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Thèse présentée et soutenue le 24 juin 2024

Enhancing Jamming Resilience in GNSS-based
Localization for Safety-Critical Land Transportation:
Towards an Optimized Mitigation Approach Focusing

User Requirements
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Abstract
The transportation sector is undergoing a comprehensive transformation, driven by tech-
nological advancements and a growing emphasis on eco-friendly practices. Notably, this
paradigm shift is more evident in road and rail transport, where large-scale initiatives,
such as autonomous cars and trains are at the forefront. These groundbreaking develop-
ments not only reshape the transport industry but also forecast a myriad of socio-economic
opportunities on the horizon.

In response to this transformative landscape, numerous scientific initiatives have been
launched at both the European and national levels. One such initiative is the LocSP
project, which is funded by the French National Research Agency. The project aims
to contribute to the development of safe and precise localization solutions specifically
designed for safety-critical applications. LocSP addresses several challenges through a
multi-level approach and investigates collaborative, multi-sensor, and resilient solutions
to address sensor measurement faults.

The research presented in this thesis places a particular emphasis on the resilience
of the Global Navigation Satellite System (GNSS) against both intentional and non-
intentional radiofrequency interference. It emphasizes on the robustness and reliability
of location-based technologies, especially in safety-critical applications. Indeed, satellite
signals are vulnerable to various disturbances, as these signals become very weak because
of the large travel distance between the satellite and the receiver. One major threat to
GNSS receiver is radio frequency interference originating from man-made devices par-
ticularly Personal Privacy Devices (PPDs) also known as jammers. These devices can
potentially induce severe disturbances, in which a strong jammer can even completely
block the GNSS signal.

The existing literature proposes various techniques for the detection and mitigation of
jamming signals. However, the performance of these techniques is often evaluated from a
signal perspective. Recently, some studies assessed the positioning accuracy following the
mitigation process which is an important parameter for performance assessment, especially
for users involved in non-safety critical applications.

In this work, we initially evaluate the performance of three techniques: Karhunen
Loéve Transform (KLT), Adaptive Notch Filter (ANF) and Wavelet Packet Decomposi-
tion (WPD) representing different families of methods, particularly focusing on the key
performance indicators associated with safety-critical applications.

Building on observed results during the state-of-the-art implementation phase, we pro-
pose a parameter optimization methodology for ANF. This optimization aims to suppress
a certain class of jammers, specifically linear chirps, and to evaluate the impact of the
optimal parameters on KPIs such as accuracy, availability and safety.

The contribution of this work lies in providing a comprehensive understanding of the
phenomenon of jamming in safety-critical applications. It lays the groundwork for a tar-
geted, multi-channel, real-time implementation of jamming detection and mitigation. The
proposed system aims to continuously detect, classify and characterize various jamming
situations, adapting to multiple jammer classes, multiple jamming sources, and dynamic
power levels.



Résumé
Le secteur des transports est en pleine transformation, porté par les avancées tech-
nologiques et le besoin croissant de développer des pratiques écologiques. Ce change-
ment de paradigme est notamment visible dans les domaines des transports routiers et
ferroviaires, où les initiatives à grande échelle telles que le développement de voitures et
de trains autonomes s’affichent au premier plan. Ces développements révolutionnaires
non seulement remodèlent l’industrie des transports, mais ouvrent également une myri-
ade d’opportunités socio-économiques. En réponse à ce contexte en transformation, de
nombreuses initiatives scientifiques ont été lancées à la fois au niveau européen et na-
tional. L’une de ces initiatives est le projet LOCSP financé par l’Agence Nationale de
Recherche française. Le projet entend contribuer au développement de solutions de lo-
calisation sûres et précises répondant au besoin particulier des applications à caractère
sécuritaire. LOCSP adresse plusieurs défis avec une approche multi-niveaux et porte sur
les solutions collaboratives, multi-capteurs et résilientes aux défaillances des capteurs.
Les travaux présentés dans cette thèse portent en particulier sur la résilience des GNSS
aux interférences électromagnétiques intentionnelles et non intentionnelles et insistent
sur la robustesse et la fiabilité des solutions de localisation dans les applications cri-
tiques en matière de sécurité. Les signaux satellitaires sont vulnérables aux perturbations
parce qu’ils sont reçus avec une puissance très faible après la longue distance parcou-
rue depuis l’émission du signal par le satellite. Une menace majeure pour les récepteurs
GNSS est l’interférence émise par des dispositifs artificiels comme les brouilleurs GNSS.
Ces équipements peuvent induire des perturbations sévères et même complètement blo-
quer la réception des signaux GNSS dans son périmètre. La littérature existante pro-
pose diverses techniques pour la détection et la réduction des signaux brouilleurs. Les
performances de ces techniques sont cependant souvent évaluées au niveau du signal.
Quelques études ont récemment étudié la précision de la localisation après mitigation.
Dans ce travail, nous évaluons d’abord les performances de trois techniques : Karhunen
Loéve Transform (KLT), Adaptive Notch Filter (ANF) et Wavelet Packet Decomposi-
tion (WPD) qui représentent différentes familles de méthodes, en étudiant en partic-
ulier les indicateurs de performances associés aux applications sécuritaires. A partir
des résultats observés pendant la phase d’implémentation de l’état de l’art, nous pro-
posons une méthodologie d’optimisation des paramètres pour l’ANF. Cette optimisation
est réalisée pour les brouilleurs de type chirp linéaire et montre qu’un paramétrage op-
timal influe sur les critères de performances tels que la précision, la disponibilité et la
sécurité. Ce travail contribue à offrir une compréhension approfondie du phénomène de
brouillage dans les applications critiques. Il pose les bases pour l’implémentation ciblée
multi-canaux, temps réel d’une solution de détection et de réduction des brouillages. Le
système proposé vise à détecter, classer et caractériser en continu différentes situations
de brouillage, à s’adapter à de multiples classes de brouilleurs, sources et niveaux de
puissance.
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Chapter 1

GNSS - Pioneering a New Era in
Rail Sector Innovation

Global Navigation Satellite System (GNSS) originally designed for military and civil avi-
ation has undergone a profound transformative market evolution, marked by continuous
growth in numerous other applications over the years. Indeed, the elimination of selective
availability in the year 2000 tends to be a pivotal turning point that led to a signif-
icant performance enhancement of GNSS signals intended for civilian and commercial
users. The strategic move to discontinue deliberate signal degradation paved the way for
the widespread adoption of GNSS in various sectors such as transportation, agriculture,
surveying, and geolocation-based services. This market expansion has a substantial socio-
economic impact, where GNSS plays a crucial role in optimizing operations, increasing
efficiency, enhancing safety, fostering innovation, and promoting environmental sustain-
ability across diverse industries.

Similarly, the railway industry, which is traditionally reliant on established technolo-
gies, has undergone a paradigm shift with the emergence of GNSS as a game-changer
technology to fundamentally reshape transportation infrastructure and operational prac-
tices.

1.1 Integrating GNSS in Europe’s Railway Infras-
tructure

The European railway industry is undertaking significant modernization initiatives, mani-
fested by the adoption of advanced technologies and improved operational practices. Some
of the key initiatives include the implementation of the European Rail Trafic Manage-
ment System (ERTMS) for standardized signaling, an emphasis on digitalization and au-
tomation, the expansion of high-speed rail networks, innovation in energy-efficient rolling
stock, improvement in cross-border connectivity, and substantial investments in research
and development that reflect a comprehensive approach of the industry. Among these
revolutionizing efforts, the integration of GNSS stands out as more than just a techno-
logical resource but rather emerges as a transformative force that interconnects various
dimensions of progress and resilience. It contributes profoundly to the advancement of
the industry by facilitating the implementation of innovative concepts such as virtual
coupling or moving blocks.

Currently, the integration of GNSS within the European railway sector aligns with
the overarching objectives of promoting eco-friendly mobility. It serves as a technological
foundation that not only facilitates precise localization but also optimizes resource alloca-



tion and enhances route planning. This multifaceted integration contributes substantially
to the steadfast commitment of the railway industry to sustainability, portraying GNSS
as a key facilitator for the advancement of environmentally sustainable practices within
the railway ecosystem.

1.2 Main Stakeholders and Steering Forces in the Eu-
ropean Railway Sector

In the network of the European rail industry, various entities collaborate and contribute
to shaping the prospects of the railway sector. A nexus of collaboration emerges within
the framework of Europe’s Rail Joint Undertaking (ERJU) where the indispensable role
of UNIFE (Union des Industries Ferroviaires Européennes - European Rail Industry As-
sociation) comes to the forefront. UNIFE representing the European rail supply industry,
collaborates closely with other stakeholders, organized under the ERTMS user group
association, to align technological advancements with industry requirements. The asso-
ciation’s role is important in proposing a standardized integration of GNSS technologies
into the European rail supply chain, ultimately contributing to the competitiveness and
efficiency of the European rail industry on a global scale.

The regulatory oversight governed by the European Union Agency for Railways (ERA)
plays a pivotal role in ensuring the standardization and integration of GNSS technology
into the European rail network. As a railway regulatory authority in the European Union,
ERA is responsible for managing the development of a comprehensive regulatory frame-
work. This involves defining standards, technical specifications and safety requirements
essential for the effective implementation of GNSS-based systems across European rail
infrastructure.

The European Union Agency for the Space Programme (EUSPA) is a central player in
advancing the integration of GNSS technology within the European rail sector. EUSPA’s
contributions are instrumental in propelling the technological advancements essential for
a contemporary and efficient European rail system. To achieve this objective, the agency
actively supports research and development initiatives, promotes innovation, and oversees
the operational aspects of GNSS constellations, contributing to the enhancement of GNSS
capabilities in rail applications. EUSPA in collaboration with other stakeholders has
devised a roadmap that serves as a guiding framework for the systematic incorporation
of GNSS technology, supported by continuous technological developments. Initiatives
such as CLUG (Certifiable Localisation Unit with GNSS in the railway environment),
Helmet, and Railgap converging efforts for the development of satellite-based localization
for railway signaling, based on the core principle of failsafe train positioning within the
broader framework of Shift2Rail.

1.3 LocSP project contribution – development of Fail-
Safe Solutions

In France, the University Gustave Eiffel (formerly Ifsttar) is a key contributor in numerous
EUSPA projects. To develop complementary research activities, the LocSP project, devel-
oped in collaboration with CRISTAL and M3Systems, has received funding through ANR
program. The project with broader objectives concentrated on advancing technologies in
road and rail transport systems, with a specific emphasis on onboard technologies essen-
tial for the modernization of land transport and the widespread adoption of connected
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and autonomous transportation modes. The research conducted has made significant
contributions, particularly in two specific areas:

• The first area focuses on hybrid and collaborative fault-tolerant solutions to ensure
safe autonomous navigation. This involves the development of a framework for fault
detection and exclusion in collaborative localization for vehicle fleets equipped with
multi-sensor hybrid solutions.

• The second area, particularly the significant contribution of this Ph.D. thesis, in-
volves developing methods to detect and mitigate electromagnetic interference com-
monly known as jamming. This study aims to explore different families of detection
and mitigation approaches and evaluate their impact on the positioning of Key
Performance Indicators (KPIs) such as accuracy, availability and safety.

In the earlier discussion, we provided an overview of the research context, highlighting
our focus on land transportation, with a particular focus on railway application. The
LEOST team, of which we are a part, is actively engaged in several European and French
innovative projects associated with railway applications. However, the complexity in-
volved in obtaining raw signal level data from the railway partners has prompted us to
change the approach, opting to carry out research activities using static data recorded
from the roof top of our laboratory. For this purpose, we have employed the Record and
Reply system provided by the M3System and a customizable jamming system developed
in our laboratory, this will be detailed in Chapter 4. The use of static data has enabled
the development of the proposed contributions as a proof of concept, which could later
be implemented without encountering expected restrictions on kinematic data obtained
from road or railway campaigns.

In the following section, we will present the research objectives and provide a concise
summary of the main contributions and publications originating from our work.

1.4 Novel insights and contributions on jamming coun-
termeasures and implications on the Key Perfor-
mance Indicators (KPIs)

This thesis significantly contributes by offering valuable insight into the challenges posed
by jamming and the corresponding countermeasures for safety-critical applications. In
this regard, the existing literature predominantly evaluates the effectiveness of jamming
countermeasures at the intermediate level of the receiver processing chain [1][2][3][4][5],
with very limited studies assessing the impact at the user level focusing solely on position-
ing accuracy [6][7]. The present research is dedicated to analyzing the impact of jamming
and mitigation effectiveness at multiple processing stages, with a particular emphasis on
evaluating positioning Key Performance Indicators (KPIs) to meet the user requirements.
Notably, this aspect has not been taken into consideration in the existing literature. In
this context, the summary of contributions published in reputable proceedings is as fol-
lows:

• In our initial investigation, we aimed to evaluate the importance of addressing jam-
ming concerns, particularly from a safety-critical perspective. We conducted a pre-
liminary investigation on the capabilities of an inbuilt jamming defense mechanism
by a top-notch Commercial Off-The-Shelf (COTS) receiver available in the market.
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Specifically, we focused on the utilization of the Advanced Interference Mitigation
(AIM+) module provided by the Septentio receiver with the ASTRx4 receiver. Note
that this study has been conducted on the basis of our best understanding of the mit-
igation function and has been tested for a limited number of interference scenarios
under investigation. Our findings reveal that the Septentrio receiver undoubtedly
performed exceptionally well in significantly improving the positioning accuracy
with no HMI instances following the activation of the AIM+ module. However, the
mitigation has consequently impacted the estimation of the protection level, leading
to a considerable increase in unavailable instances in the Stanford diagram due to
excessive overbounding of the position errors.

Conference: Kazim, S. A., Tmazirte, N. A., Marais, J., & Tsaturyan, A. (2022,
January). On the impact of jamming on Horizontal Protection Level and
Integrity Assessment for Terrestrial Localization. In Proceedings of the 2022
International Technical Meeting of The Institute of Navigation (ION ITM 2022) (pp.
1343-1357).

• Because of these initial outcomes, we went ahead with the investigation with the
primary objective of enhancing the mitigation performance on the Stanford dia-
gram. This involved maximizing the operational availability of the localization
system while prioritizing safety concerns. In this context, we conducted a litera-
ture review and implemented existing mitigation solutions belonging to different
families in a GNSS software receiver. These techniques include Adaptive Notch Fil-
ter (ANF), Wavelet Packet Decomposition (WPD) and Karhunen Loéve Transform
(KLT), specifically addressing the chirp and frequency hopping interference.

Conference: Kazim, S. A., Marais, J., & Tmazirte, N. A. (2022, September). Inter-
ferences in Safety Critical Land Transport Application: Notch Filtering
vs Wavelet Transform, an Experimental Analysis. In Proceedings of the
35th International Technical Meeting of the Satellite Division of The Institute of
Navigation (ION GNSS+ 2022) (pp. 3743-3757).
Conference: Marais, J., Kazim, S. A., El Mawas, Z., El Najjar, M. E. B., & Skelton,
J. (2023). Contributions to the development of safe and accurate locali-
sation solutions: The LOCSP project. Transportation Research Procedia, 72,
391-398.

• The implemented techniques proved highly effective in restoring performance to a
level very close to the nominal case. However, when dealing with the chirp scenario,
these methods fell short of achieving similar performance to that observed in the
previous case. Although the mitigation process successfully eliminated hazardous
instances, it also led to a notable increase in the number of unavailable points on
the Stanford diagram. To address this drawback, the next phase of the study con-
tributes to the optimal parameterization of the ANF, tailoring it specifically for the
chirp signal. We will see that the performance of ANF is significantly enhanced
after the utilization of near-optimal parameters.

Conference: Kazim, S. A., Marais, J., & Tmazirte, N. A. (2023, September). On the
parameterization of single pole adaptive notch filter against wide range
of linear chirp interference. In Proceedings of the 36th International Technical
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Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2023)
(pp. 3861-3877).

Journal: Kazim, S. A., Marais, J., & Tmazirte, N. A. An End User-Focused In-
novative Defense Against Chirp Jammers: Neural Network-Aided Adap-
tive Notch Filter in Safety-Critical Land Transportation. Transportation
research part C: emerging technologies, (under submission).

1.5 Organization and Structure of the Dissertation
This manuscript has been structured to facilitate the presentation of the global pro-
posed approach, gradually introducing the various prerequisites and contributions outlined
above. While the thesis work spanned three years and was more extensive, I would like
to emphasize that this manuscript has been designed to provide a cohesive, informative,
and contributory narrative. Some borderline contributions and additional developments
are not addressed in this dissertation. It is organized into six chapters, with key content
described in Figure 1.1. The following provides a summary of each chapter:

- Chapter 1 provides the general context on the transformative impact of the Global
Navigation Satellite System (GNSS) in the railway sector. It briefly introduces the ob-
jectives of the LocSP project under which this Ph.D. research work is conducted. Subse-
quently, the chapter offers a summary of contributions related to jamming countermea-
sures and their implications for safety-critical applications. The chapter concludes by
summarizing key points and presenting the organizational structure, offering readers a
comprehensive roadmap for the subsequent discussions in the dissertation.

- Chapter 2 covers the essential concepts relevant to GNSS, offering a brief discussion
of the main signal processing block within the receiver processing chain and introducing
the vulnerabilities associated with GNSS. In addition, it dives into core concepts and al-
gorithms, including the Weighted Least Square (WLS) estimator, weighting models, and
the computation of Horizontal Protection Level (HPL) estimation. To facilitate perfor-
mance evaluation, the chapter initially provides definitions for Key Performance Indicators
(KPIs), a discussion on trade-offs, and introduces Stanford diagrams as a tool for assess-
ing performance.

- Chapter 3 redirects the focus to the issue of jamming techniques and corresponding
countermeasure techniques. In this chapter, various jamming incidents from around the
world are reported, which encompass different types of interference. Additionally, the
chapter outlines diverse signal categories and classifications. In addition, it provides an
overview of state-of-the-art interference countermeasures, with a particular emphasis on
techniques for detection, classification, and mitigation.

- Chapter 4 turns attention towards the implementation of jamming countermea-
sures. Initially, the chapter begins with a preliminary study on the resilience of the
COTS receiver, particularly focusing on their applicability in safety-critical applications.
Following this, the implementation phase introduces and examines three interference mit-
igation techniques: Adaptive Notch Filter (ANF), Wavelet Packet Decomposition (WPD)
and Karhunen Loéve Transform (KLT) against chirp and frequency hopping signals. At
the end of each study conducted in the implementation phase, the results are analyzed
and discussed.
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- Chapter 5 contributes to the parameterization of a single pole ANF against a wide
range of linear chirp interference. The chapter starts with the problem statement and
discusses the role of characteristic parameters and tuning. Subsequently, two approaches
are explored in this context. The first approach involves parameter modeling using Mul-
tivariate Polynomial Regression (MPR) with signal-level labelization. Finally, the sec-
ond approach involves ANF parameterization using a neural network, with labelization
performed at the acquisition level. The chapter concludes with a detailed analysis and
discussion of the results.

- Chapter 6 proposes an exhaustive concluding section and offers perspectives for
the dissertation. It commences with a recap of the dissertation’s structure and the top-
ics covered throughout different chapters, with a primary focus on highlighting the main
limitations identified in Chapter 4 and addressing them as scientific challenges in Chap-
ter 5. The conclusion of the chapter introduces a discussion on the limitations of the
proposed solution and presents a panel of potential improvements. This includes a tar-
geted concept of a global, multi-channel, real-time implemented jamming detection and
mitigation strategy. This foreseen strategy will be designed to continuously detect, clas-
sify, and characterize various jamming situations, accommodating multiple classes, diverse
jamming sources, and dynamic power levels. Essentially, it synthesizes key findings and
provides a roadmap for future research directions to improve resilience to jamming.
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Figure 1.1: Summary outline of the chapter structures and organization



Chapter 2

Introduction of the Global
Navigation Satellite Systems

2.1 Introduction

Positioning and navigation have become essential requirements in various applications, in-
cluding mass-market navigation, public transport services, and vehicle guidance, wherein
the Global Navigation Satellite System (GNSS) serves a pivotal role in modern technology.
This first chapter provides a brief introduction to important concepts and the underly-
ing principles of GNSS, with a particular emphasis on safety-critical applications. This
chapter lays the groundwork for the subsequent sections of the manuscript.

The chapter is organized as follows: Section 2.2 presents a concise insight into the
various segments of GNSS, outlining important aspects, while Section 2.3 explains the
principle of triangulation to understand how the position is estimated. In Section 2.4 we
go through some of the important components in the receiver processing chain. In Sec-
tion 2.5, the vulnerabilities inherent to GNSS are discussed, addressing common sources
of errors that can impact system accuracy and reliability. Section 2.6 focuses on the
navigation block ending the chain with an introduction to the pseudorange measurement
model and an explanation of the Least Square (LS) solution with specific attention given
to the Weighted Least Square (WLS) estimator. Classical weighting models for estimat-
ing measurement uncertainties are also presented. Section 2.7 is dedicated to exploring
GNSS in the context of safety-critical applications. This section initiates the discussion
with the definitions of Key Performance Indicators (KPIs) including accuracy, continu-
ity, availability, and integrity (or safety). The concept of Receiver Autonomous Integrity
Monitoring (RAIM) is then presented, offering insights into how localization systems en-
sure the integrity of the solution. Additionally, it also introduces an innovation-based
method for calculating the protection level. Furthermore, it concludes with a discussion
on KPIs evaluation using the Stanford diagram, presenting a tradeoff between safety and
availability, which is a critical consideration to ensure the effectiveness of the system in
safety-critical applications.

2.2 An Overview of GNSS Segments

The Global Navigation Satellite System (GNSS) is a satellite-based system that offers
Position Navigation and Timing (PNT) services. The acronym ‘GNSS’ is used to describe
the collection of satellite positioning systems, also known as ’constellations’, that have
been developed by several countries to deliver regional or worldwide PNT services to their
users. The main systems include the US - Global Positioning System (GPS), the European



- GALILEO, the Russian - GLObal Navigation Satellite System (GLONASS), the BeiDou
Navigation Satellite System (BDS), the Japanese - Quasi-Zenith Satellite System (QZSS)
and Indian - Navigation with Indian Constellation (NavIC). Each GNSS constellation
consists of three main components referred to as ‘segments’: the space segment, the
control segment and the user segment, as illustrated in Figure 2.1.

Figure 2.1: GNSS segments

2.2.1 Control Segment
The ground control segment is comprised of a network of ground antennas, monitoring
stations and the Master Control Station (MCS), which collectively manages the entire
navigation system. Figure 2.2 provides the geographical locations of GPS ground seg-
ment installations worldwide. The monitoring stations are strategically situated across
large geographic areas to continuously monitor the signals broadcasted by the satellites.
This signal monitoring facilitates the observation of satellite altitude, position, speed and
overall health. The data gathered from these stations are subsequently transmitted to
the MCS, which is responsible for several key tasks:

• Maintaining GPS time.

• Monitoring satellite orbits and issuing maneuvering commands for orbit adjust-
ments.

• Ensuring satellite health.

• Updating satellite navigation messages.

• Performing other control maneuvers in the event of failures

The ground antennas serve the purpose of sending commands and updated navigation
data back to the satellites. In this manner, the satellites can receive important updates
regarding their health status, clock alignment, ephemeris and almanac information.

The regional satellite systems are designed to offer services within specific geographic
regions. So, in the next discussion, we will describe the key characteristics of four satellite
systems that offer coverage on a worldwide scale.
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Figure 2.2: Geographical location of GPS ground segment installations (source:
www.gps.gov)

2.2.2 Space Segment
The GNSS satellites are placed in precise orbits to ensure complete and uninterrupted
coverage, thus making it possible for the users to benefit from the services almost every-
where on the Earth’s surface. The most common orbit for GNSS is the Medium Earth
Orbit (MEO) where, for instance, the GPS satellites orbit the Earth at an altitude of
approximately 20200 kilometers, each having an orbital period (i.e. the time duration
that satellite takes to complete its orbit) of roughly 12 hours. The GPS is committed to
maintaining a constellation of 24 satellites, ensuring 95% coverage all the time. Table 2.1
provides orbital parameters for the most commonly used GNSS constellations.

Table 2.1: Orbital parameters of most common GNSS constellations

GPS GALILEO GLONASS BeiDou
Orbital Altitude 20200 km 23222 km 19100 km 21528 km

Operational Satellites 24 27 24 27
No of orbital planes 6 3 3 3 (MEO)

Orbital period 11h 58m 14h 4m 11h 15m 12h 53m
Orbital inclination 55o 56o 64.8o 55o (MEO)

The GNSS satellites continuously broadcast radio signals at different frequencies within
the lower L-band (1164 - 1300 MHz) and the upper L-band (1559 - 1606 MHz), as illus-
trated in Figure 2.3. Each signal is composed of different components, for instance, the
GPS L1 signal is composed of a carrier wave, navigation message, Pseudorandom Noise
(PRN) code and data modulation, as shown in Figure 2.4. These characteristics are
defined as follows:

• Carrier Wave: The ‘carrier’ wave is usually a sinusoidal waveform modulated
with an information-bearing (or message) signal. It facilitates the transmission of
information as an electromagnetic wave over a longer distance. These carrier waves
generally possess a higher frequency compared to the message signal. In the GNSS,
various constellations transmit multiple signals at distinct carrier frequencies, for
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Figure 2.3: GNSS constellations band occupancy (source: Navipedia)

Figure 2.4: GPS L1 signal composition; carrier, ranging code and navigation data

instance, the GPS transmission frequencies include L1 - 1575.42 MHz, L2 - 1227.6
MHz and L5 - 1176.45 MHz.

• Pseudorandom Noise (PRN) codes: It consists of sequences comprised of 0s
and 1s, which enables the user to calculate the signal travel duration between the
satellite and the receiver. These binary sequences are also referred to as Pseudoran-
dom Noise sequences or PRN codes. These distinctive binary sequences, assigned
to each satellite, serve as a digital footprint that enables receivers to distinguish
signals from different satellites. These codes possess unique properties; the cross-
correlation between two distinct PRN codes is minimal (ideally zero), while the
auto-correlation between two identical PRN codes reaches its maximum value when
the codes are aligned. This characteristic allows satellites to transmit signals using
the same channel or frequency band, a mode of communication known as Code Divi-
sion Multiple Access (CDMA). All the constellations, except for legacy GLONASS,
which employs Frequency Division Multiple Access (FDMA) by having each satel-
lite transmit on a distinct carrier frequency modulated with a single spreading code,
employed CDMA channel coding. However, as part of their modernization plan, the
GLONASS system is expected to gradually reduce its reliance on FDMA in favor
of adopting CDMA signals to enhance the system’s capabilities and interoperability
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Figure 2.5: Legacy and modernized signals and Frequency bands occupancy by different
GNSS systems (source: Navipedia)

with other satellite systems.

• Navigation message: It is a binary-coded data stream that contains informa-
tion about satellite orbital parameters, clock corrections, and system health. The
ephemeris data within the navigation message provides the satellite’s orbit infor-
mation, which enables the receiver to compute the position of the satellite. Addi-
tionally, the clock correction accounts for any discrepancies in the satellite onboard
clock, ensuring accurate timestamping of signals.

• Data Modulation: It is a process of encoding digital signal information that
may involve modulating parameters such as amplitude, phase, or frequency. These
modulation techniques encode various types of data, including navigation messages,
system status, and clock corrections into the GNSS signals. The Binary Phase Shift
Keying (BPSK) is the most common modulation technique employed in GNSS. It is
a form of phase modulation where the phase of the carrier signal is altered by 180 de-
grees in response to changes in the data signal represented by ‘0’ and ‘1’ bits. Other
modernized modulation schemes offer higher accuracy, resistance to interference,
and improved performance in challenging environments. These advanced schemes
include Binary Offset Carrier (BOC), Alternative Binary Offset Carrier (AltBOC),
Multiplexed Binary Offset Carrier (MBOC) and Time Multiplexed Binary Offset
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Carrier (TMBOC). Figure 2.5 shows the diversity of signals and frequency bands
used by different GNSS systems.

2.2.3 User Segment
The user segment encompasses a wide range of devices and applications that use GNSS
signals to determine position, velocity, and time. This segment includes civilian and
military users, with applications ranging from consumer devices to specialized devices for
agriculture, surveying, and navigation.

Figure 2.6: Growth expected by 2031 (source: EUSPA market report 2022)

The user segment has experienced significant growth, supporting location-based ser-
vices, precise positioning and timing for military operations, precision agriculture tech-
niques, accurate mapping and geodetic measurements for surveyors and geologists. The
potential applications of GNSS continue to expand with emerging technologies like au-
tonomous vehicles, drones, and smart cities. As the adoption of GNSS continues to
diversify and expand, this technology remains a critical component in our modern tech-
nological landscape, with the anticipated growth by the year 2031 visually represented in
Figure 2.6.

2.3 Navigating with Satellites: The Trilateration Ap-
proach

Trilateration serves as a fundamental principle within a satellite-based positioning system,
primarily aimed at determining the location of an object on the Earth’s surface. This
method relies on the measurement of distances between the receiver and the satellites in
space. Satellite signals transmit information about their position and transmission time.
The receiver collects signals from a minimum of three satellites and analyzes the signal
propagation time to determine the distance between the receiver and each satellite. By
multiplying the travel time by the speed of light, the receiver can estimate the distances.
In trilateration, the spheres are considered around each satellite with a radius equal to
the receiver’s estimated distances and it estimates the intersection point of these spheres
to locate itself.
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Figure 2.7: Trilateration principle with three GNSS satellites

Figure 2.7 illustrates the trilateration method, projecting the positions of the satellites
in a two-dimensional plane. For satellite A, the receiver may be located at any point in the
circle, with the satellite at the center of the circle, and dc represents the distance between
the satellite and the receiver. With the inclusion of two more distance measurements from
satellites B and C, the receiver can pinpoint its position at the intersection point of the
three circles.

2.4 GNSS Receiver Main Blocks
A GNSS receiver consists of several essential blocks that are responsible for capturing,
processing and analyzing the signals from satellite constellations to provide position, nav-
igation and timing (PNT) information to the user. The functional scheme of some impor-
tant blocks of the receiver includes the antenna, front-end, Analog to Digital Converter
(ADC), acquisition, tracking, and navigation blocks as illustrated in Figure 2.8.

