
HAL Id: tel-04952456
https://theses.hal.science/tel-04952456v1

Submitted on 17 Feb 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Measurement and neural network-assisted control of
quantum microwave modes with superconducting

circuits
Hector Hutin

To cite this version:
Hector Hutin. Measurement and neural network-assisted control of quantum microwave modes with
superconducting circuits. Quantum Physics [quant-ph]. Ecole normale supérieure de lyon - ENS
LYON, 2024. English. �NNT : 2024ENSL0092�. �tel-04952456�

https://theses.hal.science/tel-04952456v1
https://hal.archives-ouvertes.fr


THESE 

pour l'obtention du grade de Docteur, délivré par 

l’ECOLE NORMALE SUPERIEURE DE LYON

Ecole Doctorale N°52
PHAST - Physique et Astrophysique

Discipline : PHYSIQUE (Physique)

Soutenue publiquement le 29 novembre 2024, par :

Hector HUTIN

Mesure et contrôle assisté par réseau de neurones de modes micro-ondes

quantiques avec des circuits supraconducteurs

Measurement and neural network-assisted control of quantum microwave

modes with superconducting circuits

Devant le jury composé de :

Pascal DEGIOVANNI, Directeur de recherche en EPST, ENS de Lyon Président

Denis VION, Personnalité scientifique HDR, Commisariat à l'Energie Atomique (CEA), Saclay Rapporteur

Valentina PARIGI, Professeure des universités, Sorbonne Université Rapporteure

Mazyar MIRRAHIMI, Directeur de recherche en EPST, INRIA Paris Examinateur

Audrey BIENFAIT, Chargée de recherche en EPST - HDR, ENS de Lyon Examinatrice

Irfan SIDDIQI, Professeur, University of California, Berkeley Examinateur

Uri VOOL, Chercheur, Max Planck Institute for Chemical Physics of Solids Examinateur

Benjamin HUARD, Professeur des universités, ENS de Lyon Directeur de thèse



Hector Hutin 
Quantum Circuit group - ENS de Lyon

The association of a quantum bit and a harmonic mode dispersively coupled is one The association of a quantum bit and a harmonic mode dispersively coupled is one 
of the most studied systems in the field of quantum electrodynamics of supercon-
ducting circuits. It offers one of the most reliable current methods for measuring the 
state of a quantum bit in a non-destructive manner and has enabled numerous 
quantum information experiments, studying the information obtained through this 
measurement and the dynamics of the qubit when subjected to it. It also provides 
the ability to prepare and manipulate the quantum state of the harmonic mode via 
the qubit, allowing information to be stored and processed in this mode, which is 
fundamental to building a quantum processor. This thesis presents two experi-
ments based on this architecture.

The first demonstrates how to use qubit fluorescence to non-destructively read the The first demonstrates how to use qubit fluorescence to non-destructively read the 
number of photons contained in a microwave cavity in a single shot, that is, before 
the cavity has relaxed. This makes it possible to measure photon number trajecto-
ries and observe them leave the cavity one by one. The analysis of this experiment 
relies on a fluorescence analysis in terms of propagating modes and addresses a 
number of questions about the information that these modes may contain.

The second is a demonstration of the use of a neural network for quantum state pre-
paration in the cavity. Here, the goal is to accelerate the optimization of control elec-
tromagnetic pulses at the frequencies of the cavity and qubit to create a quantum 
state in the cavity with high fidelity, and this for a broad class of states. To evaluate 
the efficiency of this new optimization protocol over this class of states, an optimal 
method to assess the fidelity of the prepared states using a Wigner function mea-
surement protocol was experimentally implemented for the first time.
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ABSTRACT

The association of a quantum bit and a harmonic mode dispersively
coupled is one of the most studied systems in the field of quantum
electrodynamics of superconducting circuits. It offers one of the most
reliable current methods for measuring the state of a quantum bit
in a non-destructive manner and has enabled numerous quantum
information experiments, studying the information obtained through
this measurement and the dynamics of the qubit when subjected to it.
It also provides the ability to prepare and manipulate the quantum
state of the harmonic mode via the qubit, allowing information to be
stored and processed in this mode, which is fundamental to building
a quantum processor. This thesis presents two experiments based on
this architecture.

The first demonstrates how to use qubit fluorescence to non-
destructively read the number of photons contained in a microwave
cavity in a single shot, that is, before the cavity has relaxed. This
makes it possible to measure photon number trajectories and observe
them leave the cavity one by one. The analysis of this experiment
relies on a fluorescence analysis in terms of propagating modes and
addresses a number of questions about the information that these
modes may contain.

The second is a demonstration of the use of a neural network for
quantum state preparation in the cavity. Here, the goal is to accelerate
the optimization of control electromagnetic pulses at the frequencies of
the cavity and qubit to create a quantum state in the cavity with high
fidelity, and this for a broad class of states. To evaluate the efficiency
of this new optimization protocol over this class of states, an optimal
method to assess the fidelity of the prepared states using a Wigner
function measurement protocol was experimentally implemented for
the first time.
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RÉSUMÉ

L’association d’un bit quantique et d’un mode harmonique couplé
dispersivement est l’un des systèmes les plus étudiés dans le do-
maine de l’électrodynamique quantique de circuits supraconducteurs.
Il offre un des moyens actuels les plus fiables pour mesurer l’état
d’un bit quantique de manière non-destructive, et a permis nombre
d’expériences d’information quantique étudiant l’information obtenue
via cette mesure et la dynamique du qubit lorsqu’il y est soumis. Il
offre également la possibilité de préparer et de manipuler l’état quan-
tique du mode harmonique grâce au qubit, ce qui permet de stocker
et de manipuler de l’information dans ce mode. C’est notamment
crucial pour des applications telles que la construction d’un ordinateur
quantique. Dans cette thèse sont présentées deux expériences reposant
sur cette architecture.

La première démontre comment utiliser la fluorescence du qubit
pour lire le nombre de de photons contenus dans le mode de manière
non-destructive et en un seul coup, c’est-à-dire avant que les photons
soient dissipés. Cela permet de mesurer des trajectoires du nombre
de photons, et de les voir quitter la cavité un par un. L’analyse de
cette expérience repose sur une analyse de la fluorescense en termes
de modes propageants, et permet d’aborder un certain nombre de
questionnements sur l’information que peuvent contenir ces modes.

La seconde constitue une démonstration de l’utilisation d’un réseau
de neurones dans le cadre de la préparation d’états quantiques dans le
mode. Il s’agit ici d’accélérer l’optimisation des impulsions électromag-
nétiques de contrôle du mode et du qubit pour créer un état quantique
dans le mode avec une grande fidélité, et ce pour une grande classe
d’états. Pour évaluer l’efficacité de ce nouveau protocole d’optimisation
sur l’ensemble de cette classe, une manière optimale d’évaluer la fidélité
des états préparés à partir d’un protocole de mesure de la function de
Wigner du mode a été pour la première fois implémentée expérimen-
talement.
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Generalized Husimi Q function, param-
eterized by the density matrix �̂ =
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tion operator Â in the state ⇢̂, defined in
Sec. 2.2.2.4. Appears simplified as Q⇣

⇢̂
ot

Q⇣

f
if understable in the context. Appears

on pages 40–42, 83.
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1
INTRODUCTION

With the formulation of Heisenberg’s uncertainty relations in 1927
[1] came the revolutionary idea of a fundamental (quantum) limit
on the information an observer could obtain from a measurement.
It was first formulated as a limit in the resolution of the position
and the momentum of a particle, and generalized to every pair of
observables that do not commute. Since then, quantum limits have
been formulated in many different contexts. In this thesis, we will use
tools developed in the context of quantum measurements, quantum
communication, and quantum metrology to answer questions naturally
raised when implementing a measurement: what information do we
retrieve? How much is it possible to obtain? How could we get more?

We can give a more concrete idea of how such questions arise with
an example. Suppose that we have a basket of apples and that we want
to count them. Let us consider special apples that cannot be simply
looked at. Instead, we can weigh them. A solution consists in hanging
the basket to a string, which is going to resonate at a frequency that
depends on the number of apples. To count them, we hit the string
with a hammer and listen to the sound it makes. Depending on the
listeners’ familiarity with music and the weight of the apples, one hit
might be enough to determine this number. Formally, we encoded the
information of apples into the frequency of the sound emitted by the
string. This solution is not as simple as putting the basket on a scale
but has the merit of making explicit the weighing process, which is
necessary to fully model a measurement in quantum physics.

We can now think about what would happen if we hit the string
less and less strongly or if we keep lowering the weight of the apples.
The listener will have more and more trouble identifying the frequency
with enough precision. We can switch to more efficient measurement
tools, gather more signal by guiding the sound waves, cool down the
signal to mitigate the noise... However, at some point, if we hit it
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introduction

Figure 1.1: Scheme of a mechanical analogy of the photon counting experi-
ment. The frequency of the sound emitted by a string hit with
a hammer allows us to count the number of apples in a basket
hanged to it. This analogy illustrates the experiment of Chap. 4.

weakly enough, the information carried by the sound should simply
not be enough to know the number of apples in one go.

However, classical physics gives no fundamental bound to the amount
of noise added when performing a measurement. It would thus be
possible to have none, which poses a fundamental issue: at zero tem-
perature, without any noise in the measurement, we could perfectly
know the number of apples, whatever the strength of the kicks. The
information content of the pulse would then go from zero, if there is
no kick, to 100 % of the wanted information for any kick strength.
As a consequence, the concept of the intrinsic information content of
the emitted sound has no meaning in a classical theory without noise.
This hiatus is filled by a quantum description of the experiment. When
implementing an experimental measurement apparatus, the following
questions arise naturally:

1. What information do we get from the measurement (the mutual
information between the number of apples and the measurement
record)?

2. What information is available in the sound (the intrinsic acces-
sible information of emitted sound)?

3. Would we recover all the information if the measurement could
fully exploit all the emitted signals?

4



1.1 monitoring the number of photons in a cavity

4. How would other measurement apparatuses compare?

1.1 monitoring the number of photons in a cavity

This analogy describes well the experiment conducted in Chap. 4.
Instead of apples, we count photons in a superconducting resonator.
The string is replaced by a dispersively coupled qubit and emits an
electromagnetic wave into a waveguide instead of sound after each
kick in the form of a sharp electromagnetic pulse. This experiment is
conducted in a dilution refrigerator, which sets the thermal noise on the
signals to approximately zero. Furthermore, since this wave is emitted
by the relaxation of a qubit, it contains at most one photon, enabling
us to fully explore the limit of weak hammer hits and providing
non-classical subtleties in the measured signal. The measurement
performed on this wave is a well-known heterodyne detection. A series
of 12 measured trajectories of photon number is shown in Fig. 1.2.
After populating the cavity with a short coherent pulse, the qubit is
kicked every 95 ns for 1 ms. The estimation of the photon number takes
the form of a probability distribution Pt(n) for each number of photons
n between 0 and 9. This distribution is initialized to P0(n) = 1/10 at
t = 0 and updated using the Bayes rule every 2 µs, which corresponds
to 21 hammer kicks. For most of these trajectories, after each photon
loss, we see that the estimation manages to converge again to the
number of photons immediately below, showing successful monitoring
of the number of apples-photons.

Using standard information theory tools, we extract the measure-
ment rate, characterizing the speed at which the information about
the number of photons is obtained. Doing this for each kick amplitude,
which is expressed as the angle ✓ traveled by the qubit on the Bloch
sphere at each kick, we plot the measurement rate obtained with our
experimental technique (red error bars in Fig. 1.3a) as a function of
✓. The Fig. 1.2 was obtained for ✓ = ⇡/2. We compare it to a theo-
retical model (blue) and a simulation (orange) for a similar quantum
efficiency, which characterizes the portion of the emitted signal that is
exploited by the measurement. We obtain a good agreement, at least
for low kick amplitude. This provides the answer to the first question.
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Figure 1.2: Twelve photons number trajectories taken with the same initial
conditions using the fluorescence of a dispersively coupled qubit
(see Chap. 4).

The answer to the second question exploits one of the key features
of quantum mechanics. The information about the system that leaked
in the environment is directly observable in the system itself: the
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1.1 monitoring the number of photons in a cavity

Figure 1.3: Experimental and theoretical measurement and dephasing rates
for different detectors monitoring the fluorescence of the qubit.
(a) Red dots: observed average measurement rate �m as a func-
tion of drive amplitude, expressed as the qubit expected rotation
angle ✓ per kick. Orange shadow: measurement rate obtained
using a stochastic master equation with detection efficiency ⌘
spanning the range [0.17, 0.20]. Blue shadow: theoretical bound
for instantaneous kicks and heterodyne measurement with effi-
ciencies ⌘ 2 [0.17, 0.20]. Gray shadow: theoretical measurement
rate for instantaneous kicks obtained with a Frequency-Resolved
Photon Detector (FRPD) with efficiencies ⌘ 2 [0.17, 0.20]. (b)
Red dots: observed cavity dephasing rate �d as a function of ✓.
Orange: simulated measurement induced dephasing rate. Black:
theoretical accessible information rate with instantaneous kicks.
Blue: theoretical maximal (⌘ = 1) measurement rate obtained by
heterodyne detection and instantaneous kicks. Grey: theoretical
maximal (⌘ = 1) measurement rate obtained using an FRPD
and instantaneous kicks. These results are presented in Secs. 4.1
and 5.2.2.

dephasing induced by the entanglement of this system with its envi-
ronment. When interested in peculiar information, such as the number
of photons, we can perform a measurement on the environment. In the
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case where there are two possible photon numbers, the measurement
rate, defined as the speed at which information is gathered, is bounded
by the dephasing rate, defined as the rate at which the off-diagonal
components of the density matrix converge to zero due to its continu-
ous entanglement with the environment. The dephasing rate of the
cavity as a function of ✓ is shown in Fig. 1.3b, both experimentally
(red error bars) and theoretically (black for a theoretical model, orange
for the simulation). The curve in blue shows the answer to the third
question: if our measurement could fully exploit the totality of the
emission of the qubit (which means unit quantum efficiency), it would
still not reach the maximal measurement rate (the dephasing rate).
For ✓ = ⇡, it only extracts around a third of the available information
in the qubit emission. This is analogous to a standard dispersive qubit
readout performed with a homodyne detection with unit quantum effi-
ciency, but whose phase is non-optimal, which is the case discussed in
Sec. 3.3.6. This answers our third question. Finally, we (theoretically)
considered the most direct type of frequency measurement we could
imagine, using a frequency-resolved photon detector (FRPD), whose
principle is quite simple: perform a direct frequency measurement
on every detected photon in the qubit emission. The performance of
such a detector is shown in grey in Fig. 1.3a for the same quantum
efficiency as the experiment, and in grey in Fig. 1.3b for unit quantum
efficiency. We see that it can outperform the heterodyne detection
with the experiment settings, but that it does not reach the maximum
measurement rate either. That is part of the answer to the fourth
question.

