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“Everything we hear is an opinion, not a fact. Everything we see is a perspec-
tive, not the truth.”

Marcus Aurellius





Abstract

The field of modern transportation is changing dramatically as vehicle communica-
tions continue to develop and evolve. The integration of advanced communication
technologies is reshaping the way vehicles interact with each other and with the
surrounding infrastructure. The dynamic interchange of real-time information
between vehicles and the transportation infrastructure characterizes this progres-
sion, which is categorized under the umbrella of Cooperative Intelligent Transport
Systems (C-ITS).

Actors of the C-ITS generate various amounts of data from communications
achieved through vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) com-
munications schemes. Useful information on various issues such as anomalies, fail-
ures, road profiles, etc., could be revealed from the analysis of these data. The
analysis, could be managed by operators and vehicles, and its output could be
very helpful for future decision making.

In this thesis, a data analysis work was done on two sorts of data sources. The
first is made up of PCAP files that were taken from a test car and provide vital
information on vehicle communication. The second source consists of information
collected via the CoopITS smartphone application which is an application that
simulates C-ITS, where a smartphone plays the role of a C-ITS station.

In our first contribution, we analyzed the PCAP data to confirm if any unusual
behaviors were observable in the data. The primary aim was a particularly sen-
sitive C-ITS failure,which is transmission failure of a road-side unit (RSU). End
users (vehicles) are responsible for detecting such failures, after which they notify
road operators, who then recover the problem.

In our second contribution, we utilized data extracted from the CoopITS appli-
cation. Our focus revolved around two particular recorded actions by the applica-
tion: the transmission of a CAM message and Traffic Light Management (TLM)
actions. We conducted a matching process between CAMs and TLM records,
utilizing the results to examine vehicle behavior at signalized intersections. This
analysis led to the observation and classification of four distinct patterns.
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In our third contribution, we examined data within CAMs sourced from sev-
eral participants utilizing the CoopITS application to establish road profiles. The
trajectories of individual vehicles undergo classification into diverse classes em-
ploying four distinct algorithms: K-means, Agglomerative Clustering, DBSCAN,
and BIRCH. At the end, the results of these clustering algorithm are then com-
pared.

Keywords: V2X, V2V, V2I, C-ITS, ETSI, Anomaly detection, Intelligent
Transportation Systems, RSU, GLOSA.





Résumé court

Le domaine des transports modernes subit une transformation significative à mesure
que les communications entre véhicules continuent de se développer. L’incorporation
de technologies de communication avancées transforme la manière dont les véhicules
interagissent entre eux et avec l’infrastructure environnante. Cette avancée est car-
actérisée par l’échange dynamique d’informations en temps réel entre les véhicules
et l’infrastructure de transport, laquelle est catégorisée sous le terme de systèmes
de transport intelligents coopératifs (C-ITS).

Les acteurs du C-ITS génèrent diverses quantités de données par le biais
des communications effectuées dans le cadre des systèmes de communication de
véhicule à véhicule (V2V) et de véhicule à infrastructure (V2I). L’examen de
ces données peut fournir des informations utiles sur divers sujets, notamment
les anomalies, les défaillances, les profils routiers, etc. L’analyse peut être gérée
par les opérateurs et les véhicules, et les résultats peuvent être très utiles pour
prendre des décisions futures.

Dans cette thèse, un travail d’analyse des données a été effectué sur deux types
de sources de données. La première est constituée de fichiers PCAP provenant
d’une voiture d’essai et fournissant des informations essentielles sur la commu-
nication du véhicule. La seconde source est constituée d’informations collectées
via l’application CoopITS pour smartphone, qui est une application simulant le
C-ITS, où un smartphone joue le rôle d’une station C-ITS.

Dans notre première contribution, nous avons analysé les données PCAP pour
déterminer si des comportements anormaux étaient observable dans les données.
L’objectif principal était de cibler une défaillance particulièrement critique du C-
ITS, à savoir la défaillance de transmission d’une unité de bord de route (RSU).
Les utilisateurs finaux (véhicules) sont chargés de détecter de telles défaillances,
après quoi ils informent les opérateurs routiers, qui prennent ensuite les mesures
nécessaires pour résoudre le problème.

Dans notre deuxième contribution, nous avons utilisé des données extraites
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de l’application CoopITS. Nous nous sommes concentrés sur deux actions parti-
culières enregistrées par l’application : la transmission d’un message CAM et les
actions du gestionnaire des feux de circulation (TLM). Nous avons mené un pro-
cessus de correspondance entre les messages CAM et les enregistrements TLM, en
utilisant les résultats pour examiner le comportement des véhicules aux intersec-
tions signalisées. Cette analyse a conduit à l’observation et à la classification de
quatre patterns distincts.

Dans notre troisième contribution, nous avons examiné les données des CAMs
provenant de plusieurs participants utilisant l’application CoopITS pour établir
des profils routiers. Les trajectoires des véhicules individuels sont classées en
diverses catégories à l’aide de quatre algorithmes distincts : K-means, Agglomer-
ative Clustering, DBSCAN, et BIRCH. À la fin, les résultats de ces algorithmes
de clustering sont comparés.

Mots clés: V2X, V2V, V2I, C-ITS, ETSI, Anomaly detection, Intelligent
Transportation Systems, RSU, GLOSA.
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Synthèse en français

0.1 Introduction

Les villes intelligentes représentent une réponse révolutionnaire aux défis urbains,

intégrant les technologies de l’information et de la communication (TIC) dans tous

les aspects de l’infrastructure et des services. Axées sur des problèmes écologiques,

sociales et économiques, elles s’efforcent de créer des écosystèmes urbains durables,

connectés et résilients, améliorant ainsi la gestion des ressources et la qualité de

vie des citoyens.

Les technologies de communication, allant des réseaux sans fil à la 5G et à

l’IoT, font partie intégrante de la révolution des villes intelligentes, remodelant

l’urbanisation en fournissant des données en temps réel pour les systèmes intel-

ligents. Ces innovations améliorent les fonctions urbaines, telles que la gestion

du trafic rendant les villes réactives aux besoins des habitants. Malgré le poten-

tiel, des défis tels que la protection de la vie privée, la cybersécurité et l’accès

équitable doivent être relevés avec soin.Diverses technologies de communication

sans fil, notamment le Wi-Fi, les réseaux cellulaires, Bluetooth, NFC, RFID, Zig-

bee, Z-Wave, la communication par satellite et le Li-Fi, jouent un rôle crucial dans

cette intégration.

Les communications entre véhicules, manifestées dans les technologies Vehicle-

to-Everything (V2X), transforment l’expérience de la route en permettant aux

véhicules de communiquer entre eux et avec l’infrastructure routière. Le V2X sert

de moteur à la mobilité intelligente, offrant des avantages en matière de sécurité,

d’efficacité du trafic, de réduction des émissions, d’atténuation des embouteillages

et de préparation aux véhicules autonomes. Ces systèmes sans fil, y compris

xxi
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les communications de véhicule à véhicule (V2V) et de véhicule à infrastructure

(V2I), créent un réseau sophistiqué pour l’échange d’informations en temps réel,

la prévention des collisions, l’optimisation du flux de trafic et la mise en place des

bases de la future conduite autonome.

0.1.1 Cooperative Intelligent Transport Systems

Les systèmes de transport intelligents coopératifs (C-ITS) représentent une avancée

transformatrice dans le domaine du transport, en favorisant la coopération entre

les véhicules, l’infrastructure routière, et le réseau routier dans son ensemble. En

tirant parti de la connectivité, les C-ITSs créent un écosystème dans lequel les

véhicules interagissent intelligemment pour améliorer la sécurité routière, opti-

miser le trafic, réduire les émissions et améliorer l’expérience de la conduite. Les

technologies clés, notamment la connectivité sans fil, les capteurs, le GPS et les

algorithmes de traitement des données, permettent aux véhicules de partager des

informations vitales sur l’état des routes et les incidents. Les C-ITS servent des

objectifs essentiels tels que l’amélioration de la sécurité routière, l’amélioration

de l’efficacité des transports, la gestion du trafic et la réduction de l’impact sur

l’environnement, en s’alignant sur les applications critiques qui nécessitent une

faible latence et une grande fiabilité de communication. L’accès à des informa-

tions en temps réel et à diverses sources d’information est crucial pour le bon

fonctionnement des C-ITS.

0.1.2 Application CoopITS

CRoads est l’un des projets d’initiative commune des États membres de l’Union

européenne qui vise à développer des solutions C-ITS innovantes. L’architecture de

CRoads est très riche et comprend à la fois des communications à longue et courte

portée. Dans le cadre du projet, l’application CoopITS a été développée, dans

laquelle un smartphone joue le rôle d’une station (un véhicule). Elle permet l’envoi

et la réception de messages C-ITS en utilisant le réseau cellulaire. L’application

a été lancée en janvier 2021 et a fonctionné principalement dans la région de la

Nouvelle-Aquitaine en France.
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L’application enregistre tous les messages C-ITS qui sont stockés, tels que les

CAM, DENM, SPATEM, MAPEM et IVIM, qui sont enregistrés dans leur état

brut codé en ASN.1 UPER, puis sont décodés et stockés dans une base de données.

0.1.3 GLOSA

Green Light Optimal Speed Advice (GLOSA) est un cas d’usage du C-ITS. Il

concerne les intersections équipées d’un feu de circulation et indique au conducteur

la phase en cours, le temps de la phase suivante ainsi qu’un avis de vitesse qui

permet au conducteur d’éviter de s’arrêter en cas de feu rouge. Il est basé sur deux

services C-ITS [1] qui sont le Traffic Light Management (TLM) et le Road and

Lane Topology (RLT). Le TLM envoie des informations de sécurité aux véhicules

se trouvant à proximité d’un carrefour, les informant de l’état en temps réel du

feu de circulation et de son état futur, ainsi que de la marge de temps entre les

deux.

0.2 Synthèse des chapitres

Le Chapitre 2 donne un aperçu de l‘état de l’art des travaux de recherches sur les

C-ITS. Il explore les travaux académiques importants qui ont grandement accéléré

le développement des C-ITS. Le chapitre se concentre ensuite sur les méthodes

d’apprentissage automatique, en particulier celles liées aux algorithmes de classi-

fication. Les travaux relatifs à la détection des anomalies dans les systèmes com-

plexes sont ensuite examinés, en mettant l’accent sur l’identification des anomalies

dans les RSU. Ensuite, les efforts consacrés au domaine de la prédiction du trafic

aux intersections sont présentés. Ensuite, le chapitre présente quelques travaux

concernant le profilage dans le cadre du C-ITS, en se concentrant sur les travaux

concernant les profils des conducteurs. L’objectif de ce chapitre est d’offrir une

vue d’ensemble de l’état de l’art influençant la thèse et la recherche sur les C-ITS

et les sujets connexes.

Dans le chapitre 3, la détection des défaillances des RSU opérationnels par

les utilisateurs finaux est étudiée. Cette problématique est critique et cruciale

pour les C-ITS. Nous avons montré que la maintenance des RSUs pouvait être
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réalisée de manière simple, sans investissement supplémentaire ni équipement. Les

véhicules recueillent les observations des RSU pendant leurs trajets et les analysent

à l’aide de notre mécanisme de détection des défaillances. Ce mécanisme compare

le comportement observé au comportement correct connu, et lorsqu’une anomalie

est détectée, les véhicules envoient des alertes aux opérateurs routiers afin de les

informer de l’existence d’une RSU suspecte. Les profils de comportement des RSU

sont également étudiés et une différence entre les zones urbaines et interurbaines

est établie et soigneusement examinée dans cette étude.

Nous avons utilisé des données constitué de fichiers PCAP provenant d’un

véhicule d’essai. Le véhicule a suivi plusieurs trajectoires en France, en Allemagne

et en Italie et est entré en contact avec un total de 23 RSU en ITS-G5. Nous avons

observé que, dans le cas d’une RSU qui fonctionne, il existe une corrélation inverse

acceptable entre la portée et l’intensité du signal de ses transmissions. Nous avons

également observé que, dans le contexte interurbain avec des communications en

visibilité directe, la distance de communications en entrée dans la couverture a

tendance à être plus grande que celle de la sortie pour une RSU fonctionnelle. Ces

deux propriétés ont été utilisées pour notre évaluation des RSU.

Chapitre 4 représente un travail effectué sur la base de données de l’application

smartphone CoopITS. Les profils routiers sont dérivés en observant et en analysant

les informations contenues dans les messages CAM envoyés par les différents util-

isateurs. Ensuite, quatre algorithmes de clustering sont appliquées aux trajectoires

des voitures individuelles. Un profil de route est défini par la vitesse du véhicule

en fonction du temps.

La première étape de notre processus consiste à utiliser les profils de route pour

suivre la vitesse de chaque véhicule sur un certain segment de route. Ensuite,

nous classons les trajectoires en utilisant des méthodes de clustering et en les

organisant en fonction de caractéristiques et de modèles communs. La méthode

de clustering améliore la compréhension de l’ensemble de l’analyse en facilitant

une compréhension plus approfondie des nombreux schèma de mouvement inclus

dans les données routières. Les résultats des algorithmes de clustering sont ensuite

comparés. Afin d’être proactifs, nous émettons des alertes lorsque nous détectons

des trajectoires anormales. Cela nous permet d’avertir rapidement les usagers et
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l’opérateur routier de toute anomalie potentielle dans le mouvement des véhicules.

Chapitre 5 concerne un travail effectué sur le service TLM dans le système

C-ITS. Les données utilisées appartiennent à la base de données contenant les logs

de l’application CoopITS. L’application conserve les messages du C-ITS et toutes

les actions (y compris TLM) qui y sont enregistrées. Dans notre cas, les messages

CAM ont été utilisés pour extraire les trajectoires des véhicules, les trajectoires

ont ensuite été analysées et découpées en segments de route, et un segment avec

des feux de circulation a été choisi pour l’étude. Nous avons ensuite observé

les variations de vitesse en fonction du temps et de la distance sur le segment,

selon l’état des feux de circulation. Nous avons classé les observations en quatres

catégories, la première étant un feu vert avec un trafic fluide, la deuxième étant

un feu vert avec un arrêt dû à une file d’attente, la troisième étant un arrêt dû à

un feu rouge et la dernière étant un feu rouge sans arrêt dû au respect de l’avis

de vitesse donné par le service GLOSA.

0.3 Conclusion

Cette thèse explore le domaine des C-ITS, en se concentrant dans l’exploration

de l’état de l’art sur les travaux sur la C-ITS, la détection des anomalies, les

algorithmes de clustering, les profils des conducteurs, le clustering des trajec-

toires et les méthodologies de prédiction du trafic. Elle utilise l’analyse de don-

nées pour analyser deux ensembles de données : Des fichiers PCAP provenant de

véhicules d’essai en France, en Allemagne et en Italie, et des données provenant de

l’application smart phone CoopITS en France (Nouvelle Aquitaine). Les travaux

de la thèse se concentrent sur la détection d’anomalies pour les unités de bord

de route (RSU), en définissant deux profils : les RSU en fonctionnement et les

RSU en panne.Le deuxième travail essaye de classifier différents trajets du même

chemin avec quatre algorithmes de clustering, et les compare. Le troisième tra-

vail explore les méthodologies de prédiction du trafic concernant les intersections

routières, révélant quatre modèles de conduite distincts.







Chapter 1

Introduction

1.1 Context

The emergence of the concept of smart cities means a revolution in today’s urban
environment, they provide an advanced technological solution to the challenges
that are brought by the increasing urbanization worldwide. These technologically
future oriented cities go beyond the actual limits of urban planning by using
Information and Communication Technologies (ICT) into every facet of urban
infrastructure and services.

At the crossroad of ecological, social, and economic requirements, the smart
cities’ goal is to create more resilient, connected, and sustainable urban environ-
ments. In this process of transformation of cities, the judicious use of sensors,
networks, and big data facilitates the way for the upcoming of more efficient
resource management, a significant improvement in citizens’ quality of life, and
optimized municipal services.

