]. This tendency not only obscures the fact that
ImageNet is a specific benchmark but also neglects the particularities of the pre-training dataset,
which could have interesting properties for some downstream tasks. This can have serious
consequences when these models are deployed in critical applications where failures can have
significant real-world impacts [Amodei et al., 2016].
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Furthermore, as society becomes more aware of the potential for AI systems to perpetuate
or exacerbate existing biases, there is a growing demand for evaluation methods that can assess
fairness and bias across different demographic groups or other relevant subpopulations [Mehrabi
et al., 2021]. This requires moving beyond aggregate performance metrics to understand how
models behave across diverse segments of the data [Mitchell et al., 2019].

The need for context-aware evaluation extends beyond just assessing performance and
fairness. It also encompasses the ability to evaluate other crucial aspects of machine learning
systems, such as their robustness to distribution shifts [Shen et al., 2021], their calibration (the
alignment between predicted probabilities and true probabilities) [Guo et al., 2017], and their
efficiency in terms of computational resources and energy consumption [Strubell et al., 2020].
As the field expands into more domains and industries, these evaluation methods must provide
both accurate performance assessments and deeper insights into fairness, bias, generalizability,
and efficiency across different scenarios and subgroups [Thomas et al., 2019; Zhang et al., 2023].

The evolution of machine learning evaluation calls for new approaches grounded in statistical
principles – ones that can provide rigorous methods for assessing models across diverse
architectures, tasks, and contexts, in a reproducible manner [Pineau et al., 2021]. These
approaches should be capable of offering deeper insights into model behavior, going beyond
surface-level performance metrics to provide a more comprehensive understanding of a model’s
strengths, weaknesses, and potential impacts when deployed in the real world [Molnar et al.,
2020].

This thesis aims to address this pressing need by exploring how statistical tools can enhance
machine learning evaluation. By leveraging techniques from econometrics and causal inference
[Angrist and Pischke, 2009], we demonstrate how these analytical tools can be adapted to
provide nuanced, interpretable insights into model performance across diverse contexts. Rather
than proposing a single unified framework, we show how statistical principles can be applied
flexibly to develop targeted evaluation approaches for different scenarios. Our goal is to
move beyond simple performance comparisons to a deeper understanding of the factors that
influence model behavior, ultimately contributing to the development of more robust, fair,
and reliable machine learning systems.

1.2 Current Limitations in Model Evaluation
With the rise of more complicated machine learning models and setups, the limitations of

traditional evaluation methods have become increasingly apparent. These limitations not only
hinder our ability to accurately assess model performance but also pose significant challenges in
ensuring the fairness, reliability, and interpretability of AI systems in real-world deployments.

1.2.1 Oversimplification Through Aggregate Metrics
One of the primary limitations in current model evaluation practices is the over-reliance

on aggregate metrics. While measures such as overall accuracy, F1 score, or mean squared
error provide a concise summary of model performance, they often mask nuances that can
significantly impact a model’s real-world effectiveness [Japkowicz, 2006].

Aggregate metrics can be particularly misleading when dealing with imbalanced datasets, a
common occurrence in many real-world problems [He and Garcia, 2009]. For instance, in medical
diagnosis tasks where positive cases are rare, a model could achieve high overall accuracy by
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simply predicting the majority class, while failing to identify the crucial minority cases. This
simple example is well-known and taught in most ML courses, which advocate for the use
of more precise aggregate metrics, such as recall or precision. However, in scenarios where
the imbalance is more subtle (many classes with different imbalance, unknown or corrupted
labels, etc...), careful thinking must be put into model evaluation, and aggregate metrics
must be treated cautiously [Northcutt et al., 2021].

In particular, aggregate metrics often fail to capture performance variations across different
subgroups or data segments. In face recognition, a model might perform well on average
but exhibit significant disparities in performance across different demographic groups or data
distributions [Wang et al., 2019b]. This limitation becomes particularly problematic when
evaluating models intended for diverse populations or varying environmental conditions, which
poses fairness issues, a problem of its own that is tackled explicitly in this thesis.

The use of single-number metrics also tends to oversimplify the multi-faceted nature of
model performance. In many applications, there are trade-offs between different aspects of
performance (accuracy vs. fairness, performance on a single data vs. generalization) [Singh
et al., 2021] that a single metric cannot adequately represent. This simplification can lead
to suboptimal model selection and deployment decisions.

1.2.2 Challenges in Assessing Fairness and Bias
As AI systems increasingly influence decisions in areas such as biometrics, finance, and

criminal justice, the need to assess and ensure fairness has become one of the new priorities
in machine learning evaluation. However, evaluating fairness and bias in machine learning
models presents significant challenges [Friedler et al., 2019].

One fundamental issue is the lack of consensus on how to define and measure fairness in
different contexts [Jacobs and Wallach, 2019]. Various notions of fairness, such as demographic
parity or equal opportunity [Hardt et al., 2016], have been proposed but are neither universally
used nor let us assess fairness in a precise way. The choice of fairness metrics can significantly
impact model evaluation and selection, yet there is often no clear guideline on which metrics
are most appropriate for a given application [Gupta et al., 2020].

Furthermore, assessing fairness across different subgroups is complicated by the intersectional-
ity of demographic attributes. Models that appear fair when evaluated along single demographic
dimensions (e.g., gender or ethnicity separately) may still exhibit biases at the intersection of
these attributes [Buolamwini and Gebru, 2018]. This intersectional fairness is challenging to
measure and often requires larger, more diverse datasets than are typically available.

Another significant challenge lies in detecting and mitigating hidden biases. Models can
learn subtle, unintended correlations in the training data that lead to biased outcomes, even
when sensitive attributes are explicitly excluded from the input [Song and Shmatikov, 2019].
For instance, a loan approval model trained on historical data might learn to discriminate
based on zip code or occupation, which can serve as proxies for protected attributes like race or
gender, even when these sensitive attributes are explicitly removed from the training data. A
model could develop a bias against teachers or social workers due to correlations in historical
lending patterns, leading to systematically unfair treatment of certain professional groups.
These hidden biases can be difficult to detect through standard evaluation methods and may
only become apparent when the model is deployed in real-world settings.
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Example: Limitations of Accuracy in Face Recognition

A face recognition system achieves 95% accuracy on a test set. However, this metric
alone fails to reveal that:

• The system’s performance varies significantly across different demographic groups.
• Most errors occur in low-light conditions, an important factor for real-world deploy-

ment.
• The system is overly confident in its incorrect predictions, potentially leading to

errors in high-stakes applications.
• The test set lacks diversity in age groups, potentially overestimating the model’s

generalization ability.
Considered alone, the accuracy metric does not capture these insights, which are essential
for understanding the model’s true capabilities and limitations.

1.2.3 Lack of Interpretability in Evaluation Methods
In modern machine learning research, improvements in model performance often result

from the simultaneous modification of multiple components: architecture changes, new training
techniques, different training datasets or processing methods, and varying optimization strategies.
While papers frequently report significant performance gains over previous approaches, it
becomes increasingly difficult to pinpoint exactly which changes are responsible for these
improvements [Bouthillier et al., 2021].

This challenge is particularly evident in recent breakthrough papers, where new architectures
are often introduced alongside sophisticated training procedures and data augmentation
techniques. For instance, when a new model achieves state-of-the-art performance, it’s often
unclear whether the improvement stems from the architectural innovation itself, the enhanced
training methodology, or their synergistic interaction.

Example: Beating the State-of-the-Art

Consider a scenario where a new Deep Learning recognition model achieves a 5% increase
in accuracy over the state-of-the-art. This improvement could be attributed to multiple fac-
tors:

• A new neural network architecture
• An increased number of parameters
• A larger or more diverse training dataset
• New data augmentation techniques
• A different optimization algorithm

Without rigorous analysis, determining the true source of improvement is challenging.
Statistical methods can help isolate the effects of each factor. This allows for statements
such as: "Controlling for model size and dataset characteristics, our novel architecture
contributes to a 2.3% increase in accuracy".

The research community currently lacks systematic ways to efficiently quantify the relative
importance of each modification. When comparing two approaches, differences in implementation
details, hyperparameter choices, and computational budgets can all affect the final performance,
making it challenging to make fair comparisons or draw definitive conclusions about which
components are most crucial. The ideal solution would be to perform an ablation study
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on every combination of modifications, exponentially increasing the number of experiments
needed for a comprehensive study.

This limitation in our evaluation methodology has important implications for research
direction and resource allocation. Without clear understanding of which components drive
performance improvements, researchers might focus their efforts on less impactful modifications
or unnecessarily complicate their models with components that provide marginal benefits.

1.3 Towards a Better Evaluation of ML
As we saw, there is a pressing need for more comprehensive approaches to assessing

machine learning models. This thesis explores how statistical tools, drawing inspiration from
econometrics and statistical analysis [Angrist and Pischke, 2009; Crepon and Jacquemet,
2010; Wooldridge, 2013], can enhance model evaluation. Through distinct contributions,
we demonstrate how statistical principles can provide deeper insights into model behavior
and performance across diverse contexts while addressing many limitations discussed in the
previous section. The diversity of ML evaluation scenarios suggests that rather than seeking a
single universal framework, we should embrace methodological pluralism guided by statistical
rigor in evaluating AI models.

1.3.1 Adapting Statistical Approaches for Machine Learning Evaluation

The complexity of modern ML systems requires evaluation methods that can capture
nuanced relationships between various factors and model performance. By adapting statistical
approaches commonly used in econometrics, we can develop a more rigorous and insightful
evaluation framework for machine learning.

This approach centers on modeling the relationships between raw performance metrics and
the multiple factors that might influence them. These factors could include model architecture
choices, data characteristics, training procedures, deployment contexts, or any variable that
may be correlated to performance. By systematically analyzing these relationships, we can
move beyond simple performance comparisons to a more nuanced understanding of what drives
model behavior. This framework can be applied at the algorithm level, enabling researchers to
compare the performance of multiple approaches accurately without the need to do exhaustive
ablation studies [Meyes et al., 2019]. Applied at the data level, it allows us to analyze
performance variations between different data points and draw practical conclusions on how
each data point attribute affects performance.

Moreover, this approach enables us to explore the interplay between different aspects of
machine learning systems. For example, we can investigate how the relationship between
model size and performance varies depending on the amount of training data available, or
perform intersectional fairness analyses.

The framework also allows for quantifying the relative importance of different factors. This
can help practitioners prioritize their efforts in model development and optimization, focusing
on the areas that are likely to yield the most significant improvements [Bello et al., 2021].
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1.3.2 Statistical Rigor in Machine Learning Analysis
Ensuring statistical rigor is crucial for drawing reliable conclusions from our analyses.

This involves not only identifying relationships between variables but also assessing their
statistical significance and practical importance.

By applying concepts of statistical significance, we can differentiate between genuine effects
and random fluctuations due to data sampling. This is particularly important in the context
of machine learning, where the complexity of models and the variability in performance
across different datasets can make it challenging to discern meaningful patterns [Slack et al.,
2021; Varoquaux and Colliot, 2023].

Beyond mere statistical significance (which quantifies the uncertainty of our conclusions),
measuring effect sizes (in other terms, the strength of our conclusions) allows us to understand the
magnitude of different factors’ impacts. This is crucial for prioritizing which aspects of a model or
training process to focus on for improvement. It also helps communicate the practical significance
of findings to stakeholders who may not have a deep technical understanding of the models.
For example, when analyzing a recommendation system’s performance, we might find that both
increasing model size and improving data quality have statistically significant effects. However,
effect size analysis might reveal that data quality improvements lead to a 15% performance gain,
while doubling the model size only yields a 2% improvement. This quantitative comparison
helps practitioners make informed decisions about resource allocation, suggesting in this case
that investing in data quality would be more impactful than scaling up model architecture.

1.3.3 Balancing Comprehensive Analysis with Practical Applicability
While a comprehensive statistical framework offers many benefits, it is central to balance

this rigor with practical applicability in the fast-paced field of machine learning.
One key challenge is ensuring the interpretability of results for ML practitioners who may

not have extensive statistical training. This involves developing clear guidelines for applying
the framework and interpreting its outputs. Visualization tools and intuitive metrics can
be crucial in making the insights derived from complex analyses accessible and actionable
[Doshi-Velez and Kim, 2017; Molnar et al., 2020].

Statistical tools need to be thoughtfully adapted while maintaining core analytical principles
across different machine learning tasks. For instance, while the specific metrics may differ
between classification tasks (focusing on confusion matrices and class-specific performance)
and generative modeling tasks (requiring distributional analysis), the underlying statistical
approaches for quantifying effects and uncertainties remain similar. This balance between
task-specific adaptation and common statistical foundations helps ensure rigorous evaluation
across diverse machine learning applications, while avoiding the limitations of either overly
rigid or completely disparate evaluation approaches.

There’s also the challenge of managing the complexity of the evaluation process. While a
more comprehensive analysis can provide deeper insights, it may also require more time and
resources. Striking the right balance between depth of analysis and practical feasibility is crucial
for ensuring the framework’s utility in real-world ML development processes.

By addressing these challenges, a unified statistical framework for machine learning evaluation
has the potential to significantly enhance our understanding of model behavior and performance.
It can provide a more solid foundation for comparing different approaches, assessing fairness
and robustness, and ultimately developing more reliable and trustworthy AI systems. This
approach aligns with the broader movement towards more responsible and transparent AI
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development, supporting the creation of systems that are not only high-performing but also
fair, interpretable, and reliable across diverse real-world contexts.

1.4 Thesis Outline
1.4.1 Application of the Evaluation Framework Across Applications

The proposed statistical evaluation tools presented in this thesis are applied to three domains
of ML. Their selection was driven by both the diversity of evaluation challenges they present
and their complementary nature in terms of analysis requirements. Each domain offers unique
opportunities to demonstrate different aspects of our evaluation methodology while addressing
significant challenges in machine learning research.

Chapter 2 provides essential background and reviews related work across our domains of
interest. This chapter establishes the current state of evaluation practices in machine learning and
examines the specific challenges and existing approaches in the three selected application domains:
class-incremental learning, face recognition, and recommender systems. This review highlights
the need for more rigorous evaluation methodologies across these seemingly disparate domains.

Chapter 3 presents our first contribution: a methodological framework adapting econo-
metric tools for machine learning evaluation. This chapter introduces how regression analysis,
significance testing, and effect size measurements can be adapted to address machine learning
evaluation challenges. We carefully explain how these tools can be applied to different types of
variables and outcomes, laying the groundwork for the applications that follow.

Chapter 4 explores the statistical evaluation of exemplar-free class-incremental learning
(EFCIL), an interesting first application domain due to its many varying factors within a
highly controlled experimental setting. In EFCIL, models must learn new classes sequentially
without access to previous training data. The domain involves multiple potentially interacting
components – from pre-training strategies and architectural choices to data characteristics –
making it an excellent candidate for studying the attribution of performance gains. Within this
context, we present our second contribution: the first large-scale systematic study of pre-
training strategies for EFCIL. Through careful experimental design and statistical analysis, we
quantify the relative importance of different factors, providing concrete guidance for practitioners.

Chapter 5 focuses on evaluating face recognition systems, a domain that presents unique
challenges in fairness evaluation. Unlike our EFCIL study, where we directly compare models,
fairness analysis in face recognition requires understanding complex interactions between
demographic variables and their impact on model performance between different identities. The
intricate nature of these relationships demands sophisticated evaluation approaches that can
capture both performance and fairness aspects. In this context, we present two contributions:
our third contribution is a novel data generation method, leading to the DCFace dataset,
while our fourth contribution is a rigorous approach to fairness assessment using statistical
tools. Through our analysis, we provide fine-grained insights into demographic biases and
their interactions, demonstrating how our proposed controlled generation method outperforms
other datasets in both fairness and performance.

Chapter 6 addresses evaluation in recommender systems, a domain that introduces yet
another dimension of evaluation complexity through its need for user-centric modelization.
Here, the challenge lies in understanding why certain users are more difficult for recommender
systems to handle than others. This domain allows us to analyze user behavior patterns
and their relationship with model performance. Within this context, we present two key
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contributions: our fifth contribution is Vis2Rec, a new dataset specifically designed for visit
recommendation tasks, while our sixth contribution develops novel coherence measures that
quantify the inherent difficulty of recommendation tasks for specific users. By introducing
new behavioral measures and studying their impact on different recommendation algorithms,
we demonstrate how our approach can provide insights into the fundamental characteristics
of the data that influence model performance.

Finally, Chapter 7 synthesizes our findings across these domains, identifying common
patterns and insights that emerge from applying our framework. This concluding chapter
also discusses the broader implications of our work and suggests promising directions for
future research in machine learning evaluation.

1.5 List of Publications
The work presented in this thesis has led to the publication of the following works. Equal
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The pursuit of knowledge and understanding is not a
straightforward path, but a journey filled with complexi-
ties and challenges. Each step forward brings new insights
and deeper questions. It is in this endless quest for
learning that we truly discover the vast potential of the
human mind.

— Carl Sagan
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2.1 Introduction
In the last two decades, rapid advancements in deep learning have revolutionized numerous

fields of machine learning, including computer vision, natural language processing, generative
modeling, recommender systems, and much more. Even though the first theoretical tools of
these domains were introduced in the XXth century, the increase in the volume of available
data, computing power, and people working in the field led to the exponential development
of many branches of deep learning. Alongside these developments, evaluation methodologies
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have also evolved, providing valuable insights into model performance and contributing to
the iterative improvement of algorithms. Researchers have developed sophisticated metrics,
benchmark datasets, and evaluation frameworks that have significantly enhanced our ability
to assess and compare different models. However, as the complexity and capabilities of deep
learning models continue to grow, so too do the challenges in their evaluation. There is an
ongoing need to ensure that evaluation methods keep pace with model advancements, providing
rigorous and meaningful assessments that go beyond surface-level performance indicators and
offer deeper insights into the true capabilities and limitations of these models.

This chapter examines the current state of deep learning evaluation. We begin with an
overview of deep learning, setting the context for a detailed examination of evaluation methods in
each specialized area. This exploration will reveal the limitations of current evaluation approaches
and introduce new methods that offer more thorough assessments of model performance. We
then focus on three applications: class-incremental learning, face recognition, and recommender
systems. By exploring these domains, we aim to highlight the challenges and considerations
necessary for developing robust and reliable deep learning systems.

As we explore each domain, this chapter prepares the ground for the detailed studies
that form the core of this thesis. Our goal is to review existing practices and propose new
approaches to evaluation that can lead to more transparent, reproducible, and impactful
deep learning research and applications.

2.2 General Challenges in Modern Machine Learning Evaluation
The rapid evolution of deep learning has led to increasingly complex models and training

paradigms, creating new challenges in model evaluation and analysis [Goodfellow et al., 2016;
Zhang et al., 2019]. In this section, we present the state-of-the-art deep approaches in machine
learning and analyze some of the limitations in their evaluation.

2.2.1 Deep Learning: A Brief Overview
2.2.1.1 Evolution and Key Concepts

The field of deep learning has seen remarkable progress over the past decades, with each
advancement bringing new possibilities and challenges for model evaluation [LeCun et al.,
2015; Schmidhuber, 2015].

Important Milestones Relevant to Evaluation Challenges

• 1986: Backpropagation algorithm [Rumelhart et al., 1986]: Enabled training of
multi-layer networks, increasing model complexity

• 1998: LeNet-5 [Lecun et al., 1998]: Demonstrated convolutional neural networks
(CNNs) for digit recognition, an early step toward modern deep learning architectures

• 2012: AlexNet [Krizhevsky et al., 2012]: Demonstrated the power of deep CNNs,
leading to a surge in large-scale vision models

• 2014: Generative Adversarial Networks [Goodfellow et al., 2014a]: Introduced new
challenges in evaluating generative models

• 2017: Transformer architecture [Vaswani et al., 2023]: Sparked the development of
large language models, raising questions about evaluation at scale
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Figure 2.1: A brief historical overview of some important developments in deep learning.

These milestones have not only advanced the capabilities of deep learning but have also
highlighted the need for more sophisticated evaluation techniques [Doshi-Velez and Kim,
2017; Lipton, 2017]. As models have grown in complexity, traditional evaluation metrics
have often proven insufficient to capture nuanced aspects of performance and generalization
[Hand, 2006; Sokolova and Lapalme, 2009].

The fundamental components of deep learning, such as neurons, layers, and activation
functions, form the building blocks of modern architectures [Goodfellow et al., 2016]. However,
the interactions between these components and their collective behavior have created systems
whose performance can be challenging to predict and evaluate systematically [Zhang et al.,
2021]. Despite significant progress in the field, we have not yet developed a comprehensive
mathematical theory that can fully explain deep networks or provide guarantees of their
performance [Shalev-Shwartz and Ben-David, 2014; Arora et al., 2018]. As a result, the
primary method for studying the performance of deep networks remains empirical studies
[Belkin et al., 2019b; Rahaman et al., 2019]. This reliance on empirical evaluation underscores
the need for robust and well-designed frameworks to conduct these studies effectively. This
complexity and the lack of theoretical foundations underscore the importance of developing
robust evaluation methodologies, which is a central theme in our research and in recent
literature [Bouthillier et al., 2021; Hendrycks et al., 2021].

Researchers have proposed various approaches to address these evaluation challenges,
including more rigorous statistical testing [Demšar, 2006], the use of multiple diverse datasets
[Torralba and Efros, 2011], and the development of task-specific evaluation metrics [Zhang et al.,
2020a]. However, there remains a significant need for comprehensive and standardized evaluation
frameworks that can keep pace with the rapid advancements in deep learning architectures
and methodologies [Ethayarajh and Jurafsky, 2021].

2.2.1.2 Common Architectures
The choice of neural network architecture is primarily driven by the type and structure of

the data being processed. Different architectures have been developed to effectively capture
and leverage the inherent patterns and relationships within various data types [LeCun et al.,
2015]. This section briefly outlines some common architectures and their applications.

Examples of Architectures for Different Data Types

• Unstructured low-dimensional data: Multi-Layer Perceptrons (MLPs)
• Image data: Convolutional Neural Networks (CNNs), Vision Transformers (ViTs)
• Sequential data: Long Short-Term Memory (LSTM), Transformers
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• Graph-structured data: Graph Neural Networks (GNNs)

Multi-Layer Perceptrons (MLPs) are the most basic form of deep neural networks,
suitable for unstructured data where there’s no inherent spatial or temporal relationship between
features [Rumelhart et al., 1986]. While simple, MLPs have been successfully applied to various
tasks and serve as building blocks for more complex architectures [Goodfellow et al., 2016].

Convolutional Neural Networks (CNNs) have been the main architecture used for
computer vision tasks for nearly a decade [Krizhevsky et al., 2012]. CNNs exploit the spatial
structure of image data through local connectivity patterns and weight sharing, enabling them
to learn hierarchical representations of visual features [LeCun et al., 2010]. The success of CNNs
in image classification, object detection, and segmentation tasks has made them a standard
choice for image-related problems [He et al., 2016b].

Vision Transformers (ViTs) represent a more recent development in image processing
architectures [Dosovitskiy et al., 2021]. Adapting the transformer architecture originally
designed for natural language processing, ViTs treat images as sequences of patches and apply
self-attention mechanisms to capture global dependencies. ViTs have shown competitive
performance with CNNs on various vision tasks, particularly when pre-trained on large
datasets [Touvron et al., 2021].

Other notable architectures include Recurrent Neural Networks (RNNs) and their
variants like Long Short-Term Memory (LSTM) networks, which are designed to handle
sequential data by maintaining an internal state [Hochreiter and Schmidhuber, 1997]. These
have been widely used in natural language processing tasks, although they have been increasingly
replaced by transformer-based models in recent years [Vaswani et al., 2023]. For graph-structured
data, Graph Neural Networks (GNNs) have emerged as a powerful tool [Wu et al., 2021b].
GNNs can learn representations of nodes, edges, and graphs, making them suitable for tasks
such as node classification, link prediction, and graph classification [Zhang et al., 2020b]. The
diversity of these architectures reflects the complexity of real-world data and the tasks we aim
to solve. However, this diversity also presents challenges in evaluation, as different architectures
may require different evaluation strategies and metrics [Yang et al., 2020]. Moreover, as hybrid
architectures and novel designs continue to emerge [Tan et al., 2019], developing comprehensive
and fair evaluation frameworks becomes increasingly important to accurately assess and compare
model performance across different architectural choices [Bouthillier et al., 2021].

2.2.1.3 Learning Paradigms

Deep learning encompasses various learning paradigms, each suited to different types of
tasks and data availability. This section discusses three primary learning paradigms: supervised
learning, unsupervised and self-supervised learning, and generative models.

Supervised Learning: Supervised learning has been the dominant paradigm in deep
learning, where models are trained on labeled datasets to learn a mapping from inputs to
outputs [Goodfellow et al., 2016]. This approach has led to significant breakthroughs in various
domains, including image classification [He et al., 2016b], object detection [Ren et al., 2016],
and machine translation [Bahdanau et al., 2016].
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Examples of Supervised Learning Tasks

• Classification: Assigning input to predefined categories [Krizhevsky et al., 2012]
• Regression: Predicting continuous values [Lathuiliere et al., 2020]
• Sequence-to-sequence learning: Mapping input sequences to output sequences

[Sutskever et al., 2014]

While supervised learning has achieved remarkable success, it faces challenges. While raw
data is increasingly widely available, labeling it can be expensive and time-consuming to obtain
[Sun et al., 2017b]. Moreover, the loss landscapes of supervised models tend to be sharper
[Lee et al., 2024], which tends to favor overfitting, a phenomenon where the model memorizes
training data rather than learning generalizable patterns [Zhang et al., 2021]. Transferability of
supervised features, either to out-of-distribution samples [Quionero-Candela et al., 2009; Liu
et al., 2022], or to different domains [Yosinski et al., 2014], remains a very active topic of research.

Unsupervised and Self-Supervised Learning: Unsupervised learning aims to discover
hidden structures in unlabeled data [Hinton and Salakhutdinov, 2006]. Self-supervised learning,
a subset of unsupervised learning, creates supervisory signals from the data itself, allowing
models to learn meaningful representations without explicit labels [Jing and Tian, 2020].

Example of Self-Supervised Learning Tasks

• Contrastive learning: Learning representations by contrasting similar and dissimilar
samples [Chen et al., 2020a]

• Masked autoencoding: Reconstructing masked portions of input data [He et al.,
2022]

• Predictive coding: Learning to predict future or missing parts of the input [van den
Oord et al., 2019]

Unsupervised and self-supervised learning have gained significant attention due to their
ability to leverage large amounts of unlabeled data. In computer vision, contrastive learning
methods like SimCLR [Chen et al., 2020a] have shown impressive results in learning visual
representations. For natural language processing, masked language modeling, as used in BERT
[Devlin et al., 2019], has become a standard pre-training technique.

These approaches have shown promise in learning robust and transferable representations,
often matching or surpassing supervised pre-training in downstream tasks [Chen et al., 2020b].
They are computationally attractive since they have a reduced dependence on labeled data. How-
ever, evaluating the quality of learned representations and their transferability to downstream
tasks remains an active area of research [Nguyen et al., 2020].

Generative Models: Generative models aim to learn the underlying distribution of the data,
enabling the generation of new samples [Goodfellow et al., 2014a]. These models have applications
in various domains, including image synthesis, text generation, and data augmentation.

Main Generative Model Architectures

• Generative Adversarial Networks (GANs) [Goodfellow et al., 2014a]
• Variational Autoencoders (VAEs) [Kingma and Welling, 2022]
• Diffusion Models [Ho et al., 2020b]
• Flow-based Models [Papamakarios et al., 2021]
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Generative models have made significant strides in recent years. GANs have revolutionized
image synthesis, producing highly realistic images [Karras et al., 2019]. VAEs offer a probabilistic
approach to generative modeling, providing both generation and inference capabilities [Kingma
and Welling, 2022]. More recently, diffusion models have shown impressive results in image and
audio generation [Dhariwal and Nichol, 2021]. In recent years, large-scale generative models have
gained widespread attention and adoption beyond the research community. Notable examples
include ChatGPT, a language model capable of engaging in human-like conversations [Achiam
et al., 2023], and DALL-E, an image generation model that can create visual content from
textual descriptions [Ramesh et al., 2021]. These models have become accessible to the general
public, leading to their integration into various aspects of daily life and work.

The diversity of learning paradigms in deep learning has led to a rich landscape of models
and applications. However, this diversity also presents challenges in evaluation:

Comparing models across different learning paradigms: It is often difficult to directly
compare supervised, unsupervised, and generative models due to their different objectives and
data requirements [Misra et al., 2021]. For instance, how do we fairly compare a supervised
image classifier with a self-supervised representation learning model?

Assessing the quality of unsupervised representations: Evaluating the quality of
learned representations in unsupervised learning is non-trivial [Tsitsulin et al., 2023]. Proxy
tasks and downstream performance are often used, but these may not fully capture the
richness of the learned representations.

Evaluating the fidelity and diversity of generated samples: For generative models,
metrics like Inception Score and Fréchet Inception Distance are commonly used, but they
have known limitations [Borji, 2018]. Balancing fidelity (quality of generated samples) with
diversity (variety of generated samples) remains a challenge.

Measuring the transferability of learned representations: While unsupervised and
self-supervised learning aim to learn transferable representations, quantifying this transferability
across different domains and tasks is challenging [Neyshabur et al., 2021]. How do we measure
the "generality" of learned representations?

Robustness to distribution shifts: Evaluating how well models perform on out-of-
distribution data is crucial for real-world applications [Hendrycks and Dietterich, 2019]. This
is particularly challenging for unsupervised and generative models.

Computational efficiency and scalability: As models grow larger, evaluating their
efficiency and scalability becomes increasingly important [Strubell et al., 2020]. How do we
balance performance gains with computational costs?

As the field continues to evolve, developing comprehensive evaluation frameworks that
can address these challenges across different learning paradigms remains a critical area of
research [Ethayarajh and Jurafsky, 2021; Bouthillier et al., 2021], that will be tackled more
specifically in the following sections.

2.2.2 Dataset Challenges
The datasets used in deep learning research and applications often present significant

challenges that can impact model performance and generalization. Two key issues in this domain
are the misalignment with real-world practices and the inherent variability and bias in datasets.
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2.2.2.1 Misalignment with Real-World Practices
Many benchmark datasets used in deep learning research do not accurately represent

the complexities and distributions encountered in real-world applications [Quionero-Candela
et al., 2009]. This misalignment can lead to overly optimistic performance estimates and poor
generalization when models are deployed in practice.

Example: ImageNet vs. Real-World Images

The ImageNet dataset, while groundbreaking for computer vision research, often con-
tains high-quality, centered images of objects. In contrast, real-world applications
may encounter low-resolution, poorly lit, or partially obscured images, leading to a
significant performance drop when models trained on ImageNet are deployed in practical
scenarios [Taori et al., 2020].

Controlled environments vs. noisy real-world data: Most benchmark datasets
are collected under controlled conditions, ensuring high-quality, well-labeled data. However,
real-world scenarios often involve noisy, ambiguous, or imperfect data. This discrepancy can
lead to models that perform well on clean benchmark data but struggle with the complexities
of real-world inputs [Hendrycks and Dietterich, 2019]. For instance, a facial recognition
system trained on studio-quality images may fail when confronted with low-light or off-angle
faces in practical applications.

Temporal shifts in data distribution: Real-world data distributions often change over
time, a phenomenon known as concept drift [Gama et al., 2014]. Datasets used in research,
however, are typically static snapshots. This temporal mismatch can result in models that
quickly become outdated or less effective as the underlying data distribution evolves. For
example, a sentiment analysis model trained on social media data from 2010 may not accurately
capture current language usage and sentiment expressions.

Domain-specific nuances not captured in general datasets: General-purpose datasets
often fail to capture the nuances and specificities of particular domains or applications. This
can lead to models that perform well on broad tasks but struggle with domain-specific
challenges [Pan and Yang, 2009]. For instance, a general object detection model might perform
poorly in specialized fields like medical imaging or satellite imagery, where domain-specific
features and contexts are crucial.

Difficulty in simulating rare scenarios: Many real-world applications involve rare
but highly important events or scenarios that are challenging to represent adequately in
training datasets. This is particularly crucial in safety-critical systems, where the ability to
handle rare edge cases can be a matter of life and death [Amodei et al., 2016]. For example,
autonomous driving datasets may not sufficiently represent rare traffic scenarios or extreme
weather conditions, leading to potentially dangerous failures in real-world deployment.

Summary of Challenges in Dataset-Practice Alignment

• Controlled environments vs. noisy real-world data
• Temporal shifts in data distribution
• Domain-specific nuances
• Difficulty in simulating rare but critical scenarios
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To mitigate these challenges, researchers are increasingly focusing on developing more
representative datasets and evaluation protocols that better reflect real-world conditions. Koh
et al. [2020] introduced the WILDS benchmark to address this issue, providing a collection
of datasets that reflect real-world distribution shifts. These datasets aim to bridge the gap
between controlled research environments and the challenges faced in practical applications. In
recent years, efforts have been made to create larger, more diverse datasets that better capture
real-world complexity. One notable example is LAION (Large-scale Artificial Intelligence
Open Network), which has produced datasets like LAION-5B, a massive dataset of 5.85 billion
CLIP-filtered image-text pairs [Schuhmann et al., 2022]. LAION datasets are designed to be
more representative of real-world data, including a wide range of image qualities, styles, and
contexts. These datasets have been instrumental in training large-scale vision-language models
and generative models like Stable Diffusion [Rombach et al., 2022]. However, while LAION and
similar large-scale datasets offer greater diversity and scale, they also present new challenges.
These include increased potential for biases due to web-scraped content, difficulties in content
moderation at scale, and the need for more sophisticated filtering and quality control methods.
Furthermore, using such massive datasets raises important ethical and legal questions regarding
data provenance, copyright, and privacy [Birhane and Prabhu, 2021].

As the field progresses, it becomes increasingly important to develop datasets and evaluation
methodologies that not only capture the complexity of real-world scenarios but also address
the ethical and societal implications of large-scale data collection and model training.

2.2.2.2 Variability and Bias in Datasets
Dataset variability and bias present significant challenges in deep learning, affecting model

performance, fairness, and generalization capabilities.

Dataset Bias

Dataset bias refers to systematic errors or imbalances in training data that can lead to unfair
or inaccurate model predictions, particularly for underrepresented groups or scenarios.

Mehrabi et al. [2021] provide a comprehensive overview of various types of biases that
can occur in machine learning datasets, including:

• Historical bias: Reflecting societal prejudices in the data
• Representation bias: Underrepresentation of certain groups or scenarios
• Measurement bias: Inconsistencies in data collection across different groups
• Aggregation bias: Combining distinct groups into a single category, losing important

distinctions
Fabbrizzi et al. [2022] further explores biases specifically in visual datasets, categorizing them into
three main types: label bias, negative set bias, and scene/background bias. Their work highlights
how these biases can significantly impact the performance and fairness of computer vision models.

These biases can lead to models that perform poorly on minority groups or reinforce existing
societal inequalities when deployed in real-world applications.

Examples of Bias in Visual Datasets

• Gender Bias in Facial Recognition: Facial recognition systems trained on datasets
with predominantly light-skinned male faces have shown significantly higher error
rates for women and people with darker skin tones [Mehrabi et al., 2021].
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• Occupation Bias: In image datasets, images of doctors are more likely to show men,
while images of nurses are more likely to show women, reinforcing gender stereotypes
[Fabbrizzi et al., 2022].

• Geographic Bias: Datasets like ImageNet are predominantly composed of images
from Western countries, leading to poor performance on objects and scenes common
in other parts of the world [Fabbrizzi et al., 2022].

Dataset variability, on the other hand, refers to the inherent differences in data distributions
across different domains, time periods, or geographic locations. This variability can lead to
challenges in model generalization and robustness [Shen et al., 2021]. For instance, a model
trained on images from one geographic region may perform poorly when applied to images from
another region due to differences in lighting conditions, architecture styles, or cultural contexts
[Fabbrizzi et al., 2022]. These challenges can be addressed in various ways:

Diverse and representative data collection: This involves actively seeking out data
from underrepresented groups and scenarios. Fabbrizzi et al. [2022] suggest using targeted
data collection methods to ensure balanced representation across different demographic groups,
geographic locations, and cultural contexts. This may include collaborating with diverse
communities to gather more inclusive data. Gebru et al. [2021] propose creating "datasheets
for datasets" to document the composition, collection process, and intended uses of datasets,
which can help identify and address representational issues.

Careful data annotation and quality control: Improved annotation processes can
help mitigate label bias. Fabbrizzi et al. [2022] recommend using diverse annotator teams
and implementing rigorous quality control measures. This might involve multiple rounds of
annotation, cross-validation of labels, and explicit consideration of cultural and contextual
factors in the annotation process. Northcutt et al. [2021] highlight the importance of identifying
and correcting label errors in test sets to ensure accurate model evaluation.

Bias-aware preprocessing and augmentation techniques: These techniques aim to
balance datasets and reduce existing biases. Methods such as resampling, reweighting, and
synthetic data generation can help address representation biases [Shorten and Khoshgoftaar,
2019b]. For visual data, techniques like style transfer or domain randomization can help increase
variability and improve model robustness [Fabbrizzi et al., 2022].

Regular dataset audits and updates: Periodic assessments of datasets can help
identify and address biases over time. This includes analyzing the distribution of different
attributes, checking for outdated or inappropriate content, and ensuring the dataset remains
relevant as societal norms and visual cultures evolve [Fabbrizzi et al., 2022]. Birhane and
Prabhu [2021] demonstrate the importance of such audits by revealing troubling issues in
popular computer vision datasets.

Development of domain-specific datasets for specialized applications: Generic
datasets often fail to capture the nuances of specific domains. Creating specialized datasets
for areas like medical imaging, satellite imagery, or industrial inspection can help address
domain-specific biases and variabilities [Shen et al., 2021]. For instance, Wang et al. [2020b]
discuss the creation of a tailored dataset for COVID-19 diagnosis from chest X-rays, highlighting
the importance of domain expertise in dataset development.
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Summary of Strategies to Address Dataset Variability and Bias

• Diverse and representative data collection
• Careful data annotation and quality control
• Bias-aware preprocessing and augmentation techniques
• Regular dataset audits and updates
• Development of domain-specific datasets for specialized applications

Addressing these challenges requires a multi-faceted approach, including more diverse and
representative data collection, careful preprocessing and augmentation techniques [Shorten and
Khoshgoftaar, 2019b], and the development of robust evaluation methods that can detect and
quantify biases in both datasets and trained models. Buolamwini and Gebru [2018] demonstrate
the effectiveness of such comprehensive approaches in addressing gender and racial bias in
commercial facial analysis systems. Furthermore, as Fabbrizzi et al. [2022] emphasize, it is crucial
to consider the entire machine learning pipeline, from data collection to model deployment,
to effectively mitigate biases and account for dataset variability.

2.2.3 Metric-Related Limitations
The evaluation of deep learning models often relies on a set of standard metrics that,

while useful, may not fully capture the complexity and nuances of model performance. This
section discusses the limitations of current evaluation practices, focusing on the overreliance
on aggregate metrics, the lack of task-specific evaluation criteria, and the challenges in
assessing model robustness.

