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Résumé : Les réseaux de neurones profondsoffrent aujourd’hui des performances inéga-lées notamment pour les fonctions de visionpar ordinateur comme par exemple la clas-sification d’images, la détection d’objets et lasegmentation sémantique. Malgré ces avan-cées, les modèles d’apprentissage profond pré-sentent des vulnérabilités qui peuvent être ex-ploitées par des agents malveillants pour in-duire des comportements dangereux de la partdes modèles d’IA. Une des menaces, appeléeattaque par patch, consiste à introduire dans lascène un objet texturé pour duper le modèle.Par exemple, un patch placé sur un panneaustop peut amener le réseau à le classer à tortcomme étant un panneau de limitation de vi-tesse. Ce type d’attaque soulève d’importantsproblèmes de sécurité pour les systèmes devision par ordinateur opérant dans le mondephysique. Dans cette thèse, nous étudions siun tel patch peut perturber un système phy-sique dans des conditions d’attaque réalistes,i.e., sans connaissance préalable sur le systèmeciblé.Bien que de nombreuses attaques parpatch aient été proposées dans la littérature,il n’existe pas, à notre connaissance, de tra-vail qui décrit les caractéristiques essentiellesqualifiant une attaque par patch de critique.L’une de nos contributions est la définition dece que serait une attaque par patch critique.Pour être qualifié de critique, une attaque parpatch doit vérifier deux critères essentiels. Toutd’abord, le patch doit être robustes à des trans-formations physiques, ce qui est résumé parla notion de physicalité du patch. Ensuite, lepatch doit être transférable, c’est-à-dire quele patch a la capacité de duper avec succèsun réseau sans posséder aucune connaissancepréalable sur celui-ci. La transférabilité de l’at-taque est un facteur clé, car les systèmes phy-siques déployés par les entreprises sont sou-vent opaques ou inconnus. Bien que la physica-lité des patchs ait été développée et amélioréepar de nombreux travaux, la transférabilité des

patchs reste faible et peu de méthode proposede l’améliorer.Afin de créer une attaque par patch trans-férable pour une grande variété de classifieursd’images, nous proposons une nouvelle mé-thode de conception des patchs. Cette mé-thode repose sur l’utilisation de la distancede Wasserstein, distance définie entre deuxmesures de probabilité. Notre patch est ap-pris en minimisant la distance de Wassersteinentre la distribution des caractéristiques desimages corrompues par notre patch et la dis-tribution des caractéristiques d’images d’uneclasse cible préalablement choisie. Une fois ap-pris et placé dans la scène, notre patch induitplusieurs réseaux à prédire la classe de la dis-tribution ciblée. Nous montrons qu’un tel patchest transférable et peut être implémenté dansle monde physique afin de perturber des classi-fieurs d’images sans aucune connaissance surceux-ci.Afin d’avantage caractériser la potentiellemenace des attaques par patch, nous propo-sons d’étudier leur transférabilité quand ceux-ci sont développer pour duper des détecteursd’objets. Les détecteurs d’objets sont des mo-dèles plus complexes que les classifieurs d’ob-jets et sont souvent plus utilisés dans les sys-tèmes opérant dans le monde physique. Nousétudions plus particulièrement les attaques parpatch dites cape d’invisibilité, un type particu-lier de patchs conçus pour inhiber la détectiond’objets lorsqu’ils leur sont appliqués dessus.Nos résultats révèlent que le protocole déva-luation utilisé dans la littérature comporte plu-sieurs problèmes rendant l’évaluation de cespatchs incorrecte. Pour y remédier, nous intro-duisons un problème de substitution qui garan-tit que le patch produit supprime bien la bonnedétection de l’objet que nous souhaitons atta-quer. En utilisant ce nouveau processus d’éva-luation, nous montrons que les attaques parpatch de la littérature ne parviennent pas à in-hiber la détection d’objets limitant ainsi leur cri-ticité.
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Abstract : The use of Deep Neural Networkshas revolutionized the field of computer vi-sion, leading to significant performance impro-vement in tasks such as image classification,object detection, and semantic segmentation.Despite these breakthroughs, Deep Learningsystems have exhibited vulnerabilities that ma-licious entities can exploit to induce harmful be-havior in AI models. One of the threats is ad-versarial patch attacks, disruptive objects thatoften resemble stickers and are designed todeceive models when placed in a real-worldscene. For example, a patch on a stop sign maysway the network to misclassify it as a speedlimit sign. This type of attack raises significantsafety issues for computer vision systems ope-rating in the real world. In this thesis, we studyif such a patch can disrupt a real-world systemwithout prior knowledge concerning the targe-ted system.Even though numerous patch attacks havebeen proposed in the literature, no work in li-terature describes the prerequisites of a criti-cal patch. One of our contributions is to pro-pose a definition of what may be a critical ad-versarial patch. To be characterized as critical,adversarial patch attacks must meet two es-sential criteria. They must be robust to phy-sical transformations summarized by the no-tion of patch physicality, and they must exhibittransferability among networks, meaning thepatch can successfully fool networks withoutpossessing any knowledge about the targetedsystem. Transferability is an essential prerequi-site for a critical patch, as the targeted real-world system is usually protected and inacces-

sible from the outside. Although patch physica-lity has been developed and improved throughmultiple works, the transferability of patchesremains a challenge.To address the challenge of attack transfe-rability among image classifiers, we introducea new adversarial patch attack based on theWasserstein distance, which computes the dis-tance between two probability distributions.We exploit the Wasserstein distance to alterthe feature distribution of a set of corruptedimages to match another feature distributionfrom images of a target class. When placed inthe scene, our patch causes various state-of-the-art networks to output the class chosen asthe target distribution. We show that our patchis more transferable than previous patches andcan be implemented in the real world to de-ceive real-world image classifiers.In addition to our work on classification net-works, we conduct a study on patch transfe-rability against object detectors, as these sys-tems may be more often involved in real-worldsystems. We focus on invisible cloak patches,a particular type of patches that are designedto hide objects when applied to them. Our fin-dings reveal several significant flaws in the cur-rent evaluation protocol, which is used to as-sess the effectiveness of these patches. To ad-dress these flaws, we introduce a surrogateproblem that ensures that the produced patchis suppressing the object we want to attack. Weshow that state-of-the-art patches against ob-ject detectors fail to hide objects from beingdetected, limiting the current patch criticalityagainst real-world systems.
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Abstract

The use of Deep Neural Networks has revolutionized the field of computer vision, leading
to significant performance improvement in tasks such as image classification, object de-
tection, and semantic segmentation. Despite these breakthroughs, Deep Learning systems
have exhibited vulnerabilities that malicious entities can exploit to induce harmful behav-
ior in AI models. One of the threats is adversarial patch attacks, disruptive objects that
often resemble stickers and are designed to deceive models when placed in a real-world
scene. For example, a patch on a stop sign may sway the network to misclassify it as a
speed limit sign. This type of attack raises significant safety issues for computer vision
systems operating in the real world. In this thesis, we study if such a patch can disrupt a
real-world system without prior knowledge concerning the targeted system.

Even though numerous patch attacks have been proposed in the literature, no work
in literature describes the prerequisites of a critical patch. One of our contributions is to
propose a definition of what may be a critical adversarial patch. To be characterized as
critical, adversarial patch attacks must meet two essential criteria. They must be robust
to physical transformations summarized by the notion of patch physicality, and they must
exhibit transferability among networks, meaning the patch can successfully fool networks
without possessing any knowledge about the targeted system. Transferability is an essen-
tial prerequisite for a critical patch, as the targeted real-world system is usually protected
and inaccessible from the outside. Although patch physicality has been developed and
improved through multiple works, the transferability of patches remains a challenge.

To address the challenge of attack transferability among image classifiers, we intro-
duce a new adversarial patch attack based on the Wasserstein distance, which computes
the distance between two probability distributions. We exploit the Wasserstein distance to
alter the feature distribution of a set of corrupted images to match another feature distri-
bution from images of a target class. When placed in the scene, our patch causes various
state-of-the-art networks to output the class chosen as the target distribution. We show
that our patch is more transferable than previous patches and can be implemented in the
real world to deceive real-world image classifiers.

In addition to our work on classification networks, we conduct a study on patch trans-
ferability against object detectors, as these systems may be more often involved in real-
world systems. We focus on invisible cloak patches, a particular type of patches that are
designed to hide objects when applied to them. Our findings reveal several significant
flaws in the current evaluation protocol, which is used to assess the effectiveness of these
patches. To address these flaws, we introduce a surrogate problem that ensures that the
produced patch is suppressing the object we want to attack. We show that state-of-the-
art patches against object detectors fail to hide objects from being detected, limiting the
current patch criticality against real-world systems.





Résumé

Les réseaux de neurones profonds offrent aujourd’hui des performances inégalées no-
tamment pour les fonctions de vision par ordinateur comme par exemple la classification
d’images, la détection d’objets et la segmentation sémantique. Malgré ces avancées, les
modèles d’apprentissage profond présentent des vulnérabilités qui peuvent être exploitées
par des agents malveillants pour induire des comportements dangereux de la part des
modèles d’IA. Une des menaces, appelée attaque par patch, consiste à introduire dans la
scène un objet texturé pour duper le modèle. Par exemple, un patch placé sur un panneau
stop peut amener le réseau à le classer à tort comme étant un panneau de limitation de
vitesse. Ce type d’attaque soulève d’importants problèmes de sécurité pour les systèmes
de vision par ordinateur opérant dans le monde physique. Dans cette thèse, nous étudions
si un tel patch peut perturber un système physique dans des conditions d’attaque réalistes,
i.e., sans connaissance préalable sur le système ciblé.

Bien que de nombreuses attaques par patch aient été proposées dans la littérature, il
n’existe pas, à notre connaissance, de travail qui décrit les caractéristiques essentielles
qualifiant une attaque par patch de critique. L’une de nos contributions est la définition
de ce que serait une attaque par patch critique. Pour être qualifié de critique, une at-
taque par patch doit vérifier deux critères essentiels. Tout d’abord, le patch doit être
robustes à des transformations physiques, ce qui est résumé par la notion de physicalité
du patch. Ensuite, le patch doit être transférable, c’est-à-dire que le patch a la capacité
de duper avec succès un réseau sans posséder aucune connaissance préalable sur celui-ci.
La transférabilité de l’attaque est un facteur clé, car les systèmes physiques déployés par
les entreprises sont souvent opaques ou inconnus. Bien que la physicalité des patchs ait
été développée et améliorée par de nombreux travaux, la transférabilité des patchs reste
faible et peu de méthode propose de l’améliorer.

Afin de créer une attaque par patch transférable pour une grande variété de classifieurs
d’images, nous proposons une nouvelle méthode de conception des patchs. Cette méthode
repose sur l’utilisation de la distance de Wasserstein, distance définie entre deux mesures
de probabilité. Notre patch est appris en minimisant la distance de Wasserstein entre la
distribution des caractéristiques des images corrompues par notre patch et la distribution
des caractéristiques d’images d’une classe cible préalablement choisie. Une fois appris et
placé dans la scène, notre patch induit plusieurs réseaux à prédire la classe de la distribu-
tion ciblée. Nous montrons qu’un tel patch est transférable et peut être implémenté dans
le monde physique afin de perturber des classifieurs d’images sans aucune connaissance
sur ceux-ci.

Afin d’avantage caractériser la potentielle menace des attaques par patch, nous pro-
posons d’étudier leur transférabilité quand ceux-ci sont développer pour duper des détecteurs
d’objets. Les détecteurs d’objets sont des modèles plus complexes que les classifieurs
d’objets et sont souvent plus utilisés dans les systèmes opérant dans le monde physique.
Nous étudions plus particulièrement les attaques par patch dites cape d’invisibilité, un



type particulier de patchs conçus pour inhiber la détection d’objets lorsqu’ils leur sont
appliqués dessus. Nos résultats révèlent que le protocole dévaluation utilisé dans la
littérature comporte plusieurs problèmes rendant l’évaluation de ces patchs incorrecte.
Pour y remédier, nous introduisons un problème de substitution qui garantit que le patch
produit supprime bien la bonne détection de l’objet que nous souhaitons attaquer. En util-
isant ce nouveau processus d’évaluation, nous montrons que les attaques par patch de la
littérature ne parviennent pas à inhiber la détection d’objets limitant ainsi leur criticité.



Acknowledgments
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notre papier à ICLR, le prêt de ton ancien vélo (un peu cassé, mais qui roule) pour aller
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récemment MUSCLE UP !!! Validation d’un muscle up obligatoire pour obtenir sa thèse.
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Chapter 1

Introduction

The recent years have seen the emergence of Artificial Intelligence (AI) systems in several
domains. In healthcare, AI enhances diagnostics, personalized treatments (Topol, 2019),
and drug discovery (Jumper et al., 2021). AI helps in preventing malicious behaviors
by detecting frauds in finance or malware. Natural Language Processing (NLP) recently
powers the use of Large Language Models (LLM) (Vaswani et al., 2017), allowing virtual
assistants, language translation, and text classification. AI succeeds in playing different
games (StarCraft (Vinyals et al., 2019), Stratego (Perolat et al., 2022)) requiring different
skills (Vinyals et al., 2019; Perolat et al., 2022). The most famous example is AlphaGO
(Silver et al., 2017), which defeated Lee Sedol, a Go world champion, through multi-
ple matches. AI systems have also improved computer vision systems, such as object
detection in images (Ren et al., 2015) and image synthesis (Goodfellow et al., 2014a).

As the integration of AI systems expands across various sectors, there is a growing
awareness of the necessity for these systems to be trustworthy. A breach of trust among
stakeholders can have significant social consequences. For example, bias in AI algorithms
can lead to discriminatory outcomes, particularly in sensitive areas such as hiring and law
enforcement, raising ethical concerns about equity and justice. Furthermore, the opacity
of AI decision-making processes complicates the ability to audit and interpret outcomes,
which can undermine user confidence. AI systems exhibit vulnerabilities that malicious
entities can exploit to cause harmful AI behavior. These challenges obliged academics
and industries to develop new solutions to ensure that AI systems operate reliably. This
dissertation focuses on one aspect of trustworthy AI: safety for computer vision systems
against malicious physically feasible attacks.

1.1 The advent of the Deep Learning era
The several AI advances describe before have been made possible by the development of
Machine Learning (ML), a branch of AI consisting of developing algorithms that learn
and make decisions from data. Unlike traditional algorithms, which rely on explicit user
instructions, ML models process a collection of data to identify patterns, relationships,
and correlations within data to make predictions or decisions. The first generation of ML
models relies on manual feature engineering. It consists of the selection and the creation
of new input variables from raw data. Usually done by an expert, the goal of this feature
engineering is to enhance the learning performance of the ML system. This handcrafted
engineering has been revolutionized by the advent of a new generation of ML models.
Deep Learning (DL) leverages neural networks with multiple layers to automatically learn
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(a) LeNet5 architecture. Source: LeCun et al. (1998).
(b) Screenshot of the demonstra-
tion of LeNet1. Source: Demo.

Figure 1.1: Overview of the application of LeNet to recognize hand-written digits

intricate hierarchies of features directly from raw data, surpassing the limitations and the
burden of manual feature engineering.

1.1.1 A slow start

The rise and success of artificial neural networks has been a long and sinuous journey. The
term neural network is inspired by the biological structure of the human brain (McCulloch
and Pitts, 1943). The reader can refer to Appendix 1.1b or the introduction provided in a
book authored by LeCun et al. (2015) for a short or a more complete history about neural
networks, respectively. Neural networks were first introduced in the early 1940s, but inter-
est in the field did not gain momentum until the 1980s. Renewed interest emerged with the
development of backpropagation (Rumelhart et al., 1986), a method for efficiently train-
ing multi-layer neural networks. This method uses the chain rule to compute the gradient
of the loss function (function that quantifies the error margin between a model’s predic-
tion and the actual target value) with respect to the weights by expressing the derivative
of the composition of two functions in terms of each of their derivatives. The gradient
is then used in the stochastic gradient descent algorithm (Robbins and Monro, 1951) to
iteratively update the network’s weights. This period also saw the introduction of impor-
tant architectures like the recurrent neural network (RNN) (Hochreiter and Schmidhuber,
1997) and the convolutional neural network (CNN) conceptualized by Fukushima (1980).
These architectures became crucial for tasks involving sequential data and images, respec-
tively. A famous example of a CNN used to recognize hand-written digits on paychecks
was the work carried out by LeCun et al. (1998) (see Fig. 1.1).

1.1.2 A tremendous success

The success story of Deep Learning began in 2012 with the CNN AlexNet’s triumph in
the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) (Krizhevsky, 2012).
The ImageNet competition is a 1000-class image classification task utilizing a dataset
comprising over one million annotated images. AlexNet was the first end-to-end trained
artificial neural network to beat by a large margin (reducing ≈ 10% of the top-5 error)
previously introduced image classifiers based on bag-of-words (Perronnin et al., 2010)
(see Fig 1.2). The AlexNet’s success was essentially due to the access to the biggest
computational power, allowing it to scale up and train the network. The success was also
due to the use of already developed techniques such as the use of rectified unit as non-
linear activation (Nair and Hinton, 2010), the use of dropout (Srivastava et al., 2014) and
the pooling operation (Jarrett et al., 2009).
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Figure 1.2: Evolution of the top-5 error on ImageNet competition through the years. The
top-5 accuracy measures if the true label has been predicted within the five more likely
labels.

Since AlexNet, the field of Deep Learning has exploded, and all subsequent winners
of the ImageNet competition have been deep neural networks. Innovations lead to deeper
and more refined models like VGG (Simonyan and Zisserman, 2014), which emphasized
depth and simplicity with its uniform convolutional layers, or e.g., ResNet (He et al.,
2016), which introduced residual connections to train extremely deep networks with-
out training degradation. As the pursuit of more effective models continued, the search
for efficient networks has become an optimization problem itself, leading to balanced
speed/accuracy architecture like EfficientNet (Tan and Le, 2019). Over the years, Deep
Learning models have improved and have exceeded human performances in ILSVRC.
Today, the success of Deep Learning goes beyond the image classification task, and Deep
Learning models have become state-of-the-art for various applications. These achieve-
ments have been made possible by scientific accomplishments but also by combining two
technological advances; large-scale data acquisitions through the installation of sensors,
often called big data (initially annotated data, but now not necessarily), and an ever-
increasing computation power. Most papers have then been dedicated to improving the
performance of Deep Learning models on a particular task. We can observe the progress
of the different benchmarks on the Papers With Code platform1. However, the widespread
adoption of DL in industry has introduced new challenges that must be addressed to make
it acceptable as a reliable solution. At the same time, as deep networks grew in size, their
learning and decision-making processes became less and less transparent. These deep
networks are complex and opaque objects – they are generally referred to as black-box
systems – and have shown instability. A famous example of network instability is the
adversarial example perturbation, where a small bounded perturbation of the input can
sway the network to output a chosen target (see Fig. 1.3). The industrial challenges, the
poor understanding of DL mechanisms, and its security flaws have raised several critical
questions that must be addressed to build an AI system that aims to be deployed. These
questions can be gathered around the notion of trustworthy AI.

1.2 Trustworthy AI
AI systems must ensure some properties to be correctly designed, developed, and de-
ployed. Companies or regulators define these properties and form the concept of Trust-

1https://paperswithcode.com
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Figure 1.3: Adversarial example targeting an image classification neural network. The
original image on the left is correctly classified as a pig. However, after introducing
an adversarial perturbation, the resulting image, indistinguishable from the original, is
misclassified as an airliner. The adversarial perturbation, illustrated in the center, results
from an optimization problem that influences the network’s behavior. Source: Szegedy
et al. (2013).

worthy AI. Depending on the application, a trustworthy AI must verify properties such as
robustness, alignment with ethical considerations, explainability, transparency, or safety.

Robustness. An AI component is considered robust if it demonstrates a consistent level
of performance in the target environment (environment in which the system is deployed).
This environment can be complex and diverse, and if an AI model is not trained to ac-
count for the variation of data distributions across scenarios, its performance may be
significantly dropped. Let us consider the example of an object detector deployed in an
autonomous vehicle that detects pedestrians. This detector should maintain the same level
of performance during the night or the day, if it is raining, snowing, or sunny or if the car
is driven in the city or the countryside. This phenomenon is often referenced in the litera-
ture as robustness against distribution shift (Taori et al., 2020) and is related to the notion
of generalization. Generalization represents the ability of a model to make accurate pre-
dictions on unseen data drawn from the same distribution as the training data. In our
example, an object detector trained on the data from a particular city must perform well
on frames from different parts of this city with the same weather conditions and daytime.
A central objective is to design methods to augment generalization and robustness against
distribution shifts without re-collection and re-annotation of a large volume of data.

To correctly qualify if a model is “well” operating on a given data distribution, the
network’s output must align with our expectations and interpretations of what it should
represent. For example, for an image classification neural network, the output vector,
after the final softmax layer, is generally interpreted as the probability distribution over
classes for a given input. However, this interpretation has been shown to be incorrect (Guo
et al., 2017). Neural networks trained on ImageNet are often overconfident, meaning
that images classified with a probability of 90% will not be correctly classified 90% of
the time. To address this problem, a line of works developed the notion of uncertainty
quantification for neural networks (Gawlikowski et al., 2023).

Ethics. Ethical considerations are principles explicitly defined by regulators or norms
implicitly induced in society. These principles evolve with new regulations or changes in
people’s thinking. In Western countries, an algorithm is aligned with ethical considera-
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Figure 1.4: Two examples of COMPAS ethnic bias to predict recidivism. For the same
criminal offense, COMPAS incorrectly predicts black people as re-offenders, while white
people are incorrectly predicted as low risk to re-offend. Pictures from Probublica.

tions if it is diverse, non-discriminative, and fair, meaning that the AI system is developed
and used in a way that includes diverse actors and promotes equal access, gender equality,
and cultural diversity while avoiding discriminatory impacts and unfair biases. Without
specific training considerations, an AI algorithm can be biased and can do so without ac-
cess to sensitive information. For example, in the U.S., a criminal risk assessment tool
named Correctional Offender Management Profiling for Alternative Sanctions (COM-
PAS)2 has been used to assess more than 1 million offenders since 2000. This AI software
predicts up to ten scores of the defendant’s risk of committing a misdemeanor or felony
within two years of assessment from 137 features about an individual and her/his past
criminal record. The features do not include the defendant’s race. In 2016, an indepen-
dent, non-profit newsroom, ProPublica, published an analysis of COMPAS’s efficacy on
more than 7000 people (Angwin et al., 2016). This analysis indicated that the predictions
were unreliable and racially biased. Even if the overall accuracy for white defendants
was slightly higher than its accuracy for black defendants (67.0% vs 63.8%), the errors
made by COMPAS were very different for white and black people. Black defendants who
did not recidivate were incorrectly predicted to re-offend at a rate of 44.9%, nearly twice
their white counterparts at 23.5%. White defendants who did recidivate were also incor-
rectly predicted to not re-offend at a rate of 47.7%, nearly twice their black counterparts
at 28.0%. Two examples are depicted in Figure 1.4. COMPAS appeared to favor white
defendants over black defendants by underpredicting recidivism for white and overpre-
dicting recidivism for black defendants. This example shows the importance of sound
and careful data collection and AI system training strategy to avoid biases in harmful AI
applications.

2https://doc.wi.gov/Pages/AboutDOC/COMPAS.aspx
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Explainability and Transparency. AI systems are either explainable by design (e.g.,
linear regressions, decision trees, the KNN method, ...) or either black-box systems (Gun-
ning et al., 2019; Hanif et al., 2021). Generally, the least accurate methods are the most
explainable, and the best-performing methods are the least explainable. Deep Learning
models fall in the last category, exhibiting high performance but less explainability. These
models are very hard to understand due to the mathematical challenges raised by the in-
terplay between the model’s architecture, the optimization algorithm used to learn the
model, and the training data. For these multiple reasons, they are often referenced as a
black-box system. This poor understanding leads academia and the industry to need more
explainable models. Explainable AI (XAI) aims to make AI models behavior more un-
derstandable and intelligible to humans. Often, XAI can be gathered around the question,
“Why do these AI models make such a decision rather than another?”. The answer is
often incomplete and depends on the task, considered XAI methods, and user expecta-
tions. From an application-oriented point of view, a better understanding of the system
will help to prevent its potential failures. For example, for an object detection system,
understanding if the detection comes from the object itself or the context (background)
may help to identify spurious correlations (e.g., the presence of a dog implies the presence
of a person). From the customer’s perspective, explainability may help to know why the
model rejects loan applicants and what they can do to be qualified. These examples illus-
trate that explainability can be a tool to qualify the model’s robustness and its potential
biases. Although the definition of XAI is still an open question, it is a keystone between
AI, social sciences, and human-AI interactions (Miller, 2019).

Transparency means that users know enough about the intrinsic mechanism of an AI
system to understand the whole AI pipeline, how it works and uses data. Misunderstand-
ing the AI system behavior may lead to harmful consequences, depending on the user. If
the user is an operator, such as a doctor, misunderstanding the results of an AI scan di-
agnosis can have severe consequences for the patient. Whereas, if the user is a customer
using a biometric system for identification, he/she will be concerned about the purpose
for which his/her biometric data is collected and how it is used. This transparency allows
users and stakeholders to understand how decisions are made, fostering trust and account-
ability. For governments and regulators, transparency is a safeguard against companies
that may not respect ethical considerations or privacy.

Safety. AI safety aims to ensure the integrity and security of AI systems against care-
fully crafted and deceptive threats. These threats are vulnerabilities in AI systems that
can cause them to make mistakes (Szegedy et al., 2013; Biggio et al., 2012; Brown et al.,
2017). Such vulnerabilities should be separated from the robustness issues discussed ear-
lier. For example, adversarial examples are small perturbations designed to fool a model.
They are not related to a physical phenomenon that can be observed in the intrinsic distri-
bution of natural data – mathematically, the probability of observing such phenomenon in
natural data is null. Safety vulnerabilities can be divided into either training-time attacks
or decision-time attacks.

Training-time attacks target model learning through data or model manipulation. In a
data poisoning attack (Biggio et al., 2012; Gu et al., 2019), the hacker controls a subset of
the training data by inserting or modifying training samples to cause the general failure of
the network once trained. In a backdoor attack (Li et al., 2022), the method is almost the
same, but the goal is to manipulate the network at the moment the hacker inserts a trigger
into the data. In the context of federated learning, training-time attacks can also target the
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learning of a model’s client (in a smartphone, for example) to disrupt the learning of the
global model (in a server) (Liu et al., 2022b).

Decision-time attacks are attacks that occur at the time of model inference rather than
during the training phase. These attacks can cause security issues by inducing network
failures or cause privacy issues by stealing the model or the training data. Neural network
failures can be produced by adversarial examples (Szegedy et al., 2013), a norm-bounded
perturbation of the input data. For computer vision applications, adversarial examples
are perturbations applied to an image that are indistinguishable by the human eyes. This
perturbation can cause an image classifier to classify an image of a class to another with
high confidence (Fig. 1.3). An example of an algorithm-level threat is the model steal-
ing attack, where the attacker attempts to learn a model that mimics an unknown model
accessible through an API (Tramèr et al., 2016). The copy of the model can bypass the
API’s monetization or be used as a proxy to design a stronger adversarial example against
the API’s model. For the public to accept AI systems, ensuring data privacy is essential.
This data privacy can be jeopardized by membership inference (Shokri et al., 2017), an
attack querying a trained model to predict whether or not a particular data was contained
in the model’s training dataset, or by data reconstruction attacks (Loo et al., 2023), an
attack aiming to reconstruct the data that was used when training the model.

Defense mechanisms are used to maintain an AI system’s safety. These defenses can
be either empirical (Madry et al., 2017), aiming to show that available attacks empirically
fail to bypass them, or certified, meaning that the system is mathematically robust under
certain conditions. Empirical defenses often offer higher robustness performance but are
not guaranteed. To ensure the system’s robustness, certified defenses are usually based on
formal methods (Zhang et al., 2018).

Towards a trustworthy AI. Many initiatives have been launched in Europe to move
towards trustworthy AI. For example:

• TAILOR is a European project to provide the scientific foundations for Trustworthy
AI in Europe. TAILOR develops a network of excellence research centers, lever-
aging and combining learning, optimization, and reasoning with the key concepts
of trustworthy AI. These systems are meant to provide descriptive, predictive, and
prescriptive systems integrating data-driven and knowledge-based approaches;

• CERTAIN (Center for European Research in Trusted AI) is a consortium of German
institutes legally part of DFKI (German Research Center for Artificial Intelligence).
The CERTAIN consortium aims to work across the value chain from basic research
to society, focusing on developing, optimizing, and implementing Trusted AI tech-
niques to provide guarantees and certifications for AI systems in specific use cases.
In addition to research, the consortium collaborates with industry, standardization
bodies, and political and societal stakeholders to set certification requirements, de-
fine AI trust labels, and foster AI literacy;

• The High-level Expert Group on AI, a group of experts appointed by the European
Commission, presented their final Assessment List for trustworthy AI to the Euro-
pean Commission. This assessment list gives an initial approach for the evaluation
of trustworthy AI to leverage the self-evaluation of developers and deployers of AI.
The document3 can be found here.

3https://digital-strategy.ec.europa.eu/en/library/assessment-list-trustworthy-artificial-intelligence-altai-
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Figure 1.5: An overview of the different actors involved in the Confiance.ai program

The Confiance.ai program In late 2021, the Confiance.ai program was launched in
France. It is a joint initiative of industry and academia to develop and promote French
capabilities in trustworthy AI. This multidisciplinary environment leverages diverse ex-
pertise to address the different challenges (robustness, ethics, explainability and trans-
parency, safety) raised to obtain a Trustworthy AI (see Fig. 1.5). The different challenges
were divided into projects (EC for “environment de confiance” or trustworthiness envi-
ronment), divided into sub-problems to tackle each problem independently. To learn more
about the Confiance.ai program, see the Appendix A.2 and the White Book4.

To develop scientific solutions, academics put forth several proposals, leading to the
initiation of doctoral studies and postdoctoral research. PhD candidates were associated
with a research organization (typically IRT SystemX) and an academic partner. Each
candidate has one advisor from the IRT and one or more advisors in the laboratory. Each
PhD topic was associated with an EC. This thesis is associated with EC4 (related to the
development of trustworthy AI by design) and was started initially to leverage the safety
aspects of already deployed AI systems, especially AI components deployed in cyber-
physical systems.

1.3 AI Safety
As previously stated, AI safety aims to guarantee the integrity and security of AI systems
against deliberate attacks. This document will concentrate on attacks on computer vision
AI systems that have been designed, trained, and deployed safely without any malicious
backdoor. To circumvent the decision-making process of this system, a hacker has to

self-assessment
4https://www.confiance.ai/contenus-media/
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Figure 1.6: Illustration of the two methods to compromise an already deployed computer
vision AI system. (a) Numerical Attacks involve modifying the recorded image at the
pixel level during the processing pipeline to mislead the AI system. (b) Physical Attacks
involve introducing deceptive physical objects into the real-world scene, tricking the AI
system into making erroneous predictions during image processing.

corrupt the image being processed by the system. Two methods exist to achieve this: the
hacker can numerically alter the processed image by injecting an attack, or he/she can
insert an object into the scene that will subsequently deceive the AI system that processes
images (see Fig. 1.6). These two attacks have different operational scenarios and are
suited to target different computer vision systems successfully. For example, numerical
attacks are more effective when targeting numerical applications, such as a social media
sensitive-content filter, than a system embedded in an autonomous vehicle. To target the
latter system, a hacker using numerical attacks would require access to the system to inject
the attack after the image is captured, which is an unrealistic scenario. Conversely, phys-
ical attacks involve introducing a disruptive element (e.g., a new object) into the scene,
making them a more suitable approach for targeting real-world systems than numerical
attacks.