Figure 2.8: Some main functional blocks in the GNSS receiver processing chain

• Antenna Unit: It is the initial element of the receiver chain that is responsible for
receiving satellite signals, which are often weak by the time they reach the receiver.
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These signals are then amplified for further processing. Generally, the antenna
filters out unwanted noise and interference, ensuring that only the relevant signals
are passed on to the subsequent stages of the receiver. In the context of GNSS,
antennas with Right-Hand Circularly Polarized (RHCP) are employed. They are
preferred due to their high efficiency in capturing GNSS signals, which are usually
RHCP. The choice of antenna type varies depending on the specific application and
requirements, with various designs such as patch antennas, helical antennas and
others.

• Radio Frequency Front-End: The signal captured by the antenna passes through
the receiver front-end, which includes various components such as Low-Noise Am-
plifier (LNA) that amplify exceedingly weak signals coming from the satellites, a
bandpass filter to limit the signal bandwidth to the desired level and a frequency
downconverter responsible for transforming the signal to an intermediate frequency
(IF) or directly to the baseband.

• Analog to Digital Converter (ADC): The ADC transforms the continuous ana-
log signal coming from the RF front-end into discrete digital form. This conversion
is accomplished by employing a two-step procedure involving sampling and quanti-
zation. The sampling process captures the analog signal at discrete time intervals,
resulting in a sequence of data points that represent the signal amplitude. Sub-
sequently, the quantization process assigns numerical values to these data points,
extracting a representative discrete signal from the continuous analog signals.

• Acquisition Unit: The purpose of the acquisition block is to determine the pres-
ence of all the satellites within the receiver view. This process involves evaluating
a 2-D correlation function known as the Cross Ambiguity Function (CAF). An ex-
tensive search is performed to determine the presence of the satellite signals and
determine signal parameters such as the code phase offset and doppler frequency
shift of the satellites. Once these parameters are acquired, they are used to initial-
ize the delay and the phase tracking loop, thus enabling the receiver to synchronize
with the satellite signal during the tracking phase. The evaluation of CAF involves
comparing the received signal with all the possible locally generated PRN codes for
different code and doppler values.

Figure 2.9: Cross Ambiguity Function of Galileo Satellites

The detection process involves comparing the correlation peak with a predetermined
threshold. A distinct peak is expected to appear when the received signal code is
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aligned with the locally generated PRN code. This indicates the presence of the
satellite signal and provides an approximate estimate of the code delay and doppler
shift. In contrast, if the satellite is not present, no peak will emerge, and CAF
will only contain the correlation noise. Figure 2.9 shows the acquisition instances
for two Galileo satellites. On the left, the distinct correlation peak for PRN#19
signifies the presence of the satellite, while on the right, the correlation for PRN#03
merely appears as noise, indicating that the signal from this particular satellite is
not received.

• Tracking Unit: The next process involves continuous tracking of the satellite
signals. The tracking unit’s primary role is to further refine the signal parameters,
namely the code and the doppler phase. It is achieved through the Phase Lock Loop
(PLL) and Delay Lock Loop (DLL). The DLL helps to maintain synchronization
with the satellite PRN code phase, while the PLL focuses on maintaining phase and
frequency synchronization with the carrier signal. At each instance, the tracking
loop provides fresh values of code and doppler phase to remove code and doppler
from the received signal, as shown in Figure 2.10.

Figure 2.10: Tracking system functional view

• Navigation Unit: Once the GNSS signals have been acquired and tracked, the
navigation unit uses them to derive meaningful navigation solutions. Using the
triangulation method, the location of the receiver is determined. Subsequently, the
initial estimate obtained from triangulation is further refined by a position estimator,
such as the Least Square (LS) solution, by minimizing the discrepancies between
the observed GNSS measurements (distances from the receiver to satellites) and the
predicted values based on the estimated position. The LS estimator will be detailed
in Section 2.6.

As we have presented the various segments and components of GNSS, it is increas-
ingly important to consider the various vulnerabilities that are associated with this system.
These vulnerabilities, often arising from a combination of technical limitations, system
flaws and ever-evolving cybersecurity threats, present significant challenges that can po-
tentially compromise the performance of the system. In the following section, we will
explore some of the key vulnerabilities and threats associated with GNSS and examine
the strategies and technologies employed to address them.
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2.5 GNSS Vulnerabilities and Error Factors
The reliance on GNSS continuously expands in various applications and correspondingly,
the awareness of its vulnerabilities and potential sources of errors. The GNSS signals
are highly vulnerable to numerous threats due to the low power level, introducing errors
in the PNT estimation. These vulnerabilities originate from various sources, as shown
in Figure 2.11 while considering their occurrence. These errors originate at the satellite
level, errors arising from signal propagation in the atmosphere, and errors resulting from
the presence of local effects at the user segment.

Figure 2.11: An example of typical GNSS error sources at three different levels, with their
occurrence

• Satellite level errors: ephemeris and clock errors are primarily the two types of
errors originating from Space Vehicles (SVs). The ephemeris contains information
about the orbital coordinates of the satellite. The responsibility of the ground
segment lies in continually monitoring the orbital parameters using past observations
to ensure the decimation of up-to-date information broadcast to the user through the
navigation message. However, the prediction accuracy degrades over time, especially
in the event of unforeseen circumstances in space that might cause deviations in the
satellite trajectory, resulting in errors in the estimated position. Additionally, GNSS
satellites are equipped with highly stable onboard clocks, often using technologies
like cesium and rubidium. Nevertheless, these onboard clocks are not completely
faultless, typically having an error of about 8.64 to 17.28 nanoseconds per day, which
corresponds to a ranging error of 2.59 m to 5.18 m. Similarly to the ephemeris
data, control stations closely monitor clock drift and clock correction parameters
to regularly update this information in the navigation message to account for these
errors.

• Atmospheric level errors: The atmospheric level errors represent a significant
source of inaccuracies in the GNSS. These errors are primarily associated with the
passage of the satellite signal through the Earth’s atmosphere. The atmospheric
conditions, particularly the ionosphere and the troposphere, introduce delays and
distortions in the GNSS signals. The ionosphere, which is the uppermost layer of
the atmosphere, extends from 50 km to 1000 km or even beyond. It is formed
when the sun’s radiations interact with the gas molecules and the atoms, leading to
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ionization. This process allows electrons to break free from their respective atom
or molecule. These free-charged particles act as a dispersive medium for the signal
propagation, causing radio signals to bend and altering their speed of propagation.
The electron density in the ionosphere varies with the altitude and time, being
denser and more extended during the day due to solar radiation. Generally, the
low-elevation satellites experience greater ionospheric delays compared to the satel-
lites at the zenith. The typical delay can range between 3 m to 45 m, but can
be minimized using various techniques such as the application of empirical models
like Klobuchar [8] and NeQuick [9]. These models utilize coefficients broadcasted
in the navigation message, allowing for the removal of up to 50 - 70% of the errors.
Since the ionospheric delay is dependent on the frequency, the error can also be
reduced by estimating the delay using an ionosphere-free linear combination. Ad-
ditionally, regional networks also correct the ionospheric delay, with options like
the Satellite-based Augmentation System (SBAS) or Ground-based Augmentation
System (GBAS). The troposphere, on the other hand, is the lower part of the atmo-
sphere extending up to 50 km from the Earth’s surface. Within the region, it serves
as a non-dispersive medium for radio frequencies below 15 GHz. The tropospheric
delay results from a combination of factors, including humidity, temperature and
pressure. This delay is typically divided into two components: the hydrostatic delay,
associated with the dry atmospheric content comprising gases and particles, which
make up approximately 90% of the total tropospheric delay. Empirical models such
as Saastamoinen [10] and Hopfield [11] are commonly utilized for the estimation of
the dry delay component. The wet component, on the other hand, arises from the
presence of water vapor suspended in the atmosphere and is notably very challenging
to predict due to its high variability, posing limitations on achieving millimeter-level
accuracy. The typical variation in the tropospheric delay ranges from 2.3m at the
zenith (when the satellite is directly overhead) to approximately 20 to 28m at an
elevation of 5 degrees.

• User level errors: These errors are induced by ‘local’ events or phenomena which
usually originate from the vicinity of the receiver antenna. The errors are mainly
due to the signal interaction with obstacles like buildings, trees or any other ob-
stacles causing signal scattering, reflections and diffraction which can give rise to
phenomena such as multipath, masking or shadowing. Multipath error occurs when
signals reflect off from the surfaces or objects before reaching the receiver antenna.
This can lead to signal interference and distortions, affecting the accuracy of the
position estimation. Conversely, Non-Line-Of-Sight(NLOS) conditions arise when
there is no direct line of sight between the transmitter and receiver, typically due
to obstructions or signal blockage.
Intensive research has been and is still being conducted on the identification and
mitigation of multipath and NLOS errors, particularly in the urban environment
where the challenges are prevalent. Researchers have explored a wide range of
techniques and strategies to comprehensively address these concerns. These inves-
tigations encompassed diverse innovative approaches, such as the development of
advanced antenna designs aimed at minimizing multipath effects [12][13][14], More-
over, receiver-based correlator designs have been explored to enhance signal tracking
in the presence of reflections and obstructions [15][16], Weighting models have been
developed to consider the uncertainty associated with measurements in the posi-
tioning solution [17][18].
In addition to these strategies, there has been significant attention given to the
multi-constellation solution that leverages signals from multiple satellite systems to
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increase robustness in challenging environments [19][20]. An extensive environment
modeling [21][22][23][24][25] has been undertaken to predict behavior under various
urban conditions. Furthermore, the integration of GNSS with the Inertial Naviga-
tion System (INS) [26] has been explored to increase the robustness, offering seam-
less positioning, particularly during short NLOS intervals. A more sophisticated
system, such as hybridization with fisheye cameras [27], has also been investigated
to provide visual context to aid in the detection of signal blockage. More complex
techniques, such as Ray Tracing and shadow matching [28][29] have been developed
to model the signal paths and identify possible obstructions or multipath sources.
Moreover, consistency-checking algorithms have been devised to detect and filter
out measurement outliers [17][30][31].
Another form of signal interaction can occur with signals originating from ‘artificial’
sources or man-made devices and disrupting the useful signal, commonly referred to
as interference. Radiofrequency interference can be broadly classified into two main
categories: intentional and non-international interference. Intentional interference
includes jamming, spoofing and meaconing. Jamming refers to the deliberate trans-
mission of malicious signals within the GNSS frequency band to obscure useful sig-
nals by introducing noise, thereby impeding the receiver’s ability to acquire satellite
signals. On the other hand, Spoofing involves the transmission of synthetic GNSS-
like signals, compelling the receiver to provide false position information. Meaconing
closely resembles spoofing as it involves rebroadcasting of authentic GNSS signal by
the radio transmitter.
The second form of interference is non-intentional interference, which can be further
categorized into in-band or out-band interference. In-band interference occurs when
different systems share the same frequency band for transmission, while out-band
interference is caused by systems transmitting close to the frequency band of inter-
est, often caused by harmonics or intermodulation products. The issues related to
interference, their impact and potential mitigation strategies will be discussed more
in detail in Chapter 3.
Receiver clock error, which is another important factor affecting the accuracy of
satellite-based positioning technologies, emerges from discrepancies between the
highly accurate atomic clocks onboard satellites and less accurate clocks within
receivers. Since GNSS systems rely on accurate measurement of the signal travel
time or determining the position, even minor errors in the receiver’s clock can lead
to substantial inaccuracies. For example, only nanosecond discrepancy can result
in positioning errors of 30 cm. To address this issue, the receivers employ tech-
niques such as multi-satellite time synchronization to estimate and compensate for
clock biases. Additionally, differential correction services like Real-Time Kinemat-
ics (RTK) offer real-time corrections to further enhance positioning accuracy by
rectifying receiver clock errors.
The Dilution of Precision (DOP) is another important parameter that influences
the positioning accuracy. It serves as an indicator of the geometric arrangement of
satellites relative to the receiver view. This parameter does not directly correlate
with the measurement condition but acts as an indicator to quantify the geometric
coverage. For instance, evenly distributed satellites around the receiver lead to a
lower DOP value, thereby yielding high positioning accuracy. On the contrary, an
inadequate configuration with satellites closely spaced in a small region, leads to an
increased value, causing higher inaccuracy in the position estimation. The effects
of satellite geometry and the dispersion of positioning uncertainty are illustrated
in Figure 2.12. The uncertainties are evaluated using various DOP factors. The

19



Figure 2.12: 2D illustration of relative geometry and dilution of precision a) geometry
with smaller DOP (left) and b) geometry with larger DOP (right) GNSS Measurement
Model and PVT estimation

Horizontal Dilution of Precision (HDOP) and Vertical Dilution of Precision (VDOP)
represent uncertainties along horizontal and vertical components, respectively. By
combining VDOP and HDOP, a Position Dilution of Precision (PDOP) is obtained,
which provides an overall measure of position solution uncertainty. Additionally, the
DOP factor also includes Time Dilution of Precision (TDOP), which characterizes
the uncertainty associated with the timing information. Finally, Geometric Dilution
of Precision (GDOP), which is the combination of all the uncertainty previously
mentioned components. The PDOP, TDOP and GDOP are expressed as follows:

PDOP =
√
σ2

x + σ2
y + σ2

y (2.1)

TDOP =
√
σ2

t (2.2)

GDOP =
√

PDOP2 + TDOP2 (2.3)

where σx, σy and σz are the uncertainties of x, y and z position components.

We have explored various sources of errors within the GNSS measurements. In the
following section, we will introduce the measurement model, which accounts for both
systematic and random errors in the estimation of the Position Velocity Timing (PVT)
solution.

2.6 GNSS Measurement Model and PVT Estimation
The GNSS receiver provides pseudorange and carrier measurements to estimate the dis-
tance between satellites and a receiver, as explained in Section 2.4. The pseudorange
measurements are determined by calculating the signal travel time from the satellites to
the receiver. This involves comparing the signal transmission time from the satellite to
the signal reception time at the receiver, obtained through the phase delay between the
received and locally generated code signals. Multiplying the time difference by the speed
of light yields the pseudorange estimate, providing meter-level accuracy. The pseudor-
ange measurements are relatively easy to obtain and offer meter-level accuracy. However,
pseudorange measurements are susceptible to errors like clock inaccuracies, atmospheric
delays, and multipath interference, limiting their effectiveness in highly accurate applica-
tions.
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In contrast, distance estimation from carrier measurements offers enhanced accuracy
but is more complex than code measurements. The carrier measurements rely on the phase
difference between the carrier frequency of the received signal and the locally generated
carrier signal. To obtain carrier measurements, receivers need to continuously track the
carrier frequency without any interruption or cycle slip. Moreover, the carrier measure-
ments are ambiguous, meaning that they are uncertain by an unknown integer number
of wavelengths (λN). Resolving these ambiguities requires specialized techniques, such as
double-difference carrier measurements between sets of satellites and sets of receivers. The
primary advantage of carrier measurements lies in their reduced susceptibility to common
mode errors, making them suitable for high-precision applications. Both the pseudorange
and carrier measurements for the jth satellite can be mathematically modeled as:

ρj = rj + c (δtu − δtj) + Iρj
+ Tρj

+ Mρj
+ nρj

(2.4)

ϕj = rj + c (δtu − δtj) + Iϕj
+ Tϕj

+ Mϕj
+ λjN j + nϕj

(2.5)

where rj is the true geometric distance between the satellite and the receiver,
δtu is the receiver time difference from the system time.
δtj represents the satellite time difference from the system time.
λj and Nj represent the carrier wavelength and the phase ambiguity,
Iρj

and Iϕj
is ionospheric propagation delay residual on code and carrier measure-

ments,
Tρj

and Tϕj
is the tropospheric propagation delay residual on code and carrier mea-

surements,
Mρj

and Mϕj
represent the multipath error on code and carrier measurements,

nρj
and nϕj

accounts for the noise in the code and carrier measurements.
The aforementioned measurement models serve as the basis for understanding the

process of acquiring and representing GNSS data. Now, we turn our attention to a dis-
cussion on position estimators, which are derived from these measurements. Our primary
emphasis will be on pseudorange measurements, which are not only relatively easier to
obtain but also widely adopted for position estimation. Carrier measurements are con-
sidered beyond the scope of this study. In terms of computing the navigation solution,
there exist various estimators, including the Kalman Filter (KF) [32][33], Particle Filter
(PF) [34][35], and Least Square (LS) [36]. In the next section, we will introduce the LS
estimator, focusing on its weighted variant.

2.6.1 Position Estimator Least Square (LS) Solution
The Least Square (LS) estimator is the conventional method that aims to minimize the
sum of the squared difference between the observed and computed pseudorange mea-
surements. In contrast to the KF, the LS is a snapshot (non-recursive) estimator that
provides point position solutions without considering the dynamics of the system. The
measurement model, as described in Eq.2.4, can be expressed in a simplified manner to
represent the actual geometric distance between the jth satellite and the user receiver in
the Earth-Centered Earth-Fixed (ECEF) coordinate system:

ρj =
√

(xj − xu)2 + (yj − yu)2 + (zj − zu)2 + c (δtu − δtj) + noise (2.6)

The satellite position (xj, yj, zj) and δtj, representing the satellite clock bias, can be
derived from the navigation data. In the pseudorange model, there are four unknown
variables: the user position (xu, yu, zu) and the receiver clock bias δtu. Expressing a
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pseudorange observation within the measurement model, which accounts for four unknown
variables, a noise-free pseudorange observation can be rewritten as:

ρj =
√

(xj − xu)2 + (yj − yu)2 + (zj − zu)2 + c.bu (2.7)
Here, bu denotes the receiver clock offset relative to the system time. Since Eq. 2.7 is
a nonlinear function, the initial step involves linearizing this function to estimate the
solution. To achieve a 1st-order approximation with Taylor expansion with respect to the
current estimate, the linearized equation is given as:

ρj = f (xu , yu , zu , bu) = f
(
x̂u + ∆xu , ŷu + ∆yu , ẑu + ∆zu , t̂u + ∆tu

)
(2.8)

= f(x̂u, ŷu, ẑu, bu) + δf(x̂u, ŷu, ẑu, bu)
δx̂u

∆xu + δf(x̂u, ŷu, ẑu, bu)
δŷu

∆yu (2.9)

+ δf(x̂u, ŷu, ẑu, bu)
δẑu

∆zu + δf(x̂u, ŷu, ẑu, bu)
δt̂u

∆tu

= ρ̂j − xj − x̂u

r̂j

∆xu − yj − ŷu

r̂j

∆yu − zj − ẑu

r̂j

∆zu + c∆tu (2.10)

Here, (x̂u, ŷu, ẑu) represent position coordinates of the linearization point, ρ̂j signifies the
computed pseudorange from the last iteration and r̂j denotes the distance between the
satellite and the linearization point, as follows:

r̂j =
√

(xj − x̂u)2 + (yj − ŷu)2 + (zj − ẑu)2 (2.11)

axj = xj − x̂u

r̂j

, ayj = yj − ŷu

r̂j

, ayj = zj − ẑu

r̂j

(2.12)

The measurement residual is determined by calculating the difference between the ob-
served and estimated measurements:

∆ρj = ρ̂j − ρj = axj∆xu + ayj∆yu + azj∆zu − c∆tu (2.13)
The system consisting of m equations can be expressed in matrix form as follows:

∆ρ1
∆ρ2
∆ρ3
∆ρ4

...
∆ρm


=



ax1 ay1 az1 1
ax2 ay2 az2 1
ax3 ay3 az3 1
ax4 ay4 az4 1
... ... ... ...

axm aym azm 1




∆xu

∆yu

∆zu

−c∆tu



Eq.2.11 can be written in vector form as:

∆ρ = H × ∆X + r (2.14)
where ∆ρ represents the residual vector, which is the difference between the measured
and the predicted pseudorange. The designed matrix is denoted as H, ∆X represents
the error state vector and r accounts for the measurement error vector. Applying the
linearized equation, the computed residuals can be expressed as follows:

r̂ = ∆ρ̂−H × ∆X̂ (2.15)
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The LS solution can be determined iteratively by adjusting ∆X̂ until the norm of the
residual vector is minimized, as expressed by the following equation:

RSE = r̂T r̂ (2.16)

The LS solution of ∆X is:

∆X̂LS =
[
HTH

]−1
HT × ∆ρ (2.17)

In our discussion, we introduced the LS estimator, which assumes equal importance
for all measurements, regardless of their inherent quality. Nevertheless, in reality, mea-
surements come with a varying degree of uncertainty. To address this, the Weighted Least
Square (WLS) approach is adopted, which assigns weights to individual measurements to
accommodate their variances or uncertainties. In the next section, we will go through dif-
ferent weighting schemes used in the WLS solution to enhance the accuracy and reliability
of position estimation.

2.6.2 Weighted Least Square (WLS) Estimator: Measurement
Weighting Schemes

The Weighted Least Square (WLS) method introduces the concept of assigning varying
levels of confidence to the observations, emphasizing the importance of measurements rel-
ative to their accuracy and reliability. Under this approach, the measurements with higher
variance get lower weightage, resulting in a reduced influence on the position estimation.
Conversely, measurements with smaller error variances are given higher weightage, al-
lowing them to contribute significantly to the estimation process. The WLS solution of
Eq.2.15 is given as:

∆X̂WLS =
[
HT W H

]−1
HT W × ∆ρ (2.18)

W =


1

σ2
1

· · · 0
... . . . ...
0 · · · 1

σ2
m


Here, W represents the weighting matrix, defined as the reciprocal of the measurement
variance. The literature has explored various weighting models, with one of the most
common is the sine-elevation model, as proposed in [37][38]. The variance computed
using the sine-elevation model is given as:

σ2
k = 1

sin(ϑk)2 (2.19)

where ϑk represents the elevation angle of the kth satellite. The variance model based
on elevation angle considers that satellites at lower elevations are more susceptible to
higher error variances compared to those at higher elevations. Consequently, the weight-
ing scheme assigns less significance to measurements obtained from satellites at lower
elevations in the position estimation process. Notably, the authors in [39] introduced
Carrier-to-Noise ratio (CNO) into the variance model, which serves as a metric indicating
the quality of the received signal. Expanding on this concept, the authors in [40][41]
extended CNO weighting strategy and introduced the sigma-ϵ and sigma-∆ models. Fur-
thermore, the author in [18] has put forth a generic formula for sigma-ϵ, designed to
be compatible with various types of receivers. The variance computed from the CNO
measurement is given as:
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σ2
k = a+ b 10

−CNOk
10 (2.20)

where a(m2) and b(m2Hz) represent parameters that are dependent on the receiver, an-
tenna and frequency. In [42], a hybrid model is presented that considers both the CNO
and satellite elevation in the variance estimation.

σ2
k = k

10
−CNOk

10

sin(ϑk)2 (2.21)

Here, the parameter k serves as the LOS/NLOS indicator, where k = 1 denotes the LOS
signal, and k = 0.5 indicates NLOS signals. The weighting models described above take
advantage of the knowledge of the elevation and/or the CNO to estimate the variance of
GNSS observations. These approaches have led to a significant enhancement in positioning
accuracy compared to assigning the same variance to all the observations.

With the completion of the discussion up to this point, we have acquired a compre-
hensive understanding of various signal processing stages leading to the determination
of a navigation solution. Building on the insights presented earlier, we are now in the
final phase of our exploration of this chapter. The following section will shift the em-
phasis toward the evaluation of the KPIs, particularly in the context of safety-critical
applications.

2.7 Positioning Performance Concerning Safety Crit-
ical Applications

The concern about positioning errors remains an everlasting issue in many situations
due to their unpredictable nature and varying magnitudes, especially those arising from
local threats, as detailed in Section 2.5. In safety-critical applications, exceeding these
errors beyond specified limits can have dire consequences, potentially leading to accidents
causing harm to individuals and substantial damages. In this context, simply quantifying
accuracy by assessing errors within a standard confidence interval around 95% percentile
is not sufficient. Instead, what emerges as truly essential is the statistical estimation of
the error bounds to account for errors even with exceptionally low probabilities, thereby
ensuring the safety of operations. With this in mind, we will now introduce various Key
Performance Indicators (KPIs) related to safety-critical applications.

2.7.1 Positioning Performance Indicators
The performance of the Global Navigation Satellite System (GNSS) is fundamentally
characterized by four key indicators, each of which plays a crucial role in ensuring the
system’s reliability and effectiveness. These performance indicators include accuracy, in-
tegrity, continuity and availability. The definitions of these parameters are as follows:

Accuracy: The term ‘accuracy’ is most often used to describe the overall performance
of the system, but when it comes to real-time operations, measuring accuracy can be very
challenging because true position information is not available. Accuracy is best evaluated
in a post-processing context where the position estimate can be compared to the true
position with a predefined confidence interval. Accuracy is a degree of compliance between
the true position and the estimated position at any given instance of time with a predefined
confidence interval.
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In some applications, such as the railway, where the movement of a train is confined on
a fixed track on the ground, it is more relevant to describe accuracy in terms of Horizontal
Protection Error (HPE), while Vertical Protection Error (VPE) is less relevant. HPE is
determined by calculating the error between the reference (or ground truth) position and
the estimated position provided by the system. It is expressed as follows:

HPE =
√

(xref − xest)2 − (yref − yest)2 (2.22)

Here, xref and yref represent the coordinated reference position, while xest and yest
represent the estimated position coordinated. Accuracy is often quantified using the Cu-
mulative Distribution Function (CDF) of the position error, indicating a certain percent-
age of time the system can provide accurate Position Velocity Timing (PVT) information.

Integrity: The term ‘integrity’ serves as an indicator of the trustworthiness of the
information provided by the navigation system. In an alternative definition, integrity is
the system’s ability to issue a warning to the users within a specified Time to Alert (TTA)
when it is not advisable to use the system for navigation. The primary concerns arise
from the potential errors that are large enough to exceed the acceptable limit, referred
to as the Alert Limit (AL), which is dependent on the application requirements. During
the online phase of operation, the position error remains unknown, making it essential
to determine a statistical bound of position error called the Protection Level (PL). The
PL is computed from the uncertainties in the measurement and serves to ensure with
a high probability, that the true position (unknown) is constrained within this interval.
The integrity of the system is considered at risk when the user-computed PL exceeds the
AL. In such a situation, preserving integrity requires generating an alert to inform the
user about the system’s state, potentially leading to the termination of operation. Alter-
natively, an integrity loss occurs when the system error state goes undetected, posing a
risk of a potential accident if the system state is not restored to normal condition within
a given time frame, or TTA. This particular situation undermines the system’s safety,
which will be further elaborated in Section 2.74.

Continuity: The term ‘continuity’ refers to the system’s ability to operate without
interruptions, even during signal interruptions caused by obstructions such as buildings.
It represents the probability that the specified system performance will be maintained for
a certain duration of a phase, presuming that the system was available at the beginning of
that phase operation. Alternatively, continuity risk quantifies the likelihood of an unex-
pected loss of navigation service during an operation, which might require to termination
of the operation for the safety of the system. The continuity risk requirement is typically
expressed as the maximum tolerable probability of a disruption in the system’s continuous
operations.

Availability: The term ‘availability’ is a measure of the operational utility of the
navigation service. In simpler terms, it represents the probability over a certain period
that all the requirements (such as accuracy, continuity and integrity) of a given operation
are achieved simultaneously, so the operation can be conducted safely and efficiently.
The availability requirements may differ depending on the specific mode of operation.
For instance, in aviation, different availability standards are established for the en-route,
approach and arrival phases.

In another definition, it is characterized as the maximum time interval between service
outages, often referred to as Operational availability. A positioning system can provide a
solution while ensuring that the position error (PE) is within the confidence interval or
the protection level (PL) and that the PL remains below the alarm limit (AL). Operation
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availability can be expressed as follows:

A(T ) = 100
(

1
T

T∑
t=0

a(t)
)

(2.23)

Here, a(t) represents a set of points during which the positioning system maintained
‘normal operation’ (i.e. PE < PL < AL) over the time interval T.

2.7.2 Receiver Autonomous Integrity Monitoring (RAIM)
Receiver Autonomous Integrity Monitoring (RAIM) is a concept that was initially de-
veloped for aeronautical applications, aimed at self-evaluating the trustworthiness of the
navigation solution provided by the positioning engine [43]. Its primary purpose is to
provide the user with timely alerts in situations when the system exceeds the specified
tolerable level. Integrity monitoring schemes are built on two important steps: the esti-
mation process and the fault detection mechanism. The estimation algorithm typically
merges the noisy measurements to provide state estimation and its associated uncertainty,
given by the state covariance matrix. In the Fault Detection (FD) step, the estimated
residual(s) is compared with the predefined threshold(s) to identify the occurrence of the
fault(s). In many architectures, this process can also incorporate the Fault Exclusion
(FE) algorithm that is designed to isolate the flagged measurements to correct the state
estimation errors.
Another important aspect of the integrity monitoring framework is the Protection Level
(PL) evaluation which establishes the boundaries around the state estimation. PL esti-
mation takes into account the combined effects of both the estimation process and the
uncertainty associated with the measurements. Generally, a conservative policy is applied,
accounting uncertainty for the worst case (measurement) to ensure integrity. Nonetheless,
such a conservative policy poses a continuity risk, potentially resulting in the unavailabil-
ity of the position solution when PL exceeds the AL. For this reason, in many studies,
FE mechanism is applied to remove the erroneous measurement to improve continuity.
Despite the existence of numerous integrity monitoring approaches, in literature, these
algorithms can be broadly classified into snapshot and sequential methods. The snap-
shot methods rely on the error metric that only uses information about the present
state, typically derived from the residuals of the least square estimator or the estimation
from the redundant information provided by the sensor. On the contrary, the sequential
methods, also referred to as the recursive methods, incorporate errors derived from the
present and previous state information. It is generally implemented with a test statistic
based on innovation from a Kalman filter.

