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Génération et évaluation d’explications argumentatives en langage
naturel appliquées au domaine médical

Résumé

L’Argument Mining, un domaine en pleine expansion du traitement automatique du
langage naturel (TALN) et des modèles informatiques d’argumentation, vise à recon-
naître automatiquement les structures d’argumentation (c’est-à-dire les composants et
les relations) dans les ressources textuelles en langage naturel. Dans le domaine médi-
cal, l’Argument Mining s’est avérée bénéfique en fournissant des méthodes pour détecter
automatiquement les structures argumentatives afin de soutenir la médecine fondée sur
des preuves. L’importance de ces approches repose sur le fait que, malgré la précision
des modèles neuronaux dans la prédiction de diagnostic médical, l’explication de leurs
résultats reste problématique. Cette thèse aborde cette question ouverte et se concentre
sur la génération et l’évaluation d’explications argumentatives en langage naturel pour
les prédictions de diagnostic médicaux, afin d’aider les cliniciens dans la prise de décision
et l’éducation. Tout d’abord, j’ai proposé un nouveau pipeline complet pour générer au-
tomatiquement des explications en langage naturel d’examens (QCM) médicaux sur les
diagnostics en s’appuyant sur une ontologie médicale et des entités cliniques détectées
à partir des textes d’examen. J’ai défini un système état de l’art de reconnaissance et
de classification des entités nommées médicales (NERC) pour détecter les symptômes
exprimés par les patients et les mesures médicales que j’aligne sur les termes de l’onto-
logie afin de justifier le diagnostic d’un cas clinique fourni aux étudiants en médecine.
Le pipeline, appelé SYMEXP, permet à notre système de générer des explications ar-
gumentatives en langage naturel basées sur des templates afin de justifier pourquoi la
bonne réponse est correcte et pourquoi les autres options proposées ne le sont pas.
Deuxièmement, j’ai proposé un cadre d’évaluation des explications basées sur l’argu-
mentation, appelé ABEXA, pour extraire automatiquement la structure argumentative
d’un QCM médicale et mettre en évidence un ensemble de critères personnalisables pour
caractériser l’explication clinique et l’argumentation du document. ABEXA aborde la
question de l’évaluation des explications d’un point de vue argumentatif en définissant
un ensemble de patterns sur un graphe argumentatif généré automatiquement. Troi-
sièmement, j’ai contribué à la conception et au développement de la suite de logiciels
ANTIDOTE, qui propose différents modules d’intelligence artificielle explicative guidée
par l’argumentation pour la médecine. Notre système offre les fonctionnalités suivantes :
analyse argumentative multilingue pour le domaine médical, explication, extraction et
génération de diagnostics cliniques, modèles linguistiques multilingues pour le domaine
médical, et le premier benchmark multilingue de QCM médicaux.
En conclusion, dans cette thèse, j’explore comment l’intelligence artificielle combinée
à la théorie de l’argumentation pourrait conduire à des systèmes de soins et de santé
plus transparents. Nous appliquons nos résultats au domaine critique de la médecine
en montrant tout leur potentiel en termes de soutien à l’éducation, par exemple, des
étudiants en médecine.

Mots-clés : Traitement Automatique du Langage Naturel, Extraction de structures argu-
mentatives, Argumentation Explicative.
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Argument-based natural language explanation generation and
assessment in healthcare

Abstract

Argument(ation) mining, a rapidly growing area of Natural Language Processing (NLP)
and computational models of argument, aims at the automatic recognition of argument
structures (i.e., components and relations) in natural language textual resources. In
the healthcare domain, argument mining has proven beneficial in providing methods
to automatically detect argumentation structures to support Evidence-Based Medicine
(EBM). The importance of these approaches relies on the fact that, despite the accuracy
of neural models in medical diagnosis, explanation of their outcomes remains problem-
atic. The thesis tackles this open issue and focuses on generation and assessment of
natural language argumentative explanations for diagnosis predictions, supporting clin-
icians in decision making and learning. First, I proposed a novel complete pipeline to
automatically generate natural language explanations of medical question answering
exams for diagnoses relying on a medical ontology and clinical entities from exam texts.
I defined a state-of-the-art medical named entity recognition and classification (NERC)
system to detect layperson symptoms and medical findings that I align to ontology
terms so as to justify a diagnosis of a clinical case provided to medical residents. NERC
module allows our system, called SYMEXP, to generate template-based natural lan-
guage argumentative explanations to justify why the correct answer is correct and why
the other proposed options are not. Second, I proposed an argument-based explana-
tion assessment framework, called ABEXA, to automatically extract the argumentation
structure of a medical question answering document and highlight a set of customis-
able criteria to characterise the clinical explanation and the document argumentation.
ABEXA tackles the issue of explanation assessment from the argumentation viewpoint
by defining a set of graph rules over an automatically generated argumentation graph.
Third, I contributed to the design and development of the ANTIDOTE software tool,
proposing different modules for argumentation-driven explainable Artificial Intelligence
for digital medicine. Our system offers the following functionalities: multilingual argu-
mentative analysis for the medical domain, explanation, extraction and generation of
clinical diagnoses, multilingual large language models for the medical domain, and the
first multilingual benchmark for medical question-answering.
In conclusion, in this thesis, I explore how artificial intelligence combined with the
argumentation theory could lead to more transparent healthcare systems. We apply
our results to the critical domain of medicine showing all their potential in terms of
support for education, for example, of clinical residents.

Keywords: Natural Language Processing, Argumentation Mining, Explanatory Argumen-
tation.
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CHAPTER 1
Introduction

This chapter outlines the motivations behind the work presented in this thesis. It high-
lights the importance of explanations in sensitive domains such as medicine, and justifies
the need for automatically generating natural language explanations. Further, it high-
lights the necessity of characterizing explanations from an argumentation viewpoint,
particularly for educational purposes. It then presents the definition and development
of tools for explanatory argumentation and their adaptation to the medical domain. Fi-
nally, the precise research questions I answered in this thesis are formulated, and an
overview of the manuscript structure is provided.

1.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . . . 9
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1.1 – Motivations 5

1.1 Motivations

Medical decision-making is a process that requires doctors to apply complex reasoning,
taking into account potential symptoms, medical history and patient’s laboratory test
results in order to formulate a diagnosis, decide on a treatment or any type of medical
procedure. In addition, clinical doctors must also be able to justify their choices to pa-
tients, medical residents or other clinicians. Decision explanation is essential as it helps
in strengthening trustworthiness in diagnosis or treatment, allowing other people to un-
derstand reasoning behind medical deliberation. Explanations are even more important in
high-stakes situations where the justification for a treatment or diagnosis is as important
as the decision itself.

Given the complexity of medical data and due to advancements in Artificial Intel-
ligence (AI), thechnological solutions like IBM Watson for Oncology [184] or AI-based
image analysis tools such as DeepMind’s retinal disease detection system [56] have become
essential to assist doctors in a range of medical tasks, such as automatically predicting
diagnoses, surgical robots, and medical image analysis. Systems based on Artificial Intel-
ligence methods, more specifically deep learning, have demonstrated their performance
by ingesting vast quantities of data in order to produce predictions comparable to those
made by humans in certain tasks [66, 79]. These systems have great potential to improve
Evidence-Based Medicine (EBM) by serving as decision-making support for clinicians,
providing rapid and effective predictions over huge quantity of data. However, while AI
offers a significant increase in performance, the process by which these predictions are
made often remains hidden.

Despite the advantages of AI in the medical domain, the majority of systems are based
on neural models considered as “black boxes” [78] where the way the model reaches a
prediction is opaque to users. While clinicians may be able to obtain high-quality predic-
tions about a patient’s diagnosis or treatment, they have no opportunity to find out the
reasons behind such predictions. This problem is of main importance, especially when the
system proposes false or biased decisions, in sensitive use case scenarios like medicine and
law. This lack of transparency is an open challenge in the field of Artificial Intelligence,
being even more significant when it comes to the medical field where trustworthiness and
comprehensibility are critical for decision making. Without a clear explanation based on
verified facts or evidence, these neural approaches are troublesome for the medical field.

To address these limitations, a lot of interest is focused on the field called eXplainable
Artificial Intelligence (XAI) [134, 197, 10], which has the aim of making predictions of
AI systems transparent and understandable to humans. The need for XAI in healthcare
is even more pressing as clinicians need to be able to understand the results of these
approaches in order to profitably employ them in their diagnoses. One research line of
XAI consists in generating natural language explanations that can be directly interpreted
by clinicians or patients. The generation of these natural language explanations relies, in
particular in domain-specific use cases, on the employment of specific (medical) knowledge,
to ground the explanations on reliable evidence and to make the reasoning behind the
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decision more transparent.

While XAI proposes solutions to improve the transparency and interpretability of AI
systems, it often focuses on formally explaining machine learning models and understan-
ding how they employ features to make predictions. While some of these approaches are
human-interpretable, they still require additional effort and a solid understanding of ma-
chine and deep learning methods to fully grasp the results [197]. Looking at XAI systems
that are directly interpretable by humans and in natural language, we find few approaches
that allow us to justify predictions through natural language explanations [223, 54],
and even fewer that are applied to the medical field [40, 118]. Argumentation offers an
opportinity to generate structured natural language explanations increasing human un-
derstanding [169, 50]. In the medical domain, clinical decisions are often built up with
structured arguments, where evidence is presented, weighed, and justified to support a
diagnosis or treatment choice. Although many XAI approaches have been applied to the
medical domain, argumentation-based explanation generation remains underexplored in
healthcare applications. For instance, a medical case typically includes clinical information
about a patient’s health, such as symptoms and test results, which guide a clinician’s
decision on diagnosis or treatment. An approach that focuses solely on extracting this
information cannot justify the clinician’s decision at a further step. Moreover, providing a
natural language explanation for a correct diagnosis or treatment requires understanding
of the argumentative structure to capture the reasoning behind the doctor’s decision.
Addressing this gap between approaches for argument mining and those for the detection
and extraction of expert knowledge towards the generation of coherent and well-grounded
natural language explanations can help clinicians to make informed decisions.

This thesis has been pursued in the context of the European ANTIDOTE project 1,
whose goal is to meet the challenge of providing a unified computational framework for
joint learning of clinical predictions and associated argumentative justifications, promoting
natural interaction with clinicians through explanatory dialogues. More precisely, we aim
at investigating joint learning of predictions such as diagnoses and their supporting evi-
dence across a range of clinical scenarios with varying levels of complexity. This includes
settings where clinical cases contain the majority of necessary evidence, as well as those
where evidence is derived from external knowledge sources. Moreover, we seek to connect
these predictions and their corresponding evidence into logically consistent explanations
following well-established theoretical frameworks in argumentation theory. In addition,
we need to explore how these explanations can be integrated into explanatory dialogues,
where users with different expertise, such as medical students or practitioners, engage
in a task-oriented dialogue aimed at assessing understanding or guiding clinical decision-
making. Lastly, the project aims to establish new benchmarks for generating high-quality
explanatory arguments, with a focus on tailoring explanations to different audiences by
adapting explanation modes to meet user-specific needs.

This PhD thesis aims to address several challenges raised in the ANTIDOTE project by
exploring novel approaches for generating natural language explanations that rely on expert

1. https://univ-cotedazur.eu/antidote
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knowledge automatically extracted from medical documents and aligned with specialized
ontologies. Additionally, it seeks to assess the argumentation of these medical explanations.

1.2 Research Questions

In this section, I detail the research questions I answered in this theis, the methodology
I adopted to answer the research questions, and the scientific publications resulted from
each research question.

The generation of natural language explanations justifying medical decisions is a critical
issue. My first research line has been therefore to explore the generation of argument-
based natural language explanations, so that explanatons are grounded both on facts and
hypotheses extracted from medical documents and in accordance with external reliable
sources of knowledge. More precisely, I answered the following research question (RQ) :

RQ1 : How can we generate structured natural language explanations for medical diag-
noses that integrate expert knowledge and align with it ? This question breaks down into the
following sub-questions :

— How can we automatically identify and interpret patient’s information expressed in
layperson terms to justify medical diagnoses ?

— Does incorporating contextual information from a clinical case improve the align-
ment of extracted patient’s data with structured medical knowledge sources like on-
tologies ?

— How can we generate argumentative explanations in natural language that comply
with reliable medical knowledge ?

I answer this research question in Chapter 3 by focusing on clinical examination cases
for medical students, questioning them about patient diagnoses. I identified, with the as-
sistance of a medical expert, the main features that enable diagnoses to be justified, and
proposed a novel method for identifying them despite the fact that they are described by
the patient in layperson terms. A new dataset of 314 clinical cases annotated with labels
from a medical vocabulary and a medical findings conversion database have been built to
train these models and interpret patient observations.

To address the alignment with external knowledge, I adopted the HPO ontology [110] to
retrieve medical knowledge validated by experts and I aligned the concepts automatically
extracted from clinical cases with the ontology conceptss, by comparing the impact of the
context of the latter on the alignment performance.

Finally, to generate reliable explanations, I worked out templates with a clinician to
avoid any hallucination resulting from the adoption of Large Language Models for the
generation of the natural language explanations. I decided to integrate three approaches
to justify the diagnosis together, highlighting why a certain diagnosis is correct, why the
other options are not, and underlying the relevant information for decision-making that
is missing from the clinical case. The generated explanations are based on the clinical
case’s references, on the ontology’s aligned concepts explicitly associated with the clinical
case’s entities. The explanations are also based on statistical information retrieved from
the ontology.
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Related publications :
— Molinet, B., Marro, S., Cabrio, E., & Villata, S. (2024). Explanatory argumenta-

tion in natural language for correct and incorrect medical diagnoses. Journal of
Biomedical Semantics, 15(1), 8.

— Marro, S., Molinet, B., Cabrio, E., & Villata, S. (2023, February). Natural lan-
guage explanatory arguments for correct and incorrect diagnoses of clinical cases. In
ICAART 2023-15th International Conference on Agents and Artificial Intelligence
(Vol. 1, pp. 438-449).

After the generation of argument-based natural language explanations, particularly in
the medical field, it is necessary to evaluate these explanations, with a special interest on
educational purposes. For residents, developing a proper argumentation in their medical
explanations is essential to improve the quality of the interaction with the patient. In
this thesis, I focused on characterising the argument-based features of natural language
explanations to automatically assess them. The answered the following research question :

RQ2 : Can argumentation be applied to identify specific features of medical explana-
tions ?

To answer this question, I carried out an empirical analysis of clinical cases annota-
ted with argument components (premises, claims) and relations (supports, attacks) and
proposed a set of criteria to characterise the argumentation of medical explanations. In
Chapter 4, I present a novel pipeline to automatically extract the argumentation structure
of medical documents to retrieve the components and relations between arguments compo-
nents. The resulting argumentation graph is then analysed to detect previously introduced
patterns and to provide the writer of the explanation with the characteristics of the latter,
enabling her to improve it.

Related publication :
— Molinet, B., Villata, S., & Cabrio, E. (2022, July). Assessing Argument-based

Natural Language Explanations in Medical Text. In SAC 2025-ACM SIGAPP
Symposium on Applied Computing (under review).

Finally, the development of new specialised tools for explanatory argumentation, parti-
cularly adapted to critical fields such as medicine, is necessary. This allows the development
of more complex underlying pipelines adapted to more specific tasks such as the generation
of explanations based on natural language. I answered this research question :

RQ3 : How to design and develop new tools for the task of argumentation analysis and
natural language argument-based explanation generation for medical applications ?

I answered this research question by designing and developing some tools which are
described in Chapter 5. More specifically, we have developed a tool to automatically de-
tect argumentative structures in medical texts and improved its robustness, incresing also
its modularity and accessibility. We have also focused on the development of multilingual
and multitask LLMs pre-trained on medical documents, showing improved performance on
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under-represented languages for the medical domain. Finally, in the context of the ANTI-
DOTE project, we have proposed a software suite to improve explanatory argumentation,
particularly in terms of explanation generation.

Related publications :
— Cardellino, C., Collias, T., Molinet, B., Hain, E., Sun, W., Agerri, R., ... & Cabrio,

E. (2024, October). ANTIDOTE : ArgumeNtaTIon-Driven explainable Artificial
Intelligence fOr digiTal mEdicine. In ECAI-24-Demos Proceedings-27th European
Conference on Artificial Intelligence.

— Molinet, B., Marro, S., Cabrio, E., Villata, S., & Mayer, T. (2022, July). ACTA 2.0 :
A modular architecture for multi-layer argumentative analysis of clinical trials. In
IJCAI 2022-Thirty-First International Joint Conference on Artificial Intelligence.

— García-Ferrero, I., Agerri, R., Salazar, A. A., Cabrio, E., de la Iglesia, I., Lavelli,
A., Magnini, B., Molinet, B, ... & Zaninello, A. (2024, May). MedMT5 : An Open-
Source Multilingual Text-to-Text LLM for the Medical Domain. In Proceedings of
the 2024 Joint International Conference on Computational Linguistics, Language
Resources and Evaluation (LREC-COLING 2024) (pp. 11165-11177)

1.3 Structure of the thesis

The thesis is organized as follows :

Chapter 2 describes the preliminaries, which are used throughout the thesis. It gives an
overview of the background and methods for representing language numerically, as well
as classical transformer-based approaches. It also covers the fundamentals of Argument
Mining for extracting argumentation from text, as well as an overview of explanatory
Artificial Intelligence, specifically in natural language. Finally, the main knowledge sources
specialized in the medical field are described.

Chapter 3 presents a novel automatic pipeline for generating template-based explanations
for medical diagnoses from medical exams. It addresses the automatic extraction of key
concepts for disease diagnosis and the conversion of health measurements into a standar-
dized vocabulary. A dataset of 314 clinical cases annotated with medical concepts from
ontology is built, together with a conversion database of 100 findings and their boundaries,
developed and validated by a clinician. The explanations are based on concepts detec-
ted and converted in line with a specialized ontology (i.e., HPO) automatically aligned
using a context-sensitive neural method showing superior performance to non-contextual
approaches. Natural language explanation generation is tackled with templates, automa-
tically populated with the detected and aligned concepts according to argumentation pat-
terns justifying why a certain diagnosis is correct and the other options are not, highlighting
missing information to improve the diagnosis explanation.

Chapter 4 explores how medical natural language explanations can be assessed from an
argumentative viewpoint. It analyses the Casimedicos dataset composed of 553 question
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answering clinical cases and introduces a set of criteria to characterize natural language
explanations from an argumentation perspective. A proposed architecture addresses an
end-to-end argument mining pipeline to identify argument components and relations, and
then, analyzes the resulting argumentation graphs to identify patterns which characterize
explanations from an argumentation viewpoint.

Chapter 5 introduces tools for Argumentation-Driven Explainable AI for Medicine. These
tools have been developed or improved, such as the ACTA tool, to increase including perfor-
mance, distribution and the addition of features for evidence-based medicine. The chapter
also introduces the Medical Multilingual T5 (MedMT5) language model, which allows a
multitude of natural language processing medical tasks to be performed in four languages
(i.e., English, French, Italian, Spanish). Finally, the ANTIDOTE tool suite is presented,
offering a number of tools for Argumentation-Driven Explainable AI for Medicine.

Chapter 6 concludes the thesis by summarizing the main contributions. Perspectives for
future research directions and applications are discussed, as well as potential plans to
improve existing work.



CHAPTER 2
Background

This chapter summarizes the preliminaries used throughout the thesis. First, I present the
key concepts which establish the basis of my research work. Next, the ways of represen-
ting language are discussed. They lay the foundation for tools available for carrying out
Natural Language Processing (NLP) tasks. Then, an overview of the Argument Mining
task is given, discussing its main applications. Then, I set the context for Explanatory Ar-
gumentation by zooming in on its formulation in natural language applied to the medical
field. Finally, I present existing resources and knowledge bases in the medical domain.
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The increasing use of AI in healthcare has raised interest in eXplainable AI systems,
particularly in generating natural language explanations. Such systems aim to enhance the
interpretability and transparency of AI-generated predictions by providing explanations
that are understandable to both medical professionals and patients. A promising approach
to enhancing the clarity of these explanations is to employ argumentation, where the
inferential reasoning and justification are the main components.

In this chapter, I explore the fundamental aspects necessary to understand the mecha-
nisms behind argument-based natural language explanation in healthcare. This chapter
bridges the fields of NLP, argumentation theory, and medical knowledge, focusing on how
they contribute to the creation and assessment of explanations. The interdisciplinary na-
ture of this work reflects the complex challenges of generating arguments that are not only
accurate, but also relevant and comprehensible within a medical context.

The chapter is organised as follows. Section 2.1 discusses natural language representa-
tions, an essential basis for NLP models. Section 2.2 presents argument mining, an essential
computational task for identifying arguments from textual data. In Section 2.3, I focus on
explanatory argumentation, which combines principles of argumentation theory and phi-
losophy of explanations to produce meaningful justifications in the healthcare context.
Finally, Section 2.4 reviews medical knowledge bases to ensure that the explanations ge-
nerated are sound and reliable.

2.1 Natural Language Representation

Natural language is a human mechanism of communication that can be processed
thanks to human cognitive functions. Making natural language interpretable and com-
patible with machines is a major challenge in computer science and linguistics [99]. While
many machine learning algorithms perform well on mathematical tasks and make good
predictions on unseen data based on training, applying these methods to language requires
a mathematical representation of the latter. Inherent to NLP, the evolution of language
representation for machines has been dominated by rule-based systems, rapidly replaced by
statistical representations based on machine and deep learning. This numerical represen-
tation of language forms the foundation of all the NLP tasks [93]. The most fundamental
tasks of prediction, inference and generation are grounded in mathematical representations
of language. However, converting text into numbers (i.e., especially vectors) is not an easy
task and depends on many factors such as vocabulary, grammar [44], or context [159].
Context is even more important as it enables words to be disambiguated according to
the situation in which they are used. If this task is sometimes difficult for a human, it
is even more so for a machine, which is why it remains an open question in NLP. The
NLP community has nonetheless proposed a range of solutions that use or do not use
context to represent the language, and has gradually developed different architectures that
are suitable for certain NLP tasks. This section focuses on the use of context to represent
language and then zooms in on the major architectures based on transformers, the most
used architecture to represent and work on language.



14 CHAPITRE 2 — Background

2.1.1 Context-free Representations

Early approaches to natural language representation treat words independently of their
context, assigning each word a fixed numerical representation. This section discusses several
context-free methods, including One-Hot encoding, frequency-based methods, and neural
embeddings.

One-Hot Encoding. One-Hot Encoding is a fist approach for converting words into nu-
merical form, where each word in the vocabulary is represented by a vector of zeros with
a single one at the position corresponding to that word’s index. This approach results in
a high-dimensional and sparse vector space, with dimensionality equal to the size of the
vocabulary. While straightforward to implement, One-Hot Encoding does not capture any
semantic relationships between words and all words are equidistant in this representation,
failing to reflect similarities or differences in meaning. For instance, the words “cat” and
“dog” are represented as entirely distinct, despite their related meanings (e.g., animals).
Moreover, high dimensionality poses computational challenges, especially when dealing
with large vocabularies common in natural language processing tasks.

Frequency-Based Methods. Frequency-based methods represent text by quantifying the
occurrence of words within documents, capturing basic statistical properties of a lan-
guage. A fundamental approach is the Bag-of-Words (BoW) model, which represents a
document as a vector of word frequencies, ignoring grammar and word order while pre-
serving the multiplicity of words [83]. Another widely used frequency-based technique is
Term Frequency-Inverse Document Frequency (TF-IDF), which weighs the importance of
a word in a document relative to its frequency across a corpus [186]. An extension of
these methods involves n-grams, which are contiguous sequences of n words used to cap-
ture local context [180]. N-gram models estimate the probability of a word based on the
occurrence frequencies of its preceding n-1 words, thus incorporating some sequential infor-
mation. While unigram models (n=1) consider individual word frequencies such as BoW
or TF-IDF, bigram (n=2) and trigram (n=3) models account for short-range dependencies
between words. These models have been fundamental in statistical language modeling and
have improved tasks like speech recognition and text prediction. However, n-gram models
suffer from data sparsity issues as n increases and still does not capture long-range depen-
dencies or deeper semantic relationships. While these frequency-based methods are simple
and effective for tasks like information retrieval and text classification, they treat each
word or n-gram as an independent unit without considering broader context. Moreover,
the resulting high-dimensional and sparse representations pose computational challenges.

Neural Representations. Neural embeddings address the limitations of one-hot encoding
and frequency-based methods by capturing semantic relationships between words in a
continuous vector space. This approach was pioneered by Bengio et al. [23], who intro-
duced a neural probabilistic language model (LM) that learns word embeddings jointly
with a statistical LM. A significant advancement came with the introduction of Word2Vec
by Mikolov et al. [133]. Word2Vec includes two architectures : Continuous Bag-of-Words
(CBOW) and Skip-Gram, illustrated in Figure 2.1.
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Figure 2.1 – Word2vec CBOW and Skip-Gram representation. The CBOW architecture predicts
the current word based on the context, and the Skip-gram predicts surrounding words given the
current word.

The CBOW model predicts a target word based on its surrounding context words,
effectively utilizing a sliding window over the text. The Skip-Gram model, on the other
hand, predicts surrounding context words given a target word. Unlike traditional n-gram
models that rely on frequency counts, Word2Vec learns embeddings through prediction
tasks using neural networks, making it more scalable and capable of capturing long-range
dependencies. These embeddings capture both syntactic and semantic relationships, exhi-
biting patterns that allow for vector operations reflecting linguistic analogies (e.g., vectors
“king” - “man” + “woman” results in a vector close to “queen”).

Making use of these concepts, Pennington et al. [157] developed GloVe (Global Vectors),
which combines global word co-occurrence statistics with local context methods. GloVe
constructs a word-word co-occurrence matrix from the corpus and factorizes it to produce
word embeddings. This approach captures both global statistical information and local
context, leading to improved performance on various linguistic tasks.

Further enhancements were introduced by Bojanowski et al. [26] with FastText, which
incorporates subword information into word embeddings. FastText represents each word
as a bag of character n-grams (e.g., “apple” will be represented together with “ap”, “pp”,
“pl”, “le”), allowing the model to generate embeddings for rare or misspelled words and to
handle morphologically rich languages more effectively. This subword approach enriches
the embeddings with morphological information, improving the model ability to capture
word similarities based on shared substrings.

These neural representation methods significantly advance the numerical representation
of language by producing dense, low-dimensional embeddings that capture meaningful
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semantic and syntactic (role and meaning) relationship between words. However, even
if they are trained with pieces of context, they still assign a single vector to each word
regardless of its usage context, limiting their ability to represent words with multiple
meanings. This limitation highlights the need for context-aware representations that adjust
word embeddings based on their usage in different contexts.

2.1.2 Context-Aware Representations

The limitations of context-free models, which assign a fixed representation to each word
and do not consider its usage in context, necessitate approaches that capture the dyna-
mic nature of language. Words often have multiple meanings depending on their usage
in different texts or discourses. Context-aware representations address this challenge by
generating word embeddings that are sensitive to the surrounding words, effectively cap-
turing contextual nuances inherent to natural language. These models enhance the ability
of machines to interpret language accurately, improving performance across various NLP
tasks such as machine translation, question answering, and sentiment analysis.

Recurrent Neural Networks. Recurrent Neural Networks (RNNs) are a class of neural
networks designed to model sequential data by maintaining a hidden state that captures
information about previous inputs [65]. Unlike feedforward neural networks (i.e., that pro-
cesses the entire input data simultaneously), RNNs process input sequences one element
at a time, allowing information to persist across time steps. This architecture makes them
well-suited for processing natural language, where the meaning of a word often depends on
the preceding words in a sentence.

However, training RNNs poses challenges due to the vanishing and exploding gradient
problems, which make it difficult for the network to learn long-term dependencies [24]. The
gradients used to update the network’s weights can become exceedingly small or large as
they are propagated back through many time steps, hindering effective learning.