Once these questions are answered for the experiment, another one
naturally comes: How do these rates depend on the experimental
parameters? The Chap. 5 deals with the number-resolved regime as
well as the opposite regime, where the qubit linewidths for each photon
number have an overlap close to unity.

Interestingly, the latter regime can be tackled by shifting from a
quantum communication point of view (how many bits of information
about the photon number are sent by the qubit, how many bits are
received by the experimentalist?) to a quantum parameter estima-
tion problem (how precise can we be in the estimation of the photon
number?), by considering the number of photons in the cavity (and
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so, the frequency of the qubit) as a continuous parameter. The quan-
tity of interest becomes the Fisher information [2]. The main result
(Fig. 1.4) is the theoretical comparison of four different measurement
schemes as a function of the excitation probability of the qubit p(1):
optimal homodyne detection, heterodyne detection, FRPD, and the
optimal measurement reaching the quantum Fisher Information (QFI).
Crucially, optimal homodyne detection works as well as the quantum
bound when the emitted qubit state can be assimilated to a coherent
state (p(1) ⌧ 1), as it is the case for a dispersive qubit readout, but
gets less and less optimal until it collapses to 0 when a Fock state
|1i (p(1) = 1) is emitted. However, it is still more efficient than the
two other schemes up to p(1) ' 0.8. Interestingly, in this regime, the
heterodyne detection always performs better than the FRPD, thanks
to its ability to exploit the state coherence.

Figure 1.4: Fisher information F for the homodyne and heterodyne detec-
tion, for a Frequency-Resolved Photon detector (FRPD) and the
Quantum Fisher Information (QFI) as a function of p(1) the
excitation probability of the qubit after each kick (see Sec. 5.4.5).

This experiment can then be viewed in this thesis as a means to
explore various aspects of the field of quantum information, and it sets
an interesting starting point to explore the links between quantum
measurements, quantum communication and quantum metrology.
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1.2 neural network-assisted state preparation

The second experiment presented here is a demonstration of neu-
ral network-assisted preparation of a family of states, called the
Schrödinger cat states, in a cavity. These states are parameterized by a
real number ↵ and a phase '. Once trained, a neural network associates
output pulses to each pair (↵,'). These pulses, when sent to the cavity
and its dispersively coupled qubit, prepare the cavity in the target
state and the qubit in the ground state. Compared to standard optimal
control methods such as Gradient Ascent Pule Engineering (GRAPE)
[3] or Krotov [4] methods, this neural network-assisted method has
the key advantage of providing near-optimal control pulses for a wide
range of parameters after being trained only once. This can lead to
potential applications needing fast changes of parameters, such as
feedback, adaptive techniques, or error correction.

The experimental work first consisted in calibrating the experiment
to prepare these states with a fidelity F(↵,') to the target state
as high as possible. Second, we had to estimate this fidelity as fast
and precisely as possible. Indeed, we had to estimate it for many
parameters, and the long lifetime of the cavity imposes a long reset
time between two experiments. This leads to a quantum metrology-like
question: how to estimate F(↵,') with the best accuracy and with as
few samples as possible? We experimentally implement the optimal
fidelity estimation strategy from the cavity Wigner function, which was
established in [5]. It consists in performing parity measurement after
displacement by a randomly picked amplitude � along the law p(�),
which is proportional to the absolute value of the Wigner function of
the target state W'

↵ . The best estimator of F(↵,') is then, up to a
normalizing factor, simply given by a weighted average of all the parity
measurement outcomes. The Fig. 1.5a shows p(�) for an even cat state
of size 2, which corresponds to ↵ = 2 and ' = 0. One can reconstruct
a Wigner function by pixel-averaging the parity measurements. This
is shown in Fig. 1.5b. It contrasts with the square sampling that
we usually see when performing Wigner tomography. The measured
fidelity for 20 values of ↵ in [0.1, 2] and 9 values of ' in [0,⇡] using
this technique, and their theoretical counterpart are shown in Fig. 1.5c.
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1.2 neural network-assisted state preparation

Each fidelity estimation was obtained with 10
5 samples, and the whole

map took 8 days.

Figure 1.5: Optimal sampling of phase space and fidelity estimation of ex-
perimental cat states. (a) Optimal sampling density for a target
even cat state of size 2. (b) Measured Wigner functions of the
cavity with the sampling shown in (a) for ↵ = 2, and ' = 0,
obtained by averaging the parity in each pixel (c) Bottom: simu-
lated infidelity for a sampling of the whole half-disk (reflected)
in the parameter space (↵ cos('),↵ sin(')). Top: experimental
infidelities obtained with 10

5 shots sampled optimally.
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1.3 outline

Chap. 2 is dedicated to introducing the theoretical tools to describe
two-level systems and electromagnetic modes. The main tools to
visualize the state of harmonic modes are presented, with special stress
on Husimi and generalized Husimi Q functions. We also present a
quantum optics formalism that allows us to describe the propagating
signals as quantum states decomposed on a countable number of
propagating modes. Their interaction with usual quantum systems is
derived as well. The Chap. 3 is dedicated to linking this description of
the propagating modes to the outcomes of the standard measurement
setups in the field of superconducting circuits, implementing homodyne
and heterodyne detection of these propagating modes. This framework
is then used to analyze the standard qubit dispersive readout. The
notions of quantum efficiency, dephasing, and measurement rates are
introduced. Chap. 4 is, up to a few new appendices, a reproduction of
the paper [6] describing the experimental realization of the monitoring
of a cavity photon number. Chap. 5 uses the framework introduced
in Chap. 2 and Chap. 3 to further explain a few theoretical points
of this paper. It then uses the experiment as a starting point to
study possible generalizations of the experiment and new related
theoretical questions. Finally, Chap. 6 is a reproduction of our preprint
experimentally demonstrating the use of a neural network to prepare
a family of states in a high-Q cavity using a dispersively coupled qubit
[7].
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Part II

QUANTUM MEASUREMENTS WITH
SUPERCONDUCTING CIRCUITS





2
QUANTUM MICROWAVE MODES

At its core, cavity quantum electrodynamics (CQED) aims to study
the interaction between confined light and matter. Linear cavities
exhibit resonant modes, which can be thought of as "photon boxes"
into which light can be stored and interact with other systems. The
first platform that demonstrated coherent interactions between a
few photons and single degrees of freedom of matter was the cavity
quantum electrodynamics with atoms [8], to which the photons in the
cavity coupled via the dipolar interaction. Superconducting qubits were
shown to act as artificial atoms [9], which founded the field of circuit
quantum electrodynamics. The flexibility of this approach as well as the
strong couplings enabled by this platform gave birth to a lot of diverse
experiments, both witnessing the fundamental aspects of quantum
physics and paving the way for more concrete applications: quantum
sensing [10], quantum communication [11], quantum computing [12],
quantum thermodynamics [13]...

The goal of this chapter is first to introduce two ubiquitous physical
systems in circuit quantum electrodynamics: the resonator and the
transmon. A more general description of the procedure used here
to quantize these two simple circuits is made in [14]. We will also
introduce the theoretical tools used to model these systems, visualize
their states, and build intuition about their properties and dynamics.
We will finally present the model of the transmission line, which is
central to modeling the quantum signals driving or emitted by these
systems, as well as the quantum Langevin equation, which describes
the interaction between a quantum system and a transmission line.
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2.1 circuits quantum electrodynamics

2.1.1 Quantum LC oscillator

"Photon boxes" or harmonic oscillators take two main forms in super-
conducting circuits. The first is that of a linear resonant mode in a
distributed superconducting circuit, i.e. a circuit whose characteristic
size is that of the wavelength of the mode, like �/2 or �/4 resonators.
Such modes are associated to a frequency !c/2⇡ and a characteristic
impedance Zc setting the ratio between the amplitudes of the voltage
oscillations and the current oscillations in the walls of the box (or the
ratio between the electric and magnetic field oscillation amplitudes
in the interior of the box). It can thus be modeled by an inductor
and a capacitor in parallel, forming an LC oscillator, with frequency
1/
p
LC = !c and characteristic impedance Zc =

p
L/C (see Fig. 2.1a).

This gives the second way of building a harmonic oscillator, which
is by building this very circuit: a linear inductance L and a linear
capacitance C in parallel. This is called a lumped resonator.

From the voltage V (t) and the current I(t) in the LC oscillator, we
can then define the flux � and charge Q:

8
>>><

>>>:

�(t) =

Z
t

�1
V (t0)dt0

Q(t) =

Z
t

�1
I(t0)dt0.

(2.1)

The state of the oscillator is completely determined by the values
of � and Q, corresponding to a point in the plane � and Q called the
(classical) phase space (see Fig. 2.1b). The Lagrangian of this system
reads

L =
C

2
�̇
2
�

1

2L
�
2 (2.2)

where � and Q are conjugate variables:
@L

@�̇
= C�̇ = Q. (2.3)

From this Lagrangian, we can obtain the Hamiltonian of the system
using the Legendre transform:

H =
@L

@�̇
� L =

1

2C
Q2

+
1

2L
�
2. (2.4)
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Figure 2.1: The LC oscillator. (a) Schematic of the LC oscillator (b) Repre-
sentation of the state of the oscillator as a dot (here in red) in
the classical phase space. (c) Energy spectrum of the quantum
harmonic oscillator represented in the quadratic potential U(�).
The levels are evenly spaced.

This is the Hamiltonian of a classical harmonic oscillator, with �
and Q characterizing a single degree of freedom. They play the same
role as the position and the momentum in a spring-mass system, the
mechanical analog of the LC oscillator. To complete the analogy, one
is free to associate � and Q respectively to position and momentum
or the other way around. However, as we will see later, the main (and
almost only) non-linear element we can realize in the domain is a
Josephson junction, an inductive element. Thus, it is easier to think of
the variable � as the position variable. Replacing the linear inductor
with a Josephson junction is then analogous to changing the potential
U(�) in the Hamiltonian for the Josephson potential.

We can now promote these conjugate variables into conjugate quan-
tum operators satisfying the canonical commutation rule:

8
><

>:

�! �̂

Q ! Q̂

[�̂, Q̂] = i~.
(2.5)

The Hamiltonian now reads the same in terms of these newly defined
operators:

Ĥ =
1

2C
Q̂2

+
1

2L
�̂
2. (2.6)
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To diagonalize this Hamiltonian, we introduce the annihilation and
creation operators, which are hermitian conjugate of each other:

8
>><

>>:

â =
1

p
2~Zc

(�̂+ iZcQ̂)

â† =
1

p
2~Zc

(�̂� iZcQ̂).
(2.7)

These operators verify the canonical commutation relations for bosonic
operators [â, â†] = 1. They are dimensionless operators which carry the
essence of the physics of quantum harmonic oscillators. The operators
�̂ and Q̂ can then be expressed as a function of the bosonic annihilation
and creation operators:

(
�̂ = �zpf(â+ â†)

Q̂ = iQzpf(â
†
� â).

(2.8)

Here, �zpf =

q
~Zc
2

and Qzpf =

q
~

2Zc
are called the flux and charge

zero-point fluctuations. They link the physically measurable operators
�̂ and Q̂ to the bosonic field quadratures â+ â† and i(â† � â). Their
ratio �zpf

Qzpf
= Zc is the characteristic impedance of the resonator, and

their product �zpfQzpf =
~
2

sets the minimal uncertainty ���Q in
Heisenberg’s inequality.

Using the creation and annihilation operators, the Hamiltonian now
reads

Ĥ = ~!c(â
†â+

1

2
). (2.9)

The ground state |0i, called the vacuum state, can be found by solving
the equation â | i = 0 in the flux representation, and the eigenstates
{|ni}n2N of the Hamiltonian, called the Fock states, can be obtained
via successive applications of the creation operator â† to the vacuum
state: |ni = 1p

n!
â†n |0i. These states also verify â |n+ 1i =

p
n+ 1 |ni

and â†â |ni = n |ni, from which we can deduce the spectrum of the
Hamiltonian {~!(n+

1

2
)}n2N. This spectrum is discrete, with levels

evenly spaced by ~! (see Fig. 2.1c). This quantum of electromagnetic
energy is called a photon. The harmonic oscillator can then be thought
of as a box of photons. A Fock state |ni is then a state with a defined
number of photons, and any pure state | i can be written as a coherent
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2.1 circuits quantum electrodynamics

superposition of these number states: | i =
P

n
cn |ni, with the cn

being complex numbers such that
P

n
|cn|2 = 1. In particular, coherent

states, which will be presented in Sec. 2.2.2, are an example of states
obtained by a coherent superposition of Fock states. Unlike the Fock
states, which have no classical counterpart, these states are obtained
naturally when performing classical operations on a harmonic oscillator.
As for a classical harmonic oscillator, the state of a quantum harmonic
oscillator can be represented in phase space, but in several different
ways, which will be introduced in Sec. 2.2.2.

2.1.2 The transmon qubit

Harmonic oscillators driven with classical sources are not enough to
explore their full Hilbert space. The only accessible states are coherent
states, and their statistical mixturesFor example, it is impossible to
create a Fock state with only a cavity driven with classical signals.
Intuitively, this is due to the fact that the levels of the harmonic
oscillator are evenly spaced: any incoming light drives all the transitions
simultaneously. A solution to obtain other quantum states then consists
in modifying the harmonic potential to change this level distribution.
In the domain of the superconducting circuits, this is done using a
Josephson junction. This element consists of two superconducting
electrodes spearated by an insulating barrier, and its energy potential
depends on the superconducting phase difference operator '̂ 2 [0, 2⇡[

between both sides of the junction:

U('̂) = �EJ cos('̂) (2.10)

where EJ is the Josephson energy of the junction. The phase '̂ is
also linked to a flux across the junction �̂ = '0'̂, with '0 =

~
2e

the
reduced flux quantum. This flux plays the same role as the magnetic
flux for an inductive element, but it is not associated to a magnetic
field: the energy is stored in the phase difference between the two sides
of the junction. The Josephson junction is then a purely inductive
element with a non-quadratic potential. To build a non-harmonic
oscillator, we connect it to a capacitor C. The circuit then consists of
a superconducting island separated from the ground by a Josephson
junction on one side and a capacitor on the other side. A schematic
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of the circuit is shown in Fig. 2.2. The electromagnetic environment
needs to be taken into account as well, as it generally applies an offset
voltage Vg on the device through a gate capacitance Cg. The charge
on the island reads Q̂ = �2n̂e with n̂ the number of Cooper pairs, and
the total electrostatic energy E(n̂) = 4EC(n̂� ng)

2 where EC '
e
2

2C

is the characteristic charging energy of the capacitor, and ng '
CgVg

2e

the offset charge taking into account the effect of Vg. This is valid in
the regime where Cg ⌧ C, which is almost always true, as circuits are
mostly designed to minimize the coupling to the environment. The

Figure 2.2: A non-linear oscillator. (a) Schematic of the device. The Joseph-
son junction is symbolized by the cross. (b) Energy otential
and spectrum at ng = 0 of a transmon with EJ/EC = 50 and
p
8EJEC/h = 5 GHz.

total Hamiltonian thus reads

H = E(n̂) + U('̂) = 4EC(n̂� ng)
2
� EJ cos('̂). (2.11)

Here, n̂ and '̂ are linked by the commutation relation [n̂, '̂] = i. We
can now diagonalize this Hamiltonian and plot its spectrum {En(ng)}

as a function of ng. The result is shown in Fig 2.3 for four different
values of the ratio EJ/EC . These four plots are computed [15] for the
same EJEC product, such that

p
8EJEC/h = 5 GHz. We can see that

the levels are not evenly spaced: with a drive at the right frequency, we
can then address only the transition between the ground state and the
first excited state. We get a periodicity in ng of 1, which can be seen
as the fact that the Hamiltonian is invariant if we set ng ! ng +1 and
n̂ ! n̂+1. As n̂ has integer eigenvalues, this is the smallest increment
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we can add to n̂. The first devices built in the domain were in the
regime EJ/EC < 10 and named Cooper pair boxes. They were the
first demonstrated superconducting qubits [16, 17].

