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en particulier par Julien Doutremépuich, dès le tout début de mes recherches.
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Mathilde.
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côtés et pour toutes celles qui nous attendent.

iv



Foreword

In 2018, while working as an internal auditor, I was assigned to review the in-
terest rate derivative pricing models used by a large financial institution. During
my interviews with quantitative researchers and traders, I encountered a striking
paradox: despite their high dependence on these models, practitioners did not be-
lieve in the core assumption of these models, i.e., the existence of a short rate from
which agents’ expectations produce long-term rates. The traders and researchers
of this financial institution considered that the actual path of the short-term rate
bore little relation to long-term rates.

Earlier in my career, while designing stress-testing models for the European
Central Bank, I encountered another fundamental issue: these models, which were
supposed to anticipate major financial crises, did not account for interactions
among agents. Instead, they focused solely on modeling the individual balance
sheets of banks.

During the COronaVIrus Disease of 2019 (COVID-19) crisis, as I reflected on
these issues, I learned about the “EconophysiX” chair, which aimed to tackle such
questions through unorthodox approaches. I reached out to Michael Benzaquen
to propose a research project addressing these challenges. I had been away from
academia for nearly a decade. However, Michael, along with Damien Challet,
encouraged me to develop a full-fledged Ph.D. project. After nearly another year
of work, the idea of designing an agent-based model of the interest rate curve
came to fruition. This model would combine heterogeneous bank interactions
that influence the short-term rate with statistical physics tools (initially inspired
by spin-glass theory) to describe the propagation of information along the yield
curve. My meeting with Bertrand Hassani, who had recently founded a new
company, Quant AI Lab, finally made it possible to secure funding for this thesis.

The past three years have been the most exciting and fulfilling of my pro-
fessional career. Trained in applied mathematics, I discovered the remarkably
intuitive approach physicists use in their work. I was particularly fortunate to
collaborate with Iacopo Mastromatteo and Jean-Philippe Bouchaud, from whom
I learned that even the most abstract mathematical concepts can be approached
from an intuitive perspective.

This manuscript is not presented as a typical work in Monetary Economics
or Quantitative Finance, despite addressing key questions in these fields, such
as monetary transmission mechanisms and yield curve modeling. Instead, I have
chosen to adopt the lighter notation of physics and to present results not as formal
theorems but as intuitive mechanisms.
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Part I

Motivation and background





Introduction

There are many open issues regarding the interplay between the yield curve and
monetary policy that require further research in my view. [...]. First on the list should
be a better understanding of the role of term premiums in macroeconomic models [...].

Second is an improved modelling of long-term trends.

Philip Lane, speech at the Department of Economics at University College London,
2020

Motivation

Interest rates serve both as indicators of an economy’s state, influenced by central
bank policy and the behavior of economic agents, and as major determinants of
its evolution, influencing the decisions of these agents. Consequently, interest
rates are considered to be one of the key state variables in macroeconomic theory,
linking money creation to economic growth.

In any given economy, a variety of interest rates coexist, differentiated by the
maturity and credit risk associated with the corresponding loans. This thesis fo-
cuses on the collection of risk-free interest rates of different maturities, commonly
referred to as the “yield curve”, while the study of credit risk falls outside its
scope. Some fundamental questions arise: what is the interplay between each
of the points of this curve? In particular, what is the relationship between the
short-term and long-term ends of the yield curve? These questions are closely
related to the broader inquiry in Monetary Economics regarding the transmission
of monetary policy to the real economy through the bank lending channel. From
this perspective, monetary policy primarily influences the nominal short-term in-
terest rate, which, in turn, affects the rates and volumes of bank lending to firms
and households. Since banks use long-term rates to set their lending rates, un-
derstanding the mechanisms that determine these long-term rates is essential to
understand this transmission channel. One could argue that non-conventional
monetary policies now aim to directly set the level of long-term rates through the
purchase of safe assets. However, in July 2024, the total asset size of the banking
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sector was three times larger than the consolidated balance sheets of all central
banks1, indicating that banks remain the main actors in the money creation pro-
cess.

To address these questions, we must define the components of the yield curve
more precisely, as their price formation mechanisms vary significantly with the
maturity. On one hand, the short end of the interest rate curve, particularly the
overnight interbank lending market, is largely unobservable. On the other hand,
long-term rates, such as those with a 10-year maturity, are determined primarily in
the interest rate swap markets, where trading occurs on electronic platforms that
allow all participants to submit quotes directly, similar to the operation of stock
exchanges. Despite their differences, these markets are strongly interconnected.
The ultimate underlying factor in the interest rate swap market is the weighted
average of overnight interbank rates, such as the Secured Overnight Financing
Rate (Secured Overnight Funding Rate (SOFR)) in the U.S. or the Euro Short-
Term Rate (Euro Short-Term Rate (ESTR)) in the Eurozone.

Early models of the yield curve posited that long-term rates are simply the
average of market participants’ expectations of future overnight interbank rates.
However, empirical evidence has shown that long-term rates are typically higher
than the predictions of these models. This discrepancy was addressed by adjusting
the weighting used to average short-term rates through the introduction of a risk-
neutral probability measure. The micro-foundations of this mathematical tool
suggest that either agents frequently change preferences or consistently misjudge
future inflation, both of which are unconvincing.

Given that the influence of short-term rates on long-term rates appears to
be more complex than anticipated, it is worth considering the reverse: how do
long-term rates affect the shortest maturities of the interest rate curve? One
might argue that, fundamentally, the level of the long-term interest rate swap
market influences credit demand, which in turn impacts payment flows within the
banking system and ultimately the interbank rate. However, this overnight rate
is constrained by the corridor defined by central bank policy rates, specifically,
the rate paid on cash reserves and the central bank’s last resort borrowing rate.
Thus, the feedback from long-term rates to interbank markets is likely limited.
Nevertheless, could maturities longer than those directly influenced by the central
bank (i.e., those greater than a couple of weeks) be affected by long-term rates?

This thesis aims to develop a micro-founded theory of the yield curve that
addresses these questions. We focus on the processes that influence bank loan
rates: long-term rate hedging through forward rate agreements and refinancing in
the repurchase agreement (repo) market. Given their significant market power in

1According to the ECB Data Portal https://data.ecb.europa.eu/publications/

money-credit-and-banking/3031820
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most economies, banks directly set borrowing rates for the majority of firms and
households. Thus, studying the benchmark risk-free short- and long-term rates
used by these financial institutions is crucial for understanding the mechanisms of
monetary policy transmission. We will build models of these markets using agents
and statistical physics tools.

Thesis layout

This thesis is organized into three parts. The first part, “Motivation and Back-
ground,” sets the stage by reviewing existing literature and describing the mi-
crostructure of the markets that compose the yield curve. Chapter 1 presents some
essential definitions and explores the economic factors influencing the yield curve,
including the roles of central bank policies and other economic agents. It also ex-
amines various theoretical models, such as expectation theory, arbitrage-free mod-
els, and macroeconomic frameworks. Chapter 2 shifts focus to the microstructure
of the markets that compose the yield curve, particularly the interbank, swap, and
sovereign bond markets. It describes the actors and microeconomic mechanisms
that influence the yield curve.

The second part, ”Money Creation in the Repo Market,” introduces a micro-
founded model of money creation that successfully replicates the recently es-
tablished stylized facts within interbank lending markets. We begin by offering
straightforward accounting and regulatory explanations for these empirical facts
in chapter 3. Then, in chapter 4, we present a minimal agent-based model that
accurately reproduces all these stylized facts.

The final part, “Liquidity Flows on the Interest Rate Curve,” explores the in-
tricate relationship between liquidity and the behavior of the interest rate curve.
This section begins with a detailed examination of the phenomenology of the yield
curve in chapter 5, exploring the stylized facts associated with it. It then transi-
tions into an in-depth analysis of cross-impact modeling in chapter 6, establishing
a new stylized fact about the yield curve. Chapter 7 then develops a field the-
ory that accurately reproduces the correlation structure of the yield curve. The
final chapter 8 interprets this model as a cross-impact model, reproducing all the
stylized facts previously established.

This thesis concludes with a summary of the findings and suggestions for future
research directions.

Key results and messages are summarized at the end of each chapter, while
detailed calculations are provided in dedicated appendices at the end of the
manuscript. A table of notation is included at the end of the chapters6, 7, and 8
and a list of acronyms is presented before the appendices.
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Chapter 1

Literature review

There is a certain rate of interest on loans which is neutral in respect to commodity
prices, and tends neither to raise nor to lower them.

Knut Wicksell, 1898

Modeling interest rates is essential in a wide array of research fields, including
Monetary Economics, Macroeconomics, Quantitative Finance, and Risk Manage-
ment. To situate our contribution within the existing literature, this chapter
provides an overview of the mechanisms and models that describe the yield curve.

Here, we broadly define the interest rate curve as the market reference rates
across various maturities within a given economy. For example, in the euro area,
the interest rate curve comprises (i) central bank rates, (ii) short-term interbank
and money market rates (notably repo rates ranging from one day to one year),
(iii) forward and swap rates for longer maturities (typically from a few months to
30 years) indexed to these instruments, and (iv) sovereign bond yields, provided
these bonds do not carry significant credit risk.

After introducing the notation and definitions used throughout the chapter,
we examine the factors that influence the level of the yield curve. We then review
the insights and limitations of the two primary classes of interest rate models:
the arbitrage-free framework and macroeconomic models. The chapter concludes
with dedicated sections on agent-based models of the yield curve and the interbank
market.

1.1 Notations and definitions

We recall here the usual definitions of a zero-coupon bond, a forward rate, and
the instantaneous rate, using the typical compounding approaches.
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1.1.0.0.1 Zero-coupon Bond. Let P (t, T ) represent the price at time t of
a zero-coupon bond maturing at T . This bond pays one unit of currency at
maturity T without any intermediate coupon.

1.1.0.0.2 Forward Rate. Consider time t and two future times, S and T ,
where t < S < T . The forward rate, a risk-free interest rate for the period [S, T ],
is derived from zero-coupon bonds. By selling a zero-coupon bond maturing at
S for P (t, S) euros and purchasing P (t,S)

P (t,T ) units of a bond maturing at T , we
establish a contract that costs nothing at t, pays one unit of currency at S, and
yields P (t,S)

P (t,T ) euros at T . This setup leads to a deterministic rate of return, with

the continuously compounded forward rate f(t, S, T ) given by:

ef(t,S,T )(T−S) :=
P (t, S)

P (t, T )
, (1.1)

solving to:

f(t, S, T ) := − logP (t, T ) − logP (t, S)

T − S
. (1.2)

We also note y(t, T ) = − ln(P (t,T ))
T−t = f(t, t, T ) the continuously compounded yield

of the zero-coupon bond.
Furthemore, the simply compounded forward rate F at time t, between the

times S and T , is defined by

1 + (T − S)F (t, S, T ) =
P (t, S)

P (t, T )
, (1.3)

solving to:

F (t, S, T ) =
1

T − S

(
P (t, S)

P (t, T )
− 1

)
. (1.4)

As discussed in chapter 2, certain forward rates are quoted on organized mar-
kets in the form of listed products known as “Futures.” These products are avail-
able in both the eurozone and the United States of America (U.S.) for a series
of equally spaced maturities Ti. Using Eq. (1.3), one can readily compute the
zero-coupon bond curve implied by the market. Section 2.2.1 provides a more
detailed procedure for deriving zero-coupon prices from swap rates, which is more
complex.

Following the 2008’s Great Financial Crisis (“Great Financial Crisis (GFC)”
hereafter), interbank rates for maturities beyond overnight are no longer con-
sidered risk-free due to the emergence of counterparty credit risk among banks
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(Grbac and Runggaldier, 2015). In other words, Eq. (1.4) can only be used to
derive the zero-coupon bond that reflects the risk-free rate when based on for-
ward rate contracts linked to the overnight interbank rate, where counterparty
risk remains limited. This paradigm shift is often referred to as the “multicurve
hypothesis,” as it enables the definition of different zero-coupon bond curves that
incorporate varying levels of credit risk, corresponding to different maturities (typ-
ically overnight, one month, three months, or six months) of the underlying rate
of Futures contracts.

1.1.0.0.3 Instantaneous Forward Rate. As S approaches T , the limit of
f(t, S, T ) defines the instantaneous forward rate f(t, T ):

f(t, T ) = −∂ logP (t, T )

∂T
, (1.5)

The collection of these rates for various T forms the Forward Rate Curve (Forward
Rate Curve (FRC)). In the following sections, we often define the instantaneous
forward rate f(t, θ) in terms of the time-to-maturity or “tenor” θ = T − t. This
dimension θ is often referred to as the “space” dimension, as opposed to the time
dimension t.

1.1.0.0.4 Short rate. We define the short rate as the value of the instanta-
neous forward rate at t of maturity T in the case where t = T :

r(t) = f(t, t) (1.6)

The short rate can thus be interpreted as the risk-free rate of interest, contracted
at t over the infinitesimal interval [t, t+ dt].

1.2 Economic factors influencing the yield curve

In this first section we review the factors influencing the fundamental level of the
interest rate curve, particularly the influence of central banks and other economic
agents. We also study the effects of the interest rate curve on bank activities.

1.2.1 Influence of central banks monetary policy

Within macroeconomic theory, monetary policy exerts its influence on the econ-
omy through various channels, most of which depend on the interest rate curve
as the primary transmission mechanism. Consequently, central banks have devel-
oped a range of instruments specifically designed to shape the yield curve. After
outlining the main channels of monetary policy and the instruments employed by
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central banks, we will discuss how these tools influence the fundamental level of
the yield curve.

1.2.1.1 Channels of monetary policy transmission

The traditional “interest rate channel” posits that monetary policy directly influ-
ences real interest rates (defined in section 1.2.2.2), thereby affecting investments
and consumer durable expenditures. Beyond this view, monetary policy transmis-
sion channels are nowadays categorized into two main groups: (i) those related to
changes in credit activity, commonly referred to as the “credit view”, and (ii) those
related to changes in other asset prices, known as “other asset price effects”. As
summarized by Mishkin (2013), the following transmission channels are typically
identified:

• Within the credit view:

– the bank lending channel, which suggests that monetary policy pri-
marily impacts the nominal short-term interest rate and liquidity in the
interbank market, influencing the rates and volumes of bank lending to
firms and households;

– the balance sheet channel and cash flow channel, which argue
that lower real interest rates increase lending by improving firms’ net
worth and cash flows net of nominal interest rates, thereby reducing
credit risk for lenders;

– the unanticipated price level channel, which asserts that monetary
policy affects the general price level, leading to decreased labor costs if
inflation is unanticipated by households and an increase in firms’ real
net worth by reducing the real value of nominally fixed liabilities;

– the household liquidity effect, which posits that lower real interest
rates increase stock prices, improving household balance sheet liquidity,
and that lower nominal rates increase household net cash flows, both of
which boost consumer durable expenditures and housing investments.

• Within the other asset price effects:

– exchange rate effects on net exports, which occur as monetary
easing leads to currency depreciation, thereby boosting net exports
and aggregate demand;

– Tobin’s q theory (Tobin, 1969; Hayashi, 1982), which posits that
monetary policy influences stock prices, thereby affecting investment
decisions as asset valuations become more sensitive to capital costs
when nominal rates decline;
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– wealth effects, which suggest that higher stock prices increase con-
sumers’ lifetime resources, following the “life-cycle hypothesis of sav-
ing” (Modigliani and Brumberg, 1955; 1980) or the “permanent income
hypothesis” (Friedman, 1957), leading to higher consumption of non-
durable goods and services.

It is important to note that the global decline in traditional bank lending, as
highlighted by Mishkin (2013), has reduced the prominence of the bank lending
channel relative to other channels. Since the 1960s, particularly in the U.S.,
the process of “disintermediation” has redirected deposits from savers directly
to borrowers, bypassing banks. However, the importance of the bank lending
channel was revisited following the GFC, as the weakness of the banking sector
significantly impacted economic output.

The GFC also spurred the development of unconventional monetary policy
instruments in advanced economies, which are discussed in the following section.

1.2.1.2 Monetary policy instruments

Currently, monetary policy in advanced economies relies on three primary instru-
ments, each playing a key role in shaping the interest rate curve:

• setting the short-term nominal rate for commercial bank funding and the
remuneration of reserves (see chapter 2);

• Asset Purchase Programs (APP) aimed at lowering long-term interest rates
by acquiring high-quality (investment-grade) sovereign and corporate bonds
(or even equities in Japan) in secondary markets;

• forward guidance communication to influence market expectations regarding
the future path of central bank policy.

Although short-term nominal rates primarily influence the shortest maturities
of the interest rate curve, asset purchase programs have a more pronounced effect
on long-term rates. The following sections review the literature on the influence of
short-term monetary policy rates and other monetary policy instruments on the
interest rate curve.

1.2.1.3 Effects of short term monetary policy rate

Within advanced economies, the central bank’s short-term monetary policy rate
is closely linked to the shortest point on the interest rate curve: the overnight
interbank rate. For such short maturities, banks have the option to borrow either
on the interbank market or directly from the central bank, which prevents the
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interbank rate from deviating significantly from the central bank rate. Several
modeling attempts have been made to capture the dynamics of this overnight
rate, many of which utilize network theory to replicate its key stylized facts (see
section 1.7). The longer maturities of the interest rate curve, however, are pri-
marily determined in the derivatives, swap, and Futures markets or in the bond
market (see chapter 2). Consequently, the transmission of central bank rates to
long-term rates is not always straightforward or guaranteed.

Numerous studies have documented substantial effects of central bank rates on
long-term rates (Culbertson, 1957; Sargent, 1972; 1979; Shiller, 1979; Singleton,
1980; Shiller, 1981; Shiller et al., 1983; Rudebusch, 1995; Fuhrer, 1996; Ayuso et
al., 1997; Cochrane and Piazzesi, 2002; Gürkaynak et al., 2005; Hanson and Stein,
2015; Brooks et al., 2018; Hanson et al., 2021). Yet, these effects are often stronger
than those predicted by standard theories linking short-term and long-term rates.
Notably, the Dynamic Stochastic General Equilibrium (hereafter referred to as Dy-
namic Stochastic General Equilibrium (DSGE)) framework, a mainstay in macroe-
conomic modeling (see section 1.4), predicts lower sensitivities of long-term rates
to short-term rates than are empirically observed (see section 1.4). The expecta-
tion and arbitrage-free theories, which share the same foundational assumptions,
also exhibit inconsistencies in this regard (see section 1.3).

Among these models, Piazzesi (2005) proposed an extended affine term struc-
ture model (see section 1.3.2.1) that explicitly incorporates the reaction of the
interest rate curve to monetary policy shocks. In this model, long-term and short-
term rates are interrelated, with long-term yields expressed as functions of (i) the
U.S. Federal funds rate (i.e., the central bank refinancing rate), (ii) the spread
between the short-term rate and the Federal funds rate, and (iii) other macroeco-
nomic factors. Furthermore, the U.S. Federal funds rate is modeled as a pure jump
process with intensities dependent on macroeconomic conditions. The calibrated
sensitivity of these jumps to macroeconomic factors is significant and positive.
Since the characteristic half-life of these factors typically exceeds one year, they
induce positive autocorrelation in the Federal funds rate, reproducing the observed
central bank policy better than the Taylor rule (Taylor, 1993). In addition, this
model successfully explains the strong response of long-term yields to monetary
policy shocks, as macroeconomic shocks to the central bank dissipate slowly under
the risk-neutral measure. It also effectively models the humped shape of the yield
curve volatility (see chapter 5).

Similarly, Renne (2017) applied the arbitrage-free theory to develop a model
of the interest swap market that incorporates discrete changes in central bank
policy rates and a spread to the short-term rate. The study demonstrates that
the shape of the yield curve is closely related to the monetary policy phase, be it
easing, status quo, or tightening.

We will see, however, that this type of models, developed within the arbitrage-
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free framework are generally misspecified (see section 1.3.2.1).

1.2.1.4 Effects of other monetary policy instruments

Gagnon et al. (2011), Krishnamurthy and Vissing-Jorgensen (2011), and Li and
Wei (2013) demonstrate the significant effects of the Federal Reserve’s Large-Scale
APPS on yields. In chapter 7 we show that APPs in the U.S. strongly modifies
the parameters of an elastic string model. During such an event, the line tension
parameter, defining the strength of the relationship between different maturities
of the FRC becomes significantly lower. We also model in chapter 4 the effect of
an APP on the interbank market network structure. Furthermore, in chapter 4 we
show that an APP reduces the volumes of transactions on the interbank secured
markets and increases excess liquidity.

1.2.2 Influence of the other economic agents

1.2.2.1 In the short run: supply and demand for credit

In the short term, the factors that influence the yield curve are primarily related to
transaction flows. For short-term interest rates, these flows are mainly payments
among economic agents that generate liquidity shocks in the banking system, as
described in the model by Poole (1968) (see section 1.7 for a detailed review
of interbank market models). The rest of the yield curve is shaped by credit
demand for loans and bonds, and the activity in derivative markets serving as
hedging instruments for these contracts (see chapter 2 for an overview of banks’
risk management practices).

Empirical studies have shown that fluctuations in bond supply and demand
can significantly influence changes in the sovereign bond yield curve beyond what
is explained by traditional macroeconomic variables such as expected short-term
interest rates and inflation (see the following section). For example, Greenwood
and Vayanos (2014), Krishnamurthy and Vissing-Jorgensen (2012), and Hamilton
and Wu (2012) empirically observe a strong relationship between the supply of
U.S. sovereign bonds by maturity and their yields. Furthermore, Hu et al. (2013)
identify a noise component in Treasury yields linked to arbitrage activities among
Treasury securities. These findings have led some researchers to explore ”preferred
habitat” models (see section 1.6), which emphasize how the term structure is
influenced by the interaction between investors with specific maturity preferences.

Moreover, some studies suggest that price formation in sovereign bond markets
occurs primarily in the Futures market rather than in the cash market (Pelizzon
et al., 2014). In particular, these studies highlight that limits to arbitrage are sub-
stantial even in the most liquid European markets, as the basis between the cash
and Futures markets can deviate from its equilibrium level for several consecutive
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days. These results align with the findings presented in chapter 6 where we show
that price formation occurs among the most liquid assets of the Futures market.

1.2.2.2 In the long run: factors influencing the natural rate

Noticing that banks create purchasing power (see chapter 2), Wicksell (1898)
introduced the concept of the natural rate, r∗e , as the real rate (further defined
below) that equates the bank loan rate with the capital rate (i.e., the rate that
balances the supply and demand for real capital goods). Ramsey (1928) provided
a structural micro-foundation for the natural rate, which was later expanded by
Cass (1965) and Koopmans (1963). This approach endogenously defines optimal
consumption and savings over time, in contrast to the Solow (1956) and Swan
(1956) growth models, which consider savings decisions as exogenous. In the
Ramsey-Cass-Koopmans model, the optimal savings condition yields a balanced
growth relationship between the real interest rate, r∗e , agents’ preferences, and
population growth:

r∗e =
1

σ(c)
µc + µN + δ, (1.7)

where µc is the growth rate of consumption per capita (influenced by technological
change), µN is the rate of population growth, δ is the rate of time preference
(the discount rate for future utility), and σ(c) is the elasticity of intertemporal
substitution in the utility function of consumption U(c), defined as:

σ(c) := − d ln c

d lnU ′(c)
. (1.8)

In Eq (1.7), the real interest rate re can be related, in the long-run equilibrium,
to the nominal interest rate r —the focus of this thesis— via the Fisher equation
(Fisher, 1907):

r(t) = re(t) + π(t), (1.9)

where π(t) is the inflation rate. In the traditional view, the real rate converges to
the natural rate (defined by agents’ preferences), while the money supply governs
inflation, making the nominal rate a function of these two equilibria. However,
the “Neo-Fisherism” perspective posits that the central bank controls the nominal
rate causing the inflation rate to adjust to the difference between the nominal and
natural rates.

Wicksell’s concept was integrated into modern macroeconomic theory by Wood-
ford (2003), who defined r∗e as the real rate necessary to maintain aggregate de-
mand equal to output in a hypothetical economy with full price flexibility, consis-
tent with the DSGE framework (see section 1.4). Following this approach, several
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authors have modeled the natural rate as the real interest rate that would prevail
if all prices were flexible in a DSGE framework (Neiss and Nelson, 2001; Andrés
et al., 2009; Cúrdia et al., 2015).

An alternative approach to defining and measuring the natural rate of interest
was proposed by Laubach and Williams (2003). They conceptualized the natural
rate as the real short-term interest rate that closes the output gap, where the
potential output is the level that ensures stable inflation (Bomfim, 1997). In
this framework, the natural rate corresponds to the intercept of the Taylor rule
(Taylor, 1993), which links the inflation gap and the output gap to the nominal
rate. Using this methodology, studies by Mésonnier and Renne (2007), Laubach
and Williams (2016), and Holston et al. (2017) have shown that the estimated
natural rate of interest has declined sharply in western economies since the GFC.

All these models share a significant limitation: they assume that the repre-
sentative agent lives indefinitely. To address this, another class of models, known
as Overlapping Generations (OLG) models, was introduced by Samuelson (1958),
Diamond (1965), and Blanchard (1985). These models explicitly account for the
life-cycle behavior of agents who are born, age, and eventually die. As noted in
Brand et al. (2018), demographic changes in OLG models influence the equilib-
rium rate, r∗e . The OLG literature identifies three main channels through which
demographic transitions affect r∗e :

1. Reduced labor input: a shrinking labor force increases capital per worker,
which lowers the marginal product of capital and r∗e , similar to a sustained
drop in productivity growth.

2. Increased life expectancy: longer life expectancies drive people to save
more for retirement, decreasing r∗e .

3. Growing proportion of dissavers: as the population ages, a larger share
of individuals spend more than they save, reducing capital supply and putting
upward pressure on r∗e .

Overall, most studies find that aging tends to lower r∗e , with the impact of in-
creased life expectancy generally outweighing the effect of increased dissaving by
the elderly. For example, using the approach pioneered by Auerbach and Kotlikoff
(1987), Bielecki et al. (2018) developed an OLG model to quantify the effects of de-
mographic changes on the natural rate of interest, attributing much of the secular
decline in the natural rate since the 1980s to aging.

In this thesis, we adopt the view of some authors (Black, 1986; Summers,
1986; Poterba and Summers, 1988; Bouchaud and Potters, 2003; Bouchaud et
al., 2017) that the prices formed within financial markets can diverge from their
fundamentals for very long periods (see also section 1.5 regarding the tests of the
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efficient market hypothesis). Hence, we focus our study of the yield curve on the
supply and demand market mechanisms leading to the formation of prices.

1.2.3 Influence of the rate environment on bank lending activity

Since the seminal work of Bernanke and Blinder (1988), which suggested that
monetary policy impulses influence loan supply by affecting banks’ access to liq-
uidity, understanding the role of banks as loan suppliers has become a central
focus in the literature on monetary policy transmission. The yield curve affects
banks through three primary mechanisms: short-term liquidity funding, setting
of lending rates, and long-term changes in bank activities.

Banks with weaker balance sheets are less able to shield their lending activities
from monetary shocks, as they face greater difficulties in accessing funding. For
instance, Kashyap and Stein (1994) linked banks’ responses to monetary policy to
their size, while Kishan and Opiela (2000) identified capitalization as a significant
factor in the lending channel. Altunbas et al. (2010) extended this analysis by
highlighting the impact of banks’ credit risk from the perspective of investors.
More recently, with regard to the euro area, Cantero-Saiz et al. (2014), 2021
emphasized the role of sovereign risk in bank lending. These findings underscore
the importance of modeling individual banks’ balance sheets to fully understand
the dynamics of the yield curve, as explored in chapter 4.

The effect of the interest rate curve on banks’ lending rates is notably influ-
enced by the price elasticity of credit demand and sight deposit supply. When
these elasticities are low, banks may maintain high loan rates and reduce deposit
rates to preserve their margins in a low-interest-rate environment. Borio (1995)
explains that the response of lending rates to changes in market rates, which can
take from one month to several years, depends on (i) the degree of banks’ monopoly
power, (ii) customer aversion to variable interest rates, and (iii) the volatility of
market and policy rates. Gambacorta and Iannotti (2007) observed banks update
their lending rates slower when market rates decrease than when they increase.
In this thesis, we focus on modeling the market rates defined in bond and deriva-
tive markets. Although these rates directly influence banks’ lending rates (see
chapter 2), we do not consider the variability of bank interest rate margins, which
would be required to model actual lending rates to the real economy.

Additionally, the prolonged low-interest-rate environment has impacted banks’
intermediation activities in the European Union (E.U.) and the U.S. Brei et al.
(2020) observed that low-interest rates lead banks to (i) shift their activities from
interest-generating to fee-related services (see Baumol (1959) for the first models
of ”sales maximization”), (ii) adjust their funding structure away from short-term
market funding toward deposits, and (iii) reduce their solvency ratios. Moreover,
when funding costs are low and liquidity is abundant, banks have less incentive

16



Chapter 1. Literature review

to pursue liquidity and funding through securitization (Pescatori et al., 2016).
Low rates may also encourage increased risk-taking in new loans, as argued by
Maddaloni and Peydro (2011), Borio and Zhu (2012), and Jiménez et al. (2014).

We have seen in this section that central banks, investors, and households exert
a significant influence on the yield curve, although on different time scales. We
have also described the feedback effect of yield levels on banking activities. In the
next section, we introduce the most commonly used modeling framework for the
yield curve, which assumes the existence of a single representative agent. These
approaches primarily focus on the notion that long-term rates reflect expectations
of future short-term rates.

1.3 From the expectation theory to arbitrage free models

1.3.1 Expectation theory

The evolution of the relationship between short-term and long-term interest rates
has been shaped by various economic theories and empirical observations. Fisher
(1930) laid the foundation for the term structure expectation theory, linking short-
and long-term rates under conditions of perfect foresight. However, Fisher also
highlighted the influence of institutional factors, noting that real-world complexi-
ties often render precise theoretical formulations inapplicable. Riefler (1930) rein-
forced Fisher’s findings, revealing a general alignment in the direction and timing
of movements between short-term and long-term yields using data from the 1920s.
Keynes (1930) initially endorsed this view using British data to argue that changes
in short-term rates, driven by central bank actions, effectively influenced long-term
rates, making monetary policy effective through this channel. However, Keynes
(1936) revised this position in response to the stubbornly high long-term rates of
the 1930s. He proposed that long-term interest rates were more a product of con-
ventional beliefs and psychological factors, emphasizing the role of expectations
about future rates.

Based on these macroeconomic perspectives, the expectation theory of the
term structure, developed by Lutz (1940) and Hicks (1946), assumes market ef-
ficiency and rational agents to derive long-term interest rates as the average of
expected future short-term rates (r(s))s≥0 plus a liquidity term premium Φ(T−t).
This liquidity premium accounts for the ease of buying or selling a bond with time-
to-maturity T − t, but not for interest rate risk (i.e., the risk of short-term rate
fluctuations). Formally, in this framework, the continuously compounded yield

to maturity y(t, T ) = − lnP (t,T )
T−t associated with the price of a zero-coupon bond
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Figure 1.1: Historical time series of the mid-price at time t, f(t, t + θ), of a 3-month
SOFR Futures contract maturing at t + θ. The SOFR Futures dataset comprises daily
historical variations from 1994 to 2023, covering maturities from 3 months to 117 months.

P (t, T ) maturing at T is given by:

y(t, T ) =
1

T − t
EP
t

[∫ T

t
r(s)ds

]
+ Φ(T − t), (1.10)

where EP
t [.] denotes the mathematical expectation, conditional to the information

available at t, under the historical probability P. The limitations of this theory
become evident when the short-term rate process (r(s))s≥0 is an Itô process with
no drift, dr(s) = σ(s)dW (s), where W (s) is a Brownian motion. In this case, the
yield curve without a liquidity premium would have a zero slope:

y(t, T ) =
1

T − t
EP
t

[∫ T

t
r(t) +

(∫ s

t
σ(u, ω)dW (u)

)
ds

]
= r(t). (1.11)

A further issue, first identified by Shiller et al. (1983), is that even when the
short rate exhibits a trend, this theory is inconsistent with empirical data. For
instance, Fig. 1.1 shows that the rate f(t, t + θ) of Secured Overnight Funding
Rate (SOFR) Futures for 3-month contracts do not consistently predict the path
of the spot rates f(t, 0). Notably, apart from the period from 2021 to 2023, the
forward rate tends to be systematically higher than the actual short-term rate
path.
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Furthermore, evidence from Culbertson (1957), Sargent (1972), 1979, Shiller
(1979), Singleton (1980), Shiller (1981), Shiller et al. (1983), Cochrane and Pi-
azzesi (2002), Gürkaynak et al. (2005), Hanson and Stein (2015), Brooks et al.
(2018), and Hanson et al. (2021) shows that the volatility and sensitivity of long-
term rates to short-term rate exceed predictions from the expectation theory (see
also section 1.4.1).

To better align with empirical data, the expectation theory was modified by
introducing an alternative weighting scheme for averaging future short-term rates.
Mathematically, this is achieved by defining a so-called ”risk-neutral” probability
measure (see section 1.3.2), ensuring that Eq. (1.10) remains valid when using an
expectation operator defined under this new measure.

1.3.2 Arbitrage-free models of the interest rate curve

A large body of literature on derivative pricing has emerged since the 1970s, fol-
lowing the work of Black and Scholes (1973), who proposed a closed-form formula
for the pricing of European options under the arbitrage-free assumption (or equiv-
alently, the efficient market hypothesis). This theory posits that, after adjusting
for volatility, each financial asset has the same return, commonly referred to as
the “Sharpe ratio” (Sharpe, 1964). The Sharpe ratio enables the definition of a
new probability measure, the “risk-neutral” measure, under which the return on
all risky assets equals the risk-free rate.

In the context of interest rate products, the arbitrage approach models the
stochastic evolution of one or more interest rates and subsequently derives the
prices of all contingent claims by ensuring that no arbitrage opportunities exist
within the economy. A refinement of this approach involves either modeling the
initial yield curve and its subsequent movements, as proposed by Ho and Lee
(1986), or examining shifts in forward rates, as in the framework developed by
Heath et al. (1992) (further detailed below), both while maintaining arbitrage-
free conditions.

In its most common form, the continuous-time arbitrage theory considers an
infinite set of derivatives, specifically zero-coupon bonds of various maturities,
all anchored by a single underlying non-risky asset, typically the risk-free asset
(Brennan and Schwartz, 1977; Vasicek, 1977; Björk, 1998). This risk-free asset can
be conceptualized as the shortest maturity rate, usually set by the central bank.
As Björk (1998) explains, this market is inherently incomplete, involving one or
more diffusion factors for risk-free assets while there is no risky asset. However, the
absence of arbitrage establishes a relationship among zero-coupon bonds, allowing
the determination of bond prices across all maturities. Within this framework, the
market price of risk, which facilitates the transition from historical to risk-neutral
probability, is determined by market participants based on their preferences, as
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observed in market prices (see section 1.3.2.3).
An important feature of this framework is that, under the risk-neutral measure,

differences in the values of zero-coupon bonds with different maturities are solely
explained by changes in the expected future risk-free rate, meaning there is no risk
premium for duration risk. In contrast, under the historical probability measure,
each zero-coupon bond is driven by its own drift and volatility, with the constraint
that all market prices of risk are equal, allowing for the derivation of a non-zero
term premium (see section 1.3.2.2).

Formally, if P (t, T ) and P (t, S) denote the prices at time t of two zero-coupon
bonds maturing at T and S, respectively, and W P represents the Brownian motion
driving the diffusion of the instantaneous risk-free rate r(t), then the dynamics
under the historical probability P of these bonds are given by:

dP (t, T )

P (t, T )
= αT (t)dt+ σT (t)dW P(t), (1.12)

dP (t, S)

P (t, S)
= αS(t)dt+ σS(t)dW P(t), (1.13)

where αT (t), σT (t) and αS(t), σS(t) are time-dependent (and possibly stochastic)
parameters representing the drift and volatility of the zero-coupon bonds maturing
at T and S, respectively. Under the risk-neutral probability Q, the dynamics of
these bonds are given by:

dP (t, T )

P (t, T )
= r(t)dt+ σT (t)dWQ(t), (1.14)

dP (t, S)

P (t, S)
= r(t)dt+ σS(t)dWQ(t), (1.15)

where WQ is the Brownian motion driving the diffusion of the instantaneous short
rate r(t) under the risk-neutral probability Q, defined by its Radon-Nikodym
derivative with respect to P:

dQ
dP

∣∣∣∣
t

= exp

(∫ t

0

r(s) − αT (s)

σT (s)
dW P(s) −

∫ t

0

1

2

(
r(s) − αT (s)

σT (s)

)2

ds

)
. (1.16)

The absence of arbitrage in the term structure of zero-coupon bonds ensures the
existence of a stochastic process (λ(s))s≥0 such that (Björk, 1998):

∀(s, T, S),
r(s) − αT (s)

σT (s)
=
r(s) − αS(s)

σS(s)
= −λ(s). (1.17)

This process (λ(s))s≥0 is known as the “market price of risk,” representing the
compensation for bearing interest rate risk when purchasing a zero-coupon bond.
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Assuming the zero-coupon bond price P (t, T ) is a sufficiently smooth function of
the instantaneous short rate r(t), we can apply Itô’s lemma to derive the stochastic
differential equation satisfied by the zero-coupon bond price:

dP (t, T ) =

(
∂P

∂t
(t, T ) + µr(t)

∂P

∂r
(t, T ) +

1

2
σ2r (t)

∂2P

∂r2
(t, T )

)
dt

+ σr(t)
∂P

∂r
(t, T )dW P(t), (1.18)

where µr(t) and σr(t) are, respectively, the drift and volatility functions in the
diffusion equation of r(t) under the historical probability. Identifying the drift and
volatility terms in Eqs. (1.12) and (1.18) yields the stochastic differential equa-
tion governing the price of the zero-coupon bond, known as the “term structure
equation” (Björk, 1998):

{
∂P
∂t (t, T ) + (µr(t) − λtσr(t))

∂P
∂r (t, T ) + 1

2σ
2
r (t)

∂2P
∂r2

(t, T ) − r(t)P (t, T ) = 0,

P (T, T ) = 1,

(1.19)
This equation is equivalent, by the Feynman-Kac theorem, to the pricing formula
for the zero-coupon bond within the arbitrage-free theory:

{
P (t, T ) = EQ

t

[
exp

(
−
∫ T
t r(s)ds

)]
,

dr(t) = (µr(t) − λ(t)σr(t))dt+ σr(t)dW
Q(t).

(1.20)

A similar formula can be derived in the more general case where the diffu-
sion of the risk-free rate is driven by a d-dimensional Brownian motion. In this
scenario, the valuation of zero-coupon bonds enables the pricing of all derivative
instruments, including Futures contracts (see section 1.1). However, a significant
limitation of this framework is that it requires the correlation matrix of any k+ d
forward rates to be singular when the model is driven by d factors (Goldstein,
2000). This stipulation conflicts with empirical observations (see chapter 5). Con-
sequently, models defined within this framework are often misspecified, as will be
discussed in the next section.

Under the assumption of a deterministic instantaneous risk-free rate r(t), the

price of a zero-coupon bond simplifies to P (t, T ) = exp
(
−
∫ T
t r(s)ds

)
, so the

dynamic equation for the bond price becomes:

dP (t, T ) = −r(t)P (t, T )dt, (1.21)

under the historical probability measure. In this scenario, the market price of
risk is zero, and the probability measures P and Q coincide. This corresponds to
the expectation hypothesis framework, which is known to be incompatible with
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empirical data (see section 1.3.1). In contrast, as we will demonstrate in the
following section, the arbitrage-free theory of the interest rate curve can generate
non-zero term premiums.

1.3.2.1 Affine term structure models

One of the most commonly used classes of arbitrage-free models of the term struc-
ture are the so-called “affine term structure models”. These models assume the
following form for the price of a zero-coupon bond:

P (t, T ) = exp (A(t, T ) −B(t, T )r(t)), (1.22)

where A(t, T ) and B(t, T ) are two deterministic time-dependent functions such
that A(T, T ) = B(T, T ) = 0. In this framework, it is generally further assumed
that the risk-free rate is driven by d diffusion factors, modeled through a Marko-
vian and time-homogeneous hidden state variable x(t) (Piazzesi, 2010):

{
r(t) = δ0 + δ⊤1 x(t),

dx(t) = k(x̄− x(t))dt+ Σx(t)dWQ,d(t),
(1.23)

where δ0 and k are calibration parameters, δ1 and x̄ are parameter vectors, Σ is a
diagonal matrix of parameters, and WQ,d(t) is a brownian motion of dimension d.

Although arbitrage-free models in the financial industry are typically cali-
brated using current market prices from derivatives, these models can also be
estimated using more common inference techniques on historical data. In partic-
ular, affine term structure models can be calibrated using maximum likelihood
approaches on historical time series. The maximum likelihood method aims to
maximize the probability of a given set of parameters Θ based on n observed re-
alizations x̃(ti∈J1,nK) of the state variable process (x(t))t≥0. This is equivalent, by
Bayes’ theorem, to maximizing the following loss function over the set of param-
eters p:

L(θ) = P [x(t1) = x̃(t1), . . . , x(tn) = x̃(tn)|p]P [p] . (1.24)

Thanks to the Markovianity and time-homogeneity of the state variable process
(x(t))t≥0, it is possible to reformulate the joint probability of the state vector path
as:

P [x(t1) = x̃(t1), . . . , x(tn) = x̃(tn)]

=

n∏

i=2

P [x(ti) = x̃(ti)|x(ti−1) = x̃(ti−1)]P [x(t1) = x̃(t1)] ,

=

n∏

i=2

fx(x̃(ti)|x̃(ti−1))fx(x̃(t1)),
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where fx(x̃(ti)|x̃(ti−1)) is the transition density of the state variable x. Finally, the
joint probability density of the observed historical yield time series fy(ỹ(t+1)|ỹ(t))
can be expressed as a function of the density of the state vector fx(x̃(t+ 1)|x̃(t))
via a change of variables:

fy(ỹ(t)|ỹ(t− 1)) = fx(x̃(t)|x̃(t− 1))

∣∣∣∣
dx(t)

dy(t)

∣∣∣∣ , (1.25)

where
∣∣∣dx(t)dy(t)

∣∣∣ is the determinant of the Jacobian matrix of the function relating

the state vector to the observed yield, as defined by the model.
Therefore, the estimation of the model parameters in Eq. (1.23) can be con-

ducted using the time series of zero-coupon yields y(t, T ) (for e.g., implied from
swap rates, see section 2.2.1). However, this class of models typically generates a
so-called “stochastic singularity” (Piazzesi, 2010): since the number of maturities
T is infinite, but there are only d diffusion factors, the model can be rejected if
the historical observations include d + 1 yields of different maturities. This issue
can be overcome by assuming that the yields of different maturities are observed
with some measurement errors, so the calibrated model becomes:

{
y(t, θ) = A′(θ) +B′(θ)⊤x(t) + ϵ(t, θ),

dx(t) = k∗(x̄∗ − x(t))dt+ Σx(t)dWQ,d(t),
(1.26)

where θ = T − t is the time-to-maturity, A′(θ) and B′(θ) are functions defined
by the parameters of the model, and ϵ(t, θ) represents residuals accounting for
measurement errors, assumed to be independent across time.

However, as explained by Duffie and Singleton (1997), Dai and Singleton
(2000), Piazzesi (2005), and Hamilton and Wu (2014), the measurement errors
ϵ(t, θ) generated by affine term structure models are typically highly auto-correlated
(up to 90% at one day). While Duffie and Singleton (1997) address this issue by
assuming that errors follow AR(1) processes, Hamilton and Wu (2014) suggest
that these errors actually include additional explanatory factors such as liquidity
premiums. Nonetheless, as Piazzesi (2010) notes: “Auto-correlation in measure-
ment errors is worrisome because it suggests that these errors might have in fact
nothing to do with measurement issues but with omitted state variables or func-
tional form assumptions. [...] Much more research is needed in this direction.”

1.3.2.2 Term premiums within the arbitrage free framework

As mentioned above, arbitrage-free models generate term premiums under the
historical probability, even when the risk-free rate has no drift. Notably, the U.S.
Federal Reserve employs a three-factor affine term structure model to derive the
term premiums implied by the market prices of U.S. sovereign bonds (Kim and
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Wright, 2005). They define the term premium ϕ(T ) as the difference between
the current risk-neutral yield of the zero-coupon bond, y(0, T ), and the average
expected value of the risk-free rate under the historical probability (i.e., the defi-
nition of y(0, T ) within the expectation theory2, see section 1.3.1):

ϕ(T ) = − lnP (0, T )

T
− 1

T

∫ T

0
EP [r(t)] dt. (1.27)

This model allows the authors to disentangle the effects of changes in long-term
rates related to the market price of risk (i.e., agents’ preferences, see next section)
from changes in agents’ expectations regarding the future path of the short-term
rate r(t).

The model is calibrated using a maximum likelihood approach (see section 1.3.2.1)
on historical observations of the zero-coupon yields derived from U.S. sovereign
bonds. However, as shown by Kim and Orphanides (2012), in a term structure
sample spanning 5 to 15 years, an insufficient number of mean reversions may be
observed to accurately estimate the drift (i.e., the market price of risk) of the hid-
den state variable r(t). Therefore, Kim and Wright (2005) also incorporate survey
forecasts of the future short-term rate to infer the expected path of r(t). In the
following years, this model was extended to four diffusion factors by Cochrane
and Piazzesi (2009), obtaining similar results. Finally, in the affine term struc-
ture approach proposed by Renne (2017), time-varying term premiums are derived
by expressing bond prices as functions of central bank rates and their associated
spreads to the short term (see section 1.2.1.3).

1.3.2.3 Micro-foundations of arbitrage free yield curve models

Equilibrium models, developed, among others, by Cox et al. (1981), 1985a, b,
Longstaff and Schwartz (1992), Duffie (2001), Kim and Wright (2005), and Pi-
azzesi (2010) generally assume the stochastic evolution of one or more exogenous
state variables and the existence of a representative investor. Unlike the arbitrage
approach, these models derive the term structure of interest rates directly from the
equilibrium conditions within the economy, taking into account both the supply
and demand for bonds. Ultimately, these models arrive at a diffusion equation for
the price of zero-coupon bonds that is consistent with the arbitrage-free frame-
work. The key advantage of the equilibrium approach over the arbitrage approach
is its endogenous determination of the functional forms of term premiums (i.e.,
the market prices of risk).

2The actual expression for the second term in Eq. (1.27) should be

− 1
T
ln

(
EP
t

[
exp

(
−
∫ T

0
r(s)ds

)])
, which is lower than − 1

T
EP
t

[∫ T

0
r(s)ds

]
by Jensen’s in-

equality. Thus, these term premiums include the effect of the convexity of the relationship
between bond prices and yields.
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A straightforward way to reconcile the equilibrium approach with the arbitrage-
free framework is by deriving the price of a zero-coupon bond based on the op-
timization of the utility function of a representative agent. For instance, in the
DSGE framework (see section 1.4), the so-called ”Euler equation” can be expressed
as:

P (t, T )

exp
(∫ t

0 δ(s)ds
) U

′(c(t))
p(t)

= EP
t


 1

exp
(∫ T

0 δ(s)ds
) U

′(c(T ))

p(T )


 , (1.28)

where δ(s) represents the instantaneous rate of time preference – the discount
rate for future utility –, U ′(c(T )) is the marginal utility of consumption, c(t) is
consumption at time t, and p(t) denotes the general price level. In the arbitrage-
free framework, rewriting Eq. (1.20) under the historical probability gives:

P (t, T )

exp
(∫ t

0 r(s)ds
) dQ

dP

∣∣∣∣
t

= EP
t


 1

exp
(∫ T

0 r(s)ds
) dQ

dP

∣∣∣∣
T


 . (1.29)

By comparing Eq. (1.28) and Eq. (1.29), we can identify the stochastic instanta-
neous risk-free rate r(s) with the instantaneous rate of time preference δ(s), and
the Radon-Nikodym derivatives of the risk-neutral probability as:

dQ
dP

∣∣∣∣
t

= EP
t

[
U ′(cT )

p(T )

]
. (1.30)

Thus, in the arbitrage-free framework, the existence of risk premiums (i.e., the
market price of risk λ) observed in Fig. 1.1 can be attributed to either (i) a sys-
tematic estimation by economic agents that inflation will rise in the coming years
or (ii) constant shifts in these agents’ preferences, both of which are not entirely
convincing explanations (see Bouchaud and Potters (2003) for more detailed cri-
tique).