This technological revolution centers around a particular technological ad-
vancement which is connectivity. Ubiquitous connectivity enables data exchange
between the various urban actors such as citizens, vehicles, infrastructure, and
institutions. From intelligent transport systems to waste management, to energy
saving, and improving utilities, data is fueling more informed and thus more intel-
ligent decision making processes and greater cooperation (coordination) between
the various urban actors.

Furthermore, smart cities prioritize also environmental sustainability. They
seek to reduce the ecological footprint. Advanced strategies such as smart en-
ergy management, efficient resource usage and the adoption of more renewable
and environmental friendly sources of energy, all contribute to the creation of

1
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environmentally friendly cities and environment.
In a futuristic scenario, and in terms of managing public affairs, the citizen

is involved at the heart of a smart city concept. Citizens would be involved
in the usage of participatory technologies (which encourage the participation of
actors) and digital platforms, which encourages the cooperation between residents
and local authorities, enabling a more efficient and transparent decision making
mechanisms and adaptation to changing need of the population.

With the emergence of automation, a decisive step into the evolution of smart
cities has been marked. It defines a new era where technology redefines the way
we design and live in our cities. That is because automation is gradually playing
the role of a catalyser in the development of our urban environment.

As technologies evolve, automation becomes an enabler for creating more re-
sponsive and smart cities. In our case Automated and connected cars are revolu-
tionizing the road transportation niche. Other automation centered technologies
contribute to proactive management of city resources, more efficient services, and
reduced environmental impact.

1.1.1 Communication Technologies

As mentioned before, communication technologies are playing a crucial role in the
development of smart cities. From WiFi adhoc networks to 5G and from connected
sensors to the internet of things (IoT), these technologies are reshaping the way
our cities work and evolve. Future cities draw their current dynamism from these
technologies.

Smart sensors and the IoT [2] are integrating into the urban environment,
providing a multitude of real-time data that feeds intelligent systems for traffic
management, adaptive street lighting, waste collection and many other services,
creating a city responsive to the changing needs of its inhabitants.

However, the integration of these technologies is not without its challenges.
Issues of privacy, cybersecurity, and equitable access to digital services need to be
carefully addressed if smart cities are to be truly inclusive and beneficial to all.

There are a variety of wireless communication technologies that exist. Below
is a summary of some of the most commonly used:

1. Wi-Fi: For "Wireless Fidelity", and based on the IEEE 802.11 standard
(802.11a, 802.11g, 802.11n, 802.11ac, and more), Wi-Fi enables wireless con-
nection to the Internet and other local networks. It is widely used in homes,
businesses, public spaces and mobile devices (LAN networks).
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2. Cellular Networks (3G, 4G, 5G): Cellular networks, based on 3GPP
standards, such as 3G, 4G and 5G, enable long-distance wireless commu-
nications. They are essential for mobile communications and high-speed
Internet access.

3. Bluetooth: This short range wireless technology is used for data transfer
between devices such as smartphones, headphones, speakers and electronic
peripherals.

4. NFC (Near Field Communication): NFC enables the exchange of in-
formation between compatible devices over very short distances. It is often
used for contactless transactions, information sharing between smartphones,
etc.

5. RFID (Radio-Frequency Identification): RFID systems use electronic
tags to store and retrieve data remotely. They are used in inventory man-
agement, parcel tracking, access cards, etc.

6. Zigbee : is a wireless communication protocol developed to enable low-cost,
low power machine-to-machine (M2M) communications. It is usually used
in home automation by enabling sensor networks and IoT.

7. Z-Wave: Similar to Zigbee, Z-Wave is a wireless communication protocol
designed for home automation applications.

8. Satellite Communication: Satellite communication technologies enable
the transmission of data over long distances, notably for global communica-
tions, satellite navigation, and satellite TV services.

9. Li-Fi (Light Fidelity): Li-Fi uses visible light to transmit high-speed data.

1.1.2 Vehicular applications

Vehicular communications are becoming an essential aspect of our road experi-
ence. The communications are grouped under the acronym Vehicle-to-Everything
(V2X), and are setting novel ways where the road actors interact with each other.
Actors such as vehicles, the infrastructure and even vulnerable users such as pedes-
trians and cyclists. In this context, V2X applications are becoming a catalyst to
the evolution of our road experience. They bring significant benefits in terms of
safety, traffic efficiency, reduced emissions, reduced congestion, and preparation
for the coming of automated vehicles.
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Vehicular communications use a wide range of wireless connectivity technolo-
gies that enable road actors to share crucial information between them in real
time. This information is used for a variety of purposes as stated before, such as
to warn the actors of road events such as a coming danger, to coordinate vehicles
and vulnerable users movements through an intersection or simply to optimize
traffic flow.

The most recurrent and important V2X communications are the Vehicle-to-
Vehicle (V2V) [3], they enable vehicles to communicate directly with each other,
creating ways of instantaneous exchanges of information between them. This
would help prevent collisions, provide real-time alerts on driving conditions, form
a set of cooperation medium between the vehicles which would pave the way for
automated vehicles that are aware of their environment.

Figure 1.1: A General Scheme for Vehicle-to-Vehicle Communications.

Vehicle-to-Infrastructure (V2I)[3] communications extend this interconnection
to road infrastructures actors. Traffic lights, road signs and other infrastructure
elements become active participants in traffic management, creating an ecosystem
where coordination between vehicles and infrastructure promises smoother, safer
traffic.
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Figure 1.2: A General Scheme for Vehicle-to-Infrastructure Communications.

However, the impact of vehicular communications goes beyond simply improv-
ing the road experience. These technologies play an essential role in preparing for
the forthcoming of automated and connected vehicles, this is done by the medium
of cooperation and collaboration through data sharing between the road actors.

Connected vehicles:

Connected vehicles incorporate advanced communication technologies to es-
tablish a connection between the vehicle, road infrastructure and other vehicles.
As stated before, this connectivity is often referred to as V2X, encompassing V2V,
V2I, V2P (Vehicle-to-Pedestrian), and other communications.

Connected vehicles use wireless networks, such as 4G, 5G, or adhoc wifi connec-
tions to exchange data in real time. This enables vehicles to share information on
their states (position and velocity for example) road conditions, traffic incidents,
optimal routes, and much more.

automated vehicles:

Automated vehicles, often referred to as driverless cars, are cars equipped with
an automated driving system capable of functioning without human intervention
(adaptive cruise control for lower automation levels for example). These vehicles
use a variety of sensors, such as cameras, lidars, radars, and ultrasonic sensors to
perceive their environment in real-time. Combined with advanced processing, this
sensory data enables the vehicles to make complex navigation tasks.

Autonomy levels vary on a scale of 0 to 5, as defined by the Society of Auto-
motive Engineers (SAE). At level zero, the driver assumes all the driving while
at level five, the vehicle can fully autonomously drive in all conditions without
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human intervention.
Connected and Automated Vehicles:

Automated vehicles can benefit from connectivity to receive information from
their surrounding which enhances their perception of the environment. In turn,
connected vehicles can leverage autonomous capabilities to optimize driving, in-
cluding use cases such as automated parking, driving assistance, etc. The terms
are often used together as we usually speak of automated and connected vehicles.

1.1.3 Cooperative Intelligent Transport Systems

Cooperative Intelligent Transport Systems (C-ITS) are a revolutionary step in the
evolution of technologies (mainly ICT) applied to the transport sector. They are
designed to encourage the cooperation between road actors (hence the name). A
new age of connected and intelligent mobility is being created by the C-ITS.

Key technologies that are laying the foundation of C-ITS include wireless con-
nectivity, advanced sensors, global positioning systems (GPS), and intelligent data
processing algorithms. Thanks to these innovations, connected and automated ve-
hicles can share data about their environment and act according to the data they
receive.

The C-ITS offer vehicular communication mechanisms that enable the ex-
change of messages between road traffic actors, in particular vehicles and road
infrastructure. The final objectives of such a system can be summarized as fol-
lows:

- Improving road safety;
- Improving road transport efficiency;
- Traffic management and congestion reduction;
- Protecting the environment and reducing air pollution.
Given the requirements (Quality of Service) associated with C-ITS, these sys-

tems fall within the scope of mission-critical applications, i.e. those requiring very
low latency and high communications reliability. In addition, vehicles need real-
time information about their environment. The availability of information and
the multiplication of information sources are therefore essential to the operation
of a vehicular communication system.

Figure 1.3 represents the protocol stack of the C-ITS system. The application
layer consists of services destined for the user such as the UI. The C-ITS services
are implemented in the Facilities layer.
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Figure 1.3: The C-ITS protocol stack.

C-ITS are based on several services implemented in the Facilities layer. Each
service is linked to a specific message type. These "Day 1" services use V2I and/or
V2V communications. Some services use only messages transmitted from infras-
tructure to vehicles, while others use both communication schemes. In terms of
services that use both V2V and V2I, the most notable are Cooperative Awareness
(CA) and Decentralized Environmental Notifications (DEN):

CA [4] is a service that controls the transmission and reception of Cooperative
Awareness Messages (CAM). CAM is a periodic message sent by vehicles and
Road Side Units (RSU) at broadcast frequencies between 1 and 10 Hz. The
message is sent to all neighboring vehicles and RSUs and contains information
about the original sender, such as its position, speed and other information. The
aim is to create an awareness between vehicles of their surroundings, to encourage
cooperation between them.

DEN [5] is the service responsible for broadcasting Decentralized Environmen-
tal Notifications Messages (DENM). A DENM is a message indicating an event
on the road, such as an accident or roadworks. When an event on the road is
detected, the vehicle or RSU can transmit a DENM to the zone concerned. Unlike
the CAM, a vehicle receiving a DENM can re-transmit it to other nodes in the
network. A DENM message can remain in persistent broadcast mode for as long
as the event continues.

For V2I communications, in addition to CA and DEN, there are services whose
messages are generated solely by the infrastructure. Messages are transmitted from
the infrastructure to the vehicle and not vice versa. We cite the following services
[1]:

Traffic Light Maneuver (TLM) is a service that manages the generation,
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transmission and reception of Signal Phase and Timing Messages (SPATEM). Its
aim is to control user access to intersections and conflict zones. It sends safety
information to vehicles present at an intersection, informing them of the real-time
status of the traffic light and its future status, as well as the time margin between
the two. The SPATEM message is then sent periodically to all participants for as
long as they are in the intersection to drive or cross (pedestrian).

Road and Lane Topology (RLT) is the service responsible for generating,
transmitting and receiving MAP (topology) Extended Messages (MAPEM). A
MAPEM is a message containing a digital topology map of the geometry of an
area, describing lanes, crosswalks, conflict zones (intersections) and authorized
maneuvers. A lane is made up of several connected landmarks. At the connection
of these crossing points with a conflict zone, a set of authorized maneuvers is
modeled as a connection between the two points that connect the two lanes with
the zone. The MAPEM is transmitted at the same time as a SPATEM when the
vehicle approaches an intersection.

Infrastructure to Vehicle Information (IVI) is a road signage service
that uses the Infrastructure to Vehicle Information Messages (IVIM) to provide
information on physical or virtual road signs, such as contextual speeds or road
warnings, as well as the presence of roadworks.

1.1.4 Communication standards

As far as radio communications are concerned, the two most commonly used stan-
dards for vehicular communications are ITS-G5 (and its equivalent DSRC) and
Cellular Vehicle-to-Everything (C-V2X). The former is a standard based on Wi-Fi
technology and is mainly short-range. C-V2X, based on the cellular network, has
a greater communication range and possesses the same mechanisms as cellular
technologies, such as the scheduling of radio channel occupancies for transmission.
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Figure 1.4: Comparison between ITS-G5 and C-V2X.

C-V2X was standardized by 3GPP in Release 14 [6]. In this release, 4 types
of communication in broadcast mode were specified: a) V2V or vehicle-to-vehicle,
b) V2I or vehicle-to-infrastructure (RSU), c) V2N or vehicle-to-network, when
communication is with a server from the cellular network, and d) V2P or vehicle-
to-vulnerable user (pedestrian, cyclist).

Two modes of operation have been specified for these communication schemes:

• Direct V2V communications via the PC5 air interface, also known as Sidelink.
This is a type of direct communication between users, without passing
through the network.

• V2V communications via the Uu air interface, where each communication is
made with an initial link to the network (Uplink) and then another to the
destination (Downlink).

ITS-G5 [7], on the other hand, is based on Wi-Fi and operates in the 5.9GHz
band. It implements the IEEE 802.11p communication standard and its extension
802.11bd . It has a shorter communication range and supports only ad hoc links
between vehicles and also RSUs. The sender occupies the entire available channel
during transmissions.

As far as the protocol stack is concerned, ITS-G5 differs from other standards
with the presence of the GeoNet layer [8]. To relay a message in a dynamic, mobile
environment on an ITS-G5 network, geographic routing is used. The GeoNetwork-
ing protocol is an ETSI standard and enables packets to be relayed from the source
to a zone called the relevance zone. The aim of this protocol is to continuously
build a list of neighbors and then choose the most suitable neighbor to which the
message will be sent to reach the destination. The idea is therefore to make a
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sequence of hops that will eventually enable the message to be transmitted to the
final destination.

1.2 CoopITS application

CRoads is one of the joint initiative projects of European member states that
aim to developing innovative C-ITS solutions. The architecture of CRoads is very
rich and comprises of both long and short range communications. As part of the
project, the CoopITS application was developed, in which a smartphone plays the
role of a station (a vehicle). It allows the sending and reception of C-ITS messages
using the cellular network. The application was launched in January 2021 and it
functioned mainly in the region of "La Nouvelle-Aquitaine" in France.

The application records all C-ITS messages which get stored, such as CAMs,
DENMs, SPATEMs, MAPEMs, and IVIMs, which are recorded in their raw ASN.1
UPER encoded state, and then are decoded and stored into a data base. Figure
Fig.1.5 shows the architecture of the application, whereas Fig.1.6 shows some
screen shots of the app from the playstore official homepage.

Figure 1.5: The architecture of the CoopITS application.
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Figure 1.6: Screen shots of the CoopITS application, source : official playstore
home page.

1.3 Contributions

Within the field of the C-ITS, technological developments are constantly reshaping
the urban mobility landscape to provide connected and intelligent mobility. Each
piece in the following contributions explores a crucial area, leveraging data analysis
and profiling for furthering our knowledge on vehicular communications :

1. Road-Side Unit Anomaly Detection : is a work that concentrates on RSUs,
The research explores RSU profiles, looking particularly at communication
range and signal strength. We find characteristic profiles linked to failing
RSUs, providing a foundation for anomaly detection. A key innovation lies
in the proposed mechanism for detecting RSU failures, where end users or
vehicles play an active role. These vehicles can communicate the RSU failure
to approaching vehicles and the infrastructure by sending alarm messages in
the event of a malfunction.
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2. Impact of Speed Limitation on Urban Road Traffic : is a paper in which we
examine the use case of Green Light Optimal Speed Advisory (GLOSA) in
the context of the C-ITS. To establish a correlation between traffic lights and
the state of the relevant vehicles (velocity), the study entails a matching pro-
cess between GLOSA data, specifically TLM records, and CAM messages.
By means of this analysis, the study pinpoints and groups four unique driv-
ing patterns.

3. Towards Road Profiling with Cooperative Intelligent Transport : Is a work
that involves the segmentation of a single trajectory that is traversed mul-
tiple times, either by the same or different drivers. Each segment is defined
as the portion of the road situated between two road crossings. A set of 601
segmented trajectories was produced as a result of the study. Following seg-
mentation, these trajectories have been processed by a number of clustering
algorithms in order to compare performance and results and identify road
profiles.

In addition to the 3 previous papers, during the process of this thesis, another
paper was published alongside a book chapter, which are respectively:

1- Leo Mendiboure, Mohamed Lamine Benzagouta, Dominique Gruyer, Tid-
iane Sylla, Morayo Adedjouma and Abdelmename Hedhli. Operational De-
sign Domain for Automated Driving Systems: Taxonomy Definition and
Application. 2023 IEEE Intelligent Vehicles Symposium (IV), Anchorage,
AK, USA, 2023, pp. 1-6, doi: 10.1109/IV55152.2023.10186765.