Figure 2.3: From the Cooper box to the transmon regime. (a) to (d): spec-
trum of the device for increasing ratio EJ/EC . A qubit is obtained
by selectively adressing the transition between the ground state
and the first excited state.

At zero temperature, the performances of a qubit can be measured
by two quantities. The first one is the decay time T1, which is the
caracteristic time during which the qubit remains excited after it was
prepared in the excited state. The second one is the coherence time
T2, which characterizes how long the qubit keeps its phase ' after
being prepared in the state (|0i+ ei' |0i)/

p
2. The coherence time T2

of these first Cooper pair box qubits, although measurable, was of the
order of 1 ns [17]. This coherence time was limited by the circuit used
to measure the qubit quantum state. Based on the Cooper pair box,
the quantronium was developed to introduce a single shot readout and
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mitigate the sensitivity to charge noise by introducing a sweet spot,
which allowed them to reach a few hundred ns T2.

However, these coherence times were typically not as good as they
could be compared to the decay time T1 of these systems. Indeed, it is
less than 1 µs, whereas the T1 of the order of 2 µs were demonstrated
[18]. This is due to the strong dependence of its spectrum on the
offset voltage Vg. This voltage is typically very noisy, which leads to a
fluctuating frequency of the first transition of the device, thus inducing
a lot of decoherence [19].

The transmon was invented to mitigate this problem: as it can
be seen in Fig. 2.3, the higher the ratio EJ/EC , the smaller the
charge dispersion. We call the qubit a transmon in the regime where
EJ/EC & 10. There, the charge dispersion ✏n, defined as En(ng =

1/2)� En(ng = 0), reads [20]

✏n = (�1)
nEC

2
4m+5

m!

r
2

⇡

⇣ EJ

2EC

⌘m
2
+

3

4

e�
p

8EJ/EC . (2.12)

The charge dispersion is thus exponentially suppressed as a function ofp
8EJ/EC . In practice, EJ/EC > 20 is enough to mitigate the charge

noise and reach decent coherence time (T2 � 10 µs), and EJ/EC > 40

is necessary to be almost completely insensitive to the full charge
dispersion. With this new device, decay times and coherence times
increased to now reach more than T2 = 100 µs [21], and T1 = 500 µs
[22]. Other designs of qubits, such as the fluxonium [23], demonstrated
even better results, but the transmon is still widely used because of its
performances that are good enough for a wide range of experiments
and its relatively easy fabrication.

In this regime, ng = 0is irrelevant for the first excited states and
can be taken equal to 0. We can write the Hamiltonian in the form

Ĥ =

h
1

2C
Q̂2

+
1

2LJ

�̂
2

i
�

h
cos

 
�̂

�0

!
+

1

2LJ

�̂
2

i
, (2.13)

where Q̂ = �2en̂ and LJ =
'
2

0

2EJ
is the characteristic inductance of

the Josephson junction. This Hamiltonian is then the sum of a linear
part (first part in Eq. (2.13)) and a non-linear part (second part). The
characteristic impedance Z =

q
LJ
C

= 2

q
EC
EJ

then sets the ratio of the
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2.2 representation of quantum states

characteristic fluctuations of flux and charge. A high enough EJ/EC

ratio means that ��/�0 ⌧ 1: the flux is then localized at the bottom
of the potential. Writing annihilation operators as in Eq. (2.7), we
have

b̂ =
1

p
2~Z

(�̂+ iZcQ̂) =
1

2

⇣ EJ

2EC

⌘ 1

4

('̂� 2i

r
2EC

EJ

n̂). (2.14)

In the ground state, h'̂i = 0 and�' = 2

⇣
EJ
2EC

⌘� 1

4

' 0.2⇡ for EJ
EC

= 50:

the phase is mostly localized around the origin. Writing ' = �'(b̂+b̂†),
we can expand the cosine potential up to the fourth order in '̂:

Ĥ/~ '

p
8EJEC(b̂

†b̂+
1

2
)� EJ

1

4!
�'4

(b̂+ b̂†)4. (2.15)

We can here develop the term in (b̂+ b̂†)4 and perform a rotating wave
approximation (RWA) to keep only the resonant terms. Rearranging
these terms in normal order gives

Ĥ/~ =

p
8EJEC(b̂

†b̂+
1

2
)� EC b̂

†b̂�
EC

2
b̂†2b̂2. (2.16)

The non-linearity thus renormalizes the frequency of the transmon
by EC/h. The transition frequencies f01 = (E1 � E0)/h and f12 =

(E2 � E1)/h thus differ by the so-called anharmonicity ↵ = EC/h.
Typically, ↵ ' 200 MHz. This quantity sets the timescale of the fastest
gates that can be performed on a qubit, as the maximum bandwidth
of the pulses that can be sent on resonance to operate it [24]: if the
pulse is too short, then it overlaps spectrally with the f12 transition,
which excites the transmon into its second excited state, outside of
the computational subspace. For a fixed frequency, EC cannot be too
large either to stay in the transmon regime. This is another reason why
other more anharmonic devices, such as the fluxonium, are explored:
higher anharmonicity potentially means faster gates.

2.2 representation of quantum states

In quantum mechanics, states are either an element | i of the Hilbert
space H, for pure states, or statictical mixtures of these states, which
can be represented by a density matrix ⇢̂, defined on the operator
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space of H,.The most straightforward way to represent the state is
then by decomposing a pure state | i on an orthonormal basis {| ni}

of H:

| i =
X

n

 n | ni . (2.17)

The set of  n = h n| i are a representation of | i in the basis {| ni}.
We can perform the same kind of decomposition for a density matrix
⇢̂

⇢̂ =

X

nm

⇢nm | nih m| . (2.18)

Here, the Hermitian property of the density matrix imposes ⇢⇤nm = ⇢mn,
its normalization Tr(⇢̂) = 1 that

P
n
⇢nn = 1, and its positivity that

its eigenvalues are positive.
Although this matrix representation contains all the information

about the state, it is often more practical to work with graphical
representations. The most ubiquitous one for two-level systems (TLS)
is the Bloch sphere representation. Any state can indeed be represented
(up to a global phase) by a unique vector inside the unit ball of R3.
This representation is very useful, as any unitary operation performed
on the state can be viewed as rotations. Dynamics in the Bloch sphere,
governed by Bloch equations, are completely analogous to that of a
classical dissipative system. This renders qubit dynamics a lot more
intuitive.

The Bloch sphere can theoretically be generalized to any number
of dimensions, but it becomes a lot less convenient for any number
higher than 2, as the dimension of the sphere becomes larger than 3,
which is the human limit for graphical representations. For a harmonic
oscillator, the Bloch sphere representation and its infinite number of
dimensions then happens on an infinite-dimensional ball.

Alternative representations of states for the harmonic oscillator exist.
The most widely used are the so-called phase-space representations,
which we will here introduce for the density matrix of a harmonic oscil-
lator. They are quasiprobability distributions, which, despite not being
actual probability distributions, give intuition about the distribution
of actual observable outcomes. They are especially useful as means
to visualize the dynamics of quantum states. Besides, their features
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can give intuition about what we can define as the "quantumness"
of a state. Finally, as we will discuss more in chapter 3, they give
direct access to the probability distribution of measurement outcomes
obtained routinely with superconducting circuits.

2.2.1 Bloch ball

It is convenient to start defining the Bloch sphere with pure states
first before generalizing to mixed states on the whole ball. A state of
a TLS (or qubit) can be written in an orthonormal basis {|1i , |0i}

| i = a |0i+ b |1i (2.19)

with a, b two complex numbers. Using that | h | i |2 = 1 gives |a|2 +

|b|2 = 1, which means that we can parameterize a and b by an angle
✓/2 2 [0,⇡/2] and two phases 'a,'b 2 [0, 2⇡[. The state | i becomes:

| i = ei'a cos(✓/2) |0i+ ei'b sin(✓/2) |1i (2.20)

= ei'a
�
cos(✓/2) |0i+ ei('b�'a) sin(✓/2) |1i

�
. (2.21)

As in quantum mechanics, a global phase factor such as ei'a does
not change any observable, we can safely take 'a = 0. We now
parameterized our state by ✓ 2 [0,⇡] and ' = 'b � 'a 2 [0, 2⇡[, the
same way the unit sphere of R3 is parameterized. We can then associate
to each | i a unit vector ~u| i called the Bloch vector, parameterized
by ✓ and ' on the so-called Bloch sphere. The state |0i is then on
the south pole of the Bloch sphere, while |1i is on the north pole. In
general, the coordinates of the Bloch vector (x, y, z) reads:

(x, y, z) =
�
h | �̂x | i , h | �̂y | i , h | �̂z | i

�
. (2.22)

We introduce here the three Pauli operators �̂x, �̂y, �̂z whose respective
matrix representations are the Pauli matrices �x,�y,�z in the basis
{|1i , |0i}

�x =

 
0 1

1 0

!
;�y =

 
0 �i

i 0

!
;�z =

 
1 0

0 �1

!
. (2.23)
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This can be generalized to density matrices in a very simple and
convenient way. To ⇢̂ =

P
n
Pn | nih n|, we associate

~u⇢̂ =
X

n

Pn~u| ni. (2.24)

This association does not depend on the choice of the decomposition
of ⇢̂. The Bloch vector of a density matrix is then the convex sum of
the Bloch vectors of its components. Eq. (2.22) generalizes to:

(x, y, z) =
�
Tr(⇢̂�̂x),Tr(⇢̂�̂y),Tr(⇢̂�̂z)

�
(2.25)

and in turn, (x, y, z) gives the decomposition of ⇢̂ on the Pauli opera-
tors:

⇢̂ =
1

2

�
1+ x�̂x + y�̂y + z�̂z

�
. (2.26)

We see that Bloch vectors of density matrices can live inside of the
sphere, in the ball. There is an equivalence between ⇢̂ being a mixed
state and ~u⇢̂ being strictly inside the sphere.

Figure 2.4: The Bloch sphere. (a) Bloch sphere schematic. (b) Example of
trajectory on the Bloch sphere during a brief excitation (grey:
rotation by an angle ✓ = ⇡/2) followed by relaxation of the qubit
(red) without any pure dephasing of the qubit.

Starting from a pure state, ⇢̂ generically becomes mixed because of
dissipation during its evolution, as the TLS gets entangled with its
unmonitored environment. When the interaction with the environment
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is Markovian, i.e when it has no memory of the past interactions, the
most widely used equation governing both Hamiltonian evolution and
dissipation is the Lindblad equation. In its most general form, it reads:

d⇢̂

dt
= �

i

~ [Ĥ, ⇢̂(t)] +
X

n

�nDÂn
[⇢̂(t)], (2.27)

where Ĥ is the Hamiltonian of the system, D
Ân

[⇢̂(t)] = Ân⇢̂Â
†
n �

1

2
{Â†

nÂn⇢̂ + ⇢̂Â†
nÂn} are the dissipators associated to the jump op-

erators Ân, and the �n are the associated jump rates. In the case
of a qubit coupled to an outside electromagnetic field at thermal
equilibrium at temperature T , we consider three main dissipation
channels: excitation at rate �" = nth�0, associated to the jump opera-
tor �̂+ =

1

2
(�̂x + i�̂y) = |1ih0|, de-excitation at rate �# = (1 + nth)�0

associated to �̂� =
1

2
(�̂x � i�̂y) = |0ih1|, and pure dephasing at rate

�'/2, associated to �̂z. �1 = �" + �# is the decay rate of the qubit,
and nth its thermal population of the qubit, i.e. its average number
of excitations in thermal equilibrium with the environment. Detailed
balance relates the temperature T to nth through �" = e

� ~!
kBT �#,

where kB is the Boltzmann constant. Although the temperature is
never zero for real systems, experimentalists work hard to make nth

as low as possible and negligible in practice. Setting nth = 0, the
Lindblad equation then reads

d⇢̂

dt
= �

i

~ [Ĥ, ⇢̂(t)] + �1D�̂� [⇢̂(t)] +
�'

2
D�̂z [⇢̂(t)], (2.28)

where we write Ĥ in the most general form for a qubit:

Ĥ/~ =
⌦x

2
�̂x +

⌦y

2
�̂y +

�

2
�̂z. (2.29)

⌦x and ⌦y are referred to as Rabi frequencies and � to the drive
detuning. This is the general Hamiltonian of a qubit considered in a
Bloch ball frame rotating at a frequency detuned by � from its resonant
frequency. Multiplying Eq. (2.28) by �̂x, �̂y and �̂z and taking the
trace gives the optical Bloch equations for x, y and z:

0

B@
ẋ

ẏ

ż

1

CA =

0

B@
x

y

z

1

CA ^

0

B@
⌦x

⌦y

�

1

CA�

0

B@
(�1/2 + �')x

(�1/2 + �')y

�1(1 + z)

1

CA . (2.30)
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The dynamics of the Bloch vector are then decomposed into two
parts. The Hamiltonian part is the one materialized by the vector
product. It consists of rotations in the Bloch ball. This part is strictly
equivalent to that of a magnetic moment under a magnetic field
~B / ⌦x~ex + ⌦y~ey + �z~ez such that the Larmor pulsation ! is ! =q
⌦2
x + ⌦

2
y + �2.

The second part, representative of the dissipation and dephasing,
behaves like classical dissipation: the Bloch vector is linearly dampened
towards the bottom of the Bloch sphere at a rate �1 = �# and towards
the z axis at a rate �2 = �1/2 + �'.