2.2.3.1 Overreliance on Aggregate Metrics
Many deep learning evaluations heavily rely on aggregate metrics that provide a single

summary statistic of model performance. In particular, for classification problems, the cross-
entropy loss used during model training is hard to interpret. While these metrics offer a
convenient way to compare models, they often hide important nuances in model behavior.
Usual aggregate metrics for classification include:

Accuracy: Proportion of correct predictions

Accuracy = TP + TN
TP + TN + FP + FN

where TP = True Positives, TN = True Negatives, FP = False Positives, FN = False Negatives
F1 Score: Harmonic mean of precision and recall

F1 = 2 · Precision · Recall
Precision + Recall

where
Precision = TP

TP + FP , Recall = TP
TP + FN

Mean Average Precision (mAP): Average precision across all recall levels

mAP = 1
C

C∑
c=1

AP(c)

where C is the number of classes, and AP(C) is the average precision for class c
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Area Under the ROC Curve (AUC-ROC): Model’s ability to distinguish between classes

AUC-ROC =
∫ 1

0
TPR(t) · dFPR(t)

dt
dt

where TPR is the True Positive Rate and FPR is the False Positive Rate:

TPR(t) = TP(t)
TP(t) + FN(t) , FPR(t) = FP(t)

FP(t) + TN(t)

and t is the classification threshold
The problem with aggregate metrics lies in their inherent nature of condensing complex

performance characteristics into a single value. While these metrics provide a convenient
way to compare models, they often oversimplify the nuanced behavior of machine learning
systems, particularly in real-world scenarios with diverse data distributions. Sokolova and
Lapalme [2009] highlight that such simplification can misinterpret a model’s true capabilities
and limitations. This issue is especially pronounced in heterogeneous datasets scenarios, where
performance can vary significantly across different subgroups or in specific, often critical,
edge cases. For instance, a model might achieve high overall accuracy while performing
poorly on minority classes or failing catastrophically in rare but important situations. This
discrepancy between aggregate performance and fine-grained behavior can lead to unexpected
and potentially harmful outcomes when models are deployed in real-world applications. Several
specific limitations of aggregate metrics are that they:

Mask performance disparities across subgroups: they often hide significant variations
in model performance across different demographic groups or data subsets. Buolamwini
and Gebru [2018] demonstrated this issue in facial recognition systems, where overall high
accuracy masked substantially lower performance for women and people with darker skin
tones. This masking effect can perpetuate and even exacerbate existing biases and inequalities
when such systems are deployed.

Fail to capture rare but critical errors: In many real-world applications, rare
events can have disproportionately high importance. Amodei et al. [2016] discuss this in
the context of AI safety, where a model’s performance on infrequent but critical scenarios
(e.g., edge cases in autonomous driving) can be more important than its average performance.
Aggregate metrics typically fail to highlight these crucial edge cases, potentially leading to
oversight of critical failures.

May not align with task-specific goals: Different applications often have unique
performance requirements that aren’t well-captured by standard metrics. For instance, in medical
diagnosis, false negatives (missing a disease) might be more costly than false positives, but this
nuance is lost in balanced metrics like accuracy. Powers [2011] emphasize the importance of
choosing evaluation metrics that align with the specific goals and constraints of the task at hand.

Can be misleading when classes are imbalanced: In datasets with significant class
imbalance, metrics like accuracy can be misleading. A model that always predicts the majority
class might achieve high accuracy but be practically useless. Jeni et al. [2013] demonstrate
this issue in emotion recognition tasks, where class imbalances are common. They propose
using metrics like the Matthews Correlation Coefficient (MCC) or balanced accuracy to provide
a more reliable performance assessment in such scenarios.

Addressing these limitations requires a more comprehensive approach to model evaluation.
This may involve disaggregated analysis across different subgroups [Mitchell et al., 2019], focused
evaluation on critical edge cases [Thomas et al., 2019], the use of multiple complementary metrics
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[Powers, 2011], and the development of task-specific evaluation criteria that better align with
real-world performance requirements [Li et al., 2018]. By adopting such multifaceted evaluation
strategies, researchers and practitioners can gain a more nuanced and reliable understanding
of model performance, leading to more robust and fair AI systems.

Summary of Limitations of Aggregate Metrics

Aggregate metrics:
• Mask performance disparities across subgroups
• Fail to capture rare but critical errors
• May not align with task-specific goals
• Can be misleading when classes are imbalanced

To address these limitations, researchers are increasingly advocating for more comprehensive
evaluation approaches that consider performance across various subgroups and scenarios.
This includes disaggregated analysis, where performance is reported separately for different
demographic groups or data subsets. Recent work by Zhang et al. [2023] proposes using
stratified performance metrics to better capture model behavior across different data slices.
Kearns et al. [2018] introduce the concept of "fairness gerrymandering" and suggest techniques
to prevent models from exploiting loopholes in aggregate fairness metrics. Building on this,
Dwork et al. [2021] propose a framework for multicalibration, which ensures predictive parity
across a wide range of overlapping subgroups. To address task-specific goals, Lipton [2017]
argues for developing contextual evaluation metrics that align more closely with domain-specific
objectives. For imbalanced datasets, Grandini et al. [2020] provides a comprehensive analysis of
various metrics and proposes guidelines for choosing appropriate evaluation measures based
on the specific characteristics of the problem. These advancements in metric design and
application represent a significant step toward more nuanced and reliable model evaluation
in deep learning, helping to uncover hidden biases and performance discrepancies that may
be obscured by traditional aggregate metrics.

2.2.3.2 Lack of Task-Specific Evaluation Criteria
Standard evaluation metrics often fail to capture task-specific requirements and nuances. Dif-

ferent applications may have unique performance criteria that are not well-represented by generic
metrics.

Examples of Task-Specific Evaluation Needs

• Medical diagnosis: In medical applications, the consequences of false negatives
(missing a disease) can be far more severe than false positives. Therefore, evaluation
metrics that prioritize sensitivity (recall) over specificity may be more appropriate.
McClish [1989] propose using partial area under the ROC curve (pAUC) to focus
on high-sensitivity regions, particularly relevant for screening tests where missing a
positive case is costly.

• Recommender systems: accuracy is not the only factor in a successful recom-
mender system. Herlocker et al. [2004] argue that user satisfaction often depends
on factors like diversity, novelty, and serendipity of recommendations. Metrics
such as intra-list diversity [Ziegler et al., 2005] and coverage [Ge et al., 2010] have
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been developed to capture these aspects, providing a more holistic evaluation of
recommender system performance.

• Autonomous driving: In safety-critical applications like autonomous driving,
traditional metrics like average accuracy can be misleading. Borg et al. [2018]
propose a framework for evaluating autonomous driving systems that emphasizes
performance in rare scenarios.

• Image memorability: Predicting which images are memorable to humans is a
unique challenge that requires specialized evaluation approaches. Cohendet et al.
[2018], in the context of the MediaEval Benchmarking Initiative for Multimedia Eval-
uation, introduce an evaluation protocol designed explicitly for image memorability
prediction tasks, considering the ranking of images based on their memorability,
providing a more comprehensive assessment of model performance in this domain.

The lack of task-specific evaluation criteria can lead to models that optimize for the wrong
objectives, potentially compromising their real-world utility. To address this, researchers are
developing more specialized evaluation frameworks tailored to specific domains and applications
[Ribeiro et al., 2020]. These frameworks often combine multiple metrics and incorporate domain
knowledge to provide a more nuanced and relevant assessment of model performance. For
instance, in natural language processing, Liu et al. [2016] reviews various task-specific metrics
for dialogue systems, highlighting how these specialized metrics capture aspects of language
quality and coherence that general-purpose metrics might miss. Similarly, in computer vision,
Behzadi-Khormouji and Oramas [2023] propose task-specific evaluation protocols for visual
reasoning tasks, emphasizing the need to assess both accuracy and the model’s ability to
provide human-interpretable explanations for its decisions.

2.2.3.3 Challenges in Evaluating Model Robustness
Assessing the robustness of deep learning models is crucial in standard evaluation practices.

Robustness, in the context of machine learning, refers to a model’s ability to maintain consistent
and reliable performance under various conditions or perturbations that may differ from its
training environment. However, it remains often overlooked in standard evaluation practices,
and encompasses several aspects.

Generalization to out-of-distribution data: This refers to a model’s ability to perform
well on data that differs significantly from its training distribution. Hendrycks and Dietterich
[2019] introduce benchmarks for evaluating out-of-distribution generalization, highlighting
how models often struggle with distribution shifts. Techniques like domain adaptation [Wang
and Deng, 2018] and robust optimization [Sinha et al., 2017] have been proposed to improve
performance on out-of-distribution data.

Resistance to adversarial attacks: Adversarial attacks involve carefully crafted per-
turbations to input data that can cause models to make incorrect predictions. Goodfellow
et al. [2014b] first demonstrated the vulnerability of deep neural networks to such attacks.
Evaluating adversarial robustness often involves measuring a model’s accuracy under various
types of attacks, such as those proposed by Goodfellow et al. [2014b] and Carlini and Wagner
[2017]. Defensive techniques like adversarial training [Shafahi et al., 2019] aim to improve
model resistance to these attacks.

Stability under input perturbations: This aspect focuses on a model’s ability to
maintain consistent predictions when inputs are slightly modified in ways that shouldn’t affect
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the outcome. Zheng et al. [2016] propose evaluation methods for assessing model stability,
including measuring prediction consistency under small input transformations. Techniques
like data augmentation [Shorten and Khoshgoftaar, 2019a] and regularization methods [Zhang
et al., 2018] can help improve stability.

Consistency across different random initializations: This refers to the variability
in model performance due to randomness in initialization and training. Dodge et al. [2020]
demonstrate that the impact of random seeds can be significant, especially for smaller datasets.
Evaluating this aspect often involves training models with multiple random seeds and analyzing
the distribution of results. Ensemble methods [Lakshminarayanan et al., 2017] can help
mitigate inconsistencies across initialization.

Performance under various levels of noise or data corruption: This aspect evaluates
how well models perform when input data is corrupted or noisy, which is common in real-world
scenarios. Hendrycks and Dietterich [2019] introduce a benchmark for corruption robustness,
simulating various types of noise and corruptions. Techniques like noise injection during
training [You et al., 2019] and robust loss functions [Barron, 2019] have been proposed to
improve robustness to noise and corruption.

Summary of Model Robustness Related Challenges

• Generalization to out-of-distribution data
• Resistance to adversarial attacks
• Stability under input perturbations
• Consistency across different random initializations
• Performance under various levels of noise or data corruption

Evaluating robustness is challenging because it requires testing models under a wide range
of conditions, many of which may not be represented in standard test sets. Furthermore, there’s
often a trade-off between robustness and other performance metrics, making it difficult to
compare models solely based on standard benchmarks [Taori et al., 2020].

The recent evaluation approaches provide a more comprehensive view of model performance
but also add complexity to the evaluation process, highlighting the need for standardized
robustness evaluation protocols in the deep learning community. While current evaluation
metrics provide valuable insights, they often fall short in capturing the full spectrum of model
performance, task-specific requirements, and robustness. Addressing these limitations requires a
more holistic approach to evaluation that combines standard metrics with task-specific criteria,
disaggregated analysis, and robust testing methodologies.

2.2.4 Complexity in Performance Attribution

As deep learning models become more sophisticated, attributing performance gains to
specific factors becomes increasingly challenging. This complexity arises from the inter-
play of various elements in the deep learning pipeline, making it difficult to isolate the
impact of individual components.
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2.2.4.1 Interplay of Data, Model Size, and Architecture

The performance of deep learning models is influenced by a complex interplay of factors,
including the quantity and quality of training data, model size, and architectural choices.

Data quantity and quality: Larger datasets often lead to better performance, but the
relationship is not always linear [Sun et al., 2017a]. The quality and diversity of data can be
as important as quantity. Barz and Denzler [2020] demonstrate that carefully curated smaller
datasets can sometimes outperform larger, noisier ones. Moreover, Jiang et al. [2020] show that
the distribution of data across classes and the presence of hard examples significantly impact
model performance, highlighting the importance of data quality beyond mere quantity.

Model size: Increasing model size (e.g., number of parameters) generally improves
performance, but with diminishing returns and increased computational cost [Kaplan et al.,
2020]. Brown et al. [2020] showcase the impressive capabilities of extremely large language
models, but also highlight the computational challenges they pose. On the other hand, Frankle
and Carbin [2019] propose the "lottery ticket hypothesis," suggesting that smaller subnetworks
within large models might be responsible for most of the performance, complicating the
relationship between model size and performance.

Architecture: Different architectural choices (e.g., convolutional vs. transformer models)
can lead to varying performance across tasks [Dosovitskiy et al., 2021]. The success of transformer
architectures in both natural language processing [Vaswani et al., 2023] and computer vision
[Dosovitskiy et al., 2021] has challenged long-held assumptions about optimal architectures
for different domains. Zoph et al. [2018] demonstrate that neural architecture search can
discover novel architectures that outperform human-designed ones, further complicating the
attribution of performance gains to specific architectural choices.

Challenges in Performance Attribution

• Difficult to isolate the impact of individual factors
• Performance gains may be due to complex interactions rather than single improve-

ments
• Scaling effects can mask or amplify the influence of specific components

The intricate interplay between these factors creates a multidimensional optimization
problem where improvements in one area can have cascading effects on others. For instance,
Nakkiran et al. [2021] and Belkin et al. [2019a] observe a "double descent" phenomenon where
increasing model size beyond the point of interpolation can lead to improved generalization,
contrary to classical statistical learning theory. This non-monotonic relationship between model
complexity and performance further complicates attribution efforts. Moreover, the impact of
these factors can vary significantly across different tasks and domains. What works well for
image classification might not be optimal for natural language processing or reinforcement
learning. This task-dependence adds another layer of complexity to performance attribution,
necessitating careful, context-specific analysis rather than one-size-fits-all explanations.
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2.2.4.2 Impact of Training Methodologies
Training methodologies are central in model performance but are often overlooked in

evaluation. The choice of training approach can significantly influence not only the final
performance of a model but also its convergence speed, generalization ability, and robustness.

The choice of optimizer (e.g., SGD, Adam) can significantly affect model performance
[Kingma and Ba, 2015]. While Adam has become popular due to its adaptive learning rates and
momentum, Wilson et al. [2017] show that carefully tuned SGD can often outperform Adam
in terms of generalization. Furthermore, Loshchilov and Hutter [2019] introduce AdamW,
demonstrating that the interaction between weight decay and adaptive learning rates in
Adam can lead to suboptimal performance, highlighting the nuanced impact of optimizer
choice on model behavior.

Different learning rate strategies can lead to varied convergence and final performance
[Smith, 2017]. Beyond simple decay schedules, techniques like learning rate warmup [Goyal
et al., 2017] and cyclic learning rates [Smith, 2017] have shown to improve both convergence
speed and final performance. Loshchilov and Hutter [2017] introduce cosine annealing with
warm restarts, demonstrating how complex learning rate schedules can help models escape
local optima and achieve better generalization.

Augmentation techniques like mixup or cutout can improve generalization but complicate
performance attribution [Zhang et al., 2018]. Cubuk et al. [2019] show that automated
augmentation strategies can significantly boost performance across various tasks. However, the
effectiveness of augmentation can vary greatly depending on the dataset and model architecture.
Hernandez-Garcia and König [2020] demonstrate that the impact of data augmentation can
be more pronounced in smaller datasets, potentially masking the true capabilities of the
underlying model architecture.

The impact of pre-training on different datasets or with different objectives (e.g.,
supervised vs. self-supervised) can be substantial but hard to quantify [He et al., 2020a].
Self-supervised pre-training methods like SimCLR [Chen et al., 2020a] and BERT [Devlin
et al., 2019] have shown remarkable success in learning transferable representations. However,
Neyshabur et al. [2020] argue that the benefits of pre-training may be more about optimization
than learned representations, complicating our understanding of why pre-training works.

Pre-training Impact

A model pre-trained on a large dataset like ImageNet may perform well on a downstream
task with limited data. However, it is challenging to determine how much of the
performance is due to the pre-training versus the model architecture or fine-tuning
strategy. For instance, Kornblith et al. [2018] show that better ImageNet performance
doesn’t always translate to better transfer learning performance, suggesting that the
relationship between pre-training and downstream performance is not straightforward.

The complexity of training methodologies extends beyond these individual components.
Their interactions can lead to surprising effects. For example, Smith [2018] demonstrate that
the relationship between batch size and learning rate can be leveraged to dramatically reduce
training time without loss of accuracy. Similarly, You et al. [2020] show how careful tuning
of optimization algorithms and learning rate schedules can enable training on extremely large
batch sizes, allowing for better utilization of distributed computing resources.
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Recent work has also highlighted the importance of considering the entire training pipeline
holistically. Bello et al. [2021] show that many advances attributed to architectural innovations
might be explained by improved training techniques, emphasizing the need for careful ablation
studies and controlled comparisons.

2.2.4.3 Difficulty in Isolating Contributory Factors
The interdependence of various factors in deep learning models makes it challenging to

isolate the contribution of individual components. This complexity stems from the intricate
interplay between model architecture, dataset characteristics, training methodologies, and
even hardware configurations.

Ablation studies: While useful, ablation studies may not capture complex interactions
between components [Meyes et al., 2019]. Traditional ablation studies involve removing
or replacing individual components to assess their impact. However, Hooker et al. [2019]
demonstrate that this approach can be misleading in deep learning, as the importance of a
feature may depend on the presence or absence of other features. They propose a more nuanced
approach called ROAR (Remove and Retrain) to better capture these interdependencies.

Hyperparameter sensitivity: Performance can be highly sensitive to hyperparameters,
making it difficult to compare models fairly [Yang and Shami, 2020]. The high-dimensional
nature of hyperparameter spaces in deep learning models means that seemingly minor changes
can lead to significant performance differences. Li et al. [2020] demonstrate that many reported
improvements in neural architecture search may be due to differences in hyperparameter
optimization rather than architectural innovations. This sensitivity highlights the need for
rigorous hyperparameter tuning protocols and fair comparison methodologies.

Random seeds: The impact of random initialization and data shuffling can be signif-
icant, especially for smaller datasets [Mishchenko et al., 2020]. Dodge et al. [2020] show
that the choice of random seed can sometimes have a larger impact on performance than
architectural changes, particularly for smaller datasets or models. This variability complicates
the reproducibility of results and the assessment of genuine improvements. Bouthillier et al.
[2021] propose methods for quantifying this variability and suggest reporting practices to
improve the reliability of deep learning research.

To address these challenges, researchers are developing more rigorous evaluation frameworks:
Standardized benchmarks: Initiatives like MLPerf aim to provide consistent evaluation
across different hardware and software stacks [Reddi et al., 2020]. These benchmarks define
specific tasks, datasets, and evaluation metrics to enable fair comparisons. However, Dehghani
et al. [2021] argue that while useful, fixed benchmarks can lead to overfitting to specific
datasets and metrics, potentially hindering innovation. They propose dynamic benchmarks
that evolve over time to mitigate this issue.

Controlled studies: Carefully designed experiments that vary only one factor at a
time while keeping others constant [Bello et al., 2021]. This approach, inspired by scientific
experimental design, aims to isolate the impact of individual components. Lipton [2017]
emphasize the importance of such controlled experiments in machine learning, arguing for
a more rigorous empirical methodology in the field.

Meta-analysis: Aggregating results across multiple studies to identify consistent trends
and effects. Henderson et al. [2018] demonstrate the value of this approach in reinforcement
learning, showing how meta-analysis can reveal robust trends that may not be apparent in
individual studies. Similarly, Hutson [2018] argue for the importance of meta-analyses in AI
research to improve reproducibility and identify genuine advances.
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This complexity in performance attribution highlights the need for more nuanced evaluation
approaches in deep learning. Researchers must consider the interplay of various factors
and employ rigorous methodologies to gain meaningful insights into model performance and
improvements. Amershi et al. [2019] propose a set of guidelines for human-AI interaction that
emphasize the importance of comprehensive evaluation across different contexts and user groups.
Recent work has started to explore causal inference techniques to better understand the factors
contributing to model performance. Scholkopf et al. [2021] argue for the importance of causal
models in machine learning, suggesting that causal reasoning could help disentangle the complex
relationships between different components of deep learning systems.

Overall, accountability and rigorous evaluation are fundamental to advancing deep learning
research and its applications, ensuring that models are not only effective, but also transparent
and trustworthy. We will now focus on some specialized open research topics, presenting their
overall setup and highlighting their specific evaluation challenges.

2.3 Evaluation in EFCIL
2.3.1 Class-Incremental Learning (CIL)

Parisi et al. [2019] define continual learning as "adaptive algorithm capable of learning from
a continuous stream of information, with such information becoming progressively available over
time and where the number of tasks to be learned [...] are not predefined". Class-incremental
learning is a subset of continual learning that focuses specifically on the classification task.

Definition: Class-Incremental Learning

Class-Incremental Learning (CIL) is a machine learning paradigm that enables classification
models to continuously incorporate new classes over time without full retraining on all data.

The primary purpose of CIL is to enable machine learning systems to adapt to evolving
environments where new classes emerge sequentially [Parisi et al., 2019; Rebuffi et al., 2017;
Lange et al., 2019]. In a CIL scenario, a model is initially trained on a set of classes (or
pre-trained with external data) and then presented with new classes in subsequent stages.
The goal is to learn these new classes while retaining knowledge of previously learned ones
[Masana et al., 2021]. This approach is particularly relevant in real-world applications where
data arrives in streams, and full access to past data may be limited or impossible [Hayes
and Kanan, 2022; Van de Ven and Tolias, 2019].

2.3.1.1 Challenges
The main challenge in CIL is the stability-plasticity dilemma, which refers to the fundamental

trade-off between a model’s ability to acquire new knowledge (plasticity) and its capacity to
retain previously learned information (stability) [Mermillod et al., 2013]. This dilemma is
at the core of the catastrophic forgetting problem in neural networks [Mccloskey and Cohen,
1989; French, 1999]. When a model is too plastic, it rapidly adapts to new information
but risks overwriting or disrupting existing knowledge, leading to catastrophic forgetting
[Kirkpatrick et al., 2017]. Conversely, if a model is too stable, it maintains its existing
knowledge well but struggles to incorporate new information effectively [Zenke et al., 2017].
Striking the right balance between stability and plasticity is crucial for successful CIL systems
[Parisi et al., 2019; Schwarz et al., 2018].
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Challenges in CIL

Key challenges in CIL include :
• The stability-plasticity dilemma
• Limited or no memory for storing old data: Many CIL scenarios restrict or prohibit

the storage of old data, making it difficult to rehearse past examples [Hayes and
Kanan, 2020]. As new classes are added, the model may become biased towards
newer classes due to the recency of their training data [Wu et al., 2019].

• Developing appropriate metrics to assess both the model’s ability to learn new classes
and retain knowledge of old ones is crucial for evaluating CIL systems [Masana et al.,
2021].

Addressing these challenges is essential for developing robust CIL systems that can adapt to
new information while maintaining performance on previously learned tasks. Various approaches
have been proposed, including rehearsal methods, parameter regularization, and architectural
strategies, each with its own trade-offs in terms of performance, memory requirements, and
computational cost [Lange et al., 2019; Wu et al., 2021a; Wang et al., 2024].

2.3.2 Exemplar-Free Class-Incremental Learning (EFCIL)
2.3.2.1 Presentation

Definition: Exemplar-Free Class-Incremental Learning

Exemplar-Free Class-Incremental Learning (EFCIL) is a variant of CIL where the model
cannot store or revisit any examples from previously learned classes.

This constraint introduces additional challenges beyond those faced in standard CIL [Hayes
and Kanan, 2020; Petit et al., 2023]. Unlike rehearsal-based CIL methods, EFCIL algorithms
cannot leverage stored examples to mitigate catastrophic forgetting [Rebuffi et al., 2017;
Belouadah and Popescu, 2020]. Without access to old data, the feature space learned by
the model may gradually shift, leading to increased forgetting and decreased performance
on earlier classes [Yu et al., 2020]. Traditional knowledge distillation techniques used in
CIL become challenging without exemplars, requiring alternative approaches to preserve past
knowledge [Li and Hoiem, 2016; Hou et al., 2019]. Additionally, maintaining clear decision
boundaries between old and new classes becomes more difficult without exemplars to refine
these boundaries [Zhao et al., 2020].

Recent advancements in EFCIL have focused on developing more sophisticated methods
to mitigate catastrophic forgetting without relying on stored examples. These approaches
often leverage innovative techniques in representation learning and knowledge preservation. For
instance, Wu et al. [2021a] and Zhu et al. [2021b] explored the use of self-supervised learning to
improve the generalizability of feature representations across incremental steps. Others, like Petit
et al. [2023], have proposed novel ways to simulate or synthesize information about past classes
using only statistical summaries. Simulating past and future classes has also gained popularity in
recent years by leveraging the knowledge of class names and new conditional generation methods
[Jodelet et al., 2023; Feillet et al., 2024]. Approaches using pre-trained models, particularly
large language models or vision transformers, have also gained traction, demonstrating improved
performance in EFCIL scenarios [Wang et al., 2022a; Smith et al., 2023]. Additionally, some
recent works have focused on developing more robust distance-based classifiers that can better
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handle the challenges of class separation in fixed feature spaces [Hayes and Kanan, 2020;
Goswami et al., 2024]. These diverse strategies reflect the ongoing efforts to push the boundaries
of what’s achievable in EFCIL, making it increasingly viable for real-world applications where
data storage is constrained or prohibited [Hayes and Kanan, 2022; Ravaglia et al., 2021].

2.3.2.2 Importance in Real-World Applications
EFCIL addresses significant challenges in scenarios where data storage is constrained, privacy

is a concern, or rapid adaptation to new information is necessary. Several factors underscore
its importance. As Hayes and Kanan [2022] point out, in applications involving sensitive data
such as medical records or financial transactions, storing old examples may contravene privacy
regulations. EFCIL aligns with regulations like the GDPR [GDP] and the European AI Act [UE,
2024], which encourage algorithms that don’t require personal data storage [Verma et al., 2023].
Ravaglia et al. [2021] and Pellegrini et al. [2021] note that for edge computing or mobile devices
with limited storage, maintaining a growing set of exemplars is often impractical. Belouadah
et al. [2021] and Hayes and Kanan [2022] highlight that EFCIL methods offer relatively low
update costs in terms of memory and execution time. Furthermore, EFCIL enables models
to incorporate new information dynamically without full retraining, which is computationally
expensive and time-consuming, especially in rapidly evolving environments.

Examples of EFCIL Applications

• Autonomous driving: on-board systems must learn new types of objects and road
conditions in real-time, with limited storage capacity for past scenarios.

• Medical diagnostics: models need to adapt to new variants of diseases without
retaining sensitive patient data.

• Manufacturing: systems must incorporate new products or materials efficiently
without storing extensive historical data.

• Social media content analysis: platforms process thousands of posts per second,
making it impractical to store all historical data for retraining.

• Fraud detection in finance: institutions need to adapt to new fraud patterns quickly
without retaining sensitive transaction data.

In dynamic environments where past data quickly becomes obsolete, EFCIL facilitates
efficient model adaptation without reliance on potentially outdated examples, as noted by Aljundi
et al. [2019]. Zhu et al. [2022] and Hayes and Kanan [2022] suggest that by developing effective
EFCIL methods, researchers aim to create more versatile and deployable incremental learning
systems capable of operating under strict data retention constraints. This makes machine
learning more applicable in sensitive and resource-constrained environments. Additionally,
EFCIL aligns with the use of off-the-shelf pre-trained models whose training data is not always
publicly available, further expanding its practical applications [Oquab et al., 2023].

Summary of Applications Scenarios of EFCIL

EFCIL is valuable in privacy-sensitive domains, resource-constrained environments, sce-
narios with rapid data streams, and applications subject to strict legal and ethical
considerations. It enables continuous learning without storing old data, addressing both
practical and privacy concerns in various fields including healthcare, finance, manufacturing,
and autonomous systems.
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2.3.3 Existing Evaluation Approaches for EFCIL
2.3.3.1 Common Experimental Setups

Evaluation of EFCIL algorithms typically involves specific experimental setups designed
to simulate real-world incremental learning scenarios. These setups often include dataset
splitting, where full datasets are divided into smaller subsets, each representing a batch of
new classes [Rebuffi et al., 2017; Hou et al., 2019].

Common Datasets for EFCIL Evaluation

Some common datasets in the evaluation of EFCIL include:
• CIFAR-100 [Krizhevsky, 2009]
• ImageNet [Deng et al., 2009]
• CUB-200 [Belouadah et al., 2021]

The learning process is typically divided into multiple incremental steps, with each step
introducing a new set of classes [Castro et al., 2018; Wu et al., 2019]. In EFCIL, no exemplars
are allowed, in contrast to standard CIL where a limited memory budget is often set to limit
the number of stored exemplars [Hayes and Kanan, 2020; Rebuffi et al., 2017].

Many setups use a larger initial set of base classes, followed by smaller increments of new
classes [Hou et al., 2019; Belouadah and Popescu, 2020]. To assess generalization across different
domains, Masana et al. [2021] and Petit et al. [2023] suggest evaluating on multiple datasets.

2.3.3.2 Standard Metrics
Several metrics are commonly used to evaluate the performance of CIL and EFCIL algorithms.

Average Incremental Accuracy measures the overall classification accuracy after each
incremental step, averaged over all steps [Rebuffi et al., 2017; Hou et al., 2019]. It is defined as:

Average Incremental Accuracy = 1
T

T∑
i=1

Ai (2.1)

where T is the total number of incremental steps and Ai is the accuracy on all seen
classes after the i-th step.

Chaudhry et al. [2018] introduce the complementary measure Forgetting, which measures
the decrease in performance on previously learned classes. It can be calculated as::

Forgetting = 1
T − 1

T −1∑
i=1

max
j∈{1,...,i}

(Aj,j −AT,j) (2.2)

where Ai,j is the accuracy on the j-th task after learning the i-th task.
Additionally, a few other metrics can be found in the literature. Learning Accuracy

evaluates the model’s ability to learn new classes at each step [Rebuffi et al., 2017]. Final
Model Accuracy is the overall accuracy of the final model on all classes [Wu et al., 2019].
Lopez-Paz and Ranzato [2022] propose Backward Transfer, which measures how learning
new tasks affects the performance on previous tasks, and Forward Transfer, which assesses
how learning previous tasks influences the performance on new tasks.

These metrics provide a comprehensive view of a model’s performance in incremental
learning scenarios, capturing both its ability to learn new information and retain old knowledge.
However, it is essential to note that the relative importance of these metrics may vary depending
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on the specific application and requirements of the incremental learning system [Masana
et al., 2021; Belouadah et al., 2021].

2.3.4 Shortcomings of Current Evaluation Methods
While existing evaluation approaches have provided valuable insights into CIL and EFCIL

algorithms, several limitations have been identified in recent literature:

2.3.4.1 Lack of Comprehensive Analysis Across Diverse Datasets

Many studies focus on a small set of popular datasets (e.g., CIFAR-100, ImageNet)
[Belouadah et al., 2021; Masana et al., 2021]. This narrow focus can lead to overfitting
on specific dataset characteristics and may not adequately represent the diversity of real-world
data. Wu et al. [2019] argue for more extensive evaluations on large-scale datasets to better
simulate real-world scenarios. Delange et al. [2021] emphasize the need for more realistic
and challenging datasets that better reflect the complexities of continual learning in practical
settings. Van de Ven and Tolias [2019] highlight the importance of considering different types
of CIL setups, introducing three continual learning scenarios.

Data-Induced Shortcomings in EFCIL

Current EFCIL evaluations often suffer from limited dataset variety, domain specificity,
and scale limitations, potentially overlooking real-world challenges.

2.3.4.2 Limited Consideration of Initial Training Strategies

The influence of pre-training strategies on EFCIL performance is a decisive yet often
neglected aspect of evaluation. Different pre-training approaches, such as supervised learning
on large datasets or self-supervised methods, can significantly affect the model’s ability to adapt
to new classes and retain knowledge of old ones [Wu et al., 2022]. For instance, Neyshabur
et al. [2021] suggest that models pre-trained on diverse datasets might exhibit better transfer
learning capabilities, potentially improving their performance in EFCIL scenarios.

Model architecture choices play a crucial role in the success of EFCIL algorithms, but their
impact is not consistently analyzed across studies [Masana et al., 2021]. The trade-offs between
different architectures, such as convolutional neural networks (CNNs) and transformers, in
terms of their ability to learn new classes incrementally while maintaining performance on
old classes, remain understudied. This lack of comprehensive analysis makes it challenging to
determine which architectures are best suited for specific EFCIL tasks or domains.

Furthermore, the initial data distribution and quantity can have far-reaching effects on the
entire incremental learning process. The number of classes and examples in the initial training
set, as well as their diversity and representativeness, can significantly influence the model’s
ability to generalize and adapt to new classes [Belouadah et al., 2021]. However, many studies
do not systematically vary these factors or analyze their impact, potentially missing important
insights into the robustness and scalability of EFCIL algorithms in different data regimes.

Addressing these limitations in future research could provide valuable insights into the
design of more effective and generalizable EFCIL algorithms, better equipped to handle the
complexities of real-world incremental learning scenarios.
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Initial Training-Induced Shortcomings in EFCIL

Current EFCIL evaluations often overlook:
• The impact of various pre-training strategies on performance
• The influence of model architecture choices on incremental learning capabilities
• The effects of initial data distribution and quantity on subsequent learning steps

These limitations can lead to an incomplete understanding of EFCIL algorithm behavior
and limit real-world applicability.

2.3.4.3 Need for More Rigorous Statistical Analysis

The field of EFCIL research currently faces several challenges related to statistical rigor.
Many studies report performance improvements without conducting rigorous statistical vali-
dation, potentially overstating the significance of their results. This lack of statistical testing
makes it difficult to determine whether observed differences between algorithms are truly
meaningful or simply due to chance.

Detailed ablation studies, essential for isolating the effects of different components in
CIL/EFCIL algorithms, are often missing from published works, as in many other fields of ML
[Mousavi et al., 2020]. These studies are vital for understanding which aspects of an algorithm
contribute most significantly to its performance and for guiding future improvements.

Some Consequences of Inconsistent Reporting

Variations in reporting metrics and experimental setups across studies can lead to:
• Difficulty in directly comparing results
• Potential misinterpretation of algorithm effectiveness
• Challenges in reproducing reported findings

The impact of random initializations and data ordering on performance is not consistently
reported, potentially masking the stability of algorithms [Prabhu et al., 2020]. This oversight
can lead to overestimating the robustness of certain approaches, as their performance may
be highly dependent on specific initializations or data presentations.

Statistical Shortcomings in EFCIL Research

Current EFCIL evaluations present:
• A lack of statistical significance testing
• Insufficient ablation studies
• Inconsistent reporting of metrics and setups
• Limited analysis of performance variances

Several approaches have been proposed in the literature to address these statistical short-
comings. Jiménez-Guarneros and Alejo-Eleuterio [2022] emphasize the importance of using
statistical significance tests when comparing EFCIL algorithms, suggesting the use of paired
t-tests or Wilcoxon signed-rank tests to assess whether performance differences are statistically
significant. To address the issue of inconsistent reporting, Rodríguez et al. [2018] suggest
adopting standardized reporting practices, including the use of consistent evaluation metrics
and clear descriptions of experimental setups. This approach can facilitate more meaningful
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comparisons across different studies.

By addressing these shortcomings, researchers can develop more reliable and generalizable
insights into the performance and applicability of CIL and EFCIL algorithms in real-world
scenarios [Feillet et al., 2023; Petit et al., 2023]. This improved rigor will not only enhance
the quality of individual studies but also contribute to the overall advancement of the field by
enabling more meaningful comparisons and insights across different EFCIL approaches.

2.4 Biases in Face Recognition
2.4.1 Face verification

Face recognition technology has become an increasingly important topic in computer vision
and biometrics over the past few decades [Zhao et al., 2003]. This broad field encompasses
various tasks related to the automatic processing and analysis of human faces in digital images
or video streams. These tasks include face detection, face alignment, face identification,
and face verification, each serving distinct purposes within the broader context of facial
analysis [Jain and Li, 2011].

Among these tasks, face verification has gained particular prominence due to its wide-
ranging applications in security, authentication, and identity management systems [Jain et al.,
2004]. As a specific subset of face recognition, face verification focuses on a unique challenge
within the field [Zhao et al., 2003].

2.4.1.1 Definition and Purpose

Face Verification

Face verification is a biometric technology that determines whether two face images belong
to the same individual by comparing their representations [Jain and Li, 2011].

The primary purpose of face verification is to determine whether two given facial im-
ages represent the same person without necessarily knowing a priori who that person is.
This process typically involves:

1. Receiving two facial images for comparison.
2. Extracting facial features or representations from both images.
3. Computing the similarity or distance between the extracted features.
4. Deciding whether the two images represent the same person based on the computed

similarity or distance.
Face verification systems aim to achieve high accuracy by minimizing false acceptances (in-

correctly verifying an impostor) and false rejections (incorrectly rejecting a genuine user) [Phillips
et al., 2012].

2.4.1.2 Applications

Face verification technology has found widespread applications across various domains,
primarily due to its non-intrusive nature and increasing reliability [Masi et al., 2018].
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Example of Applications of Face Verification

Some key areas of application include:
• Security and access control
• Law enforcement and surveillance
• Personal device authentication
• Financial services
• Border control and immigration

Indeed, face verification is increasingly used for secure access to physical spaces such as
offices, restricted areas, and smart homes [Masi et al., 2018]. It offers a touchless and efficient
method of identity verification, enhancing both security and convenience.

In law enforcement, Purshouse and Campbell [2022] note that face verification aids in
identifying suspects, missing persons, and potential security threats. However, its use in this
domain has raised significant ethical and privacy concerns.

Example: Airport Security

Many airports now employ face verification systems for passenger identification and
streamlined boarding processes, enhancing both security and efficiency in air travel
[Labati et al., 2016].

Smartphones and personal computers increasingly use face verification as a secure and
convenient user authentication method [Chen et al., 2018]. This application has become
particularly prevalent in mobile devices, offering an alternative or complement to traditional
PIN codes or fingerprint scans.

Banks and financial institutions are adopting face verification for secure customer au-
thentication in various transactions, including ATM withdrawals and online banking ser-
vices [Amato et al., 2019].

Face verification systems are deployed at international borders to expedite traveler processing
while maintaining high-security standards [Labati et al., 2016]. These systems can quickly
verify a traveler’s identity against their passport or visa information.

The diverse applications of face verification technology highlight its potential to enhance
security, streamline processes, and improve user experiences across various sectors. However,
as the technology continues to evolve and its use becomes more widespread, it also raises
important questions about privacy, bias, and ethical implementation that need to be carefully
addressed [Van Noorden, 2020].

2.4.2 Fairness Challenges in Face Verification

As face verification systems become more prevalent in various applications, concerns about
their fairness and potential biases have come to the forefront of research and public discourse.
These challenges stem from observed performance disparities across different demographic
groups and raise significant ethical and legal concerns.
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2.4.2.1 Performance Disparities Across Demographic Groups
As in any image classification problem, a face verification model’s performance is heavily

influenced by various image characteristics, such as image quality and the pose (i.e., orientation)
of the person. However, some of these characteristics are protected attributes, which are
demographic or personal features that are legally protected from discrimination.

Definition: Protected Attribute

A protected attribute is a characteristic of an individual that should not be used as a
basis for discrimination, as defined by laws and regulations [Barocas et al., 2023].

Key Demographic Factors Affecting Face Verification Performance

Some of the protected demographic attributes known to affect face verification performance
include:

• Ethnicity
• Gender
• Age
• Skin tone

Multiple studies have demonstrated that face verification systems can exhibit varying levels
of accuracy depending on these protected attributes. Buolamwini and Gebru [2018] and Grother
et al. [2019] have shown that certain racial or ethnic groups, particularly individuals with darker
skin tones, often experience higher error rates. Gender-based differences in accuracy have also
been observed, with Albiero et al. [2020] noting lower performance for women in many systems.
Additionally, Terhörst et al. [2021] found age-related variations in performance, with systems
generally performing worse for very young or very old individuals.

Example: Gender Shades Study

The "Gender Shades" study by Buolamwini and Gebru [2018] found that commercial
gender classification systems had error rates of up to 34.7% for darker-skinned females
compared to just 0.8% for lighter-skinned males.

These performance disparities can lead to unfair outcomes in real-world applications,
potentially disadvantaging certain demographic groups and reinforcing existing societal biases.

2.4.2.2 Ethical and Legal Concerns
The presence of biases in face verification models is an example of algorithmic bias.

Algorithmic Bias

Algorithmic bias refers to systematic and repeatable errors in a computer system that
create unfair outcomes, such as privileging one arbitrary group of users over others
[Friedman and Nissenbaum, 1996].

The observed fairness issues in face verification systems raise significant ethical and legal
concerns. Unequal performance across demographic groups can lead to discriminatory practices,
especially when these systems are used in high-stakes applications such as law enforcement
or access to services. Purshouse and Campbell [2022] highlight that biased face verification
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systems in law enforcement can exacerbate existing racial disparities in policing, potentially
leading to wrongful arrests or disproportionate surveillance of minority communities.