2- Mohamed Benzagouta, Ramzi Boutahala, Secil Ercan, Sassi Maaloul, Has-
naâ Aniss, Léo Mendiboure, Marwane Ayaida and Hacène Fouchal. Towards
an Optimization of Data Transmission in Cooperative Intelligent Transport
Systems. Cooperative Intelligent Transport Systems: Control and Manage-
ment Wiley 2024.

The rests of chapters 3, 4, 5, and 6 are covered by the following articles
(which are the same in the contributions subsection) :

1- Benzagouta, M.-L.; Aniss, H.; Fouchal, H.; El Faouzi, N.-E. Road-Side
Unit Anomaly Detection. Vehicles 2023, 5, 1467-1481. https://doi.org/10.3390/vehicles5040080.
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2- Benzagouta, Mohamed Lamine ; Aniss, Hasnaa ; Fouchal, Hacène ; El
Faouzi, Nour-Eddin. (2023). Towards Road Profiling with Cooperative In-
telligent Transport Systems.

3- Benzagouta, M. L., Aniss, H., Fouchal, H., ; El-Faouzi, N. E. (2023,
September). Impact of Speed Limitation on Urban Road Traffic. In Inter-
national Conference on Innovations for Community Services (pp. 89-102).
Cham: Springer Nature Switzerland.

1.4 Outline

The thesis content is organized as follows, Chapter 2 synthesizes some works re-
lated to topics we used in our contributions, topics such as C-ITS related works,
clustering algorithms, anomaly detection in complex systems, traffic prediction on
intersections and profiling over C-ITS.

Chapter 3 focuses on work carried out in the analysis of pcap data. The pcap
data were collected in a naturalistic environment using a test vehicle and several
RSUs encountered on the road. The analysis revealed a correlation between signal
strength from the RSUs and communication range, mainly an inverse relationship.
Fault detection is also based on another observation, namely that communication
range is higher when entering an RSU’s coverage area than when leaving it. These
observations were used to determine RSU failures, with failure detection to be
carried out by the vehicles themselves, which should transmit an alarm message
to the road operator concerning the failure.

Chapter 4 deals with work carried out on the CoopITS smartphone applica-
tion database. The data contained in the CAM messages of various participants
are observed and analyzed in order to extract road profiles. The trajectories of
individual vehicles are then grouped together using the K-Means algorithm and
three other clustering algorithms. Each road profile is characterized by its speed
profile and its temporal profile (the day and time of the trajectory).

Chapter 5 covers a work done on the TLM service in the C-ITS system. In our
case, the CAM messages were used to extract vehicle trajectories, the trajectories
were then analyzed and cut into road segments, and a segment with traffic lights
was chosen for the study. We then observed speed variations as a function of time
and distance on the segments according to traffic light status. We classified the
observations into several categories.

Last, In Chapter 6 is the conclusion of the thesis.





Chapter 2

State of the art

2.1 Introduction

An overview of the present state of the art on C-ITS research is given in this
chapter. It explores important academic works that have greatly accelerated the
development of C-ITS. The chapter then shifts its focus to machine learning meth-
ods, particularly those related to classification algorithms. Then, works related
to complex system anomaly detection are discussed, emphasizing the identifica-
tion of anomalies in RSUs. Next, efforts that are devoted to the field of traffic
prediction at intersections are presented. Next, the chapter presents some works
concerning profiling within the C-ITS framework, emphasising on works concern-
ing driver profiles. The goal of this chapter is to offer a comprehensive overview of
the state-of-the-art developments influencing C-ITS research and related topics.

This chapter takes important parts of the following articles:
1- Benzagouta, M.-L.; Aniss, H.; Fouchal, H.; El Faouzi, N.-E. Road-Side Unit

Anomaly Detection. Vehicles 2023, 5, 1467-1481. https://doi.org/10.3390/vehicles5040080.
2- Benzagouta, Mohamed Lamine ; Aniss, Hasnaa ; Fouchal, Hacène ; El

Faouzi, Nour-Eddin. (2023). Towards Road Profiling with Cooperative Intelligent
Transport Systems.

3- Benzagouta, M. L., Aniss, H., Fouchal, H., El-Faouzi, N. E. (2023, Septem-
ber). Impact of Speed Limitation on Urban Road Traffic. In International Con-
ference on Innovations for Community Services (pp. 89-102). Cham: Springer
Nature Switzerland.
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2.2 Cooperative Intelligent Transport Systems

C-ITS is a new paradigm in modern transportation, a paradigm change made
possible by the incorporation of modern ICT. These systems make use of contem-
porary communication technologies to completely re-imagine the present mobility
scene while also improving transportation’s sustainability, safety, and efficiency.
This review of the state-of-the-art looks at significant achievements made in the
C-ITS field. This section attempts to give a comprehensive perspective of the
critical role that C-ITS will play in transforming transportation in the future by
traveling through significant works.

With an emphasis on Service-Oriented Architecture (SOA), Grid Computing,
and Cloud Computing, the paper [9] undertakes a survey that particularly investi-
gates the application of distributed architectures in Intelligent Transport Systems
(ITS). The authors classify the most important and basic applications in the ITS
domain and provide a reference architecture for distributed ITS. The article [10]
discusses integration challenges that are essential for enabling an intelligent trans-
portation system to address problems facing the transportation industry, such as
rising fuel prices, increased CO2 emissions, increasing traffic jams, and improved
road safety. The writers draw attention to relevant new technologies that can
improve ITS. Connected vehicles are presented as a way to share relevant data by
utilizing wireless technologies for V2V and V2I communications.

WITS, A system for gathering and exchanging transportation-related data is
presented in [11] using Wireless Sensor Networks (WSNs). Both software and
hardware WSN module design and prototyping are covered. WSN technology is
integrated into the ITS to improve its efficiency. Its advantages include wireless
connectivity, low energy consumption, and extensive road coverage. CarTel is a
mobile distributed sensor computing system developed by Hull et al in [12]. It
offers software solutions for the collection, processing, delivery, and visualization
of data obtained from sensors situated on mobile devices. The system facilitates
the transfer of sensor data to a centralized portal for further analysis and inter-
pretation.

The system requirements for setting up an intelligent traffic management data
center are examined in [13]. It provides a design methodology based on SOA, ex-
plains the implementation strategy in detail, and makes a case for the SOA frame-
work. Using the Beijing Traffic Data Center as an example, it highlights how SOA
is used in its implementation. The shared characteristics of SOA, such as its fine-
grainedness, platform independence, distributed architecture, and service-based
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applications, support the choice. The goal of [14] is to investigate, from several
angles, how 5G will affect the ITS. It starts by giving a summary of the techno-
logical background and financial advantages of 5G, focusing on how it will affect
important vertical industries within smart cities, such as manufacturing, energy,
healthcare, entertainment, automotive, and public transportation. According to
the paper, 5G has the potential to improve automated transportation systems’
safety and efficiency over current networks, which could lead to an increase in city
intelligence.

The article [15] provides an overview of wireless technologies and discusses po-
tential challenges to V2X connectivity, with a focus on self-driving and connected
cars. These technologies mark the advent of robots that directly impact the daily
lives of millions of people. It explores the role of Software Defined Networking
(SDN) in Heterogeneous Networks and goes into detail about the 5G architecture
built with SDN. According to the paper [16], there is great potential for developing
V2X communication technologies, particularly V2I. The goal is to find out how
V2I technology can improve commuters’ travel times and solve typical issues. The
suggested method entails informing oncoming cars about the traffic light cycle via
roadside infrastructure, such as traffic light controllers at intersections. Vehicles
cooperate to decide on the best speeds and course of action based on this data
in order to reduce delays and prevent needless stops when crossing intersections.
The evaluation’s findings show that commuters who use this strategy experience
a notable decrease in their average travel time.

Using edge infrastructures, Gupta et al. [17] presented a safe and reliable
method for V2V and V2I communication. Instead of using direct peer-to-peer
communication, this approach uses trusted cloudlets to authorize, examine, and
verify the integrity, anonymity, and authenticity of messages exchanged within the
system. Moving vehicles or roadside equipment dynamically connects to neigh-
boring cloudlets so that security controls can be put in place to verify and filter
communications, stop fraud, and stop rogue vehicles from interacting with other
vehicles.

The C-ITS infrastructure on the Budapest Ring Road (expressway M0) was
successfully modeled by the authors in [18], and they also simulated V2X messag-
ing for Day 1 and Day 2 cooperative services. Real-world traffic data measure-
ments were processed through a comprehensive implementation of the complete
V2X communication chain, including facilities, applications, and services, in order
to incorporate them into the simulations. A traffic model was developed in [19] to
evaluate the possible capacity increase on the Italian A22 highway in comparison
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to current values. Different percentages of automated and manual vehicles were
taken into account by the model. Theoretical findings imply that automated cars
are capable of safely navigating the highway. Furthermore, based on experimen-
tal results using traffic data from four highway sections and Drake’s flow model,
the expected increase in lane capacity is up to 2.5 times higher than the current
capacities.

The purpose of the study in [20] is to evaluate the precision of parameters sent
in CAM messages by the initial generation of commercial V2X-enabled cars on
the European market. Applications like digital accident data for accident analysis
could benefit from the CAM data. The results of driving tests at a specified
test site are reported in detail. Based on standardized message-triggering rules,
these tests systematically produced CAMs in particular scenarios and described
the statistical characteristics of the resulting CAM data. A novel method for
handling the Pseudonym Certificates (PC) switching periods between vehicles is
presented in [21]. The suggested approach makes use of a Common PC (CPC) for
a brief amount of time before moving on to a new PC. During this time, vehicles
sign their messages using the same shared PC.

CyberSAGE, a framework utilizing simulators for data generation, collection,
and synthetic data creation through Generative Adversarial Networks (GANs),
is presented in the paper [22]. CyberSAGE outlines future research directions,
such as the addition of complex attacks, improvement of deep generators, and
integration of new AI architectures to advance cybersecurity techniques for con-
nected vehicles, even though it is still in its early stages as a proof of concept. A
lightweight, open-source library that complies with standards and is application-
independent is presented in the work [23]. The library is deployed in a small-scale
test bed where it is used to send DENMs to a vehicle in order to cause it to slow
down during bad weather. The vehicle uses CAMs to communicate its status in-
formation, which includes its current velocity. Using the LEVEL communication
stack, the experiment demonstrates the location-dependent information exchange
between an RSU and the vehicle.

2.3 Clustering Algorithms

Unsupervised learning algorithms are powerful tools in the vast field of machine
learning that can handle unlabeled data and extract meaningful insights. This
section delves deeply into a variety of unsupervised approaches, shedding light on
the various approaches used to negotiate the challenges presented by unlabeled
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datasets. The variety of techniques discussed here, which range from traditional
clustering algorithms like k-means to hierarchical clustering, reveals a vast toolkit.
The important tasks of preprocessing data, locating hidden structures, and expos-
ing patterns that might otherwise go undetected are all accomplished by these
techniques. The purpose of this section is to give a deeper understanding of the
techniques of unsupervised learning.

2.3.1 Hierarchical-Based Algorithms

Unsupervised machine learning techniques like hierarchical clustering arrange data
points into a hierarchy of clusters or a tree-like structure. This clustering tech-
nique’s main objective is to combine related data points according to a predeter-
mined similarity metric. Agglomerative and divisive hierarchical clustering are the
two basic categories into which it can be broadly divided.

The technique used to determine the separation or dissimilarity between clus-
ters at each stage of the clustering process is known as linkage in hierarchical
clustering. The structure and form of the resulting hierarchical tree (dendrogram)
are influenced by the linkage criterion, which dictates how the distance between
clusters is measured as they are successively merged.

Different linkage methods are frequently employed, and they all define the
distance between two clusters in a different way. The hierarchical tree’s structures
can vary depending on the linkage method used, which can also affect the clustering
results. Among the primary linking techniques are:

• Single Linkage (Nearest-Neighbor Linkage): Defines the distance between
two clusters as the shortest distance between any two members of the two
clusters. Tends to produce elongated and chain-like clusters

• Complete Linkage (Farthest-Neighbor Linkage): Defines the distance be-
tween two clusters as the longest distance between any two members of the
two clusters. Tends to produce compact, spherical clusters.

• Average Linkage: Defines the distance between two clusters as the average
distance between all pairs of members from the two clusters. A compromise
between single and complete linkage.

• Centroid Linkage: Defines the distance between two clusters as the distance
between their centroids (mean vectors). Can be sensitive to outliers.
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2.3.1.1 Agglomerative clustering

Agglomerative Clustering or Agglomerative Nesting (AGNESS) is a type of hierar-
chical clustering. The term "agglomerative" refers to the process of progressively
merging or "agglomerating" groups of data points. Agglomerative clustering is
a bottom-up approach, starting with individual data points and building up to
larger clusters. It is in contrast to divisive clustering, which is a top-down ap-
proach that starts with all data points in one cluster and splits them into smaller
clusters.

First, each observation is considered as a single element cluster, so for n obser-
vations we have n clusters. Second, each clusters that are close to each other are
merged into one cluster, this process is repeated until one cluster remains contain-
ing all the n points. Third, a dendrogram is obtained which is like a tree diagram
that shows the sequence in which the clusters were merged. Last a number of
clusters k is chosen and the dendrogram is cut in the middle so it contains the
required number of clusters.

The distance between the clusters can be defined using several methods. Some
common methods -as stated before- include single-linkage (minimum pairwise dis-
tance), complete-linkage (maximum pairwise distance), average-linkage (average
pairwise distance), and Ward’s method (minimize the increase in variance within
clusters).

2.3.1.2 BIRCH Clustering

Balanced Iterative Reducing and Clustering using Hierarchies (BIRCH) is a hi-
erarchical clustering algorithm that is efficient for large datasets [24], it works
in an online incremental manner allowing it to handle datasets that might not
fit completely into memory. BIRCH maintains compact summary of data using
Clustering Feature (CF), CFs contain statistical information about subsets of data
points. CFs are organized in a hierarchical data structure called the CF Tree. The
algorithm incrementally inserts data points into the tree, selecting the appropriate
leaf nodes based on criteria such as minimizing the increase in subcluster diameter.
If inserting a point would exceed a specified diameter threshold, a new leaf node is
created. As the process continues, clusters are merged and the tree is rebalanced.

2.3.1.3 Divisive hierarchical clustering

Divisive hierarchical clustering is a top down approach in unsupervised machine
learning. It starts by attributing all data points into a single global cluster and
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recursively divides it into smaller clusters. Thus, the division continues until each
data point is in a separate cluster or until a stop criterion is met. At each step, the
algorithm takes the cluster with the highest intra-cluster dissimilarity and divides
it into two new clusters. This dissimilarity can be measured using various distance
metrics, and the choice of distance metric significantly influences the clustering
results. Divisive clustering provides a hierarchical structure, often represented as
a dendrogram, illustrating the successive divisions. While divisive clustering can
reveal the natural hierarchy in the data, it tends to be computationally expensive,
especially for large datasets, and is sensitive to the choice of dissimilarity metric
and the stopping criterion. Hierarchical clustering employs the linkage techniques
Slink [25] and Clink The single linkage (nearest-neighbor) approach is the basis
for both Slink and Clink.

2.3.2 Partitioning-Based Algorithms

Partitioning based clustering algorithms are a class of unsupervised machine learn-
ing methods that aim to divide a dataset into discrete clusters. By maximizing
the similarity of data points within each cluster and reducing the dissimilarity be-
tween clusters, these algorithms aim to producing partitions. Several well-known
algorithms are as follows :

2.3.2.1 k-means

K-means [26] is a non supervised machine learning algorithm of non hierarchic
clustering. It permits the clustering of n given points in K given clusters. Thus,
similar observations end up in the same cluster so as to minimize a given function.