Physical attacks have been introduced by Brown et al. (2017). Rather than finding a
small additive adversarial noise, they constrain the optimization procedure to a small part
of the image while also allowing the optimization to be unconstrained in magnitude. At
the end of the optimization, a small textured patch will be produced that may cause the
image classifier to predict the wrong category, e.g., a toaster when printed and placed in a
scene. This new type of attack, named adversarial patch attack (APA), enables a variety
of physical-system threats: adversarial stickers that fool an image classifier to predict a
selected class (Fig. 1.7 (a)), adversarial t-shirts (Hu et al., 2022) hiding the person that
wears it (Fig. 1.7 (b)), adversarial posters suppressing the detection of innocent people
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Figure 1.7: Examples of adversarial patch attacks targeting different real-world systems.
In the top-left image (a), the patch is designed to deceive the image classifier, causing it
to output the desired class, toaster, with high probability. In the bottom-left image (b),
the patch, when placed at the top-left, effectively suppresses the detection of the person
despite not overlapping the person’s body. In the image on the right (c), the t-shirt or
the skirt successfully conceals the detection of the person wearing it. Sources: Image
classification APA inspired by Brown et al. (2017), Contextual APA from Saha et al.
(2020) and Clothe’s APA camouflage from Hu et al. (2022).

walking around (Fig. 1.7 (c)) (Saha et al., 2020), road marks altering depth prediction
in a road scene (Yamanaka et al., 2020). While APAs can be utilized as a numerical
attack, their primary value lies in their physicality through printing. Consequently, within
the existing literature, numerical attacks are typically associated with adversarial noises
(often called adversarial examples in the literature), whereas physical attacks refer to
adversarial patch attacks.

A substantial body of literature has been devoted to the design of defense mechanisms
to counter adversarial attacks. To defend against adversarial noises, a vast corpus of em-
pirical and certified defenses has been developed. Currently, adversarial training (Madry
et al., 2017), an empirical defense mechanism that includes attacks during the network
training to make it resilient, represents a state-of-the-art defense and offers robust per-
formance. Nevertheless, this approach is only partially applicable for making a network
robust against APA due to the higher cost of APA training. Alternative forms of defense
have been proposed, including masking-based defense (Naseer et al., 2019b; Liu et al.,
2022a; Xu et al., 2023; Tarchoun et al., 2023) or network feature space detection defense
(Yu et al., 2021). The race between attackers and defenders can be likened to a game of
cat and mouse. However, defenders against APAs have yet to reach the same performance
level as adversarial training in defending against adversarial noises. The cat-and-mouse
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game between attackers and defenders is advantageous for defenders concerning adver-
sarial noises, but it is not yet clear for APAs.

1.4 Thesis goal and contributions

Definition of a critical APA. The lack of a cornerstone adversarial patch defense and
the increase in APA’s attack performance illustrates that APA may be critical for physical-
based systems like autonomous vehicles. However, no work in literature describes the
prerequisites of a critical APA. A contribution of this manuscript is to propose a definition
of what may be a critical adversarial patch. To effectively target physical systems, APAs
must be robust to physical transformations and transferable to multiple neural networks.
The physicality of an APA represents its ability to be resilient to a wide range of physical
transformations that may appear during a camera recording (change in the object-camera
angle, pose, distance, scene lighting, blurring, distance patch target object, multi-scene,
...). A low patch physicality will result in an attack performance drop if a scene setting
changes. Patch transferability refers to the ability of the patch to fool different models
from different architectures or the same architecture but with a different initialization or
training procedure. The transferability measures the attack performance when the attack
designed on model A targets a different model B. It is an essential prerequisite for a
critical APA, as the malicious person may not know the model deployed in the targeted
physical system. Generally, model A, named the source model, performs the same task as
the unknown targeted model. For example, the malicious person wanting to fool an image
classifier may design its patch on a source model that is an image classifier.

Although APA’s physicality has been developed and improved through multiple works
((Hu et al., 2022) design a patch invariant to patch camera angle), the transferability of
APA remains a challenge. The adversarial patches proposed in the different papers gener-
ally show a good attacking performance in white-box configuration (applied on the same
known model that they have been learned) but cannot transfer.

Towards a transferable APA against image classification. To better understand what
might be causing the transferability of the patch, we first study the case of transferability
between image classifiers. This situation should be easier to understand as all image
classifiers can be decomposed in two steps: an encoder extracting the features of images
followed by a linear head aggregating these different features to perform the classification.
Object detectors are much more complex deep networks as they do not exhibit a common
structure between the different architectures and are built as multiple interacting blocks.

Recent works seem to show that the transferability of patches between image classi-
fiers seems to be realizable: Brown et al. (2017) and Doan et al. (2022) show that a patch
designed on a specific ResNet (He et al., 2016) was capable of fooling another ResNet or
a DenseNet (Huang et al., 2017). However, it is worth noting that these works measure
patch transferability on old versions of CNNs trained with a poorly generalizable learning
policy compared to recent ones. This thesis contributes to extending the transferability
study on recent architectures like Transformers or CNNs trained with recently developed
learning policies.

To leverage large-scale transferability between old and new classifier architectures,
we propose a new methodology for APA design. This methodology avoids the reliance
of APA design on source model decision boundaries and addresses the limitations of
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transfer-based attacks by introducing a distribution-oriented approach. Our patch is learned
using the Wasserstein distance (Peyré et al., 2019) to globally alter the feature distribution
of a set of images to match another distribution taken from a target class. When placed
in the scene, our patch causes the network to output the class chosen as the target dis-
tribution. We validate our method on ImageNet-1K (Deng et al., 2009) by conducting
extensive experiments. We show that our APA is more model transferable and is more
physically feasible than previous APAs for a large ensemble of network architectures, in-
cluding classical CNNs (Simonyan and Zisserman, 2014; Szegedy et al., 2016; He et al.,
2016; Huang et al., 2017), recent CNNs (Tan and Le, 2019; Liu et al., 2022c) and Vision
Transformers (Touvron et al., 2021; Liu et al., 2021).

A transferable inhibition APA to hide objects. A subsequent goal is to create a trans-
ferable patch against object detection, a more complex task than image classification.
Object detection is more likely to be used in physical systems, as it allows the detection,
localization, and classification of multiple objects in a single image. If we naively apply
the patch obtained by our distribution-based method on an object detector, it creates false
alarms on the patch. However, creating false alarms on the patch is much less critical
for the system than suppressing good detections. It is much more critical for an attacker
to either try to hide someone by designing a t-shirt or perturb the detection of innocent
pedestrians crossing the road by positioning a poster near a crossroad. The goal of a patch
is entirely different. Rather than trying to create a patch that catches the decision and is
classified as an object, the goal is now to design a patch that inhibits the detection of a
particular class.

To ensure that the produced patch is suppressing the object we want to attack, we pro-
pose changing the targeted task on which the patch is learned and evaluated, and designing
the patch to target a multi-label classification network instead. A multi-label classification
network outputs a binary response for each class, representing whether or not the class
is present in the image. The patch performance is then measured by the overall reduc-
tion of true positive rates for different class probability thresholds. We show that in the
white-box setting, it is possible to create a patch that disturbs the detection of a person.
However, we conducted experiments that indicated that creating a transferable patch, even
when the architecture is fixed and networks are learned using different learning recipes,
is challenging.

To summarize, in this thesis, we try to analyze more precisely the criticality of APAs
by:

1. defining various categories of evaluation criteria. We propose an evaluation method-
ology based on these criteria to evaluate the patch’s criticality. We use this method-
ology to evaluate the different patches from the literature and show that patches do
not transfer across network architectures or network initialization/training recipes,
limiting patches’ criticality (Chapter 3);

2. introducing a new framework based on optimal transport for creating patch attacks
that are highly transferable to unknown networks. This framework is based on the
idea of attacking feature distributions, which is independent of the classifier deci-
sion boundaries and has several optimization benefits over previous feature-based
methods. We show that our attack works for a large spectrum of deep networks,
including Convolutional Neural Networks, Transformers, and adversarially trained
models, and show transferability superiority through extensive experiments on the
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ImageNet-1K dataset. We illustrate through physical experiments that our patch is
potentially harmful to real-world image classifiers even in the presence of a defense
mechanism (Chapter 4);

3. addressing previous APAs against object detector limitations by proposing a sci-
entific objective and evaluation procedure to assess the efficacy of attacks against
object detectors. This new scientific objective is to create a patch against a multi-
label classification network and measure its impact on inhibiting true positive de-
tections. We develop a new APA that targets multi-label classifiers and demonstrate
that this APA can suppress the detection of a person in the white-box setting. We il-
lustrate that designing a transferable APA against the multi-label classification task
is challenging (Chapter 5).

1.5 Outline of the manuscript
Chapter 2 introduces the tools to better understand the adversarial attacks research field.
This chapter provides general materials, while the following contribution chapters delve
into specific materials, offering detailed insights into particular aspects of the topic. In
this chapter, we first present the main architectures used in image classification and ob-
ject detection. We explain how these models are trained and what may influence their
learning. Then, we introduce the two attacks that aim to target an already deployed net-
work. We describe how to generate them and which properties are used to characterize
them. Finally, we describe the pioneer works that developed adversarial patch attacks,
which is the most physically realizable type of attack.

We define in Chapter 3 what critical patches are and introduce different categories of
evaluation criteria useful to evaluate APA’s criticality. We use these criteria to evaluate
the different patches and conclude that actual patches do not transfer across models.

Chapter 4 is dedicated to the design of a transferable patch against image classifiers.
We study previous patch attack limitations and introduce a new method that resolves these
limitations. We numerically evaluate our new APA and show its superiority over previous
methods for a large number of state-of-the-art networks. We illustrate through physical
experiments that our patch is potentially harmful to real-world image classifiers, even in
the presence of a defense mechanism.

Finally, in Chapter 5, we introduce a new scientific objective and evaluation proce-
dure to evaluate the APA’s efficacy against object detectors. We develop a new APA
against this new multi-label surrogate problem and demonstrate its attacking performance
in the white-box setting. We then illustrate the limitations in designing a transferable APA
against multi-label classifiers and, thus, against object detectors.
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• Labarbarie, P., Chan-Hon-Tong, A., Herbin, S., & Leyli-Abadi, M. (2022). Carpet-
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Chapter 2

Adversarial attacks toolkit

In this chapter, we introduce the basic notions useful for the rest of the manuscript. The
chapter content is global, while in the following chapters, we provide chapter-specific
material to present our contributions.

As our objective is to design attacks to fool neural networks, the first part of this chap-
ter is dedicated to their description. The triptych architecture, training data, and learning
strategy characterize neural networks. Architecture forms the core of their design. We be-
gin by describing how these architectures have evolved over the years, and we introduce
several architectures used in image classification and object detection. We then present
the different learning strategies that influence the obtained network weights, resulting in
different network behavior and performance even for networks sharing the same architec-
ture.

The second part of this chapter gives an overview of two adversarial attacks designed
to target a well-trained network. We describe their generation process and characteristics.
Finally, we detail the pioneer works that developed adversarial patch attacks, the most
physically realizable attack of the two. This attack is the main topic of the thesis and is
further studied in the following chapters.

2.1 Computer Vision
Computer vision is a field of computer science that aims to enable computers to solve
tasks by replicating human visual abilities. These tasks may involve pattern recognition,
motion analysis, and image restoration. This manuscript will focus on pattern recognition
tasks, particularly image classification and object detection. To perform such tasks, com-
puter vision seeks to answer the questions of extracting relevant descriptors from images,
what relevance means, and how to use these descriptors to perform the task. Suppose we
want to create an AI system that classifies whether a dog is present in an image. A relevant
descriptor for performing this task might be detecting the presence of a muzzle in the im-
age. However, the unique presence of a muzzle in the image is insufficient. This strategy
will lead to misclassifying a cat or a pig as a dog. To correctly determine whether a dog
is present in the image, more than one descriptor must be extracted and then aggregated
to make a decision. The design of a computer vision system may be divided into two
goals: how to extract relevant descriptors and how to use these descriptors to perform a
task. The first goal is often called representation learning, while the second can be called
task learning. The quality of task learning, and thus the performance of computer vision,
often depends on the quality of the extracted descriptors.
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The term descriptor refers to representations computed from raw images by an algo-
rithm. It may have different names in the literature, e.g., visual representation, or features.
Before the advent of deep learning, feature extraction was performed using handcrafted
methods such as Scale Invariant Feature Transform (SIFT) (Lowe, 2004), Speeded-Up
Robust Features (SURF) (Bay et al., 2006), or Histograms of Oriented Gradients (HOG)
(Dalal and Triggs, 2005). These methods were developed to capture specific aspects of
an image that the designers anticipated would be relevant to solving the task. Extracted
features may have desirable properties such as invariance to scale, rotation, translation,
illumination, or blur depending on the extraction method. Finding a relevant feature ex-
traction method to perform a certain task can take many years to achieve success and
capture only limited aspects of an image, which can limit their effectiveness in diverse or
complex scenarios.

Deep learning has revolutionized handcrafted feature engineering by introducing the
idea of “end-to-end” representations and task learning (LeCun et al., 2015). Deep learning
models, particularly Convolutional Neural Networks (CNNs), can directly learn rich and
hierarchical feature representations from raw data. This end-to-end learning paradigm al-
lows deep learning models to automatically discover and optimize features, making them
far more adaptable and robust in capturing the nuances of visual information. The shift to
deep learning has enabled remarkable improvements in accuracy and efficiency across a
wide range of computer vision tasks, redefining state-of-the-art tasks and opening up new
possibilities in the field. The first pattern recognition task that shown major improvement
was the image classification task.

2.1.1 Image classifiers
In this section, we review the significant achievements made in recent years in design-
ing image classification neural networks. Image classification models aim to predict a
single label that describes the image content. To learn features to perform image classi-
fication, the first developed and used architecture was convolution based architectures. A
Convolutional Neural Network (CNN) is a specialized neural network designed primarily
for processing structured grid data, such as images. Leveraging layers that perform con-
volutions, CNNs automatically and adaptively learn spatial hierarchies of features from
input data. Each convolutional layer applies a series of filters to the input, creating fea-
ture maps that capture local patterns like edges, textures, and more complex shapes as
we progress deeper into the network. The final layers of a CNN usually consist of fully
connected layers that perform high-level reasoning and classification tasks based on the
features extracted. CNNs can then be represented into a two-part scheme in which the
first part, usually named backbone or encoder, is built with convolutional operations and
aims to extract relevant features while the latest part uses these features to perform clas-
sification. CNNs have become popular due to their advantageous properties, including
sparse interactions with local connectivity, parameter sharing with reduced numbers, and
equivariant representation. Equivariant means that the network encodes in a meaningful
way image transformations, e.g., rotation or scaling. Hereafter, we introduce some major
image classifiers.

AlexNet. The first major success of deep learning for image classification was AlexNet’s
first place in the ImageNet challenge (Krizhevsky, 2012). AlexNet’s success can be at-
tributed to its access of biggest computational power to scale up and train the network and
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Figure 2.1: Representation of a ResNet residual block. Source: He et al. (2016)

the use of already developed techniques such as the use of rectified linear units (ReLU)
for non-linear activation (Nair and Hinton, 2010), the use of dropout to reduce overfitting
(Srivastava et al., 2014) and the use of pooling operation to reduce dimensionality and
computation, enhancing robustness to spatial variations (Jarrett et al., 2009).

VGG. Building on this momentum, the Visual Geometry Group (VGG) at the Univer-
sity of Oxford introduced the VGG network family, which further explored the impact of
network depth on performance (Simonyan and Zisserman, 2014). Although VGG ranked
2nd in the 2014 ILSVRC, it has made a prolonged impact in the deep learning community
due to its simple architecture and its “understandable” feature map. The improvement in
VGG’s accuracy is attributed to the replacement of AlexNet’s large kernel-sized filters
with 3 × 3 kernel-sized filters and the increase in the network’s depth by adding more
layers.

ResNet. The ResNet architecture is one of today’s most famous and commonly used
architecture (He et al., 2016). This paper introduces residual connection: the input of an
earlier convolutional layer is summed to the input of another future convolutional layer
several layers later (Fig. 2.1). They show that these residual connections help to stabilize
the gradient during training (avoiding gradient vanishing), enabling a deeper network
and better accuracy. Notably, they increased the depth of VGG networks by a factor of
eight. This breakthrough not only maintained high accuracy but also significantly reduced
training time, thus marking a new era in the design and implementation of deep neural
networks.

EfficientNet. The growing interest in finding better architectures gave rise to Neural
Architecture Search (NAS) (Elsken et al., 2019), a set of techniques aimed at automating
the design of neural networks (AutoML). NAS leverages ML or optimization-based meth-
ods to explore and identify optimal network configurations, reducing the need for manual
experimentation and enabling the discovery of novel architectures that surpass human-
designed models. One of the most notable outcomes of NAS is the EfficientNet family
(Tan and Le, 2019), which introduced a principled method for scaling networks called
compound scaling. EfficientNet simultaneously scales depth, width, and resolution of the
network in a balanced manner, achieving superior accuracy with fewer computational re-
sources. This holistic approach demonstrated that well-designed, efficiently scaled mod-
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Figure 2.2: Representation of the Vision Transformer’s (ViT) architecture and a Trans-
former encoder block. First, the image is split into fixed-size patches (usually 16 × 16-
pixels sized patches), linearly projected into a subspace, to which a positional embedding
is added. The result is then fed to a Transformer encoder in which, at each step, an extra
token named class token is updated. At the end, the class token is used to perform classi-
fication. Source: Dosovitskiy et al. (2020)

els could achieve state-of-the-art performance, representing a significant advancement in
the field of neural network architecture.

Vision Transformer (ViT). Transformers (Vaswani et al., 2017) were initially intro-
duced within the field of NLP as a powerful model for capturing long-range dependencies
in textual data. Unlike traditional recurrent neural networks (RNNs) (Chung et al., 2014)
and long short-term memory (LSTM) networks (Hochreiter and Schmidhuber, 1997),
which process data sequentially, Transformers allow for the parallel processing of in-
put data, significantly enhancing computational efficiency and enabling the handling of
long-range dependencies within the sentence. Each word of the sentence is processed
simultaneously by a transformer cell and interacts with the other words by relying on a
multi-head attention module. In its simplest form, the attention module (Vaswani et al.,
2017) computes an attention matrix by taking for each query (word for which we are try-
ing to find relevant information from the rest of the sentence) the dot-product between the
query and all keys (words used to measure the relevance when compared to the query),
followed by applying a softmax function across the key dimension. This attention matrix
is then used to filter the values. Mathematically, the attention module can be written as
follows:

Attention(Q,K, V ) = softmax
(
QK⊤
√
d

)
V, (2.1)

where Q ∈ Rn×d, K ∈ Rn×d, and V ∈ Rn×d are the matrices of queries, keys, and
values, respectively, n the sentence’s length and d the feature dimension of each word.
The term 1√

d
avoids pushing the softmax function into a saturated regime, resulting in

small gradients for training. In practice, several attention heads are used in parallel, and
for each head, queries, keys, and values are linearly projected. The output of the h-th
attention head AHh is defined as:

AHh(Q,K, V ) = softmax

(
QW h

Q(KW h
K)

⊤
√
dk

)
VW h

V , (2.2)
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Figure 2.3: Illustration of the Swin Transformer architecture compared to the Visual
Transformer architecture. The Swin architecture builds hierarchical feature maps by
merging image patches in deeper layers, while ViT builds its feature map from a sin-
gle low-resolution embedding. Modified version of the figure from Liu et al. (2021)

where W h
Q ∈ Rd×dk , W h

K ∈ Rd×dk and W h
V ∈ Rd×dv are learned projection matrices.

The outputs of the H-individual attention heads are then concatenated and multiplied by
another learned projection matrix WO ∈ RHdv×d. There exist different variants of multi-
head attention. One of them, the multi-head self-attention is when Q = K = V = X ∈
Rn×d and is defined by:

SelfAHh(X) = softmax

(
XW h

Q(XW h
K)

⊤
√
dk

)
XW h

V . (2.3)

Multi-head attention modules enable the model to capture diverse contextual relationships
in the input. Transformers input is a vector, a sentence in NLP applications, where each
element of the vector is a word. By analogy, applying Transformers to images would re-
sult in considering the image as a vector, in which each unit is a pixel. However, applying
Transformers on pixels directly is too computationally expensive.

A solution introduced by Dosovitskiy et al. (2020) is to separate the image into 16×16
pixels patches, project these flattened patches into a subspace, and use the result as the
input of the Transformer (Fig. 2.2). An extra class embedding is concatenated to the
projected patch representations, and the resulting vector is fed to L Transformer blocs
(right side of Fig. 2.2), which serve as feature encoder. At the end, the updated class token
is fed into a classification head. The remarkable accuracy achieved by Vision Transformer
on image classification has challenged the CNN’s hegemony. Nowadays, Transformer’s
architectures are state-of-the-art for multiple computer vision tasks.

Swin. Unlike traditional Vision Transformers (ViT) that process the entire image as a
sequence of patches, Swin Transformer (Liu et al., 2021) introduces a hierarchical struc-
ture as in CNNs. To do so the Swin Transformer leverages the use of non-overlapping
local windows within which self-attention is computed. These windows are shifted in
subsequent layers to enable cross-window connections, effectively capturing both local
and global context (Fig. 2.3). This shifted window approach addresses the limitations of
fixed partitioning in traditional ViTs, allowing for better modeling of fine-grained details
and larger spatial relationships.
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Figure 2.4: Illustration of the mAP calculation pipeline.

In recent years, image classification has become a fundamental yet simplified example
for studying neural network behavior. However, its practical applicability is constrained
by the limitation of predicting only a single label per image. This limitation becomes
problematic when an image contains multiple relevant objects, leading to ambiguous and
incomplete predictions. To address this issue, object detection has emerged as an alter-
native to its capability of identifying the location and labeling multiple objects within an
image. Object detection provides a better scene understanding, allowing more precise
depth estimation or action on objects.

2.1.2 Object detectors
Object detection aims to identify and locate multiple objects within an image, providing
their categories and location in the image. It combines both semantics and regression
through image classification and object localization. In object detection, for each object
of interest in the image, a bounding box is drawn around the object and a class label is
assigned to the bounding box.

Mean average precision (mAP) metric. The most common metric used to evaluate the
performance of object detection models is the mean average precision (mAP). mAP is the
average of the average precision (AP) over all classes considered. The AP is calculated
separately for each class. It is the area under the convex envelope of the precision-recall
curve for that class. The precision-recall curve plots precision against recall for different
bounding box confidence levels. AP can be viewed as a global metric that measures the
balance between precision and recall of the model’s predictions. For boxes assigned to
the same class, precision is the proportion of correctly predicted boxes (TPs) out of all
predicted boxes (TPs + FPs), while recall is the proportion of correctly predicted boxes
(TPs) out of all actual ground truth boxes (TPs + FNs). To consider a predicted box as
belonging to a ground truth box, the Intersection over Union (IoU), which measures the
overlap between predicted and actual bounding boxes, must be greater than a predefined
threshold (usually IoU = 0.5). The mAP is then computed according to a given IoU
threshold. Figure 2.4 illustrates the mAP calculation process.

As explained earlier, object detection combines semantic and regression tasks. In the
literature, two types of architectures have been developed to solve such a task. Either a set
of boxes is proposed first by a region proposal module, and then these boxes are refined
and assigned to a class in a second stage, or the box proposals and the class assignment is
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Figure 2.5: Illustration of two-stage and one-stage object detector.

done simultaneously in a one stage (see Fig. 2.5).

Region-based convolutional neural networks (RCNN). Faster R-CNN (Ren et al.,
2015) is the third object detector from the Region-based Convolutional Neural Network
(R-CNN) family. To understand in more detail how Faster R-CNN works, it is useful to
first introduce its predecessors, R-CNN (Girshick et al., 2014) and Fast R-CNN (Girshick,
2015). The different architectures are represented in Figure 2.6.

R-CNN (Girshick et al., 2014) is one of the first papers using CNNs to perform ob-
ject detection in two steps. First, a nondeep learning region proposal module, Selective
Search (Uijlings et al., 2013), is used to generate a set of 2000 object proposals (boxes
which may include the objects). These proposals are parts of the image that are cropped
and fed independently to the CNN, which extracts a feature vector for each object pro-
posal. Class-specific support vector machines (SVM) use these feature vectors to perform
bounding box classification. Boxes proposals made by Selective Search is refined using a
class-specific bounding-box regressor. Despite showing good improvement over pioneer-
ing methods like HOG (Dalal and Triggs, 2005), R-CNN has drawbacks. The Selective
Search procedure and the one-by-one feature map extraction are slow and expensive in
terms of memory (each proposal has to be independently proceeded by the CNN and
stored). Moreover, the training procedure is complex and time consuming (takes several
days).

To mitigate the slow processing speed of R-CNN, in Fast R-CNN, Girshick (2015)
proposed to produce a single feature map by extracting the features of the entire im-
age with the CNN and then to use a Region of Interest (RoI) pooling method to extract
cropped features from the region proposals (see Fig. 2.6 (b)). These cropped features
are used as inputs for the classification and regression module. Instead of multiple spe-
cific SVMs, the authors integrate the classification and bounding box regression steps
into a single network, leveraging the end-to-end training of the backbone and the task
network (detection head). The introduction of the RoI module and single-task network
makes Fast R-CNN much faster (146x faster over R-CNN) and more accurate than R-
CNN. However, as R-CNN, Fast R-CNN relies on external region proposal methods to
generate candidate object proposals. This dependency can be computationally expensive
and limits the real-time performance of the model, as these methods are not integrated
into the neural network and require separate processing.

Faster R-CNN (Ren et al., 2015) becomes one of the first end-to-end object detection
networks by integrating the external region proposal module into the network through the
Region Proposal Network (RPN) (see Fig. 2.6 (c)). RPN is a CNN that generates bound-
ing box proposals directly from the features extracted by the backbone. RPN predicts
bounding box locations alongside an objectness score for each cell location in the feature
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Figure 2.6: Illustration of R-CNN based networks. (a) First, a set of object proposals is
generated by a region proposal module. These proposals are used to crop the region of the
input image. The cropped proposals are then fed independently to a CNN, which extracts
a feature vector for each cropped proposal. SVM classifiers and Bbox regressors then
use the feature vector for object classification and localization. (b) In Fast R-CNN object
proposals, coordinates are projected to the feature map coordinates using an RoI module.
This RoI pooling module is then used to produce a fixed-size feature vector fed to fully
connected layers to perform Bbox classification and regression. (c) Object proposals are
no longer produced by a non-deep learning module, which processes the input image, but
rather by a deep learning module, which processes the feature map produced by the CNN.
Papers: R-CNN (Girshick et al., 2014), Fast R-CNN (Girshick, 2015) and Faster R-CNN
(Ren et al., 2015).
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Figure 2.7: YOLOv1 network performs object detection in a one-stage manner, extracting
features and performing Bbox regression (i.e., prediction of location) and classification
without using proposal generation. First, the image is divided into an S×S grid. YOLOv1
predicts B bounding boxes for each grid cell, a confidence score for each box, and C class
probabilities. Source: Redmon et al. (2016)

map (box probability of containing an object). It also utilizes anchor boxes of different
sizes and aspect ratios to handle varying scales and shapes. Each proposal generated by
the RPN is processed using RoI pooling, which converts the features inside a proposal into
a fixed-size feature map. This is achieved by dividing the proposal into a fixed number of
bins and using max pooling to extract the features within each bin. The RoI-pooled fea-
ture map is fed into fully connected layers for classification and bounding box refinement.
The advantage of Faster R-CNN is that RPN and the fully connected layers share the same
features extracted by the CNN backbone, allowing the simultaneous optimization of both
tasks. This integrated approach enhances the accuracy and speeds up the inference.

However, Faster R-CNN still faces limitations regarding real-time performance re-
quired for industrial applications, such as video surveillance and autonomous vehicles.
These limitations are due to the two-stage process. This limitation led to the development
of new models that aim to achieve high-speed object detection with accuracy.

YOLO. To mitigate the limitation of previously introduced RCNN-based approaches,
the You Only Look Once (YOLO) object detector (Redmon et al., 2016) is a new archi-
tecture enabling the real-time object detection.

Among the models achieving real-time object detection, the You Only Look Once
(YOLO) object detector (Redmon et al., 2016) stands out for its novel approach. YOLO
reframes the two-stage object detection pipeline into a single-step regression task: pre-
dicting bounding boxes and class probabilities directly from full images in one stage. To
do so, YOLO divides an input image into a S×S grid, where in each cell YOLO predicts
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Figure 2.8: DETR detection pipeline. DETR uses a CNN backbone to extract a set of
features. These features are flattened and supplemented with a positional encoding before
being passed into a Transformer encoder, which further improves feature representations.
These refined feature representations are fed to a Transformer decoder, which uses them
to update a small fixed number of learned positional embeddings called object queries.
Each object query is then passed to a shared feed-forward network that predicts either a
detection (class and bounding box) or a no object class. Source: Carion et al. (2020)

coordinates for B bounding boxes, as well as confidence scores indicating the likelihood
of the boxes containing an object (mathematically defined as P(object) ∗ IoUtruth

pred ). For
each grid cells, YOLO predicts also C conditional probabilities P(classi|object). These
probabilities are predicted regardless of the number B of predicted boxes per cell. At test
time, the conditional class probabilities and the individual box confidence predictions are
multiplied to obtain a class-specific confidence score for each box:

P(classi|object) ∗ P(object) ∗ IoUtruth
pred = P(classi) ∗ IoUtruth

pred . (2.4)

These scores encompass the probability of that class appearing in the box and how well
the predicted box fits the ground truth box. The output tensor size is S×S× (B ∗5+C).
Figure 2.7 represents the architecture and the overall pipeline.

Over the past years, YOLO has emerged as a predominant architecture in real-time ob-
ject detection. Many works are interested in developing new modules or learning strate-
gies to improve the accuracy or inference time of YOLO architecture. At the time of
writing this manuscript, at least ten different YOLO versions have been developed (Red-
mon and Farhadi, 2017, 2018; Reis et al., 2023; Wang et al., 2024).

Faster R-CNN and YOLO output a set of boxes over the image where multiple boxes
can be assigned to the same object. A post-processing method called Non-Maximum
Suppression (NMS) is often used to filter out potential duplicate box proposals. NMS
takes as input a list of B box proposals associated with confidence scores S and an overlap
threshold λ ∈ [0, 1]. NMS selects the object proposal with the highest confidence score
and iteratively removes from B the proposals with an IoU greater than some threshold
λ. The performance (mAP) of Faster R-CNN or YOLO is then measured for pre-selected
NMS and IoU thresholds.

DETR. DEtection TRansformer (Carion et al., 2020) is a new one-stage object detec-
tor architecture that views object detection as a direct set prediction problem, removing
the need for NMS or anchor generation encoding prior knowledge. To enable direct set
prediction, DETR introduces the use of Transformer architecture (Vaswani et al., 2017)
in object detection and a set-based global loss that forces unique predictions via bipar-
tite matching. One-to-one matching between the predictions and the ground truth is
achieved by using the Hungarian algorithm. An additional no object class is added to
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Figure 2.9: DETR’s encoder and decoder. The encoder uses multi-headed self-attention
to capture object interactions across the feature map. The decoder uses this feature map
to update object queries after being fed to a feed-forward network to perform object de-
tection. Source: Carion et al. (2020)

correctly match the right number of actual objects and object queries (DETR’s outputs).
The model then computes a loss based on this optimal assignment, combining classifica-
tion and bounding box regression losses. The DETR architecture uses three modules: a
CNN encoder extraction features from images, a Transformer encoder, and a Transformer
decoder (Fig. 2.8).