Long Short-Term Memory Networks. To overcome the limitations of standard RNNs in
capturing long-term dependencies, Hochreiter and Schmidhuber [89] introduced the Long
Short-Term Memory (LSTM) network. LSTMs utilize a more complex architecture that
includes memory cells and gating mechanisms to regulate the flow of information. Each
LSTM cell contains input, output, and forget gates that control the cell state, allowing the
network to learn when to remember or forget information. This structure enables LSTMs
to maintain and update information over longer sequences, effectively mitigating the vani-
shing gradient problem [89]. LSTMs have been successfully applied to various NLP tasks,
including language modeling [193], speech recognition [76], and machine translation [194].

Gated Recurrent Units. Gated Recurrent Units (GRUs), introduced by Cho et al.[43],
provide an alternative gating mechanism to LSTMs while maintaining computational ef-
ficiency. GRUs combine the forget and input gates into a single update gate and merge
the cell state and hidden state, resulting in a simpler architecture with fewer parameters.
The GRU’s gating mechanisms regulate the flow of information, allowing the network to
capture dependencies over long sequences without the complexity of LSTMs [43]. GRUs
have demonstrated comparable performance to LSTMs on various tasks such as machine
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translation and speech recognition [46], often with faster convergence and reduced training
time due to their simpler structure.

Attention Mechanisms. While LSTMs and GRUs improve the ability to capture long-term
dependencies, they can still struggle with very long sequences due to the sequential nature
of their architectures. Attention mechanisms, introduced by Bahdanau et al.[16], address
this limitation by allowing the model to focus on specific parts of the input sequence when
generating each part of the output sequence. In the context of machine translation, the
attention mechanism computes a weighted sum of the encoder’s hidden states, where the
weights are learned to reflect the relevance of each input token to the current decoding
step [16]. This approach enables the model to capture alignments between input and out-
put sequences more effectively, improving translation quality and performance on other
sequence-to-sequence tasks.

These attention mechanisms formed the basis for the development of Transformer ar-
chitectures [202], which rely entirely on attention mechanisms and dispense with recurrence
altogether. Transformers have further advanced context-aware representations by enabling
models to capture dependencies regardless of sequence length with greater computational
efficiency.

RNNs, LSTMs, GRUs, and attention mechanisms represent significant steps forward in
context-aware language representation, enabling models to consider sequential and contex-
tual nature of language. Their development has opened the way for more advanced ar-
chitectures that enhance the capability of machines to understand and generate human
language.

2.1.3 Transformer-Based Architectures and Models

The advent of Transformer-based architectures has enhanced natural language proces-
sing by enabling models to capture long-range dependencies more effectively than previous
recurrent models [202]. These architectures rely entirely on attention mechanisms to pro-
cess input sequences, allowing for greater parallelization and efficiency in training. The
main variants of Transformer architectures can be categorized into encoder-only, encoder-
decoder, and decoder-only models, each serving different types of NLP tasks. Figure 2.2
illustrates the Transformer architecture, highlighting the encoder (left part) and decoder
(right part) components and the flow of information between them.

Encoder-Only. Encoder-only models utilize the Transformer encoder to generate contex-
tualized representations of input sequences without a corresponding decoder component. A
prominent example is BERT (Bidirectional Encoder Representations from Transformers)
introduced by Devlin et al. [58], often used for its encoder part. BERT pretrains deep
bidirectional representations by jointly conditioning on both left and right context using
masked language modeling, where certain tokens are masked, and the model learns to pre-
dict them based on their surroundings. This approach allows BERT to capture nuanced
meanings of words in different contexts. Encoder-only architectures excel in understanding
and analyzing text, making them effective for tasks such as question-answering, natural
language inference, and named entity recognition. Several domain-specific adaptations of
BERT have been developed to enhance performance in specialized areas. For example,
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Figure 2.2 – The Transformer model architecture, consisting of stacked encoder and decoder
layers. Figure adapted from Vaswani et al. [202].



2.2 – Argument Mining 19

SciBERT [20], which is pretrained from scratch on a large corpus of scientific publica-
tions, is tailored for scientific text. Similarly, BioBERT [117], initialized from BERT and
further pretrained on biomedical text, is designed for biomedical applications, while Clini-
calBERT [92], fine-tuned 1 on clinical narratives, is adapted for clinical settings.

Decoder-Only. Decoder-only models consist solely of the Transformer decoder component
and are primarily designed for language generation tasks. The GPT (Generative Pretrained
Transformer) series developed by OpenAI [164, 165, 30, 154], exemplifies this architecture.
Each successive model in the GPT series has increased in size and capabilities, with GPT-
3 [30] being a significant gap in terms of model parameters and performance. GPT models
are pretrained on large-scale corpora using next-token prediction, learning to generate co-
herent and contextually appropriate text by predicting each word based on the preceding
sequence. GPT-3, in particular, has demonstrated strong performance in few-shot learning
settings, enabling it to perform tasks with minimal task-specific fine-tuning or even wi-
thout any fine-tuning, relying instead on prompt engineering. Subsequent models, such as
GPT-3.5 and GPT-4 [154], have incorporated techniques like instruction tuning and Rein-
forcement Learning from Human Feedback (RLHF) to better align generated text with
user instructions and improve the quality and safety of the outputs. These models have
demonstrated remarkable capabilities in generating human-like text and have been applied
to tasks such as text completion, creative writing, and code generation.

Encoder-Decoder. Encoder-decoder models comprise an encoder that processes the input
sequence and a decoder that generates an output sequence. The original Transformer model
proposed by Vaswani et al.[202] is an encoder-decoder architecture. These models are
well-suited for sequence-to-sequence tasks where the output is a transformation of the
input, such as machine translation and text summarization. Another notable example is
T5 (Text-to-Text Transfer Transformer) introduced by Raffel et al.[167], which frames
every NLP task as a text-to-text problem. By pretraining on a diverse range of tasks, T5
demonstrates strong performance across various applications, highlighting the versatility
of encoder-decoder architectures in both understanding and generating text.

These Transformer-based architectures have set new benchmarks in NLP, enabling
models to handle complex language phenomena with greater efficacy. The choice of archi-
tecture depends on the specific requirements of the task at hand, with encoder-only models
excelling in text understanding, encoder-decoder models in sequence transformation, and
decoder-only models in text generation.

2.2 Argument Mining

Argumentation is the human process of presenting reasons, evidence, and logical ana-
lysis to support or refute a claim or position. It involves constructing arguments that are
coherent, persuasive, and logically structured, with the aim of reaching a conclusion that
others can accept based on the presented evidence and reasoning. Argumentation is in-
herent to various domains such as philosophy, linguistics and mathematics, therefore, it

1. The concept of fine-tuning in NLP refers to the process of taking a pre-trained LM and further training it on a
specific task or dataset to improve its performance on that task.
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recently gained attention of the Artificial Intelligence (AI) community, as argumentation
reasoning or analysis might be facilitated by automatic processes.

Argumentation requires human cognitive properties such as argument identification,
language comprehension (represented by semantics and pragmatics), reasoning skills and
knowledge usage. Most of the contributions in computational argumentation carried out
so far does not rely on real unstructured data (described in Section 2.4). Thus, to make
computational approaches applicable to real-world texts, they need to be able to identify in
unstructured data, the structure and process it. To do so, different argumentation theories
propose schemes to model argumentation.

Regardless of various approaches to formalize argumentation structures, they share
the definition of the argument components : claims (i.e., conclusions) and premises (i.e.,
evidence). Argumentation theories predominantly adopted are those of Toulmin [198], Wal-
ton [207] and Freeman [70, 210], proposing argumentation schemes of different granularity.
An onverview of main Argumentation Frameworks proposed in the literature is presented
in Section 2.3. Three of them consider a combination of a conclusion (claim) and some evi-
dence (premises) as the main components of an argument unit [8]. I will ground on this view
of argumentation as the way to model argumentation in a structured machine-interpretable
format in this thesis.

Argument(ation) Mining (AM) stands at the junction of these two worlds of theory
and application with the aims to extract natural language arguments and their relation-
ship from text, with the ultimate goal of providing machine-processable structured data
for computational models of argumentation [116, 32, 137]. Structured argumentation is
usually a graph or a tree with extracted facts and hypotheses presented as nodes and argu-
mentation relations presented as (headed) arcs between the nodes, demonstrating attacked
or supported argument components from natural language texts.
The Argument Mining task breaks down into the following sub-tasks :

i) Argument Components Extraction identifies argument components such as Claims
and Premises within the natural language text.

ii) Relation Prediction identifies relations between argumentation components such as
Support or Attack relations.

Historically, an early contribution in this area is the concept of argumentation zo-
ning [196], where sentences within a scientific paper are categorized according to their
rhetorical purpose, such as referencing background literature or outlining the objectives of
the research. Although this method does not explicitly focus on extracting argumentation
structures, it is seen as a precursor to the development of Argument Mining methods. Li-
mited by computational power and tools, first approaches subdivided the task of Argument
Component Extraction into easier steps such as a) Component Segmentation or Bounda-
ries identification to separate argumentation units from non-argumentation units, and b)
Argument Component Classification to identify the label of the argumentation unit.

The Relations Prediction task was also subdivided into smaller sub-tasks such as c)
Relation Identification to detect if a relation, regardless of the label, occurs between two
components, and d) Relation Classification to predict the kind of relation previously detec-
ted. More recently, due to the huge advancements in NLP methods, many approaches star-
ted tackling Argument Component Extraction and Relation Prediction as an end-to-end
pipeline. The introduction of the transformer architecture BERT [58] led the community
to the direction of pre-trained Language Models (PLM) use and fine-tuning technics that
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allow researchers to create highly performing models [64, 148]. The latest improvements of
Language Models and creation of Large Language Models (LLM) significantly advanced
Argument Mining, so that now AM is being explored as a Text-to-Text task [103]. This
later approach tackle AM as one single step combining component extraction and relation
prediction, generating the argumentation structure as text to be parsed to a graph or a
tree.

The automatic detection and extraction of argumentation structures from texts resul-
ted in new valuable applications. For example, the medical domain requires high precision
regarding diagnosis or treatment decisions, therefore, in evidence-based medicine resear-
chers explore how argumentation structures can assist in decision making [130]. Some other
approaches investigate student argumentation in persuasive essays to achieve better un-
derstanding of argumentation structures [187]. Argumentation schemes are also leveraged
for detection and reconstruction of implicit argument components [82, 9], as their usage
hypothetically facilitates detection process and improves quality of restored components.
Moreover, researchers working on implicit knowledge reconstruction in argumentative texts
also employ argumentation structures for implicitness detection [19, 18]. With the deve-
lopment of LLMs, generative tasks have been proposed in argumentation, such as counter-
argument generation [151].

2.3 Explanatory Argumentation

Explainable Artificial Intelligence aims to make AI systems more transparent by provi-
ding explanations for their behaviors [80], which is especially important in critical domains
like medicine [10], law [11, 175], and politics [153], where trust and accountability are es-
sential. Despite the performance gains of deep learning, these models are often viewed as
“black boxes” [78], making it difficult to understand how they reach conclusions. This opa-
city raises ethical and legal concerns, as it can lead to biased decisions and hinder trust [11],
particularly in sensitive areas like medical diagnosis and legal judgments. XAI addresses
this challenge by enhancing interpretability, thus promoting responsible and reliable AI
adoption.

2.3.1 Interpretability

To address the need of explainable computational models’ behaviour, XAI aims to
provide interpretable and robust explanations that clarify how decisions are made. Inter-
pretability can be defined as the degree to which an observer can understand the cause of
a decision [134] and the literature identified 3 types of models interpretability [197]. Some
approaches and models are interpretable by design [142], such as Linear Models, Logistic
Regression or K-Nearests Neighbors (KNN), meaning that their predictions can be explai-
ned by the model reasoning itself. However, more recent approaches are mainly based on
neural models (i.e., blackbox by nature), thus, they require application of XAI methods
to reach a certain level of interpretability. The two other major categories of approaches
to tackle the lack of interpretability are perceptive interpretability and interpretability by
mathematical structures [197]. Generated Mathematical Structure implies one more layer
of cognitive processing to make the prediction interpretable, employing methods such as
t-distributed stochastic neighbor embedding (t-SNE), Testing with Concept Activation
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Vector (TCAV) [105] or correlation-based Singular Vector Canonical Correlation Analysis
(SVCCA) [168]. On the other hand, perceptive interpretability is considered as human un-
derstandable as it is (i.e., without any further processing), and it is often presented with
visualisation technics. This category is particularly interesting to democratise the use of AI
while giving users explanations they can understand without any additional tools. Saliency
represents perceptive interpretability that aims at assigning values to input components
according to their contributions to the output. The most common saliancy frameworks are
Local Interpretable Model-agnostic Explanations (LIME) [174], SHapley Additive exPla-
nations (SHAP) [122] and DeepLIFT [181]. Other methods of perceptive interpretability,
often used in computer vision, named signal methods aim at tracking neuronal systems
neurons activation to be able, for example, to higlight the impact of a component in a pic-
ture [192, 2]. Some approaches also use attention mecanism [94, 214]. Finally, a high level
category identified in the literature as perceptive interpretability is verbal interpretability.
In contrast with more abstract or mathematically complex forms of interpretability, verbal
explanations can directly express causal relationships or logical statements in natural lan-
guage. As verbal explanation are the easiest to human perception form of interpretability,
they built a path to new research directions and models. Combining verbal interpretabi-
lity to NLP techniques and argumentation structures, we can move to a new direction of
research wich is Explanatory Argumentation.

2.3.2 Explanatory Argumentation

Explanatory Argumentation (EA) or Argumentative XAI refers to the process of provi-
ding reasoning with the primary goal to explain why certain facts, observations, or events
occur. Explaining a fact or a decision in natural language is not easy, and structuring the
argumentation contributes to the difficulty of automating this process. A well-structured
explanation nevertheless makes it easier to convey information and makes the explana-
tion more credible, which is necessary in critical fields such as medicine. Unlike persuasive
argumentation, which aims at convincing an audience to adopt a particular stance or be-
lief [116], EA focuses on offering the best possible explanation for observed phenomena.
This involves constructing explanations that are logically sound, coherent with existing
knowledge, and supported by evidence. Argumentation theory and methods is a good solu-
tion to help in formulating explanations over argumentation components. Argumentation
therefore needs to be formalised and represented so that it can be treated automatically. To
model argumentation, Argumentation Frameworks (AF) [62] are created aiming at unders-
tanding arguments, dialectical relations and semantics. An Argumentation Frameworks is
a way for an agent to manage conflicting information and to draw consequences from it. For
instance, Baroni et al. [17] proposed an overview of AF, while Cyras et al. [55] identified
three categories of AF which we define in the following.

Abstract Arguments (AA). In the first category, arguments are treated as abstract enti-
ties without any internal structure. These frameworks focus on the relationships between
arguments, primarily through attack [62] and, occasionally, support [63] relations. The se-
mantics are defined in terms of extensions—sets of arguments that meet specific dialectical
conditions, such as conflict-freeness.
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Structured Arguments. The second category deals with structured arguments, where ar-
guments are constructed from assumptions [27] and defeasible rules [138, 71]. Unlike abs-
tract arguments, these frameworks consider the internal structure of arguments, focusing
on how they are derived. While they still emphasize attacks between arguments, structured
methods such as dialectical trees [71] are used to represent and evaluate the arguments.

Hybrid Models Using Abstract Argumentation. The third category combines the strengths
of both structured reasoning and AA analysis. In this approach, structured arguments
derived from specialized reasoning methods such as case-based reasoning [53, 51], abductive
logic programming [205], logical deductions [12], or argument schemes [178], are embedded
within AA frameworks.

Argumentation Frameworks based Explanations refer to explanations built by Argu-
mentation framework and can be classified into two categories [55] :

Intrinsic Explanations are built together with the model, making it explainable by
design.

Post-hoc Explanations are generated after the prediction and aim to explain the reaso-
ning of it.

Abstract argumentation frameworks are limited in real case scenarios because they
require to be grounded on a formal representation of data (i.e., arguments) whereas real
cases often are presented through arguments expressed in unstructured form such as natural
language.

2.3.3 Explanatory Argumentation in Natural Language

Within the field of Natural Language Processing, the study of Explanatory Argumen-
tation is gaining traction as researchers focus on automating generation and analysis of
explanations. The challenge for Argumentative Explanations in natural language resides
in the adaptation of existing methods to real cases scenario (i.e., moving from textual data
to argumentation frameworks). Some contributions in Explanatory Argumentation com-
bine natural language and AF, mostly in a post-hoc configuration [223, 54] whereas only
a few proposed a intrasinc approach [51]. Closer to the NLP community, some contribu-
tions started to interest in XAI with approaches focusing on classification [176], Natural
Language Inference (NLI) [33] or Natural Language Generation (NLG) [145, 29]. These
NLG approaches may generate errors on the veracity of the data, which is problematic for
sensitive domains.

2.3.4 Explanatory Argumentation and Medicine

The importance of explanatory argumentation is particularly pronounced in the me-
dical domain, where AI systems (i.e., blackboxes) are increasingly leveraged to support
decision-making processes. Whether it is advising treatments, diagnosing conditions, or
predicting patient outcomes, AI is required to provide clear and understandable expla-
nations to ensure that medical professionals can trust and validate system’s suggestions.
In this context, explanations should align with clinical reasoning processes, integrating
evidence from medical literature, patient history, and expert guidelines. More specifically,
autonomous systems should ideally be based on validated and accepted medical knowledge
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sources such as database and ontologies from the medical community. Previous approaches
propose verbal explanations for very specific cases such as the diagnosis of pneumonia [40],
limited to this pathology which cannot be made domain agnostic. Letham et al. [118]
present rule-based medical natural language explanations, which require a lot of upstream
expert work and system maintenance, and are very difficult to scale. Although the need
of XAI in medicine is already well identified [10], a gap in the literature is noticeable with
almost no contributions producing robust natural language explanations (i.e., well-defined
structure, integrated medical knowledge, expert validation). Therefore, trustworthy XAI
in medicine remains a major challenge that has not yet been addressed.

The intersection of Explanatory Argumentation, NLP, and medicine represents some
challenges. By leveraging NLP techniques, it is possible to build systems capable of pro-
ducing explanations that are both technically sound and accessible to non-expert users.
Current research is focused on addressing several challenges in this area, including :

Capturing expert knowledge. How can we integrate clinical expertise into AI models to
ensure that generated explanations are aligned with medical best practices ?

Improving interpretability. How can we make explanations clear and understandable to
diverse audiences, including clinicians, medical students, and patients ?

Evaluating explanations. Wich metrics and methods should be used to assess the quality
and effectiveness of explanations, particularly in life-critical domains like healthcare ?

The goal is to create AI systems that not only perform well on the predition task, but
also that are capable of engaging in explanatory dialogues, providing explanations that are
coherent, logical, and evidence-based.

2.4 Medical Resources

Medical knowledge forms the backbone of effective decision-making in healthcare. In
the context of AI systems, especially those focusing on Argument Mining and Explanatory
Argumentation, incorporating accurate, comprehensive, and up-to-date medical knowledge
is essential. Due to the hudge variety of applications related to the medical domain and the
difficulty to harvest the expert knowledge, data is represented in over different formats.

Structured medical knowledge provides standardized, well-organized information that
can be easily integrated into AI systems for reasoning, decision support, and generation
tasks. These sources include databases, medical ontologies, classification systems, and ter-
minologies that are foundational to computational healthcare.

2.4.1 Standard Vocabularies

Huge efforts are made in the standardization of medical terminology to numerically
identify medical concepts. A standardised, widely adopted system is SNOMED CT (Sys-
tematized Nomenclature of Medicine - Clinical Terms) [60] 2. SNOMED CT is a compre-

2. https://www.snomed.org/value-of-snomedct
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hensive clinical terminology used across the globe. SNOMED CT’s hierarchical structure
allows precise encoding of medical concepts. The International Classification of Diseases
(ICD) [163], managed by the World Health Organization, is another significant classi-
fication system. It categorizes diseases and health conditions, enabling consistent docu-
mentation, research, and decision-making across healthcare systems. ICD codes are often
employed in AI systems to annotate and categorize medical arguments, ensuring alignment
with globally recognized diagnostic standards. Additionally, such resources as LOINC (Lo-
gical Observation Identifiers Names and Codes) [131] are crucial for standardizing clinical
measurements and laboratory tests. By providing consistent identifiers, LOINC facilitates
integration of diverse data sources, enhancing interpretability and consistency of AI-driven
models. The Unified Medical Language System (UMLS) [25] integrates multiple biome-
dical terminologies into a unified framework. UMLS is widely used for mapping medical
concepts across different vocabularies, making it a crucial tool in NLP applications that
require standardization of clinical terms across different systems.

2.4.2 Medical Knowledge Bases and Ontologies

Ontologies and knowledge bases provide rich, structured information about medical
concepts, their relationships, and clinical guidelines. These resources are often used to en-
hance reasoning capabilities of AI models, allowing them to incorporate expert knowledge
into decision-making. The Human Phenotype Ontology (HPO) [110] provides a standardi-
zed vocabulary of phenotypic abnormalities encountered in human disease organized in a
knowledge base. The main difference with other vocabularies is that HPO provide diseases
and associated medical terms to enhance precision of phenotype-driven diagnostic tools. It
is commonly used in rare disease diagnostics and gene-disease association studies. Another
controlled and hierarchically-organized vocabulary and knowledge base produced by the
National Library of Medicine is Medical Subject Headings (MeSH) [88] thesaurus. MeSH
is used for indexing, cataloging, and searching of biomedical and health-related informa-
tion. Focusing on clinical drugs, DrugBank [109] and RxNorm [121] propose comprehensive
databases containing informations on drugs, their standardizes names, their mechanisms,
interactions, and pharmacological properties.

2.4.3 Natural Language Resources for Medicine

While structured data provide standardization and consistency, a significant amount of
medical knowledge is still embedded in unstructured formats, such as clinical notes, research
articles or textbooks. As Natural Language Processing techniques enable extraction of re-
levant information from unstructured sources, the community interest about unstructured
data is growing. Biomedical literature databases initially made for medical experts and re-
searchers became one of the most popular sources of trustworthy unstructured data to make
NLP algorithms learn about medicine and related domains. BioBERT [117] model pretrai-
ned on biomedical text or ClinicalBERT [92], fine-tuned on clinical narratives, are good
example of the usage of unstructured medical knowledge. More recently, BioGPT [123], a
domain-specific generative Transformer language model pre-trained on large-scale biomedi-
cal literature such as databases like PubMed 3, which indexes thousands of research articles,

3. https ://pubmed.ncbi.nlm.nih.gov/
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clinical trials, and case studies. Other data focusing on patients are Electronic Health Re-
cords (EHRs) that contains vast amounts of patients data, including notes, lab results,
and medical histories. NLP methods are often employed to extract actionable insights
from these records, converting unstructured texts into structured data that can be used
for decision support and explainability. The main concern about such documents is related
to privacy, thus, it is often required to obtain clinician and/or patient approval to make
this data available to use or to anonymize. Similar to EHRs, Clinical Notes and Radiology
reports are rich in detailed patient information, including symptom descriptions, diagnos-
tic reasoning, and treatment plans. They are often written in narrative form, containing
critical observations that are key to diagnostic decision-making. AI systems, particularly
those focused on explainability, utilize NLP to process these unstructured texts, generating
human-readable explanations.

2.4.4 Explanatory Medical Ressources

When focusing specifically on medical data with expert explanations, very few resources
may be retrieved. These resources are needed to develop automatic explanation genera-
tion systems based on language models. They are also useful for empirical analysis of the
structure of explanations. Most of the resources introduced above focus on clinical evidence
or diagnoses, while explanatory data, particularly those which justifies a medical decision
in detail, are very rare. Most resources focus on explaining answers to student exams.
This is the case of MIR Asturias 4, a resource containing questions taken from previous
years at MIR (Medical Intern Resident) exams. The MIR exam is the test required for
doctors to gain access to a position as a specialist in training in the Spanish National
Health System. As the documents are not structured, they have to be processed to extract
the different sections of the document (e.g., questions, answers, explanations, etc.). In the
same area, Casimedicos 5 also presents MIR questions with explanations written by expert
volunteers. Finally, the SAEI (Andalusian Society of Infectious Diseases) resource presents
clinical cases on infectious diseases, with comprehensive differential diagnosis explanations.
SAEI’s detailed differential diagnoses make it particularly valuable for models that require
fine-grained expert knowledge. These resources represent some of the few available data
that contain expert-generated medical explanations, higly valuable to generate and assess
explanations automatically.

4. https://www.curso-mir.com/
5. https://www.casimedicos.com/



CHAPTER 3
Natural Language

Explanation Generation
This chapter describes how expert knowledge can be retrieved from natural language
text and injected into the explanation generation process. More precisely, I present how
to automatically extract information relevant to a medical diagnosis in order to align it
with expert knowledge bases. By focusing on features that are decisive for diagnosing a
disease, two trends have been identified according to their complexity of interpretation.
First, a symptomatic approach based on patient signs and symptoms already provides
a good basis to understand and explain a given diagnosis. Then, medical findings, such
as vital signs and medical measurement, are converted using a newly introduced dataset
that defines the boundaries and terminology of these findings. Once these features have
been detected, converted and aligned with a recognised knowledge base, I use them to
generate reliable and grounded explanations. This chapter includes the work published
in the Journal of Biomedical Semantics (2024)[140], which is built on the initial publi-
cation presented at the International Conference on Agents and Artificial Intelligence
(ICAART-2023)[126].
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In the medical field, the ability to explain diagnostic decisions or recommendations can
enhance medical training, improve trustworthiness of AI systems, and ultimately support
better clinical outcomes [10]. Therefore, automatically generating natural language ex-
planations has recently gained attention, and applying this to the medical domain could
be highly beneficial for many stakeholders, particularly medical students in educational
settings. As a challenging starting point, being able to generate explanations for medical
exams could be valuable in helping students understand clinical cases and could improve
their critical thinking. In this chapter, I explore the potential of generating explanations
for MedQA [96], which presents clinical case exams (comprising a case description, a ques-
tion, and a set of possible answers with only one correct option) from a symptom-based
perspective. Specifically, my goal is to justify why a given diagnosis is correct and why the
alternative diagnoses are incorrect.

Given the critical nature of the medical domain, a primary criterion for automatically
generating explanations is that they are grounded in verified knowledge, ensuring the provi-
sion of accurate and accepted evidence. This requirement presents challenges for generative
models and large language models, as discussed in Section 2.1 due to their difficulties in
controlling the generation process, including issues like hallucinations and biases. As a
result, retrieving information from reliable sources and aligning it with widely accepted
knowledge bases becomes a necessary step before generating explanations. This process
involves detecting medical information from natural language text and aligning it with
structured knowledge. Therefore, I propose a new transformer-based pipeline named SY-
MEXP to automatically extract medical entities (i.e., layperson symptoms) from clinical
cases and align them with a medical ontology. Clinical cases often include basic patient
information such as age, gender, symptoms that justify the visit, and possibly vital signs,
test results, or medical measurement. In this work, I only focus on diagnosis type questions
(i.e., “Which of the following is the most likely diagnosis ?”), where the objective is not to
predict the diagnosis but to explain it. The correct and incorrect answers are already known
as they are provided by medical expert within the dataset. To achieve this, it is necessary
to identify the relevant information from the clinical case and align it with trusted medical
ontologies. For instance, the HPO [110] contains valuable information about diseases and
their associated symptoms. More specifically, I retrieve the answers of the medical exam
withing the ontology and use the aligned detected entities from the clinical case to support
or discard diagnoses.