Presently, since the initial conception, the integrity monitoring algorithms have signif-
icantly evolved, offering improved performance in challenging environments, particularly
associated with terrestrial applications such as urban canyons and dense foliage. RAIM
implementation comes in various forms, offering different approaches to enhance the reli-
ability of navigation solutions. In the earlier version, the standard RAIM [44] is limited
to a single satellite constellation and supports only single-frequency signals. Some of
these shortcomings are addressed by the Advanced RAIM (ARAIM) [45] [46], which in-
corporates multiple-fault detection, dual frequency and multi-constellation GNSS signals.
Furthermore, the Relative RAIM (RRAIM) [47] [48] includes time differential carrier
phase measurements to enhance service availability. The Extended RAIM (ERAIM) [49]
[50] enables the integration of INS and GNSS measurements in the integrity monitoring
framework, which is generally based on the EKF filter.

In the earlier discussion, we offered a broader view of integrity monitoring. For a deeper
exploration of this subject, readers are encouraged to refer to [51] and [52]. Within the
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context of this Ph.D. study, we will examine positioning KPIs that rely on the computation
of PL and the mathematical expression will be presented in the following section.

2.7.3 Horizontal Protection Level (HPL) Estimation
Protection Level (PL) is a statistical boundary that shall ensure with a very high proba-
bility that the true position error remains within the specified limits. This is essential to
guarantee that the probability of positioning error exceeding these limits is kept below or
equal to a target integrity risk. Integrity is typically realized through the utilization of
the Horizontal Protection Level (HPL) and Vertical Protection Level (VPL). In contrast,
in rail or road applications, where vehicles typically move along predefined paths, the
HPL is further decomposed into Cross-Track Protection Level (XPL) and Along-Track
Protection Level (APL). Various methodologies have been proposed in the literature for
calculating HPL which can be found in [53] and [54]. In our approach, we adopted HPL
computation based on HslopeMax as presented in [53], which is given as:

HPL = maxi (Hslopei × σi ) ×
√

NSSE +K(Pmd) × dmajor (2.24)

Here, the LS residual based Hslopei represents the sensibility of the Horizontal Pro-
tection Error (HPE) to the bias of the ith satellite. It can be expressed as:

Hslopei =

√√√√(H+
N,i)

2 + (H+
E,i)

2

Sii
(2.25)

and, the normalized sum of squared error (NSSE) can be written as:

NSSE = r̂ T Σ−1r̂ (2.26)

with H+ = (HTWH)−1
HTW and S = I − HH+, the parameter σi represents the

standard deviation of ith the measurement, r̂ represents the residual vector, which is the
difference between the measurements and their prediction, K(Pmd) is an inflation factor
that depends on the predefined probability of missed detection and dmajor represents the
position error uncertainty along the semi-major axis of the error ellipse [55].

2.7.4 Performance Evaluation and Tradeoffs
The Stanford diagram serves as a very useful tool to explain and illustrate the concepts
related to integrity, as well as their relationship to the performance evaluation of the
positioning system. In the Stanford diagram, as shown in Figure 2.13, the abscissa repre-
sents the absolute Horizontal Protection Error (HPE), while the ordinate represents the
Horizontal Protection Level (HPL). The diagonal line separates the samples according to
the relationship between position error and protection level. The samples located above
the diagonal line symbolize points wherein HPL bounds HPE, whereas the samples below
the diagonal line indicate points wherein the estimated HPL has failed to bound HPE.
According to the relationship between HPE, HPL and the AL, the position samples are
distributed into different regions, each zone signifying a specific state of the positioning
system:

• Nominal operation: It is the state in which the system is available, the HPL well
bound the HPE and both remain below the AL.

• System unavailable: It is the state in which the system is unavailable, the HPL
exceeds AL even though HPE is well bounded by the HPL.
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• Misleading Operation: It is the state in which the system is available, both HPE
and HPL are below AL, however, HPL underestimates the HPE.

• Misleading Information and System unavailable: It is the state in which
the system is unavailable, the HPL failed to bound the HPE and both are greater
than the AL.

• Hazardous Misleading Information (HMI): It is the state in which the sys-
tem is wrongly declared available, HPE exceeds HPL but remains below the AL.

Figure 2.13: Stanford Diagram for KPIs evaluation

We introduced various notions in the earlier discussion that are established based
on the logical relationship between PL, AL and PE signifying the operational states or
modes of the localization function. These factors are primarily assessed when evaluating
the performance of the positioning solution, especially concerning safety-critical applica-
tions. Notably, when designing the localization function for such applications, the main
paradox remains the tradeoff between positioning availability and integrity of the pro-
vided solution. The integrity is violated when the system’s faulty state goes undetected
beyond a certain time interval given by TTA. Nevertheless, in the following discourse, we
will ignore the evolution of the system state over time thus omitting the consideration of
the TTA parameter in the evaluation of KPIs. Therefore, we will adopt a conservative
approach where we will consider ’snapshot’ integrity failure as a safety concern.
The constraint imposed by PL and AL plays crucial in safeguarding against HMI events,
thereby ensuring system integrity. Nonetheless, these parameters may also influence oper-
ational availability. Adhering to stringent PL limits with a proper error characterization
can ensure integrity and protection against HMI whereas an excessively cautious ap-
proach might lead to frequent unavailable instances as a result potentially compromising
the functionality and practicality of the system. In either situation, the implementation
of complementary measures such as Fault Exclusion and (or) sensor integration would
be vital to enhance system availability while maintaining integrity. Nevertheless, it is
important to clarify that these solutions are considered beyond the scope of this study.
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2.8 Chapter summary
This chapter offered an insight into the foundational principles of the Global Navigation
Satellite System (GNSS), with a particular focus on its significance in safety-critical appli-
cations. In the next chapter, we will present state-of-the-art interference countermeasure
strategies that have been addressed in the literature.
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Chapter 3

Radio Frequency Interference (RFI),
Detection and Mitigation Techniques

3.1 Introduction

In the previous chapter, we outlined some key aspects of the fundamentals of the Global
Navigation Satellite System (GNSS) and briefly discussed vulnerabilities associated with
satellite-based positioning. In this chapter, our exclusive focus is on addressing the issue
of jamming and exploring potential countermeasures to mitigate the impact of jamming
interference. The purpose of this exercise is to serve multiple objectives, including becom-
ing familiar with the topic, recognizing the importance of addressing interference concerns
in GNSS, exploring existing solutions and required resources, and understanding the per-
formance of these techniques and their limitations. Most importantly, it allows us to
identify gaps in the current literature and the potential for future research avenues. To
facilitate a comprehensive discussion, we have divided this chapter into two main sec-
tions. Section 3.2 delves deeply into the complexities associated with interference. In this
section, we will explore various interference signals, offering insight into mathematical
models of some common signals found in the literature. We will go through the sources
of these signals, presenting real-world interference incidents that occur very frequently.
Section 3.3 will provide a comprehensive view of the state-of-the-art interference coun-
termeasures. We will discuss the performance and limitations of existing detection and
mitigation techniques, particularly dealing with different types of interference signals.

3.2 Radio Frequency Interference (RFI)

Definition: Radio Frequency Interference (RFI) is the effect of unwanted energy due
to one or a combination of emissions, radiations, or inductions upon reception in a radio
communication system, manifested by any performance degradation, misinterpre-
tation, or loss of information which could be extracted in the absence of such unwanted
energy (Source: International Telecommunication Union).

The issue of Radio Frequency Interference (RFI) has undeniably become an inevitable
challenge in the realm of wireless communication. This concern is steadily growing due
to the exponential growth of wireless devices. The Global Navigation Satellite System
(GNSS) receivers are particularly vulnerable to RFI due to their reliance on exceedingly
feeble signals. The presence of interference can severely impair the performance of these re-
ceivers or even cause a complete denial of GNSS service in a specific area, especially when
operating under a strong influence of interference. Although international regulations



protect the frequency bands reserved for GNSS signals, the unauthorized use of Personal
Privacy Devices (PPDs), commonly known as jammers and the widespread reliance on
wireless communication have increased the interference problems for GNSS devices. The
interference signal can manifest in several different forms, including pulsed interference
emanating from an aeronautical system such as Distance Measuring Equipment (DME) or
Tactical Air Navigation System (TACAN), Continuous Wave Interference (CWI) possibly
caused by the harmonics from a Digital Video Broadcast Terrestrial (DVB-T) and swept
frequency CWI transmitted by PPDs like cigarette lighter jammer designed to evade ve-
hicle tracking.

In the present discourse, it is important to note that, as briefly mentioned in Chapter
2, interference concerning the source can be classified into two main categories: inten-
tional interference and non-intentional interference, considering the transmission intent
of such an undesirable signal. The potential sources of unintentional interference
are numerous and diverse, increasing at an alarming rate. These sources include systems
operating within the same frequency band as GNSS, which include DME/TACAN and
radio amateur systems. Additionally, there are also sources operating outside the GNSS
band, such as TV transmitters [56]. The frequency allocations of different systems are
shown in Figure 3.1. On the other hand, intentional interference may arise from
sources with specific aims of disrupting GNSS bands, such as jamming and spoofing.

Figure 3.1: Frequency resources allocated to different wireless systems with highlighted
regions representing the frequency band for GNSS signals (source: www.gps.gov)

The other possible manner to classify interference is based on the spectral character-
istics of the interfering signal relative to the signal characteristics of the desired signal.
Interference signals can be classified as in-band and out-band interference signals. To
be more specific, in-band interference refers to an interfering signal from a source
with a carrier frequency falling inside the GNSS frequency band (fGNSS − BGNSS

2 < f
i
<

fGNSS + BGNSS
2 ). On the other hand, out-band interference refers to an interfer-

ing signal from a source with carrier frequency located near the GNSS frequency band(
fi < fGNSS − BGNSS

2 or fi > fGNSS + BGNSS
2

)
. Furthermore, while considering the rel-

ative bandwidth (or spectral width) with the GNSS signal, interference can be generally
classified further into narrowband and wideband interference. Narrowband Interfer-
ence (NBI) refers to the interfering source with a significantly smaller spectral width
compared to the GNSS signal (Bi ≪ BGNSS). Conversely, Wideband Interference
(WBI) refers to the source of the interference with spectral width very much comparable
to the GNSS signal (Bi ≈ BGNSS).
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3.2.1 The Realities of Interference: A Matter of Concern
Over the past decade, the threat of radio frequency interference has experienced a per-
sistent and exponential surge, a trend that has been undeniably supported in numerous
reports. For instance, The Guardian, a prominent media outlet, published a comprehen-
sive report on February 13, 2013, featuring expert opinion. The report highlighted the
substantial risks posed by thousands of individuals using GPS jammers on UK roads.
These devices are capable of effectively disrupting systems designed for tracking stolen
vehicles or monitoring the movements of truck and taxi drivers who work prolonged hours,
thereby augmenting challenges for law enforcement agencies (Source: Thousands Using
GPS Jammers on UK Roads Pose Risks, Say Experts, 2013 ).
Similarly, in March 2021, a seminar organized by EUROCONTROL unveiled findings
indicating a distressing 2000% increase in the number of incidents of GNSS RFI within
just three years, as data collected from voluntary incident reporting (Source: EUROCON-
TROL Stakeholder Forum on GNSS, 2023 ).
In February 2023, the European Union Aviation Safety Agency (EASA) issued a safety
information bulletin, highlighting a significant rise in interference incidents caused by jam-
ming and/or spoofing, with particular emphasis on areas near the conflict zones. These
incidents have been observed in the Eastern Mediterranean, Baltic Sea, and Arctic re-
gions (Source: GNSS Outage Leading to Navigation / Surveillance Degradation EASA
Community, 2023).

Personal Privacy Devices (PPDs)

Personal Privacy Devices (PPDs) also known as jammers, serve a specific purpose
to disrupt GNSS coverage. These devices are typically used to evade tracking by fleet
management or to bypass toll collection. The interference signal generated from these
devices not only affects their intended target but also has a collateral impact on all the
users in the vicinity. Figure 3.2 depicts some of the very commonly used jamming devices,
which are designed not only to block the GNSS signal but they can also interfere with
other radio signals such as WiFi, cellular networks and others. Even though the use
of such devices is prohibited in many countries, their possession may not necessarily be
illegal. Moreover, these devices are readily available in the online market at the cost of a
few tens of dollars.

Figure 3.2: Common jamming devices available in the online market

In the year 2010, the airport administration in Newark, located in the state of New
Jersey, experienced sporadic disruptions in their air traffic control system due to the
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installation of Personal Privacy Devices (PPDs) on the trucks. The jamming device
is often used to conceal the truck’s location, thereby evading being tracked by the fleet
management authority. However, in August of 2013 same incident gained public attention
when the Federal Communications Commission imposed a hefty fine of nearly $32,000 on
a Readington man for interfering with flight operations. An investigation revealed that
the truck driver had installed a GPS jamming device in his pickup truck to hide from
his company, unintendedly disrupting Newark Liberty International Airport’s satellite-
based tracking system. Regrettably, such incidents are not the first of their kind and
undoubtedly not the last, given that such devices are frequently employed for many other
reasons, often without users realizing the potential consequences or dangers to those in
the vicinity (N.J. Man Fined $32K for Illegal GPS Device That Disrupted Newark Airport
System, 2013 ).

In August of 2017, another jamming incident was reported in Nantes, France, when a
resident of La Rochelle left a GPS jammer switched on in his car parked at Nantes Atlan-
tique Airport. This led to severe disruption in flight operations, causing delays to multiple
flights. The jammer was eventually located and disabled (Forgotten’ GPS Jammer Costs
Motorist €2,000, 2023 ). The use of privacy devices is on the rise which is expected to
challenge any emerging satellite-based services, such as ”pay as you drive” insurance or
road toll collection, as individuals attempt to reduce their payments or evade road tolls.
The issue of jamming must be promptly addressed to guarantee the durability of these
imminent services.

Repeaters and Pseudolites

The repeaters and pseudolites are essentially employed for augmenting GNSS cover-
age in areas where signals might be obstructed such as inside buildings or mines. GNSS
repeaters are designed to rebroadcast the received signal after the amplification. On the
other hand, pseudolites are ground-based systems that generate ranging signals similar to
those transmitted by satellites. Nevertheless, these systems must operate under strictly
controlled conditions because any malfunction can lead to interference with satellite sig-
nals, thereby potentially disrupting GNSS services in certain areas. In a specific instance,
an interference event in Hanover, Germany, in 2012 disturbed flight operations during the
takeoff, landing, and taxi-in of the airplanes due to malfunctioning of the GNSS repeater
in the airport’s hanger. Subsequently, the repeater’s operation was suspended and it was
discovered that an issue occurred from the repeater transmitting at a power higher than
the recommended level, causing signal leakage beyond the hanger and affecting GNSS
services.

Conceptually, repeater and pseudolite systems with deceptive intent are equivalent to
meaconing and spoofing systems. In March 2020, an incident involving circle-style GPS
spoofing was reported in Tehran, Iran. According to the user statement, “Some of GPS
devices received fake signal and show the fake valid location. Yesterday I test a device, it
can get signal and give real position. After 10 minutes the device show moving around
a big circle in Tehran by 35 km/h speed. I can’t fix this problem by restarting the de-
vice” source: (GPS Circle Spoofing Discovered in Iran - GPS World, 2023). A similar
incident was reported at the port of Shanghai, China, in July 2019, when the captain of
Manukai, an American container ship, observed unusual events on his Automatic Identi-
fication System (AIS) display. He observed a nearby vessel seemingly moving back and
forth at the dock. Upon viewing this with binoculars, it became evident that the vessel
had remained stationary at the dock the entire time. Later, the captain’s vessel also
encountered strange events while approaching the berth, rendering the primary system
and the backup satellite-based systems, incapable of providing the vessel’s position.
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Figure 3.3: Circle-style spoofing observed in Tehran, Iran (Source: Dana Goward)

Television transmission

The Digital Video Broadcast Terrestrial (DVB-T), is a widely adopted standard for
terrestrial TV transmissions worldwide. It efficiently utilizes the radio spectrum by broad-
casting multiple channels simultaneously in a single transmission using the Orthogonal
Frequency Division Multiplex (OFDM) modulation. However, it has been identified as a
potential source of out-band interference, mainly due to electronic component malfunc-
tions that generate signal harmonics or intermodulation products. In April 2006, spurious
emissions from TV transmitters employing the DVB-T standard were detected in Torino,
Italy. This specific instance was considered a likely cause of degradation in the vicinity
of the transmitter.

Distance Measuring Equipment (DME)

The GNSS shares its frequency band with other wireless systems that transmit sig-
nals in the same frequency band, making them the potential source of interference. One
such instance is the aeronautical systems Distance Measuring Equipment (DME) and its
military version Tactical Air Navigation System (TACAN), which both operate in the
frequency range of 960 MHz to 1215 MHz. These systems are critical for air navigation
and guidance as they provide range measurements between the aircraft and the ground
station. However, these systems transmit strong pulsed signals that can potentially in-
terfere with Galileo E5 and GPS L5 signals. An incident from 1995 serves as an example,
where a DME transmitter at the Edinburg airport in Germany caused a Carrier-to-Noise
ratio (CNO) degradation [57].

Radio/TV Amateur

The radio/TV amateur, with a reserved frequency band from 1240 MHz to 1300 MHz
for the transmission, is another source of in-band interference. An instance of this particu-
lar interference was observed in the harbor of Ostend, Belgium. The equipment with RTK
functionality routinely experienced service interruptions for several hours, nearly at the
same time of the day. This interference signal had a significant impact on GLONASS and
the GPS L2 band, disrupting the precision work that relied on dual frequency measure-
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ments. Subsequent analysis revealed that a local amateur television transmitter installed
on a lighthouse was a source of this interference. Whenever the owner used to turn on the
system after returning from work, the equipment used at a construction site was observed
to lose RTK functionality (Source: GNSS interference whitepaper by Septentrio).

Table 3.1: Some typical sources of interference and their signal characteristics

Source Modulation Bandwidth Purpose of intend
Local Oscillator (LO) spur leakage CW Narrow Unintentional

Harmonics from radio broadcast AM/FM Narrow,
Moderate Unintentional

Radar system, Distance Measuring
Equipment (DME) and Tactical
Air Navigation (TACAN)

Pulse Wide Unintentional

TV broadcasting, microwave links,
and Spread Spectrum Communication AM/FM Wide Unintentional

Personal Privacy Devices (PPDs) CW/Chirp
/Pulse

Narrow
Moderate

Wide
Intentional

GNSS repeater, Pseudolites,
Spoofer, Intera-System Interferences

Matched
Spectrum Wide Unintentional

Intentional

Inter-System Interferences Other GNSS
Spectrum Wide Unintentional

Several potential sources of interference and specific incidents have been presented, al-
though not exhaustively; more examples of interference incidents can be found in [58][59].
It is noteworthy that the impact of interference signals emanating from different sources
can vary depending on the specific GNSS receiver in use. The degradation in receiver per-
formance depends on the type of interference, the signal power level, and the receiver’s
inherent capability to withstand such a signal. Table 3.1, summarizes these examples by
listing potential sources of interference signals and their key signal characteristics.

3.2.2 Interference Signal Classification: What You Need to Know
Interference signals can be classified based on their signal characteristics, including band-
width, carrier frequency and modulation. For personal privacy devices, a study in [60][61]
proposed four categories of jammers, from class I to class IV, depending on the signal
characteristics and complexity. Additionally, a fifth category is introduced in [59] to en-
compass all signals not belonging to classes I to IV. To maintain coherence, we have
adopted a similar classification for interference signals, which is as follows:

Class I - Continuous Wave Interference (CWI): This group represents the most
basic form of a jamming signal, which includes sinusoidal waveform(s) with a bandwidth
of up to 100 kHz. Continuous Wave Interference (CWI) includes both single-tone and
multi-tone with Amplitude Modulation (AM) and Frequency Modulation (FM) signals.
The general mathematical model of AM interference is given as:

i(t) =
N∑

k=1

√
PIk

exp (j2πfIk
t + ϑIk

) (3.1)

Here, N denotes the number of tones (e.g., N = 1 indicates a monotone signal), PI is the
power of the interference signal, while fI and ϑI represent the frequency and phase of the
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respective tone. Figures 3.4 (a) and (b) display the Power Spectral Density (PSD) and
spectrogram of the AM signal centered at 10 kHz. The generic form of an FM signal can
be expressed as:

i(t) =
N∑

k=1

√
PIk

exp (j (2πfIk
t + βk sin (2πfIk

t))) (3.2)

where N signifies the number of tones of interference signal with power PI , frequency
fI , and modulation index βk of the tone. Figures 3.4 (c) and (d) illustrate the PSD and
spectrogram of the FM signal with modulation index (β = 1), centered around 100 kHz.

Class II - Single Sawtooth Chirp Interference: This group involves a linear chirp
signal, where the frequency is modulated linearly over time. The mathematical model of
linear chirp interference is given as:

i(t) =
√
PI e

(j (finst(t) + θI) (3.3)
where PI represents the power, θJ is the initial phase, t denotes the time instance, and
finst(t) is the instantaneous frequency of the jamming signal over the time. The instanta-
neous frequency is written as:

finst(t) = 2πfIt+ πb
(fmax − fmin)

Tsweep
t2 (3.4)

In Eq 3.4, fI denotes the starting frequency, b represents the sweeping direction, which
can be either upward (b = +1) or downward (b = −1), Tsweep is the sweep period, and
fmin − fmax is the sweep bandwidth, where fmin and fmax represent the minimum and
maximum frequencies, respectively. Figures 3.4 (i) and (j) illustrate the Power Spectral
Density (PSD) and spectrogram of a single chirp signal characterized by a 7.5 MHz band-
width and a 10 µsec sweep period in the downward direction.

Class III - Multi-Sawtooth Chirp Interference: It is simply the combination of
multiple single chirp signals. Following Eq. 3.3, multi-sawtooth chirp can be expressed
as the weighted sum of various chirp signals:

i(t) =
N∑

k=1

√
PIk

e
(j (2πfIk

t+ πbk
(fmaxk

− fmink)
Tsweepk

t2 + θIk
) (3.5)

here, PI represents the signal power, θI denotes the initial phase, fI is the starting fre-
quency, b is the sweeping direction, which can be either in the upward direction (b = +1)
or downward direction (b = −1), Tsweep is the sweep period and fmin − fmax is the sweep
bandwidth with fmin and fmax is the minimum and the maximum frequency of the N-th
chirp signal. Figures 3.4 (k) and (l) show the PSD and spectrogram of a dual chirp signal.
The first chirp signal is characterized by a 7 MHz bandwidth and a 30 µsec sweep period
in the upward direction, and the second chirp signal has a 3 MHz bandwidth and a 20
µsec sweep period in the downward direction.

Class IV - Chirp signals with frequency burst: This particular group resembles
the previously discussed classes II and III in its basic composition. It is characterized by
the presence of chirp signals with frequency bursts, where bursts are used to broaden the
range of frequencies affected by the jammer.

Class V - Other kinds of interference signals: This group includes signals that
are not classified from classes I to IV. A prominent example of such signals is the pulsed
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Figure 3.4: Power spectrum and spectrogram of GPS signal with common examples of
jamming signal at the baseband

signal, which is typically associated with radar systems. These signals are active only
during the repetitive period for a short time interval called a duty cycle. The mathematical
representation of a pulsed signal is given as:

i(t) =
√
PI pτ (t) ⊗

N∑
k=1

δ

(
t− 1

frk

)√
PIk

e(j (2πfIk
t)) (3.6)

where PI is the power, pτ (t) is the rectangular pulse with τ representing the pulse
width and fr is the pulse repetition frequency, ⊗ is the convolution operator, δ(t) is the
Dirac function and N is the number of pulses. Figures 3.4 (g) and (h) illustrate the
PSD and spectrogram of a DME-like signal with two distinct pulses of 20 µsec duration
appearing in the time-frequency plot at 100 µsec and 300 µsec.

3.3 Interference Detection and Mitigation Techniques:
A Comprehensive view of the State-of-the-art coun-
termeasures

The Global Navigation Satellite System (GNSS) uses a spread spectrum technique that
makes it more resilient to narrowband interference. This technique employs Pseudoran-
dom Noise (PRN) codes to modulate signals, which spreads the signal power across a wide
frequency band. The spread spectrum nature effectively reduces signal susceptibility to
narrowband interference, although stronger interference (whether intentional or uninten-
tional) can still present challenges for GNSS signals. Interference can introduce noise
and distortions into the useful signal, and in severe cases, it can make it difficult for the
receiver to acquire and track satellite signals. The impact of an interference signal could
vary depending on various factors, such as the type of interfering signal, the strength of
the interference, the proximity of the source, and the operating environment around the
receiver. For instance, moderate interference can cause minor disruptions or temporary
signal degradation that can be managed during signal processing, whereas strong inter-
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ference can lead to more severe consequences such as loss of quality, reduced accuracy in
positioning, or even a complete loss of signal lock. Under such circumstances, addressing
the impact of the interfering signal becomes important to ensure the uninterrupted usage
of GNSS services. Various countermeasures can be possible depending on the specific
requirements. For instance, in certain cases, a simple warning alert can be sufficient, pro-
viding timely caution to permit proactive actions such as a pilot relying more on visual
sight during the landing phase to avert any potential emergency. However, in some cases,
further action may be necessary to effectively manage and mitigate interference chal-
lenges. Recently, a comprehensive survey has been published on the GNSS interference
management solutions [59], which presented a 4-level framework. This framework includes
techniques (or strategies) for the detection, classification, mitigation, and localization of
the interfering source, offering valuable insights for addressing GNSS interference issues.

This section offers a comprehensive overview of the present state-of-the-art method-
ologies used for the detection and mitigation of interference signals. The techniques are
implemented at various signal processing stages of the receiver chain, including strategies
employed at the front-end level, pre-correlation level, post-correlation level, and naviga-
tion level, as shown in Figure 3.5. In the following section, we will explore some common
techniques for both detection and mitigation of interference.

Figure 3.5: GNSS receiver processing chain with several possibilities of implementing
interference countermeasures

3.3.1 Detection methods
In the current context, the term ‘detection’ refers to the process of determining the pres-
ence or absence of a specific signal. It is used in a similar sense as the detection theory
to establish a null and alternative hypothesis. However, when it comes to interference de-
tection, the distinction between detection and mitigation can sometimes not be possible,
especially when a given approach can be employed for multiple purposes. For instance,
antenna array processing can be utilized for the detection, mitigation and localization of
the interference source. Nonetheless, this section is dedicated solely to detection tech-
niques, with the primary goal of identifying the presence of an interference signal without
any further course of action.

A multitude of approaches for interference detection have been extensively explored in
the literature. Within this discussion, we have chosen representative techniques that rely
on a diverse array of observables from various stages within the receiver processing chain.
These techniques include monitoring the Automatic Gain Control (AGC) response, the
statistical analysis of signal samples at the output of the Analog to Digital Converter
(ADC), which includes monitoring of Probability Density Function (PDF) and the ap-
plication of a kurtosis detector. Furthermore, these techniques involve power monitoring
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in either the time or frequency domain, enabling the identification of anomalies through
power spectrum analysis using techniques like Frequency-Domain Power Detector (FPD)
and the Welch method. We also explore techniques such as monitoring the correlation
output and the Carrier-to-Noise ratio (CNO) observables. To enhance the interference
detection capabilities, advanced machine learning approaches such as Support Vector Ma-
chine (SVM) and Convolution Neural Network (CNN) are also discussed.

3.3.1.1 Automatic Gain Control (AGC) monitoring:

Automatic Gain Control (AGC) plays an important role in the front-end components of
most GNSS receivers, which serves to control and maintain a consistent signal power level.
It is accomplished by adjusting the gain or amplification factor to ensure that the signal
level remains within the input dynamic range of the Analog to Digital Converter (ADC)
thus minimizing the quantization loss. Due to the relatively weak GNSS signals, AGC is
typically configured to operate at the thermal noise level. Under normal operating con-
ditions, the gain variation remains relatively steady since average power fluctuations are
minimal and can be calibrated accordingly. However, in the presence of interference, AGC
takes on the essential role of preserving the signal level within the dynamic range, thus
preventing ADC saturation. It achieves this by reducing the gain in response to an unex-
pected increase in the power level. The response of AGC to such unexpected variations
in received signal power is employed in various case studies for interference monitoring.
For instance, in [62], AGC is used as a tool to assess the impact of pulsed interference,
often associated with Distance Measuring Equipment (DME) systems on GNSS L1/E5
signals. The same approach has been adopted in [63][64] to detect interference within the
GPS L1 band, due to harmonics originating from the TV transmitter station.

3.3.1.2 Time-Domain Power Detector (TPD)

The Time-Domain Power Detector (TPD), also referred to as the Power Law Detector
(PLD) is an energy-based detection technique employed to detect the presence of inter-
ference. This straightforward approach involves monitoring the energy or power of the
received signal and comparing it to the maximum expected power under nominal condi-
tions without any interference. The TPD test statistics can be expressed as:

PTPD = 1
N

N−1∑
n=0

|x[n]|2υ (3.7)

Here, the window size denoted by the number of samples N is used to estimate the
power of the received signal x[n]. The parameter ν, following a power law, is a positive
integer, and when ν = 1, it signifies an energy-law detector. The detection process involves
comparing the test statistic to a predefined threshold, with interference being detected
when the test statistic exceeds the threshold value.

3.3.1.3 Frequency-Domain Power Detector (FPD)

The Frequency-Domain Power Detector (FPD) method is based on spectral analysis rep-
resenting the power distribution within each frequency component of the received signal.
This method is commonly referred to as Power Spectral Density (PSD) or power spec-
trum, which denotes the relative strength of various frequencies present in the signal.
Spectral estimation is typically achieved through the Discrete Time Fourier Transform
(DTFT), while the periodogram is defined as the square magnitude of the transformed
signal. The FPD test statistic can be expressed as:
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PFPD =
∣∣∣∣∣
N−1∑
n=0

x[n]e−i 2π
N

kn
∣∣∣∣∣
2

(3.8)

Similar to the TPD, the detection process involves comparing the power spectral
density of the signal with the threshold (or spectral mask) that represents the interference-
free conditions.