As the Transformer encoder takes a sequence as input, features extracted by the CNN
are flattened along the spatial dimension, from z ∈ Rd×H×W to z ∈ Rd×HW where d is the
number of filters and H and W the feature’s height and width. The Transformer encoder
aims to refine the features extracted by the CNN’s encoder. The encoder’s self-attention
mechanism allows each feature vector to consider the information from all other regions
of the image, effectively modeling global context and dependencies. This is particularly
important for object detection, as it enables the model to understand complex spatial
relationships and interactions between objects and their surroundings.

The Transformer decoder follows the standard architecture of the Transformer, trans-
forming N input embeddings of size d through attention modules. The input embeddings
are named object queries in the paper (Carion et al., 2020); they represent potential objects
in the image. Initialized randomly and optimized during training, these object queries also
include a positional encoding and are added to each attention layer’s input. Through the
decoder layers, object queries are refined through self-attention and cross-attention mech-
anisms (Fig. 2.9). The self-attention layers enable the model to relate different object
queries to one another, allowing it to capture dependencies and interactions between po-
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tential detected objects. Cross-attention layers allow the object queries to attend to the
encoder’s output, integrating detailed information from the image. This attention mech-
anism ensures that each query is contextualized from all image regions, enhancing the
model’s ability to focus on relevant areas for object detection.

Finally, the N refined object queries are passed through a three layers feed-forward
network to predict class probabilities and bounding box coordinates for each object query.

All the object detectors discussed so far share a common component: a Convolutional
Neural Network (CNN) backbone extracting features. This backbone is not trained from
scratch for the specific task of object detection. Instead, it is a fine-tuned version of a
pre-trained backbone, initially designed and trained for image classification tasks. Pre-
training the CNN backbone, or any backbone, involves extensive training on large-scale
image classification datasets, such as ImageNet (Deng et al., 2009). This allows the back-
bone to learn a rich set of visual features expected to generalize well across different tasks.
When these pre-trained models are later fine-tuned for object detection, they start from
a strong foundation of learned features, enabling them to localize and identify objects
within images more effectively.

2.1.3 Network learning strategies

Another pillar of neural network performance and success is the learning strategies used
to train them. In this section, we describe the different learning paradigms and also the
training recipes used to learn network weights. We consider the standard notation where
(xi, yi) ∈ X × Y , i = 1, ..., n, are samples drawn from a joint distribution of random
variables X and Y . As we are considering an image classification problem, we suppose
the input is sampled from X = Rh×w×c, where h × w are the image dimensions and
c is the number of channels and where the output is sampled from a set of M labels
Y = {y1, ..., yM}. Let us define by Fθ : X → P(Y) a deep neural network parameterized
by θ ∈ Θ where θ are the network’s parameters, Θ the parameter’s space and P(Y) a
probability distribution over the labels. As explained in the Section 2.1.1, the functional
architecture of neural network classifiers usually follows an encoder-decoder schema.
We denote by f the encoder part of Fθ and by T the decoder or the task head, which
is a simple linear layer for classification (we omit the parameters notations for f and
T ). The encoder f maps x ∈ X to the feature space S = RH×W×C , where H and
W are respectively the height and the weight of the feature tensor and C its number of
channels. Features are reduced to a feature vector by applying an average pooling layer
over the spatial dimensions. The feature vector is then used by the task head to perform
classification, T : RC → P(Y), T (z) = softmax(Wz + b). The objective is to learn the
optimal parameters θ∗ of Fθ that minimize the empirical error Ê(θ) = 1

n

∑n
i=1 1ŷ ̸=y(xi),

where y(xi) is the label associated with the sample xi and ŷ = argmaxm∈Y Fθ(xi)m.

Supervised learning. Supervised learning involves training Fθ, i.e., both f and T , using
the labels. As Ê is not differentiable, the training relies on a surrogate loss, which is gen-
erally the cross-entropy loss for classification. The goal is to find the optimal parameters
θ∗ by solving the following optimization problem:

θ∗ = argmin
θ∈Θ

R̂(θ) = argmin
θ∈Θ

1

n

n∑
i=1

LCE(Fθ(xi), yi) (2.5)
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Figure 2.10: Example of image mixture methods. From left to right: Cutout (DeVries and
Taylor, 2017) involves masking out a random square region of the sample, CutMix (Yun
et al., 2019) combines two images by inserting a crop an image into the other and MixUp
(Zhang et al., 2017) makes a convex pixels interpolation between two samples. Source:
Yun et al. (2019)

In practice, this optimization is performed using gradient-based methods such as stochas-
tic gradient descent (SGD). The parameters θ are iteratively updated according to the rule:

θt+1 = θt − η∇θR̂(θt) (2.6)

where η is the learning rate, and∇θR̂(θt) is the gradient of the empirical risk with respect
to θ at the t-th iteration. The training continues until the network converges to a set of
parameters θ∗ that minimizes the loss over the training data. We obtain an “optimal”
encoder and classification head that minimizes the loss over the training data and that can
be used to classify new images. Once trained, the image classifier encoder can initialize
an object detector encoder.

Training recipes. Different image augmentations, image mixtures, or better optimiza-
tion procedures may be used to increase the performance, generalization, and robustness
of neural networks. Together, they form what we call a training recipe.

Image augmentations consist of changing the visual appearance of an image while
keeping its semantics unchanged. It includes the following augmentations: random crop-
ping, random color distortions, random Gaussian blur, random color jittering, random
horizontal or vertical flip, random grayscale conversion, random multi-crop, and many
more1 (Shorten and Khoshgoftaar, 2019). These augmentations can be applied alone or
can be composed. Another more complex set of image augmentations is image mixture.

1https://pytorch.org/vision/stable/transforms.html
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Figure 2.11: Histogram of the feature activations for two images. The features are ex-
tracted by feeding the two images independently to ResNet50 and ResNet50-v2. A spa-
tial average pooling is applied, and the features are normalized channel-per-channel by
the maximum channel value obtained on a dataset.

Image mixtures construct new images from several images (Fig. 2.10). Cutout (De-
Vries and Taylor, 2017) is a data augmentation technique that involves masking out a
random square region of an image. Removing parts of the image forces the neural net-
work to focus on the remaining features, thus encouraging the model to learn more robust
representations. This can prevent the network from becoming overly reliant on specific
features or parts of the image, which might lead to overfitting. CutMix (Yun et al., 2019)
is a more advanced augmentation technique combining elements from two images. In-
stead of simply masking a region, as in Cutout, CutMix replaces the masked region with
a patch from another image. Images and labels are mixed using the following equations:

x = M ⊙ xA + (1−M)⊙ xB

y = λyA + (1− λ)yB,
(2.7)

where M ∈ {0, 1}h×w is a binary mask, xA and xB are the mixed images and yA and yB
their associated labels, λ ∼ U [0, 1] and ⊙ is the element-wise multiplication. The one
value of the binary mask M is a box whose location is randomly sampled over the image
and its cropped area ratio is bhbw

hw
= 1 − λ. MixUp (Zhang et al., 2017) takes a different

approach by linearly blending pixels of two images and their labels. This technique helps
regularize the network to favor linear behavior between training samples.

These image augmentations and mixtures form the data side of training recipes. The
optimization procedure can also be considered as a recipe, for example, by optimizing
the learning rate using a scheduler, fine-tuning weight decay, and employing Exponential
Moving Average (EMA) to update network weights.
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Using a training recipe rather than another may result in different accuracy and net-
work behavior. As an example, the repository torchvision released a new version of
ResNet-50 (project made by Vasilis Vryniotis) obtained by updating the learning recipe
of the original paper (He et al., 2016). This new version of ResNet50, named ResNet50-
v2, shows an accuracy improvement of 4.728% (from 76.494 % to 80.858%). Although
these two networks share the same architecture, the extracted features are very different.
For example, if we compare the feature activations at the encoder output after applying
the spatial average pooling, the two networks exhibit two different dynamics. Feature
activations of the original ResNet50 are dense, i.e., all the features are activated, while
ResNet50-v2 has sparse feature activations, i.e., a large fraction of the features are zero
(Fig. 2.11). This observation is completely independent from the fact that these two net-
works may have extracted different features from the images. The most commonly used
paradigm has been supervised learning, but recently self-supervised learning methods
have emerged and shown competitive results in learning accurate networks.

Self-supervised learning. While supervised learning has proven to be highly effective
in tasks where large amounts of labeled data are available, it is often limited by the need
for extensive manual annotation. In many real-world scenarios, collecting labeled data
can be expensive and time-consuming. In addition, human annotations can sometimes
be biased, leading to incorrect inference by the network. Self-supervised learning (SSL)
has recently emerged as an alternative to learn computer vision networks. In this learn-
ing paradigm, the intrinsic structure of the data itself is used to generate a supervisory
signal called a pretext task. This supervisory signal enables the encoder f to be trained.
Instead of training f to extract relevant features for image classification, as in supervised
learning, the supervisory signal of SSL methods aims at learning an encoder that may
enjoy a property. SSL training is only concerned with the quality of features obtained
from this supervisory signal. The quality of features is usually measured by using the
feature extractor as a backbone for different downstream supervised tasks. For example,
in image classification, a linear layer is added to the encoder and either the entire network
or the linear head (linear-probing) can be fine-tuned in a supervised way. In the follow-
ing, we will introduce three SSL methods which rely on three different SSL frameworks:
contrastive learning (He et al., 2020), distillation (Caron et al., 2021) and reconstructive
learning (He et al., 2022) (see Fig. 2.12). For more details on SSL the reader can refer to
Ozbulak et al. (2023) survey or to this blog2.

Contrastive learning. Contrastive learning aims to learn an encoder f to distinguish
similar and dissimilar pairs of data. Given an input image xi, a positive sample x+

i (which
is semantically similar to xi, e.g., a rotation of a same image), and a set of negative
samples {x−

1 , x
−
2 , ...x

−
N} (which are dissimilar to xi), the goal is to learn f by minimizing

the following loss:

LInfoNCE = − log
esim(f(xi),f(x

+
i ))

esim(f(xi),f(x
+
i ))+

∑N
j=1 sim(f(xi),f(x

−
j ))

(2.8)

where sim is a similarity metric, e.g., the cosine similarity. By minimizing this loss,
the encoder f pulls f(xi) and f(x+

i ) closer while pushing f(xi) and f(x−
j ) (for all j)

farther apart, thereby learning a discriminative feature space. The InfoNCE loss (Eq.

2https://lilianweng.github.io/posts/2021-05-31-contrastive
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Figure 2.12: Illustrations of the three self-supervised learning techniques described.

2.8), is a popular constrastive loss, that can be interpreted as a log loss of (K + 1)-way
softmax-based classifier that tries to classify f(xi) as f(x+

i ). Two significant ingredients
of contrastive learning are multiple data augmentation and large batch size. Proper data
augmentations are essential for creating positive samples from the source sample without
modifying the semantics. At the same time, a large batch size enables a more diverse
collection of negative samples, forcing the model to learn meaningful representation to
distinguish different examples. However, large batch sizes can be extremely computa-
tionally expensive. An alternative way to reduce the computation time is to store the
representation in memory to trade off data staleness.

Momentum Contrast (MoCo) (He et al., 2020) is an SSL method that leverages a
dynamic dictionary with a queue to learn visual representations (see Fig. 2.12a). The
dictionary is structured as a large First In First Out (FIFO) queue of encoded represen-
tations of data samples. As before, the input image xi is processed by the encoder fθq ,
named query encoder in the paper, while the positive and negative samples are fed to a
momentum encoder fθk . The momentum encoder is updated with the moving average of
the query encoder’s weights: θk ← mθk + (1 − m)θq, where m is a momentum coef-
ficient. The dictionary is constructed by representations fed to fθk . The query encoder
is updated using the InfoNCE loss (Eq. 2.8) modified by a temperature hyperparameter.
The MoCO method enables fθq to learn representations by contrasting positive pairs with
many diverse negative pairs.

Distillation with No Labels (DINO). While MoCo focuses on learning from a large
set of negative samples, DINO (Caron et al., 2021) takes a different approach by using
self-distillation to align representations between two networks, a student and a teacher,
without the need for negative samples (see Fig. 2.12b). Given an input image x, two

30



different augmented views, x1 and x2, are generated using a series of data augmentation
techniques. These augmented views are passed through a teacher-student architecture
where the teacher network fθt and the student network fθs produce output representations
zt = fθt(x1) and zs = fθs(x2), respectively. The objective is to minimize the loss L(θs) =
−zt · log zs, which encourages the student to match the teacher’s output distribution. The
teacher network is updated using an exponential moving average (EMA) of the student
network’s weights, i.e., θt ← λθt + (1 − λ)θs, where λ is a momentum coefficient. In
practice, x1 is a set of different views constructed by different distorted views or crops,
and x2 is two global views of x. The set of different views is passed through the student,
while only the global views are passed through the teacher, encouraging “local-to-global”
correspondences and forcing the student to learn rich features from local information. The
student network is then used as the backbone.

Reconstructive learning. Another framework in SSL is reconstructive learning which
includes famous methods such as Autoencoder (Hinton and Salakhutdinov, 2006) and
Denoising Autoencoder (Vincent et al., 2010). In reconstructive learning, the focus is on
learning two networks: one encoder that projects raw data into a low dimensional space
and one decoder that from this encoded feature reconstructs the raw data. Mathematically,
given an input x, the model learns an encoder f that maps the input to a latent represen-
tation z = f(x), and a decoder g that reconstructs the input from this representation,
x̂ = g(z). The objective is to minimize the reconstruction loss, typically measured by a
distance metric between the original input x and its reconstruction x̂, such as the mean
squared error:

Lrec = ∥x− x̂∥2 = ∥x− g(f(x))∥2. (2.9)

By minimizing this loss, the model encourages f to capture the essential information
needed to reconstruct the input, leading to representations that retain the most significant
features of the data, which can be useful for various downstream tasks.

A recent version of the autoencoder principle is Masked Autoencoders (MAE) (He
et al., 2022) in which networks are learned to reconstruct images from partially masked
ones (see Fig. 2.12c). MAE takes advantage of the recent ViT architecture and, contrary
to previous works which use networks to process entire images, MAE applies ViT only
to the unmasked patches. The masked patches are removed, no mask tokens are used in
the encoder. The masked patches are reintroduced in the decoder resulting in a full set
of tokens. Each mask token is a shared, learned vector that indicates the presence of a
missing patch to be predicted. A positional embedding is added to the mask token to add
information about its location. After training, the decoder is removed and the encoder is
applied to unmasked images.

2.1.4 Training dataset
In addition to the neural network architecture and learning strategies, the training data
also plays a crucial role in influencing the network’s weights during the learning pro-
cess. However, the training datasets are fixed in computer vision and adhere to estab-
lished benchmarks such as ImageNet (Deng et al., 2009) for image classification. These
standardized datasets provide a consistent foundation for training and evaluating models,
ensuring comparability across different approaches.

To summarize this related work section, neural networks are first characterized by
their architecture. One of the key components of the architecture is the feature encoder.
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This encoder can be trained by using various learning paradigms and training recipes.
These learning strategies significantly influence the network’s behavior and performance.
Even with an identical architecture, using two different strategies may produce networks
exhibiting distinct dynamics. However, regardless of the encoder training, networks ex-
hibit vulnerability to adversarial attacks. While an attacker can design its attack to disrupt
the feature extraction, historically, attacks were primarily designed to target the decoder.
The rationale behind this approach is that disrupting the decision-making process of neu-
ral networks aligns with the primary objective of malicious actors seeking to compromise
model outputs. In the following section, we will delve into adversarial noises and ad-
versarial patches, two specific types of attacks that manipulate input images to deceive
well-trained and safely-trained networks.

2.2 Adversarial attacks
This section presents attacks that manipulate input images to deceive non-corrupted net-
works. These attacks can be grouped into two types. Either the image is captured and
afterward digitally corrupted, which is usually known as adversarial example (Szegedy
et al., 2013), or an object designed to perturb the system is placed into the scene in order
to be captured and is referred to adversarial patch (Brown et al., 2017). Both methods ex-
ploit vulnerabilities in neural networks, leading to incorrect predictions. To more clearly
highlight the differences in image modifications between the two attacks, we will adopt
the term adversarial noise rather than adversarial example in the following. This dis-
tinction will help provide a more precise understanding of the underlying mechanisms.
Historically, the first discovered attack was an adversarial noise.

The study of adversarial noises can be traced back to Biggio (2013) and Szegedy
et al. (2013) works, who first highlighted the vulnerability of well-trained ML systems to
small, intentional input perturbations. The perturbed input (Szegedy et al., 2013), denoted
by xadv in the following, is defined for each benign input x as

xadv = x+ δ(x) s.t argmax
m

Fθ(xadv)m ̸= argmax
m

Fθ(x)m

and d(x, xadv) ≤ ε,
(2.10)

where δ(x) denotes the intentional perturbation, Fθ the image classifier returning class
probabilities, d(x, xadv) a distance, and ϵ a strictly positive constant. As defined in Eq.
2.10, the objective of the attacker is to identify a perturbation, represented by the function
δ(x). Applying the perturbation to the input image x will result in a modified image,
denoted as xadv, which will be misclassified by the classifier. In this section, we will
focus on attacks targeting neural networks performing classification, but attacks can be
extended to another type of classifiers (e.g., KNNs, decision trees, ...) (Biggio, 2013;
Papernot et al., 2016) and can be defined to target other tasks (e.g., object detection,
semantic segmentation,...).

The norm constraint on δ(x) can ensure the imperceptibility of the attack and preserve
the semantics of the input. Preserving the semantics of the input is essential to consider
that an attack is successful. For instance, ambiguity arises if an image initially classified
as a dog is altered so that even humans can no longer recognize it. The definition of a
distance allowing to encode such properties is challenging and is still an active field of
work (Sharif et al., 2018; Wong et al., 2019). A proxy adopted by the community is to
rely on ℓp-distance where p ∈ {0, 1, 2,∞} defines the norm-constraint on δ. The ℓ0-norm

32



Figure 2.13: Pipeline perturbation using an adversarial noise. By adding a small adver-
sarial noise to the image, the resulting image is now classified as gibbon. The 0.007
magnitude corresponds to the smallest bit change of an 8 bit image encoding. The adver-
sarial noise is generated using the FGSM method (Eq. 2.14). Source: Goodfellow et al.
(2014b)

(p = 0) measures how many pixels are modified in the image, the ℓ2-norm computes the
Euclidean distance between xadv and x while the ℓ1-norm measures the absolute distance
and finally the ℓ∞ considers the maximum pixel value difference between attacked and
clean images. The main optimization schemes that have been proposed to compute the
perturbation δ(x) are presented in the following section.

2.2.1 Adversarial noise generation
Let us introduce some notations. The goal is to construct a perturbation δ(x) that, when
added to x, makes the resulting image, xadv = x + δ misclassified by the network Fθ

(see Fig. 2.13). In the following, we will condense the notation from δ(x) to δ. The ini-
tial approach for generating adversarial perturbations deviated slightly from the definition
in Eq. 2.10. In their work, Szegedy et al. (2013) generated adversarial noises by seek-
ing the minimal perturbation, unconstrained by distance, through solving the following
optimization problem:

argmin
δ
||δ||p

s.t argmax
m

Fθ(x+ δ)m = ytgt

x+ δ ∈ [0, 1]h×w×c,

(2.11)

where ytgt denotes the target class that the attacker wants the model to output. In practice,
solving directly the Eq. 2.11 is challenging, leading the authors to propose the following
relaxation:

argmin
δ

c||δ||p + LCE(Fθ(x+ δ), ytgt)

x+ δ ∈ [0, 1]h×w×c,
(2.12)

where c > 0. The constraint x+ δ ∈ [0, 1]h×w×c ensures that the perturbed image remains
an the image value range (x+ δ ∈ [0, ..., 255]h×w×c for unnormalized images). However,
such a loose constraint may result in modifying the semantics of the perturbed image.
Rather than seeking the smallest adversarial perturbation as in Eq 2.12, the optimization
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objective changes for a predefined ε-budget optimization. This ε-constrained design is
the current standard benchmark to create adversarial noises, and benchmarks are settled
for different ε-values depending on the ℓp-norm. The new objective becomes finding an
adversarial perturbation δ within a budget of ε usually formalized as follows:

arg min
δ:||δ||p≤ε

LCE(Fθ(x+ δ), ytgt). (2.13)

Since Szegedy et al. (2013) revealed the adversarial noises vulnerability, numerous meth-
ods have been developed to improve their effectiveness. The next section describes the
key methods from the literature.

Fast Gradient Sign Method (FGSM). To create ℓ∞-bounded adversarial noises (see
Fig. 2.13), Goodfellow et al. (2014b) introduced a one-shot optimization technique named
the Fast Gradient Sign Method (FGSM), which is defined by the following equation:

δ = εsign(∇xLCE(Fθ(x), ytgt)), (2.14)

where sign is the sign function returning either 1 or -1. By applying the sign of the gradi-
ent, each image value is perturbed by the maximum possible amount along the direction
of the gradient.

Building on the FGSM approach, Kurakin et al. (2018) proposed an enhanced iterative
version called the Iterative Fast Gradient Sign Method (I-FGSM). In I-FGSM, FGSM is
applied multiple times with a smaller step size α, updating the perturbation iteratively and
clipping the pixel values at each step to ensure they remain within the ε-neighborhood of
the original image. The update rule is given by:

δ(j+1) = clipε

(
δ(j) − αsign(∇δ(j)LCE(Fθ(x+ δ(j)), ytgt))

)
, (2.15)

where j denotes the current iteration step and δ(0) is initialized to zero. This method
creates a more disruptive adversarial noise than FGSM by refining the perturbation over
multiple iterations.

Projected Gradient Descent (PGD). I-FGSM is a particular case of PGD (Madry et al.,
2017). While I-FGSM is specifically designed to generate ℓ∞-perturbations, PGD can
also generate ℓ1 and ℓ2 perturbations. Like I-FGSM, PGD updates the input iteratively in
the gradient direction and includes an additional projection step with respect to the con-
sidered ℓp-distance. Additionally, PGD involves random initialization of the perturbation
within the norm-ball, which may avoid poor local minima. PGD is a strong baseline for
evaluating the system’s robustness.

Adaptive Projected Gradient Descent (APGD). Croce and Hein (2020) identified sev-
eral limitations in the PGD method that may result in local minima attack performance.
These limitations include the use of a fixed step size, which may not be optimal across all
iterations; a budget-agnostic optimization that does not adequately account for the total
perturbation budget; and a trend-unaware optimization, which fails to adapt the direction
of updates based on the progress of the attack. To address these issues, the authors pro-
posed the Adaptive Projected Gradient Descent (APGD) method (Croce and Hein, 2020).
The APGD is based on a two-phase scheme: an initial exploration phase is used to find
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Figure 2.14: Diagram of instance specific attacks and universal attacks and schematic il-
lustration of their impact. Instance-specific attacks consist of independently finding an ad-
versarial perturbation δ(x). This adversarial perturbation is designed to perturb an unique
sample x by crossing the nearest decision boundary. A universal attack is designed from a
set of images. The universal attack seeks a common direction that fools the set of images.
The bottom diagrams illustrate an example where perturbations are designed to push blue
points to be classified as red.

good initialization points; it followed by an exploitation phase to optimize the perturbation
using the knowledge accumulated during the exploration. The knowledge exploration al-
lows a dynamic learning rate tuning during the exploitation and a restart strategy allowing
to roll back to the best points if the attack does not improve over some iterations.

2.2.2 Attack properties and knowledge

This section describes the various properties that characterize an attack. They are intrin-
sically linked to the attacker’s objectives and the extent of the existing knowledge about
the targeted system.

Instance specific vs. universal. Instance specific attacks consist in designing an attack
tailored to a particular input sample. Mathematically, for each input sample x, the goal
is to find an adversarial perturbation δ(x), often generated by one of the previously men-
tioned methods. For example, if the attacker is presented with a set of n target images,
they must generate n distinct perturbations, one for each image independently (refer to
Fig. 2.14, left). In contrast, designing an universal attack consists of finding an unique
perturbation δ that fools the model over multiple input samples (Moosavi-Dezfooli et al.,
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Figure 2.15: Diagram of the white-box attack scenario. The attacker has full knowledge
of the target system and can adapt its attack to increase its harmfulness.

2017). The universal perturbation is usually obtained by solving:

arg min
δ:||δ||p≤ε

Ex [LCE(Fθ(x+ δ), ytgt)] . (2.16)

The perturbation impact of instance-specific attacks and universal attacks is different.
Instance-specific attacks often seek the nearest class decision boundary to cross, while
universal attacks search common gradient directions to cross the class decision boundary
(Fig. 2.14).

Untargeted vs. Targeted. One of the fundamental distinctions in the adversarial objec-
tive is whether attacks are untargeted or targeted. In untargeted adversarial attacks, the
attacker aims to cause the model to produce an incorrect prediction without steering it
toward a particular wrong label. The focus is simply on inducing an error, such as getting
the model to misclassify a cat as anything other than a cat. Untargeted attack performance
is then measured by the error rate. On the other hand, targeted adversarial attacks aims
to fool the model to predict a predefined label (called the target class). For example, if
the target class is dog, the perturbed image must be classified as a dog to consider the at-
tack successful. The performance of targeted attacks is usually measured by the targeted
success rate (tSuc) metric defined as follows:

tSuc =
1

N

N∑
i=1

1argmaxm Fθ(xi+δ)m=ytgt , (2.17)

where N is the number of attacked images. Generating targeted attacks can be signifi-
cantly more challenging depending on the target class. For example, changing the net-
work’s decision from cat to toaster is more difficult than changing it to dog or a similar
animal.

White-box vs. black-box. Attacks can be divided into two categories, white-box and
black-box, depending on the knowledge available about the target system.

In the white-box scenario, attackers could access the model, its architecture, parame-
ters, and the input data (see Fig. 2.15). With this information, the attacker can adapt and
exploit the system to cause the most harm. However, the white-box scenario is less likely
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Figure 2.16: Diagram of the query-based attack scenario in which the attacker iteratively
updates its attack through querying the targeted model. The targeted model itself is not
available.

Figure 2.17: Diagram of the transfer-based attack scenario in which the target system is
unavailable. The attack is built on a surrogate model, which may be trained using some
possible knowledge (training dataset, architecture, learning strategies).

as the developers should hide information about the target system. This scenario is often
used as a worst-case scenario to evaluate new defenses. In addition, white-box scenarios
provide a controlled environment for testing new attack methods and evaluating their ef-
fectiveness before their extension to black-box settings which are more representative of
real-world conditions.

In the black-box setting, attackers have much more limited access to knowledge about
the network. In general, the attacker does not know the model architecture, its parameters,
and the training data beyond what is publicly available. Two major categories of black-
box attacks are query-based attacks and transfer-based attacks. Query-based attacks (Ilyas
et al., 2018) assume that the attacker can query the target model several times and uses this
information to iteratively improve the attack (Fig. 2.16). These attacks are particularly
suited to target online APIs such as Amazon or Google Cloud Vision. However, their
effectiveness can be mitigated by limiting the number of queries or introducing a delay
between successive queries.

Transfer-based attacks (Papernot et al., 2016) refer to a class of attacks that are de-
signed on a surrogate or a source model and then used to fool a target model (Fig. 2.17).
In this setting, the target model cannot be queried. The ability of an adversarial attack

37



Figure 2.18: Illustration of the patch application operator. The operator takes as input a
patch, an image, a location, and a patch transformation (such as scale and rotations) and
applies the transformed patch to the image at the given location. Source: Brown et al.
(2017)

to fool several models without being trained on them is called attack transferability or
transferability. In their pioneering work, Szegedy et al. (2013) showed that adversarial
noises exhibit cross model and cross training-set generalization. A significant portion of
these adversarial noises can mislead several networks, even when these networks have
different architecture, parameters, or are trained on different datasets. This finding under-
scores the transferability of adversarial noises, revealing that they are not merely artifacts
of overfitting to a specific model or training set, but rather a broader vulnerability inher-
ent to many machine learning models (Papernot et al., 2016). The study of adversarial
attack transferability is crucial, not only for preventing security vulnerabilities, but also
for gaining deeper insights into the behavior of deep learning models. The effectiveness of
transfer-based attacks can be evaluated by varying the “proximity” between the surrogate
and target models. By studying different levels of similarity, such as identical architec-
tures with varying initializations or training recipes, researchers can gain valuable insights
into the factors that influence the transferability of adversarial noises and the underlying
behavior of deep learning models. Deeper explanations and details about transfer-based
attacks are presented in Chapter 4.

So far, we have introduced how to generate adversarial noises and what may be their
properties. While these numerical attacks can be effective in specific contexts, such as
fooling API systems, their effectiveness is limited when targeting real-world systems like
autonomous vehicles, where the attacker would need direct access to the system’s inputs.
In contrast, adversarial patches represent a more practical physical attack, as they rely on
inserting visually detectable patterns or objects into a scene, making them well-suited to
disrupt real-world systems without the access to the target system.

2.3 Adversarial patch attack

Physical attacks were first explored in the work of Sharif et al. (2016) and Eykholt et al.
(2017), who demonstrated networks vulnerability to adversarial inputs in the physical
world. These studies showed that modified eyeglasses or small stickers, could deceive
real-world systems like facial or stop sign recognition, respectively. These perturbations
were obtained using Equation 2.12 and constraining δ to a small part of the image as
either a sticker or eyeglasses. Additional losses were added to enhance the perturbations
physicality. While these works enabled the generation of physical perturbations, they
were still norm-constrained, limiting their attack optimization.
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Figure 2.19: Example of a real-world attack against an image classifier. The benign image
is classified as a banana with 97 % confidence (top plot). When the patch is physically
placed on the table, the resulting image is classified as a toaster with 99 % confidence
(bottom plot). See the following video for a full demonstration: here. Source: Brown
et al. (2017)

Instead of focusing on small additive adversarial noise, Brown et al. (2017) con-
strained the optimization procedure to a small region of the image, similar to the approach
of Sharif et al. (2016) and Eykholt et al. (2017), but allowed the perturbations to be un-
constrained in magnitude, leading to more flexible and potentially stronger attacks. This
type of attack, constrained in space but unconstrained in magnitude, is called adversarial
patch attacks (APAs).

Let T be a distribution over transformation (e.g., rotations, scaling, blur, ...) and E
a distribution over locations. To obtain a patch (called GAP in the paper), Brown et al.
(2017) modify Equation 2.12 to solve:

argmin
δ

Ex∼X,t∼T ,e∼E [LCE (Fθ(A(δ, x, e, t)), ytgt)] , (2.18)

where X is the image distribution and A(δ, x, e, t) the patch applicator operator in an im-
age x where δ is the patch, t is a ensemble of patch transformations and e is the patch
location in the image x. Figure 2.18 illustrates how the patch is digitally inserted in
images by the patch application operator A. The expectation over transformations and
locations is a variant of the Expectation over Transformations (EoT) from Athalye et al.
(2018) and is designed to make the patch more robust to physical transformations while
the expectation over images (as in Eq 2.16) enhances the patch universality. This regu-
larization strategy encourages the trained patch to work regardless of the scene in which
the patch is placed. Brown et al. (2017) showed that the resulting patch was capable of
fooling several ImageNet classification models. They demonstrated the real-world threat
of their attack by printing the patch and placing it near objects. When placed in the scene,
the patch consistently misled the image classifier to categorize the object as a toaster -
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precisely as intended, since the patch had been specifically designed to cause the model
to output toaster as the predicted label (Fig 2.19).