While medical ontologies are generally reliable and contain a large amount of infor-
mation, they are often specialized and limited to specific types of knowledge, making it
difficult to convert certain clinical case information without prior interpretation. During
my analysis of clinical cases, I discovered that medical findings could be interpreted as
symptoms when they exceed normal values, but most databases lack information about
abnormal values and conversion vocabularies. This is why I propose, in this contribution,
a finding-to-medical term conversion system using a newly introduced database, verified
by a medical expert.

Finally, as discussed in Section 2.3, explanation mechanisms are complex. Delivering
explanations in educational contexts requires a different approach than in other scenarios,
such as persuasive argumentation in conflict resolution. In this work, I explore how to
craft explanations suitable for educational purposes by applying argumentation to enhance
template-based explanations [98].
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This Chapter is organised as follows : in Section 3.1 I introduce existing medical know-
ledge and vocabularies together with two new resources used to ground explanations in
knowledge. In Section 3.2 I present the proposed architecture, while in Section 3.3 I des-
cribe the system implementation, results and error analysis. In Section 3.4 I discuss the
argumentation patterns selected to generate natural language explanations, and I propose
an overview of the related contributions in Section 3.5. Finally, I raise some conclusions in
Section 3.6.

3.1 Ressources

The availability of high-quality clinical data, both in the form of annotated clinical
cases and medical knowledge bases, is crucial for the success of this study. In this section,
I present the foundational data used to generate grounded natural language explanations.
The first part introduces the newly created dataset of 314 clinical cases, annotated me-
dical entities and layperson symptoms, developed through a detailed annotation process
using labels extracted from the UMLS [25] medical metathesaurus. This dataset is em-
ployed for training a Named Entity Recognition (NER) model, which is an essential step
in automatically identifying relevant medical information in clinical cases. The second part
details the creation and expert validation of a medical findings database, which is designed
to interpret 100 findings (i.e., health measurements, observations and test results). These
findings, together with detected symptoms are subsequently integrated into the generated
explanations by converting them into relevant medical concepts from the Human Pheno-
type Ontology. Both resources play complementary roles in the pipeline. The dataset is
crucial for training the NER models, while the findings database is used to convert medical
findings to standardized medical terms to ensure consistency and accuracy in the generated
explanations.

3.1.1 Medical entities dataset

To train and evaluate our language model based approach to identify and extract
medical entities from natural language clinical cases, we rely on the existing MedQA data-
set [96]. MedQA is a free-form multiple-choice open question answering dataset for solving
medical problems collected from the professional medical board exams. More specifically,
the questions and their associated answers were collected from the National Medical Board
Examination in the USA (United States Medical Licensing Examination or USMLE), Main-
land China (MCMLE), and Taiwan (TWMLE). Each question is preceded by a clinical case
that introduces the patient and is followed by a set of options, only one of which is correct.
Additionally, MedQA provides the correct answer, key words, and pieces of text relevant
to the answer, as well as supporting evidence from the textbook “Harrison’s Principles of
Internal Medicine”. Two examples extracted from the original contribution are available in
Figure 3.1. In this work, we only focus on the clinical cases and the questions in English
(i.e., USMLE ). In total, the MedQA-USMLE dataset consists of 12,723 unique questions
on different topics, ranging from questions like “Which of the following symptoms belongs
to schizophrenia ?” to questions about the most probable diagnosis, treatment or outcomes
for a certain clinical case. This latter group, which aims to test medical residents on making
accurate diagnoses, is particularly suitable for generating explanations from a symptom-



3.1 – 3.1.1 Medical entities dataset 31

Figure 3.1 – Two examples of the MedQA original contribution (Jin et al., 2021). The correct
answer among options is marked in bold font. Key words in the question and evidence text to
help answer the questions are highlighted in italic font. Evidence for both examples are from the
textbook “Harrison’s Principles of Internal Medicine”.

based perspective. After filtering the MedQA-USMLE, 314 unique clinical cases associated
with the list of possible diagnoses where extracted to constitute the MedQA-USMLE-Symp
dataset. These clinical cases are student training exams formulated as question answering
documents always composed by the patient description, a question i.e. about the patient
diagnosis in this scenario, and, a set of options with only one (known) correct answer. An
example of a clinical case extracted from the filtered dataset is available in Example 3.1.1.

Exemple 3.1.1 – Clinical Case : A 37-year-old woman is brought to the emergency department
because of intermittent chest pain for 3 days. The pain is worse with inspiration, and she feels she
cannot take deep breaths. She has not had shortness of breath, palpitations, or nausea. She had
an upper respiratory tract infection 10 days ago and took an over-the-counter cough suppressant
and decongestant and acetaminophen. Her temperature is 37.2°C (98.9°F), pulse is 90/min, and
blood pressure is 122/70 mm Hg. The lungs are clear to auscultation. S1 and S2 are normal. A rub
is heard during systole. There is no peripheral edema. An ECG shows normal sinus rhythm and
diffuse, upwardly concave ST-segment elevation and PR-segment depression in leads II, III, and
aVF.
Question : Which of the following is the most likely diagnosis ?
Answers : [Acute pericarditis, Aortic dissection, Gastroesophageal reflux disease, Myocardial
infarction, Peptic ulcer disease, Pulmonary embolism, Unstable angina pectoris]
Correct Answer : Acute pericarditis

The clinical case contains much information about the patient state and generally
contextualize the situation, introducing the patient sex and age, potential symptoms or
events triggering the clinical visit and, sometimes, exposing the patient vital signs, direct
observations or medical measurements.

Annotation of the MedQA-USMLE-Symp Clinical Cases. The aim of this dataset is to help
language models to identify medical informations, therefore it is needed to annotate the
MedQA-USMLE with an extra layer of medical entities. To keep the annotation consistent
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with standard textual annotations in the medical domain [34, 5, 139], the proposed an-
notations are based on an existing vocabulary from UMLS [25], more specifically UMLS
Semantic Types. Among the extensive variety of labels offered by the UMLS Semantic
Types, we chose these specific ones to suit our data and diagnosis based questions : Sign
or Symptom, Finding, No Symptom Occurrence, Population Group, Age Group, Location
and Temporal Concept. Our selection of these seven labels was informed by consultations
with medical experts and determined by their explanatory power in our specific context.
We mainly focus on the Sign or Symptom and Findings labels as they offer critical insights
for the diagnosing task. However, in anticipation to the development of a more fine-grained
approach as future research, we have conducted a comprehensive annotation across all se-
ven labels, allowing for future reuse and exploration of these additional dimensions. It is
important to note that annotating layperson symptoms and medical findings is a subjec-
tive task and annotators could interpret differently the same patient statement, therefore,
in order to obtain high quality annotations we created a set of guidelines 1 to help them.
Among the annotations conflicts, a well identified difficulty concerned the boundaries of
entities, making us specify for most of the labels the annotation details with rules with
examples as describe in the following paragraphs :

Overall instructions. As we aim to have a granular annotation, entities (e.g., Sign or
Symptom) have to be as small as possible and need to be separated when multiple occur-
rences appear in a single sentence. As shown in Example 3.1.2, symptoms (i.e., entities in
bold) are self-contained, separated in multiple components and do not include the punctua-
tion in the components boundaries. Example 3.1.3 shows a case of intricated components
where separating them will waste important informations therefore, components are anno-
tated as one bigger symptom.

Exemple 3.1.2 – A 45-year-old woman has a 2-week history of increased anxiety, abdominal
discomfort, irritability, and difficulty concentrating ; she was robbed at knifepoint in a parking
lot 3 weeks ago.

Exemple 3.1.3 – He also has a 1-year history of joint and muscle pain in his calves and a 1-month
history of intermittent, diffuse abdominal pain.

Sign or Symptom / No Occurence of Sign or Symptom. Following the definition of UMLS
we adapted it for the Sign or Symptom component described as “an observable disease
or condition in the clinical case including the symptoms from the past, the symptoms not
related to the patient (family antecedents) and considering all kinds of diseases (physical,
mental, ...)”. As shown in Examples 3.1.4, 3.1.5 and 3.1.6, symptoms can appear as expert
medical vocabulary (e.g., “insomnia”), disease names (e.g., “Crohn disease”) or layperson
descriptions of symptoms (e.g., “difficulty concentrating”).

Exemple 3.1.4 – A 45-year-old woman has a 2-week history of increased anxiety, abdominal
discomfort, irritability, and difficulty concentrating ; she was robbed at knifepoint in a parking
lot 3 weeks ago.

Exemple 3.1.5 – She had an extensive abdominal operation 5 years ago for Crohn disease.

1. https://github.com/Wimmics/MEDQA-USMLE-Symp
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Exemple 3.1.6 – She says that despite the test results, she has had anxiety, insomnia, and a
preoccupation with cancer since noticing the lump.

Quantifiers are often found at the boundary of an entity and when defining a symptom
should not been annotated (e.g., when we find “diffuse abdominal pain”, we only annotate
“abdominal pain” as in exemple 3.1.3). The label No Occurence of Sign or Symptom respect
the same rules than Sign or Symtom except that this symptom is not observed in the clinical
case or is resolved as in the examples 3.1.7, 3.1.8 and 3.1.9.

Exemple 3.1.7 – He has not had chest pain or shortness of breath.

Exemple 3.1.8 – On cardiac examination, no murmurs or gallops are heard.

Exemple 3.1.9 – Her dysuria has resolved.

The labels Sign or Symptom and No Symptom Occurrence are associated only to the
text snippet defining the symptom in a sentence. The boundaries of these components may
include the body part affected by the symptoms when they are strongly related as shown
in Exemple 3.1.3. This decision is driven by the fact that annotating “pain” alone will loose
too much information about the diagnosis. When a symptom is related to multiple body
parts, we annotate the locations separately as described further.

Findings. Findings are the aggregation of vital signs, clinical measurements and labora-
tory test. They consist of informations discovered by direct observation or measurement of
an organism’s attribute or condition. Findings often (but not always) contain a numerical
value or a quantitative indicator that need to be interpreted by a medical expert. They
appears within many patterns but contains in most of the case three parts (i.e., Finding
Name, Unit, Value). For instance, in “Her temperature is 39.3°C ” the Findings Name is
“Temperature”, Unit is “°C” and Value is “39.3”. An example of findings annotation from
the guidelines is shown in Example 3.1.10. It is noticeable that some findings, mostly tests,
does not have numerical values but rather boolean values “test of the stool for occult blood
is positive” and still need to be further interpreted by a medical expert to be useful in the
diagnostic prediction or explanation.

Exemple 3.1.10 – Her temperature is 37.2°C (98.9°F), pulse is 90/min, and blood pressure
is 122/70 mm Hg, test of the stool for occult blood is positive Her temperature is 39.3°C
(102.8°F), pulse is 104/min, respirations are 24/min, and blood pressure is 135/88 mm Hg.

Location. To provide a complete annotation and grasp all the useful informations for
further works we annotated the locations in the human body relying on the three following
UMLS semantic network labels Body Location or Region, Body Part, Organ, or Organ
Component and Body Space or Junction. Example 3.1.11 differentiate the symptom from
the body part where it occurs, while in previous example 3.1.3 the symptom pain is strongly
related to the associated body part, i.e., abdominal, therefore we annotate both of them
as a symptom. As a criterion to annotate coherently the symptoms, is assumed that if the
symptom semantics changes when removing the location, then we include the location in
the component.

Exemple 3.1.11 – A grade 3/6 harsh systolic ejection murmur is heard at the left upper sternal
border.
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Temporal Concept. Clinical cases concerning diseases often refer to the past of the patient
or mention disease’s duration. Therefore, we decide to annotate the Temporal Concept from
UMLS semantic network, including the duration, references to patient’s history or changes
in symptoms is used to tag time-related information, including duration and time intervals.
The temporal concept component includes the time descriptors as “for 3 days” or “10 days
ago” and the scales (day, weeks, ...) as in Example 3.1.12 and 3.1.13. We also consider
the adverbs like “sudden” in Example 3.1.14 as temporal concept, because it can play a
relevant role in the diagnosis.

Exemple 3.1.12 – For 8 weeks, a 52-year-old man with a 5-year history of type 2 diabetes
mellitus has had deep burning pain in the ball of his right foot and big toe when the foot is raised
above chest concentration.

Exemple 3.1.13 – A 56-year-old man has had the painful weeping rash shown for 2 days.

Exemple 3.1.14 – A 4-year-old girl has the sudden onset of abdominal pain and vomiting.

Population and Age Groups. Finally, given their main role in the diagnosis, we also an-
notated the gender and age components in our clinical cases with the Age Group and
Population Group labels. These labels are the easiest to identify due to the document ar-
chitecture, describing the clinical case by introducing the patient population group and
age as shown respectively in examples 3.1.15 and 3.1.16. The component also includes the
“year-old” specification because of the possibility to encounter age measurement in months
or weeks, especially for newborns.

Exemple 3.1.15 – A 37-year-old woman comes to the physician because of shortness of breath
for 3 months.

Exemple 3.1.16 – A 16-year-old boy is admitted to the emergency department because of a knife
wound to the left side of his chest.

Guidelines were provided together with two different and representative examples, avai-
lable with colored entities in Appendice A.1.

Edge cases. As for the symptoms, in some clinical cases we can encounter some enmeshed
components as illustrated in Example 3.1.17. Here both “red” and “ulcerated” refer to the
“lesion”, but they cannot be split in two self-contained symptoms’ component. The solution
we choose is to include both components in one as in the example.

Exemple 3.1.17 – Physical examination shows a 6-mm, red, ulcerated lesion with heaped bor-
ders.

Example 3.1.18 shows a tricky example of a symptom triggered by a specific event.
This action is potentially relevant, so it should be included it in the annotated component.

Exemple 3.1.18 – The symptoms are moderately exacerbated by exertion.

Example 3.1.19 shows a clinical case where symptoms are put forward through com-
mon words as “stops working” or “lot of energy for work”. These layperson symptoms are
considered as hard to be detected automatically.
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Exemple 3.1.19 – He has had a lot of energy for work but often is distracted to the point that
he does not complete assigned tasks. He frequently stops working on his own tasks to attempt to
develop greater efficiency in his shop. He states that he is delighted with his newfound energy
and reports that he now needs only 4 hours of sleep nightly.

Example 3.1.20 represents a comparison between two body parts which are enmeshed.
Since they cannot be divided as “left pupil is larger than the right” and “left pupil reacts
sluggishly to light”, we consider it as a single long symptom. This example respects the
overall instruction asking fos the smallest possible and self-contained components.

Exemple 3.1.20 – The left pupil is larger than the right and reacts sluggishly to light.

Mental diseases, exemplified in Example 3.1.21, were identified as harder to annotate
because of the peculiarity of their symptoms, so we follow and match as much as possible
the symptoms available from the external knowledge database (i.e., the HPO) to annotate
these examples.

Exemple 3.1.21 – He has been your patient since early adolescence, and he has a history of
truancy, shoplifting, and two attempts to run away from home. He dropped out of high school
in his senior year. He was fired from his most recent job because he threatened a coworker with
a hammer.

Finally, in some patient introduction, the gender is revealed later and using the gender
pronouns as in example 3.1.22

Exemple 3.1.22 – After the seizure, she was confused and had difficulty thinking of some words.

Annotation Settings To address the annotation process of the MedQA-USMLE-Symp da-
taset, we conducted a semi-automatic annotation using the UMLS database. Since we de-
cided to annotate with labels inspired by UMLS, each clinical case was processed through
the UMLS system, which provided all detected entities along with their Concept Unique
Identifiers (CUI) and semantic types. The semantic type was then used to disambiguate
the entities and generate pre-annotated files. After the definition of the detailed annota-
tion guidelines 2 in collaboration with clinical doctors, three annotators with a background
in computational linguistics carried out the annotation of the pre-annotated 314 clinical
cases.

To assist the annotators, we initiated the process with a pre-automatic annotation
using the Brat visualization tool [188] together with QuickUMLS 3, a tool that leverages
UMLS data and pre-annotate them into the Brat visualization tool. This automatic an-
notation was then manually corrected and completed by annotators using the HPO for
diseases and relevant symptoms. To ensure the reliability of the annotation task, the inter-
annotator agreement (IAA) has been calculated on an unseen shared subset of 10 clinical
cases annotated by three annotators, obtaining a Fleiss’ kappa [69] of 0.70 for all of the
annotated labels, 0.61 for Sign or Symptom, 0.94 for Location, 0.71 for Population Group,
0.66 for Finding, 0.96 for Age Group and 0.96 for No Symptoms Occurrence. We can see

2. https://github.com/Wimmics/MEDQA-USMLE-Symp
3. https://ir.cs.georgetown.edu/resources/quick-umls.html
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a substantial agreement for Sign or Symptom, Finding and Population Group, and an al-
most perfect agreement for Location, Age Group and No Symptoms Occurrence. Table 3.1
reports on the statistics of the final dataset, named MedQA-USMLE-Symp. 4 The accu-
racy of the annotations provided by the three annotators has been validated by a clinical
doctor. Of the seven entity labels, only three contain medical vocabulary (Sign or Symp-
tom, Finding, and No Symptom Occurrence) and they have been evaluated by this expert.
More specifically, we randomly sampled 10% of the data (i.e., 30 cases) and we asked the
clinician to verify whether the entity was correctly labeled and whether there were any
missing or extra words. The results of the validation showed that 98% of the data was
labeled correctly. Errors were distributed randomly, being the majority of them annota-
tion errors with missing/extra letters from the labels (e.g., “itchy rash” annotated as “tchy
rash” or “generalized joint pain” annotated as “eneralized joint pain”). Less than 2% of the
instances were evaluated as incorrectly labeled (e.g., a Finding that was labeled as a Sign
or Symptom or vice versa).

We also manually annotated our test set with HPO terms equivalent to the annotated
symptoms in the clinical cases. Out of the 162 symptoms identified, 88 were aligned with
the concepts in the ontology in order to evaluate the alignment task define further in
Section 3.2. These annotations are available within the project repository.

TABLE 3.1 – Statistics of the MedQA-USMLE-Symp dataset.

Label # Entities
Sign or Symptom 1579
Finding 1169
Temporal Concept 567
Location 498
Population Group 364
Age Group 304
No Symptom Occurrence 264

Knowledge Base of Diseases and Relevant Symptoms. In the previous step, we focused on
identifying and annotating medical entities present within the clinical documents, expres-
sed in natural language. However, this alone is not sufficient to explain the correctness
or incorrectness of diagnoses. To generate automatic explanations of diagnoses from a
symptom-based perspective, it is also necessary to identify diseases and their associated
symptoms using existing knowledge bases. To achieve this, we utilize the HPO knowledge
base to determine whether a symptom detected in the previous step is relevant to a given
disease (i.e., one of the options in the clinical case question-answering). Specifically, we
employ the HPO to retrieve : (i) each clinical case diagnosis proposed as an option for the
question “Which of the following is the most likely diagnosis ?” and (ii) the symptoms (re-
ferred to as terms in the HPO) associated with each diagnosis. As previously described in
Section 2.4, the HPO is a comprehensive, structured vocabulary for describing phenotypic
abnormalities encountered in human diseases, frequently used in genetic and rare disease
research. We chose to use the HPO over other resources such as SNOMED CT because

4. https://github.com/Wimmics/MEDQA-USMLE-Symp
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the HPO includes additional valuable information, such as the frequency 5 of symptom
occurrence. This information is defined in collaboration with ORPHA 6 and provides a
occurrence rate of symptoms such as :

— Excluded (0%) ;
— Very rare (1-4%) ;
— Occasional (5-29%) ;
— Frequent (30-79%) ;
— Very frequent (99-80%).
— Obligate (100%) ;

The occurrence rates are particularly valuable in our application scenario for generating
fine-grained explanations that encourage critical thinking of medical students. The HPO
integrates multiple sources of symptoms, including ORPHA and OMIM 7. The HPO on-
tology is extensive and contains also structural informations such as hierarchical links
between symptoms (e.g., symptom S2 subclass of symptom S1), genes or definitions. Since
the HPO knowledge base is structured, we developed an automatic script to retrieve au-
tomatically the ontology terms associated to each clinical cases options (i.e., diseases).
Concerning the options, a first batch were identified using the HPO search engine through
exact term matching whereas the rest of options were retrieved manually for the test set
of the MedQA-USMLE-Symp dataset. It’s worth noting that some diseases could not be
found in the HPO, usually because they were either too abstract or too specific (e.g.,
“seizure disorder,” “primary hypersomnia”). The missing diagnosis alignment impact on
explanation generation is discussed further in Section 3.4.

3.1.2 Medical Findings database

While annotating the MedQA-USMLE-Symp dataset, the “Findings” entities appeared
to be a valuable source of information about the patient condition and often the key to
distinct two diagnoses. As presented in the previous section, finding is a group that includes
patient measurements, vital signs, test and analysis results or observation. If findings are
already mentioned in some biomedical vocabularies such as LOINC, the majority of them
does not contain findings but the interpretation of them (e.g., fever wich is the result of
a high “Temperature”, specifically more than 37.3°C). Moreover, a consequent number of
HPO terms associated to clinical cases options are also the consequences of a finding and
can be inferred from detected findings in the MedQA-USMLE-Symp dataset to enhance
the explanatory power of this approach. As observed and discussed with medical experts,
findings interpretation involves two steps : i) identifying the normal boundaries, and ii)
linking them to the appropriate medical term. This complexity drives the need to build a
specific database that encompasses the most frequent occurring medical findings within our
clinical environment. These data will be used to automatically convert detected findings
to medical terms (e.g., temperature is 39°C → fever).

Database description. The medical findings database is designed to facilitate the inter-
pretation of medical test results, converting raw findings, such as “Platelet count is 100,000

5. https://hpo.jax.org/app/browse/term/HP:0040279
6. https://www.orpha.net/consor/cgi-bin/index.php?lng=FR
7. https://www.omim.org/
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TABLE 3.2 – Low findings values and their corresponding LOINC codes, medical terms, HPO
codes, ICD-10 codes and SNOMED CT codes for glucose and platelet count.

Finding LOINC Value Medical term HPO ICD-10 SNOMED
Glucose (Glu) 97510-2 70 mg/dL Hypoglycemia HP :0001943 E16.2 271327008
Platelet count 74775-8 150000 mcL Thrombocytopenia HP :0001873 D69.6 74576004

TABLE 3.3 – High findings values and their corresponding LOINC codes, medical terms, HPO
codes, ICD-10 codes and SNOMED CT codes for glucose and platelet count.

Finding LOINC Value Medical term HPO ICD-10 SNOMED
Glucose (Glu) 97510-2 99 mg/dL Hyperglycemia HP :0003074 R73.9 -
Platelet count 74775-8 450000 mcL Thrombocytosis HP :0001894 D75.83 6631009

platelets per microliter of blood”, into equivalent medical terms, in this case, “Thrombo-
cytopenia”. To this goal, it is necessary to determine whether a given value is classified
as “high” or “low” with respect to its normal values, and subsequently associate it to a
relevant medical term. In this study, we define “normal values” as those provided by known
medical sources 8 and from the MED-USMLE tests themselves [96], bearing in mind that
these values are simplifications and do not account for different ethnicity, gender-specific
findings, or age-related variations. In order to ensure the comprehensiveness of the da-
tabase, to foster future reuse of the resource and to maintain compatibility with existing
systems, we have also associated each medical term with corresponding medical codes from
the International Classification of Diseases version 10 (ICD-10), the HPO, the international
health terminology standard SNOMED CT (July 2023 release) and, the findings names are
associated with their LOINC codes. As introduced in Section 2.4, the ICD is a globally
recognized system for categorizing diseases and other health conditions, maintained by the
World Health Organization (WHO). The SNOMED CT is a comprehensive, multilingual
clinical terminology system that covers a wide range of medical concepts, including di-
seases, symptoms, and procedures. Finally, since LOINC proposes a standard vocabulary
for findings, we recently added LOINC codes, obtained from the webapp 9 to the database.
To obtain LOINC codes we used the SearchLOINC version 2.78 and retrieved automati-
cally the first result if exist. A representative example of the final database can be found in
Table 3.2 for low values, and Table 3.3 for high values. As we convert findings into medical
terms for each boundary, appear that some of the terms could not be found in some of the
vocabularies due to their symptoms-centered architecture. Missing codes does not remain
a problem due to the existence of unified medical encoding systems such as UMLS.

Semi-automatic database creation. Developing a new knowledge resource specifically tai-
lored for our requirements in the medical domain presents a considerable challenge, parti-
cularly given the significant manual effort and human involvement necessary to conceive,
collect, align, and verify the data. Moreover, obtaining expert assistance in the medical
field can be difficult due to the demanding nature of the work and the workload of medical
professionals. Consequently, we propose a semi-automatic method for generating a data-

8. https://emedicine.medscape.com/article/2172316-overview
9. https://loinc.org/search
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base by harnessing the capabilities of state-of-the-art generative large language models,
such as ChatGPT [30, 154], which are pre-trained on huge amounts of text, including me-
dical documents. As these LLMs proved their performances without being specially trained
for specific tasks or domain it appear to be a perfect tool to draft a new database, using
the accumulated knowledge from the training literature. To automatize the creation, we
constrain the language model to generate knowledge in a tabular format expressed as free
text (i.e., Markdown format) as the following example :

| Finding | Low reference value | High reference value |
| [FINDING] | ? | ? |

This free text is subsequently parsed using regular expressions, allowing for the extraction
of structured data to be incorporated into the database directly. This database is then
refined and verified by domain experts as explained below. It is important to notice that
applying a semi-automatic approach to fill in the first and basic version of the database
already significantly reduces the manual effort. To assess this semi-automatic approach we
addressed both : i) an automated evaluation through comparison with an existing database,
and ii) a human evaluation involving a medical expert for correction and validation of the
database.

Automated evaluation : If no existing database or knowledge base provide an alignment
of findings boundaries and their interpretation in medical terms (i.e., temperature is consi-
dered high when above 37.3°C and can be converted to the medical term fever), some of
them provide non-structured studies over laboratory reference ranges. Therefore, a first au-
tomatic evaluation of our semi-automatic approach is based on this manually restructured
database of laboratory reference ranges for healthy adults 10, in order to see if such Large
Language Model would be useful for assisting the database creation. This database pro-
vides reference ranges for various categories such as Electrolytes, Hematology, Lipids, Acid
base, Gastrointestinal function, Cardiac enzymes, Hormones, Vitamins, Tumor markers,
and Miscellaneous, but does not specify the medical terms associated with these values. To
evaluate our method, we used in the same condition the generative language model several
times on the Electrolytes category as the gold standard of our test set of 22 findings and
44 boundaries. Since all the values are numerical we compute the accuracy on the mean
value of the multiples runs for each finding and compare with the gold. This proxy score
gave us an understanding of the efficacy of LLMs in generating factual data in the medical
domain, particularly medical findings related values. This evaluation also assesses whether
this method could be used “on the fly” to predict detected elements not present in the
final database. It is important to highlight that the values are not strict and that they will
strongly depend on the patient but to make a first simplified approach we established a
prediction threshold at 20% around the gold value. For example the high reference value
for Zinc is 100 µmol/L, so accuracy will be 1 for a prediction of 100 µmol/L, 0.8 for a pre-
diction of 80 or 120 µmol/L and 0 if the prediction is above 120 or under 80 µmol/L. Using
the ChatGPT-3 language model, our method achieves a model accuracy of 78% and 80%
for low and high values, respectively, with a mean based on five predictions for Electrolytes.
To obtain the prediction, 5 instances of the LLM were run and a vote for the majority

10. https://emedicine.medscape.com/article/2172316-overview
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TABLE 3.4 – Comparison of version 3.5 and 4 of ChatGPT language models with varying runs
and threshold settings, illustrating the impact on low and high accuracy metrics.