Given a set of n observations (x1, x2, x3, ..., xn), k-means aims to partition the
n observations into k(k ≤ n) set S = {s1, s2, ..., sk} by minimizing the distance,
and the within-cluster sum of squares (WCSS) :

argmin
s

k∑
i=1

∑
xj∈si

∥xj − µi∥2

where µi is the centroid of the cluster si.
For the k-means, k centroids are randomly chosen from the n observations

at first, each centroid forms a cluster and then each observation is attributed to
the nearest (mostly euclidean distance) centroid/cluster. Then the centroids of
clusters are recalculated based on the mean of all the data points assigned to
each cluster. The n observations are assigned again to the nearest centroids and
the process is repeated until convergence. Convergence occurs when the centroids
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no longer change significantly, indicating that the algorithm has found a stable
solution.

2.3.2.2 K-Medoids

K-Medoids [27] is a partitioning-based clustering algorithm that forms clusters
around representative points (points in the dataset) called medoids in order to
find naturally occurring clusters within a dataset. Since K-Medoids employs real
data points as the centroids instead of the more widely used centroids of K-Means
algorithm, it is more resilient to noise and outliers in the dataset. In order to
minimize the total dissimilarity between data points and their assigned medoids,
the algorithm iteratively assigns data points to the nearest medoid and updates
the medoids. Clusters with central points that most accurately reflect the general
properties of the data are produced as a result of this process, which is contin-
ued until convergence. Applications for K-Medoids can be found in a number of
domains, such as pattern recognition, where the identification of representative
data points is essential to comprehending underlying structures and patterns in
the data.

2.3.3 Density-based clustering algorithms

Density-based clustering algorithms are a class of unsupervised machine learning
methods that locate clusters Based on the density of data points in a dataset.
Density-based techniques are able to detect clusters of any shape and can deal
with noise in the data better than partitioning-based algorithms. The following
are a few well-known density-based clustering algorithms:

2.3.3.1 DBSCAN Clustering

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) [28] is a
density-based clustering algorithm. It does not require the number of clusters to
be specified beforehand. Instead, it identifies clusters based on the density of data
points in the feature space.

For n observations, they can be classified as :

• Core Points: A data point is considered a core point if it has at least a
specified number of neighboring points (minPts) within a certain radius (ϵ).
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• Border Points: A data point is considered a border point if it is within the
ϵ − radius of a core point but does not have enough neighboring points to
be considered a core point itself.

• Noise Points (Outliers): Data points that are neither core points nor border
points are considered noise points or outliers.

The DBSCAN algorithm is given three parameters, the data set, ϵ the distance
which makes a cluster and minPts as the minimum points that can constitute a
cluster. It then selects randomly points that were not visited before, If the selected
point has at least minPts neighbours with ϵ distance, then it is considered a core
point and the same process is done for its neighbouring points and a cluster is
created with the core and border points that were visited.

2.3.3.2 DENCLUE Clustering

DENCLUE (DENsity-based CLUstEring) [29] is a density-based clustering al-
gorithm that employs a mathematical model based on kernel density estimation.
Unlike traditional clustering algorithms, DENCLUE views clusters as high-density
regions separated by saddle points. It assesses the probability density function of
the data using kernel functions, allowing it to identify clusters of varying shapes
and sizes. The algorithm iteratively refines cluster boundaries by shifting points
towards regions of higher density. One of DENCLUE’s strengths lies in its ability
to capture complex structures in the data and effectively handle datasets with
irregularly shaped clusters. Its reliance on density estimation makes it robust to
noise and outliers, making it suitable for applications such as spatial data analy-
sis, where clusters may exhibit intricate spatial relationships and varying densities.
DENCLUE provides a flexible approach to density-based clustering, contributing
to its effectiveness in uncovering patterns in diverse datasets.

2.3.3.3 OPTICS Clustering

By expanding on the ideas presented by DBSCAN, the density-based clustering
algorithm Ordering Points To Identify the Clustering Structure (OPTICS) [30]
aims to reveal the underlying structure of data. OPTICS introduces a reacha-
bility distance metric to evaluate the connectivity between data points, thereby
overcoming constraints associated with cluster shapes and sizes. OPTICS repre-
sents the density-based clustering structure by "ordering" data points according
to their reachability distances, in contrast to traditional clustering algorithms that
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yield a fixed number of clusters. Through the representation of the hierarchical
connections among data points, OPTICS offers a more adaptable viewpoint on
cluster identification.

2.4 Anomaly detection on complex systems

In order to guarantee the dependability, robustness, and continuous functioning
of complex systems in a variety of contexts, failure detection is essential. It is
essential to promptly identify and mitigate problems in a world where technology
and interconnected systems are becoming more and more important. System fail-
ures can result in a variety of repercussions, including minor interruptions, major
disruptions, financial losses, and even safety issues, depending on the industry,
transportation, telecommunications, manufacturing, or information technology.
This emphasizes how important it is to have reliable and effective failure detec-
tion systems that can quickly spot anomalies, irregularities, or departures from
expected behavior. The field of failure detection has greatly improved with the
advent of sophisticated sensors, data analytics, and machine learning approaches,
opening up new possibilities for proactive problem-solving and system improve-
ment.

A key component of the C-ITS designed to guarantee the stable operation of
connected vehicle networks is RSU failure detection. RSUs are crucial for enabling
communication between infrastructure and vehicles and for delivering necessary
services for safety and traffic control. It is essential to identify RSU failures in
order to keep information flowing smoothly and avoid interruptions of vital C-ITS
functions.

This section of the state of the art explores the challenging field of failure
detection, looking at approaches, difficulties, and the crucial part it performs in
guaranteeing the durability and dependability of modern systems, while we focus
mainly on RSU failures. The review focuses on the techniques and tools used to
quickly detect and handle possible RSU anomalies, improving the dependability
and efficiency of interconnected transportation networks.

In [31] an anomaly detection approach is the process of defining a region of
normal behavior within a set of data and declare whichever data points that do not
belong to this region as anomalies. Moreover, anomalies are classified into three
categories : a) point anomalies which is when a data point is considered aberrant
from the rest of the data, b) contextual anomalies which is when a data instance is
anomalous in a specific context, c) collective anomalies which is when a collection
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of related data instances is anomalous while the individual data instances may not
be anomalous themselves.

Vehicular communication applications are known for their high mobility, which
qualifies them as critical applications that require a reliable infrastructure and
communication scheme. RSUs are one of the key components of a C-ITS system,
they mainly ensure the V2I communication type. An omni-directional antenna
of an RSU is assumed to have equal radio propagation in all directions, but the
presence of obstacles such as buildings, tunnels, rivers or ground elevations can
cause signal attenuation in certain directions. Such an RSU is not technically
defective. However, high signal attenuation in some areas of effective coverage
could indicate failure.

Some works utilize unsupervised machine learning for anomaly detection, The
Isolation Forest or iForest algorithm, introduced by Liu, Ting, and Zhou in [32]
The method employs an ensemble of isolation trees to isolate anomalies efficiently
within a dataset.The key idea behind the Isolation Forest algorithm is that anoma-
lies are likely to be isolated faster than normal instances when using a random
partitioning strategy.

In [33], antenna failure detection was implemented using a probabilistic model.
The model was constructed using real data from field tests, whereas the health
assessment of RSUs was done through comparison between their behaviors in terms
of radio propagation. In [34] a failure detector of VANET systems is proposed,
which has some notions of signal attenuation. In [35] numerical simulations were
performed in various radio propagation scenarios, where it was shown that various
factors affect the attenuation of a signal. Signal tends to attenuate over large
distances in line-of-sight (LOS) contexts, whereas in non line of sight (NLOS),
the presence of a building or obstacle can greatly affect signal intensity (in dBm).
Thus, the behavior of radio propagation is highly dependant on the geographical
context be it rural or urban.

In terms of range, we have observed in our work (in the upcoming chapter)
that in the rural context, and with the absence of obstacles, the in-distance (ID) of
communication is greater than the out-distance (OD) which are respectively the
range of the first point where the RSU signal is detected and the range of the last
point. This was observed also in [36] where the range of communication between
a vehicle and an RSU tends to be larger when the vehicle is moving towards the
RSU. Moreover, they have observed a relationship between vehicle velocity and
range where they explain it as a consequence of the Doppler effect. It can also be
observed in [37]. The inverse case is however observed in [38], where the OD is
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greater than the ID, the authors however explain this by the time needed for the
mechanism of signal validation in the WiFi access points during a first connection.

DeepADV [39] is an anomaly detection framework for VANETS based on deep
neural networks. A threshold is calculated based on the difference between a
genuine and an anomalous message and then used to classify them. The algorithm
is to be deployed on RSU and its aim is to detect faulty messages.

In [40], an anomaly detection scheme on VANETs using edge computing was
proposed. The faults concerned transmission omission and were detected using
RSU-based edge network and vehicular edge computing (VEC). These RSUs guard
information about a number of vehicles and a number of collected packets, which
are then used to determine whether an anomaly (a change in the numbers) has
occurred. They tested their anomaly detection strategy on a simulation and found
that the strategy was highly effective at high rates of fault ratio (25%). EVAD is
a method proposed in [41] to detect anomalies in vehicles using edge computing,
wherein a correlation between sensor variables is drawn and used for anomaly
detection where, for an observation, if two supposedly correlated variables do not
correlate in reality, an anomaly is detected.

In [42], a CNN is used to extract the spatial, temporal, and spatio-temporal
traffic features then used for anomaly detection by the means of employing thresh-
olds. In [43], an anomaly detection approach that takes into account the spatio-
temporal features of VANET traffic is proposed. The approach consists of two
phases; first, deep learning based on a CNN architecture is used for network traffic
estimation; second, a decision-making approach based on reinforcement learning
is used to identify the normal and anomalous traffic entries.

In [44] an anomaly detection approach that takes into account the spatio-
temporal features of VANET traffic is proposed. The approach consists of two
phases, first a deep learning based on CNN architecture is used for network traffic
estimation, second a decision making approach based on reiforcement learning
is used to identify the normal and anomalous traffic entries. When it comes to
security anomalies, DAMASCO [45] is a security based system that aims to detect
DoS attacks. A statistical approach was used to detect anomalies in vehicular
communications where the MAC layer was addressed and assessed to identify
potentially malicious nodes by the number of sent packets and block their activity.
In [46], a certification-less authentication method was adopted, wherein the RSUs
are only trusted partially and are granted the vehicle’s information only partially.
Moreover, anomaly detection was performed through clustering; precisely, the
agglomerative clustering was used on the traffic data represented as time series



State of the art 27

using the dynamic time wrap distance [47].
In [48] a methodology is proposed to analyse data collected from agriculture

areas during many years and checks the anomalies on the productions and theire re-
lationship with weathers conditions. In [49] a Mobile phone Network Data (MNF)
based framework to detect anomalies in real time is proposed. The framework is
based on two steps, the first one is an offline unsupervised learning done on the
MND, the second step is the online real time detection of anomalies.

2.4.1 Analysis

Most of these works have notions of thresholding and variable correlation. To
the best of our knowledge, no work has considered doing anomaly detection by
end users (vehicles). No study also observes the range difference; meaning the
comparison between the range of first contact of an RSU and last contact of the
RSU. There is also no exploitation of signal intensity and range correlation to
determine RSU profiles.

2.5 Traffic prediction on intersections

An important aspect of C-ITS is traffic prediction at intersections, which provides
a proactive method of streamlining traffic and improving urban mobility. Inter-
sections become focal points where vehicular movements intersect as urbanization
accelerates, so precise prediction is essential for efficient traffic management. Traf-
fic prediction at intersections uses advanced data analytics, machine learning, and
sensor technologies to predict traffic patterns, predict congestion, and support
adaptive signal control strategies. This review explores the importance of traffic
prediction in the context of intersections, discussing the difficulties, approaches,
and potential game-changers for developing more adaptable and efficient urban
transportation systems.

Several works focus on traffic estimation from data concerning intersections
and probe Connected Vehicles (CVs). In [50] data from traffic lights and CVs was
used in order to estimate traffic volume. Based on the position of stop of a CV
before traffic lights, the size of the queue is estimated. If another CV comes after
it, the upper bound of vehicle arrivals between the two CVs can be calculated
based on the trajectory of the second vehicle. They modeled traffic volume in
traffic light intersections, then they modeled queue arrivals as a time-dependent
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Poisson process, the traffic volume parameters are determined using maximum
likelihood estimator (MLE) with the Expectation Maximization (EM) algorithm.

Predestination is a method proposed in [51], it aims at predicting the final
destination of a trip in progress. The authors gathered data through GPS from
169 drivers doing around 7000 trips. They represented the origin and destination
in form of tiles and three probabilistic methods were developed then combined.
In the first method a driver’s destination is assumed to be belonging to the list of
previously visited tiles. The second one considers every possible destination and
the last one examines the ground type and assumes the probability of it being
a destination (a tile where there is only water is unlikely to be a destination for
example).

A directional counts at intersections using Floating Car Data (FCD) approach
was described in [52] The paper discusses a methodology for compiling direc-
tional counts, or traffic flow data at intersections by integrating data from multiple
sources, including FCD and section counts. In [53] a statistical method has been
used for real time estimation of queue lengths at signalized intersections using
probe vehicle location data. The location of the last probe vehicle in the queue is
used to estimate its length. They assume that the marginal probability distribu-
tion of the queue length is known and they present an analytical formulation that
relies on this prior knowledge. The results show that their method can accurately
estimate queue lengths.

A stochastic learning framework to estimate the index of a vehicle at signalized
intersections has been proposed in [54], multiple experiments have been conducted
with data sets from microscopic traffic simulations and field experiments. The
framework involves constructing a three layer Bayesian model that models the
relation between vehicle indices and the arrival and departure processes. The
results showed that the proposed method can accurately estimate vehicle indices
at signalized intersections using sample travel times. [55] proposes a method to
predict turn directions of drivers at intersections based on past behaviors, likely
destinations and the number of possible destinations by each turn, where it is
assumed that drivers tend to take roads that offer them more destination options.

[56] presents a probabilistic method to predict the next road segment a driver
will take based on his past traveled segments using GPS data. The experimenta-
tion used GPS data from 100 drivers from Seattle area and the results show that
the developed markov model can make predictions that are more accurate than
random guessing. In [57] a data fusion methodology for traffic flow estimation that
combines multiple data sources is proposed. The data sources include FCD from
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probe vehicles, Detector data, and historic data, and the three are fused using a
Kalman filter and then is used to estimate turning volumes at intersections.

2.5.1 Analysis

Most mentioned studies concern several kinds of predictions on intersections. To
the best of our knowledge there were no studies on the impact of GLOSA or traffic
lights on intersections. There were also no works that detect driving patterns in
intersections.

2.6 Profiling over C-ITS

The complex relationship that exists in the modern transportation landscape be-
tween vehicles and the road environment necessitates a nuanced understanding in
order to develop intelligent and adaptive systems. Road and trajectory profiling
is a key field in the C-ITS that offers deep insights into the dynamics of vehicle
movements and the properties of road infrastructure itself. Analysis of road pro-
files and driver trajectories is crucial to optimizing traffic management, enhancing
safety, and bringing in a new era of sustainable and efficient transportation net-
works as urbanization soars and technological advancements reshape the mobility
paradigm.

The amalgamation of trajectory and road profiling makes use of a wide range of
technologies, including cameras, sophisticated sensor networks, Global Navigation
Satellite Systems (GNSS), and V2X communication. Together with advanced
data analytics and machine learning algorithms, this abundance of data enables
researchers, urban planners, and transportation experts to gain practical insights
that go beyond traditional traffic management. The comprehensive viewpoint
obtained from profiling not only helps with traffic optimization and infrastructure
design, but it also opens the door for the creation of intelligent cars that can move
through intricate urban environments with greater efficiency and safety. This
review delves deeply into the niche of road and trajectory profiling, covering the
techniques used, and the technological foundations influencing these evaluations.

