
HAL Id: tel-04952358
https://theses.hal.science/tel-04952358v1

Submitted on 17 Feb 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Deep Learning for Partially Observed Dynamical
Systems

Thibault Monsel

To cite this version:
Thibault Monsel. Deep Learning for Partially Observed Dynamical Systems. Discrete Mathematics
[cs.DM]. Université Paris-Saclay, 2024. English. �NNT : 2024UPASG113�. �tel-04952358�

https://theses.hal.science/tel-04952358v1
https://hal.archives-ouvertes.fr

THE
SE

DE
DO

CTO
RAT

NN
T:2

024
UPA

SG1
13

Deep Learning for PartiallyObserved Dynamical Systems
Apprentissage profond pour les systèmes dynamiques

partiellement observables

Thèse de doctorat de l’université Paris-Saclay

École doctorale n◦580, Science et Technologies de l’Information et de laCommunication (STIC)Spécialité de doctorat : InformatiqueGraduate School : Informatique et sciences du numériqueRéférent : Faculté des sciences d’Orsay
Thèse préparée dans les unités de recherche Laboratoire Interdisciplinaire des Sciencesdu Numérique (Université Paris-Saclay, CNRS) et INRIA Saclay-Ile-de-France (UniversitéParis-Saclay, INRIA), sous la direction de Alexandre ALLAUZEN, professeur, avec leco-encadrement de Guillaume CHARPIAT chargé de recherche et Onofrio SEMERARO,chargé de recherche.

Thèse soutenue à Paris-Saclay, le 20 décembre 2024, par

Thibault MONSEL

Composition du jury
Membres du jury avec voix délibérative
Mathilde MOUGEOT Presidente du juryProfesseur, ENS Paris Saclay
Benjamin SANDERSE Rapporteur & ExaminateurAssociate Professor (équiv.HDR), Head of the Scienti-fic Computing group of Centrum Wiskunde, Informatica(CWI)
Luca MAGRI Rapporteur & ExaminateurFull Professor of Scientific Machine Learning Departmentof Aeronautics (équiv.HDR) - Faculty of Engineering, Im-perial College London
Nicolas THOME ExaminateurProfesseur, Sorbonne Université
Patrick KIDGER ExaminateurResearcher, Cradel.bio, Imperial College London
Camilla FIORINI ExaminatriceMaître de conférences, CNAM

Titre : Apprentissage profond pour des systèmes dynamiques partiellement observables
Mots clés : Apprentissage profond, Systèmes dynamiques, Systèmes partiellement observés,Équations Différentielles Ordinaires neuronales, Équations Différentielles à Retardement
Résumé : Les équations différentielles par-tielles (EDP) sont la pierre angulaire de la mo-délisation des systèmes dynamiques dans di-verses disciplines scientifiques. Traditionnelle-ment, les scientifiques utilisent une méthodo-logie rigoureuse pour interagir avec les pro-cessus physiques, collecter des données empi-riques et dériver des modèles théoriques. Ce-pendant, même lorsque ces modèles corres-pondent étroitement aux données observées,ce qui n’est souvent pas le cas, les simplifica-tions nécessaires à l’étude et à la simulationpeuvent obscurcir notre compréhension desphénomènes sous-jacents.Cette thèse explore la manière dont lesdonnées acquises à partir de systèmes dyna-miques peuvent être utilisées pour amélioreret/ou dériver de meilleurs modèles. Le ma-nuscrit se concentre particulièrement sur lesdynamiques partiellement observées, où l’étatcomplet du système n’est pas complètementmesuré ou observé. Grâce à la théorie dessystèmes partiellement observés, y compris leformalisme de Mori–Zwanzig et le théorèmede Takens, nous motivons une structure non-markovienne, en particulier les équations diffé-rentielles à retardement (EDR).En combinant le pouvoir d’expression desréseaux neuronaux avec les EDR, nous propo-sons de nouveaux modèles pour les systèmes

partiellement observés. Comme les EDPbaséessur les réseaux neuronaux (EDP neuronales)en sont encore à leurs débuts, nous étendonsl’état actuel de l’art dans ce domaine en étu-diant et en comparant les modèles d’EDP neu-ronales avec des types de retard arbitrairesconnus a-priori à travers une variété de sys-tèmes dynamiques. Ces références incluentdes systèmes avec des retards dépendant dutemps et de l’état. Sur la base de ces études,nous explorons ensuite la paramétrisation desretards constants dans les EDP neuronales.Nos résultats démontrent que l’introduction deretards constants pouvant être appris, par op-position à des configurations de retards fixes,permet d’améliorer les performances globalesde la modélisation et de l’ajustement des sys-tèmes dynamiques.Nous appliquons ensuite les EDP neuralesnon markoviennes avec des retards constantspouvant être appris à la modélisation de la fer-meture et de la correction des systèmes dy-namiques, en démontrant une meilleure pré-cision à long terme par rapport aux termesdes équations différentielles ordinaires. Enfin,nous explorons l’utilisation des EDRneuronalesdans le contexte de la commande prédictive demodèle pour le contrôle des systèmes dyna-miques.

Title : Deep Learning for Partially Observed Dynamical Systems
Keywords : Deep Learning, Dynamical Systems, Partially observed systems, Neural ODEs, DelayDifferential Equations
Abstract : Partial Differential Equations (PDEs)are the cornerstone ofmodeling dynamical sys-tems across various scientific disciplines. Tradi-tionally, scientists employ a rigorous methodo-logy to interact with physical processes, collectempirical data, and derive theoretical models.However, evenwhen thesemodels align closelywith observed data, which is often not the case,the necessary simplifications made for studyand simulation can obscure our understandingof the underlying phenomena.This thesis explores how data acquiredfrom dynamical systems can be utilized to im-prove and/or derive bettermodels. Themanus-cript focuses particularly on partially observeddynamics, where the system’s full state is notcompletely measured or observed. Throughthe theory of partially observed systems, inclu-ding the Mori–Zwanzig formalism and Takens’theorem, we motivate a non-Markovian struc-ture, specifically Delay Differential Equations(DDEs).By combining the expressive power of neu-ral networks with DDEs, we propose novel mo-

dels for partially observed systems. As neuralnetwork-based DDEs (Neural DDEs) are still intheir infancy, we extend the current state of theart in this field by studying and benchmarkingNeural DDE models with a-priori known arbi-trary delay types across a variety of dynamicalsystems. These benchmarks include systems,with time-dependent and state-dependent de-lays. Building upon these investigations, wethen explore the parameterization of constantdelays in Neural DDEs. Our findings demons-trate that introducing learnable constant de-lays, as opposed to fixed delay configurations,results in improved overall performance in dy-namical system modeling and fitting.We then apply the non-Markovian NeuralDDEs with learnable constant delays to dy-namical system closure and correction mode-ling, demonstrating improved long-term accu-racy compared to Ordinary Differential Equa-tion terms. Lastly, we explore the use of NeuralDDEs in the context of Model Predictive Control(MPC) for controlling dynamical systems.

3

4

Table des matières

Nomenclature 11

1 Introduction 13

2 Neural Differential Equations 19
2.1 Introduction . 19
2.2 The Neural ODE family . 20

2.2.1 Vanilla Neural ODE . 20
2.2.2 Augmented Neural ODEs . 21
2.2.3 Latent ODEs . 22
2.2.4 Hamiltonian Neural Networks . 23

2.3 Neural ODEs and Backpropagation . 23
2.3.1 Discretize-then-optimize . 24
2.3.2 Optimize-then-discretize . 25

2.4 Neural Delay Differential Equations . 25
2.4.1 Introduction . 25
2.4.2 Neural State and Time Dependent DDEs . 27

2.5 Neural DDEs and Backpropagation . 29
2.5.1 Discretize-then-optimize . 29
2.5.2 Optimize-then-discretize . 29

2.6 Neural Integro Differential Equations . 31
2.7 Neural IDE and Backpropagation . 32

2.7.1 Discretize-then-optimize . 32
2.7.2 Optimize-then-discretize . 33

2.8 Other Deep Learning Models loosely related to Neural DEs 33
2.8.1 Physics Informed Neural Networks . 34
2.8.2 Neural Operators . 34
2.8.3 Neural CDE . 36

2.9 Tips and tricks for Neural DEs . 36
3 Modeling Dynamical Systems 39

3.1 Introduction . 39
3.2 Mori Zwanzig formalism . 40

3.2.1 Derivation of the MZ equation . 40
3.2.2 MZ’s projection operators . 42
3.2.3 A simple example of MZ in practice . 43

3.3 Takens’ Theorem . 46
3.3.1 Introduction . 46
3.3.2 Embedding dimension . 48

5

3.3.3 The delay τ in the delay-coordinate map . 50
3.4 The Koopman Operator . 52

3.4.1 Introduction . 52
3.4.2 Dynamic Mode Decomposition (DMD) . 53
3.4.3 The Mori–Zwanzig framework within the Koopman theory 54

4 Time and State dependent Delay Differential Equations 57
4.1 Introduction . 57
4.2 Methods . 60
4.3 Experiments . 60

4.3.1 Description of the test cases . 60
4.3.2 Evaluation . 61

4.4 Results . 62
4.5 Conclusion and Future Work . 69

5 Neural DDEs with Learnable Delays for Partially Observed Dynamical Systems 71
5.1 Introduction . 71
5.2 Modelling Partially Observed Dynamical Systems . 72

5.2.1 Approximations of Integro-Differential Equations (IDE) 73
5.2.2 Exact representation with Neural DDE . 74

5.3 Neural Delay Differential Equations with Learnable Delays 75
5.4 Experiments . 76

5.4.1 Dynamical systems . 76
5.4.2 Results . 78

5.5 Conclusion . 82
6 Non-Markovian closure or correction modelling for dynamical systems 85

6.1 Introduction . 85
6.2 Theoretical context . 86

6.2.1 Dynamical system modelling . 86
6.2.2 Bridging the gap with closure and correction terms 87

6.3 Extending Neural ODE with time delays : Neural DDE . 88
6.3.1 The issue of non-locality . 88
6.3.2 Link to Mori–Zwanzig formalism . 90

6.4 Results . 90
6.4.1 Closure modelling with the ROMs . 90
6.4.2 Correction modelling on the KS System and Kolmogorov flow 94

6.5 Conclusion . 98
7 Conclusion 101

7.1 Synthese en francais . 105
6

A Appendix 107
A.1 Backpropagation . 107
A.2 Proof of theorem 2.3.2 ODE Adjoint . 109
A.3 Proof of theorem 2.5.1 DDE Adjoint . 111
A.4 Proof of theorem 2.7.2 IDE adjoint . 114
A.5 torchdde Package . 116

A.5.1 Key Features . 116
A.5.2 Code verification . 116

A.6 Overview in DDE integration . 123
A.6.1 Introduction . 123
A.6.2 Discontinuity tracking . 124
A.6.3 Unconstrained time stepping . 125
A.6.4 Pseudocode for DDE solver . 125

A.7 Appendix for Time and State Dependent DDE . 128
A.7.1 Memory and time complexity of Neural SDDDE 128
A.7.2 Training information . 128
A.7.3 Data generation parameters . 129
A.7.4 History step function experiment hyperparameters 129

A.8 Appendix for Neural DDEs with Learnable Delays for Partially Observed Dynamical Sys-
tems . 131
A.8.1 Cancelling out the noise term F (x, t) . 131
A.8.2 t-model derivation . 131
A.8.3 Learning the delays . 131
A.8.4 Neural IDE and Neural DDE Benchmark . 132
A.8.5 Proof of Proposition 5.2.1 . 134
A.8.6 The importance of relevant delays . 135
A.8.7 Additional experiments . 136
A.8.8 Training hyperparameters . 137

A.9 Appendix for Non-Markovian closure or correction modelling for dynamical systems . 141
A.9.1 POD Galerkin . 141
A.9.2 Hyperparameter and training information . 142

7

8

Table des figures

2.1 Latent ODE model with an ODE-RNN encoder. The ODE-RNN encoder runs backward
in time to produce an approximate posterior q(z0|{(x(ti), ti}Ni=0) over the initial latentstate z0 conditioned on the dataset {(x(ti), ti}Ni=0. Given a sample z0, the ODE decoderintegrates the latent state forward in time to produce the output that is then projected
into the space where the dataset lives in. Figure taken from [153]. 22

3.1 Decomposition of the observable dx(t)
dt into Markovian, Memory and Fluctuation terms

with the MZ equation for ω0 = 1, τ = 1.0 . 45
3.2 Decomposition of the observable dx(t)

dt into Markovian, Memory and Fluctuation terms
with the MZ equation for ω0 = 1, τ = 0.01 . 45

3.3 Decomposition of the observable dx(t)
dt into Markovian, Memory and Fluctuation terms

with the MZ equation for ω0 = 1, τ = 100 . 46
3.4 The Lorenz attractor and its three individual and delay-coordinate map for the x, y, z

coordinates with τ = 0.06 and (σ, ρ, β) = (10.0, 28.0, 8/3). 50
4.1 Time Dependent DDE randomly sampled test trajectory plots 63
4.2 State Dependent DDE randomly sampled test trajectory plots 63
4.3 Diffusion Delay PDE randomly sampled from the test set 64
4.4 Absolute error of Diffusion Delay PDE randomly sampled from the test set 64
4.5 Time-dependent DDE randomly sampled test set trajectories where 50% of data is fed

to Neural Laplace . 65
4.6 Time Dependent DDE randomly sampled extrapolated trajectory plots 66
4.7 State Dependent DDE randomly sampled extrapolated trajectory plots 66
4.8 Diffusion Delay PDE randomly sampled from the extrapolated test set 67
4.9 Absolute error of Diffusion Delay PDE randomly sampled from the extrapolated test set 67
4.10 Time Dependent DDE randomly sampled from history step function 68
4.11 State Dependent DDE randomly sampled from history step function 68
5.1 The MZ equation DDE approximation used to model partially observed systems. Here

h(·) is a measurement sensing operator. 72
5.2 Modelling possibilities . 73
5.3 Sketch of open cavity flow. Sensor placed in P. 77
5.4 Toy dataset random test sample . 79
5.5 Toy dataset delay evolution during training . 79
5.6 Brusselator random test sample . 80
5.7 KS random test sample (Part 1) . 80
5.8 KS random test sample (Part 2) . 81
5.9 Example of KS test set density plots . 81
5.10 Cavity random test samples . 82

9

5.11 NDDE’s with constant and learnable delays MSE train loss averaged over 5 runs 82
6.1 KS’s reconstruction accuracy . 91
6.2 Randomly sampled predictions of POD Galerkin ROM (4 modes) from KS test set 92
6.3 Randomly sampled predictions of PODGalerkin ROM (4modes) fromKS test set recons-

tructed in original state space . 93
6.4 4 modes train loss for DDE-ROM with {1,2,3} delays . 93
6.5 8 modes train loss for DDE-ROM with {1,2,3} delays . 93
6.6 8 modes train loss for DDE-ROM with {1,2,3} delays . 93
6.7 Summary of model performance metrics, comparing the test MSE loss of the linear mo-

del with its ODE, CD and DDE correction terms . 94
6.8 Randomly sampled predictions of the linear model with its ODE, CD or DDE correction

terms from the KS test set . 95
6.9 Random test sample from the Kolmogorov flow. CD, ODE and DDE correction terms are

compared with the linear model. 97
6.10 Random test sample from the Kolmogorov flow. The absolute error of CD, ODE andDDE

correction terms with the linear model are compared. 98
A.1 Influence of the delay τ on the loss . 117
A.2 Training loss curve for the adjoint method and traditional backpropagation 118
A.3 Influence of the delay τ1, τ2 on the loss for the two delays system where ⋆ indicates the

optimal delay values . 119
A.4 Training loss curve for the adjoint method and traditional backpropagation for the two

delays system . 119
A.5 Time duration of forward pass averaged over 5 runs . 121
A.6 Memory consumption of forward pass averaged over 5 runs 121
A.7 Delay’s evolution during training for each experiment mentioned on each subplot’s y-

axis . 132
A.8 Time duration of forward pass averaged over 5 runs . 133
A.9 Memory consumption of forward pass averaged over 5 runs 134
A.10 {τ1 = p1∆t, τ2 = p2∆t}-mapofDelayedMutual Information, I ((g(t− τ1), g(t− τ2)) , g(t)).The maximum is exhibited at (125, 200) and (200, 125), in accordance with p⋆1 = 125,

p⋆2 = 200. 136
A.11 Random test sampled of Shallow Water dataset . 137

10

Nomenclature

Symbols

λ(t) The adjoint state
J1, NK, Set of integers between 1 and N
R+ The set of strictly positive real numbers
Rd1×···×dk The space of tensors of shape d1 × · · · × dk

A,U Banach spaces
B Operator associated with the boundary and/or initial conditions of a PDE
D Differential operator associated to a PDE
F Fourier Transform
G infinitesimal generator of a dynamical system
K Koopman operator or Kernel integral operator
L Liouville operator
Md(R) Set of d× dmatrices with real entries
P Projector operator
Q Orthogonal projector operator
∂fθ
∂x

∣∣∣∣
t

The partial derivative of fθ with respect to x evaluated at time t
∂fθ
∂x The partial derivative of fθ with respect to x
ψ(t) or ϕ(t) Delay Differential Equation’s history function
τ The time delay
θ The neural network’s parameters
g(t) The observable function
x(t) or y(t) The full dynamical system’s state

11

Abbreviations

AD Autodifferentiation
ANODE Augmented Neural ODE
CEM Cross Entropy Method
DAE Differential Algebraic Equations
DDE Delay Differential Equations
DMD Dynamics Mode Decomposition
GLE Generalized Langevin Equation
GRU Gated Recurrent Unit
IDE Integro Differential Equations
JVP Jacobian Vector Product
KS Kuramoto Sivashinsky
LSTM Long Short Term Memory
MLP Multi Layer Perceptron
MPC Model Predictive Control
MZ Mori–Zwanzig
NCDE Neural Controlled Differential Equations
NDDE Neural DDE
NHH Hamiltonian neural networks
NO Neural Operator
NODE Neural ODE
NPCDDE Neural Piecewise Constant DDE
NSDDDE Neural State dependent DDE
ODE Ordinary Differential Equations
PINN Physics Informed Neural Network
RNN Recurrent Neural Networks
VJP Vector Jacobian Product
w.r.t with respect to

12

1 - Introduction

The early 20th century saw quantummechanics revolutionize our unders-
tanding of the physical world, especially at atomic and subatomic scales. This
advancement brought forth the challenge of accurately modeling open quan-
tumsystems,which interactwith their environment. A significant breakthrough
in this field occurred in the 1960s with Felix Bloch and his colleagues’ work
on nuclear magnetic resonance (NMR) [65]. NMR spectroscopy had become
a powerful tool for studying molecular structure and dynamics, but resear-
chers noticed that observed relaxation times of nuclear spins often deviated
significantly from simple quantum model predictions.

Initial spin relaxationmodelswere basedonMarkovian assumptions,which
posited that a system’s future state depended only on its present state, not
its history [53]. These models treated the interaction between the spin sys-
tem and its environment as a series of uncorrelated, random perturbations.
However, these Markovian models failed to accurately predict the behavior
of many real quantum systems, particularly in complex molecular environ-
ments.

Bloch and others realized that these discrepancies arose because they
were dealing with a partially observed system [19]. While they could measure
nuclear spin behavior, they couldn’t directly observe all the complex interac-
tions with the surrounding environment. Moreover, they discovered that the
history of these interactions – information not captured in Markovian models
– was crucial for accurate predictions.

This realization led to the development of more sophisticated models in-
corporating non-Markovian effects. These models accounted for memory ef-
fects in the system-environment interaction, recognizing that past states could
influence future evolution in ways not captured by purely present-state de-
pendence. The inclusion of non-Markovian terms dramatically improved pre-
diction accuracy in NMR spectroscopy and other quantum systems. It allowed
researchers to better model phenomena such as spectral line shapes, cohe-
rence transfer, and relaxation processes in complex molecular systems.

This introductory example effectively demonstrates the critical need to
acknowledge and account for the constraints of our observational abilities
when constructingmodels. It underscores the significance of integrating these
limitations into our theoretical frameworks to ensuremore accurate and com-
prehensive representations of complex systems.

13

Thus, the aim of this doctoral thesis is to design methods that can accu-
rately model complex dynamical systems, particularly those with partially ob-
served dynamics. To this end, we propose different data-driven approaches
that can capture both Markovian and non-Markovian contributions to system
dynamics. We focus on developing Delay Differential Equations (DDEs) and
their applications in physics. DDEs provide a natural framework for capturing
non-Markovian effects, as they explicitly account for delays in system evo-
lution. By integrating Delay Differential Equations (DDEs) with the power and
flexibility of neural networks, we open up newpossibilities for creating sophis-
ticated, data-driven models. This synergistic approach allows us to construct
highly adaptable frameworks capable of capturing and predicting the intricate
dynamics of a diverse array of systems. Themarriage of DDEs and neural net-
works enables us to leverage the strengths of both methodologies : the expli-
cit time-delay modeling of DDEs and the complex pattern recognition abilities
of neural networks.

Prerequistes

This thesis is aimed at a broad audience coming from a STEM background
but certain prerequisites are strongly recommended, if not required. Among
those, the reader should have some familiaritywithOrdinaryDifferential Equa-
tions (ODEs), their numerical integration and the basics of modern deep lear-
ning. Apart from these assumptions, other concepts will be introduced and
based off these requisites. Several Appendices are included to provide an in-
troduction or review on these introduced topics.

Main Contributions

The material in this thesis is either (a) original work conducted during the
PhD with or without collaborators, or (b) where relevant prior or concurrent
work included for reference, to provide a survey of the field.

The primary contributions of this thesis are centered on the comprehen-
sive development of delay differential equations and their applications within
machine learning and physics.

• Time and State Dependent Neural DDEs : This contribution focuses
on enhancing Neural DDEs through the incorporation of delays that de-
pend on time and/or state. This enhancement enables the represen-
tation of systems characterized by diverse types of delays, which are
prevalent in practical applications such as biology and engineering. The

14

resulting general-purpose Neural DDEs are compared with other exis-
ting models, demonstrating greater expressiveness and accuracy.

• NeuralDDEswith LearnableDelays for PartiallyObserved Systems :
This contribution expands Neural DDEs by introducing learnable delays
for dynamical systems that are only partially observed. The adjoint me-
thod ismeticulously derived for Neural DDEs featuring learnable delays.
Moreover, the Mori–Zwanzig formalism establishes a connection bet-
ween Neural DDEs and partially observed systems. The ability to learn
delays adds a layer of complexity and expressivity to the model. These
Neural DDEswith learnable parameters are evaluated against othermo-
dels in literature, proving to be more accurate. Additionally, an open-
source library named torchdde is developed for the implementation of
Neural DDEs.

• Non Markovian modeling : This contribution mainly functions as an
application of the research outlined in the thesis. Neural DDEs with lear-
nable delays are employed to model non-Markovian closure (or correc-
tion) terms in physical surrogate models. When compared to ODE-type
closure (or correction) models, the proposed model shows enhanced
accuracy in representing the system’s dynamics. This application also
demonstrates that the package torchdde can be used tomodel complex
physical systems and scale with large networks (≈ 8million parameters
were used for an experiment).

Outline

The thesis is organized around the scientific contributions that have been
produced over the course of the PhD. The first two chapters serve as intro-
ductions to the field of Neural Differential Equations and dynamical systems’
modeling. The following chapters are dedicated to the main contributions of
the thesis. The final chapter concludes the thesis and provides a discussion
on future work. We provide below a summary of each chapter :

• Chapter 2 introduces Neural Differential Equations and offers a survey
of the field. Neural ODEs, DDEs and Integro-Differential Equations (IDEs)
are introduced along with their training procedures (regular backpropa-
gation and the adjoint method).

• Chapter 3 provides an introduction to dynamical systems and their mo-
deling. The chapter covers the theoretical basics of the Mori–Zwanzig
formalism, Takens’ theoremand theKoopmanoperator. These concepts

15

are essential for the understanding of the motivations of the following
chapters. All the concepts are introduced in a self-contained manner
and introduced in their continuous-time form.

• Chapter 4 is based on the following publication :
T.Monsel, O.Semeraro, L.Mathelin, and G.Charpiat, "Time and State

DependentNeural DelayDifferential Equations", Proceedings ofMachine
Learning Research 255 :1–20, 2024 ML-DE Workshop at ECAI 2024
https://arxiv.org/pdf/2306.14545.
This publication presents the initial contribution of the thesis with the
goal of adapting Neural DDEs to incorporate known arbitrary types of
delays a priori. This enhancement is integrated into the existing litera-
ture and is demonstrated to address a more general test case than the
previously introduced Neural DDEs. The model is assessed using a se-
ries of benchmarks and compared to established models.

• Chapter 5 is based on the following pre-print submitted for publication :
T.Monsel, E.Menier, O.Semeraro, L.Mathelin, and G.Charpiat, "Neural
DDEs with Learnable Delays for Partially Observed Dynamical Systems",
pre-print, 2024. [121]

This pre-print presents the extension of Neural DDEs to include lear-
nable delays for partially observed systems. The adjoint method is de-
rived for Neural DDEs with learnable delays, and the Mori–Zwanzig for-
malism is used to establish a connection between Neural DDEs and par-
tially observed systems. Themodel is evaluated against other models in
the literature, demonstrating its competitive performance.

• Chapter 6 is based on the undergoing research to be submitted soon :
T.Monsel, O.Semeraro, L.Mathelin, and G.Charpiat, "Non-Markovian

closure or correctionmodeling for dynamical systems", in progress, 2024.
This chapter presents the application of Neural DDEs with learnable de-
lays to model non-Markovian closure (or correction) terms in physical
surrogate models. The chapter demonstrates the model’s ability to ac-
curately represent the system’s dynamics andoutperformODE-type clo-
sure (or correction) models. Theoretical links are made with the Mori–
Zwanzig formalism.

16

https://arxiv.org/pdf/2306.14545

• Chapter 7 Concluding remarks of the thesis.

17

Acknowledgements

The completion of my PhD thesis would not have been possible without
the support and guidance of many individuals and institutions. I am deeply
grateful to all who have assisted me throughout this journey.

First, I would like to expressmydeepest gratitude tomyadvisors, Guillaume,
Onofrio and Lionel for their invaluable guidance, support, and encourage-
ment. Their expertise and insights have greatly enriched my work, and their
belief in my abilities has been a constant source of motivation.

My heartfelt thanks go tomy colleagues and friends in the lab, particularly
Remy, Amine, Alice, Matthieu, Emmanuel, Lucas, Manon and Michele. Their
camaraderie and the stimulating discussions we shared have been an essen-
tial part of my academic journey.

I amprofoundly grateful tomy family for their unwavering support and en-
couragement. Tomy parents, Veronique and Eric, thank you for your constant
love and sacrifice. Tomy siblings, Pierre andGuillaume, thank you for your un-
derstanding, patience and support. Lastly, to all my friends, Guillaume, Gre-
goire, Lena, Clement C, Clement T, Astrid, Paul, Mathilde, Nina, Aubry, Tho-
mas, Julien, Benoit, Arnaud, Nicolas and many others that have been there
for these three years, thank you.

Finally, I would like to dedicate this thesis to LISN lab and TAU team, whose
influence and inspiration have drivenme to undertake and complete this chal-
lenging work.

Thank you all.

18

2 - Neural Differential Equations

This chapter introduces the concept of Neural Differential Equation (sy-
nonymous to continuous-depth models), a class of neural networks that le-
verages continuous time transformations to model data. We begin by defi-
ning the Neural ODE model, the pioneering Neural Differential Equation (DE),
along with various adaptations. Next, we explain the process of backpropa-
gation for these models. Then, we highlight the original contributions of this
thesis, focusing on the comprehensive development and establishment of
Neural DDEs. Finally, we present another type of Neural DE, Neural Integro-
Differential Equation (IDE) and other deep learning models that are loosely
related to Neural DEs.
Remark 2.0.1. This thesis does not cover any type of Stochastic Differential Equa-
tions (SDEs [182]) since no stochastic systems were studied.

2.1 . Introduction

Continuous-depth models represent a type of neural network that stands
apart from "traditional" Deep Learning models through their use of conti-
nuous transformations. The specific term "continuous-depth model" was in-
troduced in the seminal Neural ODE paper [29], marking the inception of the
first Neural DE model of its kind. A Neural ODE is defined as :

dx(t)

dt
= fθ(t, x(t)), x(0) = x0 (2.1)

where θ represent the parameters, fθ : R × Rd1×···×dk → Rd1×···×dk is an
arbitrary neural network, x0 ∈ Rd1×···×dk the initial condition and x : [0, T] →
Rd1×···×dk is the equation’s solution.

In 2015, the groundbreaking Residual Network (Resnet) model introduced
the use of residual connections in neural network layers [68]. Resnet’s discrete
transformations are :

xj+1 = xj + fθj (xj) (2.2)
where fθj is the j − th residual block. These iterative updates can be seen as
an explicit Euler discretization of a continuous transformation [61, 157, 109]. If
we discretize Equation 2.1 with an explicit Euler scheme at time tj uniformly
separated by∆t, we obtain the following update rule :

x(tj+1) = x(tj) + ∆tfθ(tj , x(tj)).

19

Incorporating ∆t with fθ, we get the Resnet’s residual block Equation 2.2.With this in mind, we clearly see that neural ODEs are the continuous limit of
a residual network. Moreover, many popular deep learning architectures like
the GRU [31] (Remark 2.1.1 provides the derivation of GRUs’s continuous-time
formulation), the LSTM [70] or invertible coupling layers [11] can be seen as
discretized differential equations.
Remark 2.1.1. Recall that a GRU is defined with the following equations with the
matrix weights {Wi}6i=1 and biases {bi}4i=1 :

ij = σ(W1xj +W2hj + b1)

rj = σ(W3xj +W4hj + b2)

nj = tanh(W5xj + b3 + rj ⊙ (W6hj + b4))

hj+1 = nj + ij ⊙ (hj − nj)

(2.3)

for the input dataxj and its associated hidden statehj . Here⊙ denotes the element-
wise product and σ is the sigmoid function.

The GRU cell is an explicit Euler discretization of the following continuous-time
differential equation :

i(t) = σ(W1x(t) +W2h(t) + b1)

r(t) = σ(W3x(t) +W4h(t) + b2)

n(t) = tanh(W5x(t) + b3 + r(t)⊙ (W6h(t) + b4))

dh(t)

dt
= (1− i(t))⊙ (n(t)− h(t))

(2.4)

2.2 . The Neural ODE family

In this subsection, we will delve into several notable and widely-used Neu-
ralODEarchitectures, includingAugmentedNeuralODE [44], LatentODE [153],
Hamiltonian Neural Networks [57]. It is important to note that there aremany
specific variations of Neural ODEs and will not cover all of them.

2.2.1 . Vanilla Neural ODE
A Neural ODE, introduced in Chen et al. [29] (the first instance of it was

actually in [148]), is defined as :
dx(t)

dt
= fθ(t, x(t)), x(0) = x0 (2.5)

where θ represent the parameters, fθ : R × Rd1×···×dk → Rd1×···×dk is an
arbitrary neural network, x0 ∈ Rd1×···×dk is an arbitrary tensor and x : [0, T] →
Rd1×···×dk is the equation’s solution.

20

Themodel’s existence and uniqueness is guaranteed by the Cauchy–Lipschitz
theorem given that fθ is Lipschitz continuous, something that is often true for
neural networks [186].
Theorem 2.2.1 (Cauchy–Lipschitz Theorem). Let f : [0, T]×Rd → Rd be conti-
nuous in t and uniformly Lipschitz in x . Let x0 ∈ Rd. Then, there exist a unique
differentiable function x : [0, T] → Rd such that :

dx(t)

dt
= f(t, x(t)), x(0) = x0.

This is awell established result and the proof can be found in any standard
textbook on differential equations [23].
Remark 2.2.2. In the Augmented Neural ODE paper [44] introduced hereafter,
authors present a counter-example demonstrating that Neural ODEs cannot re-
present certain types of functions (Section 3 of [44]), indicating that NODEs are not
a universal approximator. They design a problem where ODE trajectories must
intersect, something impossible due to Theorem 2.2.1.

2.2.2 . Augmented Neural ODEs
Augmented NODEs (ANODEs) were able to alleviate NODEs’ expressivity

bottleneck by augmenting the dimension of the space allowing the model to
learn more complex functions using simpler flows [44]. Let a(t) ∈ Rp denotes
a point in the augmented space, the ODE problem is formulated as

d

dt

[
x(t)
a(t)

]
= fθ

(
t,

[
x(t)
a(t)

])
,

[
x(0)
a(0)

]
=

[
x0
0

]
. (2.6)

Regarding their expressive power, Augmented Neural ODEs are univer-
sal approximators, even if their vector fields themselves are not necessarily
universal approximators ([80] App C.1).
At times, ANODEs are regarded as being non Markovian. I do not fully agree
with this perspective and believe it’s essential to clarify this matter. When
considering the augmented full state [x(t), a(t)], themodel calculates the next
state by only using the current state [x(t), a(t)] and the present time t. This
exemplifies a Markovian characteristic. While the augmented variable a(t)
may be somewhat opaque, it does not alter the Markovian nature of the mo-
del. The opposing point of view sees that lifting into a higher-dimensional
space may be regarded as a relaxation of the Markov property because for
s < t the output x(s) does not completely determine x(t) (because it is deter-
mined by [x(t), a(t)]).

21

2.2.3 . Latent ODEs

Figure 2.1 – Latent ODE model with an ODE-RNN encoder. The ODE-RNN encoder runs backward in time to produce an approximate poste-rior q(z0|{(x(ti), ti}Ni=0) over the initial latent state z0 conditioned on thedataset {(x(ti), ti}Ni=0. Given a sample z0, the ODE decoder integratesthe latent state forward in time to produce the output that is then pro-jected into the spacewhere the dataset lives in. Figure taken from [153].
The variational-autoencoder model uses an ODE-RNN encoder and ODE

decoder architecture to construct a continuous timemodel with a latent state
defined at all times [153]. The ODE-RNN encoder runs backward in time to
produce hi hidden state features at each time ti that combines the ODE inte-
gration and RNN cell operation which is outlined in Algorithm 1 and displayed
in Figure 2.1.

Algorithm 1 ODE-RNN
1: Input : Data points and their timestamps {(xi, ti)}i=1..N2: h0 = 0
3: for i in N, N-1, . . ., 1 do
4: h′i = ODESolve(fθ, hi−1, (ti−1, ti)) {Solve ODE to get state at ti}5: hi = RNNCell(h′i, xi) {Update hidden state given current obser-vation xi}6: end for
7: oi = OutputNN(hi) for all i = 1..N
8: Return : {oi}i=1..N ;hN

Themeanand standarddeviation of the approximate posterior q(z0|{(x(ti), ti}Ni=0)are function of the final hidden state of the ODE-RNN :
q(z0|{(x(ti), ti}Ni=0) = N (µz0 , σz0)

where µz0 , σz0 = g(ODE-RNNϕ({(x(ti), ti}Ni=0)

22

where g is a neural network translating the final hidden state of the ODE-
RNN encodes into the mean and variance of z0. Then, the sample z0 is inte-grated in time and projected back onto the original space to get the output.
Compared to ANODEs, Latent ODE is clearly a non-Markovian model because
of the latent state z0 and the ODE-RNN.