This representation thus allows classical intuition to work, which is
very useful to picture quantum operations on qubits. An example of
trajectory in the Bloch sphere is shown in Fig. 2.4. The qubit starts
in the ground state |0i and is strongly driven during a short time,
rotating around an axis close to the x-axis, During this time, we have
⌦x,⌦y � �,�1,�' (grey arrow). ⌦x and ⌦y are then turned off, letting
the qubit free to rotate at an angular speed � while decaying back to
|0i under the effect of the dissipation. This is the kind of trajectory
experienced by the qubit in the experiment presented in Chap. 4.

2.2.2 Phase-space representations of a harmonic oscillator

As stated in the introduction of this chapter, there exist several different
representations for the state of a harmonic oscillator. We present here
the three main phase-space representations: the Glauber-Sudarshan P
representation, the Wigner function W, and the Husimi Q function.
Each of them represents, in some sense, the quantum version of the
classical phase space. These three representations are defined using
the coherent states and the displacement operators. Coherent states
are called quasi-classical states, as they are the states that resemble
the most classical states of a harmonic oscillator. A coherent state ↵
is defined as

|↵i = e�|↵|
2
/2
X

n

↵n

p
n!

|ni (2.31)

It is the eigenvector of eigenvalue ↵ of â. It is called a gaussian state,
as all its phase-space representations are gaussian functions. Fig. 2.7
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2.2 representation of quantum states

shows schematics of each of them. It is obtained by applying the
displacement operator D̂(↵) to the vacuum state:

D̂(↵) = e↵â
†�↵⇤

â (2.32)
|↵i = D̂(↵) |0i . (2.33)

The displacement operator is the most classical operation we can apply
on quantum states. This is even the only quantum operation we can
implement on a harmonic oscillator using only classical resources [25].
Thus, if the oscillator starts in the vacuum state, the only states we
can create are coherent states. Fock states, although the most simple
states regarding the photon distribution, are inaccessible.

A first geometric property of the displacement operator is that it
conserves the vector structure of C:

D̂(↵)D̂(�) = e(↵�
⇤�↵⇤

�)/2
D̂(↵+ �). (2.34)

Thus, up to a global phase factor (↵�
⇤�↵⇤

�)/2, the displacement op-
erator D̂(↵) behaves like a translation in phase space along a vector
given by ↵.

Another useful operator is the squeezing operator Ŝ(⇣). It is defined
as

Ŝ(⇣) = e
1

2
(⇣

⇤
â
2�⇣â†2). (2.35)

This operator is unitary and is of great importance, especially in the
field of quantum metrology [26, 27], and for quantum measurement
in general. As we will see in Chap. 3, any amplification procedure
is intrinsically a squeezing procedure. This operator is called the
"squeezing" operator, as its effect is to divide the variance of one
quadrature by a factor e|⇣| at the expense of the other which is
multiplied by the same factor. The quadrature amplified (and the
one deamplified) is set by ✓ = Arg(⇣). This operation becomes purely
geometrical when working with Wigner functions (see Fig. 2.7 shows
the Wigner function of a squeezed vacuum state). The properties of
these operators, as well as that of the P, Q, and Wigner functions,
are derived in [28]. We will use three main properties of the squeezed
states in what follows. The first one is that

Ŝ(⇣)† = Ŝ(�⇣). (2.36)
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The inverse of a squeezing operation is thus the opposite squeezing
operation. The second is that

Ŝ(�⇣)âŜ(⇣) = cosh(r)â� sinh(r)ei✓â† (2.37)

with ⇣ = rei✓. This expression defines a transform on the annihilation
and creation operators which is called a Bogoliubov transformation.
The new creation operator Ŝ(�⇣)â†Ŝ(⇣) builds squeezed Fock states.
The third is that

Ŝ(�⇣)D̂(↵)Ŝ(⇣) = D̂(�) (2.38)

with

� = cosh(r)↵+ sinh(r)ei✓↵⇤. (2.39)

This defines the commutation rules with the displacement operator,
and the change of variables ↵ ! � used to transform the Wigner
function under the squeezing operator (see Sec. 2.2.2.2).

2.2.2.1 The Glauber-Sudarshan P representation

The coherent states form an overcomplete set of states. Thus, there
exist a closure relation

1 =
1

⇡

Z

C

|�ih�| d2�. (2.40)

We use here the notation d
2� = dRe(�)d Im(�). The factor 1/⇡

accounts for the overcompleteness: this ensemble is non-orthonormal
and redundant, thus not normalized. This overcompletness comes with
another interesting property: we can decompose any density matrix ⇢̂
of the harmonic oscillator in a diagonal form on the coherent states as

⇢̂ =

Z

C

P ⇢̂(�) |�ih�| d
2�. (2.41)

The function P is unique and is called the Glauber-Sudarshan P
function and It constitutes our first phase-space representation. It
is defined on a complex plane and takes real values (in the sense
of the distributions). It is a quasiprobability distribution: although
normalized to unity (

R
C P ⇢̂(↵)d2↵ = 1), it can take negative values.
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2.2 representation of quantum states

As for the Wigner function, such negative value the signtature of
a quantum state with no classical counterpart. Furthermore it can
generate moments the same way a probability distribution would. In
particular it directly generates any normally ordered moments of the
annihilation and creation operators [29, 30]. For any n,m 2 N

hâ†nâmi = Tr

⇣
⇢̂â†nâm

⌘
=

Z

C

�⇤n�mP ⇢̂(�)d
2�. (2.42)

We can easily get the average value of â as hâi =
R
C �P ⇢̂(�)d2�. The

average number of photons hâ†âi is then directly given by hâ†âi =R
C |�|2P ⇢̂(�)d2�.

Displacement operators are very simple to implement on the P func-
tion. It is indeed easy to show that the P function of ⇢̂0 = D̂(↵)⇢̂D̂(�↵)

is given by P⇢̂0(�) = P ⇢̂(��↵). The displacement operator thus trans-
lates the P function.

The inverse transformation from ⇢̂ to P is given by [29]:

P ⇢̂(re
i✓
= �) =

X

n,m

hn|⇢̂|mi

p
n!m!

2⇡r(n+m)!
er

2�i(n�m)✓

h�
�

@

@r

�n+m
�(r)

i
. (2.43)

P thus contains the same information as the density matrix. However,
for pure states, this is a highly singular function. For a coherent
state ⇢̂ = |↵ih↵|, P |↵i(�) = �(� � ↵), with � the 2D Dirac function.
For a pure Fock state |ni, it becomes even more singular: P |ni(�) =

n!

2⇡r(2n)!
er

2

h�
@

@r

�2n
�(r)

i
which involves derivatives of the Dirac function.

These reasons make it a quantity that is not convenient to visualize
and hard to manipulate.

2.2.2.2 The Wigner function

The most commonly used representation in the field of superconducting
circuits is the Wigner function. It is defined by the Wigner transform
of the density matrix, which reads

W ⇢̂(�) =
2

⇡
Tr

⇣
D̂(��)⇢̂D̂(�)P̂

⌘
, (2.44)

where P̂ = (�1)
â
†
â is the parity operator. The value of W ⇢̂(�) is then

the average parity of ⇢̂ displaced by ��. This expression is especially
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useful in experiments, as having a qubit dispersively coupled to a cavity
allows us to directly implement this measurement. This measurement
process is called Wigner tomography.

The Wigner function is linked to the P function by a very simple
relation:

W ⇢̂(�) = (P ⇢̂ ⇤W |0i)(�) (2.45)

where W |0i(�) =
2

⇡
e�2|�|

2 is the Wigner function of the vacuum state.
It is also a quasiprobability distribution:

R
CW ⇢̂(�)d2� = Tr(⇢̂) = 1,

and it can be negative. However, it is already much more convenient
than the P function, as it is a smooth function in general (for states
with finite energy). Furthermore, negativity in the Wigner function
is fundamentally linked to the "quantumness" of a state, i.e. the
ability to exhibit non-classical behavior. For example, in continuous-
variables quantum computing, states that exhibit Wigner negativity
are necessary to get any speed-up compared to classical algorithms in
the field of continuous-variable quantum computing [31].

Its moments are the symmetrically ordered moments of the creation
and annihilation operators [30]:

h
�
ânâ†m

�
Si =

Z

C

�n�⇤mW ⇢̂(�)d
2� (2.46)

Here, (.)S stands for the symmetric ordering of the operators. As
an example, one can get the average number of photons hâ†âi from
the Wigner function: the first step is to write it in a symmetric way:
â†â =

1

2
(â†â+ ââ† � 1). Then

hâ†âi = h
�
â†â

�
Si �

1

2
=

Z

C

|�|2W ⇢̂(�)d
2� �

1

2
, (2.47)

and as for the P representation, we also have

hâi =

Z

C

�W ⇢̂(�)d
2�. (2.48)

.
The Wigner function is a tool that goes beyond visualizing the

states, as the Wigner transform can also be applied on operators the
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2.2 representation of quantum states

same way as for density matrices. For any operator Ô, we define its
Wigner transform as

W
Ô
(�) =

2

⇡
Tr

⇣
D̂(��)ÔD̂(�)P̂

⌘
. (2.49)

The expectation value of Ô can then be obtained using

hÔi = Tr

⇣
⇢̂Ô

⌘
= ⇡

Z

C

W ⇢̂(�)W Ô
(�)d2�. (2.50)

Wigner functions of frequently used operators are listed below:

W â(�) =
�

⇡
(2.51)

W â†â(�) =
1

⇡
(|�|2 �

1

2
) (2.52)

W |nihn|(�) = W |ni(�) = (�1)
n
2

⇡
e�2|�|

2

Ln(4|�|
2
), (2.53)

where Ln is the n-th Laguerre polynomial. We also get W |nihm| by

W |nihm|(x+ ip) =
1

⇡

Z
e�ipy n(x+

y

2
) 
⇤
m(x�

y

2
)dy, (2.54)

where  n is the wavefunction of the Fock state |ni:

 n(x) = hx|ni =
� 2
⇡

� 1

4
1

p
2nn!

Hn(

p

2x)e�x
2

(2.55)

with Hn the n-th Hermite polynomial. The W |nihm| are then all we
need to reconstruct a density matrix in the Fock state basis from the
Wigner tomography, using that hn|⇢̂|mi = Tr(⇢̂ |nihm|) and Eq. (2.49)

Another theoretical way of reconstructing the density matrix (or an
operator) from the Wigner function is by using the Weyl transform:

Ô =

ZZZZ
W

Ô
(x+ ip)eikx(x̂�x)+ikp(p̂�p)dxdpdkxdky. (2.56)

This formula, less convenient, is not used in practice.
Finally, for a pure state | i, we recover an actual probability density

by taking the marginal of the Wigner function along any quadrature.
In particular:

Z

R

W | i(x+ ip)dp = | hx| i |2 (2.57)
Z

R

W | i(x+ ip)dx = | hp| i |2. (2.58)
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Here, |xi and |pi have to be understood as the "eigenvectors" of the
x̂ = (â+ â†)/2 and p̂ = (â† � â)/2i the two adimensional quadrature
operators. Note that they verify here [x̂, p̂] = i/2 1.

Experimental tomography of Wigner functions of Fock states |0i,
|1i, |5i and |9i are shown Fig 2.5. Details about the way these Wigners
were obtained are given in Sec. 4.3.2 and 4.9.1.

Figure 2.5: Experimental Wigner and Husimi Q functions of a few Fock
states. (a) Measured Wigner functions of Fock states |0i, |1i,
|5i and |9i that were prepared by heralding on the fluorescence
of a dispersively coupled qubit. (b) Corresponding Husimi Q
functions for the same states obtained using Eq. (2.67).

The displacement and squeezing operators correspond to simple
geometrical operations on the Wigner functions. It is straightforward
to see that the effect of the displacement operator D̂(↵) is, as for the P

function, to displace the Wigner function by ↵: W ⇢̂(�)
D̂(↵)

���! W ⇢̂(��↵).
The effect of a squeezing operator Ŝ(⇣) on the Wigner function is also
a change of coordinates:

W ⇢̂(↵)
Ŝ(⇣)
���! W ⇣

⇢̂
= W ⇢̂

�
↵ cosh(r) + ↵⇤ei✓ sinh(r)

�
(2.59)

1 Other conventions for the definition of these operators exist, in particular x̂ =

(â+ â†)/
p
2 and p̂ = (â† � â)/

p
2i, leading to [x̂, p̂] = i, which looks more natural,

given that [�̂, Q̂] = i~. This is the choice made in [32]. We prefer our convention,
as it gives the simple relation â = x̂+ ip̂
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2.2 representation of quantum states

This amounts to transforming â and â† in Eq. (2.44) following

â ! Ŝ(�⇣)âŜ(⇣) = cosh(r)â� sinh(r)ei✓â† (2.60)
â† ! Ŝ(�⇣)â†Ŝ(⇣) = cosh(r)â† � sinh(r)e�i✓â. (2.61)

We can illustrate this transformation by applying it on the vacuum
state. This gives a squeezed vacuum state:

W ⇣

|0i(x+ ip) =
2

⇡
e�2e

2r
(cos(

✓
2
)x+sin(

✓
2
)p)2e�2e

�2r
(cos(

✓
2
)p�sin( ✓

2
)x)2

(2.62)

which has a very simple geometrical interpretation: the original Wigner
function is compressed by er in the direction given by ei

✓
2 and expanded

by er in the orthogonal direction. This is the general way squeezing
acts on Wigner function. For ✓ = 0, it gives

W ⇣

|0i(x+ ip) =
2

⇡
e�2e

2r
x
2

e�2e
�2r

p
2

. (2.63)

It is then straightforward to compute �x̂2 = hx̂2i = e�2r/2 and �p̂2 =

hp̂2i = e2r/2. These states still saturate the Heisenberg inequality
�x̂�p̂ � 1/2 but have reduced fluctuations in one quadrature. This
way of reducing the uncertainty in one direction is a standard tool
in quantum metrology [33]. These states are especially useful for the
detection of gravitational waves [26, 27].

2.2.2.3 The Husimi Q function

The expression of the third phase-space representation is the simplest:
this is the average of the density matrix for coherent states [34, 35]:

Q⇢̂(↵) =
1

⇡
h↵|⇢̂|↵i. (2.64)

We can rewrite this expression as

Q⇢̂(↵) = h↵|⇢̂|↵i = Tr

⇣
|0ih0| D̂(�↵)⇢̂D̂(↵)

⌘
. (2.65)

We can interpret this expression as the probability of finding 0 photons
in the state displaced by ↵. Knowing that the Wigner function of a
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coherent state W |↵i is W |↵i(�) = W |0i(� � ↵), we can use Eq. (2.50)
applied to Ô = D̂(↵) |0ih0| D̂(�↵):

Q⇢̂(↵) =

Z

C
W |0i(� � ↵)W ⇢̂(�)d

2�. (2.66)

Thus, Q and W are all obtained from P by a convolution with the
Wigner function of the vacuum state:

Q⇢̂ = W ⇢̂ ⇤W |0i = P ⇢̂ ⇤W |0i ⇤W |0i = P ⇢̂ ⇤Q|0i. (2.67)

Plus, we now see that this representation does not miss any information
compared to the Wigner function and the P function, as the convolution
with a Gaussian function is a reversible operation. However, this comes
with an increased sensitivity to noise, which makes it hard to use in
actual experiments for state reconstruction (see Fig. 2.5).