In [58] an algorithm that classifies driving style is proposed. It utilizes the sta-
tistical information from jerk profiles to classify the driving into three categories.
The first one is aggressive driving with high alternating jerk, the second one is the
calm driving with smooth jerk profiles, and the third one is normal driving which
has moderate braking and acceleration. In [59] a framework and methodology for
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developing composite driver risk profiles is proposed. It uses empirical data from
GPS data collected from 106 drivers in Sydney.

In [60] k-means and hierarchical clustering algorithms were run on a data set
of 70 samples from a driving simulator containing number of left and right turns,
number of left and right indicators, number of brakes, horns and gear change with
speed. Results show that k-means performs better at classifying the data the way
the authors intended, meaning three clusters slow, normal, and fast driving. In
[61] GPS data (around 373 million records and 40 821 calculated speed profiles)
of Taxis in the city of Zagreb was used and fed into G-means (Gaussian means)
algorithm which is based on k-means. 770 clusters were determined.

In [62] smartphone sensor data was used, the data was obtained from IEEE
Data port and was used to analyse driver behavior. It was clustered using the
k-means method and 3 clusters were obtained were cluster 1 corresponds to ag-
gressive/risky behavior, cluster 2 corresponds to normal driving and cluster 3 cor-
responds to calm driving. In [63] 4 different driver profiles were detected; safe, very
safe, aggressive, and very aggressive. The profiling was done with data obtained
from smartphones where a driver safety index was used to classify the profiles.

In [64] data from diverse motion sensors, including the accelerometer, gyro-
scope, and magnetometer, undergoes noise elimination using Kalman filter. It
was then used to identify various driving events by applying time window for data
extraction. The outcome of this comparison enables the classification of behavior
into aggressive and non-aggressive driving profiles. In [65] they used four different
machine learning algorithms; Artificial neural networks, Support Vector Machine,
Random Forest, and Bayesian network on different smartphone sensor data where
they identify 7 driving events; Aggressive breaking, Aggressive acceleration, Ag-
gressive left turn, Aggressive right turn, Aggressive left lane change, Aggressive
right lane change, and non-aggressive event.

In [66] the authors study the variable of vehicle Heading around some points
of interest in the city of Reims. The study describes the variable in terms of
min, max, mean, and median, and compares it to the heading of the point of
interest. Some trajectories were extracted and clustered using different clustering
approaches, the purity index of each clustering method is calculated and only the
DBScan showed low scores.

The study in [67] utilized a driving simulator involving approximately 45
drivers with diverse characteristics such as gender, age, and driving experience.
The simulation focused on driving toward and beyond a specified point of interest,
in this case, a tunnel. The tunnel’s position is regarded as the distance origin,
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and the starting point for recording data towards the distance origin is termed the
distance length, which remains consistent after passing the point of interest. The
distance length is subdivided into equivalent segments known as distance gaps,
each serving as a research unit. The authors employed these distance gaps to con-
struct a driving ethogram, from which various characteristics related to statistics
on longitudinal speed, acceleration, lateral movement, and deviations from the
center lanes were derived. Numerous observations and remarks were documented
at the conclusion of the paper.

In [68] the focus is on extracting driving profiles from real log data collected
near 22 Points of Interest (POI). The main challenge addressed is the presence
of incomplete data, where some vehicles recorded data for only one POI. Various
data completion approaches, including interpolation, similar case analysis, and
Bayesian methods, were employed to fill the missing data. The complete dataset
was utilized for training and clustering, and it was also used to impute missing
data across different ratios. The chosen ratio for analysis was 60% missing data
and 40% complete data.

The work [69] examines a segment of Route National N118 in France, focusing
on vehicles equipped with On-Board Units (OBUs) traveling in both directions.
Data from these vehicles was extracted and analyzed using statistical methods,
with a particular emphasis on speed profiles. The study provides insights into the
speed profiles of C-ITS vehicles within a specific road segment.

Smartphone sensor data are used in [70], including gyroscope, accelerometer,
and magnetometer readings, to distinguish between safe and unsafe driving behav-
iors. The sensor data undergoes preprocessing with filters to smooth acceleration
and speed signals. A maneuver detection algorithm, specifically the Endpoint de-
tection algorithm, is applied. Dynamic time warping is employed for calculating
distances, and the processed signal is then subjected to a Bayesian classifier for
the classification of driving instances as safe or unsafe.

2.6.1 Analysis

Most studies here concern driver profiles, with several types of classification such as
Aggressive driving, Normal driving, Calm driving. To the best of our knowledge,
there is no work concerning road profiles.





Chapter 3

Signal/Range Correlation and RSU

Failure Detection

In this section we detail our failure detection technique based mainly on checking
if the coverage which should be ensured by an RSU is effective or not. For this
issue, we propose a new C-ITS message denoted "Alarm Message" which is sent
by each vehicle entering in a zone covered by an RSU. The idea is to insert in
this message some information about the observed signals by the vehicle mainly
in the In-distance (ID) and the Out-distance (OD). The receiving RSU collects
all received data and runs an on-the-fly analysis in order to observe if an anomaly
has occurred.

3.1 Motivation

RSUs are one of the key actors in the C-ITS environment. They are stationary
units installed on the side of roads, and act as access points for the vehicles to the
infrastructure ensuring V2I communications. They are best useful and become
essential in the case of a low density of C-ITS equipped vehicles [71]. In addition
to the CAM and DENM transmissions, RSUs provide the vehicles with services
that are implemented on the infrastructure. Services such as [1] :

1. TLM which is a service that administrates the generation and sending of
SPATEM messages. Its objective is to control vehicle access to intersections
and conflict zones. It sends safety information to the vehicles present in an
intersection and informs them of the real time status of the traffic light and
its future status as well as the time margin between the two.

33
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2. RLT which is a service that manages the generation and reception of MAPEM
messages. A MAPEM is a message containing a digital topology map of the
geometry of an area. This topology describes lanes, crosswalks, conflict zones
and permitted maneuvers.

3. IVI is a road sign service; it uses the IVIM message to provide informa-
tion about physical or virtual road signs such as contextual speeds or road
warnings, as well as the presence of roadworks.

Thus, an RSU in failure would mean that the infrastructure services would
not be available in its area of supposed coverage (or partially unavailable), and
it would also mean a degradation of the whole C-ITS system in the case of low
density scenarios. Thus, to ensure a proper functioning of the system, RSUs must
be monitored and their failures detected and reported in time.

3.2 Antenna theory

3.2.1 Bases of electromagnetism

In telecommunications, electromagnetic phenomenons are used to transmit sig-
nals. The signals are encoded using various standards. Electromagnetism in itself
is the interaction of electric currents or fields, and magnetic fields. A charged
particle produces an electric field, whereas a moving charged particle produces
an electromagnetic field. When a charged moving particle is undergoing accelera-
tion it produces an electromagnetic wave that propagates through space with the
speed of light. electromagnetic waves have two characteristics wave length and
frequency, the relation between the two is given by:

c = λ/f

Where c is the speed of light, λ the wave length and f its frequency, thus the
larger the frequency is, the smaller the wavelength is and vice versa.

The electric field is a vector field that surrounds charged particles, and is
defined by the force (in Newton) per unit charge. The electric field created by a
charged point is given as [72]:
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E =
F

Q
=

Q

4πϵr2
r̂

Where E is the electric field (V/m), F is the electric force, Q is the single point
charge, r is the distance, r̂ is a vector along the r direction, and ϵ is the electric
permittivity which is a constant.

Whereas a magnetic field is a closed loop vector field that surrounds moving
electrical charges, meaning electrical currents. The magnetic field of a current is
given as [72]:

H =
I × r̂

4πr2

Where H is the magnetic field (A/m), I is the current vector, r̂ is the unit
displacement vector from the current element to the field point, r is the distance
of r̂.

All electromagnetic phenomenons can be summarized in four simple equations
regrouped by James Clerk Maxwell (1831–1879) [72]:

∇× E = −dB

dt
(3.1)

∇×H = J +
dD

dt
(3.2)

∇ •D = ρ (3.3)

∇ •B = 0 (3.4)

where ρ is the charge density, D is the electric flux density, B is the magnetic
flux density, and ∇ is a vector operator. Equation 3.1 means that moving a con-
ductor through a magnetic fields produces a voltage which is directly proportional
to the speed of the movement. Equation 3.2 means that during the charge or
discharge of a capacitor, a magnetic field appears. Equation 3.3 means that an
electric charge generates an electric field around it, and Equation 3.4 means that
the divergence of a magnetic field is always equal to zero.
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3.2.2 Antennas radiation patterns

An antenna is a fundamental component of telecommunications systems such as
radio, cellular networks, Wi-Fi and satelite communications. It is a device that is
used to transmit and receive signals in the form of electromagnetic waves. When
used for transmission, it takes electrical signal and converts it into electromagnetic
waves that propagate through the surrounding space. And when used for recep-
tion, it captures the electromagnetic waves from the environment and converts
them back into electrical signals.

Overall, there exist three kinds of antennas based on radiation patterns. An
isotropic antenna is a hypothetical one and radiates over all directions in the hor-
izontal plane as well the vertical one, its radiation diagram resembles that of a
sphere and can be seen in Fig.3.1. An omnidirectional antenna radiates over all
directions in the horizontal plane as can be seen in Fig.3.2, it is commonly used in
applications where signals need to be transmitted and received in multiple direc-
tions, an example of the omnidirectional antenna is the dipole antenna. Whereas
a directional antenna radiates in the form of a concentrated blob over one direc-
tion as can be seen in Fig.3.3, examples of directional antennas include parabolic
antennas and the phased array antenna.

Figure 3.1: Radiation diagram for an isotropic antenna : a- vertical plane, b-
horizontal plane.
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Figure 3.2: Radiation diagram for an omnidirectional antenna : a- vertical
plane, b- horizontal plane.

Figure 3.3: Radiation diagram for a directional antenna : a- vertical plane, b-
horizontal plane.

The used RSUs in this study are either omni-directional or have each two
directional antennas, each antenna is directed towards a side of the road and has a
relatively high directivity. As long as the road is relatively parallel to the antennas
lobes, the vehicle will be able to receive messages from the RSU. Our target is a
specific failure which is when one of the two antennas fails, the bidirectional RSU
will thus behave as a directional antenna and radiate over only one side of the
road.

In order to detect failures in RSUs, we establish a method in which we compare
the behaviors of functioning and failing RSUs in the next section. We consider two
behavioral properties, the first one is the correlation between range and the signal
intensity of communications received by the vehicle from an RSU. The second one
is a particular property concerning the relation between the ID and OD.
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3.3 Study environment

During the C-roads and the Indid projects (two Europen - Connecting Europe
Facilities- projects), we have collected many datasets through real conditions on
more than 300km highway roads in Italy, Germany and France. More than 1
Giga bytes of traces have been collected in pcap format produced by one driving
vehicle and more than 50 Road Side Units, both in ITS-G5 and C-V2X. For each
RSU, more than 20 Mega bytes have been collected in each experiment. This work
however concerns only ITS-G5 RSUs, which have shorter ranges than their C-V2X
counterparts. Whereas, this work has collected more than 10 000 messages that
were sent from each of the concerned RSUs to the experimentation vehicle. Fig
3.4 shows an example of a path taken by the test vehicle in the city of Reims in
France, getting in contact with four RSUs.

Figure 3.4: The path that the test vehicle traveled in the city of Reims, France

In the experiment, each captured packet comes with a radiotap information
layer. Radiotap is a protocol which is the standard for the 802.11 frame injection
and reception. It doesn’t belong to the original ITS-G5 protocol stack, but is
created at the moment of capture of a packet. The test vehicle that was used had
the ability to generate the radiotap layer concerning the captured packet. The
recorded information in the radiotap layer, concerns the radio transmission, such
as the signal intensity at the moment of capture. If the packet was sent from
the vehicle, then the transmission power (in dBm) is stored, and if the packet
was received then the signal intensity at the reception moment is stored. We’re
interested in the latter since it gives us the signal intensity of transmissions coming
from the RSU.
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3.3.1 RSU packets characterization

One way to determine if the packet was either sent or received by the vehicle
without looking at the source address is via radiotap. The difference between
a sent and received packet is the format of the signal intensity, in the first it is
denominated transmission power and concerns the signal power that was used to
send the packet from the vehicle, whereas in the latter it is denominated antenna
signal and concerns the transmission power at the moment of reception of the
packet by the test vehicle.

We then needed to identify which packets were sent by an RSU in contact
with the vehicle. Assuming that each RSU has sent at-least one CAM message
we search through all CAM instances for the field stationType. The stationType
of a vehicle is equal to 5 whereas that of an RSU is equal to 15. We can therefore
identify all CAMs that were sent by RSUs and save their MAC addresses. We use
the MAC address rather than the CAM’s StationID for identification because the
stationID is supposed to change each 10 minutes, whilst the MAC address remains
static during the experiment.

An RSU could also be identified through its positioning. A car moves, whereas
an RSU remains static, therefore if a station doesn’t change its position in the
ITS or the GeoNet layers in all records, it is assumed to be an RSU. Concerning
the pcap data set, and so far, we verified that all static position stations have sent
atleast one CAM with a stationType of 15.

3.3.2 RSU coverage

A vehicle is assumed to be under the coverage of an RSU once it starts receiving
packets from it until it stops. This method may give false indications as the vehicle
could leave the coverage area and enter once again, having thus two coverage
periods or more and still be considered as one single coverage. This verification
is however not needed since we only consider the packets sent by an RSU in the
analysis and the coverage remains irrelevant for the study topic. The comparison
between the ID and OD is also taken from the absolute point of view (meaning
taking the possible multiple coverages as one coverage). Therefore, coverage from
the point of view of the vehicle as a metric is dismissed.

To calculate the ID and OD from the pcap files, the Euclidean distance D

between two points on the earth’s globe is calculated as follows :
D = 6378∗arccos[(sin(lat1)∗sin(lat2))+cos(lat1)∗cos(lat2)∗cos(lon2− lon1)]
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where 6378 is the radius of earth in kilometers, lat1 and lon1 are the longitude
and latitude of the first point, and lat2, lon2 are those of the second point.

3.4 RSU failure detection

Each figure from Fig. 3.5, Fig. 3.6, and Fig. 3.7 represent a set of captured
packets by the vehicle from the RSU during the vehicle’s travel in the area of
coverage. Each packet here is represented by the duality (range, signal), where
red dots represent the distance of the packets, and blue dots represent their signal
intensity. In order to correlate between them, both these variables have been
normalized between zero and one.

Overall, and for the ITS-G5, packets were captured from 23 RSUs from France,
Germany and Italy. These RSUs are located both in urban and rural locations.
Since the presence of buildings and other factors in the urban context causes
signal attenuation, the RSU’s range can be modified by these factors. Therefore,
we chose the rural context for the comparative study of the RSUs.

When analyzing the data, we have observed several characteristics concerning
the properly functioning RSUs. Mainly that the ID is usually larger than the OD,
which is validated by [36]. This particular behavior can be observed in Fig.3.5
and Fig.3.6 which concern two proper functioning RSUs both in France, the first
one is located in Reims, and the second one in Saint Maurice.

Whereas Fig. 3.7 represents the behavioral profile of a defective RSU located
in Reims. This RSU is bidirectional but is behaving as a uni-directional RSU.

Another characteristic of a functioning RSU in this context is that range is
inversely proportional to the intensity of the received signal. We verify this relation
by calculating the Pearson’s coefficient of all records of range and signal during
the coverage period. Thus, well functioning RSUs should give a negative value
below a certain threshold. The relation between distance and signal intensity of
RSUs that are assumed well functioning is not perfectly linear, as the factors that
contribute to the signal attenuation are environmental such as air quality and the
presence of various obstacles. Thus, the inversely proportional relation does not
give a Pearson’s coefficient that is strictly equal to -1. We therefore chose a certain
threshold to determine the RSUs that are behaving properly and those which are
not. And we should note that the Pearson’s coefficient condition is applicable in
both contexts rural and urban. We also consider that both distances should be
superior to 50 meters for rural RSUs, otherwise it is considered in failure.