2.2.4 . Hamiltonian Neural Networks
Hamiltonian neural networks (HNN) aim to learn the Hamiltonian opera-

tor H of a system [57]. This approach is particularly relevant as numerous
physical systems adhere to Hamiltonian dynamics. In this framework, gene-
ralized coordinates p ∈ Rd and q ∈ Rd, representing momentum and position
respectively, evolve according to the following ODE :

dp(t)

dt
= −∂H(p, q)

∂q

dq(t)

dt
= +

∂H(p, q)

∂p

(2.7)

Various adaptations of the HNN concept have been proposed. For instance,
Duong and Atanasov [43] developed a version of HNN on the SE(3)manifold
tomodel rigid body dynamics. Desai et al. [38] extendedHamilton’s equations
to incorporate energy dissipation and external control inputs in dynamical
systems. Finally, David and Méhats [37] leveraged the symplectic structure
inherent to Hamiltonian systems, introducing a novel loss function that theo-
retically ensures the existence of an exact Hamiltonian function, which the
HNN can then learn.

2.3 . Neural ODEs and Backpropagation

Kidger’s thesis on Neural Differential Equations [80] is the most compre-
hensive work on the subject of Neural Differential Equations. Therefore, we
decide to adopt the vocabulary used in his manuscript, and more specifically
discretize-then-optimize and optimize-then-discretize jargon.

In order to train a Neural ODE, we need to compute the gradient of the
loss with respect to the parameters θ. Two options are available. On the one
hand, discretize-then-optimize is fast and accurate but memory intensive. On
the other hand, optimize-then-discretize is slow and less accurate but memory
efficient.
For an unfamiliar audience, we provide some background on neural network
backpropagation in Appendix A.1. Backpropagation is the cornerstoneofDeep

23

Learning and is used to compute the gradient of the loss functionwith respect
to the parameters of the model. For Neural DEs, backpropagation can be a
bit more involved computationally, leading to the development of an alterna-
tive approach known as the optimize-then-discretize, or adjoint method. This
is seen and explained in later subsequent sections of this chapter for each
introduced Neural DE model.
Remark 2.3.1. Some empirical studies have been done to compare bothmethods
mentioned above for Neural ODE [114, 115].

2.3.1 . Discretize-then-optimize
This corresponds to the "regular backpropagation" we are used to. Given

the requirement, that the ODE solver is written with an auto-differentiable pa-
ckage like JAX or PyTorch, we backpropagate through the internal operations
of the solver. Advantages and drawbacks of this method are found in Kidger’s
thesis but we quickly enumerate them [80].

Pros :
• Accuracy of gradients The computed gradients will be accurate for the
discrete model that is actually being used. This is in contrast to optimize
then discretize which computes only approximate gradients.

• Speed This is often the quickest way to backpropagate. One reason for
this is that the full computation graph is known prior to performing the
backpropagation, and so the underlying autodifferentiation library may
better exploit parallelism.

• Easeof implementation The implementation of discretize-then-optimize
is generally straightforward : provided the differential equation solver is
written in an AD framework, then gradients may automatically be com-
puted.

Cons :
• Memory requirements This approach must store every internal ope-
ration of the solver. If the memory cost of recording the operations
of a single differential equation step is H , and recalling that T is the
time horizon, then this approach consumes O(HT) memory. This is in
contrast to the optimize then discretize approach which reduces this
to only O(H). However, there are ways to lower the memory footprint
of this method, such as using recursive checkpointing [58, 80]. Using a
checkpointing strategy, the memory cost can be reduced to O(H log T)

and is in fact the de factomethod used in practice (in the diffrax library
for example).

24

2.3.2 . Optimize-then-discretize
This approach was first mentioned in the Machine Learning community

in Neural ODE paper [29] but is a widely used technique in many scientific
communities, notably to do PDE-constrained optimization [143, 62, 18]. Ins-
tead of backpropagating through the ODE solver, we differentiate the ideali-
zed continuous-time model.
Theorem 2.3.2 (ODE adjoint method). Let us consider the continuous-depth
ODE model below defined with the same hypothesis as in Theorem 2.2.1 :

dx(t)

dt
= fθ(t, x(t)), x(0) = x0 (2.8)

and the following loss function L :

L(x(T)) =

∫ T

0
l(x(t)) dt.

The gradient’s loss w.r.t. the parameters is given by :

dL

dθ
= −

∫ T

0
λ(t)

∂fθ(t, x(t))

∂θ
dt. (2.9)

where the adjoint dynamics λ(t) are given by another ODE :

dλ(t)

dt
= −λ(t)∂fθ(t, x(t))

∂x
, λ(T) = −∂L(x(T))

∂x
(2.10)

We provide proof of the ODE adjoint theorem 2.3.2 in Appendix A.2. Vector
matrix multiplications found in Equation 2.10 and 2.9 can be efficiently com-
puted with Vector Jacobian products (VJPs) in auto-differentiable libraries. For
a more in depth discussion on the adjoint method, we refer the reader to
Pontryagin [143] and for a more ML context to Kidger [80] and Menier et al.
[116].

2.4 . Neural Delay Differential Equations

Before diving into the section, the readermust be familiarwith the concept
of Delay Differential Equations (DDEs). If this isn’t the case, we provide the fol-
lowing literature [13, 12, 206] or our "quick" DDE introduction in Appendix A.6
that aims at showing the common challenges encountered in integration with
DDE solvers and how it differs from ODEs.

2.4.1 . Introduction
This new type of neural differential equations aims at modeling DDEs with

neural networks. The first appearance of such an instance dates back to 2021
25

with the formulation of a single constant delay DDE [200], defined as :
dx(t)

dt
= fθ(t, x(t), x(t− τ))

x(t ≤ 0) = ψ(t)
(2.11)

where θ represent the parameters, fθ : R×Rd1×···×dk×Rd1×···×dk → Rd1×···×dk

is a neural network, ψ : R → Rd1×···×dk the DDE’s history function, τ ∈ R+ the
constant delay and x : [0, T] → Rd1×···×dk is the equation’s solution.
Remark 2.4.1. The history functionψ in a DDE is analogous to the initial condition
x0 in an ODE. Specifically, x(t − τ) for t ∈ [−τ, 0] must be provided as input for
fθ to be well-posed.

Hereafter, the same authors introduced a new model, Neural Piecewise-
Constant DDEs (NPCDDEs) [201]. This model is a special case of Neural DDEs
where piece-wise constant delays are used [27, 34]. Formally, NPCDDEs is de-
fined as :

dx(t)

dt
= fθ(t, x(t), x(⌊

t

τ
⌋τ), . . . , x(⌊ t− nτ

τ
⌋τ)), n ∈ N, τ ∈ R+

x(−nτ) = · · · = x(−τ) = x(0) = x0

(2.12)

Remark 2.4.2. The reader might notice that there isn’t any history function here
for the piecewise constant DDEs. This is perfectly normal because of the floor func-
tion t 7→ ⌊t⌋ properties. Indeed, t 7→ (⌊ t−nτ

τ ⌋τ) is a step function constant on
intervals of length nτ . Therefore, the DDE’s history function x(t ≤ 0) only needs to
be defined at multiples of τ .

Remark 2.4.3. In the paper’s experimental section, the authors only use a single
piece-wise constant delay even though NPCDDEs is defined with multiple delays.
To the best of our knowledge (since no code is associated to the paper), experi-
mentation of Neural DDEs with several delays has not been done so far in the
literature.

Remark 2.4.4. To the best of our knowledge, the first implementation appea-
rance of Neural DDE 1. Upon examining it, we discovered that the authors’ claim
of fitting DDEs with neural networks was inaccurate. This is evident in the code,
where the training data is interpolated before integrating the DDE 2. Hence, their
modeling choice is the following :

dx(t)

dt
= f(t, x(t), ϕ(t− τ))

x(t ≤ 0) = ψ(t)

1. https://github.com/zhuqunxi/NDDE/blob/main/Examples/MackeyGlass/MGlass.py2. https://github.com/zhuqunxi/NDDE/blob/1e30916fc7e39f75f9a02fe36571064ab3b5b25d/Examples/MackeyGlass/MGlass.pyL50C5−
L50C43

26

https://github.com/zhuqunxi/NDDE/blob/main/Examples/Mackey_Glass/MGlass.py
https://github.com/zhuqunxi/NDDE/blob/1e30916fc7e39f75f9a02fe36571064ab3b5b25d/Examples/Mackey_Glass/MGlass.py##L50C5-L50C43
https://github.com/zhuqunxi/NDDE/blob/1e30916fc7e39f75f9a02fe36571064ab3b5b25d/Examples/Mackey_Glass/MGlass.py##L50C5-L50C43

where ϕ(t) is a cubic spline interpolator constructed from the training data. Es-
sentially, this reduces to an ODE since ϕ is interpolated. This becomes evident by
incorporating ϕ(t − τ) into the time dependence of the vector field, i.e., defining
fnew(t, x(t)) = f(t, x(t), ϕ(t− τ)).

2.4.2 . Neural State and Time Dependent DDEs
In this subsection, we aim to expand the scope of Neural DDEs by ensu-

ring compatibility with a variety of delay types and accommodating multiple
delays. We call this model Neural State Dependent DDEs (SDDDEs) and is one
of the thesis main contribution [122]. The model is defined as :

dx(t)

dt
= fθ(t, x(t), x(α1(t)), . . . , x(αk(t)))

αi(t) = t− τi(t, x(t)), ∀i ∈ J1, kK

x(t ≤ 0) = ψ(t),

(2.13)

where θ represent the parameters, fθ : R × Rd1×···×dk × · · · × Rd1×···×dk →
Rd1×···×dk is an arbitrary neural network, ψ : R → Rd1×···×dk the DDE’s his-
tory function, τi : R × Rd1×···×dk → R+ the delay functions and x : [0, T] →
Rd1×···×dk the equation’s solution.
Remark 2.4.5. What is meant by any type of delays is that the delay function τi
can be any function of time and/or state or none. This includes time-dependent
delays, state-dependent delays, etc. In many applications, such delays arise. De-
lays feature prominently in real-world scenarios, giving rise to a multitude of ap-
plications such as modeling molecular kinetics [152] and diffusion processes [45],
as well as in physics for semiconductor laser modeling [187], climate research for
El Niño current descriptions [52, 78], infectious disease studies [35], and tsunami
forecasting applications [192], among others.

It is important to note that this Neural SDDDE model is not capable of
handling delays that are continuous in the sense of delays that are expressed
with integrals as can be found in integro-differential equations. The types of
delays that can be handled are listed in Table 2.1.
Table 2.1 – Comparison of DDE implementations with Neural Differen-tial Equations

Delay types Neural DDE [200] NPCDDEs [201] Neural SDDDE [This thesis]
Constant √

×
√

Piece-wise constant ×
√ √

Time-dependent × ×
√

State-dependent × ×
√

27

Similar to ODEs, the establishment of existence and uniqueness theorems
for DDEs relies on the functions’ continuity concerning t and Lipschitz conti-
nuity concerning x and its delayed counterparts x(t−τ). Demonstrating such
a theorem becomes intricate due to the varied types of delays encountered
(such as time-dependent, state-dependent, etc.) and their multiplicity, making
it a less practical endeavor in our scenario. In the following theorems, we pro-
vide the existence and uniqueness theorem for the single (constant and state
dependent) delay DDE.
Theorem 2.4.6 (Constant Delay : Existence and Uniqueness). Let f : [0, T] ×
Rd × Rd → Rd be continuous in t and Lipschitz continuous with respect to its
other arguments. Let ψ : R → Rd be continuous and let τ ∈ R+. Then, there exist
a unique continuous solution x : [0, T] → Rd such that :

dx(t)

dt
= f(t, x(t), x(t− τ))

x(t ≤ 0) = ψ(t).

Remark 2.4.7. The existence and uniqueness proof for such a single constant
DDE is a direct application of the Cauchy–Lipschitz theorem 2.2.1 on subintervals
of [0, T]. Indeed, in the interval [0, τ], the DDE reduces to an ODE and Cauchy–
Lipschitz can be applied. By iteratively applying such a result on the intervals [iτ, (i+
1)τ], i = 0, 1, . . . , we can establish the global existence and uniqueness of the DDE
solution on [0, T]. This method is known in the literature as the method of steps
introduced by Bellman in the 1960s [13].

In the scenario of state-dependent delays, when the delays τ disappear at
certain points t∗, proving existence and uniqueness becomes more challen-
ging. Driver [42] proved the following theorem, where the version presented
here is sourced and adapted from [12].
Theorem2.4.8 (State Dependent Delay : Local Existence andUniqueness). Let
U ⊂ Rd and V ⊂ Rd be neighborhoods ofψ(0) andψ(0−τ(0, ψ(0))) respectively,
and assume that f : [0, T] × Rd × Rd → Rd be continuous in t and Lipschitz
continuous with respect to its other arguments in [0, h]× U × V for some h > 0.
Moreover, let the history function ψ : R → Rd be Lipschitz continuous in t and
the delay function τ(t, x) ≥ 0 be continuous in t and Lipschitz continuous in x
in [0, T] × U . Then, for some δ > 0, there exist a unique continuous solution
x : [0, δ] → Rd that depends continuously on the initial data such that :

dx(t)

dt
= f(t, x(t), x(t− τ(t, x(t))))

x(t ≤ 0) = ψ(t).
(2.14)

28

In practice, theorem 2.4.8 can be extended by using the same ideas men-
tioned in Remark 2.4.7. If the condition (H) below holds :

(H) : inf
(t,x)∈[0,T]×Rd

τ(t, x) = τ0 > 0 (2.15)
then Equation 2.14 in the interval [0, τ0] reduces to an ODE.
Remark 2.4.9. Driver also proved an analogous result for equations with mul-
tiple state dependent delays [42].

2.5 . Neural DDEs and Backpropagation

In order to train a Neural DDE, we need to compute the gradient of the
loss with respect to the parameters θ. As detailed in Section 2.3, we mentio-
ned the two options : the discretize-then-optimize and optimize-then-discretize
approaches. In the specific instance of optimize-then-discretize i.e. the adjoint
method will vary based on the types of delays employed.

2.5.1 . Discretize-then-optimize
This corresponds to the "regular backpropagation" we are used to. Given

the requirement, that the DDE solver is written with an auto-differentiable pa-
ckage like JAX or PyTorch, we backpropagate through the internal operations
of the solver. Advantages and drawbacks of this method are the same as in
the ODE case, which can be found in Kidger’s thesis [80]. To simplify the dis-
cussion, we will focus on a single constant delay DDE. Although extending the
concept to multiple delays or time- and state-dependent delays is more com-
plex, it does not alter the fundamental idea.

2.5.2 . Optimize-then-discretize
This approach was initially introduced in the Neural DDE paper by Zhu

et al. [200] for the case of a single constant delay, where the delay isn’t in
the model’s parameters θ. This section and thesis aim to extend the adjoint
methods for Neural DDEs to accommodate multiple delays as well as various
types of delays, such as time-dependent or state-dependent delays. Let us
first, tend our focus on the adjoint method associated to multiple constant
delays. Without loss of generality, we will present the adjoint method for a
single constant delay, and then discuss how it can be extended to multiple
constant delays. Lastly, we will briefly discuss the adjoint method for general
type delays.
Theorem 2.5.1 (DDE’s adjoint method for constant delays). Let us consider
the Neural DDE model below where τ can appear in the parameters vector θ. For

29

convenience, we use the following notation y(t) = x(t− τ).

dx(t)

dt
= fθ(t, x(t), x(t− τ)), τ ∈ R+

x(t ≤ 0) = ψ(t)
(2.16)

and the following loss function :

L(x(T)) =

∫ T

0
l(x(t)) dt.

Then, the gradient’s loss w.r.t. the parameters θ is given by :

dL

dθ
=−

∫ T

0
λ(t)

(
∂fθ(t, x(t), x(t− τ))

∂θ
− ∂fθ(t, x(t), x(t− τ))

∂y
x′(t− τ)

)
dt

(2.17)
where the adjoint dynamics λ(t) are given by another DDE :

dλ(t)

dt
=
∂l(x(t))

∂x
− λ(t)

∂fθ(t, x(t), x(t− τ))

∂x
− λ(t+ τ)

∂fθ(t+ τ, x(t+ τ), x(t))

∂y
,

λ(t ≥ T) = 0.

(2.18)

We provide Theorem 2.5.1’s proof in the Appendix A.3.
Remark 2.5.2. Learning the delay τ and the associated vector field f seems to be
ongoing popular topic, since some groups are deriving the same adjoint equation
[167, 166]. However, these works only deal with DDEs with single constant delays
and model that do not exceed 10 parameters. To our best of our knowledge, no
work has taken into account the adjoint method for Neural DDEs with multiple
constant delays along with an implementation that scales for "large" neural net-
works.

In the case of multiple delays τi, where i ∈ 1, . . . , k, the equations in Theorem
2.5.1 are extended as follows. For each i, we define yi(t) = x(t− τi).

The second term λ(t)∂fθ(t,x(t),x(t−τ))
∂x in the adjoint dynamics (Eq. 2.18) is

replaced by :

λ(t)
∂fθ(t, x(t), x(t− τ1), . . . , x(t− τk)))

∂x
(2.19)

and the last term λ(t + τ)∂fθ(t+τ,x(t+τ),x(t))
∂y in the adjoint dynamics (Eq.

2.18) is replaced by the following :
30

k∑
i=1

λ(t+ τi)
∂fθ(t+ τi, x(t+ τi), x(t− τ0 + τi), . . . , x(t− τn + τi))

∂yi
(2.20)

For the gradient ∂fθ(t,x(t),x(t−τ))
∂θ in Equation 2.17 is replaced by the follo-

wing :
∂fθ(t, x(t), x(t− τ1), . . . , x(t− τk))

∂θ
(2.21)

and ∂fθ(t,x(t),x(t−τ))
∂y x′(t− τ) in Equation 2.17 is replaced by the following :
k∑

i=1

∂fθ(t, x(t), x(t− τ1), . . . , x(t− τn))

∂yi
x′(t− τi) (2.22)

Remark 2.5.3. If the delay τ isn’t a learnable parameter, then the gradient’s loss
w.t.r to the parameters θ (i.e. Equation (2.17)) is simplified to the following equation
(please see the proof of the theorem 2.5.1 and more Specifically Eq. A.29) :

dL

dθ
=−

∫ T

0
λ(t)

∂fθ(t, x(t), x(t− τ))

∂θ
dt.

Due to the thesis’ time considerations and the complexity of the adjoint me-
thod for general type (i.e. time and state dependent) delays, this approach
wasn’t explored further, but we refer to the work of Zivari-Piran and Enright
[205], providing the adjoint method.

Remark 2.5.4. In a private communication with the authors from Zivari-Piran
and Enright [205], they provided the adjoint method for general type delays.

2.6 . Neural Integro Differential Equations

To the best of the authors’ knowledge, the most recent "generic" Neu-
ral Differential Equation model introduced is the Neural Integro Differential
Equation (IDE) in 2022 [196]. Neural IDE is defined as :

dx(t)

dt
= fθ(t, x(t)) +

∫ β(t)

α(t)
Kθ(t, s)Fθ(x(s))ds, x(0) = x0 (2.23)

where θ represent the parameters, fθ : R × Rd1×···×dk → Rd1×···×dk , Kθ :

R × R → Md1×···×dk(R) and Fθ : Rd1×···×dk → Rd1×···×dk are arbitrary neural
networks, α, β be scalar-valued functions, and x : [0, T] → Rd1×···×dk is the
equation’s solution.

31

Remark 2.6.1. The Neural IDE canmodel specific IDEs like Volterra (withα(t) = 0

and β(t) = t) [20, 180] and Fredholm (withα(t) = a and β(t) = b) [180], depending
on the integration bound functions used.

Remark 2.6.2. The code can be found on this link here 3.
Similarly, the existence and uniqueness problemof IDEs resembles that of

ODEs and DDEs. Given reasonable regularity property of the integrand, it can
be showed that Equation 2.23 admits a unique solution. We refer to Chapter
1 of Lakshmikantham [95].
Neural IDE is a non Markovian model by construction due to its integral form.
Remark 2.6.3. Authors from Neural IDE have also worked on improvements of
such a model [197, 195]. However, these cited papers have yet to be accepted in
peer-reviewed journals/conferences.

2.7 . Neural IDE and Backpropagation

2.7.1 . Discretize-then-optimize
Once again, this corresponds to the "regular" backpropagating. Provided

that the IDE solver is implemented using an auto-differentiable package such
as JAX or PyTorch, we can performbackpropagation through the solver’s inter-
nal operations. By combining well established Neural ODE libraries with the
torchquad package—a tool for multidimensional numerical integration opti-
mized for GPUs, regardless of the backend [54]—we can compute an IDE’s
right-hand side using auto-differentiable operations. While IDEs differ in cer-
tain respects, the benefits and limitations of this method are analogous to
those in the ODE context, as discussed in earlier sections.
Remark 2.7.1. One way of seeing IDEs is to simple treat them as (expensive) ODEs
where the right hand side is function of t and x(t). In the PDE scientific community,
this is also referred to the numerical method of the lines, which is a technique for
solving partial differential equations by discretizing in all but one dimension and
then integrating the semi-discrete problem as a system of ODEs or differential-
algebraic equations (DAEs). Our IDE formulation becomes if β(t) ≤ t :

dx(t)

dt
= Fθ(t, x(t)), x(0) = x0. (2.24)

if we set :

Fθ(t, x(t)) = fθ(t, x(t)) +

∫ β(t)

α(t)
Kθ(t, s)Fθ(x(s))ds. (2.25)

This is one way of dealing with IDEs numerically, although this thesis isn’t focused
on numerically integrating such equations.

3. https://github.com/emazap7/NIDE/tree/1885c8bef46c3a19609c0847cbc97ff7e99c42c3
32

https://github.com/emazap7/NIDE/tree/1885c8bef46c3a19609c0847cbc97ff7e99c42c3

2.7.2 . Optimize-then-discretize
This adjoint method was first introduced in the Neural IDE [196] and we

recall and adapt its theorem.
Theorem 2.7.2 (IDE’s adjoint method). Let us consider the Neural IDE model
below :

dx(t)

dt
= fθ(t, x(t)) +

∫ β(t)

α(t)
Kθ(t, s)Fθ(x(s))ds, x(0) = x0 (2.26)

and the following loss function :

L(x(T)) =

∫ T

0
l(x(t)) dt

The gradient’s loss w.r.t. the parameters θ is given by :

dL

dθ
=+

∫ T

0
−λ(t)∂fθ(t, x(t))

∂θ
dt

+

∫ T

0

∫ β(t)

α(t)
−λ(t)

[
∂Kθ(t, s)

∂θ
Fθ(x(s)) + +Kθ(t, s)

∂Fθ(x(s))

∂θ

]
dsdt,

(2.27)
where the adjoint dynamics λ(t) are given by the following equation :

λ̇(t) =
∂l(x(t))

∂x
− λ(t)

(
∂fθ(t, x(t))

∂x
+Kθ(t, t)

∂Fθ(x(t))

∂x

)
λ(T) = 0.

(2.28)

We provide Theorem 2.7.2’s proof in the Appendix A.4.
Remark2.7.3. In the original Neural IDE paper [196], the authors presentedmainly
the adjoint method for an IDE with a parameterless function f and briefly discus-
sed the parameterized case. We provided explicitly here the full adjoint method to
handle the case where f is parameterized by θ.

Remark 2.7.4. If the IDE’s integral term is null then its adjoint method boils back
down to the ODE’s one.

2.8 . Other Deep LearningModels loosely related to Neural DEs

In this section, we present other deep learning models that are related
to Neural DEs to some extent. These models are not necessarily part of the
Neural DEs family per se but share some similarities with them.

33

2.8.1 . Physics Informed Neural Networks
Physics Informed Neural Networks (PINNS) [147, 145, 146] represent the

solution u of a Partial Differential Equation (PDE) as a neural network uθ(x)where θ are the model’s parameters. Similar to prior work [108, 67], we consi-
der the following system of PDEs :

D[u][x] = 0, x ∈ Ω
B[u][x] = 0, x ∈ ∂Ω

(2.29)
where D is a differential operator defining the PDE, B is an operator associa-
tedwith the boundary and/or initial conditions, andΩ ⊆ Rd. To solve Equation
2.29 the neural network is usually trained by minimizing the following loss L :

L =
1

2nres

nres∑
i=1

(
D [uθ]

[
xir
])2

+
1

2nbc

nbc∑
i=1

(
B [uθ]

[
xjb

])2

Here {
xir
}nres
i=1

are the residual points and {
xjb

}nbc
j=1

are the boundary/initial
points. The first loss term measures how much uθ(x) fails to satisfy the PDE,while the second term measures how much uθ(x) fails to satisfy the boun-
dary/initial conditions.
Remark 2.8.1. PINNs are distinct from Neural Differential Equation models. The
latter group, which includes Neural ODEs, DDEs, and IDEs, utilizes neural networks
to define differential equations. On the other hand, as shown in Equation 2.29,
PINNs employ neural networks to find solutions to predefined differential equa-
tions.

Remark2.8.2. PINNsmain drawback comes from their computational cost which
can sometimes be comparable to the cost of directly solving the problem in a stan-
dard PDE solver. These types of model are prone to overfitting.

2.8.2 . Neural Operators
Neural Operators (NO) propose to learn directly the mapping between

function spaces on bounded domains by using a finite collection of observa-
tions of input-output pairs from this mapping [88]. Let A and U be Banach
spaces of functions defined on bounded domains D ⊂ Rd, D ⊂ Rd′ respec-
tively and G† : A → U be a non-linear map. Let {a(i), u(i)}Ni=1 be the PDE’s
observations. Neural Operators aims to construct a map

Gθ : A → U , θ ∈ Rp (2.30)
such that for particular θ∗ ∈ Rp,G† ≈ Gθ∗ . This is doneby solving the empirical-
risk minimization problem :

min
θ

1

N

N∑
i=1

∥∥∥u(i) − Gθ(a
(i))

∥∥∥2
U

(2.31)

34

The first NO of its kind is the DeepONet model [107], followed by the major
contribution of the Fourier Neural Operator [100] fromwhere nowmany types
of NOs derive from. For illustration purpose, let’s introduce the renowned
Fourier Neural Operator (FNO) model.
The FNO is formulated as an iterative architecture v0 7→ v1 7→ · · · 7→ vT where
vj for j = 0, 1, . . . , T − 1 is a sequence of functions each taking values in
Rdv . The first transformation v0 consists of projecting the input a in a higher
dimensional space, v0(x) = P (a(x)) where P is a fully connected network.
Then several transformations vt−1 7→ vt are applied (defined below). The out-put u(x) = Q(vT (x)) is obtained by projection vT with a parameterised Q.
Definition 2.8.3 (Iterative updates). Define the update to representation vt 7→
vt+1 as follows :

vt+1(x) := σ (Wvt(x) + (K(a;ϕ)vt) (x)) , ∀x ∈ D (2.32)
where K : A×ΘK → L

(
U
(
D;Rdv

)
,U

(
D;Rdv

))maps to bounded linear
operators on U

(
D;Rdv

) and is parameterized by ϕ ∈ ΘK,W : Rdv → Rdv

is a linear transformation, and σ : R → R is a non-linear activation function
whose action is defined component-wise.
Definition 2.8.4 (Kernel integral operatorK). Let the kernel integral operator
mapping in 2.32 be defined as follows :

(K(a;ϕ)vt) (x) :=

∫
D
κ(x, y, a(x), a(y);ϕ)vt(y)dy, ∀x ∈ D (2.33)

where κϕ : R2(d+da) → Rdv×dv is a neural network parameterized by ϕ ∈
ΘK.

The kernel integral operatorK is to be a convolution operator, this allows
to simplify Equation 2.33. Then, K is parameterized in the Fourier Space. Wri-
ting such operator in the Fourier space we get :

(K(a;ϕ)vt) (x) = F−1 (F (κϕ) · F (vt)) (x), ∀x ∈ D (2.34)
By parametrizing F (κϕ) with a linear layer Rϕ, we obtain the introduced

Fourier Neural Operator.
Remark 2.8.5. Neural Operators still face challenges in long-range integration,
achieved via rollout in the literature. However, efforts have been made to mitigate
this issue. The PDE Refiner [103] treats the Neural Operator as a diffusion process,
aiming to denoise its current prediction for improved results. Another limitation
is that although Neural Operators are discretization-invariant over the spatial do-
main of a PDE, this does not hold true for time. Typically, Neural Operators model
themapping u(t) 7→ u(t+∆t), to evaluate the state u in between time t and t+∆t

is to either by training a new NO with a new ∆t or to interpolate, which can lead
to inaccuracies.

35

2.8.3 . Neural CDE
Kidger et al. [81] introduced Neural CDE, another variant of Neural DEs,

which can be viewed as the continuous equivalent of RNNs. Given its conti-
nuous time nature, Neural CDE can process irregular sampled time series and
its hidden state possesses a continuous dependence on the observed data
(due to its Riemann–Stieltjes integral).
Given irregularly sampled time series x = ((t0, x0), (t1, x1), . . . , (tn, xn)), witheach ti ∈ R the timestamp of the observation xi ∈ Rv , and t0 < · · · < tn.
LetX : [t0, tn] → Rv+1 be the natural cubic spline with knots at t0, . . . , tn suchthat Xti = (xi, ti). Let fθ : Rw → Rw×(v+1) be any neural network model de-
pending on parameters θ. The value w is a hyperparameter describing the
size of the hidden state. Let ζθ : Rv+1 → Rw be any neural network model
depending on parameters θ. Then we define the neural controlled differential
equationmodel as the solution of the CDE :

zt = zt0 +

∫ t

t0

fθ(zs)dXs for t ∈ (t0, tn], (2.35)
where zt0 = ζθ(x0, t0).

Remark 2.8.6. In the context of modeling dynamical systems, Neural CDEs are
not particularly suitable. Consider a dataset ((t0, x0), (t1, x1), . . . , (tn, xn)), where
each ti ∈ R represents the timestamp for the observation xi ∈ Rv. Our objective
is to forecast x1, x2, . . . , xn based on the initial value x0. The fact that Neural CDEs
rely on the Riemann-Stieltjes integral, which requires the data (ti, xi) we are inter-
ested in predicting, makes their use difficult. With the Riemann-Stieltjes integral,
the model would take as input the data (i.e., x1, x2, . . . , xn) to predict.

Remark 2.8.7. In a private communication, authors’ of Neural CDEs recommend
against using natural cubic splines for neural CDEs, as they are noncausal and
as such allow information to be leak backward-in-time / cannot be used in online
settings at inference time. In later work they found causal splines that can be used
instead.

2.9 . Tips and tricks for Neural DEs

In this section, we offer practical guidance and strategies for effectively
trainingNeural DEs in regression tasks, specifically focusing on fitting trajecto-
ries of dynamical systems derived from PDEs. We will discuss the importance
of the training data, the choice of the solver, the learning rate, the regulariza-
tion, and the delay clipping. This section is intended to communicate some of

36

the best practices and lessons learned from our experience in training Neural
DEs, particularly Neural DDEs.

Training data In a data-driven context, you usually have at your disposal a
dataset of observations generated by an unknown system, whichmay consist
of either several trajectory expressed as D1 = {(tl0, xl0), . . . , (tlN , xlN)}Ll=1, orone very long time series D2 = {(t0, x0), . . . , (tM , xM)}, where M ≫ N and
M ≈ LN . Several options are possible to process the datasets D1 and D2.
Dataset D1 Traditionally, the model is trained using whole trajectories. Al-
ternatively, the trajectories can be divided into smaller segments of lengthm
and these segments are used for training themodel. During the testing phase,
even though the model was trained on small segments, it predicts the longer
testing trajectories. This method balances integration computation time with
an increased number of batches needed to process the entire dataset. If the
results from the test trajectories are not satisfactory, which is often the case,
one can incrementally increasem until it reaches the maximum length of the
dataset. This approach is also known as curriculum learning [15, 59] (the mo-
del is progressively fed longer trajectories where the trajectory length can be
associated to the task’s difficulty). This is a standard trick to attain good per-
formance more quickly, or to converge to a better local optimum if the global
optimum is not found.
Dataset D2 By dividing dataset D2 into L segments, you end up in the same
dataset formulation as D1.

Choice of the solver Choosing the right solver is essential for training
Neural DEs. Generally, high-order solvers such as Dormand–Prince 5(4) [41]
are recommended for the training. However, if lower-order solvers achieve
satisfactory results, they can be employed to save computational resources
and time. An alternative strategy is to use low-order solvers for initial trai-
ning and then switch to high-order solvers for fine-tuning. Although this hasn’t
been seen in practice much.

Other relevant information In the context of curriculum learning, the
learning rate should be gradually adjusted as longer trajectories are introdu-
ced to the model. This approach helps prevent sudden changes in the loss
function and stabilizes the training process. For Neural DDEs, applying any
form of regularization to the delays is not advisable. The delays should be al-
lowed to adjust freely during training because, for instance, L1 regularization
might push the delays towards zero, which is undesirable. Lastly, clipping the

37

delays after each optimizer step can be necessary to avoid numerical instabili-
ties andmaintain the constraints that delays must be positive and not exceed
the trajectory length. Typically, delays exceeding the trajectory length are not
encountered because initialized delays (often sampled from uniform distribu-
tion U(0.1, 1)) would require an excessive number of optimizer steps to reach
such values. Using separate optimizers and learning rates for delays and the
parameterized vector field showed some promise. However, this approach is
not yet fully explored and requires further investigation.

38

3 - Modeling Dynamical Systems

In this chapter, we will adopt the following setup : let us consider a deter-
ministic continuous-time dynamical system defined by F : Rd → Rd, where
d indicates the dimension of the state space. We are limited to a single ob-
servable function g : Rd → Rm, with m < d, and our main concern is to ef-
ficiently predict the dynamics of g 1. The following sections will introduce the
Mori–Zwanzig (MZ) formalism, Takens’ theorem, the Koopman theory and its
link with MZ, which are all powerful distinct methods for tackling this issue of
partially observed dynamical systems.

3.1 . Introduction

Learning dynamical systems fromdata is essential in fields such as science,
control theory, robotics, and machine learning. Often, real-world systems are
only partially observed, meaning that observers have access to only a por-
tion of the system’s state, which makes the Markovian assumption invalid,
i.e., the next state does not depend on the previous one only. To handle this,
observers need to infer the unobserved portions from the available data to
predict future behaviors. This process frequently involves introducing latent
variables that function as memory proxies to enhance prediction accuracy.
These latent variables can be obtained through data-driven methods, analy-
tically, or through a combination of both. While discrete systems are often
preferred for their simplicity and ease of implementation, our focus in this
thesis is exclusively on systems within a continuous time framework.
Partially observed systems are ubiquitous, particularly within complex sys-
tems. Climate systems, epidemiology, andfinancialmarkets are instanceswhere
only a portion of the information is accessible. Addressing these challenges
often involves dealingwith partially observed systems, highlighting the impor-
tance of formalizing this task both theoretically and practically.

1. Throughout this thesis, wewill assume that themeasured system is observable.As a crucial concept in dynamical system theory, observability is closely related tocontrollability and is essential for successful dynamics fitting. Observability isn’t thefocus of this thesis and will not be discussed further.
39

3.2 . Mori Zwanzig formalism

3.2.1 . Derivation of the MZ equation

The Mori–Zwanzig formalism, rooted in statistical mechanics, provides a me-
thod to construct accurate evolution equations for relevant quantities (often
called observables), such asmacroscopic observables, within high-dimensional
dynamical systems [124, 207, 209]. This framework is instrumental in situa-
tions where the full state x(t) is unavailable, and one can only access lower
dimensional observations. Consequently, theMZ formalism is relevant for ad-
dressing dimension reduction problems [203]. No matter which scale we are
interested in, the evolution equation of low-dimensional observables can be
formally derived as an operator equation, which is now known as the Mori–
Zwanzig equation. The formalism goal is to find an appropriate projector P
and Q = I − P that splits the dynamics of the original high-dimensional sys-
tem into resolved variables, unresolved variables and the interaction between
these two. Below we provide the derivation of the MZ equation.