The widespread use of face verification technology also raises questions about individual
privacy rights and the potential for unauthorized surveillance. Van Noorden [2020] argue that
the pervasive use of facial recognition in public spaces can create a chilling effect on free speech
and assembly, as individuals may feel constantly monitored. This concern is particularly acute in
contexts where face verification is used for social control or political repression [Rezende, 2020].

Another significant issue is the collection and use of facial data for training and operating
these systems, which often occurs without explicit consent. This practice raises concerns related
to data protection regulations such as the General Data Protection Regulation [GDP] in the
European Union. Staunton et al. [2019] point out that the use of facial recognition technologies
may conflict with GDPR principles, particularly regarding data minimization and purpose
limitation, and leading to the withdrawal of some face recognition training datasets.

The complexity of deep learning models used in face verification poses challenges for
explainability and accountability. Taskiran et al. [2020] emphasize that the "black box"
nature of these models makes it difficult to explain their decision-making process, leading
to concerns about accountability and the right to explanation. This lack of transparency can be
particularly problematic when face verification systems are used in legal or administrative
decision-making processes.

Lastly, there are growing concerns about the potential misuse of face verification technology
for mass surveillance or social control. The integration of facial recognition with other surveillance
technologies can create powerful tools for tracking and profiling individuals, potentially infringing
on civil liberties and human rights [Smith et al., 2021].

Summary of Ethical and Legal Challenges

The main risks linked to the presence of biases in face verification systems include:
• Potential for discrimination and reinforcement of societal biases
• Infringement on privacy rights
• Issues with data protection and consent
• Lack of transparency and accountability in decision-making
• Risk of misuse for surveillance

Addressing these fairness challenges requires a multifaceted approach involving technical
improvements in algorithms, diverse and representative training data, rigorous testing across
demographic groups, and the development of clear ethical guidelines and legal frameworks for
the deployment of face verification systems [Wang et al., 2019a; Sarridis et al., 2023b]. As Raji
et al. [2020] argue, this may also involve rethinking the appropriateness of face verification
technology in certain high-risk applications and considering alternative solutions that better
protect individual rights and societal values.

2.4.3 Existing Evaluation Approaches for Face Verification Fairness

Identifying and mitigating biases implies having a rigorous experimental and evaluation setup.
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2.4.3.1 Common Experimental Setups
Using specially curated datasets to evaluate face verification fairness is standard in the

domain. These datasets are designed to represent diverse demographic groups and chal-
lenging verification scenarios.

Balanced Face Datasets

A balanced dataset is specifically designed to have equal or controlled representation of
different demographic groups, enabling a more robust evaluation of algorithmic fair-
ness in face verification.

Some of the most commonly used datasets for fairness evaluation include:
• RFW (Racial Faces in the Wild) [Wang et al., 2019a]: A dataset balanced across

four racial groups: African, Asian, Caucasian, and Indian.
• BFW (Balanced Faces in the Wild) [Robinson et al., 2023]: Provides a balance across

gender and ethnicity categories.
• FAVCI2D (Face Verification with Challenging Imposters and Diversified

Demographics) [Popescu et al., 2022]: Focuses on challenging impostor pairs and
diverse demographics. Here, the diversification is based on the gender and geographical
origin of the identities.

The RFW Dataset Composition

RFW contains 40,607 images of 11,950 identities:
• Caucasian: 10,196 images
• African: 10,415 images
• Asian: 9,688 images
• Indian: 10,308 images

This nearly balanced composition allows for fair comparison across racial groups.

These datasets enable researchers to assess face verification performance across different
demographic groups and identify potential biases.

2.4.3.2 Standard Performance Metrics
Several standard metrics are commonly used to evaluate the overall performance of face

verification systems. These metrics provide a comprehensive view of a system’s performance
but may not fully capture fairness across demographic groups.

Average Accuracy is a fundamental metric that measures the overall correctness of the
face verification system. It can be calculated in two ways: Micro-averaged accuracy gives equal
weight to each sample, regardless of class imbalance. It is calculated as the total number of
correct predictions divided by the total number of predictions:

Micro-averaged Accuracy = Total Correct Predictions
Total Predictions

Macro-averaged accuracy gives equal weight to each attribute a ∈ A, which is particularly
useful when dealing with imbalanced datasets. It is calculated as the average of the ac-
curacies for each attribute:

Macro-averaged Accuracy = 1
|A|

∑
a∈A

Accuracya
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where Accuracya is the accuracy for the data with attribute a.
True Match Rate (TMR), also known as True Positive Rate (TPR) or Recall, represents

the proportion of correct positive matches among all actual positive pairs. It is calculated as:

TMR = True Positives
True Positives + False Negatives

False Match Rate (FMR), also known as False Positive Rate (FPR), is the proportion
of incorrect positive matches among all actual negative pairs. It is calculated as:

FMR = False Positives
False Positives + True Negatives

The FMR is particularly critical in security applications, as it represents the likelihood of the
system incorrectly authenticating an impostor [Ho et al., 2020a].

These performance-oriented metrics provide a comprehensive view of a system’s overall
effectiveness. However, they may not fully capture fairness across demographic groups, as high
overall performance can mask significant disparities in accuracy for different subpopulations.
Therefore, when evaluating face verification systems, it’s important to consider these stan-
dard metrics in conjunction with specific fairness metrics to ensure equitable performance
across all demographic groups.

2.4.3.3 Fairness Metrics
To specifically address fairness concerns, several metrics have been developed:

Fairness Metrics

Quantitative measures designed to assess the equitability of a face verification system’s
performance across predefined different demographic groups.

Demographic Parity [Agarwal et al., 2019]: Requires that the probability of a positive
outcome is the same for all demographic groups. Mathematically, for a predictor Ŷ and a
protected attribute A, demographic parity is achieved if:

P(Ŷ = 1|A = a) = P(Ŷ = 1|A = b), ∀a, b (2.3)

It is often measured using:
• Demographic Parity Difference (DPD), the difference between the largest and the smallest

group-level selection rate P(Ŷ = 1|A = a) across values of a.
• Demographic Parity Ratio (DPR), the ratio between the smallest and the largest group-

level selection rate P(Ŷ = 1|A = a) across values of a

Equalized Odds [Hardt et al., 2016]: Requires that both TMR and FMR are equal
across all demographic groups. It is achieved if:

P(Ŷ = 1|A = a, Y = y) = P(Ŷ = 1|A = b, Y = y), ∀a, b, y (2.4)

It’s typically measured using:
• Equalized Odds Difference (EOD), the biggest value between the biggest difference in

TMR across groups, i.e. between P(Ŷ = 1|A = a, Y = 1) across a, and the biggest
difference in FMR across groups, i.e. between P(Ŷ = 1|A = a, Y = 0) across a.

• Equalized Odds Ratio (EOR), which is defined similarly as EOD, but with ratios instead
of differences.
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Degree of Bias (DoB) [Gong et al., 2020]: Measures the standard deviation of accuracy
across different subgroups.

These metrics help researchers and practitioners quantify the fairness of face verification
systems and identify areas where bias mitigation efforts should be focused. By combining
standard performance metrics with these fairness metrics, researchers can better understand a
face verification system’s behavior across different demographic groups. This holistic approach
to evaluation is essential for developing more equitable and reliable face verification technologies.

2.4.4 Shortcomings of Current Evaluation Methods
While existing evaluation approaches provide valuable insights into fairness in face verification

systems, several limitations can be identified:

2.4.4.1 Limitations in Dataset Representation
Current face verification fairness evaluations often suffer from significant limitations in

dataset representation. While balanced datasets like RFW [Wang et al., 2019a], FAVCI2D
[Popescu et al., 2022], and BFW [Robinson et al., 2020] provide a solid foundation for fairness
evaluation, many studies still rely on unbalanced datasets that do not adequately represent
diverse demographic groups.

The limited demographic diversity in existing datasets is a major concern. Merler et al.
[2019] highlight that many popular face recognition datasets are heavily skewed towards certain
ethnic groups, particularly Caucasians, leading to potential biases in model training and
evaluation. This lack of diversity can result in models that perform well on majority groups
but fail to generalize to underrepresented populations.

Another issue is the potential for biases in dataset curation and annotation. Grother
et al. [2019] point out that collecting and labeling face images can introduce unintended
biases, such as differences in image quality or facial expressions across demographic groups.
These biases in the dataset can then propagate to the models trained on them, leading
to unfair performance disparities.

Creating truly representative balanced datasets presents significant challenges. Kärkkäinen
and Joo [2019] discuss the difficulties in obtaining diverse, high-quality face images while
ensuring proper consent and ethical data collection practices. Additionally, Klare et al. [2012]
note that achieving balance across multiple demographic dimensions simultaneously (e.g., age,
gender, and ethnicity) is particularly challenging and often leads to trade-offs in dataset design.

The lack of comprehensive demographic metadata in many widely used datasets further
complicates fairness evaluations. Buolamwini and Gebru [2018] emphasize that without detailed
information about the demographic characteristics of individuals in the dataset, conducting
thorough analyses across different demographic groups becomes challenging, if not impossible.

These unbalanced datasets, often created without explicit consideration for fairness evalua-
tion, may lead to biased assessments of face verification systems, and evaluations conducted
on non-representative datasets can provide an incomplete or misleading picture of a system’s
real-world performance across diverse populations.

Dataset-Related Shortcomings in Face Verification Fairness Evaluation

Current face verification fairness evaluations often suffer from:
• Limited demographic diversity in existing datasets
• Potential biases in dataset curation and annotation

40 2. Background and State-ot-the-Art



• Challenges in creating truly representative balanced datasets
• Lack of comprehensive demographic metadata

These issues may lead to an incomplete assessment of real-world fairness challenges.

Addressing these limitations in dataset representation is a first step towards developing
more robust and fair face verification systems. It requires concerted efforts from the research
community to create more diverse and well-documented datasets, as well as to develop evaluation
methodologies that can account for and mitigate these inherent biases.

2.4.4.2 Limitations of Current Fairness Metrics
While metrics like Demographic Parity, Equalized Odds, and Degree of Bias provide valuable

insights into the fairness of face verification systems, they have several limitations that may
lead to an incomplete assessment of system fairness.

One significant limitation is that these metrics primarily focus on outcome fairness, without
providing insights into the underlying causes of bias. This surface-level approach to fairness
can mask deeper issues in the model’s decision-making process. For instance, a model might
achieve demographic parity by making different types of errors for different groups, rather
than by genuinely eliminating bias.

Moreover, these metrics often fail to capture the nuanced and multifaceted nature of fairness.
Mehrabi et al. [2021] point out that fairness is a complex, context-dependent concept that
may not be fully encapsulated by a single metric or even a combination of existing metrics.
Different fairness criteria can sometimes be in tension with each other, leading to situations
where improving one aspect of fairness can worsen another.

Another limitation is the binary nature of many fairness metrics. Metrics like demographic
parity and equalized odds [Agarwal et al., 2018] are typically computed based on binary
outcomes (correct or incorrect identification), which may not capture the full spectrum of a
model’s behavior. This binary approach can obscure important nuances in model performance
across different subgroups.

Furthermore, current fairness metrics often fail to account for intersectionality. Buolamwini
and Gebru [2018] demonstrate that face recognition systems can exhibit compounded biases at
the intersection of multiple protected attributes (e.g., ethnicity and gender), which may not
be fully captured by metrics that consider these attributes in isolation.

An additional concern is that these metrics do not provide insights into the structure of
the model’s learned representations. Zemel et al. [2013] argue that truly fair models should
learn representations that are invariant to protected attributes, but current fairness metrics
do not directly measure this aspect of model behavior.

Lastly, Kearns et al. [2018] raise concerns about the potential for "fairness gerrymandering,"
where models are optimized to perform well on specific fairness metrics without addressing
underlying biases. This highlights the need for a more holistic approach to fairness evaluation
that goes beyond simple metric optimization.

Metric-Related Shortcomings in Face Verification Fairness Evaluation

Current fairness metrics have limitations:
• Focus on outcome fairness without explaining the origin of biases
• May not capture the full complexity and context-dependence of fairness
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• Often based on binary outcomes, missing nuances in model behavior
• Fail to account for intersectionality and compounded biases
• Do not provide insights into the fairness of learned representations
• Vulnerable to "fairness gerrymandering" through metric optimization

These limitations may lead to an incomplete assessment of system fairness.

Addressing these limitations requires developing more sophisticated fairness metrics and
evaluation frameworks that can provide a more comprehensive and nuanced understanding
of bias in face verification systems.

2.4.4.3 Need for More Comprehensive Statistical Analysis
Current fairness evaluations in face verification systems often lack the robust statistical

analysis necessary to draw reliable conclusions about fairness improvements. This shortcoming
can lead to misinterpretations of results and hinder progress in developing truly fair systems.

One significant issue is the lack of robust statistical significance testing for fairness metrics.
Friedler et al. [2019] highlight that many studies report improvements in fairness metrics without
conducting rigorous statistical validation. This oversight makes it difficult to determine whether
observed differences in fairness are truly meaningful or simply due to chance. They argue for
the use of appropriate statistical tests to assess the significance of fairness improvements.

The inconsistent reporting of fairness metrics across studies poses another challenge. Mehrabi
et al. [2021] note that the lack of standardization in fairness evaluation makes it difficult to
compare results across different studies and draw generalizable conclusions. Standardized
reporting practices should facilitate more meaningful comparisons and meta-analyses.

An often overlooked aspect is the understanding of interactions between tested characteristics.
Analyzing how different demographic attributes interact to influence system performance is
important since univariate analyses of individual protected attributes may miss complex patterns
of bias that emerge from the interaction of multiple characteristics.

Finally, Mitchell et al. [2021] argue for the importance of causal analysis in fairness evaluations.
They suggest that many current approaches to fairness assessment rely on correlational analyses,
which may not capture the true causal relationships underlying observed biases. Developing
causal models of fairness could provide deeper insights into the sources of bias and more
effective strategies for mitigation.

Statistical Shortcomings in Face Verification Fairness Evaluation

Current fairness evaluations often lack:
• Robust statistical significance testing for fairness metrics
• Comprehensive analysis of performance variations across demographic groups
• Consistent reporting of fairness metrics across studies
• Understanding of the interactions between tested characteristics
• Rigorous testing protocols beyond simple accuracy metrics
• Causal analysis of fairness and bias

These limitations can lead to misinterpretations of results and hinder progress in de-
veloping truly fair systems.

Addressing these shortcomings requires a fundamental shift in our analytical approach. They
highlight a need to develop more robust statistical methodologies and standardized evaluation
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protocols to adequately capture the nuances of fairness in these complex systems.

To address all of these shortcomings related to dataset, fairness metrics, and a lack of
statistical considerations, face verification evaluation would benefit from:

• Developing more diverse and representative datasets for fairness evaluation.
• Exploring additional fairness metrics that capture different aspects of bias.
• Not only focus on fairness of the performance but also on understanding how the latent

space structure affects these biases.
• Incorporating robust statistical analyses, including significance tests for fairness metrics.
• Standardizing reporting practices for fairness evaluations to facilitate comparisons across

studies.
• Studying the interplay between tested characteristics.

By addressing these limitations, researchers can develop more comprehensive and reliable
approaches to evaluating fairness in face verification systems, leading to more equitable
and robust technologies.

2.5 Evaluation of Recommender Systems
2.5.1 Overview of Recommender Systems

Recommender systems have become an integral part of our digital experience, playing an
important role in filtering and personalizing content across various domains, from e-commerce
to entertainment and news consumption [Nilashi et al., 2013; Konstan, 2004]. These systems
aim to predict users’ preferences and provide personalized suggestions, effectively addressing
the information overload problem that has become increasingly prevalent in the digital age.
The history of recommender systems can be traced back to the mid-1990s, with the emergence
of collaborative filtering techniques [Konstan and Riedl, 2012]. As the internet grew and digital
platforms proliferated, the need for effective recommendation algorithms became more pressing.
The field gained significant attention with the Netflix Prize competition (2006-2009), which
spurred innovation in collaborative filtering algorithms [Bennett et al., 2007a].

Definition: Types of Recommender Systems

• Content-based filtering recommends items similar to those a user has liked in
the past, based on item features [Lops et al., 2019].

• Collaborative filtering recommends items based on the preferences of users with
similar tastes [Ekstrand et al., 2011; Afoudi et al., 2018].

– Memory-based: uses user-item interactions directly.
– Model-based: learns latent factors to make predictions.

• Hybrid approaches combine content-based and collaborative filtering techniques
[Burke, 2002].

• Knowledge-based approaches Use explicit knowledge about user preferences, item
features, and recommendation criteria[Burke, 2000].

In recent years, the field has seen significant advancements with the use of deep learning
techniques. While some works, like Zhang et al. [2019], claim these new methods lead to more
sophisticated and accurate recommendations, others, like Ferrari Dacrema et al. [2019], advance
that traditional approaches can outperform deep learning ones if correctly trained. However, as
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recommender systems become more pervasive and influential in shaping user behavior, there
is an increasing focus on evaluating not just their accuracy but also their impact on user
experience, diversity, and fairness [Ping et al., 2024; Diricic et al., 2023].

The importance of recommender systems extends beyond user satisfaction. They play an
essential role in driving user engagement, increasing sales in e-commerce, and helping users
discover new content in large item catalogs. As such, they have become a key component
of many online platforms’ business strategies [Pavlidis, 2019].

Examples of Real-world Recommender Systems

• E-commerce: Amazon uses item-to-item collaborative filtering, among other
techniques, to suggest products [Jannach et al., 2012].

• Streaming services: Netflix employs various algorithms, including matrix factor-
ization, to recommend movies and TV shows [Bennett et al., 2007a].

• Music platforms: Spotify utilizes a combination of collaborative filtering, natural
language processing, and audio analysis for music recommendations [Konstan and
Riedl, 2012].

• Social media: Platforms like Facebook use hybrid systems to suggest connections
and content [Zhang et al., 2019].

2.5.2 Challenges in Characterizing User Behavior
Understanding and characterizing user behavior is central for the development of effective

recommender systems. However, this task presents several challenges due to the complex and
varied nature of user interactions with digital platforms.

2.5.2.1 Disparate Nature of User Interactions
Users exhibit a wide range of behaviors when interacting with recommender systems, making

it difficult to create a one-size-fits-all model of user preferences. This disparity manifests in
several ways, each presenting unique challenges for recommender systems.

Firstly, the variability in user preferences poses a significant challenge. As Amatriain
et al. [2009] point out, users’ tastes can vary significantly, not only between individuals but also
over time for a single user. This temporal aspect of preference variation adds more complexity to
user modeling. For instance, a user’s music preferences might shift dramatically based on mood,
season, or life events, requiring recommender systems to adapt dynamically to these changes.

Secondly, inconsistency in rating behavior introduces considerable noise into the data.
Amatriain et al. [2009] highlight that users may not be consistent in how they rate or interact
with items. This inconsistency can stem from various factors, such as changes in mood, context,
or even the user’s understanding of the rating scale. For example, a user might rate a movie
highly immediately after watching it due to recency bias, but their opinion might change upon
reflection, leading to inconsistent ratings for similar movies.

Lastly, the diversity in consumption patterns among users presents another challenge.
As noted by Kaminskas and Bridge [2016], some users may have very focused interests, while
others exhibit more eclectic tastes. This spectrum of consumption behavior makes it difficult
for recommender systems to strike the right balance between specificity and diversity in their
recommendations. A system optimized for users with focused interests might perform poorly
for those with eclectic tastes, and vice versa.
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Example of Diverse User Behavior in Movie Recommendations

Consider two users of a movie recommendation system:
• User A consistently watches and highly rates action movies, showing a focused

interest.
• User B watches a mix of genres (comedy, drama, sci-fi) and rates them inconsistently,

sometimes giving high ratings to movies they didn’t finish watching.
The model must simultaneously cater to User A’s focused preferences and User B’s
diverse, inconsistent behavior without overfitting. User B’s inconsistent ratings introduce
noise that could skew the model’s understanding of their preferences. Balancing these
contrasting behaviors requires sophisticated algorithms adapting to individual patterns
while maintaining overall system performance.

2.5.2.2 Importance of Understanding User Behavior Disparity

Recognizing and accounting for the disparate nature of user behavior is fundamental for sev-
eral reasons.

Improved personalization is a key benefit of understanding individual user patterns. Kim
et al. [2021] demonstrate that this understanding allows for more accurate and tailored recom-
mendations, enhancing the user experience and increasing the likelihood of positive interactions.
By recognizing the unique preferences and behavioral patterns of each user, recommender
systems can provide suggestions that are more likely to resonate with the individual.

Awareness of user behavior disparity enables enhanced algorithm selection. Konstan and
Riedl [2012] point out that different recommendation algorithms may perform better for different
types of users. For instance, collaborative filtering might work well for users with mainstream
tastes, while content-based approaches might be more effective for users with niche interests.
By understanding these differences, system designers can implement adaptive approaches that
select the most appropriate algorithm based on the identified user type.

Understanding user behavior disparity is crucial for fairness and bias mitigation in recom-
mender systems. Diricic et al. [2023] argue that awareness of diverse user behaviors helps in
identifying and addressing potential biases. This understanding allows developers to implement
measures that ensure equitable treatment across different user groups, preventing the system
from inadvertently favoring certain behavioral patterns over others.

Accommodating diverse user behaviors significantly impacts overall user satisfaction and en-
gagement. By recognizing and adapting to various user interaction styles, recommender systems
can provide a more inclusive and satisfying experience [Konstan and Riedl, 2012]. This adaptabil-
ity not only improves individual user satisfaction but also contributes to increased engagement
across the entire user base, ultimately enhancing the system’s overall effectiveness and value.

2.5.2.3 Challenges Inherent to the Data

In addition to the complexities of user modeling, several characteristics of recommender
system data pose significant challenges for user behavior characterization. These data-related
challenges are equally important and often intertwined with user behavior complexities.

Data sparsity is a fundamental issue in recommender systems [Batmaz et al., 2019]. Most
users interact with only a small fraction of available items, leading to sparse user-item interaction
matrices. This sparsity makes it difficult to draw reliable conclusions about user preferences
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and can lead to less accurate recommendations. Moreover, it complicates finding similar users
or items, which is key for many collaborative filtering approaches.

The cold-start problem presents another significant challenge. As Khusro et al. [2016] explain,
new users or items have little or no interaction data, making it difficult to generate accurate
recommendations. This issue is particularly acute in dynamic environments where new users and
items are frequently added. The cold-start problem not only affects the quality of recommenda-
tions for new entities but also impacts the overall system performance and user satisfaction.

Traditional recommender systems often rely on tabular data, primarily user-item inter-
actions. However, Zhang et al. [2019] point out that this data format is not always well-
suited to newer deep learning approaches. These limitations of tabular data can hinder
the adoption of more advanced machine-learning techniques that have shown promise in
other domains. Bridging the gap between traditional data formats and modern algorithmic
approaches remains an ongoing challenge.

Temporal dynamics add another layer of complexity to recommender systems [Rabiu et al.,
2020]. User preferences and item popularity can change over time, requiring models that can
adapt to these shifts. These temporal changes can occur at various scales, from short-term
fluctuations due to external events to long-term evolving trends. Developing models that
can effectively capture and respond to these temporal dynamics while maintaining stable and
accurate recommendations is a significant challenge.

Summary of Challenges in User Behavior Characterization

The main challenges when trying to model user behavior for recommender systems include:
• Capturing the diverse and sometimes inconsistent nature of user preferences: This

involves developing models that can handle variability both across users and within
individual user behavior over time.

• Addressing data sparsity and the cold-start problem: These issues require innovative
approaches to infer preferences from limited data and to effectively integrate new
users and items into the system.

• Incorporating temporal dynamics and contextual information: This challenge involves
creating adaptive models that can capture evolving preferences and respond to
changing contexts.

• Developing metrics that accurately reflect user satisfaction beyond simple accuracy
measures: This requires a more holistic approach to evaluation that considers factors
such as diversity, novelty, and long-term user engagement.

Techniques such as latent factor models, deep learning approaches, and hybrid methods
have been developed to address these issues, but the field continues to evolve as new challenges
emerge [Batmaz et al., 2019; Zhang et al., 2019].

Understanding the disparate nature of user behavior and the challenges inherent in rec-
ommender system data is decisive for developing more effective, fair, and personalized recom-
mendation algorithms. This understanding motivates the advanced evaluation metrics and
analysis techniques discussed in subsequent sections of this thesis, which aim to provide a
more comprehensive framework for assessing and improving recommender system performance.
By addressing these challenges, researchers and practitioners can work towards creating
recommender systems that not only provide accurate suggestions but also enhance user
satisfaction and engagement in diverse and dynamic environments.
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2.5.3 Existing Evaluation Approaches for Recommender Systems
2.5.3.1 Recommendation Datasets

The choice of dataset is crucial in evaluating recommender systems, as it significantly
impacts the assessment of algorithm performance, generalizability, and real-world applicability.
Different datasets capture various aspects of user behavior, item characteristics, and interaction
patterns, which can influence the effectiveness of recommendation algorithms. Moreover, the
dataset’s properties, such as sparsity, scale, and temporal aspects, can reveal or mask certain
strengths or weaknesses of the algorithms being evaluated. Therefore, selecting appropriate
datasets is essential for conducting fair comparisons, identifying domain-specific challenges, and
ensuring that the developed algorithms are robust across diverse scenarios.

Several benchmark datasets have become standard in the field, each offering unique
characteristics and challenges:

Examples of Recommendation Datasets

• MovieLens: A series of movie rating datasets of varying sizes, widely used for
benchmarking [Harper and Konstan, 2016]. MovieLens datasets come in different
versions (e.g., 100K, 1M, 20M, 25M), allowing researchers to test algorithms on
different scales. They contain explicit ratings (1-5 stars) and timestamps, enabling
both rating prediction and temporal analysis. The datasets also include movie
genres and, in some versions, tag data, facilitating content-based and hybrid
recommendation approaches.

• Netflix Prize: A large-scale movie rating dataset that spurred significant advance-
ments in collaborative filtering [Bennett et al., 2007a]. This dataset contains over
100 million ratings from about 480,000 users on nearly 18,000 movies. It is known for
its sparsity and the presence of a withheld test set, which was used for the famous
Netflix Prize competition. The dataset’s large scale and the associated competition
have made it a benchmark for testing the scalability and accuracy of collaborative
filtering algorithms.

• Amazon product reviews: Datasets covering various product categories, useful for
e-commerce recommendation tasks [Lakkaraju et al., 2013]. These datasets include
millions of reviews spanning multiple product categories like books, electronics, and
clothing. They contain not only ratings but also review text, product metadata,
and in some cases, browsing logs. This rich data allows for the evaluation of diverse
recommendation techniques, including content-based, collaborative, and hybrid
approaches in an e-commerce context.

• Last.fm: Music listening data, valuable for studying temporal patterns in recommen-
dations. The Last.fm dataset contains music listening histories of users, including
artist names, track titles, and timestamps. Unlike explicit rating datasets, Last.fm
provides implicit feedback data (listening events), making it useful for evaluating
algorithms that work with implicit user preferences. The dataset’s temporal nature
allows for the study of evolving music tastes and the evaluation of time-aware
recommendation algorithms.

These datasets vary in size, domain, and type of user-item interactions, allowing researchers
to evaluate recommender systems under different conditions. By using a combination of
these datasets, researchers can assess the robustness and generalizability of their algorithms
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across various domains and data characteristics. This diverse evaluation approach helps
identify domain-specific challenges and ensures that the developed recommender systems
are effective across various scenarios.

2.5.3.2 Data-Splitting Strategies

The way data is split into training and testing sets can significantly impact evaluation
outcomes [Meng et al., 2020]. Common strategies include:

Definition of Data Splitting Strategies in Recommender Systems

• Random splitting: Randomly assigning interactions to train and test sets.
• Leave-one-item: Holding out one item per user for testing, while using the rest

for training.
• Leave-one-basket: Holding out the last basket or session of interactions for each

user for testing.
• Global temporal splitting: Dividing the entire dataset based on a global time

threshold, using earlier interactions for training and later ones for testing.

Each strategy has its strengths and weaknesses, and the choice can significantly affect the
perceived performance of recommender systems [Ji et al., 2020]. Random splitting provides
a baseline evaluation but may not reflect real-world temporal dynamics. The leave-one-item
approach allows for evaluating the model’s ability to recommend new items to users with known
preferences, but it may not reflect scenarios where users often have multiple new items to discover.
Leave-one-basket is particularly useful for session-based recommendation tasks, as it mimics the
process of predicting a user’s next set of interactions based on their history. Global temporal
splitting provides a more realistic evaluation setting, especially for systems where time plays an
important role, such as news recommendation or trend-sensitive product recommendations.

Moreover, the impact of data-splitting strategies extends beyond just performance metrics.
It can affect the assessment of other important aspects of recommender systems, such as their
ability to handle cold-start problems, adapt to changing user preferences over time, or provide
diverse recommendations. Researchers and practitioners should be aware of these implications
and clearly report their chosen splitting strategy along with the rationale behind it to ensure
reproducibility and fair comparison of results across different studies.

2.5.3.3 Performance Metrics

Traditional evaluation metrics in recommender systems primarily focus on accuracy, measur-
ing how well a system can predict or rank items that a user has interacted with. These metrics
are the main tool for assessing the system’s ability to recover hidden user interactions [Silveira
et al., 2019]. Common metrics include Recall@K, Precision@K, and NDCG@K.

Recall@K measures the proportion of relevant items found in the top-K recommen-
dations. It is defined as:

Recall@K = |relevant items ∩ recommended items@K|
|relevant items| (2.5)

This metric is particularly useful for assessing the system’s ability to identify a wide range of
relevant items, but it doesn’t consider their ranking within the top-K recommendations.
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Precision@K, on the other hand, focuses on the proportion of relevant items among
the top-K recommendations. It is calculated as:

Precision@K = |relevant items ∩ recommended items@K|
K

(2.6)

Precision@K is valuable for evaluating the accuracy of the top recommendations, which
directly impacts user satisfaction. However, it may not fully capture the system’s ability to
find all relevant items, especially when the number of relevant items exceeds K.

NDCG@K (Normalized Discounted Cumulative Gain) is a ranking metric that
takes into account both the presence and the position of relevant items in the recommen-
dation list. It is computed as:

NDCG@K = DCG@K
IDCG@K (2.7)

where DCG@K is the Discounted Cumulative Gain:

DCG@K =
K∑

i=1

2reli − 1
log2(i + 1) (2.8)

and IDCG@K is the Ideal DCG@K (the best possible DCG@K). NDCG@K provides a more
comprehensive evaluation by considering both the relevance and the ranking of recommended
items. It assigns higher importance to relevant items appearing earlier in the recommendation
list, aligning with the typical user behavior of focusing on top recommendations.

2.5.3.4 Beyond-Accuracy Metrics
Recent research has emphasized the importance of considering factors beyond simple accuracy

to provide a more comprehensive evaluation [Kuanr and Mohapatra, 2021]. These metrics aim
to capture aspects of user satisfaction that go beyond mere prediction accuracy [Kaminskas and
Bridge, 2016]. Beyond-accuracy metrics include diversity, novelty, serendipity, and coverage,
each addressing a different facet of recommendation quality.

Diversity measures the variety of recommended items, ensuring that users receive a
broad range of suggestions rather than a narrow, potentially repetitive set. This can be
quantified using the Intra-List Distance (ILD):

ILD =
∑

i∈Lu

∑
i ̸=j

d(i, j) (2.9)

where Lu is the list of recommendations for user u and d(i, j) is a distance between items i

and j. A higher ILD indicates greater diversity in the recommendations, which can improve
user satisfaction and engagement by exposing users to a wider range of options.

Novelty assesses the system’s ability to recommend new or unexpected items, helping
users discover content they might not have found on their own. It is often quantified using
the mean self-information of recommended items:

Novelty = − 1
|Lu|

∑
i∈Lu

log2 p(i) (2.10)

where p(i) is the probability of item i being recommended to a random user. Higher novelty
scores indicate that the system recommends less common or more surprising items, potentially
increasing user engagement and satisfaction.
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Serendipity evaluates the "pleasantly surprising" nature of recommendations, capturing
the system’s ability to make unexpected yet relevant suggestions. It can be measured as
the proportion of relevant and novel items:

Serendipity = |relevant ∩ novel ∩ recommended|
|recommended| (2.11)

Serendipitous recommendations can enhance user experience by introducing users to items they
might enjoy but wouldn’t have discovered through their typical browsing patterns.

Coverage measures the proportion of items that the system is able to recommend, providing
insights into the breadth of the recommender system’s capabilities. It is often calculated as
the proportion of items that the system recommends to at least one user:

Coverage =

∣∣∣∣ ⋃
u∈U

Lu

∣∣∣∣
|I|

(2.12)

where U is the set of users and I is the set of all items. Higher coverage indicates that the
system utilizes a more significant portion of the available item catalog, which can be particularly
important for long-tail item discovery and overall system utility.

These beyond-accuracy metrics provide a more holistic view of a recommender system’s
performance, considering not just its ability to predict user preferences accurately, but also
its capacity to provide diverse, novel, and serendipitous recommendations while covering
a substantial portion of the item catalog. By incorporating these metrics into evaluation
frameworks, researchers and practitioners can develop recommender systems that not only
accurately predict user preferences but also enhance overall user experience and satisfaction.

2.5.3.5 Evaluation Frameworks
To enhance evaluation rigor and standardization, several comprehensive frameworks have

been developed. These include Elliot [Anelli et al., 2021] and ReChorus2.0 [Li et al., 2024],
which provide standardized tools for evaluating recommender systems across various metrics
and methodologies. While these evaluation setups provide a solid foundation for assessing
recommender systems, they also have limitations. While these evaluation setups provide a solid
foundation for assessing recommender systems, they also have limitations. Offline evaluation
biases, as highlighted by Sun [2023], can arise from mismatches between historical data and live
user behavior, potentially skewing performance assessments. Replicability challenges, noted
by Dong et al. [2023], stem from variations in data preprocessing, algorithm implementations,
and evaluation protocols, making it difficult to reproduce results consistently across studies.
Additionally, Dietz et al. [2023] emphasize the need for domain-specific evaluation approaches,
as generic frameworks may not capture the nuances of particular recommendation contexts, such
as Point-of-Interest recommendation. These issues underscore the complexity of recommender
system evaluation and highlight the ongoing need for refined methodologies to provide reliable
and meaningful performance assessments.

2.5.4 Shortcomings of Current Evaluation Methods
While existing evaluation approaches have provided valuable insights into recommender

systems, several limitations can be identified.
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2.5.4.1 Replicability Issues
The lack of standardization in dataset creation, preprocessing, and algorithm implementation

poses significant challenges for replicability in recommender system evaluation [Sun et al., 2020].
This issue manifests in several ways, each contributing to the difficulty in reproducing results
and comparing studies across the field.

The process of dataset creation and preprocessing often varies widely between studies.
Researchers may employ different data cleaning techniques, handle missing values differently,
or apply varying feature engineering methods. For instance, one study might remove users
with fewer than five interactions, while another might set this threshold at ten. Such seemingly
minor differences can lead to significant variations in the final dataset characteristics and,
consequently, in the performance of recommender algorithms.

The implementation of algorithms across studies is frequently inconsistent. Even when
researchers claim to use the same algorithm, subtle differences in implementation details, such
as initialization methods, learning rate schedules, or convergence criteria, can lead to notably
different results. This inconsistency is particularly problematic in the case of complex models
like deep learning-based recommenders, where numerous hyperparameters and architectural
choices can significantly impact performance.

These replicability issues collectively create a significant barrier to progress in the field of
recommender systems. As Dong et al. [2023] point out, the inability to consistently reproduce
findings across studies makes it difficult to establish reliable benchmarks and to truly understand
the state-of-the-art in recommendation performance. Moreover, this lack of replicability can
lead to the perpetuation of suboptimal practices or the overlooking of important factors
that contribute to recommendation quality.

Replicability-Related Shortcomings in Recommender System Evaluation

Current recommender system evaluations often suffer from:
• Non-standardized processes for dataset creation and preprocessing
• Inconsistent implementation of algorithms across studies
• Lack of detailed reporting on experimental setups

These issues may lead to difficulties in reproducing results and comparing studies.

Addressing these replicability challenges requires a concerted effort from the research
community to establish and adhere to standardized practices in dataset preparation, algorithm
implementation, and experimental reporting. Some initiatives, such as the development of
standardized evaluation frameworks and the promotion of open-source implementations, are
steps in the right direction. However, more work is needed to ensure that recommender system
research can build upon a foundation of reproducible and comparable results.

2.5.4.2 Limited Cross-Domain Applicability
The evaluation of recommender systems often suffers from limited cross-domain applicability,

which can lead to an incomplete understanding of system performance across diverse scenarios.
This limitation manifests in several key ways, each contributing to potential gaps in our
knowledge of recommender system capabilities and effectiveness.

Many studies in recommender systems research focus on a single domain, such as movie
recommendations or e-commerce [Dietz et al., 2023]. While this approach allows for in-depth
analysis within a specific context, it significantly limits our understanding of how these systems
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perform across different domains. For instance, a recommendation algorithm that performs
exceptionally well for movie suggestions might struggle in a music recommendation context due
to differences in user behavior, item characteristics, or interaction patterns. This narrow focus
can lead to overly optimistic assessments of a system’s general applicability or effectiveness.
The lack of cross-domain studies also makes it challenging to assess the generalizability of both
models and evaluation metrics. Recommender systems that demonstrate high performance in
one domain may not necessarily translate well to others. Similarly, evaluation metrics that
effectively capture user satisfaction in one context might be less relevant or even misleading
in another. Without comprehensive cross-domain evaluations, it becomes difficult to identify
truly robust and versatile recommendation approaches.

Furthermore, domain-specific challenges and performance criteria are often overlooked in
generalized evaluation approaches. As Fan et al. [2024] point out, this oversight can lead to
either overly optimistic or pessimistic assessments of system performance. For example, in
a news recommendation system, the freshness of articles might be a very important factor,
while in a movie recommendation system, diversity of genres could be more important. Failing
to account for these domain-specific factors can result in evaluations that don’t accurately
reflect the real-world utility of the recommender system. Without a clear understanding of how
systems perform across different domains, researchers and practitioners may struggle to design
algorithms that can effectively operate in multiple contexts or easily adapt to new domains.

Cross-Domain Shortcomings in Recommender System Evaluation

Current evaluation practices often lack:
• Studies spanning multiple domains or application areas
• Evaluation of model transferability across different contexts
• Consideration of domain-specific challenges and metrics

These limitations may lead to an incomplete understanding of recommender system
performance across diverse scenarios.

Addressing these limitations requires a more holistic approach to recommender system
evaluation. This could involve conducting systematic cross-domain studies, developing eval-
uation frameworks that can flexibly incorporate domain-specific metrics, and exploring the
transferability of models and metrics across different application areas.

2.5.4.3 Need for User Modeling
Current evaluation methods for recommender systems often fall short in adequately modeling

user behavior and preferences, leading to potential misrepresentations of real-world performance.
This limitation stems from an overreliance on aggregate metrics that fail to capture the
nuances of individual user experiences.

Many evaluation approaches focus on broad performance measures without considering the
intricacies of individual user behavior [Kleinberg et al., 2022]. This approach can overlook
crucial factors that influence user interactions with recommender systems, such as contextual
information, current mood, or evolving interests. For instance, a user’s preference for movie
recommendations might vary significantly depending on whether they’re watching alone or with
family, or whether it’s a weekday evening or a weekend afternoon. By failing to account for these
situational factors, evaluations may present an incomplete picture of a system’s effectiveness.

Another significant oversight in many current evaluation approaches is the lack of con-
sideration for long-term user satisfaction and engagement metrics. As Sun [2024] emphasize,

52 2. Background and State-ot-the-Art



understanding how recommender systems impact user behavior and satisfaction over extended
periods is key for assessing their true value. Short-term metrics might indicate high performance,
but they may not reflect whether the system is fostering user loyalty, encouraging exploration
of diverse content, or contributing to overall platform engagement in the long run.

User Modeling Shortcomings in Recommender System Evaluation

Current evaluation approaches often neglect:
• Comprehensive modeling of user behavior and preferences
• Consideration of user context and situational factors
• Evaluation of long-term user satisfaction and engagement

These omissions may result in evaluations that do not accurately reflect real-world user expe-
riences.