Pearson’s coefficient between two variables X and Y is calculated as follows :
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ρX,Y =
cov(X, Y )

σXσY

Where cov(X, Y ) is the covariance of variables X and Y and σX , σY their
standard deviations.

Fig. 3.5 deals with the first discussed RSU in the city of Reims. We can observe
here that both characteristics are present, the calculated ID is 1229 meters, which
is the largest distance recorded in the set. And the OD is 671 meters. In terms
of the relation between distance and signal, we can observe in the figure that
the signal tends to increase when the distance becomes shorter. The Pearson’s
coefficient in this set is equal to -0.69.

The RSU in Fig. 3.6 has a lower range than the previous one, thus fewer
packets were captured. But the pattern remains the same, the ID of coverage was
calculated to be 407 meters, whereas the OD was 300 meters. The inverted relation
between distance and signal is more visible here, and the Pearson’s coefficient
calculated here is equal to -0.83.

For the defective RSU in Fig. 3.7 however, the ID is way smaller than the OD.
In fact, this RSU is located on the side of the road that the vehicle was travelling
in. The first contact the vehicle had with this RSU was after it had surpassed
it on the road by around 297 meters, which is the recorded ID, while the OD is
at 1572 meters. The relationship between signal intensity and range is also not
as in the case of previously discussed RSUs, we see in the figure that in the first
300 packets, the signal and range have a direct relationship, whereas in the last
packets, the relationship becomes inverted. The Pearson’s coefficient for this set
is equal to 0.01. This means that the rule of correlation could not be applied in
this context. This RSU is definitely in failure.
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Figure 3.5: The scheme of the correlation between signal and distance for a normal
RSU in Reims

Figure 3.6: The scheme of the correlation between signal and distance for a normal
RSU in Saint Maurice, Paris
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Figure 3.7: The scheme of the correlation between signal and distance for a failing
RSU in Reims

The proposed method to determine failure in the case of omni-directional and
bi-directional RSUs is to verify the properties:

• the ID is greater than the OD.

• the Pearson coefficient of the coverage data is less than a certain threshold.
In our case, we choose it to be less than -0.4.

• the coverage should be larger than a threshold, and we choose the threshold
to be 50 meters.

In table 3.1, is the summary of all calculations made in regards to the RSUs.
For each RSU, range calculations are given with remarks on both characteristics
as well as the geographical context. The RSUs in Fig.3.5, Fig.3.6 and Fig.3.7 are
numbered 4, 8 and 2 respectively.

In addition to that, we have used the K-Medoïds algorithm in order to classify
the behavior of RSUs using the variables : range, signal strength, vehicle speed,
and the Pearson’s coefficient of the signal to range correlation. The latter variable
is repeated for all packets from the same RSU. The classification results are shown
in Fig. 3.8, where the orange cluster regroups the packets that are transmitted
from a failing RSU. The Medoïds of each cluster are represented by the cyan
larger dots. This classification will be enhanced in order to give more precise
classification which will be used in the future on all vehicles in order to be able to
detect non proper RSUs.



Signal/Range Correlation and RSU Failure Detection 44

Table 3.1: Recorded communications with the RSUs

RSU context max range in-distance out-distance Pearson’s coef coef condition ID > OD cond
1 Rural 979 m 979 m 393 m -0.6048 correct correct
2 Rural 1572 m 297 m 1572 m 0.0108 uncorrect uncorrect
3 Rural 1546 m 1546 m 1112 m -0.5705 correct correct
4 Rural 1229 m 1229 m 671 m -0.6921 correct correct
5 Rural 2871 m 2871 m 1139 m -0.6213 correct correct
6 Rural 502 m 447 m 502 m -0.6198 correct uncorrect
7 Rural 580 m 580 m 398 m -0.807 correct correct
8 Rural 407 m 407 m 300 m -0.8393 correct correct
9 Urban 501 m 501 m 467 m -0.1690 uncorrect correct
10 Urban 502 m 502 m 436 m -0.3441 uncorrect correct
11 Urban 289 m 289 m 225 m -0.5013 correct correct
12 Urban 296 m 296 m 220 m -0.7935 correct correct
13 Urban 218 m 155 m 197 m 0.8439 uncorrect uncorrect
14 Urban 280 m 196 m 280 m 0.1489 uncorrect uncorrect
15 Urban 350 m 329 m 241 m -0.7976 correct correct
16 Urban 456 m 320 m 15 m -0.5148 correct correct
17 Urban 1023 m 1023 m 936 m -0.3466 uncorrect correct
18 Urban 537 m 537 m 503 m -0.0266 uncorrect correct
19 Rural 1857 m 548 m 1857 m -0.6720 correct uncorrect
20 Rural 410 m 410 m 100 m -0.4571 correct correct
21 Urban 249 m 249 m 214 m -0.5072 correct correct
22 Urban 1542 m 202 m 667 m -0.5235 correct uncorrect
23 Urban 709 m 709 m 48 m -0.1011 uncorrect correct

Then an alarm will be sent through a specific message defined in the next
section.

Figure 3.8: Clustering using range, signal, speed, and Pearson’s coefficient in func-
tion of range and signal with normalized values

3.4.1 Alarm message

In this section we detail our proposed message which permits to raise an alarm
about RSU failures. This message is composed of the timestamp and the location
when the RSU is met the first time and the timestamp and the location when it
is met the last time. The vehicle records the timestamp and location of received



Signal/Range Correlation and RSU Failure Detection 45

messages from the RSU and filters the last one and the first one. As an option, we
add the signal strength RSSI. This message has to be sent to the road operator
using ITS-G5 or C-V2X channels. Contrary to usual C-ITS messages, this message
will target the RSU which has been analysed. It will be sent through a uni-cast
protocol. If ITS-G5 is used, that means the message will be forwarded by vehicles
driving in the opposite roads. The structure of the packet is shown in Fig.3.9.

Figure 3.9: The structure of the alarm packet

A vehicle builds this message each time it meets an RSU. At that moment,
it collects beacons and CAM messages sent by the RSU and keeps the first mes-
sage and the latest message. When a new message is received, the former one
is dropped. When no message is received from the RSU after a time delay, the
previous one is considered as the last one.

If an RSU overlaps another RSU, the vehicle filters CAMS and beacons sent
from both RSUs in order to be able to alert each RSU with precision and efficiency.
The algorithm 1 gives the instructions that a vehicle should follow to report RSUs
status.
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Algorithm 1 Create Alarm message
Input: RSUs[RSU_ID,in_location, out_location, in_RSSI,

out_RSSI,RSU_Time] list of all RSUs with their attributes,
timeThreshold timestamp, currentT ime timestamp, m last received
C-ITS message

if m.origin == RSU then

if m.RSU_ID NOT IN RSUs[RSU_ID] then

/* First message from this RSU */
RSU ← createRSU()

RSU.in_location← getV ehicleLocation();

RSU.in_RSSI ← m.RSSI

RSU.RSU_ID ← m.RSU_ID

RSUs.add(RSU)

else

/* Second message from this RSU */
RSU ← RSUs.get(RSU_ID == m.RSU_ID)

RSU.out_location← getV ehicleLocation();

RSU.out_RSSI ← m.RSSI;
RSU.RSU_Time← m.time

end if

end if

for RSU in RSUs do

if RSU.RSU_Time IS NOT NULL then

T = currentT ime−RSU.RSU_Time

if T ≥ timeThreshold then

sendAlarmMessage(RSU);
RSUs.remove(RSU_ID == m.RSU_ID)

end if

end if

end for

The road operator has the list of all RSUs in any area including their geo-
graphical context which could be rural or urban. Each RSU is associated with a
score determining its status. If the score for an RSU is high it means that the
RSU is properly functioning and if it is negative and low it means that the RSU
is in failure. If the score is around zero, it means that the RSU is either urban
or there were not enough alarm messages reported by end-users. The algorithm 2
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gives the instructions that the road operator follows to treat the upcoming alarm
messages. Upon the reception of an alarm message, the geographical context of
the concerned RSU is verified, if it is rural, then the ID and OD are compared and
when the ID is significantly less than the OD then we are in the case of an RSU
failure such as in Fig.3.7 and the score of the concerned RSU is decremented by
one, else it is incremented by one. Last, and whether the RSU is rural or urban,
its overall range is verified, if it does not exceed a minimal threshold then the
score is also decremented. Once an RSU’s score reaches the minimal threshold,
then the road operator considers that enough vehicles reported that the RSU is
in failure and reports it. A time window is added so that the scores do not get
saturated, at the beginning of each time window the scores are set to zero. The
window is shifted over the time and its width could be fixed depending on the
whole environment.
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Algorithm 2 Alarm message treatment
Input: RSUs :< RSUID, Score > list of RSUs with their scores,

FailureThreshold, rangeThreshold, maxScore, time timeWindow, dt,
distanceThreshold

Output: time

m← receiveAlarmMessage;

in_distance← calculateRange(m.RSUID,m.in_location)

out_distance← calculateRange(m.RSUID,m.out_location)

if m.RSUID is Rural then

/* no obstacles, not urban */
if in− distance < (out− distance+ rangeThreshold) then

/* reduce the score by one */
if RSUs[RSUID].Score > −maxScore then

RSUs[RSUID].Score− = 1

end if

else

if RSUs[RSUID].Score < maxScore then

/* increment the score by one */
RSUs[RSUID].Score+ = 1

end if

end if

end if

if in− distance < distanceThreshold or out− distance < distanceThreshold

then

/* failure */
if RSUs[RSUID].Score > −maxScore then

RSUs[RSUID].Score− = 1

end if

end if

for R in RSUs do

if R.Score < FailureThreshold then

Report(R.RSUID);
end if

end for

time← time+ dt

if time ≥ timeWindow then

for R in RSUs do

R.Score← 0

end for

time← 0

end if
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From the point of view of vehicles, Fig.3.10 illustrates the steps that the vehicle
takes considering the alarm message: a) At the contact of an RSU, a vehicle starts
building the alarm message b) it finishes building the alarm message after quitting
the zone of coverage of the RSU, c) then, upon the encounter of other vehicles on
the road it sends the message in broadcast mode to inform them of the status of
the RSU, the vehicles themselves will broadcast the message in multi-hop fashion,
d) upon the encounter of another RSU it disseminates the message in V2I fashion
to the road operator.

3.5 Conclusion

In this chapter, detection of failures on operational RSUs by end-users is inves-
tigated. This issue is critical and crucial for the C-ITS. We have shown that
maintenance of Road Side Units could be achieved in a simple way without any
additional investment or any equipment. Vehicles collect RSU observations dur-
ing their journeys and analyse them using our failure detection mechanism. This
mechanism compares the observed behavior to the known proper one, when an
anomaly is detected, any vehicle raises alerts to the road operators in order to
inform about the suspicious RSU. RSU behavior profiles are studied as well and a
difference between urban and rural is drawn and carefully considered in the study.

We have observed that in the case of a functioning RSU, there is an acceptable
inverse correlation between the range and signal intensity of its transmissions. We
have also observed that in the rural context with line of sight communications,
the ID tends to be larger than the OD for functioning RSU. Both these properties
were used for our assessment of RSUs.

We have so far addressed one particular RSU failure, which is when the RSU
radiates only over one direction rather than two directions. But there are other
kinds of failures, for instance the RSU could be completely dysfunctional in both
directions. One way to detect that by the vehicles is to receive an alarm message
about an RSU from a single vehicle and then the informed vehicles find no RSU on
the road (because it became faulty recently), by this, they can detect that there
is an RSU in the designated area that went dysfunctional, thus they can report
it also. Software failures are also a possibility, a malformed packet from an RSU
could occur, we could extend our failure mechanism by calculating the ratio of
malformed packets from an RSU, if it exceeds a certain threshold it would mean
that the RSU is in failure.

The rest of this chapter is covered by the following article:



Signal/Range Correlation and RSU Failure Detection 50

Figure 3.10: Treatment of the alarm message by the vehicles, a) at the coverage of
an RSU, the vehicle starts building the alarm message, b) the vehicle finishes building
the alarm message after leaving the coverage of an RSU, c) the message is broadcast
in multi-hop fashion by the vehicles to inform each other of the status of the RSU, d)

the vehicle sends the alarm message to the next RSU it encounters

Benzagouta, M.-L.; Aniss, H.; Fouchal, H.; El Faouzi, N.-E. Road-Side Unit
Anomaly Detection. Vehicles 2023, 5, 1467-1481. https://doi.org/10.3390/vehicles5040080



Chapter 4

Road profiles

4.0.1 Introduction

This chapter covers a work done on the database of the CoopITS smartphone
application. Road profiles are derived by observing and analyzing the information
found in the CAM messages sent by the different users. Thereafter, four clustering
techniques are applied to the paths of individual cars. A road profile is defined by
the speed of the vehicle over time.

The first step in our process involves using road profiles to track the speed
of every vehicle on a certain road segment. These route profiles provide a basis
for what we will do next. We categorize trajectories by using clustering methods
and arranging them according to common features and patterns. The method
of clustering improves the entire analysis’s understanding by facilitating a deeper
comprehension of the many movement patterns included in the road data. The
results of the clustering algorithms are then compared. In order to be proactive,
we raise alarms when we detect abnormal trajectories. This allows us to promptly
notify users and the road operator of any potential anomalies in the movement of
vehicles.

4.1 Data visualisation using T-SNE

t-distributed Stochastic Neighbor Embedding (T-SNE) [73] is a machine learning
nonlinear method for the reduction of dimensionality of data sets. It is a statistical
method for visualizing high-dimensional data by giving each datapoint a location
in a two or three-dimensional map.

The key idea behind t-SNE is to model the similarity between data points in
the high-dimensional space and the low-dimensional space, preserving the pairwise
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similarities as much as possible. It achieves this by defining a probability distri-
bution over pairs of high-dimensional data points and a similar distribution over
the low-dimensional counterparts. The algorithm then minimizes the divergence
(Kullback-Leibler divergence) between these two distributions.

4.2 Trajectory analysis

Here, we use the CoopITS database, we are mainly interested in the CAM messages
which are periodically sent by each C-ITS station. The frequency of the CAM
message in C-ITS standards is of between 100ms and 1s depending on the velocity,
but its frequency in the CoopITS application is either 1 s or 5 s.

A CAM message contains information about the station’s state in an instant
t, such as its velocity, heading and position in means of longitude and latitude.
Each station has a unique pseudonym called the stationID which is attributed
randomly and gets updated every 10 minutes for anonymity.

Having the set of CAM messages, we wanted to find a specific pattern, which
is a trajectory that was traversed several times, and from the dataset containing
a total of 1 336 573 CAMs coming from 8 667 distinct stationIDs from the region
"Nouvelle-Aquitaine". At the time of the study we identified a single trajectory
that was traversed 71 times (71 distinct stationIDs) in the same direction in the
city of Bordeaux which contains a total of 46 570 CAM messages.

Fig. 4.1 shows the trajectory that was chosen. The trajectory starts south and
goes to the north and was plotted on an OSM map in python using the folium
library where each dot represents the position recorded in each CAM message from
a single trip (a single stationID).

Figure 4.1: An example of the trajectory that was extracted from CAM messages,
plotted on top of an OSM map
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We then cut the trajectory into 10 elementary road segments, a segment is
the portion of road between two successive road crossings. Fig. 4.2 shows the
segments that were cut from the trajectory.

Figure 4.2: The determined segments, plotted on Google maps

To determine which CAM point (latitude and longitude) belong to which seg-
ment, and as in figure 4.3 we draw a rectangle out of the segment, its length is
the length of the segment and its width is of 20 meters, if the point belongs to the
rectangle it gets attributed to it. We chose a large width due to GPS precision
issues, as a large portion of the CAM points were out of the borders of the road.