If we consider a nonlinear system evolving on a smooth manifold S (for
simplicity we set S ⊂ Rd) :

dx(t)

dt
= F (x), x(0) = x0 (3.1)

The system can be seen through the lens of an arbitrary number of scalar-
valued observables ∀i, gi : S −→ C (or R). The dynamics of any scalar-valued
observable gi(x) (quantity of interest) can be expressed with the Koopman
operator K(t, s) [86] :

gi(x(t)) = [K(t, s)gi](x(s)) (3.2)
K(t, s) = e(t−s)L, Lgi(x) = F (x) · ∇gi(x) (3.3)

withL the Liouville operator. Often rather than not, instead of computing the
dynamics of all observables, it is better to compute the evolution of a subset
of quantities of interest. This subspace can be modelled with a bounded li-
near operator P (projector) and its orthogonal projectorQ = I −P . Since we
are only considering a subset of observable we seek to get the dynamics of
PK(t, s). With the definition of the Koopman operator and the Dyson identity
[185] :

etL = etQL +

∫ t

0
esLPLe(t−s)QLds (3.4)

we can write the evolution of etL as :
d

dt
etL = etQLQL+

d

dt

(∫ t

0
esLPLe(t−s)QLds

)
. (3.5)

40

and thus obtain the Mori–Zwanzig operator equation
d

dt
etL = etLPL+ etQLQL+

∫ t

0
esLPLe(t−s)QLQLds (3.6)

Remark 3.2.1. In order to differentiate the integral term of the Dyson identity
from Equation 3.5, we use the differentiation under the integral sign theorem in its
general form (or ’Leibniz Integral Rule’).

The three terms at the right-hand side are respectively the streaming (or
Markovian) term, the fluctuation (or noise) term and the memory term.

One can rewrite also the MZ’s functional form equation [179] by applying
equation 3.6 to all observables gi at their initial condition gi(t = 0) = gi0,concatenating all observable gi together into g = [g1, . . . , gm] :

dg(t)

dt
=M(g(t)) + F (t)−

∫ t

0
K(g(t− s), s)ds (3.7)

where
M(g(t)) = etLPLg0 (3.8)
K(g(t− s), s) = −e(t−s)LPLesQLQLg0 (3.9)
F (t) = etQLQLg0 (3.10)

Equation 3.7, derived within the framework of the Mori–Zwanzig theory,
is sometimes referred to as the Generalized Langevin Equation (GLE) [208].
It provides a rigorous governing equation for the observable g. This elegant
formulation of partially observed dynamics yields an exact evolution equation
that takes the form of an Integro-Differential Equation.
Beginning with a general dynamical system Equation 3.1 and considering that
we only have access to an observable g, the MZ formalism offers a method to
derive an equation for the evolution of g characterized by the MarkovianM ,
memory K , and fluctuation F components. The Markovian term represents
the immediate contribution of the observable at time t, the memory term ac-
counts for the interaction between the observable and the unresolved va-
riables, and the fluctuation term describes the orthogonal dynamics which is
oftenmodeledwith noise. MZ provides away to formulate g’s dynamics with a
memory term that captures the system’s history, which is crucial for accurate
predictions. MZ research’s primary focus is on the approximation and quan-
tification of the memory term. Common data-driven approaches used in this
endeavor include the NARMAX technique [106] and the rational function ap-
proximation proposed by Lei et al. [97].

41

3.2.2 . MZ’s projection operators
The MZ Equation 3.7 is rather general, by specifying the projection opera-

tor P one can obtain different forms of the MZ equation. Authors Zhu [203]
derive many forms of the MZ equation by choosing different projection ope-
rators. Here we only present the most common and easy to use projection
operator.

A choice for P is the orthogonal projection onto the span of linearly inde-
pendent set of observables {g1, . . . , gm}. Such a finite rank projection opera-
tor is also called the Mori projector [125], widely used in statistical physics. P
relies on the inner product defined as :

⟨k, l⟩ =
∫
k(x)l(x)dµ(x), k, l ∈ L2(µ) (3.11)

where k, l are L2 integrable functions and x is drawn from the measure µ.
The measure µ is conventionally set as a natural measure that is specific to
the dynamics. For example, it is natural to adopt the canonical equilibrium
distribution (Gibbs’ measure) for equilibrium Hamiltonian systems [125]. For
non-equilibrium systems, we can adopt the stationarymeasure [73]. Thus, the
Mori projector is defined as, given the observables g = [g1, . . . , gm] :

[Pk](g) =
m∑

i,j=1

⟨k, gi⟩[C−1
0]i,jgj (3.12)

where C−1
0 is the inverse of C0 whose (i, j) entry is ⟨gi, gj⟩.

Hence, the MZ equation 3.7 reduces to :
dg(t)

dt
=M(g(t)) + F (t)−

∫ t

0
K(t− s)g(s)ds (3.13)

where
Mij =

m∑
k=1

[C−1
0]jk⟨gk(0),Lgi(0)⟩ (3.14)

Kij(t) =

m∑
k=1

[C−1
0]jk⟨gk(0),LetQLQLgi(0)⟩ (3.15)

F (t) = etQLQLg0 (3.16)
(3.17)

Remark 3.2.2. Compared to the general MZ equation 3.7, the MZ equation with
the Mori projector 3.13 has a simpler form. Notably, all terms (M,K,F) have ana-
lytical expressions. Moreover, the memory integrand is now the product of the
kernel and the observable.

42

3.2.3 . A simple example of MZ in practice
This example illustrates theMZ formalism in practice. We consider an har-

monic oscillator :
d2x(t)

dt2
+

1

τ

dx(t)

dt
+ ω2

0x(t) = 0 (3.18)
where 1/τ is the damping coefficient and ω0 the natural frequency. Given thestateX(t) := [x(t), dx(t)dt]T , the dynamics of the system can be written as :

dX(t)

dt
=

[
0 1

−ω2
0 − 1

τ

] [
x(t)
dx(t)
dt

]
(3.19)

We choose our observable to be g(X) = dx(t)
dt . Since Equation 3.19 is written

in the same form as Equation 3.1, and our observable is one dimensional (this
implies that we have a Mori projector because of the linearly independent set
{ẋ}), we can apply the MZ equation 3.13 which yields :

ddx(t)
dt

dt
= −1

τ

dx(t)

dt
− ω2

0

∫ t

0

dx(s)

ds
ds− ω2

0x(0) (3.20)
Remark 3.2.3. Alternatively we can get Equation 3.20 by manipulating Equation
3.19 :

ddx(t)
dt

dt
= −ω2

0x(t)−
1

τ
dvx(t)t

c+ x(t) =

∫ t

0

dx(s)

ds
ds =⇒ c = −x(0)

(3.21)

By using elementary calculus and definitions,

c+ x(t) =

∫ t

0

dx(s)

ds
ds =⇒ c = −x(0)

x(0) + x(t) =

∫ t

0

dx(s)

ds
ds

(3.22)

We ultimately end up with the same Equation 3.20.

Remark 3.2.4. We provide the exhaustive derivation of Equation 3.20. Given any
linear system of dimension d in the matrix form alongside with the operator MZ
Equation 3.6 :

dX(t)

dt
= A(t)X(t), A(t) := A

d

dt
etL = etLPL+ etQLQL+

∫ t

0
esLPLe(t−s)QLQLds (3.23)

Let us suppose that only m variables are observed. Hence, the matrix A can be
split into blocks as follows. We have respectively nr = d−m and nu = m resolved

43

and unresolved variables and each operator corresponds to a certain matrix of
the system. The projector P = P projects onto the subspace where the resolved
variable live in and its orthogonal counterpart Q = Q on the unresolved ones.

A =

[
Arr Aru

Aur Auu

]
, X =

[
Xr

Xu

]
(3.24)

PX = Xr, QX = Xu (3.25)

The MZ equation 3.23 applied to the resolved variablesXr(t) gives

dXr(t)

dt
= ArrXr(t) +Aru

∫ t

0
e(t−s)AuuAurXr(s)ds+Arue

tAuuXu(0) (3.26)

The integral
∫ t
0 e

(t−s)AuuAurXr(s)ds is then the memory term,Arr the Markovian
one and the fluctuation was canceled out by hypothesis.

In this specific instance, we can observe the contribution of each term in the
MZ equation : − 1

τ
dx(t)
dt represents the streaming term, −ω2

0x(0) denotes thefluctuation term, and −ω2
0

∫ t
0

dx(s)
ds ds corresponds to the memory term. Re-

gardless of the system’s initial conditions, the fluctuation term maintains a
constant contribution, while the memory and Markovian term have the grea-
test impact on the dynamics. We present several examples of the decomposi-
tion of the observable ẋ intoMarkovian, memory, and fluctuation terms using
theMZ equation with varying values of ω0 and τ in Figures 3.1, 3.2, and 3.3. De-pending on the value of ω2

0τ , the memory term can have varying magnitude.
When ω2

0τ ≪ 1, the Markovian term predominates the dynamics, as demons-
trated in Figure 3.2. Conversely, in the opposite extreme, the memory term
significantly influences the dynamics, as shown in Figure 3.3. Lastly, Figure 3.1
illustrates the balanced influence of the Markovian, memory, and fluctuation
terms when ω2

0τ = 1.
44

Figure 3.1 – Decomposition of the observable dx(t)
dt

into Markovian, Me-mory and Fluctuation terms with the MZ equation for ω0 = 1, τ = 1.0

Figure 3.2 – Decomposition of the observable dx(t)
dt

into Markovian, Me-mory and Fluctuation terms with the MZ equation for ω0 = 1, τ = 0.01

45

Figure 3.3 – Decomposition of the observable dx(t)
dt

into Markovian, Me-mory and Fluctuation terms with the MZ equation for ω0 = 1, τ = 100

Remark 3.2.5. With linear systems we can obtain analytical forms for the 3 terms
of theMZ equation, which is not the casemost of the time formore general systems
(i.e. non-linear) and is an active research areas to get numerical approximations
of each term [55, 137].

3.3 . Takens’ Theorem

3.3.1 . Introduction
Takens’ work provided a groundbreaking method for analyzing dynami-

cal systems from a geometrical perspective. He showed that, under specific
and mild conditions, it is possible to reconstruct the dynamics of systems,
even when observations are limited to some variables, using a time series
of delayed observations. These conditions require the system to evolve on
a smooth manifold M , which serves as an invariant set of the system, mea-
ningG(M) ⊂M whereG represents the dynamical system’s vector field. This
manifold M is often called an attractor in dissipative systems. An additional
condition is the absence of periodic orbits (or cycle) with a period equal to the
chosen delay.
In summary, employing a delay-coordinate map (defined in Definition 3.3.3)
allows for the construction of a diffeomorphic shadowmanifoldM ′ from uni-
variate observations of the original system. This method makes it possible to
reconstruct a "shadow" dynamical system that is topologically equivalent to

46

the original. Being topologically equivalent means that both the original and
shadow dynamical systems possess the same dynamical properties, Lyapu-
nov exponents, number and nature of its fixed points, and the dimension of
the manifold. Thus, we formally introduce Takens’ theorem along with the
necessary definitions as described by sources such as Noakes [130], Takens
[173].
Definition 3.3.1 (Attractor). Let (X, d)be a compactmetric space and f : X →
X a continuous map. An attractor is a nonempty, closed set A ⊂ X such that
f(A) = A and, for every ϵ > 0, there is a δ > 0 such that for every point x
such that d(x,A) < δ will stay within distance ϵ and verify d(fn(x), A) < ϵ

when n→ ∞.
Definition 3.3.2 (Immersion & Embedding). An immersion is a differentiable
function between two differentiable manifolds whose derivative is injective at
every point in the manifold. An embedding is an injective immersion.
Definition 3.3.3. IfΦ is a flow on amanifoldM , τ is a positive number (called
the delay), and g :M → R (usually called an observable) is a smooth function,
define the delay-coordinate map F (g,Φ, τ) :M → Rn by :

F (g,Φ, τ)(x) = (g(x), g(Φ−τ (x)), g(Φ−2τ (x)), . . . , g(Φ−(n−1)τ (x))) (3.27)
Here, Φτ stands for the operator that advances the dynamical system by

a time step τ , i.e. that sends x(t) to x(t+ τ), and g is the observable operator,
that sends a full state x(t) to actual observables g(x(t)) =: g(t).
Theorem 3.3.4 (Takens’ embedding theorem). LetM be compact of dimension
m. There is an open dense subsetD ofDiff(M)×Ck(M,R)with the property that
delay coordinatemapF (g,Φ, τ) :M → R2m+1 is an embedding ofCk manifolds,
when (Φ, g) ∈ D.

Remark 3.3.5. In practice, this delay coordinate map is the simple expression
F (g,Φ, τ)(x) = (g(t), g(t− τ), g(t− 2τ), . . . , g(t− (n− 1)τ)).

Several generalizations of such theorem were established [134, 47], with
the latest being from Deyle and Sugihara [39] that extended the reach of Ta-
kens’ theorem by providing proofs for a generalized theorem for non-linear
state space reconstruction (SSR). Theorems fromDeyle and Sugihara [39] pro-
vide proof of principle for modeling attempts of nonlinear dynamics involving
multiple time series, and provides the rather non-restrictive assumptions re-
quired in such applications for building models from multiple time series va-
riables. Additionally, they proposemultiple embeddings as a potentially effec-
tive method for extracting information from time series data with restricted
length, especially when there are numerous simultaneous observations of dy-
namics occurring on the same attractor manifold [159].

47

Remark 3.3.6. The delay τ in the delay-coordinate map must not be equal to the
period of any periodic orbit because it will result in :

Φ(x) = Φ−τ (x) (3.28)
This implies that the delay coordinate map will not be able to distinguish bet-

ween the two states x(t) and x(t− τ), and thus the reconstruction of the attractor
will ultimately fail. This is clearly seen with the Takens map from theorem 3.3.3 :

F (g,Φ, τ)(x) = (g(x), g(Φ−τ (x)), g(Φ−2τ (x)), . . . , g(Φ−(n−1)τ (x)))

= (g(x), . . . , g(x))
(3.29)

In the next subsection, we will discuss the delay-coordinate map and how
many coordinates are needed to reconstruct the attractor, along with the
choice of the delay τ .

3.3.2 . Embedding dimension
By definition, the embedding dimension refers to the number of com-

ponents in the delay-coordinate map F (g,Φ, τ). According to Takens’ theo-
rem 3.3.4, the number of delayed terms necessary for time delay embed-
ding F (g,Φ, τ) should be larger than twice the dimension of the manifold
M . Although this theorem provides an upper bound for the embedding di-
mension, in some instances, the embedding dimension can be reduced. This
typically occurs when the dynamics operate within a set rather than a high-
dimensional manifold. Consequently, the upper bound specified by Takens’
theorem is influenced by the geometry of the set, rather than the manifold
itself. Determining the dimension of a set is out of scope for this thesis, but
we refer to the box counting dimension for further information [113]. The em-
bedding dimension is linked to many concepts in the physics fields like the
intrinsic dimension, that says that the number of degrees of freedom of a
system is not necessarily as large as the number of variables used to describe
it [26]. A classic example is the case of the laminar cylinder flowwhich requires
a high number of degrees of freedom to be simulated within a finite element
solver, but can be described using only three, well-chosen, observables [178].
Another example is the Lorenz system, which is a simplified model of atmos-
pheric processes based on fluid dynamics. Thismodel demonstrates how sys-
tems can exist in lower-dimensional spaces. Thismodel is a three-dimensional
dynamical system that exhibits chaotic behavior under specific conditions and
ultimately settles within a defined spatial area that looks like butterfly wings,
creating an attractor. This attractor is known as a strange attractor due to its
fractal (non-integer) dimension, which is approximately 2.07. The Lorenz sys-
tem is defined by the following ODEs [105] :

48

dx

dt
= σ(y − x)

dy

dt
= x(ρ− z)− y

dz

dt
= xy − βz

(3.30)

with ρ, σ, β are constants. It has been shown that an embedding dimen-
sion of 3 is enough for the delay-coordinate maps of x and y coordinates to
give embeddings. This isn’t the case for z coordinate [83, 1] because of Lo-
renz’s fixed point inside the lobe of each of the butterfly-shaped attractor.
When using a delay-coordinate map for the z coordinate, the map will not
be able to distinguish between each lobe of the attractor, making the recons-
truction of the attractor impossible. This is seen in Figure 3.4 the x and y still
possess the topological information of the system (for example the two lobes
of the attractor), while the z coordinate does not.

This example demonstrates that the embedding dimension suggested by
Takens’ theorem is not always useful in either theory or practice. Utilizing a
greater number of delayed terms in the delay-coordinate map can be advan-
tageous. Authors of [159] indicated that selecting a larger embedding dimen-
sion may diminish the impact of noise in the data, a concept associated with
the Filtered Delay Embedding Prevalence Theorem [193]. In this thesis and our
results, we have indeed observed this numerically.
Remark 3.3.7. We show quantitatively here that the Lorenz system can be em-
bedded in a three-dimensional delay coordinate map. We will focus on the x coor-
dinate, although the same concept applies to y. Starting with the Taylor expansion
for x :

x(t+ τ)− x(t− τ)

2τ
= ẋ(t) +

τ2

6

...
x +O(τ3)

x(t+ τ)− 2x(t) + x(t− τ)

τ2
= ẍ(t) +

τ2

12
x(4)(t) +O(τ5)

Incorporating the Taylor expansion into the Lorenz system gives us y and z in
terms of x :

{
ẋ = σ(y − x)

y = x+ ẋ
σ

ẏ = x(ρ− z)− y

z = ρ− ẏ
x + y

z = ρ− ẋ+ ẍ
σ

x + x+ ẋ
σ

(3.31)

By combining the results, we obtain :

49

y = x+
ẋ

σ

z = ρ−
ẋ+ ẍ

σ

x
+ x+

ẋ

σ

By substituting the derivatives of x with their Taylor expansions, it becomes
clear that y and z can be expressed using a three-dimensional delay coordinate
map of x.

Figure 3.4 – The Lorenz attractor and its three individual and delay-coordinate map for the x, y, z coordinates with τ = 0.06 and (σ, ρ, β) =
(10.0, 28.0, 8/3).

3.3.3 . The delay τ in the delay-coordinate map
Delay-coordinate maps can be classified into two primary categories : uni-

form time delay embedding and non-uniform time delay embedding. We will first
address the uniform embedding before moving on to the non-uniform ones.
The concept of time delay embedding was first introduced using evenly spa-
ced measurements of a scalar time series x(t), expressed as :

(x(t), x(t− τ), x(t− 2τ), . . . , x(t− (n− 1)τ)) (3.32)
wheren denotes the embedding dimension and τ refers to the delay [135].

When n is sufficiently large, the delay τ can be selected without restriction, as
50

long as it does not match the period of any periodic orbit, according to Ta-
kens’ theorem 3.3.4. However, this is not the case in practice ; the choice of
both the delay and the embedding dimension is critical for accurately recons-
tructing the dynamics. This indicates that not all delay-coordinate maps are
equivalent or of the same quality. Attempts have been made to develop rele-
vant metrics for evaluating embedding quality, particularly in studies such as
[28, 144], but no conclusive method has been established. Information theory
and topological concepts have primarily been considered [48, 183, 128]. For
instance, a commonly used heuristic is to set the delay to one-quarter of the
system’s period. Additionally, techniques like measuring the mutual informa-
tion (or auto-correlation) between the time series and its delayed version have
been used to find the optimal delay [48]. Regardless of the chosenmethod for
setting delays, several general principles are widely accepted. If the delay is
too short, the components of the delay-coordinate map will be similar, cau-
sing all points to cluster around the bisector of the embedding space [28].
Conversely, if the delay is too long, the different coordinates may become
nearly uncorrelated. For a more thorough discussion, we refer to the survey
by [175]. Another class of uniform embedding, known as derivatives embed-
ding, utilizes the derivatives of the time series :

(x(t), ẋ(t), ẍ(t), . . . , x(n−1)(t)) (3.33)
This approach is not commonly employed due to the need for calcula-

ting high-order derivatives, which can introduce noise and be computationally
intensive. We also briefly mention the Integral-Differential embedding, which
faces similar practical challenges as the derivatives embedding [77].
The appeal of uniform delay embedding lies in its simplicity, requiring only
two parameters to be selected, τ and n. In contrast, non-uniform delay em-
bedding introduces additional complexity and can overcome the limitations
associated with uniform embeddings [183]. Indeed, when a system exhibits
different time scales, such as slow and fast dynamics, a uniform time delay
embedding can only capture one of these scales. By incorporating multiple
delays [τ1, τ2, . . . , τn], the delay-coordinate map takes the form of :

(x(t), x(t− τ1), x(t− τ2), . . . , x(t− τn)) (3.34)
Several methods have been proposed to determine the optimal delays,

including continuity statistics [141], PECUZAL [90], maximizing derivatives on
projections (MDOP) [128], and Monte Carlo decision tree search (MTCDS) [89].
Recently, methods from persistent homology have been used to determine
optimal non-uniform embedding [175]. Going into the details of the methods
mentioned just before isn’t the focus of this thesis, but we refer to the cited
papers for more information.

51

3.4 . The Koopman Operator

The Koopman operator theory, introduced in 1931 [87], is a promising and
well-established approach formodeling dynamical systems. In this section, we
will present an overview of the theory and recommend more comprehensive
sources such as [22, 191, 101] for deeper insights.

3.4.1 . Introduction
Consider a nonlinear system evolving on a smooth manifold S ⊂ Rn :

dx(t)

dt
= F (x), x(0) = x0 (3.35)

where x represents the system’s state, F is the vector field, and x0 the initialcondition. We assume the availability of a scalar-valued observable function
g. The dynamics of g(x) can be expressed through the Koopman operator
K(t, s) (Equation 3.2.1) :

g(x(t)) = [K(t, 0)g](x0)

K(t, 0) = etL, Lg(x) = F (x) ·∇g(x)
(3.36)

whereL is the Liouville operator associated to the dynamics. In the rest of this
section, we will as a notation abuse writeK(t) instead ofK(t, 0) for simplicity.
The Koopman operator K advances the observable function g in time, thus
making it a linear operator, enabling the application of linear algebra. Given
that dynamics vector field F is a C1-manifold, the Koopman eigenfunction
satisfies the eigenvalue equation :

Lϕλ = F ·∇ϕλ = λϕλ (3.37)
A Koopman eigenfunction ϕλ associated to the eigenvalue λ satisfies :

K(t)ϕλ = eλtϕλ (3.38)
Equation 3.38 & 3.37 shows that the Koopman operator K and the Liou-

ville operator L share the same eigenfunction ϕλ, given an eigenfunction ϕλof L with eigenvalue λ is an eigenfunction of K(t) with eigenvalue eλt. Thus,
this property shows that Koopman eigenfunctions are directly related to the
dynamics of the system, i.e. knowing them is equivalent to knowing the trajec-
tories of the system. The Koopman eigenfunctions and eigenvalues possess
many properties but the one we wish to highlight is the following :
Theorem3.4.1. Suppose thatϕλ1 andϕλ2 are two Koopman eigenfunctions asso-
ciated with the eigenvalues λ1 and λ2 respectively. If ϕk1λ1

, ϕk2λ2
∈ S , with k1, k2 ∈ R

then it is an eigenfunction associated with the eigenvalue k1λ1 + k2λ2.

52

Proof of theorem 3.4.1

K(t)(ϕk1λ1
ϕk2λ2

) = (K(t)ϕλ1)
k1(K(t)ϕλ2)

k2 = e(k1λ1+k2λ2)tϕk1λ1
ϕk2λ2

(3.39)

Theorem 3.4.1 implies that there is an infinity of Koopman eigenfunctions
(some or all of them could be linearly dependent) [112]. Therefore, using the
Koopman’s eigenfunctions basis on the observable function g, could lead to a
much simpler representation of the dynamics but at the expense of being in-
finite dimensional. This means that using the Koopman operator in practice,
a cut-off must be made on the number of eigenfunctions to consider. For this
purpose, it is useful to use a set of observable functions gi for i = 1, . . . ,m.
If the Koopman operator has a pure point spectrum, we can write the conca-
tenated observables g = [g1, . . . , gm], in the Koopman eigenfunction basis as
[76, 40] :

g(x(t)) = K(t)g(x0) =

∞∑
j=0

cjϕλj
(x0)e

λjt (3.40)

When the Koopman operator is unitary, the eigenfunctions ϕλj
are orthogo-

nal, and the coefficients cj = ⟨ϕλj
,g⟩ constitute what is known as the Koop-

manmode decomposition [117]. Based on Equation 3.40, it is possible to apply
a cut-off in the basis to approximate the system’s dynamics within a finite-
dimensional space. Several practical algorithms have been devised to esti-
mate a finite dimensional approximation of the Koopman operator fromdata,
including Dynamic Mode Decomposition (DMD) [161] and Extended Dynamic
Mode Decomposition (EDMD) [191]. The DMD algorithm will be covered in the
next subsection.

3.4.2 . Dynamic Mode Decomposition (DMD)

DMD, initially introduced by Schmid [161], is a foundational technique for
dimensional reduction, inspired by the Koopman theory and is categorized
under modal decomposition methods [10]. It decomposes high-dimensional
data into three components : spatial modes, scalar amplitudes, and temporal
signals. Given a sequential set of data vector {z0, . . . , zm} where each zk ∈
Rn, the DMD algorithm finds the linear dynamics (i.e. A) assumed to have
generated the data :

zk+1 = Azk+1. (3.41)
The DMDmodes and eigenvalues are intended to approximate the eigenvec-
tors and eigenvalues of A. The algorithm proceeds as stated in Algorithm 2 :

53

Algorithm 2 Standard DMD Algorithm
1: Define X = [z0, . . . , zm−1] and Y = [z1, . . . , zm]2: Compute the SVD of X : X = UΣV ∗

3: Define Ã = U∗Y V Σ−1

4: Compute Ã’s eigenvalues and eigenvectors : Ãw = λw
5: The DMDmodes corresponding to the DMD eigenvalue λ are givenby : ϕ̂ = Uw

Since its inception, various adaptations of the original DMD have been de-
veloped to address and enhance its limitations ; we mention only a select few
here but direct readers to a more extensive review for further details [162].
One such variant, Extended DMD (EDMD) [190], incorporates a more complex
set of observables that include nonlinear functions of the measurements, fa-
cilitating a more effective capture of dynamics. However, selecting the most
appropriate and effective dictionary of observables for EDMD remains an un-
resolved issue. Advancements in machine learning have spurred initiatives
to identify such dictionaries using neural networks [98]. Moreover, Multire-
solution DMD, as detailed by Kutz et al. [94], addresses challenges posed by
multiple timescales within the data, utilizing a technique where the core DMD
algorithm is applied recursively to data that has been filtered across progres-
sively lower frequencies.

3.4.3 . The Mori–Zwanzig framework within the Koopman theory

To the best of our knowledge, the authors of [101] were the first to formally
connect the Generalized Langevin Equation (also known as the MZ equation)
with the Koopman operator. As discussed in the section 3.4.1 ; consider a non-
linear system evolving on a smooth manifold S ⊂ Rn :

dx(t)

dt
= F (x), x(0) = x0 (3.42)

where x represents the system’s state, F is the vector field, and x0 the ini-
tial condition. We assume the availability of several scalar-valued observable
functions gi for i ∈ 1, . . . ,m.
Koopman theory seeks to describe the evolution of a collection of linearly
independent observables M = {gi}mi=1, which we will concatenate as g =

[g1, . . . , gm] for future reference. Assuming that the Koopman operator has a
pure point spectrum (in the case of a continuous spectrum, the computations
are more complex, though the overall concept remains the same [118]), the
evolution of the observables g can be expressed, as shown in Equation 3.40

54

from Section 3.4.1, in the form of an operator :
g =

∞∑
j=0

cjϕλj

Koopman theory decomposes the observable g into a sumof Koopman eigen-
functions ϕλj

and its coefficients cj . In contrast, the Mori–Zwanzig formalism
uses the inner product in theHilbert spaceH to decompose the space into the
subspace linearly spanned by the set of observables Hg = span(M) and its
orthogonal subspaceHḡ = {ḡ ∈ S : ⟨ḡ, gi⟩ = 0, gi ∈ M}. The Gram–Schmidt
process can be used to construct the basis functions of the orthogonal space
Hḡ with the Koopman eigenfunctions {ϕλi

}∞i=1. We denote this infinite set of
basis functions as M̄ = {ḡi}∞i=1. Similarly, with g represented in the Koopman
basis, we can represent ḡ as∑∞

j=0 c̄jϕλj
, where the coefficients are given by

c̄j = ⟨ϕλj
, ḡ⟩. Thanks to the Gram–Schmidt process, we also have ⟨gi, ḡj⟩ = 0

for j ∈ N and i ∈ {1, . . . ,m}. Since the basis functions are linearly inde-
pendent, the combination of the two setsM and M̄ creates a complete basis
for H. Therefore, the Koopman eigenfunctions ϕλj

can be expressed within
this new basis :

ϕλi
=

m∑
j=1

ωijgj +
∞∑
j=1

ω̄ij ḡj (3.43)
By applying the Koopman operator K that advances the observables in time,
we get :

ϕλi
(t) =

m∑
j=1

ωijgj(t) +
∞∑
j=1

ω̄ij ḡj(t) (3.44)
In order to link the Koopman operator with the Mori–Zwanzig equation ??, we
need to derive the evolution of the observables g :

d

dt
gi(t) =

∞∑
j=1

cijϕλj
(x0)λje

λjt

=

∞∑
i=0

cijλjϕλj
(t)

=

m∑
l=1

 ∞∑
j=1

cijλjωjl

 gl(t) +

∞∑
l=1

 ∞∑
j=1

cijλjω̄jl

 ḡl(t)

(3.45)

and ḡ :
d

dt
ḡi(t) =

m∑
l=1

 ∞∑
j=1

c̄ijλjωjl

 gl(t) +
∞∑
l=1

 ∞∑
j=1

c̄ijλjω̄jl

 ḡl(t) (3.46)

55

Given the evolution of the observables g and ḡ, we can express them in a
more compact matrix form :

d

dt

[
g(t)
ḡ(t)

]
= L ·

[
g(t)
ḡ(t)

]
=

[
Lgg Lgḡ

Lḡg Lḡḡ

]
·
[
g
ḡ

]
(3.47)

where we employ a slight notation abuse Lij , i, j ∈ {g, ḡ}. Although Equation
3.45 & 3.46 are explicit, knowing the Koopman eigenfunctions ϕλj

is not an
easy feat, making this method difficult to apply in practice. In order, to get a
closed form our dynamics g, we need to integrate the orthogonal dynamics ḡ.
Given the orthogonal initial conditions ḡ(0), we can write the solution of the
orthogonal dynamics as :

ḡ(t) =

∫ t

0
e(t−s)LḡḡLḡgg(s)ds+ etLḡḡ · ḡ(0) (3.48)

The implicit solution of ḡ allows us to express the evolution of the observables
g as :

d

dt
g(t) = Lggg(t) + Lgḡ

∫ t

0
e(t−s)LḡḡLḡgg(s)ds+ Lgḡe

tLḡḡ · ḡ(0) (3.49)
The derived Equation 3.49 is equal to Equation 3.26 in Section 3.2.3. Starting
from Koopman theory, we have derived the Mori–Zwanzig equation that uti-
lizes the Mori projection, introduced in Section 3.2.2. This link between the
two theories is a significant step towards understanding the relationship bet-
ween the two theories, and showcases that the MZ formalism supersets the
Koopman theory.

56

4 - Time and State dependent Delay Differen-
tial Equations

Discontinuities anddelayed terms are encountered in the governing equa-
tions of a large class of problems ranging from physics and engineering to
medicine and economics. These systems cannot be properly modelled and
simulated with standard ODE, or data-driven approximations such as Neu-
ral ODE. To circumvent this issue, latent variables are typically introduced to
solve the dynamics of the system in a higher dimensional space and obtain
the solution as a projection to the original space. However, this solution lacks
physical interpretability. In contrast, DDEs, and their data-driven approxima-
ted counterparts, naturally appear as good candidates to characterize such
systems. In this work we revisit the recently proposed Neural DDE by introdu-
cing Neural State-Dependent DDE (SDDDE), a general and flexible framework
that can model multiple and state- and time-dependent delays, as discussed
earlier in the Neural DE section 2.4.2. We show that ourmethod is competitive
and outperforms other continuous-class models on a wide variety of delayed
dynamical systems. Code is available at https://github.com/thibmonsel/Time-
and-State-Dependent-Neural-Delay-Differential-Equations.

4.1 . Introduction

Inmany applications, one assumes the time-dependent systemunder consi-
deration satisfies a Markov property ; that is, future states of the system are
entirely defined from the current state and are independent of the past. In
this case, the system is satisfactorily described by an ordinary or a partial dif-
ferential equation. However, the property of Markovianity is often only a first
approximation to the true situation and a more realistic model would include
past states of the system. Describing such systems has fueled the extensive
development of the theory of DDEs [119, 126, 64]. This development has given
rise tomany practical applications : in themodelling ofmolecular kinetics [152]
as well as for diffusion processes [45], in physics for modeling semiconductor
lasers [187], in climate research for describing the El Ninõ current [52, 78], in-
fectious diseases [35] and tsunami forecasting [192], to list only a few.

At the same time, the blooming of machine learning in recent years boos-
ted the development of new algorithms aimed at modelling and predicting
the behavior of dynamical systems governing phenomena commonly found
in a wide variety of fields. Among these novel strategies, the introduction of
NODEs [29] has contributed to further deepening the analysis of continuous

57

https://github.com/thibmonsel/Time-and-State-Dependent-Neural-Delay-Differential-Equations
https://github.com/thibmonsel/Time-and-State-Dependent-Neural-Delay-Differential-Equations

dynamical systems modelling based on neural networks. NODEs are a family
of neural networks that can be seen as the continuous extension of Residual
Networks [156], where the dynamics of a vector x(t) ∈ Rd at time t – hereafter
often identified with the state of a physical system – is given by the parame-
terized network fθ and the system’s initial condition x0 :

dx(t)

dt
= fθ(t, x(t)), x(0) = x0. (4.1)

NODEs have been successfully applied to various tasks, such as normalizing
flows [79, 56], handling irregularly sampled time data [153, 82], and image seg-
mentation [142].

Starting from this groundbreakingwork, numerous extensions of theNODE
framework enabled towiden the range of applications. Among them, ANODEs
[44] were able to alleviate NODEs’ expressivity bottleneck by augmenting the
dimension of the space allowing the model to learn more complex functions
using simpler flows [44]. Let a(t) ∈ Rp denotes a point in the augmented
space, the ODE problem is formulated as

d

dt

[
x(t)
a(t)

]
= fθ

(
t,

[
x(t)
a(t)

])
,

[
x(0)
a(0)

]
=

[
x0
0

]
. (4.2)

By introducing this new variable a(t), ANODE overcomes the inability of
NODE to represent particular classes of systems. However, this comes with
the cost of augmenting the data into a higher dimensional space, hence lo-
sing physical interpretability. Among the alternative techniques proposed for
circumventing the limitations rising from themodelling of non-Markovian sys-
tems, theNeural Laplacemodel [72] proposes a unified framework that solves
differential equations (DE) : it learns DE solutions in the Laplace domain. The
Neural Laplace model cascades 3 steps : first, a network γ encodes the tra-
jectory, then the so-called Laplace representation network gβ learns the dy-
namics in the Laplace domain to finally map it back to the temporal domain
with an inverse Laplace transform (ILT). With the state y sampled T times at
arbitrary time instants, γ gives a latent initial condition representation vector
p ∈ RK :

p = hγ((x(t1), t1), . . . , (x(tT), tT)), (4.3)
that is fed to the network gβ to get the Laplace transform

f(s) = v (gβ(p, u(s))) , (4.4)
with u a stereographic projector and v its inverse. Ultimately, an ILT step is
applied to reconstruct state estimate ŷ from the learnt f(s).