Other works studying APAs designed to fool image classifiers develop new methods
either to increase the fooling effectiveness of the patch (Karmon et al., 2018) or its in-
conspicuousness (Liu et al., 2019; Doan et al., 2022; Casper et al., 2022). However, real-
world systems such as autonomous vehicles rely on more sophisticated computer vision
tasks like object detection and semantic segmentation. Consequently, research on APAs
should go beyond image classification and study whether these more complex tasks are
vulnerable to APAs.

2.3.1 APAs for object detection

Attacking object detectors are explored in several works considering the different attack
scenarios. In the first published studies, patches are directly applied on the targeted ob-
ject. The first works on patch-based attacks against object detectors target stop signs
detection. Song et al. (2018) develops stickers which are applied on stop signs, and fool
YOLOv2 to detect correctly. They show the real-world applicability of their inhibition
attack in indoor and outdoor settings (Fig. 2.20a). Another stop sign attack (Chen et al.,
2019) designs APAs to change the detection label of the stop sign. The authors use the
change-of-variable attack described in Carlini and Wagner (2017) and the Expectation
over Transformation technique (Athalye et al., 2018) to change the red background of
stop signs to fool Faster-RCNN. The new stop sign is then classified as person or sports
ball (Fig. 2.20b). Both of these works illustrate the effectiveness of their patch when
facing different physical conditions.

Instead of creating a patch that hides a stop sign, Thys et al. (2019) creates a patch
causing the disappearance of people when they wear it (see Fig. 2.21). This particular
type of patch is frequently denoted as invisible cloak in the APA’s literature. Designing
a patch allowing to hide people is much more challenging than designing a patch hiding
stop signs. The person class diversity is richer; people’s appearance can vary from one
individual to another, however stop signs remain practically the same. Moreover, the
image context can change significantly compared to stop signs that are always placed
near a road.

Depending on the context, suppressing detection only on objects close to the patch
can be too constraining. In a video surveillance setting, it is an issue if the hacker can
become invisible because of a patch. However, in autonomous driving, the attacker’s goal
may not be to become invisible to the vehicle but rather to manipulate the system in other
ways. For instance, a patch on a wall near a pedestrian crossing could pose significant
risks by hiding people at long range. This example illustrates that, in some contexts, the
main issue is the contextual effect of the patch.

2.3.2 Contextual adversarial patches

A contextual adversarial patch refers to a patch designed to disrupt object detection with-
out directly overlapping with the targeted object itself. The attack is achieved by exploit-
ing the network’s reliance on background information. The contextual attack scenario
presents a more complex challenge than the invisible cloak setting. Ideally, neural net-
works should not rely on background information when detecting large objects in images,
which inherently limits the potential effectiveness of contextual attacks.
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(a) Example of the stop sign inhibition
attack in real-world conditions. The
APA is designed to fool the detector to
detect stop signs. Source: Song et al.
(2018)

(b) Example of the stop sign targeted attack in real-
world conditions. The APA is designed to sway the
detector to output another class, here person. The
unattacked left stop sign is correctly detected, while the
attacked one on the right is detected as person. Source:
Chen et al. (2019)

Figure 2.20: Examples of two adversarial patch attacks developed to fool stop sign detec-
tors

Figure 2.21: Two examples of real-world footage perturbed by an adversarial patch at-
tack. The person wearing the patch is hidden from the object detector while the other is
detected. The authors provided a demonstration of their attack here. Source: Thys et al.
(2019)
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Contextual patch attacks were first explored by Liu et al. (2018). Instead of designing
a loss from scratch for the attack, they use the YOLOv2 loss by redefining the ground truth
at the patch localization. They train the patch to minimize the redefined YOLOV2 loss,
causing the disappearance of objects. This causes also the detection of the patch as an
object of interest. However, their patches were never clipped to the image range, resulting
in NaN values on several pixels of the patch. Lee and Kolter (2019) study the Dpatch
attack in feasible physical conditions and compared it to their new attack. Considering
a maximization problem of the YOLOv2 loss over the ground truth, they outperformed
the Dpatch method and showed real-time attack success. To only measure the contextual
effect of patches, Saha et al. (2020) introduce the idea of removing false positives on
the patch. Consequently, only the patch contextual effects are measured by the mAP.
They also develop attacks and a defense mechanism for contextual adversarial patches.
An universal blindness attack targeting one chosen class is also proposed alongside an
objectness attack fooling bounding box proposals, and a targeted attack fooling an object
to be classified as another class.

Another line of work on APAs studies if a patch can perturb dense prediction tasks
like semantic segmentation or monocular depth estimation. Nesti et al. (2022) designed a
patch that reduces the baseline model accuracy of a semantic segmentation model. How-
ever, they show that the effect of the patch is mitigated when physically implemented.
Yamanaka et al. (2020) introduces a patch that successfully targets a monocular depth
estimation model. The security of automated lane centering and infrared-based systems
have been studied in Sato et al. (2021) and Wei et al. (2023), respectively.

2.4 Conclusion

This chapter provides the necessary background for understanding the following chapters,
which detail our contributions. Below, we summarize the key points to keep in mind:

• Neural networks for image classification and object detection are built from several
blocks. These blocks can be convolutional layers, transformer blocks, or a combi-
nation of both. The image encoder is the core of modern computer vision networks.
It is designed to extract useful features to perform the task at hand;

• Different learning strategies can be used to learn the image encoder. These learn-
ing strategies could have a strong impact on the performance and behavior of the
resulting network;

• Safely and well-trained networks are vulnerable to adversarial image modification.
Depending on the attack knowledge and objective, several properties can qualify the
attack. The attack can be untargeted or targeted, instance specific or universal. The
targeted system can be accessible, and the attacker uses this knowledge (white-box
scenario), or it can be unavailable (black-box scenario). In the black-box transfer-
based scenario, attacks are designed on a source model and then used to fool a target
model;

• Adversarial patch attack relies on printing and adding a small object to the scene.
By its physical aspect, this attack is well-suited to target physical systems;
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• APA against object detectors can be characterized as either an invisible cloak, ap-
plied on the targeted object, or contextual, applied without directly overlapping with
the targeted object itself.

In the following chapters, we provide chapter-specific material to better introduce our
contributions. In Chapter 3, we will define what makes a patch critical for a real-world
system.
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Chapter 3

Definition of a critical adversarial patch
attack

The objective of this chapter is to define what is a critical patch, outline its key properties,
and establish a process for evaluating them. Following a discussion of the underlying
motivation, we provide a definition of the properties that characterize a critical patch. We
detail the evaluation criteria used to assess these properties and, consequently, determine
the level of patch criticality. Then, we review the state-of-the-art techniques enhancing
patch criticality and characterize them according to our evaluation criteria. This evalua-
tion procedure allows us to identify the limitations of previously developed APAs. This
chapter is based on our contribution Labarbarie et al. (2022) published at the workshop
AI Safety hosted at the IJCAI-ECAI 2022 conference.

3.1 Motivation and definition
There exists a growing literature on patch-based adversarial attacks. These works focus
on designing APAs for different targeted tasks like: image classification (Brown et al.,
2017), object detection (Thys et al., 2019) and semantic segmentation (Nesti et al., 2022).
Several attack scenarios are also studied, e.g., a patch applied on the struck object (Thys
et al., 2019) and contextual patch (Saha et al., 2020)). Different evaluation conditions
such as numerical and physical patches could also be considered. We have found that this
wide variety of patch evaluations does not provide a clear understanding of the proper
level of patch criticality. However, it is of utmost importance for concerned researchers
and industries to be able to define and verify the expected properties of such critical APAs.

Although APA’s design results from numerical optimization, its significance is based
on its physicality through real-world applications (e.g., printing and placing on stop signs).
Figure 3.1 schematizes the APA’s attack pipeline against a real-world system. Once the
patch is numerically designed, the first step is to print it. This process can introduce color
discrepancies, resulting in the first potential source of attack mitigation. The printed APA
is then placed in an environment to deceive the chosen targeted real-world system running
in this environment, e.g., the patch is placed near the road when targeting an autonomous
vehicle. The targeted environment may be volatile, introducing contingencies, e.g., dif-
ferent weather conditions leading to a second source of attack mitigation. Finally, to be
processed by the system, the patch should be placed in the receptive field of the system’s
sensors and may be adapted to various angles. The recording conditions and the cam-
era characteristics may also diminish the patch’s effectiveness. These transformations,
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Figure 3.1: Diagram of APA’s attack pipeline against a real-world system. In blue are
represented transformations acting on APA’s physicality and in magenta is represented
the possible lack of knowledge about the targeted system.

ranging from printing to image acquisition, are collectively categorized as physical trans-
formations (represented in blue in Fig. 3.1). The patch’s robustness, according to physical
transformations, is thus one of the main properties that define a critical patch. Robustness
according to physical transformations can be resumed by the notion of patch physicality.

A real-world system, such as a computer vision network deployed in an autonomous
vehicle, is usually targeted in a particular attack scenario. As these systems are designed
and developed by companies, they usually maintain a high level of security, implying very
restricted access to the system component. Thus, the attacker has no knowledge about the
targeted system. Since we consider a real-world system, not an API, the attack can not
be designed by querying the model. So, the attack must be designed in the black-box
transfer-based attack scenario (represented in magenta in Fig. 3.1). The second expected
property of a critical patch is transferability (see Figure 2.17 for a reminder).

We therefore define a critical patch to be physical and transferable. The following sec-
tion details the numerical transformations and processes used to assess APA physicality
and transferability.

3.2 Evaluation processes to assess APA criticality

To evaluate APA’s criticality, we introduce a range of numerical transformations and eval-
uation processes. These tools assess independently patch physicality and transferability,
providing insights into APA’s limitations. To illustrate the applicability of our approach,
we contextualize these evaluation tools by using the example of an APA designed to target
the computer vision systems used in an autonomous vehicle.
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Table 3.1: Evaluation settings by category and their brief description.

Property Category Transformation/Process Example

Physicality

Radiometric
Varying weather conditions Brightness, snow, rain, ...

Filters JPEG transformation

Geometric

Rescaling ∗ ∗ ∗
Crop ∗ ∗ ∗

Affine transformations Rotations
Distance wrt. learning position Shift from learning position

Transferability

Detector Learning paradigm Supervised, contrastive, ...

sensitivity Training recipe Data augmentations, optimization, ...
Initialization Different seeds

Detector Varying
e.g. ResNet to ViT

generalisation architectures

3.2.1 APA physicality
The physicality of an adversarial patch refers to its robustness against the previously men-
tioned physical transformations: printing, real-world volatility, and image acquisition. To
model these transformations, we introduce a set of numerical transformations that, when
combined, provide a robust proxy for evaluating an APA’s physicality. These numerical
transformations can be categorized into radiometric and geometric transformations and
are shown in the first row of Table 3.1.

Radiometric transformations. Radiometric transformations are transformations used
to measure patch robustness against environmental changes like illumination and weather
conditions and photometric changes like filters. They measure patch robustness when
radiometric phenomena modify the entire image or the patch. Regarding our example, an
attacker would design a patch resilient to the day’s weather or illumination on the patch.

Geometric transformations. Geometric transformations are designed to capture the
robustness of a patch when subject to geometric transformations. Contrary to radiometric
features, geometric transformations concerns the patch itself and not the whole image. We
can distinguish two types of geometric transformation. The transformations of the patch
itself, such as the effect of a zoom or an ablation of one of the parts of the patch, and the
transformations of the patch in its physical environments, such as affine transformations,
rotations, and displacements with respect to its training position. Regarding our self-
driving car attack example, an attack could be efficient regardless of its position in the
image.

3.2.2 APA transferability
Transferability evaluation processes assess patch robustness based on changes to the neu-
ral network triptych defined in Chapter 2: network architecture, training strategy, and
learning dataset. Regarding the above-mentioned autonomous vehicle example, we should
be able to answer questions like: will an attack succeed on one YOLO (Redmon et al.,
2016) capable of attacking any YOLO? Or will an attack fooling YOLO’s detector be able
to sway a Faster R-CNN (Ren et al., 2015)? If the attacker has the knowledge of the tar-
geted architecture but not its weights, is it more effective to design the attack on another
network from the same architecture or on a network from a different architecture?
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Figure 3.2: Structure of the proposed pipeline to evaluate APAs. Given a dataset, a net-
work and a patch, we evaluate multiple settings. The resulting targeted success (tSuc)
rate for image classification or the resulting average precision (AP) for object detection
are used to rank APAs for each setting. The global rating measures the impact in real-
world conditions of each APA.

Another point of view is to consider these transferability evaluation processes to mea-
sure the patch robustness according to several attacking knowledge scenarios. For exam-
ple, attacking with the single knowledge of the targeted system architecture or attacking
with this architecture’s knowledge and training dataset knowledge.

From a defense perspective, measuring patch effectiveness against different network
learning strategies help to understand the robustness of an architecture against APA. Simi-
larly, a learning paradigm or a training recipe can be studied from a robustness perspective
and help developers to design more robust systems.

Table 3.1 summarizes and describes all the settings related to a given property. Note
that certain transformations can be applied only on the patch or the image as a whole for
radiometric and geometric settings.

3.2.3 Evaluation pipeline

We suggest, in this thesis, a pipeline (see Figure 3.2) allowing the evaluation of the criti-
cality of patch-based adversarial attacks. It is based on the evaluation processes detailed
previously. The first step of the pipeline consists of selecting an attack strategy, a source
model, and a dataset on which we may train the patch following the selected attack strat-
egy. Once a patch is designed and learned, we evaluate its performance on the selected
setting. The reported evaluation criteria are the targeted success rate (tSuc, defined in Eq.
2.17) for image classification or the mean average precision (mAP, defined in the begin-
ning of Section 2.1.2) for object detection. Those metrics are computed before (clean)
and after the application of the patch on the data (perturbed). APA’s physicality and trans-
ferability are assessed by comparing attacking performance when the patch is placed in
the same condition as during its training. When evaluating contextual effects, we ensure
that no object of interest intersects with the patch and that false positive detections are re-
moved on the patch if they are localized at the same position as the patch. This evaluation
pipeline allows a better overview of the patch’s criticality.
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3.3 Beyond numerical APA
This section uses the previous evaluation pipeline to assess the criticality of three APA
methodologies (Brown et al., 2017; Lee and Kolter, 2019; Saha et al., 2020). These
methodologies are chosen because they are strong baselines. Rather than evaluating each
transformation in each property, we design and evaluate patches regarding four of them
(two per property). This study aims to provide a comprehensive overview of the current
limitations of APAs that may reduce their criticality. The evaluated patches are designed
to fool an image classifier to output a chosen class (targeted attack) or prevent an object
from being detected (person class here). The APAs against object detectors are evaluated
in the contextual and invisible cloak modes. We also compare the effect of the Expecta-
tion over Transformations (EoT) technique Athalye et al. (2018) on the resulting patch,
an evaluation strategy explained in the following.

3.3.1 Expectation over Transformations technique
The aim of EoT technique (Athalye et al., 2018) is to make an attack more resilient to
a chosen distribution of transformations (e.g., image rotations). To do so, the EoT tech-
nique consists of training the attack by sampling the set of transformations at each training
iteration according to the considered distribution. For example, the two following equa-
tions detail an image classification patch training without and with patch translation in the
image:

argmin
δ

Ex∼X [LCE (M ⊙ δ + (1−M)⊙ x, ytgt)] (fixed patch training),

argmin
δ

Ex∼X,e∼E [LCE (Fθ(A(δ, x, e)), ytgt)] (training w/ translations),
(3.1)

where M is a fixed binary mask defining the patch position in the image, A is the patch
applicator operator defined in Eq. 2.18 (see also Fig. 2.18), e is the patch location in the
image x and δ is the actual patch. EoT for patch training usually considers the following
transformations: rotation, homography, translation, resizing, random crop, brightness and
contrast changes, and Gaussian noise, applied either on the patch or on the whole im-
age. These transformations depend on fixed ranges of hyperparameters, e.g., patch x-axis
rotation from -5°to +5°.

3.3.2 Experimental setup
Once learned, the obtained patches are evaluated in four settings: patch shift from learning
position, patch rotations, various model initializations and architectures. We evaluate the
GAP attack for image classification (Brown et al., 2017), and attacks from Lee and Kolter
(2019) and Saha et al. (2020) for object detection. We solve each attack’s optimization
problem and clip the patch to [0, 1] (images are normalized). Clipping the patch ensures
that patch values remain in the image range and do not produce NaN values. Patch size
is set to 10% of the image size. We launch the optimization process with an all-zeros
patch and apply the optimizer used in the corresponding article. The patch optimization
is run over 100 epochs (1 epoch equals 1000 iterations, as in Lee and Kolter (2019)) with
a batch size of 50 images for image classification and 1 for object detection (as in Lee
and Kolter (2019) and Saha et al. (2020)). Optimizations are launched for three different
learning rates, and finally we select the APA with the minimum loss for evaluation.
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To study the effect of the EoT method (Athalye et al., 2018) and consequently the re-
sulting patch physicality, we optimize patches with different transformations during patch
training: no transformation (named W/o in the following), patch rotations without patch
translation (named Patch rotations), patch translations in the image without patch rota-
tion (named Patch translations), and combinations of translations and rotations (named
All in the following) as described in Section 3.3.1. When training the patch without patch
translation, we follow Saha et al. (2020) and place the patch at the top-left corner, i.e.,
pixel (5, 5) in the image. On the other hand, we randomly placed the patch in the image
for Patch translations and All training scenarios. During patch evaluation, we measure
patch robustness when facing different scenarios. For example, when evaluated in the All
scenario, the corresponding transformations (rotations, Gaussian noise ...) are applied to
the patch. However, the patch is no longer translated into the image during evaluation. It
is either evaluated at the top-left corner for the W/o and Patch rotations transformations or
at the bottom-right corner for the Patch translations and All transformations. To study the
transferability property, we consider the single-source model evaluation process (patches
are designed using a single model) and test attack transferability to other models.

Image classification. To apply these evaluation process for attacking image classifi-
cation, we use the ImageNet-1K (Deng et al., 2009) dataset and the following models:
ResNet50, ResNet50-v2 (He et al., 2016), Swin-T (Liu et al., 2021) from Pytorch Model
Zoo1 and DeiT-T (a ViT trained using distillation) (Touvron et al., 2021) from Timm
Model Zoo2. We randomly selected three target classes (eft, birdhouse, and starfish)
and generated a patch for each class. Patches are designed to mislead the network into
incorrectly classifying inputs as the respective target class. We split the ImageNet-1K
validation set into a training set of 40000 images on which we train patches and a test set
of 10000 images on which we evaluate their impact. Reported tSuc are averaged over the
classes.

Object detection. PASCAL VOC (Everingham et al., 2008) dataset is used to apply
the evaluated settings for patch attack against object detection. We evaluate the Lee and
Kolter (2019) attack and the blindness attack from Saha et al. (2020). We recall that the
attack from Lee and Kolter (2019) involves designing a patch to maximize the detector
loss over the ground truth. In contrast, the blindness attack from Saha et al. (2020) cre-
ates a patch that prevents a class from being detected by reducing the probability of the
predicted boxes that match the ground truth. We consider the blindness attack against the
person class. We evaluate patches against two YOLOv2 models obtained using the same
learning strategy but with a different weight initialization. As explained in Section 3.2.3,
we extract images wherein targeted objects do not overlap with the patch when designing
and evaluating contextual patches. These images are extracted from PASCAL VOC (Ev-
eringham et al., 2008) and split the set into two parts, one for training of the patch and
the other for patch evaluation. The Lee and Kolter (2019) attack and the blindness attack
from Saha et al. (2020) are designed, evaluated, and compared when designing contextual
patches. We design the invisible cloak mode patch using the blindness attack from Saha
et al. (2020). When training invisible cloak APAs, patches are scaled and placed at the
center of targeted class boxes. Patches scale are defined with respect to the patch scale
ratio which is the length ratio between the patch and the corresponding bounding box in

1https://pytorch.org/vision/stable/models.html
2https://timm.fast.ai/
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(a) Robustness curves for image classification patches. Patches are designed using the Brown et al.
(2017) attack. Results are averaged over three targeted classes. A higher tSuc indicates a more
effective attack.

(b) Robustness curves for contextual adversarial patches targeting object detectors. Patches are
either designed using the blindness attack (Saha et al., 2020) to hide a person from being detected
or using the attack from Lee and Kolter (2019). The dashed black line represents YOLOv2’s clean
performance. A lower mAP indicates a more effective attack

Figure 3.3: Robustness curves of patch physicality across various evaluation scenarios.
The patches are trained under different physical transformations, and their attack effec-
tiveness is assessed across multiple physical evaluation settings. These scenarios include:
(1) no transformations (W/o), (2) rotations applied to the patch without translations (Patch
rotations), (3) translations applied to the patch within the image without rotations Patch
translations), and (4) the full set of EoT transformations (All). These curves illustrate the
impact of each transformation on patch attack robustness.
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which the patch is placed. Following standards (Thys et al., 2019; Huang et al., 2023),
we set the patch scale ratio at 0.15 during patch training and evaluation. In evaluation
mode, we set the YOLOv2 confidence threshold at 5e−4, the non-maximum suppression
at 0.45, and the IOU at 0.5.

3.3.3 Results
Patch physicality. Figure 3.3 gathers the results of the evaluation processes used to as-
sess patch physicality. Training a patch, without considering any transformation, results
in a highly effective attack when evaluated with the same setting as the one applied for
training. However, patch effectiveness drops sharply when the patch is translated in the
image (even by a few pixels), rotated, or modified by Gaussian noise, making the attack
ineffective in physical conditions (blue line in the three plots). When targeting an ob-
ject detector, designing a patch without rotation results in lower attack performance when
the patch is translated in the image and vice versa. As expected, training patches using
the full range of EoT transformations (All training setting, red lines) leads to more ro-
bust patches when faced with the broadest set of transformations (All evaluation setting).
Qualitatively, the W/o setting generates pixelated patches while the All setting generates
smoother patches that are more physically realizable (see Fig. B.1 in the Appendix).

Patch transferability. Table 3.2 summarizes the transferability results for APAs de-
signed for image classification task, contextual patches, and invisible cloak patches. With-
out using the EoT method, the generated patches for image classification do not transfer
across architectures or ResNets. When trained with transformations, patches trained on
the first version of ResNet50 (named R50 in the table) exhibit a small capacity to transfer
to ResNet50-v2 and vice versa. One possible explanation is that EoT, as a patch regular-
ization, reduces the patch overfitting on the source model, thus enhancing a little patch
transferability. Nonetheless, even when using EoT, none of the patches show a large scale
transferability across architectures. The low transferability capacity is also observed for
contextual and invisible cloak patches, although patches are transferred to a model from
the same architecture. We observe that the drop in the mAP or the person AP is due to the
saliency of the patch producing false positives near the patch (see Fig. 3.4). The black-
box model still succeeds in detecting and correctly classifying objects of interest. These
results highlight that patches fail to transfer between models, limiting their potential crit-
icality.

To conclude, we would like to show in this section that training a patch without con-
sidering any physical transformations results in a patch that is not robust to physical trans-
formations. The EoT method (Athalye et al., 2018) can improve patch robustness accord-
ing to physical transformations. In spite of this, no patch designed by the considered
approaches demonstrates a capacity to transfer between models.
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Table 3.2: Transfer results between models for APAs against image classification and
object detection (contextual patches and invisible cloak patches). Transferability is eval-
uated for two patch training settings: no transformations (W/o) and the full set of EoT
transformations (All). For image classification, results are averaged over classes and are
measured by the targeted success rate (tSuc (%), a higher value indicates a better attack).
Control is considering a sample of the dataset corresponding to the target class as the
patch. For contextual patches, false positives on the patch are removed, and results are
measured by mAP ((%), a lower value indicates a better attack). For the invisible cloak
patch, patches are resized and placed in the middle of targeted objects (here, person de-
tection). Results are measured by the person AP ((%), a lower value indicates a better
attack).

Image classification (tSuc %)

Attack
Patch

Source

Target
R50 R50-v2 DeiT-T Swin-Ttraining

setting
Control 2.85 1.59 1.57 0.93

GAP
(Brown et al., 2017)

W/o
R50 100 0.5 0. 0.1

R50-v2 0.1 100 0.1 0.1
Swin-T 0.1 0.1 0.1 100

All
R50 96 12 0.2 3

R50-v2 10.5 78 0.2 2
Swin-T 1 2 0.1 31

Contextual patches (mAP %, without f.p.)

Source
Target YOLOv2-1 YOLOv2-2

Clean 75.9 80.52

Saha et al. (2020)
W/o

YOLOv2-1
46.1 76.75

All 63.67 75.22

Lee and Kolter (2019)
W/o

YOLOv2-1
45.31 78.13

All 58.84 75.14
Invisible cloak (person AP %)

Source
Target YOLOv2-1 YOLOv2-2

Clean 78.64 80.07
Saha et al. (2020) All YOLOv2-1 22.27 63.15
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Figure 3.4: Example of white-box and black-box transfer scenarios for the contextual
patch and the invisible cloak attack. Attacks are designed on a first YOLOv2 model
(YOLOv2-1) and transferred to YOLOv2-2, the same model trained using the same learn-
ing strategy, but with weights initialized from a different seed. Patches are designed to
prevent persons from being detected.
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(a) Patch physicality is en-
hanced by using the EoT tech-
nique from (Athalye et al.,
2018), the TV loss, and the
non-printability loss. Source:
Thys et al. (2019)

(b) Patch physicality is en-
hanced by using the EoT tech-
nique from (Athalye et al.,
2018), the TV loss, and a
Thin Plate Spline (TPS) based
method. Source: Xu et al.
(2020)

(c) Patch physicality is en-
hanced by using the EoT
technique from (Athalye
et al., 2018), the TV loss and
the Toroidal-Cropping-based
Expandable Generative Attack.
Source: Hu et al. (2022)

Figure 3.5: Examples of patches causing the disappearance of people when applied on
them. The first two patches are used as the central pattern in a T-shirt, while the last is a
dress.

3.4 State-of-the-art APAs
In this section, we review the different techniques used to enhance the physicality and the
transferability of patches. As explained in the previous section, patch physicality is often
increased using the Expectation over Transformations (EoT) technique from Athalye et al.
(2018). The Total Variation (TV) loss is also used to enhance patch physicality further:

TV (x) =
∑
i,j

|xi+1,j − xi,j|+ |xi,j+1 − xi,j|, (3.2)

where i and j are the height and width indices in the image, respectively. This loss
encourages the patch to be smoother, i.e., and neighbor pixel values to stay close. A very
pixelated patch is less successful in physical conditions due to the physics of the image
acquisition (diffraction). The EoT technique and TV loss form the baseline toolkit to
generate physical APA. Some works (Sharif et al., 2016; Thys et al., 2019) use another
loss, called the non-printability loss, to represent how well a common printer can represent
the colors in the patch. However, this loss is not useful when combined with the TV loss
(Nesti et al., 2022).

Recent works have further improved the physicality of patches, especially in scenarios
where the patch is a T-shirt worn by a person (Thys et al., 2019). This problem is chal-
lenging because T-shirts are non-rigid objects, while stop signs, eyeglasses, and cardboard
are. Xu et al. (2020) develop a Thin Plate Spline (TPS) based method to model the defor-
mation of a t-shirt for a moving person (e.g., wrinkles). However, the adversarial pattern
is placed in the middle of the front side of T-shirts, limiting its criticality for different
camera viewing angles. To generate a multi-angle patch attack, Hu et al. (2022) introduce
Toroidal-Cropping-based Expandable Generative Attack (TC-EGA), a generative method
developed to craft a patch with repetitive structures. This method involves finding, crop-
ping, and repeating the best adversarial pattern to create a texture independent of the
camera viewing angle. They use their method to generate several pieces of cloth, e.g.,
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(a) Example of the flower at-
tack (TnT method). The latent
representation of the generator
is modified to generate an ad-
versarial flower that deceives
the image classifier to output
a pre-chosen class. Source:
Doan et al. (2022)

(b) Example of a people dis-
appearance attack. The patch
is generated by applying small
modifications to a benign im-
age. Source: Hu et al. (2021)

(c) Example of a people disap-
pearance attack. The latent rep-
resentation of the generator is
modified to generate an adver-
sarial dog that deceives the ob-
ject detector in detecting per-
sons. Source: Huang et al.
(2020)

Figure 3.6: Examples of naturalist-oriented patches.

T-shirts, skirts, and dresses, and show effectiveness in the real world for several physical
conditions. Figure 3.5 shows examples of patches generated by the previously explained
methods.

Another line of work focuses on designing more naturalistic and inconspicuous patches
to prevent humans from detecting them. Liu et al. (2019) (PS-GAN method) train a GAN
to generate a background-harmonious patch that enhances both the patch’s visual fidelity
and attacking ability. Instead of training a GAN, Doan et al. (2022) and Casper et al.
(2022) use a pre-trained GAN directly. To change the generated flower to an adversarial
flower, Doan et al. (2022) (TnT method) modify the latent representation of the genera-
tor. The same procedure is used by Hu et al. (2021) to generate naturalistic adversarial
dogs to fool an object detector. Casper et al. (2022) perturb the latent representation at
some chosen generator layer. The generated patches are used as interpretability tools
to inspect network decision mechanisms. Instead of using a GAN, Huang et al. (2020)
initialize the patch as a natural image and apply small modifications to make the image
adversarial. Figure 3.6 shows examples of naturalistic-oriented patches generated by the
previously explained methods. However, these natural-looking patches show limitations.
A dog-head-like patch on a T-shirt’s front is natural-looking but not robust to multiple
camera viewing angles. On the other side, repeating the dog everywhere on the t-shirt
increases the robustness of the patch according to multiple camera angles but makes the
T-shirt look weird, limiting its inconspicuousness. To create a more natural-looking patch
that is robust to multiple camera viewing angles, Hu et al. (2023) introduce a novel 3D
augmentation method combining topologically plausible projection (TopoProj) and thin
plate spline (TPS). They generate more natural-looking camouflage clothes that look like
military camouflage equipment. Currently, this method is state-of-the-art in generating
physical patches.

Whereas the physicality of patches has been explored and improved in previous works,
patch transferability remains less studied. Some of the above papers contain a section
discussing the transferability of their produced patches, and they usually show that their
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patches transfer poorly. To increase patch transferability, Huang et al. (2023) introduce
a set of techniques and optimization tricks: they adjust the patch learning rate and add a
scheduler. They propose to use the Shakedrop technique (Yamada et al., 2018) to generate
variants of the source model during patch training; they randomly crop the patch to avoid
the attack performance relying on a particular region of the patch. These techniques
prevent the patch from overfitting on the source model. Nevertheless, in Section 5, we
show that a misusage of the mAP metric causes a biased account of transferability.

3.5 Conclusion
This chapter defines a critical patch as being physically realizable and transferable. We
developed an evaluation pipeline with various numerical transformations and evaluation
processes, allowing us to assess patch criticality. We demonstrated that a trained patch
may not be physically feasible without considering specific training techniques. To im-
prove physicality, we showed that the EoT method and TV loss can be effective baselines
for generating physical patches. While several approaches have been proposed to enhance
patch physicality further, less attention has been given to improving transferability. We
found that current patches do not effectively transfer across models.

The following chapters are dedicated to enhancing the transferability of APA. To en-
sure that the generated patches remain physically realizable, we will employ the EoT
method and TV loss. Chapter 4 focuses on improving patch transferability across image
classifiers and introduces a novel strategy. In Chapter 5, we examine the transferability of
APAs across object detectors, further expanding the scope of this analysis.
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Chapter 4

A transferable targeted patch on image
classification

In Chapter 3, we show that despite the good attacking performance of current APA in
white-box configuration (applied on the same model that they have been learned), their
effectiveness is mitigated when transferring to unseen models, i.e. in black-box configu-
ration (see Paragraph 2.2.2 for a reminder about white-box vs black-box). In this chapter,
we move towards building more transferable APAs. With a focus on image classifica-
tion, we first review the different APAs proposed in the literature and their transferability.
Then, we present several methods used to improve the transferability of adversarial noise,
adapt these methods to build APAs, and study their limitations. We propose a new op-
timal transport-based method to improve the transferability of APAs for classification.
Through numerical, hybrid, and physical experiments, we show the superiority of our
method. Finally, we study the perturbation mechanism of our method and other APAs.
This chapter is based on our contribution Labarbarie et al. (2024) published at the ICLR
2024 conference.