On top of furnishing another geometrical representation of the states,
its importance lies in the fact that it gives the distribution the outcome
of a heterodyne measurement, which is the most widely used type of
measurement in superconducting circuits (see Sec. 3.1.2). The fact
that Q is positive also gives an intuition about the allowed negative
regions of the Wigner function: their extent needs to be small enough
so that convolving it with W |0i, whose typical spatial extension is
1/2, makes them disappear. For pure states, the presence of negative
regions in the Wigner function is equivalent to the presence of zeros
of the Q function [36].

Another more constructive way of writing the Q function exists. Let
⇢̂ = | ih | be a pure state, and

| i =
X

k

 k |ki =
X

k

 k
p
k!
â†k |0i (2.68)

its decomposition on the Fock basis. We can define the stellar function
F ? [37] as

F ?

| i(↵) =
X

k

 k
p
k!
↵k. (2.69)
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In this notation, we simply have | i = F ?

| i(â
†
) |0i. Eq. (2.64) then

gives

Q| i(↵) =
1

⇡
h↵|F ?

| i(â
†
) |0ih0|F ?⇤

| i(â)|↵i (2.70)

= e�|↵|
2 1

⇡
|F ?

| i(↵
⇤
)|
2. (2.71)

This expression is especially useful when the  n are known, as it gives a
straightforward way of writing the Q function from the decomposition
in the Fock basis. It generalizes to density matrices by summing
up the Q functions in the same way as pure density matrices: if
⇢̂ =

P
n
Pn | nih n|, then Q =

P
n
PnQ| ni. For example, if the

oscillator is in a thermal state of temperature T defined as

⇢̂th = (1� ⌫)
X

n

⌫n |nihn| (2.72)

where ⌫ = e
� ~!c

kBT is the Boltzmann factor, and !c/2⇡ the frequency
of the mode. The Husimi Q function then reads

Q⇢̂th
(↵) =

1� ⌫

⇡
e(⌫�1)|↵|

2

. (2.73)

The Q function of a thermal state is thus simply widened by a factor
1/

p
1� ⌫ compared to that of the vacuum state:

Q⇢̂th
(↵) =

p
1� ⌫Q|0i(↵

p
1� ⌫). (2.74)

Writing Q⇢̂th
= W |0i ⇤W ⇢̂th

, we can deconvolve Q⇢̂th
by the Wigner

function of the vacuum state (which is easy as all the distributions
involved are Gaussian) to also get the Wigner function of a thermal
state:

W ⇢̂th
(↵) =

2(1� ⌫)

⇡(1 + ⌫)
e�

2(1�⌫)
1+⌫ |↵|2 . (2.75)

Similarly, W ⇢̂th
is then obtained by scaling the Wigner function of the

vacuum:

W ⇢̂th
(↵) =

r
1� ⌫

1 + ⌫
W |0i

�
r

1� ⌫

1 + ⌫
↵
�
. (2.76)
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The variance V⇢̂th of this Wigner function thus reads

V⇢̂th =
1 + ⌫

2(1� ⌫)
=

1

2
+

⌫

1� ⌫
=

1

2
+ nth, (2.77)

where nth =
⌫

1�⌫ is the average number of photons in the mode.
Deconvolving again by the Wigner function of the vacuum state, we
can even obtain the P distribution P ⇢̂th

of ⇢th as a Gaussian function
with variance nth.

The moments of the Q function are the anti-normally ordered
moments of â and â† [30]:

hânâ†mi =

Z

C

�n�⇤mQ⇢̂(�)d
2� (2.78)

In particular, we have hâi =
R
C �Q⇢̂(�)d2� and hâ†âi =

R
C(|�|

2
�

1)Q⇢̂(�)d2�. Examples of experimentally measured Q functions for
Fock states |0i, |1i, |5i and |9i are given Fig. 2.5. They are obtained
from the corresponding Wigner functions using Eq. (2.67). Interest-
ingly, the experimental noise is almost invisible compared to the noise
on the Wigner function. We can illustrate how hard it is to experi-
mentally perform a proper state reconstruction from the Q function
by comparing the Q function of distant states. The first one is an odd
cat state |C�↵ i / |↵i � |�↵i, which is a superposition of two opposite
coherent states. The second is given by ⇢̂↵ =

1

2
(|↵ih↵| + |�↵ih�↵|),

which is a classical mixture of the same coherent states. We see in
Fig. 2.6 for ↵ = 2 that the two Wigner functions exhibit very differ-
ent features: the Wigner function of |C�↵ i exhibits negative regions,
which is not the case for ⇢̂↵. However, these striking differences almost
disappear when comparing the Q functions on a linear scale. We can
distinguish some very faint structure between the two Gaussian com-
ponents for |C�↵ i, but that’s pretty much everything. To understand
where the key differences between the two Q functions lie, one needs
to visualize them in log scale (right panel Fig. 2.6). The Q function of
|C�↵ i exhibits zeros on the vertical axis, which is not the case for ⇢̂↵.
Actually, it has an infinite number of such zeros, one for each negative
region in the Wigner function [38]. These zeros are present in a region
where the Q function is already very close to zero and do not survive
any experimental noise, which renders very hard faithful experimental
discrimination between the pure |C�↵ i and 1-bit entropic state ⇢̂↵.
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2.2 representation of quantum states

Figure 2.6: Comparison between the Wigner function and the Husimi Q
function of coherent and incoherent superposition of two coherent
states. Top, from left to right: Wigner functions for an odd cat
state

��C�
2

↵
, its Q function in linear scale and its Q function in

logarithmic scale. Bottom, from left to right: Wigner functions
for a mixture of coherent states ⇢̂↵ =

1
2 (|↵ih↵|+ |�↵ih�↵|), its

Q function in linear scale and its Q function in logarithmic scale.

2.2.2.4 Generalized Q functions

The notion of Q function can be generalized by replacing the vacuum
state |0ih0| in Eq. (2.65) by an arbitrary density matrix �̂:

Q�̂

⇢̂ (↵) =
1

⇡
Tr

⇣
�̂D̂(�↵)⇢̂D̂(↵)

⌘
. (2.79)

It is straightforward to generalize Eq. (2.67) to

Q�̂

⇢̂ = W ⇢̂ ⇤W �̂ (2.80)

where W �̂ is the Wigner function of the state �̂.
As both �̂ and D̂(�↵)⇢̂D̂(↵) are density matrices, this is the trace

of the product of two positive operators, which is always positive.
This property can be seen as the fact that the average value of an
observable with only positive outcome (such as a density matrix) is
always positive. This gives a much stronger property to the Wigner
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function: its convolution with any Wigner function representing a
quantum state is positive.

For example, as in [39], generalized Q�̂ functions for �̂ = |nihn|

can be measured in a cavity using a dispersively coupled qubit. With
these states, the measurement can be understood intuitively: it is the
probability of finding n photons in the state displaced by ↵, which
provides an experimental protocol to measure Q�̂ functions.

The most interesting choice studied in this thesis consists in taking
|�ih�| = Ŝ(⇣) |0ih0| Ŝ(�⇣) a squeezed vacuum state. This function is
crucial to understanding the statistics of the measurement outcomes
discussed in Chap. 3, in particular in the experimental implementation
of homodyne measurements.

The equation (2.80) simply gives

Q⇣

⇢̂
= W ⇢̂ ⇤W

⇣

|0i. (2.81)

Instead of taking the convolution with a symmetric Gaussian function,
we use a squeezed one. An example is shown in Fig. 2.7a. In black,
the P distribution P |↵i of a coherent state |↵i = 1 + i. In red, its
Wigner function W |↵i. It is a Gaussian distribution with quadrature
standard deviations �xW = �PW = �0 = 1/2, with �0 that of
the vacuum state. In blue, its Husimi Q distribution, obtained by
convolution with the Wigner function of the vacuum state W |0i. The
result is a Gaussian function with quadrature standard deviations
�xQ = �PQ =

q
�x2

W
+�

2
0
= 1/

p
2. In green, its generalized Q

function obtained by convolution of the Wigner function W Ŝ(⇣)|0i of
a squeezed vacuum state, plotted in fainter red. In this example, the
squeezing factor ⇣ is ⇣ = log(2). Q⇣

⇢̂
is a Gaussian distribution, whose

quadrature standard deviations are �x
Q

⇣
⇢̂
=

q
�x2

W
+ (�0e�⇣)2 =

p
5/4 and �P

Q
⇣
⇢̂
=

q
�P 2

W
+ (�0e⇣)2 =

p
5/2.

The properties given by Eq. (2.57) and (2.58) can be thought of as a
limit where r goes to infinity in Eq. (2.81) for ✓ = 0 and ✓ = ⇡: as one
quadrature gets infinitely squeezed, the Husimi Q function becomes
essentially a 1D distribution on the other quadrature, given by the
modulus square of the wavefunction expressed in this quadrature.
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2.2 representation of quantum states

Figure 2.7: P distribution P |↵i, Wigner function W |↵i, Q function Q|↵i and
generalized Q function Q⇣

|↵i of a coherent state |↵i = |1 + ii with
⇣ = log(2). The latter is obtained by convolving W |↵i with the
Wigner function of the squeezed vacuum W Ŝ(⇣)|0i.

A second way of picturing this transformation gives an intuition
of what is measured with a phase-sensitive amplifier, as developed in
Sec. 3.2.3. The equation (2.79) gives, for a squeezed vacuum state:

Q⇣

⇢̂
(�) =

1

⇡
Tr

⇣
Ŝ(⇣) |0ih0| Ŝ(�⇣)D̂(��)⇢̂D̂(�)

⌘
. (2.82)

Using the invariance of the trace by permutation, inserting
Ŝ(⇣)Ŝ(�⇣) = 1 and using Eq. (2.38) gives

Q⇣

⇢̂
(�) =

1

⇡
Tr

⇣
|0ih0|Ŝ(�⇣)D̂(��)Ŝ(⇣)Ŝ(�⇣)⇢̂Ŝ(⇣)Ŝ(�⇣)D̂(�)Ŝ(⇣)

⌘

= Tr

⇣
|0ih0| D̂(��)Ŝ(�⇣)⇢̂Ŝ(⇣)D̂(�)

⌘

= QŜ(�⇣)⇢̂Ŝ(⇣)(�),

(2.83)

with

� = cosh(r)� + sinh(r)ei✓�⇤. (2.84)

The inverse change of variable is given by

� = cosh(r)� � sinh(r)ei✓�⇤. (2.85)
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Q⇣

⇢̂
can thus geometrically be obtained by squeezing the Wigner func-

tion of ⇢̂ by �⇣, (which gives the Wigner function of Ŝ(�⇣)⇢̂Ŝ(⇣)),
convolving with the Wigner function of the vacuum state (which gives
the Q function of Ŝ(�⇣)⇢̂Ŝ(⇣)), and scaling it back as a function of �
with the change of variable � ! � with � = cosh(r)� � sinh(r)ei✓�⇤.
The procedure is pictured in Fig. 2.8. Thus, the Husimi Q function of
the (inversely) squeezed states gives, up to a coordinate change, the
same distribution as the generalized Q function.

Figure 2.8: Alternative way of obtaining the generalized Q function Q⇣
|↵i

from the Wigner function W |↵i with ↵ = 1 and ⇣ = log(2) as
an example. (a) First steps of the transformation. The state is
squeezed with parameter �⇣, which gives the Husimi Q function
QŜ(�⇣)|↵i of this squeezed state. (b) Last step: the change of co-
ordinates � = cosh(r)�� sinh(r)ei✓�⇤ gives Q⇣

|↵i from QŜ(�⇣)|↵i.
We plot again W |↵i for reference.

2.3 propagating modes

Resonant modes are the main systems studied in cavity QED. Control-
ling and measuring them requires sending them signals and measuring
what they emit back. In the domain of superconducting circuits, this
is done with transmission lines, generally in the form of coaxial cables
or coplanar waveguides. As these signals are non-classical in general,
a fully quantum description of the transmission line is needed. The
transmission line is a peculiar medium through which the photons
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propagate and can be thought of as the reduction to one dimension
and one polarization degree of freedom of the free electromagnetic
field. It leads to one-dimensional quantum optics, whose results can
be generalized to more degrees of freedom. The full quantization pro-
cedure described here for the transmission line can be found in [40–42].
We will here highlight the main steps leading to this quantization. We
will then present the mode structure of the transmission line, which
will be the basis of the analysis done in the next chapters. A very
detailed quantum optics review on the modal structure of light can be
found in [43].

2.3.1 Quantization of the transmission line

To quantize the transmission line, the approach is similar to that of the
LC oscillator. We can build a telegraph model for the transmission line
by seeing it as the continuum limit of a series of small LC resonators,
with inductance per unit length l and capacitance per unit length c.
This line is characterized by its characteristic impedance Zc =

q
l

c

and traveling wave velocity v =

q
1

lc
.

Following the infinitesimal model of Fig. 2.9, we define the local flux
�(x, t) and the charge density q(x, t) relatively to the local current
I(x, t) and voltage V (x, t):

�(t) =

Z
t

�1
V (x, t0)dt0

q(t) =

Z
t

�1

@I

@x
(x, t0)dt0.

(2.86)

The voltage at a node can be written as the sum of two counter-
propagating voltage waves:

V (x, t) = V!(x, t) + V (x, t). (2.87)

The right-and left-propagating voltage waves obey

v@tV
�
(x, t)± @xV

�
(x, t) = 0, (2.88)

where v is the light velocity in the line. The right- and left propagating
voltages are then entirely determined by either all the V �

(0, t) or
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V �
(x, 0): they propagate at speed v without any dispersion. We can

write

V �
(x, t) = V �

(x = 0, t⌥
x

v
) = V �

(x⌥ vt, t = 0) ⌘ V �
(⌧⌥)

(2.89)

where we defined here ⌧⌥ = t ⌥ x

v
the only degree of freedom of

V �
(x, t).

Figure 2.9: Telegraph model for a portion of transmission line.

In the canonical quantization of the transmission line, q(x, t) and
�(x, t) are promoted to operators verifying the commutation relation

�(x, t) ! �̂(x, t)

q(x, t) ! q̂(x, t)

[�̂(x, t), q̂(x0, t)] = i~�(x� x0).