58

As an alternative to the aforementioned techniques, one may directly ad-
dress the DDE problem by working within the framework of neural network-
based DDEs. Despite the success of the NODEs philosophy, the extension to
DDEs has barely been studied yet, possibly owing to the challenges of using
general purpose DDE solvers. DDEs extend ODEs by incorporating additional
terms into their vector fields, which are states delayed by a certain time τ . Re-
cently, [200] introduced a neural network based DDE with one single constant
delay :

dx(t)

dt
= fθ(t, x(t), x(t− τ)), τ ∈ R+

x(t ≤ 0) = ψ(t),
(4.5)

where ψ(t) is the system’s history function, τ a constant delay and fθ a pa-rameterized network. This work was next extended in the Neural Piece-Wise
Constant Delays Differential Equations (NPCDDEs) model in [201]. Compared
to NODE and its augmented counterpart, neural network-based DDEs do not
require an augmentation to a higher dimensional space in order to be a uni-
versal approximator, thus preserving physical interpretability of the state vec-
tor and allowing the identification of the time delays. Nonetheless, the current
variants of Neural DDE models only deals with a single constant delay or se-
veral piece-wise constant delays, thus lacking the generalization to arbitrary
delays. Moreover, to the best of our knowledge, no machine learning library
or open-sourced code exists to model not only these very specific types of
DDEs but also any generic DDEs.

ContributionsWepropose theNeural State-DependentDDE (SDDDE)mo-
del : an open-source, robust python DDE solver compatible with neural net-
works. Neural SDDDE is based on a general framework that pushes the en-
velope of Neural DDEs by handling DDEs with several delays in a more gene-
ric way. The implementation further encompasses general time- and state-
dependent delay systems which extends the reach of [201].

In the remainder of this section, we briefly re-introduce the model SDDDE
(mentioned in the theoretical section 2.4.2). Then, Implementation and me-
thodologies are further discussed in Sec. 4.2. Experiments and comparisons
with the state-of-the-art techniques are detailed in Sec. 4.3 & 4.4, using as
benchmark numerous time-delayed models of incremental complexity. Our
model is shown below to compare favorably with the currentmodels on DDEs
systems . Conclusions and outlook are finalized in Sec. 4.5.

4.2 . Methods

59

In the following, we discuss similarities, drawbacks and benefits of Neu-
ral SDDDE compared with the following models : NODE, ANODE and Neural
Laplace.We recall that Neural SDDDE is a directmethod for solving DDEs, spe-
cifically designed to handle delayed systems. This is not the case for ANODE
where flexibility is obtained by introducing a higher dimensional space. Lastly,
Neural Laplace can solve a broader class of differential equations, although
with some limitations that we pinpoint in the following.

From the theoretical viewpoint, the Laplace transformation is often a tool
used in proofs onDDEs [13] since it allows transforming linear functional equa-
tions in f(x(t)) involving derivative and differences into linear equations in-
volving only F (s). Thus, time-dependent and constant delay DDEs are trans-
formed into linear equations of F (s) using the Laplace transform. This trans-
formation enables Neural Laplace to bypass the explicit definition of delays,
whereas Neural SDDDE needs the delays to be specified unless the vector
flow f and delays are learned jointly. These observations tie Neural Laplace
to Neural SDDDE as they can be seen as similar models but living in different
domains. However, a limitation of Laplace transformation-based approaches
is that they are not defined for DDEs with state-dependent delays, thus res-
tricting the class of time-delayed equations that one can solve with this tech-
nique.

Neural Laplace is a model that needs memory initialized latent variables,
i.e., a long portion of the solution trajectory needs to be fed in order to get a
reasonable representation of the latent variable. In contrast, by design, NODE
and ANODE require information only at the initial time to predict the system
dynamics. From this viewpoint, Neural SDDDE lies between these two frame-
works as it requires a history function ϕ(t) to be provided for t ∈ [−τmax, 0],where τmax is the maximum delay encountered during integration. This is
more demanding than solely relying on an initial condition x(0) but far less
thanmemory-based latent variablesmethods.Moreover, the training and tes-
ting schemes for Neural Laplace is constrained by this very same observation
since future events can only be predicted after a certain observation time.
This also makes the length of the trajectory to feed to Neural Laplace a hyper-
parameter to tune. This is not the case with NODE, ANODE and our approach.

4.3 . Experiments

4.3.1 . Description of the test cases
We evaluate and compare the Neural SDDDE on several dynamical sys-

tems (time, state-dependent and constant delays) listed below coming from
biology and population dynamics. We show that Neural SDDDE outperforms

60

a variety of continuous-depth models and demonstrates its capabilities in si-
mulating delayed systems. For all the systems listed in this section, data ge-
neration information is gathered in Appendix A.7.3.

Time-dependentdelay systemHere,we study a time-dependent delayed
logistic equation [4] :

dx(t)

dt
= x(t)

[
1− x(t− τ(t))

]
, (4.6)

with τ(t) = 2 + sin(t). We integrate in the time range [0, 20] and define the
constant history function ψ(t) = x0, where x0 is sampled uniformly from
[0.1, 2.0].

State-dependent time-delay system In this example, we consider the
1-D state-dependent Mackey Glass system from Dads et al. [36] with a state-
dependent delay :

dx(t)

dt
= −α(t)x(t) + β(t)

x(t− τ(x))2

1 + x(t− τ(x))2
+ γ(t)

with α(t) = 4 + sin(t) + sin
(√

2t
)
+

1

1 + t2

β(t) = γ(t) = sin(t) + sin
(√

2t
)
+

1

1 + t2

(4.7)

where the delay function is τ(x) = 1
2 cos(x(t)). The model is defined on the

time range [0, 10] and the constant history function is ψ(t) = x0 with x0 sam-
pled uniformly from [0.1, 1].
Delayed Diffusion Equation Finally, we choose the delayed PDE taken from
Arino et al. [5]. Such dynamics can for example model single species growth
in a food-limited environment.

∂u

∂t
(x, t) = D

∂2u

∂x2
(x, t) + ru(x, t) (1− u(x, t− τ)) , (4.8)

where D = 0.01, r = 0.9 and τ = 2. We integrate in the time range [0, 4], the
spatial domain isDx = [0, 1]with periodic boundary conditions and define the
history function ψ(x, t) = a sin(x)e−0.01t where a is uniformly sampled from
[0.1, 4.0]. The spatial domain is discretized with a uniform grid of resolution
∆x = 0.01.

4.3.2 . Evaluation
We assess the performance of the models with their ability to predict fu-

ture states of a given system. The metric used is the mean square error (MSE)
61

in all cases. Neural Laplace predicts only after a burn-in time since a part of
the observed trajectory is used to learn a latent initial condition vector p. Since
NODE, ANODE and Neural SDDDE can be seen as initial value problems (IVPs)
we produce trajectories from initial conditions and compute theMSEwith res-
pect to the whole trajectory. On each DDE system, to judge the quality of each
model, we elaborate two additional experiments alongside with the test set
predictions. By modifying the history function ψ(t) we change the behavior of
the system and hence generate new trajectories. The first experiment puts
each model in a pure extrapolation regime ; the constant value of the history
function ψ(t) = x0 is sampled outside the range of the training and testing
data (see Appendix A.7.4 for more details). This allows to see the models’ ex-
trapolation capabilities. The second assessment is a more hybrid approach
where the history function is a step function :

ψ(t) =

{
x0 t ≤ tjump
x1 otherwise

tjump ∼ U(−τmax, 0), x0, x1 ∼ U(c0, c1)

where tjump is the largest delay in the system and c0, c1 are system specific
randomly sampled values (see Appendix A.7.4 for more details). Not only can
the nature of the history step function change but can also have its domain
function outside the training and test data (extrapolation regime).

As a reminder, to produce outputs, NODEandANODEneed an initial condi-
tion, Neural SDDDE the history function and Neural Laplace a portion of the
trajectory. To ensure comparison in our experiments, we opt to give Neural
Laplace the same information as Neural SDDDE, specifically the history func-
tion. This could be seen as a restriction of Neural Laplace since in its authors
give 50% of the trajectory to produce outputs. Therefore, we propose another
small experiment : on one dynamical system, Neural SDDDE is comparedwith
Neural Laplace which is given more than just the history function.

4.4 . Results

Test errors for each dynamical system are reported in Table 4.1. Comple-
mentary information are included in the Appendix A.7.2 for what concerns the
training process ; model and training hyperparameters.

62

Time Dependent DDE State-Dependent DDE Delay Diffusion
NODE .72± .086 .0355± .00064 .0029± .0014ANODE .00962± .00368 .00011± .000071 .00087± .00035Neural Laplace .00191± .0006 .00049± .00078 .00064± .00016Neural SDDDE .000989± .00017 .0000215± .00001 .00075± .00019

Table 4.1 – Test MSE averaged over 5 runs (randommodel initializationseed) of each experiment with their standard deviation. Best result bol-ded.

Figure 4.1 – Time Dependent DDE randomly sampled test trajectoryplots

Figure 4.2 – State Dependent DDE randomly sampled test trajectoryplots
63

Figure 4.3 – Diffusion Delay PDE randomly sampled from the test set

Figure 4.4 – Absolute error of Diffusion Delay PDE randomly sampledfrom the test set
Testset predictionNeural SDDDEalmost consistently outperforms all other

models across the DDE systems discussed in Section 4.3, as demonstrated in
Figures 4.1, 4.2, 4.3, and 4.4. Neural Laplace appears to suffer from the Runge
phenomenon (such a phenomenon is a problem of oscillation at the edges
of an interval that occurs when using polynomial interpolation with polyno-
mials of high degree over a set of equispaced interpolation points), particu-
larly evident in the State-Dependent DDE (Figure 4.2). This issue likely stems
from the ILT algorithm providing too few query points. As expected, Neural
ODE is the most limited model, generally predicting only the mean trajectory
of the dynamical systems being considered. ANODE yields satisfactory results,
except for the Time Dependent DDE (Figure 4.1). For the Diffusion Delay PDE,
all models predict the PDE’s evolution with an absolute error reaching up to
10−2, as shown in Figure 4.3. The absolute error, depicted in Figure 4.4, illus-
trates the discrepancies between the models. Neural Laplace produces more
errors across the entire spatial domain for given time steps, while IVP models
have errors localized in specific spatial regions.
Increasing trajectory fed for Neural Laplace Instead of providing the same
history as for Neural SDDDE, Neural Laplace is now provided 50% of the tra-
jectory to build its latent initial condition representation vector p. To that pur-

64

pose, the first half of the trajectory is used in Neural Laplace to predict the
second half. We choose to train the model on the Time Dependent DDE along
with the same training procedure (see Appendix A.7.2). Given the test MSE of
Table 4.1, we choose to only compare the test MSE of Neural SDDDE and Neu-
ral Laplace in Table 4.2. By comparing Figure 4.5 and 4.1 one can clearly note
that the Runge phenomenon is almost absent and predictions are almost as
good as Neural SDDDE. This confirms that, in general, Neural Laplace needs
more than the history function in order to correctly simulate DDEs.

Figure 4.5 – Time-dependent DDE randomly sampled test set trajecto-ries where 50% of data is fed to Neural Laplace

Test MSENeural Laplace .00125± .000798Neural SDDDE .000989± .00017

Table 4.2 – Time Dependent test MSE averaged over 5 runs with theirstandard deviation. Best result bolded.
Extrapolation regime prediction This experiment really challenges mo-

del generalization capabilities. Overall, on certain datasets, some models can
extrapolate with new constant history functions that are not too far out from
the function domain of history functions used during training ; more in de-
tails, trajectories were generated with ψ(t) = x0 ∈ [a, b] : some models are
able to exhibit adequate predictions for history functions that have a value
near the bounds of [a, b]. For the Time Dependent system (Figure 4.6), Neural
SDDDE yields better results compared to the other models. NODE produces
the trajectory’s mean field while ANODE captures the dynamics main trend

65

but with amplitude discrepancies. For the State-Dependent DDE (Figure 4.7),
Neural SDDDE once again efficiently captures the dynamics while the other
models fail. For the Diffusion Delay PDE displayed in Figure 4.8 & 4.9, overfit-
ting is observed for Neural Laplace. Out of all the IVP models, Neural SDDDE
predicts the best possible outcome compared to NODE and ANODE.

Figure 4.6 – Time Dependent DDE randomly sampled extrapolated tra-jectory plots

Figure 4.7 – State Dependent DDE randomly sampled extrapolated tra-jectory plots
66

Figure 4.8 – Diffusion Delay PDE randomly sampled from the extrapo-lated test set

Figure 4.9 – Absolute error of Diffusion Delay PDE randomly sampledfrom the extrapolated test set

Step history function prediction This third experiment also demons-
trates how the modification of the history function leads to changes in the
transient regime and impacts later dynamics. Neural Laplace fails to generate
adequate trajectories for the Time-dependent DDE system (Figure 4.10) and
the State-Dependent DDE (Figure 4.11). NODE and ANODE do not generalize
well compared to Neural SDDDE that accurately predicts the dynamics. By
studying the effect of such a new history function on the Diffusion Delay PDE,
we saw that the system’s dynamics is not changed substantially, therefore, we
decided to omit this system’s comparison.

67

Figure 4.10 – TimeDependentDDE randomly sampled fromhistory stepfunction

Figure 4.11 – State Dependent DDE randomly sampled fromhistory stepfunction

Noise analysis Finally, we also conduct a noise study on one of the da-
tasets, the Time Dependent DDE system. Each data point is added Gaussian
noise that is scaled with a certain factor α of the trajectory’s variance. The
model is then trained with this noisy data and evaluated on the noiseless test
set. In our experiment, we selected 4 scaling factors α : 0.02, 0.05, 0.1 and 0.2.
Results in Table 4.3 show that our model is robust to noisy data and almost
consistently outperforms other models. Additionally, results from Table 4.3
show that adding a small amount of noise (here α = 0.02) makes the learning
process more robust, a common result in Machine Learning [123, 194].

68

NODE ANODE Neural Laplace Neural SDDDE
α = 0 1.01± .435 .00729± .00235 .0014± .00046 .00148± .000872
α = 0.02 .720± .00254 .0128± .002377 .00881± .00254 .000906± .000441
α = 0.05 4.032± 4.225 .03655± .0349 .00977± .00146 .00250± .000951
α = 0.1 1.597± 1.100 .0223± .00634 .0154± .00501 .0121± .00534
α = 0.2 1.02± .282 .0321± .00319 .0273± .00704 .0186± .00524

Table 4.3 – Test MSE with the noiseless data averaged over 5 runs ofeach Time Dependent DDE noise experiments with their standard de-viation. Best result bolded.

4.5 . Conclusion and Future Work

In this thesis, we introduced Neural State-Dependent Delays Differential
Equations (Neural SDDDE) capable of solving DDEs with any type of delays via
neural networks. This open-source, robust pythonDDE solver compatiblewith
neural networks pushes the current envelope of Neural DDEs by handling
the delays in a more generic way. To the best of our knowledge, no machine
learning library or open-sourced code is available to model such a large class
of DDEs.
To validate the effectiveness ofNeural SDDDE,we conducted a series of bench-
mark tests, comparing it against NODEs, the augmented version ANODE, and
Neural Laplace. These numerical experiments covered a diverse range of mo-
dels, including time- and state-dependent scenarios, as well as a delayed Par-
tial Differential Equation (PDE). Our findings revealed that Neural SDDDE ac-
curately reproduced the dynamics across all scenarios tested. Furthermore,
Neural SDDDE demonstrated superior performance in terms of accuracy and
reliability when compared to the other established methods.
We believe this flexible and versatile tool may provide a valuable contribution
to several fields such as control theory where time delays are often consi-
dered. In particular, it may prove useful in learning a model for partially ob-
served systems whose dynamics of observables can be learned, under mild
conditions, from their time-history.

69

70

5 - Neural DDEswith Learnable Delays for Par-
tially Observed Dynamical Systems

Many successful methods to learn dynamical systems from data have re-
cently been introduced. Suchmethods often rely on the availability of the sys-
tem’s full state. However, this underlying hypothesis is rather restrictive as it
is typically not confirmed in practice, leaving us with partially observed sys-
tems. Utilizing the Mori–Zwanzig (MZ) formalism from statistical physics, we
demonstrate that Constant Lag Neural Delay Differential Equations (NDDEs)
naturally serve as suitable models for partially observed states. In empirical
evaluation, we show that such models outperform existing methods on both
synthetic and experimental data. Code is available here.

5.1 . Introduction

Learning system dynamics is essential in many domains such as biology
[152, 45], climate research [52, 78] or finance [2]. In a data-driven context, given
a dataset {(tl0, xl0), . . . , (tlN , xlN)}Ll=1 of observations of a unknown system :

dx(t)

dt
= f(t, x(t))

x(0) = x0

(5.1)

we wish to learn a model for the dynamics of x(t) with x : R → Rn and
f : R× Rn → Rn.

In section 4.1, we have seen that such an approach is valid if the system’s
state is fully observed and the system is Markovian. Neural network based
solutions like NODE, ANODE and RNNs were mentioned [30, 44, 74, 155, 69].
However, several applications involve dealing with partially observable states
and non-Markovian dynamics, which makes the aforementioned models less
optimal. Ultimately, it was highlighted that Neural DDE approaches, as defi-
ned in Equation 2.13, incorporate non-Markovian terms through delayed ar-
guments, thereby offering a more realistic modeling alternative for such sys-
tems.

The modeling capabilities of NDDEs vary based on the chosen delay type.
Inherently, NDDEs, with their delays, incorporate and leverage information
from preceding time points, effectively converting the delay term into a dyna-
mic memory mechanism. Initially proposed by Zhu et al. [200] to learn NDDEs
with a single constant delay, subsequent work by Zhu et al. [202] and Schla-

71

https://github.com/thibmonsel/learnable_delays

ginhaufen et al. [160] explored piece-wise constant delays and developed a
stabilizing loss for NDDEs, respectively. Additionally, Oprea et al. [133] focu-
sed on learning a single delay within a small network.
In this thesis, we extend these previous contributions by embedding NDDEs
in the general framework of the MZ formalism. We explore the possibility of
learning the values of the delays at the same time as neural flows for realistic
network sizes and extend the state of the art to complex physical applications.
Our main contributions are the following :

• Demonstrate that constant lag NDDEs can model partially observed dy-
namics with numerical examples and experimental data from fluid me-
chanics. Code is available here 1.

• Provide an open source package for constant lag DDEs compatible with
neural networks, implemented in PyTorch. This implementation allows
learning jointly the delay and the DDE’s dynamics. Code is available at 2.

5.2 . Modelling Partially Observed Dynamical Systems

In this section, we examine the challenges associated with the typical me-
thods for implementing theMori-Zwanzig formalism through Integro-Differential
Equations and introduce our new approach, which is grounded in Takens’
theorem, to address these concerns.

Figure 5.1 – The MZ equation DDE approximation used to model par-tially observed systems. Here h(·) is a measurement sensing operator.

1. https://github.com/thibmonsel/learnable_delays2. ttps://github.com/thibmonsel/torchdde
72

https://github.com/thibmonsel/learnable_delays
https://github.com/thibmonsel/torchdde

dg
dt

= fθ(t, g(t),
∫ t

0
Kθ(g(t− s), s)ds

Neural IDE
dg
dt

= fθ(t, g(t), g(t− τ1), . . . , g(t− τk))

Neural DDE
dg
dt

= fθ(t, g(t))

Neural ODE

ex
pr
es
siv
e
an
d
co
m
pl
ex

lim
ite
d
an
d
sim

pl
ifi
ed

Figure 5.2 – Modelling possibilities
5.2.1 . Approximations of Integro-Differential Equations (IDE)

The Mori–Zwanzig equation (Equation 3.7) outlines the structure of the
vector field dynamics for any observable g(t) := g(x(t)). However, solving
this dynamical equation can prove challenging due to the complexity implied
by the integral term and the noise term. Appendix A.8.1 demonstrates some
cases where the noise term F can be null, a scenario we set ourselves in. We
now discuss several approaches from the literature to estimate this integral.
A simplistic approximation consists in just disregarding the integral term, fo-
cusing solely on the impact of the observable g at the current time step t. This
corresponds to NODE [29], where the dynamics are approximated as :

dg

dt
≈ fθ(t, g(t)).

where fθ is a neural network with parameters θ.
Instead of neglecting it, an approach to approximate the integral consists in
studying particular asymptotic regimes. Among the many different models
proposed in the literature [168, 32, 169], one of the most popular consists
in approximating the integral under assumptions of very short memory or
very long memory regimes. For example, the t-model, also commonly called
slowly decaying memory approximation [33] leads to Markovian equations with
time-dependent coefficients (see Appendix A.8.2 for full derivation). However,
these remain asymptotic approximations, and,more problematically, they are
not extendable to intermediate-range memory in general.
Another approach consists in performing Monte Carlo integration [149]. This

73

work has been extended in a neural network-based formulation (Neural IDE, [196]),
where thememory integrand is decomposed as a product of typeK(t, s)F (g(s)).
However, the number of function evaluations required to accurately integrate
Equation 3.7 scales with the increasing value of t, making the process compu-
tationally intensive. In practice, experiments indicate that Neural IDE is at least
150 times slower compared to other models introduced subsequently (see Ap-
pendix A.8.4). In a similar spirit, under assumptions of short memory, one
can restrict the integral to a short past and discretize it in time, leading to an
equation of the form [50] :

dg

dt
≈M(g(t))− 1

k

k∑
i=1

K(g(t− τi), τi) (5.2)

using k delays τi uniformly spaced instead of sampling them by Monte
Carlo. Such approximations can be improved using high-order discretization
schemes, yet, as for Neural IDE, they require an unaffordable number of de-
lays τi if the integrand varies quickly or if the interval is too large.

5.2.2 . Exact representation with Neural DDE
While Equation (5.2) only provides an approximation of the true dynamics

and requires many delays, we show that using a more complex function of a
few delays it is actually possible to represent the dynamics exactly :
Proposition 5.2.1 (Exact representation with delays). For any smooth dy-
namical system (C2 is enough), and differentiable observables g, using the same
notations as for Equation 3.7, there exists almost surely a functionM of the cur-
rent observables, a finite number k of delays τ1, ..., τk > 0 and a function f such
that the observables exactly follow the dynamics :

dg

dt
= M(g(t)) + f

(
t, g(t), g(t− τ1), g(t− τ2), ..., g(t− τk)

)
. (5.3)

The proof, deferred to Appendix A.8.5, is based on the application of Ta-
kens’ theorem, which also provides a bound on the required number of de-
lays : twice the intrinsic dimension of the manifold S in which the full state
x lives, plus one. Note that this evolution equation is exact : approximations
may arise from the optimization or the expressivity of the neural networks
estimatingM and f , but not from the number of delays provided they reach
Takens’ bound. This is in contrast with the discretization of the IDE integral as
in Equation (5.2), which becomes asymptotically precise only when the num-
ber of delays becomes large compared to the complexity of the integrand.
Note that integral discretization as in Equation (5.2) are doable with a single
linear layer of a neural network taking past observables g(t − τi) as input,

74

and that Proposition 5.2.1 actually states that by stacking more layers one can
reach exact representation of the dynamics.
Additionally, this framework is also motivated in practice with climate models
from [52, 46] that utilize the MZ formalism to derive DDE structures.
Experiments in Section 5.4 will illustrate that NDDEs where both the delays and
their dynamics are learned jointly can effectively capture the dynamics of par-
tially observed systems. Before this, we detail how to perform such a training
in the next section. In Figure 5.1, the general scenario is highlighted, wherein
users have access solely to the system’s observables, and we wish to learn
their dynamics by using theMZ equation approximation (Eq. 5.3). The different
models seen in this section, namely Neural-{IDE, DDE, ODE}, are summarized
in Figure 5.2.

5.3 . Neural DelayDifferential Equationswith Learnable Delays

A constant lag NDDE is part of the larger family of continuous depth mo-
dels that emerged with NODE [29], it is defined by :

dx(t)

dt
= fθ(t, x(t), x(t− τ1), . . . , x(t− τk))

x(t ≤ 0) = ψ(t)
(5.4)

where ψ : R → Rn be the history function, ∀i, τi ∈ R+ be a delay constant
and fθ : [0, T]×Rn×· · ·×Rn → Rn be neural network. We refer the reader to
Section 2.5 for the training procedure of Neural DDEs with learnable delays.
Learning the delays τi within NDDEs is crucial for accuratelymodeling partially
observed dynamics. Indeed, certain delays may not provide relevant enough
information (if too small, entries of the delay vector data are too similar ; if too
large, the entries tend to be completely uncorrelated and cannot be numeri-
cally linked to a consistent dynamical system), therefore delays need to be
adapted during training. This is illustrated in the second Cavity experiment
in Section 5.4.2, where the training of NDDEs with fixed delays remains stuck,
while concurrently learning the delays converges to a satisfactory solution.
Appendix A.8.6 briefly illustrates how suitable delays (and the information
contained within these delayed observables) can impact the model’s learning
process.
Substantial efforts have been expanded to design a user-friendly API, develo-
ping a numerically robust DDE solver, and implementing the adjoint method
(referenced as Theorem 2.5.1) in the torchdde package. These advancements

75

ensure a seamless integration of DDEs for future users, enhancing reproduci-
bility. Further details about torchdde are available in the supplementary ma-
terials and benchmarks are found in Section A.5.

5.4 . Experiments

Numerous experiments have been carried out, categorically addressing
two aspects : firstly, validating the existing adjoint approach and assessing
the benefits of incorporating learnable constant delays ; secondly, examining
how neural DDEs with learnable delays is essential to effectively approximate
partially observed systems, demonstrated on both synthetic data and experi-
mental data. Additional experiments are also provided in Appendix A.8.7.
In a nutshell, the Brusselator and KS System experiments introduced below
showcase multiple delays learning. NDDE is the only model that accurately
captures the statistics of the KS System. In the Cavity experiment presented
below, learning delays is crucial, as fixed delays fail to capture the system’s
dynamics correctly.

5.4.1 . Dynamical systems

Toy DatasetWe demonstrate that the current approach with the adjoint me-
thod can learn jointly the delay and the dynamics of a system used to model
population dynamics in biology [6, 8]. Such a described system is formulated
through the following DDE :

dx(t)

dt
= x(t) (1− x(t− τ)) ,

x(t ≤ 0) = ψ(t)
(5.5)

where we integrate from t ∈ [0, 10], τ = 1, ψ(t) = x0 and x(0) is sampled from
the uniform distribution U(2.0, 3.0).
The following experiments showcase how NDDEs can effectively model par-
tially observed systems with the systems past state values rather than with
opaque latent variables.
Brusselator The Belousov-Zhabotinsky kinetic equation [14, 198] can be mo-
delled by the Brusselator system :{

dϕ1(t)
dt = A−Bϕ1(t)− ϕ1(t) + ϕ1(t)

2ϕ2(t)
dϕ2(t)
dt = Bϕ1(t)− ϕ1(t)

2ϕ2(t).
(5.6)

76

where we integrate in the time domain t ∈ [0, 25], the initial condition ϕ1(0)is sampled from the uniform distribution U(0, 2.0) and ϕ2(0) = 0.0. We set
ourselves in the partially observable case where we only have ϕ1’s dynamics
and wish to reconstruct its dynamics.
Kuramoto–Sivashinsky (KS) SystemWeset ourselves in another experiment
with the chaotic Kuramoto–Sivashinsky System whose 1D dynamics u(t, x) is :

∂u

∂t
+
∂2u

∂x2
+
∂4u

∂x4
+

1

2

∂u2

∂x
= 0

The system is integrated over the time domain t ∈ [0, 30], and its spatial
domain Dx = [0, 22] is discretized into 128 points. To put ourselves in the
partially observed setting we choose to observe k features uniformly spread
across the spatial domain (here k = 5).
Incompressible open cavityflowWeconsider here as experimental demons-
trator the modelling based on time-series derived from wind tunnel experi-
ments of an open cavity flow represented in Figure 5.3 ; the facility is described
in [181], where the data is provided in open access with this work are discus-
sed. Open cavity flow attracted numerous research efforts in the last decades
for the interesting dynamics at work : the flow is characterized by an impin-
ging shear layer activating a centrifugal instability in a cavity ; this interplay,
reminiscent of the feedback acoustic mechanisms described in [151], leads to
a self-sustained oscillation. A broad range of dynamics is observed, ranging
from limit cycles, to toroidal and chaotic dynamics. The data obtained is for a
Reynolds numberRe = 9190. More details on the experimental setup is given
in Tuerke et al. [181].

Figure 5.3 – Sketch of open cavity flow. Sensor placed in P.
2. Figure taken from Tuerke et al. [181]

77

5.4.2 . Results

In this section, we assess the performance of the models with their ability to
predict future states of a given partially observed system along with the toy
dataset experiment. In this study, LSTM,NODE, ANODE, LatentODE andNDDE
were selected for comparison, and Table 5.1 displays the test MSE loss over
each experiment. Appendix A.8.8 goes in more details about each model’s ar-
chitecture and the training and testing procedure. Every model incorporates
a form of ’memory’ into its architecture, except NODE. While LSTM and Latent
ODEutilizes hidden units and ANODE employs its augmented state a(t), NDDE
leverages past states such as x(t − τ). Finally, Table 5.2 outlines the number
of delays employed in NDDE for each experiment. We provide in Appendix
A.8.3 a general discussion on the delays learned and their evolution during
the training process of each experiment. In all subsequent figures, the y-axis
y(t) represents our observables, defined as y(t) = g(x(t)).

Brusselator KS Cavity
LSTM 0.0051± 0.0031 0.77± 0.041 0.75± 0.46NODE 0.77± 0.00080 0.71± 0.10 0.96± 0.0011ANODE 0.0050± 0.0050 0.55± 0.027 0.65± 0.0090NDDE 0.016± 0.0076 0.28± 0.024 0.13± 0.012

Table 5.1 – Test loss experiments averaged over 5 runs

KS Cavity Brusselator
NDDE 5 1 2

Table 5.2 – Number of delays used in NDDE for each experiment

Toy dataset Figure 5.4 & 5.5 respectively depict the model’s robust conver-
gence to accurate dynamics and the delay evolution during training overmany
seeds, showcasing a consequence of Takens’ theorem [173], that is, by using
a delay-coordinate map, one can construct a diffeomorphic shadowmanifold
M ′ from univariate observations of the original system in the generic sense.
In our case such a lag variable is (x(t), x(t− τ)) with τ ∈ R+. The result of Fi-
gure 5.5may seem surprising as the underlying DDE has a unique delay τ = 1.
However, we are not approximating the exact dynamics from the DDE itself
but rather from the shadow manifold M ′. In classical approaches (see Tan
et al. [176, 177]), the selected delay with Takens’ theorem for SSR corresponds

78

to the time series’ minimum delayedmutual information whichmeasures the
general dependence of two variables [48].

Figure 5.4 – Toy dataset random test sample

Figure 5.5 – Toy dataset delay evolution during training

Brusselator In the case of this highly stiff and periodic dataset, all models
demonstrate satisfactory performance except for NODE. NODE predicts the
trajectory’s mean thus highlighting the importance of incorporating memory
terms. Remarkably, both LSTM and ANODE perform equally well, with NDDE
and Latent ODE slightly trailing by a narrow margin as shown in Figure 5.6.

79

Figure 5.6 – Brusselator random test sample

KS System This experiment deals with a chaotic setting of the partially obser-
ved system. By observing periodically k features, the hopes of estimating the
high order spatial partial derivatives of u(x, t) is in vain making such formula-
tion of the problem even more challenging. Figure 5.7 & 5.8 showcases ran-
dom test samples from two different training runs, highlighting how NDDEs
outperform other models struggling with the dynamics of the selected fea-
tures. Furthermore, in a chaotic setting, the statistics of the dynamics prove
more informative than the trajectory itself. Figure 5.9 demonstrates that the
DDE formulation is distinctive in its adherence to the density distribution of
the KS System’s test set. This outcome highlights that utilizing past states
x(t− τ) as memory buffers, as opposed to opaque latent variables, can lead
to superior results.

Figure 5.7 – KS random test sample (Part 1)
80

Figure 5.8 – KS random test sample (Part 2)

Figure 5.9 – Example of KS test set density plots
Cavity Once more, the NDDE formulation distinguishes itself from other

models as seen in Figure 5.10, and this can be attributed to various factors.
The experimental setup encourages a delayed formulation of the problem,
with the vortex-induced flow originating from the cavity, coupled with partial
observability issues. Latent ODE yields acceptable results compared to NODE
that generates the system’s average trajectory, while LSTM and ANODE cap-
ture vague oscillations, albeit occasionally in conflicting phases. Finally, these

81

experiments demonstrate that NDDE can effectively model trajectories even
in the presence of noise in the data.

Figure 5.10 – Cavity random test samples

Figure 5.11 – NDDE’s with constant and learnable delays MSE train lossaveraged over 5 runs
Lastly, we compare NDDE with learnable and fixed delays, initialized at a

random value, on our Cavity dataset. Figure 5.11 illustrates a significant diffe-
rence in the MSE loss magnitude between NDDEs with fixed delays and those
with learnable delays, emphasizing the significance of training these delays.

5.5 . Conclusion

In this study, we showcased the capability of constant lag neural delay
differential equations (NDDEs) to effectively represent partially observed sys-
tems. The theoretical support for this assertion comes from theMori–Zwanzig

82

formalism and with its simplification that introduces DDE dynamics. We ap-
plied NDDEs to synthetic, chaotic, and real-world noisy data, and conducted
comparisons with other continuous-depth and memory based models. The
performed experiments revealed two key insights : firstly, the essential role
of memory in accurately capturing dynamics ; secondly, it was demonstrated
that LSTMs’ and Latent ODEs’ hidden latent states or ANODEs’ latent variables
are not the exclusivemeans or sometimes come short to achieve optimal per-
formance, emphasizing the efficacy of delayed terms as an efficient dynamic
memory mechanism.
NDDEs come with inherent limitations, such as the linear scaling of its ad-
joint method with the number of delays (refer to Section 2.5.2 for the case
of multiple constant delays). Another question is how to determine the op-
timal number of delays to consider ; this said, overestimating the number of
delays does not hurt the final performance. Promising directions for future
research involve exploring an equivalent version of ANODEs with NDDEs to
assess whether simpler flows can be learned. Additionally, there is a research
opportunity to investigate regularization terms that could enhance the NDDE
training process. Specifically, we are contemplating the inclusion of a penalty
term resembling of a delayed mutual information, inspired by the work of
[48].

83

84

6 - Non-Markovian closure or correction mo-
delling for dynamical systems

6.1 . Introduction

In many domains, learning and simulating system dynamics is of para-
mount importance.Many scientific and engineering applications, such aswea-
ther forecasting, ocean modeling, and cardiovascular flow simulation, can of-
ten be representedbymultiscale systemsof partial differential equations (PDE)
in high-dimensional spaces [136, 189]. In a data-driven context, when dealing
with high-dimensional data, reduced order models (ROMs) present a viable
alternative ; however, fitting the entirety of available data might also be fea-
sible in certain situations. Regardless of the approach taken, it is crucial to
recognize that artifacts and errors will inevitably arise in any surrogate mo-
del. ROMs are inherently incapable of capturing the interaction between the
selected modes and the discarded ones, leading to inaccuracies [9, 7]. Simi-
larly, parametric full-order models (FOMs) in the machine learning field have
demonstrated that these models often capture only the dominant Fourier
modes of the data, leading to long term discrepancies. [103]. This highlights
the significance of incorporating closure terms for ROMs and correction terms
for parametric FOMs to ensure the long-term accuracy of the studied system.