Addressing these shortcomings requires a shift towards more comprehensive user modeling
in recommender system evaluations. This could involve incorporating contextual factors into
evaluation frameworks, developing metrics that capture the evolution of user preferences over
time, and implementing long-term studies to assess sustained user engagement and satisfaction.

2.5.4.4 Need for Statistical Tests

Many studies report improvements in recommender system performance without conducting
rigorous statistical validation [Ji et al., 2020]. This lack of statistical testing makes it difficult to
determine whether observed differences in performance are truly meaningful or due to chance.
Additionally, the focus on statistical significance without considering effect sizes can lead to
overemphasis on small, practically insignificant improvements [Shevchenko et al., 2024]. The
problem is further compounded in large-scale evaluations where multiple comparisons are made
without proper statistical corrections.

To address these shortcomings, recommender system evaluation would benefit from:

• Developing standardized protocols for dataset creation, preprocessing, and algorithm
implementation [Anelli et al., 2021]

• Conducting more cross-domain studies to assess model generalizability [Dietz et al., 2023]

• Incorporating comprehensive user modeling in evaluation frameworks [Kleinberg et al.,
2022]

• Implementing robust statistical analyses, including significance tests and effect size
measurements [Shevchenko et al., 2024]

• Standardizing reporting practices to facilitate comparisons across studies and domains [Li
et al., 2024]

By addressing these limitations, researchers can develop more comprehensive and reliable
approaches to evaluating recommender systems, leading to more accurate assessments of perfor-
mance and better understanding of system behavior across diverse scenarios and user groups [Sun,
2024].
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2.6 Conclusion
This Chapter has provided a comprehensive overview of the current state of evaluation

practices in deep learning, focusing on three key domains: Class Incremental Learning, Face
Recognition, and Recommender Systems. Through our examination, we have highlighted several
common themes and challenges that persist across these areas.

First, we have shown that traditional evaluation metrics, while useful, often fall short in
capturing the full complexity of deep learning model performance [Doshi-Velez and Kim, 2017]. In
Class Incremental Learning, standard accuracy measures may fail to adequately reflect a model’s
ability to retain knowledge of previously learned classes [Masana et al., 2021]. Similarly, in Face
Recognition, conventional metrics might not account for biases across different demographic
groups [Grother et al., 2019]. For Recommender Systems, beyond-accuracy metrics have emerged
as crucial complements to traditional accuracy-based evaluations [Kaminskas and Bridge, 2016].

Second, we have observed a growing awareness of the need for more diverse and representative
datasets in evaluation [Torralba and Efros, 2011]. This is particularly evident in Face Recognition,
where the importance of inclusive datasets that span various ethnicities, ages, and genders
has been emphasized [Buolamwini and Gebru, 2018]. In Recommender Systems, the challenge
of capturing the disparate nature of user interactions has highlighted the need for more
comprehensive data collection and evaluation strategies [Harper and Konstan, 2016].

Third, the importance of rigorous statistical analysis has been a recurring theme. Across
all domains, there is an increasing call for more robust testing, proper handling of multiple
comparisons, and quantifying importance alongside statistical significance [Bouthillier et al.,
2021]. This trend reflects a broader move towards more reliable and reproducible evaluation
practices in deep learning [Pineau et al., 2021].

Fourth, we have noted the emergence of domain-specific evaluation frameworks and metrics
[Anelli et al., 2021]. These tailored approaches aim to address the unique challenges posed by
each application area, moving beyond one-size-fits-all evaluation strategies.

Future Research for Better Evaluation Methodologies

Moving forward, the field of evaluation presents several promising avenues for further
investigation and refinement of methodologies:

1. Development of standardized evaluation protocols that facilitate fair comparisons
across different models and studies [Bouthillier et al., 2021].

2. Integration of causal inference methods to better understand the factors driving
model performance [Xu et al., 2021].

3. Exploration of long-term evaluation strategies, particularly relevant for Class Incre-
mental Learning and Recommender Systems [Hayes and Kanan, 2022].

4. Investigation of multi-metric evaluation frameworks that can provide a more holistic
view of model performance [Reddi et al., 2020].

5. Advancement of interpretability and explainability methods to complement quanti-
tative evaluations [Lipton, 2017].

By addressing these challenges and pursuing these research directions, the field can move
towards more rigorous, comprehensive, and insightful evaluation practices. This progress is
essential not only for advancing the state-of-the-art in deep learning but also for ensuring the
responsible and effective deployment of these powerful technologies in real-world applications
[Doshi-Velez and Kim, 2017].
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As we proceed to the subsequent chapters of this thesis, we will build upon these in-
sights, proposing novel and solid evaluation methodologies that aim to address the limi-
tations identified in current practices. Through this work, we aspire to contribute to the
development of more robust, fair, and informative evaluation frameworks for deep learning
models [Hendrycks et al., 2021].
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It is easy to lie with statistics.
It is hard to tell the truth without it.

— Andrejs Dunkels

3
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3.1 Introduction
Building upon the challenges in model evaluation outlined in Chapters 1 and 2, we present

the statistical methods and causal inference tools that form the foundation of our analytical
framework. Our approach draws primarily from established econometric techniques, adapting
them specifically for machine learning analysis. Unless noted otherwise, all our statistical
elements are drawn from "Mostly Harmless Econometrics" by Angrist and Pischke [2009],
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"Econométrie: méthodes et applications" by Crepon and Jacquemet [2010], and "Economet-
rics" by Wooldridge [2013].

The methods presented here move beyond traditional performance metrics to provide a
rigorous statistical framework for understanding model behavior. This includes techniques for
hypothesis testing, confidence interval estimation, analysis of variance (ANOVA), and causal
inference methods. These tools enable us to quantify uncertainty in our evaluations, isolate
the effects of individual factors, and test hypotheses about the relative importance of different
model components. The application of these statistical approaches is particularly crucial when
evaluating complex machine learning systems in real-world scenarios. They provide the tools
needed to understand how models perform across different contexts and conditions, enabling
more reliable and interpretable research outcomes.

3.2 Foundations of Econometrics: Ordinary Least Squares (OLS)
Ordinary Least Squares (OLS) is a fundamental method in econometrics and serves as the

foundation for many advanced statistical techniques. It provides a straightforward yet powerful
approach to modeling relationships between variables, and its understanding is fundamental
to being able to draw meaningful conclusions from analytic experiments.

3.2.1 The Linear Regression Model
The linear regression model is a statistical method used to model the relationship between

a dependent variable and one or more independent variables.

Definition: Endogenous and Exogenous Variables

In econometrics, variables are classified as:
• Endogenous variable: The dependent variable (Y ) that the model aims to explain

or predict. It is determined within the model and is influenced by the exogenous
variables.

• Exogenous variables: The independent variables (X) that are used to explain or
predict the endogenous variable. They are determined outside the model and are
assumed to influence the endogenous variable.

Let Y and X be random variables modeling an endogenous and exogenous variable. Then,
the simple linear model is:

Y = β0 + β1X + ε (3.1)

Where:
• β0 ∈ R is the called intercept term
• β1 ∈ R is the slope coefficient
• ε is the error random variable

In practice, however, we often want to consider multiple explanatory factors, leading to the full lin-
ear model:
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Definition: The Linear Regression Model

Let Y be an endogenous variable and X1, ..., XK be exogenous variable. The full
Linear Regression Model is

Y = β0 + β1X1 + β2X2 + ... + βKXK + ε (3.2)

where β1, β2, ..., βk are their regression coefficients and ε is models the error

The model in equation 3.2 should be familiar to anyone with a Machine Learning background,

since linear regression is the building block of many ML algorithms, including neural networks.

However, whereas in applied machine learning, using this model as a predictive tool is common,

in econometrics, the focus is put on finding the right assumptions that allow us to interpret

the coefficients βk as causal effects and draw explanatory conclusions.

3.2.2 Interpreting the Coefficients

Several key assumptions must hold for the βk coefficients in the linear regression model to be

interpreted as causal effects. These assumptions are fundamental to the Gauss-Markov theorem

and are often referred to as the Classical Linear Regression Model (CLRM) assumptions.

Classical Linear Regression Model (CLRM) assumptions

• Correct Specification: the regression equation contains all of the relevant predic-
tors, including any necessary transformations. That is, the model has no missing,
redundant, or extraneous predictors.

• Linearity in Parameters: The relationship between Y and Xk is linear in the
parameters βk. This doesn’t mean Xk and Y must have a linear relationship, but
rather that the parameters enter the equation linearly.

• Exogeneity: E[ε|Xk] = 0] for all k. In other words, there are no omitted variables
that are correlated with both the dependent variable and the independent variables.
This is needed for causal interpretation as it ensures that unobserved factors do not
bias the estimated effects.

• Normality of the Error Term: ε ∼ N (0, σ2). While not strictly necessary for
unbiasedness, the assumption that the error term is normally distributed allows for
valid inference (hypothesis testing and confidence intervals).

• Homoscedasticity: V(ε|Xk) = σ2. This assumption states that the variance of the
error term is constant across all levels of the independent variables. Homoscedasticity
ensures that the precision of the βk estimates is consistent across the range of Xk

values.
• No Perfect Multicollinearity: There should be no exact linear relationships

among the independent variables. This ensures that we can uniquely estimate the
effect of each variable.

When all the criteria are met, we can interpret the coefficients as causal effects:
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Linear Regression Model Interpretation

When all CLRM assumptions are met, then each coefficient βk represents the marginal
effect of the corresponding exogenous variable Xk on the endogenous variable Y , holding
all other variables constant. Mathematically, this can be expressed as:

βk = ∂Y

∂Xk
(3.3)

The "holding all other variables constant" condition is known as the ceteris paribus as-
sumption. It’s essential for isolating the effect of a single variable and is a key concept in
causal interpretation [Angrist and Pischke, 2009].

Regression over many variables Xk simultaneously allows us to disentangle the effect of each
variable and, under the right assumptions, draw meaningful conclusions on the relationship
between Xk and Y . In particular, under the exogeneity and correct specification assumptions,
the βk coefficient can be interpreted as the causal effect of Xk on Y .

3.2.3 Fitting the Model
From now, let us denote by X the row vector (1, X1, ..., XK), and β the vector of all βk.

Then, under the CLRM assumptions, we have a closed formula for the coefficients:

Formula for the Coefficients

Under the exogeneity and no perfect colinearity assumptions, the expression

β = E
î
XT X

ó−1
E
î
XT Y

ó
(3.4)

is a solution to the equation 3.2.

Proof. We have :

Y = Xβ + ε

XT Y = XT Xβ + XT ε

E[XT Y ] = E[XT X]β + E[XT ε]
E[XT Y ] = E[XT X]β by exogeneity

β = E[XT X]−1E[XT Y ]

The inversion of E[XT X]−1 is possible under the no perfect colinearity assumption.

Of course, in practice, we only have access to realizations of (X, Y ). We thus define the empir-
ical counterparts of our quantities, by considering a set of n realizations (xi, yi) ∼ (X, Y ), and the
equation:

yi = xiβ + ϵi (3.5)

where ϵi is called the residual the model for the observation i. Under the hypothesis that the
(xi, yi) are i.i.d., we should have ϵi

i.i.d.∼ ε, in other terms, that the empirical residuals should
be realizations of the noise variable. We can then define our estimator:
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The OLS Estimator

Under the CLRM assumptions

β̂OLS :=
Ç

1
n

n∑
i=1

xT
i xi

å−1Ç 1
n

n∑
i=1

xT
i yi

å
(3.6)

is an estimator of β, and is called the Ordinary Least Squares Estimator (OLS).

Proof. Direct by the continuous mapping theorem.

Through convex optimization, it it easy to show that Xβ is the best linear approximation of
E[Y |X] with respect to the square norm L2, i.e. β = arg min

b
E[(E[Y |X]−Xb)2], which justifies

the name of the OLS estimator, which minimizes the empirical mean square error.
Let us denote by X the matrix of the observations xi, and y the vector of observations

of yi. Then, the OLS estimator can be easily rewritten as

β̂OLS = (XT X)−1XT y (3.7)

and can be viewed as the pseudo-inverse of X acting on y. Plugging back β̂OLS in the equation
3.2, we get the predicted values vector ŷ defined by :

ŷ := X(XT X)−1XT y
not= Ĥy (3.8)

where Ĥ is the called the hat matrix, and is the projection matrix on the linear space
generated by the rows of X. Informally, the predicted values are thus can thus be seen
as an orthogonal projection of y on X.

3.2.4 Statistical Significance and Hypothesis Testing
3.2.4.1 Individual Variables

The OLS estimator thereby denoted simply β̂, estimates the theoretical β with a certain
precision since it is a function of the realizations (xi, yi). We can know its precision, both
in a finite sample setup and in an asymptotic setup:

Properties of the OLS estimator

(Finite sample) Under the CLRM assumptions and i.i.d sampling,

β̂ ∼ N
(

β, σ2
Ä
XT X

ä−1)
(3.9)

(Asymptotic distribution) Under the CLRM assumptions, i.i.d. sampling, and CLT
moment conditions, β̂ is asymptotically normal:

√
n(β̂ − β) L−→ N (0, σ2E[XT X]) (3.10)

Proof. (Finite sample): We can write β̂ as :

β̂ =
Ç

1
n

n∑
i=1

xT
i xi

å−1Ç 1
n

n∑
i=1

xT
i (xiβ + ϵi)

å
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which simplifies to

β̂ = β +
Ç

n∑
i=1

xT
i xi

å−1Ç n∑
i=1

xT
i ϵi

å
Since ϵi

i.i.d.∼ ε ∼ N (0, σ2), β̂ is normal, with tractable expected value and covariance matrix.
(Asymptotic distribution): Direct by applying the CLT and calculating the variance of β̂.
Homoscedascity reduces the expression since E[ε2XT X] = σ2E[XT X].

This formulation of the variance supposes homoscedasticity of the errors, but other for-
mulations exist for cases where this assumption is not valid.

In practice, we have to estimate σ2E[XT X] from the data, leading to the empirical
counterpart s2Ê[XT X], where s2 is the unbiased variance estimator. However, the estimation
of the variance with an empirical counterpart changes the law which describes our error from
a Normal distribution to a Student distribution:

Definition: t-statistic

Let s2 = ϵT ϵ
n−K be the unbiased estimator of σ2, where ϵ is the vector of the residuals.

Let se(β̂k) =
»

s2(XT X)−1
kk . Then:

tk := β̂k − β

se(β̂k)
∼ T (n−K) (3.11)

where T (n−K) is the Student distribution with n−K degrees of freedom. The quantity
tk is called the t-statistic of the coefficient βk.

Proof. s2 is the classical unbiased variance estimator. In particular, since the ϵi follow normal
distributions, then we can show that n−K

σ2 s2 ∼ χ2
n−K via Cochran’s theorem. Rewriting the

expression:

tk = β̂k − β»
σ2(XT X)−1

kk

·

 
σ2

s2

The first factor follows a Gaussian distribution, and the second factor can be rewritten as
1√

U/(n−K)
where U follows a χ2 distribution with n−K degrees of freedom. By definition, tk

follows a Student distribution with n−K degrees of freedom.

The t-statstic is the object that allows us to get confidence intervals for βk, by looking at the
likelihood of tk with respect to its theoretical Student distribution In particular, this is useful to
verify if βk ̸= 0, i.e. if there is a significant effect of Xk on Y , and if yes, its sign and strength.

Confidence Intervals

Let tn−K,1−α/2 be the 1−α/2-th quantile for the Student distribution with n−K degrees
of freedom. Then, with probability 1 − α,

βk ∈
î
β̂k ± tn−K,1−α/2 × se(β̂k)

ó
(3.12)

A common threshold for α is 5%.
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If 0 is contained inside the confidence interval, it means we do not have enough data
points to draw conclusions. This does not mean that Xk has no effect on Y , but that the
noise in the observed data is too strong to even say if the effect is positive or negative. On
the other hand, we can have a very narrow confidence interval, but around a small β̂ value,
corresponding to a statistically significant but small effect. Therefore, assessing both the
value and significance of the effects βk is important.

3.2.4.2 Global Significance
The main measure of the overall fit of a linear regression model is the coefficient of

determination, commonly known as R2. This statistic quantifies the proportion of variance
in the dependent variable that is predictable from the independent variable(s). R2 ranges
from 0 to 1, where 0 indicates that the model explains none of the variability of the data
around its mean, and 1 indicates perfect prediction. Mathematically, R2 can be defined
in terms of variance and covariance:

Definition: R2

R2 =
‘Cov(y, ŷ)2‘V ar(y)‘V ar(ŷ)

=
‘V ar(ŷ)‘V ar(y)

= 1−
‘V ar(ϵ)‘V ar(y)

(3.13)

Formulation 3.13 highlights that R2 represents the squared correlation between the observed
and predicted values, or equivalently, the ratio of the variance of the predicted values to
the variance of the observed values. While R2 provides a useful measure of model fit, it
should be interpreted cautiously, especially when comparing models with different numbers
of predictors or when working with small sample sizes. In such cases, the adjusted R2 or
other information criteria like AIC may provide more reliable measures of model quality,
and will be described following sections.

3.2.5 Performing Regression in Practice
3.2.5.1 Notation

When performing any OLS regression of a variable Y on the variables X1, ..., XK , we will
denote the regression using the R-style formula:

R-style Notation

The Linear Regression Model equation 3.2 is denoted by:

Y ∼ X1 + ... + XK (3.14)

This notation omits the intercept, the coefficients, and the residuals, to clarify what are
endogenous (Y) and exogenous (Xk) variables.

3.2.5.2 Categorical Variables
In some cases, a variable X can be categorical instead of being continuous. In this case,

if X take C discrete unordered values D1, ..., DC , we employ a dummy coding:
1. Take a value, for example D1, as a reference value,
2. Encode X as a one-hot encoding vector in {0, 1}C−1, with a 1 in the position j corre-

sponding to the observation of the value Dj ,
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3. Get C − 1 coefficients β2, ..., βC , corresponding to the marginal effect of X taking the
value Dj instead of the reference value D1, i.e.

βk = 1(Y |X = Dk)− 1(Y |X = D1) (3.15)

3.2.5.3 Product Variables

In a regression of the form Y ∼ X1 + X2, it is possible to model the case where the value
of one variable can impact the marginal effect of the other one. For example, we might want
to consider that the effect of training time on model performance depends on the model’s
complexity. This can be achieved by including an interaction term:

Definition: Product variables

To model interaction between variables, the equation

Y = β0 + β1X1 + β2X2 + β3(X1 ·X2) + ε (3.16)

is denoted equivalently by the formulas

Y ∼ X1 + X2 + X1 : X2 ⇐⇒ Y ∼ X1 × X2 (3.17)

where X1 : X2 represents the interaction between X1 and X2.

To get sound interpretations, it is best to first center the exogenous variables, so X1 ·X2

is less correlated with X1 and X2. In this case:
• β1 represents the effect of X1 when X2 is at its mean
• β2 represents the effect of X2 when X1 is at its mean
• β3 represents how the effect of X1 changes for each unit increase in X2 (and vice versa)

This allows us to model quite complicated dependencies between explanatory variables and the
target variable.

Plain OLS regressions can be performed and interpreted as long as Y is a continuous variable
and that the CLRM hypothesis holds. The difficulty in a rigorous evaluation protocol does not
come from complicated evaluation models but from a rigorous choice of explanatory variables,
hypothesis verification, and careful interpretation of the results.

3.3 Analysis of Variance (ANOVA)
OLS regressions allow us to get marginal effects associated with each variable, which can

be quite informative when the explanatory variables are continuous. For categorical variables,
while dummy coding allows us to still get marginal effects from one group to another, it does
not allow us to easily know what categorical variable is the most important, i.e. for which
categorical variable the variance in the category is the greatest. For example, if we evaluate
models by varying both model types and training types (both categorical variables), we need
a way to say that one aspect has a greater influence on performance than the other.

64 3. Statistical Tools for a Better Analysis of Machine Learning



3.3.1 ANOVA as an Extension of OLS
Analysis of Variance (ANOVA) is a powerful statistical technique used to analyze the

differences among group means in a sample. While originally developed for experimental design,
ANOVA has found wide applications in various fields, including machine learning evaluation.
ANOVA can be viewed as a special case of the Ordinary Least Squares (OLS) regression we
discussed earlier. In fact, ANOVA and linear regression are two faces of the same coin, both
falling under the General Linear Model framework.

Consider a model with two categorical variables X1 and X2:

Y = β0 +
∑

i

β1iD1i +
∑

j

β2jD2j + ε (3.18)

Where D1i and D2j are dummy variables for X1 and X2, respectively. This OLS formulation
is equivalent to the ANOVA model:

Yij = µ + Ai + Bj + ε (3.19)

where Yij is the response variable when X1 = D1i and X2 = D2j , µ is the overall mean
effect, Ai is the effect of D1i, and Bj is the effect of D2j . We have µ + α1 + β1 = β0 (for
the reference categories), Ai = β1j for i = 2, ..., J

The ANOVA formulation can be advantageous since it naturally partitions the total variance
into components associated with each factor and residual error. It allows for easier interpretation
of main effects in the presence of multiple categorical variables, and provides a framework for
analyzing complex experimental designs, including nested and crossed factors.

3.3.2 Effect Sizes: Decomposing Model Variance
While OLS focuses on estimating coefficients, ANOVA emphasizes decomposing the total

variance in Y . This decomposition allows us to calculate effect sizes, particularly partial
eta-squared η2

p, which quantifies the proportion of variance explained by each factor.

Definition: Partial η2

For a regression of the observed yi on the exogenous variables x1i, ..., xKi, let ŷi be the
predicted outcome of the full model for the observation i, and ŷki the predicted outcome
based only on xki. Then define the partial and error sum of squares by:

SSeffect :=
∑

i

(ŷki − ŷi)2

SSerror :=
∑

i

(yi − ŷi)2

Then the partial η2, also denoted for Xk is defined by:

η2
p(Xk) = SSeffect

SSeffect + SSerror
(3.20)

Interpretation of η2
p

η2
p represents the proportion of variance in Y explained by a factor, after accounting

for other factors in the model. It’s directly related to the increase in R2 when adding
the factor to a model that already includes other factors.
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The ANOVA framework is particularly useful in machine learning evaluation when:
• Comparing the effects of multiple categorical factors (e.g., model architecture, dataset

type)
• Quantifying the relative importance of different factors using η2

p

• Analyzing interaction effects between factors (in multi-way ANOVA)
While OLS provides coefficient estimates, ANOVA’s focus on variance decomposition often
provides a more intuitive understanding of each factor’s importance in explaining variabil-
ity in model performance.

3.4 Binary Outcome Models: The Logit Model
The general linear model is not adapted in the case where the endogenous variable

Y is binary. If Y ∈ {0, 1}, then E[Y |X] ∈ [0, 1]. In the linear model, we assume a
solution of the form E[Y |X] = Xβ, but nothing guarantees that Xβ is in [0, 1], which
raises serious specification questions.

Additionally, the usual interpretation of βk as a marginal effect becomes less clear. If Y is
binary, interpreting a βk value of, for example, 0.6, is not easy. This is because the marginal
effect on a binary outcome cannot be directly interpreted in the same way as it would for a
continuous outcome, since the effect on the probability is nonlinear.

3.4.1 Definition of the Logit Model
A solution is to restrict the predictions to a function F that maps the linear predictor to

the [0, 1] interval, ensuring that the predicted values are valid probabilities. One such function
is the logistic function, commonly used in the Logit model.

Definition: Generalized Linear Model (GLM)

If F is a strictly increasing bijective function from R to ]0, 1[, it is a cumulative distribution
function, and a Generalized Linear Model is specified as:

E[Y |X] = F (Xβ) (3.21)

In particular, this allows us to model non-linear situations. In the binary outcome case,
we can consider that there exists a latent variable Y ∗, such that Y ∗ = Xβ + ε, where −ε

has a c.d.f F , and Y = 1(Y ∗ ≥ 0). Then

E[Y |X] = P(Y = 1|X) = P(Y = 1|X) = P(−ε ≤ Xβ|X) = F (Xβ) (3.22)

A common choice of function F is the sigmoid function, which gives rise to the Logit model:

Definition: The Logit Model

Let σ be the sigmoid function, i.e.

∀x ∈ R, σ(x) = 1
1 + e−x

(3.23)

Then the logit model is defined by :

E[Y |X] = σ(Xβ) (3.24)
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In R-style notation, it will be denoted:

Y ∼ σ(X1 + ... + XK) (3.25)

3.4.2 Fitting the Model
Sadly, there is no closed-form solution for the β coefficients in the equation 3.24 as in

the OLS formulation. Thus, in practice, the model is fitted using the Maximum Likelyhood
Estimation (MLE). The likelihood function for n independent observations is:

L(β) =
n∏

i=1
[σ(xiβ)]yi [1− σ(xiβ)]1−yi (3.26)

We maximize the log-likelihood:

ℓ(β) =
n∑

i=1
yi log(σ(xiβ)) + (1− yi) log(1− σ(xiβ)) (3.27)

This is typically done using numerical optimization methods like Newton-Raphson or Fisher scor-
ing.

To obtain confidence intervals for β, we use the fact that the MLE estimator β̂ is asymp-
totically normal. The variance-covariance matrix of β̂ can be estimated using the inverse
of the observed Fisher information matrix:‘V ar(β̂) = I(β̂)−1 =

Ç
− ∂2ℓ(β)

∂β∂βT

∣∣∣∣
β=β̂

å−1

(3.28)

This allows us to construct confidence intervals:

Confidence Intervals for the Logit Model

For a given coefficient βk, let z1−α/2 be the 1−α/2-th quantile for the Gaussian distribution.
Then, with probability 1 − α:

βk ∈

β̂k ± z1−α/2

 ‘V ar(β̂)k,k

n

 (3.29)

where ‘V ar(β̂)k,k is the k-th diagonal element of ‘V ar(β̂).

Proof. The MLE estimator β̂ is asymptotically normal with distribution N (β, 1
nI(β)−1) where

I(β) is the Fisher information matrix evaluated at β. Evaluating the Fisher information matrix
at the empirical counterpart β̂ yields the desired confidence interval.

3.4.3 Interpreting the Model
3.4.3.1 Marginal Effects

Reversing the equation 3.24, we can the equivalent model:

ln P(Y = 1|X)
P(Y = 0|X) = XT β (3.30)
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Therefore, the logit regression can be viewed as a linear regression in the log-odds ratio scale.
This makes it quite difficult to directly interpret the values βk as concrete effects, since we
would want to have an interpretation on the probability P(Y |X). For the logit model, we get :

∂P(Y = 1|X)
∂Xk

= σ(Xβ)(1− σ(Xβ))βk (3.31)

Contrary to the OLS, the marginal effect of Xk on the probability of outcome Y depends on all
the other variables X−k. A common quantity to consider is then the Average Marginal Effect:

Definition: Average Marginal Effect

In the logit model, the Average Marginal Effect (AME) of a variable Xk on the
probability of outcome Y is:

AME(Xk) = E
ï

∂P(Y = 1|X)
∂Xk

ò
(3.32)

It represents the effect of a unit change in Xk, on average, on the probability of outcome
Y . Its empirical counterpart is estimated by:÷AME(Xk) = 1

n

n∑
i=1

∂P̂(Y = 1|X)
∂Xk

∣∣∣∣
X=xi

= 1
n

n∑
i=1

σ(xiβ̂)(1− σ(xiβ̂))β̂k (3.33)

The confidence intervals for AME(Xk) are computed using the delta method. If gk(β) is
the function that computes the marginal effector Xk, then:

√
n(gk(β̂)− gk(β)) L−→ N (0,∇gk(β)T I(β)−1∇gk(β)) (3.34)

The variance of the marginal effect estimate is then approximated as:‘V ar(gk(β̂)) = ∇gk(β̂)T Î(β̂)−1∇gk(β̂) (3.35)

This allows us to construct confidence intervals for the marginal effects:

Confidence Intervals of the AME

Let z1−α/2 be the 1−α/2-th quantile for the Gaussian distribution. Then, with probability
1 − α:

AME(Xk) ∈

÷AME(Xk)± z1−α/2

 ‘V ar(gk(β̂))
n

 (3.36)

3.4.3.2 Goodness of Fit

In logistic regression, the standard R2 used in linear regression is not applicable due
to the non-linear nature of the model. McFadden’s R2, also known as the likelihood ratio
index, is one of several pseudo-R2 measures developed for logistic regression and other models
estimated by maximum likelihood.

68 3. Statistical Tools for a Better Analysis of Machine Learning



Definition: McFadden’s R2

For a logit model, McFadden’s R2 is defined as:

R2
McFadden = 1− ln(Lfull)

ln(Lnull)
(3.37)

Where:
• Lfull is the likelihood of the full model
• Lnull is the likelihood of the null model (intercept-only model)

Unlike the R2 in linear regression, McFadden’s R2 does not have an upper bound of
1, and values between 0.2 and 0.4 are considered to represent an excellent fit. However,
like other pseudo-R2 measures, McFadden’s R2 should be used in conjunction with other
diagnostic tools and substantive interpretation of the model coefficients. It’s particularly
useful when the goal is to understand the factors influencing binary outcomes in machine
learning models, rather than purely predictive tasks.

3.5 Model Selection and Validation
In the context of evaluation and explainability using regressions, selecting the most appro-

priate statistical model is required for drawing valid conclusions. This section discusses key
tools for model selection and validation, focusing on information criteria and residual analysis.

3.5.1 Information Criteria
While the R2 of a regression gives us an idea of the model explainability power, it suffers

from problems, particularly overfitting. To select the best model, the Akaike Information
Criterion (AIC) is a widely used tool for model selection, balancing model fit against
complexity to avoid overfitting.

Definition: Akaike Information Criterion (AIC)

For a model with K parameters and maximum likelihood L, the AIC is defined as:

AIC = 2K − 2 ln(L) (3.38)

Where:
• K is the number of estimated parameters in the model
• L is the maximum value of the likelihood function for the model

The AIC is founded on information theory and provides a relative estimate of the infor-
mation lost when a given model is used to represent the process that generates the data.
When comparing models, the one with the lower AIC is generally preferred. The AIC has
some interesting properties:

• Trade-off : AIC rewards goodness of fit (as assessed by the likelihood function) but
includes a penalty that increases with the number of estimated parameters. This penalty
discourages overfitting.

• Relative measure: AIC values are only meaningful when compared between models.
The absolute value of AIC for a single model is not interpretable on its own.
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• Model comparison: When comparing models, a difference in AIC of 2 is often considered
the threshold for meaningful difference.

3.5.2 Residual Analysis
To ensure the validity of our statistical inferences, we need to verify the regression as-

sumptions. Since the theoretical model cannot be accessed, the key OLS assumptions are
checked through various residual plots and statistical tests, called regression diagnostics.
Recall that the residuals are defined by:

ϵi = yi − ŷi (3.39)

The key assumptions are verified using different methods:
• Linearity: Plot the ϵi vs. the fitted values ŷi, and verify it is centered around 0. The idea

is that to check if yi is linear in xi and that all the linear effects have been accounted for,
we can check if E[ϵi|xi] = 0. In particular, any pattern in this plot, such as a U-shaped
curve, indicates missing non-linear effects

• Normality of residuals: Plot the Q-Q plot of the standardized ϵi against the Gaussian
distribution. Tests like the Kolmogorov-Smirnov (KS) can be used to check if the residuals
are indeed Gaussian, but should be used with caution: for a sample large enough, a small
deviation from the Gaussian distribution, even if not too problematic, can be detected by
the KS test. A graphical inspection can be more insightful in these cases.

• No multicollinearity among predictors: Compute each predictor’s Variance Inflation
Factors (VIF), which indicates how much a predictor is linear in the others. A VIF value
greater than 5 or 10 indicates problematic multicollinearity.

• Homoscedasticity (constant variance of residuals): plot ϵi vs ŷi or
√

ϵ̃i vs ŷi, where ϵ̃i

are the re-scaled residuals. The distribution should be the same for all values of ŷi. If the
homoscedasticity assumption does not hold, the value of the βk coefficients is still valid,
but the confidence intervals become imprecise. This can be solved by using more robust
and more conservative confidence intervals.

• No influential outliers: The influence of an observation i on the model can be measured
by its leverage Ĥ ii i.e. the i-th diagonal element of the hat matrix. Plotting the leverage
vs. the residual value highlights aœny outlier point. Additional measures, like Cook’s
distance, can be used to quantify the effect of each observation.

3.5.2.1 Residuals Analysis for the Logit Model

While the overall principles of model diagnostics remain important for logit regressions, the
methods used for linear regression cannot be directly applied due to the non-linear nature of
the logit model. Indeed, in linear regression, residuals are expected to be normally distributed
with constant variance. However, in logistic regression:

• Non-normality: The residuals in logistic regression are not normally distributed. Instead,
they follow a binomial distribution.

• Heteroscedasticity: The variance of residuals is not constant but depends on the
predicted probability.

• Bounded nature: Residuals in logistic regression are bounded, unlike in linear regression
where they can take any value.
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These characteristics make traditional residual plots (like residuals vs. fitted values) less
informative and potentially misleading for logistic regression.

Several methods have been proposed to find counterparts to the linear diagnostics for the
logit model, like deviance residuals or Pearson residuals [Pierce and Schafer, 1986; McCullagh
and Nelder, 1989]. However, in practice, they often fall short of providing a clear understanding
are the practical problems in a logit model.

DHARMa (Diagnostics for HierArchical Regression Models) [Hartig, 2018] is a method
designed to create readily interpretable residuals for generalized linear mixed models (GLMMs),
including logistic regression. The key ideas of DHARMA are:

• Simulation-based approach: DHARMA simulates new data from the fitted model
multiple times.

• Quantile residuals: It calculates the quantile of the observed data within the simulated
data distribution.

• Uniformity expectation: If the model is correctly specified, these quantile residuals
should follow a uniform distribution.

The generated DHARMa residuals can be used to verify all the classical diagnostics plots
presented in the previous subsection. This allows us to overcome the limitations of traditional
residual analysis in logistic regression and gain insights into model fit and potential issues. This
approach provides a robust method for assessing the validity of our logistic regression models
used in binary classification tasks or when analyzing binary outcomes in ML experiments.

3.6 Model Correction
When testing and validating an explanatory model, some of the CLRM assumption violations

can be detected through the diagnostics plots described in the previous section. Changing
and adapting the model to satisfy these assumptions is usually a trial-and-error process, but
some general guidelines can still be identified.

3.6.1 Model Misspecification
When the model is misspecified, the relationship between some exogenous variables and

the endogenous variable is not linear. This type of error is arguably the most problematic
one, since it means we’re estimating the wrong relationship. In this case, the estimators are
biased and inconsistent, leading to incorrect conclusions about the relationships we want to
explain. Misspecification can be seen through patterns in the residuals vs. fitted values plot,
which can indicate the true relationship between X and Y .

The most common way of correcting misspecification is to gain modelization insights about
how what kind of non-linearity is at play. For example, it is common for variables such as age,
the age of an individual to have a quadratic effect on some outcome Y . Adding non-linear
transformations of the variables to the model can thus be a straightforward way to solve
misspecification, with transformations such as polynomial transformations or log transformations.

Another common cause for misspecification is the lack of product variables. For
example, if a deep model’s size and the choice of a model’s architecture interact in a non-
linear way to produce the final performance, not considering the product variable can result
in a non-linear dependence.

Misspecification can also be caused by an omitted variable, a situation where we did
not take into account an important explanatory variable in the model. For example, if
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a facial recognition system performance is heavily influenced by the gender of the person,
but the regression is performed only on their ethnicity, the residuals will tend to group in
two distinct clusters, one for each gender1.

3.6.2 Endogeneity
Endogeneity occurs when an exogenous variable X is correlated with the error term ε. This

typically happens when there exists an unobserved variable Z that affects both X and Y , creating
a confounding effect. As with model misspecification, endogeneity makes the OLS estimators
both biased and inconsistent, leading to incorrect inferences about causal relationships.

To understand endogeneity, causal graphs (Directed Acyclic Graphs, or DAGs), heavily
advocated by Pearl and Mackenzie [2018], provide a useful visualization framework. Consider
a situation in face recognition where we want to measure the effect of the brightness of the
image X (measured as the mean pixel values in the image) on model performance Y . If
the ethnicity Z affects both the mean brightness and the performance (because the model
is undertrained on minorities), but is unobserved, we have:

Z → X → Y and Z → Y (3.40)

This graph indicates that Z impacts Y directly but also impacts X, which in turn impacts Y ,
creating a new indirect effect. For instance, Caucasian people are often the most represented
group in face recognition datasets, which leads the model to have better performance on
this subgroup. At the same time, images depicting Caucasian people are correlated with
higher mean pixel values. The presence of this backdoor path through ethnicity Z makes it
impossible to identify the true causal effect of image brightness X on model performance
Y through simple regression.

This is where background illumination can serve as an instrumental variable: it is associated
with a variation in overall brightness that is independent of ethnicity. This last point is a
modelization hypothesis that can be assessed by verifying the data collection process.

If the confounding variable Z is observed, the solution is straightforward: including it as a
control variable in the regression blocks the backdoor path. However, when Z is unobserved
(in our example, ethnicity is a protected attribute), we need to use instrumental variables
(IV). An instrumental variable W must satisfy three conditions:

• Relevance: W must be correlated with X

• Exclusion: W must affect Y only through X

• Exogeneity: W must be independent of unobserved confounders
In our example, background illumination is a valid instrument: it is correlated with the overall

image brightness, independent of ethnicity, and if the model has seen various background illumi-
nation situations, should only affect model performance through the overall image brightness.

When a valid instrument is found, the relationship is estimated using Two-Stage Least
Squares (2SLS). First, X is regressed on W to obtain predicted values X̂ that are free from the
influence of Z. Then, Y is regressed on these predicted values to obtain unbiased estimates of the
causal effect. The key challenge in practice is finding instruments that satisfy all three conditions,
as violation of any condition can lead to estimates that are more biased than simple OLS.

1Here, we consider for simplicity a modelization with exactly 2 genders
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3.6.3 Heteroscedasticity
When the variance of the error term varies with the exogenous variables or the predictions,

we say there is heteroscedasticity. Unlike misspecification or endogeneity, heteroscedasticity does
not bias the OLS estimators: they remain consistent and centered on the true values. However,
it affects their efficiency, making the standard errors and confidence intervals unreliable. In
machine learning evaluation, heteroscedasticity is common: for example, when studying model
performance, the variance of the performance often increases with model size, as larger models
tend to be more sensitive to initialization and training conditions.

Heteroscedasticity can be detected through patterns in the residuals vs. fitted values plot.
If the spread of residuals consistently increases or decreases with fitted values, this suggests
heteroscedasticity. For example, a fan-shaped pattern in the residuals plot, where the spread of
residuals increases with the fitted values, is a classic sign of heteroscedasticity.

The most common solution is to use heteroscedasticity-robust standard errors, also
known as White standard errors. These adapt the standard error computation to account for vary-
ing error variance, providing valid confidence intervals even under heteroscedasticity. Another
approach is to use weighted least squares (WLS), where observations are weighted inversely
to their error variance. However, this requires knowing or estimating the error variance structure.

Sometimes, heteroscedasticity can be reduced through variable transformations. For example,
if the variance increases with the mean, a log transformation of the dependent variable might
help stabilize the variance. However, such transformations should be used cautiously as they
change the interpretation of the coefficients.

3.7 Conclusion
We have presented a comprehensive overview of statistical tools that can significantly enhance

the analysis and evaluation of machine learning models. By adapting econometric methods
to the context of machine learning, we have demonstrated how researchers can move beyond
simple performance metrics to gain deeper insights into model behavior and performance.

The ordinary least squares (OLS) regression provides a fundamental framework for under-
standing the relationships between various factors and model performance. Its extension to
Analysis of Variance (ANOVA) offers a powerful tool for assessing the relative importance of
different categorical variables in explaining model behavior. For scenarios involving binary
outcomes, often encountered in classification tasks, the logistic regression model offers a
robust approach to analysis.

These statistical techniques offer several key advantages in the context of machine learning
evaluation. Under appropriate assumptions, these methods allow us to draw causal conclusions
about the factors influencing model performance, going beyond mere correlation. Moreover,
the confidence intervals and hypothesis tests associated with these methods provide a rigorous
framework for assessing the reliability of our findings.