(2.90)

We can now express V � as operators V̂ �, and define the standard
creation and annihilation field operators of the transmission line in
frequency

â�[!] =

s
2

~|!|Zc

V̂ �
[!] (2.91)
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where V̂ �
[!] = 1p

2⇡

R
+1
�1 V̂ �

(⌧)ei!td⌧ . The only non-zero commuta-
tion relations for â�[!] are:

[â![!], â![!0]†] = sign[!]�(! � !0) (2.92)
[â [!], â [!0]†] = sign[!]�(! � !0). (2.93)

It verifies â![�!] = â![!]†, which can be interpreted as the fact that
annihilating a photon2 with negative frequency amounts to creating
a real photon with positive frequency. With these operators, we can
write the Hamiltonian of the line as tha Hamiltonian of a collection of
harmonic oscillators:

Ĥ =

Z
+1

0

~!
2

⇣�
â![!], â![!]†

 
+
�
â [!], â [!]†

 ⌘
d!.

(2.94)

The brackets {.} here stand for the anti-commutator. The voltage
operator as a function of â![!] reads

V̂ �
(⌧) =

r
Zc~
4⇡

 Z
+1

0

p
!â�[!]e�i!⌧d!

+

Z
+1

0

p
!â�[!]†ei!⌧d!

!
.

(2.95)

We can define the time domain counterpart of â![!] as

â�(⌧) =
1

p
2⇡

Z
+1

0

â�[!]e�i!⌧d! (2.96)

where the integral is taken only on positive frequencies, i.e. the domain
where â�[!] is an annihilation operator: only positive frequency (or
energy) excitations can exist in the line. This is the time-domain
bosonic annihilation field operator, and its commutation relations read

[â�(⌧), â�(⌧ 0)†] =
1

2

⇣
1

i⇡
p.v.

⇣
1

⌧ � ⌧ 0

⌘
+ �(⌧ � ⌧ 0)

⌘
. (2.97)

The bosonic counterpart of the voltage is the real quadrature of â�(⌧)

defined as

x̂�(⌧) =
�
â�(⌧) + â�(⌧)†

�
. (2.98)

2 We loosely call photons the excitations of the line, even if it can also be described
as plasmons.
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This field is conceptually different from the voltage V̂ �. As the latter
allows to directly write the Hamiltonian in the time domain

Ĥ =
1

Zc

Z
+1

�1

⇣
V̂!(⌧)2 + V̂ (⌧)2

⌘
d⌧, (2.99)

the one described by x̂� is linked to the bosonic field, which describes
the transmission line in terms of mode occupation. The photon number
operator reads

N̂ =

Z
+1

�1

�
â!(⌧)†â!(⌧) + â (⌧)†â (⌧)

�
d⌧

=

Z
+1

0

�
â![!]†â![!] + â [!]†â [!]

�
d!.

(2.100)

We can note here that because of the factor ~! in the definition of
â�[!] in Eq. (2.91), states that have finite energy can have an infinite
number of photons, in particular close to zero frequency: a constant
voltage pulse has a diverging number of photons.

The two fields x̂� and V̂ � are related in a non-trivial way: we
cannot avoid going through a Fourier transform, scale it by !, and
coming back to the time domain to get x̂(⌧)� from V̂ �

(⌧). It means
that they are not related causally [44], i.e. we theoretically need the
values for all times of V̂ � to compute each x̂(⌧)�. This non-causal
relation between these two fields leads to paradoxical ascertainments:
one cannot both localize the energy and the number of photons in time.
As shown in [45], if a microwave pulse has a perfectly localized voltage
shape, as it is typically the case in the experiment since they have a
finite duration, the bosonic field quadrature x̂� cannot be localized.
In particular, it means that one can theoretically detect photons after
the end of a voltage pulse, or even more troubling, before it started.
This comes from the fact that the notion of position wavefunction
for a photon is not well defined in general [46]. The very notion of
time-resolved photon detector is thus ill-defined.

These effects are non-negligible only if the bandwidth of the signals
is comparable to their average frequency. In most of the experiments
performed in quantum optics, the signals are comprised in a bandwidth

46



2.3 propagating modes

�! centered around a frequency !0 such that �! ⌧ !0. In this regime,
we can approximate Eq. (2.95) by integrating only inside the bandwidth

V̂ �
(⌧) '

r
Zc~!0

4⇡

 Z
!0+

�!
2

!0��!
2

â�[!]e�i!⌧d!

+

Z
!0+

�!
2

!0��!
2

â�[!]†ei!⌧d!

!
.

(2.101)

In the context of the Wigner-Weisskopf approximation [40], we can
integrate again over the whole set of frequencies (equivalent to taking
the bandwidth �! go to infinity again) to get

V̂ �
(⌧) '

r
~!0Zc

2
x̂�(⌧). (2.102)

The voltage is now directly proportional to the bosonic quadrature. We
have to keep in mind that this is true only in the bandwidth set by �!.
In standard microwave setups, the center frequency is typically defined
by the local oscillator and the bandwidth by the mixers, analog-to-
digital converter (ADC), and digital-to-analog converter (DAC) or
simply filters. The mixers convert the signals from an intermediate
frequency to a radio frequency and vice versa, so that the pulses
generated and measured fit in the bandwidth of the DAC and ADC.
Secs. 4.2.2, 6.10.2 detail a typical microwave setup. In these sections,
Figs. 4.5 and 6.9 show typical wiring schemes.

Furthermore, it is often convenient to work in a rotating frame at
frequency !0/2⇡, which amounts to performing the transformation
â�(⌧) ! â�(⌧)ei!0⌧ and â�[!] ! â�[! + !0]. In this frame, â�(⌧)

reads

â�(⌧) =
1

p
2⇡

Z
+1

�!0

â�[!]e�i!⌧d!

'
1

p
2⇡

Z
+1

�1
â�[!]e�i!⌧d!.

(2.103)

It is then common to approximate !0 to infinity. In this approximation,
the zero frequency is set to !0. We thus recover

â�[!] =
1

p
2⇡

Z
+1

�1
â�(⌧)ei!⌧d⌧ (2.104)

â�(⌧) =
1

p
2⇡

Z
+1

�1
â�[!]e�i!⌧d!. (2.105)
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â�(⌧) and â�[!] are thus proper Fourier transform of each other and
have the expected commutation relations

[â�[!], â�[!0]†] = �(! � !0) (2.106)
[â�(⌧), â�(⌧ 0)†] = �(⌧ � ⌧ 0). (2.107)

Within this approximation, all frequencies are equivalent, and the
symmetry around ! = 0 does not exist anymore. It allows to recover
the notion of the wavefunction of a photon [47], which gives a lot of
intuition about the way quantum signals propagate in the line.

2.3.2 Mode structure of the transmission line

We now stick to only one direction of propagation and note â = â�. All
derivations made here can be applied to either direction of propagation.

We built â(⌧) and â[!] the time and frequency domain annihilation
field operator. We can think of â(⌧)† as the operator "creating" a
photon at time ⌧ and of â[!]† as the operator creating a photon of
frequency !. However, in practice, a photon is created within a certain
linewidth: let f(⌧) be an element of L2

(R,C), the space of complex
functions whose modulus square is integrable on R. We can build

Âf =

Z
+1

�1
f(⌧)⇤â(⌧)d⌧ =

Z
+1

�1
f [!]⇤â[!]d! (2.108)

where f [!] = 1p
2⇡

R
+1
�1 f(⌧)ei!⌧d⌧ is the Fourier transform of f .

If
R
+1
�1 |f(⌧)|2d⌧ = 1, then Âf is a standard bosonic operator:

[Âf , Â
†
f
] = 1 (2.109)

[Âf , Âf ] = 0 (2.110)

We can build Â†
f
|vaci a single-photon state in the transmission line,

and think of f(⌧) as the "wavefunction" of the photon [47]. This works
precisely thanks to the narrow-band approximation performed before.
In particular, |f(⌧)|2 can be thought of as the probability density of
detecting a photon at time ⌧ with a detector placed at x = 0, or
conversely, the probability of detecting a photon at x = v⌧ at t = 0,
which gives an intuition of what a propagating mode is. However, this
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concept has to be manipulated with care, as it is hard to extend it to
more than one photon [40].

The value f(⌧) is then expressed in
p
Hz and represents one prop-

agating mode of the transmission line. A multiphoton state with n

photons can be built by multiple applications of â†(⌧) on the vacuum
state:

| i =

ZZ
...

Z
f(t1, t2, ..., tn)â

†
(t1)â

†
(t2)...â

†
(tn)dt1dt2...dtn,

(2.111)

or alternatively in the frequency domain:

| i =

ZZ
...

Z
f [!1,!2, ...,!n]

⇤â†[!1]â
†
[!2]...â

†
[!n]d!1d!2...d!n,

(2.112)

where f [!1,!2, ...,!n] is given by the multidimensional Fourier trans-
form of f . Although f could theoretically be any distribution such
that | i is a normalized state, we stick here to f 2 L2

(Rn,C), which
is enough to capture any state that can be produced experimentally.
f can be decomposed on the basis of L2

(Rn,C) comprised of product
elements of an orthonormal basis {gn} of L2

(R,C):

f(t1, t2, ..., tn) =
X

(k1,k2,...,kn)2Nn

⌫(k1,k2,...,kn)
Y

n

gk1(t1)gk2(t2)...gkn(tn).
(2.113)

Here, ⌫(k1,k2,...,kn) are discrete complex coefficients. We can now fac-
torize the integrals to write

| i =

 
X

(k1,k2,...,kn)2Nn

⌫(k1,k2,...,kn)

nY

l=1

Â†
gkl

!
|vaci . (2.114)

Here, we have that for u, v 2 L2
(R,C), Âu and Âv verify:

[Âu, Â
†
v] =

⇣Z +1

�1
u(t)⇤v(t)dt

⌘
1 = (u · v)1

[Âu, Âv] = 0

(2.115)

Thus, if f · g = 0, then Âf and Âg correspond to independent propa-
gating modes. In Eq. (2.114), | i is then expressed as a function of
the creation operators of n independent modes.
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In general, any state | i is an infinite superposition of such multi-
photon states | ni with n photons each:

| i =

X

n

 n | ni (2.116)

The study of the modes of the transmission line can thus be reduced
to that of a discrete number of modes. Formally, it amounts to writing
the Hilbert space H of the transmission line as

H =

1O

n=0

Hn (2.117)

where each Hn is the Hilbert space of the mode represented by gn.
Thus, any state can be written as

| i =

X

k1,k2,...

 k1,k2,...
|k1i ⌦ |k2i ⌦ ... (2.118)

These properties are summarized in Fig. 2.10. As an example, the
modes of the transmission line can be decomposed in the time-
frequency Hermite-Gauss basis, well known in optics. In the spatial
domain, they can be used in quantum metrology for optical source
separation [48–50], and allow beating the Rayleigh criterion. In the
time-frequency domain, they are a basis used to demonstrate quantum
communication protocols [51, 52]. In Fig. 2.10, they are shifted in
frequency to illustrate the fact that the signals of interest are centered
around a nonzero frequency.

The expansion given Eq. (2.114) depends on the chosen basis and
can be tedious to write in a basis that is not adapted. However, given
⇢̂ a (possibly mixed) state of the transmission line, there exists a
way to find the sparsest way to represent the state. This is known in
statistics as the Karhunen-Loève expansion, and it uses the first-order
correlation function defined as [53, 54]:

G1(t1, t2) = hâ†(t1)â(t2)i. (2.119)

We can diagonalize this function and sort the eigenvalues in decreasing
order:

G1(t1, t2) =
X

k

nk⌫k(t1)
⇤⌫k(t2), (2.120)
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Figure 2.10: Description of the right-propagating transmission line as a dis-
crete collection of harmonic oscillators, each of them describing
a propagating mode, represented by gk, of the transmission
line. Here, the gk are elements of the Hermite-Gauss basis. Real
parts are represented by solid lines, and imaginary parts are
represented by fainter colors. The Hilbert space of the system
H reads as the tensor product of the Hilbert spaces Hk of each
of these modes.

with n0 � n1 � n2 � ... � 0 the eigenvalues, and {⌫k} the correspond-
ing eigenmodes. The value nk is the average number of photons in the
mode defined by ⌫k. We call a state that verifies nk�1 > 0 a monomode
state. Coherent states and single-photon states are examples of such
states. A state that has n1 6= 0 cannot be expressed as a function of
a single mode and is called a multimode state. It comes out of this
analysis that the multimode character of the states of the transmission
line is not related to a peculiar choice of basis but is rather intrinsic.
The light scattered by a non-linear device is generally multimode. A
few examples are studied in Sec. 2.4.2.
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2.3.3 Time and frequency operators

The space of the mode functions is then the space of normalized ele-
ments of L2

(R,C), which is a Hilbert space. Two important operators
in this space are the time operator and frequency operator, defined as

(⌧̂f)(⌧) = ⌧f(⌧) (2.121)
(!̂f)[!] = !f [!]. (2.122)

These two operators are the generators of frequency and time transla-
tion operators defined as

T �! = e�i�!⌧̂ (2.123)
T�⌧ = ei!̂�⌧ (2.124)

that act on L2
(R,C) the following way:

(T �!f)[!] = f [! ��!] (2.125)
(T �!f)(⌧) = f(⌧)e�i�!⌧ (2.126)

and

(T�⌧f)(⌧) = f(⌧ ��⌧) (2.127)
(T�⌧f)[!] = f [!]ei!�⌧ . (2.128)

We can also check that [⌧̂ , !̂] = 1. The algebra on the functions of
the modes is the same as the standard algebra for the position and
momentum of a single (massive) particle. The mode functions can
then be seen as wavefunctions for a single photon [47]. Their modulus
square |f |2(⌧) gives the probability of detecting the photon at time ⌧ ,
and conversely |f |2[!] the probability of detecting it with a frequency
!.

The action of time and frequency operators on the states of the trans-
mission line is described by their corresponding quantum operators ⌧̂

and !̂ [55]

⌧̂ =

Z
+1

�1
⌧ â†(⌧)â(⌧)d⌧ (2.129)

!̂ =

Z
+1

�1
!â†[!]â[!]d!. (2.130)
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Applying it on single photon states, one gets the observables associ-
ated to the arrival of the photon respectively on a time-resolved and
frequency-resolved photon detector. They are also the generators of
the frequency and time translation quantum operators

T̂ �! = e�i�!⌧̂ (2.131)
T̂�⌧ = ei!̂�⌧ . (2.132)

The effect of T̂�⌧ on a multiphoton state | i defined as in Eq. (2.111)
is such that

T̂�⌧ | i =

ZZ
...

Z
f(t1 ��⌧, t2 ��⌧, ..., tn ��⌧)

⇥ â†(t1)â
†
(t2)...â

†
(tn)dt1dt2...dtn

(2.133)

which corresponds to the expected effect consisting of translating the
wavepacket in time. Conversely, we can see the effect of T̂ �! in the
frequency domain as

T̂ �! | i =

ZZ
...