1.3.2.4 Excess volatility in the arbitrage free theory

In its most common form, the arbitrage-free theory of the term structure assumes
the existence of an instantaneous risk-free rate, much like the expectation theory.
However, even with the introduction of a risk neutral probability measure to
account for variations in investor preferences, the theory does not solve the so-
called long-term rates “excess volatility puzzle” (Giglio and Kelly, 2018; d’Arienzo,
2020; Hanson et al., 2021): the volatility of long-term rates is higher than predicted
by these models. Specifically, Giglio and Kelly (2018) assume, in a discretized
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framework, that the instantaneous short-term rate follows an AR(1) process under
the risk-neutral probability Q:

r(t+ 1) = r(0) + ρr(t) + ϵ(t), (1.31)

where t is in days, the residuals ϵ(t) are normally distributed and homoskedastic3,
and ρ < 1. This process can be viewed as a discretized version of a mean-reverting
Ornstein-Uhlenbeck process (Uhlenbeck and Ornstein, 1930), so it includes a mar-
ket price of risk similarly to Eq. (1.20). Giglio and Kelly (2018) express the yield
of a zero-coupon bond maturing in θ days under the risk-neutral measure as a
function of the price of the zero-coupon bond maturing tomorrow:

y(t, t+ θ) ≈ 1

θ
EQ
t

[
θ∑

i=1

r(t+ i)

]
= r(0) + β(θ)y(t, t+ 1), (1.32)

where β(θ) = 1
θ
1−ρθ
1−ρ represents the sensitivity of the zero-coupon bond of ma-

turity θ to the shortest-maturity yield. Although this sensitivity theoretically
converges to zero as the time-to-maturity θ increases, the empirical coefficients
of the regression of long-term yields on the shortest-maturity yield increase more
rapidly than predicted by the model, leading the authors to conclude an excess
volatility and excess sensitivity of long-term yields to the short-term rate.

However, according to our tests, the high temporal autocorrelation of zero-
coupon bond yields (see section 1.3.2.1) results in highly correlated residuals when
regressing y(t, t + θ) on y(t, t + 1), thereby invalidating the model of Eq. (1.32).
Hence, we can actually conclude that the econometric version of the arbitrage-free
framework is misspecified, but it does not confirm an excess volatility puzzle.

It is possible to partially overcome the “stochastic singularity” of the arbitrage-
free framework by assuming that each instantaneous forward rate f(t, T ) of ma-
turity T solves its own stochastic differential equation, as described in the next
section (see section 1.3.2).

1.3.2.5 Current industry practice: the HJM framework

The Heath-Jarrow-Morton (HJM) framework has become the industry standard
(Heath et al., 1992; Hughston, 1996). Within this framework, the dynamics of the
FRC (i.e., the collection of the instantaneous forward rates f(t, θ), see section 1.1)
is described by Itô processes driven by a d-dimensional Brownian motion. Con-
sequently, bond prices for each tenor θ are regarded not as financial derivatives
of the risk-free rate f(t, 0) but as individual risky assets, leading to a possibly

3The authors also analyze a heteroskedastic model, finding that it has a limited impact on
excess volatility.
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infinite number of such assets. The finite number d of diffusion factors introduces
the potential for arbitrage opportunities among bond prices (Björk, 2019). Thus,
conditions are established on the drift components of instantaneous forward rate
processes to ensure arbitrage-free pricing of zero-coupon bonds. This framework
rests only on two fundamental assumptions: the continuity of sample paths of
forward rate processes and the finite number of Brownian motions driving these
processes.

Similarly to the models based on the diffusion of a single risk-free rate, a
limitation of the HJM framework is its stipulation that for any integer k, the
correlation matrix of k+d instantaneous forward rates must be singular when the
model employs d factors, contradicting empirical results (see chapter 5)

This limitation also complicates the calibration of the HJM framework when
attempting to fit the model to historical market prices. Similarly to affine term
structure models, such calibration requires the addition of a residual noise to
account for measurement errors. For example, De Jong and Santa-Clara (1999)
attempted to fit zero-coupon bond yields derived from swap data using a two-
factor model within the HJM framework. Using a maximum likelihood approach,
they calibrated the following expression:

y(t, t+ θ) = A(θ) +B(θ)ψ(t) + ϵ(t, θ), (1.33)

where A(θ) and B(θ) are functions of the time-to-maturity θ to be fitted, ψ(t) is
a state parameter based on the dynamics of the instantaneous forward rate, and
ϵ(t, θ) represents the measurement error. Unfortunately, but perhaps expected,
these measurement errors exhibit high autocorrelation (up to 90% at one day).

The serial autocorrelation of these measurement errors is significantly lower,
around 16%, when fitting such a model directly to Futures prices (Bhar and
Chiarella, 2011). In such an approach, it is crucial to recognize the formal dif-
ference between the simply-compounded yield F (t, S, T ) associated with Futures
prices, defined by (see section 1.1):

1

1 + F (t, S, T )(S − T )
=
P (t, T )

P (t, S)
, (1.34)

and the instantaneous forward rate f(t, T ) modeled within the HJM framework
(Bhar and Chiarella, 2011). Specifically, a maturity bias arises because the limit
S → T is not quoted in financial markets, and a convexity bias exists because
f(t, S, T ) is a continuously compounded rate defined by (see section 1.1):

exp (−f(t, S, T )(T − S)) =
P (t, T )

P (t, S)
. (1.35)
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Bhar and Chiarella (2011) observed that these biases are non-negligible and pro-
posed treating Futures contracts as derivative instruments written on the instan-
taneous forward rates. This approach led to the derivation of a full-information
maximum likelihood estimator for observable Futures prices. The authors ob-
tained a diffusion equation for Futures prices of the form:

dF (t, S, T )

F (t, S, T )
= Σ(S, T )dWQ,d + ϵ(S, T ), (1.36)

where ϵ(S, T ) accounts for measurement errors, and Σ(S, T ) is a d × d matrix.
In this equation, measurement errors are proportional to the relative variations
of Futures prices, which are known to be temporally uncorrelated. Therefore,
this calibration is less misspecified than a calibration on zero-coupon bond yields,
where measurement errors are proportional to the yields (see Eq. (1.36)).

To avoid misspecification entirely, the HJM framework can be extended to
define as many diffusion factors as the number of existing Futures. This approach,
often referred to as a LIBOR Market Model (LMM), then requires the calibration
of a large number of parameters. In practice, the financial industry typically
calibrates HJM models using risk-neutral prices of derivative instruments which
are highly sensitive to the parameters of the model, thus avoiding the need for
defining measurement errors.

An other major limitation of the HJM framework, noticed by Bouchaud and
Potters (2003), is its stipulation, to ensure absence of arbitrage, that the drift of
the forward rate reads, under the historical probability,

µf (t, θ) := σf (t, θ)

(∫ θ

0
dθ′σf (t, θ′) − λ(t)

)
, (1.37)

where σf (t, θ) is the volatility of the forward rate process and λ(t) is the market
price of risk. Bouchaud and Potters (2003) observe that under the reasonable
assumption of a stationary volatility and market price of risk (i.e., λ(t) = λ and
σf (t, θ) = σf (θ)), the empirical average of the forward rate over an interval I ≫ θ
is given by:

⟨f(t, θ) − f(t, 0)⟩|λ≈ λ

∫ θ

0
σf (u)du− θσf (Θ) +O

(
θ2σf (Θ)

I

)
, (1.38)

where Θ is the maximum available maturity of the FRC. The authors deduce that
this contribution is negative (when λ > 0) for some initial region of the FRC if, as
empirically found, σf (θ) > σf (0) for all θ (see section 1.3.2.4). Unfortunately, the
actual shape of the average empirical FRC is very different (see section 5) from
the one prescribed by Eq. (1.38).
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In fact, to address this issue, some authors (Moraleda and Vorst, 1997) pro-
posed non-stationary volatility functions σf (t, θ) to fit the humped volatility of
the term structure (see chapter 5). We show in chapter 7 that an elastic string
model allows us to reproduce the full volatility structure of the FRC, while being
stationary.

1.4 Macroeconomic models

Interest rates are viewed in macroeconomics as a critical state parameter that links
money creation to economic growth. Since the publication of The General Theory
of Employment, Interest, and Money by Keynes in 1936, and its formalization
within the IS-LM (Investment-Savings, Liquidity-Money) model the following year
by Hicks (1937), the monetary policy transmission mechanism has primarily been
understood through the interest rate channel. This perspective assumes that
the central bank can set the real interest rate, which then influences investment,
spending, and aggregate demand.

This modeling approach evolved in the 1950s into the commonly accepted
“neoclassical synthesis”, which posits that prices are flexible in the long run,
causing the output gap to revert to equilibrium after a shock. Consequently, the
“unanticipated price level channel” (Mishkin, 2013) became the main transmission
mechanism of monetary policy. In the long run, according to the classical view,
an expansionary monetary policy generates inflation, leading economic agents to
raise their inflation expectations and, eventually, their wage demands. The neo-
classical synthesis perspective hinges on the temporary differences between an-
ticipated and realized inflation. As economists sought microfoundations for the
Phillips curve linking inflation with unemployment (Phillips, 1958), they proposed
several constraints on price flexibility to explain the short-term effects of mone-
tary expansion driven by inflationary surprises. For example, the “advance fixing
of nominal wages” and the related concept of “misperceptions”, introduced by
Friedman (1968) and further developed by Lucas (1973), suggest that when wages
cannot immediately adjust to inflation (or producers misinterpret inflation), real
labor costs decrease during an inflationary surprise, thereby boosting employment
and production.

The neoclassical synthesis was later extended by the New Keynesian (hereafter
referred to as New Keynesian (NK)) economic theory, particularly through the
development of the NK DSGE modeling framework (see section 1.4), as developed
by Rotemberg (1982) and Calvo (1983), among others. In these models, the output
gap is a function of the private sector’s expectations regarding the future path of
the short-term real interest rate, which also determines the long-term rate in
the arbitrage-free theory (under a “risk-neutral” probability measure, see section
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1.3.2). Consequently, by setting the short-term real interest rate, the central bank
influences the private sector expectations of the long-term rate, which is directly
linked to the output gap in this framework. Formally, in these models, the interest
rate primarily affects the arbitrage decisions of households between consumption
and saving, rather than firms’ investment or any other monetary policy channels
described in section 1.2.1.

In the following years, a vast diversity of modeling approaches flourished within
the NK DSGE framework, trying to address some of the identified issues of this
class of models. In particular, one can mention the attempts to include some
backward-looking decision making by agents when resetting their prices to better
fit empirical data that demonstrate the persistence of inflation (Fuhrer and Moore,
1995; Roberts, 1997; 1998; Gaĺı and Gertler, 1999).

1.4.1 Excess sensitivity puzzle in macroeconomic models

Within the standard DSGE framework, short-term interest rates are expected to
quickly return to a deterministic steady state following a macroeconomic or mon-
etary policy shock. Consequently, one would anticipate only a limited response
from long-term interest rates to these disturbances. However, empirical evidence
suggests that long-term rates are far more sensitive to new information than DSGE
models predict (Rudebusch, 1995; Fuhrer, 1996; Gürkaynak et al., 2005; Hanson
and Stein, 2015). For instance, Gürkaynak et al. (2005) analyzed the sensitiv-
ity of long-term interest rates (derived from U.S. sovereign bonds) to economic
news and monetary policy surprises, finding that long-term rates are significantly
more responsive to such news than the NK DSGE framework predicts.4 More-
over, while monetary policy surprises typically cause short-term interest rates to
move in the expected direction, forward rates at longer horizons often move in
the opposite direction—i.e., a surprise policy tightening can lead to a decline in
long-term forward rates. Gürkaynak et al. (2005) suggests that this strong sen-
sitivity of long-term nominal rates to short-term rates could be consistent with
the expectations hypothesis only if long-run inflation expectations are unanchored
and continuously updated (see Eq (1.28) in section 1.3.2.3).

Beechey (2006) addresses the excess sensitivity puzzle within the DSGE frame-
work by hypothesizing that the central bank’s inflation target is not explicitly
communicated, and macroeconomic shocks are imperfectly observed. As a result,
bond markets infer the inflation target from noisy signals, leading to increased
sensitivity of long-term inflation expectations to transitory shocks. This mecha-

4The authors tested two types of DSGE models: (i) a model generating a forward-looking
Phillips curve (Clarida et al., 2000); and (ii) a backward-looking version of this model proposed
by Rudebusch (2001). As previously noted, the persistence of inflation in empirical data tends
to invalidate forward-looking DSGE models.
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nism amplifies the response of long-term interest rates to monetary policy actions
and inflation surprises.

Hanson and Stein (2015) propose two potential explanations for this excess
sensitivity: either monetary policy (i) influences expected future real rates at
very distant horizons (see the model by Piazzesi (2005) in section 1.2.1.3), which
contradicts the rational expectations hypothesis, or (ii) affects the term premium
on long-term bonds, implying that the observed effect on forward rates should
mean-revert over time. Hanson and Stein (2015) observe such overreactions of
long-term rates, as discussed in section 1.5. They suggest that these effects can
be reproduced using an agent-based model with two types of investors trading at
different time scales (see section 1.6).

1.4.2 DSGE models including bank agents or an interbank market

Another significant improvement in yield modeling is the integration of a more
sophisticated banking system within the DSGE framework (Boissay et al., 2016;
Jakab and Kumhof, 2018; Gertler et al., 2020; Coimbra and Rey, 2024). Although
these extensions were developed in response to the GFC, addressing the need for
a more realistic representation of the financial sector (Benner, 2013; Fagiolo and
Roventini, 2016), they also enhance the micro-foundation of interest rates.

For example, the approach by Boissay et al. (2016), which models endogenous
banking crises, incorporates two rates that can be interpreted as short-term (in-
terbank) and long-term (corporate loan) rates. Within this framework, the term
premium is related to the marginal product of capital, which aligns with Tobin’s q
theory (Tobin, 1969). This model is designed to capture the long-term dynamics
of credit in both interbank and corporate markets, but it does not fully account
for the stylized facts of the interbank network (see section 1.7).

However, many of these models continue to assume that banks function merely
as intermediaries of loanable funds, whereas, in reality, banks finance loans through
money creation under regulatory constraints (see section 1.7). This limitation has
been addressed by Jakab and Kumhof (2018), who proposed an extension of the
DSGE framework in which banks are modeled as heterogeneous financial inter-
mediaries. In their model, loans are financed through the ex-nihilo creation of
ledger-entry deposits, facilitating payments among non-bank entities. Unfortu-
nately, this model accounts for only a single maturity of the yield curve.

1.4.3 Macro-finance models

Lastly, it is worth noting that the field of “macrofinance” has sought to address
inconsistencies between asset prices and economic fluctuations (Cochrane, 2017).
One major discrepancy is the so-called “equity-premium risk-free rate puzzle”
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(Mehra and Prescott, 1985; Hansen and Jagannathan, 1991): the volatility of
consumption in the DSGE framework is insufficient to generate the observed eq-
uity premium in financial markets, unless an unrealistically high risk-free rate is
assumed.

In a recent review, Cochrane (2017) highlights several efforts to solve this
puzzle, including the generalization of the marginal utility of consumption —and
consequently the risk-free rate— within various frameworks (e.g., consumption
habits as proposed by Campbell and Cochrane (1999) or heterogeneous prefer-
ences as suggested by Gârleanu and Pedersen (2016)). A notable explanation for
the higher equity premium is offered by leverage finance models (Brunnermeier,
2009; He and Krishnamurthy, 2013), where only highly leveraged intermediaries
participate in the market and are forced to fire sale assets when the market de-
clines.

Some authors in this field have proposed abandoning the rational expecta-
tions hypothesis (Barberis et al., 2015), which is a key assumption leading to the
primary puzzle of the yield curve: the excess volatility of long-term rates (see
sections 1.3.2.1, 1.3.2.4, and 1.4.1). Although the “Macro-finance” literature has
not yet addressed this specific puzzle, numerous studies have tested the validity
of the expectations hypothesis, as discussed in the following section.

1.5 Overreactions and irrationality

Given that both the arbitrage-free and macroeconomic frameworks rely on the
assumption of rational expectations and face the issue of excess volatility, several
attempts have been made to test this hypothesis. Early efforts by Shiller et al.
(1983) and Mankiw and Summers (1984) to model specific forms of irrational
expectations were unsuccessful. Specifically, Shiller et al. (1983) examined whether
interest rates reverted to their previous levels following money stock surprises5

but found no evidence to support such behavior, thus validating the martingale
property of forward rates.

In subsequent research, Fama and Bliss (1987) investigated the predictability

of 1-year holding period excess returns on bonds, log
(
P (t+1,t+θ)
P (t,t+θ)

)
− y(t, t + 1),

using forward-spot spreads, approximated as follows:

log (

(
P (t, t+ θ)

P (t, t+ θ + 1)

)
− y(t, t+ 1) ≈ F (t, t+ θ, t+ θ + 1) − y(t, t+ 1), (1.39)

5In the 1970s in the U.S., the Federal Reserve published weekly money-stock announcements.
The expected money supply was defined as the median forecast of the money stock from the
weekly market survey of Money Market Services, published every Tuesday. The money surprise
was calculated as the difference between the announced and expected money stock.
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where t is the current time in years, θ is the time-to-maturity in years, and y(t, t+1)
is the yield of a 1-year zero-coupon bond, which defines the spot risk-free rate.
Within the arbitrage-free framework, one would expect no variation in 1-year
holding period excess returns. Indeed, approximating for convexity effects, we
have6:

log

(
P (t+ 1, t+ θ)

P (t, t+ θ)

)
− y(t, t+ 1)

≈ EQ
t

[∫ t+θ

t+1
rsds−

∫ t+θ

t
rsds

]
− EQ

t

[∫ t+1

t
rsds

]
= 0. (1.40)

However, Fama and Bliss (1987) observed significant variations in 1-year holding
period excess returns, particularly for medium- to long-term maturities (1 to 5
years), whereas forward rates poorly predict short-term (less than 1 year) interest
rate changes, consistent with Shiller et al. (1983). Overreactions of long-term rates
to surprises in the Fed funds rate have also been documented by Hanson and Stein
(2015) and Das (2002). Notably, Hanson and Stein (2015) reported that increases
in long-term forward rates on monetary policy announcement days predict a re-
versal over the next 12 months, implying non-Markovian dynamics in the yield
curve, which contradicts the affine term structure framework’s assumptions.

Testing the full-information rational expectations hypothesis is challenging due
to the unobservability of the complete information set used by forecasters. How-
ever, studies by Coibion and Gorodnichenko (2015), Bordalo et al. (2020), and
Wang (2021) have conducted tests on key macroeconomic variables (e.g., infla-
tion, output growth, interest rates, consumption growth) using data from U.S.
professional forecasters (e.g., The Livingston Survey, SPF, and Blue Chip) and
consumer expectations (e.g., The Michigan Survey of Consumers). Coibion and
Gorodnichenko (2015) proposed regressing forecast errors on forecast revisions,
where a positive correlation indicates underreaction and a negative correlation in-
dicates overreaction. Using this method, Bordalo et al. (2020) showed that 5- and
10-year U.S. Treasury rate forecasts overreact to new information, while forecasts
of the Fed funds rate or 3-month Treasury rates underreact. Building on this,
Wang (2021) successfully modeled the observed downward-sloping term struc-
ture of misreaction by distorting professional forecasters’ subjective perceptions
of short rate path.

Finally, while the affine term structure framework assumes exponential dis-
counting P (0, θ) = exp(−rθ) (see section 1.3.2.1), studies in Neuroscience, Be-
havioral Economics, and Finance (Green et al., 1994; Sozou, 1998; Frederick et

6The authors derive this result within the expectation theory under the historical probability.
Here, we extend this finding to the arbitrage-free framework where all bond prices are expressed
under the risk-neutral probability.
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al., 2002; Green and Myerson, 2004; Dasgupta and Maskin, 2005; Thaler, 2005;
Farmer and Geanakoplos, 2009; Kim and Zauberman, 2009; Cui, 2011; Ray and
Bossaerts, 2011) suggest that agents may use hyperbolic discounting:

P (0, θ) = (1 − αθ)−β. (1.41)

We demonstrate in chapter 7 that this form of discounting is crucial for modeling
the yield curve.

1.6 Agent-based models of the interest rate curve: the
preferred-habitat theory

Standard economic theory connects the interest rate for a given maturity T to
the willingness of a representative agent to change consumption between times t
and T , driven by the maximization of a utility function (see section 1.3.2.3). In
a different view, the so-called “preferred-habitat” theory, proposed by Culbertson
(1957) and Modigliani and Sutch (1966), suggests that certain agents (i.e., investor
groups) have a predilection for specific maturities of the yield curve, which in turn
affects interest rates based on the demand from these clienteles and the supply of
bonds with corresponding maturities. For example, pension funds typically prefer
long-term bonds, so an increase in their demand would likely reduce long-term
interest rates. In essence, the preferred-habitat view argues that bond market
prices are subject to demand and supply pressures from heterogeneous investor
preferences.

This modeling approach has been further developed in recent years to address
the puzzles of the term structure (Greenwood and Vayanos, 2010; 2014; Han-
son, 2014; Hanson and Stein, 2015; Mixon and Tuzun, 2018; Hanson et al., 2021;
Vayanos and Vila, 2021). In particular, Hanson and Stein (2015) and Hanson
et al. (2021) have proposed models that assume the existence of yield-oriented
investors who allocate their portfolios between short- and long-term bonds to
maximize their current short-term income, which is crucial for performance re-
porting. When short-term rates decline, these investors shift towards long-term
bonds, creating upward pressure on their prices (and thus lowering yields), which
helps explaining the high sensitivity of long-term rates to short-term rate changes
(see section 1.3.2.1). These models also account for temporary overreactions of
long-term rates to changes in short-term rates (see section 1.5) by introducing
two types of investors with different trading horizons: short-term investors who
focus on near-term returns and long-term investors who trade less frequently and
consider future returns over longer periods. The need for both types of investors
to absorb a fixed supply of long-term bonds generates price overreactions.
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The model proposed by Mixon and Tuzun (2018) decomposes yield curve
shifts into two components: a fundamental value modeled using the Nelson–Siegel
framework (Nelson and Siegel, 1987; Diebold and Li, 2006; Diebold et al., 2006;
Christensen et al., 2011) and a part generated by price pressure effects resulting
from dealer inventories (as defined in chapter 5). This model provides evidence
that net dealer Treasury inventories significantly impact the yield curve (see sec-
tion 1.2.2.1). Finally, d’Arienzo (2020) offers another explanation for the excess
volatility of long-term rates, suggesting that it is the result of increasing over-
reactions to news as the maturities of the bonds lengthen. This occurs because
biased investors tend to extrapolate recent changes in short-term rates to long-
term rates. The author posits that investors perceive a distorted version of the
short rate diffusion, which is more sensitive to current information than standard
short rate models would suggest.

Although preferred-habitat theory better reproduces the relationship between
short-term and long-term rates, the finite number of agent groups considered
prohibits modeling of the entire yield curve. The field theory of the interest rate
curve developed in chapters 7 and 8 is connected to these approaches, as it similarly
posits that yield variations arise, at least partially, from net trading flows.

Another class of agent-based models focuses on the interbank lending market,
where the shortest-term yields are determined. In the next section, we will explore
several models that describe these markets.

1.7 Agent-based models of the money markets

Several approaches to the modeling of the interbank unsecured markets have been
proposed. The influential article of Poole (1968) introduces a model in which the
interbank lending network absorbs randomly generated payment shocks, under
reserves requirements’ constraints. This seminal work has been followed by nu-
merous proposals of network modeling of the interbank market. Recently, Heider
et al. (2015) included counterparty risk in the lending network and generated en-
dogenous liquidity hoarding. Bech and Monnet (2016) considered a search-based
model that can reproduce the decrease of trading volumes due to a surge in ex-
cess reserves, without identifying the initial cause of deposits surpluses. This was
later identified by Vari (2020) as the eurozone interbank market fragmentation:
banks, depending on their country of location, have different probabilities of de-
fault. This fragmentation disrupts the transmission of monetary policy, generating
endogenously excess liquidity. Vari (2020) distinguishes two groups: core banks
(in Germany and Netherlands) do not use central bank funding but hold excess
reserves; peripheral banks (e.g. in Spain and Italy) borrow massively from the
central bank to fulfill their needs. Yet, the obtained funding ends up within the
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core banks due to payment imbalances. We reproduce the same behavior but we
reverse its causality in chapter 4. In our Agent Based Model (ABM), the flow
of payment shocks moves deposits from peripheral to core banks, generating liq-
uidity needs in the first ones, and excess liquidity in the others (see Sec. 4.1.7).
More recently, the decline of unsecured markets led several authors (Piquard and
Salakhova, 2019; De Fiore et al., 2021) to build equilibrium models explaining the
substitution effects between secured and unsecured interbank markets. Yet, all
these modeling proposals are only able to describe the equilibrium state of the
interbank market.

Other authors proposed dynamic models of unsecured interbank markets (Afonso
and Lagos, 2015; Lux, 2015; Blasques et al., 2018; Halaj, 2018; Liu et al., 2020).
Notably, Blasques et al. (2018) assume profit maximization and risk monitoring
cost to generate a sparse core-periphery structure and stable bilateral trading
relationships. Lux (2015) obtain the same result using a reinforcement-learning
scheme. Liu et al. (2020) proposed an ABM of the interbank network leading to
the endogenous formation of a financial network using only individual banks data.

Within ABMs for Macroeconomics, several frameworks include multiple bank
agents from which firms can borrow, although they do not allow interactions
among banks (Dosi et al., 2010; Cincotti et al., 2012; Dawid et al., 2012; Dosi
et al., 2013; Dawid and Gemkow, 2014; Dosi et al., 2015; Dawid et al., 2016;
Dosi et al., 2017; Dawid et al., 2018). The modeling of a static interbank lending
market is found in some macroeconomic models (Schasfoort et al., 2017; Gurgone
et al., 2018; Reissl, 2018; Reale, 2019).

In general, these approaches focus on unsecured markets, which have been
largely replaced by secured markets (see chapter 3). Moreover, these models
assume the absence of endogenous money creation while this process induces non-
centered shocks requiring a specific modeling (Jakab and Kumhof, 2015; 2018).
Finally, these frameworks only account for reserves constraints while the introduc-
tion of the liquidity regulations significantly modified money markets (see chap-
ter 3). We overcome these limitations in our ABM of the interbank lending market
described in chapter 4.

1.8 Summary

Within macroeconomic theory, monetary policy exerts its influence on the econ-
omy through various channels, most of which depend on the interest rate curve as
the primary transmission mechanism. In contrast, in the long run, economic the-
ory assumes a strong influence of consumption growth, population growth, and
time preferences on the level of interest rates. However, more recent empirical
studies challenge this view by highlighting the significant impact of supply and
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demand for credit on the yield curve. Evidence from sovereign bond markets
points to substantial yield variations that are driven by transaction flows.

In line with standard economic theory, most yield curve models assume the
existence of a rational representative agent who optimizes utility between current
and future consumption. However, the calibration of these models using market
prices generally shows that they are misspecified. Furthermore, these models often
conclude to an excess volatility puzzle: long-term rates are more volatile than pre-
dicted by the diffusion of the short-term rate. One approach to address this issue
is to model each forward rate individually, as in the Libor Market Model, within
the HJM framework. However, this method requires calibrating a large number of
parameters and introduces a change in probability with weak microfoundations, as
it relies on the unrealistic assumption that agents constantly change their prefer-
ences. An alternative approach, first introduced in the macrofinance literature and
more recently developed through ABMs, discards the assumption of a rational rep-
resentative agent. A prominent framework in this regard is the preferred-habitat
theory, which posits that different groups of agents have preferred investment ma-
turities. Although this type of model more accurately captures the relationship
between short- and long-term rates, the limited number of agent groups restricts
its ability to model the entire yield curve.

The shortest maturities of the yield curve have been modeled using agent-
based approaches and network theory since the 1960s. However, these models
have traditionally focused on unsecured markets, which have become less relevant
in western economies after the shift of bank refinancing toward secured lending
(see chapter 3). In chapter 4, we propose a minimal model of the secured interbank
market.

In order to build alternative approaches that address the limitations identified
in existing yield curve models, we begin in chapter 2 by examining the microstruc-
ture of the markets that determine interest rate levels in modern economies, fo-
cusing on interbank lending, derivatives, and other relevant markets.
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Key takeaways

• In line with standard economic theory, most yield curve models assume
the existence of a rational agent optimizing utility between present and
future consumption.

• These models, which are generally misspecified, are incompatible with
the observed volatility of long-term rates (the excess volatility puzzle).

• Modeling each forward rate separately (HJM framework) requires
many parameters and a probability change with weak microfounda-
tions.
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• Alternative approaches in macrofinance and ABM methods abandon
the rational agent assumption. Notably, the preferred-habitat theory
links short- and long-term rates through investor groups with hetero-
geneous preferences but does not model the potential infinite number
of yield curve maturities.

• Since the 1960s, agent-based and network models have focused on the
shortest-maturity rates, but they mainly apply to unsecured markets,
which have declined in relevance.
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Market microstructure of the
yield curve

In this chapter, we present the actors, markets, and microeconomic mechanisms
that define the yield curve. We begin by examining the shortest available maturity,
the overnight interbank rate, and then analyze the price formation mechanisms
of long-term rates in the swap, Futures and bond markets. Throughout this
exploration, we will identify the most liquid products influencing each of these
markets, guided by the principle that price formation occurs primarily within the
most liquid assets (as shown in chapter 6).

2.1 The interbank market

Central banks largely control the shortest maturity interest rate in a given econ-
omy. However, the interbank lending market provides banks with some leeway
in determining the market rate, which ultimately shapes the entire interest rate
curve. This price-setting mechanism is directly related to the money creation
process, which occurs through credit lending via long-term loans. Subsequently,
payment shocks require interbank lending to compensate for the reallocation of
liquidity by economic agents. In this section, we detail these processes.

2.1.1 Money creation

In western countries, money is created primarily by commercial banks through
lending. The production of goods is independent from the money creation process.
When a good, such as a car, is ready to be sold, the banking system’s role is to
create sufficient money to facilitate the transaction. This money creation typically
occurs through a process such as issuing a consumer loan (see Fig. 2.1a) for a car
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purchase. From an accounting perspective, this operation consists in increasing
the assets and liabilities of bank A by the same amount. When the buyer A of the
car transfers cash from his bank account to the one of the seller B, the balance
sheets of banks A and B become unbalanced. The excess cash in bank B is then
used to compensate for missing deposits in bank A (see Fig. 2.1b).

In reality, bank B in Fig. 2.1 cannot use all its excess cash to fund bank
A. Indeed, minimum reserves regulations require banks to deposit a share of
the deposits they received at the central bank. This minimum reserve creates
an imbalance in the system, which requires the central bank to loan the missing
amount of liquidity to bank A (see Fig. 2.2). This yields two types of control
parameters for the central bank: the amount and rate of remuneration of the
minimal reserves and the amount and interest rate of central bank loans.

Since the GFC, unsecured borrowings have largely been replaced by secured
ones (see section 3.1). This shift means that interbank borrowings must now
be secured by high-quality assets, typically sovereign bonds. Collateralized loans
in the interbank market are known as repurchase agreements (“repos”, see also
section 3.2). Figure 2.3 illustrates the process of money creation through a repo
agreement following the issuance of sovereign debt by the government. This mech-
anism is central to the ABM of the interbank market developed in chapter 4.

As money is created through bank credit, the repayment of existing loans
results in money destruction. Therefore, for the total amount of money to grow,
the issuance of new loans must exceed the amount of loans being repaid. However,
the quantity of money available is not directly related to inflation because it is
used not only for transactions but also as a reserve of value (Serletis, 2007). In
the next section, we will explore the market mechanisms that link money creation
to the shortest maturity interest rate.

2.1.2 The interbank rate

Money creation can only occur if banks can meet their short-term liquidity needs
through the interbank market. Since these needs fluctuate, interbank borrowings
have historically been contracted with very short maturities, often as short as
overnight. As explained in section 3.2, most of the short-term liquidity needs of
banks are now funded through callable collateralized loans with infinite maturity.
The interest rates on these loans are often floating, with a reference rate based on
an overnight average interbank rate, such as the ESTR in the E.U. or the SOFR
in the U.S. These reference rates are subject to specific regulations in the E.U. and
the U.S. because they serve as anchor points for the entire interest rate curve. As
explained in section 2.1.3, the cost of short-term liquidity in the banking system
is a key determinant of the long-term cost of money. For example, in the E.U.,
the E.U. Benchmark Regulation (Benchmarks Regulation (EU) 2016/1011 2016)
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(a) Issuance of a consumer loan by the bank of the economic agent A who aims at buying the
car constructed by the economic agent B.

(b) The payment of the car generates a liquidity shock from bank A to B which is compensated
by an unsecured interbank loan.

Figure 2.1: Money creation via unsecured interbank borrowings in absence of a central
bank.
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Figure 2.2: Money creation via unsecured interbank borrowings with minimum reserve
constraints.

requires all interest rate derivatives denominated in euros to be indexed on the
ESTR. We present the ESTR and SOFR rates in more detail in the following
sections.

2.1.2.1 The ESTR

The Euro Short-Term Rate (ESTR) replaced the Euro Overnight Index Average
(Euro OverNight Index Average (EONIA)) as the overnight interest rate bench-
mark of the E.U. because the latter was not in compliance with the E.U. bench-
marks regulation (Benchmarks Regulation (EU) 2016/1011 2016). The transition
was initiated in 2018, with ESTR officially introduced on 2 October 2019. This
benchmark average rate is calculated using euro transactions with financial coun-
terparties defined by the Money Market Statistical Reporting (MMSR) regulation
(MMSR Regulation (EU) 1333/2014 2014) and reflects the wholesale unsecured
euro borrowing costs of banks in the eurozone, in contrast to EONIA that mea-
sured interbank lending.

Following the definition presented above, the ESTR rate represents an average
overnight borrowing cost of European banks, excluding the deposits from corpo-
rate and retail clients. Indeed, even if these later deposits also have an overnight
contractual maturity, they are actually very stable over time, so they cannot ab-
sorb payment shocks.

However, despite being based on a broader set of transactions, the majority of
contributing transactions come from non-bank agents with less bargaining power
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(a) Bank A buys a bond issued by the government which deposits the received cash to bank B.

(b) The liquidity needs of bank A are fulfilled by a repo aggreement.

Figure 2.3: Money creation via secured interbank borrowings in absence of a central
bank.
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than banks, as they do not have access to central bank funding. This has led
to ESTR being set below the ECB’s deposit facility rate, highlighting potential
limitations in its role as a reliable benchmark rate.

2.1.2.2 The SOFR

The Secured Overnight Funding Rate (SOFR) was introduced as the U.S. overnight
interest rate benchmark to replace the London Interbank Offered Rate (LIBOR),
which was phased out due to manipulation concerns and a lack of underlying trans-
actions. The transition to SOFR began in 2017, with SOFR officially published
by the Federal Reserve Bank of New York on 3 April 2018. Unlike LIBOR, which
was based on estimated rates, SOFR is grounded in actual transactions and is cal-
culated using data from the U.S. repo market. This market involves the overnight
borrowing and lending of U.S. sovereign bonds, making SOFR a secured rate that
reflects the cost of borrowing cash within collateralized contracts. Notably, since
SOFR is based on a wide range of transactions secured by high-quality collateral,
it is less susceptible to manipulation and more reflective of true market conditions
than its predecessor. However, SOFR is highly sensitive to supply and demand
dynamics in the repo market, so it can experience high volatility at quarter-end
or year-end periods. Despite these challenges, SOFR has become the most used
underlying of U.S. dollar-denominated interest rate derivatives.

Part II of this thesis is dedicated to the study of money creation by the banking
system through interbank lending. In particular, in chapter 3, we present and
reproduce several stylized facts of the European money markets. In chapter 4, we
model the money creation process and the absorption of payment shocks by the
banking system. Since the overnight interbank rate remains closely tied to central
bank rates, our focus in these two chapters is on trading flows rather than prices.

2.1.3 Banks’ balance sheet

We have seen how short-term liquidity needs of banks define the shortest maturity
rates of the yield curve. In this section, we explore how longer-term interest rates
are influenced by the way financial institutions manage their balance sheets.

The primary purpose of banks is to create the money necessary for an econ-
omy to facilitate the exchange of goods and store value. As discussed previously,
this is achieved through the issuance of loans or the purchase of bonds issued by
other economic agents. These agents are typically firms that require a few years
to organize production before they can repay their debts. In many countries, a
significant portion of these loans and bonds have fixed rates set at the time of
contract signing. As a result, banks’ balance sheets are typically filled with fixed-
rate loans recorded as assets. On the liability side, banks receive deposits from
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economic agents, which can be at fixed or floating rates depending on the jurisdic-
tion. Additionally, payment shocks are absorbed through interbank borrowings
(see section 2.1.1). These two types of liabilities, floating-rate deposits and inter-
bank borrowing, are typically remunerated using the shortest-term rate available,
as these products are callable at any time. Figure 2.4 illustrates a typical bank’s
balance sheet. This balance sheet structure, consisting of long-term fixed-rate
loans and short-term floating-rate borrowings, is highly sensitive to increases in
the short-term rate, which would raise the bank’s funding costs while leaving its
revenues unchanged.

As a result, banks’ asset and liability management typically involves hedging,
at least partially, their interest rate risk through the use of financial derivatives
that exchange fixed rates for floating rates, such as interest rate swaps. Conse-
quently, the interest rates of bank loans are set in line with these hedges. There-
fore, the formation of long-term interest rates actually takes place in the swap
market, which is described in more detail in the next section.
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Figure 2.4: Typical balance sheet of a bank. Fix-rate flows are represented by a black
straight arrow, while floating rate flows are depicted as a curvy black arrow. Similarly, we
show fixed and floating rate financial contracts in orange and yellow respectively. Interest
rate hedges, typically swaps, are represented in grey. They allow the matching of the
floating and fixed rate flows of a bank’s balance sheet.
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2.2 The swap market

A cash-settled interest rate swap with a notional value of N , maturity T , starting
at T0 > t, pays a fixed swap rate S(t, T ), in exchange for a floating rate at several
future payment dates. As illustrated in Fig. 2.5, such a swap consists of the
following two legs:

• Variable leg: Pays the forward rate over each future time period [T Vi−1, T
V
i ]

of length δV (generally 6 months for contracts in euros and 3 months for
contracts in dollars) on each date T Vi . The present value at time t of the
variable leg is given by,

PV V (t) = N
m∑

i=1

δV F (t, T Vi−1, T
V
i )P (t, T Vi ), (2.1)

where m is the total number of payment dates for the variable leg, and δV

is the fraction of the year for any interest period [T Vi−1, T
V
i ].

• Fixed leg: Pays the swap rate S(t, T ) over each future time period [TFi−1, T
F
i ]

of length δF on each date TFi (generally annually for contracts in euros and
semi-annually for contracts in dollars). The present value at time t of the
fixed leg is given by

PV F (t) = N

n∑

i=1

δFS(t, T )P (t, TFi ), (2.2)

where n is the total number of payment dates for the fixed leg, and δF is
the fraction of the year for any interest period [TFi−1, T

F
i ].

As a result, interest rate swaps can be viewed as a linear combination of forward
rate contracts with a short-term maturity of T Vi − T Vi−1. In the U.S., the most
common swap rates typically use the SOFR rate compounded over a period of
T Vi −T Vi−1 = 3 months. We will see that these forward rate contracts are generally
more liquid than swaps, and therefore this thesis focuses on the modeling of these
products.

Figure 2.5: Fix and floating rates of a cash-settled interest rate swap
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2.2.1 The interest rate curve implied by swap rates

This thesis aims to micro-found the interest rate curve, so here we present how
market participants usually derive the interest rate curve from these instruments.
These standard pricing formulas can be found, for example, in Brigo and Mercurio
(2006) and Filipovic (2009).

As explained in section 1.1, the forward rate can be expressed as a function of
zero-coupon bonds:

F (t, T Vi−1, T
V
i ) =

1

δV

(
P (t, T Vi−1)

P (t, T Vi )
− 1

)
. (2.3)

If we substitute the forward rate with its definition in Eq. (2.1) the present value
of the variable leg becomes:

PV V (t) = N
[
P (t, T0) − P (t, T Vm )

]
. (2.4)

Hence, the swap rate S(t, T ) of maturity T at time t can be expressed as:

S(t, T ) =
P (t, T0) − P (t, T Vm )∑n

i=1 δ
FP (t, TFi )

. (2.5)

From equation (2.5), it is possible to retrieve the prices of zero-coupon bonds
that match the swap rates observable on the market for different maturities. At
time t = T0, assuming δF = 1, we can express each of the available swap prices as
a function of the zero-coupon bonds. For example, the first three swap rates are
given by:

S(T0, T0 + 1Y ) =
1 − P (T0, T0 + 1Y )

P (T0, T0 + 1Y )
,

S(T0, T0 + 2Y ) =
1 − P (T0, T0 + 2Y )

P (T0, T0 + 1Y ) + P (T0, T0 + 2Y )
,

S(T0, T0 + 3Y ) =
1 − P (T0, T0 + 3Y )

P (T0, T0 + 1Y ) + P (T0, T0 + 2Y ) + P (T0, T0 + 3Y )
. (2.6)

Inverting this set of equations yields the zero-coupon bond price as a function of
the swap rate with a time-to-maturity of i years:




P (T0, T

F
i ) =

1−∑i−1
k=0 S(T0,T

F
k )P (T0,TF

k )

1+S(T0,TF
i )

,

P (T0, T
F
1 ) = 1

1+S(T0,TF
1 )
.

However, only a limited list of maturities is quoted on the swap market. For
example, Fig. 2.6 presents the maturities available on the Tradeweb platform
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Figure 2.6: Maturities quoted for ESTR overnight interest rate swaps provided by
Tradeweb as of January 2022.

(see section 2.2.2.1) for overnight indexed swaps: Thus, it is necessary to make
an assumption regarding the rates between, for example, the 15- and 20-year
maturities. The market standard is to assume that the continuously compounded
rateR(t, T ) associated with the zero-coupon bond P (t, T ) = exp (−R(t, T )(T − t))
is linear between these maturity dates. In our example, one would estimate the
values of R(t, TF16), R(t, TF17), R(t, TF18), and R(t, TF19) as a function of R(t, TF15) and
R(t, TF20):

R(t, TF16) = R(t, TF15) +
R(t, TF20) −R(t, TF15)

5
,

R(t, TF17) = R(t, TF15) + 2
R(t, TF20) −R(t, TF15)

5
,

R(t, TF18) = R(t, TF15) + 3
R(t, TF20) −R(t, TF15)

5
,

R(t, TF19) = R(t, TF15) + 4
R(t, TF20) −R(t, TF15)

5
.

This approach of interpolating unavailable prices as the average of their neighbors
is further developed in chapter 7, where we show that it leads to a dynamical
equation that successfully models most of the stylized facts of the interest rate
curve (see chapter 5).

2.2.2 Structure of the swap market

In order to establish the market mechanisms that define long-term rates, this
section describes the formation of prices in the swap market. Although swaps
are among the most traded derivatives by volume (ISDA, 2023) due to their im-
portance in the hedging of banks’ balance sheets, swap prices are difficult to
observe. This is because these products, which are custom made to client needs,
are traded over-the-counter (OTC), meaning that trades are conducted directly
between two parties without the oversight of an exchange. As a result, the swap
market is structured into two distinct segments, further described in this sec-
tion: (i) the dealer-to-dealer segment and (ii) the dealer-to-client segment. The
dealer-to-dealer segment facilitates the hedging and pricing of swaps by market
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makers (i.e., firms that provide liquidity by continuously quoting prices), while
the dealer-to-client segment ensures access to these products for other economic
agents.

2.2.2.1 The dealer-to-client swap market

The risk management functions of banks use the dealer-to-client market to hedge
the interest rate risk arising from their money creation activities. In both the
E.U. and the U.S., the dealer-to-client swap market operates primarily through two
electronic platforms: (i) Bloomberg and (ii) Tradeweb. These platforms aggregate
the continuously streamed prices from all available market makers. Unlike an order
book, the bid and ask prices are displayed alongside the names of the dealers and
are available for a fixed maximum volume (see Fig. 2.7). Clients can select a
dealer on these platforms and request a formal quote for the notional amount
they need. As the notional amount increases, the fees charged by the dealer also
rise, resulting in a wider bid-ask spread. Therefore, the prices streamed by swap
dealers on these platforms, unlike those in the order book of the dealer-to-dealer
segment, are not considered as “firm” prices.

Figure 2.7: Example of the trading quotes available on a dealer-to-client electronic
platform. Sources: Tradeweb, swap dealers.

Therefore, in the dealer-to-client market, prices are primarily set by market
makers, although they must adjust to the supply and demand from clients. These
prices are determined by the market makers based on the dealer-to-dealer market,
which is presented in the following section.

2.2.2.2 The dealer-to-dealer swap market

The dealer-to-dealer swap market relies on the brokerage activities of four main
swap brokers: (i) ICAP, (ii) BGC Partners, (iii) Tradition, and (iv) Tullet. These
brokers facilitate the setup of swap contracts between swap market makers in the
euro market. According to my interviews with these actors, a large share of these
transactions are still conducted through voice orders from market makers to the
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swap brokers. The broker then manually matches the bids and asks provided by
the various market makers using its services.

In the last decade, to enhance the liquidity of the swap markets, three of the
previously mentioned brokers, namely ICAP, BGC, and Tradition, have set up
electronic platforms allowing the automated trading of swaps in the major cur-
rencies (i.e. euro and U.S. dollars). These platform encourage (via fees discounts
notably) their market makers commercial partners to “stream” continuously their
prices (i.e. provide the broker with bid and ask prices they agree to trade at,
along with the corresponding volumes) in order to allow the building of an order
book that is made available to all market participants. However, the key differ-
ence between this order book and a traditional Limit Order Book (Limit Order
Book (LOB), see section 2.3 for a detailed definition of the microstructure of these
organized markets) is that streamed prices are not limit orders waiting to be ex-
ecuted. Instead, they represent a commitment to enter into an OTC contract at
the displayed prices, within the limits of the displayed volume.

Figure 2.8: Example of the order book available on a dealer to dealer electronic platform,
sources: ICAP, Swap dealers.

However, following significant monetary policy events, it often happens that
none of the swap dealers agrees to stream prices for a few days, leaving the broker
”indicative prices” as the only available price information. These indicative prices
are derived not only from observed swap transactions but also from various other
market information. According to my interviews with swap brokers, the typical
pricing methodology for an interest rate swap denominated in euros, in the absence
of streamed prices, relies on different information depending on the product’s
maturity.

• Futures on the ESTR and 3-month Euro Interbank Offered Rate (EURI-
BOR) (Euro Interbank Offered Rate7) are quoted on LOBs (on Euronext-
ICE) for maturities up to 2 years and 6 years, respectively. Thus, the in-
dicative price of short-maturity swaps (typically less than three years) is set

7EURIBOR is a other benchmark rate in euro defined by the interbank lending rates with a
3-months maturity
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consistently with the zero-coupon curves derived from these products.

• Futures on German sovereign bonds with maturities of 1 year, 2 years, 5
years, and 10 years are quoted on LOBs (on Eurex). Swaps with maturities
longer than 3 years are priced using the rates of these products, with a
spread manually updated several times a day, based on streamed prices
and observed transactions of Gadget products (i.e., derivatives exchanging
a sovereign rate for a swap rate).

The swap rates for maturities not covered by the Futures on sovereign bonds
or the ESTR and EURIBOR Futures are estimated using the closest available
maturities plus a spread manually updated from the streamed prices and observed
transactions.

According to my interviews, the continuously quoted indicative prices from
swap brokers are used by swap dealers to price their interest rate swaps, in con-
junction with the market prices of the listed Futures mentioned above.

Overall, swap rates are determined using information from more liquid related
products, such as Futures contracts on sovereign bonds and interbank rates, both
of which are quoted within limit order books, as presented in the next section.