LM Run Threshold Low acc. High acc.
v-3.5 3 20% 0.64 0.73

3 50% 0.79 0.82
5 20% 0.64 0.79
5 50% 0.78 0.84

v-4 3 20% 0.63 0.72
3 50% 0.8 0.82
5 20% 0.63 0.73
5 50% 0.8 0.81

selected the answer (i.e., 3 instances proposed 100 and 2 instances proposed 80 make the
system select 100). We processed an error analysis and looked at the LLM predictions
and it showed that some findings are not known by the LLM but most of the incorrect
predictions occurs due to the gray zones around gold values. This gray zone is the fact that
the same finding will be interpreted differently according to the patient (gender, ethnicity,
age) and combine with the potential units where the finding could be expressed with, lead
to most of the LLM errors. However, the final database was meticulously validated by an
expert (medical doctor).

We experimented with both version 3.5 and 4 of the ChatGPT LLM for the semi-
automatic database creation. Observing the results in Table 3.4, we found that both
ChatGPT-3 and ChatGPT-4 showed good performance in generating boundaries values
for medical findings, suggesting that these models can be reliably employed later in the
proposed pipeline. It is worth noticing that the number of run predictions used to calculate
the average has no impact on the result. To get some insights on the generated data, as
visualized in Figure 3.2, a few findings account for the majority of appearances in clinical
cases.

Human evaluation : In order to meet the medical requirements, we employed the expertise
of a clinician to evaluate a subset of our medical findings database, more precisely the
25 most frequent findings (as they appeared in our data) and 25 random findings (not
among the 25 most frequent). The goal of this evaluation was to validate the normal range
boundaries and associated medical terms for both “high” and “low” values across these 50
findings. This process yielded a total of 100 unique medical terms for validation, following
the structure depicted in Table 3.2. This subset represents a third of our entire findings
database, which has been extracted from our clinical cases.

Additionally, we provided the medical expert with a form to assess the relevance of our
approach to translate medical findings into medical terms. The form contained three key
questions : i) Is it medically sound and feasible to translate a finding such as “Temperature
is 39°C” into a medical term like “Fever,” and what are the limitations of such an approach
from a medical standpoint ?, ii) Are there always corresponding “high” and “low” values ?,
and iii) How precise should we be when defining boundary values and units ? To summarize
the results of the expert analysis, we concluded that i) this approach is considered to be
medically accurate and relevant for the majority of the cases, except for some findings that
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Figure 3.2 – Overview of our matched findings, ordered by occurrence in MedQA-USMLE-Symp
clinical cases.
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are context dependent such as “Acid-fast stain” that need to be associated to a bacteria
to make sense. The second point also highlight that ii) some findings could not have both
boundaries, such as the finding “vision”, that could only be lower than normal and therefore
have only one boundary and associated term. Finally the medical expert emphasized that
iii) biological values are not strict and often associated to a shallow acceptable value echoing
with our gray zones thresholds used to calculate the accuracy of the LLM predictions.
However, this later point is not the case in MedQA clinical cases, as they present clear-cut
cases which support the students’ training.

Following the expert’s corrections, we discovered that our database creation using the
ChatGPT-4 algorithm showed a good performance, achieving an accuracy rate of 78%. An
analysis of the matched findings, ordered by finding occurrence, is visualized in Figure 3.2.
This figure shows that errors were predominantly associated with the less represented
findings, thereby highlighting a limitation of LLMs, i.e., their ineffectiveness to return
knowledge from underrepresented data even in a contextual setup.

3.2 Proposed Architecture

The primary goal of this contribution is to generate natural language explanations
that justify why a given diagnosis is correct and why other options are incorrect, based
on the details of their clinical case. In this section I present the methods used to build
the SYMEXP explanatory pipeline 11 which is based on the following components : First,
clinical cases are analysed by i) a Medical Named Entity Recognition model, trained over
the newly annotated MedQA-USMLE-Symp dataset presented in Section 3.1. This model
mainly extracts two important informations namely symptoms and findings. Findings are
then provided to the ii) Medical Finding Translation module in order to convert them into
medical terms (e.g., temperature is 39.3°C → fever). After that, both detected symptoms
and converted findings are provided to a iii) Medical Term Alignment module with the aim
to align them with the HPO vocabulary and assign them to correct or incorrect diagnoses
(i.e., options of the clinical case). Finally, we generate iv) template-based Natural Language
Explanation, relying on the aligned symptoms and findings with the ontology and the
occurrences rates from OMIM and ORPHA. I propose an overview of the architecture,
called SYMEXP, in Figure 3.3.

3.2.1 Entities Identification

In order to accurately diagnose a patient’s condition, it is important to identify the
symptoms that are most relevant to the possible diagnoses. This means searching through
the symptoms that have been detected and reported in the clinical case, and determining
which ones are most likely to be related to the patient’s condition. This can be done by
considering the individual symptoms and their potential relevance to the possible diagnoses.
It is also important to consider any additional information that may be available, such as
the patient medical measurements, observation or test (i.e., findings), to be able to fully

11. We do not report any experiment carried out on live vertebrate (or higher invertebrates), humans or human
samples. As we rely on standard benchmarks in the field of AI in medicine, it is not possible to identify patient/partici-
pant information as the clinical cases are not real cases but they are explicitly conceived for training medical residents.
Our research does not concern either human transplantation research, nor it reports results of a clinical trial.
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Figure 3.3 – Overview of our full pipeline for terms detection, conversion, alignment, and NL
explanation generation module. The steps are i) Medical Named Entity Recognition, ii) Medical
Finding Translation, iii) Medical Term Alignment with ontology and iv) Natural Language Expla-
nation Generation.

explain the diagnosis. This first part of the pipeline identify a list of medical terms detected
from the clinical case and converted from detected findings in order to prepare them to be
further align with the HPO.

Entities detection. As introduced before, we rely on the USMLE dataset described in Sec-
tion 3.1. In USMLE clinical cases, patient often express the symptoms in its own words
and this layperson vocabulary is not well detected by standard medical NER systems [171].
In order to extract a maximum of information from clinical cases, we propose a neural
approach based on pre-trained Transformer Language Models, fine-tuned on manually an-
notated entities from our proposed MEDQA-USMLE-Symp dataset (Section 3.1), so as to
incorporate layperson terms and findings into our training set. More specifically, we cast
the detection problem as a sequence tagging task. Following the BIO-tagging [170] scheme,
each token is labeled as either being at the Beginning, Inside or Outside of a component.
This translates into a sequence tagging problem with five labels, i.e., B-Sign-or-Symptom,
I-Sign-or-Symptom, B-Finding, I-Finding and Outside.

Findings Interpretation. While symptoms entities can be aligned with the concepts in
the ontology without any extra processing (e.g., pain in the head → headache), findings
show more complexity to be relevant for diagnoses. Findings vary in the way they are
presented but often include the value—unit pair, allowing them to be compared with
“normal values” to make sense and represent the patient’s condition. Our NER system
does identify findings in clinical cases (results are showed in Section 3.3) but no existing
vocabulary or database provides automatic interpretation of them. This is why we have
created this new database of findings, presented in Section 3.1, presenting the most common
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Figure 3.4 – Findings to medical terms converter module.

findings, their normal values and the terms associated with abnormal values. As discussed
below, the findings, after conversion, strongly resemble symptoms that we could detect with
our NER (e.g., temperature is 39°C → fever). This is why we need an automatic conversion
system to increase the number of terms to be aligned, and therefore, the number of potential
arguments (i.e., symptoms) for our explanations. Figure 3.4 shows in detail the conversion
module (ii) taking the detected findings and returning a list of medical terms to be added
to the list of detected symptoms. This new list of medical terms and layperson symptoms
will be sent to the HPO alignment module (iii). More specifically, this module convert
medical findings expressed in natural language, such as “Platelets count is 50000 mcL”
into medical terms commonly found in physicians’ vocabulary or medical ontologies, for
instance, “Thrombocytopenia”. To do so, we first rely on the previously detected findings
and perform three key steps : a) medical findings identification, b) findings boundary
detection, and c) prediction of the associated medical term.

The first step a) involve accurately identifying the relevant finding within the input
sentence. In our example, the finding “Platelets count” is explicitly stated, whereas in some
cases, like “respirations are 22/min,” the finding may be incomplete or represented by a
synonym, such as “Respiration rate” or “Breathing rate,” rather than simply “Respiration”.
This step enables the alignment of the finding sentence with an entry in our database while
filtering out potential errors arising from sentences that either lack findings or contain
multiple findings. The second step b) determine whether the detected finding value falls
within normal ranges or should be classified as not applicable. If the value falls outside
of the normal boundaries, we investigate whether there is an associated medical term. If
the finding is not applicable, we do not proceed further. Finally, in the third step c), we
predict which medical term, if any, is associated with the detected finding and boundary
classification.
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On-the-fly generation of knowledge. As we created an expert verified database of findings
boundaries and associated medical terms, most of the findings detected in the MEDQA-
USMLE-Symp dataset already exist and can be retrieved from the database. However,
as the semi-automatic process of generating the draft database (detaild in Section 3.1)
showed that it eased the work of the expert by being accurate (i.e., Table 3.4) we decided
to integrate this process as an option if the knowledge about detected finding is not found in
the current version of the database. In other words, if the user allows it, we generate on-the-
fly the missing findings normal values and medical terms for exessive values, highlighting
the part generated by the LLM. We proposed three methods to generate the findings
knowledge using LLM by I) Input-Output (IO) Zero-Shot Prompting [212] that will serve
us as a baseline, II) mimicking the doctors reasoning with a Chain of Thought (CoT) [213],
and III) using Self Consistency (SC) with IO and CoT [211].

The first method, Input-Output (IO) Zero-Shot Prompting, provides a basic approach
where the medical term is directly predicted from the detected finding, without any inter-
mediate steps. This method solely relies on the capabilities of the LLM for its predictions.
The second method, Chain of Thought (CoT), seeks to emulate the process of medical
professionals. It divides the prediction task into two phases : firstly, determining the boun-
daries (both low and high) associated with the detected finding, and secondly, correlating
this value range with the appropriate medical term. Lastly, the Self Consistency (SC) me-
thod enhances the decision-making process by repetitively applying the previous methods
and employing a voting mechanism to select the most reliable outcome. For medical terms,
this involves a count-based voting system where the most frequent occurring term is chosen.
For determining value boundaries, we experimented with two approaches, i.e., an average
on all predictions, and a count-based voting system.

The converted findings are then injected together with the detected symptoms into the
medical term alignment algorithm. This will ensure the inclusion of findings interpretation
within the generated explanations in the last step of the pipeline (Figure 3.3).

3.2.2 Medical term alignment

The medical term alignment module (Fig. 3.3, component (iii)) associates, whenever
possible, the pertinent symptoms or translated findings mentioned in the clinical case
description with a term of a diagnosis found in the HPO knowledge base. To the best
of our knowledge, only Manzini et al. [125] proposed a solution, named DASH, to align
automatically layperson symptoms with an ontology. Our approach differs from Manzini
et al. because we align not only the symptoms but also the findings with the concepts of
the ontology. In addition, we explore a contextual approach where DASH compares only
the symptoms with HPO terms. We compare our approach regarding to Manzini et al.
further in the result paragraph and describe their methodology in detail in Section 3.5.
Our proposed framework consists of two different steps, where : (a) we retrieve from the
HPO the required diagnosis information (i.e., the terms and how common they are), then
the symptoms in the case are detected and extracted using the modules introduced in the
previous section ; (b) the relevancy of each symptom is assessed by matching the detected
medical term with the ones retrieved from the HPO, e.g., “Platelets count is 50000 mcL”
converted into Thrombocytopenia to the HPO concept HP :0001873 12. The matched terms

12. https://hpo.jax.org/app/browse/term/HP:0001873
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are then used to generate natural language argument-based explanations for correct and
incorrect diagnoses.

Regarding the matching module (b), we experimented with two different methods to
align our detected entities with terms in the HPO by (i) similarly to DASH, directly
comparing the computed embeddings of the detected entities with the embeddings of the
terms in the HPO, and (ii) by taking into account the context in which the entities are
detected and applying the same context to every term in the HPO. The reasoning behind
the latter is that the corresponding entities in the HPO should not change the semantics
of the sentence with respect to the other symptoms. To align our detected symptoms and
converted findings with the equivalent HPO terms, we calculate the cosine distance of each
embedding of the HPO terms with respect to the embedding of the detected symptom.

It is worth noticing that, for task (ii), it is necessary to calculate the context embeddings
“on-the-fly” because each context is unique and depends on the clinical case in which it
has been detected. However, to avoid recomputing all HPO term embeddings on the fly
for each new context (i.e., the ontology contains 10,319 unique terms), we propose to
generate all the HPO terms embedding at once and store them. Therefore, this module
takes both symptoms and converted findings, detected by the previous module and looks
for the context 13 of these symptoms in the clinical case.

The context C is embedded using sentence embedding methods and saved separately
from the symptoms S, and the two embeddings are merged together (C + S) to form the
reference R. This same context embedding C is added in the same way to each HPO term
embedding T1, T2, . . . , Ti to form the candidates C1, C2, . . . , Ci. We compute and retrieve
the five best cosine distances between C and R to address a fair comparison with the other
systems.

3.2.3 Explanation generation

We propose a template-based explanation generation module based solely on the symp-
toms and findings that are relevant to explain the diagnosis. To do this we propose several
templates that tackle different aspects of explanations, going from explaining why a patient
was given a certain diagnosis, to explaining why the alternatives cannot be considered as
viable options. We support our explanations with statistical information obtained from the
HPO such as the frequency of each symptom incidence, and we propose to look for pos-
sible symptoms that were not detected by the system but are frequent for a certain disease.
These explanations are built from the HPO ontology, where the answers (i.e., diseases) are
retrieved, taking care to separate the correct answers from the incorrect ones. Each disease
has a list of associated terms (with codes) among which we look for codes in common with
the output of the alignment module. These aligned terms identified as relevant for our
diseases are then saved and, if possible, we associate them with the frequencies provided
by ORPHA and OMIM. They will serve as arguments for the explanations why the correct
answer is correct and why the others are not. Finally, the terms that are missing in our
system but have a high frequency of occurrence according to the ontology are also saved to
populate our supplementary template. The detailed templates and examples are described
in Section 3.4.

13. The context consists of the sentence(s) containing the symptom and the entire clinical case.
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3.3 System Implementation

In this section, we report on the experimental setting, the obtained results and the
error analysis for the named entities detection, the finding translation and the symptom
alignment methods. It is worth noticing that the presented pipeline can be applied also
to different clinical cases datasets, ensuring the generalisability of the proposed approach.
This pipeline named SYMEXP is a part of the wider ANTIDOTE project, introduced in
Section 1.1 and is currently deployed online 14 within the ANTIDOTE project showcase.
The ANTIDOTE software suite implementation is detail further in Chapter 5.

3.3.1 Experimental setting

In order to make all our work reusable and reproducible, we present the implementation
details of SYMEXP. Section 2.1 presents an overview of natural language representations
and completes the implementation details of the proposed pipeline.

Named Entities Recognition. For the entity detection task, we experiment with different
transformer-based language models such as BERT [58], SciBERT [20], BioBERT [117], Pub-
MedBERT [77] and UmlsBERT [132] initialized with their respective pre-trained weights.
All the models we employ are specialized in the scientific or biomedical domain, with the
exception of BERT which will serve us as a baseline. To fine-tune the LMs, we use the
PyTorch implementation of Huggingface [216] (v4.18). For BERT, we use the uncased base
model with 12 transformer blocks, a hidden size of 768, 12 attention heads, and a learning
rate of 2.5e-5 with Adam optimizer for 3 epochs. The same configuration was used to fine-
tune SciBERT, BioBERT, PubMedBERT and UmlsBERT. For SciBERT, we use both the
cased and uncased versions, and for BioBERT we use version 1.2. Batch size was 8 with
a maximum sequence length of 128 subword tokens per input example. Both the dataset
and the guidelines used to train our NER model are available in this project repository 15.

Finding converter. In our experiments, we adopted the large language model from Ope-
nAI, ChatGPT gpt-3.5-turbo-0301 and gpt-4 [30, 154]. We employed the snapshot of gpt-
3.5-turbo from March 1st, 2023. This model was used for both joint and combined baselines,
employing classic handcrafted prompts described in Appendice A.2. These two models were
the most recent at the time of the experiments and are currently replaced by gpt-4o-mini
in the available online version.

For the CoT steps that mimics doctors’ reasoning, we used the FuzzyWuzzy 16 Python
package version 0.18.0 for the task of medical finding identification. This package leverages
the Levenshtein distance to calculate the differences between sequences in a user-friendly
package. Concerning the finding values detection using string matching, we employed a
Python regular expression with the regex package version 2022.10.31 :

\b\d+(?:\.\d+)?\b

14. http://antidote.i3s.unice.fr/symexp/
15. https://github.com/Wimmics/MEDQA-USMLE-Symp/tree/main/MEDQA-USMLE-

Symp_corpus
16. https://pypi.org/project/fuzzywuzzy/
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We experiment as an alternative a NER approach, using med7 [111] with the
“en_core_med7_lg” model, trained on MIMIC-III free-text electronic health records,
and Spacy version 3.5.2. All experiments were conducted using Python 3.10.11 directly in
a Google Collaboratory Pro notebook. The medical finding database, validated by medical
expert is available in our project repository 17.

Ontology alignment. Regarding the matching module, we experimented with two different
methods to align the detected entities with the terms in the HPO by (i) directly comparing
the computed embeddings of the detected entities with the embeddings of the terms in the
HPO, and (ii) by taking into account the context in which the entities are detected and
applying the same context to every term in the HPO. In the experimental setting of both
tasks (i) and (ii), we use the static pre-trained embeddings GloVe 6B as well as BERT,
SciBERT, BioBERT and UmlsBERT with the same configurations as in the medical NER
task. Each embedding is calculated with Sentence Transformer Document Embeddings
using the flair framework [4], with the same Python environment as the previous modules.

We defined a test set of 23 cases from the MEDQA-USMLE-Symp dataset where (i)
we retrieved from the HPO the symptoms related to the diagnoses for each case, and (ii)
we manually aligned the annotated symptoms in the case to the concepts from the HPO.
This resulted in 162 symptoms aligned to a specific term in the HPO that serve us as a
testing set for our matching module.

As detailed further in Section 3.5, the system proposed by [125] offers a similar approach
to translating layperson terms to medical terms in the HPO. However, their work does not
take into account the context in which a symptom is mentioned in the text and does not
provide any solution for findings interpretation. To compare with this approach and due
to the unavailability of their model, we rely on their online demo, which outputs only
the top 5 ranking of the HPO terms that are closest to the input symptom. To perform a
comparison with our pipeline, we first compute the accuracy of the aligned symptoms using
our symptom alignment module and then replaced it with Manzini et al. [125] proposed
system (DASH). Results are shown later, in Table 3.9.

Since a symptom can be composed of several words (e.g., “shortness of breath"), we
separated the symptom into words that we encode by either using each word as an input
on GloVe [157], or extracting directly from the contextualized models the representation
of the symptom by summarizing the hidden states of the last four layers in the model. We
then sum the vectors of each word to get an n-gram representation of the symptom. We
also explore sentence embeddings, by making use of Sentence-BERT [172], a model that
derives semantically meaningful sentence embeddings (i.e., semantically similar sentences
are close in vector space) that can be compared using cosine similarity. Sentence-BERT can
be used with different pre-trained models, in this work we focus on the models BERT [58],
SciBERT [20], UMLSBERT [132] and S-PubMedBert by [57]. The first represents a com-
petitive baseline in our experiments since it is the state-of-the-art model for comparing
sentences cross-domain, while the three latter models are pre-trained on scientific or me-
dical data or both.

To tackle both tasks, we make use of the MedQA-USMLE-Symp dataset introduced
in Section 3.1. The annotations are converted into two datasets, one for each part of

17. https://github.com/Wimmics/MEDQA-USMLE-Symp/tree/main/Findings-database
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TABLE 3.5 – Results for entity recognition in macro multi-class precision, recall, and macro f1-
score.

Model P R F1
BERT 0.85 0.84 0.84
BioBERT v1.2 0.84 0.85 0.84
UmlsBERT 0.85 0.85 0.85
PubMedBERTbase 0.83 0.84 0.83
SciBERT cased 0.85 0.85 0.85
SciBERT uncased 0.85 0.86 0.86

the pipeline. The first dataset is used for the symptom detection task, and it is in the
CoNLL format for token-wise labels. The second dataset, for the symptom alignment task,
is converted into a csv format, where each symptom in the clinical case description and
available related knowledge (i.e., the list of symptoms and their frequencies for each possible
diagnosis associated with the case) extracted from the HPO are paired. Finally, we rely
on the HPO ontology, utilizing the requests package version 2.27.1 and the public HPO
endpoint 18. It is important to note that this service is no longer available on the HPO and
is replaced by a local knowledge base to download.

3.3.2 Results

In the following, we report on the results obtained for our pipeline presented in Fi-
gure 3.3, focusing on medical entities recognition, finding conversion and alignment with
ontology. We compare our methodology with the DASH system proposed by Manzini et
al. [125].

Medical NER. As introduced before, the first task addressed in our pipeline is to detect the
medical named entities. The results for the symptom detection task are shown in Table 3.5
in macro multi-class precision, recall, and F1 score. We can observe that all models perform
similarly, with the best results from the specialized SciBERT [20] model. The biggest
difference in performance is given by comparing SciBERT uncased with PubMedBERT,
with the SciBERT model performing better. Interestingly, BERT performs closely to the
specialized models, and, in some cases, it outperforms them. This may be due to the fact
that the clinical cases from our dataset are written for medical exams at the med school.
They contain some technical specialized words, but overall the symptoms are described in
layperson terms. It is also worth noticing that the majority of our labels do not belong to
medical terminology (i.e., Age and Population Group, Location and Temporal Concept).
Sign or Symptom and Finding are the only labels that require specialized vocabulary.

Overall, SciBERT uncased is the best-performing model (in bold) with a macro f1-score
of 0.86, outperforming the other approaches for each of the categories. In Table 3.6 and
Table 3.7 we report on the performances for each entity with the best-performing models
SciBERT and BERT. The Sign or Symptom and Finding detection task obtains a 0.82 and
0.86 of macro f1-score. In the work of [147], the authors also detect symptoms obtaining

18. https://hpo.jax.org/api/hpo/search
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TABLE 3.6 – Results for entity recognition using our best performing model (SciBERT uncased)
in P, R, and f1-score.

Entity P R F1
Other 0.93 0.91 0.92
Age Group 1.00 0.97 0.98
Finding 0.85 0.88 0.86
Location 0.74 0.80 0.77
No Symptom Occurrence 0.79 0.72 0.75
Population Group 0.88 0.95 0.91
Sign or Symptom 0.83 0.82 0.82
Temporal Concept 0.78 0.87 0.82
Weighted avg 0.89 0.89 0.89
Macro avg 0.85 0.86 0.86

an f1 score of 0.61. However, these results can not be directly compared since the datasets
on which both models were fine-tuned are different : we train on clinical cases, while they
use dialogues between doctors and patients. Moreover, given that the dataset they use is
not released, we can not evaluate our approach on their data to compare the results.

TABLE 3.7 – Results for entity recognition using BERT uncased in P, R, and f1-score.

Entity P R F1
Other 0.92 0.91 0.92
Age Group 1.00 0.97 0.98
Finding 0.87 0.87 0.87
Location 0.74 0.80 0.77
No Symptom Occurrence 0.79 0.72 0.75
Population Group 0.88 0.95 0.91
Sign or Symptom 0.83 0.82 0.82
Temporal Concept 0.78 0.87 0.82
Weighted avg 0.89 0.89 0.89
Macro avg 0.85 0.86 0.86

Raza et al. [171] proposed a transformer-based NER system employing Distill-
BERT [177] that is able to recognize a wide range of clinical entity types, encompassing
medical risk factors, vital signs, drugs, and biological functions. Their approach, which
primarily relies on the Case Report dataset MACROBAT [41], focuses on doctors voca-
bulary. To make a fair comparison, we evaluated the output of their model, BioEN, at
a token level using our own test set, specifically comparing the accuracy of the Signs or
Symptoms labels. The results highlight a significant gap between the two approaches in
terms of performance : out of 285 gold tokens, BioEN detected only 79, whereas our model
identified 260. This disparity is primarily due to our specific focus on the detection of data
encoded in layperson vocabulary.
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Finding converter. Here we describe the results of the prediction task of the medical terms
associated to the detected findings. The efficacy of our medical finding to medical term on-
the-fly conversion module is detailed in Table 3.8. This table presents the accuracy of our
Finding Converter module in identifying boundaries, both in terms of values and associated
terms. The mentioned 78% accuracy refers to the accuracy achieved in determining values,
considering the previously discussed 20% threshold. The accuracy figures are computed
based on the final version of the generated database, which achieved an accuracy of 78%
for “low” boundaries (88%) and “high” boundaries (68%), after the doctor validation. The
proficiency of the model in predicting “low” boundaries could be attributed to their higher
frequency and often singular appearance as the defining boundary for a medical finding.
For instance, the “vision” finding exemplifies this trend, as it only has a “low” boundary,
represented by “blindness”, with no corresponding “high” boundary. The context added by
the intermediate steps seems to fine-tune the language model’s knowledge and helps in
generating more suitable responses. The Self-Consistency method does not improve the
results.

TABLE 3.8 – Results for “on-the-fly” findings to medical terms prediction using the generative
LLM ChatGPT.

Prompting Method Accuracy
IO ChatGPT 4 0.64
IO ChatGPT 3 0.52
CoT ChatGPT 4 0.66
CoT ChatGPT 3 0.52
SC IO ChatGPT 4 0.64
SC IO ChatGPT 3 0.54
SC CoT ChatGPT 4 0.66
SC CoT ChatGPT 3 0.54

The results of the symptom alignment module, that aim to associate the detected en-
tities in the clinical case with the HPO ontology, are summarised in Table 3.9. As baseline
models, we propose to use the same methods but without the context of the symptoms,
similarly to DASH [125]. In Table 3.9, we show only the best-performing baseline PubMed-
BERT no context obtaining similar results to DASH (0.41 and 0.37, respectively). Adding
contextual representation to the embeddings results in a significant improvement (up to
0.70 in accuracy) supporting the hypothesis that context plays an important role when
translating layperson terms to formal medical terms.

3.3.3 Error Analysis

The main limitation of adopting the HPO as medical knowledge base concerns the
number of symptoms associated with each diagnosis. For some diagnoses, we have multiple
symptoms, while for others we can have only one or none. We notice that in those cases
where the diagnosis is a mental disease, the model tends to make more mistakes. Inspecting
the HPO for this kind of diagnoses, we find that either the diagnosis does not appear in
the HPO ontology or the symptoms tend to be more general, including a lot of common
symptoms like “changes in appetite” or “low energy”, that alone may not be relevant but
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TABLE 3.9 – Results for DASH and our symptom alignment method using different embeddings
with and without context (accuracy score).

Model Accuracy
DASH 0.37
BERT + no context 0.39
SciBERT + no context 0.39
UMLSBERT + no context 0.44
S-PubMedBERT no context 0.53
BERT + context 0.53
SciBERT + context 0.57
UMLSBERT + context 0.59
S-PubMedBERT + context 0.70

all together indicate a precise diagnosis. Moreover, some relevant symptoms may not be
described explicitly but encoded in the clinical cases as Findings. These findings, even
translated into a medical term, do not appear in the symptoms list extracted from the HPO,
since this ontology focuses on pathological terms. The finding “Gravidity” (i.e., number of
pregnancies) exemplifies this insight because being “Multiparous” is not pathological but
is the medical term associated to the “high” boundary of the finding. Therefore it would
be useful for the explanation but it does not match in our system because of the HPO
limitations. Moreover, a diagnostic can be supported by a less specific interpretation of
a finding, e.g., the thrombotic thrombocytopenic purpura can be explained by a patient
“Arrhythmia” defined as “A irregular heartbeat / A problem with the rate or rhythm of your
heartbeat” but our system will detect either a “Bradypnea” or a “Tachypnea” that are both
kinds of Arrhythmia. A possible extension of this work consists in a deeper investigation
of the ontologies to find a way to align with different granularity the detected finding.