4.1 APA transferability
We consider the standard notation where (xi, yi) ∈ X × Y , i = 1, ..., n, are samples
drawn from a joint distribution of random variables X and Y . As we are considering the
problem of an APA against image classifiers, the input is sampled from X = Rh×w×c,
where h × w are the image dimensions and c is the number of channels and the output
is sampled from a set of M labels Y = {y1, ..., yM}. Let T be a distribution over trans-
formation (e.g., rotations, scaling, blur, ...), E a distribution over locations and A(., ., ., .)
the patch applicator operator (see Fig. 2.18 for a reminder). Our goal is to create an
APA that perturbs the process of classifying any image xi as the target class ytgt by any
classifier, F : X → P(Y), that has been previously trained to do so. This goal can be
mathematically formalized as follows:

argmax
δ

EF∼F ,x∼X,t∼T ,e∼E

[
1argmaxm F (A(δ,x,e,t))m=ytgt

]
, (4.1)

where F denotes the space of neural networks that we want to fool. Sampling according
to T and E enhance patch physicality by using the EoT method (see Section 3.3.1 for
a reminder), sampling according to X increases patch universality (see Paragraph 2.14
for a reminder). Sampling according to F is expected to increase patch transferability.
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However, estimating this expectation over F is intractable in practice: we have only few
realizations of this distribution. Moreover, this distribution is very diverse, encompass-
ing a variety of network architectures, learning strategies (such as learning paradigms
and training methodologies), and training datasets (see the beginning of Chapter 2 for a
reminder on the triptych that characterizes a network). In Section 4.4.1, we show that
utilizing the few available realizations to form an ensemble of models for APA design is
computationally expensive and may lead to suboptimal attacking results. The objective of
transferability can be redefined as a search for a strategy that, when employed to learn an
APA on a single source model, results in an APA that exhibits an impact on many other
networks.

The following section provides an overview of the transferable attacks designed to
fool image classifiers.

4.2 Low transferability of current APAs
This section describes the various APAs proposed in the literature, focusing on their trans-
ferability capabilities. We highlight the limitations of the design strategy used to design
these APAs. While methods to improve APA transferability have received relatively little
attention, the transferability of adversarial noise has been more extensively studied. We
then review the existing approaches for enhancing adversarial noise transferability and
discuss their limitations.

4.2.1 APA for image classification

APAs for image classification were first introduced by Brown et al. (2017). They design a
patch (called GAP) by minimizing, under Expectation over Transformations (EoT) (Atha-
lye et al., 2018), the cross-entropy loss of a selected target class. To increase the fooling
effectiveness of the patch, Karmon et al. (2018) (LaVAN method) add a new term to the
loss criterion initially proposed by Brown et al. (2017) as:

argmin
δ

Ex∼X,t∼T ,e∼E

[
LCE (Fθ(A(δ, x, e, t)), ytgt)︸ ︷︷ ︸

Brown et al. (2017)

−LCE (Fθ(A(δ, x, e, t)), ysrc)︸ ︷︷ ︸
added term

]
, (4.2)

where ysrc can be either the image ground truth to ensure the image miss-classification
or a chosen target to sway the network to not predict this label. Other methods propose
to use generative-based approaches: Liu et al. (2019) (PS-GAN method) train a GAN
to generate a background-harmonious patch that enhances both the visual fidelity and
attacking ability of the patch. Instead of training a GAN, Doan et al. (2022) and Casper
et al. (2022) use a pre-trained GAN directly. To change the generated object (flower
in their work) to an adversarial object, Doan et al. (2022) (named TnT method in the
following) modify the latent representation of the generator:

argmin
z

Ex∼X,t∼T ,e∼E

[
LCE (Fθ(A(Gθ′(z), x, e, t)), ytgt)−

LCE (Fθ(A(Gθ′(z), x, e, t)), ysrc)
]
,

(4.3)

where z is the latent representation and Gθ′ is the pre-trained GAN. Casper et al. (2022)
perturb the latent representation at some chosen generator layer.
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Table 4.1: Transfer results when changing the linear classifier while the encoder remains
fixed (variation of tSuc (%)). Patches are designed to fool the Swin-T model (encoder,
and linear classifier from Pytorch Model Zoo). The transferability is measured when
targeting a new network (same encoder, different linear classifier). Results are averaged
over classes.

Method Variation of tSuc (%)
GAP (Brown et al., 2017) - 61.4
LaVAN (Karmon et al., 2018) - 42.6

Evaluation of transferability. The previously presented APAs Brown et al. (2017);
Karmon et al. (2018); Liu et al. (2019); Doan et al. (2022); Casper et al. (2022) use differ-
ent evaluation settings in their experimentation. Some of these works measure the trans-
ferability of their patch to unknown models. Brown et al. (2017) and Doan et al. (2022)
measure their patch transferability but only consider dated CNNs like ResNet trained with
a less generalizing learning policy (ResNet50-v1) than recent ones (ResNet50-v2). The
PS-GAN generated patch (Liu et al., 2019) shows transferability among unseen models.
However, the evaluated models are not state-of-the-art, and the experiments are conducted
on the small GTRSB dataset (Stallkamp et al., 2011). Focused on the interpretability of
decision-making of deep networks, Casper et al. (2022) do not provide quantitative results
on network transferability.

Limitations of decision boundary-based methods. The previous works on APA for
classification employed the APA learning strategy of influencing the network to output a
target class with high confidence. (Brown et al., 2017; Karmon et al., 2018; Liu et al.,
2019; Doan et al., 2022; Casper et al., 2022). This strategy involves pushing the deep
representation of images to cross the nearest decision boundary of the source model. Such
a strategy has two drawbacks: it is highly dependent on the model on which the attack is
based, and the patch may push the corrupted image representations into unseen regions of
the representation space. To illustrate that decision boundary-based methods learn a patch
that tends to overfit on the source model classifier, we consider the transfer not between 2
different models but between 2 models sharing the same encoder but different classifiers.
We design APAs using Brown et al. (2017) (GAP) and Karmon et al. (2018) (LaVAN)
methodologies and following the same optimization procedure as in Section 3.3.2 (patches
targeted three classes, trained using EoT, best patches reaching the minimum loss among
three learning rates). Patches are trained to attack the source model Swin-T (Liu et al.,
2021). On top of this Swin-T encoder, we train a new linear classifier from scratch on the
ImageNet train set (Deng et al., 2009). This new linear classifier reaches the same level
of clean accuracy as the previous classifier (from Pytorch (Paszke et al., 2019)) while
being different. We measured the patch performance when targeting this new network
(same encoder, different linear classifier). As expected, the transferability of decision
boundary-based patches drops drastically (nearly by half) (see Tab. 4.1). This poor APA
transferability does not result from a bad APA learning since the white-box patch’s tSuc
is nearly 100%.

While methods to improve APA transferability have received little attention, various
methods have been introduced for adversarial noises to prevent attack overfitting on the
source model classifier.
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Table 4.2: White-box and transfer results between ResNet50-V1 and Swin-T (tSuc (%))
for the L2 method (Inkawhich et al., 2019). Three different target points are evaluated.
Results are for the source model ResNet50-V1 and Swin-T, for the target class australian
terrier and for patches of size 60× 60. Patches are placed randomly in the image but not
at the center of the images.

Targeted network
Source ResNet50-v1 Swin-T

ResNet50-v1
Target point 1 0.4 0.1
Target point 2 57.6 0.45
Target point 3 40.4 0.9

Swin-T
Target point 1 0.51 1.2
Target point 2 9.81 12.79
Target point 3 0.1 0.1

4.2.2 Transferable adversarial noises
Methods enhancing adversarial noises transferability can be grouped into the following
categories: data augmentation-based techniques, optimization-based techniques and loss-
based techniques which are described briefly in the following. The reader can refer to Gu
et al. (2023) for a complete survey.

Data augmentations-based. Data augmentations-based techniques consist of applying
stochastic input transformations during adversarial noise optimization. For example, Xie
et al. (2019) generate several versions of the targeted input x using random data augmen-
tations and design the adversarial noise to deceive the transformed inputs. While these
data augmentations-based techniques are useful to enhance the transferability of instance-
specific attacks (see Fig. 2.14 for a reminder), their usefulness is limited when designing
universal attacks like APAs. The universal perturbation designed by iterating under the
expectation over samples is already a form of data augmentation regularization.

Optimization-based. Optimization-based techniques enhance adversarial noise trans-
ferability by refining optimization methods. For instance, Dong et al. (2018) introduce
the momentum iterative fast gradient sign method (MI-FGSM), which improves trans-
ferability of I-FGSM attacks by adding a momentum term to the input gradient. While
these methods boost transferability, we focus on loss-based techniques to address decision
boundary issues by design.

Loss-based. Instead of blindly maximizing the probability of a target class, research on
adversarial noises suggests considering the feature space of deep networks (Rozsa et al.,
2017; Zhou et al., 2018; Inkawhich et al., 2019; Lu et al., 2020; Inkawhich et al., 2020).
For example, Inkawhich et al. (2019) propose optimizing the adversarial noises to match
the feature representations of an existing target image:

argmin
δ

Ex∼X

[
||f(x+ δ)− f(xi)||22

]
, (4.4)

where f is the encoder part of Fθ. The role of the attack is to push the corrupted image
features f(x + δ) to be close to the features of f(xi) (feature representation of a chosen
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Table 4.3: Typology of Adversarial Patch Attacks (APA) papers and transferable adversar-
ial noises works depending on the requirement to illustrate a transferable physical APA.
Each column represents an essential characteristic to demonstrate the real-world critical-
ity of an APA. The symbols ✓, ≈, and ∅ represent ”measured,” ”ambiguous,” and ”not
evaluated,” respectively.

Transfer Defended
APA

Narrow Broad networks
GAP (Brown et al., 2017) ✓ ∅ ∅ ✓
LaVAN (Karmon et al., 2018) ∅ ∅ ∅ ✓
PS-GAN (Liu et al., 2019) ≈ ∅ ∅ ✓
TnT (Doan et al., 2022) ✓ ∅ ✓ ✓
Casper et al. (2022) ≈ ∅ ≈ ✓
Inkawhich et al. (2019) ✓ ∅ ✓ ∅
TTP Naseer et al. (2021) ✓ ∅ ✓ ∅
M3D Zhao et al. (2023) ✓ ∅ ✓ ∅
Ours ✓ ✓ ✓ ✓

sample corresponding to a pre-selected class) and make f(x + δ) to be classified as yi.
The rationale for such a strategy is that the feature space is expected to capture the useful
information in an image more universally, allowing better attack transferability between
models.

However, this point-wise strategy (named L2 in the following) presents several draw-
backs. First, optimizing when the objective is to push multiple points to a unique point is
likely to fail. When the optimization succeeds, the power of the attack depends highly on
the choice of the target point. Furthermore, a single feature point can be well-classified by
one network but misclassified by another, thus limiting the transferability of the attack to
multiple networks. To measure the stability of the L2 method (Inkawhich et al., 2019), we
launch APA’s optimization for three randomly selected target points. Patches are designed
to sway ResNet50-v1 or Swin-T which will output the Australian terrier class. Patches
are trained using EoT, and we select the patch that obtained the lower loss among the three
learning rates. Table 4.2 reports the transfer results of the obtained patches. Although the
optimization has converged for the first target of the L2 method for ResNet50-v1, the
obtained patch is harmless. Even if the APA works, its attacking capacity depends on
the considered target point. For example, on Swin-T, APA’s transferability can decrease
drastically. Additional experiments on the feature point method instability are provided
in Appendix C.2.

Rather than independently train each adversarial noise by iterative methods, recent
methods (Poursaeed et al., 2018; Naseer et al., 2019a, 2021; Zhao et al., 2023) train a
GAN to transform clean images to adversarial noises. Naseer et al. (2021) (called TTP
method) learn their GAN by minimizing the Kullback-Leibler divergence between the
probability-class distribution of adversarial noises and the probability-class distribution
of target class images. From a generalization error bound for black-box targeted attacks,
Zhao et al. (2023) derive an algorithm to train their GAN that minimizes the maximum
model discrepancy (M3D method) between two models. However, all these previously
presented works study only the transferability of adversarial noises, and it is not obvious
that they work for APA. Moreover, these methods rely on the classifier decision boundary,
and we show that such rationale may result in poor transferable patches.

63



Figure 4.1: Three different strategies for designing patch attacks. Left: The attack pushes
multiple samples to the other side of a decision boundary defined for a particular model.
Middle: The attack matches a given point in the feature space that is expected to represent
a sample from a different class. Right: Our strategy narrows the distribution gap between
the samples corrupted by the patch and another misleading distribution in feature space.
It does not depend on the decision boundaries nor on the choice of a specific target point
in the feature space.

In the following section, we introduce a new method that follows the principle that
the attack is designed with an optimization metric defined in the feature space rather
than in the decision space (Inkawhich et al., 2019). This new method generalizes the L2
method proposed by Inkawhich et al. (2019). Our new method bridges the gap between
the transferability approaches for adversarial noise design and adversarial patch attacks
(see Tab. 4.3).

4.3 Feature-based APA learning for transferability
To overcome the dependence of the attack on a single decision boundary of the source
model (left scheme in Figure 4.1) and to relax the specificity of the target feature point
selection (middle scheme in Figure 4.1), we propose a distribution-oriented approach
(right scheme in Figure 4.1). The learning principle of our patch attack is to globally alter
the feature distribution of a set of images from a particular class to match another known
distribution to be taken from another class. The role of the patch, when placed in the
scene, is to push the feature distribution towards this known misleading class distribution
(right scheme in Figure 4.1). Such a global strategy in feature space is expected to allow a
better transferability capability, as it is independent of the decision boundary constructed
by the classifier and the choice of the target point (as proposed by Inkawhich et al. (2019)).
The technique used to push the feature distribution towards the target distribution is based
on Optimal Transport (OT). The theoretical foundation of this technique and how it is
adapted to our problem is detailed in the next section.

4.3.1 Background on optimal transport

The theory of optimal transport (Peyré et al., 2019; Villani et al., 2009) provides several
techniques for efficient computation of distances between distributions. It has been shown
that optimizing with respect to the Wasserstein distance has various practical benefits
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over the KL-divergence (Peyré et al., 2012; Frogner et al., 2015; Arjovsky et al., 2017;
Gulrajani et al., 2017). Unlike the KL-divergence and its related dissimilarity measures
(e.g. Jensen-Shannon divergence), the Wasserstein distance can provide a meaningful
notion of closeness between distributions supported on non-overlapping low dimensional
manifolds.

Let Pp(Rd) = {µ ∈ P(Rd) :
∫

Rd
||x||pdµ(x) <∞} be the set of probability measures

on Rd with finite moment of order p, with p ∈ [1,+∞). The p-Wasserstein distance is
defined as

Wp(µ, ν)
p = inf

π∈Π(µ,ν)

∫
Rd×Rd

||x− y||pdπ(x, y), (4.5)

where µ, ν ∈ Pp(Rd), ||.|| is the Euclidean norm and Π(µ, ν) is the set of probability mea-
sures on Rd × Rd whose marginals with respect to the first and second variables are given
by µ and ν respectively. The quantity Wp(µ, ν) in not analytically avaible in general.
To solve Eq 4.5, the standard methods are linear programs and have a worst-case com-
putational complexity in O(n3 log(n)), where n is the number of samples (Peyré et al.,
2019).

To leverage the computational efficiency of Eq 4.5, Rabin et al. (2012) and Bonneel
et al. (2015) works define a new metric named Sliced-Wasserstein distance. This new met-
ric is based on the fact that for one-dimensional probability measure, the p-Wasserstein
distance (4.5) has the following closed-form

Wp(µ, ν)
p =

∫ 1

0

|Qµ(s)−Qν(s)|pds, (4.6)

where Qµ and Qν are the quantile functions of µ and ν respectively. Let Sd−1 be the d-
dimensional unit sphere and σ the uniform distribution on Sd−1. For θ ∈ Sd−1, we define
the linear form for all x ∈ Rd by θ∗(x) = ⟨θ, x⟩. The Sliced-Wasserstein distance is then
defined by

SWp(µ, ν)
p =

∫
Sd−1

Wp
p(θ

∗
♯µ, θ

∗
♯ ν)dσ(θ), (4.7)

where µ, ν ∈ Pp(Rd), p ∈ [1,+∞) and θ∗♯µ and θ∗♯ ν are the push-forward by θ∗ of µ and
ν respectively. In practice, Eq 4.7 is approximated with a standard Monte Carlo method.
We denote by SWp(µ, ν)

p
K its numerical approximation where K is the number of ran-

dom projections. Since θ∗♯µ and θ∗♯ ν are univariate distributions, the resulting complexity
of the approximation is generally more efficient than resolving Eq. 4.5. The correspond-
ing computational complexity is O(Kdn + Kn log(n)). We show in section C.1 of the
Appendix that the empirical computation time of our approach remains similar to other
methods.

4.3.2 Optimal Transport based loss
In this section, we describe our OT-based methodology used to design transferable APA.
We denote by f the encoder part of Fθ, where f is composed by a set of J layers; L =
{l1, ..., lJ}. Except for the last layer, which usually results directly from an spatial average
pooling layer, we apply a spatial average layer to obtain a feature vector. For all l ∈ L,
f (l) maps x ∈ X to the feature space S(l) = Rcl , where cl is the number of channels for a
given layer l.

For a given target class ytgt, we denote by ν
(l)
ytgt the conditional multivariate target

distribution of f (l)(X) when the class of X is ytgt. The principle of our proposed method
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is to design a patch by moving the corrupted image distribution towards the target ν(l)
ytgt

and solve:

argmin
δ

EX

[∑
l∈L

OT (µ
(l)
Xδ
, ν(l)

ytgt)

]
, (4.8)

where µXδ
is the estimated feature distribution of the corrupted source images Xδ (which

we will define hereafter) and OT could be Wp
p or SWp

p.
In practice, we solve a regularized version of Eq. 4.8 using Expectation over Transfor-

mations (EoT) from Athalye et al. (2018). Our patch is trained to optimize the following
objective:

argmin
δ

EX,t∼T ,e∼E

[∑
l∈L

OT (µ
(l)
A(δ,X,e,t), ν

(l)
ytgt) + TV (δ)

]
, (4.9)

where TV is the total variation loss discouraging high-frequency patterns. We will denote
by (Wp

p)
(N) and (SWp

p)
(N) when we attack N layers by solving the standard or the sliced

version of the Wasserstein distance respectively. We choose by convention that for N = 1,
l = lJ , i.e., we are attacking the last layer of f . In Section 4.4.4, we study our APA when
designed to attack multiple layers.

L2 method generalization. Herein, we demonstrate that our method generalizes L2-
based method. The Wasserstein distance can be interpreted through a probabilistic point
of view. If we name (X1, X2) a couple of random variables over Rd × Rd with X1 ∼ µ,
X2 ∼ ν and (X1, X2) ∼ π ∈ Π(µ, ν) we can write

W2(µ, ν)
2 = min

(X1,X2)
E(X1,X2)∼π

[
||X1 −X2||2

]
. (4.10)

If we consider the 2-Wasserstein distance and if we assume that the target distribution
contains a single point, i.e., ν = δxi

a.s., then we have

W2(µ, ν)
2 = EX1∼µ

[
||X1 − xi||2

]
, (4.11)

which coincides with Eq. 4.4. Minimizing with respect to the 2-Wasserstein for a target
distribution containing a single point is equivalent to considering the L2-based criterion
proposed by Inkawhich et al. (2019). Our method, in some sense, includes and generalizes
the L2-based method.

4.4 Experiments

This section evaluates our APA through digital, hybrid and physical world experiments.
In all experiments, the objective is to craft an APA with a high targeted success rate (tSuc)
(see Equation 2.17 for a reminder).

We consider the single-source model setting and test attacking transferability to other
models. Transferability is tested between ImageNet-1K (Deng et al., 2009) models. We
cluster these models into several categories depending on their architecture and learning
strategies (learning paradigm and training recipe, see Table 4.4).
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Table 4.4: Summary of the model used to evaluate APA transferability. Models are clus-
tered according to their architecture and learning strategy (learning paradigm and training
recipe). DeiT is a ViT network trained using distillation to speed-up the training (the dis-
tillation differs from the one presented in Figure 2.12b). T, S and B stands for Tiny, Small,
and Base respectively. AT stands for Adversarially trained, PMZ for Pytorch Model Zoo
and TIM for Timm Model Zoo

Model
Category

Architecture Learning
paradigm

Training
Recipe

Source

CNNs-v1 ResNet 18/34/50-v1
DenseNet 121/161/169/201
VGG19, Inception-V3

Sup Old PMZ

CNNs-v2 ResNet 50-V2/50-Self Sup
Self-Sup

Recent PMZ and
Caron et al.
(2020)

ENet EfficientNet B0/B1/B2/B3/B4 Sup Recent PMZ
CNext ConvNext T/S Sup Recent PMZ
DeiT DeiT T/S/B Sup Recent TMZ
Swin Swin T/S/B Sup Recent PMZ
AT ResNet50 ReLU Adv

DeiT S Adv
Adv Sup Recent Bai et al.

(2021)

Evaluated methods. We consider GAP (Brown et al., 2017), LaVAN (Karmon et al.,
2018), TnT (Doan et al., 2022) and Casper et al. (2022) as decision boundary-based base-
lines. Because of its ease of computation compared to Inkawhich et al. (2020), which
requires off-line training of multiple specific auxiliary models, we choose to adapt the
proposed method by Inkawhich et al. (2019) as a baseline (we name it L2) to craft an
APA based on attacking the feature space. We also adapt the recent state-of-the-art works
on transferable adversarial noises (Naseer et al., 2021; Zhao et al., 2023) to craft an APA.
To do so, we convert generative methods (Naseer et al., 2021; Zhao et al., 2023) to itera-
tive ones where the objective is to create one universal APA and not one for each image
(see Paragraph 2.2.2 for a reminder).

Experimental setup. For comparison, baselines and our method are crafted using the
same patch training recipes and are describe bellow. To control the balance between the
adversarial loss and the total variation loss (see for example Equation 4.9), the gradient
of each loss is computed individually, normalized, and combined using a weighted sum.
Patch values are clipped into the image range at each iteration. Following prior works
Brown et al. (2017); Lee and Kolter (2019); Casper et al. (2022), we choose and fix the
sampling distributions from EoT (Eykholt et al., 2018) for all the methods. During train-
ing and evaluation, patches are randomly placed to the side of images (to avoid occluding
the object of interest, which is usually centered in image classification). Transformations
and noises are also applied to the patch to mimic real-world situations. Appendix C.4
evaluates models’ robustness according to the position of the patch in the image. We
randomly choose nine targeted classes (see Appendix C.1 for details) and design a patch
to fool the network targeting each class. We split the ImageNet-1K validation set into a
training set of 40000 images on which we train patches and a test set of 10000 images on
which we evaluate their impact. The patch optimization is performed using 100 epochs
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Table 4.5: Best transfer results from a single model to all others obtained for each method
(tSuc (%) higher is better for an attack).

Method min mean max
GAP (Brown et al., 2017) 2.22 15.46 37.33
LaVAN (Karmon et al., 2018) 2.26 8.67 31.4
L2 (Inkawhich et al., 2019) 4.44 13.6 32.78
TnT (Doan et al., 2022) 0.67 2.11 5.84
Casper et al. (2022) 0.33 3.81 14.85
TTP Naseer et al. (2021) 2.33 13.77 31.87
M3D Zhao et al. (2023) 0.84 5.19 17.11
Ours (SW2

2)
(1)
500 8.93 22.56 45.31

Ours (W2
2)

(1) 8.09 21.14 49.1

(1 epoch equals 1000 iterations) with a batch size of 50 images. Three different learning
rates are tested (i.e., 0.1, 0.5, 1). We choose for our method p = 2 and K = 500 as
hyperparameters for our method (reasons are explained in Appendix C.7). We evaluate
the APA with the best training loss among the three learning rates, leading to one patch
per method and per class. Finally, reported tSuc is the average over the classes and patch
sizes (from 70× 70 to 90× 90), which is the standard setting considered in the literature
(Brown et al., 2017; Poursaeed et al., 2018; Doan et al., 2022; Casper et al., 2022)).

4.4.1 Numerical experiments

Transferability among networks. We select from the previously defined families the
following models: ResNet34, ResNet50-V1, ResNet50-V2, ResNet50-self, EfficientNet-
B0, ConvNext-S, DeiT-S, Swin-T, Swin-S, Swin-B. We design patches to attack one of
these source models. Then, we measure the attacking transferability when the resulting
patch is used to fool the remaining models (target models).

For example, patches trained and tested on the Swin family provide three patches.
Each is trained individually on Swin-T, Swin-S or Swin-B, and is evaluated against the
two other Swin models. Table 4.5 summarizes, for each method, the best transferring at-
tack performance. According to the method, we select and report the results of the source
family producing the highest mean targeted success rate (tSuc, rate at which the attacked
images are classified as the patch target label). Our method shows the best transferability
capacity: highest mean, min and max tSuc.

Table 4.6 details transferability results for all source families. From this table, we can
make several conclusions: Networks trained with older training recipes (CNNs-v1) seem
more vulnerable to attacks regardless of the attacking procedures. These networks are
more sensitive to salient patches present in the image. As presented in Bai et al. (2021),
new training recipes (scheduler, augmenting training data like RandAug and Mixup, ...)
make models more robust for convolutional networks and transformers.
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Table 4.6: Transfer results (tSuc (%), higher is better) between categories of models. Re-
sults are averaged over classes, over patch sizes, and over networks within a category.
Patches are placed randomly in the image without object overlapping. Physical transfor-
mations (e.g., noise, rotations) are applied to patches. Control is inserting a real object of
the corresponding class as a patch.

Target
mean / std

CNNs-v1 CNNs-v2 ENet CNext DeiT Swin

Method Source
Clean 0.1 0.1 0.1 0.1 0.1 0.1 0.1 / 0

Control 2.85 1.59 0.86 0.54 1.57 0.93 1.39 / 0.75

GAP
(Brown et al., 2017)

CNNs-v1 36.61 9.64 5.54 2.43 4.03 3.05 10.22 / 12.04
CNNs-v2 15.6 9.57 3.66 2.74 3.51 2.49 6.26 / 4.82

ENet 37.33 10.11 29.88 2.22 8.91 4.3 15.46 / 13.28
CNext 0.33 0.77 0.23 0.97 0.43 0.8 0.59 / 0.27
DeiT 1.43 1.97 0.46 1.25 11.54 3.58 3.37 / 3.78
Swin 1.46 1.54 0.66 1.33 1.58 6.15 2.12 / 1.83

LaVAN
(Karmon et al., 2018)

CNNs-v1 31.4 8.56 4.32 2.26 2.49 3.01 8.67 / 10.38
CNNs-v2 11.08 9.68 2.33 2.45 2.24 2.13 4.98 / 3.84

ENet 8.74 4.76 11.31 1.08 3.33 2.58 5.3 / 3.59
CNext 0.45 0.63 0.26 0.44 0.47 0.87 0.52 / 0.19
DeiT 2.1 1.53 0.93 0.61 5.84 2.45 2.24 / 1.73
Swin 1.45 1.41 0.57 1.31 1.29 9.44 2.58 / 3.08

L2
(Inkawhich et al., 2019)

CNNs-v1 14.76 5.06 2.69 0.88 1.78 1.08 4.37 / 4.85
CNNs-v2 3.25 3.5 0.64 1.44 0.57 1.04 1.74 / 1.19

ENet 14.33 4.12 13.35 0.79 3.02 1.88 6.25 / 5.47
CNext 2.46 9.66 0.92 20.2 1.73 10.67 7.6 / 6.81
DeiT 17.88 10.23 8.15 4.44 32.78 8.1 13.6 / 9.5
Swin 8.2 8.54 3.22 7.24 5.38 23.24 9.3 / 6.49

TnT
(Doan et al., 2022)

CNNs-v1 5.84 1.5 2.12 0.67 1.43 1.08 2.11 / 1.73
CNNs-v2 1.82 0.69 0.59 0.37 0.52 0.6 0.77 / 0.48

ENet 2.13 0.92 1.4 0.43 0.71 0.64 1.04 / 0.57
CNext 0.48 0.49 0.24 0.32 0.3 0.4 0.37 / 0.09
DeiT 1.12 0.85 0.61 0.58 2.43 1.03 1.1 / 0.63
Swin 1.41 1.03 0.55 0.81 1.61 1.68 1.18 / 0.42

Casper et al. (2022)

CNNs-v1 12.87 1.62 1.2 0.28 0.33 0.19 2.75 / 4.56
CNNs-v2 7.8 7.44 1.26 0.83 0.95 0.78 3.17 / 3.15

ENet 5.37 0.85 14.85 0.33 0.68 0.78 3.81 / 5.23
CNext 0.42 0.28 0.22 0.45 0.15 0.22 0.29 / 0.11
DeiT 2.86 1.38 0.98 0.91 10.19 2.22 3.09 / 3.25
Swin 0.56 0.4 0.35 0.52 0.32 1.87 0.67 / 0.54

TTP
(Naseer et al., 2021)

CNNs-v1 35.4 8.41 5.43 1.58 3.46 2.29 9.43 / 11.83
CNNs-v2 17.55 9.67 3.3 3.87 3.66 3.87 6.99 / 5.21

ENet 31.87 8.88 27.16 2.33 8.75 3.65 13.77 / 11.47
CNext 0.49 3.39 0.22 7.87 0.48 2.71 2.53 / 2.67
DeiT 3.87 3.24 1.51 1.64 13.75 3.85 4.64 / 4.18
Swin 1.53 1.22 0.53 0.98 1.18 5.54 1.83 / 1.69

Zhao et al. (2023)

CNNs-v1 17.11 6.18 3.59 0.84 1.98 1.43 5.19 / 5.61
CNNs-v2 7.45 11.77 1.77 2.13 1.51 2.33 4.49 / 3.84

ENet 11.21 1.97 3.34 0.54 1.0 0.88 3.16 / 3.72
CNext 0.34 0.36 0.16 0.21 1.78 0.28 0.52 / 0.57
DeiT 2.39 1.59 0.81 1.07 7.7 2.9 2.74 / 2.33
Swin 1.85 1.63 0.71 0.82 1.55 3.6 1.69 / 0.95

Ours (SW2
2)

(1)
500

CNNs-v1 25.25 6.15 4.73 1.7 5.15 2.61 7.6 / 8.04
CNNs-v2 16.93 8.67 4.02 4.08 5.77 3.56 7.17 / 4.69

ENet 22.53 5.83 18.8 2.07 8.49 3.03 10.13 / 7.8
CNext 3.97 11.62 1.1 29.97 3.14 14.75 10.76 / 9.86
DeiT 23.65 12.16 7.27 5.21 32.39 9.35 15.01 / 9.77
Swin 25.2 20.21 8.93 19.54 16.16 45.31 22.56 / 11.3

Ours (W2
2)

(1)

CNNs-v1 39.65 13.01 8.27 2.44 4.89 3.16 11.9 / 12.91
CNNs-v2 19.0 11.35 3.82 4.51 3.74 4.19 7.77 / 5.69

ENet 35.12 10.45 32.0 2.27 7.8 3.79 15.24 / 13.25
CNext 3.47 12.2 0.92 25.14 2.04 15.12 9.82 / 8.64
DeiT 22.26 11.43 10.18 5.29 39.51 9.25 16.32 / 11.59
Swin 20.55 17.89 8.09 17.7 13.55 49.1 21.14 / 13.12

69



Figure 4.2: Transfer and white-box results for patches built on an ensemble of models
(tSuc (%)). Results are averaged over classes and patch sizes. Patches are placed ran-
domly in the image but not at the center of the images.