2.3 Futures and sovereign bonds markets

A LOB is a record of all outstanding limit orders in a market, organized by price
level. A limit order is an instruction from a trader to buy or sell a specific quantity
of an asset at a specified price or better. Limit orders remain in the LOB until
they are matched with a corresponding order or canceled by the trader. These
orders contribute to the market’s liquidity, as they are available for other traders
to execute against. In contrast, a market order is an instruction to buy or sell
an asset immediately at the best available price according to the existing limit
orders. Traders who place limit orders are known as liquidity providers because
they add liquidity to the market by offering assets for sale or purchase at specific
prices. Conversely, traders who place market orders are known as liquidity takers
because they consume the liquidity provided by limit orders. Orders in the LOB
are executed according to price-time priority, meaning that orders with better
prices are executed first, and among orders at the same price, those submitted
earlier are prioritized.

Futures contracts on sovereign bonds and interbank rates are quoted on LOBs.
Therefore, unlike swap rates, their prices are perfectly observable. In the following
two sections, we present the interbank rate Futures and sovereign bond markets.
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2.3.1 Interbank rate Futures

In the E.U., Futures contracts on overnight and 3-month interbank rates are cur-
rently quoted on the ICE Futures Europe marketplace. The following money
market Futures contracts are available:

1. Futures contracts on the 1-month accrued ESTR rate, with maturities rang-
ing from 1 to 24 months;

2. Futures contracts on the 3-month EURIBOR rate, with maturities ranging
from 3 to 72 months.

In the U.S., Futures contracts on the SOFR, are currently quoted on the CME
Group’s exchange. The following SOFR Futures contracts are available:

1. Futures contracts on the 1-month SOFR rate, with maturities ranging from
1 to 24 months;

2. Futures contracts on the 3-month SOFR rate, with maturities ranging from
3 to 120 months.

Among these liquid products, the Futures on the 3-month SOFR are available
across the largest range of maturities. Therefore, we model the dynamics of these
prices in chapter 7.

2.3.2 Sovereign bond market

While swap markets represent the risk-free borrowing cost for the private sector, a
complementary risk-free rate can be derived from the prices of the highest-quality
sovereign bonds, representing the borrowing cost of the public sector.

2.3.2.1 The cash market

The cash sovereign bond market is segmented into two distinct categories: the
primary market and the secondary market :

• The primary market, often referred to as the ”new issues” market, is where
transactions occur directly between bond issuers and bond buyers. In this
market, brand-new debt securities are created and offered to the public for
the first time.

• The secondary market involves the buying and selling of securities that have
already been issued in the primary market. Investors can purchase these
bonds from a broker, who acts as an intermediary between the buying and
selling parties.
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In the Euro area, German government bonds are used as the reference risk-free
rate, as most market participants consider Germany’s debt to be free of counter-
party credit risk. The spread between the euro Overnight Indexed Swap (OIS),
which is effectively risk-free due to clearing with a nil threshold and daily margin-
ing, and German sovereign bonds of the same maturity can be defined as the
difference between (i) the supply and demand for German debt, largely influenced
by the ECB’s asset purchase program, and (ii) the actual risk-free interest rate
in euros. Secondary markets for German sovereign bonds are quoted on the MTS
marketplace.

The U.S. Treasury market is one of the largest and most liquid bond markets in
the world. In particular, U.S. Treasury bonds are actively traded on the secondary
market. This market is segmented into a dealer-to-dealer market, where market
makers hedge their positions, and a dealer-to-customer market, where dealers buy
securities from and sell securities to a variety of clients. Unlike the swap market,
most interdealer cash trading takes place on electronic platforms provided by
brokers operating LOBs (Chaboud et al., 2022).

2.3.2.2 The Futures market

In the E.U., four types of Futures contracts on German sovereign bonds are quoted
on the Eurex marketplace:

• Euro-Schatz Future, delivering a German sovereign bond with a residual
maturity between 1.75 and 2.25 years;

• Euro-Bobl Future, delivering a German sovereign bond with a residual ma-
turity between 4.5 and 5.5 years;

• Euro-Bund Future, delivering a German sovereign bond with a residual ma-
turity between 8.5 and 10.5 years;

• Euro-Buxl Future, delivering a German sovereign bond with a residual ma-
turity between 24 and 35 years.

In the U.S., Futures contracts on Treasury bonds are quoted on the CME
Group exchange. The following types of U.S. bond Futures contracts are available:

• 2-Year Treasury Note Futures, delivering U.S. Treasury notes with a residual
maturity of at least 1 year and 9 months, and up to 5 years and 3 months;

• 5-Year Treasury Note Futures delivering U.S. Treasury notes with a residual
maturity of at least 4 years and 2 months, and up to 5 years and 3 months;

• 10-Year Treasury Note Futures, delivering U.S. Treasury notes with a resid-
ual maturity of at least 6.5 years and up to 7 and three quarters years ;
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• 20-Year Treasury Note Futures, delivering U.S. Treasury notes with a resid-
ual maturity between 19 years 2 months, and 19 years 11 months;

• U.S. Treasury Bond Futures, delivering U.S. Treasury bonds with a residual
maturity of at least 15 years and less than 25 years.

Due to the higher liquidity and the wider range of products available in the
U.S., our analysis in chapter 6 focuses on the U.S. cash and Futures sovereign bond
markets. In particular, we establish new stylized facts regarding the direction of
information propagation in these markets.

2.4 Conclusion

We have described the multiple market microstructures that shape the yield curve.
The shortest maturity yields are defined on the interbank market thanks to secured
transactions in the U.S. (the SOFR) or unsecured transactions in the E.U. (the
ESTR). In order to hedge against the future moves of these short-term funding
rates, banks cover their long-term loans thanks to interest rate derivatives. The
most traded derivatives by volume are interest rate swaps, although they are
difficult to observe. In fact, these products are custom made to client needs,
so they are traded OTC without the oversight of an exchange. Therefore, price
formation actually occurs within the Futures and bonds markets which are used
by all swap dealers as a benchmark for setting their prices. Indeed, these products
are traded within LOB so they are easily observable.

As a result, the rest of this thesis focuses on modeling two of these markets:
(i) the interbank market, which uniquely defines the shortest maturity of the yield
curve (see Part II: “Money Creation in the Repo Market”) and (ii) the Futures
and bonds markets, which are the most liquid markets defining long-term rates
(see Part III: “Liquidity Flows on the Interest Rate Curve”).
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Key takeaways

• The shortest maturity yields are defined on the interbank market
thanks to secured transactions in the U.S. (the SOFR) or unsecured
transactions in the E.U. (the ESTR).

• In order to hedge against future moves of the interbank rate, banks
cover their long-term loans through interest rate derivatives.

• The most traded derivatives by volume are interest rate swaps, al-
though they are difficult to observe.

• The Futures and bonds markets are the most liquid markets defining
long-term rates.
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Chapter 3

Stylized facts in money
markets: an accounting and
regulatory view

In this chapter, we reproduce the contents of Le Coz et al. (2024a) and the stylized
fact section of Le Coz et al. (2024b) written under the supervision of Michael Ben-
zaquen and Damien Challet. The article Le Coz et al. (2024a) was written with
the help of Nolwenn Allaire who allowed us accessing the data from the European
Central Bank (ECB).

Money markets are the place where banks conduct their refinancing operations.
They serve as the engine of the money creation process which provides liquidity
to the financial system, thus contributing to its stability. Following the surge in
counterparty risk during the 2008’s GFC, money markets in western countries
have undergone significant transformations. In October 2008, the European Cen-
tral Bank (ECB) introduced the so-called full allotment procedure, which allows
banks to request unlimited central bank funding. Concurrently, the implemen-
tation of the Basel regulation regarding the Liquidity Coverage Ratio (Liquidity
Coverage Ratio (LCR)) aims to enhance the short-term resilience of banks to a liq-
uidity crisis. It requires banks to maintain an adequate level of high-quality liquid
assets to fulfill their liquidity needs under a stress scenario. These measures have
contributed to the emergence of excess reserves in the financial system (Renne,
2012; Luca Baldo et al., 2017; Piquard and Salakhova, 2019). Additionally, the
refinancing of the banking system has shifted towards collateralized lending (using
repos, see chapter 2 and section 3.2), and the practice of collateral re-use has be-
come increasingly prevalent (Cheung et al., 2014; Keller et al., 2014; Fuhrer et al.,

59



Chapter 3. Stylized facts in money markets: an accounting and regulatory view

2016; European Systemic Risk Board., 2017; Scaggs, 2018; Accornero, 2020).

In this chapter, we review the empirical literature of stylized facts observed
recently in money markets and provide our own explanations for some of these
phenomena. The network topology of money markets, where transactions among
banks are identified as links between nodes, has evolved as a consequence of the
recent evolution of these markets. Thus, we also complement these explanations
by the presentation of our own measurements regarding the secured funding oper-
ations of the 50 largest banks in the eurozone. In particular, while the unsecured
market experiences very low density (Boss et al., 2004; Bech and Monnet, 2016;
Blasques et al., 2018; Vari, 2020), we observe that repo markets display higher
density due to longer transaction maturities.

3.1 Excess liquidity and declining unsecured interbank mar-
kets

Following the GFC, the ECB implemented a so-called full allotment procedure,
which accommodates any liquidity demand from banks in unlimited amounts,
as documented by Renne (2017). Subsequently, the volumes of the overnight
unsecured interbank market have decreased significantly (see Fig. 3.1). Indeed,
the volumes in interbank secured markets drop when excess reserves (i.e. surplus
from bank reserves requirements) increase (Piquard and Salakhova, 2019). As
explained by a recent ECB survey (Luca Baldo et al., 2017), the increase in excess
liquidity between 2012 and 2018 was mainly driven by (i) the greater demand of
banks for central bank liquidity, (ii) the full allotment procedure, and (iii) the
offer of longer-term refinancing operations. Since 2015, another ingredient has led
to a new increase in excess liquidity: the ECB has injected central bank liquidity
into the banking system through its asset purchase program (APP). This time,
most banks cited increasing client inflows as the main reason for their excess
liquidity (Luca Baldo et al., 2017). The resulting decline in unsecured lending
was reinforced by the introduction of the LCR in January 2018, which hampered
the redistribution of liquidity (Luca Baldo et al. (2017) and section 3.2).

Using individual bank balance sheets, one can show that the combination of
the APP and LCR constraint leads to excess liquidity in the financial system.
Indeed, for a bank i at time t, let us denote, respectively, by Ci(t) and Di(t), the
cash owned by a bank and the deposits it received. We also denote by Sui (t) its
amount of securities usable as collateral and Sci (t) the collateral it received as the
lender of cash. The LCR is the ratio of unencumbered assets to net cash outflows
over the next 30 days. These outflows are defined as a regulatory prescribed
haircut of a bank’s liabilities. Formally, within the simplified bank balance sheet
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This figure shows cumulative quarterly turnover in the euro area unsecured and secured money
market segments. Source: Euro Area Money Market Survey until Q2 2015, Money Market
Statistical Repoting (MMSR) data thereafter. Only transactions with deposit-taking institutions
and CCPs are considered. Both borrowing and lending transactions are included; all collateral
types and maturities are considered.

Figure 3.1: Turnover in unsecured and secured euro area interbank money markets
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we defined, the LCR is expressed as

LCRi(t) =
Ci(t) + Sui (t) + Sci (t)

βDi(t)
≥ 100%, (3.1)

where β is the regulatory outflow rate for deposits. The excess liquidity E(t) in
the banking system at time t is defined as the sum of the cash in excess of the
minimum reserves of the individual banks:

E(t) :=
N∑

i=1

Ci(t) − αDi(t), (3.2)

where α is the share of minimum reserves required by the regulation. If we replace
Ci(t) by its expression in equation 3.1 and assume all banks cover the same outflow
rate β, equation 3.2 can be written as:

E(t) ≥ (β − α)D(t) − S(t), (3.3)

where S(t) and D(t) are respectively the total amount of collateral and deposits
in the banking system. Eq. (3.3) shows that the larger the gap β−α between the
regulatory outflow rate and the required minimum reserve, the higher the excess
liquidity. In addition, a decrease in the amount of collateral available generates
additional excess liquidity. However, this reasoning does not hold in the presence
of interactions between banks. Our ABM actually shows that the asymmetric
response of banks to payment shocks also generates excess liquidity even when
there is no collateral scarcity (see Sec. 4.1.7).

3.2 Evergreen repos to answer LCR regulation

The GFC highlighted the existence of counterparty risk among banks. This led to
a transition from unsecured to secured lending (Filippo et al., 2018). Within these
markets, collateralized borrowings are performed thanks to repos, i.e., financial
contracts exchanging collateral against cash for a given time period. In fact, the
substitution effect towards secured markets was reinforced by the introduction of
the LCR because of the ability of such contracts to circumvent this constraint. A
repo contract continuously renewed by mutual agreement is called an evergreen
repo. We show in the following that an evergreen repo with a one-month notice
period has no effect on the LCR of the two involved parties. Empirical evidence
shows that the introduction of the LCR regulation coincides with an increase in
the volumes of traded evergreen repos with a notice period of more than a month
(Allen, 2016). In fact, Fig. 3.2 shows that the volume of evergreen repos traded
among the 50 largest banks in the eurozone increased from negligible amounts in
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This figure shows aggregate quarterly volumes of main refinancing operations (MRO) imple-
mented by the Eurosystem and aggregate volumes of traded evergreen repos with a notice period
greater than 1 month. Source: Internal Liquidity Management for the MRO volumes and Money
Market Statistical Reporting (MMSR) data for evergreen repos. Evergreen repos are identified
by filtering on repo transactions with a notice period of at least 30 days, with repeating trans-
actions for at least 1 day. Both borrowing and lending transactions are included; all collateral
types are considered.

Figure 3.2: Evergreen repos

2017 to ten billions per day in 2019. All empirical results presented here were
established for the 50 largest banks in the eurozone that are required to report
their transactions to the Money Market Statistical Reporting Database (MMSR)
as detailed in appendix A.

The use of evergreen repos to circumvent LCR regulation can be explained
thanks to the simplified balance sheet of a bank. In the context of a repo agree-
ment, the borrower of cash i remains the owner of the collateral he provided for the
transaction. This collateral remains on its balance sheet as encumbered securities
denoted by Sei (t). A new repo of notional ∆R leads to the increase of encumbered
collateral to Sei (t) + ∆R. This collateral cannot be used in any other transaction,
thus it is excluded from the numerator of the LCR. In contrast, the lender j of
cash records this collateral as received collateral Sci (t), which compensates for his
loss of LCR due to its cash reduction. After the transaction, at t + ∆t, the new
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LCR of the borrower i and the lender j remain constant:

LCRi(t+ ∆t) =
(Ci(t) + ∆R) + (Sui (t) − ∆R) + Sci (t)

βDi(t)

= LCRi(t), (3.4)

LCRj(t+ ∆t) =
(Cj(t) − ∆R) + Suj (t) + (Scj (t) + ∆R)

βDj(t)

= LCRj(t). (3.5)

LCR’ denominator is the total outflow, generated during a one-month stress test,
by a bank’s liabilities. In equation 3.4, one could be surprised not to see any
outflow from the repo recorded as a liability for the cash borrower. This is possible
only if we consider a repo with maturity (or notice period) greater than one
month. In addition, to ensure the LCR conservation equation 3.4 for all time t, it
is necessary to introduce evergreen contracts valid at all times. On the opposite,
entering in a unsecured interbank loan ∆U would negatively impact the LCR of
the lender and positively impact the LCR of the borrower:

LCRi,t+∆t =
Ci(t) + ∆U + Sui (t) + Sci (t)

βDi(t)
≥ LCRi(t), (3.6)

LCRj,t+∆t =
Cj,t − ∆U + Suj,t + Scj,t

βDj,t
≤ LCRj,t. (3.7)

The substitution effect between the unsecured and secured markets is also
influenced by the asset purchase program, which (i) increases the spread between
the secured and unsecured rates due to the lower availability of the collateral,
and (ii) decreases the volumes on both the secured and unsecured markets as a
consequence (Piquard and Salakhova, 2019).

3.3 Collateral re-use and bond scarcity

The one-month notice period of evergreen repo forbids the immediate unwinding
of existing positions when a lender of cash experiences a liquidity need. Thus,
these markets offer the possibility to “re-use” collateral: the lender of cash j is
allowed to re-use the collateral Scj,t he received during a reverse repo in order to
borrow cash within another repo transaction. Various definitions have been used
to define the re-use rate of collateral within money markets (Accornero, 2020).
Here we choose the following definition:

re-use(t) =

∑N
i=1 S

r
i (t)

∑N
i=1 S

c
i (t)

. (3.8)
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This figure shows aggregate daily number of collateral re-use for reporting banks in MMSR,
measuring the length of collateral chains. Only transactions between deposit-taking corporations
are considered, all types of collateral are included. Source: Money Market Statistical Reporting
database (MMSR).

Figure 3.3: Length of the chain of collateral among the 50 largest banks of the eurozone

Various levels of collateral re-use, ranging from 0.1 to 3 have been measured across
time and regions: notably a re-use rate around 1 was observed in European money
markets (Keller et al., 2014; European Systemic Risk Board., 2017), 0.6 in Aus-
tralia Cheung et al., 2014, 0.1 in Switzerland (Fuhrer et al., 2016), and 3 in the
US (Scaggs, 2018). We confirm a re-use rate around 1 for the eurozone in Fig. 3.3
by measuring the weighted number of times the ISIN code of a given collateral
appears in the banking system on a given day.

The high re-use rate observed on money markets is not a threat to the initial
objective of the LCR regulation. In fact, the same collateral can appear only
once in the numerator of the LCR of a given bank. The other appearances of
this collateral are identified as encumbered securities, which are excluded from
the LCR.

Re-use increases in response to the scarcity induced by the asset purchase pro-
gram (Jank et al., 2021). Moreover, re-use contributes to the buildup of leverage
(association, 2015; Brumm et al., 2018; Horen and Kotidis, 2018) by inflating
balance sheet sizes. Using an infinite-horizon asset-pricing model with hetero-
geneous agents, Brumm et al. (2018) considers that this increased leverage then
significantly increases volatility in financial markets, ultimately reducing welfare.
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This figure shows the density of the secured segment of the interbank money markets in the
euro zone. A link between two reporting banks is defined as the existence of at least one repo
transaction over different aggregation periods, each corresponding to a different color: (1) over
1 day, (2) over 50 days, (3) over 100 days and (4) over 250 days. Only transactions between
deposit-taking corporations are considered, all types of collateral are included. Source: Money
Market Statistical Reporting database (MMSR).

Figure 3.4: Density of the repo interbank markets among the 50 largest banks of the
eurozone

3.4 The interbank network topology

3.4.1 Sparse core periphery structure?

We define a link in the interbank network as the existence, over a given aggregation
period (typically ranging from one day to one year), of at least one repo exposure
between two banks. Historically, interbank market networks have been character-
ized by a low density and a core-periphery structure (Boss et al., 2004; Bech and
Monnet, 2016; Blasques et al., 2018; Vari, 2020). In this network configuration, a
central ’core’ of highly interconnected nodes is surrounded by a ’periphery’ of less
connected nodes that primarily connect to the core rather than to each other.

The switch of these markets towards secured transactions led, according to the
MMSR data, to an increased network density. Indeed, Fig. 3.4 shows a network
density ranging from 10% to 20% depending on the link definition. We assume
that this higher density is due to the longer transaction maturity. The limited
number of banks in our sample (50) prevented us from studying the core-periphery
structure of secured markets.

The limited number of banks in our sample (50) prevented us from studying
the core-periphery structure of secured markets.

66



Chapter 3. Stylized facts in money markets: an accounting and regulatory view

2016 2017 2018 2019 2020 2021 2022 2023
time (days)

0

20

40

60

80

100

Ja
cc

ar
d 

(%
)

1 day(s)
50 day(s)
100 day(s)
250 day(s)

This figure shows the Jaccard similarity coefficient of the secured segment of the interbank money
markets in the euro zone. A link between two reporting banks is defined as the existence of at
least one repo transaction over different aggregation periods, each corresponding to a different
color: (1) over 1 day, (2) over 50 days, (3) over 100 days and (4) over 250 days. Only transactions
between deposit-taking corporations are considered, all types of collateral are included. Source:
Money Market Statistical Reporting database (MMSR).

Figure 3.5: Stability of the repo interbank markets among the 50 largest banks of the
eurozone

3.4.2 Stable bilateral relationships

The existence of stable interbank relationship lending has been documented, among
others, by Furfine (1999), Afonso et al. (2013), and Blasques et al. (2018). We
confirm this result in the case of secured markets by measuring the share of stable
links from one period to another, namely the Jaccard network similarity index
(Verma and Aggarwal, 2020). Fig. 3.5 shows a Jaccard network similarity index
ranging from 80 to 100% depending on the aggregation period.

3.4.3 Asymmetric in and out degrees?

Several authors reported an asymmetry between in- and out-degrees within unse-
cured interbank lending networks (Craig and von Peter, 2014; Anand et al., 2015;
Lux, 2015). In particular, Craig and von Peter (2014) and Anand et al. (2015)
observe that banks in Germany generally have fewer lenders than borrowers.

We observe a more symmetrical pattern in the case of the repo exposures
among the 50 largest banks of the eurozone. Figure 3.6 shows that in–degrees
expressed as a function of out-degree are almost symmetrical.
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This figure presents the relationship between in and out-degree within the secured interbank
money market segment in the eurozone, as of July 3rd 2022. Links are defined through the
aggregation of transactions that occurred within the last 50 days. Only transactions between
deposit-taking corporations are considered, all types of collateral are included. Source: Money
Market Statistical Reporting database (MMSR).

Figure 3.6: In–degree as a function of out–degree on 3 July 2022

3.5 Conclusion

We have provided both accounting and regulatory explanations for the main recent
stylized facts of money markets. One key finding is that excess liquidity can
arise due to an insufficient supply of collateral to meet LCR requirements for all
banks. The shift of interbank markets toward secured evergreen transactions can
be attributed to the introduction of the LCR regulation. Collateral re-use, while
widespread across countries, does not pose a threat to LCR compliance, as the
same collateral can only appear once in the numerator of the LCR for any given
bank. In fact, collateral re-use is essential to meet short-term liquidity needs,
given the one-month notice period for evergreen repos.

We have also analyzed secured transactions reported in the MMSR database
regarding the 50 largest banks in the eurozone. Our findings reveal a significant
increase in the volume of evergreen repurchase agreements, which corresponds
to the implementation of the LCR regulation. Furthermore, our assessment of
collateral re-use rates is consistent with the existing literature. When examining
the structure of the interbank network, our analysis confirms the high stability
of trading relationships. However, we observe a higher network density and more
balanced in-degree and out-degree connections in secured markets compared to
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unsecured ones.
In the following chapter 4, we will present alternative explanations for these

stylized facts and quantify them by modeling the interactions among banks.
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Key takeaways

• Excess liquidity can arise due to an insufficient supply of collateral to
meet the LCR requirements for all banks.

• The shift of interbank markets toward secured evergreen transactions
can be attributed to the introduction of the LCR regulation.

• Collateral re-use is essential to meet short-term liquidity needs, given
the one-month notice period for evergreen repos.

• Our analysis of secured transactions reported in the MMSR database
concerning the 50 largest banks in the eurozone confirms the high
stability of trading relationships in these markets.

• However, we observe a higher network density and more balanced in-
degree and out-degree connections in secured markets compared to
unsecured ones.
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Chapter 4

A minimal model of money
creation under regulatory
constraints

In this chapter, we reproduce the content of Le Coz et al. (2024b), written under
the supervision of Michael Benzaquen and Damien Challet, with the exception of
the stylized fact section, which has been moved to the previous chapter.

Several authors have proposed explanations for the recent changes in money
markets presented in the previous chapter, notably excess liquidity or collateral
re-use (Renne, 2012; Allen, 2016; Dubecq et al., 2016; Luca Baldo et al., 2017;
Filippo et al., 2018; Piquard and Salakhova, 2019; Vari, 2020; Jank et al., 2021).
However, these approaches generally refer to complex mechanisms that are difficult
to quantify, for example, the high opportunity cost to not hold a non-risky coupon
(Piquard and Salakhova, 2019), market fragmentation (Vari, 2020) or collateral
scarcity (Jank et al., 2021). Moreover, as detailed in chapter 1, the literature on
ABMs has focused so far on the absorption of payment shocks by the banking
system through unsecured transactions under reserve constraints (Poole, 1968;
Lux, 2015; Bech and Monnet, 2016; Blasques et al., 2018; Liu et al., 2020). In fact,
banks endogenously produce money through lending (Jakab and Kumhof, 2015;
2018) and the use of secured transactions raises non-trivial stability questions.

Here we consider money creation and payment shocks within collateralized
markets, subject to reserve, LCR, and leverage constraints. Our model shows
that excess liquidity and re-use can be explained by regulatory constraints and
repo contracts specificities. Our ABM also generates a trading network with high
density, stable bilateral trading relationships, asymmetric in– and out– degree
distributions as well as a core-periphery structure. Finally, this model is a useful
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tool for simulating the systemic effects on financial stability of crisis scenarios or
regulatory changes.

4.1 A minimal agent-based model

We consider a money market formed by N bank agents, a representative economic
agent, and a central bank. Banks can create money by lending to the economic
agent. The latter then reallocates his deposits among bank agents, thus generating
payment shocks. These shocks are absorbed by the banking system thanks to
central bank funding and repos. We assume the existence of a single type of
fungible security usable as collateral in the repo market, typically a government
bond. Bank agents must respect at all times their reserves, LCR, and leverage
regulatory requirements. None of the fixed income instruments in the system
offers any coupon.

4.1.1 Balance sheet items

Each bank i is characterized by the following accounting items, expressed in mon-
etary units, at each time step t (in units of day).

• Assets:

– Cash: either deposits at the central bank or reserves, denoted by Ci(t);

– Securities usable as collateral, denoted by Sui (t);

– Securities encumbered in the context of a repo, denoted by Sei (t);

– Loans to the economic agent denoted by Li(t);

– Reverse repos granted to other banks,

Rri (t) =
∑

j ̸=i
rri,j(t),

where rj,i(t) denotes the sum of the open repo exposures at time t that were
received by the bank i from the bank j.

• Liabilities:

– Own funds or equity, Oi(t);

– Deposits, Di(t);

– Repo exposures received from other banks,

Ri(t) =
∑

j ̸=i
ri,j(t);
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– Central bank funding, denoted by Mi(t);

• Off-balance sheet:

– Collateral received in the context of a reverse repo, denoted by Sci (t);

– Collateral re-used in the context of a repo, denoted by Sri (t).

4.1.2 Financial contracts

The financial contracts in the model can have either an infinite maturity or no
maturity. Repos are evergreen (i.e. have unlimited maturity) with a one-month
notice period for cancellation. Therefore, banks must create new repos to reme-
diate immediate liquidity needs as the unwinding of existing reverse repos would
provide liquidity too late. When a bank is in excess of cash, it would also have
to wait 30 days to unwind its existing repo, while it could immediately earn the
repo rate when entering a new reverse repo. Loans, central bank funding, and
securities have unlimited maturity. Deposits and cash have no maturity.

As mentioned above, we assume that none of these financial instruments offers
any coupon. Indeed, simulating yields dynamics is not necessary to reproduce
excess liquidity, repo re-use, and network topology stylized facts. In fact, the
yields of each financial contract are incorporated within banks’ behavioral rules
because they prefer holding the instrument delivering the highest coupon. This
requires defining the relative static yields of each financial contract. Hence, in our
model, securities used as collateral deliver a higher interest rate than the discount
facility rate remunerating banks’ cash balances. This assumption is consistent with
empirical observations. For example, in the eurozone, 10-year German government
bonds have almost systematically delivered higher coupons than the ECB discount
facility rate. In addition, the rate of the central bank funding is higher than the
repo rate, therefore banks have an incentive not to borrow from the central bank.
The repo market rate is higher than the discount rate, so banks accept entering
into reverse repo when they are in excess of cash. Finally, we assume that the
loan rate to the real economy is the highest rate available to a bank agent.

4.1.3 Regulatory constraints

Banks are subject to three regulatory obligations.

1. The minimum reserves constraint: banks must keep a share of the deposits
they receive in the form of central bank reserves, i.e.,

Ci(t) ≥ αDi(t). (4.1)
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2. The LCR constraint, requiring banks to maintain the ratio of their unen-
cumbered assets to cash outflows over the next 30 days above one; within
our model’s balance sheet for banks, the LCR constraint amounts to

Ci(t) + Sui (t) + Sci (t) ≥ βDi(t), (4.2)

assuming a regulatory net deposit outflow β and that the securities received
in the context of a repo Sci (t) will remain unencumbered during a one-month
stress test. In the following sections, we will refer to the effective βi(t) defined
by

βi(t) =
Ci(t) + Sui (t) + Sci (t)

Di(t)
, (4.3)

as the liquidity ratio or the LCR ratio of the bank i. This means that the
bank can face an outflow rate βi(t) of its deposits – which must be higher
than the regulatory β.

3. The leverage ratio (or solvency ratio) constraint, requiring banks to keep
their own funds above a certain share of their total assets:

Oi(t) ≥ γ (Ci(t) + Sui (t) + Sei (t) + Li(t) +Rri (t)) . (4.4)

It is worth mentioning that the leverage ratio plays the same role as the solvency
ratio, as it requires banks to maintain a minimum level of own funds. The solvency
ratio is more complex to account for as it involves risk measurement. It is also less
binding than leverage constraints for low risk activities (Bourahla et al., 2018).
Thus, we choose to ignore solvency ratio constraints in our model.

4.1.4 Initialization or money creation

All financial instruments in the model are created endogenously. Each bank i
can create an amount ∆Xi(t) of new money at step t by lending cash to the
representative economic agent. The latter must then store the same amount in
the form of a deposit at the bank i. To ensure that the money creation process
is compatible with the three regulatory constraints, the value of newly created
securities and own funds must be proportional to that of new loans. Securities
are typically government bonds issued by the representative economic agent and
bought by the banking system. As the government also stores the borrowed cash
in the form of a deposit to the banking system, this mechanism increases the
usable deposits and securities in the banks’ balance sheets. In addition, own
funds are issued by banks and bought by the economic agent using some of the
cash borrowed from banks.
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In summary, the creation of ∆Xi(t) monetary units by the bank i at step t
involves three steps: (i) lending, (ii) issuance of the government bonds, and (iii)
capital increase of bank i by issuing new shares. The combined effect of this
three actions results in the increase of each of the balance sheet item A by its
corresponding variation ∆A:





∆Di(t) := (1 − γnew)∆Xi(t)

∆Li(t) := ∆Xi(t) − βnew(1 − γnew)∆Xi(t)

∆Sui (t) := βnew(1 − γnew)∆Xi(t)

∆Oi(t) := γnew∆Xi(t),

(4.5)

where γnew ∈ [0, 1] and βnew ∈ [0, 1] are the parameters governing respectively
the issuance of shares and securities. In practice, unless otherwise specified, we
assume βnew = β, such that enough collateral is created to meet regulatory obli-
gations. The other accounting items are generated either by (i) repo transactions
(encumbered securities, collateral received, and collateral re-used) or (ii) central
bank funding (main refinancing operations and cash).

4.1.5 Money creation shocks

We simulate money creation thanks to a multiplicative random growth process in
which shocks fluctuate around an average rate g of new money. Let (Zi(t)) be
log-normal random variables of volatility v independent across banks i and steps
t. The amount of created money ∆Xi(t) = Xi(t+ 1) −Xi(t) is given by

∆Xi(t) = gZi(t)Xi(t),

Xi(0) = x0Zi(0), (4.6)

where g is the growth rate of money.

Neither the process Xi(t) nor its normalized version Xi(t)∑N
i=0Xi(t)

converge to-

wards a stationary distribution (Marsili et al., 1998; Gabaix, 1999; Bouchaud and
Mézard, 2000; Mitzenmacher, 2004). However, we report in appendix B.1 that the
normalized size of banks Xi∑

iXi
behaves as a non-stationary log-normal distribution

that evolves very slowly compared to the typical time scale of the model. Notably,
the tail of this log-normal distribution remains stable within a given range, for a
sufficiently long time (around 5000 steps) for the network to reach a state close
to stationarity (see section 4.2.1). It is not feasible to design a random growth
model that generates a stationary limit using the approaches proposed by Marsili
et al. (1998), Gabaix (1999), and Bouchaud and Mézard (2000). Indeed, these
models either require defining a negative drift (Marsili et al., 1998; Gabaix, 1999)
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or facilitating cash exchanges between banks (Bouchaud and Mézard, 2000) (see
appendix B.1).

In the empirical literature, there is no consensus regarding the size distribution
of banks. Most authors (Janicki and Prescott, 2006; Lux, 2015; Cerqueti et al.,
2022) suggest that this distribution follows a power law with a tail exponent
between 1 (Zipf’s law) and 3 across time and regions. However, Goddard et
al. (2014) argue that bank sizes are better described by a truncated log-normal
distribution. Differentiating between a power law and a log-normal distribution
is challenging with small sample sizes. In the context of banks, there are only a
few thousand financial institutions within a given monetary zone, which limits the
ability to accurately assess their size distribution.

In our model, as long as bank sizes are sufficiently heterogeneous, we observe
that the specific distribution of bank sizes (log-normal or power law) does not
influence the stylized facts previously mentioned. Hence, in order to reach faster
stationarity, we conduct our parameter space (see section 4.2.2) and stress tests
analyses (see section 4.2.3) by initializing money creation Xi(0) as a power law of
tail exponent ν. In such a case, the volatility v of the random growth is set to
zero to maintain the initial size distribution of banks over time.

4.1.6 Payment shocks

Once money is created, economic agents transact goods. Each transaction results
in an increase in the deposits in the bank of the seller and a decrease in the de-
posits in the bank of the buyer. The total amount of deposits in the banking
system remains constant during these transactions. Similarly to the approach of
Lux (2015), we simulate payments thanks to normally distributed shocks defined
to ensure that (i) the total sum of deposits is conserved and (ii) there is mean re-
version toward the amount of deposits created by the bank. Formally, the deposits
variation caused by payment shocks at step t for the bank i is defined by

∆′Di(t) := σ

[
D̄i(t) −Di(t) + ϵi(t)Di(t) −

1

N

N∑

j=1

D̄j(t) −Dj(t) + ϵj(t)Di(t)

]
,

(4.7)

where (ϵi(t)) are normalized centered and independent Gaussian shocks and D̄i(t) =
(1−γnew)Xi(t) is the target of the mean reversion, updated according to the money
creation process Xi(t).

For large values of σ, it is possible that the deposit shock ∆′Di(t) increases
in absolute value compared to current bank deposits i. To ensure that deposits
after the shock (that is, Di(t) + ∆′Di(t)) are positive, we choose σ ≤ 10%. This
means that a shock must exceed 10 × σ to generate negative deposits. Although
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such events are very rare, we apply a floor to banks’ deposits, preventing them
from going below zero.

Stock flow consistency imposes to increase the cash balance of bank i at each
time step t by the same amount, i.e.,

∆′Ci(t) := ∆′Di(t). (4.8)

4.1.7 Banks’ behavioral rules

Money creation and payment shocks modify the balance sheet of banks and can
lead to a breach of their regulatory constraints. If that is the case, central bank
funding and repo markets are used by bank agents to meet these obligations. To
enhance readability in this section, we assume that all the inequalities charac-
terizing regulatory constraints for bank agent i are equalities before the money
creation and payment shocks, i.e.





Ci(t) = αDi(t),

Ci(t) + Sui (t) + Sci (t) = βDi(t),

Oi(t) = γ∗ (Ci(t) + Sui (t) + Sei (t) + Li(t) +Rri (t)) .

(4.9)

In fact, the model structurally generates excess liquidity (i.e. Ct ≥ αDt) and
excess LCR (i.e. Ct + Sut + Sct ≥ βDt), because of the asymmetric responses of
banks to payment shocks, as further described below. At the beginning of step
t+ 1, the bank i receives a money creation shock and a payment shock. To meet
its three regulatory constraints, the bank will act as follows.

1. LCR management. Secured lending keeps the LCR level unchanged (see
section 3.2). Hence, in the absence of an unsecured market, banks optimize
their LCR levels through central bank funding. We denote ∆Mi(t) the
amount of central bank funding that the bank i will request or end from to
maintain its LCR at the level β. Bank i must minimize their central bank
funding Mi(t) such that:

∆Mi(t) ≥ β
(
∆Di(t) + ∆′Di(t)

)
− ∆Sui (t) − ∆′Di(t). (4.10)

We assume that the share of securities created during the money creation
process is equal to the regulatory LCR level βnew = β. The optimal funding
is given by

∆Mi(t) = max
{
−(1 − β)∆′Di(t),−Mi(t)

}
. (4.11)

Hence, a negative payment shock will lead the bank to request central fund-
ing. In contrast, a positive shock leads to a reduction in central bank funding
or an excess of LCR. Overall, the net sum of central bank funding is positive,
which introduces excess liquidity in the system.
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2. Reserve management. Banks use repos to optimize their central bank re-
serves. The one-month notice period of these contracts requires banks to
open new long or short positions to manage their short-term liquidity. Banks
will close some of their existing repos only to meet their leverage ratio obliga-
tions (see next paragraph). We denote ∆Ri(t) the amount of repo requested
by the bank i (if ∆Ri(t) > 0) or of reverse repo that the bank i is willing
to accept (if ∆Ri(t) < 0) in order to maintain its LCR at a target level β.
Bank i must minimize its repo exposure Ri(t) such that

Ci(t) + ∆′Di(t) + ∆Mi(t) + ∆Ri(t) ≥ α(Di(t) + ∆Di(t) + ∆′Di(t)).
(4.12)

If β = βnew and the bank was not in excess of reserve before the shocks, we
have

∆Ri(t) = −∆Mi(t) − (1 − α)∆′Di(t) + α∆Di(t). (4.13)

If we also assume an absence of excess LCR, i.e. ∆Mi(t) = −(1−β)∆′Di(t),
the previous equation becomes

∆Ri(t) = −{(1 − α) − (1 − β)}∆′Di(t) + α∆Di(t). (4.14)

Most banking regulations typically set α < β, so the difference (1−α)−(1−β)
is positive. If we neglect money creation shocks (i.e. ∆Di(t) ≪ ∆′Di(t)), it
is clear that receiving a negative payment shock implies requesting repos. In
contrast, a positive shock leads the bank to be willing to enter into a reverse
repo. Nevertheless, it is possible that this bank does not hold sufficient
collateral to enter into a repo, in this case, it will request additional central
bank funding.

3. Leverage management. The management of reserves through the opening
of repos and reverse repos inflates banks’ balance sheets (association, 2015;
Brumm et al., 2018; Horen and Kotidis, 2018). If the current leverage ratio
of a bank becomes lower than its targeted level γ∗, it will start ending its
existing repos after each positive shock. Contrary to the LCR and reserves
constraints, banks do not have immediate solutions available to reduce the
size of their balance sheet. Hence they choose a target leverage ratio greater
than the regulatory requirement, γ∗ > γ. As a consequence, banks start
closing their existing repos before risking a breach of their minimum leverage
ratio.
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4.1.8 Sequence of the interactions among agents

We assume that repos are initiated and ended by the borrowers of cash. Banks
are ready to participate in the repo market after the individual management of
their LCR. Market clearing is performed as follow:

1. All banks having to end existing repos do so one by one in a shuffled order.
Bank i starts by contacting its counterparts with the lowest trust level ϕij
(whose dynamics is described below). If the lender of cash j has not sufficient
collateral Scj to end its reverse repo, bank j must end some of its own repos.
We assume that the lender of cash receives its cash back slightly before
providing back the collateral to the cash borrower. This mechanism ensures
that the lender of cash j owns enough cash to close its existing repos and get
back its re-used collateral. This situation can trigger a cascade of collateral
call backs (further detailed below).

2. Then, banks having to enter into repos do so one by one in another reshuffled
order. This time, the bank i starts by contacting their counterparts with
the highest trust factor ϕij . These latter accept entering into a reverse repo
if they are in excess of cash, i.e. ∆Rj,t < 0.

Naturally, banks can engage simultaneously into repos and reverse repos. How-
ever, this can lead to a collateral loop if a security is loaned to one bank and then
re-loaned to the original lender. In such cases, in our model, the sequential call of
collateral to unwind existing repos might not converge. Prohibiting all collateral
loops would lead to a rapid collapse of money markets because of the high density
of the repo network. Therefore, our model permits these loops, even though it
means that some simulations may not run to completion. In actual markets, when
two counterparties within a collateral loop want to unwind their positions, they
compute directly their net exposures. It is possible that none of the two banks
still owns the collateral. In this case, the counterparty who is short of collat-
eral would usually borrow the security (using a reverse repo). In our model, as
a simplification, only banks experiencing liquidity needs request funding through
repos.

4.1.9 Trust coefficients

As proposed by Lux (2015), bilateral trading relationships rely on trust coefficients
ϕij ∈ [0, 1] indicating the strength of the ties established by repeated contact. The
trust coefficient from the bank i to j is initialized randomly and updated each time
i requests a repo from bank j. ϕij increases if j agrees to lend to i and decrease
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otherwise: ϕij(t+ 1) =

ϕij(t) + λ

(
(min(∆Ri(t),−∆Rj,t))

+

∆Ri(t)
− ϕij(t)

)
(4.15)

where λ is a learning coefficient, governing the time scale at which banks update
their trusts and (x)+ is the maximum between x and 0. Eq. (4.15) means the
trust coefficients converge towards the share of the repo exposure accepted by the
bank j.

4.1.10 Synthesis

We can sort the variables and parameters of the model into four categories:

1. Four exogenous variables are set by the economic agent through monetary
and payment shocks: the amount of deposits D, loans L, securities Su, and
own funds O.

2. 7 parameters act as the control parameters of the model. They are constant
across banks and time. βnew, the deposit outflow rate equivalent of new
securities, tunes the creation of new securities in the system. γ∗, the target
leverage ratio, and γnew, the leverage ratio equivalent of new own funds,
control the repo re-use rate. g and v are respectively the mean and volatility
of monetary shocks. If specified, the exponent ν of the power law distribution
of bank sizes governs the heterogeneity among banks. σ is the volatility
of payment shocks size and λ controls the speed at which trust levels are
updated.

3. The regulatory constraints are set by the regulator.

4. The other variables are endogenously updated.

Table 4.1 provides the list of variables defining and controlling the state of the
bank agent i.
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Definition Type

Li Loans Exogenous
Di Deposits Exogenous
γ∗ Target leverage ratio Control
βnew Deposit outflow rate equivalent of new securities Control
γnew Leverage ratio equivalent of new own funds Control
v Volatility of money creation shocks Control
g Mean growth of money creation Control
σ Volatility of payment shocks Control
λ Learning coefficient to update trust Control
ϕij Trust to the bank j Endogenous
Ci Cash account Endogenous
Sui Securities usable Endogenous
Sei Securities encumbered Endogenous
Rri Reverse repos granted to other banks Endogenous
Oi Own funds Endogenous
Ri Repo exposures Endogenous
Mi Central bank funding Endogenous
Sci Collateral received Endogenous
Sri Collateral re-used Endogenous
α Regulatory share of minimum reserves Regulation
β Regulatory LCR outflow of deposits Regulation
γ Regulatory leverage ratio Regulation

Table 4.1: List of parameters and variables.
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4.2 Results

4.2.1 Dynamical behavior

A typical run of the model reproduces most of the money markets’ stylized facts
in its stationary state. Unless specified differently we fix g = 0.04%, and v = 5.
It means banks increase their balance sheet by 10% a year (1 year ≈ 250 steps)
on average but some agents can grow on a given day at a 50% annualized rate.
We also set N = 300 to obtain results comparable to those from MMSR database
containing 50 banks (Le Coz et al., 2024a). Payment shocks are assumed to be
quite volatile (σ = 5%). All regulatory parameters are set according to their actual
value in the euro zone α = 1%, βnew = β = 50% (that is, the average outflow rate
for all types of client deposits), γ=3%. We choose γ∗ = 4.5% to ensure that banks
satisfy their leverage constraints and γnew = 9% to generate sufficient collateral
re-use. We also set the learning coefficient λ to 0.5 and the average initial size of
banks x0, to 0.01 monetary units. Indeed, we assume that one monetary unit in
the model corresponds to one billion euros. Thus, we initialize the average capital
of all banks to 10 millions euros, which is close to the minimal own funds required
for a banking license (5 millions in the eurozone, article 12 of CRD IV).

Excess liquidity naturally appears as the result of asymmetric responses to
payment shocks (see Fig. 4.1). The amount of excess liquidity generated by the
model is between 5 and 10% of total assets, in line with the levels observed in the
eurozone (Hudepohl et al., 2024). This shows that the origin of excess liquidity
can be traced back to the interactions between the reserves and LCR constraints,
as banks cannot maintain both requirements to their minimum levels and absorb
daily payment shocks. Note that the exponential growth of the banking system
at a 10% rate requires measuring normalized values to observe a stationary state.

Figure 4.2 displays a phase in which securities are consumed faster by the
banking system than they are issued by the government, leading to a decrease
of usable securities. When no securities remain, banks start to re-use collateral.
The average rate of re-use converges to approximately 0.9 (i.e., the typical length
of a collateral chain is 2, in line with the observations of Le Coz et al. (2024a)),
because of the leverage constraint, which limits the balance sheet size of banks.

The model generates a relatively high density network compared to an unse-
cured lending network (see the ABM of Lux (2015)). Figure 4.3a shows a slow
convergence of network density towards a regime close to stationarity because of
the slow evolution of bank size distribution. Indeed, the heterogeneity in bank sizes
never reaches a stationary state, even though the typical time scale required to
observe non-stationarity is longer than our simulation window (see appendix B.1).
We also find that some other combinations of input parameters lead the model
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Figure 4.1: Time evolution of the main macroeconomic aggregates in the simulated
banking system.
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Figure 4.2: Time evolution of the collateral aggregates in the simulated banking system.
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with random growth (i.e., when v ̸= 0) to generate a slowly increasing or decreas-
ing density.

However, the model with equal growth rate (i.e. v = 0) reaches a stationary
state for a wider range of input parameters. In this case, the constantly increasing
amount of new loans and deposits still slows down the convergence by increasing
the average maturity of repos. However, a stationary regime is reached as long as
the payment shocks are large enough to end these transactions (that is, σ ≥ 5%
according to our observations). Below this level, a stationary state can be reached
by increasing the leverage constraint (i.e., a higher γ∗) or reducing the capital
increase rate γnew. This action would result in a reduction of collateral re-use (see
section 4.2.2).

We use the Jaccard network similarity index to characterize the stability of
bilateral trading relationships from one period to another. The level of network
stability exhibited in Fig. 4.3b is consistent with observations on real financial
networks (Furfine, 1999; Afonso et al., 2013; Blasques et al., 2018). As mentioned
above, a stationary state cannot be reached because of the slow evolution of bank
size heterogeneity. Once again, this instability vanishes in the model with uniform
growth rate (i.e. v = 0).

Figures 4.4 and 4.5 show that a core-periphery structure emerges from the
network, even if the density is much higher than the one reported in Lux (2015).
Notably, Fig. 4.5 reports the time evolution of the p-values from the Lip core-
periphery test (Lip, 2011): this kind of structure emerges after about 5000 steps
and is then stationary. However, other methods for assessing the significance of
core-periphery (Borgatti and Everett, 2000; Boyd et al., 2010; Rossa et al., 2013;
Cucuringu et al., 2016; Rombach et al., 2017; Kojaku and Masuda, 2018a; b),
based on different ways to characterize a core-periphery structure, do not lead to
conclusive results.

Finally, the generated network exhibits a slightly asymmetric in– and out–
degree distribution (see Fig. 4.6), in line with the literature (see section 3.4).
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(b) Jaccard network similarity index.