3.3.1.4 Welch detector

Similar to the FPD, the Welch method estimates the PSD of the signal by utilizing a finite
set of data points (or segments). This method involves the use of an overlapping window
function to divide the signal into smaller data segments of equal length. For each window,
the periodogram is estimated and then averaged together, resulting in a smoother version
of the frequency spectrum. The Welch estimate of PSD is expressed as [65]:

PWelch = 1
K

K−1∑
m=0

∣∣∣∣∣
N−1∑
n=0

x[n]e−i 2π
P

nk
∣∣∣∣∣
2

(3.9)

Here, the variable K represents the total number of segments, and N denotes the
number of samples in each observation window. During the detection process, the power
spectral density of the received signal is compared to a spectral mask that represents
interference-free conditions. Interference is identified when the power spectral density
exceeds this predefined threshold.

3.3.1.5 Probability Distribution Function (PDF)-based detector:

The Probability Density Function (PDF) based detection involves a comparison between
the distribution of the observed signal and the distribution obtained under interference-
free conditions. When there is no interference, the GNSS signal can be modeled as a zero
mean white Gaussian process. However, in the presence of an interference signal, this
distribution deviates from the Gaussian model, which serves as a detection mechanism.
The complete process involves the construction of a reference histogram, which mainly
represents the discrete version of the PDF. The histogram creation requires a considerable
number of samples in the absence of an interference signal, thereby verifying the H0
condition. Similarly, a histogram is constructed from the observed signal, potentially
containing an interference signal. The method evaluates the test statistic, which can be
expressed as a chi-square Goodness of Fit (GoF) test given as:

T =
N∑

i=1

(Oi − Ei)2

Ei

(3.10)

A test statistic is used to distinguish between the null hypothesis H0 and the alterna-
tive hypothesisH1. The observed histogram is denoted by O while the reference histogram
is represented by E. Here, i represents the bin count indicating the number of samples in
each bin. The PDF-based detection is investigated in [66] for the detection of continuous
wave (CW) and chirp interferences. The results of this investigation demonstrated the
effectiveness of a PDF-based detector in detecting even a low-power chirp signal, which
had previously appeared indistinguishable in both the time and spectral analyses.

3.3.1.6 Kurtosis detector

Kurtosis is a statistical parameter that describes the shape and distribution of the samples
in the dataset. It is computed by dividing the fourth statistical moment by the square of
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the second central moment. The kurtosis of the received signal can be expressed as:

K =
1
N

∑N
n=0 (x[n] − µ)2

( 1
N

∑N
n=0 (x[n] − µ)2)2 (3.11)

where N represents the number of samples, and µ is the mean value of the received
signal, denoted as x[n]. The kurtosis value serves as a metric for assessing the non-
normality of the received signal, indicating any deviation from the Gaussian distribution.
In normal conditions, the kurtosis value is typically 3 [67] and this value is expected to
deviate in the presence of interference signals, which serve as a basis for detection.

3.3.1.7 Carrier-to-Noise Ratio (CN0) Monitoring

The Carrier-to-Noise ratio (CNO) is an important parameter to quantify the tracking
quality of the satellite signals. It is the measure of the power of the carrier signal relative
to the variance of the Gaussian noise in the received signal. In the presence of inter-
ference, the CNO is significantly impacted due to an increase in the noise level within
the useful signal. This behavior is exploited in many studies [68][69][70][71] where the
CNO metric has been adopted for interference detection. One such study [68] applied
a binary hypothesis testing approach, using a predefined threshold with a false alarm
probability to detect interference. Furthermore, an effective CNO estimation is proposed
in [69] for the detection, which factors out the influence of satellite elevation and receiver
noise. Although CNO estimation may be influenced by other factors such as multipath
and attenuation induced by foliage, it is less probable that all the satellite signals are
simultaneously impacted. This condition has been exploited in [70] where CNO measure-
ments from all the satellites are used in the detection. As an alternative approach, in
[71] the AGC behavior is complemented with CNO observations in the decision rule to
enhance the detection reliability.

3.3.1.8 Multi-Correlator with Auto-Regressive (MCAR) Modeling

The Multi-Correlator with Auto-Regressive Modeling (MCAR) technique is based on
monitoring the correlation outputs from a multi-correlator receiver. In a multi-correlator
receiver architecture, each channel is tracked using the correlation of the received signal
with numerous delayed versions of the local code, providing a higher resolution for the
detection. In [72][73], an Auto-Regressive (AR) approach has been applied to the output
of a multi-correlator receiver for real-time detection and characterization of CW and FM
jammers.

3.3.1.9 Machine Learning Algorithms (MLA)

Machine Learning (ML) algorithms are frequently employed to solve regression and clas-
sification problems, where classical binary classification can be utilized to detect the pres-
ence or absence of interference signals. The machine-assisted algorithms are primarily
designed to create predictive models from the selected input features. There are several
ML-based approaches recently adopted for the detection of interference [74][75][76]. For
instance, in [74] it is regarded as an image recognition problem where the signal features
are extracted from the black and white images representing the spectrogram of the re-
ceived signal. The author analyzed Support Vector Machine (SVM) and Convolution
Neural Network (CNN) approaches for the classification of various interference signals.
In another approach [75], a Twin Support Vector Machine (TWSVM) method is applied
to several signal features extracted from the pre-correlation and post-correlation stages,
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including correlator output, CNO, and power spectrum, among others, to facilitate clas-
sification. The technique involves the creation of a TWSVM model and its solution is
derived using the Least SquareTwin Support Vector Machine (LSTWSVM) algorithm,
underscoring its suitability for interference monitoring applications. Furthermore, a very
classical ML approach based on the K-Nearest Neighbor (KNN) is applied in [76] for
classification.

3.3.2 Mitigation methods
The notion of ‘mitigation’ generally has a broader meaning as it refers to the techniques
and methodologies that aim to minimize or eliminate the impact of unwanted signals.
In the context of GNSS, the mitigation of interfering signals can be considered as the
receiver’s capability to retrieve to its correct state while being subject to interference,
thereby reducing the influence of such unwanted signals.

One of the simplest countermeasures is switching to an alternative frequency that re-
mains unaffected by interference. This approach is quite practical, given the availability
of multiple satellite constellations transmitting signals on multiple frequencies. The con-
cept of the frequency switching approach is explored in [77] where the endurance of a
Multi-Frequency and Multi-Constellation (MFMC) receiver is analyzed. The author has
developed a software receiver that leverages frequency diversity to combat single-frequency
interference, resulting in improved positioning accuracy compared to single-constellation
receivers. The MFMC receiver is designed to automatically select the optimal satellite
signals across different frequencies from various constellations, effectively reducing the
impact of interference.

Another method to counter interference involves integrating complementary informa-
tion from other positioning sensors such as an Inertial Navigation System (INS). The in-
tegration of GNSS/INS can be realized through three different approaches such as loosely
coupled, tightly coupled and deeply (or ultra-tightly) coupled architecture. These ap-
proaches differ in the manner in which they use information from the different sensors.
For instance, in [78], a novel Adaptive Tightly Coupled (ATC) integration approach is
investigated that combines the GNSS/INS integration and GNSS tracking functions into
a signal estimation algorithm. By adjusting the bandwidth, the response of code and
carrier tracking loops is modified, making them more suitable for moderate jamming
environments as they become more resistant to noise.

Additionally, vector tracking is a promising approach that can offer limited protec-
tion against interference signals. Conventional GNSS receivers rely on individual tracking
loops for each satellite in view, which operate independently. In vector tracking, signal
channels are interconnected through the shared receiver state. This enables the coor-
dinated tracking of individual channels through the receiver states. This technique is
particularly advantageous when more than four satellites are visible, as shared informa-
tion from multiple satellites can bolster the signal strength of the weaker ones [79].

In this discussion, the term ‘mitigation’ is explicitly considered from a signal process-
ing perspective. The mitigation strategy is seen as a method that may include processes
like identification and isolation, subsequently leading to the suppression of interference
signals while retaining valuable content. These mitigation techniques often serve dual
roles as detection and mitigation approaches, complementing the detection strategies pre-
viously presented in Section 3.3.1 The jamming mitigation countermeasures are primarily
addressed in the precorrelation stage before the signal dispreading process. Since the post-
correlation methods require normal signal acquisition and tracking as a precondition, they
are therefore suitable for less severe interference and can provide limited protection.
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The precorrelation countermeasure techniques are classified depending on the pro-
cessing domain where the mitigation is applied. These techniques include time-domain
Pulse Blanking (PB), adaptive frequency domain filtering with Adaptive Notch Filter
(ANF), signal transformation techniques in the time-frequency domain involving Short
Time Fourier Transform (STFT) and Wigner-Ville Distribution (WVD), time-scale do-
main filtering employing the Wavelet Transform (WT), projecting a signal in the sub-
space domain with Karhunen Loéve Transform (KLT), multi-antenna spatial processing
for beamforming using Space-Time Adaptive Processing (STAP) and Space-Frequency
Adaptive Processing (SFAP).

3.3.2.1 Time Domain Technique

Time domain techniques offer a straightforward and practical approach, making them
exceptionally well-suited for real-time applications. They are particularly used for the
detection of interfering signals. Moreover, these methods can be effectively employed to
suppress interference that has a very sparse representation in the time domain such as
pulsed interference.

3.3.2.1.1 Pulse Blanking (PB)

Pulse Blanking (PB) is a simple and yet highly effective method, particularly when
dealing with unintentional pulsed interferences, such as the one transmitted by the DME
or TACAN system [80][81]. This technique involves replacing the signal sample amplitude
with a null value (or zero), essentially ‘blanking’ out any unwanted interference. In some
receivers, this blanking process is typically employed while monitoring the Automatic
Gain Control (AGC) response. Figure 3.6 shows the block diagram of the pulse blanker
integrated within the front end of the GNSS receiver. The AGC function ensures that the
signal level remains within the dynamic range ADC to minimize the quantization loss.
However, in the presence of interference, it automatically reduces the gain to prevent ADC
saturation. This particular behavior is used in interference monitoring and subsequently,
to activate the blanking module.

Figure 3.6: Digital Pulse blanking scheme in GNSS receiver architecture

Pulse banking proves to be a highly effective technique for the suppression of pulsed
signals. However, it can become ineffective when the signal is weak. Furthermore, ac-
cording to [81], the performance of pulse blanking may be compromised by the limited
dynamics of AGC. This is because the amplification factor relies on the average input
signal power over a certain time duration that is generally longer than the pulse itself.
This situation could lead to the unnecessary removal of signals that are unaffected by
interference.
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3.3.2.2 Frequency domain technique

The countermeasure approaches in the frequency domain are very common when deal-
ing with Narrowband Interference (NBI) or Continuous Wave Interference (CWI). These
types of signals occupy a narrow portion of the frequency spectrum, making it possible to
suppress them in the frequency domain processing by filtering out a small portion of the
spectrum. This can be accomplished without affecting the useful GNSS signal. One ap-
proach for suppressing interference signals is through spectral estimation, which involves
applying the Discrete Fourier Transform (DFT). The detection process involves a compar-
ison between the spectrum of the received signal and a threshold value representing the
frequency spectrum in interference-free conditions. Subsequently, the mitigation process
involves either applying a spectral null or notch filtering. After the mitigation process, the
time representation can be obtained by applying the Inverse Discrete Fourier Transform
(IDFT). However, this method is most effective when signal characteristics remain sta-
tionary over time. If the spectral characteristics of the interfering signal change over time,
such as in the case of a chirp signal, adaptive filtering methods are necessary to remove
the interference signal. One strategy involves introducing a spectral null while observing
the signal over a short time interval. Alternatively, a parametric frequency adaptive tech-
nique can be applied to address the dynamic changes in the interfering signal’s spectral
characteristics.

3.3.2.2.1 Adaptive Notch Filter (ANF)

The Adaptive Notch Filter (ANF) has gained significant attention in the research
community and is regarded as a highly effective technique, particularly against the chirp
signal [82][83][84][85][86][87]. It is an extension of the classical notch filter with an ad-
ditional integrated adaptation unit to continuously track and attenuate the frequency of
the unwanted signal, which may change over time. The transfer function of a single-pole
Infinite Impulse Response (IIR) notch filter can be written as:

H(z) = 1 − z0[n]z−1

1 − kαz0[n]z−1 (3.12)

Here, kα ∈ [0, 1) represents the pole contraction factor that controls the notch bandwidth
and z0[n] is the filter zero that determines the position of the notch in the complex plane.
Figure 3.7 depicts the general block diagram of ANF comprising of a notch filter and an
adaptation block. Two adaptive techniques are proposed in [82] and [85] namely regular
ANF and FLL-based, for tracking swept-frequency signals. The FLL equivalent technique
employs a Frequency Lock Loop (FLL) approach, while regular ANF architecture utilizes
a stochastic gradient-based technique to estimate the frequency of the interfering signal.
It continuously estimates z0 for each sample using a least square-based iterative rule that
aims to minimize energy at the output of the filter.

In literature, multiple ANF realizations have been presented. In [88], a comparative
study was conducted for two structures: the second-order direct form and the lattice-
based notch filters. The comparison focuses on parameters such as tracking performance,
convergence speed, and output signal-to-noise ratio (SNR). The results indicated that the
lattice structure with the proposed gradient algorithm outperformed the direct form in
effectively suppressing the frequency hopping interference. Another study, [89], introduced
an Adaptive all-pass Notch Filter (ANFA) for the suppression of CWIs. The ANFA
based on an all-pass filter with Gaussian-Newton as an adaptation algorithm improved
the convergence rate. In addition, a cascade ANF architecture was analyzed in [90], where
multiple cascaded filters enhanced the suppression effectiveness, particularly when dealing
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Figure 3.7: simplified block diagram of the adaptive notch filter

with two simultaneous chirp interferences. The results showed that the cascaded approach
is effective when there is a sufficient power difference between the frequency-modulated
continuous wave (FMCW) interferences. Otherwise, the filter could lock onto the wrong
frequency, leading to significant performance degradation. Furthermore, two-pole and
multipole notch filters are presented in [82] to suppress the CWIs signal. A slightly
modified algorithm is proposed in [91] that first detects the presence of the interfering
signal and then adjusts the amplitude parameter to maximize the SNR at the output.
According to the author, this approach is capable of perfectly suppressing the frequency
hopping signal, even in the presence of considerably strong interference.

3.3.2.3 Time-Frequency domain techniques

The transformation of a signal in the Time-Frequency (TF) domain provides another
way to analyze signal characteristics in both the time-frequency domain. In TF rep-
resentation, the resolution is constrained by the Heisenberg uncertainty principle, also
known as the Gabor limit, which establishes a tradeoff between time and frequency res-
olution. In this method, the mitigation process requires a preliminary assessment of the
TF mask (or threshold plane) under interference-free conditions for the identification of
interference components, represented by coefficients exceeding the threshold value. To
filter interference, one can either blank out these coefficient values or secondarily, sepa-
rate the interference components to create a synthetic interference signal that can then
be subtracted from the received signal. For the discussion, we have included the Short
Time Fourier Transform (STFT) and the Wigner-Ville Distribution (WVD), as they are
the most common methods used for characterizing the time-frequency signal.

3.3.2.3.1 Short-Time Fourier Transform (STFT)

The Short Time Fourier Transform (STFT) method is employed to analyze the time-
varying frequency content of a signal using a short window function. This method involves
dividing the entire signal into smaller intervals (windows) of equal intervals. Each inter-
val is then multiplied by the window function (e.g. Hamming or Hanning windows) to
minimize the spectral leakage. Subsequently, the frequency content is estimated for each
segment using Discrete Fourier Transform (DFT). The STFT is mathematically repre-
sented as:

STFT {x[n]} ≡ X(m, f) =
N+L−1∑

m=n

x[n]w[n−m]e−j2πfn (3.13)

Here, x[n] represents the received signal, w[n] is the window function of length L
where the signal is assumed to be stationary, and f is the frequency domain variable.
The spectrogram of the signal is the representation of the normalized squared magnitude
of STFT coefficients, defined as [92]:
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spectrogram {x[n]} ≡ |X(m, f)|2 (3.14)

The balance between time and frequency resolution in the Time-Frequency (TF) anal-
ysis is inherently linked to the window size. A longer window provides more accurate
frequency estimation but limited time resolution, while a shorter window provides higher
time resolution but at the cost of reduced frequency resolution. Nonetheless, researchers
have proposed various techniques, including those outlined in [93], to optimize the choice
of the analysis window to achieve maximum TF resolution.

3.3.2.3.1.1 Wigner-Ville Distribution (WVD)

The Wigner-Ville Distribution (WVD) is classified as a quadratic time-frequency dis-
tribution, which offers an attractive alternative for representing signals in the Time-
Frequency (TF) domain. This method provides a better spectral resolution without the
tradeoff between time and frequency resolution, as in the STFT. The discrete-time WVD
is mathematically represented as [94]:

Wx,x(m, f) =
∑

n

x[m+ n]x∗[m− n]e−j4πfn (3.15)

For a finite segment of the signal, e.q. 3.15 can be expressed as:

Wx,x(m, f) =
∑

n

w[m+ n] x[m− n] x∗[m− n] w∗[m+ n]e−j4πfn (3.16)

Here, w[m] presents the window function applied to select the finite signal x[m] and
(∗) represents the conjugate operation. WVD offers improved spectral resolution com-
pared to STFT, however, it suffers from unwanted cross-terms resulting from various
signal components [95][1]. In [1], a TF analysis based on the spectrogram and the WVD
distribution method were adopted, and a peak-interpolation method was applied for the
estimation of interference instantaneous frequency.

3.3.2.4 Time-Scale Domain Technique: Wavelet Transform

Wavelet Transform (WT) is a widely used signal processing technique primarily utilized
for denoising applications [96][97]. Its extensive research study and application have
made it a versatile tool across diverse domains, including medical imaging, audio signal
processing and video coding. Wavelet analysis is highly regarded for its effectiveness in
analyzing non-stationary signals, as it overcomes the limitations of other techniques. This
is achieved by utilizing analytical functions that localize the signal components in both
time and frequency [97][98][99], allowing a more accurate representation of the signal’s
characteristics. The wavelet transform overcomes the limitation of the fixed window as
it analyzes the signal by using a scaled and translated version of a wavelet function, also
known as the mother wavelet. There are several different families of wavelet functions
each characterized by a finite duration and distinct shapes. Among the most commonly
employed wavelet functions are the Symlet, Haar, Coiflet, Daubechies, and Mexican hat.
The Discrete Wavelet Transform (DWT) is mathematically represented as:

W (j,m) = a−j/2∑
j

∑
m

x[n] ψ
[
a−jn−m

]
(3.17)

where a > 1, x[n] represents the received signal, ψ[n] is the mother wavelet function,
j is the scaling (or dilation) factor and m is the wavelet translation (or shift) index.
Scaling is accomplished by utilizing compressed and stretched wavelet functions, allowing
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signal analysis at different scales or equivalently with different levels of frequency res-
olution. Figure 3.8 illustrates the wavelet scaling effects on time-frequency resolution.
A compressed wavelet function possesses a short observation window, allowing to cap-
ture of higher frequencies components with a better time resolution. On the other hand,
the stretched wavelet function has a larger observation window and can capture lower
frequency components, although this comes at the expense of time resolution.

Figure 3.8: Wavelet scaling vs time-frequency resolution

The discrete wavelet transform can be implemented by employing a bank of bandpass
filters, each characterized by a distinct frequency response. The process involves break-
ing down the discrete signal through the use of low-pass and high-pass filters, followed
by subsampling. This filtering and resampling process corresponds to the scaling and
translation operations in the wavelet transform. The signal decomposition is performed
in multiple steps, each time the filter output is further decomposed to form tree-like struc-
tures, also called Wavelet Packet Decomposition (WPD). A more detailed implementation
of WPD-based detection and mitigation will be discussed in Chapter 4.

The wavelet transform offers a way to analyze signals at multiple resolutions, effectively
overcoming the limitation of a fixed window posed by Short Time Fourier Transform
(STFT). However, the performance of mitigation and implementation complexity depends
on the choice of the wavelet used during the analysis.

• The computational complexity increases with more decomposition stages, but this
can be reduced by analyzing the signal with only orthogonal basis functions.

• The mitigation performance can be enhanced by selecting an appropriate wavelet
function that maximizes the correlation with the signal under analysis.

Wavelet-based mitigation has been explored in various studies to mitigate Continu-
ous Wave (CW) and pulse interference signals [100][101][102]. In [102] a comparative
study was conducted on six different wavelet functions, namely Haar, Daubechies, Sym-
lets, Coiflets, Biorthogonal Spline and Meyer. The result indicated that in the presented
chirp scenario, the Coiflets and Meyer wavelet functions demonstrated relatively better
performance compared to the other candidates. Additionally, in [100] the mitigation per-
formance of WPD was investigated in the presence of multiple pulsed and narrowband
interference scenarios. The finding suggested that the proposed approach outperformed
the classical pulse blanking technique for pulsed interference. The paper [101] conducted
a comparison between two interference mitigation techniques, ANF and WPD in the pres-
ence of intentional and unintentional interference. The results demonstrated that WPD
offers significant performance enhancement over notch filtering in terms of acquisition,
tracking and positioning metrics.
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3.3.2.5 Subspace domain filtering technique: Kerhunen-Loève Transform

The Karhunen Loéve Transform (KLT) is a subspace domain technique used for signal
decomposition. It is achieved by projecting a signal into a vector subspace using a set
of orthogonal base functions, also referred to as eigenfunctions or eigenvectors. KLT is
known for its flexibility since its base functions can be of any form, resulting in a more
effective decomposition. The KLT analysis integrates both deterministic and stochastic
analyses, which enable it to provide insights on both the signal and noise. The KLT
decomposition of a signal x(t) over a finite time interval is expressed as [103]:

x(t) =
∞∑

n=1
ZnΦn(t) (3.18)

Here, Zn represents statistically independent scalar random variables and Φn(t) are the
deterministic functions also called eigenvectors or eigenfunctions. The random variable
Zn is obtained by projecting the given stochastic process x(t) over the corresponding
eigenvector Φn(t) given as:

Zn =
+∞∑
−∞

x(t)Φn(t)dt (3.19)

The KLT technique offers several advantages in comparison to other transformation
techniques.

• The detection performance of KLT is independent of the nature of the interfering
signal, making it equally effective for both narrowband and wideband interference.

• It offers superior signal decomposition since the eigenfunctions adapt to the charac-
teristics of the processed signal.

• KLT can analyze both the deterministic and stochastic components of the signal,
resulting in better separation between the signal and the noise content in the received
signal.

• KLT is capable of detecting very weak signals hidden under the noise [103].

Despite its numerous advantages, KLT has a significant drawback, primarily related
to its complexity and high computational requirements. Interference mitigation using the
KLT algorithm is investigated in [104][103][105]. The algorithm projects the signal onto
a subspace to distinguish interference components from useful GNSS signals. To achieve
this, the magnitude of eigenvectors is proposed in [104], serving as a metric to discriminate
between interference and useful GNSS components. Interference was identified by exam-
ining the magnitude of eigen coefficients, which appeared to be significantly large and
distinct from the coefficients observed in the absence of interference. A potentially more
computationally efficient solution is proposed in [103] with the Bordered Autocorrelation
Method (BAM) KLT to significantly reduce the computational complexity.

3.3.2.6 Spatial filtering with multiple antennas

The adaptive antenna or spatial filtering concept, was originally introduced in radar and
communication systems. This method involves the use of an array of antenna elements
arranged in a specific geometric configuration to acquire signals, thus enhancing spatial
diversity in signal processing. Signals acquired from different antennas represent the time-
delayed version of the received signal, which depends on the array configuration (i.e., the
relative geometry between the antenna array). The output signal is a weighted sum of
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the signals from various antenna elements, with these weights determined through cost
function optimization. Adaptive array processing typically employs two approaches: null
steering and beamforming.

Null steering relies on the principle that GNSS signals are typically submerged
beneath the thermal noise floor and any signal exceeding the noise level is considered
interference. It involves the continuous adjustment of weights to minimize the output
energy, thus steering the antenna response away from high-power sources and creating a
null in the direction of the interfering source.

Beamforming on the other hand, is a technique that employs signal steering to
numerically control the radiation pattern of the antenna array to direct it towards the
desired source. It is achieved by adjusting the weights in a way that maximizes signal gain
in the direction of the satellite while attenuating signals originating from other directions.

In the literature, there are mainly two beamforming approaches adopted for the sup-
pression of interference signals: Space-Time Adaptive Processing (STAP) and Space-
Frequency Adaptive Processing (SFAP) [106][107][108][109][110][111].

3.3.2.6.1 Space-Frequency Adaptive Processing (SFAP)

In the SFAP system, the signal received by multiple antennas is transformed from
time to frequency domain using Discrete Time Fourier Transform (DTFT). SFAP method
effectively utilizes both spatial and frequency dimensions for adaptive signal processing.
Figure 3.9 illustrates the block diagram for the space-frequency array processing. In SFAP
the interference suppression is primarily carried out in the frequency domain, and then
the signal is transformed back to the time domain using inverse transformation. A more
comprehensive discussion on SFAP can be found in [108][107].

Figure 3.9: Space-frequency array processing block diagram

3.3.2.6.2 Space-Time Adaptive Processing (STAP)

The Space-Time Adaptive Processing (STAP) approach works by combining spatial
and temporal information, taking advantage of the spatial diversity and temporal char-
acteristics of the signals. The STAP architecture incorporates Finite Impulse Response
(FIR) filters for temporal processing. It involves the processing of spatially acquired digi-
tal samples from the ADC in the time domain to effectively suppress interference. Figure
3.10 illustrates the block diagram of a space-time array processor with M elements and
N-tap FIR filter.
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Figure 3.10: Space-time array processing block diagram

The STAP output can be mathematically expressed as [106]:

y[n] =
M∑

m=1

K∑
k=1

wmkxm[n− k + 1] = WT X (3.20)

Here, wmk represents the weight at the k-th tap of the FIR filter after the m-th antenna
element, xm is the n-th sample of the m-th array element output , W and X are the STAP
weight and input vectors, given as:

W=[w11, . . . ,w1k, . . . ,wM1, . . . ,wMK]T (3.21)

X=[x1[n], .., x1[n− k + 1], . . . , xm[n], . . . , xm[n− k + 1]]T (3.22)

Minimum Mean Square Error (MMSE) weight control algorithm is defined as:

Wopt = arg min
w
E
{∣∣∣sref − WT X

∣∣∣2} = R−1Gs (3.23)

Here, R=E{X XH} represents the covariance matrix, and R=E{X XH} is the cross-
correlation vector between the STAP input and the reference signal. The adaptive weights
are applied to enhance the gain in the satellite direction and attenuate the signal from
the interfering source, having a significant impact on the formation of the beam. Several
adaptive control algorithms are implemented in spatial filtering to update these weights,
including Mean Variance Distortion Response (MVDR), Minimum Mean Square Error
(MMSE) and Maximum Signal to Interference Ratio (MSINR). Previously, in [106], a
multi-beamforming multichannel GNSS receiver was introduced, where the STAP method
was examined against multiple types of interference signals. The performance of STAP
improved with the increase in the number of taps but a good tradeoff between performance
and complexity for the pulsed DME/TACAN interference scenario was achieved with
5 or 7 taps. Furthermore, the results obtained show that the MVDR processor with
directional constraints delivered better tracking performance with minimal distortions in
the useful GNSS signal. Another approach proposed in [108] addresses the challenge of
concurrent narrowband and wideband jammers using SFAP. In this approach the weights
of each sub-band are determined by utilizing signal representation from both the sub-band
under consideration and adjacent sub-bands, resulting in substantial improvement in the
performance for the suppression of multiple concurrent jammers.
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3.3.3 Summary and categorization of presented techniques
In this chapter, we have presented an overview of various countermeasure methods em-
ployed for the detection and mitigation of jamming signals in GNSS. As we summarize and
compare these approaches, it becomes evident that each method has its unique strengths
and weaknesses. Table 3.2 provides a summary of these techniques, categorizing different
techniques based on their placement in the receiver processing chain, and highlighting
their computational requirements and limitations.

Table 3.2: A summary of different categories of countermeasure techniques for the detec-
tion and mitigation of jamming signals.

Receiver
processing

level
Method

Purpose
Detection
|Mitigation

Computational
burden Limitations References

Frequency
switching

✔□ ✔□ moderate - Necessitates a multi-frequency
receiver.
- At minimum, one frequency should
remain unaffected by interference.

[77]

Front end

AGC ✔□ □ low - Sensitive to temperature variations
- Recalibration may be necessary to
maintain its effectiveness.

[62][63][64]

Null steering
CRPA

✔□ ✔□ high - System complexity with multiple
antennas and associated
components.
- Calibration and alignment issues.
- Limited adaptability against
various forms of interferences.

Power spectrum
(TPD, FDP
and welch
method)

✔□ □
moderate - Sensitive to observation window

parameters shape and size [65]

ANF ✔□ ✔□ moderate
- Performance depends on the choice
of parameters.
- Filter tuning should be tailored
according to jammer type.

[82][83][84]
[85][86][87]
[88][89][90]
[91]

PB and
spectral nulling □ ✔□ moderate - Threshold value needs to be

customized for the specific jammer
type
- Not suitable for chirp signals

[80][81]

Pre-correlation

PDF ✔□ □
moderate - Requires a substantial number of

samples to obtain a representative
distribution.
- Effective primarily at higher JNR.

[66]

Kurtosis ✔□ □ moderate - Works only at higher JNR [67]

STFT ✔□ ✔□ low - Fixed window size constraints on
the TF resolution.

[94][93]

WVD ✔□ ✔□ low - Cross terms appear in the presence
of multiple components.

[94][95][1]

Wavelet
Transform

✔□ ✔□ moderate - Sensitive to the choice of basis
function.

[97][98][99]
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KLT ✔□ ✔□ very high - Determining the appropriate
decomposition samples and the
threshold can be highly challenging

[104][103][105]

STAP/SFAP ✔□ ✔□ very high - Not suitable for chirp interference. [106][107][108]
[109][110][111]

CNO ✔□ □ moderate - Distinguishing various factors
contributing to low CNO can be
challenging

[68][69][70]
[71]

Post-correlation

MCAR ✔□ □ high - Requires multi-correlator receiver. [72][73]

Machine
learning

algorithm
(SVM, CNN
and KNN)

✔□ □ high
- Limited by interference scenario
diversity presented in the training
dataset.