Baseline methods could not create a patch that can strongly transfer to CNext and
Swin models even when these patches are learned using the same model category. This
indicates that rather than catching the useful common information in deep networks, base-
line methods produce a patch that tends to overfit on the specific weights of the model.
This is particularly the case for decision boundaries-based APAs (GAP (Brown et al.,
2017), LaVAN (Karmon et al., 2018), TnT (Doan et al., 2022) and Casper et al. (2022)).
Naseer et al. (2021) method seems to create a patch that better captures the source model
decision boundaries. This method leads to better results than decision boundary-based
APAs on the DeiT family of networks (networks with more complex representations than
CNNs-V1 networks). Creating a patch that minimizes the maximum discrepancy between
two models (Zhao et al., 2023) is unstable and generally results in a patch that is not trans-
ferable. A possible explanation is that the APA induces a higher shift in the feature space
than adversarial noises.

A patch resulting from an optimization defined in the feature space reduces the patch
overfitting and increases the transferability to other networks (see table lines of the L2
and our method in Table 4.6). This suggests that the patch has learned more about the
common information to model the different classes rather than trying to cross the decision
boundaries. However, the L2 methodology (Inkawhich et al., 2019) is unstable and is
highly dependent on the choice of the target point, resulting in lower performance than our
method (see Appendix C.2). Our two methods (exact and sliced version) outperform the
previous methods in terms of transferability. We remark that patches learned using Swin
or CNext seem more universal as they can transfer to multiple models. When crafted on
Swin models, we produce a patch capable of transferring uniformly well to all the models.

Ensemble methods. Ensemble methods train a single patch across an ensemble of mod-
els simultaneously. By doing so, the patch is expected to exploit the common vulnera-
bilities in networks, resulting in a more transferable attack. We determine if an attacker
building his attack on an ensemble of CNN-v1 models can significantly increase its at-
tacking performance on other models such as CNext or Swin. We consider the following
ordered list of models E-CNN-v1 = {ResNet50/34/18-v1, DenseNet121} in which net-
works are added to the ensemble in this order. Figure 4.2 plots the tSuc as a function of
the number of models in the ensemble. Even with the largest ensemble of four models,
patches failed to increase their transferability performances on CNext and Swin models
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Table 4.7: Transfer results on robustified models by LGS defense (Naseer et al., 2019b)
(tSuc (%)). Patches are designed on Swin models.

Target
mean / std

CNNs-v1 CNNs-v2 ENet CNext DeiT Swin

λ = 1.5

Clean 0.1 0.1 0.1 0.1 0.1 0.1 0.1 / 0
GAP (Brown et al., 2017) 0.72 0.87 0.35 0.78 1.13 2.34 1.03 / 0.63

LaVAN (Karmon et al., 2018) 0.56 0.69 0.3 0.69 0.82 2.65 0.95 / 0.78
L2 (Inkawhich et al., 2019) 4.79 6.44 1.72 7.79 4.79 13.85 6.56 / 3.75

TnT (Doan et al., 2022) 0.84 0.59 0.52 0.53 0.7 0.85 0.67 / 0.13
Casper et al. (2022) 0.37 0.4 0.2 0.32 0.25 0.59 0.36 / 0.13

TTP (Naseer et al., 2021) 0.68 0.77 0.28 0.68 0.76 1.98 0.86 / 0.53
M3D (Zhao et al., 2023) 0.83 0.81 0.36 0.77 1.17 1.17 0.85 / 0.27

Ours (SW2
2)

(1)
500 10.56 11.86 3.81 18.9 11.67 31.68 14.75 / 8.75

Ours (W2
2)

(1) 13.23 13.4 4.37 21.42 13.84 32.08 16.39 / 8.58

significantly. This result suggests that an attacker expecting to sway all the models uni-
formly should design his attack on Swin models when using our approach. Figure 4.2
also shows that the feature point method becomes unstable with the increased number of
models in the ensemble. The following experiments are performed on Swin patches as
they lead to a more uniform transferability across networks.

Effectiveness against robust networks. We now consider a more realistic scenario in
which the attacked system uses a defense mechanism. We propose to use Local Gradients
Smoothing (LGS) (Naseer et al., 2019b), as it is one of the strongest defense mechanisms
against patch attacks. The LGS strategy smooths salient regions in images before feeding
them to the network. We reproduce the previous experiments for three different smoothing
factors λ ∈ {1.5, 1.9, 2.3} for LGS while fixing other parameters as in the article (we
report here results for λ = 1.5, see C.9 for other results). For each method, we evaluate
the patches designed using Swin architecture against networks made robust by LGS. Our
method achieves the best transfer results demonstrating the criticality of our attack even
for robust networks (Table 4.7).

We now suppose the target network has been adversarially trained (AT) against ad-
versarial noises. The patch attacks that are not learned on AT models could reduce their
accuracy when transferred to these models. However, the AT models do not get fooled
by the patch to predict the targeted class. (clean accuracy: 65.44, attacked accuracy:
57.65, tsuc: 0.72). AT models seem to have different class representations and are hard
to force to predict a chosen class. When designed on one AT model and transferred to
another model, our patches and GAP patches produce the best transfer performances (see
Appendix C.5).

4.4.2 Hybrid experiments

In this section, we propose to measure the physicality of patches through a hybrid ex-
periment to simulate the potential effect of patches in the real world. We consider the
following steps: printing and digitalization. Scanned patches are placed numerically in
images using the same procedure as in the previous section (physical transformations are
applied to them). We use patches designed on Swin-T and the results for three different
settings (i.e., digital, scan and scan with defense) are reported. Our patch obtains the
best transfer results and performs well in scan with defense setting which is more compli-
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Table 4.8: Transfer results of digital, scanned, and scanned defended patches (mean tSuc
(%)). Patches are designed on Swin models and for the targeted class birdhouse.

Digital Scan
Scan

Defended
Clean 0.1 0.1 0.1
GAP (Brown et al., 2017) 1.3 1.1 0.92
LaVAN (Karmon et al., 2018) 1.53 1.05 0.88
L2 (Inkawhich et al., 2019) 8.65 4.54 4.26
TnT (Doan et al., 2022) 0.78 0.43 0.37
Casper et al. (2022) 1.13 0.49 0.39
TTP (Naseer et al., 2021) 1.06 0.73 0.52
M3D (Zhao et al., 2023) 1.84 1.08 0.68
Ours(SW2

2)
(1)
500 19 12.41 12.11

Ours(W2
2)

(1) 20.04 12.59 12.41

cated than the other settings. (see Table 4.8). This result confirms the potentially harmful
behavior of our patch in the real-world.

4.4.3 Qualitative physical experiments
Despite our work is focus on increasing APA transferability, we give some qualitative re-
sults concerning the physicality of our attack. We select three objects present in ImageNet-
1K (banana, cup, keyboard) and record videos of when one patch is placed next to the
object or not. During the video, patches are moved around the object. Figure 4.3 shows
examples of our patch localized near objects. In the experiments, all the patches were not
able to transfer (tSuc lower than 2%), except for L2 and our patches. The transfer results
for the L2 method, our first ((SW2

2)
(1)
500) and second ((W2

2)
(1)
500) methods are 9.3%, 23.4%

and 29.3% respectively. These results confirm that real-world classifiers can be swayed
without explicit knowledge of their architecture or weights.

Figure 4.3: Examples of frames of our APA close to different objects. Our patch is
designed to sway networks to output the targeted class birdhouse.

4.4.4 Ablation studies
In this section, we study the impact of the choice of the targeted layers on the patch
transferability. We learn our attack ((W2

2) version) to push distribution on different layers
for Swin models and report results in Table 4.9. The last layer of the encoder (l = lJ )
seems essential to model and close the gap between the corrupted image distribution and
the target distribution. It is coherent since this layer is expected to separate classes before
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Table 4.9: Transfer results of digital patches when varying the choice of the targeted
layers (tSuc (%)). Patches are designed on Swin models.

L {lJ−8, lJ−2, lJ} {lJ−2, lJ} {lJ−2} {lJ}
mean 14.66 23.47 17.31 21.14

linear classification. We observe that the multi-layer objective leads to better results as it
helps the optimization to converge to a better local minimum, leading to a stronger patch
(see Fig. C.7 in the Appendix for details about layers). However, most layers fail to
model the targeted distribution correctly. In Appendix C.7, we present additional ablation
studies, in which we investigate the impact of the power, p, and the number of slices, K.

Through numerical, hybrid, and physical experiments, we show the superiority of
our method in designing transferable APA. In the following section, we move towards
understanding what phenomena in APA’s learning may induce or reduce the resulting
APA transferability.

4.5 Study of APA behavior
The different APAs evaluated so far can be classified into two different categories based
on their learning principles. Either the APA learning is based on a classifier and its de-
cision boundary (decision boundary based) or the criterion for learning APAs considers
the feature space of the network (feature space based). The L2-based method (Inkawhich
et al., 2019) and ours are feature space-based while the remaining methods (Brown et al.,
2017; Karmon et al., 2018; Doan et al., 2022; Casper et al., 2022; Naseer et al., 2021;
Zhao et al., 2023) fall in the first category.

As already introduced in Paragraph 4.2.1, decision boundary-based methods may de-
sign a patch that pushes the corrupted image features into unseen regions of the repre-
sentations space. In the following section, we study how the different APAs influence
the features extracted by the encoder. This study may help to understand the underlying
attack mechanism of the different APAs.

4.5.1 A feature space study
We propose to evaluate the geometric shift of image features induced by introducing an
APA in the image. We compare the GAP method (Brown et al., 2017) and ours as these
methods are the most suited to generate transferable APAs for their corresponding cate-
gory. To quantify the shift in the feature space, we estimate three feature distributions:

• µysrc , the conditional multivariate feature distribution of benign images when the
class of images is ysrc. These benign images are subsequently perturbed using the
selected APAs;

• µXδ
, the conditional multivariate feature distribution of the perturbed images after

applying the APAs. We recall that patches are designed to sway the image classifier
to output the target class ytgt;

• νytgt , the conditional multivariate feature distribution of benign images when the
class of images is ytgt.
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Table 4.10: Feature distribution shift induced by APAs when introduced in images. µysrc

is the feature distribution of benign images when the class of images is ysrc, µXδ
is the

feature distribution of the perturbed source images and µytgt is the feature distribution of
benign images when the class of images is ytgt. Results are averaged over source and
target classes.

Network Method W̃2(µsrc, µXδ
)2 W̃2(µXδ

, νytgt)
2

Swin-T

Black patch 0.44 1.05
Random patch 0.42 1.04

GAP (Brown et al., 2017) 0.66 0.95
Ours(W2

2)
(1) 0.59 0.78

ResNet50-v1

Black patch 0.25 1.00
Random patch 0.25 1.00

GAP (Brown et al., 2017) 0.91 0.97
Ours(W2

2)
(1) 0.51 0.76

EfficientNet-B0

Black patch 0.27 1.01
Random patch 0.15 1.00

GAP (Brown et al., 2017) 0.88 0.94
Ours(W2

2)
(1) 0.71 0.83

DeiT-S

Black patch 0.43 1.04
Random patch 0.35 1.02

GAP (Brown et al., 2017) 0.80 0.96
Ours(W2

2)
(1) 0.68 0.76

We estimate µysrc for three randomly selected classes, with each class represented by
1000 randomly sampled images. Similarly, µXδ

is computed by applying the APA to
these images, capturing the distribution of the adversarially perturbed images. For the
target class, νytgt is also estimated using 1000 randomly sampled benign images. The
target classes are the same as in the previous section (see Paragraph 4.4 for a reminder).
For each couple (ysrc, ytgt), we compute the following two quantities:

W̃2(µsrc, µXδ
)2 =

W2(µsrc, µXδ
)2

W2(µsrc, νytgt)
2
, W̃2(µXδ

, νytgt)
2 =

W2(µXδ
, νytgt)

2

W2(µsrc, νytgt)
2
. (4.12)

where W2(., .)
2 is the 2-Wasserstein distance (see Eq. 4.5 for a reminder). These quan-

tities describe the relative distribution shift induced by APAs. The first quantity encodes
how far the perturbed distribution is pushed from the source distribution, and the second
quantity encodes how far the perturbed distribution gets closer to the target distribution.

Table 4.10 reports these metrics for several networks. GAP patches (Brown et al.,
2017) push the perturbed distribution further away from the source distribution. However,
this increased shift does not necessarily bring the perturbed distribution closer to the target
distribution. The distribution of images perturbed by GAP remains just as distant from the
target distribution as the source distribution (the second metric stays close to 1). Contrary
to expectations, designing an APA to cross the decision boundary and force classification
into the target class does not simply result in the perturbed images aligning with the target
distribution. Instead, it pushes the perturbed distribution into unseen regions of the feature
space, far from both the source and target distributions. Pushing into unseen regions
may limit the resulting APA transferability as these regions may be network specific. As
expected, our method creates an APA that tries to close the gap between the source and
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Figure 4.4: First two principal components of the principal component analysis performed
on the three distributions. The source class and target class are Australian terrier and eft,
respectively.

the target distribution. For Swin-T (Liu et al., 2021) and ResNet50-v1 (He et al., 2016),
the sum of the two metrics is close to 1, indicating, due to the triangle inequality, that the
perturbed distribution is close to the geodesic defined between the source and the target
distribution.

To qualitatively illustrate our findings, we perform a principal component analysis on
the feature points defining the three distributions. Figure 4.4 plots the first two princi-
pal components. As previously measured, the GAP perturbations (Brown et al., 2017)
cause a significant shift, pushing the perturbed distribution far from the source and target
distributions. In contrast, our method seeks to find the shortest path between the two.

4.6 Conclusion
In this chapter, we categorize APAs against image classification models into two groups
based on their underlying learning principles. We show that the methods from the first
group, decision boundary-based methods (Brown et al., 2017; Karmon et al., 2018; Doan
et al., 2022; Casper et al., 2022; Naseer et al., 2021; Zhao et al., 2023), generate an APA
that tends to overfit on the source model decision boundaries. This patch overfitting in-
duces the learned APA to push corrupted image features into unseen feature space regions,
leading to poor APA transfer capacity. In contrast, the second group, feature space-based
methods (Zhou et al., 2018; Rozsa et al., 2017; Inkawhich et al., 2019), relies on the
feature space of a neural network to capture universal image information, leading to bet-
ter attack transferability across models and reducing the risk of overfitting to a specific
model’s decision boundaries.

Among the feature space-based approaches, the L2 method (Inkawhich et al., 2019)
demonstrates better transferability but suffers from numerical instability, with its perfor-
mance highly dependent on the choice of the targeted feature point. To address these
limitations, we introduce a more robust and generalized feature space method. Our novel
approach leverages a distribution-oriented framework based on optimal transport for de-
signing APAs. This method mitigates patch overfitting to the source model, significantly
enhancing its transferability across both CNNs and Transformer-based architectures.

When applied to Swin models, our patch is the only one capable of effectively fool-
ing multiple architectures from different model families, even in the presence of defense

75



mechanisms designed to enhance robustness. Furthermore, hybrid and physical-world ex-
periments show that our attack can successfully disrupt real-world classifiers, even with-
out prior knowledge of the system. These results highlight the practical effectiveness and
adaptability of our approach in real-world scenarios.

In the following chapter, to study if more complex real-world systems may be vulnera-
ble to physical attacks, we focus on designing a transferable APA against object detectors.
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Chapter 5

A transferable inhibition patch to hide
objects

In Chapter 4, we introduced a novel APA capable of effectively transferring across a wide
range of image classifiers. However, real-world systems, such as vision systems in au-
tonomous vehicles, often involve more complex tasks than image classification. Our goal
in this chapter is to design a transferable APA that hides people from being detected by
multiple object detectors. We focus on the invisible cloak attack scenario as this scenario
is easier than the contextual attack scenario (see Section 2.3.2 for a reminder). First, we
review state-of-the-art methods developed to enhance the transferability of APAs for ob-
ject detectors. We show that their success is due to several limitations and flaws in their
evaluation protocol. To mitigate these issues, we propose a new evaluation framework
based on multi-label classification. Finally, we examine the performance of white-box
and black-box transfer-based attacks using our new evaluation framework.

5.1 A transferable object inhibition APA
We aim to design an APA that can effectively transfer across models to prevent people
from being detected. The attack mechanism behind inhibiting detection differs from that
used by APAs targeting image classification. For image classification, APAs try to exploit
the features used by the network to predict the target class. These features exist as soon as
the image classifier can predict the target class. Designing a successful transferable APA
for image classification suggests that the APA is based on patterns that different networks
extract and use. It was not evident that such a pattern exists because networks can rely
on different patterns to predict a class. Nevertheless, Chapter 4 shows that such a pattern
exists.

Now, the APA’s objective is to disrupt the features used by object detectors to identify
the target class. Contrary to image classification, the existence of such an attack has yet
to be shown. In fact, object detection is inherently more complex than classification as it
is based on more diverse decision mechanisms (textures and shapes identification, use of
contrast), thus making it harder to attack or interpret. Herein, we make the hypothesis that
some features exist that can inhibit the detection of a class. This assumption may be valid.
For small objects, detection can not be performed by recognizing class-related patterns
and may rely on contextual information. Such contextual features could be exploited to
prevent the detection of a target class. The question of seeking a transferable APA against
object detection then becomes: Does a common pattern inhibit the detection of various
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object detectors?
The following section presents methods that focus on designing transferable APA

against object detection.

5.1.1 Previous transferable APA against object detection

As already introduced at the end of Section 3.4, and through experiments in Section 3.3.3,
different invisible cloak APAs developed in the literature show the capacity to reduce the
mAP of unknown models when transferred to them.

To increase patch transferability across object detectors, Huang et al. (2023) intro-
duce Transfer-based Self-Ensemble Attack (T-SEA), a set of techniques and tricks. First,
they observe that Thys et al. (2019) APA can be improved by modifying the learning rate
scheduler and the patch scale ratio (see Paragraph 3.3.2 for a reminder about the patch
scale ratio). They propose a new updating rule for learning rate to better handle saddle
points during patch optimization. The patch scale ratio is reduced to 0.15 to help the op-
timized patch to learn more global patterns instead of local patterns. Local patterns are
more sensible to patch rescaling, thus limiting their robustness to physical transforma-
tions. The other proposed techniques are built on an analogy between patch and model
training. As for model training, they use image augmentations to generate new candi-
dates for the patch training. Instead of training the patch to target an ensemble of models,
which may require training multiple models, they use Shakedrop (Yamada et al., 2018),
a method that randomly drops a subset of layer activations, enabling the training over
multiple variants of the same model. Inspired by the use of Dropout (Srivastava et al.,
2014) and Cutout (DeVries and Taylor, 2017), they introduce patch cutout, a technique
that randomly drops some parts of the patch to avoid the attack to rely on specific patch
regions.

When gathered, they show that these techniques and tricks help generate better trans-
ferable APA, reducing the mAP on multiple object detectors. However, in the next section,
we show that most of these results are due to a misusage of the mAP. Another limitation
is that none of the previous works have evaluated the robustness of object detectors that
use a Transformer as an encoder. As we showed in Chapter 4, the encoder plays a major
role in the prediction process and, therefore, in APA’s transferability.

5.1.2 A false sense of inhibition

The objective of an invisible cloak APA is to prevent the detection of a specific target
class, typically the person class, hence the term invisible cloak. An adversary with such
an objective would attempt to influence the detector to refrain from predicting a bounding
box for the class person. An APA that generates false positives for poodle plants in the
vicinity of the patch would have no adverse consequences. In fact, from a global safety
perspective, the addition of detections of another class will either be disregarded by the
overall system or, in the most unfavorable scenario for the attacker, raise a warning by the
system. Detecting more people on or near the patch is obviously counterproductive for
the attacker. In summary, the mAP is not an appropriate metric for evaluating the impact
of an invisible cloak APA, as it is susceptible to being influenced by other classes false
positive.

Person average precision (AP) should be used to avoid false positives from other
classes. AP is calculated for a predefined Intersection over Union (IoU) threshold, typ-
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Table 5.1: White-box and transfer results for invisible cloak APAs designed either on
YOLOv5 or Faster R-CNN (person AP (%)). Clean refers to when there is no attack.
Patches are from Huang et al. (2023) work and are available in the github associated with
the paper.

Targeted network
Source YOLOv5 Faster R-CNN DETR
Clean 87.16 85.35 74.6
YOLOv5 1.2 20.53 17.69
Faster R-CNN 11.22 3.57 10.79

ically set to 0.5 in APA-related object detection studies. For instance, this is the setting
used in Huang et al. (2023) work. We propose to re-evaluate their state-of-the-art APAs
designed in their article and available in their GitHub repository1. We select APAs opti-
mized to target a YOLOv5 (Jocher et al., 2022) or a Faster R-CNN (Ren et al., 2015). We
evaluate the performance of these APAs when targetting YOLOv5, Faster R-CNN and
DETR (Carion et al., 2020) (see Tab. 5.1). We follow Huang et al. (2023) evaluation pro-
cedure and measure APAs performance on the INRIA Person test set (Dalal and Triggs,
2005) (see Paragraph 5.2.2 for details about INRIA Person). When targeting YOLOv5
and Faster R-CNN, in both white-box and black-box settings, we measure a compara-
ble attack performance to that reported in the original paper (Huang et al., 2023). When
transferred to DETR, patches highly reduce the person’s AP.

Nevertheless, this level of attack performance is attributable to an artifact resulting
from the IoU threshold process. Examining APA effects on a few images (see Fig. 5.1)
reveals two key side effects. First, it generates false positive person detections near the
target, which, as previously discussed, is counterproductive for the attacker’s goal. Sec-
ond, it introduces multiple regression errors, causing the predicted height of bounding
box to be half of the actual person’s height. These regression errors cause the predicted
boxes to fail to meet the IoU threshold required to match ground truth boxes. Predicted
boxes with an IoU with a ground truth box less than the threshold will be ignored (see the
beginning of Section 2.1.2). This would lead to a miss-detection of a person and a false
alarm on the person, drastically reducing the AP and, therefore, inducing people to think
that the patch correctly hides people from being detected.

We re-evaluate the previous APAs from Huang et al. (2023) work for various IoU
thresholds. Figure 5.2 plots the recall according to different IoU threshold values. For
both APAs, when the IoU decreases, the recall rapidly increases, indicating that the APA
performance falls drastically. In the black-box setting, the recall value matches the clean
recall value (clean refers to when there is no attack), suggesting that APAs fail to hide
people from being detected. Even in the white-box setting, APA performance is miti-
gated when the IoU decreases. These results confirm that the attack mechanism relies on
introducing bounding box regression errors and fails to hide people.

To ensure that the APA works regardless of the IoU threshold, we introduce a new
target objective for invisible cloak APA. The objective is to ensure that no individual is
identified in images when applying multi-label classification.

1https://github.com/VDIGPKU/T-SEA
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Figure 5.1: Examples of white-box (designed on YOLOv5 and applied to it) and black-
box transfer invisible cloak attack. The patch is designed on YOLOv5 and is from Huang
et al. (2023) work. Patches are designed to prevent persons from being detected.
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Figure 5.2: Recall as a function of the IoU threshold value used in detection evaluation.
Dashed lines represent detectors’ clean performance when 0.5 is the IoU threshold. APAs
are applied to YOLOv5, Faster R-CNN, and DETR. On the left, the APA is learned on
YOLOv5, and on the right figure, the APA is learned on Faster R-CNN. APAs are from
Huang et al. (2023) work. Patches are designed to prevent the detection of persons.

5.2 Adressing inhibition using multi-label classification
as a surrogate problem

5.2.1 Definition
Unlike object detection, multi-label classification suppresses the regression aspect, fo-
cusing only on categorizing the presence of the labels in an image. Multi-label image
classification involves multiple binary classification tasks, where each class is treated as
a separate binary decision, predicting whether the given label is in the image or not.
Consequently, the method leverages binary classifiers that operate in parallel, making de-
cisions independent for each label, which are then aggregated to produce the final set of
predictions. By deactivating the objective of predicting the bounding box, multi-label
classification de facto eliminates the influence of the IoU threshold on performance.

To create multi-label classifiers, we extract the encoder part from image classifiers
or object detectors. On top of this feature encoder, we add a spatial average pooling
operation to reduce the spatial dimension to obtain a feature vector. This feature vector is
then independently used by the binary classifiers. Figure 5.3 illustrates the architecture of
a multi-label classification network.

Once trained, multi-label classifiers are evaluated using the AP metric. As there is a
single output for each image and no more multiple proposals, the AP score can not be
perturbed by false positives when evaluating APA. The difference between the AP before
and after the attack directly encodes the inhibition capacity of the patch.

5.2.2 Experimental setup
Multi-label training. In this section, we detail the different networks selected for multi-
label classification. The following sections use these networks to design and test APA
performance. Two strategies can be employed to adapt networks: the whole network can
be fine-tuned on the new task, or only the multi-label head can be trained as linear prob-
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Figure 5.3: Illustration of a multi-label classifier.

ing. We choose to perform linear probing to keep the different encoding space properties
unchanged. Keeping the different encoders unmodified helps to study the most suited
encoder architecture for designing a transferable APA that hides people. Freezing the en-
coder also helps to directly compare the behavior of models used in image classification
and object detection. It ensures that the fine-tuning does not change the extracted features,
impacting the fair comparison between the two networks.

As for image classification, we use binary linear predictors for the output head and
train them independently using the following optimization problem:

∀j, argmin
θj

n∑
i=1

LBCE(Tθj ◦ f(xi), yi,j), (5.1)

where LBCE is the binary cross-entropy loss, f is the image encoder outputing a feature
vector, yi,j ∈ {0, 1} is the binary label for the sample n and the label j indicating the
presence of the label j in the image xi, Tθj : RC → [0, 1] is the linear head for the label j
and θj its associated parameters. We will omit the parameter notation in the following.

Selected encoders. We extract encoders from already trained image classifiers and ob-
ject detectors. We select several ResNet50 encoders (He et al., 2016): ResNet50-v1 and
ResNet50-v2 image classifiers from Pytorch Model Zoo, ResNet50-DETR extracted from
DETR (Carion et al., 2020), ResNet50-FRCNN extracted from Faster R-CNN (Ren et al.,
2015) available in Pytorch Model Zoo, ResNet50-DINO from Caron et al. (2021) and
ResNet50-MoCov3 (Chen et al., 2021). We also extract several ViT-B encoders (Doso-
vitskiy et al., 2020) and a Swin-T encoder (Liu et al., 2021).

Datasets and training recipes. The Common Objects in Context (COCO) (Lin et al.,
2014), Pascal VOC (Everingham et al., 2008), and INRIA Person (Dalal and Triggs, 2005)
datasets are widely utilized in computer vision research, particularly in object detection
and image segmentation tasks. The COCO dataset is a large-scale and diverse set of
images containing over 330,000 images with 80 object categories. It includes complex
scenes with multiple objects per image. Pascal VOC provides a smaller dataset than
COCO, with approximately 20 object categories. It contains less diverse scenes, object
types, and sizes than COCO. The INRIA Person dataset is specifically focused on the
detection of humans in images. It contains mainly outdoor scenes and is designed for
pedestrian detection tasks, offering fewer categories but more detailed attention to person
annotation.
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Table 5.2: Multi-label clean performance when freezing the encoder and training only
the binary classifier (person AP (%)). The multi-label classifier is trained on the COCO
training set (Lin et al., 2014).

Test dataset
Model COCO Pascal VOC INRIA
Swin-T 98.77 96.38 99.46
ResNet50-v1 98.87 97.11 99.46
ResNet50-v2 99.20 97.80 99.61
ResNet50-DINO 99.04 97.44 99.67
ResNet50-FRCNN 99.04 97.04 99.74
ResNet50-DETR 99.31 98.11 97.87
ResNet50-MoCo 98.99 97.42 99.79
ViT-B-MoCo 98.16 95.76 99.52
ViT-B-MAE 97.39 94.80 98.30
ViT-B-DINO 99.02 97.22 99.59

We train binary classifiers using the COCO training dataset because it offers a more
diverse range of images. For optimization, we employ stochastic gradient descent (SGD)
with a momentum of 0.9, the batch size is set to 512, and we train the models for 100
epochs. Table 5.2 reports the person’s AP of the trained classifiers on COCO (Lin et al.,
2014), Pascal VOC (Everingham et al., 2008) and INRIA Person (Dalal and Triggs, 2005)
test sets. The different networks reach remarkable performances across the three datasets.

5.2.3 Previous APAs on multi-label classification

In this section, we evaluate our birdhouse APA designed in the previous chapter (see
Section 4.4.3 for a reminder) and the object detector APAs from Thys et al. (2019) and
Huang et al. (2023) works (same as in Section 5.1.2) . APAs are tested on the INRIA
Person test set (Dalal and Triggs, 2005) as it offers a more classical framework; persons
are centered in images and close to the camera. None of the APAs show the capacity to
fool the multi-label classifiers and even when the source and the target network share the
same encoder (T-SEA Faster-RCNN on ResNet50-FRCNN, and Ours Swin-T on Swin-
T, see Table 5.3). These results highlight the fact that current APAs (Thys et al., 2019;
Huang et al., 2023) are not critical for inhibiting the detection of persons in images. In
the following section, we develop new APAs against multi-label classification.

5.3 A new APA against multi-label classification

In this section, we seek a method to create a transferable APA against multi-label classifi-
cation. As shown in the previous chapter (see Paragraph 4.2.2 for a reminder), optimizing
an APA using a criterion defined in the feature space helps reduce patch overfitting on
the source model, thus improving its transferability. To build on this, we try to adapt
our optimal transport-based methodology to create a transferable APA against multi-label
classification (see Section 4.3.2 for a reminder). To do so, we need to define a target dis-
tribution, which intuitively may be here the no person class distribution defined by images
that do not contain persons. The goal may be to push the attacked person distribution to-
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Table 5.3: Transfer results of invisible cloak patches. Difference between the clean perfor-
mance of the network and its performance when exposed to attacks (person AP difference
(%), a higher value indicates a better attack). Patches are resized and placed in the middle
of person detection for the INRIA Person test set.

Method
T-SEA

Thys et al. (2019)
Ours

(Huang et al., 2023) (Chapter 4)

Target
Source YOLOv5 Faster-RCNN YOLOv2 Swin-T

Swin-T 0 0 0 0.01
ResNet50-v1 0.74 0 0.26 0.35
ResNet50-v2 0 0 0 0
ResNet50-DINO 0 0 0 0.04
ResNet50-FRCNN 0.04 0 0.21 0.09
ResNet50-DETR 0.22 0 0.01 0.44
ResNet50-MoCo 0.02 0 0 0.03
ViT-B-MoCo 0 0 0 0
ViT-B-MAE 0.05 0.04 0.08 0.12
ViT-B-DINO 0.17 0 0 0

ward the no person distribution. However, this is not feasible due to the structure of the no
person distribution. Unlike class distributions, the no person distribution is highly vari-
able and does not exhibit a consistent structure. The non-presence of features responsible
for the person’s detection is not encoded uniquely.

An alternative may be to push the attacked person distribution toward a target class
distribution as in Chapter 4. However, as we have shown in the previous section, this
strategy fails. Instead of hiding people, the patch introduces features from the target class
without inhibiting the detection of the person. While effective in image classification, the
OT-based method is unsuitable for crafting an APA to suppress the detection of a specific
class. We thus rely on the decision boundary of the multi-label classifier.