Figure 4.3: The rectangle over segments, plotted on an OSM map

After doing so, we ended up with 609 distinct trajectories, 71 multiplied by 10
gives 710 which should be the number of trajectories to end up with, but we had
609 and this is due to the frequency of the CAM messages, certain road segment
are small and don’t fit to a single CAM point.
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609 different trajectories have been collected. They have used as an input for
each of the four algorithms.

The obtained trajectories have different dimensions so we can’t feed them into
clustering algorithms which require that all observations have the same dimensions.
So we converted each trajectory into a 60 dimension observation by projecting 60
points on the curve of velocity of each trajectory as can be seen in .Fig4.4.

Figure 4.4: An example of a normalized trajectory points (60 points)

4.2.1 k-means analysis

We have run the k-means algorithm on the trajectory data. We have chosen 5
clusters, Table 4.1 shows the number of classification per cluster, the cluster 3 is
the largest as it has 181 observations. The cluster 4 contains the least number
of observations. In Fig. 4.5 we see a sample of trajectories in cluster 0 and it is
equivalent to a long stop, this is in comparison with cluster 2 in Fig. 4.7 which
contains trajectories with a short stop. We can see also that cluster 1 in Fig.4.6,
cluster 3 in Fig .4.8, and cluster 4 in Fig .4.9 equivalent to a free flow without a
stop, with velocities ranging from low in cluster 3, medium in cluster 1 and high
with cluster 4. A total of all clusters visualized using T-SNE is in Fig. 4.10.

Table 4.1: Kmeans: number of trips for each cluster

cluster nbrTrips

0 137

1 112

2 92

3 181

4 87
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Figure 4.5: Samples of trajectories from cluster 0 for the kmeans method.

Figure 4.6: Samples of trajectories from cluster 1 for the kmeans method.

Figure 4.7: Samples of trajectories from cluster 2 for the kmeans method.

Figure 4.8: Samples of trajectories from cluster 3 for the kmeans method.
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Figure 4.9: Samples of trajectories from cluster 4 for the kmeans method.

Figure 4.10: K-means clusters visualized using T-SNE.

4.2.2 Agglomerative clustering analysis

We have run the Agglomerative Clustering algorithm on the trajectory data and
chose 5 clusters. As can be seen in Table 4.2 cluster 0 has the largest number of
samples with 219 observations, and with cluster 2 having the lowest number of
trajectories. As can be seen in Fig.4.13, cluster 2 contains trajectories with a short
stop, while Fig.4.15 shows samples of cluster 4 which contains trajectories with a
long stop. Cluster 0 in Fig. 4.11 contains trajectories with low velocity free flows
or with very short stops. Cluster 1 in Fig .4.12 contains trajectories with free flow
with high velocity. Cluster 3 as in Fig .4.14 contains trajectories with free flow
medium velocities. A total of all clusters visualized using T-SNE is in Fig. 4.16.
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Table 4.2: Agglomerative clustering: number of trips for each cluster

cluster nbrTrips

0 219

1 111

2 85

3 92

4 102

Figure 4.11: Samples of trajectories from cluster 0 for the Agglomerative
clustering method.

Figure 4.12: Samples of trajectories from cluster 1 for the Agglomerative
clustering method.

Figure 4.13: Samples of trajectories from cluster 2 for the Agglomerative
clustering method.
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Figure 4.14: Samples of trajectories from cluster 3 for the Agglomerative
clustering method.

Figure 4.15: Samples of trajectories from cluster 4 for the Agglomerative
clustering method.

Figure 4.16: Agglomerative Clustering clusters visualized using T-SNE.

4.2.3 BIRCH Clustering analysis

We have run the BIRCH algorithm and chose 5 clusters. As can be seen in Table
4.3 cluster 0 has the largest number of observations and cluster 3 has the lowest
number of observations. Clusters 2 and 4 in Fig. 4.19 and Fig. 4.21 respectively
contain trajectories with a stop in the segment, cluster 2 has shorter stops than
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cluster 4. Cluster 0 as in Fig. 4.17 contains trajectories with free flow and low
velocity, whereas cluster 1 in Fig. 4.18 contains free flow trajectories with medium
velocity, and cluster 3 in Fig. 4.20 contains free flow trajectories with a high
velocity. A total of all clusters visualized using T-SNE is in Fig. 4.22.

Table 4.3: BIRCH: number of trips for each cluster

cluster nbrTrips

0 219

1 142

2 85

3 61

4 102

Figure 4.17: Samples of trajectories from cluster 0 for the BIRCH clustering
method.

Figure 4.18: Samples of trajectories from cluster 1 for the BIRCH clustering
method.

Figure 4.19: Samples of trajectories from cluster 2 for the BIRCH clustering
method.
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Figure 4.20: Samples of trajectories from cluster 3 for the BIRCH clustering
method.

Figure 4.21: Samples of trajectories from cluster 4 for the BIRCH clustering
method.

Figure 4.22: BIRCH clusters visualized using T-SNE.

4.2.4 DBSCAN Clustering analysis

We have run the DBSCAN algorithm and we have obtained 6 different clusters.
The cluster 0 contains 81% of the observations, and 15% of the observations are
considered aberrant. Cluster 1 contains 7 observations and clusters 2, 3, 4, and
5 contain each 3 observations. The reason the cluster 0 contains 81% of the
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observations is that the dataset is continually dense as can be seen in the T-SNE
representation of the data in Fig. 4.23.

Table 4.4: DBSCAN: number of trips for each cluster

cluster nbrTrips

-1 95

0 495

1 7

2 3

3 3

4 3

5 3

Figure 4.23: DBSCAN clusters visualized using T-SNE
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Figure 4.24: Samples of trajectories from clusters for the Dbscan clustering
method : a) aberrant observation, b) cluster 0, c) another sample from cluster

0, d) cluster 1, e) cluster 2, f) cluster 3, g) cluster 4, h) cluster 5.

4.2.5 Combination of four algorithms experimentation

4.2.5.1 Combination of Agglomerative Clustering and K-means

Table. 4.5 shows a comparison between the AC and K-means, we notice that 175
observations are in clusters 0 and 3 in AC and K-means respectively, cluster 3
in k-means has 1 and 5 observations common with clusters 2 and 3 of the AC
respectively, which allows us to safely say that clusters 0, and 3 in the AC and
k-means are relatively equivalent which represent the free flow with low velocities.
The same can be observed in regard to cluster 0 from the k-means, as it has 102
common observations with cluster 4 of the AC, and 16, 19 common observations
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with clusters 0 and 2 of the AC respectively, thus we can assume that clusters 4
and 0 of the AC and k-means respectively relatively constitute the same cluster.

From a one sided perspective, we notice that cluster 4 of the k-means has 86
common observations with cluster 1 of the AC and has one common observation
with cluster 3 of the AC. so we can assume that cluster 1 in AC mostly includes
cluster 4 in K-means.

Table 4.5: Comparison between the AC and k-means

AC=Kmeans number

0=3 175

0=2 27

0=0 16

0=1 1

1=1 25

1=4 86

2=2 65

2=0 19

2=3 1

3=1 86

3=4 1

3=3 5

4=0 102

4.2.5.2 Combination of BIRCH and Agglomerative Clustering

In Table. 4.6 a comparison between the BIRCH and AC algorithms. We observe
that clusters 0 and 0 of the BIRCH and AC algorithms are equivalent and are
in a single instance, thus it means that the clusters are the same. We observe
the same thing with clusters 2 and 4 of both BIRCH and AC with 85 and 102
common observations respectively, meaning that cluster 0 is equal to 0 from the
AC, cluster 2 is equal to 2 of the AC, and cluster 4 is equal to 4 from the AC.
The resemblance between the results of both algorithms is because they’re both
hierarchical algorithms.
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Table 4.6: Comparison between the BIRCH and AC

BIRCH=AC number

0=0 219

1=1 50

1=3 61

2=2 85

3=1 92

4=4 102

4.2.5.3 Combination of BIRCH and Dbscan

In Table. 4.7 we see a comparison between the algorithms BIRCH and DBSCAN,
and we see that cluster 0 of the DBSCAN is distributed between clusters 0, 1,
2, 3, and 4 of the BIRCH. Clusters 1, 3, and 5 of the DBSCAN are included in
cluster 0, cluster 2 of DBSCAN is included in cluster 2 of the BIRCH and cluster
4 of DBSCAN is included in cluster 3 of the BIRCH.

Table 4.7: Comparison between the BIRCH and DBSCAN

BIRCH=DBSCAN number

0=0 180

0=-1 26

0=5 3

0=3 3

0=1 7

1=0 138

1=-1 4

2=-1 36

2=0 46

2=2 3

3=0 57

3=4 3

3=-1 1

4=-1 28

4=0 74
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4.2.5.4 Combination of BIRCH and K-means

In Table. 4.8 the comparison between BIRCH and K-means results. We observe
that cluster 3 of the K-means and cluster 0 of BIRCH have 175 observations in com-
mon. Cluster 3 of k-means and cluster 1 of BIRCH have 5 common observations
and also that cluster 3 of k-means and cluster 2 of BIRCH have one observation
in common, which means that cluster 3 of K-means is almost included in cluster 0
of BIRCH. We also observe that cluster 1 of k-means is almost included in cluster
1 of BIRCH and have 111 common observations.

Table 4.8: Comparison between the BIRCH and K-means

BIRCH=K-means number

0=3 175

0=2 27

0=0 16

0=1 1

1=1 111

1=4 26

1=3 5

2=2 65

2=0 19

2=3 1

3=4 61

4=0 102

4.2.5.5 Combination of Agglomerative Clustering and Dbscan

In Table. 4.9 a comparison between the algorithms DBSCAN and AC and we see
that cluster 0 of the DBSCAN is distributed between clusters 0, 1, 2, 3, and 4
of the AC. Clusters 1, 2, 3, 4, and 5 of DBSCAN are distributed between (and
included in) 0, 2, and 1 of the AC.
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Table 4.9: Comparison between the AC and Dbscan

dbscan=AC number

0=0 180

0=-1 26

0=5 3

0=3 3

0=1 7

1=0 105

1=-1 3

1=4 3

2=-1 36

2=0 46

2=2 3

3=0 90

3=-1 2

4=-1 28

4=0 74

4.2.5.6 Combination of Dbscan and K-means

In Table. 4.10 a comparison between DBSCAN and K-means. And we see that
cluster 0 of the DBSCAN is distributed between clusters 0, 1, 2, 3, and 4 of the
K-means. Clusters 1, 2, 3, and 4 of DBSCAN are distributed between clusters 0,
2, and 4 of the K-means
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Table 4.10: Comparison between the DBSCAN and K-means

dbscan=Kmeans number

-1=2 35

-1=0 41

-1=3 14

-1=1 4

-1=4 1

0=1 108

0=3 164

0=4 83

0=0 96

0=2 44

1=2 7

2=2 3

3=3 3

4=4 3

5=2 3

4.3 Conclusion

We have shown in this chapter that connected vehicles are an important source
of data provision. This issue could be exploited positively to solve some troubles
as abnormal situation detection without any additional device on roads. Indeed,
in this study we have collected various trajectories on various roads at different
periods. We aimed to classify all these trajectories into different clusters. Then
each cluster has to be checked in order to understand what are the features of each
cluster. We have applied 4 clustering algorithms in order to check the accuracy of
each of them.

The main conclusion is that each algorithm has its own classification and the
intersections between clusters from one algorithm to another are not empty. After-
wards, we have focused on the differences of the obtained results by each algorithm.
These differences are of high interest since they express a kind of sub-classes having
their own features.

The rest of this chapter is covered by the following article:
Benzagouta, Mohamed Lamine ; Aniss, Hasnaa ; Fouchal, Hacène ; El Faouzi,
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Nour-Eddin. (2023). Towards Road Profiling with Cooperative Intelligent Trans-
port Systems



Chapter 5

Impact of speed limitation on traffic

In this chapter, we are interested in intersections equipped with traffic lights. We
study the speed profiles of drivers in the road segment prior to the intersection,
and classify their behaviors into four repeating patterns.

5.1 GLOSA

GLOSA is a C-ITS use case. It concerns intersections equipped with a traffic
light and indicates to the driver the current phase, time to the next phase and
also a speed advice that allows the driver to avoid a stop in the case of a red
light. It is based on two C-ITS services [1] which are the TLM and the RLT. The
TLM sends safety information to vehicles in the nearby intersection, informing
them of the real-time state of the traffic light and its future state, as well as
the time margin between the two states. The message used to this extent is the
SPATEM. It is sent periodically to all participants for as long as they are close to
the intersection. The RLT sends a digital topology map of the geometry of an area
to the nearby vehicles, describing lanes, crosswalks, conflict zones (intersections)
and permitted maneuvers. A lane consists of several connected landmarks, and
at the connection of these crossing points with a conflict zone, a set of authorized
maneuvers is modeled as a connection between the two end points that connect
the two lanes with the zone. The message that is used by the RLT is the MAPEM
and is transmitted at the same time as a SPATEM when the vehicle approaches
an intersection.

Among different joint initiative projects of European member states aiming at
developing and experimenting innovative C-ITS solutions. C-Roads [74] differed
from the others (such as SCOOP@F1 and SCOOP@F2 [75]) by its definition of use
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cases in urban environment and its focus on V2V communications. The project
developed new services such as the GLOSA use case.

5.2 Smartphone data

The CoopITS application records two types of logs in a server, the first type of
logs concerns the actions that are made in the app, such as the display of events
and information on the screen. In this type of logs we are mainly interested in the
logs of action of the TLM which displays the current phase of nearby traffic lights,
and also the time until the next phase and if the lights are red it displays the
advice speed to respect in order to avoid a stop. The second type of logs concerns
the C-ITS messages, such as the CAM, DENM, SPATEM, MAPEM, and IVIM,
the messages are logged in their raw state meaning encoded with ASN.1 uper
then decoded and inserted into a database. We are mainly interested in the CAM
messages.

A CAM or Cooperative Awareness Message is a periodical message that is sent
by a C-ITS station in broadcast at a frequency of either 1s and 5s in the CoopITS
application. A station can be a vehicle, an RSU or a different C-ITS actor. a
CAM contains information about the station’s state at an instant t such as its
StationID which is its identification number in the C-ITS environment, its type
(car, motorcycle, RSU, etc) using the field StationType, its position by means of
latitude, longitude and altitude, its heading which is in degrees and represents the
angle of the vehicle from true north, its velocity in m/s, and more. Since the data
is generated from a smartphone, the velocity is always positive or equal to zero
even if the vehicle is moving backwards.

Each smartphone when using the CoopITS application is attributed a random
StationID. The smartphone maintains its StationID for 10 minutes of operation
time, then it is attributed another. And so far, during the time of the study,
a total number of 1 336 573 CAM messages have been recorded in the city of
Bordeaux and the region of "La Nouvelle Aquitaine" in France coming from 8667
distinct StationIDs.

We use the same trajectories that were extracted in the previous chapter, that
of 71 distinct trajectories (71 distinct stationIDs) in the same direction in the city
of Bordeaux, which represents a total set of 46570 CAM messages. The records
belonged likely to the same driver since they all start from the same area and go
likely to the same destination.
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Fig. 5.1 shows the trajectory that was chosen. The trajectory starts south and
goes to the north and was plotted on an OSM map in python using the folium
library where each dot represents the position recorded in each CAM message from
a single trip (a single StationID).

Figure 5.1: An example of the trajectory that was extracted from CAM messages,
plotted on top of an OSM map

In the previous chapter, the trajectory was cut into road segments. A road
segment is the portion of the road between two crossings. We used the same data
and chose a segment where a traffic signal is installed, and where the GPS data
are the most precise. The segment that was chosen is shown in Fig. 5.2. It has
a length of 120 meters and the shortest recorded travel time of the segment is 6
seconds.

The TLM dataset contains all traffic light signals status notifications that were
sent to the smartphones. The smartphones receive notifications about the traffic
light status in nearby intersections, as well as the time to the next phase and the
speed advice. The speed advice is only present in the case of red light, and it tells
the vehicle the speed that it should respect to avoid a stop. Fig. 5.3 represents
an example of some TLM records.