Given that we rely on the HPO only, some diseases or diagnoses are not present in
the knowledge base, preventing us to generate the associated explanations. Combining the
HPO with more specialized medical knowledge bases is a future direction for this work,
both to complete the information we have, and also to integrate new diagnoses.

3.4 Argumentation patterns for Explanations Generation

As I discussed in Chapter 2, argumentation explanations are an interesting direction
in an educational context and are perfectly suited to explain examinations focused on
diagnosis. Therefore, I present in this section the final brick in our explanatory pipeline : the
generation of natural language explanations. While the previous sections introduced how
to identify complex medical concepts through clinical cases, the generation of explanations
is a different challenge. Given the critical aspect of medical data, it is necessary to control
the generation of explanations to make them clear and true. While many approaches focus
on natural language generation [154, 30] and some on explanation generation [33, 145, 29,
113, 115], all of them are based on neural models. Although these LMs are very powerful
and extremely convincing, they face certain uncontrollable yet limitations that make their
use incompatible with the medical field (e.g., hallucinations, bias) [13]. In order to provide
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high quality explanations, we decided to create argumentation patterns to generate our
explanations [100, 35, 61]. We therefore created 3 patterns to i) explain the correct answer
based on the detected, converted and aligned entities, ii) explain the set of incorrect answers
with the discriminative symptoms and finally iii) draw attention to important symptoms
missing in the clinical case (or not detected). It’s worthy to note that these templates
have been developed with the help of a doctor to make them as useful as possible, while
keeping them flexible enough not to make the templates obvious. Let us consider the
following clinical case, where in bold we highlight the symptoms, in italic the findings and
we underline the relevant symptoms and findings supporting the correct answer.

Clinical case. A previously healthy 34-year-old woman is brought to the physician because
of fever and headache for 1 week. She has not been exposed to any disease. She takes no me-
dications. Her temperature is 39.3°C (102.8°F), pulse is 104/min, respirations are 24/min, and
blood pressure is 135/88 mm Hg. She is confused and oriented only to person. Examination shows
jaundice of the skin and conjunctivae. There are a few scattered petechiae over the trunk and back.
There is no lymphadenopathy. Physical and neurologic examinations show no other abnormali-
ties. Test of the stool for occult blood is positive. Laboratory studies show : Hematocrit 32% with
fragmented and nucleated erythrocytes Leukocyte count 12,500/mm3 Platelet count 20,000/mm3
Prothrombin time 10 sec Partial thromboplastin time 30 sec Fibrin split products negative Serum
Urea nitrogen 35 mg/dL Creatinine 3.0 mg/dL Bilirubin Total 3.0 mg/dL Direct 0.5 mg/dL Lactate
dehydrogenase 1000 U/L Blood and urine cultures are negative. A CT scan of the head shows no
abnormalities. Which of the following is the most likely diagnosis ?

This example is extracted from the MEDQA-USMLE-Symp dataset and the (already
known) correct diagnosis is Thrombotic thrombocytopenic purpura, whilst the other (in-
correct) options are Disseminated intravascular coagulation, Immune thrombocytopenic
purpura, Meningococcal meningitis, Sarcoidosis and Systemic lupus erythematosus.

Why Pattern. After empirical observation of clinical cases, we have identified that one
of the easiest ways to justify the correct diagnosis is to support it through the symptoms
identified in the case. Often, one or more of these symptoms are unique, or occur in 100%
of cases. This intuition to justify the correct response to explain the diagnosis will be
confirmed later in Chapter 4. Indeed, these later investigations identifies in Section 4.3
argumentation patterns in doctors explanations, and analyse of the distribution of expla-
natory labels (i.e., Table 4.6) highlighting that only less than 5% of clinical cases question
answering exams do not justify the correct answer (and explain differently). Given these
informations, we prepared the following “Why” template :

Définition 3.4.1. (Why the correct diagnosis is correct) The patient is showing a [COR-
RECT DIAGNOSIS] as these following symptoms [PERFECT MATCHED SYMPTOMS,
MATCHED SYMPTOMS, MATCHED FINDINGS] are direct symptoms of [CORRECT DIAGNO-
SIS].

Moreover, [OBLIGATORY SYMPTOMS] are obligatory symptoms (always present, i.e., in 100% of
the cases) and [VERY FREQUENT SYMPTOMS] are very frequent symptoms (holding on 80% to 99%
of the cases) for [CORRECT DIAGNOSIS] and are present in the case description. 19

19. Sources from the HPO : https://hpo.jax.org/app/browse/term/HP:0040279
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In Template 3.4.1, the [CORRECT DIAGNOSIS] represents the correct answer to the
question “Which of the following is the most likely diagnosis ?” and therefore the correct
diagnosis of the described disease. The [SYMPTOMS] / [FINDINGS] in bold represent the
medical terms automatically detected through the first module of our pipeline, and they
are also underlined when they are considered as relevant by our matching module (i.e.,
they are listed among the symptoms for the disease in the HPO knowledge base). Both
[PERFECT MATCHED SYMPTOMS] and [MATCHED SYMPTOMS] in Template 3.4.1
are considered relevant but they differ in the confidence level the system assigns to the
matched symptoms. This allows us to integrate a notion of granularity in our explanations
and to rely on the symptoms or raw findings detected in the clinical case that strongly
match with a symptom in the HPO. If the system does not detect any relevant symptom,
no explanation is generated for the correct answer. This isn’t necessarily a problem, as in
some cases it’s difficult to identify the correct answer from the symptoms in common, and
so sometimes an approach such as eliminating incorrect answers leads to the deduction of
the correct answer (i.e., by elimination). Furthermore, we employ the information about the
symptom frequencies (retrieved through the HPO) in the [OBLIGATORY SYMPTOMS]
and [VERY FREQUENT SYMPTOMS] to generate stronger evidence to support our na-
tural language argumentative explanations. Sometimes the frequencies are not available in
the HPO, in which case we do not display them in our final explanation.

The following example show some explanatory arguments automatically generated by
our system.

Exemple 3.4.1 – The patient is showing a [Thrombotic thrombocytopenic purpura] as these following
symptoms [Headache, Fever, Confusion (Oriented to persons), Thrombocytopenia (Platelet count
20,000/mm3), Reticulocytosis (Jaundice of the skin) and Decreased serum creatinine (Creatinine 3.0
mg/dL)] are direct symptoms of [Thrombotic thrombocytopenic purpura].

Moreover [Reticulocytosis (Jaundice of the skin) and Thrombocytopenia (Platelet count 20,000/
mm3)] are very frequent symptoms (holding on 80% to 99% of the cases) for [Thrombotic thrombocy-
topenic purpura] and are present in the case description.

When filling the [SYMPTOMS and FINDINGS] span in Template 3.4.1, we inject
only the terms matched in the HPO for the [PERFECT MATCHED SYMPTOMS],
and we combine the HPO with the detected symptoms and findings in the case des-
cription for the [MATCHED SYMPTOMS and MATCHED FINDINGS] in this form :
[matched term in HPO (detected term in the clinical case)] (e.g., in Example 3.4.1 :
Confusion (Oriented to persons) and Thrombocytopenia (Platelet count 20,000/mm3).).

Why not Template. Explaining why one diagnosis is the correct one is important, but
it’s also in some cases necessary to use another approach more based on deduction [135].
This intuition is also confirmed by the next chapter (i.e., Table 4.6), where I observe that
29% of the explanations given by doctors explain each incorrect options. We, therefore,
propose to provide explanations based on the relevant symptoms for the incorrect options
by contrasting them with the clinical case at hand.

Définition 3.4.2. (Why this incorrect diagnosis is incorrect) Concerning the [INCORRECT DIAG-
NOSIS] diagnosis, it has to be discarded because the patient in the case description is not showing
[INCORRECT DIAGNOSIS SYMPTOMS / FINDINGS FROM THE HPO (MINUS DETECTED
SYMPTOMS IN CASE)] symptoms.
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Despite [SHARED CORRECT SYMPTOMS / FINDINGS] symptoms shared with the [CORRECT
DIAGNOSIS] correct diagnosis, the [INCORRECT DIAGNOSIS] diagnosis is based on [INCORRECT
DIAGNOSIS SYMPTOMS].

Moreover, [OBLIGATORY SYMPTOMS] are obligatory symptoms (always present, i.e., in 100% of
the cases) and [VERY FREQUENT SYMPTOMS] are very frequent symptoms (holding on 80% to 99%
of the cases) for [INCORRECT DIAGNOSIS], and they are not present in the case description.

Template 3.4.2 can be applied to each incorrect possible answer of the case, individually.
The incorrect answer corresponds to the [INCORRECT DIAGNOSIS] and [INCORRECT
DIAGNOSIS SYMPTOMS / FINDINGS] are all relevant terms associated with this disease
in the HPO knowledge base, without the terms in common with the correct answer. Again,
in the template, we use the frequencies provided by the HPO to provide further evidence
to make our explanatory arguments more effective. The template includes therefore with
[OBLIGATORY SYMPTOMS] and [VERY FREQUENT SYMPTOMS] the mandatory
and very frequent symptoms of the incorrect diagnosis, which are missing in the clinical
case description. The following explanations are automatically generated for (one of) the
incorrect diagnoses of the clinical case we introduced at the beginning of this section.

Exemple 3.4.2 – Concerning the [Meningococcal meningitis] diagnostic, it has to be discarded because the
patient in the case description is not showing [Stiff neck, Nuchal rigidity or CSF pleocytosis, Increased
CSF protein, Hypoglycorrhachia] symptoms.

Despite [Petechiae, Fever, Headache] symptoms shared with the [Thrombotic thrombocytopenic pur-
pura] correct diagnosis, the [Meningococcal meningitis] diagnosis is based on [Stiff neck, Nuchal rigidity
or CSF pleocytosis, Increased CSF protein and Hypoglycorrhachia].

Moreover, [Stiff neck, Nuchal rigidity, CSF pleocytosis, Increased CSF protein or Hypoglycorrha-
chia] are very frequent symptoms (holding on 80% to 99% of the cases) for [Meningococcal meningitis]
and are not present in the case description.

Example 3.4.2 shows the natural language explanation of why the possible answer
[Meningococcal meningitis] is not the correct diagnosis given the symptoms discussed in
the clinical case description. In case the disease is not found in the HPO, we do not generate
the associated explanation.

Additional Explanatory Arguments. In order to enrich our explanations with additional
explanatory arguments to improve critical thinking in the medical residents, we also gene-
rate another template. Indeed, in some clinical cases, it is possible that the detected terms
are not sufficient to explain the diagnosis or sometimes the informations are missed by the
proposed system.

In some situations, SYMEXP is not able to abstract some findings that are important
for the diagnosis as for the Thrombotic thrombocytopenic purpura, a Very frequent symp-
tom is “Arrhythmia”, defined as “Any cardiac rhythm other than the normal sinus rhythm”.
Our system will detect a “Tachycardia” that, by definition is a kind of “Arrhythmia” (i.e.,
high boundary). Template 3.4.3 aims at drawing the medical residents’ attention to (sta-
tistically) important symptoms that are missing or not explicitly mentioned in the clinical
case description :

Définition 3.4.3. Furthermore, [CORRECT DIAGNOSIS VERY FREQUENT TERMS (MINUS
MATCHED TERMS)] are also frequent symptoms for [CORRECT DIAGNOSIS] and could be found
in the findings of the clinical case.
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Example 3.4.3 is generated by our system and brings attention to “Arrhythmia”. This
additional explanatory argument complements the explanation we generate for the correct
and incorrect diagnoses in the case presented at the beginning of this section.

Exemple 3.4.3 – Furthermore, [Arrhythmia, Generalized muscle weakness, and Microangiopathic
hemolytic anemia] are also frequent symptoms for [Thrombotic thrombocytopenic purpura] and could be
found in the findings of the clinical case.

All examples are extracted from our dataset and can be tested online on the latest ver-
sion of SYMEXP 20. Chapter 5 reuses the previous examples and shows the implementation
of these templates in the website interface.

3.5 Related Work

This section presents and discusses existing work on the generation of natural lan-
guage explanations and the role of verified sources of medical knowledge such as ontologies
and thesauri in generating such explanations. First, I present available medical resources,
describing medical vocabularies, structured knowledge bases and NLP datasets about me-
dicine, and explanation. Then I review the Information Extraction systems working on
medical data and, more specifically, on symptoms. Also, I describe existing approaches to
align medical entities with standardized vocabulary and knowledge. Finally, I focus on the
existing methods to generate natural language explanations.

3.5.1 Medical data and linguistic resources

As introduces in the Background chapter 2.4, a considerable amount of research effort
focused on the construction of robust and trustworthy sources of knowledge like ontologies
and vocabularies. We differentiate vocabularies, that aims at identifying concepts and
disambiguate them from databases or knowledge bases who rather store data about a
specific concept or area. Finally, within the natural language, some manually annotated
datasets are proposed to train and evaluate language model approaches for the clinical
scenario (i.e., entities detection, diagnosis classification, etc...).

Vocabularies. Several of these vocabularies are centered around clinical terms, such as
SNOMED CT [60] 21, ICD (i.e., ICD-10) codes [163] and the HPO [110], making them
useful for diagnosis prediction. The later one, the HPO, propose a knowledge base gathering
many diseases and their associated phenotypes (or terms). On the other hand more specific
in-domain tasks can be solved using specialized vocabularies. RxNorm [121], for instance, is
devoted to clinical drugs, CPT [88] is built around procedural terminology, and MeSH [88]
is designed for cataloging and searching biomedical information. Furthermore, Bodenreider
et al. [25] proposed a Metathesaurus based on the aforementioned vocabularies and many
others, into a unified structure. This integrated resource includes names, relationships,
attributes, and other details related to biomedical and health-related concepts. Focusing on
vital signs, health measurements, and observations, LOINC [131] proposed an international

20. http://antidote.i3s.unice.fr/symexp/
21. https://www.snomed.org/value-of-snomedct
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standard to identify them but do not provide the associated normal values (i.e., normal
hematocrit for men is 40 to 54% ; for women it is 36 to 48% [206]).

Datasets. In parallel to the efforts made in creating reliable medical vocabularies, signifi-
cant advancements have been made in the compilation of medical datasets, particularly in
natural language. Notably, this has been accomplished through shared tasks such as i2c2
(renamed as n2c2) for Information Extraction (IE) [191, 86], MEDIQA used in Natural
Language Inference, Recognizing Question Entailment (RQE), and Question Answering
(QA) [21], and SemEval 22 with IE and NLI tasks [104, 101, 204].

Finding Datasets. While Johnson et al. [97] proposed the MIMIC-III dataset consisting
of textual data about vital signs, medications, laboratory measurements, observations and
more, other efforts have focused both on structured and unstructured data. For instance,
eICU and PhysioNet [160, 143] are two contributions that have been key in enhancing
the body of available medical datasets by collecting respectively anonymized structured
data from patients (including vital sign measurements, care plan documentation, diagnosis
information, treatment information) and signals archive. Simultaneously, resources like the
UK Biobank and the Cancer Imaging Archive [189, 47] include both medical images and
textual data.

Medical NER Datasets. Numerous contributions focused on identifying medical named
entities from article abstracts, primarily from PubMed. These approaches to Named En-
tity Recognition target various biomedical aspects, ranging from Part-of-Speech (PoS)
tagging with the Extended GENIA dataset [152], to more detailed entity annotations on
full articles, as in the CRAFT corpus [15]. The AnatEM corpus [161] and some of the
BioNLP Shared Tasks [106, 108] concentrate on entities and relations, while other ap-
proaches [183, 119, 107, 162, 112, 75] specifically address gene, protein, and species entities.

Medical Findings NER Datasets. However, only a limited number of studies have focused
on disease and medical findings annotation, e.g., the NCBI disease corpus [59] and our
MedQA-USMLE-Symp dataset [126], which is annotated with UMLS symptoms and fin-
dings tags and described in the Resources Section 3.1. Despite these two resources, the issue
of matching medical findings to symptoms is still an open research question. This highlights
the need for further research in this area to improve the understanding and adoption of
medical findings for more accurate and comprehensive diagnostic and explanatory tasks.

3.5.2 Information Extraction on medical text

Many robust off-the-shelf pipeline toolkits like Spacy [90], MedSpacy [67], and
CLAMP [185], have been recently proposed for text processing, and in particular, to pro-
cess medical text. Notably, MedSpacy is a specialized extension of Spacy, custom-built for
clinical language processing. CLAMP stands out due to its capability for NER and its
interactive interface for annotating clinical text. However, their rule-based approach for
NER in the medical domain makes it complex to apply it to named entities not originally
considered in the tool, and new rules need to be defined.
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Recent approaches cast NER as a sequence labeling task, where transformer-based mo-
dels have shown remarkable performance, especially when fine-tuned on specific domains.
Naseem et al. [146] showed that pre-training the ALBERT model on a large-scale biome-
dical corpus enhances the model’s ability to capture the context found in biomedical NER
tasks. This specialized approach has resulted in these models outperforming non-specialized
counterparts and achieving top-tier results on several datasets. BioELECTRA [102] exem-
plifies this trend by pre-training a biomedical language model using biomedical text and
vocabulary with the ELECTRA architecture [48]. Other BERT-based models, such as
SciBERT [20], BioBERT [117], PubMedBERT [77], and BioMed-RoBERTa [81], which is
based on RoBERTa, have also been designed for the biomedical domain.

Other approaches like UmlsBERT [132] integrate domain knowledge from the Unified
Medical Language System into a contextual embedding model. The model’s strength lies in
its ability to associate different clinical terms with similar meanings in the UMLS knowledge
base, creating meaningful input embeddings by leveraging information from the semantic
type of each word. I compare in Section 3.3 the representations of symptoms found in
clinical cases with different contextual embeddings, seeking to identify a representation
that aligns with the one provided in the Human Phenotype Ontology [110].

Raza et al. [171] propose the Bio-Epidemiology-Ner (BioEN) pipeline, an approach
inspired by [126], where they fine-tune a DistilBERT [177] model, a simplified and more
computationally efficient version of BERT, for the task of biomedical NER. They adapt the
last layer of the pre-trained DistilBERT model to their specific biomedical task and adjust
the input and output dimensions accordingly. However, the labels they use are not derived
from any certified ontology or medical source, making this approach ad hoc to their NER
labels and limiting its reusability. Furthermore, their approach does not account for the
broader scope of medical findings, which include vital signs and analysis results, essential
elements to analyse clinical cases.

Finally, with the goal to predict the correct diagnosis and explain these predictions
using feature attribution methods, Ngai et al. [147] identify clinical information, where
among the entities, symptoms are detected. They use the detected symptoms to know
their intent (or pertinence) for the diagnostic across five labels confirm/deny/unsure of
symptom, closing the discussion or other. Although they offer diagnostic explanations
based on natural language dialogues, the explanations remain mathematical structures (as
discussed in Section 2.3) and cannot be interpreted in the same way as natural language
explanations.

3.5.3 Medical term alignment

As discussed in Section 2.3, generating explanations automatically grounded on medical
knowledge is a long term challenge require interaction with expert sources of informations.
As many vocabularies already exists and are widely used for prediction and inference
tasks, trying to align non-structured data with structured and standardized knowledge for
generation purpose can be viewed as a starting point. Focusing on explaining (already
known) correct and incorrect diagnosis predictions is a good first step on explanatory
argumentation and reduce the amount of knowledge to align with the natural language
document. A symptomatic approach, based on the patient symptoms within the document
can already give an explanation of diagnoses, mostly when we know which one is correct.
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If detecting symptoms is partially tackled by the literature, an alignment is required to
elucidate the connections between symptoms, that can be expressed in layperson terms, and
diseases. The alignment task is not straightforward when using real case scenario in natural
language involving patients interaction such as dialogue, Electronic Health Records, clinical
notes or online resources. Layperson symptoms are symptoms expressed by the patient with
his words and therefore, often does not match easily the medical vocabulary due to the
difference of knowledge between patients and doctors about medicine. Manzini et al. [125],
for instance, propose an automated system for translating layperson terminology to HPO
terms. This system leverages a neural network and a vector space to generate and compare
vector representations of medical and layperson terms. The main limitation of this approach
is that it translates layperson terms without considering the context, potentially missing
relevant information that may change the semantics of the term.

In addition to symptoms, medical explanations often rely on the results of health mea-
surements, observations or vital signs (i.e., medical findings). Consequently, it is crucial to
take into account and interpret these data. Looking at medical vocabularies and knowledge
bases, it is noticeable that many symptoms are the result of abnormal values of medical
findings such as abnormal temperature will be resumed as fever when too high of hypo-
thermia when too low. Several recent studies focus on the automatic detection of medical
findings in digitized patient records, such as Electronic Medical Records (EMR)[156] or
EHRs[73, 124, 74]. However, none of these studies, to the best of our knowledge, concen-
trate on training exams. These exams can be clinical cases that utilize a different structure
from EMR or EHR and often show a more narrative text, presenting symptoms, patient
history, and lab results as part of a broader storyline.

Earlier contributions focusing on the extraction of medical findings and vital signs
proposed rule-based approaches [156, 124, 74]. Although they obtained good results, they
still require specialists to create and refine the rules, limiting their generalisability to other
medical tasks. In contrast, the approach proposed by Gavrilov et al. [73] employs a deep
learning strategy, training a model on Russian data using Bloom’s embedding methods
implemented in SpaCy. While these works showed good performance in detecting vital
signs, their applicability range remains limited. First, they primarily focus on detecting the
six fundamental vital signs : blood pressure, heart rate, respiratory rate, body temperature,
height, and weight. Even if these vital signs are the most used in the literature [156, 124,
74, 73], some complementary analysis such as laboratory analysis are needed to confirm or
discard a diagnosis. Since these findings are numerous and evolve with time, a rule-based
system would require a large number of experts to create and maintain the rules. Genes et
al. [74] offers a NER assigning also a quality score to each entity, computed according to
a set of rules for each vital sign.

3.5.4 Medical explanations generation

Natural language explanation generation has received a lot of attention in recent years,
grounding on the progress of generative models to train specific explanatory systems. Cam-
buru et al. [33] generates explanations by justifying a relation (i.e., entailment, contradiction
or neutral) for a premise-hypothesis pair by training a Bi-LSTM on their e-SNLI dataset
(i.e., the Stanford Natural Language Inference [28] dataset augmented with an explanation
layer which explains the SLNI relations). Kumar et al. [113] propose to generate short
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explanations with GPT-2 [165], learned together with the input by a classifier to improve
the final label prediction, using e-SNLI [33]. If these solutions propose interesting results,
they are not applicable to the medical domain given that explaining a medical diagnosis is
a sensible task which can hardly be restrained to the above-mentioned three basic relations
(considered in [33] and [113]). On the other hand, Narang et al. [145] propose an approach
based on the T5 model [166] to generate an explanation after a prediction. The problem
with these approaches based on neural models is that we do not master the internal know-
ledge of these models, which can generate errors on the veracity of the data. Again, this
solution is not applicable to the medical scenario, since explanations are required to be
structured following precise argumentative structures [100, 35, 61] and to be grounded on
verified medical knowledge.

Other approaches keep more control on explanations, using templates based explana-
tions [173, 37]. For instance, Abujabal et al. [1] use templates and inject the reasoning
steps and query of their Q&A system. To the best of our knowledge, no related work gene-
rates natural language post-hoc explanations under the form of arguments for the medical
domain.

3.6 Conclusion

Through the presented SYMEXP pipeline, I explored the creation of natural language
explanations to justify a correct diagnosis and discard others, using template-based symp-
tomatic and argumentative explanations. To archive this result, we introduced two new
resources, i) a new expert validated database of medical findings (i.e., vital signs, health
measurements, observations, test results), interpreted terms and normal values and ii) a
new dataset of clinical case question-answering documents, annotated with UMLS voca-
bulary entities related to diagnoses (i.e., symptoms, findings). More precisely, proposed
pipeline (i) automatically identifies relevant medical entities in a clinical case description
so as to explain a diagnosis using symptoms and medical findings. Medical findings are (ii)
automatically interpreted and converted (if possible) to medical terms, relying on the ex-
pert database. If needed, we generated missing findings boundaries and associated terms on
the fly with a LLM. Symptoms and converted findings are then (iii) aligned with the HPO
medical knowledge base to be associated to the correct and incorrect diagnoses proposed as
potential answers to the test. Finally, (iv) explanations are automatically generated based
on natural language explanatory arguments patterns highlighting why a certain answer is
the correct diagnoses and why the others are not.

Extensive experiments on a dataset of 314 clinical cases in English on various diseases
show good results (0.86 on symptom detection, 0.78 on findings conversion and 0.70 on
relevant symptom matching), outperforming competitive baselines and state-of-the-art ap-
proaches. Given the sensitivity of the medical domain and the fact that this system is
intended as an example of AI in education and training, our explanations have a didactic
goal which is exemplified through the enrichment of the data available in the clinical case
description with further verified information from the HPO knowledge base. In our work,
we have decided to adopt a method based on templates to generate explanations in order
to avoid any hallucination problems associated with LLMs. I explore explanations assess-
ment criteria and how they appear in medical question answering document, supporting
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the choice of template-based argumentation according to the user requirement. Although
this approach has its own limitations, such as being design-dependent, it provides a robust
and verified strategy which is more suitable to the medical domain.

However, this first step into generating grounded explanations for diagnoses could be
derived and completed from different aspects. First, as introduced in Chapter 2, explana-
tions expectations will strongly depend on an explainee and, therefore, being able to focus
on user-specific explanations is a great challenge. With the help of recent improvement in
the natural language generation domain, making explanation process interactive could be
an interesting path to explore. These interactions might lead to a closer human inference,
to the best explanation and to better students understanding of clinical cases. Then, as
discovered during the error analysis, investigating the structure and relations of ontologies
might be helpful to make the explanation (and even predictions) systems more flexible and
usable in real case scenario. For instance, one of the frequent errors in our experiments
concerns cardiac arrhythmia, often a symptom linked to a diagnosis in ontologies but diffi-
cult to detect because it is often expressed “too” precisely via the symptoms “tachycardia”
or “bradycardia”, which are both forms of cardiac arrhythmia (low or high rhythm). Taking
into account their relations, we will be able to improve the matching module performances
by allowing more or less abstraction on matching concepts. This could be also completed
by ameliorating medical knowledge. As we rely only on the HPO, we probably lack some
knowledge and using a bridge with other vocabularies and knowledge bases (i.e., UMLS
unified vocabulary) will enhance the arguments of our explanations. Moreover, given the
difference in our performances to predict low and high boundaries (88% and 68%, res-
pectively), it may be interesting to address further experiments, comparing our proposed
automated methods and re-submit our results to undergo another expert evaluation. Fi-
nally, even though clinical doctors have been involved in the definition of the annotation
guidelines, a user evaluation with med residents is required to get their feedback on our
explanatory arguments.
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This chapter shows how, after the step addressing the generation of argumentative ex-
planations in natural language, to automatically assess such explanations, relying on
argumentation patterns. Specifically, I propose a fully automatic pipeline to extract ar-
gumentation structures from natural language explanations, and return a set of argumen-
tation characteristics about the structure of the explanations. I investigate the structure
of the argumentation within natural language explanations to highlight some patterns
(e.g., the excessive usage of implicit claims) which can be used to assess explanations,
depending on the target use case. To focus on the structure rather than the content, Argu-
ment Mining methods provide a suitable solution to extract the argumentation structure
of a text (i.e., the retrieved arguments and their relations). In this work, I propose a set
of patterns based on both empirical analysis of the gold argumentation graphs of medi-
cal explanations and the literature on argumentation-based explanations in philosophy.
This chapter presents the contribution (currently under review) submitted to the ACM
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XAI approaches are detailed in Section 2.3 and can be broadly categorized into model-
agnostic methods [174, 122, 181], which can be applied to any machine learning model,
model-specific methods [192, 2, 94, 214] tailored to particular types of models, and by design
methods [142], where the architecture of the model explains the predictions. This issue is
particularly relevant in sensitive scenarios like medicine, law and defence. Natural language
explanations may be constructed in different ways. One of the research directions in this
domain consists in constructing argument-based natural language explanations, given the
justification ability of argumentation in decision making [55, 201]. This was the object of
the contribution I presented in Chapter 3 to generate natural language argument-based
explanations.