5.3.1 An inhibition APA
In this section, we define the strategy used to attack multi-label classifiers. We consider
the standard notation where (xi, yi) ∈ X × Y , i = 1, ..., n, are samples drawn from
a joint distribution of random variables X and Y . As we are considering multi-label
classification problem, the input is sampled fromX = Rh×w×c, where h×w are the image
dimensions and c is the number of channels. Let T be a distribution over transformation
(e.g., rotations, scaling, blur, ...) and E a distribution over locations. For a given source
class ysrc, that we seek to inhibit, our patch is trained to optimize the following objective:

argmin
δ

EX,t∼T ,e∼E [Fysrc(A(δ,X, e, t)) + TV (δ)] , (5.2)

where Fysrc = Tysrc ◦ f and Tysrc is the binary classifier associated with the class ysrc,
A(δ, x, e, t) the patch applicator operator in an image x where δ is the patch (see Fig.
2.18 for a reminder), t is a ensemble of patch transformations and e is the patch location
in the image x. As decision boundary-based methods tend to create an APA that pushes
attacked feature representations into unseen regions, we propose to reduce the dimension
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of the feature space. It is expected that this reduction will limit APA’s overfitting in those
uninformative regions. We project feature representations using a Principal Component
Analysis (PCA) (Jolliffe and Cadima, 2016) and learn the binary classifier from this re-
duced feature space. The binary classifier is learned using the same learning recipe as in
Section 5.2.2. Then, we optimize the patch using the following objective:

argmin
δ

EX,t∼T ,e∼E

[
F̃ysrc(A(δ,X, e, t)) + TV (δ)

]
, (5.3)

where F̃ysrc = Tysrc ◦ PCA ◦ f . We also considered the targeted version of the two
previous losses by adding a term to the loss to sway a binary classifier to output another
target class. For example, the targeted version of the non-reduced inhibition is:

argmin
δ

EX,t∼T ,e∼E

Fysrc(A(δ,X, e, t))︸ ︷︷ ︸
inhibition term

−Fytgt(A(δ,X, e, t))︸ ︷︷ ︸
targeted term

+TV (δ)

 , (5.4)

where the targeted term may limit the APA to push the attacked feature representations
into unseen regions.

5.3.2 APA evaluation
Experimental setup. In this section, we evaluate four APA methods developed in the
previous section. We consider the same setting as in Section 5.2.2: same selected encoders
(ResNet (He et al., 2016), ViT (Dosovitskiy et al., 2020) and Swin (Liu et al., 2021)) and
multi-label classifiers are learned on the COCO training dataset (Lin et al., 2014). For the
reduced-Attacks, which involve projecting features using PCA, we select the first twenty
principal components. This selection is based on the observation that including additional
components does not increase the AP for the person class. We reduce the dimension from
2048, 1536 and 768 to 20 for ResNets, ViT and Swin respectively. The different APAs
are evaluated on the non-reduced feature space.

As in Chapter 4, the gradient of the adversarial loss and the total variation loss are
computed individually, normalized, and combined using a weighted sum (see Paragraph
4.4 for a reminder). Patch values are clipped into the image range at each iteration. We fix
sampling distributions from EoT (Eykholt et al., 2018) for all the methods. Patches are
trained on the INRIA Person train set (Dalal and Triggs, 2005). The patch optimization is
performed using 100 epochs with a batch size of 15 images. Two different learning rates
are tested (i.e., 0.5, 1), and we evaluate the APA with the best training loss among the two
learning rates.

Results. We evaluate the white-box attack performance and the transferability of the
different APAs and report the results in Table 5.4-top for the non-reduced attacks and in
Table 5.4-bottom for the reduced attacks. For the unmodified inhibition attack (named In
in Table 5.4), only a small fraction of the APA successfully fool their source model in the
white-box setting (R50-v1, R50-FRCNN, R50-DETR, VIT-B-DINO). The other models
seem to be more robust. Even when succeeding in the white-box setting, the correspond-
ing APAs fail to transfer to other models, even for models sharing the same architecture.
For most of the models, adding a targeted term in the loss degrades the white-box per-
formance and the transferability (In-Tgt in Table 5.4). Reducing the feature dimension
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Table 5.4: Transfer results of invisible cloak patches. Difference between the clean perfor-
mance of the network and its performance when exposed to attacks (person AP difference
(%), a higher value indicates a better attack). Patches are resized and placed in the middle
of person detection for the INRIA Person test set. In stands for the inhibition attack (Eq.
5.3), In-Tgt stands for the inhibition targeted attack. R-In stands for the reduced inhibition
attack (Eq. 5.4), In-Tgt stands for the reduced inhibition targeted attack.

Method Source
Target Swin-T

R50 ViT-B
v1 v2 DINO FRCNN DETR MoCo MoCo MAE DINO

In

Swin-T 1.8 0.7 0.5 0.0 0.0 2.0 0.0 0.0 1.3 0.0
R50-v1 0.0 37.3 0.2 0.0 0.0 2.4 0.0 0.0 1.3 0.0
R50-v2 0.2 1.2 7.6 0.2 0.1 1.9 0.0 0.0 1.6 0.0

R50-DINO 0.3 1.8 0.0 2.8 0.2 3.6 0.1 0.1 1.9 0.1
R50-FRCNN 0.5 3.5 0.6 0.7 8.1 5.0 0.3 0.2 1.6 0.2
R50-DETR 0.0 2.7 0.0 0.0 0.0 10.4 0.0 0.0 0.0 0.0
R50-MoCo 0.4 2.5 0.2 0.7 0.7 3.2 3.5 0.2 1.9 0.1

ViT-B-MoCo 0.2 0.8 0.0 0.2 0.0 2.3 0.0 0.0 1.5 0.0
ViT-B-MAE 0.0 0.6 0.0 0.0 0.0 1.2 0.0 0.0 2.0 0.0
ViT-B-DINO 0.2 0.8 0.0 0.0 0.1 2.6 0.0 0.1 1.4 31.5

In-Tgt

Swin-T 1.6 0.4 0.0 0.0 0.0 1.8 0.0 0.0 1.2 0.0
R50-v1 0.2 23.5 0.6 0.7 1.0 4.0 0.1 0.0 1.3 0.4
R50-v2 0.6 1.2 4.4 0.9 0.4 2.5 0.1 0.0 1.5 0.0

R50-DINO 0.4 3.8 1.0 6.6 1.7 4.0 0.5 0.1 1.5 0.0
R50-FRCNN 0.5 2.7 0.9 0.9 7.7 5.0 0.5 0.2 1.5 0.1
R50-DETR 0.0 4.8 0.0 0.0 1.2 7.9 0.0 0.0 0.0 0.0
R50-MoCo 0.5 1.5 0.9 1.0 1.7 3.2 5.3 0.2 1.7 0.0

ViT-B-MoCo 0.1 1.2 0.0 0.0 0.0 2.5 0.0 0.0 1.7 0.0
ViT-B-MAE 0.0 0.2 0.0 0.0 0.0 1.4 0.0 0.0 1.6 0.0
ViT-B-DINO 0.3 2.3 0.3 0.5 0.8 3.0 0.2 0.0 1.6 14.9

R-In

Swin-T 0.3 0.5 0.4 0.0 0.0 1.8 0.0 0.0 1.6 0.0
R50-v1 0.1 3.8 0.0 0.0 0.0 2.3 0.0 0.0 1.6 0.0
R50-v2 0.0 0.9 5.2 0.0 0.0 2.1 0.0 0.1 1.5 0.0

R50-DINO 0.4 0.9 0.2 1.9 0.2 2.8 0.0 0.1 1.8 0.0
R50-FRCNN 0.4 3.2 0.8 0.8 7.5 4.9 0.5 0.2 1.5 0.2
R50-DETR 0.0 1.4 0.0 0.0 0.0 8.7 0.0 0.0 0.0 0.0
R50-MoCo 0.5 1.8 0.4 0.5 0.2 2.6 1.1 0.3 2.0 0.1

ViT-B-MoCo 0.1 1.1 0.0 0.0 0.0 2.0 0.0 0.0 1.5 0.0
ViT-B-MAE 0.0 0.0 0.0 0.0 0.0 1.2 0.0 0.0 0.5 0.0
ViT-B-DINO 0.1 5.0 0.1 1.1 1.2 4.4 0.0 0.0 1.6 6.4

R-In-Tgt

Swin-T 0.2 0.8 0.1 0.1 0.0 2.8 0.0 0.0 1.5 0.0
R50-v1 0.1 19.1 0.4 0.3 0.5 3.5 0.0 0.0 1.3 0.0
R50-v2 0.2 1.3 3.1 0.1 0.0 2.0 0.0 0.1 1.7 0.0

R50-DINO 0.4 2.3 0.8 5.6 1.1 3.5 0.5 0.1 1.6 0.0
R50-FRCNN 0.4 2.6 0.7 0.7 6.9 5.0 0.4 0.2 1.5 0.1
R50-DETR 0.0 0.3 0.0 0.0 0.0 6.2 0.0 0.0 0.0 0.0
R50-MoCo 0.5 1.5 0.9 1.3 1.2 3.2 3.8 0.2 1.7 0.0

ViT-B-MoCo 0.1 1.0 0.0 0.0 0.0 2.2 0.0 0.0 1.6 0.0
ViT-B-MAE 0.0 0.0 0.0 0.0 0.0 1.1 0.0 0.0 0.6 0.0
ViT-B-DINO 0.3 5.3 0.5 1.5 1.2 4.6 0.4 0.0 1.6 6.0

86



degrades the white-box performance and does not improve the APA transferability (see
Table ?? both methods). To summarize, none of the attack methods produce an APA ca-
pable of significantly transferring to other models. The ResNet50 architecture (He et al.,
2016) is most sensitive to an inhibition APA, while Swin-T architecture (Liu et al., 2021)
is the less sensitive. When used to train ViT, the self-supervised methods MoCo (He et al.,
2020) and MAE (He et al., 2022) enable a more robust model than DINO (Caron et al.,
2021).

5.4 Conclusion
In this chapter, we studied a more challenging problem of designing an APA that hides
people from being detected. We observe that the standard object detection evaluation pro-
cedure is influenced by APA’s false positives and is highly dependent on the IoU threshold
between box prediction and ground truth, raising a false sense of APA criticality. To mit-
igate these issues, we propose a new surrogate problem. This surrogate problem relies on
multi-label classification and ensures that the APA works regardless of the IoU threshold.
After observing that state-of-the-art image classification APA (Labarbarie et al., 2024) or
object detection APAs (Thys et al., 2019; Huang et al., 2023) fail to disrupt multi-label
classifiers, we proposed a new strategy to learn an APA against this task. This new inhibi-
tion attack succeeded in fooling some networks but did not generate an APA that transfers
across models even when sharing the same architecture. These findings suggest that a
universal pattern inhibiting multiple object detectors has yet to be discovered.
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Chapter 6

Conclusion and perspectives

In this manuscript, we seek to address the following research question: “Can an attacker
design an adversarial patch attack (APA) capable of disrupting a real-world system with-
out possessing any prior knowledge of the targeted system?”. In Section 6.1, we summa-
rize our contributions and findings. Then, in Section 6.2, we discuss the limitations of our
work. We contextualize our results within the broader scope of adversarial attack research
and offer our perspective on the field’s current state of the art. Finally, we propose future
research directions in Section 6.3.

6.1 Summary of findings

Definition of a critical patch. Even though numerous patch attacks have been proposed
in the literature, no work describes the prerequisites of a critical patch. To this extent, in
Chapter 3, we have defined what may be a critical patch for a real-world system. Namely,
a critical patch is a patch that is robust to physical transformations and transferable. The
transferability measures the attack performance when a patch designed on model A tar-
gets a different model B. We have demonstrated that designing an adversarial patch attack
may not be physically feasible without considering specific training techniques. Our find-
ings indicate that the current methods cannot generate an APA capable of transferring to
multiple models. While several approaches have been proposed in the APA literature to
enhance patch physicality, there has been less focus on improving their transferability.

Patch transferability among image classifiers. In Chapter 4, we have investigated the
transferability of APAs between image classifiers. We have categorized the different APA
methods into two groups based on their learning principles: decision boundary-based
(APA design relies on a classifier) or feature space-based methods (APA criterion de-
fined in the feature space). We have shown that methods relying on classification decision
boundaries tend to create an APA that overfits. The experimentation shows that the per-
turbation induced by the resulting APA pushes the attacked image representations into
unseen regions far from source and target feature distributions. These unseen regions
are network-specific, resulting in poor transferability. We have introduced a more ro-
bust and generalized feature space method that relies on optimal transport, which pushes
the attacked feature distribution to match a target class distribution. This method miti-
gates patch overfitting to the source model and significantly enhances its transferability
across CNNs and Transformers. When learned on a Swin model (A Transformer-based
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model), our patch shows state-of-the-art transferability results through numerical, hybrid,
and real-world experiments.

A patch to inhibit the detection of persons. In Chapter 5, we have studied the trans-
ferability of invisible cloak APAs across different object detectors. We have demonstrated
that the standard evaluation procedure for object detection can mislead the perception of
APA effectiveness. In fact, the evaluation procedure is influenced by APA’s false positives
and is highly dependent of the Intersection over Union threshold. To address this issue,
we have developed a new evaluation method based on multi-label classification, which
overcomes the limitations of previous approaches and provides a more accurate measure
of APA’s inhibition capacity. By re-evaluating the state-of-the-art APAs adapted to object
detection using this new procedure, we found that they fail and the people are nevertheless
detected correctly. We have introduced a novel inhibition attack designed for multi-label
classification, which successfully deceives specific networks. However, this attack does
not generate an APA capable of transferring across multiple models, suggesting that a
universal pattern for inhibiting multiple detectors has yet to be found.

6.2 Discussion

Limitations of our work. To move towards the design of a critical APA, we have pro-
posed two contributions regarding the transferability of APA. The first contribution is a
novel method for creating more transferable APAs in image classification, and the second
is the definition of a surrogate problem to evaluate the inhibition capacity of patches and,
consequently, the transferability of invisible cloak APA. Although we have studied APA
transferability, a significant limitation of our work is the lack of theoretical foundations
underpinning this notion. In this manuscript, we have adopted the widely used definition
of attack transferability: an attack is considered transferable if, when designed on a model
A, it successfully targets a different model B. This notion remains vague and requires fur-
ther clarification. Some attempts have been proposed for understanding adversarial noise
transferability (Ilyas et al., 2019; Chen and Liu, 2024). For example, Ilyas et al. (2019)
show that adversarial noises can be attributed to the presence of what they called non-
robust features. These features are incomprehensible to humans, as they mainly rely on
noisy patterns, yet networks may use them. They hypothesize that different networks
trained on different datasets will likely learn similar non-robust features, thus explain-
ing the transferability of an adversarial noise constructed by exploiting the non-robust
features. However, this theory has been verified only for old networks trained in a super-
vised way. Li et al. (2024) show that non-robust features do not generalize across different
learning strategies, suggesting that non-robust features are paradigm-wise shortcuts.

Although this widely used definition of a transferable attack is useful for quantifying
transferability, it offers no insight into the underlying mechanisms that enable transfer-
ability. Moreover, none of the developed attacks in this dissertation or in the literature
(to our knowledge) provide guarantees about the transferability of the attack, which is a
significant limitation. From an attacker’s perspective, if a company develops a new archi-
tecture or learning strategy and does not release it, we can not examine the efficacy of the
attack on the targeted model. From the defender’s perspective, system developers are un-
aware of which architectural or learning strategies may limit the transferability of attacks.
This lack of knowledge prevents them from developing or selecting a safer system.
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The difficulty of characterizing transferable attacks is linked to a more general diffi-
culty in understanding deep networks. Let us consider the scenario of APA transferability
among image classifiers, which, as we saw, is the simplest attack scenario where the clas-
sifiers can be decomposed into an encoder followed by a linear classifier. The encoder
is responsible for extracting the relevant features, while the linear classifier aggregates
these features to predict a label. The first step in defining APA transferability is to under-
stand the role of the features extracted by the encoder. What do they encode? What is
the meaning of the range of their values? Are they surjective and/or injective? However,
answering these questions is very challenging. Interpretability questions are addressed
under the XAI field (see Paragraph 1.2 for a reminder). However, the different XAI meth-
ods for computer vision are often post-hoc methods and give a weak understanding of the
triptych (architecture, learning strategy, training dataset) defining neural networks. For
example, performing a Grad-CAM (Selvaraju et al., 2017) may provide an “explanation”
of the classifier decision, but what about the whole network understanding? Another
potentially interesting toolkit is Microscope1. This visualization toolkit optimizes and
retrieves the input, which maximizes the activation of a specific neuron of a given layer
and network. However, similar to Grad-CAM, it does not provide an understanding of the
overall network; instead, it only provides isolated explanations. For another interesting
initiative, the reader can refer to Distill23. The explanations raised by these XAI meth-
ods become ineffective when the architecture, the learning strategy (learning paradigm or
training recipe), or the training dataset changes.

The decision-making process is another aspect of neural networks that needs better
understanding. We need to find out how these encoded features are used and aggregated
to produce a decision. For example, the linear head of image classifiers is usually dense
and pays attention to all the features extracted by the encoder. We do not know if the
classification of an image relies on some hierarchy, e.g., first characterizing it as a dog or
a cat, then which dog or which cat, and so on.

This lack of understanding of neural networks is not exclusive to this particular study,
but is a common challenge faced by the entire computer vision community.

A shared weak understanding. The field of deep learning has experienced explosive
growth in recent years, with an overwhelming number of new papers being published at
an unprecedented rate. Since 2019-2020, it is not possible to keep tracking new papers
on deep learning, even regarding the sub-field of adversarial attacks (see Fig. 6.1 from
Nicholas Carlini blog4). While the expansion of research in this field can be exciting, it
does not always conduct to new insights. We are seeing a growing number of papers in
top-tier conferences that often offer incremental improvements without providing deeper
insights or theoretical validation. In some cases, new problems are introduced, solved
with relative success, but without sufficient consideration of their broader relevance or
impact. Additionally, the current enthusiasm surrounding deep learning can sometimes
overshadow valuable research in related areas, which may be overlooked or undervalued.

Whereas adversarial noise transferability has been explored in several works, APA
transferability has remained less studied. Most works on APAs propose new methods
to improve or evaluate their physicality. However, many of these works may need to

1https://microscope.openai.com/
2https://distill.pub/2018/building-blocks/
3https://distill.pub/2017/feature-visualization/
4https://nicholas.carlini.com/writing/2019/all-adversarial-example-papers.html
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Figure 6.1: Evolution of the number of papers on adversarial noise through the years.
Source: Nicholas Carlini blog.

be revisited and refined if the inhibition transferability of APAs between detectors is not
proven to be feasible. Establishing this transferability is crucial, as it could significantly
influence the relevance and applicability of existing research. By integrating insights
gained from APA transferability studies, researchers can enhance their methodologies
and ensure their findings remain valuable in the evolving landscape of APAs.

This trend of focusing on hype-driven topics shows no signs of slowing down with
the rise of LLMs. Most researchers have switched to studying LLMs, including those
previously working on adversarial attacks against computer vision, and now focus on
attacks against such networks. However, LLMs are different but much more complex
systems than models like ResNet (He et al., 2016), which remains far from fully under-
stood despite being a simpler architecture. The fact that we have yet to comprehend why
specific adversarial attacks succeed against ResNet underscores the premature shift to
LLMs, where the underlying mechanisms are even less transparent. This focus on fash-
ionable subjects risks sidelining essential work on “simpler”, foundational models that
could provide critical insights for the field.

The following section provides some research actions that could provide valuable in-
sights into attack transferability.

6.3 Perspectives
As discussed, a transferable attack refers to an attack that, when designed on a source
model Fs, successfully attacks a different model Ft, a model depending on the triptych:
architecture, learning strategy, and training dataset.

Towards a better understanding of transferability. A first action to better understand
the transferability may be to characterize the set of transferable attacks for a fixed trip-
tych, i.e., networks sharing the same architecture, learning strategy, and training dataset,
but initialized differently. To examine the existence of a transferable attack across these
networks, we can optimize under a white-box scenario an attack that tries to fool simul-
taneously all the models. If such an attack exists, then a transferable attack may be possi-
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ble. To conduct such a study, we require multiple models. A solution would be to use the
checkpoints provided by Laurent et al. (2023) paper, which gives approximately 10000
ResNet18 trained on CIFAR-100 (Krizhevsky et al., 2009) and 2000 ResNet18 trained on
TinyImageNet (Wu et al., 2017). Once we are convinced of the existence of such attacks,
we can study the attack perturbation mechanism, i.e., which features does the attack rely
on? To do so, we need to characterize, as discussed, what the features actually encode.

For each network sharing the same triptych but trained from different initializations,
we get a different set of weights, but the network performance is nearly the same. Do these
networks learn common features? To answer this question, (Guth et al., 2023) work tries
to determine what is stable across different training runs. They show that when the width
of networks goes to infinity, network activations are equal up to rotations. They propose
an alignment procedure to align, at each layer, the feature activations of two networks.
So, two networks are computing using the same activations up to an approximation error.
A perspective may be to create an attack that only exploits the common activations in the
two networks, thus enhancing its transferability to networks sharing the same triptych.

Multi-label classification as a defense. Another perspective may be to use multi-label
classification as an empirical defense against inhibiting APAs. The multi-label classifier
would be used alongside the object detector to, for example, raise warnings if the deci-
sions between the two networks differ. Two different encoders must be used for the object
detector and the multi-label classifier to strengthen the system’s robustness.

A path between inhibition and class-switch APA. In Chapter 5, we show that design-
ing an inhibition APA is challenging even in the white-box attack scenario. A perspective
may be to create an APA that changes the predicted class of the object. This type of APA
is more accessible as it only targets the bounding box classification and not its objectness.
A first attempt is the Shapira et al. (2022) work. However, their attack is only performed
to semantically close classes (car to bus) and does not show high transferability.
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zagol, and Léon Bottou. Stacked denoising autoencoders: Learning useful representa-
tions in a deep network with a local denoising criterion. Journal of machine learning
research, 11(12), 2010.

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew
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Appendix A

Appendix of Chapter 1

A.1 A short history of neural networks

The rise and success of artificial neural networks has been a long and sinuous journey.
The term neural network is inspired by the biological structure of the human brain. The
foundation of neural networks, the neuron, was initially designed by McCulloch and Pitts
(1943) who mathematically proposed to model the neuron activation as an aggregation
of neuron inputs using binary weights followed by a threshold function. The first train-
able neural network, named the perceptron, was introduced by Rosenblatt (1958) in the
late 1950s. Rather than using binary weights to aggregate the neuron inputs, Rosenblatt
(1958) used real-valued neuron weights and estimated these weights using a sequential
updating rule. This rule is a special case of an algorithm called stochastic gradient de-
scent (Robbins and Monro, 1951), which remains today one of the major keystones to
train deep networks. Despite this success, due to the lack of theoretical foundations and
the inability of the perceptron to learn the XOR function, the field declined through the
years.

A.2 The Confiance.ai program

In late 2021, the Confiance.ai program was launched in France. It is a joint initiative of
industry and academia to develop and promote French capabilities in trustworthy AI.

To strengthen key sectors of the economy of tomorrow (energy, automotive, IT, space,
etc.), the French government has launched the France 2030 program, investing 54 bil-
lion euros in French companies, universities, and research centers. As one of the three
pillars of the Grand Défi ”Securing, certifying and improving the reliability of systems
based on artificial intelligence,” the Confiance.ai program was launched to help industrial
companies integrate trustworthy AI into their critical systems. This program serves as the
technological pillar for building trustworthy AI. The second pillar concerns the evalua-
tion and validation of the AI-based system, and the third pillar concerns standardization
(defining norms, standards, and regulations toward AI certification).

To this end, this program gathers industrials, diverse research organizations, and aca-
demic institutions to leverage diverse expertise to address the different challenges (ro-
bustness, ethics, explainability and transparency, safety) raised to obtain a Trustworthy
AI (Fig. A.1). The different challenges were divided into projects (called EC for environ-
ment de confiance or trustworthiness environment), where each challenge is decomposed
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Figure A.1: An overview of the different actors involved in the Confiance.ai program

into sub-problems to try to tackle each problem independently. To get closer to the so-
lutions’ applicability and industrial usefulness, the industrial partners provided different
use cases for which the independent solutions can be evaluated.

An industrial use case is an AI application developed by a partner that can’t be de-
ployed in the company because of a lack of trust. A typical example is the welding
quality inspection proposed by Renault. Renault’s development team has developed a
model that can determine whether a weld on the chassis is successful or not. It is a simple
classification problem. The training is unbalanced because the welds are generally good,
but the developed system got a very good recognition rate: more than 97%. However, the
quality supervisor refused to deploy the solution in the factory because the accuracy score
was insufficient. Renault brought this use case to Confiance.ai to get methods and tools
to develop an AI that would meet the expectations of the quality supervisor by adding a
trust dimension.

Some other ECs have been dedicated to ensuring the real-world feasibility of proposed
trustworthy solutions (Fig. A.2). To facilitate the integration of AI into critical systems an
”Environment of Trust” (Environnement de Confiance) has been developed. This environ-
ment served as a modular platform, providing methods and tools that could be seamlessly
integrated into existing engineering workflows. The program’s focus extended beyond
the mere development of technology, emphasizing the certification and accountability of
AI systems in alignment with European standards and regulations on AI. To learn more
about the Confiance.ai program, see the White Book1.

To further develop the scientific solutions, academics put forth several proposals, lead-
ing to the initiation of doctoral studies and postdoctoral research. PhD candidates were
associated with a research organization (typically IRT SystemX) and an academic part-
ner. Each candidate had one advisor at IRT and one or more advisors in the laboratory.

1https://www.confiance.ai/wp-content/uploads/2023/09/LivreBlanc-Confiance.ai-Octobre2022-1.pdf
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Figure A.2: Diagram of the different environment of trust (EC) of the Confiance.ai pro-
gram. These ECs have been classified into two categories: those dedicated to advancing
the development of trustworthy AI and those allocated to facilitating solution integrations.

Each PhD topic was associated with an EC. This thesis is associated with EC4 (related
to the development of trustworthy AI by design) and was started initially to leverage the
safety aspects of already deployed AI systems, especially AI components deployed in
cyber-physical systems.
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Appendix B

Appendix of Chapter 3

B.1 Effects of patch transformations during training

Figure B.1: Examples of the effect of the EoT method (Athalye et al., 2018) on the result-
ing patch style. Brown et al. (2017) patches are designed to fool ResNet 50 to output the
targeted class birdhouse, and Saha et al. (2020) patches are contextual patches optimized
to prevent YOLOv2 from detecting persons.

In this section, we qualitatively evaluate the impact of using the Expectation of Trans-
formation (EoT) method introduced by Athalye et al. (2018) on the resulting adversarial
patch attack (APA). Specifically, we compare patches generated without EoT (W/o) and
with EoT applied to all transformations (All) as in Section 3.3.2.

Our observations indicate that the W/o setting tends to produce pixelated patches,
which lack smooth transitions between pixels. This pixelation suggests that these patches
are less likely to work effectively across different physical scenarios, as they may be sensi-
tive to variations in real-world conditions such as lighting, perspective, and camera noise.
On the other hand, the patches generated using the All setting are notably smoother, with
more continuous gradients and textures. These smoother patches are not only visually
more coherent but also more robust to the range of transformations that may occur in
real-world deployments.
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Appendix C

Appendix of Chapter 4

C.1 Implementation details

Our method training routine uses the PyTorch library (Paszke et al., 2019). For the train-
ing of each patch on medium and large models we consider a single NVIDIA V100-32G
or a single NVIDIA A100 respectively. To train patches on smaller NVIDIA cards we
should reduce the batch size.
When not specified, patches are designed to target one the following classes: salamander,
starfish, bird house, bullfrog, pinwheel, mongoose, brown bear, accordion and common
iguana.
We use Expectation over Transformations (EoT (Eykholt et al., 2018)) to obtain a more
physically realizable patch, similarly to prior work on APAs (Brown et al., 2017; Lee and
Kolter, 2019; Casper et al., 2022). For all the methods (GAP (Brown et al., 2017), La-
VAN (Karmon et al., 2018), L2 (Inkawhich et al., 2019) and ours), during training, we
randomly rotate the patch up to five degrees for the x and y-axis and up to 10 degrees for
the z-axis. We also randomly scale the patch between 70× 70 to 110× 110 pixels, adjust
patch brightness between [−0.1, 0.1] and patch blur between [0.8, 1.2], and apply normal
noise of magnitude 0.1 on the patch. Patches are randomly translated in the image but not
in the center.
To control the balance between the adversarial loss and the total variation loss, the gra-
dient of each loss is computed individually, normalized, and combined using a weighted
sum. Following Nesti et al. (2022) we choose wadv = 1 and wTV = 0.1 where wadv is the
weight for the adversarial loss and wTV is the weight for the TV loss.

Computation time. We measure and report the computation time of each method in
Table C.1. This Table reports the averaged computational time for the different methods.
Our method has a similar computational time as other methods. This result may be coun-
terintuitive as OT losses are known to be slow, but in our setting, the number of samples
is low. The M3D method (Zhao et al., 2023) is much slower than other methods. It is
coherent, this method trains alternatively the patch and two models in a min-max game.

113



Table C.1: Computational time of the different methods to obtain a fully optimized patch
(minutes). Times are averaged over ten optimization runs. Each run is launched on the
same setup composed by a single NVIDIA A100.

Method Time
GAP (Brown et al., 2017) 20
LaVAN (Karmon et al., 2018) 30
L2 (Inkawhich et al., 2019) 20
TnT (Doan et al., 2022) 30
Casper et al. (2022) 35
TTP (Naseer et al., 2021) 30
M3D (Zhao et al., 2023) 66
Ours (SW2

2)
(1)
500 19

Ours (W2
2)

(1) 20

C.2 Feature point method instability
To measure the stability of the L2 method (Inkawhich et al., 2019), we launch the opti-
mization for three randomly selected target points. Patches are designed to sway ResNet50-
v1 or Swin-T to output the class Australian terrier. Figure C.1 plots the learning curves
and the resulting patches for our distribution-based approach for Resnet50-v1 and Swin-
T, respectively. Figure C.2 and C.3 plot the learning curves and the resulted patches of
the L2 method for Resnet50-v1 and Swin-T, respectively. These four graphs show that
our method is the easiest to optimize and is more robust to optimization artifacts. For the
Swin-T model, the optimization for the L2 method becomes noisy. Table C.2 reports the
transfer results of the obtained patches from previous figures. Although the optimization
has converged for the first target of the L2 method for ResNet50-v1, the obtained patch is
harmless. Even if the APA works, its attacking capacity depends on the considered target
point. For example, the mean transferability on Swin-T can decreased by a factor four. In
general, our distribution-oriented approach outperforms the L2 method.

Table C.2: Transfer results between categories of models (tSuc (%)) for the L2 method
and for our distribution-oriented method. Three different target points are evaluated for
the L2 method. Results are for the source model ResNet50-V1 and Swin-T, for the class
Australian terrier and for patches of size 60 × 60. Patches are placed randomly in the
image but not at the center of images.