In this realm, highly parameterized neural networks can enhance predic-
tive accuracy by introducing Markovian terms to complete the dynamics of
ROMs and parametric FOMs. However, a limitation of many closure and cor-
rection terms experiments is that they are typically usedwithin a time-discrete
framework, which compromises the attractive continuous representation of
the system. Furthermore, while Markovian formulations may falter in captu-
ring dynamics not representedby theROMorparametric FOM, non-Markovian
terms have the potential to fill this gap. Non-Markovian terms in the discrete-
time formulation have been extensively used with LSTMs [92, 93] but has not
been studied in its continuous formulation to the best of our knowledge.

In this work, we propose a novel approach that involves non-Markovian
closure and correction term modeling in a continuous time setting through
the use of neural networks. We will provide a theoretical context that outlines
the challenges we aim to address and highlight the necessity for an additional
model alongside a ROM or parametric model to achieve accurate predictions.
Following this, we will introduce the non-Markovian modeling framework uti-
lizing Neural Delay Differential Equations (DDEs) and demonstrate its relation

85

to the MZ formalism. Finally, we will illustrate the capabilities of Neural DDEs
through various examples, beginning with an exploration of Markovian and
non-Markovian closure terms applied to a ROM for the Kuramoto–Sivashinsky
(KS) system, followed by using a parametric model to approximate the full
state of the KS system and subsequently for the Kolmogorov flow.

6.2 . Theoretical context

6.2.1 . Dynamical systemmodelling
We will consider a time-dependent PDE of the form :

∂u(t, x)

∂t
= F (t, x, u,

∂u

∂x
,
∂2u

∂x2
, . . .) (t, x) ∈ [0, T]× X

u(0, x) = u0(x), B[u](t, x) = 0 x ∈ X, (t, x) ∈ [0, T]× ∂X
(6.1)

where u : [0, T] × X → Rn is the solution, with initial condition u0(x) at time
t = 0 and boundary conditions B[u](t, x) = 0 when x is on the boundary
∂X of the domain X. We consider Dirichlet boundary conditions, where the
boundary operator BD[u] = u − bD for a fixed function bD and Neumann
boundary conditions, where BN [u] = nTux − bN for scalar-valued u, where
n is an outward facing normal on ∂X.

Equation 6.1, commonly referred to as the full order model, is computatio-
nally intensive to simulate when resulting in a high dimensional problem. To
address this challenge, our objective is to accurately approximate the high-
dimensional solution u(t, x) using one of two approaches. The first approach
involves transforming the full order solution u into a reduced field ū(t, x)

through a reduction operator A. The second approach entails fitting a pa-
rameterized model Fθ of the full dynamics F . We will first discuss the for-
mer approach, followed by the latter. The reduction operator A can employ
various techniques such as filtering, averaging, projection, or truncation. It’s
worth noting that A can be either local or non-local in space and time, with
convolutions being an example of a non-local operation. The reduced field ū
is defined as follows :

ū(t, x) := A(u(t, x)), (6.2)
where themain issue is that the reduced variable ū isn’t a solution of the FOM
Equation 6.1. Thus, the common approach is to use a parameterized reduced
model fROM such that :

∂ū(t, x)

∂t
≈ fROM (t, ū) (6.3)

The reduced ordermodel fROM is usually computationally faster than the ori-
ginal PDE presented in Equation 6.1, while still providing reliable predictions.

86

This performance advantagemakes ROMsapractical alternative to high-fidelity
models. Initially developed in the field of fluid mechanics [110], ROMs have
evolved over time, giving rise to a variety of innovative techniques. ROMs can
be classified into two primary categories : intrusive and non-intrusivemethods.
Intrusive ROMs are fundamentally physics-based ; they utilize the governing
equations to project the high-fidelity model onto a reduced order space, al-
lowing for the resolution of lower-dimensional dynamics. In contrast, non-
intrusive ROMs are predominantly data-driven, making them particularly sui-
table for modern machine learning-based approaches [111, 24, 51, 60].

The reduction operator A is often not optimal, which can lead to infor-
mation loss in the system being studied. When computationally feasible, one
approach to address this is to utilize the full state and attempt to develop a
parameterizedmodel of the unknown PDE. This approach aligns with themo-
del discovery paradigm, as discussed in various studies [21, 154, 104, 184, 49].
In this scenario, the aim would be to develop a parameterized model Fθ thataccurately represents the FOM described in Equation 6.1.

6.2.2 . Bridging the gap with closure and correction terms
By applying the reduction operator A 1 to the FOM Equation 6.1 :

A(
∂u(t, x)

∂t
) = A(F (t, x, u,

∂u

∂x
,
∂2u

∂x2
, . . .))

=⇒ ∂ū(t, x)

∂t
= A(F (t, x, u,

∂u

∂x
,
∂2u

∂x2
, . . .))

(6.4)

the reduced variable ū’s dynamics becomes unclosed because the PDE’s ope-
rator F and the reduced operatorA do no commute. Given that the dynamics
of ū are approximated by the reduced model fROM we can define a closure
model fc that brings the gaps due to non commutativity by setting :

fc(t, ū) := A(F (t, x, u,
∂u

∂x
,
∂2u

∂x2
, . . .))− fROM (t, ū) (6.5)

Incorporating this additional flexibility inmodeling is crucial for enhancing the
accuracy and long-term stability of ROMs [165]. For any given ROM denoted
as fROM , the exact dynamics of the reduced state ū(t, x) can be expressed as
follows :

∂ū(t, x)

∂t
= fROM (t, ū) + fc(t, ū) (6.6)

where fc is the closure term model associated to the ROMmodel fROM , also
known as unresolved tendency, ormodel error in different disciplines. Similarly,
for the parameterized model Fθ of the full state u, a correction term fc of thesame form that estimatesFθ ’s error could enhance its prediction. Choosing an

1. Assuming the reduction operator commutes with temporal differentiation
87

appropriate fc can be case dependent and is an active research area [3, 158],one straightforward way is to use Equation 6.6’s modelling choice and to set
theMarkovian term fc as a highly non-linear function parameterized by a neu-
ral network. In practice, solving Equation 6.6 numerically typically employs the
method of lines, which involves discretizing the spatial dimensions to trans-
form the PDE into an ODE [66]. This leads us to operate within the framework
of Neural ODE [30]. This approach takes advantage of the continuous time
setting of ODEs and neural networks expressive power.

6.3 . Extending Neural ODE with time delays : Neural DDE

6.3.1 . The issue of non-locality

The inherent nature of closure models necessitates the implicit represen-
tation of certain degrees of freedom, a choice driven by both practical consi-
derations and the need for enhanced computational efficiency. This implicit
methodology, while beneficial, can introduce non-local effects on the explicitly
resolved, large-scale degrees of freedom, presenting a complex challenge in
model development. A prime example of this complexity emerges in time-
dependent scenarios where closure is employed due to limitations in spatial
resolution. In such instances, constructing an accurate closure for a speci-
fic resolved point often demands the incorporation of spatio-temporal data
from not only adjacent but potentially distant locations. This requirement un-
derscores the intricate interplay between spatial and temporal scales in the
system. Recognizing the multifaceted nature of this challenge, our approach
leverages temporal information to address the non-local effects that arise as
a consequence of the reduction operatorA. Importantly, the same principles
that necessitate these temporal considerations in the closure model also ap-
ply to the correction terms in the parameterized model Fθ. The addition of
non-Markovian terms to Fθ serves multiple crucial purposes. It enables the
model to handle multiple time scales concurrently, a feature often present in
complex systems.

Therefore, such an assessment motivates the use of incorporating de-
layed values of the reduced state ū(t− τ, x) (or the full state u(t− τ, x)) where
τ ∈ R+ transforming the ODE formulation into a Delay Differential Equation
(DDE) one [12, 131]. The emergence of neural network-based delay differen-
tial equations, referred to as Neural DDEs, is relatively recent [201, 120, 200].
This DDE approach retains the benefits of Neural ODEs while increasing ex-
pressive power through the additional information provided by the delayed
arguments in the dynamics equation. With this new formulation, the dyna-

88

mics with the new closure term is defined by :
∂ū(t, x)

∂t
= fROM (t, ū) + fc(t, ū(t− τ1, x), . . . , ū(t− τk, x)) (6.7)

and similarly, with the full state u we have :
∂u(t, x)

∂t
= Fθ(t, u) + fc(t, u(t− τ1, x), . . . , u(t− τk, x)) (6.8)

where fc denotes the closure term related to the ROMmodel fROM or the
correction term related to the imperfect model Fθ and τ1, . . . , τk are constantpositive delays.

In a similar vein, authors from [116] derive a specialized ODE model that
can be seen as a non-Markovian correction structure, which they call Com-
plementary Deep Reduced Order Model (CD-ROM) for ROMs, although this
can be used for other parametric models like Fθ. They propose a continuousembedding of the past information with exponential decay for correction (or
closure) term that acts as a memory term for u (or ū) :

y(t, x) := fc(t, ū) =

∫ t

−∞
e(t−τ)λū(τ, x)dτ (6.9)

This new proposed equation can be solved by augmenting the original system
(Equation 6.7 or 6.8) with the memory’s y(t) dynamics :

∂y(t, x)

∂t
= ū(t, x)− λy(t, x) (6.10)

Additionally, an encoding mapEθ is used to lift the observations into a higherdimensional space to increase the dimension of the memory and the model’s
expressiveness :

∂ū(t, x)

∂t
= fROM (t, ū) +

∫ t

−∞
e(t−τ)λEθ(ū(τ, x))dτ (6.11)

Thus, the overall augmented ODE formulation of the CD ROM model be-
comes :

∂ū(t, x)

∂t
= fROM (t, ū) +Rθ(y)

∂y(t, x)

∂t
= Eθ(ū)− λy(t, x)

(6.12)

where Rθ is yet another neural network.
The CD andDDE correction/closure terms exhibit both similarities and dis-

tinct differences. The most evident distinction is that the CD-ROM framework
89

can be solved using standard ODE solvers, whereas this is not the case for
DDEs. The CD-ROM’s memory term y(t, x) incorporates continuous exponen-
tial decay contributions, which comes at the expense of solving a larger sys-
tem of ODEs compared to the lower dimensional DDE. In contrast, the DDE
closure terms remain within the same space, but with discrete delays. Leve-
raging neural networks in conjunction with DDEs allows for the modeling of
non-linear relationships with the delayed terms that have learnable delays,
rather than forcing a specific structural form. This flexibility provides an ad-
vantage over the CD-ROM’s more constrained exponential decay structure.

6.3.2 . Link to Mori–Zwanzig formalism
Through various approximations, the MZ formalism, defined in Section

5.2, has enabled the development of reduced order models and closures for
a diverse range of systems [17, 170, 99, 97, 139, 138, 75]. In our case, we can
clearly see that both MZ structure (Equation 3.7) and Equation 6.7 & 6.8 do
possess similar structures. The parameterized model Fθ or the ROM model
fROM canbe associatedwith theMarkovian term,while the closure/correction
term represents the memory and noise components. Since the noise term
develops in a space orthogonal to the observed variables and often has a mi-
nimal impact on the dynamics, the closure/correction terms can be identified
with the memory term.

6.4 . Results

In this section, we qualitatively and quantitatively compare the CD, ODE
and DDE correction/closure terms introduced in Section 6.2 & 6.3 on a variety
of benchmarks hereafter. Such experimentation will show that DDE terms
outperforms their CD and ODE counterparts on a wide margin.

6.4.1 . Closure modelling with the ROMs
KS System We choose to experiment with the Kuramoto–Sivashinsky (KS)
System [91] whose 1D dynamics u(t, x) is :

∂u

∂t
+
∂2u

∂x2
+
∂4u

∂x4
+

1

2

∂u2

∂x
= 0.

The spatial domain is set to Dx = [0, L = 22], uniformly discretized with 128
points, inducing a chaotic regime. The dataset is divided into training, valida-
tion, and test sets consisting of 2048, 128, and 100 trajectories, respectively, all
having uniformly random initial conditions. The training, validation and tes-
ting trajectories all span the time interval t ∈ [0, 30].

Our initial experiment employs a POD Galerkin approach, introduced in
Appendix A.9.1, as a ROMwherewe select 4, 8, and 10 PODmodes to represent

90

low, medium, and high energy capture of the system, respectively accounting
for 58%, 87% and 94% of the system’s energy (i.e. variance) represented in Fi-
gure 6.1. In practice, themoremodes selected in our PODGalerkin the smaller
the correction required by the closure term fc needs to be. We provide in Ap-
pendix A.9.2 details of the training procedure along with the neural network
architecture used.

Figure 6.1 – KS’s reconstruction accuracy
Figure ?? and Table 6.1 displays the test MSE loss over the three different

PODGalerkin ROMs.Whenutilizing the samemodel architecture fc, it is consis-tently demonstrated that the DDE closure term with learnable delays outper-
forms the CD and ODE closure terms across all data regimes (low, medium,
and high). This performance difference becomes especially pronounced in
low data regimes of the 4-mode PODGalerkin ROM, indicating that the Neural
ODE closures are not well-suited for such scenarios. Figure 6.2 alongwith their
respective representations in the original state space in Figure 6.3, showcase
randomly sampled data points from the test dataset for the 4 modes POD
Galerkin ROM.We decided to choose the 4modes PODGalerkin since the dis-
crepancy between models is the largest. As the number of modes increase,
the discrepancy between ODE and DDE closures decrease quantitatively in
Table 6.1. This trend is expected since the ROM captures most of the system’s
information. By studying these specific ROMs, we can identify where ODE clo-
sure terms fall short and how incorporating past states with the DDE closure
term can address ODE’s deficiencies in low data scenarios. Interestingly, the
specialized closure model CD-ROM enhances results only in the low-data re-
gime for the POD-Galerkin method. However, introducing an additional high-
dimensional proxy variable y(t) does not improve the learning process of the
CD closure term in high-data regimes.

91

Model 4 modes 8 modes 10 modes
CD-ROM 7.94± 0.53 0.43± 0.24 0.099± 0.019ODE-ROM 13.61± 0.34 0.44± 0.044 0.084± 0.0028DDE-ROM 3.39± 0.034 0.18± 0.07 0.067± 0.0078

Table 6.1 – Summary of model performance metrics, i.e. the test MSEloss. CD, ODE, and DDE closure terms are compared across the 4, 8,and 10 modes POD Galerkin ROM.

Figure 6.2 – Randomly sampled predictions of POD Galerkin ROM (4modes) from KS test set
92

Figure 6.3 – Randomly sampled predictions of POD Galerkin ROM (4modes) from KS test set reconstructed in original state space
Discussion on the number of delays in Neural DDEs Figures 6.4, 6.5
and 6.6 illustrate the combined training loss for 1, 2 and 3 delays used in the
DDE closure term for each POD Galerkin model of the KS system. The red
and blue curves represent the training and validation data, respectively. No-
tably, these curves are unaffected by the number of delays for this particular
reduced-order model and dynamical system. Such a result was also found for
our correction term experiments in section 6.4.2.

Figure 6.4 – 4 modestrain loss for DDE-ROM with {1,2,3}delays

Figure 6.5 – 8 modestrain loss for DDE-ROM with {1,2,3}delays

Figure 6.6 – 8 modestrain loss for DDE-ROM with {1,2,3}delays
Discussion on Neural DDE’s delay values The task of selecting opti-
mal delays has led to extensive research focused on creating metrics for their

93

evaluation, as highlighted in studies such as [28, 144, 174]. Despite these ef-
forts, a definitive method has yet to be established. For example, a widely
used heuristic suggests setting delays as a multiple of one-quarter of the sys-
tem’s period. In our experiments, we circumvented this issue by employing a
data-driven approach to learn the delays (i.e. via stochastic gradient descent)
and did not observe alignment with these conventional heuristics. Instead,
we observed that randomly initialized delays often remained relatively close
to their initial values. Further exploration of the delay learning process and its
relationship with traditional methods is intended for future research.

6.4.2 . Correction modelling on the KS System and Kolmogorov
flow

In our experiment, as a parametric model Fθ we chose a linear model (i.e
Fθ := A) that is learned by regression beforehand. Although more complex
modelling can be used, our purpose is to convey the utility and efficiency of
non-Markovian correction terms compared to other methods.

KS System The third column in Figure 6.8 showcases the linear model’s
rollout performance on a random sample. Additionally, the fourth column
displays its absolute error, which highlights the model’s imperfections and
indicates that a correction term is necessary to improve its predictive accu-
racy and reliability.

Table 6.7 showcases the test set MSE of the linear model with the DDE,
ODE and CD correction terms. Compared to the POD Galerkin ROM, the DDE
correction term of the studied data-driven approach surpasses the ODE one’s
by a margin. Figure 6.8 visually shows this difference where ODE display nu-
merical artifacts as time grows. The ODE correction term yields non-physical
prediction compared to both CD and DDE corrections.

Model Test MSE
ODE 0.55± 0.001CD 0.23± 0.064DDE 0.067± 0.017

Figure 6.7 – Summary of model performance metrics, comparing thetest MSE loss of the linear model with its ODE, CD and DDE correctionterms
94

Figure 6.8 – Randomly sampled predictions of the linear model with itsODE, CD or DDE correction terms from the KS test set
Kolmogorovflow As another commonfluid-dynamics benchmark, we ap-
ply each correction term models to the 2D Kolmogorov flow, a variant of the
incompressible Navier-Stokes flow. The time-dependent PDE is defined as :

∂u

∂t
+∇ · (u⊗ u) = ν∇2u− 1

ρ
∇p+ f

∇ · u = 0

where u : [0, T] × χ → R2 is the solution, χ the spatial domain, ⊗ the tensor
product, ν the kinematic viscosity, ρ the fluid density, p the pressure field, and,
finally, f the external forcing. Following previous work [171, 85], we set the for-
cing to f = sin(4y)x̂ − 0.1u, the density ρ = 1, and viscosity ν = 0.001, which
corresponds to a Reynolds number of 1000 and is integrated up to T = 4.86

(dt = 0.049). The package jax-cfd is used to generate the 32× 32 resolution
data [84]. The dataset consists of 290 trajectories and the train, validation, test
split opted is 80%, 10% and 10%.

95

Figure 6.9 showcases the linear model’s predictions over time in the se-
cond row. These predictions clearly highlight the necessity of incorporating
closure terms to achieve improved accuracy.

Model
ODE-ROM 1.44± 0.025CD ROM 1.23± 0.035DDE-ROM 1.01± 0.048

Table 6.2 – Test MSE loss on the Kolmogorov flow for CD, ODE and DDEcorection terms with the linear model.

Table 6.2 summarizes the performance of each correction term on the
Kolmogorov flow, once again highlighting the superior performance of the
DDE term over its ODE counterparts. Figure 6.9 provides a visual represen-
tation of the predictions at various time stamps, with each row depicting the
Ground Truth trajectory, the linear model, the linear model with DDE correc-
tion term, the linear model with ODE correction term, and the linear model
with CD correction term. Additionally, Figure 6.10 includes the absolute error
corresponding to each model. Notably, at approximately t ≈ 3.9, only the
DDE correction term is able to reconstruct most of the flows features, while
the ODE correction terms quickly diverge to an undesired state. Surprisingly,
the CD correction term only marginally improves upon its ODE counterpart.

96

Figure 6.9 – Random test sample from the Kolmogorov flow. CD, ODEand DDE correction terms are compared with the linear model.

97

Figure 6.10 – Random test sample from the Kolmogorov flow. The abso-lute error of CD, ODE and DDE correction terms with the linear modelare compared.

6.5 . Conclusion

In this work, we have shown that incorporating non-Markovian correction
and closure terms can significantly enhance the modeling of complex dyna-
mical systems. By going beyond traditional ODE-based approaches, our me-
thodology leverages the rich theoretical foundations of theMori–Zwanzig for-
malism to capture memory effects and unresolved degrees of freedom. The
results on benchmark systems like the Kuramoto–Sivashinsky equation and
the Kolmogorov flow demonstrate the superior performance of our approach
compared to standard ODEmethods. The ability to jointly learn the delay and
the correction/closure terms provides greater modeling flexibility and accu-
racy, unlocking new possibilities for data-driven discovery of governing equa-

98

tions. In future work, a deeper analysis of delay learning is intended to try to
join the non-Markovian literature with the one from time delay embedding.

99

100

7 - Conclusion

Each chapter possesses its own conclusion section. This "conclusion" chap-
ter offers some final personal thoughts on the future of data-driven dynami-
cal systems modeling and also future works

Final thoughts

With the surge in popularity of AI, the application of these techniques has
spread across various scientific domains, and the field of Dynamical Systems
is no exception. Several methods are available to fit dynamical systems, with
some of the most prominent being Neural DEs, Neural Operators, and, I be-
lieve, Neural Fields in the near future. We aim to offer some general insights
and reflections on these methodologies.
Neural Differential Equations (DEs) Since the inception of Neural Ordinary
Differential Equations (ODE), the field of Neural DEs has rapidly evolved, with
the introduction of new methods like Neural Controlled Differential Equa-
tions, Neural Stochastic Differential Equations, and Neural Delay Differential
Equations (DDEs), as well as their applications in diverse areas such as science
andfinance. The field ofNeural DEs possesses the advantage of leveraging the
well-developed numerical differential equation solvers that have been establi-
shed over the years, though their widespread adoption has been somewhat
limited. This delay in widespread adoption could be attributed to themore in-
volved theoretical foundations compared to regular deep learning methods,
as well as the relatively higher computational costs associated with training.
However, with the advent of more powerful GPU hardware, this perspective
on Neural DEs within the community may shift.
NeuralOperatorshave gained significant popularity in recent years and have
receivedmore research attention compared to Neural DEs. Neural Operators
typically aim to learn amapping from the current state u(t) to the future state
u(t + dt), where u represents the state and dt denotes the time step. By ap-
plying this mapping recursively, the system can be simulated. Compared to
Neural DEs, which require a certain number of intermediate computations
(depending on the solver used) to obtain u(t+dt) from u(t), Neural Operators
rely on a single forward pass, allowing for larger models to fit into available
RAM. However, Neural Operators generally require small-time steps dt to be
accurate, which can lead to excessive computation time. Additionally, NOs are
designed to be invariant to spatial discretization, a feature that Neural DEs

101

do not inherently possess. Lastly, to obtain states between t and t + dt, NOs
must employ interpolation schemes, which can lead to inaccurate estimates.
As with any method, there is a trade-off between the various approaches.
Neural Fields is a very recent method that have been used for scientific ma-
chine learning. PINNs can be seen as a special case of Neural Fields with a
physics-aware loss function. Authors from [63] showed promising results with
Transformer architectures. Given that Transformers are the state-of-the-art,
this Neural Field point of view coupled with Transformers and large amounts
of data could sprout a new promising branch in scientific machine learning.

Dynamics and Fourier Modes The current methods of NOs and most
likely Neural Fields and Neural ODEs as well, are limited in their ability to
capture only the dominant Fourier modes of the underlying dynamics. This
represents a limitation of the existing approaches. To address this, the au-
thors have proposed a new method called PDE-Refiner [102] that can capture
higher-order Fourier modes by modeling the solution estimate u(t+ dt) as a
refinement process that can be optimized as a denoising objective. This novel
methodology presents a very promising research direction for improving the
expressiveness of these data-driven dynamical system models.
The prevailing approach in the scientific community in Deep Learning for mo-
deling partially observed systems primarily involves the use of latent variables
(e.g., Latent ODEs, LSTMs, GRUs). While this approach is valid, we contend
that incorporating transparency with delayed states as non-Markovian fea-
tures can be advantageous, as we try to have endeavored to demonstrate
throughout this thesis. In fact, a significant majority of systems can be mode-
led using Integro-Differential Equations (IDEs), suggesting that the historical
states (or a continuous contribution of past states) should be sufficient for ac-
curate modeling. Nevertheless, it is important to acknowledge that gradient
descent methods may (and will) not consistently converge to this optimal re-
presentation. This limitation suggests the potential benefits of a hybrid ap-
proach, combining both latent variables and delayed states. We propose this
as a promising direction for future research, which could potentially offer a
more robust and comprehensive modeling framework.
The intersection of Dynamical Systems and Deep Learning remains in its for-
mative stages, and I firmly believe that continued cross-pollination between
these fields will catalyze significant advancements in both domains. A promi-
sing avenue for future research lies in expanding the capabilities of Neural
DDEs. This could involve a thorough investigation of how various delay struc-
tures impactmodel performance, as well as the development and exploration

102

of specialized auxiliary loss functions tailored for delay components. Such en-
deavors have the potential to not only enhance our understanding of these
hybrid models but also to improve their practical efficacy in capturing com-
plex dynamical behaviors.

Foundational Physics Models comparable to LLMs in the field of Phy-
sics, represent the next frontier where we anticipate notable advancements.
Recently, IBM and NASA announced new foundational models designed for
Weather and Climate Applications [163]. Much like the LLM landscape, the
overwhelmingmajority of thesemodels are based on Transformers. Will Neu-
ral DEs be part of this emerging trend? It’s a complex question, and my ans-
wer is both yes and no. Yes, because these foundational models, behind the
scenes, utilize an Euler schemewith a small dt to simulate dynamics, which al-
lows them to be expressed using Neural DEs. However, the answer is also no,
since their training objectives differ from those of Neural DEs ; foundational
models employ one-time step prediction training losses and leverage rollouts
to obtain long-term estimates. In contrast, Neural DEs predict segments of
trajectories based on initial conditions and regress on these estimated trajec-
tory segments.

Future Works

Model Predictive Control (MPC) is widely regarded as one of the most
effective modern control strategies. Integrating MPC with Neural DDEs for
controlling partially observed systems has yet to be done and could offer a
powerful framework for controlling complex dynamical systems. Such a com-
bination is expected since DDEs and control theory intersect.

Learning ODE vs DDEs One question that this thesis arises is : When
should we prefer DDEs over a neural ODE in a latent space, and vice versa?
This question is still open, unanswered and could be a promising research di-
rection. One could think of using an encoder-decoder structure to compress
the state and then learn ODE/DDE in the resulting encoded latent space.

Thank you

It remains to thank the reader for their attention. We hope that this thesis
has provided a comprehensive overview of the current state of the art in data-
driven dynamical systems continuous timemodeling, as well as a glimpse into
the future of this exciting field. We also hope that neural-network DDEs have
gained new supporters and that readers feel encouraged to delve deeper into

103

this captivating area of research.

104

7.1 . Synthese en francais

Les systemes dynamiques sont omnipresents dans les sciences et plus
particulierement dans l’ingenierie. Ces dernieres sont decrits par des equa-
tions differentielles partielles (EDP) qui peuvent être complexes et coûteuses
à résoudre. Par conséquent, modéliser ces systèmes est essentiel pour de
nombreuses applications, telles que le contrôle ou la prévision à long terme.
En général, nous observons ces systèmes demanière incomplète, car nous ne
connaissons pas précisément le phénomène sous-jacent ou ne pouvons pas
mesurer toutes les variables d’état. La simulation de ces systèmes partielle-
ment observés constitue un défimajeur en raison de l’absence d’informations
complètes.

Dans cette thèse, nous explorons comment utiliser les données pour mo-
déliser efficacement des systèmes partiellement observés. En nous appuyant
sur l’étude de la théorie des systèmes partiellement observables et le for-
malisme de Mori–Zwanzig, nous proposons une formulation générale à l’aide
d’équations différentielles à retards constants (EDR). Nous suggérons de com-
biner l’apprentissage profond avec les EDR constants pour développer une
nouvelle approche permettant de modéliser ces systèmes dynamiques par-
tiellement observés. Avant de s’attarder sur ce sujet, nous avons etudies les
systemes dynamiques qui suivent des EDR avec differents types de delais.
Parmi les delais explores, nous avions les delais constants, les delais depen-
dant du temps et les delais dependant de l’etat. De nombreuxmodèles ont été
comparés à ce nouveau type de modèle, et il a été conclu que les modèles à
retard étaient les plus performants. En revisitant les équations différentielles
à retard (EDR) constantes appliquées aux systèmes dynamiques, nous avons
établi la méthode de l’adjoint spécifique à ces modèles, tout en soulignant
que le retard pouvait être paramétré. Intégrer le retard comme paramètre
dans le processus d’apprentissage a permis d’obtenir un modèle plus flexible
et performant comparé à son homologue avec un retard constant. Cette in-
tégration a été motivée par la théorie de l’embédologie, qui a pris son essort
apres le théorème de Takens. En effet, ce domaine etudie entre autres et ex-
plorer des criteres pour essayer de caracteriser la qualite du retard lors de
l’apprentissage d’un systeme oartiellement observees. Des recherches pré-
liminaires ont été réalisées pour comparer et observer les similitudes entre
des techniques populaires de ce domaine et notre approche exclusivement
basée sur les données. Il apparaît qu’aucune des valeurs de retard de nos ex-
périences ne corrélait avec ces critères. Une voie de recherche prometteuse
consisterait à explorer cela plus en détail et à intégrer des fonctions de coûts
qui pourraient être en adéquation avec ces critères.

Ensuite, une étude sur les modèles réduits et imparfaits, ainsi que leur
105

couplage avec des termes de correction ou de fermeture, a été menée sur
des systèmes dynamiques. Nous avons comparé des termes purement mar-
koviens, non markoviens grâce aux EDR, et hybrides, tels que les modèles ré-
cemment introduits CD-ROM [116]. Les exemples étudiés sont classiques dans
la littérature, tels que le système de Kuramoto-Shivanksi et l’écoulement de
Kolmogorov. Les principaux points à retenir de cette étude sont que, dans le
cas des modèles réduits contenant peu d’informations sur le système, les fer-
metures à EDR surpassent largement les autres méthodes. Lorsque les mo-
dèles réduits sont de bien meilleure qualité, les fermetures EDR demeurent
les meilleures options, bien que les autres méthodes réduisent considérable-
ment l’écart. En ce qui concerne les modèles imparfaits, les modèles de cor-
rection avec EDR se sont révélés les plus performants, mais avec des marges
moins significatives.
Enfin, un dernier aspect de la thèse consiste à appliquer des modèles simu-
lant des EDR avec le contrôle prédictif basé sur le modèle (model predictive
control). Ce chapitre est actuellement en cours de rédaction et les résultats
seront exposés dans la version finale de la thèse.

106

A - Appendix

A.1 . Backpropagation

Let f1, . . . , fl be some collection of functions whose derivatives we know
how to compute and f be the composition of these functions, i.e. f : x 7→
fl ◦ fl−1 ◦ · · · ◦ f1(x). Via chain rule we can compute the derivative of the
output with respect to the input as follows :

df

dx
=

dfl
dfl−1

dfl−1

dfl−2
. . .

df1
dx

(A.1)

Autodifferentation (AD) packages do the computation of Equation A.1 for
us by successively computing the known derivatives of the functions fi. Twomain approaches are used to evaluate Equation A.1 that differ in the order in
which the Jacobian dfi

dfi−1
are multiplied.

Forward-mode Forward-mode AD, known as forward sensitivity in opti-
mization, computes df

dx by evaluating the terms from right to left, i.e. by recur-
sively computing :

dfi
dx

=
dfi
dfi−1

dfi−1

dx
, i ∈ {2, . . . , l} (A.2)

Forward-mode chooses an input variable and calculates the sensitivity of
every intermediate variable with respect to that input variable.

Reverse-mode Reverse-mode AD, also known as reverse sensitivity in op-
timization or as backpropagation in machine learning, computes dy

dx by eva-
luating the terms from left to right, i.e. by recursively computing :

dfl
dfi−1

=
dfl
dfi

dfi
dfi−1

, i ∈ {l − 1, . . . , 1} (A.3)

where we stipulate that f0 = x. Reverse-mode chooses to calculate the
sensitivity of the output with respect to each of the intermediate variables.
Reverse-mode AD needs a forward pass to compute the intermediate va-
riables and a backward pass to compute the sensitivities. These intermediate
values need to be stored during the forward pass to be used during the ba-
ckward pass (in torch this is seen with the argument torch.requires_grad).

107

Efficiency Depending on the function f at hand, one approach canbemore
efficient than the other. Inmachine learning where we are used tominimizing
a scalar-valued loss function, the reverse-mode is much more efficient. Sup-
pose that x is a vector (i.e. network’s parameters), the intermediate layers fi<lare vectors (intermediate layers are vectors) and fl is a scalar-valued function(i.e. the loss function). Evaluating Equation A.1 is amatrix-matrixmultiplication
and Equation A.1 is a matrix-vector multiplication. The latter is much more ef-
ficient than the former and this why backpropagation is the method of choice
in machine learning to optimize a model.
Remark A.1.1. Here we provide a quick example of forward-mode and reverse-
mode in practice. Let a function f : Rni → Rno defined as follows that we wish to
compute is derivative with respect to its input x :

y = f(x) = k ◦ l ◦m(x) (A.4)
where x ∈ Rni , m : Rni → Rnm , l : Rnm → Rnl , k : Rnl → Rno and ◦ is the

composition operator. By using intermediate variables a = m(x), b = l(a) and
c = k(b), we can rewrite f and its derivative as follows :

a = m(x), b = l(a), y = k(b) (A.5)
Via chain rule :

dy

dx︸︷︷︸
no×ni

=
∂k(b)

∂b︸ ︷︷ ︸
no×nk

∂l(a)

∂a︸ ︷︷ ︸
nk×nl

dm(x)

dx︸ ︷︷ ︸
nl×ni

(A.6)

where the under braces represent the size of each Jacobianmatrices. Forward-
mode AD, will compute :

dy

dx
=
∂k(b)

∂b

(
∂l(a)

∂a

dm(x)

dx

)
. (A.7)

which involves nk ·ni · (nl+no)multiplications. In reverse-mode AD will com-
pute :

dy

dx
=

(
∂k(b)

∂b

∂l(a)

∂a

)
dm(x)

dx
. (A.8)

which involves no · nl · (nk + ni) multiplications. Depending on the values of
ni, nl, nk and no, one approach can be more efficient than the other.

108

A.2 . Proof of theorem 2.3.2 ODE Adjoint

We have the following optimization problem :
argmin

θ
L(x(T)),

s.t. L(x(T)) =
∫ T

0
l(x(t))dt,

dx(t)

dt
− fθ(t, x(t)) = 0,

x(0) = x0

(A.9)

Generally, these kinds of problems are solved with a gradient descentme-
thod, which requires evaluation of the following gradient :

dL

dθ
=
∂L(x(T))

∂x

∂x(T)

∂θ
(A.10)

We evaluate the sensitivity of the following Lagrangian :
J = L(x(T)) +

∫ T

0
λ(t)

(
dx(t)

dt
− fθ(t, x(t))

)
dt (A.11)

dx(t)

dt
= fθ(x, t) =⇒ dJ

dθ
=
dL

dθ
(A.12)

The vector of Lagrangianmultiplier λ is a function of time. Distributing the
product in integrating the first terms by parts leads to an expression where
the sensitivity ∂x

∂θ can be isolated.