In medicine, argument-based explanations may be employed to aid students to eluci-
date their reasoning behind a diagnosis [140]. In this chapter, we focus on argumentation
structure of natural language explanations written by humans to justify the outcome of a
diagnosis. More precisely, we propose a number of criteria to characterise the argumentation
structure of these explanations. The proposed framework automatically tags the explana-
tions with respect to these criteria, based on argumentation literature [198, 207, 22] and
the empirical analysis of medical explanations in clinical case question-answering (QA).
The proposed architecture first extracts the argumentation structure of the natural lan-
guage explanation in the form of an argumentation graph, second, it automatically detects
argumentation patterns in the extracted argumentation graphs. More specifically, we pro-
pose an approach based on pre-trained transformers to extract argumentative structures,
finetuned on annotations of clinical cases from the Casimedicos dataset, which we assess
through rules on argumentation graphs.

This Chapter is organised as follows : in Section 4.1 I introduce our proposed pipe-
line, named ABEXA, to characterise explanations from the argumentation viewpoint. In
Section 4.2, I describe the first part of the system to extract the argumentation structure
from medical documents. Then, in Section 4.3, I define the set of patterns I decide to use
for assessing explanations, while in Section 4.4 I share the implementation details of both
steps of the pipeline and I discuss the obtained results. Section 4.5 presents an overview
of the related contributions. Finally, I conclude the Chapter in Section 4.6.

4.1 Natural Language argument based explanations assessment

In this section, we introduce our pipeline for assessing natural language explanations
of medical question answering. Our approach aims to automatically identify patterns in
explanations by analyzing their argumentation structure, relying on a manually defined set
of criteria. The aim is to identify specific argumentation patterns in student explanation
so that they can improve them and better structure their explanations.

More specifically, we have developed a pipeline that takes as input a QA consisting
of a clinical case, its question (e.g., on diagnosis, treatment), a set of answers and the
explanation. The argument structure is extracted from this document in the form of a
graph using argument mining techniques based on transformers. Once the argumentation
graph is obtained, we apply a set of rules to the graph to detect specific argumentation
patterns and return them to the user. The full pipeline is illustrated in Figure 4.1.
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Figure 4.1 – Overview of our proposed ABEXA pipeline. Argumentation patterns are detected
in the Explanation Assessment module, highlighted with red-dotted squares. The tags NoA, NoP
and NoQ stands for No Answer, No Premise, No Question used in the explanation. We detailed all
patterns in Section 4.3.

4.2 Argument Mining

The generation of the argumentation graph of a natural language explanation is ne-
cessary to be able to later assess the explanation itself and the detected patterns. In this
section, we first discuss the dataset used in our experimental setting, and then we describe
the results obtained with our pipeline in an end-to-end configuration.

4.2.1 Datasets

In order to assess natural language explanations in the medical domain, we decided
to focus on two datasets to evaluate our approaches. We decided to select these datasets
because both describe medical data and are annotated with argumentative structures.

Casimedicos Dataset : The Casimedicos dataset [3] has been annotated by Sviridova
et al. [195] adding the argument components (i.e., premise, claim) and relations (i.e., sup-
port, attack). This dataset is made over Spanish medical exams with a medical context and
a specific question over 64 different topics such as Psychiatry, Infectious diseases, Pedia-
try, . . . Each document ends with a question which may vary from guessing the diagnosis
to proposing a treatment or an intervention. Then four to five options are provided, accor-
ding to the question type, where one is the correct answer and the other are not. Finally,
Casimedicos is provided with an expert written explanation for each QA. As described in
Section 2.4, the explanations are written by volunteers, who are different for each clini-
cal case, and this is mirrored in the explanations as well, which result to be of different
granularity. In comparison to the USMLE dataset used to generate explanations in Chap-
ter 3, Casimedicos questions are broader than diagnostic questions, including all types of
medical questions. An example of a Casimedicos QA is shown in example 4.2.1 where the
discussed parts are indicated in bolds. Casimedicos annotations are presented as a conll
file exemplified in Apendice A.3.

Exemple 4.2.1 – QUESTION TYPE : NEUROLOGY
CLINICAL CASE : In a woman with an epileptic seizure presenting with the following clinical
features : epigastric aura, unpleasant odor, disconnection from the environment, motor automa-
tisms (sucking, swallowing, opening and closing of one hand) and postcritical amnesia, what is
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your diagnostic suspicion?
OPTIONS :
1- Generalized non-convulsive seizure or typical absence.
2- Continuous partial epilepsy.
3- Amyotonic crisis.
4- Complex partial temporal lobe seizure.
CORRECT ANSWER : 4
EXPLANATION : Clearly the answer is 4, with a very characteristic clinic of temporary seizures.

AbstrRCT Dataset : The AbstRCT dataset [129] propose an argumentative annotation
of “Claim” and “Premise” components, “Support” and “Attack" relations over abstracts of
Randomized Clinical Trial (RCT) available on PubMed 1. PubMed is a free search engine
accessing primarily the MEDLINE database 2 of references and abstracts on life sciences
and biomedical topics. We showed in Example 4.2.2 an example of the AbstRCT dataset,
the annotations have the same format than Casimedicos.

Exemple 4.2.2 – To investigate the effects of medroxyprogesterone acetate (MPA) on appetite,
weight, and quality of life (QL) in patients with advanced-stage, incurable, non-hormone-sensitive
cancer. Two hundred six eligible patients were randomized between double-blind MPA 500 mg
twice daily or placebo. Appetite (0 to 10 numerical rating scale), weight, and QL (European Or-
ganization for Research and Treatment of Cancer Quality of Life Questionnaire [EORTC-QLQ-
C30]) were assessed before the start of treatment (t = 0), and 6 weeks (t = 6) and 12 weeks (t =
12) thereafter. One hundred thirty-four patients (68 MPA and 66 placebo) were assessable at t =
6 and 99 patients (53 MPA and 46 placebo) at t = 12. A beneficial effect of MPA on appetite was
observed after both 6 weeks (P = .008) and 12 weeks (P = .01) of treatment. After 12 weeks, a
mean weight gain of 0.6 +/- 4.4 kg was seen in the MPA, versus an ongoing mean weight loss
of 1.4 +/- 4.6 kg in the placebo group. This difference of 2.0 kg was statistically significant (P
= .04). During the study, several areas of QL deteriorated in the total group of patients. With the
exception of an improvement in appetite and possible also a reduction in nausea and vomiting,
no measurable beneficial effects of MPA on QL could be demonstrated. The side effects profile
of MPA was favorable : only a trend toward an increase in (usually mild) peripheral edema was
observed. In weight-losing, advanced-stage non-hormone-sensitive cancer patients, MPA exhibits
a mild side effects profile, has a beneficial effect on appetite, and may prevent further weight loss.
However, general QL in the present study was not measurably influenced by MPA treatment.

Overall, the Casimedicos Dataset includes 4125 Claims and 1932 Premises, with 2431
Support relations and 1106 Attack relations annotated across its 553 clinical cases. Simi-
larly, the AbstrRCT Dataset consists of 700 annotated abstracts from PubMed, containing
a total of 1488 Claims and 2985 Premises, along with their corresponding 2402 Support
and 355 Attack relations.

4.2.2 Methodology

Our goal is to provide an end-to-end pipeline, taking a natural language text as in-
put and returning the argumentation graph to the Explanation Assessment module. As

1. https://pubmed.ncbi.nlm.nih.gov/
2. https://www.nlm.nih.gov/medline/medlineoverview.html
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Figure 4.2 – Argumentative Analysis Pipeline with i) Argument Components Detection forwarded
to the ii) Relations Classification

a baseline, we selected the two state-of-the-art approaches for end-to-end argument mi-
ning : i) the ACTA system [36] trained over the AbstRCT dataset, taking advantage of
transformer-based Language Models such as BERT [58] and SciBERT [20] ; ii) the Multi-
Task Argument Mining (MT-AM) approach of Morio et al. [144], a state-of-the-art model
for AM over scarce resources and various corpora. Both of the approaches tackled the
tasks of Argument Component Detection and Relation Classification, but Morio et al. op-
ted for a subdivision in Span Identification and Component Classification, following Stab
et al. [187].

Morio et al. [144] compared their approach to the original ACTA implementation but
their model did not perform better, so we decided to follow the ACTA approach [129] for
both subtasks due to the higher results on the overall pipeline. The Argumentative Analysis
pipeline is shown in Figure 4.2. Therefore, we experimented first on the AbstRCT dataset
and tackled the Argument Component Detection by casting it into a sequence tagging
problem, using the 5 classes BIO scheme tag [170], detecting the Beginning and Inside of
“Claim” and “Premises” as well as the Outside of a component. We slightly modified the
original neural architecture employing the BERT-based model followed by a RNN, here we
relied on a GRU [43] and a Conditional Random Field (CRF [114]) by removing the CRF,
achieving then better results on the AbstRCT dataset. For the Relation Classification, we
tackle this task as a sequence classification problem, predicting for each pair of detected
components if the relation is “Attack”, “Support” or “No Relation”.

In addition to SciBERT, we also addressed experiments using more recent BERT-based
transformers such as ClinicalBERT [208], Bio_ClinicalBERT [7] and PubMedBERT [77].

All these pre-trained models have been finetuned independently for each task namely
i) Argument Component Detection as a Sequence-Tagging problem, and ii) Relation Clas-
sification casted into a Sequence Classification problem.

4.2.3 Evaluation and results

For the end-to-end pipeline evaluation, we proposed to evaluate each documents one by
one, aligning the predicted components with the gold components to retrieve the expected
relations. As we are tackling the span identification and the classification of the component
label in a single sequence labeling step, we need to align the detected component with the
component expected in the gold standard. This step, illustrated in Figure 4.3, is necessary
because the relations gold standards of the Casimedicos dataset are built over the gold
of argument components and if the prediction of the Argument Component task is not
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Figure 4.3 – Argument Mining end-to-end pipeline with alignment step.

precisely the gold one it still could be considered as correct. We exemplify this scenario in
example 4.2.3 where the Detected Component (DC) missed some tokens compared to the
Gold Component (GC).

Exemple 4.2.3 – GC : The side effects profile of MPA was favorable : only a trend toward an
increase in (usually mild) peripheral edema was observed.
DC : only a trend toward an increase in ( usually mild ) peripheral edema was observed.

To automatically address this alignment, we proposed some heuristics. More precisely,
we evaluated two different methods starting to count similar tokens with different thre-
sholds (50, 80 and 100% of similar tokens), and to compare the similarity of the detected
and gold components (through cosine and Levenshtein distance metrics). Once the com-
ponents have been aligned with our goldstandard, we could recreate our new goldstandard
dataset for relation prediction task, as shown in Example 4.2.4.

Exemple 4.2.4 – Initial Gold : T6[The side effects profile of MPA was favorable : only a trend to-
ward an increase in (usually mild) peripheral edema was observed.] → Support → T7[In weight-
losing, advanced-stage non-hormone-sensitive cancer patients, MPA exhibits a mild side effects
profile, has a beneficial effect on appetite, and may prevent further weight loss.]
New Gold : T1[only a trend toward an increase in ( usually mild ) peripheral edema was observed.]
→ Support → T2[In weight-losing, advanced-stage non-hormone-sensitive cancer patients, MPA
exhibits a mild side effects profile, has a beneficial effect on appetite, and may prevent further
weight loss.]

This example of goldstandard reconstruction aims at evaluating our performances and
does not change the detected argument components but only retrieve the expected argu-
mentative relations. In Table 4.1, we report the results of our end-to-end argument mining
pipeline, using two evaluation methods, i.e., Flexible and Strict. The Flexible evaluation
considers that each NoRelation relationship will be valid even if the component is not de-
tected during the argument component detection step, whereas Strict will consider these
relationships to be false because the component has not been detected. For a fair compari-
son with Morio et al., all the experiments are tested over the neoplasm subset of abstRCT
dataset.

This new architecture allows to enhance the result of Mayer et al. [128] from 0.55 to
0.57 for our equivalent SciBERT T50, having all models reaching similar good performances
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ArgComp Alignment RelClass Flexible Strict
Morio ST* 0.8937 - - - 0.3191
Morio MT* 0.8923 - - - 0.3394
Mayer 0.85 - 0.68 - 0.55
Us SciBERT T50 0.83 0.9315 0.73 0.6528 0.5730
Us SciBERT T80 0.83 0.8805 0.73 0.6130 0.4778
Us SciBERT T100 0.83 0.3017 0.73 0.2403 0.0374
Us SciBERT COS 0.83 0.9315 0.73 0.6562 0.5701
Us SciBERT LEV 0.83 0.9315 0.73 0.6516 0.5637
Us PubMedBERT T50 0.82 0.9198 0.71 0.6272 0.5224
Us PubMedBERT T80 0.82 0.8717 0.71 0.5930 0.4492
Us PubMedBERT T100 0.82 0.2945 0.71 0.2448 0.0424
Us PubMedBERT COS 0.82 0.9227 0.71 0.6430 0.5469
Us PubMedBERT LEV 0.82 0.9271 0.71 0.6343 0.5523
Us BioClinicalBERT T50 0.81 0.9213 0.71 0.6301 0.5392
Us BioClinicalBERT T80 0.81 0.8790 0.71 0.6051 0.4742
Us BioClinicalBERT T100 0.81 0.3324 0.71 0.2870 0.0498
Us BioClinicalBERT COS 0.81 0.9257 0.71 0.6428 0.5525
Us BioClinicalBERT LEV 0.81 0.9300 0.71 0.6296 0.5407
Us ClinicalBERT T50 0.73 0.8222 0.50 0.5298 0.3629
Us ClinicalBERT T80 0.73 0.7857 0.50 0.5168 0.3227
Us ClinicalBERT T100 0.73 0.3147 0.50 0.2686 0.0467
Us ClinicalBERT COS 0.73 0.8338 0.50 0.5468 0.3889
Us ClinicalBERT LEV 0.73 0.8528 0.50 0.5524 0.4163

TABLE 4.1 – Argument mining results for component detection, component alignment, and end-
to-end evaluation (Flexible and Strict) using Macro F1 over the subset of the AbstRCT dataset on
neoplasm.
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over the end-to-end pipeline. According to experiments, SciBERT and PubMedBERT per-
form the best, mostly with the T50, COS and LEV configurations for alignment methods.
SciBERT is still the best performing model. Finally, we fine-tuned both SciBERT and
PubMedBERT over the Casimedicos dataset with T50, COS and LEV alignment methods.
Obtained results are reported in Table 4.2.

ArgComp Alignment RelClass Flexible Strict
Us SciBERT T50 0.91 0.8721 0.46 0.4639 0.327
Us SciBERT COS 0.91 0.9202 0.46 0.4826 0.3862
Us SciBERT LEV 0.91 0.9506 0.46 0.4904 0.4312
Us PubMedBERT T50 0.90 0.8609 0.49 0.4746 0.3219
Us PubMedBERT COS 0.90 0.9183 0.49 0.5002 0.3995
Us PubMedBERT LEV 0.90 0.8609 0.49 0.5084 0.4406

TABLE 4.2 – Argument Mining results expressed with Macro F1 over the Casimedicos dataset.

The results over Casimedicos are way lower than on AbstRCT from 0.63 with PubMed-
BERT combined with LEV alignment versus 0.51 in Casimedicos. We assume it is mostly
due to the fact that AbstRCT is using Randomized Clinical Trials, that have an imposed
structure whereas medical QA vary more in the structure of the text. Also the medical
QA explanations and questions are written by different authors and on differents topics,
making the argumentative structure more complex to learn than in RCT where the entire
document is written by the same author. Finally, we observed that Casimedicos contains
a lot of coreferences, linking the components by formulations like “Option 1 can be discar-
ded...”. Therefore we retrained and reevaluate our pipeline on a new version of Casimedicos
where coreferences are detected using a set of regex and replacing these occurrences by the
content of the answer like in Example 4.2.5. Results of coreference experiments are shown
in Table 4.3.

Exemple 4.2.5 – Among the other 2, it is important to know that 5 is correct
Among the other 2, it is important to know that 5- Microsatellite instability and DNA error
repair genes should be studied. is correct

ArgComp Alignment RelClass Flexible Strict
Us SciBERT T50 0.73 0.8002 0.52 0.4355 0.2648
Us SciBERT COS 0.73 0.8741 0.52 0.4600 0.3407
Us SciBERT LEV 0.73 0.8978 0.52 0.4656 0.3672
Us PubMedBERT T50 0.72 0.7864 0.52 0.4494 0.2708
Us PubMedBERT COS 0.72 0.8655 0.52 0.4731 0.3509
Us PubMedBERT LEV 0.72 0.8827 0.52 0.4849 0.3835

TABLE 4.3 – Argument Mining results without coreferences expressed with Macro F1 over the
Casimedicos dataset.

Coreferences resolution on the best performing model for Casimedicos is showing a
minor improvement on relation classification (from 0.49 to 0.52) but a degradation of the
results from 0.5084 to 0.4849 of macro f1 through the Flexible evaluation.
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4.3 Explanation Assessment

We propose here a new modular system to assess explanations from the argumentation
structure viewpoint. Our goal is not to classify explanations as being good and bad, but
proposing different criteria to aid users in semi-automatic assessment of argumentative
explanations, according to their needs and use cases.

In this section, we first describe the dataset focusing on explanations, before introducing
the set of argument-based heuristics. Finally, we provide the results over the entire pipeline.

4.3.1 Argument components in Casimedicos’ explanations

The Casimedicos dataset [3] contains QA documents with both the Question, the po-
tential Answers and the Explanation written by an external doctor. The explanations are
not written by the same author as the questions. Therefore, explanations differ a lot the
ones from the others, in terms of writing style and argumentation process used to justify
the correct answer. We report in Table 4.4 the argumentation distribution of components
and relations in Casimedicos with respect to their presence in the explanation.

Label Total Mean In Explanations Mean per Explanation
Claim 4125 8.93 3003 5.948
Premise 1932 4.18 470 0.935
Support 2431 4.36 - -
Attack 1106 1.98 - -

TABLE 4.4 – Distribution of argumentation components and relations in the Casimedicos dataset,
by Cases and by Explanations.

It might be noticed that these documents (Question, Answers and Explanation) contain
twice more claims than premises. They introduced more than five times more claims than
premises in the Explanation showing that explanations are mainly focused on making
assertions (claims) rather than providing supporting reasons or evidence (premises). When
we look at the interactions between the different components, we can notice that not all
components are used in the document nor in the explanation, as shown in Table 4.5.

Label Total Mean per Case
Claim 1527 2.74
Premise 1446 2.60

TABLE 4.5 – Total and average per Case of unused Argumentative Components.

4.3.2 Argumentation-based patterns for explanations

In this section, we propose a set of graph-based criterias to assess the argumentation
structure of natural language explanations. These criteria may then be used by users to
select those explanations which satisfy the criteria which are relevant for their precise use
cases. The proposed argumentative explanation tags and their corresponding descriptions
are used to assess the structure of explanations. The criteria are as follows :
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— Inconsistent (Inc) : indicates a conflict or incoherence in the argumentation graph.
— No Explanation (NoE) : is applied when the explanation is composed of a simple

argument component, it does not contain any component or is an empty text.
— No Question (NoQ) : is triggered when less than 80% of the components in the

document are linked to the question.
— No Premise (NoP) : appears when less than 80% of the components from the ex-

planation are linked to a premise.
— No Answer Positive (NAP) : is activated if the correct answer is not addressed in

the explanation.
— No Answer Negative (NAN) : is triggered when less than 80% of incorrect answers

are tackled.
— No Length (NoL) : applies when the explanation is shorter than 238 characters.
— Too Long (ToL) : is used for explanations exceeding 616 characters.
— Implicit (Imp) : is triggered when more than 50% of the components are introduced

in the explanation.

In the following argumentation graphs, as visualized in Figure 4.4, orange nodes re-
present claims and blue nodes represent premises. The border of a node expresses where
the component appears in the text of Casimedicos : the full line is for components in
Questions, the dashed line for Explanation, and the dotted line for the Answers (where
the half dashed half dotted line is for the correct answer). Green and red edges between
two nodes represent the support and attack argument relations, respectively. The following
paragraphs details each criterion with examples.

Figure 4.4 – Components types and positions in documents.

Incosistent (Inc) By analysing the explanations, we founded out that some of the argu-
mentation graphs show inconsistent argumentation patterns, as shown in Figure 4.5. In
this example, claim 12 both indirectly attacks (by attacking the premise 13 wich supports
claim 14) and support claim 14. To detect this kind of patterns, we created a set of graph-
based rules that trigger the Inconsistent tag if in a QA document, one component is both
(indirectly) attacked and (indirectly) supported by another argument component. Only 3
documents where identified in Casimedicos showing such inconsistency.

No Explanation (NoE) The No Explanation (NoE) tag aims to detect wether an expla-
nation is empty (this situation does not appear in the Casimedicos dataset) or if the
explanation contains one single component. In this case, the argumentation graph results
to be poor and probably many (incorrect) answers are not tackled in the explanation.
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Figure 4.5 – Inconsistent graph where the Claim 12 both Attack (indirectly) and Support Claim
14.

Exemple 4.3.1 – Clearly the answer is 4, with a very characteristic clinic of temporary seizures

Exemple 4.3.2 – They are undoubtedly describing the typical lesions (both on skin and oral mu-
cosa) of a lichen planus (5)

Exemple 4.3.3 – It never ceases to amaze us the strange ways of biology and that the axiom “the
longest is the right one” is fulfilled in this case

Examples 4.3.1, 4.3.2 and 4.3.3 shows the kind of explanations with only 1 claim in
the explanation. Over the goldstandard argumentation graphs of Casimedicos, 39 cases
appears to be tagged NoE as only one component was present in the explanations. Over
these claims, 25 of them are backed by the Question. Figure 4.6 illustrates this scenario of
example 4.3.1.

Figure 4.6 – Example of the Question 452_149 with only one component (claim) in the explana-
tion, not backed by any components from the question.

No Question (NoQ) As a second criterion, we decided to focus on the cases where the
elements provided in the Question are not used (or at least linked) in the formulation
of the Explanation. Example 4.3.4, and the related argumentation graph visualized in
Figure 4.7, exemplify this criterion by showing the claims from the Explanation are mainly
related to the answers rather than the Question.

Exemple 4.3.4 – QUESTION TYPE : ENDOCRINOLOGY
CLINICAL CASE : 14-year-old girl who consults for decreased growth for 2-3 years previously
normal (provides data) and that other girls her age have greater physical and sexual development.
Lately she has had headaches and visual problems that she notices in class and when studying. She
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has not had menarche or polydipsia or polyuria. Parents with normal height. Examination : short
stature at -2.1 standard deviations, normal body proportions, little pubic hair and breast develop-
ment. Campimetry shows left temporal partial hemianopsia. Bone age : delay of 2 years. General
laboratory tests were normal. Gonadotrophins (FSH and LH) and estradiol are low. What do you
think is the most appropriate response?
1- Decreased growth and sexual development, delayed bone age, headache and visual alteration
suggest hormonal deficit and involvement of the optic chiasm.
2- As she is a girl of pubertal age, it is most likely that her decreased growth and sexual retardation
are due to Turner syndrome.
3- She must not have a hypothalamic tumor because of the absence of polyuria and polydipsia.
She probably has constitutional delay and her visual problem is refractive.
4- A growth hormone deficiency may explain the developmental delay and low estradiol. To eva-
luate if she needs glasses, due to her headaches and visual disturbances.
5- She could have a craniopharyngioma, but it would be rare if she had not shown symptoms be-
fore. Also, it would not justify low gonadotrophins and estradiol.
CORRECT ANSWER : 1
Answer 2 is false (Turner syndrome : low estradiol and elevated gonadotrophins), brain tumors
affecting the hypothalamus-pituitary gland do not give low gonadotrophins (5 false), and it seems
obvious that refractive defects do not give hemianopsia (3 and 4 false).

Figure 4.7 – Example of the Question 56_76 with the correct answer (claim 7).

We can observe that numerous components are not used in this explanation, and most
of them are from the question. We observed 498 occurrences of this tag over 553 using a
threshold of 20% of unlinked components.

No Premise (NoP) In the explanatory literature [85, 38], the Explanans (i.e., the state-
ments that provide the explanation, based on relevant facts) plays a central role in the
explanation. Therefore we decided to highlight when an explanation does not use the Pre-
mises, mainly present in the Question. We noticed that most of the Premises are not
linked to any component (1446/1932 according to Table 4.4 and 4.5). For instance, in



76 CHAPITRE 4 — Assessing Argument based Natural Language Explanations

Example 4.3.4 visualized in Figure 4.7, we can notice that the majority of unemployed
components are Premises, and only 1/8 is related to the explanation. Figure 4.8 shows a
correlation between the lack of use of premises, strongly correlated with the lack of use in
the explanation of the Question element.

Figure 4.8 – Co-occurence matrix of tags over gold labels.

In this example, the Claims introduced by the doctor in the Explanation are implicit,
and the understanding of the explanation could improve by making a more heavy use of the
Premises available in the Question. This tag is the second most observed tag in Casimedicos
and it is strongly correlated to the NoQ pattern, according to the co-occurrence matrix
visualized in Figure 4.8.

No Answer Positive (NAP) This tag is assigned when the claim contained in the correct
answer (or at least one of the claims of the correct answer) is not linked to any other com-
ponents in the document. We focused on this tag because it represents the most common
way to explain the answer, observed in 526 case out of 553. For instance, in example 4.3.4
and its visualisation in Figure 4.7, we can see that the argumentation of the explanation
does not tackle the correct answer. In this case, the doctor explains the outcome of the case
by discarding the incorrect answers and does not tackle the correct one. Another reason
relies on the fact that we spot some human errors during the manual annotations, as in
the graph visualized in Figure 4.9, which shows one annotation error of the example 4.3.5
where the annotator missed a relation (symbolised with green dotted arrow).
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Exemple 4.3.5 – QUESTION TYPE : DIGESTIVE SYSTEM
CLINICAL CASE :
18-year-old young man with a history of asthma, allergy to pollens, mites and cat hair, comes to
the emergency room referring sensation of food detention at retrosternal level with practical in-
ability to swallow his own saliva. He refers similar episodes on other occasions that have subsided
spontaneously within a few minutes. Which of the following is the most likely diagnosis ?
1- Barrett’s esophagus.
2- Distal esophageal ring (Schatzki).
3- Infectious esophagitis.
4- Eosinophilic esophagitis.
CORRECT ANSWER : 4
This is intermittent dysphagia. Barrett’s esophagus does not necessarily imply peptic stricture, but
assuming it does, it is progressive. Infectious esophagitis is more typical of immunocompromised
patients. That leaves distal esophageal ring and eosinophilic esophagitis ; both are possible, but the
insistence on the patient’s atopic burden indicates the likelihood of the latter.

Figure 4.9 – Example of the Question 273_71 with the green-dotted link missed by the annotator
in the annotation.

We noticed this tag with 27 occurrences over 553 cases. It means that only 27 cases
does not tackle the correct answer in the explanation text.

No Answer Negative (NAN) Similar to the NAP pattern, the No Answer Negative (NAN)
criterium aims to show the cases where at least one incorrect answer is not linked to
any other components in the explanation. This is the most common scenario because the
Casimedicos dataset contains four to five answers for each question, and only one is correct,
making many components to tackle in the explanation to justify why the correct answer
is correct, but also to explain why the wrong answer is not correct. Example 4.3.6 shows
that the explainer only tackles the correct option.