However, it’s important to note that these methods are not without limitations. The
assumptions underlying these techniques (such as linearity, homoscedasticity, and normality of
residuals) may not always hold in the context of complex machine learning models. Despite
these challenges, the rigorous application of these statistical tools can significantly enhance
our understanding of machine learning models. They provide a complementary perspective
to traditional machine learning evaluation metrics, offering insights into not just how well
a model performs, but why it performs as it does.
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In a time of drastic change, it is the learners who inherit
the future. The learned usually find themselves equipped
to live in a world that no longer exists.

— Eric Hoffer, Reflections on the Human Condition
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4.1 Introduction
Real-world applications of machine learning often involve training models from data streams

characterized by distributional changes and limited access to past data [Hayes and Kanan, 2022;
Van de Ven and Tolias, 2019]. This scenario presents a challenge for standard ML algorithms, as
they assume that all training data is available at once. Continual learning addresses this challenge

*Equal contribution
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by building models designed to incorporate new data while preserving previous knowledge [Ring,
1997]. This highlights the main challenge in continual learning: finding a balance between
keeping old knowledge (stability) and learning new things (plasticity) [Mermillod et al., 2013].

Within continual learning, Class-Incremental Learning (CIL) deals with situations where the
data stream is composed of batches of classes. CIL algorithms need to learn these new classes
while still performing well on old ones. This task becomes even harder in the exemplar-free setting
(EFCIL), when storing examples of previous classes is impossible due to memory or confidentiality
constraints [Hayes and Kanan, 2020; Zhu et al., 2022]. EFCIL applies to real-world situations,
like healthcare apps where patient privacy is important, or small devices with limited storage.
These practical needs have led to different EFCIL methods, mainly falling into two groups:

1. Fine-tuning with Distillation: These methods, used by many popular EFCIL ap-
proaches [Jodelet et al., 2021; Li and Hoiem, 2016; Rebuffi et al., 2017; Zhu et al., 2021a,b,
2022; Madaan et al., 2023], updates the whole model at each step. It uses supervised
fine-tuning with a distillation loss to avoid forgetting. While it works well, it often focuses
more on learning new things than keeping old knowledge.

2. Feature Extraction with Classifier Update: Another group of methods [Hayes and
Kanan, 2020; Petit et al., 2023] keeps the initial feature extractor the same and only
updates the classifier. This has become more popular with the rise of pre-trained models,
often created through self-supervised learning on big datasets [He et al., 2020a; Oquab
et al., 2023].

While pre-trained models offer more transferable features, they’re not optimal for every task
[Abnar et al., 2022]. We still don’t fully understand how pre-training strategies, model structures,
and task features work together in EFCIL.

This work aims to fill this gap by providing a thorough analysis framework to untangle
the many factors that affect EFCIL performance. We focus on ways to get the starting model
for the incremental learning process. We carefully look at:

• How much does the choice of neural network structure matter ?
• How different EFCIL training methods affect performance ?
• Do pre-trained model perform better than fine-tuned ones ?
• What is the importance of the specific datasets used as benchmarks ?
• How different types of supervision in pre-training change things ?

To ensure our findings are solid and widely applicable, we test these initial training strategies
using three EFCIL algorithms, representative for the state of the art. We use 16 different datasets
and two challenging CIL scenarios. This comprehensive approach enables the understanding
of the complex workings of class-incremental learning without keeping old examples.

The results of our analysis, shown in Table 4.1, offer useful insights for researchers and
practitioners in continual learning. By explaining the key factors that drive EFCIL performance,
this work aims to help develop better and more flexible machine learning systems that can
keep learning in real-world situations with limited data.

Main Findings

We find that:
1. No combination of an EFCIL algorithm and an initial training strategy is best in

all cases, as shown in Table 4.1, echoing the results of previous studies such as
Belouadah et al. [2021]; Feillet et al. [2023].

2. The main factor influencing Average Incremental Accuracy is the pre-taining type,

76 4. An Analysis of Initial Training Strategies for Exemplar-Free CIL



Initial training strategy CIL Algorithms
BSIL [2021] DSLDA [2020] FeTrIL [2023]

Arch Method FT Ext Sup µAcc #Best µAcc #Best µAcc #Best
RN50 CE ✓ × SL 44.9 0 53.7 4 51.0 0
RN50 CE × ✓ SL 39.9 0 61.4 0 60.6 0
RN50 CE ✓ ✓ SL 62.9 1 65.3 0 68.4 1
RN50 BYOL ✓ × SSL 11.2 0 42.2 0 34.4 0
RN50 BYOL × ✓ SSL 35.3 0 63.3 0 62.0 0
RN50 BYOL ✓ ✓ SSL 60.2 0 70.0 2 70.2 0
RN50 MoCoV3 ✓ × SSL 14.9 0 49.6 0 41.1 0
RN50 MoCoV3 × ✓ SSL 36.3 0 67.9 1 65.3 0
RN50 MoCoV3 ✓ ✓ SSL 64.7 2 71.8 2 72.0 0
ViT-S DeiT × ✓ SL 35.0 0 58.7 0 56.3 0
ViT-S DeiT ✓ ✓ SL 11.2 0 37.4 0 27.4 0
ViT-S DINOv2 × ✓ SSL 70.4 4 75.7 9 72.4 6
ViT-S DINOv2 ✓ ✓ SSL 24.0 0 45.9 0 39.2 0

Table 4.1: Performance of three EFCIL algorithms with different training strategies for the initial
model, averaged over 16 target datasets and two EFCIL scenarios. BSIL [Jodelet et al., 2021] is a recent
EFCIL algorithm which is representative of fine-tuning-based CIL works. DSLDA [Hayes and Kanan,
2020] and FetrIL [Petit et al., 2023] adapt linear probing [Kumar et al., 2022] for EFCIL. We present the
averaged incremental accuracy (µAcc) and the number of cases (W) in which a combination of algorithm
and initial training strategy performs best for a combination of target dataset and EFCIL scenario
(see Section 4.4). Initial training strategies are defined by: Arch- deep architecture used (ResNet50
(RN50)[He et al., 2016a] or vision transformer (ViT-S)[Dosovitskiy et al., 2021]); Method - initial training
method; FT - fine-tuning on initial classes of the target dataset; Ext- use of an external dataset, such as
ILSVRC [Russakovsky et al., 2015]; Sup - type of supervision for the initial model: self-supervised (SSL)
or supervised (SL).

though the importance of the first state. Other metrics, such as Forgetting, are more
impacted by the EFCIL algorithm.

3. Pre-training with external data improves accuracy, particularly when the domain
gap is reasonable.

4. Self-supervision in the initial step boosts incremental learning, particularly when
the pre-trained model is fine-tuned on the initial classes

5. EFCIL algorithms based on transfer learning have better performance than their
fine-tuning-based counterparts

These conclusions are drawn from our rigorous statistical analysis detailed in Section 4.5,
which is used to formulate EFCIL-related recommendations in Section 4.6.

The proposed framework can improve the evaluation and analysis of EFCIL methods.
Continual learning practitioners can use the results of this study to better design their
incremental learning systems.

4.2 Related work
4.2.1 Approaches to CIL/EFCIL

Class-Incremental Learning (CIL) and its variant, Exemplar-Free Class-Incremental Learning
(EFCIL), have seen significant developments in recent years. These approaches can be broadly
categorized into two main types: fine-tuning based methods and transfer learning based methods.

Fine-tuning based methods in CIL/EFCIL typically involve updating all or most of the
model parameters at each incremental step. These methods often employ various techniques
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to mitigate catastrophic forgetting.
LUCIR (Learning a Unified Classifier Incrementally via Rebalancing) [Hou et al., 2019]

proposes a cosine normalization strategy to address the classifier bias towards newly added
classes. It also introduces a less-forget constraint and an inter-class separation loss to maintain
discrimination between old and new classes.

BSIL (Balanced Softmax for Incremental Learning) [Jodelet et al., 2021] addresses the
class imbalance problem in CIL by introducing a balanced softmax cross-entropy loss. This
approach aims to improve the model’s ability to learn from imbalanced data distributions
that naturally occur in incremental learning scenarios.

Advantages of Fine-tuning Based Methods

• High plasticity, allowing quick adaptation to new classes
• Potential for better performance on new tasks
• Flexibility in modifying the entire model architecture

However, fine-tuning-based methods also face several limitations. First, they are more
prone to catastrophic forgetting, especially without careful regularization. The optimal weights
at a given incremental step may completely fail to correctly represent the classes of the
previous steps. This is particularly the case when the incremental steps contain less data
than the initial step, where overfitting prevails on generalization. Tackling this problem often
require complex strategies to balance new learning and old knowledge retention, sometimes at
the cost of the fixed memory constraint if one decides to modify the entire architecture
to accommodate for the new classes.

In contrast to fine-tuning approaches, transfer learning-based methods in CIL/EFCIL
typically involve freezing most of the pre-trained model and only updating a small part
of it, usually the classification layer.

DSLDA (Deep Streaming Linear Discriminant Analysis) [Hayes and Kanan, 2020] freezes
the feature extractor of a pre-trained model and updates only an LDA classifier. This approach
allows for efficient incremental learning with minimal computational overhead.

FeTrIL (Feature Translation for Incremental Learning) [Petit et al., 2023] introduces a
feature translation mechanism to adapt the frozen feature space of a pre-trained model to
new classes. This method aims to bridge the domain gap between the pre-training dataset
and the target incremental learning task.

Advantages of Transfer Learning Based Methods

• Strong resistance to catastrophic forgetting
• Computational efficiency, especially for large-scale problems
• Potential for better performance in low-data regimes

However, transfer learning-based methods also have limitations. In particular, they may
struggle with tasks that are significantly different from the pre-training domain. If the
incremental data interpolates the data used in pre-training, transfer learning is able to model the
new data features, but as the domain gap grows, there are no garenties of a good representation
if the data in the latent space. Transfer-learning-based methods also have limited plasticity,
potentially leading to suboptimal performance on new tasks, since their representation power
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entirely depends on the pre-training task. The choice of a pre-training dataset aligned with
the expected incremental task becomes crucial for these methods.

Both fine-tuning and transfer learning-based approaches offer unique advantages and face
distinct challenges in CIL/EFCIL scenarios. Recent work [Petit et al., 2023] has shown that
the choice between fine-tuning and freezing can have a significant impact on CIL performance.
Freezing pre-trained models and using techniques like feature translation can lead to competitive
performance while maintaining high computational efficiency. The choice between these
approaches often depends on the specific requirements of the task, the available computational
resources, and the characteristics of the data stream.

4.2.2 Pre-training Strategies in CIL
Pre-training has emerged as an important factor in the performance of CIL systems. The

choice of pre-training strategy can significantly impact the model’s ability to adapt to new
classes while retaining knowledge of previously learned ones. More and more EFCIl methods
chose to used a pre-trainined model to bootstrap the incremental performance [Hayes and
Kanan, 2020; Hayes et al., 2020; Wang et al., 2022c; Goswami et al., 2024]. Recent works
such as Panos et al. [2023]; Lee et al. [2023] highlight the question of fairly evaluating CIL
methods relying on various pre-training strategies.

Supervised pre-training involves training a model on a large labeled dataset before
adapting it to the CIL task. This approach has been widely used in CIL research due to its
straightforward nature and the availability of large labeled datasets.

Common Supervised Pre-training Datasets

• ImageNet [Deng et al., 2009]: A large-scale dataset with over 1 million images across
1000 classes.

• Places [Zhou et al., 2017]: A scene-centric dataset with over 10 million images across
400+ unique scene categories.

Models pre-trained on these large-scale datasets often exhibit strong transfer learning
capabilities, providing a good starting point for CIL tasks. However, the success of supervised
pre-training heavily depends on the similarity between the pre-training dataset and the target CIL
task.

Self-supervised pre-training has gained significant attention in recent years due to its
ability to learn useful representations from unlabeled data. This approach has shown promising
results in CIL, often matching or surpassing supervised pre-training in certain scenarios [Gallardo
et al., 2020; Fini et al., 2022; Ahmad et al., 2022; Zhu et al., 2022].

Popular Self-supervised Pre-training Methods

• BYOL (Bootstrap Your Own Latent) [Grill et al., 2020]
• MoCo v3 (Momentum Contrast) [Chen et al., 2021]
• DINOv2 (Self-Distillation with Noisy Students) [Oquab et al., 2023]

BYOL [Grill et al., 2020] uses two neural networks that learn to predict each other’s output,
creating a form of self-supervision. MoCo v3 [Chen et al., 2021] employs a contrastive learning
approach with a momentum encoder to learn visual representations. DINOv2 [Oquab et al.,
2023] extends the DINO framework with improved self-distillation techniques and scaled-up
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training. These self-supervised methods have shown remarkable performance in CIL tasks,
often providing more transferable features compared to supervised pre-training, especially when
the target task differs significantly from the pre-training dataset.

The optimal pre-training strategy and the decision to fine-tune or freeze depend on
various factors, including the nature of the CIL task, the available computational resources,
and the characteristics of the data stream. As the field progresses, developing adaptive
strategies that can automatically select the best approach based on these factors remains
an important area of research.

4.3 Problem statement
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Figure 4.1: Overview of the proposed analysis framework of initial training strategies for EFCIL.

We summarize our proposed analysis framework in Figure 4.1. It combines a comprehensive
modeling of the EFCIL process and initial training strategies as inputs for a statistical analysis
that uses different EFCIL metrics. Recommendations for the design of EFCIL approaches
are made based on the conclusions of the statistical analysis.

4.3.1 EFCIL process
Let us consider a dataset D split over K subsets, D = D1 ∪ D2 ∪ · · · ∪ DK , and an EFCIL

algorithm Incr. A CIL process consists in learning a classification model sequentially over
K non-overlapping steps using Incr. At each step k ∈ J1, KK, the model is updated using
Incr and the data subset Dk, whose associated set of classes is denoted by Ck. The data
subsets D1,D2, · · · ,DK composing the complete dataset D satisfy the following constraint:
for k, k′ ∈ {1, 2, . . . , K} with k ̸= k′, Ck ∩ Ck′ = ∅, i.e. each class is only present in a single
data subset. The use of an exemplar-free algorithm Incr implies that when the training is
performed at the kth step, no example from any of the data subsets of the previous steps
can be accessed. Although this is a more difficult setting, it is also more realistic in practice
[Hayes and Kanan, 2022; Belouadah et al., 2021].

Incremental model updates. The initial model M1 is obtained following one of the
training strategies presented in 4.3.2. At the kth step of the CIL process, k ∈ J2, KK, the
classification model Mk recovers the weights of the model Mk−1 obtained in step k − 1 and is
updated using the data subset Dk and the algorithm Incr. Many EFCIL algorithms [Jodelet
et al., 2021] fine-tune all network weights at each incremental step, thus favoring plasticity.
Alternatively, algorithms such as [Hayes and Kanan, 2020; Petit et al., 2023] only retrain the
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classifier, thus favoring stability. As a compromise, it is also possible to freeze a part of the
model and to update only the last layers. We cover these three cases in our experiments.

Scenario. A CIL scenario is characterized by the distribution of classes among the steps
of the CIL process. We denote by b the proportion of the classes available in the initial step:
b = Card(C1)/Card(C). There are two commonly used scenarios [Belouadah et al., 2021]:

i. equal splitting of classes across the steps
ii. half of the classes in the first step and the rest of the classes are divided equally between

subsequent steps

4.3.2 Training strategies for the initial model
In the following, we describe the main characteristics of the training strategies used in our

experimental study to obtain the initial model of the incremental learning process. Further
experimental settings are reported in Section 4.4.

Network architecture. So far, most CIL methods have been proposed in combination
with a convolutional neural network, but visual transformer (ViT) networks have recently
gained popularity in CIL [Douillard et al., 2022]. In order to provide a fair comparison
between the two types of architecture, we use a ResNet50 [He et al., 2016a], and a ViT-Small
[Dosovitskiy et al., 2021] network, which have a close number of parameters (23.5M and
22.1M parameters respectively).

Model initialization. At the first step of the CIL process, the weights of the model
may either be randomly initialized or transferred from a pre-trained model. In the second
case, depending on the choice of the user, the dataset D∗ used for pre-training may either be
an auxiliary dataset (e.g. ILSVRC [Russakovsky et al., 2015]), referred to as source dataset,
or the first data subset D1 of the incremental process.

Label availability. We consider that all examples from the target dataset D are labeled,
and we experiment with both supervised learning and self-supervised learning to obtain the
initial model using D1. Labels may not be available for the external dataset D∗. In this
case, the training initialization is performed using a self-supervised pre-training algorithm
(e.g., DINOv2 [Oquab et al., 2023]).

4.4 Experimental setting
We describe the experimental parameters and the metrics we use to evaluate EFCIL models.

The combination of parameters results in 1,248 experiments in total (Figure 4.1).

4.4.1 Initial training strategies
We compare different strategies for training an initial model, as summarized in Table 4.1.

We use Resnet50 [He et al., 2016a] and ViT-S [Dosovitskiy et al., 2021] networks, which are
representative of CNNs and transformers and have similar sizes. The training is done either using
a self-supervised method (BYOL [Grill et al., 2020], DINOv2 [He et al., 2020a], MoCov3 [Chen
et al., 2021]) or a supervised one (DeiT, cross-entropy (CE)). We present results for pre-training
with external data (i.e. ILSVRC [Russakovsky et al., 2015] for BYOL, DeiT and CE; a 150M-
images dataset + ILSVRC for DINOv2) and training on the first batch. We compare the effect of :

i. freezing the weights of the pre-trained model
ii. further optimizing the last layers of the model (e.g. the last convolutional block in

ResNet50) on the initial data subset D1
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The first type of experiment is denoted by the suffix “-t" (transfer), the second by the
suffix “-ft" (fine-tuning). In the case where the pre-training algorithm is applied to D1
and not to D⋆, there is no suffix.

4.4.2 Target datasets
For a comprehensive evaluation and to account for the diversity of visual tasks, we evaluate

the training strategies on 16 target datasets, sampled from publicly available datasets. They
cover different domains (plants, animals, landmarks, food, faces, traffic signs etc.), and different
types of images (natural, drawings, paintings). IMN1001 and IMN1002 consist of 100 classes
randomly selected from ImageNet-21k [Deng et al., 2009]. Flora is a thematic subset of
ImageNet consisting of 100 classes belonging to the “flora" concept. IMN1001, IMN1002 and
Flora have no mutual overlap and no overlap with ILSVRC [Deng et al., 2009; Russakovsky et al.,
2015]. Amph100 and Fungi100, sampled from iNaturalist [Van Horn et al., 2018], respectively
contain 100 classes of amphibians and fungi, selected so as to avoid overlap with animal and
fungi classes from ILSVRC. We also sample 100-class subsets from other popular datasets:
WikiArt100 [Saleh and Elgammal, 2015], Casia100 [Yi et al., 2014], Food100 [Bossard et al.,
2014], Air100 [Maji et al., 2013], MTSD100 [Madani and Yusof, 2016], Land100 [Weyand
et al., 2020b], Logo100 [Wang et al., 2020a] and Qdraw100 [Ha and Eck, 2017]. Finally, we
consider three 1000-class subsets: Casia1k [Yi et al., 2014], Land1k [Noh et al., 2017], and
iNat1k [Van Horn et al., 2018]. The number of training images per dataset varies from 60
to 750. More details on the datasets are provided in the appendix.

4.4.3 Evaluation Metrics
The performance of EFCIL models can be evaluated in several ways [Masana et al., 2021].

However, two particular measures became predominant.
• Average incremental accuracy Acc: In EFCIL, a model trained over a K-step

incremental process is commonly evaluated using the average incremental accuracy [Zhu
et al., 2021b, 2022, 2021a; Jodelet et al., 2021]. We denote it by Acc and compute it by:

Acc = 1
K − 1

K∑
k=2

acc(Mk,
k⋃

i=1
Di) (4.1)

where acc(M, D) is the accuracy of the model M on the dataset D. Following common
practice in CIL [Castro et al., 2018; Petit et al., 2023; Zhu et al., 2022], Acc does not take
the accuracy of the initial model into account.

• Average forgetting F . Average forgetting, denoted here by F , is computed by:

F = b× f(D1) + 1− b

K − 1

K∑
k=2

f(Dk) (4.2)

where f(Dk) = max
k′∈Jk,KK

acc(Mk′ ,Dk)− acc(MK ,Dk)) is the difference between the best

performance achieved on the data subset Dk during the EFCIL process and the final
performance of the model on this data subset [Mirzadeh et al., 2022].

• Initial accuracy Acc1 = acc(M1,D1): Since the average incremental accuracy is highly
driven by the accuracy of the first model on the first data subset, is is important to
consider this quantity as well.

• Final accuracy AccK = acc(MK ,D): This depicts the performance of the final model
in practice, on real data sampled from D.
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The most commonly used metric is the average incremental accuracy Acc, but it has some
caveats: it gives more weight on early classes, since the model is evaluated on all past classes at
each step k. Thus, a high average incremental accuracy is not predictive of the accuracy on
the last classes. This is why considering an additional metric, such as F or AccK , is necessary
to control the stability of the performance over time.

4.4.4 Incremental learning
EFCIL scenario b. We experiment on two widely used CIL scenarios [Hou et al., 2019;

Belouadah et al., 2021]. In the first scenario, the classes are equally distributed over 10 steps,
e.g. 10 classes per step for a 100-class dataset. In the second scenario, half of the classes
are learned in the initial step, and the other half is equally distributed over 10 incremental
steps, e.g. 50 + 10 · 5 classes for a 100-class dataset.

CIL algorithm Incr. We experiment with one fine-tuning based algorithm, namely
BSIL[Jodelet et al., 2021], which adds a balanced softmax without exemplars to LUCIR [Hou
et al., 2019]. We also experiment with two fixed-representation-based algorithms, namely
DSLDA [Hayes and Kanan, 2020] and FeTrIL [Petit et al., 2023].

4.5 Analysis of results
We present a statistical analysis of the results from Table 4.1, which highlights the effects

of pre-training strategies and of EFCIL algorithms on EFCIL performance. The statistical
model and associated findings are presented below.

4.5.1 Modeling causal effects
Our objective is to identify the primary factors that influence the performance of EFCIL

algorithms. To interpret causal effects, we employ multiple linear regressions using the Ordinary
Least Squares (OLS) method, following the statistical and econometric practices described in
Chapter 3 For a given experiment, we denote by Y the target metric accuracy (endogenous),
Data the evaluation dataset (exogenous), Train the initial training strategy (exogenous),
and Incr the incremental algorithm (exogenous). We also consider the initial accuracy
Acc1 as an endogenous variable that may influence performance and can be controlled in
our regressions. Other parameters, such as the total number of classes or the dataset, are
examined as potential predictors of a metric.

We fit regressions of the form

Y ∼ Train + Incr + Data (4.3)

Since Train, Incr, and Data are categorical, we encode them as one-hot vectors. Thus, β1,
β2, and β3 are vectors of the same size as the number of possible categories for each variable.
Other variables were considered, presented bellow:

Summary of variables

To explain the variable Acc and F, we consider the variables
• Acc1: the accuracy of the first state,
• Data: dummy variable for the type of target dataset,
• Train: dummy variable for the initial training strategy,
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• Incr: dummy variable for the incremental method used,
• nmean: the mean number of images per class in the experiment,
• Small: binary variable encoding if the training images are so small that they have

to be up-scaled,
• Width: mean width of the images used for the experiment,
• B: binary variable encoding for the 2 possible CIL scenarios (i.e. either 10% or 50%

of the total number of classes learned in the initial step of the process),
• N: the total number of classes,
• N1: the number of images in the first state.

The statistical significance of these effects is assessed by examining the p-value of the
associated Student t-test for each coefficient [Gareth et al., 2013]. Following established
statistical practices [Gareth et al., 2013], we set the significance value at .05. The significance,
sign, magnitude, and interpretation of each estimated coefficient depend on the regression
model. In particular, introducing more exogenous variables can cause instability in the
regression. Therefore, for each metric Y , we adopt the following methodology to select
only the most influential factors:

1. We use multiple regression models to represent the evaluation metric Y as a linear
combination of different variables, or of the product of these variables. We ensure that the
chosen regressions exhibit no collinearity or numerical issues1.

2. Subsequently, we select a regression model using the Akaike Information Criterion
(AIC) [Akaike, 1998], which regularizes the likelihood of the model based on its degrees of
freedom.

3. We interpret the regression coefficients, the coefficient of determination R2, and examine
the Q-Q plot of the residuals ϵi to verify their normality.

4. Next, we conduct an Analysis of Variance (ANOVA) [Gareth et al., 2013] on the regression
to obtain aggregated statistics on the categorical variables.

5. Finally, we interpret the partial η2 derived from the ANOVA as a measure of the
importance of each variable.

A regression on a categorical variable requires the setting of a reference value for it. Therefore,
the coefficient(s) associated with this categorical variable represent the causal effects of this
variable with respect to the reference level. However, we want to compare all initial training
strategies with each other to derive practical recommendations. Therefore, we use the following
protocol to generate pairwise significant differences:

1. Perform the same regression multiple times using a different reference category
2. Sum-up the pairwise comparisons in a double-entry matrix
3. Since we are performing multiple tests, we need to adjust the significance threshold of

each test using Bonferroni correction [Gareth et al., 2013], which consists of dividing the
p-value threshold by the number of tests

4. Plot a heatmap of the pairwise comparisons between the choice of a parameter.

1We assess this by examining the smallest eigenvalue of the Gram matrix of the data XT X. Although Ridge
or Lasso regression could address these concerns, their coefficients are less interpretable than those of OLS.
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4.5.2 Metrics and confounding Factors
In Figure 4.2, we examine the relationship between the evaluation metrics defined in Subsec-

tion 4.4.3.

Acc AccK Acc1 F

Acc
AccK

Acc1
F

1.00
0.98 1.00
0.80 0.75 1.00
-0.22 -0.26 0.18 1.00

Figure 4.2: Correlation between the endogenous variables.

We observe a strong positive correlation between Acc and AccK . There is a weak negative
correlation between average incremental accuracy and forgetting, which is expected due to
the inherent trade-off between stability (i.e. low forgetting) and plasticity in CIL (i.e. high
performance on new classes). We note a significant correlation between average incremental
accuracy and accuracy in the initial state. This correlation is expected since half of our
experiments are done with half of the classes in the initial step. Additionally, the average
incremental accuracy (Eq. 4.1) evaluates each model on each class, from the first occurrence
of the class to the end of the incremental process, thus giving greater influence to earlier
classes. Conversely, there is a weak correlation between forgetting and initial accuracy. This
implies that the performance on the initial batch of classes does not significantly impact the
model’s stability throughout the incremental steps.

Based on these observations, we choose the average incremental accuracy Acc and the
average forgetting F as the metrics of interest for our study, and include the effect of the initial
accuracy in their models. Controlling the initial accuracy in a regression model is important
to draw accurate conclusions: if pure accuracy is sought, then it can be left out of the model.
However, the goal of CIL algorithms is not solely to be accurate on average, but rather to be
accurate while preventing forgetting. Hence, to analyse the actual incremental contribution
of each method, initial accuracy should be included in the regression.

4.5.3 Variable selection
Tables 4.2 and 4.3 present the individual R2 of each exogenous variables when regression

Accuracy and Forgetting. As we see, the 4 variables that best explain both metrics are the
same, and are the ones we presented in Section 4.5.1. What is striking is that for Accuracy,
the most impactful variable seems to be Acc1, while for Forgetting, Incr has a similar impact.
For the accuracy, this is not very surprising, since the mean accuracy calculation is calculated
linearly in Acc1. The next factors seem to play a big role for explaining Accuracy, while for
Forgetting, the next most influential variables have a much lower R2.

Now that we have selected our variables, we can perform regressions using a combination
of the variables to disentangle the effects of each one.

4.5.4 Factors influencing incremental performance
This subsection presents the aggregated influence of the considered parameters. The models

and findings presented in Table 4.4 are obtained with the methodology presented in Subsec-
tion 4.5.1.
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Variable p-value R2

Acc1 2.96 · 10−240 0.63
Train 1.17 · 10−87 0.33
Data 2.25 · 10−55 0.23
Incr 7.52 · 10−29 0.11
nmean 8.16 · 10−20 0.07
Small 1.84 · 10−05 0.02
Width 9.78 · 10−03 0.01

B 1.05 · 10−01 0.00
N 2.41 · 10−01 0.00
N1 2.87 · 10−01 0.00

Table 4.2: Variables predicting accuracy, sorted
by decreasing importance

Variable p-value R2

Incr 2.20 · 10−222 0.62
Train 6.46 · 10−15 0.08
Acc1 7.71 · 10−10 0.03
Data 2.66 · 10−03 0.02

N 7.50 · 10−04 0.01
B 3.43 · 10−02 0.00
N1 4.13 · 10−02 0.00

nmean 1.07 · 10−01 0.00
Small 6.88 · 10−01 0.00
Width 7.17 · 10−01 0.00

Table 4.3: Variables predicting forgetting, sorted
by decreasing importance

4.5.4.1 Main influences
In Table 4.4, the most significant factor affecting average incremental accuracy is the

choice of initial training strategy.

Model R2 variable η2

Acc ∼ Incr + Train + Data 0.69
Train 0.32
Data 0.24
Incr 0.11

Acc ∼ Acc1 + Incr + Train + Data 0.81

Acc1 0.25
Incr 0.22
Train 0.10
Data 0.06

F ∼ Incr + Train + Data 0.71
Incr 0.61
Train 0.06
Data 0.03

Table 4.4: ANOVA results for each considered regression. Variables are significant at p < 0.05 and
ordered by decreasing importance.

However, upon controlling the impact of initial accuracy, the selected incremental algorithm
has a greater importance. This distinction is primarily attributed to BSIL, which exhibits an
incremental accuracy 16 points below that of FeTrIL and DSLDA on average.

Regarding forgetting, the incremental algorithm is the most influential parameter. Here,
this effect is not driven by any specific outlier method. Further analysis shows that initial
accuracy also plays a significant role in predicting the level of forgetting. The associated
regression coefficient is .16 (±.02), indicating that a 1-point increase in initial accuracy results
in a 16-point increase of forgetting.

Given that accuracy ranges between 0 and 1, a lower initial accuracy decreases the likelihood
of experiencing high levels of forgetting. Hence, a trade-off arises concerning the initial accuracy:
while its enhancement greatly improves the average incremental accuracy, it also appears to
amplify forgetting. This should be taken into account when comparing CIL algorithms. From a
research perspective, the incremental algorithm remains influential in the metrics, particularly
when controlling for initial accuracy or focusing on forgetting. However, in practical applications
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of CIL, the final accuracy may be more important. Given its strong correlation with average

incremental accuracy, increasing the initial accuracy becomes more advantageous in this case.

4.5.4.2 Model diagnostics

We validate the regression in Table 4.4 by plotting the diagnostics plots of the regression,

as explained in the last section of Chapter 3.
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Figure 4.3: Diagnostics plots for the regression of the Average Accuracy on the incremental method,
pre-training type, and training dataset.

All plots look valid. The Q-Q plot shows a small deviation from normality for small and

high values, and small heteroscedasticity can be observed in the Residuals vs. Fitted plot.

This is expected since the accuracy is contained between 0 and 1, so the "true" model is most

likely nonlinear, creating problems at the bounds. Nevertheless, for average values of Acc,

the hypotheses of the OLS regression are not violated.
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4.5.5 Comparison of initial training strategies
In Figure 4.4, we observe notable variations in accuracy among different initial training

strategies, thus prompting the identification of three regimes.

Identifed Dynamics

Three pre-training regimes can be found in EFCIL:
1. Strategies that surpass supervised learning without transfer: MoCoV3-

ft, DINOv2-t, BYOL-ft, SL(ResNet)-ft, MoCov3-t. These approaches exhibit
superior performance by generating a robust latent space, whose features are
transferable. MoCoV3-ft enhances its latent space by fine-tuning, enabling better
generalization compared to other methods. DINOv2-t follows, leveraging its extensive
self-supervised training on a very large amount of data. BYOL-ft and SL(ResNet)-ft
closely follow, highlighting the advantage gained from additional adaptation steps
on the target dataset following pre-training. MoCov3-t is fifth, showing that features
generated through an adapted self-supervised method have a generalization capability
that can be leveraged in CIL.

2. Strategies that exhibit no significant improvement over supervised learn-
ing without transfer: SL(ResNet)-ft, BYOL-t, SL(DeiT)-t. Our analysis under-
lines the capability of well-designed self-supervised methods to outperform supervised
pre-training approaches.

3. Strategies that underperform compared to supervised learning without
transfer: MoCoV3, BYOL, DINOv2-ft, SL(DeiT)-ft. The inferior performance of
self-supervised methods can be attributed to the limited initial data. Furthermore,
the challenging nature of fine-tuning for transformer models contributes to the
underwhelming outcomes observed in these models.
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Figure 4.4: Accuracy gain by using strategy in row i over strategy in column j , e.g. “The accuracy of
BYOL-ft is 17pts higher than SL(ResNet)". Only results in bold are statistically different.

The analysis of the average forgetting, illustrated in Figure 4.5, indicates that the distinctions
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Figure 4.5: Overall pairwise comparisons on Forgetting

between many pretraining strategies are much less significant. However, DINOv2-t exhibits lower
forgetting compared to other strategies, including SL (ResNet). This is particularly remarkable
considering that DINOv2-t has the highest initial accuracy. Conversely, fine-tuned transfer
models (DINOv2-ft, SL(DeiT)-ft) also display a lower forgetting, albeit primarily attributed to
their inherently low initial accuracy, which leaves little room for further decline in their accuracy.

4.5.6 Further analysis of initial training strategies
We now inquire whether the preceding general analysis can be nuanced in specific scenarios.

To this end, we perform the same analysis as in the previous section by performing the
regression on subsets of the data. All complementary graphs that justify the following
statements can be found in the appendix.

Influence of the dataset. Regarding target datasets that are furthest from the pre-
training dataset, the benefit of pre-training with or without fine-tuning is lower due to the
domain gap. We note that specialized datasets, such as Qdraw100 and Casia100, also contain
smaller images than those of ILSVRC. Whether the difference in performance is caused by
a semantic gap or an image-size gap is unclear.

Influence of the incremental scenario. Regarding accuracy, we find that most differences
among methods come from the scenarios with 50 initial classes or less. With 10 initial classes,
all strategies that were previously not significantly better than SL(ResNet) start to outperform
it. In scenarios with 50 initial classes, it becomes more difficult to precisely rank the top initial
training strategies. In scenarios with 100 initial classes, no strategy is significantly better than
any other one (which can come from the lower number of experiments with these scenarios).

Influence of Incremental method. We find that FeTrIL and DSLDA exhibit a similar
pattern for Acc and F , contrary to BSIL. For FeTrIL and DSLDA, the differences between
the best initial training strategies are less clear, but the general trend previously described
still holds, in particular for the accuracy. The choice of the training strategy does not clearly
impact the forgetting. On the other hand, BSIL is much more sensitive to the initial training
strategy. Fine-tuned methods clearly outperform classical learning and plain transfer (except
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for DINOv2-t), whether it concerns the accuracy or the forgetting. Moreover, SL(ResNet) is a
stronger baseline for BSIL than for the other methods when considering incremental accuracy.

Qdra
w10

0

Amph
10

0

Log
o1

00

Lan
d1

00

Casi
a1

00

MTS
D10

0

Fun
gi1

00
Air1

00

Foo
d1

00

IMN10
0_2

IMN10
0_1 Flo

ra
Art1

00

Lan
d1

k
iNat1

k

Casi
a1

k

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

DINOv2-t with BSIL
DINOv2-t with DSLDA
DINOv2-t with FeTrIL

MoCoV3-ft with BSIL
MoCoV3-ft with DSLDA
MoCoV3-ft with FeTrIL

SL(ResNet) with BSIL
SL(ResNet) with DSLDA
SL(ResNet) with FeTrIL

Figure 4.6: Interaction plot of the best strategies for different transfer types and for the 3 CIL
algorithms. Similar slopes indicate similar behaviors. A change in slope indicates a change in behavior.

4.6 Discussion
We summarize our findings and propose recommendations for the design of EFCIL ap-

proaches.
• Does the use of a model pre-trained on an external dataset D⋆ always improve

performance on the target dataset D ?
Figure 4.6 highlights that no single initial training strategy outperforms the others on all
datasets. As illustrated in Table 4.1, pre-training is clearly better on average, but there
are exceptions. Intuitively, the use of a pre-trained model without fine-tuning (DINOv2-t
in Figure 4.6), is clearly preferable for datasets such as IMN1001 and Flora which are
closely related to the dataset used for pre-training. Inversely, the supervised training
method SL(ResNet) is better when the gap between the source and the target datasets is
important, such is the case for Casia1k. MoCov3-ft is a good compromise since it leverages
pre-training, but adapts the representation via partial fine-tuning. The initial training
strategy should be selected by considering characteristics of the dataset such as: number
of classes, number of samples per class, domain gap with pre-training, and size of the
initial batch of classes.

• In the absence of an external dataset, is it better to train the initial model in
a supervised way or with a self-supervised learning method ?
As shown in Figure 4.4, supervised learning on the initial data is better on average.
However, self-supervised learning is better when the amount of data available initially is
limited, making it difficult to train a supervised model effectively.
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• Should the pre-trained model be fine-tuned on the first batch of data, or
frozen ?
Existing EFCIL works that use pre-trained transformers keep their weights fixed [Janson
et al., 2022; Pelosin, 2022; Wang et al., 2022b]. This might be explained by the fact that
fine-tuning these models might be detrimental in transfer learning [Kumar et al., 2022].
Inversely, the performance of CNN-based training strategies, such as BYOL or MoCov3,
increases after partial fine-tuning. This is explained by the fact that the layers of CNNs
are reusable across tasks, while fine-tuning the last layers with initial target data improves
transferability in subsequent EFCIL steps.

• How does the performance of EFCIL algorithms vary with initial training
strategies ?
Table 4.1 and Figure 4.6 show that the performance of BSIL varies much more than that
of DSLDA and FeTrIL. This is particularly clear for transformer models, where BSIL
performance is strongly degraded when fine-tuning of pre-trained models is used. In
contrast, the variation of performance for DSLDA and FeTrIL is much lower when testing
partial fine-tuning and transfer strategies on top of pre-trained models. This suggests that
both initial training strategies are usable in practice for transfer-learning based EFCIL
algorithms.

• What is the impact of using transformers versus convolutional neural networks
?
The averaged results presented in Table 4.1 and the detailed ones from Figure 4.6 show that
the difference between the best training strategies based on transformers and on CNNs is
small. This is particularly the case when CNNs are pre-trained in a self-supervised manner
and then partially fine-tuned on the initial batch of target data. Our finding echoes those
reported in recent comparative studies of the two types of neural architectures which
conclude that there is no absolute winner [Pinto et al., 2022; Wang et al., 2023]. The
implication for EFCIL is that the use of both types of architecture should be explored in
future works.

4.7 Conclusion
We perform an analysis of EFCIL in an evaluation setting that includes numerous and

diverse classification tasks. We confirm the findings of existing comparative studies which have
shown that no CIL algorithm is the best in all cases [Belouadah et al., 2021; Masana et al.,
2021; Feillet et al., 2023] and that algorithms based on transfer learning provide accuracy and
stability for EFCIL [Hayes and Kanan, 2020; Janson et al., 2022]. Our main finding is that the
initial training strategy is the dominant factor influencing the average incremental accuracy,
but that the choice of CIL algorithm is more important in preventing forgetting. Beyond the
fact that there is no silver bullet approach to dealing with EFCIL, our in-depth statistical study
quantifies the effect of different components of EFCIL approaches and thus enables informed
decisions when designing new methods or implementing EFCIL in practice.
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The doctor said slowly, "All the same, the mask’s bound
to slip once in a while."
Nurse Hopkins had bustled into the bathroom. Elinor
said, raising her delicate eyebrows and looking full at him,
"The mask?"
Dr. Lord said, "The human face is, after all, nothing more
nor less than a mask."