Z
f [!1 ��!,!2 ��!, ...,!n ��!]

⇥ â†[!1]â
†
[!2]...â

†
[!n]d!1d!2...d!n

(2.134)

which is the operation corresponding to frequency conversion.
The operators ⌧̂ and !̂, when restricted to single-photon states,

follow the canonical commutation relation [⌧̂ , !̂] = 1. Thus, they
generate the same algebra as the usual algebra obtained with the stan-
dard position and momentum operators. This formalism is developed
in the work of Descamp and coworkers [55] to explore the resources
offered by single photon propagating modes in quantum metrological
tasks. This approach is quite similar to the Wigner function approach
that was described in [56] for single electrons in quantum Hall edge
channels. It illustrates the fact that single photons can be treated
similarly to single electrons (up to their different fermionic and bosonic
nature) despite the theoretical difficulties arising when trying to define
a proper wavefunction for the photon. Some results obtained in [55]
will be used in Sec. 5.4.
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2.4 coupling stationary and propagating modes

Quantum systems need to be opened to the environment in order both
to be manipulated and to be probed. In the context of the Lindblad
equation, the environment is traced out, which allows us to recover an
average quantum trajectory for the system. However, it gives up the
description of the environment, which is necessary to understand what
is measured and what back-action is performed on the system. The
Quantum Langevin equation offers a very convenient description of the
interaction between a high-quality oscillator and a bath. This equation
is central in our work, as it allows us to establish that any state
prepared in a linear cavity ends up completely transferred into one
mode of the transmission line. The framework that we just presented,
coupled with the theory of measurements presented in Chap. 3, allows
us to fully interpret the experiment presented in Chap. 4.

2.4.1 Quantum Langevin equations

The simplest way to open a closed system, such as a qubit or a cavity, is
to couple it to a transmission line. Standard coupling schemes are either
capacitive or inductive. Fig. 2.11 shows a typical capacitive coupling
between a transmission line and a harmonic oscillator. The goal here
is to give the main steps leading to the Quantum Langevin Equation,
which is an equation in the Heisenberg picture for â connecting it to
âin and âout.

The Hamiltonian of the system {oscillator + transmission line} reads

Ĥ = Ĥosc + Ĥline + Ĥint (2.135)

with

Ĥline =

Z
+1

0

~!
�
â†
in
[!]âin[!] + â†

out
[!]âout[!]

�
d!, (2.136)

with âin and âout the ingoing and outgoing time annihilation operators
of the transmission line. They correspond to the â� of Sec. 2.3.1. The
Hamiltonian of the system is left unspecified, as this equation also
applies to a wide range of non-linear systems. The interaction is, in
general, a linear coupling between one quadrature of the oscillator and
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one quadrature of one of each mode of the line (including both field
directions "in" and "out"). Up to a phase, we can take as in [40] the
example of a coupling g(!), between quadratures of â� â†, âin + â†

in

and âout + â†
out

, that we here take real.

Ĥint =

i~
Z

+1

�1
g(!)(â� â†)(âout[!] + âin[!] + â†

out
[!] + â†

in
[!])d!.

(2.137)

The first step here consists in making a rotating wave approximation.
Ĥint becomes

Ĥint =

i~
Z

+1

�1
g(!)â(â†

out
[!] + â†

in
[!])� â†(âout[!] + âin[!])d!.

(2.138)

The second step is to make another Markov approximation: the cou-
pling g(!) is assumed to be constant over the relevant range of fre-
quencies of the system: g(!) =

p


2
. The Heisenberg equation for â

thus reads

@tâ(t) =
i

~ [Ĥsys, â]�

p


2
(âin(t) + âout(t)). (2.139)

Boundary conditions at x = 0 give:

âout � âin =
p
â (2.140)

which gives

@tâ(t) =
i

~ [Ĥsys, â]�


2
â(t)�

p
âin(t) (2.141)

the Quantum Langevin Equation written as a function of the incoming
field âin. It can alternatively read as a function of the outgoing modes

@tâ(t) =
i

~ [Ĥsys, â] +


2
â(t)�

p
âout(t). (2.142)

In the capacitive case described in Fig. 2.11, the coupling strength 
can be found from a (classical) equivalent circuit in the regime where
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Figure 2.11: Capacitive coupling of a harmonic oscillator to a transmission
line.

ZcCg ⌧ 1 and C � Cg, where the capacitance and the transmission
line are replaced by a resistor with resistance R0 =

1

ZcC
2
g!

2

0

with

!0 =
1

LC
the frequency of the resonator. In this regime, we can get

the coupling strength  from [42]:

 =
1

R0C
=

ZcC2
g!

2
0

C
. (2.143)

2.4.2 Examples

Let us consider a simple case. At t = 0, a state | i is prepared in a
linear cavity. As in Eq. (2.9), the Hamiltonian of the system reads

Ĥsys = ~!0(â
†â+

1

2
). (2.144)

For t > 0, the system is left free to decay. The Quantum Langevin
Equation gives

@tâ(t) = �i!0â(t)�


2
â(t)�

p
âin(t). (2.145)

Solving this ordinary differential linear equation for â gives

â(t) = e�(

2
+i!0)tâ(0)�

p


Z
t

0

e�(

2
+i!0)(t�s)âin(s)ds. (2.146)
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Denoting ⇤̂in(t) =
p

R
t

0
e(


2
+i!0)sâin(s)ds, ⇤̂out(t) =

p

R
t

0
e(�


2
+i!0)sâout(s)ds and plugging this expression into

Eq. (2.140) gives

âout(t) =
p
e�(


2
+i!0)t

⇣
â(0)� ⇤̂in(t)

⌘
+ âin(t) (2.147)

=
p
e�(


2
+i!0)t

⇣
â(0)� ⇤̂in(t) + ⇤̂

0
in(t)/

⌘
(2.148)

Demodulating by e(�

2
+i!0)s and integrating gives for ⇤̂out(t):

p


Z
t

0

e(�

2
+i!0)sâout(s)ds = (1� e�t)â(0)

+

Z
t

0

e�s
⇣
⇤̂
0
in(s)� ⇤̂in(s)

⌘
ds

(2.149)

⇤̂out(t) = (1� e�t)â(0) +
h
e�s⇤̂in(s)

it
0

(2.150)

⇤̂out(t) = (1� e�t)â(0) + e�t⇤̂in(t) ���!
t!1

â(0). (2.151)

We can thus define

Â =
p


Z 1

0

e(�

2
+i!0)tâout(t)dt. (2.152)

the bosonic creation operator of a photon in the temporal mode of
shape e�


2
t and frequency !0/2⇡. Formally, we have Â = Âf as defined

in Eq. (2.108) where f(t) =
p
e(�


2
�i!0)t.

We can either check that all the orthogonal outgoing modes are
defined as a function of âin only (see Appendix B), assumed to be in
the vacuum state, or invoke the fact that this system conserves the
number of photons, as we can see from Eq. (2.138). It means that
the state of the cavity has been transferred to the mode defined by
f . Let | (0)i = F ?

| i(â
†
) |0i be the initial state of the cavity. The free

decay thus corresponds to creating a state | i = F ?

| i(Â
†
) |vaci in the

transmission line. An illustration of this process is shown in Fig. 2.12.
This state is then monomode. Actually, a linear cavity with dynam-

ical coupling (t) and frequency !0(t) can emit its initial state in an
arbitrary mode of the transmission line [57]. This also works the other
way around: one can perfectly "catch" an incoming mode and store
it in a linear cavity [58, 59]. Under the right conditions, one can use
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Figure 2.12: Scheme of the release of a state by a linear cavity. At t = 0, the
state is prepared in the cavity. At short time t . 1

 , the state
becomes an entangled state between the cavity and a single
mode of the line. At t � 1

 , the state has been fully transferred
to a mode of the line with envelope e�


2 ⌧ .

a tunable cavity to store the content of an incoming mode into spin
ensembles [60–62], which is a way to build- and communicate with- a
quantum memory in a quantum network [63, 64].

Reciprocally, if the incoming wavepacket is not monomode, then it
is impossible to load the whole content of the wavepacket into such
a cavity. A simple example of creation of such a multimode state is
given in [53]. They compare the case of a linear cavity whose frequency
is chirped in time to that of a non-linear cavity, exhibiting a non-
zero self-Kerr coefficient. They show, by diagonalizing the first-order
correlation function G1 defined Eq. (2.119), that the first case is still
monomode, while the latter is intrinsically multimode.

Another example of multimode light is the light scattered by a
qubit. In [65], Masters and coworkers study the light scattered by a
qubit that is coherently driven. In such experimental setups, the light
scattered by the qubit has three distinct spectral components (the
Mollow triplet [66]) centered around the drive frequency. By removing
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the spectral component around the drive frequency, which corresponds
to the coherent emission, they managed to experimentally demonstrate
that the resulting light consists of pairs of frequency-entangled photons
with distinct spectral features. We can write the state | i of such a
pair as

| i =

ZZ
f [!1,!2]â

†
[!1]â

†
[!2]d!1d!2 |vaci . (2.153)

Entanglement in frequency then means that we cannot factorize
f [!1,!2], which makes it impossible to write | i in the form | i =RR

f1[!1]f2[!2]â†[!1]â†[!2]d!1d!2 |vaci = Â†
f1
Â†

f2
|vaci. As a single

mode two-photon state is necessarily in the form Â†2
f0
|vaci, we can

conclude that the state is indeed multimode.
Note that, in general, multimode and entanglement are independent

notions. For example, if â and b̂ represent two independent modes,
â
†
+b̂

†
p
2

is also a bosonic operator. Applied on the tensor product of
the vacuum state for the two modes |0i ⌦ |0i, it creates a Bell state
| i =

|1i⌦|0i+|0i⌦|1ip
2

, which is a maximally entangled state in the
initial basis. Writing the state in the basis of the two orthogonal
modes represented by â

†
+b̂

†
p
2

, â†�b̂†p
2

, we recover that | i = |1i ⌦ |0i,
with no entanglement. Conversely, multimode light can perfectly be
non-entangled in a certain basis. As an example, populating two
orthogonal modes with exactly one photon each gives a product state
| i = |1i ⌦ |1i in the right basis. The notion of mode-intrisic or mode-
independent entanglement, or passive separability characterizes states
that are entangled in whatever mode basis [67]. Such states are crucial
to obtain a quantum advantage in bosonic quantum computation
[68]. A more general and detailed discussion about entangled and
multimode states of propagating light can be found in [43].
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3
QUANTUM MEASUREMENT OF MICROWAVE
MODES

Typical quantum measurements in the field of superconducting circuits
are essentially built on two key elements: voltmeters and amplifiers.
Voltage measurement is the most common measurement performed at
room temperature. The typical microwave setup essentially consists
of a digital-to-analog converter (DAC) to generate the controls of the
system and an analog-to-digital converter (ADC), which is essentially
a very fast voltmeter. Mixers and local oscillators are only here for
up- and down-conversion of the signals. The ADC, together with
quantum amplifiers, allow us to implement quantum homodyne and
heterodyne measurements, which are ubiquitous in quantum optics,
without the use of photon detectors. The goal of this chapter is to offer
a description of the full experimental measurement pipeline used in
the field of superconducting circuits and then to apply it to the most
standard measurement of the field, which is the dispersive readout of
a qubit.

3.1 quantum measurement of superconducting cir-
cuits

The goal here is to introduce the three main types of measurement
used in quantum optics: homodyne and heterodyne detection, and
photon detection. We will see that homodyne and heterodyne can be
considered as the same measurement performed in different regimes.
We will see that the standard measurements performed by room
temperature electronics can be viewed as heterodyne measurements,
whose outcome statistics are given by the Q function of the modes of
the line.
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3.1.1 Homodyne detection

A homodyne measurement at frequency !m of a propagating field is
defined as the measurement of

x̂(⌧) = ei(!m⌧�')â(⌧) + e�i(!m⌧�')â†(⌧). (3.1)

with ' and arbitrarily chosen phase. Given f0 a real-valued normalized
function of L2

(R,C), and f(⌧) = f0(⌧)e�i!0⌧ , we can define:

x̂f0 =

Z
+1

�1
f0(⌧)x̂(⌧)d⌧ = e�i'Âf + ei'Â†

f
. (3.2)

A homodyne measurement then measures the quadrature given by
ei' of each of the modes which can be written in the same form as f ,
i.e. that have a hermitian symmetry with respect to !0: f [!0 � !] =

f [!0 + !]⇤. This amounts to measuring all the modes, as we can
always find a basis {gn} of L2

(R,C) that has this property1. The x̂gn
then fully characterize the measurement process. A scheme of such
decomposition is shown in Fig. 3.2.

As an example, if the line is in the vacuum state, then the outcome
xgn of the x̂gn are uncorrelated Gaussian variables with the same
density of probability p0 given by p0(x) =

2

⇡
e�2x

2 . The outcome
x(⌧) of the measurement of x̂(⌧) is then a white noise, which can be
expressed using a Wiener process dW :

x(⌧) =
dW

d⌧
. (3.3)

In stochastic calculus, we can characterize a Wiener process by its in-
tegrals against L2 functions [69]. In general, the transform x̂ ! {x̂gn}

converts the continuous stochastic process corresponding to the homo-
dyne measurement into a discrete number of random variables. The

1 This property is the same as the one that allows to decompose any operator on
a two-level system on the Pauli basis {1, �̂x, �̂y, �̂z} of hermitian operators. We
can see it from the fact that any function f can be decomposed as the sum of a
hermitian part and an anti-hermitian part: f = f+f⇤

2
+ f�f⇤

2
. An anti-hermitian

function is a hermitian function in disguise: f�f⇤

2
= (if)+(if)⇤

2i , where (if)+(if)⇤

2

is a hermitian function. Thus, f can be decomposed as a complex sum of two
hermitian functions.

62



3.1 quantum measurement of superconducting circuits

Karhunen-Loève expansion is a particular case of such an expansion,
for which the basis {gn} is optimal in some sense [70].

We can then distinguish two cases. The first one is when the modes of
interest exhibit a hermitian symmetry in frequency around !0. This is
typically the case for a signal made of the fluorescence of a linear cavity
mode, example given Sec. 2.4.2, if !m = !0: the Fourier transform
of f(⌧) =

p
e�


2
⌧�i!0⌧ is f [!] =

p



2
+i(!�!0)

which is symmetric with

respect to !0. In this case, setting !m = !0 and f0(⌧) = e�

2
⌧ allows to

sample the quadrature e�i'â+ei'â† of the state prepared in the cavity.
This is the usual way homodyne measurement is understood: most of
the modes that are probed are symmetric with respect to a frequency
!0. Choosing !m = !0 amounts to performing a homodyne detection
of all these modes. This corresponds to the situation described in
Fig. 3.1a. The action on these modes is thus that of a projective
measurement of x̂f0 .