[74][75][76]

Navigation
Vector tracking ✔□ ✔□ high - Enhances overall robustness but

not studied for the jamming.
[79]

Sensor fusion ✔□ ✔□ high - Limited to moderate jammers. [78]

It is important to note that the computational complexity and limitations mentioned
in the summary are drawn from the literature. However, it is vital to recognize that
these findings may vary depending on the specific implementation and the scenario under
investigation.

3.4 Chapter summary
This chapter, along with the previous chapter, has emphasized the significance of address-
ing interference in satellite-based positioning systems. The state-of-the-art mitigation
techniques that have been presented in this chapter show that they are primarily based
on signal processing methods that have been developed over several decades. Neverthe-
less, the issue of interference continues to be a hot topic in Global Navigation Satellite
System (GNSS) for several reasons. These include the changing nature of the interference
problem due to the widespread availability of radio devices capable of broadcasting cus-
tomized and more complex signals, a variety of applications relying on GNSS with higher
requirements, and the necessity for adaptable, efficient, and robust solutions.

The presented countermeasures have been purposefully selected from a range of tech-
niques that can be categorized into different signal-processing domains. These techniques
involve interference mitigation in the time domain, frequency domain, time-frequency
domain, time-scale domain, subspace domain, and spatial domain. The literature has
long been concerned with the performance analysis of these techniques from the signal
perspective. However, recent studies have shifted their focus to assess the effectiveness
of these techniques at the intermediate levels, such as satellite acquisition level and the
signal-to-noise ratio of the satellites at most presenting performance analysis at the level of
positioning accuracy. One of the main originality of the next chapter will be to assess the
performance of the implemented techniques in the context of safety-critical applications.

We will delve further into the topic and will provide a detailed discussion on the imple-
mentation of three techniques belonging to different families, namely the Adaptive Notch
Filter (ANF), Wavelet Packet Decomposition (WPD), and Karhunen Loéve Transform
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(KLT), with computational complexity levels increasing from low to high respectively.
We will deal with two different types of interference signals namely frequency hopping
and chirp signal in our investigation. Furthermore, we will examine the effectiveness of
each mitigation technique on different levels of the receiver processing stage namely ac-
quisition, tracking and positioning, primarily presenting the key performance indicators
linked to safety-critical requirements using the Stanford diagram.

53



Chapter 4

Implementation of Adaptive Notch
Filter (ANF), Wavelet Packet
Transform (WPD) and Karhunen
Loève Transform (KLT)

4.1 Introduction
In Chapter 3, we presented an overview of the state-of-the-art precorrelation level coun-
termeasures presented in the literature, mainly dealing with jamming detection and mit-
igation. Our main motivation for this study is to investigate the impact of jamming
and evaluate the performance of mitigation techniques in the context of safety-critical
land transportation applications. For this purpose, we have selected three techniques
belonging to different categories with different computational requirements. These tech-
niques include Adaptive Notch Filter (ANF), Wavelet Packet Decomposition (WPD),
and Karhunen Loéve Transform (KLT). In this chapter, we will provide a comprehensive
and detailed implementation, thoroughly assessing the performance of each of these tech-
niques. Indeed, as presented in Chapter 3, the performance of the mitigation techniques
has been predominantly focused on the intermediate levels involving estimation of the
interference frequency, satellite acquisition, and signal tracking [1][2][3][4][5]. Recently,
the authors [6][7] have taken a further step and presented mitigation performance from
the end user perspective by analyzing the positioning accuracy. The originality of this
chapter relies on assessing the mitigation performance across various levels of the receiver
processing stages and most importantly, the evaluation of the positioning Key Perfor-
mance Indicators (KPIs) associated with safety-critical applications, which has not been
previously undertaken in the literature.

We will employ the Stanford diagram, previously introduced in Chapter 2 as a visu-
alization tool to assess and compare the KPIs such as accuracy, availability, and safety of
the localization system. The Stanford diagram is established directly by comparing the
Horizontal Protection Error (HPE), the Horizontal Protection Level (HPL), and the Alert
Limit (AL) defined specifically to meet the application requirements. HPL, which serves
the purpose of bounding the position errors, is determined using three well-established
measurement weighting models, namely elevation, Carrier-to-Noise ratio (CNO), and the
hybrid model (which is the product of CNO and elevation), as introduced in Section
2.6.2. It is important to acknowledge that the term ‘safety’ has a very broad meaning and
is much more complex to define at this level. Ensuring safety requires complementary
measures, redundant systems, and subsystems (or functions) as means to provide robust



solutions while having the capability of handling the ‘faults’ that could lead to imminent
danger or fatal accidents. For simplicity, in our discussion, the term safety will be used to
associate ‘potential’ risk with the localization system in the case of unbounded position
errors that represent HMIs in the Stanford diagram.

The CNO metric has been extensively examined and analyzed in various research
studies, wherein a drop of CNO across each channel is regarded as an indication of the
existence of interference. To enhance and provide an additional layer of protection, it is
anticipated that including this information in the protection level estimation would be
highly beneficial, especially in situations where no mitigation measures have been imple-
mented or even if the currently employed mitigation measures are not optimally utilized.
Our investigation includes well-known classical weighting models that rely on CNO and
(or) elevation information to evaluate the positioning Key Performance Indicators (KPIs)
on the Stanford diagram.

Furthermore, in addition to the aforementioned points, Chapter 3 also provided an
overview of various types of interference signals discussed in the literature. However, in
our investigation, we will specifically focus on two types of signals, namely frequency hop-
ping and chirp interference. These two interference signals possess unique characteristics
in terms of how the frequency varies over time. The two signals are expected to challenge
the mitigation techniques differently. In our investigation, we will follow the same pro-
tocol to analyze the performance of the mitigation techniques against these interference
signals. This will be achieved by presenting three cases; the first will be referred to as the
”reference case,” which will serve as a control scenario without any interference present.
The second will be designated as the ”interference case,” employed to assess and evaluate
the impact of the jamming signal. Lastly, the third will be referred to as the ”mitigated
case,” to thoroughly analyze and assess the effectiveness of the employed interference sup-
pression strategy.

The chapter is structured into various sections to discuss the investigations conducted
across different phases. In Section 4.2, we will go through the preliminary investigation
on the Advanced Interference Mitigation (AIM+) module integrated into the Septentrio
receiver. Section 4.3 is dedicated to the experimental protocol, providing specific details
about the tools used in the subsequent investigations detailed in this chapter. As we
proceed to Section 4.4, we will explore and analyze the Karhunen Loéve Transform (KLT).
Furthermore, Section 4.5 offers a comparative study between Adaptive Notch Filter (ANF)
and Wavelet Packet Decomposition (WPD). Finally, in Section 5.5, we will wrap up with
a comprehensive summary and conclusion of this chapter.

4.2 Interference a matter of concern: How COTS re-
ceivers are dealing with interference?

In this study, we have undertaken a preliminary investigation into the existing interfer-
ence mitigation solutions available in the Commercial Off-The-Shelf (COTS) receiver. The
two primary reasons for this inquiry are first to understand whether interference should
genuinely be regarded as a matter of concern, especially in the context of safety-critical
applications, and secondly, to assess the level of performance offered by the advanced
receiver(s). This investigation has been carried out on a Septentrio receiver, which re-
cently integrated an interference mitigation module referred to as Advanced Interference
Mitigation (AIM+). The receiver manufacturer claims that the COTS module offers self-
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protection against the interfering signals impinging on the GNSS spectrum. Specifically
tailored to protect against both narrowband and wideband interferences, making it an at-
tractive option for end users. In the upcoming discussion, we will assess the performance
of the receiver against frequency hopping and the chirp. We will provide details of our
experimental setup, a description of the interference scenario and subsequently present
an analysis and discussion of the results. Lastly, we will summarize our findings from this
preliminary investigation.

4.2.1 COTS receiver against frequency hopping
We conducted data acquisition using a Septentrio (AsteRx4) receiver that is connected to
a PolaNT (AT1675-29S) antenna placed on the rooftop of our laboratory building. This
setup allowed us to obtain a relatively clean signal from a static position. To generate
a customized interference scenario, we utilized a MATLAB-based GeGnIUs tool, which
has been developed in our laboratory. We specifically configured the GeGnIUs tool to
transmit frequency tones through a Universal Software Radio Peripheral (USRP)-2910.
The interference signal is combined with the GNSS signal using an RF combiner and
then delivered to the Septentrio receiver via a wired connection. Throughout the entire
thirty-minute data acquisition period, two tones are transmitted at regular intervals with
a slight time delay. During these intervals, the interference source is temporarily removed,
allowing the receiver to return to its normal state before the start of the next interval.
Similarly, these tones continued to randomly interfere within a 6 MHz range of the GPS
L1 band for the entire duration of the data acquisition. Figure 4.1 shows the jamming
profile that is used for this investigation.

Figure 4.1: Interference profile at the baseband with frequency tones (red) hopping randomly for 30
seconds within ±3 MHz around the GPS L1 frequency. The dashed vertical lines highlight the regions
with active interference.

We recorded consecutively three files, each involving the acquisition of GNSS signals:
1) in the absence of an interference signal. 2) in the presence of interference without
applying any mitigation technique, and 3) after applying the inbuilt mitigation utility
available in the COTS receiver. We activated two notch filters simultaneously, setting
them to ‘auto’ mode to track independently the tones that would appear simultaneously
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in the spectrum for a limited duration. Figure 4.2 shows the sky plot depicting the
configuration of the visible satellites during the time of acquisition. Now, we will present
the results after processing the RINEX files using open-source ‘GoGPS’ software [112].

Figure 4.2: Sky plot to show satellite configuration for the three cases: Reference (Right) without
interference, interference with no mitigation applied (center), and interference with active mitigation
block

4.2.2 Results and Analysis
Figures 4.3 and 4.4 provide clear evidence of the considerable impact of interference on
positioning accuracy, emphasizing the importance of implementing an effective mitiga-
tion strategy. By examining the Stanford diagram, it can be seen that the errors are
exceedingly small in the absence of interference, which appears to be less than 2 me-
ters. Conversely, in cases where interference is present and no mitigation measures have
been applied, as expected, there is an increase in the number of points representing er-
rors greater than 10 meters. However, after mitigation, a considerable improvement in
accuracy is observed. Unexpectedly, the results show that the weighting models do not
significantly affect the positioning accuracy in our case. It is very evident from Figures
4.3 and 4.4 that the choice of weighting scheme has a profound impact on the perfor-
mance requirements of the localization system, particularly in the three cases that have
been presented. Figure 4.3 offers a more comprehensive understanding by taking into
consideration the variation of certain parameters such as CNO, elevation, and satellite
visibility, which are crucial in estimating performance over time. It is important to note
time analysis holds significant importance for the following reasons:

• The three cases under consideration are recorded successively within 2 hours. It is
evident from the sky plot presented earlier that the configuration of the satellites
has changed over time. It should be noted that the purpose of time analysis is not
to draw comparisons between the different cases, as they were recorded at different
times. However, it can help in analyzing the impact of weighting schemes on the
protection level for each case independently.

• Both the interference case and the mitigation case will also influence the variation
of the protection level, and thus, both cases need to be analyzed separately.

In Figures 4.3 and 4.4, the significance of the weighting scheme in the estimation of
the protection level can be observed for all three cases. In situations where interference
mitigation is not applied, the protection level estimated from the CNO-based weighting
scheme closely follows the variation of the CNO measurements, as can be observed in
Figure 4.4(c) and (d). Since interference has a direct impact on the CNO resulting in

57



normal operation, it is reduced to 81.751% with 321 unavailable points, ensuring com-
pletely safe positioning without any HMI. However, after the recovery of CNO with the
mitigation technique, normal operation increases to 98.333 % with only 30 unavailable
points. In general, the CNO model tends to be highly conservative whenever interference
or the remnants of interference are present.

The sine-elevation model assigns a higher weight to high-elevation satellites than those
at lower elevations. This model does not consider the signal quality, which is crucial
in the presence of interference. Without mitigation, the sine-elevation model resulted
in a higher percentage of normal operations (93.462 %) compared to the CNO model,
but at the expense of 19 HMI points and 4 MI points. However, the model becomes
even more conservative due to the lower availability of satellites following the mitigation
process, resulting in a decrease in normal operations to 80.722 % with 347 unavailable
points. The hybrid model, combining elevation and CNO models, makes it the most
conservative choice among other weighting models. The results clearly show that in the
case of interference without mitigation, normal operations are reduced to 74.474 % with
449 unavailable points. Similarly, in the case of interference with active mitigation, only
67.611 % of the points are in normal operations, with 583 unavailable points.
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Figure 4.3: Stanford diagram of each weighting scheme representing three cases: in the absence of interference (upper row), ITF but without mitigation (middle row),
and ITF and with active mitigation (lower row). Here, AIM+ provided by the Septentrio receiver is applied for mitigation.



Figure 4.4: The assessment of different parameters (carrier-to-noise ratio, elevation and
satellite visibility) contributes to the estimation of the HPE and HPL vs time. The
interference case without mitigation (Left) and mitigated case with active AIM+ (right)
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4.2.3 COTS receiver against chirp

Similarly, we have undertaken another brief study considering chirp interference, centered
around the GPS L1 band with a sweeping frequency of 7 MHz in 50 µsec. Figure 4.5
shows the resultant spectrum of the jamming signal. In this particular scenario, we
introduced an interference that lasted for 50 seconds and was applied at two different
intervals. Throughout the first interval, the COTS module is deactivated, while during
the second interval, the COTS module is activated. A Wideband Interference (WBI)
mitigation is employed, as recommended by the receiver manufacturer, to counter the
distortions induced by the chirp signal. We will now present the outcomes and discuss
the results. Note that we will present only selective results, avoiding repetition of the
exhaustive process as previously done for the frequency hopping case, highlighting the
issue we specifically aim to address in this dissertation.

Figure 4.5: Power spectrum of the signal after applying chirp interference (bandwidth 5MHz, sweep
rate 50 µsec, and J/N power 30 dB)

4.2.4 Results and Analysis

In this section, we will present the results of the previously introduced chirp scenario,
taken from the ‘SBF analyzer’. The summary of results, as illustrated in Figure 4.6
shows the impact of interference and mitigation on both Carrier-to-Noise ratio (CNO)
and Horizontal Protection Level (HPL). It can be observed that the CNO has generally
improved subsequently after the mitigation. However, is also evident that the mean value
of the Protection Level (PL) has increased from 8.5 m to 26 m. These outcomes resemble
the observations made in the frequency hopping case. Despite the receiver’s ability to
provide a very accurate position after the mitigation, the increase in PL has led to a
considerable increase in the number of unavailable instances.
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Figure 4.6: CNO of the tracked satellites (Upper panel) and Horizontal Protection Level (HPL) with
highlighted regions depicting the interval with an active chirp jammer without mitigation (red) and after
activation of the WBI technique in the AIM+ module.

4.2.5 Conclusion on COTS Receiver Performance
We have presented our initial findings on the existing mitigation solutions that are avail-
able in the COTS receiver. Although this study is not comprehensive, we could have
explored alternative solutions offered by other receiver brands, if any exist. Since we had
access to mitigation solutions provided by Septentrio receivers, we conducted this pre-
liminary investigation on it with some realistic scenarios. Note that the purpose of this
investigation was not to seek limitations of COTS, the embedded mitigation module in
the receiver. Rather, it aimed to assess the performance level of the available solutions in
the context of safety-critical applications. Therefore, we employed the mitigation func-
tion (tool) as a black box to conduct this investigation against frequency hopping and
chirp interference. Undoubtedly, the receiver exhibited exceptional performance for the
two presented cases and provided highly accurate positions following the activation of the
AIM+ module. As expected, mitigation has a consequent impact on the protection level,
resulting in a considerable increase in the unavailable instances. These outcomes have
encouraged us to investigate further into this matter to retrieve a performance similar to
the nominal situation, wherein the emphasis is on maximizing normal operations while
prioritizing the safety of the localization system. This aspect will be further addressed in
subsequent investigations.

4.3 Dealing with IQs: Jammer and recording system

From this point forward, our discussion will concentrate on various precorrelation-level
signal processing techniques to effectively minimize the influence of the interfering signal.
These techniques necessitate the processing of discrete signals, which in our case are the
in-phase (I) and quadrature (Q) components, representing the real and imaginary parts of
the complex baseband signal. To record the baseband signal, we have employed the Stella
NGC Record and Playback (RP) software utility connected to the Universal Software
Radio Peripheral (USRP 2954R) from National Instruments. The software interface of the
recording tool is depicted in Figure 4.7 which is configured to record the GPS L1(1575.42
MHz) signal at a sampling rate of 15 MSamples/sec and 12 MHz bandwidth using an
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8-bit quantization level.

Figure 4.7: Stella NGC Record and Playback software interface for recording baseband signal.

To simulate the interference scenario, we have employed the Matlab-based software
tool ‘GeGNIUs’ developed within our laboratory. This utility offers realistic emulation of
various forms of signals, some examples of very common signals are presented in Chapter
3. Additionally, it provides the flexibility to customize the scenario according to the
requirements, facilitated by another USRP 2910s for the transmission of the signal.

Figure 4.8: The software interface of MATLAB-based Jammer.

4.3.0.1 GNSS signal acquisition and jamming scenario

The acquisition process begins with the recording of a radio frequency signal using an
Adsotech ASH11661 antenna, which is mounted on the roof of our university site. The
antenna is placed in an open-sky location to receive satellite signals in the best possible
conditions, thereby minimizing disturbances induced by the presence of obstacles in the
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close vicinity of the antenna. The signal captured by the antenna is combined with the
jamming signal through a combiner, which is delivered to the USRP dedicated to recording
the signal through a wireless link. The entire acquisition setup is shown in Figure 4.9.

Figure 4.9: GNSS Signal Recording System and MATLAB-based Jammer (Left) connected to an
antenna mounted on the roof of the building (Right).

We have prepared two interference scenarios with frequency hopping and linear chirp
signals belonging to class I and class II categories, as previously presented in section 3.2.2.
The spectrogram of these two interference signals are visually depicted in Figure 4.10,
representing time-frequency evolution. The main distinguishing characteristic between
the two signals is variations in the frequency pattern and dynamics of the signal. In the
case of frequency hopping, the signal frequency is altered randomly and is maintained for
a certain duration, whereas in linear chirp, the frequency is continuously modified in a
linear pattern, resulting in a relatively higher level of signal dynamics.

Figure 4.10: spectrogram of the frequency hopping (Upper Panel) and chirp signal (Lower Panel) at
the baseband

A more detailed description of the interference used in these cases is provided in Table
4.1. We have recorded a total of eighteen IQ files, with nine files designated for each
interference scenario.

To obtain various satellite configurations and visibility, signal acquisition is conducted
during three distinct periods throughout the day. Each record lasted for 90 seconds, and
the interference signal of 30 seconds was added approximately after 55 seconds.
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Table 4.1: Signal Parameters settings for the Recording system and Interference generator

Recording system and jammer signal parameters

Receiver
configuration

Central frequency GPS L1 (1575.42 MHz)
Sampling frequency 15 MHz
Bandwidth 12 MHz
Quantization 8 bits

Frequency
hopping

Frequency pattern [ 2.0, -1.5, 0.7, 3, -2.5, 0.0,
1.0, -0.2, 3.4, 0.8 MHz]

Hopping rate 100 µsec
Hopping period 1 msec
Duration 30 sec

Chirp

Bandwidth 7 MHz
Chirp rate 0.14 MHz/µsec
Sweep period 50 µsec
Duration 30 sec

Now, we will undertake a comprehensive view of three state-of-the-art signal processing
interference mitigation techniques: Adaptive Notch Filter (ANF), Wavelet Packet Decom-
position (WPD), and Karhunen Loéve Transform (KLT). These interference mitigation
methods belong to distinct families of techniques and possess different computational
requirements, increasing from low to extreme, respectively.

4.4 Subspace domain: Kerhunen Loève Transform
(KLT)

The KLT is a highly versatile technique that is applied in various fields such as image
compression, feature extraction, noise reduction, and interference mitigation. It belongs
to a subspace domain technique that involves the decomposition of the signal in the vector
space using orthonormal (or eigen) functions that can be of any form. The projection of
the received signal within the eigenfunction domain allows the identification and isolation
of interference components from the noise components, which can be performed with the
following steps:

• Computation of autocorrelation: The first step involves the computation of
signal autocorrelation. The autocorrelation function measures the similarity of the
received signal to the delayed version of itself, which can help to determine the
underlying patterns and structure of the signal. The autocorrelation of the received
signal x[n] is given as:

Rx[n] = E[x[τ ] · x[τ − n]] (4.1)

• Calculation of Toeplitz matrix: The Toeplitz matrix is computed from N sam-
ples of the autocorrelation Rx[n] which can be written as:

RToeplitz =


Rx[0] Rx[1] . . . Rx[N ]
Rx[1] Rx[0] Rx[N − 1]

... ... . . . ...
Rx[N ] · · · · · · Rx[0]

 (4.2)
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• Eigenvalue decomposition: The decomposition is accomplished by determining
the eigenvalues λi and the eigenvectors Φi from the Toeplitz matrix.

• Sort eigenvectors: The eigenvectors are arranged in descending order according to
their corresponding eigenvalues. This organization arranges them in sequential order
of their significance, with the most dominant (or principal) components followed by
the least dominant components.

• Interference detection: It involves careful examination of the transformed signal
components to identify the principal components that exhibit considerable deviation
from the nominal (or interference-free) signal characteristics when interference is
present.

• Signal reconstruction: The components that represent interference are subse-
quently eliminated, and the signal is then reconstructed through the multiplication
of the coefficients with the remaining interference-free components.

Now, the steps for performing interference suppression with KLT have been presented.
In 4.4.1, we will present the discussion on the implementation, applying it to the real GNSS
IQ dataset. There are very limited implementation examples available in the literature
where KLT has been employed as a countermeasure to suppress interference, particularly
in the GNSS application. In [105], the mitigation performance is mainly presented at the
signal level by comparing the frequency spectrum of the interfered and filtered signals.
The authors in [113] conducted an extensive study and also analyzed the performance
at the positioning accuracy level. The originality of this study is that we will analyze
performance at multiple receiver processing stages, ultimately presenting the positioning
KPIs for various values of k (which represents k onwards samples considered in the signal
reconstruction with k as a first sample index).

4.4.1 Results and Analysis
One crucial aspect of the KLT analysis is the selection of the number of samples, which
is directly related to the decomposition level to be achieved. Moreover, the selection is
also dependent on the characteristics of the signal being analyzed. Increasing the num-
ber of samples could be beneficial in capturing more accurate statistical properties and
relationships in the data, but it comes at the expense of longer computation time. Due
to its demanding computational requirements, in the literature, the KLT method is only
considered for post-processing purposes. In our analysis, we have employed KLT to sup-
press the frequency hopping scenario presented in section 4.3. Following some extensive
testing and experimentation, we have selected 500 samples for the signal decomposition
as a reasonable compromise between the achievable performance and the computation
time. The eigenvalues, which are illustrated in Figure 4.11, are obtained from the KLT
decomposition of both the interference-free GPS L1 signal and the interfered signal. In
the absence of interference, the eigenvalues (as depicted in blue) have a very flat trend
with nearly the same magnitude. However, it is evident that in the presence of inter-
ference, there are very few eigenvalues (as depicted in red) that possess relatively higher
magnitudes compared to the others.

Now the question arises concerning the number of samples that should be considered
to obtain the best possible separation between the interference and the clean GNSS signal
components. From Figure 4.11, it is not very evident where the threshold should be set.
It seems that the most suitable option would be either at the point of intersection of
two lines, which is around k = 20, or somewhere between k = 40 and 50, from where
the eigenvalues (as depicted in red) almost have constant magnitude. Moreover, in the
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borderline case, the choice of k involves a compromise between the suppression level
and preserving the useful signal components. To demonstrate the influence of k on the
mitigation performance, we have selected three values with k = 20, 80, and 140.

Figure 4.11: KLT decomposition of GPS L1 signal in interference-free conditions and the presence of
a frequency-hopping signal.

The power spectrum, as shown in Figures 4.12a and 4.12b, presents the comparison of
three cases with different values of k. The power spectrum is estimated after discarding
initial k-1 components from a total of 500 during the reconstruction process. In each of the
three k values, the elimination of the principal component has significantly attenuated the
interference signal. It is evident that for the first choice (k = 20), the residual interference
remains in the signal, while for the second choice (k = 80), the spectrum appears to be
very clean. Conversely, the third choice (k = 140) seems to have excessively attenuated
the useful signal.
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Figure 4.12: Power spectrum before and after KLT filtering for k = 20, 80, and 140.

The Cross Ambiguity Function depicted in Figure 4.13 represents the signal search
space associated with PRN 29. It is evident that, after the KLT mitigation, the signal
peak is retrieved back in all three cases, each with a distinct value of k, as shown in Figure
4.13(c), (d), and (e). A comparison between Figure 4.13 (c) and (d) shows that when
k = 20, the noise floor around the correlation peak appears to be relatively noisier than
with k = 80. Furthermore, by removing more components in the case of k = 140, the
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(a) (b)

(c) (d) (e)

Figure 4.13: CAF representing signal search space of PRN# 29 a) nominal conditions, in the presence
of interference b) before KLT mitigation and after KLT mitigation discarding k-1 components with c) k
= 20, d) k = 80, and e) k = 140.

correlation peak has reduced significantly, thereby suppressing unnecessarily the useful
content of the signal.

Figure 4.14: Carrier to noise ratio (CNO) of PRN 29 after KLT filtering for different values of k sample
index

The Carrier-to-Noise ratio (CNO) metric, which indicates the quality of the tracked
signal, is illustrated in Figure 4.14. A similar trend can be observed when comparing
the CNO associated with PRN #29, considering three distinct values of k. It should be
noted that in this scenario, the interference emerges at approximately 55 seconds. It is
evident that with the implementation of KLT mitigation over an entire 30-second duration
of jamming, the CNO shows considerable fluctuations, particularly when k is set to 20.
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The CNO estimation appears to be relatively stable when k is set to 80. The removal of
additional components in the case when k is set to 140 leads to a few dB drop in CNO.

Now, we will analyze Key Performance Indicators (KPIs) related to the position by
presenting them on the Stanford diagram. In this particular case, to get a reasonable
number of points on the Stanford diagram, we have computed the position at a rate of
100 Hz. We have considered three measurement weighting schemes: a) elevation only, b)
Carrier-to-Noise ratio (CNO), and a hybrid model. These models are employed for the
estimation of the Weighted Least Square (WLS) solution and also to estimate the protec-
tion level. Figure 4.15 presents the Stanford diagram for the ‘reference case’, including
all the instances before the occurrence of interference.

(a) (b) (c)

Figure 4.15: Stanford diagram representing nominal (interference-free) conditions with different weight-
ing models: a) elevation (left), b) carrier-to-noise ratio CNO (middle) and c) Hybrid model (right)

In the absence of interference, the three weighting models demonstrated very similar
performance, achieving approximately 99% of normal operations. The normal operation
suggests the system is available, and the position errors are well-bounded. When com-
paring the models, it can be observed that the elevation model effectively constrained
the position errors, whereas the CNO has 20 MI instances, indicating unbounded errors
without any potential risk (PL < PE < AL) and 40 unavailable instances where the pro-
tection level over bounds the positioning errors and also exceeds the alert limit (PE <
AL < PL). The hybrid model, on the other hand, has only 40 unavailable instances.

Figure 4.16 illustrates positioning performance in the presence of interference without
the implementation of any mitigation strategy. Note that approximately 64% of the in-
stances correspond to epochs free from interference, while the remaining 36% of instances
indicate points that are subjected to interference. A considerably large number of points
with position errors exceeding 30 meters show that interference significantly degrades po-
sitioning accuracy. In this case, using CNO information somehow attempts to increase the
protection level, thereby making the system unavailable, although not sufficient enough
to completely isolate the position points affected by interference. In all three models,
the majority of interference instances are present in the HMI, representing unbounded
position errors exceeding the AL. This indicates that interference, when not mitigated,
poses a potential risk to the system, which could result in a fatal accident if not timely
warned.

The positioning performance after the implementation of KLT-based mitigation is pre-
sented in Figure 4.17 for three distinct values of k. In each case, the application of KLT
filtering seems to be very effective in improving normal operations. The importance of k,
which had not been very apparent previously at the signal level, now becomes distinctly
evident at the Stanford level. When k is set to 20, a portion of the dominant components
is discarded, still resulting in a higher number of HMI instances due to the presence of
residual interference. However, after the removal of some additional components, the mit-
igation technique showed significant improvement. The optimal threshold appears to be
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Figure 4.16: Stanford diagram representing the interference case without any mitigation countermea-
sure with different weighting models: elevation (left), carrier-to-noise ratio CNO (middle), and Hybrid
model (right)

Figure 4.17: Stanford diagram after KLT mitigation for k = 20 (upper panel), 80 (middle panel), and
140 (bottom panel) with different weighting models: elevation (left), carrier-to-noise ratio CNO (middle),
and Hybrid model (right)

around 80, which almost restores the performance to a level similar to the reference case.
The elevation model maximizes the nominal operation ≈ 99 % with 8 MI instances. As
the mitigation process leads to a decrease in CNO compared to the nominal case, its in-
clusion in the estimation of measurement uncertainty causes an increase in the protection
level, as evidenced in CNO and the hybrid model. Further removal of additional com-
ponents beyond 80 seems to attenuate the useful signal and result in a further increase
in the protection level. These effects are more obvious in the case of the hybrid model,
leading to an increase in the unavailability of 280 instances and 7 MI instances.
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4.4.2 Conclusion on KLT Performance
The implementation of the Karhunen Loéve Transform (KLT) as an interference coun-
termeasure has demonstrated substantial potential. It has shown very promising results
against the frequency hopping signal, notable in the retrieval of the positioning Key Per-
formance Indicators (KPIs), as observed through the Stanford diagram. Nonetheless, a
significant challenge remains is the substantial computational resources associated with
this technique. The process involves the selection of an appropriate number of samples
for the desired decomposition level, a choice that depends on the characteristics of the
signal being analyzed. Furthermore, fine-tuning the threshold value to exclude principal
components representing interference signals contributes to the computational complex-
ity. In our specific implementation, a 30-second interfered signal with a 15 MHz sampling
rate required approximately 40 hours of processing time, with the available resources at
our disposal. This extensive computational demand underscores the impracticality of this
technique in real-world applications. Consequently, we have opted not to continue any
further investigations with the KLT method within the scope of this work.