Figure 4.3: Time evolution of the network density (4.3a) and the share of stable links
from one period to another (4.3b) in the simulated money markets. A link is defined as the
existence of at least one repo over different aggregation periods, each corresponding to a
given color. Pseudo-stationarity is reached after 6000 steps due to the time of convergence
toward a sufficiently unequal distribution of banks.
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Figure 4.4: Core-periphery structure after 5000 steps for 50 banks. Links are defined
through the aggregation of transactions that occurred within the last 50 days. The core
banks are identified through the method proposed by Lip (2011), with a p-value of 10−10.
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Figure 4.5: Time evolution of the p-values assessing the existence of a core-periphery
structure according to the method proposed by Lip (2011) for 300 banks. A link is defined
as the existence of at least a repo over different aggregation periods, corresponding to each
color. The core-periphery structure emerges after 5000 steps for all aggregation periods.
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Figure 4.6: In–degree as a function of out–degree after 10000 steps. Links are defined
through the aggregation of transactions that occurred within the last 50 days.

4.2.2 Parameter space

Here, unless specified differently, we fix g = 0.04%, v = 0 and ν = 1.4. It means
that banks increase their balance sheet by 10% a year (1 year ≈ 250 steps) while
keeping their size distribution (a power law with exponent 1.4) constant. We also
set N = 100 and σ = 8% to reach the stationary state faster. All other parameters
are set as in the section 4.2.1. Each simulation is conducted over 10000 steps. For
a given simulation, we define the stationary value of a given observable metric (for
example, the network density) as its average across the last 200 steps of the run.
We simulate the same run (i.e. the same combination of input parameters) 100
times. We finally report the mean over 100 runs, excluding values outside of one
standard deviation, of the stationary level of a given metric.

4.2.2.0.1 The effect of deposit outflow rate We assume β = βnew in all
simulations, ensuring that there is always enough collateral to meet the LCR needs
of each bank.

For high values of β (i.e. ≥ 90%) there is much collateral available to absorb
the payments shocks. This results in shorter collateral chains or lower re-use
rate (Fig. 4.7b). High values of β are also associated to high network density
(Fig 4.7c) because the amount of repo required by each bank is proportional to
(1 − α) − (1 − β) (see section 4.1.7). In other worlds, banks do not use central
bank funding to manage their LCR (∆M = (1 − β) ≪ 1), therefore the excess
liquidity is minimal (Fig. 4.7a) and even the smallest shocks must be absorbed on
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the repo market.

When β decreases (β ∈ [40%, 90%]), banks have to rely more on central
banking funding to manage their LCR, thus generating higher excess liquidity
(Fig. 4.7a) and lower network density (Fig 4.7c). One could have expected col-
lateral re-use to decrease because excess liquidity reduces the effect of payment
shocks. Yet, Fig. 4.7b shows the opposite. This is because the total collateral
available in the system starts becoming insufficient to cover all shocks, a state
that we define as collateral scarcity. It does not mean that there is not enough
collateral for all banks to meet their LCR requirements, but that the total amount
of repo required to absorb payment shocks is higher than the available collateral.
Banks react to collateral scarcity by increasing the length of collateral chains
(Fig. 4.7b) in line with empirical observations (Jank et al., 2021). We also ob-
serve a lower slope of the relationship between the density and the deposit outflow
rate (Fig 4.7c) for β ∈ [50%, 75%]: this is because collateral scarcity reduces the
chances of opening new repos, which allows existing repos to have a longer matu-
rity.

However, for β lower than 40% ≈ 5σ, there is not enough collateral in the
banking system to absorb the payment shocks, so banks start relying on central
funding for reserves management, generating high excess liquidity (Fig. 4.7a), low
network density (Fig 4.7b) and low collateral re-use (Fig. 4.7b).

Figure 4.8 shows that the core-periphery structure is significant for β in the
range of 40 to 80%. Outside of these limits, the density is either too high or too
low to generate such a structure.

4.2.2.0.2 The effect of payment shocks’ volatility The lower the volatil-
ity of payment shocks, the higher the repo maturity as shown in Fig. 4.9a (note
the log-scale on the abscissa axis). In fact, a low volatility of deposits allows
banks to hold their positions for longer periods. As a consequence, a low volatil-
ity of payment shocks is also associated with high network density (Fig. 4.9b),
high Jaccard network similarity index (Fig. 4.9c), and high collateral re-use rate
(Fig. 4.10). Conversely, the excess of liquidity in the banking system increases
with the volatility of payment shocks (Fig. 4.11). Indeed, as explained in sec-
tion 4.1.7 banks’ LCR management generates excess liquidity to absorb payment
shocks.

4.2.2.0.3 Sensitivity analysis Appendix B.2 shows the effect of three other
control parameters: (i) the rate of capital increase, γnew; the tail exponent, ν,
governing bank sizes heterogeneity; and the learning coefficient λ, controlling the
speed at which trust levels are updated.

In particular, appendix B.2 shows that the rate of collateral re-use is related
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Figure 4.7: Regulatory ratios, collateral re-use, and network density as a function of the
deposit outflow rate β = βnew.

89



Chapter 4. A minimal model of money creation under regulatory constraints

0 20 40 60 80 100
 (%)

0

10 3

10 2

10 1

100
co

re
-p

er
ip

he
ry

 p
-v

al
ue

Lip-1 day(s)
Lip-50 day(s)
Lip-100 day(s)
Lip-250 day(s)

Figure 4.8: P-values assessing the existence of a core-periphery structure (Lip, 2011),
as a function of the deposit outflow rate β = βnew.

to the ability of banks to increase their balance sheet size, which is tuned by γnew.

4.2.3 Stress testing

This model can be used to study the response of money markets to various stress
scenarios. We name these scenarios after the most relevant crises recently faced by
the banking system. As in the previous section we fix g = 0.04%, v = 0, ν = 1.4
and N = 100. All the other parameters are fixed as in section 4.2.1.

4.2.3.0.1 Asset Purchase Program (APP) This scenario corresponds to
the disappearance of new collateral in the system, as it is bought by the central
bank at issuance. Accordingly the parameter βnew is set to 0 between the steps
7000 and 14000.

Figures 4.12 and 4.13 show the impact of an APP on money markets. In
essence, the APP provides money to the government that deposits this cash to
the banking system, increasing excess liquidity (4.12a). This excess of deposits
reduces the need to access the interbank market, reducing the density of the net-
work (4.13a) and the number of transactions (4.13b). Concurrently, some banks
receiving large negative payment shocks need funding on the repo markets, in-
creasing the average size of repo transaction (4.13a). Yet, some of them do not
find sufficient collateral available due to the APP, hence must resort to central
bank funding (4.12a). Overall, the unwinding of existing repos for the bank re-
ceiving smaller shocks actually increases the amount of securities usable (4.12b).
The fall of money markets is almost complete at the end of the APP, which ul-
timately leads to the collapse of the core-periphery structure (4.13c). Note the
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Figure 4.9: Regulatory ratios, collateral re-use, and network density as a function of the
volatility of payment shocks σ.
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Figure 4.10: Collateral re-use as a function of the volatility of payment shocks σ.
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Figure 4.11: Macro-economic aggregates as a function of the volatility of payment
shocks σ.
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long recovery of the market after step 14000 (4.13a). Indeed, we did not simu-
late the maturing of existing collateral, which should mechanically decrease excess
liquidity and reinforce the need for a repo market.

4.2.3.0.2 Great financial crisis. This scenario corresponds to the default of
a large bank due to the failure of all its loans to an economic agent. In such a case,
a chain of collateral callbacks can be triggered by the counterparts of the defaulted
bank. As all transactions are secured, there should be no contagion to the rest
of the network. However, the economic agent records a loss equal to the amount
of the defaulted loan due to the loss of its deposits and shares in the defaulted
bank. The only consequence in our model is a loss of trust among all bank agents,
leading banks to contact their counterparties randomly between steps 7000 and
14000.

Fig. 4.14 and 4.15 show the impact of such a scenario on money markets.
Banks contact randomly their counterparties which increases the network density
(4.14a) and the number of transactions (4.14c) but reduces the average notional of
repo transactions (4.14c). The network stability, measured by the Jaccard network
similarity index, drops at the beginning of the crisis but quickly returns to almost
its previous level (4.14b). The network is stable because banks are connected to
almost all possible counterparties. As a consequence, the core-periphery structure
vanishes (4.15). If we had added a minimum trust level for a transaction to occur,
the market would have collapsed. There is no impact on macroeconomic and
collateral aggregates.

4.2.3.0.3 Greek crisis This scenario translates into a haircut on the collateral
value. Thus, all cash lenders simultaneously request the posting of additional
collateral. As not enough new collateral can be produced, borrowers of cash
reimburse their existing repos and request more central bank funding. We leave
for future work the development of a mechanism to account for daily margin calls
and collateral value fluctuations in order to assess the consequences of such a
scenario.

4.2.3.0.4 SVB bank run This scenario materializes when a bank suddenly
loses most of its deposits. In order to meet its regulatory constraint, such a
bank would request large amounts of liquidity to the central bank and the other
banks. In this model, this bank would survive the bank run because its liquidity
need would be fulfilled by the access to infinite central bank funding. In practice,
receiving central bank funding actually requires posting collateral, although it can
be of lower quality than the one used in the repo markets. Hence, simulating such
a crisis would require introducing a second type of collateral, which we leave for
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(a) Time evolution of the main macroeconomic aggregates in the simulated
banking system.
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(b) Time evolution of the collateral aggregates in the simulated banking
system.

Figure 4.12: Asset Purchase Program. We assume the central bank buys all the newly
created securities from the step 7000 to 14000.
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(a) Time evolution of the density in the simulated banking system.
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(b) Time evolution of the number and notional of new repo transactions
in the simulated banking system.
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(c) Time evolution of the p-values assessing the existence of a core-
periphery structure according to the method proposed by Lip (2011).

Figure 4.13: Asset Purchase Program. We assume the central bank buys all the newly
created securities from the step 7000 to 14000. In Fig 4.13a and 4.13c, a link is defined as
the existence of at least one repo over different aggregation periods, each corresponding
to a given color.
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(a) Time evolution of the network density in the simulated banking
system.
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(b) Time evolution of the Jaccard network similarity index in the simu-
lated banking system.
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(c) Time evolution of the number and notional of new repo transactions
in the simulated banking system.

Figure 4.14: Great financial crisis.We assume an absence of trust among banks from
the step 7000 to 14000. In Fig 4.14a and 4.14b, a link is defined as the existence of at
least one repo over different aggregation periods, each corresponding to a given color.
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Figure 4.15: Great financial crisis. Time evolution of the p-values assessing the existence
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an absence of trust among banks from the step 7000 to 14000. A link is defined as the
existence of at least one repo over different aggregation periods, each corresponding to a
given color.

future work.

4.3 Conclusion

We have designed a minimal model of money market cash flows. In this approach,
banks create money endogenously while absorbing payment shocks thanks to repo
transactions. They respect reserves, liquidity, and leverage constraints. This
framework sheds light on recent puzzles. Excess liquidity arises from the asym-
metric responses of banks to payment shocks when managing their LCR. Banks
cannot maintain both their reserves and LCR at their minimum levels and ab-
sorb daily payment shocks. Hence, excess liquidity should not disappear after the
end of the APP (the sale of all its bonds by the ECB). Moreover, we find from
our model that collateral is re-used due to the long canceling notice period of
repos. Hence, reducing this practice would limit the ability of banks to manage
short term liquidity needs. Collateral scarcity increases collateral re-use because
positive shocks must be absorbed by more borrowers. However, below a certain
amount of securities in the banking system, the repo market collapses. Stable
bilateral trading relationships, asymmetric in– and out–degree distributions, and
a core-periphery structure emerge as the effect of trust among banks, similarly to
the approach of Lux (2015) for unsecured markets.

We used this model to assess the impact of two stress scenarios: (i) the dis-
appearance of new securities during an APP and (ii) the systematic loss of trust
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during the GFC. Our findings confirm a positive impact of the full allotment
procedure and LCR regulation on the stability of money markets. We notably
observe that, even if the repo market collapses, loan production is maintained.
In addition, secured transactions ensure the absence of contagion of a defaulted
bank.

This model is also a policy tool to simulate any changes in the allotment pro-
cedure of central banks or regulatory constraints’ modifications. It shows that
changing individual regulation can affect the system in an unintended way. No-
tably, setting low levels (around 5σ) of the deposit outflow rate significantly in-
creases excess liquidity and collateral re-use but reduces network density. If we
decrease the amount of securities held by banks below the size of the largest pay-
ment shocks, i.e. β ≤ 3σ, the repo market collapses and excess liquidity explodes.

Interbank markets are more sensitive to liquidity risk than to interest rate risk
because of the short maturity of exposures. However, introducing prices into this
framework would allow one to model the transmission of central bank rates to
money markets. Such a framework could explain another money market puzzle:
the departure of the repo rates from the ECB’s interest rate corridor (Piquard
and Salakhova, 2019).
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Key takeaways

• We have assumed that banks create money endogenously while ab-
sorbing payment shocks thanks to repo transactions and respecting
reserves, liquidity, and leverage constraints.

• In such a parsimonious framework, excess liquidity arises from the
asymmetric responses of banks to payment shocks when managing
their LCR.

• The observed level of collateral re-use can be generated by the long
canceling notice period of repos.

• Collateral scarcity increases collateral re-use because positive shocks
must be absorbed by more borrowers.

• Stable bilateral trading relationships, asymmetric in– and out–degree
distributions, and a core-periphery structure emerge as the effect of
trust among banks.

• The full allotment procedure and LCR regulation have increased the
stability of money markets.

• Changing individual regulation can affect the system in an unintended
way: if we decrease the amount of securities held by each bank below
the size of the largest payment shocks, the repo market collapses and
excess liquidity explodes.
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Liquidity flows on the interest
rate curve





Chapter 5

Phenomenology of the yield
curve

In this chapter, we define the interest rate curve as the set of rates derived from
interbank Futures contracts quoted on LOBs. The time series of prices and order
flows for each of these contracts individually exhibit all the stylized facts asso-
ciated with organized markets (see section 5.1). However, examining the spatial
structure across the entire set of these assets reveals several remarkable and spe-
cific patterns (see section 5.2). Additional relevant stylized facts regarding the
impact of trading flows on prices are established in chapter 6. These empirical
analyses will ultimately lead us to the development of a field theory of the yield
curve in chapters 7 and 8.

To establish our empirical results, we interpret the instantaneous forward rate
f(t, θ) as the mid-price at time t of a 3-month SOFR Futures contract maturing
at t + θ. Our SOFR Futures data set comprises historical daily variations of the
prices of these contracts from 1994 to 2023, covering tenors from 3 months to 117
months. 3-month SOFR Futures contracts were not available before March 2022;
thus, Eurodollar contracts were used before that time, with an appropriate three-
month shift accounting for the forward-looking nature of the Eurodollar Futures
as opposed to the backward-accrued SOFR.

5.1 Temporal structure

5.1.1 Memory in the volatility process of prices

The price dynamics of any individual interest rate product exhibit all the styl-
ized facts typical of financial time series. The first of these characteristics was
established by Bachelier (1900), who observed that the diverse perspectives of
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market participants on future price directions result in uncorrelated price fluc-
tuations. However, subsequent research revealed that price variation time series
display distinct patterns of temporal autocorrelation at small time scales (less
than a few minutes) (Plerou et al., 2000; Cont, 2001; Bouchaud et al., 2004; 2018;
Elomari-Kessab et al., 2024), challenging the traditional view of market efficiency.
As shown in chapter 8, the field theory developed in chapter 7 successfully repro-
duces this scale-dependent decorrelation feature.

Research has also documented that the probability density functions of price
increments vary with the time scale. At large time scales (over several days), these
densities tend to be quasi-Gaussian, whereas at smaller time scales, they exhibit
power-law tails (Gopikrishnan et al., 1999; Mantegna and Stanley, 1999; Plerou
et al., 1999; Bouchaud and Potters, 2003). Another significant feature of financial
time series is the so-called “volatility clustering”, which refers to the persistence
of volatility over time (Andersen, 2001; Cont, 2001; Cont, 2005b). Specifically,
Sill (1996) found that the strong cyclicality of short- and long-term rate volatility
is closely tied to the business cycle.

Significant advances were made with the identification of multifractality in
financial returns (Fisher et al., 1997; Mandelbrot et al., 1997; Arnéodo et al.,
1998; Schmitt et al., 1999; Brachet et al., 2000), leading to the development of
the Multifractal Random Walk (MRW) model (Muzy et al., 2000; Bacry et al.,
2001; 2011). This model, which effectively captures the long memory of volatility
fluctuations, was succeeded by the Rough Volatility Model after Gatheral et al.
(2018) demonstrated that the volatility process behaves like a fractional Brown-
ian motion. In particular, Gatheral et al. (2018) analyzed the volatility dynamics
of German Bond Futures prices, estimating a Hurst index H = 0.082 for these
derivatives. The most recent advancement occurred when Zumbach (2010) iden-
tified a lack of time reversal symmetry in financial time series: future volatility
can be predicted from past price trends, but not vice versa.

Finally, several studies have reported the presence of jumps in financial asset
prices, particularly in the interest rate curve. Das (2002) and Piazzesi (2005)
demonstrated that the incorporation of jump processes is essential for modeling
central bank and interbank rates (see section 1.2.1.3). Furthermore, Johannes
(2004) and Jiang and Yan (2009) detected jumps in the broader interest rate curve.
Jumps in the volatility of long-term US sovereign bonds have also been observed
(Andersen et al., 2007). Furthermore, Chen and Scott (2001) documented jumps
in the implied volatility of interest rate options.

5.1.2 Long-range autocorrelation of trades

One of the most striking empirical facts in the market microstructure literature
is the long-range persistence of order flows, as documented by Bouchaud et al.
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Figure 5.1: Accumulated temporal autocorrelation of 10-minutes bin trading flows ∆q(t)

over ℓ days i.e.,
∑ℓ

ℓ′ ρ(∆q(t),∆q(t− ℓ′)), where ρ(., .) is the Pearson correlation operator.
Each color corresponds to the tenor of a SOFR Future contract ranging from 3 to 60
months over the period 2016 − 2023.

(2004), Lillo and Farmer (2004), Bouchaud et al. (2009a), Yamamoto and LeBaron
(2010), Tóth et al. (2015), and Bouchaud et al. (2018). The surprising finding is
that the autocorrelation of market-order signs decays extremely slowly with the
lag and is well approximated by a power law (Bouchaud et al., 2018). Figure 5.1
illustrates that the signed order flow (i.e., the sum of the volumes of all trades
during a time interval, with buy trades counted as positive and sell trades counted
as negative; see chapter 6) is also highly autocorrelated. We show in chapter 8
that this effect is weaker at daily time scales and that Fourier analysis can help
decorrelate the order flow to build an order-driven field theory.

5.2 Spatial structure

In a series of articles 20 years ago, Bouchaud et al. (1999), Matacz and Bouchaud
(2000a), and b, and Bouchaud and Potters (2003) established several stylized facts
regarding the spatial structure of the FRC. We reproduce these findings in this
section using more recent data. We also complete these results with an analysis
of the correlation structure of the signed order flows of the FRC.
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Figure 5.2: Unconditional mean of forward rates as a function of the square root of the
tenor

√
θ across each of the three-year periods in our sample. The three periods where

we observe a change of convexity (2021− 2023, 2012− 2014, and 2009− 2011) correspond
to the largest implementations of APPs in the U.S.

5.2.1 Square root law of forward rate means

We present in Fig. 5.2 the unconditional mean of forward rates as a function of
the square root of tenor θ across each of the three-year periods in our sample.
Except for the periods 2009 − 2011, 2012 − 2014, and 2021 − 2023 which clearly
demonstrate some change of convexity, we observe, as documented by Bouchaud
et al. (1999) and Bouchaud and Potters (2003), that the mean of the FRC is a
concave function of the tenor which is well approximated by a square root, i.e.
⟨f(t, θ) − f(t, 0)⟩ ∝ σr

√
θ. The three periods where the “square root law” does

not fit the data (2021 − 2023, 2012 − 2014, and 2009 − 2011) are precisely the
ones corresponding to the largest implementations of APPs in the U.S. Our field
theory of the yield also demonstrates its lowest fit quality for these periods (see
section 7.5.5). This pattern suggests the forward rate f(t, θ) can be interpreted
as the probable adverse move that lenders could be facing at time t + θ, since
the pre-factor σr matches quite well with the volatility of the short term rate
f(t, 0) = r(t) (Matacz and Bouchaud, 2000a; b; Bouchaud and Potters, 2003).
In other words, the usual zero-coupon bond pricing formula (1.20) in chapter 1
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Figure 5.3: Unconditional volatility of daily forward rates increments per tenor θ across
each of the three-year periods in our sample. We observe a peak of volatility around
θ = 12 months for several of the 3-year periods in our sample.

should be replaced by

{
P (t, T ) = VaR

[
exp

(
−
∫ T
t r(s)ds

)]
,

dr(t) = σr(t)dW
P(t),

(5.1)

where VaR[.] designates the Value at Risk (or quantile) over the distribution of the
future short rate. In this view, there is no need to define a risk-neutral measure
to define the term premiums of the yield curve. These risk premiums correspond
to the diffusion of the short-term rate over intervals of increasing length.

5.2.2 Humped volatility

Amin and Morton (1994), Hull and White (1994), Bouchaud et al. (1999), Bouchaud
and Potters (2003), and Fabozzi and Mann (2005) have documented the humped
shape of the volatility of the FRC. Let ∆t denote a time interval of one day and
∆f(t, θ) = f(t+∆t, θ)−f(t, θ) the daily variations of the forward rate. We observe
a peak in the volatility σθ :=

√
⟨∆f(t, θ)2⟩ of the forward rate variations around

θ = 12 months for several of the three-year periods in our sample (see Fig. 5.3).
Matacz and Bouchaud (2000a), b interpreted this result, in the same adverse move
spirit as above, as the recent trend of the short-term rate extrapolated into the
future. Notably, as mentioned in chapter 1, fitting this humped volatility in the
HJM framework requires defining a complex non-stationary volatility process. In
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Figure 5.4: Empirical Pearson correlation surface between the daily forward rate in-
crements of different tenors θ, θ′ for the period 2021 − 2023. Notice that the surface is
smooth across the diagonal θ = θ′, with a curvature that decreases with θ.

contrast, the model proposed in chapters 7 and 8 faithfully reproduces the volatil-
ity structure of the FRC.

5.2.3 Correlation structure of an elastic string

A natural way to understand the interdependence of yields of different maturity is
to study the empirical Pearson correlations ρ(∆f(t, θ),∆f(t, θ′)) among the daily
forward rate increments of tenor θ and θ′. Our data set includes tenors from 3
months to 117 months. Consequently, we observe up to n = 39 different tenors,
resulting in 702 distinct points in the correlation matrix (excluding the trivial
diagonal points) which is depicted in Fig. 5.4 for the specific period 2021−2023. As
noticed by Baaquie and Bouchaud, 2004 this correlation structure is particularly
smooth, which is an important feature of the model we propose in chapter 7.

One of the first remark is that this correlation structure does not appear in-
stantaneously but depends on the time scale ∆t chosen to observe price variations:
this is the well-known “Epps effect”(Epps, 1979; Renò, 2003; Toth and Kertesz,
2009). Specifically, for SOFR Futures prices, Fig. 5.5 illustrates that the corre-
lation between pairs of tenors ranging from 3 to 60 months emerges only after
several minutes.

The eigenvalues of the decomposition of the FRC correlation matrix exhibit a
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Figure 5.5: Pearson correlation coefficients ρ(θ, θ′) as a function of the time scale ∆t
used to define returns, for each pair of SOFR Futures prices of time-to-maturity θ ranging
from 3-month to 60-month for the year 2021. Each color corresponds to a pair ordered
from the lowest (orange) to the highest (purple) correlation level at the 1-hour bin.
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Figure 5.6: Eigenvalues of the empirical Pearson correlation matrix between the daily
forward rate increments of different tenors, in logarithmic scale. We observe a decay that
follows an inverse power law relative to the rank.

decay that follows an inverse power law relative to their rank, starting as ξ−2 and
transitioning to ξ−4, as noted by Bouchaud et al. (1999). Figure 5.6 shows that
this stylized fact has remained very stable in the last 30 years. As mentioned in
chapter 1 this result cannot be generated by any model based on a lower number of
diffusion factors than the number of observed forward rates, which would generate
a singular correlation matrix.

Another interesting feature of the eigenvalue decomposition of the correlation
matrix of the FRC is the peculiarity of its eigenvectors. Figure 5.7 shows that these
eigenvectors resemble those of an elastic string. The first mode corresponds to a
parallel shift, the second mode has one node (i.e. it crosses the abscissa axis once),
the third mode exhibits two nodes, and so on. Bouchaud et al., 1999 proposed
an heuristic explanation of these findings by interpreting the correlation matrix
of the FRC as a linear operator relating the forward rate of a given maturity to
all other forward rates. More precisely, they proposed to express the dynamic
equation8 of the forward rate variations A = ∂f

∂t as:

∂A

∂t
(t, θ) ∝ 1

µ2
∂2A(t, θ)

∂θ2
− 1

ν4
∂4A(t, θ)

∂θ4
+ η(t, T ), (5.2)

8Compared to the initial article form Bouchaud et al. (1999), we actually extend the argument
of the authors up to the fourth order derivative, in line with the subsequent work of Baaquie and
Bouchaud (2004).
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Figure 5.7: First five eigenvectors of the empirical Pearson correlation matrix between
the daily forward rate increments of different tenors. We recognize the modes of an elastic
string.

where µ and ν are two parameters governing respectively the line tension and
“stiffness” of an elastic string (see also chapter 7), and η is a two-dimensional
uncorrelated Langevin noise such that E [η(t, θ)η(t′, θ′)] = δ(t − t′)δ(θ − θ′) with
δ the Dirac function. The Fourier transform with respect to the tenor θ of this
linear differential equation yields:

∂Â

∂t
(t, ξ) ∝ −

[(
ξ

µ

)2

+

(
ξ

ν

)4
]
Â(t, ξ) + η̂(t, ξ), (5.3)

where Â and η̂ are the Fourier transform of A and η with respect to the maturity.
Hence, the Fourier transform of the forward rate variations reads

Â(t, ξ) ∝
∫ t

−∞
dt′e

−(t−t′)
[(

ξ
µ

)2
+( ξ

ν )
4
]
η̂(t′, ξ). (5.4)

It yields a covariance of the Fourier transform of the forward rate variations that
decays as ξ−2 and ξ−4,

E
[
Â(t, ξ)2

]
∝ 1
(
ξ
µ

)2
+
(
ξ
ν

)4 , (5.5)
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Figure 5.8: Curvature of the correlation surface along the stretches perpendicular to
the diagonal, i.e. θ′ = Θ − θ as a function of largest tenor Θ for each sub-period in our
sample, in logarithmic scale.

consistently with the empirical observations in Fig. 5.6.

Finally, Baaquie and Bouchaud (2004) established that the curvature of the
anti-diagonal of the correlation matrix of the FRC decays as a power law. Fig. 5.8
shows the empirically observed curvatures on the anti-diagonal for each of the 3-
year periods in our sample. These estimations are produced through the fitting of
parabolas using 20 points around the center of each anti-diagonal of the correlation
surface of forward rate increments. We show in chapter 7 that this power law
structure is faithfully reproduced by an elastic string model when accounting for
the deformed perception of time by economic agents.

5.2.4 Uncorrelated order-flow

Another striking fact regarding the spatial structure of the yield curve is that the
order flows by maturity are almost uncorrelated, as shown in Fig. 5.9. Indeed we
observe peaks along the diagonal on this figure, while the other cross-sectional
correlations are close to zero. This finding is at the origin of the proposal in
chapter 8 to interpret the order flow as the uncorrelated noise that influences the
formation of the FRC.
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Figure 5.9: Spatial Pearson correlations among the signed daily order flows of SOFR
Futures from 2016 to 2023.

5.3 Conclusion

The price dynamics of interest rate products exhibit typical characteristics of
financial time series. Specifically, their increments are autocorrelated over short
time scales, typically less than a few minutes, but become uncorrelated over longer
time scales. In contrast, the autocorrelation of the signed order flow of these
products decays very slowly with increasing lag, a behavior well modeled by a
power law. Another significant feature of financial time series of prices is the so-
called “volatility clustering”, which refers to the persistence of volatility over time.
The volatility process of bond Futures notably behaves like a fractional Brownian
motion. The modeling of jumps in the price process is also particularly relevant
in the case of interest rate products.

The mean of the FRC is a concave function of the tenor that is well approxi-
mated by a square root, suggesting that the forward rate f(t, θ) can be interpreted
as the probable adverse move that lenders could face at time t + θ (Matacz and
Bouchaud, 2000a). The humped shape of the volatility of the FRC can be in-
terpreted as the recent trend of the extrapolated short-term rate into the future
(Matacz and Bouchaud, 2000a).

The spatial correlation structure of the FRC does not manifest instantaneously
but is dependent on the time scale used to observe price variations, an effect known
as the Epps effect. The eigenvalues of the decomposition of the FRC correlation
matrix exhibit a decay that follows an inverse power law relative to their rank,

113



Chapter 5. Phenomenology of the yield curve

starting as ξ−2 and transitioning to ξ−4, similarly to the behavior of an elastic
string (Bouchaud et al., 1999). The curvature of the anti-diagonal of the FRC’s
correlation matrix also decays according to a power law (Baaquie and Bouchaud,
2004). In contrast, order flows by maturity are almost well uncorrelated.

Most stylized facts regarding the spatial structure of prices and order flows
are reproduced by our field theory of the yield curve (see chapters 7 and 8). We
also reproduce the effect of increasing time scales on the temporal decorrelation
of prices and the emergence of their spatial correlation. However, in the rest of
this thesis, we choose to ignore the existence of memory in the volatility process
of prices.
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Key takeaways

• The price dynamics of interest rate products show typical financial
time series characteristics. Notably, their increments are autocorre-
lated at small time scales (less than a few minutes) but are temporally
uncorrelated at longer time scales.

• In contrast, the autocorrelation of the signed order flow of interest
rate products decays extremely slowly with the lag and is well ap-
proximated by a power law.

• The spatial correlation structure of the FRC does not appear instan-
taneously but depends on the time scale chosen to observe price vari-
ations (Epps effect).

• The eigenvalues of the decomposition of the FRC correlation matrix
exhibit a decay that follows an inverse power law relative to their rank,
starting as ξ−2 and transitioning to ξ−4, similarly to the behavior of
an elastic string (Bouchaud et al., 1999).
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• The curvature of the anti-diagonal of the FRC’s correlation matrix
also decays according to a power law (Baaquie and Bouchaud, 2004).

• In contrast, order flows by maturity are almost uncorrelated.
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Chapter 6

When is cross-impact relevant?

In this chapter, we reproduce the contents of (Le Coz et al., 2024d), written under
the supervision of Iacopo Mastromatteo, Damien Challet, and Michael Benzaquen,
barring some changes in phrasing and notations.

According to standard economic theory, the price of an asset should integrate all
publicly available information regarding its fundamental value. In practice, price
formation occurs through a trading system that mechanically forces information
flow into prices via the order flow of market participants. This well-established
phenomenon is known as price impact.

An early model of price impact was proposed by Kyle (1985), who assumed a
linear dependence between absolute price differences and signed traded volumes.
Further work established that the price impact of large (split) trades universally
follows a square-root law of the traded volume (Loeb, 1983; Plerou et al., 2004;
Almgren et al., 2005; Kissell and Malamut, 2005; Moro et al., 2009; Toth et
al., 2011; Mastromatteo et al., 2014; Bacry et al., 2015; Donier and Bonart, 2015;
Zarinelli et al., 2015; Tóth et al., 2017; Bouchaud et al., 2018; Kyle and Obizhaeva,
2023). Yet, the price impact of a single anonymous market order is a much weaker
concave (almost constant) function of its volume when the latter is adequately
normalized by the available liquidity in the order book (Hasbrouck, 1991; Chen
et al., 2002; Lillo et al., 2003; Potters and Bouchaud, 2003; Zhou, 2012; Gomber
et al., 2015; Bouchaud et al., 2018). This behavior is due to the selective liquidity
taking effect (Taranto et al., 2014; Bouchaud et al., 2018): most of the large market
order arrivals happen when there is a large volume available at the opposite-side
best quote, specifically trying to avoid moving the mid-price. To overcome this
effect, impact is often measured over a coarse-grained time scale τ , by aggregating
trades into a signed order flow imbalance. This method involves calculating the
signed sum of the volumes of all trades within a time window of length τ , while
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observing price changes during the same interval. Within this framework, the
magnitude of price impact crosses over from a linear to a concave behavior, as the
signed order flow increases (Kempf and Korn, 1999; Evans and Lyons, 2002; Plerou
et al., 2002; Chordia and Subrahmanyam, 2004; Gabaix et al., 2006; Hopman,
2007; Patzelt and Bouchaud, 2017; Bouchaud et al., 2018; Patzelt and Bouchaud,
2018). In addition, the aggregated price impact is a concave function of the time
scale τ chosen for the aggregation (Bouchaud et al., 2018). Finally, in order to
conciliate the long term positive auto-correlation of trades with the independence
of price increments, Bouchaud et al. (2004) established that price impact must
be transient. This assumption means that the magnitude of the price-impact of
a trade decreases across time. This hypothesis was corroborated in the following
years (Bouchaud et al., 2006; Hopman, 2007; Bouchaud et al., 2009b; Gatheral,
2010; Gatheral and Schied, 2013; Alfonsi et al., 2016; Gârleanu and Pedersen,
2016; Tóth et al., 2017; Taranto et al., 2018; Ekren and Muhle-Karbe, 2019).

A more subtle effect is that trading pressure from one asset can move the price
of another. This effect, which is referred to as cross-impact, was studied initially
by Hasbrouck and Seppi (2001) and later in Chordia et al. (2001), Evans and
Lyons (2001), Harford and Kaul (2005), Pasquariello and Vega (2007), Andrade et
al. (2008), Tookes (2008), Pasquariello and Vega (2015), Benzaquen et al. (2017),
Wang and Guhr (2017), Schneider and Lillo (2019), Brigo et al. (2022), and Tomas
et al. (2022a), b.

The simplest cross-impact models posit a linear relationship between signed
trading volumes and prices variations in time windows of length τ (the binning
frequency) (Hasbrouck and Seppi, 2001; Harford and Kaul, 2005; Pasquariello and
Vega, 2007; 2015; Tomas et al., 2022a; b). While the time decay of the transient
impact model was studied for bonds (Schneider and Lillo, 2019; Schneider, 2019)
and stocks (Wang, 2017), the time scale maximizing the accuracy of linear cross-
impact models has not yet been documented. Moreover, this optimal time scale
is an indicator of the speed of information transmission among assets, which has
not been studied extensively, although Zumbach and Lynch (2001), Lynch and
Zumbach (2003), and Cordi et al. (2021) inferred typical time scales of market
reactions of the volatility process. In addition, Rosenbaum and Tomas (2022),
Tomas et al. (2022b), and Cordoni et al. (2023) link the magnitude of cross-impact
to asset liquidity and to the correlation among assets.

Here, we quantitatively characterize the circumstances under which a model
with cross-impact over-performs one that does not include impact across assets.
Additionally, we identify the time scales that maximize the accuracy of linear
cross-impact models. Our study includes an introduction to the linear cross-
impact modeling framework and a methodology to evaluate the factors influenc-
ing cross-impact’s relevance in explaining price return variance. The results are
organized according to the studied features: the bin size, the trading frequency,
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the correlation among assets, and the liquidity. In the final section, we provide
applications of these findings to the interest rate curve.

6.1 Notations

The set of real-valued square matrices of dimension n is denoted by Mn(R),
the set of orthogonal matrices by On, the set of real symmetric positive semi-
definite matrices by S+

n (R), and the set of real symmetric positive definite matrices
by S++

n (R). Given a matrix A in Mn(R), A⊤ denotes its transpose. Given A
in S+

n (R), we write A1/2 for a matrix such that A1/2(A1/2)⊤ = A, and
√
A for the

matrix square root: the unique positive semi-definite symmetric matrix such that
(
√
A)2 = A. We also write diag(A) for the vector in Rn formed by the diagonal

items of A. Finally, given a vector v in Rn, we denote the components of v by
(v1, · · · , vn), and the diagonal matrix whose components are the components of v
by diag(v). Table 6.1 in section 6.7 provides the complete list of the notations
used in this chapter.

6.2 Modeling framework

To relate trades to prices, we observe the mid-prices and market orders of n
different assets, both binned at a regular time interval of length τ seconds. We
denote by pi(t) the opening price of asset i in the time window [t, t + τ ] and by
p(t) = (p1(t), · · · , pn(t)) the vector of asset prices at opening. We define ∆qi(t)
as the net market order flow traded during the time window [t, t + τ ]. This is
calculated by taking the sum of the volumes of all trades during that time period,
with buy trades counted as positive and sell trades counted as negative. Hence,
∆q(t) = (∆q1(t), · · · ,∆qn(t)) is the vector of the net traded order flows.

Following the approach proposed by Tomas et al. (2022b), we study the rela-
tionship between the time series of net order flows {∆q0,∆qτ , · · ·} and the time
series of prices {p0, pτ , · · ·}, under the two following assumptions:

• prices variations ∆p(t) := p(t + τ) − p(t) and order flow imbalances ∆q(t)
are linearly related, i.e.,

∆p(t) = Λ(t)∆q(t) + η(t), (6.1)

where the n×nmatrix Λ(t) is the cross-impact matrix and η(t) = (η1(t), · · · , ηn(t))
is a vector of zero-mean random variables representing exogenous noise;

• the cross-impact matrix Λ(t) is a function of the form:

Λ(t) = Λ(t)(Σ(t),Ω(t), R(t)), (6.2)
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where Λ(t) : S+
n (R) × S+

n (R) × Mn(R) → Mn(R) is called a cross-impact
model, Σ(t) := cov(∆p(t)) is the price variations covariance matrix, Ω(t) :=
cov(∆q(t)) is the order flows covariance matrix, and,

R(t) = E
[
(∆p(t) − E [∆p(t)])(∆q(t) − E [∆q(t)])⊤

]
(6.3)

is the response matrix.

We also define the price variations volatility by

σ(t) := (
√

Σ11(t), · · · ,
√

Σnn(t)), (6.4)

and the signed order flows volatility by

ω(t) := (
√

Ω11(t), · · · ,
√

Ωnn(t)). (6.5)

Finally, for a given asset i, we define the the average across time of its price
variation volatility by

σ̄i := ⟨σi(t)⟩, (6.6)

and the average across time of its signed order flow volatility by

ω̄i := ⟨ωi(t)⟩. (6.7)

6.2.1 Definition of the models

Let Y denote a scalar called the Y-ratio. We study the following three cross-impact
models:

• the diagonal model, defined by

Λdiag(Σ,Ω, R) := Y diag(R) diag(Ω−1), (6.8)

which is the limit case where the cross-sectional impact is set to zero;

• the Maximum Likelihood model (ML model in the following sections), de-
fined by

ΛML(Σ,Ω, R) := Y RΩ−1; (6.9)

• and the Kyle model, defined by

ΛKyle(Σ,Ω, R) := Y (Ω−1/2)⊤
√

(Ω1/2)⊤ΣΩ1/2 Ω−1/2. (6.10)
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The Y-ratio is a re-scaling adjustment parameter, estimated by minimizing, across
all assets, the squared errors between the price variations predicted by the model
and the realized prices. These models were investigated in several of the previously
mentioned publications. Noteworthy, the diagonal model was studied in (Kempf
and Korn, 1999; Evans and Lyons, 2002; Plerou et al., 2002; Chordia and Subrah-
manyam, 2004; Gabaix et al., 2006; Hopman, 2007; Patzelt and Bouchaud, 2017;
Bouchaud et al., 2018; Patzelt and Bouchaud, 2018). The Maximum Likelihood
model was investigated in Hasbrouck and Seppi (2001), Harford and Kaul (2005),
Pasquariello and Vega (2007), and 2015, and Tomas et al. (2022a), b. The mul-
tidimensional Kyle model was introduced by del Molino et al. (2020) and further
Examined by Tomas et al. (2022b).

It is important to note that the diagonal model can be defined by

Λdiag := diag(λdiag), (6.11)

where the vector λdiag = (λ1, · · · , λn) is defined by a set of linear equations:

∀i ∈ J1, nK, ∆pi(t) = λi∆qi(t) + ηi(t). (6.12)

This means that the diagonal model assumes that each asset i has its own unique
relationship between price increments and order flows, as captured by the coeffi-
cient λi.

The comparison between the last two models and the first one will allow us
to distinguish among the portion of cross-impact that is explained by order flow
commonality (which the diagonal model can capture) and the contributions that
cannot be explained by this effect, thus requiring models such as ML and Kyle.

6.2.2 Properties of the models

As demonstrated by Tomas et al. (2022b), the previously defined models satisfy
a list of properties that characterize their behavior. These properties are recalled
below.

1. Symmetry properties aim at ensuring that the cross-impact model behaves
in a controlled manner under financially-grounded transformations of its
variables Σ(t), Ω(t), R(t). The Kyle and ML models both adapt to (i) a
re-ordering of the considered assets (permutation invariance), (ii) a change
of currency (cash invariance) or (iii) volume units (split invariance) and,
(iv) a change of basis in the asset space (rotational invariance). In contrast,
the diagonal model crucially misses property (iv), as it regards the physical
space of assets as a privileged basis for the description.
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2. Non-arbitrage properties aim at ensuring the absence of arbitrage in the
sense of Gatheral, 2010, i.e., round-trip trading strategies with positive av-
erage profit. Both the diagonal and Kyle model prevent (i) static arbitrage
over a single-period (thanks to their positive semi-definiteness) and (ii) dy-
namic arbitrage over multi-period. Yet, the ML model does not satisfy any
of these non-arbitrage properties.

3. Fragmentation properties aim at ensuring the equality of the price impacts
generated from traded volumes of the same assets on fragmented markets
(e.g. US stocks are traded on several venues). This property is satisfied
by both the Kyle and ML models but is trivially violated by the diagonal
model.

4. Stability properties aim at ensuring the impossibility to manipulate the price
of liquid products using illiquid instruments. This property is satisfied by
the Kyle model and the diagonal model, but not by the ML model.

6.3 Methodology

6.3.1 Estimation method

We use tick-by-tick trades and quotes for 500 assets quoted in LOB in the U.S..
Our sample includes stocks, bonds, Futures on bonds and Futures on stock indexes.
Unless otherwise specified, our data set covers the 2017−2022 period. For a given
year, we consider the data from the preceding year as in-sample data, while the
data from the current year is designated as out-of-sample data. We then aggregate
in and out-of-sample results over all years.

A significant portion of our analysis involves the selection of pairs of assets
from the pool of the 500 assets in our sample. For this purpose, we select 20, 000
pairs of assets per year. These pairs are chosen from the pool of ≈120,000 possible
combinations among the 500 assets, aiming for a uniform coverage of existing cor-
relations. Specifically, we categorize all potential pairs based on their correlation
levels into 50,000 equally-sized correlation buckets. For instance, the first bucket
encompasses pairs with correlations between 0% and 0.002%. Subsequently, we
opt for the first pair within each of these buckets, resulting in the selection of
20,000 pairs. Our analysis is then aggregated over a five-year period, yielding a
total of 100,000 year-pair combinations.

To overcome the conditional heteroskedasticity of price variations and signed
order flows, we use a daily estimator of their volatility. Let {t1, · · · , tk} ∈ RN
denote the N business days of a year. For each day tk, the estimators of the price
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increments volatility and of the signed order flows volatility are defined by

σ̂(tk) :=

(√
⟨∆p1(t)2⟩(tk), · · · ,

√
⟨∆pn(t)2⟩(tk)

)
,

ω̂(tk) :=

(√
⟨∆q1(t)2⟩(tk), · · · ,

√
⟨∆qn(t)2⟩(tk)

)
,

(6.13)

respectively, where the average ⟨.⟩(tk) is computed using data on the day tk. We
assume that the correlation matrices ρ(∆p,∆p) = diag(σ(t))−1Σ(t) diag(σt)

−1

and ρ(∆q,∆q) = diag(ω(t))−1Ω(t) diag(ωt)
−1, as well as the normalized response

matrix ρ(∆p,∆q) = diag(σ(t))−1R(t) diag(ωt)
−1, are stationary. Let ρ̂(∆p,∆p),

ρ̂(∆q,∆q) and ρ̂(∆p,∆q) denote their respective long-period estimators using a
year of data. The covariance of any variable x and y can be expressed as the
product of their correlation and each of their respective volatilities. Thus, on the
day tk, the estimated covariance and response matrices Σ̂(tk), Ω̂(tk) and R̂(tk) are
obtained by

Σ̂(tk) = diag(σ̂(tk))ρ̂(∆p,∆p) diag(σ̂(tk)),

Ω̂(tk) = diag(ω̂(tk))ρ̂(∆q,∆q) diag(ω̂(tk)),

R̂(tk) = diag(σ̂(tk))ρ̂(∆p,∆q) diag(ω̂(tk)),

(6.14)

respectively.

6.3.2 Metrics definition

6.3.2.1 Goodness-of-fit

For a given cross-impact model Λ(t), the predicted price change for the time
window [t, t+ τ ] due to the order flow imbalance ∆q(t) is defined as

∆̂p(t) := Λ(t)(Σ̂(t), Ω̂(t), R̂(t))∆q(t). (6.15)

To evaluate the goodness-of-fit of the cross-impact model Λ, we compare the
predicted price changes ∆̂p(t) to the realized price changes ∆p(t). For this pur-
pose, we use a performance indicator parameterized by a symmetric, positive def-
inite matrix W ∈ S+

n (R), W ̸= 0. Let {t1, · · · , tN} ∈ RN denote N sample times,

{∆pt1 , · · · ,∆ptN } be a realization of the price process, and {∆̂pt1 , · · · , ∆̂ptN } de-
note the corresponding series of predictions from the model. The W -weighted
generalized R2(W ) is defined as

R2(W ) := 1 −
ΣN
k=1

(
∆p(tk) − ∆̂p(tk)

)⊤
W
(

∆p(tk) − ∆̂p(tk)
)

ΣN
i=1∆p(tk)

⊤W∆p(tk)
. (6.16)

The closer this score is to one, the better is the fit to the actual prices. To
highlight different sources of error, different choices of W can be considered:
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• W = Wσ := diag(⟨Σ(t)2⟩)−1
, to account for errors relative to the typical

deviation of the assets considered. This type of error is relevant for strategies
predicting idiosyncratic moves of the constituents of the basket, rather than
strategies betting on correlated market moves.

• W = Wσi := diag((0, . . . , 0, ⟨σi(t)2⟩, 0, . . . , 0))−1, to account for errors of a
single asset i.

• W = ⟨Σ(t)⟩−1, to consider how well the model predicts the individual modes
of the return covariance matrix. This would be the relevant error measure
for strategies that place a constant amount of risk on the modes of the cor-
relation matrix, leveraging up combinations of products with low volatility
and scaling down market direction that exhibit large fluctuations.

Within the following sections, we mainly study the cross-impact goodness-of-
fit for pairs (i, j) of assets. In these cases, unless stated otherwise, we calculate
R2(Wσi) to measure solely the errors on the first asset i, the predicted asset, as a
function of the characteristics of the second asset j, the explanatory asset.

Additionally, we define a second indicator to determine the extent to which
the goodness-of-fit results from cross-sectional information. We define ∆R2(W ),
the accuracy increase from the cross sectional model as

∆R2(W ) := R2(W ) −R2,diag(W ), (6.17)

where R2,diag(W ) is the W -weighted generalized R2(W ) obtained from the degen-
erated model without cross-sectional impact Λdiag.

Tests that confirm the statistical significance of the R2 in the case of a single
asset are reported in the appendix C.1. Nevertheless, appendix C.2 demonstrates
that the auto-correlation of signed order flows invalidates the linear framework
used in this chapter. Using of a more accurate propagator model (Bouchaud et
al., 2006; Bouchaud, 2010; Alfonsi et al., 2016; Benzaquen et al., 2017; Bouchaud
et al., 2018; Schneider and Lillo, 2019) would yield only marginal improvements
in the goodness-of-fit (Tomas et al., 2022b) but it would impede conducting this
study at the same scale across time and assets.

6.3.2.2 Definition of the assets characteristics

Several assets characteristics are investigated in this chapter:

• the bin size τ ;

• the trading frequency f , defined by the number of trades per second;

• the price increments correlation ρij between the assets i and j;
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• the liquidity, defined by the risk of profit or loss in monetary units ω̄iσ̄i over
a given time window.