J = L(x(T)) + [λ(t)x(t)]T0 −
∫ T

0

(
dλ(t)

dt
x(t) + λ(t)f(x, t, θ)

)
dt (A.13)

=⇒ dJ

dθ
=

(
∂L(x(T))

∂x
+ λ(T)

)
∂x(T)

∂θ
− λ(0)

∂x(0)

∂θ︸ ︷︷ ︸
=0

−
∫ T

0

(
dλ(t)

dt
+ λ(t)

∂f(t, x(t))

∂x

)
∂x(t)

∂θ
+ λ(t)

∂f(t, x(t))

∂θ
dt

(A.14)

=⇒ dJ

dθ
=−

∫ T

0

(
dλ(t)

dt
+ λ(t)

∂f(t, x(t))

∂x

)
∂x(t)

∂θ
dt+

(
∂L(x(T))

∂x
+ λ(T)

)
∂x(T)

∂θ

−
∫ T

0
λ(t)

∂f(t, x(t))

∂θ
dt

(A.15)
109

In order to avoid the computation of ∂x
∂θ we derive the adjoint dynamics

and its initial condition which is :
dλ(t)

dt
= −λ(t)∂f(t, x(t))

∂x
, λ(T) = −∂L(x(T))

∂x
(A.16)

Going back to the gradient of the cost function w.r.t. to the network’s pa-
rameters θ (Equation A.15), we obtain :

dL

dθ
= −

∫ T

0
λ(t)

∂f(t, x(t))

∂θ
dt (A.17)

110

A.3 . Proof of theorem 2.5.1 DDE Adjoint

Proof is inspired from Calver and Enright [25] and put into ML context.
We want to solve the optimization problem where τ may appear in our para-
meter vector θ. For convenience, we use the following notation y(t) = x(t−τ)
and α(t) = t− τ .

argmin
θ

L(x(T)),

s.t. L(x(T)) =
∫ T

0
l(x(t))dt,

dx(t)

dt
− fθ(t, x(t), x(t− τ)) = 0,

x(t ≤ 0) = ψθ(t).

(A.18)

We consider the following Lagrangian :

J = L(x(T)) +

∫ T

0
λ(t)

(dx(t)
dt

− fθ(t, x(t), x(t− τ))
)
dt.

=⇒ dJ

dθ
=

dL

dθ

(A.19)

Integration by parts yields :
J =

∫ T

0
l(x(t))dt+

[
λ(t)x(t)

]T
0
−
∫ T

0

(dλ(t)
dt

x(t)+λ(t)fθ(t, x(t), x(t− τ))
)
dt.

(A.20)
Taking the derivative w.r.t. θ :

dJ

dθ
=

∫ T

0

∂l(x(t))

∂x

∂x(t)

∂θ
dt+ λ(T)

∂x(T)

∂θ
− λ(0)

∂x(0)

∂θ

+

∫ T

0
−dλ(t)

dt

∂x(t)

∂θ
dt+

∫ T

0
−λ(t)∂fθ(t, x(t), x(t− τ))

∂θ
dt

+

∫ T

0
−λ(t)∂fθ(t, x(t), x(t− τ))

∂x

∂x(t)

∂θ
dt

+

∫ T

0
−λ(t)∂fθ(t, x(t), x(t− τ))

∂y
[
∂x(t− τ)

∂θ
+ x′(t− τ)

∂α(t)

∂θ
]dt.

(A.21)

Rearranging integrals
We rework the first part of the last term to close the equation on x(t) :

∫ T

0
−λ(t)∂fθ(t, x(t), x(t− τ))

∂y

∂x(t− τ)

∂θ
dt =

∫ T−τ

−τ
−λ(t+ τ)

∂fθ(t+ τ, x(t+ τ), x(t))

∂y

∂x(t)

∂θ
dt

(A.22)
111

Choosing the multipliers so that λ(t ≥ T) = 0, we get :
∫ T

0
−λ(t)∂fθ(t, x(t), x(t− τ))

∂y

∂x(t− τ)

∂θ
dt =

∫ T

−τ
−λ(t+ τ)

∂fθ(t+ τ, x(t+ τ), x(t))

∂y

∂x(t)

∂θ
dt

(A.23)
By splitting the integral in two parts, we get :

∫ T

0
−λ(t)∂fθ(t, x(t), x(t− τ))

∂y

∂x(t− τ)

∂θ
dt =

∫ 0

−τ
−λ(t+ τ)

∂fθ(t+ τ, x(t+ τ), x(t))

∂y

∂ψθ(t)

∂θ
dt

+

∫ T

0
−λ(t+ τ)

∂fθ(t+ τ, x(t+ τ), x(t))

∂y

∂x(t)

∂θ
dt

(A.24)
Adjoint Equation

Finally, injecting this result, we rearrange the terms in Eq.A.21 :
dJ

dθ
=−

∫ T

0

(dλ(t)
dt

− ∂l(x(t))

∂x
+ λ(t)

∂fθ(t, x(t), x(t− τ))

∂x
+ λ(t+ τ)

∂fθ(t, x(t+ τ), x(t))

∂y

)∂x(t)
∂θ

dt

−
∫ T

0
λ(t)

(
∂fθ(t, x(t), x(t− τ))

∂θ
+
∂fθ(t, x(t), x(t− τ))

∂y
x′(t− τ)

∂α(t)

∂θ

)
dt

−
∫ 0

−τ
λ(t+ τ)

∂fθ(t+ τ, x(t+ τ), x(t))

∂y

∂ψθ(t)

∂θ
dt

+
���

���*0

λ(T)
∂x(T)

∂θ
− λ(0)

∂x(0)

∂θ (A.25)
The last term vanishes because of the chosen adjoint final condition λ(t ≥

T) = 0, thus we get the following adjoint dynamics, to be integrated back-
wards in time :
dλ(t)

dt
=
∂l(x(t))

∂x
− λ(t)

∂fθ(t, x(t), x(t− τ))

∂x
− λ(t+ τ)

∂fθ(t+ τ, x(t+ τ), x(t))

∂y
,

λ(t ≥ T) = 0.

(A.26)
Hence, the gradient’s loss w.r.t to the parameters is :

dL

dθ
=−

∫ T

0
λ(t)

(
∂fθ(t, x(t), x(t− τ))

∂θ
+
∂fθ(t, x(t), x(t− τ))

∂y
x′(t− τ)

∂α(t)

∂θ

)
dt

−
∫ 0

−τ
λ(t+ τ)

∂fθ(t+ τ, x(t+ τ), x(t))

∂y

∂ψθ(t)

∂θ
dt− λ(0)

∂x(0)

∂θ (A.27)
112

We will set ourselves in the case where the history function doesn’t de-
pend on θ (it will given as input to the neural network), the gradient simplifies
even further.

dL

dθ
=−

∫ T

0
λ(t)

(
∂fθ(t, x(t), x(t− τ))

∂θ
+
∂fθ(t, x(t), x(t− τ))

∂y
x′(t− τ)

∂α(t)

∂θ

)
dt

(A.28)
Usually, the term τ will be parameterized by a constant, thus ∂α(t)

∂θ =
∂t−τ
∂τ = −1, given us :

dL

dθ
=−

∫ T

0
λ(t)

(
∂fθ(t, x(t), x(t− τ))

∂θ
− ∂fθ(t, x(t), x(t− τ))

∂y
x′(t− τ)

)
dt

(A.29)
Notes on the derivative of the loss

Practically, the loss L is evaluated from a finite number N of points in
time :

L(x(T)) =

∫ T

0
l(x(t))dt (A.30)

=

∫ T

0

[N∑
i=1

l̄(x(ti))δ(t− ti)
]
dt. (A.31)

With l̄ a function computing the objective for each sampled point. This
yields the following gradient :

∂l(x(t))

∂x
=

N∑
i=1

∂l̄(x(ti))

∂x
δ(t− ti). (A.32)

This term is then always null, except for t = ti, this is why the adjoint dy-namics in Eq.(A.25) are integrated from one sampling point ti to the previous
ti−1, where the adjoint state is incremented as follows :

λ(t−i) = λ(t+i)−
∂l̄(x(ti))

∂x
. (A.33)

which corresponds to integrating the Dirac in Eq.(A.32) in reverse time for
an infinitesimal time.

113

A.4 . Proof of theorem 2.7.2 IDE adjoint

Proof is adapted from [196]. We wish to solve the optimization problem :

min
θ

L(x(T)),

s.t. L(x(T)) =
∫ T

0
l(x(t))dt,

dx(t)

dt
− fθ(t, x(t))−

∫ β(t)

α(t)
Kθ(t, s)Fθ(x(s))ds = 0

x(0) = x0.

(A.34)

We consider the following Lagrangian :

J = L(x(T)) +

∫ T

0
λ(t)

(
dx(t)

dt
− fθ(t, x(t))−

∫ β(t)

α(t)
Kθ(t, s)Fθ(x(s))ds

)
dt.

(A.35)
Integration by parts yields :

J =

∫ T

0
l(x(t))dt+

[
λ(t)x(t)

]T
0

−
∫ T

0

dλ(t)

dt
x(t) + λ(t)

(
fθ(t, x(t)) +

∫ β(t)

α(t)
Kθ(t, s)Fθ(x(s))ds

)
dt.

(A.36)

Taking the derivative w.r.t. θ and highlighting the terms that contain ∂x
∂θ inblue, we get :

dJ

dθ
=

∫ T

0

∂l(x(t))

∂x

∂x(t)

∂θ
dt+ λ(T)

∂x(T)

∂θ
− λ(0)

�
�
�7
0

∂x0
∂θ

+

∫ T

0
−dλ(t)

dt

∂x(t)

∂θ
dt+

∫ T

0
−λ(t)∂fθ(t, x(t))

∂x

∂x(t)

∂θ
dt+

∫ T

0
−λ(t)∂fθ(t, x(t))

∂θ
dt

+

∫ T

0

∫ β(t)

α(t)
−λ(t)

(
∂Kθ(t, s)

∂θ
Fθ(x(s)) +Kθ(t, s)[

∂Fθ(x(s))

∂x

∂x(s)

∂θ
+
∂Fθ(x(s))

∂θ
]

)
dsdt.

(A.37)

Let’s rearrange Equation A.37 to avoid computation of ∂x
∂θ and we chose

the adjoint initial condition λ(T) = 0 :
114

dJ

dθ
=

∫ T

0

(
∂g(x(t))

∂x
− dλ(t)

dt
− λ(t)

∂fθ(t, x(t))

∂x

)
∂x(t)

∂θ
dt

+

∫ T

0

∫ β(t)

α(t)
−λ(t)Kθ(t, s)

∂Fθ(x(s))

∂x

∂x(s)

∂θ
dsdt.

+

∫ T

0
−λ(t)∂fθ(t, x(t))

∂θ
dt

+

∫ T

0

∫ β(t)

α(t)
−λ(t)

[
∂Kθ(t, s)

∂θ
Fθ(x(s)) +Kθ(t, s)

∂Fθ(x(s))

∂θ

]
dsdt.

(A.38)
We can isolate ∂x(t)

∂θ of the second integral term by using the trick ∂x(s)
∂θ =

∂x(s)
∂x(t)

∂x(t)
∂θ and getting the formulae of the adjoint dynamics :

dλ(t)

dt
=
∂l(x(t))

∂x
− λ(t)

∂fθ(t, x(t))

∂x
− λ(t)

∫ β(t)

α(t)
Kθ(t, s)

∂Fθ(x(s))

∂x

∂x(s)

∂x(t)
ds

λ(T) = 0.

(A.39)
The term ∂x(s)

∂x(t) is null except when s = t where it is equal to 1. Therefore,
the final adjoint dynamics is :

dλ(t)

dt
=
∂g(x(t))

∂x
− λ(t)

∂fθ(t, x(t))

∂x
− λ(t)Kθ(t, t)

∂Fθ(x(t))

∂x
λ(T) = 0.

(A.40)

Going back to the gradient of the cost function w.r.t to the network’s pa-
rameters θ (Equation A.40), we obtain :

dJ

dθ
=+

∫ T

0
−λ(t)∂fθ(t, x(t))

∂θ
dt

+

∫ T

0

∫ β(t)

α(t)
−λ(t)

[
∂Kθ(t, s)

∂θ
Fθ(x(s)) + +Kθ(t, s)

∂Fθ(x(s))

∂θ

]
dsdt.

(A.41)

115

A.5 . torchdde Package

The torchdde package is a Python library that offers a flexible and user-
friendly API for solving Delay Differential Equations (DDEs) with constant de-
lays in PyTorch. Developed during the thesis, it addresses the gap in DDE sup-
port within the machine learning community. The package is designed for
seamless integration into existing PyTorch workflows and features numeri-
cally robust DDE solvers. Additionally, it implements the adjoint method for
training DDEs with constant delays, enabling joint optimization of the vector
field and delays with this method. In this section, we outline the key features
of the torchdde package, and present some experimental checks to validate
the codebase. You can check out the repository in GitHub 1 !

A.5.1 . Key Features
torchdde is a library designed for training neural networks with Constant

Lag (i.e., constant delays) Delay Differential Equations (DDEs) in PyTorch. It of-
fers several key features :

• This package includes various solvers for ODEs and DDEs, such as Euler,
Runge–Kutta 2 (RK2), RK4, Dormand–Prince (Dormand–Prince 5(4)), and
Implicit Euler.

• These solvers are implemented with PyTorch operations and are there-
fore compatible with the autograd functionality, enabling smooth inte-
gration with neural networks. The adjoint method is also included.

• Users can easily train a DDE model with learnable delays.
• The library features a straightforward API that facilitates easy incorpo-
ration into existing PyTorch workflows. Specifically, torchdde provides
a single entry point function, integrate, for integrating DDEs.

• Additionally, the package can be utilized for training ODEs, despite the
availability of other libraries like torchdiffeq or diffrax.
A.5.2 . Code verification

We conducted several experiments to validate our torchdde codebase,
presented below.

First experiment

In order to validate the learning of delayswith torchdde, we first performa
sanity check on a simple toy problem. We consider a simple DDE with a single
delay, defined by the following equation :

1. https://github.com/thibmonsel/torchdde
116

https://github.com/thibmonsel/torchdde

dx(t)

dt
= x(t)(1− x(t− τ))

x(t < 0) = x0

The initial condition is set to x0 = [2.0, 3.0, 4.0], with a delay of τ = 1,
and the system is integrated using the Dormand–Prince 5(4) solver over the
interval t ∈ [0, 20]. We define a model with only the parameter τ and pro-
vide the ground-truth vector field (i.e x(t)(1 − x(t − τ))), and train it using
the Dormand–Prince 5(4) solver. Figure A.1 illustrates the model’s loss land-
scape, highlighting the effect of τ on the loss (using MSE loss, though other
types could work as well). The convexity of the loss landscape makes it an
ideal candidate to demonstrate themodel’s capability to learn the delay using
both the adjoint method (optimize-then-discrete) and traditional backpropa-
gation (discrete-then-optimize). Figure A.2 presents the loss curve during trai-
ning with bothmethods. Themodel successfully converges to the actual delay
value τ = 1, and both training methods yield identical loss curves when ini-
tialized with the same learning rate, optimizer, and delay. This validates the
correct implementation of the adjoint method and the torchdde package.

Figure A.1 – Influence of the delay τ on the loss
117

Figure A.2 – Training loss curve for the adjoint method and traditionalbackpropagation
Second experiment

In order to validate the learning of several delays with torchdde, we per-
form another test on a simple toy problem. We consider a simple DDE with
two delays, defined by the following equation :

dx(t)

dt
= −x(t− τ1)− x(t− τ2)

x(t < 0) = x0

The initial condition is set to x0 = [3.0], the delay τ1 = 0.5, τ2 = 0.25 and
integrated using the Dormand–Prince 5(4) solver for t ∈ [0, 3]. We define a
model with only the parameters {τ1, τ2} and provide the ground-truth vectorfield, and train it using the Dormand–Prince 5(4) solver. Figure A.3 (along with
its 3D projection in Figure ??) illustrates the model’s loss landscape, highligh-
ting the effect of {τ1, τ2} on the loss (usingMSE loss, though other types could
work as well). The convexity of the loss landscape makes it an ideal candidate
to demonstrate themodel’s capability to learn the delay using both the adjoint
method (optimize-then-discrete) and traditional backpropagation (discrete-
then-optimize). Figure A.4 presents the loss curve during training with both
methods. The model successfully converges to the actual delay values, and
both training methods yield similar loss curves when initialized with the same
learning rate, optimizer, and delay. Once again, this validates the correct im-
plementation of the adjointmethod and the torchdde package. Regarding the
discrepancy in the loss in Figure A.4 between the twomethods, it is due to the
fact that the adjoint method is numerically less precise than the traditional
backpropagation method. This is a known issue with the adjoint method, and
the discrepancy is expected to some degree.
Remark A.5.1. The task of fitting the various delay parameters results in a convex
optimization landscape that is exceptionally flat. This can pose difficulties for the

118

application of stochastic gradient descent (SGD) optimization. Situations where
both the vector field and the delay parameters require learning are not frequently
encountered in practice

Figure A.3 – Influence of the delay τ1, τ2 on the loss for the two delayssystem where ⋆ indicates the optimal delay values

Figure A.4 – Training loss curve for the adjoint method and traditionalbackpropagation for the two delays system
119

Third experiment

Another aspect to validate is the joint training of delays and the vector
field. While we are not addressing a simple toy problem in this paragraph,
Section 5.4 thoroughly demonstrates this capability.

Time and memory benchmarks

We provide time and memory benchmarks on some of torchdde’s sol-
vers. In order to compare both training methods of optimize-then-discretize
(i.e. the adjoint method) and discretize-then-optimize (i.e. regular backpropa-
gation), we present the Brusselator’s experiment (seen in Section 5.4) time
duration and memory usage for various solvers during training (with a batch
size of 1024) in Tables A.1 and A.2, respectively. The results are as expected :
the adjoint method is slower (by a small factor) and consumes less memory
than the regular backpropagation. These results are consistent with NODE’s
examination of the adjoint method and conventional backpropagation trade
offs [29].

Adjoint Backpropagation
RK4 4.8± 0.23 1.89± 0.09RK2 2.4± .005 0.90± 0.005Euler 1.5± 0.01 0.47± 0.003

Table A.1 – Clock Time (s) per batch

Adjoint Backpropagation
RK4 2.2± 18 2.87± 4RK2 2.15± 20 2.48± 3Euler 2.09± 15 2.264± 9

Table A.2 – GPU consumption (Gb ±Mb) per batch
Figure A.5&A.6 compares respectively time andmemory consumption for

a forward pass of a Neural DDE with varying number of delays, each having
approximately 28k parameters. We use a setup that includes an RK4 solver
with a time step of dt = 0.1, a batch size of 128, Neural DDE with delays of [1,
3, 5, 10, 20], a state dimension of g(t) equal to 100, an upper integration bound
varying from t = 0.2 to t = 5.0 seconds, and where the notation "#i" in the
figure indicates the number of delays used in the Neural DDE.

120

Figure A.5 – Timeduration of forward pass averaged over5 runs

Figure A.6 – Memory consumption of forward pass ave-raged over 5 runs
Figures A.5 and A.6 demonstrate that the time duration increases linearly

in relation to both the integration time t and the number of delays, and that
the memory allocation similarly scales linearly with the integration time t and
the number of delays.

Discretize then optimize or optimize then discretize for DDEs?

he decision between using the continuous adjoint method and traditional
backpropagation involves a trade-off between time efficiency and memory
usage. The findings in Chapter 5 were achieved through the optimize-then-
discretizemethod. In contrast, the results presented in Chapter 6, which were
obtained later in the PhD, employed the discretize-then-optimize approach.

121

Ultimately, the discretize-then-optimize method (i.e., regular backpropaga-
tion) leads to faster training and improved practical performance, an obser-
vation also found for Neural ODE in Patrick’s Kidger thesis [80].

122

A.6 . Overview in DDE integration

A.6.1 . Introduction
A general purpose DDE is defined as follows :

dx(t)

dt
= fθ(t, x(t), x(t− τ1), . . . , x(t− τk))

τi = τi(t, x(t)), ∀i ∈ J1, kK

x(t ≤ 0) = ψ(t),

(A.42)

where θ represent the parameters, fθ : R×Rd1×···×dk ×· · ·×Rd1×···×dk →
Rd1×···×dk is an arbitrary neural network, ψ : R → Rd1×···×dk the DDE’s his-
tory function, τi : R × Rd1×···×dk → R+ the delay functions and x : [0, T] →
Rd1×···×dk the equation’s solution. The history function ψ is analogous to the
ODE’s initial condition.

To provide a gentle introduction, we examine a DDE featuring a single
constant delay τ ∈ R+ and a constant history function to be integrated over
the time interval [0, T]. The DDE takes the form :

dx(t)

dt
= f(t, x(t), x(t− τ))

x(t ≤ 0) = x0

(A.43)

In this specific scenario, at t = 0,ψ′(t = 0−) ̸= x′(t = 0+). This discrepancy
commonly occurs, leading to a lack of smooth linkage between the solution
x and the history function ψ(t) at t = 0, guaranteeing only C0 continuity.
This phenomenon, known as a derivative jump (or discontinuity or breaking
points), can propagate from the initial time t = 0 throughout the time interval
[0, T], as we will see later on. Consequently, vigilance is necessary regarding
these breaking points when integrating DDE.
On the time interval t ∈]0; τ [there are no discontinuities and the DDE be-
comes

dx(t)

dt
= f(t, x(t), x0)

x(0) = x0

(A.44)

This formulation problem reshapes theDDEproblem into anODEone that
we know how to solve with ease. Let us introduce the interpolated function
ψ1(t) to be the solution of the DDE of Equation A.44 on the interval]0; τ [.

123

On the time interval t ∈]τ ; 2τ [there are no discontinuities and the DDE be-
comes :

dx(t)

dt
= f(t, x(t), ψ1(t− τ))

x(τ) = ψ1(0)

Once again we have an ODE on this interval. Iteratively, we can solve the
DDE on successive intervals and this will yield a piecewise continuous solution
because of the initial point discontinuity.
One might have noticed that during an integration step, we need the inter-
polated function of x(t− τ). This means that DDE methods are based on the
continuous extensions of numerical ODE schemes (i.e. we need to have an in-
terpolated solution available at all times during integration).
Remark A.6.1. We observed that DDEs with constant delays exhibit discontinuity
points at multiples of τ . However, this behavior differs for DDEs with time- or state-
dependent delays, as we will explore later. Monitoring these breaking points is
essential for the accurate integration of DDEs.

A.6.2 . Discontinuity tracking
In the general case, discontinuity that arise from the delay terms are not

known a priori unless we are dealing with constant delays [164]. During each
integration step of our DDE, one must check for discontinuities by checking
the roots of the following functions gis defined in Equation A.45 [206]. Let usstipulate that we integrate from tn to tn+1 and the previous detected disconti-nuities are {λ−m, . . . , λ0, . . . , λr−1}where the firstm+1 jumps {λ−m, . . . , λ0}are given by the history function and the initial point and the rest were found
during previous integration steps. Let

∀(i, s) ∈ J0, rK × J−m, r − 1K, gis(t) = t− τi − λs (A.45)

The new discontinuity λr is defined as
λr = min{λ > λr−1, λ is a root of odd multiplicity of gis(t)}

If λr is null then the integration step is valid otherwise you redo one from
tn to λr. A detailed algorithm procedure is given in [206].

The first to do such an iterative process to find the discontinuities λr andmodify the integration step bounds is Paul [140]. An alternative approach re-
lies on step size control was proposed by Oberle and Pesch [132] and Neves

124

[127]. These methods, give up on tracking the discontinuities, which are ins-
tead assumed to be automatically included by estimating the error of the in-
tegration step. A rejected step will result in a detection of a discontinuity jump
and this is the default implementation done in Julia DelayDiffEq package [188].

For an ODE method of order p, we usually ask the solution to be at least
Cp+1 continuous. Therefore, to have a successful integration, it is crucial to
include in the mesh of points all the discontinuity of dky

dtk
at least for k ≤ p+1.

Consequently, discontinuity tracking needs to abide by these rules.
A.6.3 . Unconstrained time stepping

Regardless of the method chosen to integrate a DDE; relying on the error
estimate of the step size method or tracking the breaking points, being able
to take arbitrarily large steps that are suggested by the numerical solver is
a nice to have. This means that sometimes the formulation of our problem
becomes implicit because our approximation solution x applied to all delays
terms in our integration step is simply not yet known. This makes the overall
method implicit even if the discrete method we are using is explicit. We call
this occurrence overlapping, Zivari-Piran and Enright [206] shows that the is-
sue at hand is well-defined and solvable for time and state dependent delays.
Let us briefly describe the algorithmic procedure when we are dealing with
overlapping (ie tn+1 − tn > τ). Given equation A.43 and an integration step
from tn to tn+1. x(t − τ) is at the very best partially known and need to be
extrapolated to get a good approximation of x(tn+1). The following actions
are taken :

• Choose an initial guess for the interpolant Πn of x(t− τ) in [tn; tn+1].• Compute the solution x(tn+1) using the interpolant Πn and by steppingthe solver
• Update the interpolant Πn using the computed solution
• End if the interpolant has converged

The initial guess is usually the extrapolation of the interpolant of the previous
step and the end criterion of convergence can vary across cases.

A.6.4 . Pseudocode for DDE solver

Following the detailed explanation of the challenges posed by DDE, we
present the pseudocode of the DDE solver implemented by Zivari-Piran and
Enright [206] that is detailed in Algorithm 4, where the general outline of one
integration step of a DDE is shown; the DDE solver is illustrated in Algorithm
3. For sake of simplicity, we suppose for the pseudocode a single time delay
DDE since the general case does not differ from it.

125

Algorithm 3 Pseudocode for DDE solver
1: Input :Vector field f(t, x, x(t− τ))Integration bound t0, tFHistory function ψ(t)Set of history function’s discontinuities Λ = {λ−m, . . . , λ0}.2: Choose an initial dt
3: Declare tn = t0, tn+1 = t0 + dt
4: Declare interpolated estimated solution x̂(t) = ψ(t) for t < t05: repeat
6: Algorithm 1
7: until tn+1 = tF

126

Algorithm 4 Pseudocode for one DDE numerical integration step
1: Input :Vector field f(t, x, x(t− τ))Integration bound tn, tn+1Interpolated estimated solution x̂(t) in [t0; tn]Set of detected discontinuities Λ = {λ−m, . . . , λ0, . . . , λr−1}.2: if tn+1 − tn > min(Λ) then
3: Declare the interpolant Πn = x̂ of x(t− τ) in [tn; tn+1]4: while the interpolant Πn has not converged do5: Define fODE(t, x) = f(t, x,Πn(t))6: Step the solver x(tn+1) = ODESolve(fODE, tn, tn+1, x̂(tn))7: Update Πn using the computed solution x(tn+1).8: end while
9: else
10: Define fODE(t, x) = f(t, x, x̂(t− τ))
11: Step the solver x(tn+1) = ODESolve(fODE, tn, tn+1, x̂(tn))12: end if
13: Determine next time step tnext from solver
14: if step is accepted then
15: Return updated x̂(t), next integration bounds tn+1, tnext and Λ.
16: else
17: Check for discontinuities in [tn; tn+1] i.e18: λr = min{λ > λr−1 : λ is a root of oddmultiplicity of gi(t, x(t)), i ≤

r − 1 }
19: where gi(t, x(t)) = t− τ(t, x(t))− λi20: if a discontinuity is found, λr+1 then21: Return same x̂(t), next integration bounds tn, λr+1 andΛ∪{λr}.
22: else
23: Return same x̂(t), next integration bounds tn, tnext and Λ.
24: end if
25: end if
26: Output :Interpolated estimated solutionNext integration boundsUpdated set of discontinuities

127

A.7 . Appendix for Time and State Dependent DDE

A.7.1 . Memory and time complexity of Neural SDDDE

Neural SDDDEs rely on an ODE solver, thus function evaluations are asso-
ciated with the same computational cost as NODEs. However, Neural SDDDE
has some extra constraints making the method more computationally invol-
ved. Hereafter, we compare the complexity of these two schemes ; we define
S as the number of stages in the Runge–Kutta (RK) scheme used for the time-
integration,N the total number of integration steps, and d the state’s dimen-
sion.

Memory complexity DDE integration necessitates keeping a record of all
previous states in memory due to the presence of delayed terms. This is be-
cause at any given time t, the DDE solvermust be able to accurately determine
x(t − τ) through interpolation of the stored state history. This extra amount
of extra memory needed depends on the solver used. For example, the addi-
tional memory required when using a RK solver for one trajectory isO(SNd).
The model’s memory footprint is not affected by the number of delays.

Time complexity In comparison toNODE, the solution estimate x̂ needs to be
evaluated for each delayed state argument, i.e.,x(t−τi). The cost of evaluatingthe interpolant is small compared to the cost of computing its coefficients.
Similarly, the time complexity is conditioned by the solver used. For example,
for a RK scheme, the coefficient computation scales linearly with the number
of stages. Hence, Neural SDDDE adds a time costO(SD d) compared to NODE
for each vector field function evaluation.

A.7.2 . Training information

Table A.3 sums up the MLP architecture of each IVP model (i.e., NODE,
ANODE and Neural SDDDE) for each dynamical system. ANODE has an arbi-
trary augmented state of dimension 10 except for the PDE that has 100. Neu-
ral Laplace’s architecture is the default one taken from the official implemen-
tation for all systems. The learning rate and the number of epochs are the
same for all models. The optimizer used is AdaBelief [204]. Table A.4 gives
the number of parameters for eachmodel. In all of our experiments, we used
the Dormand–Prince 5(4) [41] solver across all of our models.

128

Width Depth Activation Epochs lrTime Dependent DDE 64 3 relu 2000 .001State Dependent DDE 64 3 relu 1000 .001Diffusion PDE DDE 128 3 relu 500 .0001
Table A.3 – Model and training hyperparameters

NODE ANODE Neural DDE Neural LaplaceTime Dependent DDE 8513 9815 8578 17194State Dependent DDE 8513 9815 8642 17194Diffusion PDE DDE 58852 84552 71653 17194
Table A.4 – Number of parameters for each DDE system

A.7.3 . Data generation parameters
We expose in Table A.5 the parameters used for each dataset generation.

The start integration time is always T0 = 0. TF refers to the end time inte-
gration. NUM_STEPS equally spaced points are sampled in [T0, TF]. The specificdelays DELAYS and the constant history function ψ(t) function domain are gi-
ven. Each training dataset comprises 256data points and the test set of 32data
points. We used our own DDE solver to generate the data (Dormand–Prince
5(4) solver [41] was used.). We then double-checked and compared its vali-
dity with Julia’s DDE solver. U refers to the uniform distribution. For example,
Time Dependent DDE’s constant history function value is uniformly sampled
between 0.1 and 2.0.

TF num_steps delays ψ(t)Time Dependent DDE 20.0 200 2 sin(t) U(0.1, 2.0)State Dependent DDE 10.0 150 0.5 cos(x(t)) U(0.1, 1.0)Diffusion PDE DDE 4.0 100 1.0 U(0.1, 4.0)

Table A.5 – Dataset generation information
A.7.4 . History step function experiment hyperparameters

In table A.6 we give the parameters used for each experiment. Extrapo-
lated ψ(t) indicates the possible value of the constant history function. τmaxand c0, c1 are described in Section 4.3. For the Diffusion Delay PDE, as statedin Section 4.3.2, the other history step function is omitted.

129

Extrapolated ψ(t) τmax c0 c1Time Dependent DDE U(2.0, 3.0) 3.0 0.1 3.0State Dependent DDE U(−1.0, 0.1) 1/2 −1.0 1.0

Table A.6 – System specific values for each testing experiment

130

A.8 . Appendix for Neural DDEs with Learnable Delays for Par-
tially Observed Dynamical Systems

A.8.1 . Cancelling out the noise term F (x, t)

One possibility is by applying the projector P we get rid of the fluctua-
tion/noise term.

∂

∂t
PetL = PetLPL+

∫ t

0
PesLPLe(t−s)QLQLds (A.46)

since the etQQL and P live in orthogonal subspaces. Instead of learning
your observable g you consider Pg.
The other option depends on information that is unavailable as it is ortho-
gonal to the observed subspace. However, this term vanishes if the history of
the observed subspace is known, and the orthogonal dynamics are dissipative
[116].

A.8.2 . t-model derivation
In the case of the slowly decaying memory (i.e., t-model), we have the ap-

proximation :
etQL ≈ etL. (A.47)

By rewriting the memory term of the Mori–Zwanzig equation (Eq. ??)
∫ t

0
e(t−s)LPLesQLQLds =

∫ t

0
Le(t−s)LesQLQLds−

∫ t

0
e(t−s)LesQLQLQLds.

where we used the commutation of L and QL with etL and esQL, respec-
tively. By using Equation A.47, which eliminates the s dependence of both
integrands we get :∫ t

0
e(t−s)LPLesQLQLds ≈ tetLPLQL.

Only time dependence remains of the memory integral. We refer to [203]
for a more detailed discussion on the t-model.

A.8.3 . Learning the delays
As a reminder, Table 5.2 provides the number of delays used in each ex-

periment.
For each experiment, we present randomly selected models and display the
evolution of delays during training in Figure A.7. Empirically, across all our ex-
periments, we observe that the delays converge to specific values. Notably,

131

if the system is periodic, these values do not match the system’s period as
observed in the Brusselator experiment. This makes sense, as incorporating
such a delay would not provide any additional information to the NDDE mo-
del. For the KS system experiments, we see that the delays that are initialized
close to each tend to spread out during the training phase in order to maxi-
mize the system’s information diversity.

Figure A.7 – Delay’s evolution during training for each experimentmen-tioned on each subplot’s y-axis
A.8.4 . Neural IDE and Neural DDE Benchmark

Firstly, let us compare both Neural IDE and Neural DDE analytically where
any function fθ denotes a parameterized network :

dg

dt
=Mθ(g(t))−

∫ t

0
Kθ(g(t− s), s)ds (A.48)

dg

dt
= fθ1(g(t)) + fθ2(t, g(t), g(t− τ1), . . . , g(t− τn)) (A.49)

The second term on the right-hand side of Equation A.48 is much more com-
putationally involved than that of the second term on the right-hand side of
Equation A.49. Indeed, Equation A.49 only needs 2 function evaluations to eva-
luate it’s right-hand side(RHS). On the other hand, the number of function eva-
luation required to integrate Equation A.48 will scale as t grows in order to get
a correct evaluation of the integral term. The original Neural IDE used aMonte
Carlo integration with a fixed number of samples to approximate the integral
term.

132

Computation Time

Figure A.8 compares the computation time of a forward pass between a
Neural IDE and Neural DDE of the same size (roughly 500 parameters). We
use a setup that includes an RK4 solver with a time step of dt = 0.1, a batch
size of 128, and a Neural DDE configured with 5 delays. Different state g(t)
dimensions are tested : [5, 10, 50, 100]. The upper integration bound is varied
from t = 0.2 to t = 2.0 seconds.

Figure A.8 – Time duration of forward pass averaged over 5 runs

This benchmark clearly shows how expensive Neural IDE is. NDDEs in-
tegration are at least an order of magnitude faster. (Please note that in Fi-
gure A.8, the notation "#i" refers to the number of features that our state
g(x, t) has).

Memory Consumption

We also performedmemory profiling between the twomethods and com-
pared theirmemory needs for one forward pass. We use a setup that includes
an RK4 solver with a time step of dt = 0.1, a batch size of 128, and a Neural
DDE configured with 5 delays. The dimension of the different state g(t) is 100,
and the upper integration bound is varied from t = 0.2 to t = 2.0 seconds.

133

Figure A.9 – Memory consumption of forward pass averaged over 5runs
For extremely small tasks, the memory requirements of IDEs are exces-

sive, as depicted in Figure A.9. Despite this, we attempted to implement the
Neural IDEmethod in our experiments. Unfortunately, during training, we en-
countered memory issues, even with a simple problem like the Brusselator.
The reason behind this is that the integral component needs to be recalcula-
ted at each integration step, causing scalability problemswhen the integration
duration is extensive.