— Agatha Christie, Sad Cypress
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5.1 Introduction
Face recognition and verification technologies (FRT and FVT) have seen significant ad-

vancements in recent years, with applications ranging from security and surveillance to personal
device authentication[Ho et al., 2020a; Selwyn et al., 2023; Van Noorden, 2020]. This widespread
adoption of face recognition models has also raised concerns about fairness and potential biases
in these systems [Buolamwini and Gebru, 2018; Kärkkäinen and Joo, 2019]. Studies have
shown that FRT and FVT can exhibit disparities in performance across different demographic
groups, particularly for gender, ethnicity, and age [Sarridis et al., 2023b; Wang et al., 2019a].
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Figure 5.1: Comparison of the face verification fairness (equalized odds ratio) and micro-average
accuracy metrics for models trained with real and synthetic images on the RFW dataset [Wang et al.,
2019a]. The proposed pipeline improves the generation fairness and accuracy.

To address these fairness challenges, researchers have explored various approaches, including
the development of demographically diversified datasets [Grother et al., 2019; Wang et al.,
2019a], and debiasing methods [Robinson et al., 2020; Yang et al., 2021]. In parallel, synthetic
datasets, generated using computer graphics techniques [Bae et al., 2023; Wood et al., 2021]
and generative AI models [Zhao et al., 2017; D’Incà et al., 2024; Bae et al., 2023; Kim et al.,
2023], offer the potential to mitigate privacy and copyright issues [Harvey, 2021] associated
with real datasets [Cao et al., 2018; Kemelmacher-Shlizerman et al., 2016; Guo et al., 2016].

Nonetheless, the effectiveness of synthetic datasets in improving fairness remains an open
question. While existing studies highlighted the potential for generated data to reproduce
or even exacerbate the biases present in real datasets [Perera and Patel, 2023], most recent
works still do not sufficiently analyze the fairness impact of models trained with their synthetic
images [Qiu et al., 2021a; Bae et al., 2023; Kim et al., 2023], despite encouraging initiatives
[Deandres-Tame et al., 2024; Neto et al., 2023]. Our first contribution, therefore, introduces a
new generation control component based on the existing DCFace pipeline [Kim et al., 2023].
The resulting approach increases the diversity of sensitive attributes such as gender, ethnicity,
and age, and also varies the pose, resulting in two new synthetic datasets DCFaceeg , and
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DCFaceall . We compare models trained on these proposed datasets with models trained using
existing generation datasets, with or without bias mitigation techniques applied.

We employ a range of common metrics to measure fairness. Still, we find them insufficient
for an in-depth analysis of the origins of the biases since they do not decorrelate the impacts of
the considered attributes. We consequently introduce, as a second contribution, a new analysis
approach based on logit regression models that unveils the impact of individual attributes.
Furthermore, we use an Analysis of Variance (ANOVA) to examine the relation between
attributes and distance in the models’ latent space.

As highlighted in Figure 5.1, our results demonstrate that the proposed controlled generation
approach significantly improves fairness metrics while maintaining accuracy. This is a major
advancement compared to more straightforward methods, since usually, decreasing variability
in performance comes at the cost of also decreasing the mean performance.

The logit regression and ANOVA analyses draw coherent conclusions and reveal the
effectiveness of the proposed controlled generation method in reducing attribute-based biases
in both the model predictions and the latent space representations.

Main Findings

We find that:
1. Controlled generation of synthetic datasets (DCFaceeg and DCFaceall ) significantly

improves fairness in face verification while maintaining competitive accuracy
2. Proposed balanced datasets outperform existing real and synthetic datasets in most

fairness metrics across different verification datasets
3. Novel statistical analysis using logit regression and ANOVA effectively quantifies

and interprets biases in face recognition outcomes
4. Controlled generation method reduces attribute-based biases in both model pre-

dictions and latent space representations more effectively than traditional bias
mitigation techniques

5. A significant gap between synthetic and real datasets still persists, both in terms of
raw performance and fairness.

However, the analysis reveals a persistent disparity in fairness across all considered
approaches, particularly penalizing the African and Indian subgroups. This highlights
the need for continued research and development of more robust bias mitigation strategies
in face verification systems.

The code and datasets introduced here will be released to facilitate the adoption of fairness
in FRT and FVT at https://github.com/afm215/TowardFairerFaceRecognitionSets.

5.2 Related Work
Face verification is a classical yet still open research topic. Following [Robinson et al.,

2020], a model is trained to perform face recognition. Then, given a pair of images, the evaluation
task is determining whether they belong to the same identity using the trained model as an
embedding extractor. A threshold is optimized to separate and predict the positive and negative
pairs. Following [Phillips et al., 2012; Popescu et al., 2022; Wang et al., 2019a], we advocate for
selecting hard negative images to make verification more realistic and consider datasets including
difficult negatives to evaluate the models’ performance. We also advocate for more efforts to
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integrate fairness in the verification evaluation process. Fairness evaluation can be improved
by designing demographically-diversified verification datasets [Grother et al., 2019; Popescu
et al., 2022; Wang et al., 2019a] and integrating demographic metadata in them [Sarridis et al.,
2023b]. Demographic attributes balance deserves particular attention because it is required for
analyzing potentially serious discrimination [Sarridis et al., 2023b; Ho et al., 2020a].

Real training datasets for face recognition are usually created by scraping a large number
of images from publicly available sources [Kemelmacher-Shlizerman et al., 2016; Schroff et al.,
2015] and then cleaning them [Cao et al., 2018; Guo et al., 2016; Yi et al., 2014] to reduce the
number of unrepresentative samples. However, these datasets face several challenges. First,
obtaining subjects’ consent at scale is impossible, posing a serious legal challenge when collecting
sensitive data such as identified faces. Second, most datasets [Cao et al., 2018; Guo et al.,
2016; Yi et al., 2014] include copyrighted photos, raising licensing issues. The lawfulness of
distributing copyrighted content is a longstanding discussion that applies to other computer
vision tasks [Quang, 2021] and was recently revived by the success of foundation models trained
with very large datasets [Scao et al., 2022]. Third, existing large datasets exhibit demographic
(gender, ethnicity, age) [Popescu et al., 2022; Sarridis et al., 2023b; Wang et al., 2019a], face
characteristics (size, make-up, hairstyle) [Albiero et al., 2020, 2021; Terhörst et al., 2021],
and visual biases [Zhao et al., 2018], mostly reflecting the sampling bias affecting images
datasets [Fabbrizzi et al., 2022]. These biases affect underrepresented segments [Buolamwini
and Gebru, 2018; Kärkkäinen and Joo, 2019; Sarridis et al., 2023b] and should be addressed
to improve fairness. These problems make the sustainable publication of real datasets very
complicated, as proven by the withdrawal of most resources [Cao et al., 2018; Guo et al., 2016;
Kemelmacher-Shlizerman et al., 2016] following public pressure [Van Noorden, 2020].

Examples of Real Training Datasets for Face Recognition

1. VGGFace2 [Cao et al., 2018]
• Contains over 3.3 million face images
• Covers a wide range of pose, age, and ethnicity
• Faces challenges with copyright and consent issues

2. MS-Celeb-1M [Guo et al., 2016]
• Originally contained about 10 million images of 100,000 celebrities
• Widely used but later withdrawn due to privacy concerns
• Exhibits demographic biases, particularly in ethnicity and gender representation

Both datasets, while valuable for research, highlight the ethical and legal challenges
associated with real training datasets in face recognition.

Synthetic datasets have the potential to reduce or remove privacy, copyright, and unfairness
issues compared to real datasets [Kim et al., 2023; Deandres-Tame et al., 2024; Neto et al.,
2023]. Computer graphics techniques are used in [Bae et al., 2023; Wood et al., 2021] to render
diversified face images, and strong augmentations are added to increase accuracy. Most works
rely on generative AI, with [Zhao et al., 2017] being an early example that uses dual-agent
GANs to generate photorealistic faces. The authors of [Qiu et al., 2021a] identify the lack
of variability of generated images as a central challenge and propose identity and domain
mixup to improve synthetic datasets. Diffusion models were used very recently [Kim et al.,
2023] to create identities and to diversify their samples based on a style bank. Synthetic
datasets have the advantage of including fictitious identities, alleviating privacy and copyright
issues associated with real face datasets. However, privacy issues can remain regarding data
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replication in GANs [Feng et al., 2021] and diffusion models [Somepalli et al., 2023] but can
be controlled and mitigated as shown in [Barattin et al., 2023]. When uncontrolled, synthetic
datasets are also likely to reproduce and even exacerbate the biases of real datasets in a
constrained evaluation setting [Perera and Patel, 2023].

Examples of Synthetic Datasets for Face Recognition

1. DigiFace [Bae et al., 2023]
• Uses computer graphics techniques to render diversified face images
• Employs strong augmentations to increase accuracy
• Aims to reduce privacy and copyright issues associated with real datasets

2. DCFace [Kim et al., 2023]
• Utilizes diffusion models to create identities and diversify samples
• Based on a style bank for improved variability
• Generates fictitious identities, addressing privacy concerns

While these synthetic approaches offer advantages in privacy and diversity, they may
still face challenges such as potential data replication issues and the risk of reproducing
biases present in real datasets if not carefully controlled.

Debiasing methods have been proposed to mitigate biases in face verification. One
approach is to adapt the verification process to demographic segments. The authors of [Robinson
et al., 2020; Terhörst et al., 2020] propose adaptive threshold-based approaches to improve
fairness. Another approach is to address ethnicity-related bias by learning disparate margins
per demographic segment in the representation space [Yang et al., 2021; Wang et al., 2021;
Wang and Deng, 2020] or by suppressing attribute-related information in the model [Sarridis
et al., 2023a]. While technically interesting, these methods are ethically and legally problematic
in practice since they assume disparate treatment of human subjects by AI-based systems.
We advocate for bias mitigation directly within model training sets, which we show to have
a very concrete consequence on model biases.

Comparison of Bias Mitigation Approaches

The multiple bias mitigation approaches have pros and cons:
• Real Datasets:

+ High-quality, diverse data
- Privacy and copyright issues
- Inherent demographic biases

• Synthetic Datasets:
+ Addresses privacy and copyright concerns
+ Potential for controlled attribute balancing
- May still reproduce biases if not carefully designed

• Debiasing Methods:
+ Can improve fairness metrics
- May introduce ethical issues (disparate treatment)
- Often applied post-hoc, not addressing root causes
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5.3 Methodology
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Figure 5.2: Global pipeline overview for training and evaluating models with the baselines and our
proposed generative approach. Critical attributes are collected on image sets (a) that enable using bias
mitigation techniques before or during model training (b). Models are then evaluated on FRV evaluation
sets (c), and their biases are then analyzed using fairness metrics and our proposed statistical analysis.
Contributions of this paper are colored green.

The overall training and evaluation pipeline (Figure 5.2) comprises three parts: Part (a)
regroups training sets and their attributes. These training sets can be or cannot be combined
with bias mitigation techniques to train models (part (b)). These techniques include our
proposed controlled data generation (in green). Finally, as explained in section 5.2, these
models are used in part (c) to perform FVT using the setup of Robinson et al. [2020]; Huang
and Learned-Miller [2014]. The results obtained on FAVCI2D [Popescu et al., 2022], RFW
[Conti et al., 2022], and BFW [Robinson et al., 2023] are analyzed in terms of raw performance
(accuracy), fairness metrics, and using the statistical approach we introduce in this paper.

Following recent face recognition work [Bae et al., 2023; Kim et al., 2023], we train
models using a ResNet50 architecture [He et al., 2016b] with a loss designed specifically
for this task [Kim et al., 2022].

We create face recognition models with different training sets. We ensure comparability
between these training sets by using the same structure and similar size, compatible with
previous studies [Bae et al., 2023; Qiu et al., 2021a; Yi et al., 2014]. They contain 10,000
unique identities and 50 samples per identity.

5.3.1 Considered Biases
We balance the created datasets for four attributes: ethnicity, gender, age, and pose.

The first three are sensitive attributes contributing directly to demographic fairness and are
usually employed in the literature [Sarridis et al., 2023b; Albiero and Bowyer, 2020; Robinson
et al., 2023; Yucer et al., 2022]. The fourth ensures face appearance variability and augments
model performance. ethnicity and gender are attributes associated with each identity. When
unavailable in the datasets’ metadata, these attributes are inferred using FairFace [Kärkkäinen
and Joo, 2019]. In this case, ethnicity and gender are categorical (Asian, Black, Indian,
White) and binary variable (female/male). Since they are supposed to be consistent across
the images of the same identity, we mitigate the potential inference errors by averaging the
FairFace outputs per identity. Age is also inferred at the image level using FairFace.

The pose attribute is extracted using the model introduced in Hempel et al. [2022]. We
use face rotation around the pitch, the yaw, and the roll axes (i.e., the rotations around
the x, y, and z axes) to characterize pose.
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5.3.2 Proposed Balanced Dataset Generation

Our controlled approach relies on the DCFace [Kim et al., 2023] generation pipeline. It
applies the style of a real picture (style image) to a synthetic face picture (Id image) using a
dual-conditioned diffusion model DCFace combines a single ID with several style images to
produce the samples representing each synthetic identity in the training set. The identity-level
attributes (ethnicity and gender) are, therefore, controlled by the choice of the ID image.
The picture-level attributes (age and pose) are controlled by the choice of the style images.

We thus introduce a joint diversification process on gender, ethnicity, age, and pose at-
tributes illustrated in Figure 5.3.

CASIA
DCFace

Unique
Id

selection 

DDPM generated images

Diversified
set based on
pose or age 

Segment
matching  

DCFace
Demographical

segment
diversification

DCFace
Mixing Stage DCFace

Balanced

Figure 5.3: Detailed view of our controlled generation method

We select a list of ID images generated with DDPM [Ho et al., 2020b] whose joint gender ×
ethnicity distribution is perfectly balanced. We diversify pose and age by iteratively
populating the less-represented age and pose categories of each identity. We also match
the demographic segment (gender×ethnicity) of ID and style images to facilitate the loss
convergence process. We implemented this matching following initial tests, which showed that
convergence is not guaranteed without anything else. We create two versions of the balanced
dataset to assess the influence of identity-level and image-level attributes. DCFaceeg uses
only gender×ethnicity , DCFaceall considers all four attributes.

5.3.3 Training Set Baselines

We compare DCFaceeg and DCFaceall with a representative set of real and synthetic
datasets:

• CASIA [Yi et al., 2014], a real dataset representing celebrities from the IMDB dataset.

• BUPT [Wang et al., 2021], areal dataset that is balanced for ethnicity. Note that the
full version includes more than 1M images. We subsample BUPT to match the structure
of other baselines.

• SynFace [Qiu et al., 2021a], a synthetic dataset created with a GAN architecture using
identity and domain mixup to diversify generated faces.

• DigiFace [Bae et al., 2023], a synthetic dataset created using rendering technique to
obtain diversified representations of faces of each identity.

• DCFace [Kim et al., 2023], a synthetic dataset generated using the default uncontrolled
pipeline of Kim et al. [2023].
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5.3.4 Dataset Biases Analysis
Table 5.1 presents the imbalance degree of each attribute for the tested training sets. We

report the attribute diversity a for a dataset D computed as the normalized entropy applied
on the frequency pai for the attribute sub-groups ai∈[1,m].

Diversitya(D) = − 1
log(N)

N∑
i=0

pai log(pai) (5.1)

Table 5.1 enables a data-oriented comparison of our datasets and baselines. It highlights the
proposed pipeline’s effectiveness and the need for joint attribute balancing to avoid unwanted
side effects. For instance, only balancing on ethnicity and gender reduces age diversity and does
not affect pose, while balancing for all attributes results in a better global trade-off.

Attribute CASIA BUPT DigiFace SynFace DCFace DCFaceeg DCFaceall

Gender 1.00 0.93 0.93 0.99 0.99 1.00 1.00
Ethnicity 0.47 0.92 0.65 0.40 0.56 0.93 0.90

Age 0.59 0.71 0.42 0.64 0.64 0.61 0.69
Pose 0.61 0.57 0.67 0.58 0.51 0.51 0.58

Table 5.1: Inferred diversity for the compared training datasets. The degree of balance is quantified by
the entropy for the considered attributes across the dataset. Datasets introduced in this paper are
shown in bold.

5.3.5 Baseline Debiasing Methods
We compare the proposed dataset bias mitigation pipeline with two classical baseline

methods: resampling and loss weighting.

5.3.5.1 Re-sampling
Data re-sampling balances class distribution within training data by employing strategies

other than the default uniform sampling. These strategies can consist of over-sampling the data
from the under-represented classes and/or under-sampling majority classes [Tantithamthavorn
et al., 2018; Idrissi et al., 2022].

Oversampling [Bennin et al., 2018; Amin et al., 2016; Last et al., 2017; Zheng et al., 2015]
increases the number of samples by replicating existing data. However, duplicating data by
sampling the several times can lead to over-fitting. On tabular data, interpolating techniques
such as SMOTE and its variants [Chawla et al., 2002; Han et al., 2005; Bunkhumpornpat
et al., 2009] can be used in order to tackle this overfitting issue. Still, such approaches are
not trivial and more costly for non-tabular data such as images.

Undersampling, on the other hand, consists in the reduction of the majority classes so
that their representativity matches the underrepresented classes [Liu et al., 2006; Tsai et al.,
2019; Lehmann and Ebner, 2022]. The main drawback of such an approach is that it results
in unused data, which is not an optimal setup.

Here we use Re-Sampling as a baseline for bias mitigation by combining over-sampling and
under-sampling. Specifically, for each attribute a with values aj , we count nj , the number of
images with value aj . We then assign a weight wj = 1/nj to each image sharing value aj . For
each image xi, we compute its weight wi as the product of the weights of all attributes associated
with the image. The sampling probability for each image is calculated as pi = wi/

∑
k wk. At each
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beginning of a training epoch, we sample N images according to the probability distribution
{pi}, where N is the size of the original dataset.

Note that this approach, coupled with the set of random image augmentations used
during training, should mitigate to a certain extent the mentioned limitations of both over-
sampling and under-sampling.

5.3.5.2 Loss Weighting

Loss weighting tries to adapt the loss scale depending of the characteristics of the sample.
This weighting can be linked to the difficulty of the sample as done implicitly by the Adaface
Loss [Kim et al., 2022], which can be induced by the class imbalance or in our use case, by
the corresponding attributes representativity. A common way to weight the loss is to use
the same weights computed in subsection 5.3.5.1, i.e. using the invert of the frequency/count
[Fernando and Tsokos, 2022; Wang et al., 2017b; Huang et al., 2016]. We thus use the same
weights wi for weighting the loss. The weights are normalized batch-wise to ensure the same
order of gradient amplitude. The loss of the batch is defined as:

L(x1, ..., xK) =
∑

k wkL(xk)∑
k wk

(5.2)

where L(xk) is the sample-wise loss for image xi.
We add +Sge and +Wge to initial dataset names for resampling and loss weighting limited

to gender and ethnicity. We add +Sall and +Wall when all attributes are debiased.

5.4 Toward a Fairer Analysis of FVT evaluation
5.4.1 Evaluation Sets and Protocol

We use RFW [Conti et al., 2022], FAVCI2D [Popescu et al., 2022], and BFW [Robinson
et al., 2020] in our fairness analysis. We selected these face verification datasets because they
have sufficient identities per demographic segment to enable a rigorous analysis. Similar to
training datasets, we extract FairFace attributes whenever they are not provided. For RFW,
we use the included ethnicity attribute since the dataset is already balanced for it. Figure 5.4
presents a brief description of the pair attributes in the RFW, FAVCI2D, and BFW datasets.
While the three datasets have similar balancing on age and pose attributes, they exhibit
different characteristics in terms of gender and ethnicity distributions. FAVCI2D has a relatively
balanced gender distribution but a skewed ethnicity distribution, with the White ethnicity
being the most prevalent. In contrast, RFW has a more balanced representation of ethnicity,
with a uniform distribution across African, Indian, Asian, and Caucasian ethnicities, but
is unbalanced in terms of gender. These differences allow for a comprehensive evaluation of
face verification models’ fairness and performance across diverse demographic groups, assessing
how well the models handle variations in gender and ethnicity representation and identifying
potential biases arising from imbalanced training data.

5.4.2 Fairness and Performance Metrics
We employ a set of commonly used and complementary metrics to comprehensively evaluate

face recognition fairness and performance.
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Figure 5.4: Attribute analysis of the evaluation datasets. Attributes are generated using FairFace
[Kärkkäinen and Joo, 2019], except for the ethnicity of RFW, included with the dataset.

5.4.2.1 Performance Metrics
Micro-Average Accuracy[Raji and Fried, 2021] is a commonly used metric for

evaluating the overall performance of a face recognition model. Micro-average accuracy is
particularly useful when dealing with unbalanced data, as it gives equal weight to each
dataset segment, regardless of the group size. Consequently, the overall accuracy is not
biased toward the majority group.

True Match Rate (TMR)1, or TPR, measures the proportion of actual positive cases
that are correctly identified. False Match Rate (FMR), or FPR, measures the proportion
of negative cases incorrectly identified as positive by the face recognition model. We follow
existing face recognition literature [Ho et al., 2020a; Van Noorden, 2020] and consider FMR
as a more critical metric compared to TMR.

5.4.2.2 Fairness Metrics
Degree of Bias (DoB) [Gong et al., 2020] is the standard deviation of accuracy across

different subgroups, that is higher when the performances varies a lot w.r.t each subgroup.
However, datasets with low accuracy tend to inherently have a smaller overall variance.
Moreover, DoB does not allow for fine-grained error analysis, which is central to understanding
performance variations in our case.

Demographic Parity Difference (DPD) and Demographic Parity Ratio (DPR)
[Agarwal et al., 2018, 2019] require that the probability for individuals to receive a positive
outcome should be the same across all demographic groups. DPD is the absolute difference

1is equivalent to 1−FNMR
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between the highest and lowest probability across all subgroups, whereas DPR is the ratio
between the lowest and highest. The closer the DPD is to zero and the closer the DPR
is to one, the fairer the results are.

Equalized Odds Difference (EOD) and Equalized Odds Ratio (EOR) [Agarwal
et al., 2018] require that the face recognition model’s TMR and FMR are independent of the
demographic groups, thus ensuring consistent accuracy across groups. EOD is calculated as
the maximum absolute difference between the TMRs or FMRs across groups. EOR is the
minimum between the ratio of the TMRs and FMRs across groups. The closer the EOD is
to zero and the closer the EOR, the fairer the results are.

5.4.3 Proposed Statistical Analysis Approach
We use the logit statistical framework described in Chapter 3. For each pair, we create

variables based on the attributes of the 2 identities of the pair: since our goal is to measure
the impact in TMR and FMR, we filter the pairs of each dataset to only keep pairs where the
ethnicity and gender of both identities are the same. This allows us to assign an ethnicity and
gender variable to the pairs, not only to the identities. We define the age variable as the
absolute difference in age between the 2 identities. The pose variable of a pair is a scalar
describing the angle between the 2 pose vectors of the identities.

For each test image pair, we have a binary target variable 0/1 (the pair was either correctly
or incorrectly classified). This setup makes it natural to use logit regression [Angrist and Pischke,
2009]. Additionally, since the response variable is function of a distance threshold in the latent
space, it seems natural to study the impact of the variables on the pair distances in the latent
space. This impact is accessed using Analysis of Variance (ANOVA) [Gareth et al., 2013].

The two statistical methods provide complementary insights into the impact of the studied
attributes on the fairness metrics. Section 5.5 presents the detailed application of these methods
to the datasets and fairness metrics, along with the interpretation of the results.

Summary of variables

We consider the following variables for each pair:
• ethnicity : a categorical variable representing the ethnicity or geographical origin

of both individuals of the pair;
• gender : a categorical binary variable representing the gender of both individuals of

the pair;
• age : a scalar variable representing the age difference in the pair;
• pose : a scalar variable representing the angle between the pose of the two faces in

the pair;
• ŷ : a binary variable representing the correct and incorrect identification of the pair.

ethnicity and gender are the sensible studies attributes, while age and pose are control
variables. ŷ is the endogenous variable.

5.5 Results and Analysis
We report here performance on multiple test sets and discuss fairness metrics on both

FAVCI2D , RFW, and BFW sets. Statistical and ANOVA analysis is performed on RFW
and is reported for FAVCI2D in the appendix.
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5.5.1 Raw performance on test sets

Verif.
dataset

Real dataset Synthetic datasets
CASIA BUPT SynFace DigiFace DCFace DCFaceeg DCFaceall

LFW 99.46 99.55 87.28 94.88 98.13 98.24 98.25
CFP-FP 94.87 90.03 67.01 83.4 80.92 80.03 81.28
CPLFW 90.35 85.98 64.91 76.61 79.94 79.32 80.17
AgeDB 94.95 94.3 61.78 78.26 87.96 86.77 86.53

CALFW 93.78 94.38 73.53 79.78 90.39 90.6 90.03
RFW 86.38 90.35 64.3 72.73 76.95 78.51 79.5

FAVCI2D 82.77 81.81 61.19 67.17 72.84 73.31 73.73
BFW 89.3 92.48 70.08 77.27 84.47 85.45 88.53
AVG 91.48 91.11 68.76 78.76 83.95 84.03 84.75

Table 5.2: Raw Accuracy obtained for the different used sets on 8 datasets, including five commonly
used datasets in addition to BFW, RFW, and FAVCI2D .

In addition to FAVCI2D , BFW, and RFW, we report in Table 5.2 the raw accuracy
results on 5 common evaluation sets used in prior work on the FR task [Bae et al., 2023;
Kim et al., 2022, 2023; Qiu et al., 2021a] :

• Labeled Faces in the Wild (LFW) [Huang and Learned-Miller, 2014], the reference dataset
for the task;

• CALFW [Zheng et al., 2017], a version of LFWwith a larger age variability;
• CPLFW [Zheng and Deng, 2018], a version of LFWwith pose variability;
• AgeDB [Moschoglou et al., 2017], a dataset designed for maximizing age variability;
• CFP-FP [Sengupta et al., 2016], that is designed for pose variability.
Raw accuracy differs from the micro accuracy reported on the paper. Micro accuracy

gives the same importance to each demographic segment, whereas raw accuracy performs a
simple mean across all images, without any distinction.

Table 5.2 confirms the performance gain of DCFaceall over the original generation pipeline:
The generation pipeline slightly improves accuracy for four of these datasets (+0.12, +0.36, +0.23,
and +0.89 for LFW, CFP-FP, CPLFW, and FAVCI2D) and slightly degrades performance for the
other two (-1.43 and -0.36 points for Age-DB and CALFW). On the balanced sets, (i.e. RFW and
BFW) the pipeline induces important gains in accuracy (+2.55 for RFW and +4.06 for BFW).

5.5.2 Performance & Fairness Comparison
Table 5.3 presents the fairness metrics and micro-average accuracy for all training approaches

on RFW, FAVCI2D, and BFW. These metrics are reported for real and synthetic datasets sepa-
rately.

Among the real datasets, the model trained on BUPT achieves the highest accuracy on both
RFW (0.895) and FAVCI2D (0.818) compared to models trained on CASIA. As expected, BUPT
also gets the best fairness metrics on FAVCI2D, but surprisingly, on RFW it shows a mitigated
behavior, being first in terms of EOD only. Overall on RFW, CASIA+Sge shows the best
behavior in terms of fairness (DPR, DPD, EOD), at the cost of 5.2 points of accuracy compared
to the original CASIA set. This surprising behavior is not noticed with our in-depth analysis
(especially in Figure 5.5), which draws other conclusions for BUPT model sensitivity, advocating
for the usefulness of our analysis approach. Regarding accuracy though, the difference between
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RFW [Wang et al., 2019a] FAVCI2D [Popescu et al., 2022] BFW [Robinson et al., 2020]
DoB↓ DPD↓ EOD↓ DPR↑ EOR↑ Acc↑ DoB↓ DPD↓ EOD↓ DPR↑ EOR↑ Acc↑ DoB↓ DPD↓ EOD↓ DPR↑ EOR↑ Acc↑

BUPT 30.3 23.6 11.9 68.4 28.6 89.5 38.4 13.0 14.4 75.2 19.3 81.8 25.7 5.5 12.5 88.8 26.1 92.6
CASIA 35.3 19.0 22.0 71.1 5.2 85.1 39.0 21.2 28.5 66.3 16.5 81.1 29.1 9.2 14.9 82.2 1.3 90.3
CASIA + Seg 39.4 11.5 18.8 80.4 29.4 79.9 43.1 15.5 18.7 70.6 31.6 75.1 31.8 10.0 18.9 80.4 11.3 88.0
CASIA + Sall 48.2 17.8 24.0 68.8 43.7 62.3 48.6 22.0 24.1 60.3 43.8 61.8 43.5 19.3 33.6 67.8 23.1 74.0
CASIA + Weg 43.5 17.3 22.8 70.2 23.8 74.0 45.3 22.3 21.0 59.2 32.7 71.1 35.4 12.5 18.5 77.0 18.5 84.9
CASIA + Wall 49.1 26.7 36.2 54.7 30.7 59.1 49.1 28.1 31.2 47.1 31.0 59.4 46.4 29.6 38.5 52.4 23.5 68.2

SynFace 48.6 13.8 24.9 73.6 44.0 60.9 48.5 22.7 26.4 57.3 37.4 62.0 45.4 20.4 23.2 63.3 36.4 70.7
DigiFace 45.9 15.5 25.6 73.6 37.0 69.2 47.3 21.0 22.2 62.1 40.4 66.0 45.7 16.0 21.1 70.1 44.8 70.0
DCFace 42.7 17.2 32.7 71.4 15.3 75.6 45.1 20.0 18.9 62.8 32.1 71.6 35.4 14.2 21.5 74.4 11.7 85.0
DCFace + Seg 44.0 13.7 36.7 76.5 18.2 72.3 45.9 15.5 21.2 68.4 31.5 69.5 37.2 18.6 29.7 68.3 10.1 82.9
DCFace + Sall 48.0 16.7 23.8 69.5 38.7 63.6 48.1 22.1 23.0 58.2 43.8 63.4 42.9 16.8 25.8 68.7 21.8 75.3
DCFace + Weg 44.2 16.7 33.4 70.7 18.9 72.7 46.0 19.2 20.9 62.1 29.9 69.4 36.9 14.6 20.1 72.3 12.5 83.5
DCFace + Wall 49.0 19.4 31.6 59.9 23.4 59.9 48.5 23.7 26.0 54.9 36.5 61.8 44.4 24.0 24.3 56.5 27.3 72.8
DCFace + Ceg 42.2 12.7 13.7 77.1 41.2 76.4 44.7 14.3 15.6 71.1 66.0 72.4 34.7 11.3 13.8 77.8 23.0 85.7
DCFace + Call 41.6 11.2 14.6 80.3 45.9 77.3 44.5 14.2 14.9 70.9 58.6 72.7 34.2 11.5 13.5 77.5 24.1 86.1

Table 5.3: Fairness metrics and Micro-average accuracy scores of tested datasets and bias mitigation
techniques. Real and synthetic datasets are separated. Groups are defined as a combination of gender and
ethnicity . DPD: Demographic Parity Difference; EOD: Equalized Odds Difference; DPR: Demographic
Parity Ratio; Equalized Odds Ratio; Acc: Micro-average Accuracy. The best results for each dataset
type are in bold, and the second-to-best results are underlined.

CASIA and BUPT becomes much higher on RFW than on FAVCI2D (4.4 points vs 0.7 points
gap). This chaotic behavior on RFW might result from a domain overlap between BUPT and
RFW enhancing model performance at the cost of fairness metrics.

Among synthetic datasets, the proposed DCFaceeg and DCFaceall show the most promising
results across the evaluation sets. These balanced variants improve fairness compared to
DCFace, the original generation pipeline they build upon. The fairness gains are large for DPD,
EOD, DPR, and EOR, and less important for DoB. The differences between DCFaceall and
DCFaceeg are small for most fairness metrics, but DCFaceall provides a mild accuracy gain.
The obtained results demonstrate that the proposed balancing pipeline, particularly DCFace +
Call, substantially improves fairness metrics across different verification datasets. Importantly,
a small accuracy gain compared with the original DCFace dataset is also observed, along
with fairness improvement. The models trained with balanced datasets probably benefit
from a smaller shift between training and verification datasets, reflected in the micro-average
accuracy measured during evaluation.

Summary of raw results

Among real datasets:
• BUPT achieves the highest accuracy on RFW and FAVCI2D
• CASIA+Sge shows best fairness on RFW, but at a cost to accuracy

Among synthetic datasets:
• DCFaceeg and DCFaceall show the most promising results
• DCFaceall Improve fairness compared to the original DCFace, especially for DPD,

EOD, DPR, and EOR
• DCFaceall provides mild accuracy gain over DCFaceeg

Overall, proposed balancing pipeline (DCFace + Call) substantially improves fairness
metrics while maintaining or slightly improving accuracy

5.5.3 Logit Model for Bias Quantification
To quantify the biases in face recognition outcomes more precisely, we employ a logit model

that estimates the impact of person attributes on face verification model predictions. Hence,
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we examine the relationship between the studied attribute and the face recognition system’s
performance in terms of FMR and TMR. The two logit regressions are:

(TMR) ŷ|y = 1 ∼ σ(ethnicity + gender + age + pose) (5.3)
(FMR) ŷ|y = 0 ∼ σ(ethnicity + gender + age + pose) (5.4)

where ŷ is the prediction of the model; y is the ground-truth label of the pair; σ is the sigmoid
function; ethnicity and gender are categorical variables implemented with the dummy variable
coding [Hardy, 1993]; age and pose are handled as continuous variables.
The logit model coefficients βk represent the change in the log-odds of the binary outcome
(e.g., false positive or true positive) for a unit change in the corresponding attribute, holding
other attributes constant. The unit change is computed with respect to the unprotected group
(Caucasian for ethnicity and Male for gender) which is the reference level in the dummy coding.
Since the βk are not easily interpretable by themselves, we then compute the mean marginal
effects of each attribute, i.e., how much the TMR or FMR changes when we shift from the
unprotected value (for instance Male) to a protected one (for instance Female). Since we control
for all other variables at the same time, this effect can be interpreted as an effect with all other
attributes kept constant. Therefore, the marginal effect gives an estimation of the effective
demographic biases while accounting for co-founding factors.
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Figure 5.5: Marginal effect on FMR (smaller is better) for each method compared to the unprotected
group on RFW. Example: "When using CASIA , on average and other things being equal, two people
from the African subgroup are 22% more likely to be wrongly misidentified than two people from the
Caucasian subgroup". Non-significant effects are shown in transparency. Our controlled generation
reduces biases of DCFace more effectively than other bias mitigation techniques.

Figure 5.5 presents the logit model results for the ethnicity and gender attributes on
RFW, showing the computed marginal effects on FMR. The marginal effects are calculated
relative to each attribute’s unprotected reference group. The higher the bar, the higher the bias
against the protected subgroup. For example, when using DCFace, our analysis shows that the
FMR for the African subgroup is 35 points higher than for the White subgroup, independently
of the other considered attributes. The addition of re-weighting does not affect this bias, while
re-sampling reduces it to 22 points. Our proposed controlled generation method further reduces
it to 12 points. With regard to gender bias, we observe that despite decreasing the bias for
ethnicity, re-sampling increases the bias for gender. The proposed controlled generation
reduces biases for ethnicity while keeping the bias in gender non-significant.
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Figure 5.6: Marginal effect on FMR (smaller is better) for each method compared to the unprotected
group on FAVCI2D .

Figure 5.6 presents the logit model results for the ethnicity and gender attributes on
FAVCI2D ith the marginal effects on FMR. We get similar marginal effects, with our method
being the less sensible to the ethnicity attribute, even less than BUPT. The increase of the
BUPT-trained model’s sensitivity with regard to the inferred labels on FAVCI2D might come
from the dataset balancing done on the same labeling system as RFW

The results of the logit model on BFW, and of TMR on FAVCI2D and RFW can be found in
the appendix.

The logit model results provide valuable insights into the fairness implications of different
face recognition methods and datasets. By comparing the marginal effects across attributes
and methods, we can identify the extent and nature of biases present in each approach. Our
controlled generation method demonstrates a reduction in biases compared to the original
DCFace and other bias mitigation techniques, as evidenced by the significantly smaller marginal
effects. The interpretation of the logit model results highlights the disparities in face recognition
performance across different attribute subgroups. These findings highlight the importance
of considering fairness in the development and evaluation of face recognition systems and
the need for effective bias mitigation strategies.

5.5.4 ANOVA on Latent Space
The discrete performance and fairness metrics can be seen as consequences of the variability

in the distribution of feature vectors in the model’s latent space. Therefore, we utilize ANOVA
to investigate the influence of personal attributes on the distances in the models’ latent space.
In our case, the groups are defined by the person’s attributes, such as gender, age, and ethnicity,
while the explained variable is the distance between face representations in the latent space.

We use the sum of squares computed during ANOVA to extract the η2 associated with
each attribute. Each η2 value represents the impact of the variable on the distance variance in
the latent space. The η2 of each attribute sum to the R2 of the ANOVA, i.e. the total
variance explained by the model.

Figure 5.7 shows the result of ANOVA on the distances in the latent space of the RFW
dataset, both on the positive and negative pairs. We see that overall, the explained variance
on the positive pairs is generally smaller than the explained variance of the negative pairs:
this is expected since two images of different people are expected to have more variability
than two images of the same person. Moreover, the total R2 of the ANOVA goes up to
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Figure 5.7: ANOVA results on RFW: total height corresponds to R2, the explained variance by the
variables. Each bar is decomposed into multiple η2, i.e. the individual contributions to the variance.

0.18, meaning that 18% of variance in the distances in the latent space can be attributed
solely to the considered people’s attributes.

On the positive pairs, pose has the most influence: indeed, we can have a lot of variability in
the pose of the same person. However, neither ethnicity nor gender plays a big role, meaning
that across demographic segments, the spread of the latent vectors of a single person is very
similar. This is expected since the training loss tries to bring closer the latent vectors of the
same individual, who has only one ethnicity and gender value.

On the other hand, on the negative pairs, ethnicity is the attribute that is associated with
the highest impact on the latent vectors. This means that the distances for negative pairs are
much higher for some demographic segments than for others. This quantifies how much the
demographic imbalance translates into the geometry of the latent space. Confirming previous
works [Kärkkäinen and Joo, 2019; Sarridis et al., 2023b] with another approach, our analysis
shows a significant impact of the demographic attributes on the spread of the latent vectors.
Once more the impact of our approaches,DCFaceall DCFaceeg, on the η2 shows the effectiveness
of our controlled generation. By contrast, traditional training strategies such as re-sampling
and loss-weighting are not as good at mitigating the biases in the latent space.

Key Findings: Bias Mitigation with Controlled Generation

The proposed controlled generation method effectively reduces demographic biases in face
recognition. It significantly lowers FMR bias for the African subgroup (from 35 to 12
points), reduces ethnicity-based disparities in latent space representations, and maintains
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non-significant gender bias in recognition outcomes.
This approach outperforms traditional bias mitigation techniques, showing superior

bias reduction in both recognition outcomes and latent space. It effectively addresses the
18% variance in latent space distances attributed to demographic attributes.

Importantly, the method balances fairness improvement with maintained or slightly
improved accuracy across different verification datasets.

5.5.5 Model Diagnostics
We validate the regression we performed by plotting the diagnostics plots of the regressions

for TMR and FMR. As explained in the last section of Chapter 3, since we use a logit regression,
we use the DHARMa package Hartig [2018] in R to simulate interpretable residuals.

Figure 5.8: QQ-plot of residuals and Residual vs. predicted plot: logit model is adapted and log-odds
are linear in the variables.

Figure 5.9: Residual vs. predictor plots: exogeneity is verified.

Figures 5.8 and 5.9 present the QQ-plot of residuals, the residuals vs. predicted plot, and
the residual vs. predictor plot for the ethnicity variables. We see no particular specification
problem. Additional plots such as overdispersion and zero-inflation can be found in the appendix.
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5.6 Conclusion
We addressed the issue of fairness in FVT by evaluating the performance and bias of models

trained on various real and synthetic datasets. We proposed a novel controlled generation
approach to create balanced synthetic datasets, DCFaceeg and DCFaceall, which prioritize
attribute diversity. Our experiments demonstrated that models trained on these synthetic
datasets significantly improved fairness metrics while maintaining competitive accuracy. Our
proposed analysis based on logit regression and ANOVA revealed that our controlled generation
method effectively reduces attribute-based biases in both model predictions and latent space
representations. It also highlights a persistent disparity in fairness across all considered
approaches that, in particular, penalizes the African sub-group.