These metrics are further described at the beginning of each corresponding sub-
sections below.

6.4 Results

6.4.1 The effect of the bin size

Within the linear framework previously defined, the market price impact of a
single asset is a non-trivial function of the bin size τ (Fig. 6.1). Specifically, the
goodness-of-fit R2(Wσi) increases with the bin size up to a maximum ranging
generally between 10 and 100 seconds before decreasing down to a negligible level
at 1 hour. It is worth noting that, for a single asset, the performances of the three
previously mentioned models actually coincide. Indeed, these models all express
price increments as a linear function of the signed order flow.

At short time scales, effects similar to the Epps effect (Epps, 1979; Toth and
Kertesz, 2009) may prevent the correlation between the order flow and the price
impact to become fully apparent without further corrections. Indeed, the cor-
relation between the signed order flows and the price variations Rii

σiω̄i
decreases

when the time scale shortens (Fig. 6.1). In fact, this correlation is simply the
square-root of the model accuracy R2(Wσi). Yet, among the causes of the Epps
effect (lead-lag effects, asynchronicity, and the minimal response time of traders)
(Toth and Kertesz, 2009), only the third factor is deemed relevant. Indeed, for a
given asset, its signed order flows and prices are updated synchronously with no
lead-lag. More prosaically, when the bin size widens, the number of trades per bin
increases and so does the accuracy of the model.

At larger time scales, the predictive power of the linear impact model decreases
rapidly (Fig. 6.1). This decay cannot be attributed to the transient effect from the
price impact. Indeed, the magnitude of the price impact follows a power law with
a slow decline, typically remaining significant after a thousand trades (Bouchaud
et al., 2018). In the above example, the number of trades accumulated within one
hour (the largest bin) is around 1400. Consequently, it is reasonable to anticipate
that the impact of the first trades within a bin would continue to be substantial
at this time scale. However, we observe a decrease in the price impact model
accuracy after a couple of minutes.

More generally, the impact from all the other trades, including the most recent
ones, should be observable on the current price change in a bin, even at large
time scales. However, as documented by Patzelt and Bouchaud (2017), 2018,
the relationship between the signed order flows and the price changes is actually
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Figure 6.1: Single asset generalised R-squared R2(Wσi) as a function of the bin size τ
for the asset TRMB (Trimble Navigation). In-sample results were calibrated on the year
2021, while out-of-sample outcomes cover 2022. The vertical red line indicates the average
time interval between two trades 1/f .

reasonably fitted by a sigmoid function. This latter is indeed linear for reasonably
small sizes of signed order flows. Yet, the non-linear relationship between price
impacts and larger sizes of signed order flows, which is frequently observed in
large-scale bins, explains the lower precision of linear models at these scales.

The relationship between the bin size τ and the model accuracy R2(W ) pro-
vides an avenue to determine the maximum goodness-of-fit R2∗(W ) and its cor-
responding optimal time scale τ∗(W ). The ensuing sections investigate how these
latter are influenced by the trading frequency of the assets, correlation among
assets, and liquidity of the assets.

6.4.2 The effect of the trading frequency

6.4.2.1 Time scales

For a given asset, we define its trading frequency f as its average number of
trades per second during open market hours. Intuitively, one could expect higher
trading frequencies to be associated with shorter optimal time scales τ∗, due to the
quickest accumulation of trades in a bin. Empirically, higher trading frequencies
do decrease the minimum optimal time scales achievable, yet other factors cause
the considered assets to deviate from this limit. Specifically, the envelope of the
normalized density plot associating optimal time scales to trading frequencies does
not contain the lower left section of Fig. 6.2. Thus, a minimum number of trades
is required to reach the optimal bin size. Specifically, the blue straight line on this
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Figure 6.2: Empirical distribution of the optimal time scale out-of-sample τ∗(Wσi
) as a

function of the trading frequency f for single assets.

figure represents the function f → 1/f . Hence, one can estimate this minimum
number of trades as the intercept ensuring that the majority of the data points
are above this line. We find that a minimum of 10 to 20 trades is required to reach
the optimal time scale of a linear cross-impact model.

The light brown area at the top right of Fig. 6.2 reveals a smaller group of
assets with maximum cross-impact accuracy R2∗(Wσi) for extended time scales.
This group includes mainly large capitalization stocks (e.g. AMZN, AAPL, TSLA)
and highly traded Futures (E-mini S&P Future, 10-year bond Future). For these
assets, the causes decreasing the accuracy of the model seems to become effective
for a larger number of trades (500 to 5000 trades).

Figure 6.3b shows the impact of the trading frequency of the explanatory
asset j regarding the goodness-of-fit on asset i, when calibrating the model on
pairs of assets. Specifically, τ∗∆(Wσi) corresponds to the time scale maximizing
the added accuracy, ∆R2∗(Wσi), when predicting asset i’s price increments. This
indicator is driven by the trading frequency of the explanatory asset, as shown
by the triangle form of Fig. 6.3b. As expected, this behavior cannot be observed
when one increases the trading frequency of the predicted asset (Fig. 6.3a).

On one hand, the optimal time scale for the cross-sectional effect is influenced
by the trading frequency of the explanatory asset. On the other hand, the optimal
time scale in the diagonal model is influenced by the frequency of the predicted
asset. Consequently, significant deviations between the optimal time scales of the
diagonal and cross section models are expected. As depicted in Fig. 6.4, these
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Figure 6.3: Empirical distribution of the optimal time scale out-of-sample τ∗∆(Wσi
) as a

function of the trading frequency of the predicted asset fi (Fig. 6.3a) or the explanatory
asset fj (Fig. 6.3b). The asset pairs are filtered on the 7% of the sample exhibiting a
correlation higher than 50% (see section 6.4.3).

deviations increase when the trading frequencies of the two assets diverge. This
may decrease the relevance of linear cross-impact models. Indeed, the optimal
time scale of the cross sectional impact may be reached when the loss of accuracy
from the direct price impact is higher than the marginal gain. However, this effect
remains limited as demonstrated in section 6.5.2.

Finally, Fig. 6.5b demonstrates that the time scale τ∗∆(Wσi) maximizing the
added accuracy, is affected by the minimum of the trading frequencies of the assets
pair. In contrast, the maximum of these two frequencies has little effect on this
time scale (Fig. 6.5a). We observe the same behavior with respect to the optimal
time scale τ∗(Wσi) (Fig. 6.6). Consistently with the single asset case, we find that
a minimum of 10 to 20 trades in both assets is required to reach the optimal time
scale of a two-dimensional cross-impact model.
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Figure 6.4: Asynchronicity of the diagonal and cross sectional models∣∣∣τ∗∆(Wσi) − τ∗diag(Wσi)
∣∣∣, aggregated by buckets of trading frequency gaps (Fig. 6.4a) or

unaggregated (Fig. 6.4b). The asset pairs are filtered on the 7% of the sample exhibiting
a correlation higher than 50% (see section 6.4.3).
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Figure 6.5: Empirical distribution of the added accuracy optimal time scale out-of-
sample τ∗∆(Wσi

) as a function of the maximum (Fig. 6.5a) or the minimum (Fig. 6.5b) of
the trading frequencies of the assets pairs. The asset pairs are filtered on the 7% of the
sample exhibiting a correlation higher than 50% (see section 6.4.3).

129



Chapter 6. When is cross-impact relevant?

100 101

max(fi, fj) (seconds 1)

101

102

103

*  (
se

co
nd

s)

0.07
0.20
0.35
0.46
0.61
0.81
1.12
1.45
1.79
2.17

(a) As a function of the maximum of the trad-
ing frequencies.

10 1 100

min(fi, fj) (seconds 1)

101

102

103

*  (
se

co
nd

s)

slope = 1.0
0.08
0.21
0.33
0.53
0.85
1.21
1.59
2.00
2.42
2.78

(b) As a function of the minimum of the trading
frequencies.

Figure 6.6: Empirical distribution of the optimal time scale out-of-sample τ∗(Wσi) as a
function of the maximum (Fig. 6.6a) or the minimum (Fig. 6.6b) of the trading frequencies
of the assets pairs. The asset pairs are filtered on the 7% of the sample exhibiting a
correlation higher than 50% (see section 6.4.3).

6.4.2.2 Goodness-of-fit

The trading frequency has a positive effect on the maximal accuracy R2∗(Wσi)
observed across the tested bin sizes. Indeed, Fig. 6.7 shows that an increase in the
trading frequency improves the mean R2∗(Wσi) per bucket. Here, the bars shaded
in light pastel colors denote the range of two standard deviations surrounding the
mean R2∗(Wσi) of the assets bucketed by trading frequency. The continuous lines
in bright colors are the Locally Weighted Scatterplot Smoothing (Cleveland, 1979)
of these mean values. The following figures portraying bucketed data conform to
the same convention.

The higher accuracy of the cross-impact model on highly traded assets can
be attributed to the stronger correlation between prices and order flows when a
sufficiently large number of market participants ensure the consistency of the two.
However, it must be underlined that the impact of trading frequency is partially
offset by observing the optimal accuracy R2∗(Wσi) across bin sizes, resulting in a
relatively stable number of trades across trading frequencies. This effect probably
explains the low slope in Fig. 6.7 when excluding data points with large error bars.

Notice also the ML model out-of-sample performance in Fig. 6.7b is signifi-
cantly larger than that of the Kyle model, as previously reported in Tomas et al.
(2022b). The ML model can be easily over-fitted if one uses too little data, as
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on the 7% of the sample exhibiting a correlation
higher than 50%.

Figure 6.7: Mean per trading frequency bucket of the optimal goodness-of-fit R2∗(Wσi)
for single assets (Fig. 6.7a) and pairs of assets (Fig. 6.7b).

it is more flexible than the Kyle model that imposes a no arbitrage condition.
The fact that the out-of-sample performance of ML is better than Kyle shows
that: (i) frictions in the market (bid-ask spread, fees) at least partially spoil the
no-arbitrage assumption, as documented in Schneider (2019); (ii) this effect is
significant enough to generalize well to yet unseen data.

To provide a broader view of the distribution of R2∗(Wσi) across trading fre-
quencies in our sample, we also present this data by density in Fig. 6.8. The figure
shows that most assets exhibit a trading frequency around 0.5 trades per second,
with an R2∗(Wσi) of 25%.
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Figure 6.8: Empirical distribution of the optimal out-of-sample R2∗(Wσi
) as a function

of the trading frequency f for single assets (Fig. 6.7a) and pairs of assets (Fig. 6.8b).

6.4.3 The effect of the correlation among assets

In this section, we examine the influence of asset correlations on cross-impact,
emphasizing a clear distinction between these two concepts. This differentiation is
pivotal since cross-impact effects reveal intricate relationships between correlation
and liquidity. For example, when trading a diversified portfolio, execution costs
are magnified on low liquidity factors regardless of correlation.

As detailed in chapter 5 correlations among assets are influenced by the time
scale at which prices are sampled (Epps, 1979; Renò, 2003; Toth and Kertesz,
2009). Therefore, we use a bin size sufficiently large for the Epps effect to be
negligible. Relying on the analysis presented on Fig. 6.9, we choose a 5-minute
bin. This time scale is a good compromise between Epps effect and noise.
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Figure 6.9: Pearson correlation coefficients ρi,j as a function of the bin size τ , for a
selection of assets couples. Bin size can chosen arbitrarily small when utilizing tick-by-
tick data.

6.4.3.1 Goodness-of-fit

As expected, we observe a positive and monotonous relationship between the
added accuracy from the cross sectional information ∆R2∗(Wσ) and the correla-
tion ρij among pairs of assets. For both the Kyle and ML models, ∆R2∗(Wσ)
increases from 0 to above 5% over the range of correlation levels in our sample
(Fig. 6.10). Regarding Fig. 6.10a and the following density plots, the continuous
line slope represents the Theil-Sen estimator (Sen, 1968; Siegel, 1982; Theil, 1992),
while the dotted lines indicate the 95% confidence interval around this estimate.

6.4.3.2 Time scales

The optimal time scale τ∗(Wσ) seems unaffected by the correlation level ρij among
pairs of assets. Indeed, Fig. 6.11b shows that the mean value of τ∗∆(Wσ) is almost
independent from the correlation level.
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Figure 6.11: Optimal time scale τ∗(Wσ) as a function of the correlation level ρij for
pairs of assets.
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6.4.4 The effect of the liquidity

6.4.4.1 Goodness-of-fit

The liquidity of each individual asset is measured using a risk indicator that rep-
resents the typical size of gains or losses during a given time interval. Specifically,
the liquidity of the asset i is defined by ω̄iσ̄i, estimated at a given bin size. We
set the bin size to 5 minutes, consistently with the binning frequency for the
correlation estimation (see section 6.4.3).

Liquidity has a positive effect on the accuracy of the cross-impact models
tested, both for single assets and pairs of assets. Indeed, we observe that the
out-of-sample goodness-of-fit increases from below 20% to around 30% across the
liquidity levels in our sample for the diagonal model (Fig. 6.12a). Like the in-
terpretation proposed in section 6.4.2, the higher score on liquid assets can be
explained by the stronger correlation between prices and order flows when market
liquidity is sufficient to ensure their consistency. As previously, we also present
these results through density plots in Fig. 6.13. These plots illustrate that most
assets exhibit a liquidity level of 500 USD per 5 minutes and an R2∗(Wσi) of
around 25%.
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Figure 6.12: Mean R2∗(Wσi
) by liquidity bucket for single assets (Fig. 6.12a) and pairs

of assets (Fig. 6.12b).
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Figure 6.13: Empirical distribution of the out-of-sample R2∗(Wσi) as a function of the
liquidity, for single assets (6.13a) and pairs of assets (6.13b).
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6.4.4.2 Time scales

In contrast, liquidity has an ambiguous effect on the optimal time scale τ∗(Wσi).
Notably, Fig. 6.14b exhibits two groups of assets: (i) a large group with medium
liquidity and time scales around 90 seconds, (ii) a smaller group with higher
liquidity and time scales around 10 minutes. Within both groups, the liquidity
seems to have a limited effect on the optimal time scale. These results suggest
that other underlying properties of the considered assets influence the optimal
time scale.
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Figure 6.14: Empirical distribution of the optimal bin size τ∗(Wσi) as a function of the
liquidity, for single assets (Fig. 6.14a) and pairs of assets (Fig. 6.14b).

6.4.4.3 Cross effects of individual assets’ liquidity

Our objective is to evaluate whether the added accuracy in the Kyle model is
consistent with the stability properties outlined in section 6.2.2. Specifically, we
seek to determine whether ∆R2(Wσi) decreases as stock i’s liquidity increases, but
increases as stock j’s liquidity increases, for a given pair (i, j) of assets. Notably, we
expect that incorporating trades information from a high-liquidity asset to predict
the prices of a low-liquidity asset will significantly enhance accuracy. However,
this effect is not evident in Fig. 6.15 due to the cross-effect of the correlation
among assets. In fact, the greatest increase in accuracy for predicting asset i’s
prices is observed for relatively high levels of liquidity of asset i. Empty cells in
Fig. 6.15 and the following heatmaps correspond to either an absence of assets in
the associated buckets or to filtered-out results due to measurement errors being
greater than than 50% of the mean value. As previously, these errors are defined
by two standard deviations.

Thus, we neutralize the effect of the correlation in Fig. 6.16 by grouping the
asset pairs of our sample into correlation buckets. While at low correlations levels
(from 0% to 20%) the lowest liquid asset remains poorly predicted by the highest
liquid asset, the effect of the cross sectional information becomes significant when
looking at pairs of well correlated assets (above 50%). In a nutshell, cross-impact
is significant if the predicted asset has a lower liquidity than the explanatory asset.
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Figure 6.15: Mean out-of-sample added accuracy on asset i ∆R2(Wσi), as a function of
the individual risk levels of each asset in the Kyle model.

6.4.5 Discussion

Cross-impact is not relevant under all circumstances. Following this analysis, one
can establish three requirements to accurately predict prices from cross sectional
trades. Firstly, cross-impact does not occur at every time scale. A minimum
number of trades in both assets, between 10 to 20, is required to observe a sig-
nificant added accuracy on the prediction of asset prices. Secondly, trades only
significantly explain the prices of highly correlated assets (correlations higher than
50%), regardless of the time scale. Thirdly, cross-impact explains a larger share
of price variances if the predicted asset has a lower liquidity than the explanatory
asset.

The previous section also establishes that on a pairwise basis, cross-impact is
not a dominant effect among instruments with small correlations and comparable
liquidity. This is in line with the results of Cont et al. (2023), showing that on US
stock markets, where correlations are on average quite low (i.e. 25 % in our sample
for the 2017 − 2022 period), pairwise cross-impact does not explain a large part
of the price variance. However, cross-impact being small on a pairwise basis does
not imply it remains a subdominant effect along factors or portfolio, as reported
in Tomas et al. (2022b) and Benzaquen et al. (2017). Indeed, the aggregation
of flow from a large number of weakly correlated instruments can still lead to a
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Figure 6.16: Mean out-of-sample added accuracy on asset i ∆R2(Wσi), as a function of
the individual risk levels of each asset in the Kyle model.
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significant increase of explanatory power for the price of a factor or a complex
portfolio (Cont et al., 2023). The next section will illustrate this effect in the case
of bonds.

To conclude, we can draw the following narrative. Price formation occurs
endogenously within highly liquid assets. Then, trades in these assets influence
the prices of their less liquid correlated products, with an impact speed constrained
by their minimum trading frequency.

6.5 Application to the interest rate curve

6.5.1 Assets pairs

According to the previously established narrative, the interest rate curve should be
a good candidate to apply a cross-impact model. Indeed, bonds of different tenors
are highly correlated and display a wide range of liquidity levels. In this context,
we run our previous analysis on a restriction of our initial sample to sovereign
cash bonds and bonds Futures in the United States for the 2021 − 2022 period.
Figure 6.17 shows that including the trades of the most liquid assets (the 10-year
Future and cash bond) significantly increases the prediction accuracy concerning
most of the other less liquid tenors.

Of particular significance, Fig. 6.17 reveals that the trading information trans-
mission flows from the most liquid tenors to that of lower liquid. This behavior
challenges the validity of the theory in Financial Economics that regards long-term
rates as agents anticipations of future short term rates. In practice, the prices of
the low-liquidity tenors are more strongly impacted by the trades of the high-
liquidity tenors than vice-versa (e.g. the 2-year cash bond in Fig. 6.18). Future
work could be devoted to the extension of this analysis to repurchase agreements
of shorter tenors (such as 1-day, 1-week and 1-month tenors).

Because of the correlation among assets, the total added accuracy from using
all asset trades information is not the summation of a given row of the matrix
displayed in Fig. 6.17. Therefore, we display the multidimensional case in the
next section.

6.5.2 Multidimensional case

To measure the contribution of each explanatory asset in the multidimensional
case, we run the Kyle model using an increasing number of instruments. The
results are presented in Fig. 6.18. Each matrix item R2

ij corresponds to the out-

of-sample goodness-of-fit R2(Wσi) regarding the prediction of asset i from the set
{1, . . . , j} of explanatory assets. In the case of diagonal items, each R2

ii represents
the effect of the diagonal model using the explanatory asset i. For example, the
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of assets of the interest rate curve.
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row cash bond 5Y can be understood as follow: its own trades explain 11.8% of
its price increments variance, but the contribution of the other assets increase this
score from 14.1% (using the 2-year cash bond) to 45.2% (using all assets).

Thus, Fig. 6.18 shows that we can significantly increase the explanatory power
of even the most liquid asset when using a sufficiently large number of instruments
of lower liquidity. More generally, this example demonstrates that a minor cross-
impact effect between a pair of assets may not necessarily translate to a minor
cross-impact effect at the portfolio level.

6.5.3 Kyle matrix analysis

Figures 6.19 and 6.20 display the Kyle matrix on 9 November 2021 under two
different normalization conventions.

First, Fig. 6.19 exhibits the Kyle matrix normalized by assets’ mean prices
Λi,j

p̄ip̄j
, where p̄j = ⟨pj⟩(t). Thus, it defines the relative estimated price impact

∆̂pi(t)
p̄i

on asset i from the traded volumes in dollars p̄j∆qj(t) on asset j. Indeed,
one can rewrite equation 6.2 as

(diag p̄)−1∆̂p(t) = (diag p̄)−1Λ(t)(diag p̄)−1 diag p̄∆q(t). (6.18)

However, this re-scaling result in over-weighting the longest tenors. Indeed, for
a given interest rate r, the price of a zero-coupon bond contract of tenor T and
notional N can be written as p = N

(1+r)T
≈ N

rT for r ≪ 1 and rT ≫ 1. Conse-

quently, the bond or Future contract value decreases linearly with the tenor, so the
normalized cross-impact matrix coefficients

λi,j
p̄ip̄j

are proportional to the squared

tenor T 2. This effect explains the regularities observed in Fig. 6.19.

To neutralize the effect of the maturity, we propose a second normalization
approach. Fig. 6.20 presents the Kyle matrix items normalized by the opposite
of the tenor on the left and by the product of the price and tenor on the right:
−10

λi,j
Tip̄jTj

, where Ti is the tenor of the bond i. These values define the absolute

change in the interest rate − ∆̂pi(t)
Ti

of the bond i from the traded volumes (in

USD) in equivalent 10-year contract in the bond j:
Tj
10 p̄j∆qj(t). Formally, it is the

reformulation of equation 6.2 as

−(diag(T ))−1∆̂p(t) = −(diag(T ))−1Λ(t)(diag(T ) diag(p̄))−1 diag(T ) diag(p̄)∆q(t).
(6.19)

This second approach neutralizes the effect of the tenor on both input volumes
and observed prices. Thus, the remaining differences among assets are notably
due to correlation and liquidity levels.

In this context, we are able to make four observations from Fig. 6.20.
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12.6 13.6 16.1 16.5 18.0 12.0 24.0 25.7 26.6 32.0 34.8

19.8 21.4 25.1 26.9 29.2 32.5 18.7 36.6 37.2 42.3 47.0

18.1 20.6 25.0 26.9 31.9 32.7 36.4 16.5 36.4 38.4 43.1

4.9 5.6 7.6 8.3 10.2 17.2 22.8 24.2 4.5 29.8 32.6

18.0 19.3 22.6 23.4 26.3 30.7 36.6 38.5 37.5 17.3 40.8

27.7 29.0 31.2 32.4 35.4 36.5 40.7 43.7 43.3 45.2 27.0

2 (%)

Figure 6.18: Out-of-sample goodness-of-fit R2(Wσi) for an increasing number of ex-
planatory assets. The bin size was set to 30 minutes, which is close to the optimal time
scale for these assets.
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1. Overall impacts are of similar sign and magnitude across all assets, which
highlights the first factor of the interest rate curve, the parallel shift (Brigo
and Mercurio, 2006), due to high correlations.

2. Volumes traded on the Future of a given tenor affect more significantly the
interest rates of the closest tenors, which shows that correlations are higher
among assets of close maturity. Equivalently, it exhibits the structure of
other factor(s) beyond the parallel shift.

3. We observe a similar behavior for cash and Futures contracts, because of
the high correlations between an underlying and its derivative.

4. As a last observation, notice that models relying on no-arbitrage in order
to propagate liquidity shocks through a small number of factors (parallel
shift, slope, convexity) usually predict that trading a low-liquidity asset is
not expensive, as long as it is exposed to a liquid factor. In our framework,
trading a low-liquidity asset is still expensive, which limits the ability to close
arbitrage opportunities. This is because the empirical correlation matrices
are never exactly low rank, as assumed in an idealized factor model, and
heterogeneity in liquidity amplifies impact on directions of low volatility
(for e.g. spread between tenor-matched cash bonds and Futures).

6.6 Conclusion

Prices at a given time are actually influenced by the history of all previous trades
through a complex process that can be formalized within the propagator model. As
its calibration is computationally intensive, our study of multidimensional price
formation focuses on linear models. While the auto-correlation of signed order
flows invalidates these models, they remain significant to predict prices. Notably,
we have demonstrated that accurate predictions of price variations can be achieved
by appropriately considering the time scale, the correlation among assets, and the
liquidity, while increasing the number of explanatory assets. More importantly,
we have shown that highly liquid assets determine their prices internally and that
their trades influence the prices of correlated, less liquid assets. In other worlds,
price-volume correlations depend on the liquidity of the considered assets. In the
case of interest rate markets, the 10-year bond Future serves as the main liquidity
reservoir influencing the prices of the other tenors, contrary to prevailing Financial
Economics theories.

However, our analysis has revealed certain gaps. Certain asset prices are best
explained by their trades at significantly longer time scales than suggested by their
trading frequency. More generally, our investigation into the sensitivity of optimal
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0.0 0.1 0.3 0.3 0.3 0.0 0.1 0.2 0.3 0.3 0.4
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0.0 0.2 0.2 0.1 0.1 0.0 0.1 0.6 0.2 0.2 0.1

0.0 0.2 0.3 0.4 0.4 0.0 0.1 0.2 3.2 0.4 0.2

0.0 0.1 0.3 0.9 1.0 -0.0 0.0 0.2 0.4 2.0 1.3

-0.1 0.0 0.4 2.4 6.5 -0.1 -0.0 0.1 0.2 1.3 12.8

p
p  (basis points per 100 M$ of notional)

Figure 6.19: Kyle matrix ΛKyle on 9 November 2021 for a bin size of 30 minutes. Units
are chosen to represent relative price changes in basis point (10−4 of the asset price) by
100 millions USD worth of contract traded.
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Figure 6.20: Kyle matrix ΛKyle on 9 November 2021 for a bin size of 30 minutes. Units
are chosen to represent absolute variations of annual yield in basis point (10−4 of the asset
price) by 100 millions USD worth in equivalent 10-year bond.
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cross-impact time scales to asset characteristics has identified two distinct groups
of asset pairs in multiple cases. Further research could explore the factors that
differentiate these groups.

6.7 Table of notations

Table 6.1 summarizes the notations used in this chapter.

Table 6.1: Notations

Expression Definition

n The number of assets.
Mn(R) The set of real-valued square matrices of dimension n.
On The set of orthogonal matrices.
S+
n (R) The set of real symmetric positive semi-definite matrices.

S++
n (R) The set of real symmetric positive definite matrices.
A A matrix.
A⊤ The transpose of matrix A.

A1/2 A matrix such that A1/2(A1/2)⊤ = A.√
A The unique positive semi-definite symmetric matrix such that

(
√
A)2 = A.

diag(A) The vector in Rn formed by the diagonal items of A.
diag(v) The diagonal matrix whose components are the components

(v1, · · · , vn) of v ∈ Rn.
τ The bin size.
pi(t) The opening price of asset i in the time window [t, t+ τ ].
p(t) The vector of asset prices at opening in the time window [t, t+ τ ].
∆qi(t) The net market order flow traded during the time window [t, t+ τ ].
∆q(t) The vector of the net traded order flows during the time window

[t, t+ τ ].
∆p(t) the prices changes p(t+ τ) − p(t) during the time window [t, t+ τ ].
Λ(t) The cross-impact matrix at time t.
η(t) The vector of zero-mean random variables representing exogenous

noise at time t.
Σ(t) The price change covariance matrix at time t.
Ω(t) The order flow covariance matrix at time t.
R(t) The response matrix between price variations and order flows at time

t.
Σ(t) The vector of price variation volatility at time t.
Ω(t) The vector of the signed order flow volatility at time t.

Continued on next page
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Expression Definition

R2(W ) The W -weighted generalized R-squared.
∆R2(W ) The accuracy increase from the cross sectional model.
R2∗(W ) The maximum goodness-of-fit observed empirically across the tested

bin size τ .
τ∗(W ) The optimal time scale corresponding to the maximum goodness-of-

fit R2∗(W ).
∆R2∗(W ) The maximum accuracy increase ∆R2(W ) observed empirically across

the tested bin size τ .
τ∗∆(W ) The optimal time scale corresponding to the maximum accuracy in-

crease ∆R2∗(W ).
fi The trading frequency of the predicted asset i.
fj The trading frequency of the explanatory asset j.
ρij Price increments correlation between the assets i and j.
σ̄i The average across time of the price variation volatility of asset i.
ω̄i The average across time of the signed order flow volatility of asset i.
ω̄iσ̄i The liquidity of the predicted asset i.
ω̄j σ̄j The liquidity of the explanatory asset j.
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Key takeaways

• The accumulation of a minimum number of trades in both assets,
between 10 to 20, is required to observe a significant added accuracy
of trading pressure on the prediction of asset prices.

• Trades only significantly explain the prices of highly correlated assets
(correlations higher than 50%), regardless of the time scale.

• Price-volume correlations depend on the liquidity of the considered
assets. In particular, cross-impact explains a larger share of price
variances if the predicted asset has a lower liquidity than the explana-
tory asset.

• The aggregation of flow from a large number of weakly correlated in-
struments can still lead to a significant increase of explanatory power.

• Contrary to economic theories considering long-term rates as agents
anticipations of short-term rates (see chapter 1), prices of low-liquidity
tenors are impacted by the trades of high-liquidity tenors.
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• Although arbitrage-free models predict that trading a low-liquidity
asset is not expensive as long as it is exposed to a liquid factor (see
chapter 1), here, trading a low-liquidity asset is still expensive, which
limits the ability to close arbitrage opportunities. 151
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Chapter 7

Revisiting Elastic String
Models of Forward Interest
Rates

In this chapter, we reproduce the contents of (Le Coz and Bouchaud, 2024), co-
written with Jean-Philippe Bouchaud, barring a slight reorganization and some
minor changes in phrasing.

The collection of forward interest rate f(t, T ) defines a kind of “string” that moves
and deforms with time, the FRC. As explained extensively in chapter 1, under-
standing the dynamics of the FRC is crucial in a wide spectrum of financial appli-
cations, ranging from the valuation of interest rate derivatives to risk management
(Brigo and Mercurio, 2006; Hull, 2018). This problem is also fascinating from a
theoretical point of view: whereas the stochastic process governing the dynam-
ics of single assets (point-like objects) has been thoroughly investigated (see e.g.
(Bachelier, 1900; Osborne, 1959; Black and Scholes, 1973; Heston, 1993; Bacry
et al., 2001; Zumbach, 2010; Gatheral et al., 2018; Dandapani et al., 2021; Wu
et al., 2022; Morel et al., 2023)), the stochastic process of higher dimensional
objects like lines or graphs is much more involved (Filipović, 2001; Aihara and
Bagchi, 2005; Ekeland and Taflin, 2005; Carmona and Tehranchi, 2006). There
is a long tradition in the physics literature of modeling string-like (or surface-
like) objects which has not yet pervaded into the financial mathematics literature,
despite early attempts Bouchaud et al., 1999; Santa-Clara and Sornette, 2001;
Baaquie and Bouchaud, 2004.

The aim of this chapter is to revisit the 2004 proposal of Belal Baaquie and one
of the author (JPB), to describe the returns of different tenors of the FRC in terms
of the fluctuations of a “stiff” elastic string – called henceforth the BB04 model
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Baaquie and Bouchaud, 2004. We will see that up to a redefinition of their model
that accounts for the discrete set of maturities defining the FRC (instead of the
continuum limit of BB04), the proposed framework allows one to account quite
remarkably for the full cross-maturity correlation structure of the FRC, across
the whole period 1994-2023 and a single adjustable parameter – when the BB04
model was only tested for the period 1994-1996 and had three parameters.

7.1 Random-field models

Beyond the fact that the HJM model has no ambition to capture the “physical”,
one-dimensional nature of the FRC, we have seen in chapter 1 that this framework
generates singular correlations matrix as soon as the number of considered matu-
rities is larger than the number of diffusion factors. Addressing these limitations,
various researchers have ventured beyond the conventional boundary of a finite
number of driving Brownian motions. Notably, Kennedy (1994), 1997 proposed
to simulate each forward rate by a Gaussian random field while Cont (2005a),
Goldstein (2000) and Santa-Clara and Sornette (2001) developed stochastic string
approaches, partly based on the empirical work of Bouchaud et al., 1999 where
the idea of the FRC as an elastic string was first put forth.

Among these advancements, Baaquie (2001), 2002, 2004 has pioneered a field
theory approach, which will be discussed further in the following section. In the
following years, these random field theories have been applied to solve interest rate
derivative pricing problems (Baaquie, 2007; Baaquie and Liang, 2007; Baaquie,
2009; 2010; Baaquie and Tang, 2012; Wu and Xu, 2014; Bueno-Guerrero et al.,
2015; 2016; Baaquie, 2018; Bueno-Guerrero et al., 2020; 2022).

7.2 A field theory for the FRC

Baaquie (2001), 2002, 2004 introduced a two-dimensional field theory to describe
the forward interest rate curve. This approach was generalized in BB04 Baaquie
and Bouchaud (2004) to account for the pronounced smoothness observed in the
correlation matrix of forward rate increments. More precisely, it was observed
that the eigenvectors of the covariance matrix of the FRC returns had the same
structure as those of a elastic string and can be indexed by the number k of zeroes
in the θ direction. The corresponding eigenvalues were found to behave as k−2 for
small k, crossing over to a faster decay ≈ k−4 for larger k (see section 5.2.3).

A way to encode this empirical finding is to posit that the dynamics of the
FRC f(t, θ) is specified by a drift velocity γ(t, θ) and a volatility σ(t, θ), such that
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(Baaquie and Bouchaud, 2004):

∂f

∂t
(t, θ) = γ(t, θ) + σ(t, θ)A(t, θ), (7.1)

where A(t, θ) represents a driftless (Langevin) noise field.
The “field theory” formulation assumes that θ is a continuous variable ∈ R+

and the joint probability distribution across time and tenor for the set of noises
{A(t, θ)}(t,θ)∈R2

+
is determined by the exponential of an action S[A]. This action

is a functional defined over the semi-infinite domain R2
+, and is given by (Baaquie

and Bouchaud, 2004):9

S[A] := − 1

2

∫∫ ∞

0
dtdθ

(
A2(t, θ) +

(
1

µ

∂A

∂θ
(t, θ)

)2

+

(
1

ν2
∂2A

∂θ2
(t, θ)

)2
)
, (7.2)

with µ−2 and ν−4 denoting respectively the “line tension” and “stiffness” (also
called bending rigidity) parameters, which have the physical dimensions of fre-
quencies. More precisely, small values of µ disfavor large local slopes of A(t, θ)
whereas small values of ν disfavor large local curvatures. A boundary condi-
tion is needed for the theory to be complete, and was postulated in Baaquie and
Bouchaud, 2004 to be of the Neumann type, i.e.

∂A(t, θ)

∂θ

∣∣∣∣
θ=0

= 0, (7.3)

thereby enforcing a uniform motion of the forward interest rates at very short
maturities. This assumption is justified considering the spot rate f(t, 0) is typically
set by the Central Bank, and very short-term maturities carry minimal additional
risk.

Note that the absence in Eq. (7.2) of any coupling between different infinites-
imal time slices (i.e. along the t direction) means that A(t, θ) has no temporal
correlations and behaves as a white noise. More precisely, dW (t, θ) := A(t, θ)dt is
a standard Wiener noise, with non trivial covariance along the θ-direction

E
[
dW (t, θ)dW (t′, θ′)

]
= DBB(θ, θ′)dt, (7.4)

where E [.] denote an expectation over the functional weight eS[A] and where
DBB(θ, θ′) is found to be (Baaquie and Bouchaud, 2004)

DBB(θ, θ′) =
ν4

α+ − α−

[
F (θ, θ′,

√
α−)

α−
− F (θ, θ′,

√
α+)

α+

]
, (7.5)

9Note that throughout this chapter, we only speak of classical (i.e. non quantum) field theories,
describing the statistical physics of extended objects.
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with

α± =
ν4

2µ2

[
1 ±

√
1 − 4

(µ
ν

)4
]

and

F (θ, θ′, p) :=
p

2

(
e−p(θ+θ

′) + e−p|θ−θ
′|
)
. (7.6)

Formally, absence of arbitrage among zero-coupon bond prices imposes the
following condition on the drift γ(t, θ) (Baaquie, 2004):

γ(t, θ) = σ(t, θ)

∫ θ

0
dθ′DBB(θ′)σ(t, θ′), (7.7)

but this term is usually completely negligible numerically (Bouchaud et al., 1999),
and we will drop it henceforth.

Baaquie and Bouchaud further introduced the concept of psychological time
which explains how the perceived time θ′ − θ between tenors varies with their
distance θ from the observer standing at time t, introducing one more parameter
called ψ below (see section 7.3.2 below). This framework allows one to fit the whole
empirical correlation matrix ρθθ′ with only three meaningful parameters µ, ν and
ψ. Within this model, and in line with observations, the curvature of the forward
rate correlation perpendicular to the diagonal, decays as power-law with respect
to maturity (see appendix D.9). This was perhaps the most salient success of the
BB04 model, which however fell into almost complete oblivion (only 12 citations
to date!).

In spite of its phenomenological success, the BB04 model has two main limi-
tations.

1. First, the theory assumes a continuous spectrum of futures contracts across
different tenors θ, whereas in reality, futures contracts are available only
at discrete tenors, usually every three calendar months. In other words,
continuous derivatives like ∂θA have no physical existence.

2. Second, it predicts a constant correlation structure across all time scales used
to define returns. This contradicts the well known “Epps effect”, i.e. the
influence of the temporal granularity used to analyze prices (Epps (1979),
Renò (2003), and Toth and Kertesz (2009), see also section 5.1).

The aim of this chapter is to revisit the BB04 model with the two above
deficiencies in mind. We reformulate the model in a way that makes its micro-
foundations more apparent. We show in particular that market participants en-
force a self-referential dynamic to the FRC, where each tenor is directly influenced
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by the motion of its neighbors. Furthermore, our dynamical formulation encapsu-
lates market microstructure phenomena, including the Epps effect, non-martingale
prices at short scales and price-impact and cross-impact effects. The latter will
be detailed in the next chapter 8.

7.3 A Dynamical Reformulation

7.3.1 The continuous limit

We now want to interpret the above driftless noise field A(t, θ), as the solution
to a stochastic Langevin equation that will generate temporal correlations over a
time scale τ ≪ 1 day, instead of instantaneous correlations as in Eq. (7.4).

We then define η(t, θ) to be a two-dimensional Gaussian (Langevin) noise,
characterized by the covariance function

E
[
η(t, θ)η(t′, θ′)

]
= 2Dδ(t− t′)δ(θ − θ′),

where δ(·) represents the Dirac delta function and 2D is the variance of the noise.
[In order to give a precise meaning to the following expressions, we adopt the
physicists’ convention and consider dt and dθ to be very small compared to all
relevant time scales of the problem, but not infinitesimal, so that time and matu-
rities can be thought as discrete but very densely probed.]

We now postulate the following stochastic evolution for A(t, θ):

∂A

∂t
(t, θ) =

1

τ

(
δS[A]

δA(t, θ)
+ η(t, θ)

)
, (7.8)

where τ is the characteristic time scale for the emergence of correlations (see
below). We will not attempt to define the “functional derivative” δS[A]/δA(t, θ)
in a mathematically rigorous manner, but note that it boils down to the usual
derivative if we think of time and maturities as discrete.

Eq. (7.8), alongside the Neumann boundary condition specified in Eq. (7.3),
can be expressed through the following linear differential equation:





∂A

∂t
(t, θ) =

1

τ
[−L[A](t, θ) + η(t, θ)] ,

∂A

∂θ
(t, 0) = 0, ∀t

(7.9)

where

L[A](t, θ) := A(t, θ) − 1

µ2
∂2A

∂θ2
(t, θ) +

1

ν4
∂4A

∂θ4
(t, θ).

Eq. (7.9) describes how the correlated noise field A(t, θ) responds to the uncor-
related shocks η(t, θ), for example the order flow at the microstructure level. An
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important property of the dynamics described by Eq. (7.9) is that it leads, for a
fixed single time t→ ∞, to a stationary measure P [{A}] for A(t, θ) given by

P [{A(t, θ)}] = exp

[
− 1

4D

∫ ∞

0
dθ

(
A2(t, θ)

+

(
1

µ

∂A

∂θ
(t, θ)

)2

+

(
1

ν2
∂2A

∂θ2
(t, θ)

)2
)]

, (7.10)

(see e.g. Kampen (2007) for a detailed discussion). In other words, for 2D = 1,
the marginal of eS[A] for a given time t with S[A] defined in Eq. (7.10) coincides
with P [{A}]. Therefore, all equal-time correlations of the field A(t, θ) coincide
with the BB04 model. However, as we will discuss in section 7.3.4, non-trivial
temporal correlations develop when τ > 0, and only disappear in the limit τ → 0
, which is the limit where BB04 is recovered.

7.3.2 Psychological time

(Baaquie and Bouchaud, 2004) observed that the curvature of the forward rate
correlations along the diagonal decays as a power law of the maturity (see ap-
pendix D.9). To capture this behavior, BB04 proposed the change of variable z̄(θ) =
θψ̄ with ψ̄ < 1 (see also Baaquie and Srikant (2004)). This new variable, referred
to as the psychological time, ensures that the perceived time between events is a
decreasing function of the maturity since dz̄ = ψ̄θψ̄−1dθ. In other words, a month
in a year appears longer than a month in ten years.

In spite of its phenomenological success, this formulation violates the con-
straint that for very small maturities, psychological time and real time should
become equivalent, i.e. tomorrow and a day after tomorrow are perceived (nearly)
exactly the same way, whereas the above specification leads to a diverging value of
dz̄ in that limit. Moreover, several studies in Neuroscience, Behavioral Economics
or Finance (see chapter I) suggest economic agents use hyperbolic discounting,
which is tantamount to a logarithmic increase of the perceived time:10

z(θ) = ψ log

(
1 +

θ

ψ

)
, (7.11)

which is such that z(θ) ≈ θ for θ ≪ ψ and dz ≈ ψdθ/θ for θ ≫ ψ. Indeed, an
exponential discount with rate r in psychological time reads

e−rz(θ) =

(
1 +

θ

ψ

)−rψ
, (7.12)

10Such logarithmic form was also recently discussed by C. Tebaldi (unpublished). Note that

if we insist on a regularized power-law dependence, z̄(θ) = ψ̄/ζ
(
1 + θ/ψ̄

)ζ − 1, such that z̄ ≈ θ
when θ → 0, empirical calibration always returns a small value of ζ, i.e. a logarithmic behaviour.
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which coincides with hyperbolic discounting in real time.
Applying the change of variable z → θ(z) = ψ(ez/ψ − 1) to the linear operator

L[A](z, t) in Eq.(7.9) yields a non-linear differential equation,





∂A

∂t
(t, θ) =

1

τ
[−O[A](t, θ) + η(t, θ)] ,

∂A

∂θ
(t, 0) = 0, ∀t,

(7.13)

where O is the operator defined by

O[A](t, θ) := A(t, θ) +

(
1

ψ3ν4
− 1

ψµ2

)(
1 +

θ

ψ

)
∂A

∂θ
(t, θ)

+

(
7

ψ2ν4
− 1

µ2

)(
1 +

θ

ψ

)2 ∂2A

∂θ2
(t, θ)

+
6

ψν4

(
1 +

θ

ψ

)3 ∂3A

∂θ3
(t, θ)

+
1

ν4

(
1 +

θ

ψ

)4 ∂4A

∂θ4
(t, θ). (7.14)

The above formulation presumes a continuous (or at least very dense) spectrum
of tenors θ, whereas, in practice, forward rates are observed at discrete maturities
only. As will be shown below, this is not a trivial difference. In order to enhance
the realism of our model, we now explicitly discretize the above equation with
respect to θ.

7.3.3 A discrete counterpart

In the following sections, we denote by xθ any variable defined on the discrete space
of tenors. x(t) denotes the vector of components xθ(t). Notably, f(t, θ) becomes
fθ(t) and A(t, θ) becomes Aθ(t). f(t) and A(t) are respectively the vectors of the
forward rate and the noise field at time t. We also define Ik with k ∈ Z as a matrix
of infinite size with ones ones only on the k-th diagonal above the main diagonal,
i.e.,

(Ik)ij =

{
1 if j − i = k,

0 otherwise.
(7.15)

Note that I0 is the identity matrix denoted simply I. Using a centered scheme,
the discretization of Eq. (7.13) reads:





dA

dt
(t) =

1

τ
[−MA(t) + η(t)]

A1(t) −A−1(t) = 0,
(7.16)

159



Chapter 7. Revisiting Elastic String Models of Forward Interest Rates

where M is a matrix of infinite size defined by

Mθθ′ := Iθθ′

+

(
1

ψ3ν4
− 1

ψµ2

)(
1 +

θ

ψ

)(
1

2
I1 −

1

2
I−1

)

θθ′

+

(
7

ψ2ν4
− 1

µ2

)(
1 +

θ

ψ

)2 (
I1 − 2I + I−1

)
θθ′

+
6

ψν4

(
1 +

θ

ψ

)3(1

2
I2 − I1 + I−1 −

1

2
I−2

)

θθ′

+
1

ν4

(
1 +

θ

ψ

)4 (
I2 − 4I1 + 6I − 4I−1 + I−2

)
θθ′
. (7.17)

In the above equation, θ ∈ N is counted in multiple of 3 months and µ and ν are
now dimension-less. The discretization of Eq. (7.13) also requires to replace the
continuous noise η(t, θ) by a discrete Langevin noise ηθ(t), such that:

E
[
ηθ(t)ηθ′(t

′)
]

= 2Dδ(t− t′)δθθ′ , (7.18)

where δθθ′ is the Kronecker delta. Note that the boundary condition in Eq. (7.16)
exhibits a term A−1 generated by the use of an Euler scheme centered in 0 to
ensure the validity of the method of images (see appendices D.1 and D.4).

Unfortunately, Eq. (7.16) cannot be solved in closed form for arbitrary values
of ψ, but simplifies in the two limits ψ → ∞ (i.e. z = θ, see section 7.3.4) and
ψ → 0 (see section 7.3.5). It will turn out that the latter limit allows us to
calibrate the model with a single parameter, with the best goodness-of-fit over all
other formulations.

7.3.4 Building a correlated discrete random field when ψ ≫ 1

In the limit ψ ≫ 1, the change of variable accounting for psychological time
vanishes (i.e. z = θ). Eq. 7.16 becomes





dAθ
dt

(t) =
1

τ
[−Ld[A]θ(t) + ηθ(t)] ,

A1(t) −A0(t) = 0,
(7.19)

where the linear operator L have been substituted by its naive discrete counterpart
Ld:

Ld[A]θ(t) := Aθ(t) −
1

µ2

2∑

i=0

(−1)i
(

2

i

)
Aθ+(1−i)(t) +

1

ν4

4∑

i=0

(−1)i
(

4

i

)
Aθ+(2−i)(t).
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This discrete operator Ld mimics the impact of economic agents who compare the
change of rate of a given tenor to the interpolation of the rates of its closest tenors.
In fact, it seems intuitively plausible that agents primarily look at the two nearest
tenors θ± 1, corresponding to 1/ν → 0. We will see below that the calibration of
the model suggests that this is indeed the case.

The solution to Eq. (7.19) is given by

Aθ(t) =
1

τ

∫ t

−∞
dt′

+∞∑

θ′=0

Gθθ′(t− t′)ηθ′(t
′), (7.20)

where Gθθ′(t− t′) is the propagator of the noise ηθ′ defined by

Gθθ′(t− t′) :=

1

2π

∫ π

−π
dξ
(
eiξ(θ−θ

′) + eiξ(θ+θ
′)
)
e−

Ld(ξ)

τ
(t−t′), (7.21)

with Ld(ξ) = 1 + 2 (1−cos ξ)
µ2

+ 4 (1−cos ξ)2

ν4
denoting the Fourier transform of Ld. The

derivation of this result is detailed in appendix D.1.
A crucial characteristic of the noise field A(t, θ) is its auto-covariance across

time and space. For τ approaching 0, the auto-covariance of A is found to be
given by

E
[
Aθ(t)Aθ′(t

′)
]

=





0, if |t− t′|≫ τ,

D

τ
D1(θ, θ

′), if t = t′,
(7.22)

where the quantity Dk(θ, θ
′) is defined by

Dk(θ, θ
′) =

1

π

∫ π

0
dξ

2 cos ξθ cos ξθ′

[Ld(ξ)]k
. (7.23)

The coarse-grained cumulative sum of A over a time interval ∆t≫ τ , defined as

∆A(t) :=

∫ t+∆t/2

t−∆t/2
Aθ(u)du,

exhibits a behavior similar to its infinitesimal counterpart. For τ → 0, the auto-
covariance of ∆A is given by

E
[
∆Aθ(t)∆Aθ′(t

′)
]

=

{
0, if |t− t′|> ∆t,

2D∆tD2(θ, θ
′), if t = t′.