A.8.5 . Proof of Proposition 5.2.1
Let us start by stating Takens’ theorem as expressed by [130, 173] :

TheoremA.8.1. Takens’ embedding theorem LetM be compact. There is an open
dense subset D ofDiff(M)× Ck(M,R) with the property that the Takens map

h :M → R2m+1

given by h(x) = (g(x), g(ϕ(x)), g(ϕ ◦ ϕ(x)), ...g(ϕ2m(x))) is an embedding of Ck

manifolds, when (ϕ, g) ∈ D.

Here, ϕ stands for the operator that advances the dynamical system by a
time step τ , i.e. that sends x(t) to x(t + τ), and g is the observable operator,
that sends a full statex(t) to actual observables g(x(t)) =: g(t). Variants of this
Theorem, e.g. [159], include the consideration of any set of different delays τiinsteadof uniformly spaces ones. The representationh(x(t)) = (g(x(t)), g(x(t−
τ)), g(x(t − 2τ)), ...g(x(t − 2mτ)) then becomes h(x(t)) = (g(x(t)), g(x(t −
τ1)), g(x(t − τ2)), ...g(x(t − τ2m)). In the proof of Takens’ theorem, m is the
intrinsic dimension of the dynamical system, i.e. the one of the manifoldM .
Now, given the full state x that follows the dynamics :

dx(t)

dt
= G(x), x(0) = x0 (A.50)

134

we use the chain rule on the observable g :
dg

dt
= g′(x(t))G(x) (A.51)

By applying the inverse of the delay coordinate map h−1 from theorem
A.8.1, which is invertible from its image as it is an embedding, we show that
g’s dynamics possesses a DDE structure.

dg

dt
= (g′ ×G) ◦ h−1(g(t), g(t− τ1), . . . , g(t− τn)) (A.52)

The proof is completed by choosing f = (g′ × G) ◦ h−1 −M whereM is
obtained by the Mori–Zwanzig formalism (Equation ??).
Remark A.8.2. A theoretical development is dedicated to Takens’ theorem in Sec-
tion 3.3.

A.8.6 . The importance of relevant delays
Let us consider a dynamical system evolving on a compact smooth ma-

nifold S ⊂ Rd, assumed to be an attractor. Let us consider a C2 observable
function g : S → R.
Takens’ theorem [173] rigorously discusses conditions under which a delay
vector of a scalar-valuedobservable (g(x(t)), g(x(t− τ)), . . . , g(x(t− pτ))), p ∈
N defines an embedding, a smooth diffeomorphism onto its image. It guaran-
tees a topological equivalence between the original dynamical system and the
one constructed from thememory of the observable. The dynamics of the sys-
temcan thenbe reformulatedon the set (g(x(t)), g(x(t− τ)), . . . , g(x(t− pτ))).
The Takens’ theorem, later extended by [159], establishes a sufficient condi-
tion but does not provide information about the time delay τ . From a ma-
thematical viewpoint, the delay could be arbitrary, besides some point wise
values excluded by the theorem. In practice however, its value is instrumental
in a successful embedding. If too small, entries of the delay vector data are
too similar ; if too large, the entries tend to be completely uncorrelated and
cannot be numerically linked to a consistent dynamical system.
We here illustrate the impact of suitable delays in the relevance of the infor-
mation available to inform the future evolution of the observable. We consi-
der a simple 2-delay dynamical system described by :

g(t+∆t) = cos(g(t− τ1)) sin(g(t− τ2))− α sinc(3 g(t− τ1)) + α cos(g(t− τ2)),

g(t < 0) = ψ(t),

135

with α = 0.2, τ1 = p⋆1∆t, τ2 = p⋆2∆t, p⋆1 = 125 and p⋆2 = 200.

Figure A.10 – {τ1 = p1∆t, τ2 = p2∆t}-map of Delayed Mutual Infor-mation, I ((g(t− τ1), g(t− τ2)) , g(t)). The maximum is exhibited at
(125, 200) and (200, 125), in accordance with p⋆1 = 125, p⋆2 = 200.

The relevance of the delays {τ1, τ2} for informing g(t+∆t) is assessed in
terms of the mutual information I ((g(t− τ1), g(t− τ2)) , g(t)) and shown in
Fig. A.10 as a 2-Dmap in terms of p1 and p2. Themap is symmetric, consistently
with the symmetry of the mutual information, I ((g(t− τ1), g(t− τ2)) , g(t)) =

I ((g(t− τ2), g(t− τ1)) , g(t)).
It can be seen that the amount of information shared between the current

observation and a delay vector of the observablewidely varieswith the delays.
The ability of the present Neural DDE method to learn the delays, in addition
to the model fθ, is thus key to its performance and wide applicability.

A.8.7 . Additional experiments

Wepresent the ShallowWater equationdataset, available in the PDEBench-
mark suite [172]. We put ourselves in the highly restrictive partially-observable
setting by randomly sampling 4 points on the spatial grid and fit its dynamics.
Finally, Table A.7 presents a summary of the test loss from these experiments
along with the number of parameters for each model in Table A.8. Figure A.11
illustrates the performance of each model on the Shallow Water test set. Ex-
cluding NODE, all models yield satisfactory outcomes. However, when evalua-
ting based on Mean Squared Error (MSE), NDDEs yielded better performance
than the presented baselines.

136

Figure A.11 – Random test sampled of Shallow Water dataset

Shallow Water
LSTM 0.0031± 0.001NODE 0.0460± 0.035ANODE 0.0040± 0.001Latent ODE 0.0058± 0.001NDDE 0.0010± 0.0001

Table A.7 – Shallow Water test loss experiments averaged over 5 runs

LSTM NODE ANODE Latent ODE NDDE
Parameters 2512 2404 2534 5853 2662

Table A.8 – Number of parameters for Shallow Water experiment

A.8.8 . Training hyperparameters
To train our models we progressively feed them longer trajectory chunks

if the patience hyperparameter is exceeded ; this is done until the desired tra-
jectory length is attained. Table A.9 displays the patience hyperparameter and
howmuch trajectory lengthwas given initially. Table A.10 refers to the number
of parameters of eachmodel. The loss function used across all experiments is
theMSE loss, and we employ the Adam optimizer with a weight decay of 10−7.
Table A.15 provides the initial and final learning rates (lri, lrf) for each expe-riment, which are associated with the scheduler. The scheduler is a StepLR

137

scheduler with a gamma factor (γ = exp

{
log

lrf
lri

N

}
, where N is the trajecto-

ry’s length). The scheduler adjusts the learning rate as the trajectory length
increases, allowing training to start with the initial learning rate lri and gra-
dually decrease to the final learning rate lrf . TableA.12 shows the width and
depth of theMLPs for NODE, ANODE, and NDDE across all experiments. Addi-
tionally, we provide the hidden size and number of layers for the LSTMmodel
in Table A.14. Finally, Table A.13 summarizes the Latent ODE hyperparame-
ters, where the vector field fθ (defined in the introduction) is an MLP with the
width and depth specified in the second and third columns, the latent size of
z0 in the last column, and the RNN’s hidden size in the fourth column. If some
models has fewer parameters compared to others it is that we found that
they provided better results with less. ANODE’s augmented state dimension
matches that of the number of delays used by NDDE displayed in Table 5.2.
Due to the inherent different nature of each model, they provide output of
different length and do not necessarily start at the same initial time t0 : TableA.11 provides a MSE comparison along the common trajectory predicted by all
models. Compared to Table 5.1, the results barely differ.

KS Cavity Brusselator
Length Start 15% 50% 25%Patience 40 50 20

Table A.9 – How long is the trajectory chunks given at first and the pa-tience used for each experiment

LSTM NODE ANODE Latent ODE NDDE
Brusselator 1764 3265 3395 3666 3331KS 18130 9029 11609 8118 19343Cavity 2234 2209 2274 3642 2242

Table A.10 – Number of parameters for each experiment
138

Brusselator KS Cavity
LSTM 0.0051± 0.0031 0.77± 0.061 0.75± 0.51NODE 0.75± 0.0014 0.71± 0.10 0.96± 0.0001ANODE 0.0050± 0.0050 0.53± 0.052 0.65± 0.021Latent ODE 0.014± 0.0076 0.43± 0.07 0.25± 0.14NDDE 0.011± 0.0076 0.30± 0.032 0.13± 0.0081

Table A.11 – Test loss experiments averaged over 5 runs over commontrajectory predictions

NODE/ANODE/NDDE
Width Depth

Brusselator 32 4KS 64 3Cavity 32 3Shallow Water 32 3
Table A.12 – MLP width and depth for each experiment

Experiment Width Size Depth Hidden Size Latent Size
Brusselator 16 3 16 16KS 32 3 16 16Cavity 16 3 8 8Shallow Water 32 3 8 8
Table A.13 – Configuration parameters for each experiment

Experiment Hidden Size Number of Layers
Brusselator 5 10KS 25 5Shallow Water 6 10Cavity 7 7

Table A.14 – Hidden size and number of layers for each experiment forLSTM model
139

Experiment lri lrf

Brusselator 0.001 0.0001Cavity 0.005 0.00005KS 0.01 0.0001Shallow Water 0.001 0.00001
Table A.15 – Initial and final learning rates for each experiment

140

A.9 . Appendix for Non-Markovian closure or correctionmodel-
ling for dynamical systems

A.9.1 . POD Galerkin
The typical approach of POD Galerkin ROMs is to project the high-fidelity

dynamics onto a low-dimensional space using time-invariant spatial features
[71, 96, 129, 16]. Through the use of Proper Orthogonal Decomposition (POD),
also known as Principal Component Analysis (PCA), a high-dimensional da-
taset can be compressed into a significantly smaller one, awhile preserving
most of its information. Practically, obtaining the POD involves decomposing
a snapshot matrix U ∈ Rm×n where m is the number of data points and n
the system’s state dimension (for fluid mechanics problems this would be its
number of degrees of freedom). Such a decomposition is done with Singular
Value Decompostion (SVD) :

U = V ΣW T

where V ∈ Rn×m, W ∈ Rm×n are the orthogonal matrices representing
the left and right singular vectors and Σ ∈ Rm×m is a diagonal matrix contai-
ning the singular values σi. V ’s columns represent the spatial modes of the
POD and define the POD basis. This basis allows to do dimensionality reduc-
tion because, for any r < n, the subspace spanned by the first r columns,
Vr = {v1|v2| . . . |vr} optimally approximates our snapshot matrix U in the
sense that it minimizes the following reconstruction error Er :

Er = ∥U − VrV
T
r U∥2, ∀r ∈ [1, . . . ,m] (A.53)

Such an error can be related to the sum of the discarded Σ’s singular va-
lues : Er =

∑n
i=r+1 σ

2
i . The information (ie variance) captured by the first r

POD modes can be quantified with :
R(r) =

∑n
i=r+1 σ

2
i∑n

i=1 σ
2
i

(A.54)
Given the operator P = VrV

T
r that projects onto the invariant subspace

spanned by Vr and Q its orthogonal complement, the full state vector u(x, t)
can be decomposed as :

u(x, t) = Pu(x, t) +Qu(x, t) (A.55)
For dimensionality reduction, the key idea is to select a r such that enough

variance has been accounted for in order to approximate the full system state
u(t) as :

u(x, t) ≈ Vrū(t) (A.56)
141

where ū(t) = V T
r u(x, t) (i.e. the reducedoperator isA(x) = V T

r x) containsthe temporal coefficients associated to Vr ’s spatial modes. Dealing with a(t)

instead of the full system’s state u(x, t) with the requirement that r << n,
sets us in the desired model reduction framework. Transitioning within this
reduced framework, the Galerkin method is aptly applied to derive the dyna-
mics of the reduced state ū(t). By projecting the full order model onto the
POD basis we get :

dū

dt
≈ V T

r fROM (t, Vra(t))

ū(0) = V T
r u0(x)

(A.57)

where fROM comprises the ROM operators of the studied system. With
such a formulation the problem dimensionality has been reduced. Hereaf-
ter, two options are possible in order to solve the problems’ dynamics, one
more of interest to us. First, for each vector field evaluation fROM you must
compute the reconstructed solution u(x, t) ≈ V T

r ū(t) which can be prohibiti-
vely expensive. In contrast, one can compute beforehand the reducedmodel’s
operators and this is done in our case to leverage its computational gain. Such
a proposition is detailed and used with the Navier Stokes equation [116].

A.9.2 . Hyperparameter and training information
To train our models, we progressively provide themwith longer trajectory

chunks whenever the patience hyperparameter is exceeded, continuing this
process until the desired trajectory length is achieved. Table A.16 presents the
patience hyperparameter and the initial trajectory lengths for the KS system
and Kolmogorov flow experiments. We utilized the Adam optimizer with a
weight decay of 10−5 and a ‘StepLR‘ schedulerwith a gamma factor of γ = 0.98.
All trajectories were integrated using an RK4 solver. Table A.16 also lists the
initial learning rates (lr) for all experiments.

length start patience lr

4 modes (KS) 16% 50 0.0018 modes (KS) 16% 50 0.0110 modes (KS) 16% 50 0.0005Linear model (KS) 7% 30 0.001Linear model (Kolmogorov) 50% 10 0.005
Table A.16 – Initial trajectory chunk lengths, patience values, and lear-ning rates used for the KS system and Kolmogorov flow experiments

142

For the PODGalerkin ROMexperiments, the ODE andDDE closuremodels
were implemented asMLPswith awidth of 128, depth of 4, and SiLU activation,
resulting in approximately 53k parameters. We opted to use a single delay for
the POD Galerkin experiments, as in subsection 6.4.1 empirically shows that
utilizing 1, 2, or 3 delays does not enhance performance. For the linear model
in the KS experiment, we designed the correction network as an MLP with a
width of 84, depth of 4, and SiLU activation, to match the size of the POD Ga-
lerkin network. Since CD-ROM, ODE and DDE closure/correction terms differ
by their formulation we tried to compare thesemodels as fairly as possible by
matching the number of parameters used, and using the same type of model
architecture for Eθ and Rθ (please refer to paragraph 6.3.1).

For the 2D Kolmogorov flow, we chose a U-net architecture [150] for ODE
and DDE correction terms, as these models typically perform well in compu-
ter vision tasks. The U-net architecture is further more motivated because
it is often associated to leverage multiscale features whom are necessary to
make accurate predictions [199]. TheODE andDDE correction term consists of
roughly 7M parameters. The DDE correction has also 1 delay since increasing
the number of delays didn’t improve performance. As in the KS experiments,
CD-ROM, ODE and DDE closure/correction terms differ by their formulation
we tried to compare these models as fairly as possible by matching the num-
ber of parameters used, and using the same type of model architecture for
Eθ and Rθ.

143

144

Bibliographie

[1] Henry DI Abarbanel, TA Carroll, LM Pecora, JJ Sidorowich, and L Sh Tsim-
ring. Predicting physical variables in time-delay embedding. Physical
Review E, 49(3) :1840, 1994.

[2] Yves Achdou, Olivier Bokanowski, and Tony Lelièvre. Partial differential
equations in finance. The Encyclopedia of Financial Models, 2, 2012.

[3] Shady E. Ahmed, Suraj Pawar, Omer San, Adil Rasheed, Traian Iliescu,
and Bernd R. Noack. On closures for reduced order models—a spec-
trum of first-principle to machine-learned avenues. Physics of Fluids,
33(9), September 2021. ISSN 1089-7666. doi : 10.1063/5.0061577. URL
http://dx.doi.org/10.1063/5.0061577.

[4] Julien Arino, Lin Wang, and Gail SK Wolkowicz. An alternative formula-
tion for a delayed logistic equation. Journal of theoretical biology, 241(1) :
109–119, 2006.

[5] O. Arino, M.L. Hbid, and E.A. Dads. Delay Differential Equations and Ap-
plications : Proceedings of the NATO Advanced Study Institute held in Mar-
rakech, Morocco, 9-21 September 2002. Nato Science Series II :. Springer
Netherlands, 2009. ISBN 9789048104079.

[6] O. Arino, M.L. Hbid, and E.A. Dads. Delay Differential Equations and Ap-
plications : Proceedings of the NATO Advanced Study Institute held in Mar-
rakech, Morocco, 9-21 September 2002. Nato Science Series II :. Springer
Netherlands, 2009. ISBN 9789048104079.

[7] Saba Arshad and Gon-Woo Kim. Role of deep learning in loop closure
detection for visual and lidar slam : A survey. Sensors, 21(4) :1243, 2021.

[8] H.T. Banks, J.E. Banks, Riccardo Bommarco, A.N. Laubmeier, N.J. Myers,
Maj Rundlöf, and Kristen Tillman. Modeling bumble bee popula-
tion dynamics with delay differential equations. Ecological Model-
ling, 351 :14–23, 2017. ISSN 0304-3800. doi : https://doi.org/10.
1016/j.ecolmodel.2017.02.011. URL https://www.sciencedirect.com/
science/article/pii/S0304380017301606.

[9] Andrea Beck, David Flad, and Claus-DieterMunz. Deep neural networks
for data-driven les closure models. Journal of Computational Physics,
398 :108910, 2019.

145

http://dx.doi.org/10.1063/5.0061577
https://www.sciencedirect.com/science/article/pii/S0304380017301606
https://www.sciencedirect.com/science/article/pii/S0304380017301606

[10] B. Begiashvili, N. Groun, J. Garicano-Mena, S. Le Clainche, and E. Va-
lero. Data-driven modal decomposition methods as feature detec-
tion techniques for flow problems : A critical assessment. Physics of
Fluids, 35(4), April 2023. ISSN 1089-7666. doi : 10.1063/5.0142102. URL
http://dx.doi.org/10.1063/5.0142102.

[11] Jens Behrmann, Will Grathwohl, Ricky T. Q. Chen, David Duvenaud, and
Jörn-Henrik Jacobsen. Invertible residual networks, 2018.

[12] Bellen and Zennaro. Numerical Methods for Delay Differential Equations.
Oxford University Press, Oxford, 2003.

[13] Richard Ernest Bellman and Kenneth L. Cooke. Differential-Difference
Equations. RAND Corporation, Santa Monica, CA, 1963.

[14] Belousov. A periodic reaction and its mechanism,in Collection of short pa-
pers on radiation medicine for 1958. , Med. Publ. Moscow, 1959.

[15] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Wes-
ton. Curriculum learning. In Proceedings of the 26th Annual Inter-
national Conference on Machine Learning, ICML ’09, page 41–48, New
York, NY, USA, 2009. Association for Computing Machinery. ISBN
9781605585161. doi : 10.1145/1553374.1553380. URL https://doi.org/
10.1145/1553374.1553380.

[16] M. Bergmann, C.-H. Bruneau, and A. Iollo. Enablers for robust pod mo-
dels. Journal of Computational Physics, 228(2) :516–538, 2009. ISSN 0021-
9991. doi : https://doi.org/10.1016/j.jcp.2008.09.024. URL https://www.
sciencedirect.com/science/article/pii/S002199910800510X.

[17] David Bernstein. Optimal prediction of burgers’s equation. Multiscale
Modeling & Simulation, 6(1) :27–52, 2007.

[18] Lorenz T Biegler, Omar Ghattas, Matthias Heinkenschloss, and Bart
van BloemenWaanders. Large-scale pde-constrained optimization : an
introduction. In Large-scale PDE-constrained optimization, pages 3–13.
Springer, 2003.

[19] Felix Bloch. The principle of nuclear induction. Science, 118(3068) :425–
430, 1953.

[20] Hermann Brunner. Volterra integral equations : an introduction to theory
and applications, volume 30. Cambridge University Press, 2017.

146

http://dx.doi.org/10.1063/5.0142102
https://doi.org/10.1145/1553374.1553380
https://doi.org/10.1145/1553374.1553380
https://www.sciencedirect.com/science/article/pii/S002199910800510X
https://www.sciencedirect.com/science/article/pii/S002199910800510X

[21] Steven L. Brunton, Joshua L. Proctor, and J. Nathan Kutz. Discovering go-
verning equations from data by sparse identification of nonlinear dyna-
mical systems. Proceedings of the National Academy of Sciences, 113(15) :
3932–3937, March 2016. ISSN 1091-6490. doi : 10.1073/pnas.1517384113.
URL http://dx.doi.org/10.1073/pnas.1517384113.

[22] Steven L. Brunton, Marko Budišić, Eurika Kaiser, and J. Nathan Kutz.
Modern koopman theory for dynamical systems, 2021. URL https:
//arxiv.org/abs/2102.12086.

[23] John Charles Butcher. Numerical methods for ordinary differential equa-
tions. John Wiley & Sons, 2016.

[24] Jared L. Callaham, Steven L. Brunton, and Jean-Christophe Loiseau. On
the role of nonlinear correlations in reduced-order modelling. Journal
of Fluid Mechanics, 938, March 2022. ISSN 1469-7645. doi : 10.1017/jfm.
2021.994. URL http://dx.doi.org/10.1017/jfm.2021.994.

[25] Jonathan Calver and W.H. Enright. Numerical methods for computing
sensitivities for odes and ddes. Numerical Algorithms, 74, 04 2017. doi :
10.1007/s11075-016-0188-6.

[26] Francesco Camastra and Antonino Staiano. Intrinsic dimension estima-
tion : Advances and open problems. Information Sciences, 328 :26–41,
2016.

[27] L. A. V. Carvalho and Kenneth L. Cooke. A nonlinear equation with pie-
cewise continuous argument. Differential and Integral Equations, 1(3) :
359 – 367, 1988. doi : 10.57262/die/1371669564. URL https://doi.org/
10.57262/die/1371669564.

[28] Martin Casdagli, Stephen Eubank, J Doyne Farmer, and John Gibson.
State space reconstruction in the presence of noise. Physica D : Non-
linear Phenomena, 51(1-3) :52–98, 1991.

[29] Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David Du-
venaud. Neural ordinary differential equations, 2019. URL https:
//arxiv.org/abs/1806.07366.

[30] Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David Du-
venaud. Neural ordinary differential equations, 2019. URL https:
//arxiv.org/abs/1806.07366.

[31] Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bah-
danau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning

147

http://dx.doi.org/10.1073/pnas.1517384113
https://arxiv.org/abs/2102.12086
https://arxiv.org/abs/2102.12086
http://dx.doi.org/10.1017/jfm.2021.994
https://doi.org/10.57262/die/1371669564
https://doi.org/10.57262/die/1371669564
https://arxiv.org/abs/1806.07366
https://arxiv.org/abs/1806.07366
https://arxiv.org/abs/1806.07366
https://arxiv.org/abs/1806.07366

phrase representations using rnn encoder-decoder for statistical ma-
chine translation, 2014. URL https://arxiv.org/abs/1406.1078.

[32] Alexandre J. Chorin and Panagiotis Stinis. Problem reduction, renorma-
lization, and memory, 2005.

[33] Alexandre J Chorin, Ole H Hald, and Raz Kupferman. Optimal prediction
with memory. Physica D : Nonlinear Phenomena, 166(3-4) :239–257, 2002.

[34] Kenneth L Cooke and Joseph Wiener. A survey of differential equations
with piecewise continuous arguments. In Delay Differential Equations
and Dynamical Systems : Proceedings of a Conference in honor of Kenneth
Cooke held in Claremont, California, Jan. 13–16, 1990, pages 1–15. Springer,
2006.

[35] Ian Cooper, Argha Mondal, and Chris G Antonopoulos. A sir model as-
sumption for the spread of covid-19 in different communities. Chaos,
Solitons & Fractals, 139 :110057, 2020.

[36] E Ait Dads, B Es-sebbar, and L Lhachimi. Almost periodicity in time-
dependent and state-dependent delay differential equations. Mediter-
ranean Journal of Mathematics, 19(6) :259, 2022.

[37] Marco David and Florian Méhats. Symplectic learning for hamiltonian
neural networks. Journal of Computational Physics, 494 :112495, De-
cember 2023. ISSN 0021-9991. doi : 10.1016/j.jcp.2023.112495. URL
http://dx.doi.org/10.1016/j.jcp.2023.112495.

[38] Shaan A. Desai, Marios Mattheakis, David Sondak, Pavlos Protopapas,
and Stephen J. Roberts. Port-hamiltonian neural networks for learning
explicit time-dependent dynamical systems. Physical Review E, 104(3),
September 2021. ISSN 2470-0053. doi : 10.1103/physreve.104.034312.
URL http://dx.doi.org/10.1103/PhysRevE.104.034312.

[39] Ethan R. Deyle and George Sugihara. Generalized theorems for nonli-
near state space reconstruction. PLOS ONE, 6(3) :1–8, 03 2011. doi : 10.
1371/journal.pone.0018295. URL https://doi.org/10.1371/journal.
pone.0018295.

[40] Felix Dietrich, Thomas N Thiem, and Ioannis G Kevrekidis. On the koop-
man operator of algorithms. SIAM Journal on Applied Dynamical Systems,
19(2) :860–885, 2020.

[41] John R Dormand and Peter J Prince. A family of embedded Runge-Kutta
formulae. Journal of computational and applied mathematics, 6(1) :19–26,
1980.

148

https://arxiv.org/abs/1406.1078
http://dx.doi.org/10.1016/j.jcp.2023.112495
http://dx.doi.org/10.1103/PhysRevE.104.034312
https://doi.org/10.1371/journal.pone.0018295
https://doi.org/10.1371/journal.pone.0018295

[42] Rodney D. Driver. Existence and stability of solutions of a delay-
differential system. Archive for Rational Mechanics and Analysis, 10(1) :
401–426, Jan 1962. ISSN 1432-0673.

[43] Thai Duong and Nikolay Atanasov. Hamiltonian-based Neural ODE Net-
works on the SE(3) Manifold For Dynamics Learning and Control. In
Proceedings of Robotics : Science and Systems, Virtual, July 2021. doi :
10.15607/RSS.2021.XVII.086.

[44] Emilien Dupont, Arnaud Doucet, and YeeWhye Teh. Augmented neural
odes, 2019.

[45] Irving R Epstein. Differential delay equations in chemical kinetics : Some
simple linearmodel systems. The Journal of Chemical Physics, 92(3) :1702–
1712, 1990.

[46] Swinda K. J. Falkena, Courtney Quinn, Jan Sieber, and Henk A. Dijks-
tra. A delay equation model for the atlantic multidecadal oscillation.
Proceedings of the Royal Society A : Mathematical, Physical and Engi-
neering Sciences, 477(2246) :20200659, February 2021. ISSN 1471-2946.
doi : 10.1098/rspa.2020.0659. URL http://dx.doi.org/10.1098/rspa.
2020.0659.

[47] J. Doyne Farmer and John J. Sidorowich. Predicting chaotic time series.
Phys. Rev. Lett., 59 :845–848, Aug 1987. doi : 10.1103/PhysRevLett.59.845.
URL https://link.aps.org/doi/10.1103/PhysRevLett.59.845.

[48] Andrew M. Fraser and Harry L. Swinney. Independent coordinates for
strange attractors from mutual information. Phys. Rev. A, 33 :1134–1140,
Feb 1986. doi : 10.1103/PhysRevA.33.1134. URL https://link.aps.
org/doi/10.1103/PhysRevA.33.1134.

[49] Kai Fukami, Takaaki Murata, Kai Zhang, and Koji Fukagata. Sparse iden-
tification of nonlinear dynamics with low-dimensionalized flow repre-
sentations. Journal of Fluid Mechanics, 926, September 2021. ISSN 1469-
7645. doi : 10.1017/jfm.2021.697. URL http://dx.doi.org/10.1017/
jfm.2021.697.

[50] Roshini Samanthi Gallage. Approximation of continuously distributed de-
lay differential equations. Southern Illinois University at Carbondale,
2017.

[51] Han Gao, Jian-Xun Wang, and Matthew J. Zahr. Non-intrusive model
reduction of large-scale, nonlinear dynamical systems using deep lear-
ning. Physica D : Nonlinear Phenomena, 412 :132614, November 2020. ISSN

149

http://dx.doi.org/10.1098/rspa.2020.0659
http://dx.doi.org/10.1098/rspa.2020.0659
https://link.aps.org/doi/10.1103/PhysRevLett.59.845
https://link.aps.org/doi/10.1103/PhysRevA.33.1134
https://link.aps.org/doi/10.1103/PhysRevA.33.1134
http://dx.doi.org/10.1017/jfm.2021.697
http://dx.doi.org/10.1017/jfm.2021.697

0167-2789. doi : 10.1016/j.physd.2020.132614. URL http://dx.doi.org/
10.1016/j.physd.2020.132614.

[52] Michael Ghil, Ilya Zaliapin, and Sylvester Thompson. A delay differential
model of ENSO variability : parametric instability and the distribution of
extremes. Nonlinear Processes in Geophysics, 15(3) :417–433, 2008.

[53] M Goldman and L Shen. Spin-spin relaxation in la f 3. Physical Review,
144(1) :321, 1966.

[54] Pablo Gómez, Håvard Hem Toftevaag, and Gabriele Meoni. torchquad :
Numerical integration in arbitrary dimensions with pytorch. J. Open
Source Softw., 6 :3439, 2021. URL https://api.semanticscholar.org/
CorpusID:237409134.

[55] Ayoub Gouasmi, Eric J Parish, and Karthik Duraisamy. A priori esti-
mation of memory effects in reduced-order models of nonlinear sys-
tems using themori–zwanzig formalism. Proceedings of the Royal Society
A : Mathematical, Physical and Engineering Sciences, 473(2205) :20170385,
2017.

[56] Will Grathwohl, Ricky TQ Chen, Jesse Bettencourt, Ilya Sutskever, and
David Duvenaud. Ffjord : Free-form continuous dynamics for scalable
reversible generative models, 2018.

[57] Samuel Greydanus, Misko Dzamba, and Jason Yosinski. Hamiltonian
neural networks. Advances in neural information processing systems, 32,
2019.

[58] Andreas Griewank and AndreaWalther. Algorithm 799 : revolve : an im-
plementation of checkpointing for the reverse or adjoint mode of com-
putational differentiation. ACM Transactions on Mathematical Software
(TOMS), 26(1) :19–45, 2000.

[59] Sheng Guo, Weilin Huang, Haozhi Zhang, Chenfan Zhuang, Dengke
Dong, Matthew R. Scott, and Dinglong Huang. Curriculumnet : Weakly
supervised learning from large-scale web images, 2018. URL https:
//arxiv.org/abs/1808.01097.

[60] Abhinav Gupta and Pierre FJ Lermusiaux. Neural closuremodels for dy-
namical systems. Proceedings of the Royal Society A, 477(2252) :20201004,
2021.

[61] Eldad Haber and Lars Ruthotto. Stable architectures for deep neural
networks. Inverse Problems, 34(1) :014004, December 2017. ISSN 1361-
6420. doi : 10.1088/1361-6420/aa9a90. URL http://dx.doi.org/10.
1088/1361-6420/aa9a90.

150

http://dx.doi.org/10.1016/j.physd.2020.132614
http://dx.doi.org/10.1016/j.physd.2020.132614
https://api.semanticscholar.org/CorpusID:237409134
https://api.semanticscholar.org/CorpusID:237409134
https://arxiv.org/abs/1808.01097
https://arxiv.org/abs/1808.01097
http://dx.doi.org/10.1088/1361-6420/aa9a90
http://dx.doi.org/10.1088/1361-6420/aa9a90

[62] William W Hager. Runge–kutta methods in optimal control and the
transformed adjoint system. NumerischeMathematik, 87 :247–282, 2000.

[63] JanHagnberger,Marimuthu Kalimuthu, DanielMusekamp, andMathias
Niepert. Vectorized conditional neural fields : A framework for solving
time-dependent parametric partial differential equations, 2024. URL
https://arxiv.org/abs/2406.03919.

[64] Jack K Hale. A stability theorem for functional-differential equations.
Proceedings of the National Academy of Sciences, 50(5) :942–946, 1963.

[65] LD Hall. Nuclear magnetic resonance. Advances in carbohydrate chemis-
try, 19 :51–93, 1964.

[66] Samir Hamdi, William E Schiesser, and Graham W Griffiths. Method of
lines. Scholarpedia, 2(7) :2859, 2007.

[67] Zhongkai Hao, Jiachen Yao, Chang Su, Hang Su, Ziao Wang, Fanzhi Lu,
Zeyu Xia, Yichi Zhang, Songming Liu, Lu Lu, et al. Pinnacle : A com-
prehensive benchmark of physics-informed neural networks for solving
pdes. arXiv preprint arXiv :2306.08827, 2023.

[68] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep resi-
dual learning for image recognition, 2015. URL https://arxiv.org/
abs/1512.03385.

[69] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory.
Neural computation, 9(8) :1735–1780, 1997.

[70] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory.
Neural computation, 9(8) :1735–1780, 1997.

[71] Philip Holmes. Turbulence, coherent structures, dynamical systems and
symmetry. Cambridge university press, 2012.

[72] Samuel I Holt, Zhaozhi Qian, and Mihaela van der Schaar. Neural La-
place : Learning diverse classes of differential equations in the Laplace
domain. In International Conference on Machine Learning, pages 8811–
8832. PMLR, 2022.

[73] Denis J Evans and Gary P Morriss. Statistical mechanics of nonequilbrium
liquids. ANU Press, 2007.

[74] MI Jordan. Serial order : a parallel distributed processing approach.
technical report, june 1985-march 1986. Technical report, California
Univ., San Diego, La Jolla (USA). Inst. for Cognitive Science, 1986.

151

https://arxiv.org/abs/2406.03919
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385

[75] Gerhard Jung, Martin Hanke, and Friederike Schmid. Iterative recons-
truction of memory kernels. Journal of chemical theory and computation,
13(6) :2481–2488, 2017.

[76] Mason Kamb, Eurika Kaiser, Steven L Brunton, and J Nathan Kutz. Time-
delay observables for koopman : Theory and applications. SIAM Journal
on Applied Dynamical Systems, 19(2) :886–917, 2020.

[77] Artur Karimov, Erivelton G Nepomuceno, Aleksandra Tutueva, and De-
nis Butusov. Algebraic method for the reconstruction of partially obser-
ved nonlinear systems using differential and integral embedding. Ma-
thematics, 8(2) :300, 2020.

[78] Andrew Keane, Bernd Krauskopf, and Henk A Dijkstra. The effect of
state dependence in a delay differential equation model for the El Niño
southern oscillation. Philosophical Transactions of the Royal Society A, 377
(2153) :20180121, 2019.

[79] Jacob Kelly, Jesse Bettencourt, Matthew J Johnson, and David K Duve-
naud. Learning differential equations that are easy to solve. Advances
in Neural Information Processing Systems, 33 :4370–4380, 2020.

[80] Patrick Kidger. On neural differential equations, 2022. URL https://
arxiv.org/abs/2202.02435.

[81] Patrick Kidger, James Morrill, James Foster, and Terry Lyons. Neural
controlled differential equations for irregular time series, 2020. URL
https://arxiv.org/abs/2005.08926.

[82] Patrick Kidger, James Morrill, James Foster, and Terry Lyons. Neural
controlled differential equations for irregular time series. In Advances
in Neural Information Processing Systems, volume 33, pages 6696–6707,
2020.

[83] H_S Kim, R Eykholt, and JD Salas. Nonlinear dynamics, delay times, and
embedding windows. Physica D : Nonlinear Phenomena, 127(1-2) :48–60,
1999.

[84] Dmitrii Kochkov, Jamie A. Smith, Ayya Alieva, Qing Wang, Michael P.
Brenner, and Stephan Hoyer. Machine learning–accelerated compu-
tational fluid dynamics. Proceedings of the National Academy of Sciences,
118(21), 2021. ISSN 0027-8424. doi : 10.1073/pnas.2101784118. URL
https://www.pnas.org/content/118/21/e2101784118.