The findings of this work have important implications for the development of fairer and
more inclusive FVT systems. By demonstrating the effectiveness of attribute balancing in
synthetic data generation and providing a comprehensive evaluation framework, we advocate
for more efforts in addressing bias issues in computer vision applications. Future research could
explore the integration of our approach with other bias mitigation techniques and investigate
the generalizability of our findings to other computer vision tasks and datasets.
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Men are mistaken in thinking themselves free; their
opinion is made up of consciousness of their own actions,
and ignorance of the causes by which they are determined.

— Spinoza, Ethics
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6.1 Introduction
The increase in data generated through online interactions presents a significant challenge

in presenting relevant information to users. Recommender systems (RS) address this issue by
utilizing user behavior, preferences, and interaction history to generate personalized suggestions
[Nilashi et al., 2013; Pavlidis, 2019]. These systems are essential in filtering and personalizing
content across various domains, from e-commerce to entertainment and news consumption
[Nilashi et al., 2013; Konstan, 2004].

RS can be categorized into three main types: content-based (CB), knowledge-based (KB),
and in our study scope, collaborative filtering (CF) approaches [Burke, 2000]. On the one
hand, content-based systems use machine learning to classify items likely to interest users
based on available characteristics of previously consumed items (e.g. the genre of a film),
whereas knowledge-based approaches aim to extract semantic representations in order to find
products meeting user requirements [Burke, 2000; Jannach et al., 2010]. On the other hand,
collaborative filtering has gained significant attention due to its ability to aggregate user
preferences and make recommendations based on similarities in user behavior patterns [Konstan,
2004]. We concentrate on CF approaches because they have dominated the research landscape
in recent years [Lops et al., 2019; Zhang et al., 2019; Batmaz et al., 2019] and require minimal
information, analyzing only user-item interactions without the need for additional content or
knowledge-based features [Ekstrand et al., 2011; Afoudi et al., 2018].

Traditionally, RS research has focused primarily on domains such as movie recommendations
and e-commerce. However, to better understand the impact and effectiveness of recommender
systems across various fields, it is crucial to expand our evaluation to other domains. One
domain where the user experience could benefit from personalized recommendations is tourism.
Points of interest (POIs) are a central part of tourist experiences, and ideally, tourists should
receive personalized recommendations to discover new places that are most interesting to them.
Such personalization can be achieved by leveraging user profiles that encode their tourist
preferences Deldjoo et al. [2020]; Werneck et al. [2021]. However, creating rich and accurate
user profiles in the tourism domain is challenging, particularly due to the sparsity of explicit
user feedback and the visual nature of tourist experiences.

To address these challenges and provide a diverse dataset for evaluating recommender systems,
we introduce Vis2Rec, a new visual dataset designed for POI recommendation. This dataset
allows for examining recommender systems in the tourism domain and provides an opportunity
to explore the use of visual data in creating user profiles and generating recommendations.

To rigorously evaluate the effectiveness of RS, the choice of adapted measures is crucial.
Selecting the right measures is essential to ensure that RS delivers recommendations that are
not only accurate but also align well with users’ overall preferences and consumption patterns,
ultimately enhancing user satisfaction. Despite the emergence of many new measures like
diversity and novelty [Kaminskas and Bridge, 2016] that describe predicted items, the field
lacks measures to accurately model the diversity of the user consumptions.

In this chapter, we introduce two coherence measures, Surprise and Conditional Surprise,
that quantify different aspects of coherence and can be applied to both user interactions and
model predictions. The former describes how surprising (uncommon) a user’s consumptions’ are,
while the latter describes their internal coherence, independently of their uncommonness. We
provide theoretical interpretations and properties of these measures and use them to improve
our understanding of the performance of RS.
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Figure 6.1: Performance in Recall@20 of different RS, averaged over datasets, w.r. to our proposed
Conditional Surprise (CS(u)) measure, standardized between 0 and 1, with a moving average
smoothing. All RS performance collapse for high values of CS(u).

Figure 6.1 illustrates the impact of our proposed Conditional Surprise measure on the
performance of various recommendation algorithms across multiple datasets. The graph
clearly demonstrates that as the Conditional Surprise increases (indicating less coherent user
behavior), the performance of all recommender systems drastically declines. This relationship
holds true across different algorithms and datasets, highlighting the importance of user
coherence in recommendation tasks and the potential utility of our proposed measure for
understanding and improving recommender system performance. Specifically, we address
three fundamental questions in this regard:

Main Findings

1. Can we develop a framework that describes user behavior and how it
impacts the effectiveness of different recommendation algorithms? We
demonstrate that our measures capture nuanced user behavior patterns, revealing
significant correlations between user coherence and algorithm performance across
various domains.

2. Can this framework allow for meaningful recommendation effectiveness
comparisons across domains and algorithms? Our proposed measures provide
a common basis for evaluating recommender systems across diverse contexts, allowing
us to compare RS performance across multiple scenarios.

3. How can we leverage the proposed measures to enhance overall recom-
mender system performance and adaptability? Our analysis demonstrates
that these measures can be used to optimize various aspects of recommender systems,
from prediction quality and algorithm selection to coherence preservation, leading
to more effective and efficient recommendations.

By combining the analysis of these coherence measures with the introduction of the
Vis2Rec dataset, we aim to provide a comprehensive framework for evaluating and improving
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recommender systems across diverse domains, including the challenging and underexplored
field of tourism recommendations.

6.2 Related Work
RS have evolved significantly over the past decade [Wu et al., 2012; Roy et al., 2022].

However, recent studies still highlight persistent and major challenges within the RS field.
More specifically, offline evaluation [Sun, 2023, 2024] and replicability [Dong et al., 2023] issues
motivate the need for more rigorous evaluation approaches.

Recommendation algorithms
Traditional collaborative filtering approaches, such as user-based and item-based k-nearest

neighbors (kNN), remain simple yet effective baselines [Nilashi et al., 2013]. However, the field
has been predominantly shaped by Matrix Factorization (MF) techniques since the Netflix
Prize challenge [Bennett et al., 2007b]. MF methods, including basic MF [Koren et al., 2009],
Weighted MF [Hu et al., 2008], and extensions like GeoMF [Li et al., 2015], have shown
superior performance in capturing latent factors of user preferences and item characteristics.
More recently, the advent of deep learning has led to novel architectures in recommendation.
Neural Collaborative Filtering [He et al., 2017] and Variational Autoencoders [Liang et al.,
2018; Shenbin et al., 2020a] have demonstrated impressive results by capturing complex non-
linear interactions. Graph-based methods, such as LightGCN [He et al., 2020b], leverage the
inherent graph structure of user-item interactions to enhance recommendation quality. In the
context of visual data, which is particularly relevant for domains like POI recommendation,
approaches like VBPR [He and McAuley, 2016] incorporate visual features to enhance traditional
collaborative filtering methods. More sophisticated models like CausalRec [Qiu et al., 2021b]
attempt to address the causal relationships in recommendation, aiming for more robust and
interpretable suggestions. These advancements reflect the field’s progression towards more
nuanced, context-aware, and potentially explainable recommendation models.

Recommendation datasets
Datasets play a major role in the development and evaluation of recommender systems.

Several benchmark datasets have become standard in the field, each with its own characteristics
and limitations. The MovieLens datasets, particularly the MovieLens 1M and 20M versions, have
been widely used for benchmarking movie recommendation algorithms [Harper and Konstan,
2016]. These datasets offer a range of user-movie interactions, including ratings and timestamps.
Another significant dataset is the Netflix Prize dataset, which spurred considerable advancements
in collaborative filtering techniques [Bennett et al., 2007a]. In the e-commerce domain, the
Amazon product reviews datasets cover various product categories and have been valuable for
studying recommendation in retail contexts [Lakkaraju et al., 2013]. For music recommendations,
the Last.fm dataset provides music listening data, offering insights into temporal patterns of
user behavior [Konstan and Riedl, 2012]. However, in specific domains such as Point of Interest
(POI) recommendation, there is a notable lack of comprehensive, large-scale datasets. Existing
POI datasets, like those derived from Panoramio or Instagram, often face challenges related
to data provenance, user privacy, and copyright issues [Wang et al., 2017a]. For instance,
the Photo2Trip dataset, which included over 20 million geotagged images and 30,000 POIs,
relied heavily on geotags, which are not always available or reliable [Lu et al., 2010]. The
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scarcity of robust POI datasets highlights a gap in the field, particularly for tourism-oriented
recommendation tasks that could benefit from visual and location-based data.

Evaluation protocols
The data collection process can also have an important impact on performance. Meng

et al. [2020] examined data splitting strategies and their impact on evaluation outcomes
while Ji et al. [2020] addressed data leakage in offline evaluation, highlighting the issue of
evaluating on too few sets [Fan et al., 2024].

Several frameworks and analyses have thus been developed to enhance evaluation rigor and
standardization. Sun et al. [2020] as well as Salah et al. [2020] propose complete benchmarking
approaches for reproducible evaluation. More recently, new comprehensive frameworks like
Elliot [Anelli et al., 2021] and ReChorus2.0 [Li et al., 2024] now provide standardized evaluation
tools. While these frameworks offer valuable resources for consistent evaluation, they primarily
focus on traditional performance metrics.

In this regard, evaluation metrics play a major role in assessing the performance and
effectiveness of recommender systems. While traditional metrics focus primarily on accuracy,
recent research has emphasized the importance of considering additional factors to provide a more
comprehensive evaluation [Kuanr and Mohapatra, 2021]. In the context of collaborative filtering,
the accuracy is usually measured through Recall@K, Precision@K, or NDCG@K, among others,
which describe the RS’s capacity to recover the user’s interactions that were hidden in test-time.
These metrics have been widely used [Silveira et al., 2019], but leave out other recommendation
aspects that are in the users’ interests, some of which have been tackled over the years. More
precisely, Konstan and Riedl [2012] introduced user satisfaction in evaluations. Kaminskas and
Bridge [2016] examined diversity, serendipity, and coverage metrics. The use of these metrics
was democratized to evaluate model prediction in the following works [Silveira et al., 2019;
Alhijawi et al., 2022]. Additional works highlighted the importance of considering these newer
metrics in order to better match users’ behavior and find better recommendations [Kim et al.,
2021; Ping et al., 2024]. Using relevant metrics can also allow for analyzing group disparity in
the behavior of the recommendation system. Recent work thus used these newer metrics in order
to analyze such disparity in given user or item segments [Dong et al., 2023; Diricic et al., 2023].

At the same time time, concerns about domain-specific evaluation methodologies have
emerged, highlighting the need for more nuanced and versatile evaluation approaches. Latifi
et al. [2022] proposed metrics for session-based recommendations in streaming contexts, revealing
that traditional static metrics often fail to adequately assess the performance of recommender
systems in dynamic, session-based environments. Dietz et al. [2023] studied the influence
of data characteristics on point-of-interest recommendation algorithms, demonstrating that
factors such as geographical distribution and temporal patterns significantly impact algorithm
performance. Their findings underscored the importance of considering domain-specific features
in evaluation methodologies. Building on these insights, Sun [2024] questioned the cross-domain
applicability of current evaluation practices, arguing that metrics and evaluation protocols
optimized for one domain may not translate effectively to others. They highlighted the need
for more generalizable evaluation frameworks that can account for domain-specific nuances
while still enabling meaningful cross-domain comparisons.

Recent research advocates for improvements in fundamental aspects of recommender system
evaluation, such as data handling, performance metrics, and cross-domain applicability [Fan
et al., 2024; Shevchenko et al., 2024]. Additionally, emerging works highlight new concerns,

6.2. Related Work 115



Figure 6.2: Data collection and annotation pipeline.

including the need to create RS tasks more aligned with real-world applications [Sun, 2024]
and to develop a better understanding of users’ true intents [Kleinberg et al., 2022].

Collectively, these studies depict a field in transition, showing the need for better evaluation
practices to match the increasing sophistication and real-world impact of recommender systems.

6.3 Vis2Rec: A Visual Dataset for Visit Recommendation
The goal of Vis2Rec is to provide a realistic and sustainable testbed for visit recom-

mendations based on user images. To meet this objective, we need to address technical,
legal, and ethical challenges.

The dataset is built to propose recommendations at scale, and after the correct processing
for recommendation, it caters to at least 36,111 POIs in 5,012 cities. These POIs are taken
from Google Landmarks v2 (GLv2) [Weyand et al., 2020a] in order to enable large-scale visual
POI recognition. The size of the user set is also important in order to capture diversified user
preferences. Preprocessed Vis2Rec includes a total of 14,600 users, 829,673 POI-associated
user images, and over 6M additional images.

Sustainability is ensured by implementing a legally compliant data collection and distribution
process. The dataset includes only distributable images which were taken on visit days. Equally
important, face de-identification was applied to ensure the anonymity of the users.

We describe the main steps of the dataset constitution and packaging below, and the data
collection and structuring pipeline is summarized in Figure 6.2.

6.3.1 Initial data collection
POI set. GLv2 [Weyand et al., 2020a] is one of the largest publicly available POI-related

datasets, which was collected from Wikimedia Commons. We use the "clean" subset, which
includes a total of 1,580,470 images, which represent 81,313 POIs. GLv2 is therefore adapted
for the creation of a comprehensive visit recommendation dataset, such as Vis2Rec. To perform
efficient data queries, we need to enrich this dataset by mining information from the Wikipedia
pages associated to POIs. The resulting dataset includes the name of the POI (with translations,
when available), its associated GPS coordinates, and the closest city from the Geonames1

list of 139,439 cities that have at least 1000 inhabitants.
User set. Flickr offers an easy-to-use API for a large collection of images and associated

metadata, and is as such a very adapted data source to our work setup. We launch Flickr
API queries with the POI name(s), using a 3 km radius around the coordinates. Queries
are limited to photos distributed under Creative Commons licenses to ensure that they are
redistributable. Metadata for up to 5000 photos is collected for each POI, containing photo
ID, user ID, and user tags, as well as geographic coordinates of the photos. This process
provides an initial list of 20k preselected users.

1https://www.geonames.org/
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6.3.2 Domain-related data selection
The image collection should be focused on tourist visits. More specifically, we collect all the

photos corresponding to a potential visit day, determined by generating coarse POI predictions
for each image. A day is kept if it includes at least one POI name in the image tags. Since POI
names are often ambiguous [Popescu et al., 2008; Serdyukov et al., 2009], further post-processing
is needed to disambiguate potential POI matches. Whenever geolocation is available for at least
one photo taken during one day, it is used to check for POIs which are located within a radius
of 10 kilometers. If geolocation is not available, we resort to text-based matching which uses a
probabilistic geographic language model [Serdyukov et al., 2009]. This model associates the
visit day with a list of probable cities based on the aggregation of the location probabilities
of the tags used during a tested day. A geolocated subset of metadata is used to determine a
threshold which provides a good balance between precision and recall for detected visit days.

This matching provides a text-based profile of each user [Kurashima et al., 2013] which
is used to select interesting users for the visual dataset. The direct use of text-based profiles
for recommendation [Kurashima et al., 2013; Popescu and Grefenstette, 2011] is possible but
is suboptimal since users are required to provide explicit textual annotations of their visits,
which often leads to incomplete profiles. The resulting intermediate dataset includes 17k user
profiles and a total of 27k text-annotated POIs.

6.3.3 Visual matching of POIs
Vis2Rec is intended for recommendation based on the sole use of photo content and we

should make no assumption regarding the availability of textual annotations or geolocation
for the dataset. This is important in practice in order to design a profiling pipeline that
does not require any effort from the users. Consequently, we collect images for the visit days
identified in the intermediate dataset based on tags (Subsection 6.3.2). These photos are
then compared to POI images from Google Landmarks v2 dataset [Weyand et al., 2020a]
using a DELG descriptor [Cao et al., 2020].

Visual matching procedure. Visual matching is performed using DELG [Cao et al.,
2020], which achieves state-of-the-art single model instance-level recognition on GLv2. We use
the model only for inference since the pretrained weights on GLv2 can be found in the official
implementation 2. The visual matching of candidate and reference images is done in two steps:

1. A 2048-dimensional global embedding is used to select a subset of similar reference images
from GLv2 for each candidate image in which POI occurrences are searched. Following
common practice, the top 20 most similar reference images are retained for the second
step.

2. A geometric verification process based on 128-dimensional local descriptors provided by
DELG is performed to refine the list of similar reference images. The final ranking is based
on the number of matched keypoints between the candidate and the reference images.

This two-step process is needed since global retrieval is fast but potentially prone to errors,
while geometric verification is slow but accurate. Each candidate image is paired with the
reference image that has the highest matching score, and attributed with the POI represented
by this reference image. The number of keypoints can be used as a confidence estimator
for the quality of visual matching.

Results. Since DELG was pretrained on the same POI set as Vis2Rec , the visual matching
procedure has good qualitative results (see Figure 6.3). Correct identification is possible for a

2https://github.com/tensorflow/models/tree/master/research/delf
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Figure 6.3: Examples of visual matches provided by DELG. The model correctly recognizes (a) outdoor
landscapes, (b) indoor scenes, and (c) different lighting conditions. Errors can be caused by (d) the same
objects in different places, (e) Signs with identical features, and (f) similar architectures.

wide range of setups, including outdoor landscapes, indoor architectures, as well as difficult
lighting conditions. However, this process is far from perfect and fails in particular situations
(Figure 6.3). By analyzing the results of the visual matching, we can identify three types of
recurring errors: (1) objects which occur in different regions of the world and are representative
for POIs (Figure 6.3 (d)); (2) visually similar objects which are specific to a city (Figure 6.3
(e)); and (3) visually similar POIs (Figure 6.3 (f)).

The first type of error can be reduced by removing GLv2 reference images which match
target images located in different parts of the world. To do this, we use a geolocated validation
set and remove any reference image which was matched only to POIs farther than 15km away
at least 5 times. The remaining spatial aberrations are removed by selecting the most confident
POI detection for each day and removing detections corresponding to POIs farther than 100km
from it. This geographic filtering removes over 1 million images.

The second type of error is the most difficult to handle since neither a spatial criterion
nor a good matching score threshold can deal with them.

The third type of error is usually associated to lower matching scores. By manually verifying
a few hundred matched image pairs, we observe that a matching score of 30 leads to an accuracy
of at least 98%. Interestingly, this coincides with the threshold chosen in the GLv2 article
[Weyand et al., 2020a] to generate the "clean" subset, and to the threshold that leads to the
best recommendation results. In the rest of this work, this is the default chosen threshold.

6.3.4 Data distribution
We present dataset-level statistics for detected POIs and user visits. These statistics are

obtained after applying the visual matching error mitigation measures described in Subsec-
tion 6.3.3, and lead to a dataset comprised of 36,111 unique POIs, depicted on 820,593 images,
corresponding to 421,065 unique user visits. Since these statistics highly depend on the chosen
matching threshold, the distributed dataset contains all of the POI predictions without any
filtering to allow for further research and POI discovery.

Identified POIs. Figure 6.4 illustrates the distribution of identified visits across the
world, along with the associated number of detections. The obtained distribution is in line
with global tourist visit trends [UNWTO, 2019], and shows a strong concentration of POIs
in Western Europe, East and West coasts of North America, and Eastern and South-Eastern
Asia. The distribution is also influenced by Flickr usage trends, and confirms previous analyses
of geolocated photos shared on this platform [Crandall et al., 2009; Popescu et al., 2008].
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Figure 6.4: Spatial distribution of the density of identified visits

The distributions of the number of identified POIs and the number of visits per city are
proposed in Figures 6.5 and 6.6, respectively.

Both of them exhibit long-tail shapes, with a large number identified POIs and of visits
concentrated in large tourist hotspots, such as London, Paris, New York City, and significantly
fewer visits associated to the other cities. More details about the visited POIS and visits in
the different cities are provided in the supplementary material.

Figure 6.5: Distribution of the number of identified POIs in the top 200 cities.

Figure 6.6: Distribution of the number of user visits in the top 200 cities

User visits. User profiles generated in Vis2Rec are rich and diversified. First of all, 84%
of the users visited at least 5 POIs, a threshold commonly used in recommender systems
for filtering purposes, while the median user visited 16 distinct POIs. Secondly, 95% of the
users visited more than one city, 8 being the number of cities visited by the median user,
resulting in rich travel profiles. These observations can be easily explained by the fact that
travel images are often uploaded to Flickr to highlight their extraordinary nature. Therefore,
one should keep in mind that Vis2Rec does not contain images that are representative of the
everyday life of its users, but more of their vacation travels.

Additional images. Confident POI detections account for 11% of the 7,158,454 total
images. We estimate that between 1 and 2 million other images could depict POIs, and counting
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them as valid by lowering the matching score threshold would increase the POI set to around
60k unique POIs. However, this introduces many false positives in the user profiles, resulting
in lower recommendation performances. As per this observation, a threshold of 30 matching
keypoints is kept throughout our work. The remaining images are non-POI personal user
photos and are distributed for potential further work.

6.3.5 Dataset annotation
In preliminary experiments, we analyzed random samples of target-reference image pairs

provided by the geometric matching process. We partitioned the matched pairs into bins
based on their matching score, each bin corresponding to a 10-keypoints window. We then
drew 500 random samples from each bin and performed a manual verification of the matched
pairs. The results showed that the visual matching has an accuracy of over 99% when the
number of matched keypoints is larger than 40.

A manual annotation process is run base on this observation. A total of 10k image pairs
with a matching score lower than 40 are manually verified. The task is relatively simple
since annotators need to decide whether the two images of a target-reference pair depict
the same POI or not. Three annotators verify each pair, and we consider the match to be
correct if at least two of them label it correctly.

This allows us to get the number of True and False positives with for different matching
scores, as presented in Figure 6.7. Based on these observations, we choose a threshold of
30 keypoints for a positive matching.

Figure 6.7: Distribution of the annotated image pairs

6.3.6 Dataset compliance
First, Vis2Rec was collected via the official Flickr API, a data source that allows the

constitution of datasets made of data originally shared by its users. For instance, the well-known
YFCC100M dataset [Thomee et al., 2016] was also collected from Flickr and is still available
today. Second, we keep only images that are shared under Creative Commons (CC) licenses
in order to enable lawful redistribution of content. The dataset will be published using a
license that is compatible with the most restrictive CC licenses included in Vis2Rec, and
commercial reuse will be notably not permitted. Third, we will enforce the data minimization
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principle defined in Article 5 of the General Data Protection Regulation3, and share only the
data needed for the POI recommendation task. The dataset includes only images taken on
days that correspond to tourist visits. A qualitative exploration of Vis2Rec showed that it
contains many personal images. As such faces will be de-identified [Ma et al., 2021] in the
dataset to protect the anonymity of the depicted persons.

6.4 Analyzing User Coherence in Recommender System
6.4.1 Notations

We denote the set of users as U and the set of items as I. Let n = |U| be the number of
users and m = |I| the number of items. We place ourselves in a binary setting where each
user u ∈ U can either interact (xui = 1) or not interact (xui = 0) with an item i ∈ I, leading
to the binary interaction matrix X ∈ {0, 1}n×m. We identify each user to its item set so that
"u" refers equivalently to a user id and to their item set.

A set of test users Utest is randomly sampled. For each test user, their last interaction
is isolated as the test target xuitest . All other interactions are part of the training set. The
goal of a recommender system is to learn a function f : U × I → R that assigns a score
f(u, i) to each user-item pair (u, i), indicating the likelihood of user u interacting with item
i. The system’s performance is evaluated by its ability to rank the test item itest highly
among all items not in the user’s training set.

6.4.2 Coherence measures
Our goal is to understand and quantify individual user behavior in recommender systems.

While traditional approaches often simplify users into entries in a user-item matrix, this can
overlook important nuances in user preferences and consumption patterns. By modeling individ-
ual user behavior more comprehensively, we can gain insights into why certain recommendations
succeed or fail, and potentially tailor our approaches to different types of users.

Definition: Coherence in Recommender Systems

We define coherence as "the degree to which a user’s interactions form a consistent and
predictable pattern". A highly coherent user would have a set of interactions that align
well with each other and with common consumption patterns. In contrast, a less coherent
user might have more erratic or diverse interactions.

Specifically, we want to measure how the performance of recommender algorithms is
impacted by how surprising or unpredictable a user’s behavior is. To model surprise, one
natural way is to first assign probabilities to items. In previous works [Kaminskas and
Bridge, 2016], the probabilities used to compute existing measures describe the prediction
distribution. However, this approach is limited as it focuses on the model’s output rather
than the inherent characteristics of user behavior. Here, we adopt another view and consider
the item probability as their frequency among the users:

p∗
i =

∣∣{xui = 1}
∣∣

n
(6.1)

3https://gdpr-info.eu/art-5-gdpr/
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This quantity is insufficient since a user can interact with very rare items but still have
a very coherent set of items (e.g. niche movies from the same director). Therefore, we
consider the second-order statistics:

p∗
i,j =

∣∣{xui = xuj = 1, u ∈ U}
∣∣

n
and p∗

i|j =
p∗

i,j

p∗
j

(6.2)

The probability p∗
i|j represents how much a user is likely to interact with i when they also

interacted with j.
Then, we can define the Surprise (or Information Content) of an item as − log(p∗

i ) and
the Conditional Surprise − log(p∗

i|j). The first natural quantity to study is the mean
empirical binary cross-entropies:

S̃(u) = − 1
m

m∑
i=1

log(p∗
i )xui (6.3)

C̃S(u) = − 1
m2

m∑
i=1

m∑
j=1

log(p∗
i|j)xuixuj (6.4)

However, these existing definitions have a problem: they are non-decreasing when a new item
is added to a user’s set, regardless of the item’s characteristics. This behavior is counter-
intuitive, as we would expect the overall surprise to potentially decrease if a highly predictable
or common item is added to the user’s profile. Thus, we define our user coherence measures,
called Mean Surprise and Mean Conditional Surprise:

Definition: Coherence Measures

Mean Surprise and Mean Conditional Surprise are defined by:

S(u) = − 1
|u|

∑
i∈u

log(p∗
i ) (6.5)

CS(u) = − 1
|u|2

∑
i∈u

∑
j∈u

log(p∗
i|j) (6.6)

where | · | is the L1 norm.

To show the relevance of our measures, we also compute an Oracle version of our measures
on the test items. In our leave-one-out setup, they simplify to S(itest) = − log(pitest) and
CS(itest) = − 1

|u|
∑

j∈u log(pitest|j).

6.4.3 Interpretation and Properties
The quantities in Equations 6.5 and 6.6 have a similar form as in Equations 6.3 and

6.4, but have a dynamic rescaling dependent on the user. This ensures that the measures
are comparable across users with different numbers of interactions, providing a fair basis for
comparison. Unlike the previous formulations, these measures can decrease when a user interacts
with a common item, better reflecting intuitive notions of surprise and coherence. The Mean
Surprise S(u) describes at the first order how much a user deviates from the popular items,
on a scale from the unsurprising users to the surprising users. The Mean Conditional
Surprise CS(u) indicates whether the co-occurrences in the user’s consumption set are far
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from frequent co-occurrences, capturing the internal consistency of a user’s choices, on a scale
from the coherent users to the incoherent users.

In RS data, user behavior and item consumption detection can be quite noisy [Amatriain
et al., 2009]. We can verify how our measures behave on average:

Average Bounds on S and CS

Let πu be the distribution from which u is drawn, and π≥1
u be the distribution of u

conditioned on |u| ≥ 1. Let S∗(u) = E
π≥1

u
[S̃(u)] and CS∗(u) = E

π≥1
u

[C̃S(u)]. Then:

m

E
π≥1

u
[|u|] ≤

E
π≥1

u
[S(u)]

S∗(u) ≤ E
π≥1

u

ï
m

|u|

ò
(6.7)

m2

E
π≥1

u
[|u|2] ≤

E
π≥1

u
[CS(u)]

CS∗(u) ≤ E
π≥1

u

ï
m2

|u|2

ò
(6.8)

Proof. See appendix.

In particular, we see that the lower bound for the scaling depends only on the expected
value of the number of items. The upper bound, however, can get bigger than m/E

π≥1
u

[|u|],
due to the Jensen inequality. Sadly, there is no way of simply bounding it without additional
hypotheses. Since |u| is the number of items consumed by u, we can model it as a Poisson
variable with parameter λ (see appendix). We have the following bound:

Expectancy Bound of an Inverse Poisson Variable

If X is a Poisson variable of parameter λ > 0 , we have:

E≥1

ï 1
X

ò
≤ 2

E≥1[X] (6.9)

Proof. See appendix.

Empirically, we find a tighter upper bound for equation (6) with a numerator equal to
1.37 instead of 2. This upper bound is met for λsup ≈ 2.9. For smaller and larger values
of λ, the numerator quickly drops to 1. This means that for surprising users, on average,
the empirical estimation should not be too far from S∗(u) × m/E

π≥1
u

[|u|], which is indeed
the classical estimator expectancy re-scaled by the mean proportion of items that a user will
consume. The same bound effects apply to CS(u).

6.4.4 User Coherence Segmentation
We study how different recommendation algorithms react to different users. For each train

dataset D, we calculate S(u) and CS(u) for each user u. In particular, we have an estimate
of the measures for the test users, using their train interactions. This allows us to segment
the dataset into bins based on the value of the user measures. As we will see, the conditional
surprise metric plays an important role in explaining user performance, so we mainly use CS(u)
for our user segmentation. We denote by D[α, β] the dataset comprised of users with a CS(u)
between the αth and the βth percentiles. For example, D[0, 0.1] is the set of coherent users,
i.e., users with a Mean Conditional Surprise in the first decile.
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Dataset Items Users Inter. Density
ML 1M 3.1K 6K 562K 3 · 10−2

ML 10M 9.4K 69K 5.7M 9 · 10−3

Netflix Small 2.7K 8.3K 320K 1 · 10−2

Netflix 18K 463K 59.9M 7 · 10−4

Vis2Rec 9.3K 9.1K 200K 2 · 10−3

Tradesy 12K 6.6K 73K 9 · 10−4

Amazon Music 11K 8.6K 87K 9 · 10−4

Amazon Office 62K 20K 468K 4 · 10−4

Amazon Toys 143K 61K 1.2M 1 · 10−4

Table 6.1: Description of the datasets after processing

6.4.5 Regression Model as an Analytical tool
To accurately quantify the impact of our measures on RS performance, we employ logistic re-

gression to model the relation between attributes and binary outcomes, as describes in Chapter 3.
When X is a variable estimating X∗ with a certain variance σ2, the plain regression on X

becomes imprecise. We the SIMEX (Simulation-Extrapolation) method [Cook and Stefanski,
1994], which simulates many regressions with the added noise σ2, and extrapolates to the
case of no noise, providing more robust coefficient estimates.

6.5 Experimental Setup
6.5.1 Datasets

We perform our analysis on 9 datasets of various sizes and domains:
• MovieLens 1M and MovieLens 10M [Harper and Konstan, 2016]: movie ratings

recommendation datasets, commonly used for benchmarking recommendation algorithms;
• Netflix Small and Netflix [Bennett et al., 2007a]: two versions of the Netflix Prize

dataset, consisting of movie ratings;
• Amazon Music, Amazon Office, and Amazon Toys [Lakkaraju et al., 2013]: part of

the Amazon product reviews collection, focusing on different product categories;
• Tradesy [Lakkaraju et al., 2013]: interactions for the Tradesy platform, which specializes

in the resale of designer fashion;
• Vis2Rec [Soumm et al., 2023]: the dataset previously introduced.

We used different sizes from the same dataset, and datasets from the same domain but different
sources, specifically to study the effects of dataset size and domain, and analyze recommender
systems across a wide range of real-world applications.

6.5.2 Data Processing
Following standard practices [Meng et al., 2020], we binarize non-binary ratings, which are

all in [1, 5], by setting xui = 1(rui > 3). A 5-code is extracted from the datasets, i.e. a subset
of users and items with at least 5 interactions, by sequentially filtering out users and items
with less than 5 interactions until convergence. This pre-processing reduces the effective sizes
of the datasets, leading to a size distribution described in Table 6.1.

We sample 10’000 test users from each dataset, from which the last interaction is isolated
as the test set, and the second-to-last interaction is isolated in a validation set. For datasets
with less than 10’000 users, all users are considered test users.
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For each dataset, the Mean Surprise and Conditional Surprise are computed for each user.
This allows us to easily create the segments D[α, β] for multiple values of α and β, both
in the train and test set. Since most algorithms cannot handle users that are not in the
train set, we make sure that the test users are always part of the train set. However, some
items of the test set may not always be present in the train set, which makes the task more
complicated. All relevant code is provided in the appendix.

6.5.3 Recommender Algorithms
We benchmark 7 different recommendation algorithms:

• MostPop is the baseline algorithm that recommends the most popular items to every user;
• UserKNN is a neighborhood approach that relies on a similarity between pairs of users.
• ItemKNN is a neighborhood approach that relies on a similarity between pairs of items;
• WMF is a weighted matrix factorization approach that learns user and item embeddings

with gradient descent, minimizing a reconstruction loss;
• EASE [Steck, 2019] is a matrix factorization approach that computes an item-item weight

matrix with a closed-form formula;
• LightGCN [Shenbin et al., 2020b] is an approach that learns user and item embeddings

by aggregating information from the user-item interaction graph using a light graph
convolution;

• RecVAE [Shenbin et al., 2020b] is a variational auto-encoder approach inspired by β-VAE
[Higgins et al., 2017] and denoising-VAE [Im et al., 2016].

These algorithms have been chosen to represent a wide range of possible usages, depending
on how well they scale with the number of users, or the number of items, training times,
or how well they adapt to new users or items.

6.5.4 Training
In the leave-one-out protocol, as there is only 1 relevant test item per user, the two reference

metrics Recall@K and Precision@K [Herlocker et al., 2004] are equivalent, up to a constant,
since they are proportional to the number of relevant items. Therefore, we only use the metric
Recall@K, which corresponds in this case to a binary variable 0/1. For each experiment (i.e.
algorithm trained on a dataset or a dataset segment), we perform a hyperparameter search
using optuna with 50 rounds maximizing the Recall@20 on the validation set.
The models are trained on 256 AMD EPYC 9554 64-Core CPUs and 1.4TB of RAM for the
algorithms that run on CPU, while others are run on a single NVIDIA A100 GPU with 40GB of
VRAM.

6.6 Results and Analysis
6.6.1 Experimental Properties of the Measures
6.6.1.1 Measure Distribution.

Figure 6.8 presents the distribution of our proposed measures across the datasets. A key
observation is that the distribution of S(u) characterizes the domain: the movie-related datasets
exhibit comparable Mean Surprise values. This suggests a uniformity in user behavior patterns
within the movie recommendation domain, even if they come from a different source and collection
process. In contrast, all e-commerce datasets demonstrate higher S(u) values, indicating higher
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diversity in user consumptions. Vis2Rec representing a unique domain of tourism recommenda-
tions, falls between the movie and e-commerce clusters, highlighting its distinct nature.
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Figure 6.8: Distribution of the measures across datasets. S denotes the Surprise measure, and CS the
Conditional Surprise measure. CS shows remarkable stability across all datasets.

Interestingly, despite the variations in the distribution of S(u) across domains, we observe
consistency in the distribution of CS(u) across all datasets. This suggests that the CS(u)
measure is a good candidate for a domain-agnostic coherence measure.

6.6.1.2 Comparison with naive measures.
We start by verifying that our measures behave better than existing measures, such as the

mean-cross entropies S̃(u) and C̃S(u) defined in Equations 6.3 and 6.4. We graphically inspect
the relationship between candidate measures and |u|. As we see in Figure 6.9, S̃(u) diverges
with the number of items, whereas S(u) tends to stabilize as |u| increases.

Figure 6.9: Comparison of S(u) and S̃(u) against |u| on the Netflix dataset, with a regression fo S(u)
on |u|. Similar graphs are produced for other datasets and for CS(u) (see supplementary material).

A closer inspection reveals that (S(u)− Êu[S(u)]) still increases with |u|, but with a constant
asymptotic behavior. This is coherent with the idea that users with fewer items can either
over-consume very popular items, or on the contrary deviate into specific tastes, whereas users
with more items have preference on average for both popular and specific items, converging
to a single limit distribution. CS(u) behaves the same way.

6.6.1.3 Correlation between measures
Table 6.2 presents the linear dependence between CS(u) and S(u) across the tested datasets.
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Dataset Coefficient R2

ML 1M 0.58 0.79
ML 10M 0.55 0.86

Netflix Small 0.49 0.67
Netflix 0.6 0.84

Vis2Rec -0.12 0.02
Tradesy -0.66 0.28

Amazon Music -0.66 0.43
Amazon Office -0.68 0.44
Amazon Toys -0.66 0.51

Table 6.2: Linear dependence between the information measures across datasets

As before, we see a clear distinction between the different domains. For movie datasets, we
observe positive correlation coefficients ranging from 0.49 to 0.6. This suggests that in movie
datasets, unsurprising users also happen to be coherent. The higher R2 value for these datasets
indicates that this relationship is quite significant and consistent within the movie domain.

In contrast, e-commerce datasets demonstrate strong negative correlations, with coefficients
consistently between -0.66 and -0.68. This negative relationship implies that in online shopping
contexts, the coherent users are also the most surprising ones. The moderate R2 values suggest
that while this inverse relationship is significant, it’s not as deterministic as in the movie domain.

The Vis2Rec dataset stands out with a weak negative correlation (-0.12) and a very low R2.
This implies that for this dataset, there is only a very weak link between surprise and coherence.

Main Experimental Properties of S and CS

The Surprise and Conditional Surprise are measures that:
• Can be interpreted in absolute: S clearly indicates raw diversity in user

consumption, and is higher of e-commender datasets than in movie datasets. CS

is mostly stable across datasets and allows us to compare user behaviour between
different domains.

• Have better properties than traditional entropies: users with fewer items
have a broader range of values fo S and CS. The dependence between the measures
and the number of items is less deterministic.

• Characterize domains based on their correlation: looking at the correlation
between S and CS provides a lot of information about user’s mean behavior in the
datasets.

6.6.2 Overall Performance
The overall results are presented in Figure 6.10. All combinations of datasets and algorithms

have been benchmarked except UserKNN on Netflix. Due to the amount of users, the method
saturates the 1.4 TB of RAM at our disposal. Figure 6.10 shows two global trends. First, there are
substantial differences in performances between movie datasets and e-commerce datasets. This
can be explained by the density of these datasets (see Table 6.1), which is much higher for movie
datasets. Second, performances are better when the dataset size increases: the performances of
the algorithms are overall better on ML 10M and Netflix than, respectively, on ML 1M and
Netflix Small. This is not trivial since increasing the size not only increases the number of
samples (users) but also the number of items, which theoretically makes the task harder.
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Figure 6.10: Overall algorithms performance across datasets, measured in Recall@20 with confidence
intervals at 95%.

EASE provides the best performances on almost all datasets. WMF is second everywhere
except for the biggest sets, where RecVAE seems, as expected from a deep approach, to leverage
better the amount of data at its disposal. However RecVAE as well as ItemKNN show themselves
sensitive to the number of items and users. In particular, RecVAE performs better when the
number of items is below the number of users. Conversely, ItemKNN performs better when
the number of users is below the number of items.

6.6.3 Validating Coherence Measures
For each dataset, we demonstrate the usefulness of our coherence measures by performing a

logistic regression of the binary Recall@20 metric denoted Rec(u) on the oracle test information
measures and the profile density, controlling for the used algorithm:

Rec(u) ∼ σ(algo + |u|× S(itest)× CS(itest)) (6.10)

We compute the average marginal effects (AME) of the variables and the McFadden’s R2

of the model, reporting the values in Table 6.3.

Dataset |u| S(itest) CS(itest) R2

ML 1M -0.02 0.02 -0.22 0.34
ML 10M -0.02 0.06 -0.26 0.50

Netflix Small 0.02 -0.00 -0.19 0.53
Netflix -0.05 -0.04 0.02 0.14

Vis2Rec 0.05 -0.02 -0.17 0.4
Tradesy 0.03 -0.03 -0.05 0.32

Amazon Music 0.04 -0.05 -0.08 0.33
Amazon Office 0.02 -0.01 -0.03 0.31
Amazon Toys 0.05 -0.03 -0.09 0.35

Table 6.3: Marginal effects of the variables for equation 6.10. All values are significant at p-value < .05.
For e.g. on ML 1M, the increase of 1 std. in CS(itest) causes the Recall@20 to decrease of 22 points on
average.