A matching between the CAMs and TLMs was then done using the stationID
(the TLM user is identified by its StationID). For each CAM message, if a TLM
record fits within its time frame with the next CAM message, it was attributed
to it. We then observe the behavior of the vehicles along some indicators such as
speed variation, redlight status and speed advice over time and distance, which
we will present in the next section.
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Figure 5.2: Trajectory data in the segment that was chosen, plotted on top of an
OSM map

Figure 5.3: An example of some TLM records

5.3 Analysis

In this section we present our observations on the trajectory profiles in the cho-
sen segment. We have observed that there exist 4 elemental patterns that are
constantly repeating and are summarized as follows:

(a) A free flow driving with a green or yellow light.

(b) A stop in the segment with a green or yellow light.

(c) A free flow driving with a red light.

(d) A stop in the segment with a red light.

These four patterns are elements that constitute the vehicular behavior in
the segment, a trajectory in the segment may constitute of one or more of these
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elemental patterns. The first pattern, which is the free flow at a green light is due
to the emptiness of the road before head of the vehicle and until the segment’s
end, so the vehicle travels without a stop. The second pattern which is the stop
at a green light is due to the presence of a queue before the end of the segment
so the vehicle has to stop. The third one which is the free flow at a red light is
because the vehicle’s velocity isn’t high enough, it happens in the case where the
driver respects the speed advice voluntarily or involuntarily. The fourth one which
is the stop at a red light happens when the vehicle’s velocity is higher than the
speed advice, so it reaches the end of the segment or the beginning of the queue
and stops.

Figures Fig. 5.4, Fig. 5.6, Fig. 5.8, and Fig. 5.10 represent the speed profiles
of the vehicle in the same road segment matched with the traffic light states. Each
dot symbolizes a matched CAM record represented by its velocity in function of
time and distance from the start of the segment. Its color represents the state of
traffic light it received from the TLM service, where it is either red, green, yellow
or blue. Blue means that there is no TLM data for the CAM point. The black
dots represent the speed advice the vehicle receives whenever the light is red.

Fig. 5.4 shows the pattern (a), the vehicle entered the segment with an initial
velocity of 7.69 m/s which was reported by the smartphone’s GPS. The velocity
that was reported when leaving the segment was at 10.03 m/s. The vehicle sent all
along the segment a total of 13 CAM messages, the measured average velocity from
these CAMs was at 9.0 m/s and the time frame between the first and last CAM is
12 seconds. 120 meters which is the segment’s length divided by 12 seconds gives
10 m/s which should be the average velocity. It is not the case due to precision
issues in the smartphone’s GPS. The vehicle received a green light status all along
the segment, and there was no queue at the end of the segment so it traveled it
without a stop.

Fig. 5.5 also shows the pattern (a), the initial velocity at the beginning of the
segment is of 8.17 m/s, and at the segment’s end was 9.02 m/s. The vehicle sent
an overall of 13 CAM messages. The average velocity from the CAM messages is
equal to 8.89 m/s and the time between the first and last CAM message in the
segment is equal to 12 seconds. The average velocity should also be at 10 m/s but
it is not due to GPS precision. The vehicle received a green light along all the
segment and there wasn’t a queue at stop before it so it didn’t have to stop.

Pattern (b) can be observed in Fig. 5.6, the vehicle entered the segment with
a velocity of 8.68 m/s, it reached its top velocity of 11.69 m/s at around second 4
and 58 meters from the start of the segment. It left the segment at a velocity of
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Figure 5.4: A trajectory with free flow at a
green light (a) velocity in function of the distance

(b) velocity in function of time

3.7 m/s. The vehicle arrived at a stop at 103 meters from the start of the segment
and at 15 seconds. It spent 33 seconds to travel the segment and sent an overall of
32 CAM messages. The mean velocity from the CAMs is equal to 3.72 m/s which
has an acceptable accuracy. The vehicle encountered a green light all along the
segment, yet it stopped 17 meters from the end of the segment, this is mostly due
to the presence of a queue at the end. The queue was probably generated by the
previous red light phase.

Pattern (b) can also be observed in Fig.5.7 where the vehicle encountered a
green light along all the segment but had to stop due to the presence of a queue.
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Figure 5.5: A trajectory with free flow at a
green light (a) velocity in function of the distance

(b) velocity in function of time

The vehicle sent an overall of 25 CAM messages in the segment, it entered it at
a velocity of 6.11 m/s and left it at a velocity of 6.09 m/s. It spent a total of
24 seconds to traverse the segment. The average velocity from the CAMs is at
4.53 m/s whereas the calculated average velocity by dividing the segment length
(120) on the time to traverse (24) is equal to 5 m/s. The vehicle stops at around
64 meters from the start of the segment, the issue of GPS precision can also be
seen in the top figure where the vehicle seems to have returned backwards before
it stops.

Pattern (c) can be observed in Fig. 5.8, the vehicle sent 26 CAM messages, it
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Figure 5.6: A trajectory with a stop at a green
light (a) velocity in function of the distance (b)

velocity in function of time

entered the segment with a velocity of 6.34 m/s, and left it with a velocity of 6.44
m/s. it lowered its velocity in the middle until it reached 2.22 m/s but doesn’t
stop. Its average velocity was at 4.57 m/s which has an acceptable accuracy
since 120 divided by 25 gives 4.8. Since the light is red the vehicle received the
speed advice, and overall, the vehicle’s velocity was lower than the speed advice,
therefore it didn’t stop

Pattern (c) can be also be observed in Fig.5.9. The vehicle entered the segment
at the velocity of 6.34 m/s and left it with a velocity of 6.88 m/s. It traversed
the segment in 16 seconds and sent an overall of 17 CAM messages. It’s average
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Figure 5.7: A trajectory with a stop at a green
light (a) velocity in function of the distance (b)

velocity in function of time

velocity is of 6.58 m/s whereas 120 divided by 16 gives 7.5 m/s, the difference is
due to GPS precision again. At second 6 the vehicle’s velocity was inferior to the
given speed advice, therefore it avoided a stop.

In Fig. 5.10 we can observe the last pattern, which is when the vehicle stops
at a red light. The vehicle entered the segment at a velocity of 5.36 m/s, and
left it at the velocity of 5.26 m/s. It’s average velocity was at 3 m/s and it took
34 seconds to traverse the segment which gives it a calculated average velocity of
3.52 m/s. As with the first case, this is due to the GPS precision. The issue of
precision can also be seen at the stop in Fig. 5.10 (a), which is when the position
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Figure 5.8: A trajectory with free flow at a red
light (a) velocity in function of the distance (b)

velocity in function of time

slightly returns backwards although the velocity was at zero.
Pattern (d) can aslo be observed in Fig.5.11. The vehicle entered the segment

at a velocity of 4.48 m/s and left it with a velocity of 3.7 m/s. The vehicle sent
53 CAM messages and spent 52 seconds to traverse the segment. It’s average
velocity recorded by CAMs is of 2.14 m/s whereas the calculated average velocity
by dividing the segment length (120) by the traversal time (52) is equal to 2.30
which we consider acceptable. The vehicle started receiving the speed advice at
the encounter of a red light is around second 20, but it didn’t respect it so it had
to stop at around second 28 at around 18 meters from the end of the segment.
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Figure 5.9: A trajectory with free flow at a red
light (a) velocity in function of the distance (b)

velocity in function of time

In Fig. 5.12 where the vehicle sent 84 CAM messages, we see a combination
of two patterns (d) followed by (b), the vehicle entered the segment at a velocity
of 7.84 m/s and stopped at around 46 meters from the start of the segment at
red light mainly due to the disrespect of the speed advice. After the light turned
green it remained still for 20 seconds then started moving only to stop again at a
queue. The queue is probably due to an operation happening at the road crossing.
It left the segment at a velocity of 4.51 m/s. The same remark can be done, the
vehicle changing its position while at stop and with a null velocity is mainly due
to GPS precision.
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Figure 5.10: A trajectory with a stop at a red
light (a) velocity in function of the distance (b)

velocity in function of time

5.4 Traffic jam prediction using a single vehicle in

a stop

We previously have seen four different patterns, the stops are hypothesized to be
due to a queue. In patterns a and c we can deduce that no significant queues
were present, otherwise the vehicle would have stopped. But in patterns b and d,
the vehicle stops. For pattern b, there is a green light and it is hypothesized that
the stop was due to a queue. If the segment was empty in pattern d, the vehicle
would stop at the end of the segment, and if it does stop in the middle, it is also
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Figure 5.11: A trajectory with a stop at a red
light (a) velocity in function of the distance (b)

velocity in function of time

hypothesized to be due to queue.
Therefore, we consider the patterns b and d for the detection of a potential

queue on the road at stops. Assuming all vehicles have the same length l and are
all at stop, the number of vehicles in the queue in relation to the controlled vehicle
would be equal to :

N =
L− xi

l + d0
(5.1)
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Figure 5.12: A trajectory with combined
pattern, velocity in function of the distance

Where L is the length of the segment, xi is the relative position of the vehicle
in the segment and d0 the standstill distance between the vehicles.

Assuming different lengths of vehicles, where lmin is the minimum size of ve-
hicles and lmax is the maximum size that a vehicle can have (a semi-trailer for
example). the number of vehicles in the queue would be :

L− xi

lmax + d0
< N <

L− xi

lmin + d0

Therefore, if given lmin = 3m, lmax = 16m and d0 = 1m the number of vehicles
in the queue at the moment of the stop of the vehicle in Fig5.10 would be between
2.94 and 12.5 vehicles. And the number of vehicles in Fig5.6 between 1 and 4.25
vehicles.

Assuming an l = 4m and d0 = 1m, and given that the length of the segment
L = 120m the predicted queues according to equation 5.1 are given in Table.5.1.

5.4.1 Traffic jam prediction using a moving vehicle

In car-following models it is assumed that the velocity of a vehicle is relative to
the velocity of its predecessor. The goal of a vehicle is to follow its predecessor
and keep a certain distance from it called the headway. one distancing strategy
called the Constant Time Headway [Constant Spacing Strategies For Platooning
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Table 5.1: Recorded communications with the RSUs

StationID stop relative position queue length
140859343 107 m 2,6
1097025897 100 m 4
1125743700 97 m 4,6
1228133956 91 m 5,8
1520594289 89 m 6,2
1693752982 100 m 4
1966236983 108 m 2,4
2053268129 110 m 2
2582698734 103 m 3,4
2589910337 48 m 14,4
2725142206 65 m 11
2976041898 100 m 4
3171950913 110 m 2
3311968502 107 m 2,6
3405657847 106 m 2,8
3432719340 93 m 5,4
3544466934 86 m 6,8
3688497722 103 m 3,4
4114888848 104 m 3,2

In Automated Highway Systems] denotes that each of the vehicles keeps a constant
time headway λ, the distance (which is relative to the velocity) is then given by :

s∗i = xi−1 − xi = viλ+ d0 (5.2)

Where xi is the position of the ego vehicle and xi−1 the position of its prede-
cessor, vi is the velocity of the ego vehicle, λ is the time headway and d0 is the
standstill distance.

Deriving equation 5.2 gives the following, which the acceleration that the ve-
hicle should follow to maintain the distance s∗i :

ai =
vi−1 − vi

λ

Where vi−1 is the velocity of the predecessor.
Substituting d0 with 5.2 in equation 5.1 and assuming all the vehicles have the

same velocity meaning a state of equilibrium, gives the following :
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N =
L− xi

l + viλ+ d0

Thus, for example in Fig 5.4 and at the distance of 40m from the start of the
segment, where it had a velocity of 8.4 m/s. And assuming all vehicles have the
same velocity at that instant, and a length of 4m, that the standstill distance is
equal to 1m and that the time headway λ is equal to 1.5 seconds, then the queue
inside the segment would have 3.4 vehicles

5.5 Conclusion

In this chapter we used data from the CoopITS application. CoopITS is a C-ITS
simulation application deployed in France, where a smartphone plays the role of
a C-ITS station. Each action is logged by the application including sending and
receiving C-ITS messages. We were concerned with two specific recorded actions
by the application, the sending of a CAM message, and the TLM actions. A
matching between the CAMs and TLM records has been done and the results were
used to investigate the behavior of vehicles in signalized intersections. We chose a
segment where a traffic light intersection lies at its end, and we have analyzed the
speed profiles of vehicles where we observed and classified four patterns : a free
flow with a green light, a stop with a green light due to a queue, a freeflow with a
red light due to the respect of the speed advice given by the TLM and last a stop
with a red light due to the disrespect of the speed advice.

The rest of this chapter is covered by the following article:
Benzagouta, M. L., Aniss, H., Fouchal, H., El-Faouzi, N. E. (2023, September).

Impact of Speed Limitation on Urban Road Traffic. In International Conference
on Innovations for Community Services (pp. 89-102). Cham: Springer Nature
Switzerland.



Chapter 6

Conclusion

In this thesis, we delve in the state of the art into the varied domain of C-ITS,
exploring the interplay between communication standards, anomaly detection,
clustering algorithms, driver profiles, trajectory clustering, and traffic prediction
methodologies. In Chapter 1, a comprehensive introduction to vehicular applica-
tions sets the foundation for our research. Two communication standards for V2X
are introduced: C-V2X, exploiting cellular networks, and ITS-G5, utilizing WiFi
adhoc connectivity. The following chapters provide a coherent investigation that
integrates theoretical frameworks with empirical findings.

Chapter 2 delves into an extensive state-of-the-art review of C-ITS, offering
an understanding of existing works. This chapter also explores anomaly detection
methodologies, laying the groundwork for our focused investigation in Chapter
3. Our research methodology involves intricate data analysis using two distinct
datasets: PCAP files from a test vehicle’s travels in France, Germany, and Italy,
and data from the CoopITS phone application simulating a C-ITS-equipped vehi-
cle in the "Nouvelle Aquitaine" region.

Chapter 3 concerns our work on anomaly detection for Roadside Units (RSUs),
where end-user vehicles play a pivotal role. Two RSU profiles are defined: a
functioning RSU and one in failure. Criteria for the functioning RSU include an
ID larger than the OD and a Pearson’s coefficient of correlation between range and
signal power less than -0.4. A failing RSU fails to meet one or both conditions,
providing a robust framework for end-user vehicles to discern anomalies themselves
in the C-ITS environment.

Building upon an extensive review presented in Chapter 2, which covered clus-
tering algorithms and driver profiles, Chapter 3 focuses on trajectory clustering
as a means to detect anomalies and predict traffic patterns.

The trajectory clustering process started by selecting a set of trajectories along
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the same path traversed by multiple or a single driver. These trajectories are then
segmented into 10 distinct stretches, where each stretch or segment represents the
road between two consecutive crossings. A total of 609 trajectories, are subjected
to clustering using four algorithms: K-means, Agglomerative clustering, BIRCH,
and DBSCAN. The results of each algorithm are meticulously compared to ascer-
tain their effectiveness in identifying anomalies within the trajectory data.

Chapter 2 also laid the foundation for an overview on traffic prediction method-
ologies concerning road intersections. In Chapter 3, utilizing the same segmented
data, a specific segment with a traffic light is chosen. All trajectories within this
segment share a uniform direction. Leveraging Traffic Light Management (TLM)
data and Cooperative Awareness Message (CAM) records, a robust association
between speed advice and trajectories is established. This innovative approach
reveals four distinct driving patterns in intersections: 1) Free Flow with Green or
Yellow Light: Vehicles move seamlessly through the intersection with a favorable
signal. 2) Stop at a Green Light Due to Queue: Vehicles come to a halt at a green
light due to traffic congestion. 3) Free Flow with a Red Light Due to GLOSA:
Vehicles continue at a free flow despite a red light, adhering to the speed advice
provided by the Green Light Optimal Speed Advisory (GLOSA) system. and 4)
Stop at a Red Light Due to Non-Compliance: Vehicles come to a stop at a red
light due to non-compliance with the recommended speed advice.
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