(7.24)

Therefore, for τ ≪ 1, both the infinitesimal and cumulative sum of A demonstrate
martingale properties along the time axis while manifesting structured correlations
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across the spatial dimension θ. The proofs of these properties are provided in
appendix D.2.

Following Baaquie and Bouchaud, 2004, it is tempting to still account for
psychological time by replacing θ by z(θ) in Eq.(7.24), i.e.

E [∆Aθ(t)∆Aθ′(t)] = 2D∆tD2(z(θ), z(θ′)). (7.25)

Section 7.4 shows that the equal-time Pearson correlation between the forward
rates variations ∆fθ(t) and ∆fθ′(t) can be expressed thanks to the equal-time
auto-covariance of ∆A. We will refer to the forward rate correlation model using
Eq. 7.25 as BBD3, for Baaquie-Bouchaud Discrete, three parameters.

Interestingly, one can derive closed-form formulas for D2(θ, θ
′) and D1(θ, θ

′)
when (θ, θ′) ∈ N2, (see appendix D.3). However, we find that the numerical eval-
uation of integral (7.23) yields more stable results when extending the correlator
(k, k′) 7→ D2(k, k

′) to R2 as required by equation (7.25).

7.3.5 Building a correlated discrete random field when ψ ≪ 1

If ψ ≪ 1, the model can be written as a function of the products µψ and νψ
only (see appendix D.4). Hence, one can choose the parameter ψ to be arbitrarily
small to ensure that ψ ≪ 1 ≤ θ. If we further consider that νψ ≫ 1 – which will
turn out to be a reasonable assumption, as explained in section 7.5.3 – the matrix
M becomes:

Mθθ′ = Iθθ′ −
θ

2κ2
(I1 − I−1)θθ′ −

θ2

κ2
(I1 − 2I + I−1)θθ′ (7.26)

where κ := µψ. Let J denote a matrix defined by

Jθθ′ =





2, if θ = θ′ = 0,

1, if θ = θ′ > 0,

0, if θ ̸= θ′.

(7.27)

In the limit ψ ≪ 1 and ν ≫ 1, the solution to Eq. (7.16) is given by

A(t) =
1

τ

∫ t

−∞
dt′e−

t−t′
τ

MJ η(t′). (7.28)

The derivation of this result is detailed in appendix D.4 in the general case of a
finite ν. Note that in the continuous time limit one recovers the BB model with
a logarithmic psychological time.

We are interested in the auto-covariance across time and space of the noise
field A(t, θ). For τ near 0, appendix D.5 shows that the autocovariance of ∆A,
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the coarse-grain cumulative sum of A(t) over the time interval ∆t ≫ τ , is given
by

E
[
∆A(t)∆A(t′)⊤

]
=

{
0, if |t− t′|> ∆t,

2D∆tM−1J 2(M−1)⊤, if t = t′.
(7.29)

We will refer to the forward rate correlation model using Eq. (7.29) as BBDL,
for Baaquie-Bouchaud Discrete Logarithmic time, with only one parameter. Note
that we have to invert numerically the matrix M in Eq 7.29 to compute forward
rate correlations. To limit artificial deformations due to boundary effects for large
θ, we choose the dimension of the matrix M to be large (≈ 500) compared to
the number of quoted forward rate contracts (≈ 40). This however has a minor
impact on the final results.

7.4 Modeling forward rates

7.4.1 Forward rate diffusion

The noise field previously defined is now employed to describe the dynamics of
the forward rates. The diffusion equation for the variations of the forward rate,
denoted as dfθ(t), is expressed as

dfθ
dt

(t) = γθ(t) + σθÃθ(t), (7.30)

where the drift term γθ is set to zero, as discussed above, and

Ãθ(t) =
Aθ(t)

σA

is the correlated noise field normalized by σA where σ2A := 1
∆tE [∆Aθ(t)∆Aθ(t)].

This normalization ensures that σ2θ is the variance of the noise term driving the
forward rate fθ. Note that because of this normalization, the value of D is imma-
terial and can be set arbitrarily. We however keep it explicitly in the following for
clarity.

Consequently, at the mesoscopic scale ∆t ≫ τ , the variance of the forward
rate increments

∆fθ(t) :=

∫ t+∆t/2

t−∆t/2
dfθ(t

′)

is given by

E
[
∆fθ(t)

2
]

= σ2θ∆t. (7.31)
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Here we have assumed that the volatility of the infinitesimal forward rate variation
is constant across time. The same formulas can be derived when considering
constant per piece volatility on each day of length ∆t.

Finally, the equal-time Pearson correlation between the forward rates varia-
tions ∆fθ(t) and ∆fθ′(t) reads

ρθθ′ =
E [∆Aθ(t)∆Aθ′(t)]√

E [∆Aθ(t)∆Aθ(t)]E [∆Aθ′(t)∆Aθ′(t)]
. (7.32)

It is clear from Eq. (7.32) that forward rate correlations can be expressed as
a function of the noise field correlations E [∆Aθ(t)∆Aθ′(t)]. The calibration of
our models in the following section is performed using Eq. (7.32) for different
definitions of the noise field correlator (Eq. (7.25) or Eq. (7.29)).

7.5 Calibration on correlation surfaces

7.5.1 Data

As in chapter 5, we interpret the instantaneous forward rate f(t, θ) as the mid-
price at time t of a 3-month SOFR future contract maturing at t+ θ. Our SOFR
dataset comprises historical daily variations of these contracts’ prices from 1994 to
2023, covering tenors from 3 months to 117 months. As mentioned in section 5.2.3,
the empirical Pearson correlations ρ̂θθ′ among the daily forward rate increments of
tenor θ and θ′ form a very smooth surface – necessitating the introduction, within
a continuous θ model, of a stiffness term in Eq. (7.2), without which this surface
would exhibit a cusp singularity along the diagonal. Note furthermore that the
curvature along the diagonal decreases as the tenor θ increases which, as already
alluded to, did motivate the introduction of a perceived, “psychological time”.

7.5.2 Calibration over the whole sample

We fit our micro-founded three parameter discrete model BBD3 (using Eq. (7.25))
to the observed correlation matrix over the period 1994−2023, defining our whole
sample. For this purpose, we define the error variance Σ2 by

Σ2 :=
1

n2

∑

θ,θ′


Eθθ′ −

1

n2

∑

θ,θ′
Eθθ′




2

, (7.33)

where Eθθ′ = ρθθ′ − ρ̂θθ′ is the difference between theoretical and empirical corre-
lations for the forward rates of tenor θ and θ′. We will refer to Σ as the typical
error of fit. We will use this indicator to assess the accuracy of our model.
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Figure 7.1: Dots represent the empirical correlation ρθθ′ along the longest stretch per-
pendicular to the diagonal, i.e. θ′ = Θ − θ , where Θ is the maximum available maturity.
The plain lines are the best fit for the period 1994 − 2023 in the continuous regularized
model BBL3 (Eq. (D.51)) and our micro-founded discrete models: BBD3 (Eq. (7.25)),
BBD2 (Eq. (7.25) with ν → ∞), and BBDL (Eq. (7.29)). The inset represent empiri-
cal and fitted correlations along two other anti-diagonals, defined by θ′ = 1

2Θ − θ and
θ′ = 3

2Θ − θ respectively.

The minimization of the error variance Σ2 yields an optimal set of parame-
ters p∗ = (ψ∗, µ∗, ν∗) for the period 1994− 2023. The results in Fig. 7.1 represent
such a fit along the largest anti-diagonal direction and gives the typical error
over the whole surface, showing the high accuracy of the BBD3 model. We find
the optimal parameters ψ∗ = 2.06 months, µ∗ = 1.06, and ν∗ = 2.21, for which
Σ = 1.47%.

7.5.3 A two-parameter version

The interpretation of the discrete model in terms of a mean reverting force driving
back tenor θ to the average of its two nearby tenors θ±1 suggests that the discrete
fourth order derivative may in fact not be needed, since the discrete second order
derivative effectively leads to a fourth order term in the continuous limit. In other
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words, one can set ν = ∞ without creating a “kink” in ρθθ′ . This reduces the
number of parameters to just two, ψ and µ, a version of the model that we will
call BBD2.

The calibration of BBD2 fully vindicates the above intuition: we find that
the optimal values of the parameters over the full sample are given by ψ∗ = 2.00
months and µ∗ = 1.01, corresponding to a typical error Σ of 1.52 %, only 5
basis points larger than to the one found for BBD3 with one less parameter (see
Fig. 7.1).

To analyze the structure of our two-parameter model, we study the sensitivity
of the calibration error to each parameter. For this purpose, we define the Hessian
matrix H as the second-order derivative of the typical error Σ, computed at the
optimal set of parameters p∗, i.e.

Hij := p∗i p
∗
j

∂2Σ

∂pi∂pj

∣∣∣∣
pi=p∗i ,pj=p

∗
j

(7.34)

The eigenvalues λ = (λ1, λ2) and eigenvectors (e1, e2) of the Hessian matrix H are
presented in Fig. 7.2 for the BBD2 model. It appears that λ1 ≫ λ2, which means
that only the combination of parameters along the e1 direction is relevant, the
other direction being “sloppy” (see for example Brown and Sethna (2003), Wa-
terfall et al. (2006), and Gutenkunst et al. (2007)). Fig. 7.2 reveals that the main
sensitivity mode of the BBD2 model is the a-dimensional product of parameters
κ := ψ × µ. This suggests that we can further reduce the number of parameters
to just one, as shown by the calculations of section 7.3.5 and successfully explored
in the next section.

7.5.4 A one-parameter version

The formulation of the model as a non-linear differential equation shows the line
tension µ and psychological time parameter ψ play similar roles. The line tension
sets the weight on the second derivative while the psychological time defines the
distance dθ between two consecutive tenors (see Eq. 7.13). Section 7.3.5 shows
that these two parameters actually collapse as soon as ψ is sufficiently small. This
reduces the number of parameters to just κ, a version of the model previously
mentioned as BBDL.

The calibration of BBDL outperforms all other tested models. We find that
the optimal value for κ is 0.92, corresponding to a typical error Σ of 1.03%. This
time, the error is 44 basis points lower than to the one found for BBD3 which
has two more parameters, but is unable to explore the regime probed by BBDL
(see Fig. 7.1). In view of this, we focus on the more parsimonious version BBDL
in the following, where we calibrate the model independently on each three-year
sub-period.
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Figure 7.2: Eigenvalues λ and eigenvectors e of the Hessian matrix at p∗ in the BBD2
model.

7.5.5 BBDL calibration on separate three-year periods

Fig. 7.3 represents the largest anti-diagonal of the fit of the BBDL model over the
whole correlation surface, for each three-year sub-period. The typical error and
calibrated parameters for these intervals, detailed in Figure 7.4, demonstrate the
stability of the parameter κ throughout the assessed periods. However, periods
characterized by significant monetary policy shifts exhibit a decrease in line tension
(reflected in a higher value of κ) and goodness-of-fit (higher typical error Σ).
Specifically, three periods present line tension lower than its long-term value: (i)
the 2009 − 2011 span, during the first and second rounds of Quantitative Easing,
with the Federal Reserve purchasing 900 billion dollars in US treasury bonds; (ii)
the 2012 − 2014 phase, with an additional 800 billion in bond purchases (third
Quantitative Easing); and (iii) the 2021 − 2023 period, notable for the fourth
Quantitative Easing amid the COVID-19 pandemic. This suggests that asset
purchase programs induce periods of heightened curvature on the forward rate
curve, i.e. more decoupling between nearby tenors.

7.5.6 Comparison with Baaquie and Bouchaud (2004)

In this section we perform a comparison of the accuracy and stability of all the
tested models with the approach initially proposed by Baaquie and Bouchaud
(2004). For the ease of convenience, table 7.2 in section 7.8 summarizes the defi-
nition of these models.

We show in Fig. 7.1 that the continuous Baaquie-Bouchaud model with log-
arithmic psychological time (BBL3), see Eq. (D.51) achieves the same global ac-

167



Chapter 7. Revisiting Elastic String Models of Forward Interest Rates

60

80

100

ρ
θ
,Θ
−
θ

(%
)

1994-1996 1997-1999

50

75

100

ρ
θ
,Θ
−
θ

(%
)

2000-2002 2003-2005

50

75

100

ρ
θ
,Θ
−
θ

(%
)

2006-2008 2009-2011

0

50

100

ρ
θ
,Θ
−
θ

(%
)

2012-2014 2015-2017

0 100

θ (months)

50

75

100

ρ
θ
,Θ
−
θ

(%
)

2018-2020

0 100

θ (months)

2021-2023

Figure 7.3: Dots represent the empirical correlation ρθθ′ along the longest stretch per-
pendicular to the diagonal, i.e. θ′ = Θ − θ , where Θ is the maximum available matu-
rity. The plain lines are the best fit for our micro-founded discrete model BBDL (using
Eq. (7.29)). It is clear from these plots that BBDL provides very accurate fits for all
sub-periods, except 2009-2014.
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Figure 7.4: Optimal typical error and fitted parameter κ obtained with our one-
parameter micro-founded discrete model BBDL, Eq. (7.29). The dotted lines corresponds
to the calibration results on the 1994−2023 period. Note that the typical error Σ yielded
by the fit on the whole sample is not equal to the average error across sub-periods.
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curacy with Σ = 1.01%, compared to 1.03% for BBDL. However, removing only
one of its three parameters now considerably degrades the goodness-of-fit. For
example, removing the stiffness term increases the typical error Σ from 1.01% to
4.06%. As obvious from appendix D.7, Fig. D.1, this is chiefly because the corre-
lation surface develops a cusp around the diagonal θ = θ′, which was actually the
very reason why Baaquie and Bouchaud (2004) introduced such a stiffness term!

The discrete BBDL model therefore appears superior not only because it is
micro-founded and intuitively compelling, but also because it is more parsimo-
nious: it naturally gets rid of the diagonal cusp without having to introduce any
additional parameter. The discrete second derivative fθ+1 +fθ−1−2fθ indeed for-
mally contains continuous derivatives ∂2kθ f(θ) of all even orders, and is therefore
sufficient to regularize the correlation function across the diagonal. Furthermore,
the psychological time parameter ψ merges, in the limit ψ → 0, with the line
tension parameter µ, if the change of variable is encoded in the dynamical master
equation (7.13). Indeed, intuitively, changing the distance between tenors (ψ) or
the line tension (µ) is equivalent.

Lastly, we compare the stability of all the tested models over successive three-
year intervals within our dataset. Fig. 7.5 displays the typical error and calibrated
parameters across all periods, illustrating a consistent fit quality except during sig-
nificant monetary policy shifts (refer to section 7.5.5). However the continuous
and discrete three-parameter models (BBL3 and BBD3) demonstrate a high pa-
rameter instability across periods (note the log scale for µ and ν). The more
parsimonious approaches (BBD2 and BBDL), with only a slightly higher level
of error on some periods, exhibit significantly more stable parameters. Notably,
BBDL emerges as the most stable model, with its single parameter κ ranging from
0.8 to 1.2 across all periods.

7.6 The Epps effect

An important vindication of our framework, in particular the dynamical construc-
tion of the field Aθ using Eq. (7.8), is our ability to account for the so-called Epps
effect Epps, 1979 in a very natural way. Indeed, the auto-covariance of ∆A/

√
∆t

is predicted by the theory to increase from 0 for ∆t→ 0 at fixed τ , to 2DD2(θ, θ
′)

when ∆t≫ τ (see Eq. (D.16) in appendix D.2 for the case ψ ≫ 1 and Eq. (D.45)
in appendix D.5 for the case ψ ≪ 1).

Without modifying our model at the daily time scale, we may postulate that
an additional, small white noise contributes to Aθ, originating for example from
the idiosyncratic dynamics of the order flow, or from the bid-ask bounce. We shall
assume that the variance of such a noise is 2Dε∆t, with ε an extra θ-independent
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Figure 7.5: Typical error and fitted parameters within the continuous regularized model
BBL3 (Eq. (D.51)) and our micro-founded discrete models: BBD3 (Eq. (7.25)), BBD2
(Eq. (7.25) with ν → ∞), and BBDL (Eq. (7.29)). The dotted lines correspond to the
calibration results for each model over the 1994 − 2023 period. The bottom left figure
shows the parameter κ for the BBDL model or the parameter µ for all the others. While
µ (or κ) and ν are dimensionless in the discrete models, these parameters are expressed
in 3 months−1 in the case of the BBL3 model. Table 7.2 in section 7.8 summaries the
definition of the tested models.
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parameter such that

ε≪ C(θ, θ), (7.35)

where C(θ, θ′) is the auto-covariance the noise field ∆A/
√

2D∆t without idiosyn-
cratic noise for ∆t ≫ τ 11. We then obtain the following scale-dependent covari-
ance structure for ∆A:

E [∆Aθ(t)∆Aθ′(t)] =

{
2Dε δθθ′ ∆t+O(∆t2) for ∆t≪ τ,

2DC(θ, θ′) ∆t for ∆t≫ τ,
(7.36)

that we can compare with empirical data. Each plain line in Fig. 7.6 represents
the correlation ρθθ′ across different time scales ∆t among pairs of forward rate
variations (∆fθ,∆fθ′), as given by our model in the case ψ ≫ 1 (see Eq. (D.45))
calibrated on daily correlations (cf. section 7.5.2) with an additional fitting pa-
rameter ε.12 Fig. 7.6 clearly demonstrates that our model is able to reproduce the
whole dependence of the empirical correlations of pairs of SOFR Futures binned
at different time scales (dots in Fig.7.6, see also Fig. 5.5). In fact, one can back out
from this exercice the correlation time scale τ through a minimization of the dif-
ferences between empirical and theoretical correlations across time scales. For the
pair 30-33 months, this leads to a very reasonable value τ ≈ 36 minutes that can be
interpreted as the information propagation time along the FRC. This calibration
also yields an optimal value for the size of the idiosyncratic noise ε ≈ 1.6 × 10−3,
which is an order of magnitude smaller than C(θ, θ′) (ranging from 0.02 to 4 when
ψ ≪ 1). In addition, Fig. 7.6 shows the theoretical correlations yielded by τ = 36
minutes and C = 1.6 × 10−3 for two other pairs (15-48 and 3-60 months). It
indicates that a similar set of calibrated parameters would be obtained if we had
used a different pair.

One could have used Eq. D.16 in the case ψ ≫ 1 to generate the Epps effect.
It yields a similar shape of the correlation ρθθ′ across different time scales ∆t
among pairs of forward rate variations (see Fig D.2 in appendix D.8). Using this
approach, we find a larger ε ≈ 0.026, consistently with higher value of C(θ, θ′)
when ψ ≫ 1 (in the range of 0.14 to 0.48) and a very similar value for τ ≈ 21
minutes.

11More precisely, in the case ψ ≫ 1, C(θ, θ′) = D(z(θ), z(θ′)), and when ψ ≪ 1, C(θ, θ′) =
(M−1J 2(M−1)⊤)θθ′ .

12A natural extension would be to let ε depend on θ. A rank one specification, for example,
would read εθθ′ = (C1 + C2 log θ)(C1 + C2 log θ

′). We have not tried to calibrate such a model,
since the simplest version C2 = 0 is satisfactory for our purpose.
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Figure 7.6: Plain lines: theoretical Pearson correlation coefficients among three pairs of
forward rate variations (∆fθ,∆fθ′) as a function of the time scale ∆t (see (D.45)). Using
the empirical correlations of the pair 30-33 months, the parameter ε of the idiosyncratic
white noise was calibrated to 1.6 × 10−3, and the characteristic time of the Epps effect
τ to 36 minutes. This figure also shows the theoretical correlations yielded by this set
of parameters for two other pairs (15-48 and 3-60 months). Dots: empirical Pearson
correlation coefficients for three pairs of SOFR Futures prices for the year 2021 at time
scales ranging from 4 seconds to one hour.
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7.7 Conclusion

In this chapter, we have reformulated the forward interest rate field theory of
Baaquie and Bouchaud (2004) to account in a unified manner for two important
features: (a) the discrete set of traded maturities and (b) the scale dependent
structure of the correlation matrix across maturities (the Epps effect). Both points
are related to market mechanisms underlying our modeling assumptions.

Indeed, we believe that the emergent correlation structure is a result of mar-
ket participants reacting to high frequency shocks affecting the different tenors
along the forward rate curve, which get corrected in time and transmitted along
maturities through a self-referential mechanism. Intuitively, the dynamics of rates
maturing at t+ θ in the future cannot be decoupled from rates maturing at t+ θ′

when |θ − θ′| is small. This is encoded, within our framework, via relative mean-
reverting forces proportional to the discrete Laplacian and discrete fourth deriva-
tive of the returns along the maturity axis. As it turns out, the discrete fourth
derivative plays a minor role and can be neglected – whereas this term was crucial
in the continuous time version of Baaquie and Bouchaud (2004).

We have shown that such a parsimonious specification, further equipped with
the notion of “psychological time” that shrinks the perceived distance between far
away maturities, allows one to reproduce remarkably well (with an error around
1%) the full correlation structure of the forward rate curve, in particular the
maturity dependent curvature of the correlation perpendicular to the diagonal
θ = θ′. The single parameter of the model is found to be particularly stable across
all the tested periods. Quite remarkably, we find that the data is compatible with
the assumption of a logarithmic dependence of the perceived time as a function
of real time, which translates into the hyperbolic discounting factor advocated in
the behavioral economics literature (Farmer and Geanakoplos, 2009). From our
calibration to the data, we find that the cross-over time between normal time flow
and logarithmic time flow occurs around 2 months in the future. This also means
that a year ten years from now is perceived by the bond markets as one week
in real time. This is quite an extreme distortion of future time that reflects the
extremely myopic nature of financial markets.

Finally, our approach also quantitatively reproduces the empirical finding of
negligible correlations at high frequencies (Epps, 1979), which slowly build up
at lower frequencies, see Fig. 7.6, with a characteristic time scale of the order
of 30 minutes. The modeling framework we advocate also captures several phe-
nomena consistent with the market microstructure literature, including (i) non-
martingality of prices at short time scales and (ii) price-impact and cross-impact
effects. These phenomena that will be detailed in the next chapter 8.
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7.8 Table of notations

Table 7.1 summarizes the notations used in this chapter.

Table 7.1: Notations

Expression Definition

n The number of available SOFR Futures.
t The current time.
T The maturity.
P (t, T ) The price at time t of a zero-coupon bond maturing at T .
θ The time-to-maturity or tenor, in units of 3 months.
f(t, θ) The value at time t of the instantaneous forward rate of tenor θ

(continuous notation).
fθ(t) The value at time t of the instantaneous forward rate of tenor θ

(discrete notation).
A(t, θ) The driftless correlated noise field (continuous notation).
Aθ(t) The driftless correlated noise field (discrete notation).
η(t, θ) The two-dimensional white noise on continuous space.
ηθ(t) The discrete white noise of tenor θ.
σ(t, θ) The volatility at time t of the infinitesimal variation of the instanta-

neous forward rate of time-to-maturity θ (continuous notation).
σθ(t) The volatility at time t of the infinitesimal variation of the instanta-

neous forward rate of time-to-maturity θ (discrete notation).
γ(t, θ) The drift at time t of the infinitesimal variation of the instantaneous

forward rate of time-to-maturity θ (continuous notation).
z(θ) The psychological time.
ψ The psychological time parameter in the change of variable z(θ) =

ψ log
(

1 + θ
ψ

)
.

ψ̄ The psychological time parameter in the change of variable z̄(θ) = θψ̄

(Baaquie and Bouchaud, 2004).
µ The line tension parameter.
ν The stiffness (or bending rigidity) parameter.
κ Unique a-dimensional parameter in the BBDL model defined by κ :=

µψ.
DBB(θ, θ′) The Baaquie-Bouchaud correlator (Baaquie and Bouchaud, 2004).
τ The time scale for the emergence of correlations.
∆t The time scale at which forward variations are observed, correspond-

ing to one day unless specified otherwise.

Continued on next page
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Expression Definition

∆ηθ The coarse-grained cumulative sum over the time scale ∆t of the
two-dimensional white noise ηθ.

∆Aθ The coarse-grained cumulative sum over the time scale ∆t of the
correlated noise field Aθ.

∆fθ The forward rate increments over the time scale ∆t.

E [.] The expectation operator over the functional weight eS[A].
δ(.) The Dirac delta function.
δθθ′ The Kronecker delta.
L[.] The continuous linear differential operator on space.
O[.] The continuous non-linear differential operator on space.
Ld[.] The discrete linear differential operator on space.
M The discrete non-linear differential operator on space, using matrix

notations.
Ld[.] The Fourier transform of the discrete linear differential operator on

space.
Gθθ′(.) Green function or propagator of the discretized Eq. (7.19)
D2(θ, θ

′) The spatial correlator in the discrete BBD model.
D1(θ, θ

′) The spatial correlator of the noise field.
Ik A matrix with ones only on the k-th diagonal above the main diag-

onal.
I The identity matrix.
J A diagonal matrix whose first entry is 2 while all the other entries

are ones.
2D∆t The variance of ∆η.
2Dϵ∆t The variance of the cumulative sum of the idiosyncratic two-

dimensional white noise.
F [f ] The Fourier transform of the function of the maturity θ 7→ fθ.
Σ The typical error between the empirical and the theoretical correla-

tions.

Table 7.2 summarizes the definition of the models used in this chapter.
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Model Noise correlator E [∆Aθ(t)∆Aθ′(t)]

BB04 DBB(θψ̄, (θ′)ψ̄) (see Eq. (7.5))

BBL3 DBB(z(θ), z(θ′)) (see Eq. (7.5))

BBL2 DBB(z(θ), z(θ′)) with ν → ∞ (see Eq. (7.5))

BBD3 2D∆tD2(z(θ), z(θ′)). (see Eq. (7.23))

BBD2 2D∆tD2(z(θ), z(θ′)) with ν → ∞ (see Eq. (7.23))

BBDL 2D∆tM−1J 2(M−1)⊤ with νψ → ∞ and ψ → 0 (see Eq. (7.26)).

Table 7.2: Models’ definition

177



Chapter 7. Revisiting Elastic String Models of Forward Interest Rates

Key takeaways

• The correlation structure of the FRC is described as the result of mar-
ket participants reacting to high frequency shocks transmitted along
maturities through a self-referential mechanism.

• This parsimonious specification is then further equipped with the
notion of “psychological time” which translates into the hyperbolic
discounting factor advocated in the behavioral economics literature
(Farmer and Geanakoplos, 2009).

• The single parameter of the model is found to be particularly stable
across all the tested periods, which allows us to reproduce remarkably
well (with an error around 1%) the full correlation structure of the
FRC.

• From our calibration to the data, we find a strong distortion of future
time that reflects the extremely myopic nature of financial markets.

• This approach also quantitatively reproduces the empirical finding of
negligible correlations at high frequencies (Epps, 1979), which slowly
build up at lower frequencies, with a characteristic time scale of the
order of 30 minutes.
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Chapter 8

How does liquidity shape the
yield curve?

In this chapter, we reproduce the contents of (Le Coz et al., 2024c), written under
the supervision of Iacopo Mastromatteo and Michael Benzaquen, barring a slight
reorganization and some minor changes in phrasing.

In the previous chapter we have revisited a model of the FRC based on the fluc-
tuations of a stiff elastic string (henceforth called the BBDL model for Baaquie-
Bouchaud Discrete Logarithm. The objective of this chapter is to demonstrate
that this model can be given a microstructural interpretation, which allows for
new predictions. Specifically, we establish a connection between a non-measurable
auxiliary noise field that appears in the construction of the original model and the
physically measurable volumes traded across the interest rates curve, thus promot-
ing the string model of chapter 7 to a microstructural model capable of predicting
the price reaction to traded volumes along the curve. The resulting model is more
parsimonious than other cross-impact models while maintaining comparable, if
not superior, performance. We will show that it faithfully accounts for the effect
of liquidity on the price-volume correlations between the forward rates of differ-
ent maturities and the order flow (identified in chapter 6). Additionally, within
this framework, prices appear to exhibit short-term temporal autocorrelations,
consistent with established findings in the literature (see chapter 5).

8.1 Definitions and notations

As in the previous chapter, the instantaneous forward rate fθ(t) is interpreted as
the mid-price at time t of a 3-month SOFR Future contract maturing at t + θ.
More precisely, in this chapter, fθ(t) denotes the closing forward rate of tenor θ
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in the time window [t − ∆t, t] with a length of ∆t = 1 day. As previously, we
also denote any variable x defined in the discrete space of the existing tenors as a
vector (xθ).

We define ∆qθ(t) as the net market order flow traded during the time win-
dow [t − ∆t, t] for the Future contract maturing in t + θ. This is calculated by
taking the sum of the volumes of all trades during that time period, with buy
trades counted as positive and sell trades counted as negative. Thus, ∆q(t) =
(∆q1(t), · · · ,∆qn(t)) is the column vector of net traded order flows.

The set of real-valued square matrices of dimension n is denoted by Mn(R).
Given A a positive symmetric matrix, we write A1/2 for a matrix such that
A1/2(A1/2)⊤ = A, and

√
A for the matrix square root: the unique positive semi-

definite symmetric matrix such that (
√
A)2 = A. We also write diag(A) for the

vector in Rn formed by the diagonal elements of A. Given a vector v in Rn, we
denote the components of v by (v1, · · · , vn), and the diagonal matrix whose com-
ponents are the components of v by diag(v). Table 8.2 in appendix 8.8 provides
a complete list of notations used in this chapter.

8.2 A field theory of the FRC

In this section, we summarize the technical results related to the correlated noise
field developed in the previous chapter. We also introduce an additional property
of such a noise field and simplified notations.

In contrast to the previous chapter, here we setD = 1/2, so the auto-covariance
of the independent Gaussian noise η(t) becomes:

E
[
ηθ(t)ηθ′(t

′)
]

= δ(t− t′)δθθ′ . (8.1)

This choice has no impact on the results. Moreover, we consider ν → ∞ and
a finite number n of diffusion factors, one for each tenor of the FRC, although
the model could be written with an infinite-dimensional white noise η. In any
case, only the first n component of the vector Y (see section 8.3.2) would be
non-zero. Thus, the vector of the driftless discrete noise field A(t) is defined for
θ ∈ J1, nK as the solution to a differential equation which operates on a temporal
scale τ ≪ 1 day: 




dA

dt
(t) =

1

τ
[−MA(t) + η(t)] ,

A1(t) −A−1(t) = 0,
(8.2)

where M is a matrix of Mn(R) defined by

Mθθ′ = 1 − 1

2ψµ2

(
1 +

θ

ψ

)
(I1 − I−1)θθ′ −

1

µ2

(
1 +

θ

ψ

)2

(I1 − 2I + I−1)θθ′ .

(8.3)
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We recall that the general solution to Eq. (8.2) is expressed as

A(t) =
1

τ

∫ t

−∞
dt′G(t− t′)η(t′), (8.4)

where the matrix G(t− t′) is the propagator of the noise η(t′). When ψ ≫ 1, for
(θ, θ′) ∈ J1, nK2, Gθθ′ is given by:

Gθθ′(t) :=
1

2π

∫ π

−π
dξ
(
eiξ(θ−θ

′) + eiξ(θ+θ
′)
)
e−

Ld(ξ)

τ
t, (8.5)

where Ld(ξ) = 1 + 2 (1−cos ξ)
µ2

. When ψ ≪ 1, G becomes:

G(t) := e−
t
τ
MJ . (8.6)

In this limit, the matrix M can be written as a function of a single parameter
κ = µψ:

Mθθ′ = Iθθ′ −
θ

2κ2
(I1 − I−1) −

θ2

κ2
(I1 − 2I + I−1) . (8.7)

We also define the matrix C, the correlator of ∆A by

C :=

{
D2 if ψ ≫ 1,

M−1J 2(M−1)⊤ if ψ ≪ 1,
(8.8)

where we recall that the matrix Dk is given by

(Dk)θθ′ :=
1

π

∫ π

0
dξ

2 cos ξθ cos ξθ′

Ld(ξ)k
. (8.9)

Thus, for τ near 0, the auto-covariance of the cumulative noise field ∆A is given
by:

E
[
∆A(t)∆A⊤(t′)

]
=

{
0, if |t− t′|> ∆t,

∆t C, if t = t′.
(8.10)

An other important property of the cumulative sum of A, not presented in the
preivous chapter, is its response to the generating white noise. For τ near 0, the
covariance between ∆A(t) and ∆η(t) reads

E
[
∆A(t)∆η⊤(t)

]
= ∆t R, (8.11)

where the matrix R is the response of ∆A to ∆η given by:

R :=

{
D1 if ψ ≫ 1,

M−1J if ψ ≪ 1.
(8.12)
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Hence, the correlation matrix ρ(∆A(t),∆η(t)) between ∆A(t) and ∆η(t) reads

ρ(∆A(t),∆η(t)) = diag(σA)−1R, (8.13)

where we recall that σA is the volatility vector of ∆A defined by

(σA)θ =
√

diag(C)θ. (8.14)

The proofs of these properties are provided in appendices E.1 and E.2.
The noise field A is now employed to model forward rates, as in the previous

chapter:

df

dt
(t) = diag(σ) diag(σA)−1A(t), (8.15)

where the component σθ of the vector σ is the volatility of the noise term driv-
ing the forward rate fθ. Thus, using the notation introduced here, the equal-
time Pearson correlation coefficient among coarse-grained forward rate variations
∆f :=

∫ t
t−∆t df(u) is given by:

ρ(∆f,∆f) = diag(σA)−1C diag(σA)−1. (8.16)

8.3 Towards a cross-impact model

Even though this field theory provides an accurate account of the correlation
structure of the FRC, it does not clarify the nature of the exogenous noise η driving
the dynamics of the curve. In this section we want to provide a microstructural
foundation for the η noise by linking it to the surprise in the order flow, thus
promoting the model (that only describes price variations) to a microstructural
model accounting for the joint dynamics of prices and volumes.

8.3.1 Order flow decomposition

Trading flows exhibit significantly lower spatial correlation compared to prices,
however, they display long-range temporal autocorrelation (see chapter 5). There-
fore, we provide a natural physical interpretation of the white noise η by assuming
that this noise corresponds to the surprise (i.e. the martingale component) in the
signed order flow. However, only a fraction of the volatility of price increments
is expected to be explained by trades (see section 8.6), so the white noise column
vector η(t) is decomposed into an idiosyncratic component η⊥, and a component
related to order flow ηq:

η(t) = diag(Y )ηq(t) + diag(Y ⊥)η⊥(t), (8.17)
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where η⊥ is a normalized white noise independent from ηq and Y is the vector of
the parameters Yθ ∈ [0, 1] governing, for each tenor θ, the share of forward rates
variance explained by the order flow imbalance. The components of the vector

Y ⊥ are Y ⊥
θ =

√
1 − Y 2

θ . Formally, the surprise ηq(t) is defined as

ηq(t) := O

∫ t

−∞
dt′J(t− t′)

dq

dt
(t′), (8.18)

where dq
dt (t

′) is the infinitesimal order flow imbalance, and J(t − t′) is a matrix-
valued function that ensures the diffusivity of the process ηq(t), i.e., E

[
ηqθ(t)η

q
θ′(t

′)
]

=
δθθ′δ(t − t′). Such an operator is defined up to an arbitrary rotation matrix O
which leaves the price process invariant.

In appendix E.3 we justify the existence of the kernel J in Eq. (8.18), assuming
the lagged variance-covariance matrix of the infinitesimal order flows Ω(t, t′) :=

E
[
dq
dt (t)

dq
dt

⊤
(t′)
]

is stationary: Ω(t, t′) = Ω(t − t′). We further assume that the

order flow has a factorized structure13

Ω(t− t′) = diag(ϕ(t− t′))Ω, (8.19)

where the function ℓ 7→ ϕ(ℓ) is valued in vector space, and Ω is the equal-time
variance-covariance matrix of the infinitesimal order flows. Then, it is quite simple
to obtain an explicit expression for J(t− t′) (see appendix E.3):

J(t− t′) = Ω−1/2 diag (Φ(t− t′)), (8.20)

where Φ(ℓ) is an operator, valued in vector space, denoting the element-wise con-
volutional inverse of ϕ(ℓ).

Note that this construction leaves the rotation matrix O undefined. In sec-
tion 8.3.4, we propose several methods to determine this matrix to satisfy the
consistency requirements of a cross-impact model.

Finally, one can define q̃(t), the martingale component of q(t), through:

dq̃

dt
(t) :=

∫ t

−∞
dt′ diag (Φ(t− t′))

dq

dt
(t′), (8.21)

such that the surprise ηq is given by

ηq(t) = OΩ−1/2dq̃

dt
(t). (8.22)

13Even though this assumption is not strictly required in our construction, we prefer to stick
to this simpler case, which is an acceptable first order approximation of the empirical order flow
structure, see (Benzaquen et al., 2016).
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8.3.2 Noise field decomposition

The decomposition of the white noise η enables us to write the noise field A as
the sum of two independent components:

A(t) = Aq(t) +A⊥(t), (8.23)

where the correlated noise Aq is the solution of




dAq

dt
(t) =

1

τ
[−MAq(t) + diag(Y )ηq(t)] ,

Aq1(t) −Aq−1(t) = 0.
(8.24)

The correlated noise A⊥ solves a similar equation with the generating white noise
diag(Y ⊥)η⊥(t).

8.3.3 Large-bin approximation

Even though Eq. (8.4) shows that ∆A(t) depends upon the whole history of η(t′)
for t′ ≤ t, we are interested in approximating ∆Aθ(t) as a function of coarse-
grained variables ∆η defined over intervals of finite width ∆t, as in practice we
will have empirical access to order flows sampled on a discrete time grid. The
proofs of the results presented in this section are detailed in appendix E.4.

We decompose the white noise column vector η(t′) into the sum of its observed
empirical averages over the time intervals [t− ∆t, t] (i.e. its moving average) and
its fluctuations around this mean. Formally, we write

η(t′) = η̄∆t(t) + η(t′) − η̄∆t(t), (8.25)

where η̄∆t(t) is the empirical mean of η(t) over the time window [t− ∆t, t] i.e.,

η̄∆t(t) :=
1

∆t

∫ t

t−∆t
dt′η(t′). (8.26)

If we further consider that τ ≪ ∆t one can express ∆Aθ(t) as a function of η̄∆t(t):

∆A(t) = R ∆t η̄∆t(t) +

∫ t

t−∆t
dt′ϵτ (t′), (8.27)

where ϵτ (t) = 1
τ

∫ t
t−∆t dt′G(t− t′) (η(t′) − η̄∆t(t)) is a noise independent of η̄∆t(t)

(see appendix E.4). One can substitute η with ηq or η⊤ and A with Aq or A⊤ in
Eq. (8.27). It yields a relationship between forward rate daily increments and the
martingale component of the daily order flow ∆q̃(t) :=

∫ t
t−∆t dt′q̃(t′):

∆̂f(t) = diag(σ) diag(σA)−1R diag(Y )OΩ−1/2∆q̃(t), (8.28)
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Figure 8.1: Accumulated temporal autocorrelation of daily trading flows over ℓ days i.e.,∑ℓ
ℓ′ ρ(∆q(t),∆q(t− ℓ′)). Each color corresponds to the tenor of a SOFR Future contract

ranging from 3 to 60 months over the period 2016 − 2023. Only 4 maturities (15, 21,
27 and 45 months) out-of 20 are outside the confidence interval after 20 days. Only 4
maturities (15, 21, 27 and 45 months) out-of 20 are outside the confidence interval after
20 days.

where ∆̂f denotes the conditional expectancy of the forward rates increments ∆f
with respect to these flows:

∆̂f(t) := E [∆f(t)| ∆q̃(t)] . (8.29)

As in chapter 6, we neglect the autocorrelation of the order flows, such that
∆q̃(t) ≈ ∆q(t). This approximation is adequate on the daily time scale for 80% of
the maturities considered in our sample (see Fig. 8.1). Hence, one can write the
conditional expectancy of the forward rates daily increments with respect to the
order flow as

∆̂f(t) = diag(σ) diag(σA)−1R diag(Y )OΩ−1/2∆q(t). (8.30)

8.3.4 Cross-impact matrix

Equation (8.30) can be used to define a cross-impact model. Let Λ ∈ Mn(R)
be the matrix such that the equal-bin linear relationship between forward rates
increments and order flows reads

∆f(t) = Λ∆q(t) + E(t), (8.31)
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where E is a temporally uncorrelated noise independent from ∆q. Identifying Λ
in Eq. (8.30) yields

Λ = diag(σ) diag(σA)−1R diag(Y )OΩ−1/2. (8.32)

This formula can also be derived by computing Λ as the linear response of the
forward rates to the equal-time order-flow:

Λ := E
[
∆f(t)∆q(t)⊤

]
E
[
∆q(t)∆q(t)⊤

]−1
. (8.33)

The proof of this alternative approach is provided in appendix E.5. In addition,
appendix E.6 shows that the correlation between the forward rate and the order
flow is well defined.

The cross-impact model in Eq. (8.32) is fully determined up to an arbitrary
rotation matrix O. This free parameter can be used to ensure that our model
has the required (i) rotational invariance, (ii) non-arbitrage, (iii) fragmentation
invariance, and (iv) stability properties (Tomas et al., 2022b). In fact, it was shown
that the cross-impact matrix Λ that satisfies these properties must be symmetric
positive definite (Tomas et al., 2022b). The rotation Osym ensuring that Λ fulfills
these properties is given by (del Molino et al., 2020):

Osym(M,Ω1/2) := M−1(Ω−1/2)⊤
√

(Ω1/2)⊤MM⊤Ω1/2, (8.34)

where M = diag(σ) diag(σA)−1R diag(Y ).
As an alternative model that does not meet these constraints, one can also

simply choose O = I the identity matrix. We will refer to the cross-impact model
using Eq. (8.32) as BBDLW for Baaquie-Bouchaud Discrete Logarithm Whitening
when O = I and BBDLS for Baaquie-Bouchaud Discrete Logarithm Symmetric
when O = Osym.

8.4 Calibration

The best empirical fits of the BB model are obtained in the limit ψ → 0 (see
chapter 7), which is therefore chosen for calibration.

In contrast to the previous chapter, our dataset consists of historical daily
price variations and net market order flows of SOFR Futures contracts from July
2015 to 2023. In fact, before July 2015, only price variations were available,
without corresponding trading volumes. Due to the limited number of trades for
longer tenors, we restrict our dataset to n = 20 different tenors, ranging from 3
to 60 months. Furthermore, to ensure precise alignment between traded volumes
and prices, we set the daily binning cut-off point at noon each day, whereas in
chapter 7, the daily price variation cut-off was at the end of the trading day.
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8.4.1 Methodology

In line with the approach of chapter 7, we fit the parameter κ in formula (8.16) to
the observed forward rate correlation matrix within our dataset segmented into 3
periods: 2015− 2017, 2018− 2020 and 2021− 2023. In addition, we fit the vector
Y by minimizing the square differences between the daily increments of modeled
forward rates, ∆̂f , and the empirical ones, ∆f , using Eq. (8.30).

As in chapter 6, in order to overcome the conditional heteroskedasticity of
forward rate variations, we use a daily estimator of their volatility. Let {t1, · · · , tN}
denote the N business days of a period of 3 years. For each day tk, the estimators
of the forward rates increments and order flow’s volatility are defined by

σ̂2(tk) := (⟨∆f1(t)2⟩(tk), · · · , ⟨∆fn(t)2⟩(tk)),
ω̂2(tk) := (⟨∆q1(t)2⟩(tk), · · · , ⟨∆qn(t)2⟩(tk)), (8.35)

where the operator ⟨.⟩(tk) denotes the moving-average computed using the last 20
daily data points before the day tk. On day tk, the estimated variance-covariance
matrices of the flows, rates variations and the response matrix are respectively
given by

Ω̂(tk) := diag(ω̂(tk))ρ̂(∆q,∆q) diag(ω̂(tk)),

Σ̂(tk) := diag(σ̂(tk))ρ̂(∆f,∆f) diag(σ̂(tk)),

R̂(tk) := diag(σ̂(tk))ρ̂(∆f,∆q) diag(ω̂(tk)). (8.36)

where ρ̂(x, y) is the empirical Pearson correlation matrix between the multidi-
mensional random process x and y estimated using 3 years of data, assumed to
be stationary.

The predicted forward rate change on day tk is defined as

∆̂f(tk) = Λ̂model(tk)∆q(tk), (8.37)

where Λ̂model(tk) is the cross-impact matrix estimated on day tk in the tested
model.

In the case of our noise field approach, the cross-impact matrix is given by

Λ̂BB(tk) = diag(σ̂(tk)) diag(σA)−1R diag(Y )OΩ̂(tk)
−1/2, (8.38)

where O = Osym or O = I depending on the tested model.

In order to compare the results of our model with other cross-impact mod-
els, we recall the definition of the three other cross-impact matrices studied in
chapter 6. Denoting the Y-ratio by y, we consider:
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• the diagonal model, defined by

Λ̂diag(tk) := y diag(R̂(tk)) diag(Ω̂(tk)
−1); (8.39)

• the ML model, defined by

Λ̂ML(tk) := yR̂(tk)Ω̂(tk)
−1; (8.40)

• and the Kyle model, defined by

Λ̂Kyle(tk) := yΣ̂(tk)
1/2Osym

(
Σ̂(tk)

1/2, Ω̂(tk)
1/2
)

Ω̂(tk)
−1/2. (8.41)

As explained in chapter 6, the ML model does not impose any constraints on the
cross-impact model, so it generates the best possible in-sample fit. The Kyle model
ensures (i) rotational invariance, (ii) non-arbitrage, (iii) fragmentation invariance,
and (iv) stability properties. However, none of these models prescribes the form of
the price variance-covariance matrix. Such a matrix is fully determined within the
BBDL model thanks to a single parameter κ in the case ψ ≪ 1 (see section 8.2).

8.4.2 Goodness-of-fit

To assess the model goodness-of-fit, we compare the predicted price changes ∆̂f(t)
with the realized price changes ∆f(t). For this evaluation, we employ the W -
weighted generalized R-squared defined in section 6.3.2.1, replacing ∆p by ∆f in
Eq. (6.16). As in chapter 6, to highlight different sources of error, different choices
of W can be considered:

• Wσ(t) := diag(σ̂2(t))
−1

, to account for errors relative to the typical deviation
of the assets considered.

• Wσθ(t) := diag((0, . . . , 0, σ̂2θ(t), 0, . . . , 0))−1, to account for the errors of a
single asset θ.

The weights Wσ are used in section 8.4.3 to compare the overall performance of
cross-impact models, while the weights Wσθ(t) are used in section 8.6 to measure
their properties in a pairwise setting.

8.4.3 Results

The results of the calibration of the BBDL model on empirical correlations of the
forward rate are presented in table 8.1. This confirms the high accuracy and good
parameter stability of the BBDL model.
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Period κ R2

2015–2017 0.84 99.9%
2018–2020 0.82 99.4%
2021–2023 1.3 97.1%

Table 8.1: Calibrated line tension parameter κ in the BBDL model for each 3-year period
in our sample. Here, R2 denotes the share of the explained variance of the empirical
correlations among forward rates of time-to-maturity ranging from 3 to 60 months.

Using the calibrated line tension parameter κ reported in table 8.1, we fit the
share of explained volatility Y to the time series of rates and order flows of SOFR
Futures. The calibrated share Y of the explained forward rate volatility is reported
for each period in Fig. 8.2.14 It shows that the most liquid products (the shortest
time-to-maturity θ) are associated with the highest values of Yθ. We also observe
that building the symmetric cross-impact model BBDLS requires setting the less
liquid maturities of Y to zero (see Fig. 8.2) in order to avoid instabilities. One
could improve the R-squared by putting more weight on the non-liquid products,
but this would compromise the model’s no-arbitrage property.