As a next step, we will present a comparative study exploring alternative solutions
that offer substantially lower computational requirements. This investigation aims to
identify more practical and effective mitigation solutions, with a particular emphasis on
reduced computational complexity to better suit real-world applications.

4.5 Notch Filtering versus Wavelet Transform, an
Experimental Analysis

In this section, we will first provide a discussion on signal analysis methodology that uti-
lizes digital filters to implement the Discrete Wavelet Transform (DWT). This method
involves the decomposition of the signal into smaller packets, the process commonly re-
ferred to as Discrete Wavelet Packet Decomposition (DWPD). The primary purpose of
signal analysis methodology is to the identification of interference components that can
subsequently be eliminated during the mitigation process. Following this, we will present
an Adaptive Notch Filter (ANF). The technique involves the utilization of a notch filter
together with an adaptation module, which serves the purpose of tracking and suppressing
the interfering signal.

4.5.1 Wavelet Packet Decomposition (WPD)
The realization of Discrete Wavelet Transform (DWT) equivalent implementation can be
accomplished by employing wavelet-based digital filters [3]. The process of signal decom-
position is mainly realized using the frequency scaling process, which allows analysis of the
frequency component of the signal at different scales, leading to a multi-resolution signal
analysis. The decomposition process involves dividing the signal into low-frequency and
high-frequency components after passing it through lowpass and highpass filters. These
filters possess equal bandwidth, equal to half of the input signal bandwidth. The lowpass
filtering corresponds to an averaging operation, which extracts the coarse approximation
of the signal. On the other hand, highpass filtering corresponds to a differentiation oper-
ation, which extracts the detailed information of the signal. According to [114], the filter
outputs following the first level decomposition can be mathematically expressed as:

yL[n] =
∑

k

x[k] · g[2n− k] (4.3)
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yH [n] =
∑

k

x[k] · h[2n− k] (4.4)

Here, yL[n] and yH [n] denote the outputs of the lowpass and highpass filters respectively.
The impulse response of the scaling (or highpass filter) and the wavelet (or lowpass filter)
functions is represented by h[n] and g[n] respectively. The scales are altered in dyadic
order, with the factor of 2 indicating the scaling operation for the first level decomposition
(2k = 2 | k = 1). The impulse response of the wavelet function g[n] can be expressed in
terms of the scaling function h[n] as:

g[n] = (−1)nh[2k + 1 − n] (4.5)

These pair of filters, denoted as g[n] and h[n] constitute the Quadrature Mirror Filter
(QMF) pair which implies that each filter can be represented as a mirrored version of the
other filter. The filter pair can be written interchangeably by mirror reflection of each
other with an additional inversion sign at the odd indices. The visual representation of
the impulse response and frequency response of the ’Symlet’ wavelet function is shown in
Figure 4.18.
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Figure 4.18: A quadrature mirror filter pairs the Symlet wavelet function (N = 15 -filter length) with
impulse response (upper panel) and frequency response (lower panel).

Figure 4.19: Signal decomposition with DWT using lowpass and highpass filters.
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In a wavelet decomposition, the first branch consists of a pair of lowpass and highpass
filters followed by a subsampling process, as illustrated in Figure 4.19. The subsampler
unit downsamples the signal by a factor of 2, eliminating alternate samples from the
filtered signal to reduce the sample redundancy. Consequently, the sampling interval of
the output signal thereby becomes twice the input signal sampling interval, leading to a
decrease in the time resolution by half while simultaneously doubling the frequency reso-
lution (as the bandwidth is halved). The 3-level decomposition stages using the wavelet
transform are illustrated in Figure 4.20. In each stage, the signal is further decomposed
through the expansion of the approximation branch, wherein the same process of signal
division is repeated on a different scale using a lowpass and highpass filter. This provides
a multi-resolution signal analysis obtained through the processing of input signals with
non-uniform filters. Figure 4.21 shows the frequency response of non-uniform filters from
each decomposition level, obtained by dyadic scaling of the ‘Symlet’ wavelet function.

Figure 4.20: A three-level discrete wavelet decomposition (dwt); approximation (a) and detail (d) block
represent the lowpass and highpass filtering and the subsampling operation
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Figure 4.21: Non-uniform frequency response of ‘Symlet’ wavelet functions

The Wavelet Packet Decomposition (WPD) can be realized similarly to the Wavelet
Transform (WT). In WPD, the detailed branch is additionally expanded, leading to the
formation of a tree-like structure. This particular process gives rise to several additional
wavelet packets after passing the signal through a uniform wavelet filter bank. Each
decomposition stage generates 2N wavelet packets, representing a specific portion of the
input signal frequency, with N denoting the decomposition level. Figure 4.22 illustrates
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a 3-level signal decomposition using WPD, where the input signal is decomposed into 8
packets in the final stage, each representing different frequency components of the signal.

Figure 4.22: A three-level discrete Wavelet Packet Decomposition (WPD) with approximation and
detail blocks representing lowpass and highpass filtering respectively, and subsampling operation

Figure 4.23: Several stages in WPD-based mitigation

The suppression of interference signal with WPD requires a four-step procedure that
includes decomposition, detection, mitigation, and reconstruction. The explanation of
each phase in the mitigation process, as depicted in Figure 4.23 is as follows:

Step 1: Decomposition

In the decomposition stage, the signal containing interference is passed through a uni-
form filter bank. This results in the decomposition of the signal into constituent frequency
components, to obtain an equivalent time-scale representation. The effectiveness of the
technique depends on the number of decomposition stages. A higher decomposition level
is better for characterizing various frequency components present in the signal. However,
it may also lead to an aliased response from the filter [6]. Here we have considered a
5-level decomposition as a reasonable compromise for the mitigation of the interference
signal while simultaneously constraining the processing burden.

Step 2: Detection

The detection phase involves the comparison of the wavelet coefficients within each
packet to corresponding threshold values, representing coefficients of the interference-free
signal. These threshold values are determined empirically before the detection process,
wherein the standard deviation is computed for each scale. The distribution of coefficients
(as an interquartile range) of the interference-free signal is illustrated in Figure 4.24, with
a threshold (represented by a black line) indicating the 3-sigma value of that particular
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scale. The presence of the interference signal is identified when the coefficient value
exceeds the threshold value, this will be detailed in the results section.

Figure 4.24: Wavelet coefficient distribution in interference-free conditions

Step 3: Mitigation

Once the interference components have been identified, the next step involves the
removal of the interference components. This is accomplished through the coefficient
blanking process, whereby the interference components are suppressed by assigning zero
to the coefficient value when the detection flag is raised. Consequently, the elimination
of all the coefficient values exceeding the detection threshold would remove all additional
energy induced by the interfering signal.
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Figure 4.25: Spectrum of the signal before and after mitigation of chirp interference with WPD filtering

Step 4: Reconstruction

Finally, the signal is reconstructed using the inverse wavelet transform by passing the
decomposed signal through reconstruction filters and followed by up sampling process.
The spectrum, as shown in Figure 4.25, illustrates the presence of a chirp signal (de-
picted in red), covering a wide frequency range and the frequency spectrum following the
implementation of WPD filtering (depicted in blue).

4.5.2 Adaptive Notch Filter (ANF)
Adaptive Notch Filter (ANF) is a widely investigated technique against Frequency Mod-
ulated Continuous Wave (FMCW), also referred to as chirp signal. The ANF can be
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seen as an extension of the classical Notch Filter with an additional integrated adaptive
module. Its main purpose is to continuously track and attenuate the frequency of the
unwanted signal, which may change over time. The transfer function of a single pole IIR
notch filter can be written as:

H(z) = 1 − z0[n]z−1

1 − kαz0[n]z−1 (4.6)

where kα represents the pole contraction factor that controls the notch bandwidth,
and z0[n] is the filter zero that determines the position of the notch in the complex plane.
The transfer function in (Eq. 4.6) can be written separately into two components: the
numerator signifies the Moving Average (MA) function and the denominator signifies the
Auto-Regressive (AR) function. The resulting output from the MA and AR block can be
written as:

y[n] = xr[n] − z0[n− 1]xr[n− 1] (4.7)

The value of z0 is constrained to move on the unit circle of the complex plane and the
relation between notch frequency and the transfer function zero is given as:

z0[n] = a0e
j2πf̂0Ts (4.8)

where f̂0 is the instantaneous frequency of the filter, a0 is the magnitude of the complex
estimate z0[n] that defines the depth of the notch and Ts = 1

fs
is the sampling interval.

The 3-dB bandwidth in terms of pole contraction factor can be estimated as:

B3dB ≈ (1 − kα)fs
π

10 (4.9)

The notch bandwidth is typically kept narrow to target a very specific portion of the
spectrum to preserve at most the useful content of the signal. The ensure stable operation,
the pole contraction factor is typically selected in the range between 0 and 1. Eq. 4.9
indicates that the width of the notch gets increasingly narrower as kα approaches 1. The
adaptive block drives the position of the notch, moving z0 in the complex plane until it
converges to the interference frequency. This convergence is achieved using a Least Mean
Square (LMS) based gradient descent algorithm, which minimizes the cost function to
estimate the value of z0 at each sample instance.

z0[n] = z0[n− 1] − µ[n]g (J [n]) (4.10)

where g(.) represents the stochastic gradient of the cost function J [n] and µ[n] is the
normalized algorithm step. The cost function can be minimized by either minimizing
energy at the output of the notch filter (or the moving average block) or by minimiz-
ing energy at the output of the auto-regressive block. There are numerous adaptation
approaches presented in the literature [82][115][116]. We have adopted the adaptation
approach proposed in [82]. This approach involves the minimization of instantaneous
energy at the filter output y[n]. The stochastic gradient of the cost function can thus be
expressed as:

g(J [n]) = ∂[|y[n]|2]
∂z0

(4.11)

By solving the partial derivative with respect to complex pole z0, the Eq 4.11 can be
written as:

g (J [n]) = y[n] · x∗
r[n− 1] (4.12)
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where (*) denotes the complex conjugate. The normalized step can be written as:

µ[n] = δ

E|xr[n]|2 (4.13)

where {E|xr[n]|2} is the power at the output of the Auto-Regressive block and δ rep-
resents the adaptation step of LMS algorithm that controls the algorithm convergence.

Now that the two techniques have been presented, Section 4.5.3 will present their appli-
cation on a combination of real GNSS signals with simulated interference for performance
evaluation.

4.5.3 Results and Analysis
In this particular section, we will present a comprehensive discussion of our investigation
findings for the scenarios previously presented in Section 4.2. It involves a thorough
evaluation of performance across multiple signal-processing stages. Note that these results
are generated after processing the signal IQs using an open-source software receiver [117],
which will ultimately lead to the assessment of positioning Key Performance Indicators
(KPIs) using the Stanford diagram.

• Interference Identification and Mitigation

Figure 4.26 shows the frequency estimated by the adaptive notch filter in the presence
of frequency hopping (left) and chirp (right) signals. As mentioned earlier, ANF is a
parametric technique, and its performance depends on the proper selection of the filter
parameters. In this case, an adaptation step of 0.05 and a pole contraction factor of
0.8 are used for both signals, within the recommended range. Using these parameters,
ANF appears to closely track the interference frequencies in comparison to the scenarios
represented in Figure 4.10. Nevertheless, the adaptation step appears to be the cause
of oscillations around the slowly varying interference frequency in the case of frequency
hopping.

Figure 4.26: Interference Frequency Tracked by Adaptive Notch Filter (Adaptation Step =0.05 and
Pole Contraction Factor =0.8) In Case of Frequency Hopping (Left) and Chirp Signal (Right)

Figure 4.27 illustrates interference localization with the wavelet packet decomposition
method represented in the time-scale domain. A 5-level decomposition is realized using
the ‘Symlet’ wavelet function, resulting in 32 wavelet packets, each representing a specific
portion of the frequency band. In the calibration phase, a threshold mask is estimated
with the individual calibration of the wavelet scales. The threshold is determined by
setting the 3-sigma value for each scale in interference-free conditions. By observing the
wavelet coefficients, it is possible to identify instances where the coefficients exceed the
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Figure 4.27: Time-Scale Representation with 5-Level Decomposition of GPS L1 Signal Interfered with
Frequency Hopping (Left) and Chirp Signal (Right).

threshold value due to an increase in energy concentration, thereby indicating the presence
of an interference signal. Notably, the energy of the signal is primarily concentrated in the
lower scales, with almost no activity at higher scales, as the interference signal only covers
40% of the recorded frequency bandwidth. Following the detection process, the wavelet
coefficients that represent the interference signal (i.e., those with higher coefficient values)
are suppressed by replacing them with null values, which is commonly referred to as the
coefficient blanking method.

• Acquisition

The acquisition is the primary block in the receiver processing chain. The acquisition
process involves searching for the satellite signal in the signal search space. Once the
satellite presence is confirmed by the correlation peak, the code delay and the doppler
frequency are estimated to facilitate the tracking of the satellite signals. The signal
search space, as shown in Figure 4.28 for GPS PRN #02, is obtained after performing
signal correlation for 1 ms (coherent accumulation) and subsequently averaging it with
7 ms of incoherent accumulations. Figure 4.28(a) shows a very distinct correlation peak
emerging from the noise floor in the absence of interference. However, in the presence of
a frequency hopping signal, as depicted in Figure 4.28(b), the jamming signal completely
overpowers the satellite signal, increasing the noise level, and the peak is no longer visible.
As an interference countermeasure, both WPD and ANF techniques are employed. The
acquisition of search spaces after mitigation with these techniques is shown in Figures
4.28(c) and (d). The results show that the satellite peak resurfaced with the suppression
of the interference signal, leading to a decrease in the noise level. However, WPD seems
to perform much better than the ANF in the suppression of the interfering signal, as
evidenced by the significant reduction of the noise level.

A similar trend is visible in the presence of a linear chirp jammer, as shown in Figure
4.29. In this case, the jamming signal introduced a substantial amount of noise, completely
masking the signal underneath and thereby rendering signal acquisition impossible. Nev-
ertheless, the satellite signal is recovered after filtering interference with both WPD and
ANF techniques, as shown in Figure 4.29(c) and (d). Additionally, in this case, it can be
observed that ANF filtering tends to be noisier in comparison to WPD-based mitigation.

• Tracking

The subsequent step in the receiver involves the process of signal tracking, which is
aimed at refining and continuously tracking the initial code and carrier estimates provided
by the acquisition stage. The tracking process is carried out through two closed loops
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(a) (b)

(c) (d)

Figure 4.28: GPS L1 C/A signal search space of Sat#02 a) in the absence of jamming signal, b) in the
presence of frequency hopping jammer, c) after applying WPD-based mitigation, and d) after ANF-based
mitigation.

within the tracking channel namely the Delay Lock Loop (DLL) and Phase Lock Loop
(PLL). This section will provide results related to signal tracking, particularly presenting
the filtered output of the discriminator and (), which is a metric for assessing the tracking
quality of the signal.

The tracking behavior, as illustrated in Figure 4.30, seems to be consistent with the
acquisition results. The unmitigated interference (as depicted in red) has a significant im-
pact on tracking, highlighting the importance of a mitigation technique to properly track
the satellite signal. It can be observed in both scenarios that the impact of interference
started at approximately 58 seconds, causing the receiver to diverge. At this instant, the
receiver completely loses the tracking of the satellite signal and instead locks on to the
interference signal, which is considerably stronger than the GNSS signal. In this case,
both mitigation methods exhibit comparable performance at the tracking level, enabling
the receiver to continue tracking the satellite signal. Moreover, in the case of frequency
hopping (left), the WPD (as depicted in green) appears to significantly minimize the
tracking noise in comparison to the ANF filtering (as depicted in blue). This effect could
be attributed to a mismatch between the filter dynamics and relatively slow frequency
variations of the interfering signal, as previously observed in the frequency hopping case
depicted in Figure 4.26.

A similar trend can be observed in the Carrier-to-Noise ratio (CNO) estimation, which
represents the tracking quality of the signal. As shown in Figure 4.31, when no mitigation
technique is applied, the CNO value shows “abnormal” fluctuations as the jamming signal
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(a) (b)

(c) (d)

Figure 4.29: GPS L1 C/A signal search space of Sat#02 a) in the absence of jamming signal, b) in the
presence of chirp jammer, c) after applying WPD-based mitigation, and d) after ANF-based mitigation.

(a) (b)

Figure 4.30: Satellite (PRN 02) Tracking State a) in The Presence of Frequency Hopping (Left) and
b) Chirp (Right) Interference; No Mitigation (Red), ANF (Blue) And WPD (Green).

completely overpowers the GNSS signal. However, CNO has improved in both interference
scenarios with the implementation of mitigation techniques. However, as expected, the
CNO dropped by a few dB as the mitigation technique not only suppresses the interference
signal but also removes some portion of the useful signal. Both mitigation techniques show
similar performance in the case of the chirp scenario. Nevertheless, WPD (as depicted
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Figure 4.31: Carrier-to-Noise Ratio (CNO) Estimated After the Satellite Tracking Stage for PRN 02
a) In the Presence of Frequency Hopping (Left) and b) Chirp (Right) Interference, With No Mitigation
(Red), After Applying ANF (Blue) And WPD (Green).

in green) performed better than ANF (as depicted in blue) in the frequency hopping
scenario, resulting in reduced tracking noise and gaining approximately 6 dB more after
filtering the interfering signal.

• Positioning

The final stage of the receiver processing chain allows the receiver to estimate its
position. We have used the Weighted Least Square (WLS) algorithm to estimate the
position where elevation, CNO, and hybrid models are used to construct the weighting
matrix. Furthermore, the weighting functions are also used to estimate the positioning
protection level. A detailed description of the WLS positioning algorithm and protection
level is provided in Chapter 2. To evaluate the position performance, the Stanford diagram
is presented to analyze accuracy, availability, and safety from the localization function
point of view. This diagram simplifies the analysis by allowing the assessment of multiple
performance parameters in a single representation by comparing HPL, HPE, and AL
that we have purposely set AL to 30 m, though it can be adjusted to meet requirements
specific to certain applications. Firstly, we present results in the nominal conditions,
which include all the instances (epochs) where the position is estimated in the absence
of interference and is referred to as a ‘reference case’. It provides a way to generalize the
achievable performance from these measurements, which are processed with a particular
receiver configuration to assess the impact of interference and the effectiveness of the
mitigation techniques.

In the absence of interference, no significant difference in positioning accuracy is ob-
served for each weighting model, as seen in Figure 4.32 with three different models. Typ-
ically, the average value and the standard deviation of position error are approximately
4.5 m and 2.5 m, respectively. In terms of safety considerations, each model provides
nearly 99% of normal operations. This constitutes system availability, which is indicated
by instances where positioning errors are well-bounded by the estimated protection level.
Generally, the elevation weighting model appears to bound the errors better (left plot),
with only 4 MIs representing unbounded but safe (HPL <HPE <AL) instances than CNO
and a hybrid model with 32 and 11 instances, respectively. The hybrid model, since it
is the product of elevation and CNO-based models, tends to be more conservative in the
estimation of the PL.
Figure 4.33 represents positioning performance in the presence of interference and without

81



Figure 4.32: Stanford Diagram Representing Performance in Nominal Condition Using Different
Weighting Schemes; Elevation (Left), CNO (Middle), And Hybrid (Right).

any mitigation strategy. It is worth noting that approximately 65% of the instances corre-
spond to normal operations, which are interference-free epochs. The remaining 35% of the
instances indicate the presence of interference. The two interference scenarios considered
in this analysis displayed a similar impact on the positioning performance. It is evident
from the user perspective that interference has an adverse impact on positioning accuracy,
as indicated by a higher concentration of points in HMI (> 50 m error). The CNO and
hybrid models, in contrast to the elevation-based weighting model, appear to play a role
in managing the effects of interference by increasing the protection level. By enlarging
the protection level, it is possible to compensate some of the HMI with unavailability,
which is nevertheless not sufficient to completely isolate positioning points affected by
interference. The results obtained at the positioning level are very much aligned with the
behavior of CNO and the tracking, as previously observed for the interference scenarios.
Particularly, Figure 4.30 illustrated that the receiver, instead of tracking the satellite sig-
nal (red curve), locked onto the interference signal, resulting in errors of more than tens
of km. This also caused an ‘abnormal’ increase of the CNO as shown in Figure 4.31 when
compared with the nominal situation. Considering the CNO-based model appears to have
a negative impact, which provides a protection level that underestimates the true error,
leading to an increased number of points in the MI and HMI zone.

Figure 4.33: Stanford Diagram Representing Performance in The Presence of Interference; Chirp
(Upper Panel) And Frequency Hopping (Lower Panel) Before Mitigation, Using Weighting Schemes;
Elevation (Left), CNO (Middle) And Hybrid (Right)
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Moving forward, we present the results of ANF and WPD mitigation for the two
interference scenarios namely chirp and frequency hopping. Initially, we analyze the
mitigation performance of the two techniques in suppressing the effects induced by the
chirp signal. As depicted in Figure 4.34, the performance of ANF (upper panel) and WPD
(lower panel) at the position level, considerably increased the normal operations. The
elevation model seems to maximize the normal operation (white) to more than 96%, but
in certain instances, it could not adequately bound the true error, thus resulting in some
data points in the MI (pink) region. Conversely, the CNO and Hybrid model appears to
be excessively over-protective, resulting in additional undue unavailability (yellow), which
is particularly evident in the case of the hybrid model. It seems that the drop in CNO
(as seen in Figure 4.31) could potentially be the cause of this overprotection. Since each
satellite measurement experienced somehow similar drop, it tends to significantly enlarge
the overall uncertainty bound.

Figure 4.34: Stanford Diagram Representing Performance After Mitigation of Chirp Signal by ANF
(Upper Panel) And WPD (Lower Panel), Using Weighting Schemes; Elevation (Left), CNO (Middle) And
Hybrid (Right)

Figure 4.35 presents the performance of ANF (upper panel) based mitigation at the
position level in the presence of a Frequency Hopping signal. Following the mitigation
process, it is evident that HMIs are significantly reduced, however, there remain some
instances where the error exceeds 30 m. Moreover, it can also be observed that in com-
parison to the previously presented chirp scenario, ANF completely underperformed in
the frequency hopping case. Notably, the elevation-based model remains the most unsafe,
with 865 MIs (pink) and 49 HMIs (red). Additionally, it can also be observed that CNO
and the hybrid model managed to remove the HMI but significantly increased the system
unavailability.

The results obtained demonstrate that WPD (lower panel) outperformed ANF (upper
panel) in suppressing the distortions induced by the frequency hopping signal. Particu-
larly, in this case, WPD nearly retrieved the same performance as the reference scenario
(see reference case in Figure 4.32). It can be seen that after filtering, normal operations
(white) experienced a significant increase (> 99%) and with no HMI (red) instances. It is
important to note that, as previously demonstrated (see Figure 4.31), the signal quality
improved significantly after applying WPD mitigation in the frequency hopping case. This
improvement directly leads to an increase in the positioning accuracy (mean error 4.5m
and standard deviation 2.8m) and, more importantly, ensures completely safe instances.
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Figure 4.35: Stanford Diagram Representing Performance After Mitigation of Frequency Hopping
Signal by ANF (Upper Panel) And WPD (Lower Panel), Using Weighting Schemes; Elevation (Left),
CNO (Middle) And Hybrid (Right)

4.5.4 Conclusion on Notch Filtering versus Wavelet Transform

We previously presented a comparative study on the two interference countermeasures,
namely Adaptive Notch Filter (ANF) and Wavelet Packet Decomposition (WPD). A
comprehensive analysis has been conducted to evaluate the performance of these meth-
ods against the frequency hopping and chirp signals. The impact of interference and
effectiveness of the mitigation methods have been assessed at multiple stages of receiver
processing, including satellite acquisition, tracking, and position level. In addition, as a
primary objective, we have also provided a comprehensive assessment of positioning Key
Performance Indicators (KPIs): availability, accuracy, and safety concerns, for each of the
presented cases.

The interference scenarios investigated in this study have demonstrated that the jam-
ming signal completely overpowered the satellite signals. It has been observed that signal
acquisition becomes impossible in the presence of interference. This is mainly due to the
increase in the noise power level, which leads to a complete submersion of satellite signal
peak in the noise, as observed in the signal search space. Consequently, the interference
also hindered the satellite tracking process. With the emergence of interference, it be-
came impossible for the receiver to keep tracking the satellite signal, instead, the tracking
loop started to follow the interfering signal. This behavior resulted in fluctuations in the
Carrier-to-Noise ratio (CNO) with an occasional increase in the CNO value beyond the
nominal level. Furthermore, as expected, interference if not mitigated, completely jeopar-
dizes the safety of the positioning system, as seen by a significant increase in Hazardous
Misleading Information (HMI) instances.

Our investigation has shown that ANF and WPD are very effective in suppressing the
interference signal. Upon mitigation, a clear and distinct correlation peak reappeared in
the signal search space. Similarly, mitigation made it possible for the receiver to keep
tracking satellite signals. Moreover, the mitigation results have demonstrated that the
detection and mitigation layer in the localization function is essential in effectively dealing
with the interference signal, whereas an inadequate strategy can also lead to hazardous
consequences endangering the safety of the system, which can lead to a fatal accident. In
most of the studied cases, mitigation of interference led to a significant reduction in HMIs.
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However, this came at the cost of increased unavailability, thus compromising availability
for system safety.

The main concern that arises regarding the choice of parameters for the mitigation
techniques. Even though the two signals, frequency hopping, and chirp, have completely
different signal dynamics, we deliberately applied identical parameters to highlight the
importance of the appropriate parameter selection. The results showed that ANF per-
formed relatively better for the chirp signal than in the frequency hopping case. However,
the mitigation performance could have been much better with proper tuning of the filter.
On the other hand, WPD performed exceptionally well for the frequency hopping case
and almost retrieved a similar performance as in the case of nominal conditions. How-
ever, it was unable to provide similar performance against chirp interference. Perhaps a
different wavelet function, increasing the filter length, or the decomposition stage could
help in achieving better performance. The other prospect regarding the use of classical
weighting models, which could also be recalibrated to reduce unnecessary unavailability,
implies the conditions where the HPE < AL < HPL.

4.6 Summary and Conclusions

The investigations that are presented in this chapter have been conducted in several
stages. In each of these phases, the same experimental protocol has been consistently
followed throughout the research, which is: i) to assess the impact of interference and
ii) to determine the effectiveness of the employed mitigation techniques. Our study aims
to evaluate the preparedness and capability of the existing technology (or techniques) in
managing the issue of radio frequency interference concerning safety-critical applications.
To evaluate this, we presented three scenarios: the reference case - in the absence of an
interference signal, the interference case - without any mitigation, and the mitigated case
- applying a mitigation strategy to filter the interfering signal. Our analysis incorporated
two non-stationary signals, namely frequency hopping and linear chirp. The character-
istics of these signals differ in the way the frequency is gradually varied over time. Fur-
thermore, we have investigated the behavior of the classical weighting schemes including
elevation, carrier-to-noise ratio, and hybrid (that combines elevation and carrier-to-noise
ratio) model.

Our research findings have confirmed that unmitigated interference can have a signif-
icant impact on the availability of the localization system and more importantly, it can
also have potentially serious implications for the safety of the system. Furthermore, we
have observed that the weighting models behave differently in the presence of interference
signals. The weighting model solely based on elevation is the least effective in bounding
the positioning uncertainty, as it does not consider the impact of interference. As a result,
the elevation-based model is not considered a predominant criterion in this case. On the
other hand, the weighting model that involves CNO has shown the ability to reduce (and
in some cases eliminate) HMI instances at the expense of increased unavailability.

In the initial phase, we conducted a preliminary investigation analyzing the effective-
ness of mitigation solutions that are available in the Commercial Off-The-Shelf (COTS)
receiver. During this investigation, the COTS module, which is an integrated mitigation
solution provided by the Septentrio receiver has been employed to effectively filter out the
interference signals. Our findings provide compelling evidence regarding the receiver’s re-
silience and robustness following the implementation of these mitigation solutions, partic-
ularly for the presented interference scenarios. Note that we have considered the receiver’s
entire processing stages as a closed system, which probably involved several complemen-
tary actions that contributed to a highly accurate positioning solution. Upon evaluating
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these findings on the Stanford diagram, it has been observed that after the mitigation the
HMI instances are eliminated, resulting in an exceedingly accurate positioning solution.
Nevertheless, it still could not manage to bring the performance to an acceptable level
as in many instances the positioning points are considered operationally unavailable as
indicated by a higher number of unavailable instances in the Stanford diagram.

The findings in the aforementioned study have motivated further investigation into
existing mitigation solutions found in the literature. Our primary objective remains
unchanged, as we aim to maximize the operational availability of the localization sys-
tem while prioritizing the safety concerns associated with it. To achieve this objective,
three interference mitigation techniques have been implemented namely Karhunen Loéve
Transform (KLT), Wavelet Packet Decomposition (WPD), and Adaptive Notch Filter
(ANF). The findings show that, for the frequency hopping scenario, these mitigation
techniques particularly Karhunen Loéve Transform (KLT) and Wavelet Packet Decompo-
sition (WPD) have proven to be very effective in retrieving back performance to a level
very close to the nominal case. However, when dealing with the chirp scenario, these
techniques could not deliver similar performance as in the previous case to meet the per-
formance requirements. In general, the mitigation process successfully eliminated HMI
instances, however, it also resulted in a considerable number of unavailable points on
the Stanford diagram. The Karhunen Loéve Transform (KLT) study suggested that the
effectiveness of the mitigation countermeasure is conditioned on the parameter choices,
and fine-tuning the threshold leads to a near-optimal performance. We expect a similar
approach could be applied to each of the techniques against the chirp signal, to meet the
performance requirement. This matter will be further addressed in the upcoming chapter.
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Chapter 5

Contribution to the
parameterization of single pole
adaptive notch filter against a wide
range of linear chirp interference

5.1 Introduction
In Chapter 4, we thoroughly discussed the implementation of three state-of-the-art in-
terference mitigation techniques: Adaptive Notch Filter (ANF), Wavelet Packet Decom-
position (WPD), and Karhunen Loéve Transform (KLT). Our primary objective was to
evaluate their performance against frequency hopping and linear chirp signals. We con-
ducted a thorough analysis across different receiver processing stages, emphasizing par-
ticularly Key Performance Indicators (KPIs) related to safety-critical applications. In the
following, we will go through the summary of each technique, explore their limitations,
and discuss the outcome of our investigation.