The regressions have overall very high R2 values, which shows the power of our regression4.
We additionally noticed that the marginal effects of the measures, in particular CS(u), are as
important as the algorithm’s. The mostly negative coefficients highlight the sensitivity of the
algorithms to the coherence of the test item with respect to the input items.

4For logistic regression, McFadden R2 > 0.2 is considered an excellent fit [Allison, 2014]
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6.6.4 Impact on Performance
We now directly estimate how our measures computed on the train set impact RS per-

formance. Figure 6.1 shows the relation of the Recall@20 to CS(u). This graph reveals
several important insights:

• There is a clear negative correlation between CS(u) and recommendation performance
across all algorithms.

• The performance gap between different algorithms is most pronounced for coherent users,
i.e. for users with low CS(u) values.

• As CS(u) increases, the performance of all algorithms converges to a similarly low level.
Notably, the convergence of algorithm performance for high CS(u) values suggests that for highly
incoherent users, the choice of algorithm becomes less important. This observation has significant
implications for recommender system design and deployment. It indicates that most gains in
overall performance primarily come from improvements in recommendations for coherent users.
For incoherent users, even sophisticated algorithms struggle to outperform simpler approaches.

To get the true marginal effect independent of other variables, we estimate the model:

Rec(u) ∼ σ(|u|× S(u)× CS(u)) (6.11)

To get a fine analysis, we perform one regression on each dataset and algorithm pair. We
model the variability in log(pi) and log(pi|j) for a given user by using SIMEX with a variance
estimated on each user set of interactions. Empirically, this yields to a model with much more
statistically significant effects, and with a larger effect norm.

The AME for the regression of each dataset and algorithm are reported in Figure 6.11,
showing that the most important effects come from profile density and CS(u).
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Figure 6.11: Average marginal effect of the variables on the performance. Each value corresponds to
the causal variation in Recall@20 when the variable goes up by 1 standard deviation.

The AME of |u| is non-significant or negative for movie sets while being positive for e-
commerce. This can be explained by the difference in density averages between movie e-commerce
datasets. Since e-commerce profiles are more sparse, each new item adds useful information for
RS. On the other hand, adding items to already dense profiles only adds complexity.

The S(u) measure is the less impactful variable, meaning RS adapt (to some degree) to users
with niche tastes. Mean Surprise still holds a negative effect on e-commerce sets. This could be
explained by the fact that these datasets have a higher mean S(u). When a user deviates from
the popular items, they would buy very rare items, which are not well-modeled by the algorithm.

Mean Conditional Surprise CS(u) greatly impacts the performance negatively in most
scenarios. This highlights the importance of the measure in quantifying the difficulty of a user.
The distinction between e-commerce and movie datasets is not as clear as for the previous
graphs, showing the cross-domain applicability of the measure.
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Main Factors Influencing RS’s Performance

All other things kept constant:
• The profile density can have positive or negative influence based on the domain:

for datasets with rich profiles, adding items to the recommendation list adds little
useful information. However, in cases with profile scarcity, such as with e-commerce
and Vis2Rec, profile density is really important.

• Surprising users have some impact on performance, but are on average somewhat
handled by the algorithms.

• Incoherent users significantly drop RS’s performance. Algorithms that perform
better on average usually just perform better on coherent users, i.e. on the "easy"
part of the data.

6.6.5 Coherence Reproduction
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Figure 6.12: Distributions of CS(u) for ML 10M (Train) set and predictions of both RecVAE and
EASE

While Recall@K and other discrete metrics are broadly used to evaluate RS, the exclusive
use of discrete performance metrics is adapted to the field. A good recommendation system
might not exactly recommend the test target, as long as its predictions are coherent with the user
behavior. Thus, we compare in Figure 6.12 the distribution of CS(u) for a given train set (ML
10M) and for the prediction sets given by EASE and RecVAE for each user. While RecVAE achieves
a lower recall score compared to EASE, it more closely reproduces the CS(u) distribution of the
training set. This observation suggests that RecVAE may be better at capturing the underlying
coherence patterns of user behavior, even if it doesn’t always predict the exact test items.
This dual approach to evaluation offers several advantages: it provides a more comprehensive
view of recommendation quality, helps identify algorithms that better maintain user behavior
patterns, and may reveal strengths overlooked by traditional metrics. This approach encourages
the development of more nuanced recommendation strategies.
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Coherence Level of the Predictions

Most algorithms, since they do not make "batched" predictions, but compute marginal
user-item proximity scores, fail to produce a coherent set of predictions. A notable
exception is RecVAE, that predicts an entire item set at once, which is in general more
aligned with the coherence level of the training set.

In particular, methods with the best Recall@K score are not the best at producing
a coherent set of predicted items.

6.6.6 Specialized Models for Coherent Users
Since we showed that CS(u) explains most of RS performance, and since it is well-behaved

across datasets, it is a good candidate to segment datasets using the protocol described in Section
6.4.4. From our experiments, we found that the best segmenting strategy was to evaluate on the
coherent test users set D[0, 0.1]. We train models on D[0, β] for Netflix, with β ∈ {0.1, 0.2, 0.3}
independently chosen for each algorithm, and evaluate them on the coherent users.

ItemKNN LightGCN WMF RecVAE EASE
Vanilla 0.0 33.8 47.4 46.0 53.0
Spec. 3.2 39.3 49.2 47.8 56.0

Table 6.4: Recall@20 on the coherent users of Netflix, for the Vanilla models and the specialized ones,
trained on a small coherent subset.

Table 6.4 shows that despite training on at most 30% for the training set, specialized models
achieve better performances on coherent users than models trained on the whole dataset. This
is probably due to a reduction in the distribution shift between the train and the test set.

6.7 Conclusion
We introduced two information measures for analyzing recommender systems across diverse

domains. Our study shows that these measures effectively capture nuanced user behavior
patterns that are consistent across different recommendation contexts. These measures provide a
domain-agnostic framework for quantifying user coherence, offering insights into the relationship
between user behavior and recommendation difficulty. By revealing how user coherence impacts
algorithm performance, our approach enables a more nuanced understanding of recommender
system dynamics. This work shows the importance of coherence user modeling in recommender
systems, potentially leading to adaptive architectures that can better align with diverse user
behaviors across various domains.
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Not everything that can be counted counts.
Not everything that counts can be counted.

— William Bruce Cameron

7
Conclusion

7.1 Summary and Contributions
Throughout this thesis, we have examined how statistical tools, particularly those adapted

from econometrics, can significantly enhance our understanding and evaluation of machine
learning systems. While traditional evaluation methods provide valuable baseline measurements,
they often fail to capture the nuanced relationships between performance outcomes and model
components, training strategies, or data characteristics. Our work shows that by applying
rigorous statistical methodologies, we can move beyond simple performance metrics and ablation
studies to understand the causal relationships that drive model behavior.

In exemplar-free class-incremental learning (EFCIL), we conducted the first large-scale sys-
tematic study of pre-training strategies. Through careful experimental design, we demonstrated
that while no single strategy dominates across all scenarios, pre-training with external data
consistently improves performance when the domain gap is reasonable. Our analysis revealed
that self-supervised pre-training can significantly boost incremental learning performance,
particularly when the pre-trained model is fine-tuned on initial classes. We show that pre-
training is the main factor influencing incremental accuracy, and we highlight how different
metrics are differently impacted by explanatory factors. These findings provide concrete
guidance for practitioners implementing EFCIL systems.

In face verification, we made two key contributions to address fairness concerns. First, we
introduced a novel controlled generation approach, resulting in the DCFace dataset variants,
demonstrating that synthetic data can be leveraged to improve fairness while maintaining
competitive accuracy. Second, we developed a new analysis framework combining logit regression
and ANOVA that provides deeper insights into the sources and nature of demographic biases,
enabling researchers to quantify not just the presence of bias, but its specific impacts across
different demographic segments.

In recommendation systems, we introduced Vis2Rec, a new visual dataset for visit recommen-
dation, addressing the scarcity of comprehensive, visually rich datasets in the tourism domain.
We also developed novel coherence measures – Surprise and Conditional Surprise – that quantify
different aspects of user behavior patterns. These measures provide a domain-agnostic framework
for understanding user behavior, offering insights into why certain recommendations succeed
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or fail across various algorithms and domains. In particular, we show that the performance of
the highest-ranked algorithms is mostly due to their performance on the "easy" users. We also
provide guidance on how we can use these metrics to assess batch recommendation coherence,
and enhance the performance on some subsets of the data by training on a more aligned training
set.

Our work enables rigorous cross-model comparison through careful control of confounding
variables and appropriate statistical tests. This was evidenced in comparing EFCIL strategies,
face recognition approaches, and recommendation algorithms. Statistical analysis reveals the
impact of modeling choices on performance, as demonstrated in our EFCIL study where we
could disentangle the effects of pre-training, architecture choice, and dataset characteristics.
Our framework provides tools for measuring and understanding biases beyond simple metrics, as
shown in our face recognition work where we could analyze bias both in model predictions and
latent space representations. Statistical tools enable validation of data modeling approaches,
exemplified by our coherence measures in recommender systems which provided insights into
user behavior patterns that traditional metrics couldn’t capture.

This synthesis of domain-specific contributions and statistical methodology provides a
foundation for a more reliable and interpretable evaluation of machine learning systems,
enabling researchers and practitioners to make more informed decisions about model de-
velopment and deployment.

7.2 Perspectives
The methodological advances and empirical findings presented in this thesis open up

several promising directions for future research, both in terms of immediate methodological
extensions and broader research questions.

7.2.1 Short-term Methodological Extensions
A few possible direct applications or enhancements of our methodology can be developed in

the short term.

The impact of Data Augmentation in Self-Supervised Learning
During our research on EFCIL, we trained self-supervised models in various settings.

The choice of data augmentations to perform for each algorithm and to apply them on
different downstream datasets was a significant source of variability in the performance. To
standardize our study, we chose a fixed set of augmentations, but understanding the dependence
between self-supervised training and augmentations is a promising research topic. While
certain transformations like random cropping appear fundamental, quantifying their individual
importance is complicated by strong interdependencies and the computational cost of pre-
training. Traditional hyperparameter optimization approaches iterate on known successful
combinations, creating correlations that mask individual effects. Our statistical framework
could be extended to address this challenge by developing methods for estimating true marginal
effects from historically biased optimization data. This would require adapting our causal
analysis tools to handle partially observed high-dimensional spaces, potentially combining
observational analysis of existing pre-training results with targeted experiments. Such analysis
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could reveal which augmentations are truly fundamental versus those that are only effective
in specific combinations, guiding more efficient pre-training strategies.

This application is particularly relevant as it combines the key elements of our framework
– causal analysis, efficient experimental design, and handling of confounding effects – while
addressing a current need in modern deep learning.

Sequential Analysis Through Panel Data Methods

Many machine learning scenarios naturally generate sequential data, such as incremental
learning trajectories in EFCIL or user interaction in recommender systems. While current
evaluation methods often reduce these sequences to aggregate metrics, econometrics offers
sophisticated tools for analyzing panel data that could significantly enhance our understanding
of temporal patterns in ML. Panel data methods, which track multiple units (e.g., models or
users) over time, provide powerful frameworks for causal inference in sequential settings. For
instance, in EFCIL, fixed effects models could help separate the impact of architectural choices
from step-specific challenges, controlling for time-invariant model characteristics while identifying
which factors truly affect catastrophic forgetting. In recommender systems, dynamic panel
models could disentangle how user preferences naturally evolve from how they are influenced
by recommendations, accounting for temporal dependencies in user behavior.

These methods are particularly valuable because they can handle both observed and
unobserved confounding factors that remain constant over time, enabling more reliable causal
inference in sequential settings than traditional before-after comparisons. Adapting these
econometric tools to ML evaluation would provide a rigorous framework for analyzing the
increasing amount of sequential data in modern ML applications.

From Statistical Control to Causal Understanding

While our statistical framework successfully measures true correlations by controlling for
confounding factors, establishing true causation requires explicitly modeling causal relationships.
This is particularly relevant in complex ML systems where performance improvements might
operate through multiple mechanisms. Mediation analysis, which distinguishes between direct
and indirect effects, offers a promising direction for understanding these mechanisms. For
instance, in EFCIL, initial accuracy appears to mediate the relationship between pre-training
strategy and average incremental accuracy: pre-training might improve incremental learning
both directly (through better feature representations) and indirectly (through higher initial
accuracy). Formally modeling such mediation effects would help distinguish which improvements
come from better starting points versus better adaptation capabilities. A similar analysis could
reveal what ethnic features tend to create biases in face recognition systems. In recommender
systems, the modeling used in this thesis could be completed with other user-wise behavioral
metrics, leading to a better understanding of how behavioral patterns affect performance.

This extension requires developing explicit causal models for ML evaluation, using tools
like Directed Acyclic Graphs to formalize our assumptions about how different components
influence each other. Such causal modeling would complement our statistical framework by
providing a theoretical foundation for interpreting the correlations we observe.
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7.2.2 Broader Research Directions
More broadly, several research directions emerge from this work. First, the rise of large

language models and multi-modal systems presents new challenges for evaluation, which will
be crucial in the next few years as these models continue to develop. Multi-modal and large
language models exhibit varying capabilities across different types of tasks, making traditional
single-metric evaluations insufficient. Vision-language models like GPT-4V or DALL-E show
varying capabilities across different types of tasks. While these models can perform well on
many visual tasks, systematic evaluation of their performance across different levels of reasoning
(from literal description to cultural understanding) remains an open challenge. Our statistical
framework could be extended to analyze such behavioral patterns by formally defining and
measuring different types of capabilities and then using regression analysis to understand
how architectural choices affect each capability. This could include analyzing how the depth
and structure of cross-attention mechanisms influence different types of visual-language tasks,
or how the dimensionality and quality of visual feature spaces affect downstream language
generation. Such analysis would provide quantitative insights into architectural design choices
that are currently often made qualitatively.

The statistical framework could be particularly valuable for analyzing modern architectures
that combine multiple specialized components. Consider Mixture-of-Experts (MoE) models,
where understanding how experts specialize and interact is crucial for architectural optimization.
Statistical analysis could quantify expert specialization patterns through input distribution
analysis, while variance decomposition techniques could reveal how different expert combinations
contribute to model performance. For instance, in models like Switch Transformer or GLaM,
we could analyze whether performance variations across tasks are explained more by expert
selection patterns or by expert parameter counts. Similarly, for sparse architectures where
only a subset of parameters is active for each input, statistical tools could help quantify the
relationship between sparsity patterns and performance, potentially guiding more efficient
architecture design. This approach could be particularly valuable for studying scale-dependent
behaviors: rather than simply observing that capabilities improve with scale, we could analyze
which architectural components contribute most to performance improvements at different
scales, providing quantitative guidance for scaling decisions.

While existing methods like ensemble techniques or Bayesian neural networks effectively
quantify predictive uncertainty, understanding the sources of this uncertainty remains challenging.
Our statistical framework could be extended to analyze how different factors contribute to
model uncertainty in critical applications. For instance, in autonomous driving, we could
use variance decomposition to understand whether uncertainty in depth prediction stems
primarily from physical conditions (lighting, weather), scene complexity (occlusions, object
density), or domain shifts (novel scene types).

A similar analysis could be applied to medical imaging, where understanding whether
diagnostic uncertainty arises from image quality, rare pathologies, or patient characteristics
could guide both model improvement and clinical deployment decisions. This approach would
complement existing uncertainty quantification methods by providing actionable insights into
the root causes of prediction uncertainty, enabling more targeted improvements in model
robustness for safety-critical applications.

136 7. Conclusion



7.2.3 Practical Considerations
Integration in frameworks

Integrating statistical tools into machine learning workflows requires extending existing
ML infrastructure rather than developing separate statistical frameworks. Modern experiment
tracking platforms like Weights & Biases (W&B) and MLflow already provide sophisticated
metadata tracking and basic statistical analysis through Bayesian optimization. These platforms
could be extended to incorporate more advanced statistical tools directly in their analysis
pipeline. For example, W&B’s parameter importance analysis could be complemented with
formal ANOVA to decompose performance variance across different factors. The platform
could automatically perform regression analysis on the collected metrics, providing not just
correlation between hyperparameters and performance but actual causal analysis when the
experimental design permits it.

One possible enhancement would be the integration of statistical assumption verification.
When performing regression analysis, the system could automatically generate diagnostic plots
for residual analysis, test for heteroscedasticity, and alert users when statistical assumptions
are violated. For ANOVA, the system could verify the normality of residuals within groups
and homogeneity of variance between groups. These checks would help ensure that statistical
conclusions drawn from experiments are valid and that appropriate corrections (like using
robust standard errors or non-parametric tests) are applied when needed.

Results reporting

Standardizing statistical evaluation in machine learning requires clear protocols adapted
to each subfield’s specific needs. While reporting statistical significance has become com-
mon practice, the field needs more rigorous standards for statistical analysis and reporting.
Such standards should specify not just which statistical tests to use but how to report
their results comprehensively.

For instance, when comparing model architectures, papers should report both within-run
variance (from different initializations) and between-run variance (from different hyperparameter
settings), with appropriate corrections for multiple comparisons. In fairness evaluation, standards
should specify how to aggregate metrics across demographic groups while accounting for different
group sizes and intersectional effects. For incremental learning, guidelines should detail how to
analyze performance trajectories across learning steps, accounting for the temporal dependence
in measurements. These guidelines should be formalized through:

1. Standardized reporting templates for common statistical analyses (ANOVA, regression)
2. Required documentation of assumption verification (e.g., residual plots for regression)
3. Field-specific effect size measures that capture meaningful performance differences

Standardization would enable more reliable meta-analyses and facilitate the reproduction of
statistical findings across different studies.

Such integration would make statistical rigor a natural part of ML development rather
than an additional burden. This approach would also enable systematic meta-analysis across
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experiments and facilitate the standardization of statistical best practices in ML research.

These research directions highlight an important truth: as machine learning systems become
more sophisticated, our evaluation methods must evolve accordingly. The statistical tools
and frameworks presented in this thesis provide a foundation for this evolution. Still, much
work remains to be done to ensure that our evaluation methods keep pace with advances
in machine learning technology.
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8
Appendices

A Implementation Details and additional Results for EFCIL
A.1 Datasets

We select thirteen datasets containing 100 classes and three datasets containing 1000 classes

as follows. The list of datasets is summarized in Table 8.1. The datasets IMN1001 and

IMN1002 are obtained by randomly sampling 100 classes from ImageNet-21k [Deng et al., 2009]

which are not present in ILSVRC [Russakovsky et al., 2015]. Flora is a thematic subset of

ImageNet obtained by sampling 100 classes under the concept “ flora” without intersection with

ILSVRC. We also used 100-classes subsets of WikiArt [Saleh and Elgammal, 2015] (Art100),

Casia-align [Yi et al., 2014] (Casia100), Food101 [Bossard et al., 2014] (Food100), FGVC-

Aircraft [Maji et al., 2013] (Air100), MTSD [Madani and Yusof, 2016] (MTSD100), Google

Landmarks v2 [Weyand et al., 2020b] (Land100), Logo2K [Wang et al., 2020a] (Logo100)

and Quickdraw [Ha and Eck, 2017] (Qdraw100). We build two fine-grained subsets from

iNaturalist [Van Horn et al., 2018] (2018 version) by selecting (i) amphibia species (Amph100)

and (ii) fungi species (Fungi100) which do not intersect with the ILSVRC dataset. Finally,

we also use three 1000-classes subsets of Casia-align (Casia1k), Google Landmarks v1 [Noh

et al., 2017] (Land1k), and iNaturalist (iNat1k), respectively.

A.2 Comparing performance in multiple scenarios

Factors influencing the average incremental accuracy Let us recall the overall pairwise

comparisons from Figure 4.4 and Figure 4.5. We explore the effects of other variables by splitting

the data with respect to a studied variable and report the regression results separately. Figure 8.1

presents the results for each target dataset. Figure 8.2 presents the results for each incremental

algorithm. Figure 8.3 presents the results depending on the number of classes in the initial state.
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Figure 8.1: Pairwise accuracy gain per dataset. Significant values in bold (black or white font).
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Figure 8.2: Pairwise accuracy gain per EFCIL algorithm. Significant values in bold (black or white
font).
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Figure 8.3: Pairwise accuracy gain per proportion of classes in the initial state. Significant values in
bold (black or white font).
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Name Source ntrain ntest Topic
IMN1001 ImageNet-21k [Deng et al., 2009] 340 60 Random 100 classes
IMN1002 ImageNet-21k [Deng et al., 2009] 340 60 Random 100 classes
Flora ImageNet-21k [Deng et al., 2009] 340 60 Flora species
Art100 WikiArt [Saleh and Elgammal, 2015] 150 25 Art works (paintings)
Casia100 Casia-align [Yi et al., 2014] 250 50 Faces
Food100 Food101 [Bossard et al., 2014] 750 250 Food
Air100 FGVC-Aircraft [Maji et al., 2013] 80 20 Aircraft
MTSD100 MTSD [Madani and Yusof, 2016] 100 20 Traffic Signs
Land100 Google Landmarks v2 [Weyand et al., 2020b] 300 50 Landmarks
Logo100 Logo2K [Wang et al., 2020a] 80 15 Logos
Qdraw100 Quickdraw [Ha and Eck, 2017] 500 100 Sketches
Amph100 iNaturalist [Van Horn et al., 2018] 300 10 Amphibia species
Fungi100 iNaturalist [Van Horn et al., 2018] 300 10 Fungi species
Casia1k Casia-align [Yi et al., 2014] 60 28 Faces
Land1k Google Landmarks v1 [Noh et al., 2017] 374 20 Landmarks
iNat1k iNaturalist [Van Horn et al., 2018] 300 10 Natural species

Table 8.1: Datasets used in the experiments of Chapter 4.

B Implementation Details and Additional Results for Face
Recognition

B.1 Parameters for training and generation
For training the face classifier, we use the Adaface training pipeline Kim et al. [2022]. We

apply the same augmentations, crop, and low-resolution augmentations, for all training sets,
with an exception on DigiFace , where we also use the augmentation of the authors to reach
optimal performances. We perform the training on 4 GPUs with a batch size of 256 (i.e. 64
per GPU), the optimizer is the standard SGD with a learning rate of 0.1 and a momentum of
0.9. We use as a scheduler a multi-step learning rate decay whose milestones are the epochs
12,20,24 and the decay coefficient is 0.1. The training loss is that of Adaface Kim et al. [2022].
The margin parameter m is set to 0.4, and the control concentration constant h to 0.333 as
recommended by Kim et al. [2022]. On each training set, the training lasts 60 epochs.

For generating the DCFACE set and its variants, we use the generation pipeline of Kim et al.
[2023]. We impose the Xid image and the Xsty to be of the same demographic group as we found
that mismatching is likely to induce non-convergence of the resnet50 model when training on
the resulting dataset (in particular when mismatching in gender). Randomly sampling the style
image within the CASIA dataset thus results in a non-decreasing loss of the ResNet network.
Within the code of Kim et al. [2023], there is a sampling strategy we haven’t tested: combining
DDPM images with the closer CASIA faces. This approach was and still is, unfortunately,
non-usable due to incomplete critical files 1 Moreover, this strategy is not mentioned in the
original paper and, since it combines similar CASIA and DDPM faces in a resnet100 latent
space, it seems to be in contradiction with what is stated within the ID Image Sampling
subsection of Kim et al. [2023]. We thus chose to ignore this strategy, our study being primarily
an analysis of fairness and improvement research in this regard.

For all methods, similarly to what the original paper did, we introduce variability within the
considered DDPM Xid pictures by using a similar Feval model as in Kim et al. [2023]. However,

1The provided center_ir_101_adaface_webface4m_faces_webface _112x112.pth file doesn’t have a required
"similarity_df" field. Also, the dcface_3x3.ckpt file doesn’t seem to store the following property: recogni-
tion_model.center.weight.data
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one should be aware that the Cosine Similarity Threshold might vary depending on the training
of the Feval network. We used the network trained on Zhu et al. [2021c] provided by the Adaface
Github repository and found 0.6 as an effective threshold to filter similar images. We also get
rid of faces wearing glasses with the following solution Birškus [2024].

B.2 Statistical Analysis on FAVCI2D
We present here the results of our statistical analysis on FAVCI2D . Be aware that while

the metadata of this dataset contains gender information, it doesn’t provide ethnicity. We infer
it using FairFace. We consider the prediction of FairFace robust enough to compute macro
metrics such as the Diversity metric of the main paper however for a finer study such as ours,
it might introduce some uncertainty due to model prediction error (Table 8.2). With that in
mind, we still get consistent results for the effects of demographic attributes on the models
(Figure 8.4). Our approach shows even more insensitiveness on FAVCI2D than BUPT, by
contrast to the results obtained on RFW. The increase of the BUPT-trained model’s sensitivity
with regard to the inferred labels on FAVCI2D might come from the dataset balancing done
on the same labeling system as RFW. Results obtained regarding the TMR (Figure 8.5) and
FMR are coherent with the idea that models tend to predict positive outcomes for certain
protected ethnical sub-groups. They thus have a high recall for these groups (high TMR and
high FMR). With the gender provided by the metadata, we can thus confirm the impact of
the balancing on fairness relative to this attribute. While most of the models are sensitive to
gender, the model trained on DCFaceall DCFace has close to no sensitivity for this attribute,
both being close to perfectly balanced concerning gender.

Figure 8.6 shows the result of ANOVA on the distances in the latent space of the FAVCI2D dataset,
both on the positive and negative pairs. The results are coherent with the ANOVA computed
on RFW. It furthermore highlights the sensitivity of some models’ latent space to gender, while
our balancing approach allows for more insensitivity about demographic attributes.

B.3 Statistical Analysis on BFW
To tackle the issue of the lack of metadata, in addition to BFW, other alternatives exist

such as BFW Robinson et al. [2023] and DemogPairs Hupont and Fernández [2019]. While
these datasets provide some ground-truth metadata, they are composed of significantly fewer
identities compared to datasets like FAVCI2D or RFW. This is a limitation of our analysis:
Having too few identities might bring instability within Anova or marginal effect studies due
to redundancy. We report the results obtained with BFW on as similar number of pairs as
RFW and FAVCI2D (24k), meaning every single identity appears in around 30 evaluated pairs.
The impact of the number of identities within benchmarking should be studied in future works
as this might affect the obtained analysis of performance and fairness.

Figure 8.9 shows the ANOVA analysis performed on BFW. As before, on the nega-
tive image pairs, our conditional generation methods greatly reduces the variance explained
by the sensitive attributes.

Figures 8.8 and 8.7 present the marginal effects of the attributes, respectively, on TMR
and FMR. As we see, the fairness gain mostly comes from a fairer FMR between ethnicities:
the FMR of the Asian and Black subgroups are 8 and 12 points higher than for the White
subgroup in the original DCFace , and become non-significant with DCFaceall . For the
TMR, however, just as for RFW, becomes slightly more unfair between ethnicities. Still, as
shown in Table 2 of the paper, on all fairness metrics except EOR, our method outperforms
the other synthetic data approaches on BFW.
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ethnicity Black White East-Asian Indian Latino-Hispanic Middle-Eastern South-Asian

Prediction accuracy 0.863 0.777 0.784 0.724 0.581 0.631 0.641

Table 8.2: FairFace model accuracy when inferring on the Fairface validation set. Available Metadata
only provides the race7 variable ground truth while we are considering the race variable (whose values
are White, Black, Asian, and Indian). The robustness of the model for this latter should be thus greater.
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Figure 8.5: Marginal effect on TMR (lower in absolute is better) for each method compared to the
unprotected group. Analysis done on FAVCI2D
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Figure 8.6: ANOVA results on FAVCI2D : total height corresponds to R2, the explained variance by
the variables. Each bar is decomposed into multiple η2, i.e. the individual contributions to the variance
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Figure 8.7: Marginal effect on FMR (lower is better) for each method compared to the unprotected
group. Analysis done on BFW
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Figure 8.8: Marginal effect on TMR (lower in absolute is better) for each method compared to the
unprotected group. Analysis done on BFW
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Figure 8.9: ANOVA results on BFW: total height corresponds to R2, the explained variance by the
variables. Each bar is decomposed into multiple η2, i.e. the individual contributions to the variance
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Figure 8.10: Marginal effects on TMR (lower in absolute is better) for each method compared to the
unprotected group. Analysis done on RFW
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B.4 Datasets Images examples

(a) Examples of images within our proposed
DCFaceall approach. We notice a greater diversity
of images.

(b) Examples of images generated with the original
DCFace Kim et al. [2023] pipeline

(c) Examples of images generated with the SynFace
pipeline Qiu et al. [2021a]

(d) Examples of images within the DigiFace dataset
Bae et al. [2023]
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(e) Examples of images within the CASIA dataset Yi
et al. [2014]

(f) Examples of images within the BUPT dataset Wang
et al. [2021]

C Implementation Details and additional Results for Recom-
mender Systems

C.1 Theoretical Elements
Orthogonality of the measures

Since log(pi|i) = 0, effectively, the pairs (i, i) do not intervene in the definition of SC(u).
In fact, if we denote by PS(u) the Mean Pair Surprise by replacing pi|j by pi,j in the
definition of CS(u), then we have:

CS(u) = PS(u)− S(u) (8.1)

Effectively, we remove the effect of the surprise at the first order from the surprise of the pairs.

Proof of Proposition 1
Let pui = P(xui = 1||u| > 0). First, consider that:

E
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log(p∗
i )E
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log(p∗
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since xui is a Bernoulli variable. Then for any user u with |u| > 0:

E
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where the second line is a consequence of the law of iterated expectations. Then, since
x 7→ 1/x is convex on R∗

+, by Jensen inequality:

E
π≥1

u
[S(u)] ≥ −

m∑
i

log(p∗
i )pui

1
E

π≥1
u

[|u|]

≥ E
π≥1

u
[S̃(u)] m

E
π≥1

u
[|u|]

which directly gives the left-hand side of Proposition 1. The right-hand-side follows from the
fact that |u| =

∑
i xui. So, for any random events ω0, ω1 that only differ in xui(ω0) = 0 and

xui(ω1) = 1, we have 1
|u|(ω0) ≥ 1

|u|(ω1). Taking the expected value from both sides gives:
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For CS(u), the convexity of x 7→ 1/x2 on R∗
+ and the fact that E

π≥1
u

î
1

|u|2 |xui = 1
ó
≤ E

π≥1
u

î
1

|u|2
ó

proves the bounds.

Discussion about the Poisson model for |u|
The Poison distribution, also known as "the law of rare events", is an adapted model

to count the frequency of events that occur rarely. In particular, in recommendation data,
users consume only a small fraction of the possible items, giving a motivation for Poisson
modelization. Moreover, if we choose a finer description of the user’s choices, for example,
assigning known oracle probability pui of observing the item i in the user’s u set, then πu

becomes, by definition, a multivariate Bernoulli distribution. Therefore, |u| =
∑

xui is, by
definition, a Poisson-Binomial variable, which is well-approximated by a Poisson distribution
of parameter λ =

∑
pui, in virtue of Le Cam’s theorem Cam [1960].

Proof of Proposition 2
If X is a poison variable of parameter λ > 0, then :

∀k ∈ N,P[X = k] = e−λλk

k!

which yields:

∀k ∈ N,P[X = k|X > 0] = P[X > 0|X = k]P[X = k]
1− P[X = 0]

= 1(k > 0)
1− e−λ

P[X = k]

= 1(k > 0) e−λλk

(1− e−λ)k!

Then, we can consider the fact that we have:

∀k ∈ N∗,
1
k
≤ 2

k + 1
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Taking the expectancy conditioned on X > 0 (i.e. X ≥ 1 ) gives us:
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To get a similar bound for CS(u), i.e bounding EX≥1[X2]EX≥1
[ 1

X2

]
we first find a constant K

such that :

∀k ∈ N∗,
1
k2 ≤

K

(k + 1)(k + 2)

0 ≤ (1− 1
K

)k2 − 3
K

k − 2
K

The biggest root of the RHS is given by 3+
√

1+8K
2K−2 , which is smaller than 1 for K ≥ 6. The

rest of the proof follows the same calculations as for S(u).

C.2 Empirical Bounds
We empirically estimate an upper bound for EX≥1[X]EX≥1

[ 1
X

]
and EX≥1[X2]EX≥1

[ 1
X2

]
for a Poisson variable by varying λ. The results are presented in Figures 8.13 and 8.14.
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C.3 Data Processing and Training
Data Processing

We found that in most implementations of recommender data pre-processing, the data was
filtered by first removing the items that were consumed by less than k users, then removing the
users that consumed less than k items. This is a problem since, with this ordering, the remaining
items could be consumed less than k times. Thus, the k-core is extracted using the algorithm 1.

Algorithm 1 k-core extraction
Input: A DataFrame df in format [’user’; ’item’]
Parameters: An integer k
Output: A k-core for df

1: Let n1 = df.groupby(’user’).len().min()
2: Let n2 = df.groupby(’item’).len().min()
3: while max(n1, n2) > k do
4: df ← df.groupby(’user’).filter(len(x) ≥ k )
5: df ← df.groupby(’item’).filter(len(x) ≥ k )
6: n1 ← df.groupby(’user’).len().min()
7: n2 ← df.groupby(’item’).len().min()
8: end while
9: return df

Optimal Hyperparameters
The optimal hyperparameters found by optuna on 50 runs for each combination of dataset

and algorithm, optimizing on the Recall@20 of the validation set, are presented in Table 8.3.

C.4 Additional Results
Experimental Properties of S(u) and CS(u)

We show a non zero relationship between S(u) or CS(u), and |u|, in Figure 8.15 and 8.16.
As we see, the relationship is much less clear than for S̃(u) or C̃S(u), which are almost perfectly
linear or quadratic. Graphs 8.17 and 8.18 show the standard deviation dependence of S(u) and
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Figure 8.15: S(u) and S̃(u) vs |u| on the Netflix Small dataset, along with the linear fit of S(u) on |u|

Figure 8.16: CS(u) and C̃S(u) vs |u| on the Netflix Small dataset, along with the linear fit of CS(u)
on |u|

CS(u) on |u|, where the deviation is the standard deviation of the surprises (and conditional
surprises) values used to compute the sums S(u) and CS(u). As |u| increases, the standard
deviation values stabilize, slightly increasing with with |u|. As we see, users with few items can
consume either very low-variance items or, on the contrary, have a very erratic behavior.

C.5 Impact on Performance
All regression are run in R, using the glm function, with a binomial law with logit

link. The simex package is used to incorporate the variance of the variables, and margins
to get the marginal effects.

The choice of the regression to make, in particular which dependencies between variables
(such as S(u) × CS(u)), was motivated primarily by the model with the lowest AIC score.
Consistently, the model with all the product variables met our criterion.

We also found an important aspect in modeling these logit regressions was to put a threshold
on the variable |u|. In accordance with what we stated in the main chapter for the impact of our
measures on performances, this can be justified by the fact that up until a certain point, adding
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Figure 8.17: std(S(u))vs |u| on the Netflix Small dataset, along with the linear fit

Figure 8.18: std(CS(u)) vs |u| on the Netflix Small dataset, along with the linear fit.

more items to the item set of a user can only help us to cover all their tastes. Once all the interests
of a user are well represented in their item set, then we expect |u| to have less importance. Indeed,
thresholding |u| led to models with a lower AIC but also removed the heteroscedasticity of the
residuals, i.e., the dependence between the variance of the errors and the predictor variables.

Coherence Reproduction

As mentioned in the Coherence Reproduction section of the main chapter, Figure 8.19 shows
the correlation between the information measures of the user u, and the information measures
evaluated on their predicted set û. As we see, most algorithms (except MostPop), generate
predictions that are more correlated with the Mean Surprise level of the known set of the user.
One notable exception is ItemKNN, which quite poorly reproduces the Mean Surprise level of
the movie datasets. This can be linked to the overall poor performance of ItemKNN on these
datasets, with scores of recall way smaller than those of MostPop. For the Conditional Surprise,
we find that Deep Learning methods, such as LightGCN and RecVAE, have a stronger correlation
between the input and the predictions than more traditional methods (especially for datasets
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Figure 8.19: Correlation between S(u) and S(û); and CS(u) and CS(û), where û is the predicted item
set for u.

with a lot of users). For these methods, the predictions are computed in a highly non-linear
fashion, which could enable more complex interaction modelization.
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Dataset UserKNN ItemKNN WMF LightGCN RecVAE EASE

ML 1M
k: 926

centered: 1
sim: cosine

k: 170
centered: 0
sim: cosine

b: 9.50e-01
batch_size: 16000

k: 518
lambda_u: 4.92e-03
lambda_v: 2.30e-04

batch_size: 16000
emb_size: 64
epochs: 1000

num_layers: 3

batch_size: 1024
hidden_dim: 919
latent_dim: 254
n_epochs: 100

lamb: 200

ML 10M
k: 705

centered: 1
sim: pearson

k: 594
centered: 1
sim: cosine

b: 9.07e-01
batch_size: 16000

k: 878
lambda_u: 3.54e-02
lambda_v: 5.54e-02

batch_size: 16000
emb_size: 64
epochs: 1000

num_layers: 3

batch_size: 1024
hidden_dim: 611
latent_dim: 541
n_epochs: 100

lamb: 147

Netflix S.
k: 930

centered: 1
sim: cosine

k: 610
centered: 1
sim: cosine

b: 9.52e-01
batch_size: 16000

k: 689
lambda_u: 3.91e-02
lambda_v: 4.08e-03

batch_size: 16000
emb_size: 64
epochs: 1000

num_layers: 3

batch_size: 1024
hidden_dim: 349
latent_dim: 696
n_epochs: 100

lamb: 787

Netflix NaN
k: 841

centered: 0
sim: cosine

b: 7.20e-01
batch_size: 16000

k: 705
lambda_u: 8.36e-03
lambda_v: 2.79e-04

batch_size: 16000
emb_size: 32
epochs: 200

num_layers: 1

batch_size: 1024
hidden_dim: 778
latent_dim: 164
n_epochs: 100

lamb: 298

Vis2Rec
k: 547

centered: 0
sim: pearson

k: 814
centered: 1
sim: cosine

b: 9.25e-01
batch_size: 16000

k: 702
lambda_u: 1.81e-02
lambda_v: 3.32e-03

batch_size: 16000
emb_size: 64
epochs: 1000

num_layers: 3

batch_size: 1024
hidden_dim: 589
latent_dim: 614
n_epochs: 100

lamb: 63

Tradesy
k: 9

centered: 0
sim: cosine

k: 773
centered: 1

sim: pearson

b: 9.2e-01
batch_size: 16000

k: 485
lambda_u: 1.02e-02
lambda_v: 1.02e-04

batch_size: 16000
emb_size: 64
epochs: 1000

num_layers: 3

batch_size: 1025
hidden_dim: 325
latent_dim: 464
n_epochs: 101

lamb: 86

A. Music
k: 25

centered: 0
sim: cosine

k: 568
centered: 1

sim: pearson

b: 7.76e-01
batch_size: 16000

k: 588
lambda_u: 4.96e-02
lambda_v: 1.65e-04

batch_size: 16000
emb_size: 64
epochs: 1000

num_layers: 3

batch_size: 1024
hidden_dim: 217
latent_dim: 336
n_epochs: 100

lamb: 31

A. Office
k: 53

centered: 1
sim: pearson

k: 837
centered: 1
sim: cosine

b: 3.91e-02
batch_size: 16000

k: 985
lambda_u: 8.93e-01
lambda_v: 4.51e-02

batch_size: 16000
emb_size: 64
epochs: 1000

num_layers: 3

batch_size: 1024
hidden_dim: 479
latent_dim: 585
n_epochs: 100

lamb: 49

A. Toys
k: 159

centered: 0
sim: pearson

k: 524
centered: 0
sim: cosine

b: 2.34e-02
batch_size: 16000

k: 1000
lambda_u: 1.15e-02
lambda_v: 2.06e-04

batch_size: 16000
emb_size: 64
epochs: 1000

num_layers: 3

batch_size: 1024
hidden_dim: 660
latent_dim: 492
n_epochs: 100

lamb: 35

Table 8.3: Optimal hyperparameters on each dataset with each algorithm, optimizing the Recall@20
in the leave-one-out setup.
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