The in-sample R-squared values reported in Fig. 8.3 show that, as expected,
the BBDLW model performs worse than the unconstrained ML model, whereas
on the other hand the out-of-sample results show that the two models have sim-
ilar performances. It is noteworthy because the BBDLW model uses only n + 1
parameters (excluding the parameters used for the whitening of the correlation
matrix), while the ML model requires calibrating n2 parameters. Furthermore,
the BBDLS model is actually at least as accurate as the Kyle model in predicting
forward rate moves. Once again, this is remarkable because the BBDLS model is
more parsimonious than the Kyle model, which uses n(n+1)

2 parameters. In fact,
the Kyle model, which features a unique Y-ratio for all assets, cannot explore the
regime probed by BBDLS.

As expected, compared to the less constrained approaches (ML and BBDLW),
the symmetrical models (Kyle and BBDLS) perform poorly in-sample (see Fig. 8.3).
However, the out-of-sample results favor these symmetrical models, demonstrat-
ing that the market does not feature arbitrage opportunities large enough to rule
out those models.

Using this set of calibrated parameters, one can draw the response of the

14More precisely, this calibration is performed by assuming Y ∈ [0, 1] and calibrating the prices
of SOFR Futures p(t, θ) = 100− f(t, θ) to the signed order flow. If we relax this constraint, the
search for values Y ∈ [−1, 1] also yields (almost) systematically positive coefficients because of
the well-documented positive correlation between order flow and prices (Le Coz et al., 2024d).
Indeed, across all periods and maturities (60 calibrated coefficients), we observe only 2 parameters
Yθ with slightly negative values (around −0.1).
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Figure 8.2: Optimal parameters Yθ governing the share of forward rates variances ex-
plained by order flows for each maturity θ.
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period and model. The out–sample values are derived using the parameters calibrated
from the preceding period. For the first period 2015 − 2017, the out–sample R-squared
values are calculated using the parameters calibrated from the 2021 − 2023 period.
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forward rate curve to a trade with a notional value of one billion dollars in a
single maturity over the course of one day. As our cross-impact models are re-
scaled everyday by the daily volatility of prices and order flows (see section 8.4.1),
Fig. 8.4 presents one column of the matrix Λ on a randomly chosen day within
each three-year period. It shows that all models except the ML model predict a
high price impact for the tenor being bought (in this case, 21 months).

8.5 Non-martingality at small time scales

Several authors have shown that price variations exhibit autocorrelation patterns
over short time intervals (see the literature cited in chapter 5). Our model is
compatible with these results because, for time scales dt ≤ τ the forward rate
process is not yet a martingale.

To illustrate this phenomenon, we assume that a volume V of the SOFR Future
of time-to-maturity θ0 is purchased during the time interval dt. Our goal is to
calculate the progressive deformation of the FRC in response to this single trade.
Formally, we define dq̃(0) = Vθ0 , where Vθ0 = (0, . . . , 0, V, 0, . . . , 0) is a vector with
a single non-zero component V in the position θ0 and dq̃(t) = 0 for t > 0. We now
discretize time in Eqs (8.2), (8.15), (8.22), and (8.24). This yields an expression
for the forward rate variations df at discrete times kdt in response to this single
transaction:

df(kdt) = df̂(kdt) + ϵ′(kdt). (8.42)

Here, ϵ′(kdt) is a noise independent from the forward rate variations caused by
trading activity df̂(kdt), which is defined as df̂(kdt) :=

1

τ
diag(σ) diag(σA)−1

(
I − dt

τ
M
)k

diag(Y )Ω−1/2Vθ0 . (8.43)

Fig. 8.5 shows the predicted FRC responses to a transaction of volume V = 1
billion dollar in the 24-month Futures occurring between t = 0 and t = 0.25%× τ .
Immediately following the trade, cross-impact peaks at the traded maturity. The
effect of this trade on the other tenors progressively spreads up to 3τ , where it
becomes negligible. According to the calibration in chapter 7, τ ≈ 30 minutes.
Thus, Fig. 8.5 represents the resulting deformation of the FRC between 5 seconds
and 1.5 hours after the trade.

8.6 Influence of liquidity on price-volume correlations

We now focus on the pair of assets with tenors θ and θ′. Our aim is to measure the
degree to which the goodness-of-fit on the forward rate θ in a linear cross-impact
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Figure 8.4: Modeled FRC moves in response to a trade in the SOFR Future of maturity
21 months with a notional value of one billion dollars over the course of one randomly
chosen day for each of the three calibration periods.
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Figure 8.5: FRC moves in the BBDLW model in response to a trade in the SOFR Future
of maturity 24 months with a notional value of one billion dollars executed at time t = 0.
Each color corresponds to a time step ordered from t = 0.25%×τ (orange) to 3τ (purple).

The total response ∆f̂ over the time interval ∆t = 3τ is the sum of all the infinitesimal
responses df(kdt).
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model results from the order flow at θ′. For this purpose, we define the accuracy
increase of cross-sectional information as

∆R2,model
θ′→θ := R2,model(Wσθ) −R2,diag(Wσθ), (8.44)

where the R-squared values are computed in a two-asset model. Le Coz et
al. (2024d) established that the price-volume correlation between different US
sovereign bonds depends on the respective liquidity of the considered assets. For-
mally Le Coz et al. (2024d) derive these results by observing that the pairwise
additional R squared ∆R2

θ′→θ obtained by the regression of a bond price on the
order flow of another bond is highly asymmetrical. We reproduce these results
for SOFR Futures contracts in Fig. 8.6. The vertical stripes show the effect of
the liquidity of each asset on the price-volume correlation. In fact, in a 2-asset
framework, the additional R-squared ∆R2

θ′→θ is roughly equivalent to the squared
price-volume correlation ρ2(∆fθ,∆qθ′), due to the low spatial correlation of the
order flow (see section 8.6.1).

In this section, we demonstrate that the BBDLW and BBDLS models capture
this stylized fact, primarily due to the vector Y , which represents the share of
price volatility attributable to trades. These liquidity-dependent responses are
neither replicated by the Kyle model (see section 8.6.2) nor by the noise fields A
and η (see section 8.6.3), highlighting the significance of the parameter vector Y .

8.6.1 Theoretical ML model

In a two-asset ML model, the R-squared obtained from regressing the prices of
the first asset to the order flow imbalance of the both assets is given by

R2,ML(Wσ1) =

1

1 − ρ2(∆q1,∆q2)

[
ρ2(∆f1,∆q1) + ρ2(∆f1,∆q2)

−2ρ(∆q1,∆q2)ρ(∆f1,∆q1)ρ(∆f1,∆q2)] , (8.45)

where ∆pi and ∆qi are respectively the price increments and the order flow of
assets i ∈ J1, 2K. If one subtracts from the previous quantity the R-squared ob-
tained when regressing the first asset prices on its own trading flow, one gets the
theoretical added accuracy ∆R2,ML

2→1 in the ML model when regressing asset 1’s
prices on the order flow imbalance of assets 1 and 2 instead of solely asset 2:

∆R2,ML
2→1 = R2,ML(Wσ1) − ρ2(∆f1,∆q1)

=
(ρ(∆f1,∆q2) − ρ(∆q1,∆q2)ρ(∆f1,∆q1))

2

1 − ρ2(∆q1,∆q2)
. (8.46)
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Figure 8.6: Empirical added accuracy ∆R2
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ments of tenor θ on the order flows of tenor θ and θ′ instead of solely on its own order flow,
for the period 2021 − 2023. The calibration methodology is described in section 8.4.1.
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Equation (8.46) indicates that ∆R2,ML
2→1 depends solely on price and order flow

correlations. A priori ∆R2,ML
2→1 should be independent of the respective liquidity

(i.e., the product σi × ωi, where σi is the volatility of prices and ωi the volatility
of the order flow imbalance) of each asset. In fact, Fig. 8.6 illustrates that these
R-squared values vary significantly across assets, suggesting that price-volume
correlations are influenced by the liquidity of the assets in question (see Le Coz
et al. (2024d) for a detailed analysis of liquidity’s effect on cross-impact).

8.6.2 Theoretical Kyle model

A numerical simulation clearly demonstrates the effect of liquidity in the Kyle
model. Figure 8.7 shows the added precision ∆R2,Kyle

2→1 in the Kyle model, when
regressing the prices of the asset 1 on the order flow imbalance of the assets 1 and 2
instead of solely on the asset 2. Each pair of assets is identified by the liquidity σiωi
of its individual assets. We assume that the Y -ratio remains constant for all pairs
considered and y = ρ(∆f1,∆q1). In other words, the Y -ratio is precisely equal to
the correlation between price and volume for the explained asset. Figure 8.7 shows
that, in this scenario, ∆R2,Kyle

2→1 is close to zero for all the liquidity levels tested.
This means that the Kyle model consistently generates an R-squared R2,Kyle(Wσ)
close to y2. It yields another interpretation of the Y-ratio in the Kyle model as
the average effective correlation between prices and volumes.

8.6.3 Theoretical BBDL models

8.6.3.0.1 Responses of A to η. We first study the response of the correlated
field A to its generating white noise η given by Eq. (8.13). Figure 8.8 shows
the squared correlation between ∆Aθ(t) and ∆ηθ′(t) for a typical value of the
calibrated parameter κ. This quantity represents the additional R squared from
the regression of ∆Aθ(t) to ∆ηθ′(t) and ∆ηθ(t) instead of only ∆ηθ(t). Indeed, as
∆ηθ(t) in independent from ∆ηθ′(t) we have

∆R2
θ′→θ =

E [∆Aθ(t)∆ηθ′(t)]
2

E [∆Aθ(t)2]E [∆ηθ′(t)2]
=

R2
θθ′

(σA)θ
. (8.47)

Figure 8.8 shows that the correlation between noise A and its generating white
noise η is asymmetrical and decreases with distance |θ−θ′|. This asymmetry arises
from the rescaling by the norm σA of the noise field A, which decreases when θ
increases. This decreasing volatility is an effect of psychological time: the higher
the maturity, the shorter the distance between the nearby tenors; thus, the lower
the volatility of each noise Aθ′ generated from the normalized white noise ηθ.
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Figure 8.7: Theoretical added accuracy ∆R2
2→1 in the Kyle model, when regressing

the price of asset 1 on the order flow imbalance of assets 1 and 2 instead of solely asset
2. ∆R2,Kyle

2→1 is represented as a function of the individual risk levels of each asset. The
correlation between the order flows of assets 1 and 2 is ρω = 50%. The correlation between
the prices of assets 1 and 2 is ρω = 75%. The volatility of prices and volumes is defined
as the square root of the risk level: σ1 = ω1 =

√
σ1ω1.
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Figure 8.8: Theoretical additional R-squared from regressing ∆Aθ(t) on ∆ηθ′(t) and
∆ηθ(t) instead of solely ∆ηθ(t), according to Eq. (8.13). The parameter κ is calibrated
on forward rate correlations for the period 2021 − 2023 (i.e., κ = 1.3).
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8.6.3.0.2 Responses of the forward rate to η. In the BBDLW model, the
additional R-squared from regressing ∆fθ(t) on ∆ηqθ′(t) and ∆ηqθ(t) instead of
solely ∆ηqθ(t) is given by

∆R2
θ′→θ =

E [∆fθ(t)∆ηθ′(t)]
2

E [∆fθ(t)2]E [∆ηθ′(t)2]
= (diag(σA)−1R)2θθ′Y

2
θ′ . (8.48)

Figure 8.9 shows that the correlation between the forward rate and its generating
white noise ηq exhibits vertical stripes related to the liquidity of the products con-
sidered. This is an effect of differences in the share Yθ of the volatility explained by
each white noise ηθ. However, the model cannot correct for the decreasing volatil-
ity of the noise field A, as shown by the lower R-squared in the top right of the
matrix in Fig. 8.9. We would have obtained similar results in the BBDLS model,
although it would require inserting a rotation factor O2

sym(diag(σA)−1R diag(Y ), I)
into Eq. (8.48). As shown in the following section, this rotation also creates hori-
zontal stripes that correspond to the symmetrization of the cross-impact matrix.

8.6.3.0.3 Responses of the forward rate to the order flow. In the BB-
DLS model, the additional R-squared from regressing ∆fθ(t) on ∆qθ′(t) and ∆qθ(t)
instead of solely ∆qθ(t) is given by

∆R2,BBDLS
θ′→θ = λ2θθ′ω

2
θ′ + 2ρqθθ′λθθλθθ′ωθωθ′ , (8.49)

where λ = diag(σA)−1R diag(Y )OsymΩ−1/2 is 2×2 normalized cross-impact matrix
in the BBDLS model. More precisely, the matrix diag(σA)−1R diag(Y ) is given by
the model of dimension n restricted to Futures contracts of tenor θ and θ′. The
matrix Ω−1/2 is defined from a matrix Ω restricted to two Futures contracts of
tenor θ and θ′.

Figure 8.10 shows that these additional R-squares exhibit vertical stripes re-
lated to the liquidity of the products considered. Although we reproduce the order
of magnitude of the empirical measures (see Fig. 8.6), we do not precisely match
the observed R-squared. In fact, we only have one parameter Yθ′ per column to
correct the asymmetric shape of the correlation between ∆A and ∆η in Fig. 8.8.
Thus, while the price-volume correlation depends on the respective liquidity of
the considered asset pair (Le Coz et al., 2024d), in our model, it depends only on
the explanatory asset. For a given order flow θ, we optimize the average Yθ that
best matches the liquidity of all assets.

Furthermore, in contrast with the empirical results, we observe that the BB-
DLS model generates horizontal stripes in the additional pairwise R-squared val-
ues (see Fig. 8.10). This occurs because of the symmetry of the cross-impact
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Figure 8.9: Theoretical additional R-squared from regressing ∆fθ(t) on ∆ηqθ′(t) and
∆ηqθ(t) instead of solely ∆ηqθ(t). The parameter κ is calibrated on forward rate correlations
for the period 2021 − 2023 (i.e., κ = 1.3) and Y is calibrated on the same period using
the BBDLW model.
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Figure 8.10: Theoretical additional R-squared from regressing ∆fθ(t) on ∆qθ′(t) and
∆qθ(t) instead of solely ∆qθ(t). The parameter κ is calibrated on forward rate correlations
for the period 2021 − 2023 (i.e., κ = 1.3) and Y is calibrated on the same period using
the BBDLS model.
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matrix imposed by the absence of arbitrage. As mentioned previously, the spa-
tial correlation of the order flow is low, rendering the second term in Eq. (8.49)
negligible. Consequently, pairwise R-squared values are primarily influenced by
the term λ2θθ′ω

2
θ′ . We have seen that in the Kyle model, the liquidity ω2

θ′ does
not alter the price-volume correlation, so the R-squared values in Fig. 8.10 can be
approximated by the product Y Y ⊤, which is symmetric.

8.7 Conclusion

Let us start by summarizing what we have achieved. First, we have shown that
the BBDL model defined in chapter 7 is consistent with the well-documented
temporal autocorrelation of forward rates at short time scales. It appears that
the time scale τ at which spatial correlations among asset prices emerge (Epps,
1979) is also the point where temporal correlations begin to dissipate. Therefore,
this framework describes how the spatial and temporal correlation structure of
prices evolves across time scales.

Most importantly, we have proposed a new interpretation of the BBDL model
of chapter 7 in which high-frequency shocks are identified to trades. The latter,
which exhibit low spatial correlations, affect each point of the interest rate curve
independently on the smallest time scale. The spatial correlation structure of
prices emerges from market participants reacting to these independent trades and
external shocks, such as news events, that simultaneously affect multiple points
along the yield curve. These participants then propagate the impact of these
shocks across other maturities through a self-referential mechanism, as described
in chapter 7.

Consequently, this model can be interpreted as a cross-impact model, linking
order flows to price movements. A key feature is that only the surprise compo-
nent of trades influences prices, similarly to a propagator model. To address the
challenge of temporal independence, we calibrate the model at a daily time scale,
where trades show low autocorrelation. Using this approach, we can match or
exceed the precision of the multivariate Kyle model in fitting price moves to order
flows, but with far fewer parameters (n+1 compared to n(n−1)

2 ). Furthermore, un-
like the Kyle model, this framework accounts for liquidity-dependent correlations
between the forward rate of one maturity and the order flow of another.

A promising direction for future research is to explore the micro-level mech-
anisms that connect liquidity with price-volume correlations. This would likely
involve the development of a multidimensional model of the limit order book,
shedding light on liquidity dynamics across different assets and maturities.
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8.8 Table of notations

Table 8.2 summaries the notations used in this chapter.

Table 8.2: Notations

Expression Definition

n The number of available SOFR Futures.
Mn(R) The set of real-valued square matrices of dimension n.
M⊤ The transpose of matrix M .
diag(M) The vector in Rn formed by the diagonal items of the matrix M .
diag(v) The diagonal matrix whose components are the components

(v1, · · · , vn) of the vector v ∈ Rn.

M1/2 A matrix such that M1/2(M1/2)⊤ = M .√
M The unique positive semi-definite symmetric matrix such that

(
√
M)2 = M .

Λ(t) The cross-impact matrix at time t.
σ(t) The vector of price variation volatility at time t.
ω(t) The vector of the signed order flow volatility at time t.
R2(W ) The W -weighted generalized R-squared.
∆R2(W ) The accuracy increase from the cross sectional model.
t The current time.
T The maturity.
P (t, T ) The price at time t of a zero-coupon bond maturing at T .
θ The time-to-maturity or tenor.
fθ(t) The value at time t of the instantaneous forward rate of tenor θ (dis-

crete notation).
f(t) The vector of forward rates at time t.
∆qθ(t) The net market order flow traded during the time window [t, t+ ∆t].
∆q(t) The vector of the net traded order flows during the time window

[t, t+ ∆t].
Aθ(t) The driftless correlated noise field.
ηθ(.) The discrete white noise of tenor θ.
σθ(t) The volatility at time t of the infinitesimal variation of the instanta-

neous forward rate of time-to-maturity θ.
µ The line tension parameter.
ψ The psychological time parameter.
κ Unique a-dimensional parameter in the BBDL model, defined as the

product µ× ψ.
τ The time scale for the emergence of correlations.

Continued on next page
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Expression Definition

∆t The temporal duration of a day.
E [.] The unconditional expectancy.
⟨.⟩(t) The empirical average operator over the interval [t− ∆t, t].
x̂(t) The estimator of x at time t.
ηθ(.) The discrete white noise of tenor θ.
δ(.) The Dirac delta function.
ρ(x, y) The linear Pearson correlation matrix between the random vector x

and y.
δθθ′ The Kronecker delta.
Ik A matrix with ones only on the k-th diagonal above the main diagonal.
I The identity matrix.
J A diagonal matrix whose first entry is 2 while all the other entries are

ones.
Ld[.] The discrete linear differential operator on space.
M The discrete non-linear differential operator on space, using matrix

notations.
Ld[.] The Fourier transform of the discrete linear differential operator on

space.
Gθθ′(.) Green function or propagator of Eq. (8.2)
N The number of days in a 3-year period of our sample.
H(.) The Heaviside function.
F [f ] The Fourier transform of the function of time f .
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Key takeaways

• The field theory introduced in the previous chapter is consistent with
the temporal autocorrelation of forward rates at short time scales.

• The time scale τ at which spatial correlations emerge is also the point
at which these temporal correlations begin to dissipate.
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• We have proposed a new interpretation of this field theory in which
high-frequency shocks are identified to trades.

• The spatial correlation structure of prices emerges from the responses
of market participants to these trades and external shocks.

• Using this approach, we can match or exceed the precision of the
multivariate Kyle model in fitting price moves to order flows, but
with far fewer parameters (n+ 1 compared to n(n−1)

2 ).

• Unlike the Kyle model, this framework accounts for liquidity-
dependent correlations between the forward rate of one maturity and
the order flow of another.
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Conclusion

Overview of the results

In line with standard economic theory, we have seen that most yield curve models
in the literature assume the existence of a rational agent that optimizes its utility
between present and future consumption. These models, which are often misspec-
ified, are incompatible with the observed volatility of long-term rates (the excess
volatility puzzle).

To address these limitations, we have examined the microstructure of the mar-
kets that compose the yield curve. Short-term yields are primarily defined by the
interbank market, where secured transactions take place in a highly regulated
environment. Banks hedge their long-term loans using interest rate derivatives,
whose prices are based on the value of Futures and bonds quoted on limit order
books.

To faithfully model the interbank market, we have assumed that banks create
money endogenously while absorbing payment shocks through repo transactions,
subject to reserves, liquidity, and leverage constraints. Our agent-based model
sheds light on recent puzzles in money markets. While excess liquidity might ini-
tially be attributed to insufficient collateral to meet LCR requirements, our model
shows that even with sufficient collateral supply, excess liquidity can emerge from
banks’ asymmetric responses to payment shocks. The observed level of collateral
re-use is driven by the long cancelation notice period of repos. Collateral scarcity
increases re-use as positive shocks must be absorbed by more borrowers. Fur-
thermore, we observe that the full allotment procedure and LCR regulation have
increased market stability. This modeling framework also illustrates how regula-
tory changes can have unintended systemic consequences: reducing securities held
by each bank below the size of the payment shocks collapses the repo market,
leading to a surge in excess liquidity.

The rest of the yield curve presents stylized facts related to its multidimen-
sional nature, not commonly seen in other financial assets. On the one hand, the
price dynamics of interest rate products show typical financial time series char-
acteristics, with increments being autocorrelated at small time scales (less than a

209



Conclusion

few minutes) but decorrelated at longer ones. On the other hand, the spatial cor-
relation structure of the forward rate curve resembles that of an elastic string. In
contrast, order flows on the yield curve are temporally decorrelated but spatially
correlated.

Furthermore, our analysis of the relationship between prices and signed order
flows led to the identification of new stylized facts. We find that price formation
occurs endogenously within highly liquid assets. Then, trades in these assets in-
fluence the prices of their less liquid correlated products, with an impact speed
constrained by their minimum trading frequency. In particular, price-volume cor-
relations depend on the liquidity of the assets considered. In fact, contrary to
traditional economic theory, which considers long-term rates as expectations of
short-term rates, low-liquidity tenors are mainly influenced by the trades in high-
liquidity tenors.

All these stylized facts can be captured within a single model. The correlation
structure of the forward rate curve is the result of market participants react-
ing to high-frequency shocks, which are transmitted along maturities through a
self-referential mechanism. This model is further enhanced by incorporating the
concept of “psychological time”, which translates into the hyperbolic discount-
ing factor from behavioral economics literature (Farmer and Geanakoplos, 2009).
The single parameter of the model remains stable throughout the last 30 years,
allowing it to reproduce the correlation structure of the forward rate curve with
remarkable precision (approximately 1% error), including the power-law decay of
its eigenvalues and curvature perpendicular to the diagonal. Our calibration re-
veals a strong distortion of future time, reflecting the myopic nature of financial
markets. This model also quantitatively reproduces the empirical observation of
negligible correlations at high frequencies (Epps, 1979), which build up slowly
at lower frequencies with a characteristic timescale of around 30 minutes. Ad-
ditionally, the model captures the temporal autocorrelation of forward rates at
short time scales. In this framework, spatial correlations emerge precisely when
temporal correlations dissipate.

Finally, interpreting high-frequency shocks as trades and news allows us to de-
velop a cross-impact model that matches or exceeds the precision of the multivari-
ate Kyle model when fitting price moves to order flows, while using far fewer pa-
rameters. Unlike the Kyle model, this framework accounts for liquidity-dependent
correlations between the forward rate of one maturity and the order flow of an-
other.

In summary, the key message of this thesis can be summarized as follows.
Economic theory has traditionally micro-founded interest rates as a trade-off be-
tween present and future consumption. This view is incompatible with the data.
In fact, because of banks’ significant market power, long-term rates are largely
determined by financial markets that are almost indifferent to fundamental values

210



Conclusion

but very sensitive to supply and demand. The most significant implication of this
model for economic theory, explored in more detail in the following section, is the
absence of a binding link between inflation and nominal rates.

Extensions and closing remarks

Throughout the manuscript, we have highlighted some unresolved questions and
potential extensions that could enhance the understanding of the formation of the
yield curve. In particular, introducing prices into our agent-based model could
help understanding the transmission of central bank rates to money markets,
potentially shedding light on the departure of repo rates from the ECB’s interest
rate corridor (Piquard and Salakhova, 2019). Additionally, the identified gaps in
describing the multidimensional price formation mechanism should be addressed.
Certain asset prices are best explained by trades occurring over significantly longer
time scales than their trading frequency suggests, which requires exploring other
factors influencing cross-impact. Another promising direction for future research
would be investigating the micro-level mechanisms linking liquidity and price-
volume correlations, likely involving the development of a multidimensional model
of the limit order book.

However, these extensions would not fully address the broader question of
defining the level of the yield curve if fundamental factors such as demographic
growth and inflation have little influence. On the one hand, we have a model
that explains rates fluctuations across different maturities thanks to trading flows,
which are known to be influenced by the hedging activity of banks. On the other
hand, we developed a model of monetary flows in the interbank market. Thus, it
is tempting to merge these frameworks into a single, micro-founded model of the
yield curve. Achieving this would likely require modeling the behavior of addi-
tional actors such as investment funds, insurance corporations, and other financial
intermediaries, who play a role in shaping the supply and demand for money across
maturities. As shown in appendix A, data on the interactions between these ac-
tors and the banking system exists, providing the potential for the development of
an agent-based model that would connect money creation and investors’ behavior
to the shape of the yield curve.

The interest rate on a risk-free investment is one of the most fundamental
variables in Economics. It serves as a key indicator of the time value of money,
representing the required return for deferring a guaranteed payoff from the present
to a future date. However, the main conclusion of this thesis is that, like any other
financial asset, safe assets experience price fluctuations driven by market forces.
These assets offer a “convenience yield” that reflects their liquidity, suitability as
collateral, ability to meet regulatory capital requirements, and other functions that
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resemble the role of money (see also van Binsbergen et al. (2021) for a detailed
discussion of convenience yields). In other words, interest rates are effectively
determined by financial markets which are more influenced by the forces of supply
and demand than by fundamental values.

The main implication of these findings for monetary policy transmission is
that the nominal rate may never converge to an equilibrium rate, breaking the
relationship between inflation and nominal rates. This leads to an alternative
interpretation of the Fisher equation (1.9): the nominal rate is determined by
the supply and demand for money in financial markets, the inflation rate is set
by the supply and demand for goods, and the real rate reflects the imbalance
between the two. This raises questions about the adequacy of current monetary
policy tools for handling inflation. Policies that bypass the bank lending channel
of money creation could be considered, such as “helicopter money” programs (Reis
and Tenreyro, 2022). Alternatively, we could view consumer goods inflation as
a matter of industrial and labor market policies, suggesting that central banks
should focus on other quantifiable objectives where nominal rates have a direct
impact.

Since the GFC, a large amount of money has been created in western economies.
For years, central banks were disappointed that this money did not generate in-
flation. It took a real-life test of a helicopter money policy during the COVID-19
crisis to finally see inflation emerge15. These events highlight a significant shift
in the use of money created by modern financial systems. This money is no
longer primarily used to purchase consumption goods, but still serves as a power-
ful allocation tool for influencing development. The apparent disconnect between
consumer goods inflation and long-term rates may actually present an opportunity
to develop innovative central bank policies. In this view, one could envision set-
ting differentiated rates depending on the social benefits of specific investments,
which could be a means of financing the ecological transition without significantly
increasing taxes or public debt.

As a final remark, I would like to emphasize that the money creation process is
not neutral in the production of inequalities. By relying on private firms and risk
metrics to grant loans, the current system inherently favors wealthier households.
This approach has the significant advantage of decentralization, while alternative
methods would require central banks to determine how much money should be
allocated or loaned to each consumer or firm –a task that was unfeasible in previous
centuries. However, with the advent of digitalization, implementing a fairer money
creation process may now be within reach. This idea is not as radical as it may
seem when we consider that welfare states in advanced economies have already

15For a review of the multiple causes of post-COVID-19 inflation, including demand-pull, cost-
push, and profit-driven factors, see Knicker et al. (2024).
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generated substantial amounts of money through public debt to support social
systems. One way to make this process more sustainable would be to monetize
this debt, thereby creating money in a manner that benefits those with fewer
resources.
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Bachelier, L. (1900). “Théorie de La Spéculation”. In: Annales scientifiques de
l’École normale supérieure 17, pp. 21–86. doi: 10.24033/asens.476.

Bacry, E., J. Delour, and J. F. Muzy (2001). “Multifractal Random Walk”. In:
Physical Review E 64.2 (July 17, 2001), p. 026103. doi: 10.1103/PhysRevE.
64.026103.

Bacry, E., A. Kozhemyak, and J. F. Muzy (2011). “Log-Normal Continuous Cas-
cade Model of Asset Returns: Aggregation Properties and Estimation”. In:
Quantitative Finance 13.5, pp. 795–818.

Bacry, Emmanuel, Adrian Iuga, Matthieu Lasnier, and Charles-Albert Lehalle
(2015). “Market Impacts and the Life Cycle of Investors Orders”. In: Market
Microstructure and Liquidity 01.02 (Dec. 2015), p. 1550009. doi: 10.1142/
S2382626615500094.

Barberis, Nicholas, Robin Greenwood, Lawrence Jin, and Andrei Shleifer (2015).
“X-CAPM: An Extrapolative Capital Asset Pricing Model”. In: Journal of
Financial Economics 115.1 (Jan. 2015), pp. 1–24. doi: 10.1016/j.jfineco.
2014.08.007.

Baumol, William J (1959). Business Behavior, Value and Growth. New York:
Macmillan.

Bech, Morten and Cyril Monnet (2016). “A Search-Based Model of the Interbank
Money Market and Monetary Policy Implementation”. In: Journal of Eco-
nomic Theory 164 (July 2016), pp. 32–67. doi: 10.1016/j.jet.2015.08.007.

219

https://doi.org/10.1103/PhysRevE.75.016703
https://doi.org/10.1103/PhysRevE.80.046119
https://doi.org/10.1103/PhysRevE.80.046119
https://doi.org/10.1016/j.physa.2009.09.031
https://doi.org/10.1103/PhysRevE.75.016704
https://doi.org/10.1103/PhysRevE.75.016704
https://doi.org/10.1103/PhysRevE.69.036129
https://doi.org/10.1016/j.physa.2011.08.021
https://doi.org/10.1016/j.physa.2011.08.021
https://doi.org/10.24033/asens.476
https://doi.org/10.1103/PhysRevE.64.026103
https://doi.org/10.1103/PhysRevE.64.026103
https://doi.org/10.1142/S2382626615500094
https://doi.org/10.1142/S2382626615500094
https://doi.org/10.1016/j.jfineco.2014.08.007
https://doi.org/10.1016/j.jfineco.2014.08.007
https://doi.org/10.1016/j.jet.2015.08.007


Bibliography

Beechey, Meredith J. (2006). Excess Sensitivity and Volatility of Long Interest
Rates: The Role of Limited Information in Bond Markets. SSRN Scholarly
Paper ID 938510. Rochester, NY: Social Science Research Network, Oct. 1,
2006. doi: 10.2139/ssrn.938510.

Benchmarks Regulation (EU) 2016/1011 (2016). doi: 10.5040/9781782258674.
Benjamini, Yoav and Yosef Hochberg (1995). “Controlling the False Discovery

Rate: A Practical and Powerful Approach to Multiple Testing”. In: Journal
of the Royal Statistical Society: Series B (Methodological) 57.1 (Jan. 1995),
pp. 289–300. doi: 10.1111/j.2517-6161.1995.tb02031.x.

Benner, Mats, ed. (2013). Before and Beyond the Global Economic Crisis: Eco-
nomics, Politics and Settlement. Cheltenham: Edward Elgar Publishing, May 29,
2013. 272 pp.

Benzaquen, Michael, Jonathan Donier, and Jean-Philippe Bouchaud (2016). “Un-
ravelling the Trading Invariance Hypothesis”. In: Market Microstructure and
Liquidity 02 (03n04 Dec. 2016), p. 1650009. doi: 10.1142/S238262661650009X.

Benzaquen, Michael, Iacopo Mastromatteo, Zoltan Eisler, and Jean-Philippe Bouchaud
(2017). “Dissecting Cross-Impact on Stock Markets: An Empirical Analysis”.
In: Journal of Statistical Mechanics: Theory and Experiment 2017.2 (Feb. 13,
2017), p. 023406. doi: 10.1088/1742-5468/aa53f7.

Bernanke, Ben Shalom and Alan Blinder (1988). Credit, Money, and Aggregate
Demand. Working Paper 2534. National Bureau of Economic Research, Mar.
1988. doi: 10.3386/w2534.

Bhar, Ramaprasad and Carl Chiarella (2011). “A Maximum Likelihood Approach
to Estimation of a Class of the Heath-Jarrow-Morton Models”. In: (Oct. 29,
2011).

Bielecki, Marcin, Marcin Kolasa, and Micha l Brzoza-Brzezina (2018). Demograph-
ics, Monetary Policy and the Zero Lower Bound. 810. Society for Economic
Dynamics.

Björk, Tomas (1998). Arbitrage Theory in Continuous Time. Oxford ; New York:
Oxford University Press. 312 pp.

— (2019). Arbitrage Theory in Continuous Time. 4th ed. Oxford University Press,
Dec. 5, 2019. doi: 10.1093/oso/9780198851615.001.0001.

Black, Fischer (1986). “Noise”. In: The Journal of Finance 41.3, pp. 528–543. doi:
10.1111/j.1540-6261.1986.tb04513.x.

Black, Fischer and Myron Scholes (1973). “The Pricing of Options and Corpo-
rate Liabilities”. In: Journal of Political Economy 81.3, pp. 637–654. JSTOR:
1831029.

Blanchard, Olivier J. (1985). “Debt, Deficits, and Finite Horizons”. In: Journal of
Political Economy 93.2, pp. 223–247. JSTOR: 1832175.
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Appendices





Résumé substantiel en français

Contexte

La théorie macroéconomique relie la croissance de la production aux anticipations
sur les taux à court terme. Ainsi, les premiers modèles de taux définissent le taux
à long terme comme la moyenne des taux courts, mais les preuves empiriques
montrent que les taux long sont généralement plus élevés que les prédictions de
ces modèles. Cet écart a été comblé par l’introduction d’une mesure de probabilité
neutre au risque, dont les fondations microéconomiques sont peu convaincantes.

Cette thèse vise à développer une théorie des taux d’intérêts utilisant des
modèles d’agents et de physique statistique, en se concentrant sur les éléments
influençant la fixation des taux d’intérêts par les banques : la couverture des taux
à long terme par des contrats à terme et le refinancement à court terme sur le
marché des repurchase agreement (repo).

Création monétaire sur le marché des repos

Depuis la crise financière de 2008, les marchés monétaires ont subi d’importants
changements réglementaires. Des excédents de réserves sont apparus et le refi-
nancement bancaire repose de plus en plus sur les repos et la réutilisation des
collatéraux.

Nous proposons un modèle minimal du réseau interbancaire des repos qui
permet d’éclairer ces changements. Il montre que l’excès de liquidité peut etre
généré par les chocs de paiement. L’apparition de repo evergreen et la réutilisation
du collatéral apparaissent comme une réponse simple au risque de contrepartie
des banques et à la réglementation. Cette réutilisation augmente avec la rareté du
collatéral. Le modèle génère un réseau aux connexions stables et une structure de
type cœur-périphérie. Enfin, nous montrons comment ce modèle peut être utilisé
comme outil de stress test ou de conception de politique monétaire.
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Résumé substantiel en français

Flux de liquidité sur la courbe des taux d’intérêt

Comprendre la dynamique de la courbe des taux d’intérêt à terme (FRC) est
essentiel pour la gestion des risques des banques et fascinant d’un point de vue
théorique. Tandis que les processus stochastiques décrivant des actifs individuels
ont été bien étudiés, les objets de dimension supérieure sont beaucoup plus difficiles
à modéliser.

Pour aborder ce problème, nous commençons par mesurer empiriquement com-
ment les volumes échangés sur un actif influent le prix d’un autre, un phénomène
appelé impact croisé. Nous montrons que la formation des prix se produit de
manière endogène au sein des actifs hautement liquides. Ensuite, les transactions
sur ces actifs influencent les prix des produits corrélés moins liquides. Notamment,
nous constatons que le contrat à terme sur obligation à 10 ans sert de principal
réservoir de liquidité, influençant les prix des contrats à terme sur les autres matu-
rités. Un tel comportement remet en question la validité de la théorie en économie
financière selon laquelle les taux à long terme reflètent les anticipations des agents
concernant les taux courts.

En nous basant sur ces résultats, nous revisitons un modèle décrivant la courbe
des taux d’intérêt à terme (FRC) comme une corde élastique où se propagent des
chocs idiosyncratiques. Ce modèle capture comment les forces du marché fixent
les taux de manière auto-référentielle. Le modèle est parcimonieux et reproduit
précisément la structure de corrélation de la FRC. La dépendance de la corrélation
aux échelles de temps (effet de Epps) est également fidèlement reproduite. Nous
confirmons que le temps perçu sur les marchés des taux d’intérêt est une fonction
fortement sous-linéaire du temps réel, conformément à la littérature récente en
finance comportementale. Le modèle génère également des prix auto-corrélés à
court terme.

Enfin, ce cadre de modélisation peut être étendu pour tenir compte de l’impact
des volumes sur prix et des impacts croisés. Il permet de simuler les prix des actifs
à partir des volumes échangés avec une précision proche de celle d’un modèle
linéaire non contraint, mais avec beaucoup moins de paramètres.
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Appendix A

Stylized facts in money markets

This chapter reproduces the appendices of Le Coz et al. (2024a) as well as a more
detailed description of the MMSR database.

A.1 Money Market Statistical Reporting database

Our empirical analyses rely on the Money Market Statistical Reporting (MMSR)
database, which lists the characteristics of daily individual transactions in the
Eurozone’s money markets, reported by the so-called Monetary Financial Insti-
tutions (MFIs, as defined by the Statistics Reporting Regulation (EU) 2533/98
(1998) and the National Accounts Regulation (EU) 549/2013 (2013)). These in-
stitutions include, notably, deposit-taking corporations, consisting of (i) credit
institutions and (ii) other financial intermediaries, “whose business is to receive
deposits and make investments in securities on their own account,” as defined by
Statistics Reporting Regulation (EU) 2533/98 (1998).

In line with the MFI Regulation (EU) 2021/379 (2016), among the list of
MFIs in the Eurozone, only 47 credit institutions16 have been required since 2014
to report their money market transactions to the ECB. These banks, referred to
as ”reporting agents” in this section, are obligated to report the following daily:

• all borrowings with maturities up to one year from “[...] financial corpo-
rations (except central banks where the transaction is not for investment
purposes), general government, or non-financial corporations classified as
wholesale according to the Basel III LCR framework” (Amended MMSR
Regulation (EU) 2019/ 113 2019);

• all lending to other credit institutions with maturities up to one year.

16The full list of reporting agents is available on the Money market statistical reporting web-
page,
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Chapter A. Stylized facts in money markets

Table A.1 provides a sector classification of the financial corporations considered
as wholesale counterparties under the Basel III LCR framework, which are covered
by the MMSR database.

As shown in Table A.1, until the amended MMSR regulation was released in
2019, counterparties such as investment funds, financial auxiliaries, and captive
financial institutions were excluded from the list of counterparties required to
be reported, in accordance with the MMSR Regulation (EU) 1333/2014 (2014).
Transactions with central banks are reported only if they are unrelated to Eu-
rosystem monetary policy operations and standing facilities, as specified in the
MMSR Reporting Instructions (2021).

In both the secured and unsecured segments, the MMSR database contains
information on the type of money market instrument, the dates of trade, start
and termination of the contract, the interest rate, the volume, the counterparty’s
sector, the transaction volume, the maturity, and the trade direction (lending vs.
borrowing). Additionally, the database includes identifiers for the reporting banks
and their counterparties. For secured transactions, it is also possible to identify
the ISIN of the collateral. Reporting banks are required to report all transactions
until they mature, ensuring that any deposit recorded in the balance sheet of a
bank is reported daily until the deposit is either partially or fully withdrawn.

A.1.1 General data retreatment

We keep any interbank transactions between MMSR reporting agents for which we
have non-missing reported information on the transaction volume, the LEI of the
reporting agent, the LEI of the counterparty agent, the ISIN code of the collateral
and the direction of the transaction (borrowing vs. lending). We remove all
canceled transactions from the database - i.e. a canceled transaction corresponds
to any transaction which was initially reported and was later canceled, but is not
equivalent to a transaction which was approved by the bank and later matured
(these are the transactions we keep for our analysis). Additionally, we make sure
that the dates in our sample only correspond to official euro area trading calendar
dates17.

A.1.2 Identification of evergreen repos

Our main data transformation consists in extracting information on the evergreen
repos from the MMSR database. Evergreen repos are repos with an infinite ma-
turity but are not flagged as such in the MMSR database. Evergreens have a
notice period that usually vary between 1 to 100 days and are reported as a repo

17We list all calendar dates reported on the official statistical data warehouse of the ECB from
the reported EONIA/ESTR rates time series.

252



Chapter A. Stylized facts in money markets

transaction with the same maturity band everyday until the day when one or both
trading counterparties decide to stop the transaction. That day, the two counter-
parties have to agree on a date of final maturity, which will then be reported in
the database. We thus identify evergreens as any repeated transactions between
the two same counterparties for at least 1 day. Specifically, we identify a unique
repo as the combination of the two identifiers of the transacting counterparties
(the lender and the borrower), the nominal amount and the maturity and the ISIN
code of the transaction. Any repeated combination of these unique repos for more
than a day are considered evergreens.
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Figure A.1: Sectoral breakdown for counterparties in the MMSR database.
254



Appendix B

Model of money creation

This section reproduces the appendices of Le Coz et al. (2024b).

B.1 Random growth model

We want to model money creation through positive shocks fluctuating around an
average rate g of new money. Such model can be formulated by

Xi(t+ 1) = (gZi(t) + 1)Xi(t),

Xi(0) = x0, (B.1)

where Zi(t) = eσZϵi(t)−
1
2
σ2
Z . We recall (ϵi(t)) are independent normalized centered

Gaussian random variables across banks and time. Taking the expectation of
Eq. (B.1) yields

⟨Xi(t)⟩ = x0(1 + g)t. (B.2)

Similarly, taking the expectation of the square of Eq. (B.1) gives

⟨X2
i (t)⟩ = x20(g

2eσ
2
Z + 2g + 1)t, (B.3)

which shows X(t) is non-stationary. For t ≫ 1 and increments of small size ∆t,
by taking the logarithm of Eq. (B.1), we have

ln(Xi(t)) =

t∑

t′=0

ln(gZi(t
′) + 1) + ln(x0). (B.4)

Assuming g2eσ
2
Z ≪ 1 (i.e. the mean growth is small compared to fluctuations),

ln(gZi + 1) can be approximated by gZi which has a mean g and a variance
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g2(eσ
2
Z − 1) that we note g2v2. Hence, for t sufficient large, by the central limit

theorem, the log-returns ln(Xi(t+ ∆t))− ln(Xi(t)) behave as a Gaussian of mean
g∆t and variance g2v2∆t. Thus, in the limit ∆t≪ 1 and t≫ 1, the process Xi(t)
reads

Xi(t) = x0e
gt− 1

2
g2v2t+gvB(t), (B.5)

where B(t) is a Brownian motion. One can check that this expression yields the
mean and variance in Eq. (B.2) and (B.3) for g ≪ 1. The limit distribution of
this type of random processes has been studied among others in Marsili et al.
(1998), Gabaix (1999), and Mitzenmacher (2004). Unfortunately this process has
no stationary limit unless we prevent the smallest banks to become smaller than
a certain barrier. Indeed, as noticed by Mitzenmacher (2004), the logarithm of
the density distribution of Xi(t), noted fX(t)(x) reads

ln(fX(t)(x)) = −
(

3

2
− 1

gv2

)
ln(x) − 1

2g2v2t
ln(x)2

− ln(
√

2πg2v2t) − 1

2gv2
+

1

4
, (B.6)

which is clearly non stationary. We could hope solving this issue by defining a
bounded variable Yi(t), the re-scaled money creation of the bank i by the sum of
money creation of the other banks:

Yi(t) =
Xi(t)∑N
i=0Xi(t)

. (B.7)

In the limit of large N , the sum
∑N

i=0Xi(t) can be approximated by its mean, as
long as the variance of the sum is small compared to its mean. Using Eq. (B.2),
(B.3) and the central limit theorem for large N , this condition is meet if

(
g2eσ

2
Z + 2g + 1

(1 + g)2

)t
≪ N. (B.8)

In this limit,
∑N

i=0Xi(t) ≈ Nx0e
gt, so the density distribution function fY (t) of

the normalized variables Yi reads

ln(fY (t)(y)) = −3

2
ln(y) − 1

2g2v2t
ln(y)2 − ln(

√
2πg2v2t) +

1

4
. (B.9)

Thus, for large t and large y (precisely for ln(y) ≪
√
t), the quadratic term

becomes negligible so the variable Yi behaves similarly to a power law of exponent
0.5. Yet, the term − ln(

√
2πg2v2t) shows that most banks have a size becoming
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Figure B.1: Evolution of cumulative distribution function of the relative sizes of banks
across 100 000 days with an average growth rate g = 10% and a volatility v = 10. Each
color corresponds to a snapshot every 500 steps from the shortest (orange) to the latest
(purple). Within a certain range, the measure of the tail exponent drops from infinity to
around 3 in 5000 steps. This exponent is still 2.5 after 100 000 steps.

infinitely small. Correcting such behavior requires either defining a negative drift
pushing bank sizes towards a barrier (Marsili et al., 1998; Gabaix, 1999) or to
allow banks to exchange wealth (Bouchaud and Mézard, 2000). Both options are
in contradiction with the requirements of our model. In practice, for the typical
values of g = 10% per year, and v = 10 (i.e. some banks double their balance sheet
in a year, while the median bank grows by 1%), we observe that the distribution
of the Yi is almost stationary after 5000 steps (i.e. ≈ 20 years if we count 250
business days per year). Indeed, Fig. B.1 shows the distribution function of the
relative sizes of banks moves very slowly between 5000 and 100 000 steps.

B.2 Sensitivity analysis

As a complement to section 4.2.2, we present here the influence of several other key
control parameters. Unless specified differently, all parameters are set as in the
section 4.2.2. Each simulation is also conducted over 10000 steps. As previously,
we simulate the same run 100 times and report the mean, excluding values outside
of one standard deviation, of the stationary level of a given metric.
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Figure B.2: Average maturity of repo transactions as a function of the leverage ratio
equivalent of new own funds γnew.

B.2.0.0.1 The effect of new own funds The leverage ratio is the constraint
that limits the size of the balance sheet. Hence, the less binding the constraint
(i.e. the higher the amount of new own funds γnew measured in leverage ratio
equivalent, see section 4.1.5), the longer the maturity of repos (Fig. B.2). This
results in a higher network density (Fig. B.3), a higher Jaccard network similarity
index (Fig. B.4), and a higher rate of collateral re-use (Fig. B.5).

B.2.0.0.2 The effect of the size heterogeneity High levels of bank sizes’
heterogeneity (i.e. low values of the tail exponent µ) are associated to low collateral
re-use rate (Fig. B.6) and network density (Fig. B.7). Indeed, when heterogeneity
is high, the probability of a large positive shock to hit a large bank increases.
This results in excess liquidity (Fig. B.8), which reduces the chances of subsequent
shocks to generate liquidity needs, thereby reducing collateral re-use and network
density.

B.2.0.0.3 The effect of the learning coefficient A core-periphery struc-
ture emerges if the learning coefficient λ is above a minimum level (around 0.01
in Fig. B.9). Below this value, banks do not learn quickly enough which counter-
parties to trade with, resulting in a high network density (Fig. B.10).
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Figure B.3: Network density as a function of the leverage ratio equivalent of new own
funds γnew.
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Figure B.4: Jaccard network similarity index as a function of the leverage ratio equiva-
lent of new own funds γnew.
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Figure B.5: Collateral aggregates as a function of the leverage ratio equivalent of new
own funds γnew.
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Figure B.6: Collateral re-use as a function of the power law exponent ν governing the
distribution of bank sizes.
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Figure B.7: Network density as a function of the power law exponent ν governing the
distribution of bank sizes.
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Figure B.8: Macro-economic aggregates as a function of the power law exponent ν
governing the distribution of bank sizes.
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Figure B.9: P-values assessing the existence of a core-periphery structure according to
the method proposed by Lip (2011) as a function of the learning coefficient λ.
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Figure B.10: Network density as a function of the learning coefficient λ.
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Cross-impact measures

This section reproduces the appendices of Le Coz et al. (2024d).