• Starting with KLT, its computation involves solving the eigenvalues problem and
analyzing them to identify and isolate the principal components associated with
the interference signal. Due to substantial computational demands, it is primarily
considered for post-processing analysis. Furthermore, its realization can be quite
cumbersome, depending on the characteristics of the interfering signal. In our im-
plementation, the KLT analysis showed highly promising results in the frequency
hopping case, particularly in the retrieval of positioning KPIs identical to the nom-
inal conditions. However, for the chirp scenario characterized by a broad spectrum
of signal components affected by interference, the computational cost is particularly
constraining. Thus it required a higher-level decomposition, thereby increasing the
number of observation samples. The calibration of the threshold adds further com-
plexity to the process, limiting the effective recovery of the GNSS signal. In this
case, finding a representative Stanford diagram to demonstrate the effectiveness of
the technique became unfeasible for this specific case. Consequently, after numerous
trials, we decided to halt our investigation, deferring it for future study.

• The WPD decomposes the signal into various frequency sub-bands, allowing local-
ization of the signal in the time-frequency domain. This method relies on the choice
of the wavelet function and the number of decomposition stages. Increasing the
decomposition level generates sub-bands, which subsequently increase the computa-
tional demands. Furthermore, the appropriate selection of a wavelet kernel matching



the characteristic features of the interference signal is crucial but requires exhaus-
tive trials. Our findings showed exceptional performance of WPD-based mitigation
for the frequency hopping case similar to the KLT outcome. However, it could not
perform similarly in the case of a chirp signal. Despite a significant improvement
in positioning accuracy, HMI instances were predominantly replaced by unavailable
instances.

• Lastly, the ANF offers a simple and easy-to-implement solution involving real-time
adaptation to changing signal conditions. It effectively eliminates specific frequency
components of the signal by dynamically positioning the notch around the unwanted
content while preserving the other components. However, the effectiveness of the
filter relies on the selected values of the adaptation step and pole contraction factor.
In the presented scenarios, ANF fell short of meeting the desired performance level,
and the filter tuned with parameters selected from the interval recommended in
various studies proved to be inappropriate. In both cases, mitigation effectively im-
proved positioning accuracy with no HMI but most instances remained unavailable
in the Stanford plot.

Given the aforementioned points, we have selected ANF for further investigation. The
motivation behind this reason mainly lies in its implementation simplicity, widespread us-
age in receivers, and abundance of research interest as a countermeasure strategy against
interference signals. Our current emphasis is on ANF, and our efforts will be directed
towards addressing the observed limitation related to the selection of filter parameters,
specifically tailored for chirp signals. The main goal is to enhance the performance of
ANF, enabling it to effectively handle the challenges posed by linear chirp signals. It is
anticipated that an optimally tuned ANF filter can recover the useful signal effectively,
leading to a global improvement in the KPIs.

This chapter is structured in different sections. Section 5.2 presents the problem state-
ment related to ANF characteristic parameters. Section 5.3 unfolds the initial approach for
the filter parameterization. This involves a detailed breakdown of the process, including
data preparation, labeling, and application of Multivariate Polynomial Regression (MPR)
for modeling the parameters. It subsequently presents the results and analysis, includ-
ing comparisons with other signal-level metrics. In Section 5.4, an improved approach is
introduced incorporating acquisition-level labeling, regression using the Neural Network
method, and a subsequent discussion on performance. Finally, Section 5.5 concludes by
summarizing the outcomes of these investigations.

5.2 Problem Statement: Exploring Adaptive Notch
Filter (ANF) Characteristic Parameters

The existing literature underscores the necessity of appropriate parameterization for op-
timizing the performance of ANF, emphasizing that inappropriate selection not only re-
duces effectiveness but also introduces distortions in the useful signal [5]. Despite these
insights, a notable gap persists in the literature regarding a well-defined methodology
for ANF parameterization. To address this deficiency, this chapter introduces a novel
perspective by investigating and proposing a comprehensive methodology tailored to the
distinct attributes of chirp signals. Before presenting this methodology, let’s examine the
characteristic parameters of ANF including the pole contraction factor, which defines the
notch bandwidth, the notch depth, and the adaptation step.
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In an ideal situation, the notch bandwidth is kept narrow to target a very specific
portion of the spectrum to preserve the useful content of the signal at maximum. To
ensure the stability of the filter, the pole contraction value is typically selected within
the range kα ∈ [0, 1]. Figure 5.1 (a) shows the magnitude response of H(z) for different
pole contraction factor values, and with a unit amplitude (a0 = 1), the notch bandwidth
becomes increasingly narrower as kα → 1.

The second important parameter is the notch depth which represents the magnitude
of the complex estimate that controls the attenuation level applied to the signal. Figure
5.1 (b) shows the magnitude response of H(z) for different values of amplitude with a
constant pole contraction factor (kα = 0.9). The notch filter functions as an all-pass filter
when the amplitude is zero (a0 = 0) and applies spectral null around the central frequency
when the amplitude is a non-zero value (a0 = 1).
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Figure 5.1: Magnitude response of the transfer function H(z) against a) different values of pole factor
(kα) with unit amplitude (left) and b) different values of complex amplitude (a0) with kα = 0.9.

The third parameter is the adaptation step, which determines the speed of the adap-
tation algorithm. In Figure 5.2, the notch frequency estimation for different adaptation
step values is illustrated, for a constant value of the pole contraction factor (kα = 0.8).
To highlight the influence of the adaptation step, a specific scenario involving the GPS
L1 signal sampled at 15 MHz, subjected to chirp interference with a 5 MHz bandwidth,
a 50 µs sweep rate, and a relative jamming to noise power ratio of 15 dB. The smaller
adaptation step (δ = 0.01) leads to relatively lower oscillations in the ramp region while
tracking the frequency variations, but increases the convergence time during the transition
period. Conversely, a larger value of the adaptation step (δ = 0.1) results in relatively
more noise, but it quickly converges to the interference frequency.

Given that the nature of interference is often ambiguous and constantly evolving, it
becomes very important to proficiently suppress the induced distortions. The adaptive
nature of the interference, whether coming from an unintentional source or an inten-
tional source, necessitates an equally adaptive and sophisticated mitigation strategy. The
exploration of ANF becomes crucial in achieving optimal mitigation, given its ability
to dynamically adjust its response based on the specific characteristics of the interfer-
ence signal. However, the effective implementation of ANF requires proper selection of
the aforementioned parameters, which demands a thorough understanding of interference
signal characteristics. In this context, Figure 5.3 presents general processes at the precor-
relation level contributing to an interference management solution where this approach
could be integrated. This solution encompasses various processes, including signal inter-
ference detection, classification, characterization, mitigation, and filter parameter tuning.
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Figure 5.2: Interference tracking performance for different values of adaptation step (δ) with kα = 0.8
against chirp interference ( Bandwidth = 5MHz, repetition rate = 50 µs and JNR = 15 dB )

Following up on the discussion, we will review various processes involved in this solution.

Figure 5.3: GNSS Interference Mitigation Management Solution with precorrelation level processing.

• Detection

The first crucial step in interference management at the precorrelation level involves
the detection of undesirable signals. Various signal processing algorithms, both traditional
and advanced, including machine learning techniques, are employed to analyze samples
for a certain duration and identify the presence of interference.

• Classification
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Once interference is detected, the subsequent classification stage categorizes the nature
of the interfering signal, whether unintentional or intentional. The classification step
would be essential for the activation of targeted countermeasures against a particular type
of interference. In literature, machine learning algorithms are predominately employed
to distinguish between various interference types as presented in Section 3.3.1.9. The
classification stage could allow the system to adapt to different interference scenarios.

• Characterization

Following detection and classification, interference characterization involves a detailed
analysis of the interference properties, including modulation characteristics, frequency
distributions, and spatial attributes. This profound understanding of signal attributes
helps in the subsequent stages, aiding in the selection of the filter and tailoring it for
specific interference types.

• Filter Selection and Optimal Parameter Tuning:

With well-characterized interference attributes, the next step involves selecting ap-
propriate countermeasures, followed by a fine-tuning of the mitigation filter through the
selection of optimal parameters, which will be the primary emphasis of this chapter.
Adaptive filtering techniques permit dynamic adjustment of the parameter in response to
changes in the interference conditions. The main goal remains to isolate the interference
signal while preserving the useful signal. The following discussions will delve into this
stage and present the modeling approaches for ANF parameterization.

5.3 Filter Parameterization with Signal Level Label-
ing (Initial attempt)

In this section, we will present our initial approach, which involves the application of Mul-
tivariate Polynomial Regression (MPR) to model previously discussed ANF parameters.
The comprehensive methodology depicted in Figure 5.4 encompasses a four-step process:

• Initially, in the first step, a diverse database of chirp signals with varying charac-
teristics is created, incorporating variations in bandwidth, sweep rate, and power
level.

• The second step involves a labeling process, where optimal ANF configurations for
each scenario are determined using a RMSE criterion.

• Subsequently, the third step involves a 2-step regression process. Initially, a 3rd
order MPR is applied considering two input features: sweep rate and bandwidth.
Then, a 3rd-order mono-variable polynomial regression is applied to MPR coeffi-
cients to generalize power level variations.

• Finally, in the fourth step, the Generalized Multivariate Polynomial Regression
(GMPR) model represented by polynomial functions is obtained and utilized for
predicting the adaptation step and pole contraction factor values.

In this investigation, diverse scenarios with low, moderate and fast-varying chirp signals
with different power levels are chosen. Now, we will further delve into a detailed discussion
on each of these steps in the following:
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Figure 5.4: The complete processes involved in modelization of ANF parameters



5.3.1 Data preparation
The initial step in our approach involves the creation of interference scenarios charac-
terized by diverse chirp signal attributes. To achieve this, we systematically vary signal
parameters such as power, bandwidth, and repetition rate within realistic ranges. We
considered 46 sweep rate values between 10 and 100 microseconds, 111 bandwidth values
spanning 1 to 12 MHz, and 10 power levels, adjusting the Jammer-to-Signal Ratio (JSR)
between 4 and 22 dB to simulate the proximity of the jammer source.

Figure 5.5: Database creation with record and playback system

The complete procedure involving the creation of the database is shown in Figure 5.5.
In each iteration, a new interfered scenario is recorded by combining pre-recorded GNSS
and interference signals, with a sampling rate of 15 MHz. Thanks to the Stella IQ record
and playback system provided by M3systems, we created a database with more than fifty
thousand scenarios.

5.3.2 Labeling
In the labeling process, the goal is to attribute meaningful tags or labels to the input
features, which in our case are the jammer signal characteristic parameters. This step
requires first the identification of suitable Adaptive Notch Filter (ANF) parameters tai-
lored for each interference scenario. An exhaustive parametric sweep has been performed
to search for the optimal parameters for each scenario, as illustrated in Figure 5.6.

It involves systematically adjusting the filter parameters within a specified range where
pole factor values are varied between 0.2 to 0.9 and adaptation step values are changed
between 0.005 and 0.5. For the selection of the optimal parameter, a Root Mean Square
Error (RMSE) criterion has been applied, which is given as the difference between the
reference and the filtered signal samples. The labels are then assigned to the corresponding
scenario based on minimizing the RMSE, ensuring the closest match between the reference
and the filtered signal

The RMSE is calculated using the formula:

RMSE =

√√√√ 1
N

N∑
n=1

(|x− x̂|)2 (5.1)

Here, x represents the reference GNSS signal, x̂ is the recovered signal after applying
the mitigation process, and N is the number of observation samples. The pursuit of a

93



Figure 5.6: labeling process within database creation

single optimal combination drives the search for the appropriate ANF configuration that
demonstrates the best performance in terms of GNSS signal retrieval. Figure 5.7 shows the
parameter search grid of two distinct cases taken from the database, with the adaptation
step and pole contraction factor on the x-axis and y-axis, respectively, while RMSE is on
the z-axis. The two curves manifest a clear global minimum, indicating a relatively lower
value for the given combinations. Additionally, when comparing Figures 5.7 (a) and (b),
it is evident that the point of minimum moves for scenarios with a different bandwidth
and sweep rate. The parameter combination exhibiting the lowest RMSE value is selected
as the optimal ANF parameter choice. Similarly, each of the scenarios in the database is
tagged with the optimal output combination consisting of the pole factor and adaptation
step. Figure 5.8 shows the selected values of the pole contraction factor and adaptation
step, where the RMSE value is found to be minimum against a wide range of scenarios
with three different power levels.

Figure 5.7: RMSE across the search grid to determine the optimal combination for two distinct cases.

5.3.3 Multivariate polynomial regression (MPR)
Regression analysis serves as a statistical tool to model and quantify relationships within
the dataset, finding applications in diverse scenarios for forecasting and variable analysis.
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(a) (b)

Figure 5.8: Optimal values of a) pole factor and b) adaptation step for different chirp scenarios with
changing bandwidth, sweep rate and power level

The process involves identifying dependent and independent variables, determining the
form of the relationship, computing the regression equation and conducting a thorough
analysis of residuals. Polynomial regression is an extension of linear regression with an
additional polynomial term to describe the nonlinear relationship between the input and
the output variables. This can be applied to a single regressor variable to achieve simple
polynomial regression or to multiple regressor variables in the form of MPR. A n-order
polynomial regression for a signal variable can be expressed as:

y = p0 + p1x+ p2x
2 + . . .+ pnx

n (5.2)

Here, x represents the input variable, y is the output variable, and pn is the coefficient
of the nth-order term. A polynomial regression applied to two or more regressor variables
is considered as MPR. A second-order MPR with two variables x1 and x2 can be expressed
as:

y = p00 + p10x1 + p01x2 + p20x
2
1 + p02x

2
2 + p11x1x2 (5.3)

Here, p10 p01 are called linear effect parameters. p10 p01 are called quadratic effect
parameters. p12 is called quadratic effect parameters. The simplified form of MPR is:

y =
n∑

i=0

n−i∑
j=0

pij x1x2 (5.4)

Figure 5.9: Modeling ANF parameters with a 2-level regression approach.

Figure 5.8 provides a visual representation, revealing a distinct pattern depicting the
underlying relationship between the input signal features (sweep bandwidth, sweep rate,
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and power) and the resulting values of the pole contraction factor (kα) and adaptation
step (δ). Here, the sweep bandwidth and sweep rate generally describe the shape of
the curves, and the power level emerges to shift the curve upward or downward. Figure
5.9 presents a two-level regression approach employed for the modeling, resulting in the
formation of a generalized model represented by two distinct functions.

In the first level of regression, a multivariate third-order polynomial regression is
applied to model the variations of the adaptation step and the pole contraction factor.
The initial regression incorporates the sweep bandwidth and sweep rate as the two input
variables while keeping a constant power level. Figure 5.10 illustrates the regression curve
for the adaptation step and the pole contraction factor approximating variations in the
sweep bandwidth and sweep rate for a constant power level of 22 dB.

(a) (b)

Figure 5.10: Multivariate regression curves a) pole contraction factor and b) adaptation step, for a
complete range of bandwidth and sweep rate with constant power level (JSR = 22dB).

Moving to the second level, a subsequent third-order regression, as illustrated in Fig-
ure 5.11, is applied to the coefficients derived from the initial regression, generalizing
the variations introduced by different power levels. The resultant generalized regression
models are then approximated, which consider three parameters (sweep rate, bandwidth,
and power) as input features for predicting the two output variables (adaptation step and
pole contraction factor).

Considering the generalized model, Figure 5.12 displays the approximated regression
curves generated for complete grid points for three different power levels. To evaluate the
mitigation performance, three distinct scenarios are selected, initializing ANF with the
predicted values, this will be presented in the following section.

5.3.4 Results and Analysis
In this section, we aim to conduct a detailed analysis comparing the performance of
ANF tuned differently using two different combinations of pole contraction factor kα and
adaptation step δ. The first set of parameters is based on the values predicted by the model
earlier, while the second set is an arbitrary choice selected from the interval presented
by most of the studies [118][119]. The performance includes various signal processing
levels, including frequency estimation by the filter, tracking, and Carrier-to-Noise ratio
level. Moreover, Key Performance Indicators (KPIs) such as accuracy, availability, and
safety are also discussed to provide a positioning-level perspective. To create the chirp
database, we utilized the record and playback functionality. The prerecorded IQs acquired
on February 8, 2023, with GPS L1 (1575.42MHz) as the central frequency and a 15MHz
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Figure 5.11: P00, P10 and P01 coefficients of pole factor and adaptation step approximated from the
MRP coefficients to generalize power levels in the regression model.

(a) (b)

Figure 5.12: Approximated curves with a) pole contraction factor and b) adaptation step from the
generalized regression model for different values of sweep bandwidth and sweep rate for 3 different power
levels.

sampling rate, are played back. A radio signal recorder (NI-USRP 2954R) is connected to
a roof antenna, installed in a relatively open sky condition. An interference signal of 30
seconds duration is introduced at around 50 seconds to ensure normal signal tracking at
the start and complete IQs are recorded back with the same system. Three chirp scenarios
with slow, moderated, and fast rates along with different power levels are prepared. Table
5.1 outlines the scenarios with the predicted values of ANF parameters. For clarity, we
will denote ‘Set A’ as the predicted combination and ‘Set B’ as the arbitrary parameter
choice with δ = 0.05 and kα = 0.8.

In the following, we will now analyze the impact of the parameter choice across dif-
ferent levels: notch frequency estimation, signal tracking, carrier-to-noise ratio and, more
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Scenario Category Linear Chirp Parameters Predicted
parameters (Set A)

Bandwidth
[Mhz]

Repitition
rate

[usec]

JSR
[dB]

Pole Cont.
Factor (k̂α)

Adapt.
Step (δ̂)

1 Slow 1 90 17 0.61 0.03
2 Moderate 5 50 9 0.55 0.06
3 Fast 7.5 10 14 0.32 0.26

Table 5.1: Predicted combination for three chirp scenarios under investigation.

importantly, the user KPIs.

• Interference frequency estimation

Figure 5.13 shows the notch frequency estimated by the ANF, offering a performance
comparison for tracking the interference signal with Set A and Set B, for the three
distinct chirp scenarios. In all the cases, Set A (depicted in a blue curve) appears to
be the optimal choice for ANF. It allows the filter to closely track the interference
frequency and simultaneously reduce the noise in the frequency estimation. In
scenario 3, Figure 5.13 (c) demonstrates that ANF tuned with Set B (depicted in
a purple curve) is less reactive to rapid variations in the fast chirp signal, taking
approximately 2µs longer to reconverge to the interference frequency.
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Figure 5.13: Notch frequency estimated by the ANF for the three scenarios with a) slow (Left), b)
moderate (middle) and c) fast (right) chirp with predicted (Blue) and fixed (Purple) values of ANF
parameters.

• Satellite signal tracking

Moving to satellite signal tracking, as depicted in Figure 5.14, for the three chirp
scenarios, with the green curve representing tracking under nominal conditions. In
each interfered case, with the emergence of the interference signal, the tracking loop
shows divergence at around 50 seconds after losing the lock. Simultaneously, it
starts tracking the interference signal, unreasonably increasing the CNO level to
somehow similar levels as in the nominal conditions, as shown in Figure 5.15 (b)
and (c). Scenario 3, featuring a fast chirp, proves to be more challenging, displaying
greater deviation as it accumulates larger tracking errors.
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However, applying the filtering operation using Set A (depicted in a blue curve), the
tracking loop retrieves back the satellite signal with relatively less tracking noise,
improving the CNO estimation in scenario 1. In the same case, Set B (depicted in
a purple curve) exhibits larger fluctuations during the tracking phase, which is also
visible in the CNO estimation. For scenario 2, both Set A and Set B show very
similar performance in tracking and CNO level, as shown in Figure 5.14 (b) and
Figure 5.15 (b) (red curves). Surprisingly, in scenario 3 with a fast-varying chirp,
Set A appears to be an inadequate choice for finding a reasonable compromise for
interference removal. As observed previously, a wide notch (kα = 0.32) with large
steps (δ = 0.26) seems to be better at tracking the interference frequency but fails
to sufficiently suppress the interference content, probably due to the wider notch.
As a result, it introduces relatively more noise in tracking the satellite signal and
results in a low CNO level compared to Set B, as shown in Figure 5.14 (c) and
Figure 5.15 (c).
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Figure 5.14: Tracking performance (PRN 32) in the three scenarios with a) slow (left), b) moderate
(middle) and c) fast (right) chirp; reference - without interference (green), interference without mitigation
(red), mitigation with ANF using predicted parameters (blue) and fixed parameters (purple).
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Figure 5.15: Estimated carrier-to-noise ratio of satellite (PRN 32) for the three scenarios with a) slow
(left), b) moderate (middle) and c) fast (right) chirp; reference - without interference (green), interference
without mitigation (red), mitigation with ANF using Set A (blue) and Set B (purple).

• Positioning level

Now we evaluate the results at the position level, presenting the impact of interfer-
ence and the effectiveness of mitigation on KPIs such as accuracy, availability, and
safety. As a reminder, we utilize the Stanford diagram for a comprehensive evalua-
tion of KPIs, employing the Weighted Least Square (WLS) algorithm with a hybrid
weighting model (product of Carrier-to-Noise ratio and sine-elevation model), as
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detailed in Chapter 2, to compute the positioning solution and the error bound, or
the protection level.

In Figure 5.16, the Stanford diagram presents positioning performance under nominal
conditions, excluding the interference instances from the recorded data. This diagram
serves as a reference for comparison, indicating the maximum achievable performance
expected from the same receiver configuration under nominal conditions. In nominal
conditions, all the points appear in normal operation (white), with zero instances of
unavailability (yellow) and HMI (red). Figure 5.17 shows the impact of interference
in the three cases with slow, moderate, and fast chirps. Here, 62.25 % of points in
the normal operation (white) represent interference-free instances, while the remaining
37.5 % represent 30 seconds of interference duration. In all cases, interference adversely
impacts KPIs, significantly reducing positioning accuracy with HPE> 50m. Furthermore,
unbounded errors, represented by HMI (red), completely expose the positioning system
vulnerability, necessitating a mitigation strategy for positioning safety.

Figure 5.16: Stanford diagram representing positioning performance in nominal conditions

(a) (b) (c)

Figure 5.17: Stanford diagram representing positioning performance for the three cases with a) slow,
b) moderate and c) fast chirp before mitigation.

Moving to Figure 5.18 depicts the positioning performance of scenario 1 (bandwidth =
1 MHz, repetition rate = 70 µ sec, and JSR = 17 dB) after applying ANF mitigation with
Set A (left) and Set B (right) parameters. Mitigation using Set A parameters appears to
significantly improve positioning performance compared to Set B parameters. It reduces
positioning error (HPE <28 m) and increases normal operation (white) to approximately
83%, with 130 instances of unavailability (yellow) and 1 MI (pink). However, Set B
does not retrieve the same level of performance, exhibiting relatively lower positioning
accuracy, with many instances of HPE exceeding 50 m. Additionally, it fails to ensure
complete positioning safety with 135 HMI (red), 143 unavailability, and 112 MI (pink &
orange) instances.
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In scenario 2, as shown in Figure 5.19, both parameter combinations Set A and Set
B demonstrated similar performance. Nevertheless, Set A still exhibits relatively better
performance with around 96% of points in normal operation (white), 30 unavailable, and
0 HMI instances, while Set B has approximately 93% points in normal operation with 49
unavailability, 1 MI, and 3 HMI instances.

Figure 5.20 illustrates the positioning performance in the third scenario with ANF
mitigation using Set A and Set B. In this case, Set A parameters could not improve
as much as in the previous scenarios, with around 75 % normal operation (white), 127
unavailable (yellow), 50 MI (pink & orange), and 60 HMI instances, respectively. However,
Set B performs better with approximately 95% normal operation (white), 25 unavailable
(yellow), 11 MI (pink & orange), and 9 HMI instances.

(a) (b)

Figure 5.18: Stanford diagram representing performance after applying mitigation in the first scenario
with slow varying chirp (bandwidth = 1MHz, repetition rate = 90us and JSR = 17dB) using ANF a) Set
A (δ = 0.03 and kα = 0.61) and b) Set B (δ = 0.05 and kα = 0.8).

(a) (b)

Figure 5.19: Stanford diagram representing performance after applying mitigation in scenario 2 with
moderate chirp (bandwidth = 5MHz, repetition rate = 50us and JSR = 9dB) using ANF a) Set A
(δ = 0.06 and kα = 0.55) and b) Set B (δ = 0.05 and kα = 0.8)
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(a) (b)

Figure 5.20: Stanford diagram representing performance after applying mitigation in the third scenario
with fast varying chirp (bandwidth = 7.5 MHz, repetition rate = 10 µ sec and JSR = 14 dB) using ANF
combination a) Set A (δ = 0.26and kα = 0.32) and b) Set B (δ = 0.05 and kα = 0.8)

5.3.5 Summary of results with other signal-level (precorrela-
tion) metrics

The proposed precorrelation level approach, although it requires a substantial number of
simulations to create models for selecting ANF tunable parameters, proved to be very
effective in the suppression of interference in scenarios 1 and 2. It successfully eliminated
all instances of HMI events and reduced unavailability compared to naively selected values
of the pole contraction factor (kα = 0.8) and adaptation step (δ = 0.05). However,
it underperformed for scenario 3, which involved a fast-varying chirp and resulted in
a significant number of HMI instances. A further investigation revealed that RMSE,
despite covering the complete interference bandwidth, could not find a needed compromise
in removing necessary unwanted content from the signal. On the other hand, with a
naively chosen combination, the ANF took longer to converge but efficiently removed the
unwanted content with a narrow notch. This seems to be a compromise, leaving some
interference residue on the far end and precisely targeting interference close to the central
frequency, which proved to be very effective.

Similarly, our investigation encompassed various other metrics for suitable labeling.
These metrics include Cross-Power Spectral Density (CPSD), Peak Signal-to-Noise Ratio
(PSNR), and Mean Absolute Deviation (MAD). The description of each of these metrics
is as follows:

Cross-correlation spectral density:

The Cross-Power Spectral Density (CPSD) serves as a statistical measure that char-
acterizes the frequency domain relationship between two signals. It specifically describes
how the power of the reference signal is correlated with the filtered signal. Mathemati-
cally, it is represented as the Fourier transform of the cross-correlation function between
two signals. The cross-correlation function is given as:

RXY[m] =
N−1∑
n=0

X[n]Y ∗[n−m] (5.5)

Here, m denotes the time shift, X is the reference signal and Y ∗ is the complex
conjugate of the filtered signal. The discrete Fourier transform of RXY also referred to as
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CPSD, is given as:

SXY[k] =
N−1∑
m=0

RXY[m] · e−jωkm (5.6)

Here, SXY represents the cross-correlation correlation spectral density, and ωk corre-
sponds to the digital frequency of the signal.

Peak Signal-to-Noise Ratio (PSNR):

The term Peak Signal-to-Noise Ratio (PSNR) is the metric that quantifies the rela-
tionship between the maximum amplitude of the signal and the mean squared error of
the time series signal. The PSNR is expressed as:

PSNR = 10. log (
V 2

p−p

MSE ) (5.7)

where the mean squared error (MSE) is given as:

MSE = 1
N

N∑
n=1

(X[n] − Y [n])2 (5.8)

Here, MSE represents the mean squared error, V P −P the peak-to-peak amplitude, X
is the reference signal and y is the filtered signal.

Mean Absolute Deviation (MAD):

The Mean Absolute Deviation (MAD) serves as a statistical metric that quantifies
the average absolute difference between each sample within the given dataset as the
mathematical mean of the entire signal. The MAD can be expressed as:

MAD = 1
N

N∑
n=1

|X[n] −mean(X[n])| (5.9)

Here, X[n] represents each sample and N is the total number of samples in the dataset.

These three metrics are chosen to determine the optimal combination and selection
based on finding the closest match to the reference signal by comparing the metric values
of the reference and the filtered signals. A total of nine distinct chirp scenarios are selected
from the database, each with the same power level (JSR = 10 dB). In figure 5.21, the sce-
narios are numbered in the bandwidth versus sweep rate matrix. The process outlined in
Section 5.3.2 is then repeated to determine a single matrix that unanimously provides the
optimal solution among others. The chosen parameter combinations are applied to fine-
tune the notch filter for the specific scenario during the mitigation process, and then the
navigation solution is estimated using a GPS software receiver. Figure 5.21 summarizes
the outcome from these metrics, presenting the position errors metric after processing a
filtered signal of 10 seconds. Notably, it becomes evident that there is not a single metric
that can be universally considered as the optimal candidate across all scenarios. This
observation suggests that achieving optimal combination selection using a criterion at the
precorrelation level is at least a highly challenging task, prompting exploration of ANF
parameters at alternative levels, which will be presented in the subsequent section.
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Figure 5.21: 3D positioning accuracy of different signal level criterion

5.4 Filter Parameterization with Acquisition Level
Labeling in Final Trail

In the earlier investigations, labeling at the precorrelation level did not emerge as a suit-
able choice, leading to a reevaluation of our approach. In this section, we will explore
the potential of acquisition-level parameter selection for data labeling. To achieve this,
we introduced two major modifications to the previously presented approach, as detailed
in Section 5.3. Firstly, the conventional RMSE criterion will be replaced with a more
tailored acquisition-level criterion, as depicted in Figure 5.22. This modification aims to
construct the labeling process with an acquisition-level approach, indicating the revival
of the satellite acquisition following interference mitigation with the chosen ANF param-
eters. Secondly, a novel dimension is introduced to our methodology by incorporating a
machine learning approach for modeling the selected acquisition-level parameters. Lever-
aging machine learning facilitates the integration of this solution into a cascaded system
with prerequisite steps, including interference detection, classification, and characteriza-
tion, drawing upon numerous ML-based approaches that have already been explored in
the literature.