Target
mean / std

Source Method CNNs-v1 CNNs-v2 ENet CNext DeiT Swin AT

ResNet50-v1
L2 (Inkawhich et al., 2019)

Target 1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 / 0
Target 2 36.64 2.52 9.35 0.52 3.59 0.5 3.71 8.12 / 12
Target 3 43.83 4.18 8.82 0.75 4.98 0.58 6.09 9.89 / 14.1

Ours 43.34 4.76 8.75 0.92 6.46 0.63 4.68 9.94 / 13.9

Swin-T
L2 (Inkawhich et al., 2019)

Target 1 4.12 1.18 2.41 0.23 1.83 1.9 0.39 1.72 / 7.8
Target 2 26.97 7.36 4.65 3.9 7.2 6.13 1.92 8.3 / 7.8
Target 3 0.17 0.11 0.12 0.1 0.1 0.07 0.1 0.11 / 0.02

Ours 50.77 12.54 14.2 7.08 13.64 8.19 5.94 16.05 / 14.5
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Figure C.1: Learning curves and resulted patches of our distribution-oriented method.
The optimization is run for three different learning rate. The source model is ResNet50-
v1 or Swin-T and the targeted class is Australian terrier.
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Figure C.2: Learning curves and resulted patches of the L2 method for different targeted
points. For each targeted point the optimization is run for three different learning rate.
The source model is ResNet50-v1 and the targeted class is Australian terrier.
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Figure C.3: Learning curves and resulted patches of the L2 method for different targeted
points. For each targeted point the optimization is run for three different learning rate.
The source model is Swin-T and the targeted class is Australian terrier.
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C.3 Benefits of Optimal Transport
Optimal transport-based losses (both exact and sliced) has the following advantages:

• OT losses take into account the underlying metric space (through the cost matrix)
on which the probability distributions are defined,

• for non-overlapping distributions such as ours, the Kullback-Leibler divergence is
infinite.

To illustrate the first point, we consider the toy example shown in Figure C.4. We
define four different one-dimensional distributions supported here by five points. We
compute the 1-Wasserstein distance and the KL divergence between the red and the blue
distributions for each column (results are shown between graphs). The blue mass has been
moved near the first point from right to left. The 1-Wasserstein distance captures this mass
shift, while the KL divergence does not and remains constant. This toy example highlights
that OT losses capture the underlying geometry on which distributions are defined. More
details concerning the advantages of OT over other methods can be found in (Arjovsky
et al., 2017) (Part 2: Different Distances).

Figure C.4: Example of distributions defined on five points with different mass values.
The 1-Wasserstein distance and the KL divergence is computed between the red and the
blue distribution for each column.

C.4 Model robustness and patch position
In this section, we evaluate the robustness of models according to the patch position in im-
ages. We consider the same families of models as before. We define nine patch positions
and measure the patch transferability when the patch is fixed at one of these positions.
Figure C.5 represents the nine patch positions. We regroup these positions into three cat-
egories: Corner, Cross, and Center. We measure the patch transferability for a patch of
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size 40× 40 (≈ 3% image size). Results are averaged over methods (GAP (Brown et al.,
2017), LaVAN (Karmon et al., 2018), L2 (Inkawhich et al., 2019) and ours), classes, and
categories of patch position. Table C.3 reports the patch transferability according to its
position. CNNs-v1 models are much more biased by the center of images than other net-
work families. The accuracy of CNNs-v1 drops by a factor of 14 % when the patch is
moved to corners to the center of images. This effect is not entirely due to the occluding
of the object of interest since the patch is very small. Very recent families of networks
(CNext and Swin models) are the more balanced networks in using context in images. For
these models, the accuracy is nearly the same when the patch is placed in either corners
or the center. To measure the actual efficiency of patches and to not occlude the object of
interest in the case of large patches, its patches may not be placed in the center of images.

Table C.3: Transfer results according to the categories of patch position (Accuracy (%)).
Results are averaged over methods, over classes, over patch positions and are for patches
of size 40× 40.

Target
CNNs-v1 CNNs-v2 ENet CNext DeiT Swin AT

Position
Clean 74.90 77.63 80.15 82.42 77.81 82.43 65.44

Corner 71.07 76.57 78.85 81.97 76.33 81.43 64.24
Cross 67.65 75.36 77.71 81.66 75.66 81.44 62.44
Center 61.52 72.01 74.23 80.72 73.94 80.71 57.06

Figure C.5: Illustration of the categories of patch positions.

C.5 Transferability on adversarially trained models
In this section, we study the robustness of Adversarially Trained (AT) models. We con-
sider two scenarios: when the patch is learned on AT models and when not. To strongly
transfer on an AT model, the patch must be designed on an AT model (Table C.4). None of
the other source models can show good transferability results when applied to AT models.
These results suggest that AT models learn different representations than other networks.
From Table C.5, we see that the GAP method (Brown et al., 2017) and our method are the
best procedures to design a patch to target an AT model.
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Table C.4: Transfer results between categories of models (tSuc (%)). Results are averaged
over classes and over patch sizes. Patches are designed using our method (W2

2)
(1).

Target
CNNs-v1 CNNs-v2 ENet CNext DeiT Swin AT mean / std

Source
Clean 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 / 0

CNNs-v1 39.65 13.01 8.27 2.44 4.89 3.16 0.82 10.32 / 12.56
CNNs-v2 19.0 11.35 3.82 4.51 3.74 4.19 0.45 6.72 / 5.86
ENet 35.12 10.45 32.0 2.27 7.8 3.79 3.49 13.56 / 12.94
CNext 3.47 12.2 0.92 25.14 2.04 15.12 0.16 8.44 / 8.69
DeiT 22.26 11.43 10.18 5.29 39.51 9.25 5.08 14.72 / 11.43
Swin 20.55 17.89 8.09 17.7 13.55 49.1 0.72 18.23 / 14.09
AT 39.75 10.69 17.35 3.51 19.87 5.31 38.95 19.35 / 13.77

Table C.5: Transfer results between categories of models (tSuc (%)). Results are averaged
over classes and over patch sizes. Patches are placed randomly in the image but not at the
center of images.

Target
mean / std

CNNs-v1 CNNs-v2 ENet CNext DeiT Swin AT

Method
Clean 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 / 0

GAP (Brown et al., 2017) 43.05 11.67 16.7 3.35 20.09 5.23 39.17 19.98 / 14.51
LaVAN (Karmon et al., 2018) 37.27 10.94 14.08 3.43 18.18 5.21 29.96 17.018 / 11.64
L2 (Inkawhich et al., 2019) 6.78 1.86 2.23 0.59 4.39 1.1 8.35 3.618 / 2.77
TnT (Doan et al., 2022) 3.71 1.33 1.41 0.8 2.61 0.85 8.03 2.688 / 2.39
Casper et al. (2022) 5.83 1.38 2.74 0.54 7.55 0.97 13.91 4.78 / 4.48
TTP (Naseer et al., 2021) 35.25 9.45 13.75 2.91 17.92 4.69 35.17 17.028 / 12.43
M3D (Zhao et al., 2023) 6.24 5.61 3.45 0.82 1.82 1.12 2.53 3.088 / 1.98
Ours (SW2

2)
(1) 22.52 5.22 8.05 2.17 11.51 3.22 21.57 10.618 / 7.79

Ours (W2
2)

(1) 39.75 10.69 17.35 3.51 19.87 5.31 38.95 19.35 / 13.77

C.6 Robustness according to physical transformations
In this section, we measure the robustness of patches according to physical transforma-
tions. We evaluate the L2 (Inkawhich et al., 2019), our exact Wasserstein (W2

2)
(1) and

Sliced-Wasserstein (SW2
2)

(1)
500 patches as they are the only to transfer in the easiest sce-

nario, i.e., without patch rotation, medium brightness and small distance patch-camera
(Section 4.4.3 of the main article). Patch transferability is measured according to z-axis
rotations (rotations in the image plane), variation of light (low and high) and distance
between camera and the object (the patch is placed near the object). Results are reported
in Table C.6 and Figure C.6. Our patches transfer even in the worst-case scenario (far
from the camera or when rotated), while other patches do not. This indicates that our
patches may be critical in real-world scenarios. Globally, our method produces patches
with better transferability than other methods.

C.7 Ablation studies
In this section, we study the effect of our method hyper-parameters. We solve the exact
and the sliced Wasserstein distance for p ∈ {1, 2} and report the results in Table C.7.
This Table shows that both values of p lead to the same transferability. To penalize higher
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Table C.6: Transfer results according to rotations and variation of light (tSuc %). Patches
are designed to sway networks to output the class bird house. Patches are printed and
placed in the real-world near a cup. Results are averaged over video frames and over all
the networks.

Method
z-axis rotations Variation of light

-45° 0° 45° Low High
L2 (Inkawhich et al., 2019) 0.8 5.7 0.23 4.4 5.7
Ours (SW2

2)
(1)
500 6.1 11.5 6.53 12 11.5

Ours (W2
2)

(1) 7.1 14.8 7.05 12.6 14.8

Figure C.6: Transfer results as a function of the distance camera-object. Patches are
designed to sway networks to output the class bird house. Patches are printed and placed
in the real-world near a cup. Results are averaged over video frames and over all the
networks.

feature values, we set the value of p = 2.
We launch the Sliced-Wasserstein distance (SW) for the following number of pro-

jections: K ∈ {500, 1000, 5000, 10000, 50000}. There is no clear advantage to consid-
ering many projections (Table C.10). The best transferability results are obtained with
K = 500.

We now study the effect of the number of attacked layers (N ). In Table C.8, we report
the transferability results according to different numbers of targeted layers. We obtain
better results for the exact Wasserstein distance when considering multiple layers. We
observe that it helps the optimization to converge to a better local minimum, leading to
stronger patches. For the Sliced-Wasserstein distance, targeting multiple layers seems
counterproductive. Table C.9 details the result presented in the article on the choice of
the essential layer to target. The last layer of the encoder (l = lJ) seems essential to
model and close the gap between the two distributions and, particularly, for the Sliced-
Wasserstein distance.

To evaluate the data dependency of our method, we create different targeted distribu-
tions by changing the number of points which compose it (m = 1, 2, 10, 100, 300, 600, 900).
We launch the optimization of patches for five different sampling seeds and three differ-
ent classes. We consider the Swin-T model as the source model. We evaluate patches
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using the same procedure explained in the main article (Section 4.4). We report the re-
sults of the three runners-up baselines (GAP, LaVAN and TTP). As these methods do not
consider distributions, they correspond to straight lines in the figure. From Figure C.8
we see that the average targeted success rate (tSuc) increases with respect to the number
of target samples. When considering multiple points, our method leads to better transfer
results and is more stable than the L2-based method (see ??). Our method performs bet-
ter than decision-boundary-based methods (GAP, LaVAN and TTP). However, we would
like to emphasize that our method requires multiple images of the target class to overcome
the limitations of the L2-based approach (see Appendix ??). This data dependency is a
practical limitation of our method. This practical limitation may be simply leveraged by
considering the training data of the source model when available.

Table C.7: Transfer results according to the power p (tSuc (%)). Results are averaged
over classes and over patch sizes. Patches are designed on Swin-T.

Target
CNNs-v1 CNNs-v2 ENet CNext DeiT Swin mean / std

p
Clean 0.1 0.1 0.1 0.1 0.1 0.1 0.1 / 0

(W2
2)

(1) 25.62 19.88 10.96 18.84 13.28 55.67 24.04 / 14.91
(W1

1)
(1) 26.37 20.99 10.86 19.56 13.3 56.98 24.68 / 15.31

(SW2
2)

(1)
10000 27.82 20.22 11.29 18.6 16.66 41.43 22.67 / 9.72

(SW1
1)

(1)
10000 28.74 22.72 11.24 19.89 16.07 43.13 23.63 / 10.26

Table C.8: Transfer results according to the number of targeted layers (N) (tSuc (%)).
Results are averaged over classes and over patch sizes. Patches are designed on the Swin
family. Layers lJ−8 and lJ−2 correspond to the second and third block of Swin models
(which are composed by four blocks in total).

Target
CNNs-v1 CNNs-v2 ENet CNext DeiT Swin mean / std

(N)
Clean 0.1 0.1 0.1 0.1 0.1 0.1 0.1 / 0

(W2
2)

(N)

{lJ} 20.55 17.89 8.09 17.7 13.55 49.1 21.14 / 13.12
{lJ−2, lJ} 24.87 20.38 9.59 19.77 17.77 48.42 23.47 / 12.06

{lJ−8, lJ−2, lJ} 19.14 12.45 7.52 10.56 13.55 24.75 14.66 / 14.66

(SW2
2)

(N)

{lJ} 25.26 18.7 9.19 17.27 15.32 44.11 21.64 / 11.11
{lJ−2, lJ} 24.22 18.26 8.25 15.27 17.47 34.5 19.66 / 8.14

{lJ−8, lJ−2, lJ} 15.94 10.23 6.35 8.6 12.43 17.35 11.82 / 3.89

C.8 Decision boundary-based methods overfitting
In this section, we conduct an additional experiment to support that decision boundary-
based methods learn a patch that tends to overfit on the source model classifier. For this
purpose, we consider the transfer not between 2 different models but between 2 models
sharing the same encoder but different classifiers. We select from the different methods
patches trained to attack the source model Swin-T (Liu et al., 2021). On top of this Swin-
T encoder, we train a new linear classifier from scratch on the ImageNet train set (Deng

122



Table C.9: Transfer results according to targeted layer in the single targeted layer setting
(tSuc (%)). Results are averaged over classes and over patch sizes. Patches are designed
on the Swin family. Layers lJ−8 and lJ−2 correspond to the second and third block of
Swin models (which are composed by four blocks in total).

Target
CNNs-v1 CNNs-v2 ENet CNext DeiT Swin mean / std

L
Clean 0.1 0.1 0.1 0.1 0.1 0.1 0.1 / 0

(W2
2)

(1) lJ−2 17.02 15.03 6.59 14.32 12.55 38.35 17.31 / 9.95
lJ 20.55 17.89 8.09 17.7 13.55 49.1 21.14 / 13.12

(SW2
2)

(1)

lJ−8 0.3 0.19 0.19 0.14 0.17 0.2 0.2 / 0.05
lJ−2 15.39 11.2 5.2 9.08 13.37 20.44 12.45 / 4.81
lJ 25.26 18.7 9.19 17.27 15.32 44.11 21.64 / 11.11

Figure C.7: Figure from (Liu et al., 2021). In red are displayed the targeted layers consider
in Chapter 4.

et al., 2009). This new linear classifier reaches the same level of clean accuracy as the pre-
vious classifier (from Pytorch (Paszke et al., 2019)) while being different. We measured
the patch performance when targeting this new network (same encoder, different linear
classifier). As expected, the transferability of decision boundary-based patches drops
drastically (nearly by half) while our patches transferability remains almost the same.
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Table C.10: Transfer results (tSuc (%), higher is better attack) between categories of mod-
els. Results are averaged over classes and over patch sizes. Patches are placed randomly
in the image without object overlapping. Physical transformations (e.g., noise, rotations)
are applied to patches. Control stands for inserting a real object of the corresponding class
as a patch.

Target
mean / std

CNNs-v1 CNNs-v2 ENet CNext DeiT Swin

Method Source
Clean 0.1 0.1 0.1 0.1 0.1 0.1 0.1 / 0

Control 2.85 1.59 0.86 0.54 1.57 0.93 1.39 / 0.75

(SW2
2)

(1)
500

CNNs-v1 25.25 6.15 4.73 1.7 5.15 2.61 7.6 / 8.04
CNNs-v2 16.93 8.67 4.02 4.08 5.77 3.56 7.17 / 4.69

ENet 22.53 5.83 18.8 2.07 8.49 3.03 10.13 / 7.8
CNext 3.97 11.62 1.1 29.97 3.14 14.75 10.76 / 9.86
DeiT 23.65 12.16 7.27 5.21 32.39 9.35 15.01 / 9.77
Swin 25.2 20.21 8.93 19.54 16.16 45.31 22.56 / 11.3

(SW2
2)

(1)
1000

CNNs-v1 26.38 6.13 5.59 1.96 5.85 2.8 8.12 / 8.32
CNNs-v2 16.88 8.82 3.97 3.89 5.8 3.53 7.15 / 4.71

ENet 23.56 6.45 19.18 2.25 8.55 3.01 10.5 / 8.07
CNext 4.44 12.07 1.14 33.22 3.24 15.3 11.57 / 10.89
DeiT 22.77 11.97 7.68 5.36 35.25 9.2 15.37 / 10.48
Swin 24.2 19.01 8.94 17.73 15.89 44.53 21.72 / 11.16

(SW2
2)

(1)
5000

CNNs-v1 26.4 6.11 5.37 1.83 5.2 2.65 7.93 / 8.4
CNNs-v2 14.49 8.35 3.73 3.64 5.89 3.24 6.55 / 3.96

ENet 27.44 7.04 19.85 2.16 8.88 3.12 11.42 / 9.2
CNext 4.52 13.79 1.18 31.54 3.18 16.4 11.77 / 10.45
DeiT 24.14 12.89 8.37 5.02 36.29 9.17 15.98 / 10.9
Swin 24.02 19.69 9.53 17.97 15.06 44.74 21.83 / 11.15

(SW2
2)

(1)
10000

CNNs-v1 25.73 6.25 5.51 1.86 5.75 2.67 7.96 / 8.11
CNNs-v2 18.38 10.46 4.19 4.73 6.15 4.01 7.99 / 5.14

ENet 24.49 6.6 20.26 2.14 8.64 2.98 10.85 / 8.52
CNext 2.92 9.34 0.92 23.33 2.9 12.18 8.6 / 7.68
DeiT 23.87 12.22 7.57 4.89 36.3 9.34 15.7 / 11.01
Swin 23.68 18.08 8.92 17.95 15.42 44.61 21.44 / 11.24

(SW2
2)

(1)
50000

CNNs-v1 26.16 6.16 5.4 1.89 5.32 2.7 7.94 / 8.29
CNNs-v2 13.67 8.71 3.09 4.0 4.67 3.4 6.26 / 3.8

ENet 25.66 6.06 20.4 2.11 8.73 2.99 10.99 / 8.91
CNext 3.06 10.97 0.95 27.34 3.34 16.73 10.4 / 9.31
DeiT 23.95 11.84 8.65 4.6 35.72 8.58 15.56 / 10.86
Swin 25.26 18.7 9.19 17.27 15.32 44.11 21.64 / 11.11

(W2
2)

(1)

CNNs-v1 39.65 13.01 8.27 2.44 4.89 3.16 11.9 / 12.91
CNNs-v2 19.0 11.35 3.82 4.51 3.74 4.19 7.77 / 5.69

ENet 35.12 10.45 32.0 2.27 7.8 3.79 15.24 / 13.25
CNext 3.47 12.2 0.92 25.14 2.04 15.12 9.82 / 8.64
DeiT 22.26 11.43 10.18 5.29 39.51 9.25 16.32 / 11.59
Swin 20.55 17.89 8.09 17.7 13.55 49.1 21.14 / 13.12
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Figure C.8: Transfer results as a function of the number of targets points supported in the
target distribution (mean tSuc (%)). Each dotted line correspond to a different sampling
of points to create the target distribution. The solid line is the average of the five dotted
lines. Patches are designed on the Swin-T source model. Results are averaged over three
classes, over patch sizes and over all the targeted networks.

Table C.11: Transfer results when changing the linear classifier while the encoder remains
fixed (variation of tSuc (%)). Patches are designed to fool the Swin-T model (Pytorch
version, encoder and linear classifier). The transferability is measured when targeting a
new network (same encoder, different linear classifier). Results are averaged over classes
and over patch sizes.

Method Variation of tSuc (%)
GAP (Brown et al., 2017) - 61.4
LaVAN (Karmon et al., 2018) - 42.6
TTP Naseer et al. (2021) - 51.8
Ours (SW2

2)
(1)
500 - 0.27

Ours (W2
2)

(1) - 5.6
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C.9 Complementary tables
In this section, we provide additional tables. Table C.12 is the same as Table 4.7 present
in the main paper but results are presented for different values of smoothing factors λ.

Table C.12: Transfer results on robustified models by LGS defense (Naseer et al., 2019b)
(tSuc (%)). Patches are designed on Swin models.

Target
mean / std

CNNs-v1 CNNs-v2 ENet CNext DeiT Swin

λ = 1.5

Clean 0.1 0.1 0.1 0.1 0.1 0.1 0.1 / 0
GAP (Brown et al., 2017) 0.72 0.87 0.35 0.78 1.13 2.34 1.03 / 0.63

LaVAN (Karmon et al., 2018) 0.56 0.69 0.3 0.69 0.82 2.65 0.95 / 0.78
L2 (Inkawhich et al., 2019) 4.79 6.44 1.72 7.79 4.79 13.85 6.56 / 3.75

TnT (Doan et al., 2022) 0.84 0.59 0.52 0.53 0.7 0.85 0.67 / 0.13
Casper et al. (2022) 0.37 0.4 0.2 0.32 0.25 0.59 0.36 / 0.13

TTP (Naseer et al., 2021) 0.68 0.77 0.28 0.68 0.76 1.98 0.86 / 0.53
M3D (Zhao et al., 2023) 0.83 0.81 0.36 0.77 1.17 1.17 0.85 / 0.27

Ours (SW2
2)

(1)
500 10.56 11.86 3.81 18.9 11.67 31.68 14.75 / 8.75

Ours (W2
2)

(1) 13.23 13.4 4.37 21.42 13.84 32.08 16.39 / 8.58

λ = 1.9

Clean 0.1 0.1 0.1 0.1 0.1 0.1 0.1 / 0
GAP (Brown et al., 2017) 0.61 0.81 0.32 0.68 1. 1.76 0.86 / 0.45

LaVAN (Karmon et al., 2018) 0.45 0.61 0.26 0.55 0.72 1.72 0.72 / 0.47
L2 (Inkawhich et al., 2019) 4.05 5.72 1.53 6.6 4.27 11.26 5.57 / 2.99

TnT (Doan et al., 2022) 0.82 0.61 0.51 0.52 0.62 0.81 0.65 / 0.12
Casper et al. (2022) 0.32 0.33 0.19 0.25 0.23 0.5 0.3 / 0.1

TTP (Naseer et al., 2021) 0.56 0.73 0.24 0.59 0.66 1.34 0.69 / 0.33
M3D (Zhao et al., 2023) 0.68 0.7 0.31 0.7 1.03 1.01 0.74 / 0.24

Ours (SW2
2)

(1)
500 8.56 10.49 3.27 15.93 10.39 25.96 12.43 / 7.1

Ours (W2
2)

(1) 10.95 11.98 3.78 18.37 12.35 27.07 14.08 / 7.19

λ = 2.3

Clean 0.1 0.1 0.1 0.1 0.1 0.1 0.1 / 0
GAP (Brown et al., 2017) 0.52 0.74 0.29 0.58 0.87 1.34 0.72 / 0.33

LaVAN (Karmon et al., 2018) 0.38 0.55 0.24 0.47 0.64 1.19 0.58 / 0.3
L2 (Inkawhich et al., 2019) 3.35 4.95 1.35 5.46 3.74 8.93 4.63 / 2.32

TnT (Doan et al., 2022) 0.8 0.64 0.52 0.52 0.58 0.8 0.64 / 0.12
Casper et al. (2022) 0.47 0.69 0.22 0.53 0.57 0.92 0.26 / 0.08

TTP (Naseer et al., 2021) 0.47 0.69 0.22 0.53 0.57 0.92 0.57 / 0.21
M3D (Zhao et al., 2023) 0.55 0.59 0.27 0.64 0.9 0.9 0.64 / 0.22

Ours (SW2
2)

(1)
500 6.76 9.16 2.81 13.1 9.13 20.69 10.28 / 5.59

Ours (W2
2)

(1) 8.85 10.61 3.27 15.28 10.86 22.28 11.86 / 5.85
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C.10 Printable patches

Figure C.9: Printable patches designed on Swin models with our distribution-oriented
method.
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Appendix D

Résumé étendu

Les réseaux de neurones profonds offrent aujourd’hui des performances inégalées no-
tamment pour les fonctions de vision par ordinateur comme par exemple la classification
d’images, la détection d’objets et la segmentation sémantique. Ces objets formels sont
complexes et sujets à des instabilités. Sans précaution particulière sur l’apprentissage
du réseau, il est très facile de perturber les images d’entrée pour faire en sorte que les
prédictions du réseau soient erronées. On parle alors d’attaque adversaire au sens où les
exemples perturbés sont optimisés pour tromper le réseau (ou la famille de réseau) cible.
Une des menaces, appelée attaque par patch, consiste à introduire dans la scène un objet
texturé pour duper le modèle (Brown et al., 2017). Par exemple, un patch placé sur un
panneau stop peut amener le réseau à le classer à tort comme étant un panneau de limi-
tation de vitesse (un autre exemple est présenté Figure D.1). Ce type d’attaque soulève
d’importants problèmes de sécurité pour les systèmes de vision par ordinateur opérant
dans le monde physique. Dans cette thèse, nous étudions si un tel patch peut perturber un
système physique dans des conditions d’attaque réalistes, i.e., sans connaissance préalable
sur le système ciblé.

Malgré le fait que de nombreuses attaques par patch ont été proposées dans la littérature,
il n’est pas encore très clair si ces patchs sont résilients à des transformations géométriques
ou radiométriques ou si ils peuvent être générés sans connaissance sur l’architecture ou
les poids du modèle attaqué. L’une de nos contributions est la définition de ce que serait
une attaque par patch critique. Pour être qualifié de critique, une attaque par patch doit
vérifier deux critères essentiels (voir Tableau D.1). Tout d’abord, le patch doit être ro-
bustes à des transformations physiques, ce qui est résumé par la notion de physicalité du
patch. Ensuite, le patch doit être transférable, c’est-à-dire que le patch a la capacité de
duper avec succès un réseau sans posséder aucune connaissance préalable sur celui-ci.
La transférabilité de l’attaque est un facteur clé, car les systèmes physiques déployés par
les entreprises sont souvent opaques ou inconnus. En évaluant la robustesse des attaques
par patch proposées dans l’état-de-l’art, nous avons mis en avant que sans modification
particulière de l’entraı̂nement, l’impact de ces attaques est limité par leur sensibilité à ces
variations. Cela limite le risque de leur utilisation à des fins malveillantes. En adaptant
l’entraı̂nement des attaques par patch, il est possible aujourd’hui de les rendre résilient à
des transformations radiométriques et géométriques. Bien qu’avec la méthode “Expecta-
tion over Transformations” (Athalye et al., 2018) la résilience des patchs aux transforma-
tions radiométriques et géométriques semble acquise, aucun patch n’a montré de capacité
de transférabilité. En effet, un patch appris sur un réseau est très souvent inefficace quand
appliqué à un réseau non vu durant l’apprentissage même si celui-ci a la même archi-
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Figure D.1: Deux exemples de vidéos du monde réel perturbées par une attaque par patch.
La personne portant le patch est invisible pour le détecteur d’objets, tandis que l’autre
personne est détectée. Les auteurs ont fourni une démonstration de leur attaque ici. Source
: Thys et al. (2019)

Propriété Catégorie Transformation/Processus Exemple

Physicalité

Radiométrique
Conditions météorologiques variables Luminosité, neige, pluie, ...

Filtres Transformation JPEG

Géométrique

Redimensionnement ∗ ∗ ∗
Recadrage ∗ ∗ ∗

Transformations affines Rotations
Distance par rapport à la position d’apprentissage Déplacement de la position d’apprentissage

Transférabilité

Détecteur Paradigme d’apprentissage Supervisé, contrastif, ...

Sensibilité Recette d’entraı̂nement Augmentations de données, optimisation, ...
Initialisation Différentes graines

Détecteur Variation
e.g. ResNet à ViT

généralisation d’architecture

Table D.1: Paramètres d’évaluation par catégorie et leur brève description.

tecture mais une initialisation des poids différentes que le réseau sur lequel le patch est
appris.

Afin d’améliorer la capacité de transfert des attaques invisibles, de nombreux travaux
ont proposé de considérer l’espace des caractéristiques pour construire leur attaque (Inkawhich
et al., 2019). Par exemple, Inkawhich et al. (2019) proposent d’optimiser leur attaque in-
visible afin que les représentations des images corrompues se rapprochent des représentations
d’une image préalablement choisie. Cependant cette stratégie présente plusieurs inconvénients.
Tout d’abord, lors de l’optimisation, pousser plusieurs points vers un unique point est
plus susceptible d’échouer. Même si l’optimisation converge, la performance de l’attaque
dépend du choix de l’image cible choisie. De plus, l’image cible choisie peut être bien
classée par un classifieur et mal classée par un autre. Afin de créer une attaque par patch
transférable pour une grande variété de classifieurs d’images, nous proposons une nou-
velle méthode de conception des patchs. Cette méthode repose sur l’utilisation de la
distance de Wasserstein, distance définie entre deux mesures de probabilité. La figure D.2
schématise les différentes approches ainsi que celle proposée. Notre patch est appris en
minimisant la distance de Wasserstein entre la distribution des caractéristiques des images
corrompues par notre patch et la distribution des caractéristiques d’images d’une classe
cible préalablement choisie. Une fois appris et placé dans la scène, notre patch induit
plusieurs réseaux à prédire la classe de la distribution ciblée. Nous montrons qu’un tel
patch est transférable et peut être implémenté dans le monde physique afin de perturber
des classifieurs d’images sans aucune connaissance sur ceux-ci. Le tableau D.2 donne un
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Figure D.2: Trois stratégies différentes pour concevoir des attaques par patch. Gauche
: L’attaque pousse plusieurs échantillons de l’autre côté d’une frontière de décision
définie pour un modèle particulier. Milieu : L’attaque fait correspondre un point donné
dans l’espace des caractéristiques qui est censé représenter un échantillon d’une classe
différente. Droite : Notre stratégie réduit l’écart de distribution entre les échantillons cor-
rompus par le patch et une autre distribution trompeuse dans l’espace des caractéristiques.
Elle ne dépend ni des frontières de décision, ni du choix d’un point cible spécifique dans
l’espace des caractéristiques.

Method min moyenne max
GAP (Brown et al., 2017) 2.22 15.46 37.33
LaVAN (Karmon et al., 2018) 2.26 8.67 31.4
L2 (Inkawhich et al., 2019) 4.44 13.6 32.78
TnT (Doan et al., 2022) 0.67 2.11 5.84
Casper et al. (2022) 0.33 3.81 14.85
TTP Naseer et al. (2021) 2.33 13.77 31.87
M3D Zhao et al. (2023) 0.84 5.19 17.11
Ours (SW2

2)
(1)
500 8.93 22.56 45.31

Ours (W2
2)

(1) 8.09 21.14 49.1

Table D.2: Meilleurs résultats de transfert d’un seul modèle vers tous les autres obtenus
pour chaque méthode (tSuc (%) plus élevé est meilleur pour une attaque).

aperçu de nos résultats.
Afin d’avantage caractériser la potentielle menace des attaques par patch, nous pro-

posons d’étudier leur transférabilité quand ceux-ci sont développer pour duper des détecteurs
d’objets. Les détecteurs d’objets sont des modèles plus complexes que les classifieurs
d’objets et sont souvent plus utilisés dans les systèmes opérant dans le monde physique.
Nous étudions plus particulièrement les attaques par patch dites cape d’invisibilité, un
type particulier de patchs conçus pour inhiber la détection d’objets lorsqu’ils leur sont
appliqués dessus. Nos résultats révèlent que le protocole dévaluation utilisé dans la
littérature comporte plusieurs problèmes rendant l’évaluation de ces patchs incorrecte.
Pour y remédier, nous introduisons un problème de substitution qui garantit que le patch
produit supprime bien la bonne détection de l’objet que nous souhaitons attaquer. En
utilisant ce nouveau processus d’évaluation, nous montrons que les attaques par patch de
la littérature ne parviennent pas à inhiber la détection d’objets limitant ainsi leur criticité
(voir Figure D.3.
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Figure D.3: Exemples d’attaque de cape invisible en white-box (conçue sur YOLOv5
et appliquée à celui-ci) et de transfert en black-box. Le patch est conçu sur YOLOv5
et provient du travail de Huang et al. (2023). Les patchs sont conçus pour empêcher la
détection des personnes.
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