Exemple 4.3.6 – QUESTION TYPE : NEUROLOGY
CLINICAL CASE :
In a woman with an epileptic seizure presenting with the following clinical features : epigastric
aura, unpleasant odor, disconnection from the environment, motor automatisms (sucking, swallo-
wing, opening and closing of one hand) and postcritical amnesia, what is your diagnostic suspi-
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cion?
1- Generalized non-convulsive seizure or typical absence.
2- Continuous partial epilepsy.
3- Amyotonic crisis.
4- Complex partial temporal lobe seizure.
CORRECT ANSWER : 4
Clearly the answer is 4, with a very characteristic clinic of temporary seizures.

Not/Too Long (NoL-ToL) We now introduce two tags computing the length of the Ex-
planation in characters. We addressed an empirical analysis to define the default criteria
in terms of length of the Explanation (i.e., Figure 4.10). This analysis shows that, in the
Casimedicos dataset, Explanations have a 25th percentile (Q1) of 238 characters, a Me-
dian (50th percentile) of 398 characters, and a 75th percentile (Q3) of 616 characters. This
analysis justifies our defaults setting of 238 and 616 characters to detect long and short
explanations. These tags occur rarely with only 104 and 173 for NoL and ToL, respectively.

Figure 4.10 – Casimedicos Explanations, Questions and Document (entire QA) lengths distribu-
tion.

Implicit (Imp) Finally, we decided to add a final criterion to detect an overuse of
components introduced in the explanation. This case is exemplified in Figure 4.7 and
Example 4.3.4 where almost all the linked components are from or to a component intro-
duced in the Explanation. This criterion relies on the fact that the argumentation scheme
is based on the explainer knowledges rather than the Premises or the Question of the QA
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document, like in the following example : “and it seems obvious that refractive defects do
not give hemianopsia (3 and 4 false)”. We detected 177 documents with the Implicit tag.

4.4 Experimental settings and results

In this section, we report on the results obtained by our experimental setting of the pro-
posed ABEXA pipeline which starts with the argument mining module to the explanatory
assessment one on the extracted argumentation graphs.

We replicated the experimental settings used by Mayer et al.[128] for the argument
component module, based on the results from the updated version of ACTA [36], presented
in details in Chapter 5. We also removed the CRF[114] layer from the original approach.
This task is still casted as a sequence tagging problem using the BIO-tagging scheme
for modeling. Thus, for token-level representation of contextualized sentences, we use the
pre-trained bidirectional transformer language model SciBERT [20] rather than BERT
base [58], which we fine-tuned for three epochs using an Adam optimizer with a learning
rate of 2e-5. The sentence representation is then passed into a RNN, specifically a GRU [43].

Regarding relation prediction, we followed the approach of Mayer et al.[129] and casted
it as a sequence classification problem, utilizing a bi-directional transformer. The problem
is tackled by generating all possible combinations between components and passing them
through a softmax linear layer to classify each combination into one of three target classes :
Support, Attack, and NoRelation. As Casimedicos has more components and therefore way
more pairs to train the model than AbstRCT, we have therefore sub-sampled 30% of label
NoRelation to make training faster and less expensive, without influencing the results. We
also use the SciBERT uncased base model with pre-trained weights for sentence represen-
tation, fine-tuned with a learning rate of 2e-5, a batch size of 8, and a maximum sentence
length of 256 sub-word tokens per input example for three epochs. The weight factor for
each of the three classes in the weighted cross-entropy loss is the normalized number of
training samples for each class.

To tag the explanations along with the argumentative criteria we defined, we created a
script in Python 3.9.19 that retrieve all the documents’ ann file and create the associated
argumentation graph using networkx 3 version 3.2.1. Each graph is then provided to a set of
functions, one per tag, that return True or False if the heuristic threshold is reached. Each
node of the argumentation graphs is associated to their types (i.e., Claim or Premise) and
their labels (i.e., their position in the clinical case like Question, Answer, Correct Answer,
Explanation). Each edge is headed with the type Attack or Support.

The occurrence of each tags in the Casimedicos dataset are showed in Table 4.6, and
the tags co-occurrence matrix is available in Figure 4.8 and in Figure 4.11 for the pipeline
outputs.

3. https://pypi.org/project/networkx/
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Label Gold Gold ratio (%) Pred Pred ratio (%)
NAN 396 71.61 86 73.50
NoL 104 18.81 25 21.37
NoQ 498 90.05 100 85.47
NoP 432 78.12 92 78.63
ToL 173 31.28 37 31.62
Imp 177 32.00 41 35.04
NoE 25 4.52 3 2.56
NAP 27 4.88 5 4.27
Inc 3 0.54 1 0.85

TABLE 4.6 – Label Occurrences from Heatmaps with Ratios over 553 documents for Gold and
117 for Pred. Ratio represent the percentage of documents over the dataset with this tag.

Figure 4.11 – Co-occurence matrix of taggs over prediction labels.

According to Table 4.6, our pipeline detects about the same proportion of tags. As
presented in Section 4.2, the results on the Casimedicos dataset are lower than AbstRCT,
with a best performing model that reach 0.5084 of macro F1 score. However, we can observe
that the detected tags respect the same proportions and do not differ from the goldstandard
documents.
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4.5 Related Work

In the medical domain, some contributions already proposed Argument Mining pi-
pelines [129, 36, 144]. A recent contribution of Kawarada et al. [103] employs LLMs to
tackle argument mining in the medical domain as a single text-to-text task. Concerning
the assessment of argument structures, many approaches have been proposed in the litera-
ture [203]. However, to the best of our knowledge, no work focuses on assessing argument-
based natural language explanations. This is indeed the goal of this contribution, showing
an application in the medical domain.

The assessment of explanations is still an open research question [134]. Recent ap-
proaches in the literature identified dimensions that allows to get more insights over an
explanation [179]. According to the literature, a key element to evaluate an explanation is
the user itself [134, 87, 42]. Another element is multidimentionality [179, 31] of explana-
tions, i.e., being true and convincing. In this line, Zhou et al. [224] provides a high-level
overview of explanatory methods in Machine Learning (ML) without focusing on natural
language data. Focusing on textual data, Schuff et al. [179] identify two ways to evaluate
explanations in natural language. A first method is to use a proxy score, computed au-
tomatically such as Accuracy, Recall and F1 metrics. Recent works [220, 136] focus on
explanation generation in natural language across the multi-hop question answering task
which identifies relevant paragraphs, determines supporting facts, and then predicts the
correct answer. Due to the nature of the HotpotQA dataset, they evaluate the explana-
tion using the F1 score [136] or both F1 score and Exact Match (EM) metrics [68, 120].
Other approaches [149, 200] predict supporting facts together with the answer to tackle
interpretable reading comprehension, reporting Accuracy, Precision and Recall. Focusing
on student peer discussions, Chou et al. [45] proposed an explanation assessment system
trained on an expert annotated data to classify good and bad explanations using the Accu-
racy and Standard deviation metrics. The second kind of metrics used to evaluate natural
language explanations are word embedding based metrics, inspired from natural language
generation such as BLEU [155] or BERT-score [222]. Some approaches [33, 145] propose
to use the BLEU metric on top of Perplexity and Accuracy evaluations. Clinciu et al. [49]
investigate the correlations between automatic metrics and human ratings were compu-
ted using the Spearman correlation coefficient observing that embeddings based metrics
performed better than word-overlap ones but still relatively far behind human rating.

Human evaluation is central to evaluate explanations but still suffer from the subjec-
tivity and dimensionality of the task. Only few approaches proposed a human evaluation
on top of the automatic ones, using crowdsourced solutions [145, 179]. Human evaluation
criteria are mainly explanation utility, consistency, correctness and usability, and mental
effort [179].

4.6 Conclusion and Discussion

In this chapter we presented a full pipeline named ABEXA to assess and characte-
rize natural language explanations within the context of medical question answering. This
approach tackles the assessment from the argumentation prism, providing an Argument
Mining module to retrieve the argumentative structure from the raw text. Our system
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returns a list of tags associated to the QA document, highlighting certain argumentation-
based characteristics of the explanations. To the best of our knowledge we achieved state-
of-the-art results for argument mining on clinical cases accounting for 0.65 of macro f1 in
our end-to-end configuration. We have also analysed the extracted graphs and obtained si-
milar proportion of detected patterns, showing that our approach can automatically detect
argumentation patterns. The provided framework allows the user to configure the system
according to the required level of granularity and the targeted use case.

There are multiple aspects that could be explored in the continuation of this work at
the crossroad between explanable AI, argumentation, and medicine. As ABEXA evaluates
medical explanations in natural language, a potential future line research consists in cou-
pling it with the generation of diagnosis explanations discussed in chapter 4 to characterise
the generated explanations. It would be interesting to explore its adaptation to other speci-
fic domains such as law or politics to understand both the argumentation patterns and see
how they differ in between domains. Then, according to the trend around large language
models, another future work line will be to explore how to generate explanations which
enhance the existing method depending on one of the selected criteria. This framework
would be a contribution in AI and education to enhance the medical residents’ critical
thinking and argumentative skills.



CHAPTER 5
Implementation of

Argumentation-Driven
Explainable AI for

Medicine
This chapter introduces the tools that I developed or participated in the development to
achieve argumentation-driven XAI in medicine. More specifically, it focuses mainly on
argumentation tools such as the extension of the Argumentative Clinical Trial Analysis
(ACTA) features, introduced in Chapter 4, to ease the clinician review of the litera-
ture. Then it presents MedMT5, an investigation on how multilingual text-to-text large
language models specialized on medical data can enhance the performance of the argu-
ment mining task over non-english data. Finally, I present the ANTIDOTE software suite
that showcase the tools developed for the project, described in Chapter 1. This chap-
ter brings together the contributions published at the International Joint Conference on
Artificial Intelligence (IJCAI 2022) [141] and European Conference on Artificial Intel-
ligence (ECAI 2024) [36] demo tracks as well as the paper we published in the Pro-
ceedings of the Joint International Conference on Computational Linguistics, Language
Resources and Evaluation (LREC-COLING 2024) [72].
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This thesis is a contribution in the context of the ANTIDOTE CHIST-ERA EU project,
which aimed to develop an explicable AI where low-level features of the deep learning
process are combined with higher-level patterns of human argumentation. With the goal
of providing an autonomous system for generating high-quality explanations for AI pre-
dictions in natural language and applied to the medical field, this project led us to create
and deploy together the ANTIDOTE software suite. Thanks to the participation of a large
number of multidisciplinary experts, the project successfully covered explanatory argumen-
tation from theory to application. As part of this project, I was directly involved in the
development of argument-based XAI technological solutions, which I will presented in this
chapter. More precisely, in section 5.1, I first present our argumentation structure extrac-
tion tool, initially designed for the EBM context. I will then discuss, in Section 5.2, our
contribution to the multitask and multilingual medical LLM MedMT5, before presenting
the results of the ANTIDOTE project in Section 5.3. Finally, I will draw some conclusions
and future challenges in Section 5.4.

5.1 Argumentation Mining for medical documents

Argument mining has shown many potential applications in helping clinicians to
make informed decisions through evidence-based medicine [127]. While AM helps decision-
making in healthcare, I have also shown in the previous Chapters that it has a major role
to play in explanatory argumentation. As discussed in Chapter 3 Section 3.6, generating
argumentative explanations in natural language represents an open challenge, expecially
for the medical domain. To meet this challenge, I have collaborated to the development
of Version 2.0 and 3.0 of the ACTA tool to automatically extract argumentation struc-
tures from natural language text. It is worth noticing that we have used ACTA to assess
explanations (Chapter 4).

5.1.1 ACTA

Identifying argumentation structures within natural language appear to be a great
support in many domains such as evidence-based medicine [127], wich aims at making
decisions about the care of individual patients based on the explicit use of the best available
evidence in the patient clinical history and the medical literature results. Argumentation
represents a natural way of addressing this task by (i) identifying evidence and claims
in text, and (ii) reasoning upon the extracted arguments and their relations to make a
decision. ACTA is a modular architecture introduced by Mayer et al. [128] relying on fine-
tuned transformer-based architecture to extract argumentation structures from natural
language document. The tool is designed for the medical domain, to ease the work of
clinicians in analyzing Randomized Clinical Trials (RCT). It is design for assisting clinicians
keeping up to date with the latest discoveries and literature by providing a quick view on
the main argumentation of RCTs. Alternatively to keyword-based search in clinical trial
abstracts, it empowers the clinician with the ability to retrieve the main claim(s) stated in
the trial, as well as the premises (or evidence) linked to this claim. As a result, the clinician
does not need to read the whole abstract, but is provided with a structured “summary” of
the abstract under the form of a graph. The overall architecture of ACTA is visualized in
Figure 5.1.
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Figure 5.1 – ACTA 3.0 pipeline (the newly introduced modules are in grey). Tasks SeqTag and
SentCls means sequence tagging and sentence classification respectively.

ACTA Features. ACTA has been improved since the first version, each time with the ad-
dition of new features to make it more useful, particularly in the field of evidence-based
medicine. The main use of ACTA lies in its ability to extract argumentation structures
(i.e., argumentation components and relations between components) directly from RCTs
expressed in natural language. Initially, ACTA detects the simplest components (i.e., claim,
premises) and predicts whether a relationship exists between them, without specifying the
nature of this relationship. In addition, to improve the decision-making process, ACTA is
proposing to detect PICO 1 elements directly in the RCTs. Then, given that the system
is designed for medical experts, it allows the use of the PubMed 2 search engine accessing
primarily the MEDLINE database of references and abstracts on life sciences and biomedi-
cal topics. Finally, ACTA provides a graph representation of the argumentation structure,
with the nodes being the components and the arcs the relationships. This graph is accom-
panied by the initial RCT text, with the option of highlighting the argument components
or PICO elements directly in the text. These analyses can be run on a single RCT, on a
selection of documents directly from the PubMed search or by copying and pasting the
raw text into the platform. The Figure 5.2 shows some visualisations of the latest version
of ACTA, sharing the same features.

5.1.2 Towards ACTA 3.0

We have improved ACTA by adding new features, including performance by reworking
the architecture and adding more customizable parameters to the pipeline, features for

1. PICO is a framework to answer health-care related questions in evidence-based practice. Elements comprise
patients/population (P), intervention (I), control/comparison (C) and outcome (O) information.

2. https://pubmed.ncbi.nlm.nih.gov/
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Figure 5.2 – ACTA 3.0 demonstration system. Argument analysis results are shown within the
graph and in a textual representation (i.e., in the initial text on top right part) where blue com-
ponents indicate premises and yellow components claims. Relations between nodes are headed,
represented by attack or support labeled arrows. The lower section reveals the PICO elements to-
gether with Effect on Outcomes, also highlightable within the top right part of the visualisation.
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argument mining and evidence-based medicine such as relations labeling and effect on
outcome prediction, distribution and access with the deployment of a public API and the
distribution of ACTA as a python package.

Effect on Outcomes. We introduced a new module to analyse the reported effects an
intervention has on the outcomes (O of PICO framework) in the clinical trial abstract. As
introduced by Mayer et al. [130], the automatic identification of effects on outcomes could
be beneficial to enrich the arguments with valuable medical information and to provide
structured and machine-processable data, which can serve as input to a computational
model of argument system [14]. The effect on outcome analysis is divided into i) outcome
detection tackled as a sequence tagging, and ii) the effect prediction casted into a sentence
classification problem. We then are able to identify 6 classes of effects on outcomes namely
Increased, Decreased, Improved, NoOccurrences or NoDifferences. In the interface of the
tool, these effects can also be highlighted within the inputted RCT text.

Relations labeling. As a main enhancement of ACTA’s argumentative analysis, we also
implemented a new relation classification methodology, described in [130], to predict the re-
lation labels (i.e., attack, support and no relation) between components. The implemented
method is based on a SciBERT sequence classification of pairs of components previously
detected, trained over the relations of the AbstRCT dataset. Each combination of pairs is
predicted with the labels Attack, Support or No Relations making the possibility to extract
and visualize the graph, with only the Attack and Support relations which are visible.

Public distribution. As ACTA is a set of modules, each performing a particular subtask,
some modules could be useful for the development of different tools and/or in different do-
mains. To do so, the entire architecture had to be redesigned in order to make it available
for the community with the possibility to use the pipeline or a module as a tool for other
argument mining tasks. Therefore, in ACTA 2.0 [141], we proposed to separate each com-
ponent of the full pipeline and make all of them available independently to allow anyone
to use only the bricks of interest. To do so, on top of reworking the code architecture 3,
the need of a REST API was identified to interface the modules with the web. The API
documentation is available online 4 and an overview is available in Figure 5.3. Following
the ambition to make argument mining easier to access, the ACTA modules and pipeline
were released as an open-source library 5 within the last contribution about ACTA 3.0 [36].

5.1.3 Implementation details and results

We report here on the implementation details of the ACTA modules and the results ob-
tained for each of the AM tasks on the tool.

3. We later decided to follow Black (https://github.com/psf/black) and Flake (https://flake8.
pycqa.org/en/latest/) formatting standard.

4. http://antidote.i3s.unice.fr/acta/api/docs/
5. https://gitlab.com/wimmics-antidote/antidote-acta



5.1 – 5.1.3 Implementation details and results 89

Figure 5.3 – ACTA 3.0 API documentation. External users can investigate each endpoint and
try requests from the API page. Each ACTA component is described (i.e., argument components
detection, relations classification, PICO element detection, outcomes detection and effect on out-
come prediction) with the expected parameters to run the modules.

Argumentative Analysis. For the argumentative analysis, we distinguish two complemen-
tary stages : the extraction of argumentation components and the classification of relation-
ships between components. We tackled the argument component detection as a sequence
tagging problem based on a pre-trained bi-directional transformer language model. The
sentence representation is then passed into a Recurrent Neural Network, here a GRU [43]
and then to a CRF [114]). The best performing model after refactoring the architecture
with the Huggingface is DEBERTa-v3 [84], achieving a macro f1-score of 0.81, 0.82, and
0.82 for the AbstRCT-Neoplasm, AbstRCT-Glaucoma, and AbstRCT-Mixed tests sets res-
pectively [130]. This model is fine-tune over the AbstRCT dataset 6 (i.e., 500 abstracts of
randomized controlled trials on neoplasm treatment annotated with claim, premise and
their relations) during three epochs with an Adam optimizer and a learning rate of 2e-5.

Concerning the relation classification step, we also rely on a bi-directional transformer,
but we changed the initial representation of the sequence classification task to jointly
model the relations by classifying all the argumentation component combinations. This
new representation is passed to a linear layer with a softmax which classifies it into the
three target classes (Support, Attack and NoRelation). The best performing model for this
task is SciBERT [20] uncased base model fine-tuned with a learning rate of 2e-5, batch size
of 8, maximum sentence length of 256 sub-words tokens per input example during 3 epoch.
The weight factor for each of the 3 classes in the weight cross entropy loss is the normalized
number of training samples of this class. This configuration achieves a macro f1-score of
0.68, 0.70 and 0.70 for the AbstRCT-Neoplasm, AbstRCT-Glaucoma, and AbstRCT-Mixed
tests sets.

6. https://gitlab.com/tomaye/abstrct/
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Evidence-based Medicine features. PICO elements are detected in the same way as ar-
gumentation components with a token-level representation inputted into a bidirectional
GRU followed by a CRF. As a transformer architecture, we use the BERT base model [58]
with pre-trained weights. We fine-tune the entire model with an Adam optimizer and a
learning rate of 2e-5 for three epochs above the EBM-NLP corpus [150] with coarse labels.
The dataset splits are the same than in [130] without sentences containing less than 10
WordPiece [218]. The obtained f1-score on the test set is 73.4.

More specifically about the outcome analysis (i.e., the reported effects an intervention
has on the outcomes), we tackled both outcome detection, and effect prediction with pre-
trained bidirectional transformer language models. The outcomes detection is also presen-
ted sequence tagging problem relying on BIO-tagging scheme [170] to detect the outcome
boundaries. It follows the same configuration than argument components detection with
the SciBERT uncased base model fine-tuned with a learning rate of 2e-5, batch size of 8,
maximum sentence length of 256 sub-words tokens per input example during 3 epoch. We
then address the effect prediction as sentence classification, where each outcome together
with the component it occurred in is provided as input into the effect classifier. The same
pre-trained transformer model types as for relation classification (based on SciBERT com-
bined to a bidirectional GRU and a final CRF) are used to predict one among the fives
effect classes (Improved, Increased, Decreased, NoDifference, NoOccurrence). The outcome
detection and effect classification tasks together reach a macro f1-score of 0.80.

Architecture and API. It is important to note that ACTA was initially developed before
international initiatives to make deep learning, specifically NLP tasks more accessible (e.g.,
Huggingface 7 [215]). Therefore, we refactored and revisited the ACTA pipeline [141], im-
proving and updating technical aspects of the original code to increase its overall stability,
documentation, and compatibility, especially with newer models available on Huggingface.
Finally, as implemented in the explanatory assessment pipeline in Chapter 4, we discovered
that removing the CRF layer of the argument components detection also perform slightly
better on some datasets leading us to the development of an optional parameter to remove
it.

Concerning the API, we used the Flask framework 8 version 3.0 to create the webser-
ver using Python 3.8. Each module takes as input a JSON file, where for the argument
components, the PICO elements and Outcome Detection modules, the field “text” must be
filled in with the medical text to be analyzed. For the relation classification module, the
input JSON file must have the field “candidates” filled with the list of all of the argumenta-
tion components text and type (claim or premise) for which the user wants to predict the
relation (support or attack). For the effect prediction module, both the original text and
the selected outcomes have to be provided in the “text” and “outcomes” fields respectively.
For every module, a JSON file is produced as output with the corresponding results, ei-
ther being the detected component spans or the predicted labels. All the results, including
the argumentative analysis together with PICO elements and effects on outcomes, can be
downloaded as a JSON file for each of the processed abstracts.

7. https://huggingface.co/
8. https://flask.palletsprojects.com/en/3.0.x/
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5.2 MedMT5

With the advancement of NLP and mainly in generative tasks [145, 29, 154], many
language models and large language models are proposed to generate text, but the deve-
lopment of medical applications remains a hot topic. Thus, a number of LLMs have recently
been adapted to the medical domain, so that they can be used as a tool for mediating in
human-AI interaction. In this section, I present my contribution to the development of the
LLM MedMT5, a language model trained on multilingual and multitask medical data. I
first introduce MedMT5 in and then focus in detail on my contributions. More specifically,
I explain how we retrieved the French training data and how we evaluated the performance
of the model.

5.2.1 The MedMT5 LLM.

A number of specialised models have appeared, with on the one hand encoder models
such as SciBERT [20], BioBERT [117] or PubmedBERT [77] and text-to-text models on
the other, with SciFive [158], BioGPT [123], Med-PaLM [182], PMC-LLaMA [217] or Clini-
calGPT [209]. However, the development of all the aforementioned text-to-text LLMs has
been focused on a single language, usually English. As a consequence, there is a lack of high-
quality multilingual evaluation benchmarks for the medical domain. Thus, although there
have been efforts to generate evaluation data in languages other than English [209, 39],
they have consisted largely in monolingual approaches.

In order to address these issues, we have compiled, to the best of our knowledge,
the largest multilingual corpus for training LLMs adapted to the medical domain. Our
corpus includes 3B words in four languages, namely, English, Spanish, French, and Italian.
While relatively small when compared to English existing datasets [217], it allowed us
to build MedMT5, the first open-source text-to-text multilingual model for the medical
domain. Medical mT5 is an encoder-decoder model developed by continuing the training
of publicly available mT5 [219] checkpoints on medical domain data for English, Spanish,
French, and Italian. Additionally, we have also created two new multilingual sequence
labeling (argument component detection) and generative question answering datasets for
the evaluation of multilingual LLMs in the medical domain.

As a part of the ANTIDOTE project, MedMT5 open-source models and data are
released as (i) the collection of the largest publicly available in-domain medical multilingual
corpus for Spanish, French, and Italian languages 9. It also provides (ii) two new datasets
for Spanish, French, and Italian on Argument mining 10 and generative Question Answering
tasks, generated taking their original English versions as a starting point 11. Finally, (iii)
the public release of two Medical mT5 versions : a 770M 12 and 3B 13 parameters.

9. https://hf.co/datasets/HiTZ/Multilingual-Medical-Corpus
10. https://hf.co/datasets/HiTZ/multilingual-abstrct
11. https://hf.co/datasets/HiTZ/Multilingual-BioASQ-6B
12. https://hf.co/HiTZ/Medical-mT5-large
13. https://hf.co/HiTZ/Medical-mT5-xl
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5.2.2 French data collection.

Other benefits of our Medical mT5 models include the comparatively low hardware
requirements needed for both fine-tuning on downstream tasks (the large 770M version
easily fits in a 24GB V100 GPU) and for inference (a 12GB GPU should be enough). As
an example, a LLaMA 7B model [217] requires at least a 80GB A100 GPU using LoRA [91]
or a more demanding 4 80GB A100 GPUs without it. If ANTIDOTE project partners have
enough computing power to train large models such as T5 in our case, we still need to collect
data. As MedMT5 intend to be multilingual the training data must also be multilingual
and collected from verified sources in each language. In the end, we collected around 3
billion tokens (a word can be split into several tokens depending on the model, detailed in
Section 2.1). For the French data, we managed to collect a total of 7,192,779 sentences and
670,972,717 words were compiled using the data sources listed in bold in Table 5.1. PubMed
data was extracted using the Bio.Entrez package 14. We already relied on PubMed to
browse RCTs for ACTA in Section 5.1 and decided to retrieve the french literature as
it comprises more than 37 million citations for biomedical literature from MEDLINE,
life science journals, and online books. Citations may include links to full text content
from PubMed Central and publisher web sites. 15 Other collaborators also retrieved from
PubMed in English, Spanish and Italian, using similar methodologies. Science Direct offers
a collection of scientific and medical publications which can be extracted via their official
API 16. We filtered relevant articles with the keyword “Médecine”, and the obtained XML
documents were parsed to extract the <dc:description> tag. As for Spanish data, we
took advantage of Wikipedia as a source of medical knowledge to obtain HTML formatted
data from the category “Category :Médecine”. The EDP French/English Parallel Medical
Corpus [95] provides bilingual content from journals that address domains such as dentistry
and life sciences. From this source, we downloaded the dataset labeled “EDP French corpus,
text format”. Finally, Google Patents is a comprehensive repository of patent data from
around the world. Google Patents data were retrieved by filtering using the IPC code and
abstract language. The data request was queried on Google Big Query with the following
request :

SELECT publication_number, abstract.text
FROM ‘patents-public-data.patents.publications‘,
UNNEST(abstract_localized) as abstract,
UNNEST(ipc) as ipc
WHERE abstract.language = "fr"
AND (ipc.code LIKE ’A61B%’

OR ipc.code LIKE ’A61C%’
OR ipc.code LIKE ’A61F%’
OR ipc.code LIKE ’A61H%’
OR ipc.code LIKE ’A61K%’
OR ipc.code LIKE ’A61L%’
OR ipc.code LIKE ’A61M%’
OR ipc.code LIKE ’A61P%’)

14. https://biopython.org/docs/1.75/api/Bio.Entrez.html
15. Accessed in September 2024.
16. https://dev.elsevier.com/
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Every collected data was cleaned and converted into JSONL format. These transformations
involved the use of regex patterns to eliminate HTML tags and rectify encoding anomalies.
A final French language verification step was undertaken by applying the langdetect
package (version 1.0.9). Concerning the other languages, we collected 1,107,800,000 words
for English, 956,050,000 for Spanish and 143,278,000 for Italian as detailed by sources in
Table 5.1.