152

https://arxiv.org/abs/2202.02435
https://arxiv.org/abs/2202.02435
https://arxiv.org/abs/2005.08926
https://www.pnas.org/content/118/21/e2101784118

[85] Dmitrii Kochkov, Jamie A. Smith, Ayya Alieva, Qing Wang, Michael P.
Brenner, and Stephan Hoyer. Machine learning–accelerated compu-
tational fluid dynamics. Proceedings of the National Academy of Sciences,
118(21), May 2021. ISSN 1091-6490. doi : 10.1073/pnas.2101784118. URL
http://dx.doi.org/10.1073/pnas.2101784118.

[86] B. O. Koopman. Hamiltonian systems and transformation in hilbert
space. Proceedings of the National Academy of Sciences, 17(5) :315–318,
1931. doi : 10.1073/pnas.17.5.315. URL https://www.pnas.org/doi/
abs/10.1073/pnas.17.5.315.

[87] Bernard O Koopman. Hamiltonian systems and transformation in hil-
bert space. Proceedings of the National Academy of Sciences, 17(5) :315–
318, 1931.

[88] Nikola Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kau-
shik Bhattacharya, Andrew Stuart, and Anima Anandkumar. Neural
operator : Learning maps between function spaces with applications
to pdes. Journal of Machine Learning Research, 24(89) :1–97, 2023.

[89] KHauke Kraemer,Maximilian Gelbrecht, Induja Pavithran, RI Sujith, and
Norbert Marwan. Optimal state space reconstruction via monte carlo
decision tree search. Nonlinear Dynamics, 108(2) :1525–1545, 2022.

[90] Kai-Hauke Krämer, George Datseris, Jürgen Kurths, Istvan Z Kiss, Jorge L
Ocampo-Espindola, and Norbert Marwan. A unified and automated ap-
proach to attractor reconstruction. New Journal of Physics, 23(3) :033017,
2021.

[91] Nikolai A Kudryashov. Exact solutions of the generalized kuramoto–
sivashinsky equation. Physics Letters A, 147(5-6) :287–291, 1990.

[92] Marius Kurz and Andrea Beck. A machine learning framework for les
closure terms. arXiv preprint arXiv :2010.03030, 2020.

[93] Marius Kurz and Andrea Beck. A machine learning framework for les
closure terms. ETNA - Electronic Transactions on Numerical Analysis, 56 :
117–137, 2022. ISSN 1068-9613.

[94] J. Nathan Kutz, Xing Fu, and Steven L. Brunton. Multi-resolution dynamic
mode decomposition, 2015.

[95] Vangipuram Lakshmikantham. Theory of integro-differential equations,
volume 1. CRC press, 1995.

153

http://dx.doi.org/10.1073/pnas.2101784118
https://www.pnas.org/doi/abs/10.1073/pnas.17.5.315
https://www.pnas.org/doi/abs/10.1073/pnas.17.5.315

[96] Toni Lassila, Andrea Manzoni, Alfio Quarteroni, and Gianluigi Rozza.
Model order reduction in fluid dynamics : challenges and perspectives.
Reduced Order Methods for modeling and computational reduction, pages
235–273, 2014.

[97] Huan Lei, Nathan A Baker, and Xiantao Li. Data-driven parameteriza-
tion of the generalized langevin equation. Proceedings of the National
Academy of Sciences, 113(50) :14183–14188, 2016.

[98] Qianxiao Li, Felix Dietrich, Erik M. Bollt, and Ioannis G. Kevrekidis.
Extended dynamic mode decomposition with dictionary learning : A
data-driven adaptive spectral decomposition of the koopman operator.
Chaos : An Interdisciplinary Journal of Nonlinear Science, 27(10), October
2017. ISSN 1089-7682. doi : 10.1063/1.4993854. URL http://dx.doi.
org/10.1063/1.4993854.

[99] Zhen Li, Xin Bian, Xiantao Li, and George Em Karniadakis. Incorporation
ofmemory effects in coarse-grainedmodeling via themori–zwanzig for-
malism. The Journal of chemical physics, 143(24), 2015.

[100] Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kau-
shik Bhattacharya, Andrew Stuart, and Anima Anandkumar. Fourier
neural operator for parametric partial differential equations, 2021. URL
https://arxiv.org/abs/2010.08895.

[101] Yen Ting Lin, Yifeng Tian, Marian Anghel, and Daniel Livescu. Data-
driven learning for the mori–zwanzig formalism : a generalization of
the koopman learning framework, 2021. URL https://arxiv.org/abs/
2101.05873.

[102] Phillip Lippe, Bastiaan S. Veeling, Paris Perdikaris, Richard E. Turner, and
Johannes Brandstetter. Pde-refiner : Achieving accurate long rollouts
with neural pde solvers, 2023.

[103] Phillip Lippe, Bastiaan S. Veeling, Paris Perdikaris, Richard E. Turner, and
Johannes Brandstetter. Pde-refiner : Achieving accurate long rollouts
with neural pde solvers, 2023. URL https://arxiv.org/abs/2308.
05732.

[104] Jean-Christophe Loiseau, Bernd R. Noack, and Steven L. Brunton.
Sparse reduced-order modelling : sensor-based dynamics to full-state
estimation. Journal of Fluid Mechanics, 844 :459–490, April 2018. ISSN
1469-7645. doi : 10.1017/jfm.2018.147. URL http://dx.doi.org/10.
1017/jfm.2018.147.

154

http://dx.doi.org/10.1063/1.4993854
http://dx.doi.org/10.1063/1.4993854
https://arxiv.org/abs/2010.08895
https://arxiv.org/abs/2101.05873
https://arxiv.org/abs/2101.05873
https://arxiv.org/abs/2308.05732
https://arxiv.org/abs/2308.05732
http://dx.doi.org/10.1017/jfm.2018.147
http://dx.doi.org/10.1017/jfm.2018.147

[105] Edward N Lorenz. Deterministic nonperiodic flow. Journal of atmosphe-
ric sciences, 20(2) :130–141, 1963.

[106] Fei Lu, Kevin K Lin, and Alexandre J Chorin. Data-based stochasticmodel
reduction for the kuramoto–sivashinsky equation. Physica D : Nonlinear
Phenomena, 340 :46–57, 2017.

[107] Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em
Karniadakis. Learning nonlinear operators via deeponet based
on the universal approximation theorem of operators. Nature
Machine Intelligence, 3(3) :218–229, March 2021. ISSN 2522-5839.
doi : 10.1038/s42256-021-00302-5. URL http://dx.doi.org/10.1038/
s42256-021-00302-5.

[108] Lu Lu, XuhuiMeng, ZhipingMao, andGeorge EmKarniadakis. Deepxde :
A deep learning library for solving differential equations. SIAM review,
63(1) :208–228, 2021.

[109] Yiping Lu, Aoxiao Zhong, Quanzheng Li, and Bin Dong. Beyond finite
layer neural networks : Bridging deep architectures and numerical dif-
ferential equations, 2020. URL https://arxiv.org/abs/1710.10121.

[110] John L Lumley. Stochastic tools in turbulence. volume 12. applied ma-
thematics andmechanics. Technical Report No. AD071031182 : RISO-R-1653,
1970.

[111] Romit Maulik, Arvind Mohan, Bethany Lusch, Sandeep Madireddy, Pra-
sanna Balaprakash, and Daniel Livescu. Time-series learning of latent-
space dynamics for reduced-order model closure. Physica D : Nonlinear
Phenomena, 405 :132368, April 2020. ISSN 0167-2789. doi : 10.1016/j.
physd.2020.132368. URL http://dx.doi.org/10.1016/j.physd.2020.
132368.

[112] Alexandre Mauroy and Igor Mezić. Global stability analysis using the
eigenfunctions of the koopmanoperator. IEEE Transactions on Automatic
Control, 61(11) :3356–3369, 2016.

[113] Mark J McGuinness. The fractal dimension of the lorenz attractor. Phy-
sics Letters A, 99(1) :5–9, 1983.

[114] Hugo Melchers, B Koren, V Menkovski, dt Crommelin, and B Sanderse.
Machine learning for closure models. PhD thesis, Master’s thesis, Eindho-
ven University of Technology, 2022.

155

http://dx.doi.org/10.1038/s42256-021-00302-5
http://dx.doi.org/10.1038/s42256-021-00302-5
https://arxiv.org/abs/1710.10121
http://dx.doi.org/10.1016/j.physd.2020.132368
http://dx.doi.org/10.1016/j.physd.2020.132368

[115] Hugo Melchers, Daan Crommelin, Barry Koren, Vlado Menkovski, and
Benjamin Sanderse. Comparison of neural closure models for discreti-
sed pdes. Computers & Mathematics with Applications, 143 :94–107, 2023.

[116] Emmanuel Menier, Michele Alessandro Bucci, Mouadh Yagoubi, Lionel
Mathelin, and Marc Schoenauer. Cd-rom : Complemented deep - redu-
ced order model. Computer Methods in Applied Mechanics and Enginee-
ring, 410 :115985, May 2023. ISSN 0045-7825. doi : 10.1016/j.cma.2023.
115985. URL http://dx.doi.org/10.1016/j.cma.2023.115985.

[117] Igor Mezić. Spectral properties of dynamical systems, model reduction
and decompositions. Nonlinear Dynamics, 41 :309–325, 2005.

[118] Igor Mezic. Spectrum of the koopman operator, spectral expansions
in functional spaces, and state space geometry, 2019. URL https://
arxiv.org/abs/1702.07597.

[119] Nicholas Minorsky. Self-excited oscillations in dynamical systems pos-
sessing retarded actions. Journal of Applied Mechanics, 1942.

[120] Thibault Monsel, Onofrio Semeraro, Lionel Mathelin, and Guillaume
Charpiat. Neural state-dependent delay differential equations, 2023.

[121] Thibault Monsel, Emmanuel Menier, Lionel Mathelin, Onofrio Seme-
raro, and Guillaume Charpiat. Neural DDEs with Learnable Delays for
Partially Observed Dynamical Systems. working paper or preprint, Oc-
tober 2024. URL https://hal.science/hal-04715748.

[122] Thibault Monsel, Onofrio Semeraro, Lionel Mathelin, and Guillaume
Charpiat. Time and State Dependent Neural Delay Differential Equa-
tions. Proceedings ofMachine Learning Research 255,ML-DEWorkshop
at ECAI 2024, 2024. URL https://hal.science/hal-04125875.

[123] Nicolas Morales, Liang Gu, and Yuqing Gao. Adding noise to improve
noise robustness in speech recognition. In Proceedings of the Annual
Conference of the International Speech Communication Association, INTER-
SPEECH, volume 2, pages 930–933, 08 2007. doi : 10.21437/Interspeech.
2007-335.

[124] Hazime Mori. A Continued-Fraction Representation of the Time-
Correlation Functions. Progress of Theoretical Physics, 34(3) :399–416,
09 1965. ISSN 0033-068X. doi : 10.1143/PTP.34.399. URL https:
//doi.org/10.1143/PTP.34.399.

156

http://dx.doi.org/10.1016/j.cma.2023.115985
https://arxiv.org/abs/1702.07597
https://arxiv.org/abs/1702.07597
https://hal.science/hal-04715748
https://hal.science/hal-04125875
https://doi.org/10.1143/PTP.34.399
https://doi.org/10.1143/PTP.34.399

[125] Hazime Mori. Transport, Collective Motion, and Brownian Motion*).
Progress of Theoretical Physics, 33(3) :423–455, 03 1965. ISSN 0033-068X.
doi : 10.1143/PTP.33.423. URL https://doi.org/10.1143/PTP.33.423.

[126] Anatolii Dmitrievich Myshkis. General theory of differential equations
with retarded arguments. Uspekhi Matematicheskikh Nauk, 4(5) :99–141,
1949.

[127] Kenneth W. Neves. Automatic integration of functional differential
equations : An approach. ACM Trans. Math. Softw., 1(4) :357–368, dec
1975. ISSN 0098-3500. doi : 10.1145/355656.355661. URL https://doi.
org/10.1145/355656.355661.

[128] Chetan Nichkawde. Optimal state-space reconstruction using deriva-
tives on projectedmanifold. Physical Review E—Statistical, Nonlinear, and
Soft Matter Physics, 87(2) :022905, 2013.

[129] Bernd R. Noack and Helmut Eckelmann. A low-dimensional Galerkin
method for the three-dimensional flow around a circular cylinder. Phy-
sics of Fluids, 6(1) :124–143, 01 1994. ISSN 1070-6631. doi : 10.1063/1.
868433. URL https://doi.org/10.1063/1.868433.

[130] Lyle Noakes. The takens embedding theorem. International Journal of
Bifurcation and Chaos, 1(04) :867–872, 1991.

[131] M.L. Hbid O. Arino and E. Ait Dads. Delay Differential Equations and Ap-
plications. NATO Science Series, Amsterdam, 2016.

[132] H. J. Oberle and H. J. Pesch. Numerical treatment of delay differential
equations by hermite interpolation. Numerische Mathematik, 37(2) :235–
255, Jun 1981. ISSN 0945-3245. doi : 10.1007/BF01398255. URL https:
//doi.org/10.1007/BF01398255.

[133] Maria Oprea, Mark Walth, Robert Stephany, Gabriella Torres Nothaft,
Arnaldo Rodriguez-Gonzalez, and William Clark. Learning the delay
using neural delay differential equations, 2023.

[134] N. H. Packard, J. P. Crutchfield, J. D. Farmer, and R. S. Shaw. Geome-
try from a time series. Phys. Rev. Lett., 45 :712–716, Sep 1980. doi : 10.
1103/PhysRevLett.45.712. URL https://link.aps.org/doi/10.1103/
PhysRevLett.45.712.

[135] Norman H Packard, James P Crutchfield, J Doyne Farmer, and Robert S
Shaw. Geometry from a time series. Physical review letters, 45(9) :712,
1980.

157

https://doi.org/10.1143/PTP.33.423
https://doi.org/10.1145/355656.355661
https://doi.org/10.1145/355656.355661
https://doi.org/10.1063/1.868433
https://doi.org/10.1007/BF01398255
https://doi.org/10.1007/BF01398255
https://link.aps.org/doi/10.1103/PhysRevLett.45.712
https://link.aps.org/doi/10.1103/PhysRevLett.45.712

[136] CC Pain, MD Piggott, AJH Goddard, F Fang, GJ Gorman, DP Marshall,
MD Eaton, PW Power, and CRE De Oliveira. Three-dimensional unstruc-
tured mesh ocean modelling. Ocean Modelling, 10(1-2) :5–33, 2005.

[137] Eric J. Parish and Karthik Duraisamy. Non-markovian closure mo-
dels for large eddy simulations using the mori–zwanzig formalism.
Physical Review Fluids, 2(1), January 2017. ISSN 2469-990X. doi :
10.1103/physrevfluids.2.014604. URL http://dx.doi.org/10.1103/
PhysRevFluids.2.014604.

[138] Eric J Parish and Karthik Duraisamy. A dynamic subgrid scale model for
large eddy simulations based on the mori–zwanzig formalism. Journal
of Computational Physics, 349 :154–175, 2017.

[139] Eric J Parish and Karthik Duraisamy. Non-markovian closure models
for large eddy simulations using the mori–zwanzig formalism. Physical
Review Fluids, 2(1) :014604, 2017.

[140] Baker & Paul. Computing stability regions - runge–kutta methods for
delay differential equations. IMA Journal of Numerical Analysis, 14 :347–
362, 04 1993. doi : 10.5642/codee.201209.01.10.

[141] Louis M Pecora, LindaMoniz, Jonathan Nichols, and Thomas L Carroll. A
unified approach to attractor reconstruction. Chaos : An Interdisciplinary
Journal of Nonlinear Science, 17(1), 2007.

[142] Hans Pinckaers and Geert Litjens. Neural ordinary differential equa-
tions for semantic segmentation of individual colon glands, 2019.

[143] Lev Semenovich Pontryagin. Mathematical theory of optimal processes.
Routledge, 2018.

[144] Alexei Potapov. Distortions of reconstruction for chaotic attractors. Phy-
sica D : Nonlinear Phenomena, 101(3-4) :207–226, 1997.

[145] Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. Physics in-
formed deep learning (part i) : Data-driven solutions of nonlinear partial
differential equations. arXiv preprint arXiv :1711.10561, 2017.

[146] Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. Physics in-
formed deep learning (part ii) : Data-driven discovery of nonlinear par-
tial differential equations. arXiv preprint arXiv :1711.10566, 2017.

[147] Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-
informed neural networks : A deep learning framework for solving
forward and inverse problems involving nonlinear partial differential
equations. Journal of Computational physics, 378 :686–707, 2019.

158

http://dx.doi.org/10.1103/PhysRevFluids.2.014604
http://dx.doi.org/10.1103/PhysRevFluids.2.014604

[148] Ramiro Rico-Martinez, K Krischer, IG Kevrekidis, MC Kube, and JL Hud-
son. Discrete-vs. continuous-time nonlinear signal processing of cu
electrodissolution data. Chemical Engineering Communications, 118(1) :
25–48, 1992.

[149] Christian P Robert, George Casella, Christian P Robert, and George Ca-
sella. Monte carlo integration. Monte Carlo statistical methods, pages
71–138, 1999.

[150] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net : Convolu-
tional networks for biomedical image segmentation, 2015.

[151] JE Rossiter. Wind-tunnel experiments on the flow over rectangular ca-
vities at subsonic and transonic speeds. Aeronautical Research Council
and Reports and Memoranda, 1964.

[152] Marc R Roussel. The use of delay differential equations in chemical
kinetics. The Journal of Physical Chemistry, 100(20) :8323–8330, 1996.

[153] Yulia Rubanova, Ricky T. Q. Chen, and David Duvenaud. Latent odes for
irregularly-sampled time series, 2019.

[154] Samuel H. Rudy, Steven L. Brunton, Joshua L. Proctor, and J. Nathan
Kutz. Data-driven discovery of partial differential equations, 2016.

[155] David E Rumelhart, Geoffrey E Hinton, Ronald J Williams, et al. Learning
internal representations by error propagation, 1985.

[156] Olga Russakovsky, Jia Deng, Hao Su, JonathanKrause, Sanjeev Satheesh,
SeanMa, ZhihengHuang, Andrej Karpathy, Aditya Khosla,Michael Bern-
stein, Alexander C. Berg, and Li Fei-Fei. Imagenet large scale visual re-
cognition challenge, 2014.

[157] Lars Ruthotto and Eldad Haber. Deep neural networks motivated
by partial differential equations, 2018. URL https://arxiv.org/abs/
1804.04272.

[158] Benjamin Sanderse, Panos Stinis, Romit Maulik, and Shady E. Ahmed.
Scientific machine learning for closure models in multiscale problems :
a review, 2024. URL https://arxiv.org/abs/2403.02913.

[159] Tim Sauer, James A Yorke, and Martin Casdagli. Embedology. Journal of
statistical Physics, 65 :579–616, 1991.

[160] Andreas Schlaginhaufen, Philippe Wenk, Andreas Krause, and Florian
Dörfler. Learning stable deep dynamics models for partially observed
or delayed dynamical systems, 2021.

159

https://arxiv.org/abs/1804.04272
https://arxiv.org/abs/1804.04272
https://arxiv.org/abs/2403.02913

[161] Peter J Schmid. Dynamic mode decomposition of numerical and expe-
rimental data. Journal of fluid mechanics, 656 :5–28, 2010.

[162] Peter J. Schmid. Dynamic mode decomposition and its va-
riants. Annual Review of Fluid Mechanics, 54(Volume 54, 2022) :
225–254, 2022. ISSN 1545-4479. doi : https://doi.org/10.1146/
annurev-fluid-030121-015835. URL https://www.annualreviews.org/
content/journals/10.1146/annurev-fluid-030121-015835.

[163] Johannes Schmude, Sujit Roy, Will Trojak, Johannes Jakubik, Da-
niel Salles Civitarese, Shraddha Singh, Julian Kuehnert, Kumar An-
kur, Aman Gupta, Christopher E Phillips, Romeo Kienzler, Daniela Sz-
warcman, Vishal Gaur, Rajat Shinde, Rohit Lal, Arlindo Da Silva, Jorge
Luis Guevara Diaz, Anne Jones, Simon Pfreundschuh, Amy Lin, Aditi
Sheshadri, Udaysankar Nair, Valentine Anantharaj, Hendrik Hamann,
Campbell Watson,Manil Maskey, Tsengdar J Lee, Juan BernabeMoreno,
and Rahul Ramachandran. Prithvi wxc : Foundation model for weather
and climate, 2024. URL https://arxiv.org/abs/2409.13598.

[164] Lawrence Shampine and Skip Thompson. Delay-differential equations
with constant lags. CODEE Journal, 9 :1–5, 01 2012. doi : 10.5642/codee.
201209.01.10.

[165] William Snyder, Changhong Mou, Honghu Liu, Omer San, Raffaella De
Vita, and Traian Iliescu. Reduced order model closures : A brief tutorial,
2022. URL https://arxiv.org/abs/2202.14017.

[166] Robert Stephany. Dde-find : Learning delay differential equations from
noisy, limited data, 2024. URL https://arxiv.org/abs/2405.02661.

[167] Robert Stephany, Maria Antonia Oprea, Gabriella Torres Nothaft, Mark
Walth, Arnaldo Rodriguez-Gonzalez, and William A Clark. Learning
the delay in delay differential equations. In ICLR 2024 Workshop on
AI4DifferentialEquations In Science, 2024.

[168] Panagiotis Stinis. Stochastic optimal prediction for the kuramoto–
sivashinsky equation, 2003.

[169] Panagiotis Stinis. Higher ordermori–zwanzigmodels for the euler equa-
tions, 2006.

[170] Panos Stinis. Numerical computation of solutions of the critical nonli-
near schrödinger equation after the singularity. Multiscale Modeling &
Simulation, 10(1) :48–60, 2012.

160

https://www.annualreviews.org/content/journals/10.1146/annurev-fluid-030121-015835
https://www.annualreviews.org/content/journals/10.1146/annurev-fluid-030121-015835
https://arxiv.org/abs/2409.13598
https://arxiv.org/abs/2202.14017
https://arxiv.org/abs/2405.02661

[171] Zhiqing Sun, Yiming Yang, and Shinjae Yoo. A neural pde solver with
temporal stencil modeling, 2023.

[172] Makoto Takamoto, Timothy Praditia, Raphael Leiteritz, Dan MacKinlay,
Francesco Alesiani, Dirk Pflüger, and Mathias Niepert. Pdebench : An
extensive benchmark for scientific machine learning, 2023.

[173] Floris Takens. Detecting strange attractors in turbulence. In David
Rand and Lai-Sang Young, editors, Dynamical Systems and Turbulence,
Warwick 1980, pages 366–381, Berlin, Heidelberg, 1981. Springer Berlin
Heidelberg. ISBN 978-3-540-38945-3.

[174] Eugene Tan, Shannon Algar, Débora Corrêa, Michael Small, Thomas
Stemler, andDavidWalker. Selecting embedding delays : An overviewof
embedding techniques and a new method using persistent homology.
Chaos : An Interdisciplinary Journal of Nonlinear Science, 33(3), 2023.

[175] Eugene Tan, Shannon Algar, Débora Corrêa, Michael Small, Thomas
Stemler, and David Walker. Selecting embedding delays : An over-
view of embedding techniques and a new method using persistent
homology. Chaos : An Interdisciplinary Journal of Nonlinear Science, 33
(3), March 2023. ISSN 1089-7682. doi : 10.1063/5.0137223. URL http:
//dx.doi.org/10.1063/5.0137223.

[176] Eugene Tan, Shannon Algar, Débora Corrêa, Michael Small, Thomas
Stemler, and David Walker. Selecting embedding delays : An over-
view of embedding techniques and a new method using persistent
homology. Chaos : An Interdisciplinary Journal of Nonlinear Science, 33
(3) :032101, 03 2023. ISSN 1054-1500. doi : 10.1063/5.0137223. URL
https://doi.org/10.1063/5.0137223.

[177] Eugene Tan, Shannon Algar, Débora Corrêa, Michael Small, Thomas
Stemler, and David Walker. Selecting embedding delays : An over-
view of embedding techniques and a new method using persistent
homology. Chaos : An Interdisciplinary Journal of Nonlinear Science, 33
(3), March 2023. ISSN 1089-7682. doi : 10.1063/5.0137223. URL http:
//dx.doi.org/10.1063/5.0137223.

[178] Xinliang Tian. On the intrinsic three-dimensionality of the flow normal
to a circular disk, 2019. URL https://arxiv.org/abs/1906.10578.

[179] Yifeng Tian, Yen Ting Lin, Marian Anghel, and Daniel Livescu. Data-
driven learning of Mori–Zwanzig operators for isotropic turbulence.
Physics of Fluids, 33(12) :125118, December 2021. ISSN 1070-6631, 1089-
7666. doi : 10.1063/5.0070548. URL https://aip.scitation.org/doi/
10.1063/5.0070548.

161

http://dx.doi.org/10.1063/5.0137223
http://dx.doi.org/10.1063/5.0137223
https://doi.org/10.1063/5.0137223
http://dx.doi.org/10.1063/5.0137223
http://dx.doi.org/10.1063/5.0137223
https://arxiv.org/abs/1906.10578
https://aip.scitation.org/doi/10.1063/5.0070548
https://aip.scitation.org/doi/10.1063/5.0070548

[180] Francesco Giacomo Tricomi. Integral equations, volume 5. Courier cor-
poration, 1985.

[181] F Tuerke, François Lusseyran, Denisse Sciamarella, Luc Pastur, andGAr-
tana. Nonlinear delayed feedback model for incompressible open ca-
vity flow. Physical Review Fluids, 5(2) :024401, 2020.

[182] Belinda Tzen and Maxim Raginsky. Neural stochastic differential equa-
tions : Deep latent gaussian models in the diffusion limit. arXiv preprint
arXiv :1905.09883, 2019.

[183] L. C. Uzal, G. L. Grinblat, and P. F. Verdes. Optimal reconstruction of
dynamical systems : A noise amplification approach. Physical Review E,
84(1), July 2011. ISSN 1550-2376. doi : 10.1103/physreve.84.016223. URL
http://dx.doi.org/10.1103/PhysRevE.84.016223.

[184] Harsha Vaddireddy, Adil Rasheed, Anne E. Staples, and Omer San. Fea-
ture engineering and symbolic regression methods for detecting hid-
den physics from sparse sensor observation data. Physics of Fluids,
32(1), January 2020. ISSN 1089-7666. doi : 10.1063/1.5136351. URL
http://dx.doi.org/10.1063/1.5136351.

[185] Daniele Venturi and Xiantao Li. The mori-zwanzig formulation of deep
learning, 2023. URL https://arxiv.org/abs/2209.05544.

[186] Aladin Virmaux and Kevin Scaman. Lipschitz regularity of deep neural
networks : analysis and efficient estimation. Advances in Neural Infor-
mation Processing Systems, 31, 2018.

[187] Andrei G Vladimirov, Dmitry Turaev, and Gregory Kozyreff. Delay diffe-
rential equations for mode-locked semiconductor lasers. Optics letters,
29(11) :1221–1223, 2004.

[188] David Widmann and Chris Rackauckas. Delaydiffeq : Generating delay
differential equation solvers via recursive embedding of ordinary dif-
ferential equation solvers, 2022. URL https://arxiv.org/abs/2208.
12879.

[189] Daniel S Wilks and Robert L Wilby. The weather generation game : a
review of stochastic weather models. Progress in physical geography, 23
(3) :329–357, 1999.

[190] Matthew O. Williams, Ioannis G. Kevrekidis, and Clarence W. Rowley. A
data–driven approximation of the koopman operator : Extending dyna-
mic mode decomposition. Journal of Nonlinear Science, 25(6) :1307–1346,

162

http://dx.doi.org/10.1103/PhysRevE.84.016223
http://dx.doi.org/10.1063/1.5136351
https://arxiv.org/abs/2209.05544
https://arxiv.org/abs/2208.12879
https://arxiv.org/abs/2208.12879

June 2015. ISSN 1432-1467. doi : 10.1007/s00332-015-9258-5. URL
http://dx.doi.org/10.1007/s00332-015-9258-5.

[191] Matthew O Williams, Ioannis G Kevrekidis, and Clarence W Rowley. A
data–driven approximation of the koopman operator : Extending dyna-
mic mode decomposition. Journal of Nonlinear Science, 25 :1307–1346,
2015.

[192] Fan Wu, Sanghyun Hong, Donsub Rim, Noseong Park, and Kookjin Lee.
Mining causality from continuous-time dynamics models : An applica-
tion to tsunami forecasting, 2022.

[193] Niklas Wulkow. Modelling Observations of Dynamical Systems with Me-
mory. Dissertation, Freie Universitat Berlin, 2022. URL http://dx.doi.
org/10.17169/refubium-35182.

[194] Zhonghui You, Jinmian Ye, Kunming Li, Zenglin Xu, and Ping Wang. Ad-
versarial noise layer : Regularize neural network by adding noise. In 2019
IEEE International Conference on Image Processing (ICIP), pages 909–913,
2019.

[195] Emanuele Zappala. Spectral methods for neural integral equations,
2024. URL https://arxiv.org/abs/2312.05654.

[196] Emanuele Zappala, Antonio Henrique de Oliveira Fonseca, An-
drew Henry Moberly, Michael James Higley, Chadi Abdallah, Jessica Car-
din, andDavid vanDijk. Neural integro-differential equations, 2022. URL
https://arxiv.org/abs/2206.14282.

[197] Emanuele Zappala, Antonio Henrique deOliveira Fonseca, JosueOrtega
Caro, and David van Dijk. Neural integral equations, 2023. URL https:
//arxiv.org/abs/2209.15190.

[198] A M Zhabotinskii. [PERIODIC COURSE OF THE OXIDATION OF MALO-
NIC ACID IN a SOLUTION (STUDIES ON THE KINETICS OF BEOLUSOV’S
REACTION)]. Biofizika, 9 :306–311, 1964.

[199] Zongwei Zhou, Md Mahfuzur Rahman Siddiquee, Nima Tajbakhsh, and
Jianming Liang. Unet++ : Redesigning skip connections to exploitmultis-
cale features in image segmentation. IEEE transactions on medical ima-
ging, 39(6) :1856–1867, 2019.

[200] Qunxi Zhu, Yao Guo, and Wei Lin. Neural delay differential equations,
2021.

163

http://dx.doi.org/10.1007/s00332-015-9258-5
http://dx.doi.org/10.17169/refubium-35182
http://dx.doi.org/10.17169/refubium-35182
https://arxiv.org/abs/2312.05654
https://arxiv.org/abs/2206.14282
https://arxiv.org/abs/2209.15190
https://arxiv.org/abs/2209.15190

[201] Qunxi Zhu, Yifei Shen, Dongsheng Li, and Wei Lin. Neural piecewise-
constant delay differential equations. In Proceedings of the AAAI Confe-
rence on Artificial Intelligence, volume 36, pages 9242–9250, 2022.

[202] Qunxi Zhu, Yao Guo, and Wei Lin. Neural delay differential equations :
System reconstruction and image classification, 2023.

[203] Yuanran Zhu. Mori–Zwanzig Equation : Theory and Applications. Univer-
sity of California, Santa Cruz, 2019.

[204] Juntang Zhuang, Tommy Tang, Yifan Ding, Sekhar Tatikonda, Nicha
Dvornek, Xenophon Papademetris, and James S. Duncan. Adabelief op-
timizer : Adapting stepsizes by the belief in observed gradients, 2020.

[205] Hossein Zivari-Piran and Wayne H Enright. Accurate first-order sensi-
tivity analysis for delay differential equations : Part ii : The adjoint ap-
proach. preprint, Department of Computer Science, University of Toronto,
2009.

[206] Hossein Zivari-Piran andWayneHEnright. An efficient unified approach
for the numerical solution of delay differential equations. Numerical
Algorithms, 53(2) :397–417, 2010.

[207] Robert Zwanzig. Approximate eigenfunctions of the liouville operator
in classical many-body systems. Phys. Rev., 144 :170–177, Apr 1966. doi :
10.1103/PhysRev.144.170. URL https://link.aps.org/doi/10.1103/
PhysRev.144.170.

[208] Robert Zwanzig. Nonlinear generalized langevin equations. Journal of
Statistical Physics, 9(3) :215–220, 1973.

[209] Robert Zwanzig, K. S. J. Nordholm, andW. C. Mitchell. Memory effects in
irreversible thermodynamics : Corrected derivation of transport equa-
tions. Phys. Rev. A, 5 :2680–2682, Jun 1972. doi : 10.1103/PhysRevA.5.
2680. URL https://link.aps.org/doi/10.1103/PhysRevA.5.2680.

164

https://link.aps.org/doi/10.1103/PhysRev.144.170
https://link.aps.org/doi/10.1103/PhysRev.144.170
https://link.aps.org/doi/10.1103/PhysRevA.5.2680

	Nomenclature
	Introduction
	Neural Differential Equations
	Introduction
	The Neural ODE family
	Vanilla Neural ODE
	Augmented Neural ODEs
	Latent ODEs
	Hamiltonian Neural Networks

	Neural ODEs and Backpropagation
	Discretize-then-optimize
	Optimize-then-discretize

	Neural Delay Differential Equations
	Introduction
	Neural State and Time Dependent DDEs

	Neural DDEs and Backpropagation
	Discretize-then-optimize
	Optimize-then-discretize

	Neural Integro Differential Equations
	Neural IDE and Backpropagation
	Discretize-then-optimize
	Optimize-then-discretize

	Other Deep Learning Models loosely related to Neural DEs
	Physics Informed Neural Networks
	Neural Operators
	Neural CDE

	Tips and tricks for Neural DEs

	Modeling Dynamical Systems
	Introduction
	Mori Zwanzig formalism
	Derivation of the MZ equation
	MZ's projection operators
	A simple example of MZ in practice

	Takens' Theorem
	Introduction
	Embedding dimension
	The delay in the delay-coordinate map

	The Koopman Operator
	Introduction
	Dynamic Mode Decomposition (DMD)
	The Mori–Zwanzig framework within the Koopman theory

	Time and State dependent Delay Differential Equations
	Introduction
	Methods
	Experiments
	Description of the test cases
	Evaluation

	Results
	Conclusion and Future Work

	Neural DDEs with Learnable Delays for Partially Observed Dynamical Systems
	Introduction
	Modelling Partially Observed Dynamical Systems
	Approximations of Integro-Differential Equations (IDE)
	Exact representation with Neural DDE

	Neural Delay Differential Equations with Learnable Delays
	Experiments
	Dynamical systems
	Results

	Conclusion

	Non-Markovian closure or correction modelling for dynamical systems
	Introduction
	Theoretical context
	Dynamical system modelling
	Bridging the gap with closure and correction terms

	Extending Neural ODE with time delays: Neural DDE
	The issue of non-locality
	Link to Mori–Zwanzig formalism

	Results
	Closure modelling with the ROMs
	Correction modelling on the KS System and Kolmogorov flow

	Conclusion

	Conclusion
	Synthese en francais

	Appendix
	Backpropagation
	Proof of theorem 2.3.2 ODE Adjoint
	Proof of theorem 2.5.1 DDE Adjoint
	Proof of theorem 2.7.2 IDE adjoint
	torchdde Package
	Key Features
	Code verification

	Overview in DDE integration
	Introduction
	Discontinuity tracking
	Unconstrained time stepping
	Pseudocode for DDE solver

	Appendix for Time and State Dependent DDE
	Memory and time complexity of Neural SDDDE
	Training information
	Data generation parameters
	History step function experiment hyperparameters

	Appendix for Neural DDEs with Learnable Delays for Partially Observed Dynamical Systems
	Cancelling out the noise term F(x,t)
	t-model derivation
	Learning the delays
	Neural IDE and Neural DDE Benchmark
	Proof of Proposition 5.2.1
	The importance of relevant delays
	Additional experiments
	Training hyperparameters

	Appendix for Non-Markovian closure or correction modelling for dynamical systems
	POD Galerkin
	Hyperparameter and training information