5.4.1 Acquisition Level labeling
In Chapter 3, we have discussed signal acquisition, a process that employs a correlation
function to align the received signal with a locally generated replica. This method helps
in determining the signal parameters, such as code and carrier offset, of the visible satel-
lites. It is mainly realized by identifying an emerging correlation peak in the signal search
space, as observed in previous investigations. However, interference can introduce ambi-
guities, making it challenging to accurately identify the correct correlation peak, which
may become less distinct or may even disappear, as some of the examples are shown in
Figure 5.23. In our context, we aim to establish an acquisition level criterion to deter-
mine the optimal ANF combination. The selection aims to obtain a relatively cleaner
acquisition search space with a distinct correlation peak. Here, using simple metrics such
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Figure 5.22: labeling process with acquisition level criterion.

as alpha-mean (which is the ratio of correlation peak value and the noise floor) can be
deceptive, particularly because interference may introduce additional energy into the sig-
nal search space. A correlation function is computed, processing a 10 ms filtered signal
with a particular parameter combination. The following rules are applied to remove any
possibility of ambiguities in the signal search space.

(a) Reference (b) Set A

(c) Set B (d) Set C

Figure 5.23: Some examples of signal search space with different sets of parameter combinations.
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• Rule A: Peak location determination

In the initial stage, the process involves determining the peak position, or equivalently,
the cell location, following the implementation of ANF with a specific parameter combi-
nation. Subsequently, given that the peak location under interference-free conditions is
known, the distance between the reference cell and the newly estimated cell is calculated,
as illustrated in Figure 5.24. Ideally, it is expected for a peak to emerge in the same cell
and the resulting distance to remain zero. However, a margin is maintained, and con-
sideration is given to a certain number of nearby cells where the peak could potentially
emerge after the mitigation process.

Figure 5.24: Signal search grid with distance estimation between the cells

• Rule B: Relative peak separation

Following the peak position rule, the next step is to determine the peak metric by di-
viding the maximum correlation value across the entire signal search space by the second-
highest peak value. The ratio serves as a measure indicating the relative difference in
magnitude between the highest obtained value and the other correlation components.

• Rule C: Alpha-mean computation

In the subsequent step, the alpha-mean metric is computed, representing the ratio
between the peak value and the average noise floor in the signal search space, as depicted
in Figure 5.25. The alpha-mean can be expressed as:

αmean = 20 log
(
Xp

E

)
(5.10)

Here, Xp represents the correlation peak value and E represents the average of the
signal search space noise floor.

• Rule D: Parameter Selection, Maximum average peak metric

In the final step, the alpha-mean values of the satellites for which the peak metric
(Rule B) exceeds the threshold are considered. The average value is then computed and
the combination providing the highest value is considered to select the optimal parameter
for tuning ANF, thereby effectively suppressing the given interference scenario. Figure
5.26 shows the outcome of the acquisition-level criterion presented previously for a given
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Figure 5.25: alpha-mean metric, an estimate of the peak-to-noise floor ratio

Figure 5.26: Parameter search grid of a given scenario with a classical alpha mean metric (left) and
constrained logic following the defined rules (right)

interference scenario. The parameter search grid is depicted with a simple alpha-mean
metric on the left and constrained logic following Rule A to Rule D on the right. With
the application of constrained rules, a distinct global maximum emerges, indicating the
optimal parameter combination with the highest average alpha-mean value for the given
scenario. Similarly, the same approach is repeated for the remaining cases to determine
the adaptive step and pole contraction factor to label the database.

5.4.2 Regression with Neural Network (NN) Technique
The application of Machine Learning (ML) algorithms is becoming increasingly popu-
lar in numerous fields, including GNSS, with a primary aim to enhance the resilience of
location-based services. ML algorithms are predominantly used for classification, cluster-
ing, forecasting, and anomaly detection to overcome the challenges inherent in traditional
GNSS systems [74][75][76]. By exploring hidden dependencies in the data or pattern, ML
models are developed to make predictions and decisions. Numerous ML approaches exist,
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designed for specific tasks and datasets. These techniques include supervised learn-
ing, where the algorithm is trained on labeled data; unsupervised learning, which
does not require data labels and is employed for pattern identification; semi-supervised
learning, which combines both supervised and unsupervised learning; reinforcement
learning, where algorithm training also involves interaction with an environment and
network feedback; and deep learning involves complex neural networks to extract com-
plicated features from the data.

Regression is a type of supervised learning that is used to predict a continuous output
variable based on one or more predictor variables. Here, this is accomplished through the
Neural Network (NN) approach, where Multilayer Perceptron (MLP) forms the funda-
mental basis. It consists of components such as an input layer, hidden layers, an output
layer, activation functions, and a collection of weights and biases.

• Input layer

The primary layer in ML architecture is the input layer. It consists of neurons cor-
responding to the number of input features in the data, where each neuron represents a
distinct feature.

• Hidden layer

The intermediate layers positioned between the input and output layers are referred
to as hidden layers. These layers are responsible for extracting and learning complex
patterns and relationships within the data. The neurons of each layer are interconnected
with the neurons of the other layers. The selection of the number of neurons and hidden
layers serving as hyperparameters is selected depending on the complexity of the problem
and is typically determined during the model design phase.

• Output layer

The output layer contains neurons matching the number of output parameters. This
layer provides predictions based on the learned patterns and relationships within the data.

• Activation function

Activation functions are the mathematical operations that determine the output of a
given node or neuron. Basically, the neuron computes the weighted sum of its inputs,
adds bias and then feeds the outcome to the activation function to yield the final out-
put, a process illustrated in Figure 5.27 while the activation functions, including Sigmoid,
Hyperbolic tangent, ReLU, and SoftMax are illustrated in Figure 5.28. Other hyperpa-
rameters, like learning rate, batch size, epochs, and loss function, also influence the Neural
Network’s performance.

The learning rate controls the optimization algorithm step size, affecting the speed
and stability. The batch size indicates the number of training samples in each iteration.
The number of epochs specifies the number of iterations to completely process the training
dataset, and the loss function measures the difference between the model predictions and
the actual values. In network design, hyperparameter tuning has a significant impact
on performance. Therefore, during the training process, several combinations are tested
while changing the number of neurons, number of layers, and activation functions, as
presented in Table 5.2. In our realization, we used the Keras library in Python to design
the neural network model.

Figure 5.29 illustrates the loss function for different hyperparameter configurations
tested for training the model along with the settling time given by the epoch. Among
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Figure 5.27: An illustration of the node output.

Figure 5.28: Activation functions, Sigmoid, Tanh, ReLU and SoftMax.

Table 5.2: Hyperparameters used for the training process.

Hyper-
param-
eter

Learning Rate 0.001
Number of Layers [2, 3, 4, 5, 6]
Number of Neurons [24, 48, 64, 128, 256]
Activation Functions ReLU, Sigmoid and SoftMax
Batch Size and 10 (batch size)
Number of Epochs 50 (epochs)

Evaluation Metric Loss Function Mean Absolute Error (MAE)

the various combinations explored, both the Sigmoid and Rectified Linear Unit (ReLU)
activation functions demonstrate effectiveness in minimizing the training loss and appear
to be a suitable choice for the neural network architecture. However, the SoftMax function
displayed an unstable trend loss function while changing the number of layers and number
of neurons per layer. This led to a rationale for excluding SoftMax during the network
design phase. After careful consideration, we selected the ReLU activation function,
consisting of 4 hidden layers with 64 neurons per layer, a neural network architecture
shown in Figure 5.30. Subsequently, 80% of the database samples are trained on this
network, and the trained model is later employed for the prediction tasks.

Now, the trained Multilayer Perceptron model is prepared to provide predictions re-
lated to the choice of Adaptive Notch Filter (ANF) parameters which will be used for
the suppression of the interference signal. The mitigation performance will be analyzed
in the following section.
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Figure 5.29: Loss functions for hyperparameter tuning.

5.4.3 Performance Analysis

This section presents the performance of acquisition-level parameter selection by com-
paring the results obtained from the parametric search at the position level. Notably, in
the position-level selection, a similar approach has been adopted as presented in Section
5.3.2 and Section 5.4.1. The only distinction being made is that this time the parametric
sweep is exclusively carried out for the three scenarios under investigation and in case
the optimal parameter is chosen based on the resultant 3D positioning error. Although
labeling the complete database in this manner would have been a preferable choice, how-
ever, it proved to be excessively time-consuming and it was therefore not adopted. In the
result analysis, the position-level results are intuitively considered as the reference for the
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Figure 5.30: Neural Network architecture for regression.

performance comparison. Following this, the signal filtered using the parameter predicted
from the acquisition-level approach is then processed with a GNSS software receiver and
these results will be presented in the following discussion. The position-level parameters,
along with acquisition-level predictions from the presented model are listed in Table 5.3.
From now onwards, the position level parameter combination will be referred to as ‘Set
A’ and acquisition level predictions indicated by ‘Set B’.

Table 5.3: Parameter choices at the position and acquisition level for different types of chirp signals

Scenario Category Linear Chirp Parameters Position-level
Selection (Set A)

Acquisition-level
Prediction (Set B)

Bandwidth
[MHz]

Repitition
rate

[µsec]

JSR
[dB]

Pole Cont.
Factor (k̂α)

Adapt.
Step (δ̂)

Pole Cont.
Factor (k̂α)

Adapt.
Step (δ̂)

1 Slow 1 90 17 0.65 0.03 0.7 0.028
2 Moderate 5 50 9 0.75 0.02 0.8 0.009
3 Fast 7.5 10 14 0.8 0.05 0.7 0.060

Now, we will assess the effectiveness of the predicted parameter combination across
different levels of the receiver processing chain. This analysis includes evaluating ANF sig-
nal tracking capability, as well as examining satellite signal tracking and Carrier-to-Noise
ratio and ultimately positioning Key Performance Indicators (KPIs) using the Stanford
diagram.

• Interference Signal Tracking

Figure 5.31 depicts the notch frequency estimation for the three scenarios with slow,
moderate and fast chirp signals. In Scenario 1, characterized by a slow chirp, both param-
eter choices Set A and Set B exhibit very similar performance in tracking the interference
frequency. In Scenario 2, for a moderate chirp, both combinations appear to be relatively
slow in following the interference frequency, with Set B notably 5 µsec slower compared
to Set A. Similarly, in Scenario 3 with a fast chirp, both parameter choices show a very
similar trend, making notch filter less reactive to the rapid variations during the transition
period.

• Satellite Signal Tracking

Figure 5.32 depicts the signal tracking performance for the three chirp scenarios, with
the green curve representing the reference trend under nominal conditions. In each sce-
nario, the satellite signal is overpowered by interference, leading to the divergence of the
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Figure 5.31: Notch frequency estimated by the ANF for the three scenarios with a) slow (Left), b)
moderate (middle), and c) fast (right) chirp with Set A (selection - position level) and Set B (prediction-
acquisition level) values of ANF parameters.

tracking loop at around 50 seconds with the introduction of the jamming signal. Conse-
quently, the receiver starts following the interference signal after losing the lock, resulting
in an unusual increase in CNO level after a brief drop, reaching an equivalent level as in
the normal condition, as shown in Figure 5.33 (b) and (c).
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Figure 5.32: Tracking performance (PRN 32) in the three scenarios with a) slow (left), b) moderate
(middle), and c) fast (right) chirp; reference – no interference (green), interference without mitigation
(orange), after suppression with ANF using ‘Set A’ parameters (selection - position level) and ‘Set B’
(prediction acquisition level) parameter.
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Figure 5.33: Estimated carrier-to-noise ratio of satellite (PRN 32) for the three scenarios with a) slow
(left), b) moderate (middle), and c) fast (right) chirp; reference - no interference (green), interference
without mitigation (orange), after suppression with ANF, using ‘Set A’ parameters (selection - position
level) and ‘Set B’ (prediction acquisition level) parameter.

Following the application of the ANF filter, in each scenario, ‘Set B’ shows slightly
better performance compared to ‘Set A’. In both cases, the mitigation process allows the
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receiver to continuously track the satellite signal with some noise. In Scenario 1, featuring
a slow chirp, there is relatively higher tracking noise, as shown in Figure 5.32 (a), resulting
in an average CNO of 36 dB, as depicted in Figure 5.33 (a). In Scenarios 2 and 3, the
signal tracking is performed with a slight increase in the tracking noise as shown in Figure
5.32 (b) and (c), leading to further improvement in the average CNO, as shown in Figure
5.33 (b) and (c),

Now we evaluate the results at the positioning level, presenting the impact of inter-
ference and the effectiveness of the mitigation on the KPIs such as accuracy, availability,
and safety. As a reminder, we utilize the Stanford diagram for the comprehensive evalu-
ation of KPIs, employing the WLS algorithm with a hybrid model (product of CNO and
elevation model) to compute the positioning solution and its associated error bound or
protection level.

In Figure 5.34, the Stanford diagram reminds the positioning performance under nom-
inal conditions, considering only the interference-free instances. This diagram serves as a
reference, indicating the maximal achievable performance expected from the receiver with
the given configuration under nominal conditions. In normal conditions, all the points
appear in the normal operation (white), with zero instances of unavailability (yellow) and
HMI (red).

Figure 5.34: Stanford diagram representing positioning performance in nominal conditions.

(a) (b) (c)

Figure 5.35: Stanford diagram representing positioning performance for the three cases with a) slow,
b) moderate, and c) fast chirp before mitigation.

Figure 5.35 shows the impact of interference in the three cases with slow, moderate
and fast chirps. Here, 62.25% of the points in the normal operation (white) represent
interference-free instances, while the remaining 37.75% represent 30 seconds of interfer-
ence duration. In all cases, interference adversely impacts KPIs, significantly reducing
positioning accuracy with HPE >50m. Furthermore, unbounded errors, represented by
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HMI (red), indicate the positioning system vulnerability and require a mitigation strategy
for safe positioning.

(a) (b)

Figure 5.36: Stanford diagram representing performance after applying mitigation for Scenario 1 (Slow
chirp) using ANF a) Set A – Position Level Selection and b) Set B – Acquisition Level Prediction.

(a) (b)

Figure 5.37: Stanford diagram representing performance after applying mitigation for Scenario 2 (Mod-
erate chirp) using ANF a) Set A – Position Level Selection and b) Set B – Acquisition Level Prediction.

Moving to Figures 5.36, 5.37 and 5.38, we can observe positioning performance follow-
ing the mitigation process for the three scenarios with a slow, moderate and fast varying
chirp respectively. In each scenario, the two-parameter combinations, Set A and Set B,
demonstrated very similar performance, resulting in an increase in normal operations and
the complete removal of HMIs except for the last scenario. In Scenario 1 (bandwidth = 1
MHz, repetition rate = 70 us, and JSR = 17 dB), both combinations lead to a reduction in
positioning error (HPE < 30). The noticeable decrease in CNO, as shown in Figure 5.33,
contributes to an increase in the protection level, leading to some unavailable instances.
Set B parameter results in a significant increase in the normal operation (white) to more
than 83%, with 122 instances of unavailability, 5 MI (pink), and 0 HMI. In comparison,
Set A parameters provide approximately 86% normal operation with 116 instances of
unavailability, 1 MI (pink) and 0 HMI.

In Scenario 2 (bandwidth = 5 MHz, repetition rate = 50 us, and JSR = 9 dB), the
two combinations exhibit performance closely resembling the nominal case, as presented
in Figure 5.34 with nearly all points in the normal operations and most importantly with
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(a) (b)

Figure 5.38: Stanford diagram representing performance after applying mitigation for Scenario 3 (Fast
chirp) using ANF a) Set A – Position Level Selection and b) Set B – Acquisition Level Prediction.

zero HMIs. Very few unavailable instances give evidence of a significant improvement
in CNO, as depicted in Figure 5.33. Nevertheless, Set B seems to offer slightly better
performance with more than 99% normal operations, 3 instances of unavailability, and
0 HMI compared to Set A combination with more than 99% normal operations, with 5
instances of unavailability and 0 HMIs.

In Scenario 3 (bandwidth = 7.5 MHz, repetition rate = 10 us and JSR = 14 dB), the
performance of both parameter combinations, Set A and Set B, has not reached the same
level, especially considering the complete removal of HMIs, which represent unbounded
position errors, as in the previous cases. Here, Set B, to some extent, appears to be better
with 97% normal operations, including 19 instances of unavailability, 4 MI and 8 HMIs.
In comparison, the Set A combination achieves 95% normal operations, 25 instances of
unavailability, 11 MI (pink & orange) and 9 HMIs.

The results from the three investigated scenarios indicate that selecting ANF param-
eters using the acquisition level criterion is sufficient to achieve performance equivalent
to the position level selection. This approach not only highlights the effectiveness of
the acquisition level parameter selection but also avoids the exhaustive time constraint
associated with position-level labelization in database creation. With these parameter
settings, the mitigation effectiveness of ANF has significantly increased, resulting in a
higher number of normal operations and the successful removal of ‘Hazardous Misleading
Information (HMI). As far as Scenario 3 is concerned, the acquisition level combination
appears to exhibit slightly better performance than the position level. This performance
is attributed to two key reasons: 1) Position-level selection is based on average accuracy
and is not specifically designed to consider the best Stanford representation. This ne-
cessitates finding a balanced compromise to replace HMI with the normal operations at
maximum rather than making these instances unavailable, and 2) the tested combinations
at the position level are conducted with much broader steps to expedite the process. Due
to these two reasons, we consider that the parameter selected by such an approach offers
not a true optimal but rather a near-optimal solution.

5.5 Summary and Conclusions
In conclusion, this chapter significantly contributes to the modeling of ANF parameters for
the effective suppression of interference signals, validating that a properly tuned Adaptive
Notch Filter (ANF) improves the suppression of chirp-like interference signals. This is
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crucial for meeting the performance metrics concerning safety-critical applications where
positioning availability is not solely determined by the accessibility of the positioning
solution with a certain level of accuracy. It also necessitates ensuring that the positioning
error is well-constrained and remains below the alarm limit.

As discussed in Chapter 4, ANF can eliminate Hazardous Misleading Information
(HMI) events, ensuring safe localization depending on the selection of appropriate pa-
rameters. However, it resulted in the substitution of most HMIs with unavailable (PE
< AL < PL) instances, especially when considering Carrier-to-Noise ratio (CNO) mea-
surements in the weighting model. In such situations, two complementary actions could
enhance availability: 1) an optimal choice of ANF parameters and 2) a specific calibra-
tion of the weighting model, possibly adopting a less conservative approach following the
mitigation process. However, the acceptability of recalibration raises important concerns
at the certification level, and it is considered out of the scope of this study.

This study assumes that rapid and accurate characterization of the interference signal
is possible, providing valuable information for adapting mitigation filter parameters to
enhance performance. In this regard, two modeling approaches have been explored to
determine the appropriate ANF parameters, specifically the pole contraction factor and
adaptation step. The initial approach involved modeling the parameter using Multivari-
ate Polynomial Regression (MPR) at the precorrelation level. A parametric sweep was
conducted to filter the signal, while the Root Mean Square Error (RMSE) criteria was
chosen for the optimal parameter selection.

Our investigation involved three scenarios with distinct chirp signal characteristics,
varying the bandwidth, sweep rate, and power level. The finding revealed ANF effec-
tiveness with the predicted parameters for 2 out of 3 scenarios when compared to the
naively selected values of the pole contraction factor (kα = 0.8) and adaptation step (δ
= 0.05). In Scenario 1 and Scenario 2, with slow and moderate chirps, respectively, all
HMIs were removed successfully, resulting in an increase in normal operations with some
instances of unavailability. However, in Scenario 3, involving fast chirp, the ANF failed to
deliver similar performance, leading to a significant number of HMIs. While these results
are promising, they underscore the fact that the RMSE criterion cannot be considered a
universal choice for different chirp scenarios. Similarly, other precorrelation level criteria
such as Cross-Power Spectral Density (CPSD), Peak Signal-to-Noise Ratio (PSNR) and
Mean Absolute Deviation (MAD) were also considered, however, none of them yielded
satisfactory outcomes. These considerations suggest that achieving optimal selection us-
ing criterion at the precorrelation level is highly challenging, prompting exploration of
ANF parameters at alternative levels.

In the final endeavor, a post-correlation (acquisition level) criterion was tailored to de-
termine optimal ANF parameters. This involved computing a Cross Ambiguity Function
(CAF) for each of the tested ANF combinations. Four rules were applied in succession
to avoid ambiguities caused by the interference residue or distortions introduced by the
filtering process. Additionally, the conventional regression approach is replaced by Neural
Network (NN) based regression for modeling purposes. A Multilayer Perceptron (MLP)
comprising 4 hidden layers, each layer composed of 64 neurons, and the ReLU activation
function was employed as an alternative for the network training.

A comparative analysis is presented to evaluate the effectiveness of the ANF-based
mitigation, which was fine-tuned with the predicted parameters provided by the trained
model, in contrast to position-level selection. The results indicated that with the predicted
parameters, ANF performed equally well compared to position-level selection. In Scenario
1 and Scenario 2, ANF completely removed all HMIs with the predicted parameters and
increased the normal operation with very few unavailable instances. However, Scenario
3 presented challenges even after applying near-optimal parameters, resulting in fewer

116



HMI instances suggesting the need for supplementary actions such as the utilization of
sequential filter to further enhance the performance.

117



Chapter 6

Conclusions and Perspectives

6.1 Summary and Conclusions
This chapter serves as a reflective overview of the extensive discussions and insights pre-
sented in the preceding sections, offering a comprehensive summary of key findings and
avenues for future work. Throughout the preceding chapters, an in-depth exploration
of the jamming issue and mitigation solutions in the Global Navigation Satellite System
(GNSS) has been undertaken concerning its utilization in safety-critical land transporta-
tion systems.

Chapter 2 laid the groundwork by providing an overview of the fundamental prin-
ciples of GNSS, encompassing theoretical discussions, core concepts and key definitions
to establish foundations for subsequent discourse. Chapter 3 exclusively concentrated on
the pervasive issue of jamming in GNSS, exploring state-of-the-art countermeasures for
the detection and mitigation of interference signals. The main objectives were to enhance
understanding of the subject, emphasize the significance of addressing interference con-
cerns, present existing solutions and resources required, and acknowledge the inherent
limitations of these mitigation strategies.

Furthermore, Chapter 4 conducted a detailed examination of three distinct techniques,
including Adaptive Notch Filter (ANF), Wavelet Packet Decomposition (WPD) and
Karhunen Loéve Transform (KLT). These techniques, belonging to different categories
and featuring diverse computational requirements, were chosen to address the jamming
issue. Our investigations focused on two specific types of interference signals: frequency
hopping and chirp interference. These signals possess unique characteristics in terms of
how frequency varies over time and are expected to challenge the mitigation filters differ-
ently. The conventional approaches presented in the literature often assessed mitigation
effectiveness at intermediate processing levels. We have chosen to investigate a further
step and also consider the evaluation of positioning Key Performance Indicators (KPIs)
with a specific focus on safety-critical applications, representing a novel consideration in
the analysis. The outcomes of these investigations are outlined as follows:

• The KLT method demonstrated promising results in the frequency hopping case,
which successfully retrieved the positioning KPIs identical to the nominal conditions.
However, the challenge remains the substantial computational demands, especially
for the chirp case. The higher-level decomposition requirement for this scenario,
along with the calibration complexity, leads us to suspend the investigation for
future work.

• Similarly, the WPD technique showed exceptional performance in mitigating the
frequency hopping interference. However, in the case of the chirp signal, there
was a notable improvement in the positioning accuracy and complete removal of



HMI though they were mostly replaced by unavailable instances. Our exploration
specifically employed the ‘Symlet’ wavelet function with 5 decomposition levels,
providing a somewhat limited perspective on the full potential of WPD. To gain a
more comprehensive understanding, future research could explore different wavelet
functions and various levels of decomposition to optimize mitigation performance.

• Lastly, the ANF offers a simple, real-time adaptable solution to eliminate specific
frequency components of the signal. However, its effectiveness relies on the proper
selection of parameters, including the pole contraction factor and adaptation step
value. In the presented scenarios, ANF fell short of achieving the desired perfor-
mance level, as the filter tuned with the parameter values taken from recommended
intervals proved to be inappropriate. Although mitigation effectively improved po-
sitioning accuracy in both cases, predominately replaced HMI by unavailable in-
stances.

Consequently, based on these findings, we selected ANF for further investigation, and
Chapter 5 made a significant contribution by focusing on the modeling of ANF parameters.
The primary objective was to address the existing gap in the literature by exploring the
optimal parameterization of ANF against linear chirp interference. This extensive study
incorporated a diverse range of signals, varying the bandwidth, sweep rate and power level.
The initial approach involved modeling the parameters using Multivariate Polynomial
Regression (MPR) at the pre-correlation level. A parametric sweep was executed to filter
the interference signal with the Root Mean Square Error (RMSE) criteria chosen for the
optimal parameter selection.

In this investigation, three distinct interference signals were included featuring slow,
moderate and fast chirp. The ANF configured with the values derived from the generalized
model proved highly effective in enhancing normal operations and eliminating the HMI
instances for two out of three scenarios. However, in the third scenario featuring fast
chirp, ANF failed to provide similar performance and resulted in a considerable number
of HMI instances. These results were even promising, but it became evident that RMSE
cannot be a universal choice for different types of chirp signals. Similarly, the exploration
of alternate pre-correlation level criterion also did not yield satisfactory outcomes.

The ultimate approach involved exploration at the acquisition level, leveraging the
Cross Ambiguity Function (CAF) for the parameterization task. Furthermore, a neural
network-based regression approach using Multilayer Perceptron (MLP) architecture was
introduced to train the model. Our observation demonstrated that ANF configured with
the predicted values performed exceptionally well, particularly for Scenario 1 and Sce-
nario 2, and retrieved similar performance as in the reference case. However, Scenario 3
remained somehow challenging, resulting in very few instances of HMI. This highlights
that for some cases, even fine-tuning ANF with optimal or near-optimal parameters could
not guarantee HMI-free operations, thereby necessitating supplementary actions, includ-
ing the implementation of a sequential filter for performance enhancement.

6.2 Perspectives
Moving forward, the research outlined in Chapter 5 sets the stage for several promising
avenues for future work that could be conducted in several phases for the refinement
and expansion of the proposed methodology. In the initial stage of enhancement to the
methodology, the following improvements could be applied:

• The presented methodology, which is centered on linear chirp features, proficiently
identifies near-optimal parameters for ANF. This resulted in achieving a position-
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level performance for the given scenarios through acquisition-level parameterization.
However, there is a potential for further improvement in the labeling process of the
methodology such as by exploiting satellite tracking information. This exploration
could involve a comprehensive performance comparison across a broader range of
scenarios, including those not initially considered in the investigations.

• To optimize the filtering performance of ANF, a refinement could be introduced,
such as incorporating a switching mechanism to regulate the filter’s ON/OFF state
and inclusion of another parameter for adjusting the notch depth. These customiza-
tion options would further tailor the ANF response to a desired level, effectively
preventing potential distortions induced by the filter.

• The developed methodology used readily available information about the chirp sig-
nal characteristics, serving as inputs for the constructed models to predict optimal
parameters. In the real-world scenario, the signal features are unknown and have to
be estimated in the signal-processing stage. This layer could be integrated along-
side the developed approach in future work where classification and characterization
blocks will be implemented leading to a comprehensive adaptive interference man-
agement system.

• Another prospect for future work could involve exploring the dependency of front-
end characteristics and GNSS software receiver configuration during the parameter-
ization process. This direction could contribute to a more profound understanding
of the adaptability of ANF to various receiver setups. Leveraging this knowledge
could facilitate fine-tuning of the filter and optimizing its performance for a specific
receiver configuration.

• We introduced a couple of approaches: initially presenting a set of third-order poly-
nomial functions and secondly, employing a neural network to train the model by
learning the dependencies between the input chirp features and near-optimal ANF
parameterization. Future research activities may involve investigating the possibil-
ities of finding symbolic functions for the ANF parameterization. Formulating such
symbolic functions has the potential to provide a deeper insight into the underlying
mathematical principles governing ANF adaptation. This approach offers a practi-
cal and versatile solution, allowing a simple calibration of functions to enhance the
adaptability of ANF for specific configurations, as discussed previously.

Similarly, broadening the scope of this research, the next phase could involve:

• Exploring alternative forms of chirp signals, such as quadratic and algorithmic
chirps, provides an opportunity to customize ANF for a wide range of chirp-like
signals. This would allow testing the versatility and applicability of the ANF for
different types of chirp jammers.

• Furthermore, the research could delve into jammers belonging to other classes, ini-
tiating a comprehensive examination of various mitigation solutions to address a
wider array of potential jamming threats.

• Additionally, the introduction of advanced machine-learning models into interfer-
ence countermeasures involves the exploration of deep learning approaches such as
Convolution Neural Network (CNN) or Recurrent Neural Network (RNN). These
approaches could enhance the capability of mitigation solutions by recognizing com-
plex interference patterns and dynamically adapting the mitigation strategies ac-
cordingly.
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Finally, in the last phase, the overall system’s capability could be significantly en-
hanced by the implementation of complementary actions at different levels. This en-
hancement involves exploiting vector tracking, incorporating multi-array antenna archi-
tecture and integrating multi-constellation and multi-frequency solutions. Furthermore,
the system’s resilience to jamming could be further bolstered by leveraging external aid-
ing from the sensors such as inertial measurement unit (IMU) and odometer that remain
unaffected by jamming influences. The synergies between these diverse technologies and
sensors create a comprehensive defense mechanism, empowering the system to address
sophisticated scenarios involving multiple jammers of various classes and including in-
stances where jammers interfere at different times or simultaneously, as well as scenarios
incorporating dynamic situations with moving jammers and/or receiver.

These aforementioned points collectively could pave the way in setting the foundation
for developing a demonstrator with built-in intelligence, showcasing an adaptive interfer-
ence mitigation management system.
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