Source English Spanish French Italian
ClinicalTrials 127.4M - - -
EMEA 12M 13.6M - -
PubMed 968.4M 8.4M 1.4M 2.3M
Medical Crawler - 918M - 67M
SPACC - 350K - -
UFAL - 10.5M - -
WikiMed - 5.2M - -
Wikipedia - - 5M 13.3M
Science Direct - - 15.2M -
EDP - - 48K -
Google Patents - - 654M -
Drug instructions - - - 30.5M
E3C Corpus - IT - - - 11.6M
Medicine descriptions - - - 6.3M
Medical theses - - - 5.8M
Medical websites - - - 4M
Supplement description - - - 1.3M
Medical notes - - - 975K
Pathologies - - - 157K
Medical test simulations - - - 26K
Clinical cases - - - 20K

TABLE 5.1 – Combined data sources and word counts for English, Spanish, French, and Italian.

5.2.3 Evaluation of the French capacities.

Since the MedMT5 contribution also provides a multilingual and multitasking bench-
mark, we evaluated the model on the Sequence Labelling and Abstractive Question Answe-
ring tasks. The two challenges of this model in the context of explanatory argumentation
are to see whether it can generate better explanations in natural language and whether it
allows better extraction of argumentation structures.

Abstractive Question Answering. In order to be able to use MedMT5 for generating me-
dical explanations (e.g., potentially replacing our Chapter 3 templates-based approach),
we explored the text generation capabilities of Medical mT5 on the BioASQ question
answering dataset. We use the BioASQ-6B English Question Answering dataset [199] to
generate parallel French, Italian and Spanish versions. Given a biomedical question and
a set of snippets of text with relevant information about the question, the model must
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generate the ideal answer. A set of ideal gold answers are provided to assess the perfor-
mance of the models. We machine translated the questions and ideal answers into French,
Italian and Spanish using the NLLB200 3B parameter model [52]. Previous work typically
evaluates the performance on this task using the ROUGE score [199] to compare the gold
standard answer with the answer generated by the model. However, we find this metric
not appropriate for medical domain tasks as it does not address crucial aspects of the
generation such as factuality, potential harm, and bias [182]. Consequently, we involved
medical professionals to analyze the answers produced by the models.

During annotation, medical doctors were displayed the question, the ideal gold answers
and the answers generated by each model. If required, they could also inspect the snippets
that provide context to answer each of the questions. We narrowed the evaluation to
Medical-mT5-large, mT5-large, FlanT5-large and SciFive. The evaluation was conducted
by medical doctors proficient/native speakers of English, French and Spanish. For each
question, doctors were asked to rank the answers generated by the models as the best,
second-best, third-best, and worst answer.

For the French language, three French clinicians analyzed 186 answers, of which 47 were
done by 2 doctors to calculate IAA (Cohen’s Kappa Score : 0.28 and Average Spearman’s
Rank Correlation : 0.48), which indicates a low level of agreement. This exercise provided
interesting insights with respect to the performance of the models in text generation tasks
in the medical domain. First, medical doctors could not in general establish significant
differences between the answers generated by each of the models ; predictions were far
too similar, and all tended to fail on the same questions. Two Spanish medical doctors
proficient or natives in English and Spanish also analyzed 50 English examples and 252
Spanish. As an example, Table 5.2 shows the answers to two different questions. As it can
be observed, the answers generated by each model are very similar, and the doctors ended
up ranking them primarily based on style.

Sequence Labeling. The MedMT5 model is based on the T5 architecture and allows tasks
other than the generation presented above. In the context of the ANTIDOTE project and
to evaluate the applications of this model to the extraction of argumentation structures,
we have evaluated the model on the Sequence Labelling task. We therefore evaluated the
performance of MedMT5 in 3 different configurations : Single Task Monolingual Supervised
Results, Multi-Task Supervised Results and Zero-shot Cross-Lingual Transfer Results. This
evaluation compares our model with the same alternatives as for the generation, namely
SviFive and FlanT5. The implementation details are detailed in the contribution by Garcia
et al. [72].

The result of this Sequence Labeling evaluation shows that Medical mT5 stands out
for its superior performance in the evaluation for Spanish, French, and Italian languages,
especially for the multitask and the zero-shot transfer settings. FlanT5 and SciFive, are
systematically superior on English data which can be explained since both have been pre-
trained with a much larger amount of English-only data specific to the medical domain.
However, these capabilities can help mitigate the scarcity of manually annotated medical
data for other target languages. Despite Medical-mT5-xl being larger than Medical-mT5-
large (3B vs 738M), its performance is worse in the single-task evaluation setting. This
behaviour is not observed in the multi-task and zero-shot experiments, leading us to hy-
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Ideal Answer Which type of urinary incontinence is diagnosed with the Q tip
test ? Stress urinary incontinence is diagnosed with the Q tip test.
The test evaluates urethral mobility.

mT5-large Q-tip test is used for urodynamic assessment of patients with se-
vere urinary incontinence.

FlanT5-large The Q tip test is used for assessing urethral mobility.
SciFive Q tip test is used for evaluation of stress urinary incontinence.
MedMT5-large Q-tip test is used for evaluation of stress urinary incontinence.
Ideal Answer Which are the main manifestations of Ohdo syndrome? Severe

ID, absent or deficient language, skeletal manifestations including
bilateral patella dislocations.

mT5-large Skeletal manifestations in Ohdo syndrome are a case with bilate-
ral patella dislocations where surgical intervention has been indi-
cated.

FlanT5-large The main manifestations of Ohdo syndrome are : 1) severe ID, 2)
absent or deficient language and 3) milder, clinical manifestation
in heterozygotes.

SciFive Ohdo syndrome is characterized by severe ID, absent or deficient
language and, milder, clinical manifestation in heterozygotes.

MedMT5-large The main manifestations of Ohdo syndrome are : 1) absent or
deficient language and 2) mildder clinical manifestation in hete-
rozygotes.

TABLE 5.2 – Examples of answers generated by each model for two different BioASQ questions.

pothesize that the larger Medical-mT5-xl model is more prone to overfit in the single-task
supervised setting.

Argument Mining. While annotated medical data is already rare, manually annotated
medical data in languages other than English are even rarer. As we discussed in Chapter 4,
argumentative annotations are a good example because they are hard to produce, especially
in languages other than English. It is therefore essential to develop models capable of
generating predictions in languages other than those used for fine-tuning. We evaluate
this ability to perform cross-linguistic transfer from scratch by refining MedMT5 and the
reference models on the AbsRCT [128] Neoplasm dataset in English, and then evaluating
them on the Neoplasm, Glaucoma and Mixed datasets for Spanish, French and Italian.
The results are presented in table 5.3. The results show that Medical mT5 outperforms all
other models. In addition, Medical-mT5-xl performed significantly better than Medical-
mT5-large. The state-of-the-art result for this task in English is reported in my Chapter 4
for the Argument Component Detection task, reaching 0.83 by finetuning the SciBERT
model.

5.2.4 Discussion

In this contribution, we presented MedMT5, the first open source multilingual text-
to-text LLM for the medical domain. Its development required the compilation of a new
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Lang Dataset mT5XL SciFive FlanT5XL mDeBERTaV3 base MedMT5large MedMT5XL

ES Neoplasm 71.4 69.8 67.9 65.1 72.4 71.7
ES Glaucoma 74.1 71.5 70.6 68.3 72.4 73.2
ES Mixed 69.4 67.0 66.7 60.9 68.1 68.8
FR Neoplasm 71.6 68.6 69.9 60.5 72.4 72.8
FR Glaucoma 75.8 74.5 71.0 68.7 72.3 76.7
FR Mixed 73.0 68.5 68.2 59.3 70.4 72.4
IT Neoplasm 70.6 63.1 67.3 62.4 72.9 73.2
IT Glaucoma 76.7 71.6 72.0 70.2 75.4 79.0
IT Mixed 69.9 62.5 66.9 62.1 71.7 71.9

AVERAGE 72.5 68.6 69.0 64.2 72.0 73.3

TABLE 5.3 – Zero-shot F1 scores for Argument Mining. Models have been trained in English and
evaluated in Spanish, French and Italian.

corpus of 3B words in English, French, Italian and Spanish specific to the medical domain.
In addition, motivated by the lack of multilingual references, we generated evaluation
references for French, Italian and Spanish for argument extraction and abstract question
answering.

Regarding the languages we selected, we would like to point out that data acquisition
in the medical field is extremely difficult. Furthermore, the choice of languages was also
influenced by the availability of native language doctors to carry out the manual evaluation
of the response to abstract questions.

Extensive experimentation on sequence labelling tasks shows that Medical mT5 out-
performs reference text-to-text models of similar size in both multitasking and zero-shot
multilingual evaluation contexts. This is particularly interesting as these parameters fully
exploit the multilingual nature of a text-to-text model such as Medical mT5.

Furthermore, our experiments on abstract question answering show the inherent diffi-
culty of generative task evaluation for this specific domain, where complex issues such as
veracity and truthfulness are difficult to capture by automatic measures. Manual evalua-
tion is also not ideal, as the doctors were unable to clearly distinguish the quality of the
responses generated by the different models.

5.3 The ANTIDOTE software suite

The goal of the ANTIDOTE project was of providing a unified computational frame-
work for jointly learning clinical predictions and the associated argumentative justifications,
fostering a natural interaction with clinicians through explanatory dialogues.

In this contribution, we present the ANTIDOTE demonstration [36], a software suite
proposing different tools for argumentation-driven explainable Artificial Intelligence for
digital medicine. Our system offers the following functionalities. First, we tackled argu-
mentative analysis for the medical domain from different perspectives such as training
specialized language models (i.e., the ACTA tool [128, 141], presented in Section 5.1),
proposing multilingual 17 language models based on data-transfer [221] methods and with
Multi-scale Convolution Neural Network [190] for Argument Structure Learning (ASL).

17. https://huggingface.co/datasets/HiTZ/multilingual-abstrct
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ANTIDOTE also tackles explanation generation of clinical diagnoses relying on medical
knowledge across the SYMEXP pipeline [140], details in Chapter 3. Finally, a multilin-
gual large language model for the medical domain and the first multilingual benchmark
for medical question-answering is provided within MedMT5 (i.e., described in Section 5.2
and [72]) and the MedExpQA dataset [6]. Experimental results demonstrate the efficacy of
ANTIDOTE across different tasks, highlighting its potential as an asset in medical research
and practice and fostering transparency, which is crucial for informed decision-making in
healthcare.

Implementation details. ANTIDOTE is deployed in the form of a website 18, bringing to-
gether the tools available on the web or referring to links hosting datasets and models.
Some of the models are hosted and distributed on Huggingface 19, along with their res-
pective training datasets 20. The rest of the datasets are available on versioning platforms
such as gitlab and github on each of the project pages in question. The suite also includes
SYMEXP 21 and ACTA 22, whose implementation details are given in Chapter 3. To im-
plement ANTIDOTE, we used basic web technologies such as HTML, CSS, Javascript and
the Bootstrap version 5.3.3 23 framework for the front-end. For the back-end, API, we used
the Flask framework 24 version 3.0 to create the webserver using Python 3.8.

5.4 Challenges

In this Chapter, I presented the tools I have developed through my research and ex-
plain how they have been used in the context of the ANTIDOTE research project. However,
despite this set of tools, the automatic generation of natural language argumentative ex-
planations remains an open challenge. While argument mining is effective for structuring
explanations, it must be combined with generative models to produce coherent explana-
tions in natural language. The limitations of existing tools, notably large language models,
lie in their inability to retrieve knowledge from their internal state. Combining this kind of
solution with medical knowledge bases, vocabularies or databases therefore seems to be the
most interesting research line to explore in order to develop more efficient and secure tools,
taking the advantage of LLM to generate human-like sentences. Finally, the concept of
explanation is mostly introduced in a dialogue context, and chatbot-type assistants could
be the kind of tools needed to enhance the impact of XAI in the field of education.

18. http://antidote.i3s.unice.fr/
19. https://huggingface.co/HiTZ
20. https://huggingface.co/datasets/HiTZ
21. http://antidote.i3s.unice.fr/symexp/
22. http://antidote.i3s.unice.fr/acta/
23. Accessed in February 2024
24. https://flask.palletsprojects.com/en/3.0.x/





CHAPTER 6
Conclusion et

Perspectives

Generating explanations in an argumentative way is essential to enhance understan-
ding from human users on the object of the explanation, but it is also a hard task in all
application domains, particularly in sensitive areas such as medicine. This thesis tackles
the generation of qualitative argumentative explanations in natural language applied to
the medical domain.

The research questions I answered focus on the advancements in automatic generation
of natural language explanations, on grounding these explanations on reliable medical
sources and on enabling assessment of argumentation strength of medical explanations. In
particular, the research questions introduced in Chapter 1 were addressed, resulting in the
following contributions :

1. Generating grounded explanations. To enable argumentation-based generation of me-
dical explanations, this thesis introduces in Chapter 3 the SYMEXP pipeline for extracting
and aligning knowledge with trustable sources to generate natural language explanations.
Starting from a clinical case, I automatically detect named entities such as layperson symp-
toms and health measurement using natural language processing methods. Particular at-
tention is paid to medical measurements, test results and observations (so-called medical
findings) in order to detect whether these findings are in normal range or not. Therefore,
a set of 100 most common findings, their normal values and their conversion into medical
terms is introduced, exploiting the knowledge of a medical expert. If a finding is iden-
tified as abnormal, I retrieve the medical term equivalent to that abnormal value (e.g.,
temperature is 30°C → fever). These converted findings and detected symptoms are then
mapped to standardized medical ontologies such as the HPO to align them with validated
knowledge. By linking case details to external sources, additional relevant information is
obtained, such as symptoms that frequently coincide with certain diagnoses. Finally, I pro-
pose a first solution to generate argumentative explanations based on templates, designed
with the help of medical experts, to explain symptomatically why the correct diagnosis is
correct and why other options are not, while highlighting the important elements missing
from the clinical case.

To automatically detect the different medical entities described in clinical cases, I have
experimented with different transformer-based language models, such as SciBERT, Bio-
BERT, PubMedBERT and UmlsBERT, initialized with their respective pre-trained weights
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specialized in the biomedical domain. I considered the symptom detection problem as a
sequence labeling task, using a BIO scheme tag. The experiments show that the SciBERT
model performs best, with an f1 macro-score of 0.86 for symptoms named entity recogni-
tion. To convert findings correctly, I use regexes to find them and interpret their values
according to my database. If it is not possible to idenfiy in the the database the correspon-
ding information for a finding, I proposed a pipeline based on the GPT LLM to interpret
such finding on the fly. Conversion with the database performs in the best configuration,
with an accuracy of 0.78 on our clinical cases and 0.66 using the generative model. To ac-
curately match detected symptoms and converted findings to the HPO medical ontology, I
computed embeddings for each symptom and calculate the cosine distance with each HPO
term to find the closest match. Our context-aware integration approach, which sums the
embeddings for symptoms and context sentence, performs significantly better than a basic
context-free method such as the existing tool DASH, improving accuracy from 0.37 to 0.70
on our data. By taking contextual information into account, I achieved a more reliable
alignment between layperson symptom descriptions and official HPO terminology. Overall,
specialized neural models and context-aware integration technique effectively extract and
align salient clinical entities, providing a solid basis for assessing the relevance of symp-
toms to potential diagnoses and generating explanatory arguments based on the validated
medical knowledge.

2. Explanatory argumentation assessment. To be able to investigate explanations suitable
for an explanee, I have developed in Chapter 4, an automatic system named ABEXA to
assess argumentation and characterize medical explanations. For a given clinical case, I
extract the argumentation structure of the case and its explanation to detect argumenta-
tion patterns prepared beforehand. More specifically, I use argument mining techniques to
adapt the ACTA tool, originally designed for RCTs, for clinical cases. This tool (detailed
in Chapter 5) allows me to recover argument components such as claims and premises,
as well as the attack and support relations between such components. I then used a set
of argumentation patterns parameterizable according to the level of granularity on this
argumentation graph to retrieve information about the type of argumentation which is
employed. The pipeline explores the structure of the graph to detect the use of argumen-
tation patterns such as the use of answers, question or facts presented in the question or
the size of the arguments.

To automatically detect argumentation structures, I adapted the ACTA’s architecture
and experiment with different transformer-based language models for the argument extrac-
tion and relation prediction tasks, training the models on clinical cases rather than RCTs
(i.e., using the Casimedicos dataset instead of AbstRCT). I evaluated the performance of
each task individually, as well as the entire pipeline, using two different approaches to ad-
dress the issue of misdetected components. The end-to-end argument mining task results
in a 0.65 macro f1 scores on the AbstRCT dataset using the SciBERT model, and 0.51
on Casimedicos using the PubMedBERT model. For component detection and relation
prediction tasks, I obtained respectively 0.83 and 0.73 on AbstRCT and 0.86 and 0.51
on Casimedicos using the same models. I also highlighted that coreference disambigua-
tion does not ameliorate the results. On the contrary, with coreference disambiguation the
end-to-end results drop from 0.51 to 0.49. In detecting patterns of argumentation in the
explanation, I found some interesting points about medical explanations. First of all, the
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most frequent argumentation patterns aim to justify the correct answer rather than to dis-
criminate between all the incorrect answers in 95% of cases. Then, the most frequent and
strongly correlated patterns are the lack of use of an argumentation component from the
question and the lack of use of premises (mostly introduced in the question), representing
90% and 78% of Casimedicos clinical cases, respectively. Finally, when evaluating the pro-
posed end-to-end pipeline, fewer argumentative components and relations in clinical cases
are detected, but the results on patterns show similar results to the gold ones in terms of
proportion.

3. Explanatory argumentation applications. Finally, I have participated in the implemen-
tation and dissemination of various tools for explanatory argumentation, as presented in
Chapter 5. In particular, I have introduced two pipelines for generating (SYMEXP) and
assessing (ABEX) explanations in the medical domain, as well as more fundamental tools
such as ACTA for the argumentation structure extraction, and MedMT5 which is a new
multilingual and multitasking LLM. More specifically, I have contributed to the improve-
ment of ACTA by developing a model based on transformers to predict effect-on-outcome
in RCT, performing 0.80 macro f1. The analysis is divided into two parts : the detection of
outcomes (considered as a sequence labeling task based on the BIO scheme tag), and the
classification of the entities through 5 classes : Increased, Decreased, Improved, NoOccur-
rences and NoDifferences. The classification of relations has also been updated by imple-
menting a system for classifying relationships between components, so that in addition to
detecting a relation, it is possible to determine whether it is a support or an attack relation.
In addition, I extended the tool by developing a REST API with an endpoint for each of
the tasks performed by ACTA, making the pipeline reusable in other underlying pipelines.
I also took part in a major overhaul of ACTA’s code, adapting it from older versions of
transformers to new technologies based on the Huggingface initiative, offering new options
to facilitate the development of underlying pipelines. These technology updates have en-
abled us to update ATCA’s results on argument mining tasks for RCT, showing a macro f1
performance of 0.81, 0.82, 0.82 for argument component detection and 0.68, 0.70, 0.70 for
relations classifications for the respective AbstRCT-Neoplasm, AbstRCT-Glaucoma, and
AbstRCT-Mixed tests sets. I also took part in the development of MedMT5 by collecting
and evaluating French aspect of the multilingual model on generation and sequence label-
ling tasks. The model showed modest performance on the complex generation task, but
the result ameliorates when applied to other languages on the sequence modelling task to
detect argumentation components. Finally, I took part in the development of the ANTI-
DOTE software suite, by implementing central platform grouping together all the tools
proposed during the project.

6.1 Perspectives

While this thesis tackled significant aspects of explanatory argumentation in natural
language, it also opens to several lines for future research and potential improvements.

Leveraging Generative and Dialogue Models. Given that this work explores the genera-
tion of explanations, the investigation of LLMs is a promising next step, particularly if they
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are supported by argumentation theory. Indeed, although I have tackled the task of gene-
rating argumentative explanations, my approach is based on natural language templates.
This solutions might not provide enough flexibility, which is required in other application
scenarios. To overcome this limitation, a promising direction consists in the integration
of generative models or dialogue models. This would enable the explanee to interact with
the system, asking follow-up questions or seeking clarification, thereby facilitating a more
dynamic and personalized form of explanatory argumentation.

As we discussed earlier, it is crucial to adapt explanations to the explanee, and the
explanation will be very different if we are explaining a diagnosis to a doctor, a student or
a patient. This gap in explanee’s knowledge is an important factor that should be identified
in order to generate an explanation that is adapted to the interlocutor, enabling greater
comprehension of the explanation.

Expanding Knowledge. Focusing on external knowledge, this thesis demonstrated how
ontologies such as the HPO can align expert knowledge with the knowledge found in
medical documents. A promising future direction consists in expanding the use of exter-
nal knowledge sources, for instance by exploring vocabularies shared between ontologies
and concept codes. This approach would not only allow us to rely on the content of the
knowledge bases but also on its structure. These structures would allow to grasp greater
granularity allowing to understand the hierarchy of concepts, for instance, being able to
find that “tachiccardia” is a form of “arrhythmia” and consider the correct alignment.

Additionally, I introduced a database to translate medical findings into symptoms or
medical terms, but a significant limitation still holds : the applicability of the findings
across diverse populations. The medical field evolves differently across geographic regions,
and standard values are often derived from data representative of a typical population based
on the entity that collected it. Therefore, normal values do not reflect all populations and
will be a way less accurate for under-represented populations (i.e., different ethnic and age
groups). Addressing this issue will require the collection of more data in collaboration with
medical centers that cater to various population groups, ensuring that explanations and
medical findings can be adapted to a wider range of individuals.

Evaluating the assessment. Looking at the assessment of explanations, I proposed a set of
patterns to automatically characterize natural language explanations from the point of view
of the argumentation employed. These criteria and default values were designed specifically
for the medical field, particularly for Casimedicos clinical cases. However, it would be
important to extend this analysis to broader datasets in medicine, and other domains,
such as law, where the standards for a satisfactory explanation may differ significantly
from those in medicine.

Additionally, since these criteria were developed to emphasize key argumentative points
in student explanations, it would be beneficial to assess their actual impact on students
through a user study. This could help to quantify how these criteria influence student
learning and whether they lead to improved explanations writing in future exams. Such a
study would also open up new research directions, such as generating better explanations
based on the identified critical patterns. By integrating this pattern detection system,
through LLMs or other generative models discussed before, we could potentially generate
higher-quality natural language explanations.
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Enhancing Tools for Explanatory Argumentation. Finally, I introduced a suite of tools and
complete pipelines for explanatory argumentation in natural language. While these tools
mark significant progress, there are still areas that require further exploration, especially
to apply these tools in fields other than medicine. Although initial efforts have been made
in this direction, the creation of domain-agnostic tools would be a major step towards a
greater adoption of explanatory argumentation.

Finally, the need for a unified system is becoming increasingly urgent, as done in the
context of the ANTIDOTE project. Future research should aim to integrate these tools
into a unified system capable of predicting diagnoses, reasoning through complex cases and
generating explanations adapted to the user’s knowledge. The development of interactions
between the explainer, the explanee and the explanation itself would be essential to achieve
the ultimate goal of understanding and responding to the explanee’s needs.
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APPENDICES A

A.1 Fully Annotated Clinical Case

This appendice presents two colored fully annotated clinical cases from the MEDQA-
USMLE-Symp dataset in Examples A.1.1 and A.1.2. The entities are Sign or Symptoms in
orange, No Sign or Symptoms in red, Findings in blue, locations in green, temporal concepts
in pink, Population group in cyan, Age group in teal and finally, the Sign or Symptoms
associated to the correct answer in orange bold. Dataset description and annotation details
are available in Section 3.1.

Exemple A.1.1 –

Clinical Case. A 37-year-old woman is brought to the emergency department because of intermit-
tent chest pain for 3 days. The pain is worse with inspiration, and she feels she cannot take deep
breaths. She has not had shortness of breath, palpitations, or nausea. She had an upper respiratory
tract infection 10 days ago and took an over-the-counter cough suppressant and decongestant and
acetaminophen. Her temperature is 37.2°C (98.9°F), pulse is 90/min, and blood pressure is 122/70
mm Hg. The lungs are clear to auscultation. S1 and S2 are normal. A rub is heard during systole.
There is no peripheral edema. An ECG shows normal sinus rhythm and diffuse, upwardly concave
ST-segment elevation and PR-segment depression in leads II, III, and aVF.

Question. Which of the following is the most likely diagnosis ?

Options. [’Acute pericarditis’, ’Aortic dissection’, ’Gastroesophageal reflux disease’, ’Myocardial
infarction’, ’Peptic ulcer disease’, ’Pulmonary embolism’, ’Unstable angina pectoris’]

Correct Answer. Acute pericarditis

Exemple A.1.2 –

Clinical Case. A previously healthy 34-year-old woman is brought to the physician because of
fever and headache for 1 week. She has not been exposed to any disease. She takes no medications.
Her temperature is 39.3°C (102.8°F), pulse is 104/min, respirations are 24/min, and blood pressure
is 135/88 mm Hg. She is confused and oriented only to person. Examination shows jaundice of
the skin and conjunctivae. There are a few scattered petechiae over the trunk and back. There is
no lymphadenopathy. Physical and neurologic examinations show no other abnormalities. Test of
the stool for occult blood is positive. Laboratory studies show :

— Hematocrit 32% with fragmented and nucleated erythrocytes
— Leukocyte count 12,500/mm3
— Platelet count 20,000/mm3
— Prothrombin time 10 sec
— Partial thromboplastin time 30 sec
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— Fibrin split products negative
— Serum
— Urea nitrogen 35 mg/dL
— Creatinine 3.0 mg/dL
— Bilirubin
— Total 3.0 mg/dL
— Direct 0.5 mg/dL
— Lactate dehydrogenase 1000 U/L
Blood and urine cultures are negative. A CT scan of the head shows no abnormalities.

Question. Which of the following is the most likely diagnosis ?

Options. [’Disseminated intravascular coagulation’, ’Immune thrombocytopenic purpura’, ’Me-
ningococcal meningitis’, ’Sarcoidosis’, ’Systemic lupus erythematosus’, ’Thrombotic thrombocy-
topenic purpura’]

Correct Answer. Thrombotic thrombocytopenic purpura

A.2 Findings converter experiments prompts

This appendice shows the prompts used in our findings converter experiments. The
label [FINDING] is replaced on the fly by the current finding name.

A.2.1 Prompt system

Ignore all instructions before this one.
You’re a doctor assistant.
You have been doing medicine for 20 years.
Your task is now to return the medical terms associated to
findings.

A.2.2 IO configuration

Fill the following table by replacing "?":

| Finding | Medical term |
| [FINDING] | ? |

ONLY fill the table with ONE line, no extra sentences
Put "-" if the value is normal

A.2.3 CoT and SC configurations
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Prompt 1 :

We focus on the finding ’[FINDING]’

| Finding | Low reference value | High reference value |
| [FINDING] | ? | ? |

ONLY fill the table with ONE line with LOW and HIGH, no extra
sentences.

Prompt 2 :

Now we want to associate a medical term to this finding
’[FINDING]’

| Finding | Medical term |
| [FINDING] | ? |

ONLY fill the table with ONE line, no extra sentences
Put "-" if the value is normal

A.3 Findings converter experiments prompts

Exemple A.3.1 – T1 Premise 44 294 a woman with an epileptic seizure presenting with the fol-
lowing clinical features : epigastric aura, unpleasant odor, disconnection from the environment,
motor automatisms (sucking, swallowing, opening and closing of one hand) and postcritical am-
nesia
T2 Claim 334 387 Generalized non-convulsive seizure or typical absence
T3 Claim 392 419 Continuous partial epilepsy
T4 Claim 424 440 Amyotonic crisis
T5 Claim 445 482 Complex partial temporal lobe seizure
T6 Claim 509 589 Clearly the answer is 4, with a very characteristic clinic of temporary seizures
R1 Support Ent1 :T6 Ent2 :T5

These annotation shows components with lines starting with a “T” and relations with
“R”. The second column show the label of T and R and the span boundaries for T and the
entities linked for R. Finally, the last column for the T lines is the component content.