C.1 Statistical significance of the Goodness-of-fit

The main results of our analysis are expressed in terms of a generalized R2(M).
For a single asset i, the indicator R2(Iσi) is precisely the R-squared of the linear
regression of its price increments over its predicted price increments in the model
with no Y-ratio:

∆pt,i = Y ∆̂pt,i + ηt,i, (C.1)

where the explanatory variable ∆̂pt,i is the prediction of the model with no Y-ratio.

The significance of the R-squared of the above regression can be provided by
an F-test. Indeed, this latter allows us to compare two models, one model being
the reduction of the other to fewer parameters. Here we compare the model with
one explanatory variable to the model with only an intercept. Let ξ̃ ∈ RN denote
the vector of the errors estimated in the model with no explanatory variable, and
ξ̂ ∈ RN denote the vector of the errors estimated in the cross-impact model. The
F-statistic is expressed as the normalized difference between the squared errors in
the two models:

F =
ξ̃⊤ξ̃ − ξ̂⊤ξ̂

ξ̂⊤ξ̂
. (C.2)

Since the errors in the parameter-free model are precisely equal to the centered
explained variable, denoted as y ∈ RN , we can express this F-statistics as a
function of the R2:

F =
y⊤y − ξ̂⊤ξ̂

ξ̂⊤ξ̂
=
ŷ⊤ŷ

ξ̂⊤ξ̂
=

R2

1 −R2
. (C.3)
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Under the usual assumptions for the residuals and the explained variable, this
F-statistics follows a Fisher law F (N,N − 1). The significance of the R2 can be
then provided by the p-values of the F-statistics of the linear model calibrating
the Y-ratio.

Yet, the residuals in the above regression are auto-correlated due to the prop-
erties of the order flows. They are also non-Gaussian (heavy tails, negative skew)
and heteroskedastic, due to the properties for the price process. In fact, returns are
generally conditionally heteroskedastic but unconditionally homoskedastic. Here
the unconditional heteroskedasticity observed in the data might be due to some
trend in the annual sample.

However, the observed levels of auto-correlation are sufficiently low (around
10% at the lag 1) to avoid compromising the robustness of the test (Krämer,
1989). This issue is further studied in the following section. Moreover, the non-
Gaussianity only partially limits the robustness of the F-statistic test (Box and
Watson, 1962). Yet, the heteroskedasticity issue requires using a modified F-
statistic test robust to this assumption. Thus, we measure the statistical signifi-
cance of the R2 using the approach of MacKinnon and White (1985) (implemented
in the Statsmodels python library through the method of Long and Ervin (2000)).

These F-statistics confirm that the R2∗ displayed in our study are significant.
Specifically, in the single asset case, each optimal goodness-of-fit R2∗ is obtained
from a linear regression. The F-statistics p-values of m ≈ 103 (500 assets across
5 years) statistical tests are exhibited in Fig. C.1. Notably, only few p-values
are above the Bonferroni upper bound (Goeman and Solari, 2014; Frane, 2015).
This upper bound is used for the identification of false positive when performing
multiple hypothesis tests. Here, the rate of false positive at the confidence interval
α = 10−2 is bounded by the share of p-values above α

m = 10−5. Figure C.1 shows
that only a negligible share of these p-values are not significant (approximately
2%). The more accurate procedure from Benjamini and Hochberg (1995) yields
similar results. If we compare the p-value of rank k (in ascending order) to kα

m ,
we find that 1.8% of these p-values are above this threshold.
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Figure C.1: Empirical distribution of the statistical significance of the R2∗(Iσi) across
the years and assets in our sample.

C.2 Auto-correlation structure and comparison with the
propagator model

The auto-correlation of signed order flows is a well-documented feature of financial
markets (Lillo and Farmer, 2004). Using the E-mini S&P Future binned every 1
minute to calibrate the single asset model, we observe significant auto-correlation
of both the signed order flows and the residuals (Fig. C.2). In contrast, the auto-
correlation of prices is of the same size as the noise. If the number of data points
increases, prices will become even more efficient, so the auto-correlation of the
residuals will increase to compensate for the long memory of the signed order
flows. Thus, the model will be invalidated.

As previously mentioned, one approach to re-conciliate the long memory of the
order flows with the efficiency of prices is to define a propagator model (Bouchaud
et al., 2006; Bouchaud, 2009; Alfonsi et al., 2016; Benzaquen et al., 2017; Bouchaud
et al., 2018; Schneider and Lillo, 2019) as follow:

pt =
∑

s≤t
G(t− s)qs + ηt, (C.4)

where G : t → G(t) ∈ Mn(R) captures the dependence on past order flows
and ηt is a vector of zero-mean random variables. As shown by Tomas et al.
(2022b) the calibration of the true propagator model would yield only marginal
improvements in the goodness-of-fit. However, this model is significantly more
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Figure C.2: Auto-correlation of price variations ∆p, signed order flows q and residuals
η for the E-mini S&P Future. Data is binned every 1 minute for the year 2021. Error
bars represent one standard deviation confidence interval.
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complex to calibrate, which would impede conducting this study at the same
scale across time and assets.
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Appendix D

Elastic string model

This section reproduces the appendices of Le Coz and Bouchaud (2024).

D.1 Solution to the discretized Master Equation when
ψ ≫ 1

We define the propagator Gθθ′(t, t′) as the solution to

∂G
∂t

+
1

τ
Ld[G] = δ(t− t′)δθθ′ . (D.1)

The linear operator in Eq. (D.1) is translation invariant as it has constant coeffi-
cients. It indicates that Gθθ′(t, t′) depends only on θ−θ′ and t− t′. The symmetry
of the functions θ 7→ Ld[G]θ(t) and θ 7→ δθθ′ further ensures that the dependence
of the propagator with respect to space depends only of the absolute value of
the differences |θ − θ′|. Let H denote the Heaviside function. Applying discrete
Fourier decomposition to the dimension θ − θ′ yields a particular solution:

F [G](ξ, t− t′) = H(t− t′)e−
Ld(ξ)(t−t′)

τ , (D.2)

where Ld(ξ) = 1 + 2 (1−cos ξ)
µ2

+ 4 (1−cos ξ)2

ν4
and F [G](ξ, t − t′) denote the spatial

Fourier transform of Ld[A]θ(t) and Gθθ′(t − t′) respectively. These functions are
continuous in ξ and t.

Seeking a solution on R × Z for the discretized Eq. (7.19) without boundary
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conditions, we extend the noise η so that ηθ(t) = 0 for θ ∈ Z∗
−. The solution is

Aθ(t) =
1

τ

∫

R
dt′

+∞∑

θ′=−∞
G|θ−θ′|(t− t′)ηθ′(t

′)

=
1

τ

∫ t

−∞
dt′

+∞∑

θ′=0

G|θ−θ′|(t− t′)ηθ′(t
′). (D.3)

Similarly, A−θ(t) solves the discretized Eq. (7.19) without boundary conditions
when substituting ηθ(t) with η−θ(t). Thus, a specific solution on R×N that satisfies
the Neumann boundary condition is

Aθ(t) := Aθ(t) + A−θ(t). (D.4)

The propagator Gθθ′(t− t′) associated with this solution is defined as

Gθθ′(t− t′) := G|θ−θ′|(t− t′) + Gθ+θ′(t− t′)

=
1

2π

∫ π

−π
dξ
(
eiξ(θ−θ

′) + eiξ(θ+θ
′)
)
F [G](ξ, t− t′). (D.5)

For consistency with the centered discretization scheme, the inverse Fourier trans-
form is centered on [−π,+π].

D.2 Noise correlators when ψ ≫ 1

D.2.1 Autocovariance of the correlated noise

For ψ ≫ 1, the autocovariance of A is defined by

E
[
Aθ(t)Aθ′(t

′)
]

:=
1

τ2

∫ t

−∞
du

∫ t′

−∞
dv

∑

(U,V )∈N2

GθU (t− u)Gθ′V (t′ − v)E [ηU (u)ηV (v)] . (D.6)

Recalling that
E [ηU (u)ηV (v)] = 2Dδ(u− v)δUV , (D.7)

we derive

E
[
Aθ(t)Aθ′(t

′)
]

=
2D

τ2

∫ t∧t′

−∞
du
∑

U∈N
GθU (t− u)Gθ′U (t′ − u). (D.8)
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Substituting the propagator G with its expression in Eq. (D.5) yields

E
[
Aθ(t)Aθ′(t

′)
]

=
2D

(2πτ)2

∫∫ π

−π
dξdξ′

∫ t∧t′

−∞
due−

1
τ (Ld(ξ)(t−u)+Lq′ (t

′−u))

∑

U∈N

(
eiξ(θ−U) + eiξ(θ+U)

)(
eiξ

′(θ′−U) + eiξ
′(θ′+U)

)

=
2D

(2πτ)2

∫∫ π

−π
dξdξ′

∫ t∧t′

−∞
due−

1
τ
(Ld(ξ)(t−u)+Ld(ξ

′)(t′−u))

ei(ξθ+ξ
′θ′)
∑

U∈Z

(
eiU(ξ+ξ′) + eiU(ξ−ξ′)

)

=
2D

2πτ2

∫ π

−π
dξ

∫ t∧t′

−∞
due−

Ld(ξ)

τ
(t+t′−2u)

(
eiξ(θ−θ

′) + eiξ(θ+θ
′)
)
,

having noted that Ld(−ξ) = Ld(ξ). The computation of the integral with respect
to time gives the expression of the autocovariance of A:

E
[
Aθ(t)Aθ′(t

′)
]

=
D

2πτ

∫ π

−π
dξ
eiξ(θ−θ

′) + eiξ(θ+θ
′)

Ld(ξ)
e−

Ld(ξ)

τ
|t−t′|. (D.9)

We now define the quantity D1(θ, θ
′) by

D1(θ, θ
′) =

1

2π

∫ π

−π
dξ
eiξ(θ−θ

′) + eiξ(θ+θ
′)

Ld(ξ)
. (D.10)

Ld(ξ) is symmetric, so one can reformulate the above quantity as

D1(θ, θ
′) =

1

π

∫ π

0
dξ

2 cos ξθ cos ξθ′

Ld(ξ)
. (D.11)

Therefore, for τ close to 0, the covariance of A simplifies to

E
[
Aθ(t)Aθ′(t

′)
]

=





0, if t ̸= t′,
D

τ
D1(θ, θ

′), if t = t′.
(D.12)

In our case, Ld(ξ) = 1+21−cos ξ
µ2

+4 (1−cos ξ)2

ν4
. Hence, one can show that, for ξ ≪

1 and τ ≪ 1, the autocovariance E [Aθ(t)Aθ′(t
′)] converges to the correlator δ(t−

t′)DBB(θ, θ′) introduced by Baaquie and Bouchaud (2004).
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D.2.2 Autocovariance of the cumulative correlated noise

We define the coarse-grained cumulative sum of Aθ over a time interval ∆t ≫ τ
by

∆Aθ =

∫ t+∆t/2

t−∆t/2
Aθ(u)du. (D.13)

We derive the autocovariance of ∆A when ψ ≫ 1,

E
[
∆Aθ(t)∆Aθ′(t

′)
]

=

∫ t+∆t/2

t−∆t/2
du

∫ t′+∆t/2

t′−∆t/2
dvE [Aθ(u)Aθ′(v)] ,

=
D

2πτ

∫ π

−π
dξ

∫ t

t−∆t
du

∫ t′

t′−∆t
dv
eiξ(θ−θ

′) + eiξ(θ+θ
′)

Ld(ξ)
e−

Ld(ξ)

τ
|u−v|. (D.14)

We now define the quantity D2(θ, θ
′) by

D2(θ, θ
′) =

1

2π

∫ π

−π
dξ
eiξ(θ−θ

′) + eiξ(θ+θ
′)

[Ld(ξ)]2
,

=
1

π

∫ π

0
dξ

2 cos ξθ cos ξθ′

[Ld(ξ)]2
. (D.15)

If t = t′, the expression of E [∆Aθ(t)∆Aθ′(t
′)] becomes

E [∆Aθ(t)∆Aθ′(t)] (D.16)

=
2D

2π

∫ π

−π
dξ
eiξ(θ−θ

′) + eiξ(θ+θ
′)

[Ld(ξ)]2

{
∆t+

τ

Ld(ξ)

(
e−

Ld(ξ)

τ
∆t − 1

)}
,

−−−→
τ 7→0

2D∆tD2(θ, θ
′).

Note that in the other limit τ ≫ 1, one finds that

E [∆Aθ(t)∆Aθ′(t)] ≈ D
∆t2

τ
D1(θ, θ

′) (D.17)

This encodes the Epps effect: correlations tend to zero at very small time resolu-
tions.

Otherwise, if |t− t′|> ∆t, we obtain

E
[
∆Aθ(t)∆Aθ′(t

′)
]

= −τD∆t

π

∫ π

−π
dξ
eiξ(θ−θ

′) + eiξ(θ+θ
′)

[Ld(ξ)]3

(
e−

Ld(ξ)

τ
(t−t′) + e−

Ld(ξ)

τ
(t−t′−∆t)

)

−−−→
τ 7→0

0 (D.18)

Hence, for τ close to 0, the covariance of ∆A can be written as

E
[
∆Aθ(t)∆Aθ′(t

′)
]

=

{
0, if |t− t′|> ∆t,

2D∆tD2(θ, θ
′), if t = t′.

(D.19)
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D.3 Closed formulas for the correlators when ψ ≫ 1

We perform a rotation of the tenors θ and θ′ in order to formulate our model
in relation to the diagonal and anti-diagonal elements of the variance-covariance
matrix. {

θ+ = θ + θ′,

θ− = θ − θ′,
(D.20)

For integer θ’s, a second change of variable z = eiξ allows us to write Dk as a
contour integral

Dk(θ+; θ−) =
ν4

2π

∫

γ(1)

z|θ−|+1 + zθ++1

P (z)k
, (D.21)

where P (z) = z2 − z
(
z−1
µ

)2
+
(
z−1
ν

)4
and γ(1) is the unit circle. The residue

theorem then yields

D1(θ, θ
′) = ν4

(β+−)|θ−|+1 + (β+−)θ++1

(β+− − β++)(β+− − β−+)(β+− − β−−)

+ν4
(β−−)|θ−|+1 + (β−−)θ++1

(β−− − β++)(β−− − β−+)(β−− − β+−)
, (D.22)

where,

β+± = 1 +
α+ ±

√
α+(α+ + 4)

2
,

β−± = 1 +
α− ±

√
α−(α− + 4)

2
,

α± =
ν4

2µ2

(
1 ±

√
1 − 4

(µ
ν

)4
)
. (D.23)

Similarly, one computes D2(θ, θ
′) thanks to the residue theorem:

D2(θ, θ
′) = Res(g, β+−) + Res(g, β−−), (D.24)

where g(z) = ν8 z
|θ−|+3+zθ++3

P (z)2
and the residuals Res(g, β+−) and Res(g, β−−) at the
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poles β+− and β−− are given by

Res(g, β+−) = ν8
(β+−)|θ−|+2 + (β+−)θ++2

(β+− − β++)2(β+− − β−+)2(β+− − β−−)2

+ ν8
(β+−)|θ−|+3 + (β+−)θ++3

(β+− − β++)3(β+− − β−+)3(β+− − β−−)3

×
(
(β+− − β−+)(β+− − β−−) + (β+− − β++)(β+− − β−−) + (β+− − β++)(β+− − β−+)

)
,

(D.25)

and by

Res(g, β−−) = ν8
(β−−)|θ−|+2 + (β−−)θ++2

(β−− − β++)2(β−− − β−+)2(β−− − β+−)2

+ ν8
(β−−)|θ−|+3 + (β−−)θ++3

(β−− − β++)3(β−− − β−+)3(β−− − β+−)3

×
(
(β−− − β−+)(β−− − β+−) + (β−− − β++)(β−− − β+−) + (β−− − β++)(β−− − β−+)

)
.

(D.26)

D.4 Solution to the discretized Master Equation when
ψ ≪ 1

To ensure the validity of the method of images we need A−θ to be a solution of the
unconstrained problem if Aθ is a solution. Therefore, we assume that ψ ≪ θ. As
shown below, in this case, the model can be written as a function of the products
µψ and νψ only. Hence, one can choose the parameter ψ to be arbitrarily small
to ensure that ψ ≪ 1 ≤ θ. In this limit, the matrix M in Eq. (7.16) becomes:

Mθθ′ := Iθθ′

+ θ

(
1

κ42
− 1

κ21

)(
1

2
I1 −

1

2
I−1

)

θθ′

+ θ2
(

7

κ42
− 1

κ21

)(
I1 − 2I + I−1

)
θθ′

+
6θ3

κ42

(
1

2
I2 − I1 + I−1 −

1

2
I−2

)

θθ′

+
θ4

κ42

(
I2 − 4I1 + 6I − 4I−1 + I−2

)
θθ′
. (D.27)

where we note κ1 and κ2 for µψ and νψ respectively, without loss of generality.
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For (θ, θ′) ∈ Z we define the propagator matrix Gθθ′(t, t′) as the solution to

∂G
∂t

(t− t′) +
1

τ
MG(t− t′) = δ(t− t′)I. (D.28)

The propagator reads

G(t− t′) = H(t− t′)e−
t−t′
τ

M. (D.29)

Let n be the number of available SOFR Futures. We assume that the matrix M
is of size 2N + 1 with N ≫ n. We define the indices of the lines and columns of
M in the range [−N,N ].

The matrix M is invariant by a central symmetry with respect to the center
of the matrix M00:

M = ĪMĪ , (D.30)

where Ī is a matrix with ones only on its largest anti-diagonal. Hence, Fθθ′(t −
t′) := G−θθ′(t− t′) is a solution for (θ, θ′) ∈ Z of the following equation:

∂F
∂t

(t− t′) +
1

τ
MF(t− t′) = δ(t− t′)Ī . (D.31)

It yields a solution for (θ, θ′) ∈ Z:

F(t− t′) = H(t− t′)e−
t−t′
τ

MĪ . (D.32)

By the method of images, the propagator G for (θ, θ′) ∈ Z2 associated to the
solution that satisfies the Neumann boundary condition, is given by:

G(t− t′) := H(t− t′)e−
t−t′
τ

M (
I + Ī

)
. (D.33)

As the bottom left (i.e. θ > 0 and θ′ < 0) and top right bloc matrices (i.e. θ < 0

and θ′ > 0) of M are nil, the restriction of the matrix e−
t−t′
τ

M(I + Ī) to positive

θ is equal to the product of the restricted matrices e−
t−t′
τ

M and I + Ī. We note
J the restriction to positive values of θ of the matrix I + Ī:

Jθθ′ =





2, if θ = θ′ = 0,

1, if θ = θ′ > 0,

0, if θ ̸= θ′.

(D.34)

Finally, for θ ∈ N, the solution A to Eq. (7.16) is given by

A(t) =
1

τ

∫ t

−∞
dt′G(t− t′)η(t′)

=
1

τ

∫ t

−∞
dt′e−

t−t′
τ

MJ η(t′) (D.35)
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D.5 Noise correlators when ψ ≪ 1

D.5.1 Autocovariance of the correlated noise for τ = 0

For τ → 0, e−
t−t′
τ

M → τM−1δ(t − t′). Hence we can derive a closed formula for
the noise A:

A(t) = M−1J η(t) (D.36)

Thus, the autocovariance of A is given by

E
[
A(t)A(t′)⊤

]
= 2Dδ(t− t′)M−1J 2(M−1)⊤. (D.37)

In this limit, the autocovariance of ∆A, the coarse-grain cumulative sum of A(t)
over the time interval ∆t≫ τ , is given by

E
[
∆A(t)∆A(t′)⊤

]
=

{
0, if |t− t′|> ∆t,

2D∆tM−1J 2(M−1)⊤, if t = t′.
(D.38)

Finally, the equal-time Pearson correlation coefficient among coarse-grained for-
ward rate variations ∆fθ is given by

ρθθ′ =

(
M−1J 2(M−1)⊤

)
θθ′√

(M−1J 2(M−1)⊤)θθ (M−1J 2(M−1)⊤)θ′θ′
. (D.39)

D.5.2 Autocovariance of the correlated noise for τ > 0

We assume M is diagonalizable. We define P as the transformation matrix of M,
i.e.

M := PΛP−1 :=
∑

k∈N
λkUkV

⊤
k (D.40)

where the Uk are the column vectors of the matrix P , V ⊤
k are line vectors of the

matrix P−1, and λk are the eigenvalues of M. The noise field A can be expressed
in this new basis as

A(t) =
1

τ

∑

k∈N

∫ t

−∞
dt′e−

t−t′
τ
λkη(t′)UkV

⊤
k J (D.41)
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The autocovariance of A reads

E
[
A(t)A(t′)⊤

]

=
2D

τ2

∑

(k,k′)∈N2

UkV
⊤
k J 2Vk′U

⊤
k′

∫ min(t,t′)

−∞
due−

t−u
τ
λk− t′−u

τ
λk′ ,

=
2D

τ

∑

(k,k′)∈N2

Kkk′

λk + λk′
e

1
τ
(−λkt−λk′ t′+(λk+λk′ )min (t,t′)), (D.42)

where the matrices Kkk′ are defined by Kkk′ := UkV
⊤
k J 2Vk′U

⊤
k′ . We now recall

the definition of the cumulative sum of A over an interval of lenght ∆t:

∆A(t) :=

∫ t

t−∆t
duA(u) (D.43)

Hence, the autocovariance of ∆A reads

E
[
∆A(t)∆A(t′)⊤

]

=

∫ t

t−∆t
du

∫ t′

t′−∆t
du′E

[
A(u)A(u′)⊤

]

=
2D

τ

∑

(k,k′)∈N2

Kkk′

λk + λk′

∫ t

t−∆t
du

∫ t′

t′−∆t
du′e

1
τ
(−λku−λk′u′+(λk+λk′ )min (u,u′))

(D.44)

For t = t′, we have,

E
[
∆A(t)∆A(t)⊤

]
= 2D

∑

(k,k′)∈N2

Kkk′

λk + λk′

{

∆t(
1

λk
+

1

λk′
) + τ

(
1

λ2k
(e−

∆t
τ
λk − 1) +

1

λ2k′
(e−

∆t
τ
λk′ − 1)

)}
. (D.45)

Notably, in the stationary limit, for τ close to zero,

E
[
∆A(t)∆A(t)⊤

]
= 2D

∑

(k,k′)∈N2

Kkk′

λkλk′
∆t (D.46)

In the other limit τ ≫ 1, one finds that

E [∆Aθ(t)∆Aθ′(t)] ≈ 2D
∑

(k,k′)∈N2

Kkk′

λk + λk′

∆t2

τ
(D.47)

This encodes the Epps effect: correlations tend to zero at very small time resolu-
tions.
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D.6 The Baaquie-Bouchaud Logarithm model

The stiff propagator BB04 model (Baaquie and Bouchaud, 2004) proposed the
change of variable z̄(θ) = θψ̄. As mentioned in section 7.3.2, this formulation
violates the constraint that for very small maturities psychological time and real
time should become equivalent. In addition, this change of variable is mis-specified
for ψ close to zero. Indeed, for fixed θ

z̄(θ) −−−→
ψ 7→0

1. (D.48)

Remediating these two limitations requires introducing two parameters, ψ and ζ,
in the definition of the psychological time:

z̄(θ) =
ψ

ζ

((
1 +

θ

ψ

)ζ
− 1

)
, (D.49)

where ψ has dimensions of time and ζ is a pure number ≤ 1. For this new change
of variable z̄(θ) is equivalent to θ for θ approaching 0, proportional to θζ for large
values of θ, and equal to θ for ζ = 1. Moreover, for ζ approaching 0,

z̄(θ) ≈ ψ log

(
1 +

θ

ψ

)
= z(θ) (D.50)

Actually, we found that the calibration of the BB04 with the change of variable
z̄ yields an optimal value for ζ very close to 0. Hence we define a regularized
version of the BB04 model by replacing z̄(θ) by z(θ). For such a specification, the
equal-time Pearson correlation is given by

ρ̃θθ′ =
DBB(z(θ), z(θ′))√

DBB(z(θ), z(θ))DBB(z(θ′), z(θ′))
, (D.51)

a result we will refer to as BBL3 model for Baaquie-Bouchaud, Logarithm,
three parameters.

D.7 Two-parameter versions

In this section, we compare the performances of the two-parameter variants of our
models by assigning to the stiffness parameter ν an infinite value. This adjust-
ment applies to: (i) the regularized version BBL3 of the continuous model from
Baaquie and Bouchaud, 2004, using Eq. (D.51); (ii) our micro-founded discrete
model BBD3, using Eq. (7.25). These models are denoted as BBL2 and BBD2
respectively.
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Model ψ∗ (months) µ∗

BBL2 1.27 × 10−5 5.21 × 104

BBD2 2.00 1.01

Table D.1: Optimal parameters obtained when fitting the tested models to empirical
Pearson correlations for the period 1994 − 2023. Two models are considered: (i) the
continuous regularized model BBL2 (Eq. (D.51) with ν = ∞) and our micro-founded
discrete model BBD2 (Eq. (7.25) with ν = ∞). While µ is dimensionless in the discrete
models, this parameter is in units of 3 months−1 in the case of the BBL2 model.

Optimal calibration parameters, obtained by fitting these models to empirical
Pearson correlations for the period 1994 − 2023, are displayed in table D.1. The
BBD2 model presents plausible values for the psychological time and line tension
parameters. In contrast, the BBL2 model results in improbable values for ψ and
µ. As previously mentioned, this is primarily because the correlation surface
develops a cusp around the diagonal θ = θ′, which was actually the very reason
why Baaquie and Bouchaud (2004) introduced the stiffness term ν.

Figure D.1 depicts the correlation coefficients along the most extended anti-
diagonal for the period 1994− 2023 as determined by the calibration of the BBL2
and BBD2. It also illustrates the typical error across the correlation surface,
underscoring the superior precision of the BBD2 model relative to the continuous
variant.

D.8 Epps effect when ψ ≫ 1

Each colored line in Fig. D.2 represents the correlation ρθθ′ across different time
scales ∆t among pairs of forward rate variations (∆fθ,∆fθ′), as given by our
model in the case ψ ≫ 1 (see Eq. (D.16)) calibrated on daily correlations (see
section 7.5.2) with the additional fitting parameter ε. For the pair 30-33 months,
we find ε ≈ 0.026 (C(θ, θ′) is in the range of 0.14 to 0.48 when ψ ≫ 1) and
τ ≈ 21 minutes. Fig. D.2 demonstrates that our model is able to reproduce the
whole dependence of the empirical correlations of pairs of SOFR Futures binned
at different time scales.

D.9 Curvature along the anti-diagonals

One of the most salient successes of the BB04 model is its ability, in line with
observations, to reproduce the power-law decay of the curvature of forward rate
correlations perpendicular to the diagonal. Fig. D.3 shows estimations of the
curvatures generated by the tested models and the ones empirically observed.
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Figure D.1: Dots represent the empirical correlation ρθθ′ along the longest stretch
perpendicular to the diagonal, i.e. θ′ = Θ − θ , where Θ is the maximum available
maturity. The plain lines are the best fit for: (i) the regularized version BBL2 of the
continuous model Baaquie and Bouchaud, 2004, using Eq. (D.51) with ν = ∞; our micro-
founded discrete model BBD2, using Eq. (7.25) with ν = ∞.
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Figure D.2: Plain lines: theoretical Pearson correlation coefficients among three pairs of
forward rate variations (∆fθ,∆fθ′) as a function of the time scale ∆t (see (D.16)). Using
the empirical correlations of the pair 30-33 months, the parameter ε of the idiosyncratic
white noise was calibrated to 0.026, and the characteristic time of the Epps effectτ to 21
minutes. This figure also shows the theoretical correlations yielded by this set of param-
eters for two other pairs (15-48 and 3-60 months). Dots: empirical Pearson correlation
coefficients for three pairs of SOFR Futures prices for the year 2021 at time scales ranging
from 4 seconds to one hour.
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Figure D.3: Curvature of the correlation surface along the stretches perpendicular to
the diagonal, i.e. θ′ = Θ − θ as a function of largest tenor Θ for the 1994 − 2023 period.
Here we compare the continuous regularized model BBL3 (Eq. (D.51)) with our three
micro-founded discrete models: BBD3 (Eq. (7.25)), BBD2 (Eq. (7.25) with ν → ∞), and
BBDL (Eq. (7.29)).

These estimations are produced through the fitting of parabolas using 20 points
around the center of each anti-diagonal of the correlation surface for the 1994 −
2023 period. Fig. D.3 reveals the adequacy of the continuous model BBL3, and the
discrete models, BBD3, BBD2, and BBDL, with the observed curvature. However,
one can notice a slight change of convexity in the curvature for BBD3 and BBD2:
this is probably due to the change of variable in z(θ) in Eq. 7.25.
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Appendix E

Cross-impact field theory

This section reproduces the appendices of Le Coz et al. (2024c).

E.1 Responses to the white noise for ψ ≫ 1

E.1.1 Covariance

We derive the covariance between ∆Aθ(t) and ∆ηθ′(t) in the limit ψ ≫ 1:

E [∆Aθ(t)∆ηθ′(t)]

=

∫ t

t−∆t
du

∫ t

t−∆t
dvE [Aθ(u)ηθ′(v)]

=
1

τ

∫ t

t−∆t
du

∫ u

t−∆t
dvGθ,θ′(u− v)

=
1

2πτ

∫ π

−π
dξ
(
eiξ(θ−θ

′) + eiξ(θ+θ
′)
)∫ t

t−∆t
du

∫ u

t′−∆t
dve−

Ld(ξ)

τ
(u−v)

=
1

2π

∫ π

−π
dξ
eiξ(θ−θ

′) + eiξ(θ+θ
′)

Ld(ξ)

∫ t

t−∆t
du
(

1 − e−
Ld(ξ)

τ
(u−t+∆t)

)

−−−→
τ 7→0

∆t(D1)θθ′ . (E.1)

E.1.2 Correlation

Using Eq. (E.1), we obtain the correlation between ∆Aθ(t) and ∆ηθ′(t):

E [∆Aθ(t)∆ηθ′(t)]√
E [∆Aθ(t)2]E [∆ηθ′(t)2]

=
(D1)θθ′√

(D2)θθ
. (E.2)
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We can show that Eq. (E.2) is well defined. For this purpose, we define the
usual inner product (f, g) between two integrable real-valued functions f and g
on [0, π] by:

(f, g) =
1

π

∫ π

0
dξf(ξ)g(ξ). (E.3)

For (θ, θ′) ∈ J1, nK2, having noted that 2
π

∫ π
0 dξ cos2 ξθ = 1, we have:

(D1)θθ′ =

(√
2 cos ξθ

Ld(ξ)
,
√

2 cos ξθ′
)
, (E.4)

(D2)θθ =

(√
2 cos ξθ

Ld(ξ)
,

√
2 cos ξθ

Ld(ξ)

)(
√

2 cos ξθ′,
√

2 cos ξθ′
)
. (E.5)

Thus, Cauchy-Schwarz’s inequality ensures that

−1 ≤ (D1)θθ′√
(D2)θθ

≤ 1. (E.6)

E.2 Responses to the white noise for ψ ≪ 1

E.2.1 Covariance

We derive the covariance between ∆Aθ(t) and ∆ηθ′(t) in the limit ψ ≪ 1:

E
[
∆A(t)∆η(t)⊤

]

=

∫ t

t−∆t
du

∫ t

t−∆t
dvE

[
A(u)η(v)⊤

]

=
1

τ

∫ t

t−∆t
du

∫ u

t−∆t
dve−

u−v
τ

MJ

=

∫ t

t−∆t
duM−1

(
1 − e−

u−t+∆t
τ

M
)
J

−−−→
τ 7→0

∆tM−1J. (E.7)

E.2.2 Correlation

Using Eq. (E.7), we obtain the correlation between ∆Aθ(t) and ∆ηθ′(t):

E [∆Aθ(t)∆ηθ′(t)]√
E [∆Aθ(t)2]E [∆ηθ′(t)2]

=

(
M−1J

)
θθ′√

(M−1J 2(M−1)⊤)θθ
, (E.8)

which is clearly well defined.
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E.3 Order flow decomposition

Let ηq be a white noise vector such that E
[
ηqθ(t)η

q
θ′(t

′)
]

= δθθ′δ(t − t′). We
decompose the trading flow across time and space into the cumulative sum of ηq

and a kernel K:

dq

dt
(t) =

∫ t

−∞
dt′K(t, t′)O⊤ηq(t′), (E.9)

where O is an orthogonal matrix and the kernel K(u, u′) ∈ Mn(R) is such that the
lagged variance-covariance matrix Ω(t, t′) of the infinitesimal order flow imbalance
reads

Ω(t, t′) :=E

[
dq

dt
(t)

dq

dt

⊤
(t′)

]

=

∫ t

−∞
du

∫ t′

−∞
dvK(t, u)O⊤E

[
ηq(u)ηq(v)⊤

]
OK⊤(t′, v)

=

∫ min(t,t′)

−∞
duK(t, u)K⊤(t′, u). (E.10)

We assume that the series of matrices (K(t, t′))t≥0,t′≥0 can be written K(t −
t′)t−t′≥0. Under this assumption, the lagged variance-covariance matrix Ω(t, t′) is
stationary and can be written as a function of the lag ℓ = t− t′:

Ω(t, t− l) =

∫

R
duK(t− u)K⊤(t− ℓ− u)

=

∫

R
du′K(u′)K⊤(u′ − ℓ). (E.11)

The Fourier transform over the lag ℓ of Eq. (E.11) reads

F [Ω](m) = F [K](m){F [K](m)}⊤, (E.12)

where F [K] and F [Ω] are the Fourier transform of ℓ→ K(ℓ) and ℓ→ Ω(ℓ). Thus,
Eq. (E.9) is verified if and only if, each matrix F [K](m) is a decomposition of
F [Ω](m):

F [K](m) = {F [Ω](m)}1/2. (E.13)

For example, we can build numerically each F [K](m) as the Cholesky decompo-
sition of F [Ω](m).
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Still assuming stationarity, the definition of q(t) in Eq. (E.9) reads as the
convolution product of K and η. The Fourier transform over time of Eq. (E.9)
reads in matrix notations

F
[

dq

dt

]
(m) = F [K](m)O⊤F [ηq](m). (E.14)

Assuming the matrix K̂(m) is invertible one can write Eq. (E.14) as

F [ηq](m) = O{F [K](m)}−1F
[

dq

dt

]
(m). (E.15)

Hence, one can also write the white noise ηq as the convolution product:

ηq(t) = O

∫ t

−∞
dt′J(t− t′)

dq

dt
(t′),

(E.16)

where the function u 7→ J(u), valued in Mn(R), is the inverse Fourier transform
of m 7→ {F [K](m)}−1.

E.4 Large-bin approximation

In this section, we denote by x̄∆t the observed empirical average over the time
interval [t− ∆t, t] of the random process x(t) (i.e., its moving average):

x̄∆t(t) :=
1

∆t

∫ t

t−∆t
dt′x(t′). (E.17)

We aim to approximate ∆Aθ(t) as a function of coarse-grained variables ∆η de-
fined over intervals of finite width ∆t. For this purpose, we decompose the white
noise η(t′) as the sum of its moving average and its fluctuations around this mean.
Formally, we write

η(t′) = η̄∆t(t) + η(t′) − η̄∆t(t). (E.18)

The independence and stationarity of η across time ensures that η̄∆t(t) is uncor-
related with η(t′) − η̄∆t(t):

E
[
η̄∆t(t)

(
η(t′) − η̄∆t(t)

)]

=
1

∆t

∫ t

t−∆t
dt′′E

[
η(t′)η(t′′)

]
− 1

(∆t)2

∫∫ t

t−∆t
dt′′dt′′′E

[
η(t′′)η(t′′′)

]

=
1

∆t
− 1

∆t
= 0. (E.19)
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In fact, the continuous-time hypothesis, which is related to the Gaussianity of
the Langevin noise η, ensures the independence between η̄∆t(t) and η(t′)− η̄∆t(t)
(although only an absence of correlation is needed here). It is worth mentioning
that this result can also be derive by observing that the process

∫ t
0 dt′η(t′) −∫ t

0 dt′η̄∆t(t′) is a Brownian bridge.
We now define the matrix Rτ (t) by

Rτ (t) =
1

τ

∫ t

−∞
dt′G(t− t′). (E.20)

Correlations among assets appear at a time scale τ ≪ ∆t (see Epps (1979) and
chapter 5) and the time decay of G is very strong : Gθθ′(5τ)/Gθθ′(0) ≈ 10−3 for
typical values of κ ≈ 1. Hence, we can approximate Rτ (t) by

Rτ (t) ≈ 1

τ

∫ t

t−∆t
dt′G(t− t′). (E.21)

Substituting η by Eq. (E.18) in the definition (8.4) of the noise field A(t) yields

A(t) = Rτ (t) η̄∆t(t) + ϵτ (t), (E.22)

where ϵτ (t) = 1
τ

∫ t
t−∆t dt′G(t − t′) (η(t′) − η̄∆t(t)) is a noise independent from

η̄∆t(t). Importantly, ϵτ has no temporal correlation but has a spatial structure
allowing to retrieve the spatial correlations of A(t). The integration of Eq. (E.22)
over the interval [t−∆t, t] yields an affine relationship between ∆A the sum of A
over one day, and the empirical daily means η̄∆t(t):

∆A(t) =

(∫ t

t−∆t
dt′Rτ (t′)

)
η̄∆t(t) +

∫ t

t−∆t
dt′ϵτ (t′). (E.23)

One can substitute η with ηq or η⊤ and A with Aq or A⊤ respectively in Eq. (E.23).
Thus, having noted that ⟨∆A⊥(t)∆ηq(t)⟩ = 0, one can relate forward rate daily
increments to the empirical daily means of the martingale component of the order
flow:

∆f(t) = diag(σ) diag(σA)−1

(∫ t

t−∆t
dt′Rτ (t′)

)
diag(Y )OΩ−1/2dq̃

dt∆t
(t) + Eτ (t),

(E.24)

where the residual noise Eτ (t) is independent from dq̃
dt∆t

(t). Indeed, Eτ (t) reads

Eτ (t) = diag(σ) diag(σA)−1

(∫ t

t−∆t
dt′Rτ (t′)

)
diag(Y ⊥)η⊥∆t(t)

+ diag(σA)−1

∫ t

t−∆t
dt′ϵτ (t′). (E.25)
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Moreover, by definition of the empirical mean, we have

dq̃

dt∆t
(t) =

1

∆t

∫ t

t−∆t
dt′

dq̃

dt′
(t′) =

∆q̃(t)

∆t
. (E.26)

We denote ∆̂f the conditional expectancy of the forward rates increments ∆f
with respect to the martingale component of the order flows ∆q̃(t):

∆̂f(t) := E [∆f(t)| ∆q̃(t)] (E.27)

Taking the conditional expectancy of Eq. (E.24) yields

∆̂f(t) = diag(σ) diag(σA)−1

(∫ t

t−∆t
dt′Rτ (t′)

)
diag(Y )OΩ−1/2∆q̃(t)

∆t
. (E.28)

One can choose τ arbitrarily small in the expression of Rτ (t). In the limit τ ≪ 1
we have

Rτ (t) −−−→
τ→0

R. (E.29)

Thus, in this limit, Eq. (E.28) reads

∆̂f(t) = diag(σ) diag(σA)−1R diag(Y )OΩ−1/2∆q̃(t). (E.30)

In this model, the residual noise E in Eq. (8.31) can be seen as the limit for small
τ of Eτ (t).

E.5 Response to order flows

In this appendix we show that

E
[
∆f(t)∆q⊤(t)

]
E
[
∆q(t)∆q⊤(t)

]−1
= diag(σ) diag(σA)−1R diag(Y )OΩ−1/2.

(E.31)

For this purpose we first derive the expression of the covariance E
[
∆f(t)∆q(t)⊤

]
.

We also show that the correlation between the forward rates and the order flows
is well defined.

E.5.1 Computation of the covariance matrix

In this section we derive the expression of the covariance between forward rates
and order flows.
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We define the accumulated trading flows over the period [t, t+∆t], representing
a trading day, as

∆q(t) =

∫ t

t−∆t
dt′

dq

dt
(t′). (E.32)

The equal-time covariance between ∆Aq(t) and ∆q(t) is

E
[
∆Aq(t)∆q⊤(t)

]
=

∫∫ t

t−∆t
dudv

∫ v

−∞
dv′E

[
Aq(u)ηq(v′)⊤

]
OK⊤(v − v′).

(E.33)

Eq. (8.24) and (8.4) imply that E
[
Aq(u)ηq(v′)⊤

]
= 1

τG(u − v′) diag (Y ), so the
previous expression becomes

E
[
∆Aq(t)∆q⊤(t)

]
=

1

τ

∫∫ t

t−∆t
dudv

∫ v

−∞
dv′G(u− v′) diag (Y )OK⊤(v − v′).

(E.34)

For τ ≪ 1, we have 1
τG(t− t′) −→ Rδ(t− t′). It yields

E [∆Aq(t)∆q(t)] = R diag (Y )O

∫∫ t

t−∆t
dudvK⊤(v − u)

= ∆tR diag(Y )O

∫ ∆t

0
dℓK⊤(ℓ). (E.35)

Thus, the covariance between the forward rates and the order flows reads

E
[
∆f(t)∆q⊤(t)

]
= ∆t diag σ diag(σA)−1R diag(Y )O

∫ ∆t

0
dℓK⊤(ℓ), (E.36)

having noted that E
[
∆A⊥(t)∆q⊤(t)

]
= 0.

E.5.2 Computation of the response matrix

We define the cross-impact matrix Λ ∈ Mn(R) as the matrix ensuring a linear
relationship between forward rates increments and order flows, i.e.,

∆f(t) = Λ∆q(t) + E(t), (E.37)

where E is a temporally uncorrelated noise independent from ∆q. One can refor-
mulate (E.37) as

E
[
∆f(t)∆q(t)⊤

]
= ΛE

[
∆q(t)∆q(t)⊤

]
. (E.38)
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Yet, the variance covariance matrix of the daily trading flow imbalance reads

E
[
∆q(t)∆q⊤(t)

]
=

∫∫ t

t−∆t
dsds′E

[
dq

dt
(s)

dq

dt

⊤
(s′)

]

=

∫∫ t

t−∆t
dsds′

∫ min(s,s′)

−∞
duK(s− u)K⊤(s′ − u)

=∆t

∫ ∆t

0
dl

∫

R
duK(u)K⊤(u− l). (E.39)

Hence, replacing the left-hand side in (E.38) by its expression in (E.36), we have

diag σ diag(σA)−1R diag(Y )O

∫ ∆t

0
dlK⊤(l) = Λ

∫ ∆t

0
dlK ∗K⊤(l). (E.40)

In the most general case, Eq. (E.40) requires Λ to be time-dependent. Yet, as-
suming dq has no temporal correlation i.e., K(u) = δ(u)Ω1/2, Eq. (E.40) reads

Λ = diag σ diag(σA)−1R diag(Y )OΩ−1/2, (E.41)

where the equal-time variance-covariance matrix Ω is defined by Ω :=
E[∆q(t)∆q⊤(t)]

∆t .

E.6 Correlation between forward rates and flows

In this section, we demonstrate that the correlation between the forward rate of
tenor θ and the martingale component of the order flow of tenor θ′, given by,

ρ(∆fθ(t),∆q̃θ′(t)) =

n∑

θ′′=1

Rθθ′′

(σA)θ
Yθ′′

(
Ω1/2O⊤)

θ′θ′′√
Ωθ′θ′

, (E.42)

is well-defined. We assume Y = 1, the unit vector. In the case ψ ≪ 1, (σA)θ =√
(M−1J 2(M−1)⊤)θθ and Rθθ′ =

(
M−1J

)
θθ′ . Equation (E.42) is then the

canonical inner product of two normalized vectors of Rn. Thus, the correlation
ρ(∆fθ(t),∆q̃θ′(t)) is well defined.

In the case ψ ≫ 1, one can express the numerator and the denominator in
Eq. (E.42) using the inner product (E.3) on the space of integrable real-valued
functions on [0, π]. For (θ, θ′) ∈ J1, nK2, having noted that (

√
2 cos ξθ,

√
2 cos ξθ′) =

δθθ′ , we have

n∑

θ′′=1

(R)θθ′′
(

Ω1/2O
)
θ′θ′′

=
n∑

θ′′=1

(D1)θθ′′
(

Ω1/2O
)
θ′θ′′

=

(√
2 cos ξθ

Ld(ξ)
,
√

2

n∑

θ′′=1

cos ξθ′′
(

Ω1/2O
)
θ′θ′′

)
, (E.43)
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and,

(σA)θΩθ′θ′ = (D2)θθΩθ′θ′

=

(√
2 cos ξθ

Ld(ξ)
,

√
2 cos ξθ

Ld(ξ)

)

×
(
√

2

n∑

θ′′=1

cos ξθ′′
(

Ω1/2O
)
θ′θ′′

,
√

2

n∑

θ′′=1

cos ξθ′′
(

Ω1/2O
)
θ′θ′′

)
. (E.44)

Thus, Cauchy-Schwarz’s inequality ensures

−1 ≤
∑n

θ′′=1(D1)θθ′′
(
Ω1/2O

)
θ′θ′′√

(D2)θθΩθ′θ′
≤ 1. (E.45)
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d’agents, Science des réseaux

Résumé : La théorie macroéconomique relie la crois-
sance de la production aux anticipations sur les
taux à court terme. Ainsi, les premiers modèles de
taux définissent le taux à long terme comme la
moyenne des taux courts, mais les preuves empi-
riques montrent qu’ils sont généralement plus élevés
et nécessitent l’introduction de mesures de probabilité
complexes. Cette thèse utilise des modèles d’agent et
de physique statistique pour développer une théorie
des taux d’intérêt, se focalisant sur la fixation des prix
par les banques en fonction de leurs instruments de
couvertures des taux à long terme et de leurs coûts
de financement à court terme sur le marché des re-
pos.
Depuis la crise de 2008, les marchés monétaires ont
subi des changements réglementaires majeurs, en-

traı̂nant des excédents de réserves et un recours ac-
cru aux repos. Nous proposons un modèle minimal du
réseau interbancaire des repos, montrant que l’excès
de liquidité et la réutilisation des collatéraux sont des
réponses aux contraintes réglementaires et aux chocs
de paiement. Ce modèle apparaı̂t comme un outil utile
de stress test et de politique monétaire.
Nous explorons aussi la courbe des taux d’intérêt
à terme (FRC), montrant comment la pression sur
un actif affecte les prix des autres. Nous revisi-
tons un modèle décrivant la FRC comme une corde
élastique où les chocs se propagent, reproduisant
avec précision sa structure de corrélation et la per-
ception du temps sur les marchés. Le modèle permet
aussi de reproduire l’impact des volumes échangés
sur les prix d’autres actifs.

Title : Microscopic modeling of the yield curve
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Abstract : Macroeconomic theory links output growth
to expectations about short-term interest rates. Thus,
the early interest rate models define the long-term
rate as the average of short-term rates, but empiri-
cal evidence shows that they are generally higher and
require the introduction of complex probability mea-
sures. This thesis uses agent-based modeling to de-
velop a theory of interest rates, focusing on how banks
set prices, considering their hedging via forward rate
contracts, and their liquidity costs in the repo market.
Following the 2008 financial crisis, money markets
saw significant regulatory changes, leading to ex-
cess reserves and increased reliance on repos. We
propose a minimal model of the repo interbank net-

work, finding that excess liquidity and collateral re-use
emerge as responses to regulatory constraints and
payment shocks. The model appears to be a useful
tool for stress testing and monetary policy design.
To model the forward interest rate curve (FRC), we
explore how trading pressure on one asset affects
another, showing endogenous price formation within
liquid assets influencing less liquid ones. We then re-
vise a model depicting the FRC as an elastic string
where shocks propagate, accurately portraying its
correlation structure and time perception in markets.
The model also handles price and cross-impact, fitting
prices to order flows with high accuracy.
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