The shape of the populated itinerant modes can be experimentally
obtained using a Karhunen-Loève expansion. Given a sufficiently high
number of realizations of the experiment giving an ensemble {xk(t)} of
time traces, it is possible to build the correlation function hx̂(t1)x̂(t2)i.
As for the first-order correlation function G1 defined in Eq. (2.119),
we can diagonalize it by writing

hx̂(t1)x̂(t2)i =
X

n

�kgk(t1)gk(t2) (3.4)

where �0 � �1... > 0 are its eigenvalues sorted in decreasing order,
and the {gk} the corresponding eigenvector functions. They are an
optimal basis for analyzing the homodyne record [71].

3.1.2 Heterodyne detection

The second case is obtained when !m is far from !0 compared to the
bandwidth of the signals of interest: this is the case of heterodyne
measurement, pictured in Fig. 3.1b. The resulting signal, which is the
outcome of the measurement of x̂ is thus oscillating at a frequency
(!0 � !m)/2⇡, supposed to be large compared to the bandwidth of
the signal. In this regime, we can define two quadratures of the signal,
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accessible by demodulating the signal at the frequency of the carrier.
We can thus demodulate the signal by f(⌧)ei!m⌧ which gives

x̂f =

Z
+1

�1
f⇤(⌧)e�i!m⌧ x̂(⌧)d⌧

=

Z
+1

�1
f⇤(⌧)e�i'â(⌧)d⌧ +

Z
+1

�1
f⇤(⌧)e�2i!m⌧+'â†(⌧)d⌧

= e�i'Âf + ei'Â†
(f�2!m )⇤

(3.5)

where f�2!(⌧) = f(⌧)e2i!⌧ . If f is sufficiently localized around !0

(or if !m is sufficiently far from !0), then f · f�2!m ' 0. Heterodyne
detection thus implies two modes: the mode of interest plus another
independent mode. In this case, this mode is another mode of the
line at a different frequency. Assuming that all the modes outside
the bandwidth of interest are in the vacuum state, we can derive the
moments of x̂f , which allows us to identify the probability distribution
p of its outcomes. First, we can take ' = 0, as it only amounts to a
rotation of p, and write

x̂f = Âf + B̂†
f
. (3.6)

This corresponds to the most general form for x̂f . Indeed, some exper-
imental implementations, and in particular the experiments performed
with lasers, implement the heterodyne measurement as two homodyne
measurements performed after a beamsplitter operation [72]. In this
case, B̂f is introduced by the beamsplitter and simply represents a
mode that comes from the other side of the beamsplitter. In general,
this mode is also in the vacuum state.

Second, we can notice that x̂f is a non-hermitian operator, but
which commutes with its hermitian conjugate: [x̂f , x̂f †] = 0. We can
thus think of x̂f as being a complex observable, made of two real
commuting observables Re(x̂f ) and Im(x̂f ). These two observables
can be thought of as the two homodyne measurements involved when
implementing the heterodyne measurement with a beamsplitter.

As a consequence, when computing its moments Mnm as

Mnm = hx̂f
nx̂†m

f
i = h(Âf + B̂†

f
)
n
(Âf + B̂†

f
)
†m

i, (3.7)
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the ordering of x̂f and x̂†
f

does not change their value. We choose to
develop this expression, where all the terms are in normal order for Âf

and in anti-normal order for B̂f . Since the mode represented by B̂f

is in the vacuum state, any term involving B̂†j
f
B̂k

f
for j � 0 or k � 0

vanishes, leaving only

hx̂f
nx̂f

†m
i = hÂn

f Â
†m
f

i. (3.8)

The moments of x̂f are thus the anti-normally ordered moments of
Âf , which is the characteristic of the Q function Q

⇢̂,Âf
of the mode

represented by Âf (see Eq. (2.78)). Thus, p = Q
⇢̂,Âf

. We note P
⇢̂,Âf

(resp. W
⇢̂,Âf

and Q
⇢̂,Âf

) the P distribution (resp. the Wigner function
and the Husimi Q function) of the mode represented by the annihilation
operator Âf in the state ⇢̂. If the mode of interest is not ambiguous,
we stick to the notation used so far: P ⇢̂, W ⇢̂, and Q⇢̂.

The heterodyne measurement of the modes can be modeled as
a Positive Operator-Valued Measure (POVM). Each outcome ↵ is
associated with a measurement operator M̂↵ such that:

M̂↵ =
1
p
⇡
|↵ih↵| . (3.9)

The closure relation on the coherent states given in Eq. (2.40) givesR
C M̂ †

�
M̂�d

2� = 1. The heterodyne measurement can thus be thought
of as a POVM on the basis of the coherent states. The back-action
corresponding to the measurement outcome ↵ is thus to leave the state
in the coherent state |↵i [73].

As for the homodyne measurement, given {gn} a basis of the modes
of the transmission line, the measurement outcomes x(t) are fully
characterized by the outcomes xgn of x̂gn . The joint law of multiple
outcomes is given by the corresponding multidimensional Husimi Q
function (see Appendix B). A scheme of this demodulation procedure
is presented in Fig. 3.2.

The heterodyne measurement record can alternatively be presented
as a complex measurement record. Usually, in quantum optics, it comes
from the fact that the experimental setup consists in performing two
homodyne detections after a beamsplitter operation, which directly
gives the real part and the imaginary part of the heterodyne mea-
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surement record. With microwave modes, the complex measurement
record is obtained as follows. We replace x̂(t) by a discretized version:

x̂(t) !
1

�t

Z
t+�t

t

ei(!m�!0)⌧ x̂(⌧)d⌧. (3.10)

which corresponds to the action of a mixer which down-converts a
signal at !0 � !m to zero frequency (the homodyne detection already
performs a conversion from !0 to !0 � !m), followed by an ADC with
a finite bandwidth set by 1

�t
. Under the assumption that the modes of

interest are within a bandwidth  around !0, the new demodulated
signal x̂(t) keeps all the information available if  ⌧ 1/�t. Writing
ft(⌧) =

1p
�t
e�i(!0�!m)⌧ for t < ⌧ < t + �t, and ft(⌧) = 0 otherwise,

the condition 1

�t
⌧ |!0 � !m| gives |f · f⇤| ⌧ 1, and we can apply

Eq. (3.6) to write

x̂(t) =
1

p
�t
Âf (t) +

1
p
�t
B̂†

f
(t) (3.11)

We then have

[
1

p
�t
Âft ,

1
p
�t
Â†

ft0
] =

1

�t
�t,t0 ⇠

�t!0

�(t� t0) (3.12)

[
1

p
�t
B̂ft ,

1
p
�t
B̂†

ft0
] =

1

�t
�t,t0 ⇠

�t!0

�(t� t0) (3.13)

[
1

p
�t
Âft ,

1
p
�t
B̂†

ft0
] = 0 (3.14)

Note that �t,t0 is the Kronecker operator applied to t and t0, which is
equal to 1 if t = t0 and 0 otherwise. We suppose here that time is dis-
cretized in time bins of width �t. We can now make the coarse-graining
approximation that 1p

�t
Âft approximates well â(t) and that 1p

�t
B̂ft

is an approximation of b̂(t) an independent time bosonic operator, as
long as ⌧

1

�t
⌧ |!0 � !m|. Thus we can make the substitution

1
p
�t
Âft ! â(t) (3.15)

1
p
�t
B̂ft ! b̂(t), (3.16)

with [b̂(t), b̂†(t0)] = [â(t), â†(t0)] = �(t� t0). It gives

x̂(t) ' â(t) + b̂†(t) (3.17)
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which is now complex, and is the standard way of writing a heterodyne
measurement record.

Using this complex measurement record, we have hx̂(t)i = hâ(t)i,
and the first order correlation function, defined in Eq. (2.119)

G1(t1, t2) = hâ†(t1)â(t2)i

= hx̂(t1)
†x̂(t2)i � hb̂(t1)b̂

†
(t2)i,

(3.18)

which was already defined in Sec. 2.3.2. Using that the field described
by b̂ is in the vacuum state, it finally gives

G1(t1, t2) = hx̂(t1)
†x̂(t2)i � �(t1 � t2), (3.19)

As explained in Sec. 2.3.2, sorting the eigenvectors of G1 by decreas-
ing eigenvalues gives a preferential basis to analyze the heterodyne
measurement record, as it matches the mode structure of the measured
propagating state. In the case where the state of the line is a coherent
state, this state can be expressed as a monomode state. The shape
of the mode populated is given by hx̂(t)i. This much simpler way of
finding the optimal demodulation function works when the state is
monomode, defined by the function f and such that hÂf i 6= 0. This is
the approach used in Chap. 4.

3.1.3 Between homodyne and heterodyne

It seems that we can continuously go from the homodyne measurement
to the heterodyne measurement by shifting !m from !0 to ! away
from !0. A natural question is then: What happens in the in-between
case? This case is pictured in Fig. 3.1c.

We can start again from Eq. (3.5), and take !m = 0 for simplicity,
which corresponds to working in the frame rotating at !m. Furthermore,
we do the replacement f ! e�i'f , which corresponds to demodulating
with ei'f⇤ instead of only f⇤. In this frame, x̂f reads

x̂f = Âf + e2i'Â†
f⇤ . (3.20)

The condition for heterodyne measurement simply reads f · f⇤ = 0,
which we now assume is not necessarily true (see Fig. 3.1). We can
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quantum measurement of microwave modes

Figure 3.1: The difference between homodyne and heterodyne detection
lies in the mode probed. (a) Two examples of modes probed
by homodyne detection. For both blue and green modes, the
real part of the spectral function f [!] is symmetric with respect
to !m. Their imaginary part is anti-symmetric with respect to
!m. (b) Example of a mode probed by heterodyne detection.
The red mode is the mode of interest and is "mixed" with the
symmetric grey mode (generally in the vacuum state) for the
measurement. (c) Example of an in-between case where the mode
is not symmetric. The red mode (left) is mixed with the grey
mode, which has a finite overlap with the red one, giving a
"squeezed" heterodyne measurement.

decompose f⇤ as the sum of a function colinear to f and a function g

orthogonal to f :

f⇤ = (f · f⇤)f +

p
1� |f⇤ · f |2g, (3.21)

with

g =
f⇤ � (f · f⇤)fp
1� |f⇤ · f |2

. (3.22)

Using this decomposition, x̂f reads

x̂f = Âf + e2i'(f · f⇤)Â†
f
+ e2i'

p
1� |f⇤ · f |2Â†

g. (3.23)

Assuming that the mode corresponding to g is in the vacuum state,
we can replace e2i'Â†

g by a generic creation operator B̂† whose mode
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3.1 quantum measurement of superconducting circuits

is in the vacuum state. We can divide both sides by
p

1� |f⇤ · f |2

which gives

x̂fp
1� |f⇤ · f |2

= �Âf + µei'0Â†
f
+ B̂† (3.24)

where � = 1/
p
1� |f⇤ · f |2 and µ = e2i'(f · f⇤)/

p
1� |f⇤ · f |2. We

can check that |�|2 � |µ|2 = 1, which means that we can finally
parameterize these factors as � = cosh(r), µ = � sin(r)ei✓, and define
⇣ = rei✓:

cosh(r)x̂f = cosh(r)Âf � sinh(r)ei✓Â†
f
+ B̂†

= Â⇣
f
+ B̂†, (3.25)

where Â⇣
f
= Ŝ(�⇣)Âf Ŝ(⇣) is the squeezed creation operator of the

mode. Thus, up to the last change of coordinates made explicit in
Eq. (2.83), the measurement outcomes of the observable cosh(r)x̂f
are distributed along the law given by Q⇣

⇢̂,Âf
the generalized Husimi

Q function of the mode represented by f . Notably, it corresponds to
squeezing the state of the mode represented by f before measuring the
standard Husimi Q function. As we will see in Sec. 3.2.3, this corre-
sponds to the action of a phase-sensitive amplifier before a heterodyne
measurement.

We recover that the squeezing factor is 0 for (f · f⇤) = 0, which is
the case of heterodyne measurement

The other limit is a bit more tricky, as ⇣ ! 1 for |(f · f⇤)| ! 1,
which corresponds to an infinite squeezing. This can be interpreted
as one quadrature of the Wigner function getting convolved with
a Gaussian function with infinite width, which amounts to an inte-
gration on this quadrature. The other quadrature is convolved by a
Gaussian function with zero width, which amounts to being perfectly
conserved. The statistics of the second quadrature are thus given by
the corresponding marginal of the Wigner function, and we recover
the homodyne measurement case.

To summarize, as illustrated in Fig. 3.1, this measurement can be
viewed alternatively as the homodyne measurement of all the hermi-
tian modes of the line or as the heterodyne measurement of all the
modes on one side of !m providing that all the corresponding modes
on the other side are in the vacuum state. The word homodyne or
heterodyne thus depends on whether the modes of interest are in
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one regime or the other. The intermediate regime can be viewed as a
heterodyne measurement where the target mode has been squeezed, re-
covering homodyne measurement as an infinitely squeezed heterodyne
measurement. An illustration of this is shown in Fig. 3.7.

We can finally describe the demodulation procedure as in Fig. 3.2:
Demodulating the signal on a basis {gn} of L2

(R,C), one gets samples
each distributed according to the generalized Husimi Q function of
the corresponding mode of the transmission line. If we are well in
the heterodyne regime, then ⇣ = 0, and we sample the Q functions
of the modes. The joint law of the xgn is given by the corresponding
multidimensional Husimi Q function (see Appendix B). If the gn are
symmetric in frequency with respect to !m (gn[!m�!] = gn[!m+!]⇤),
then |⇣| = +1 and we sample one quadrature of each of the modes.
The joint law of the outcomes xgn is given by the corresponding
multidimensional Wigner function (see Appendix B).

3.1.4 Photon detector

Time-resolved photon detection is obtained by measuring the
observable â†(⌧)â(⌧), which obeys the eigenvalue relation
â†(⌧)â(⌧)â†(⌧ 0) |vaci = �⌧⌧ 0 â†(⌧ 0) |vaci. It corresponds to count-
ing the number of photons in an infinitely narrow region in time. For
a physical state of the transmission line, the modes are spread in
time. This implies that most of the time, 0 photons are found. As
the length of the time interval goes to zero, the probability of finding
more than one photon in the same interval vanishes, and we are left
with a discrete set of time values for which we detected 1 photon.
The outcomes of this operator are thus 1 ("click") or 0 (no "click")
for each time ⌧ . We recover a measurement of the total number of
photons when integrating it over all times:

N̂ =

Z
+1

�1
â†(⌧)â(⌧)d⌧. (3.26)
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Figure 3.2: Scheme of a demodulation procedure and its outcomes. The
temporal outcomes x(t) of a homodyne measurement x̂(t) at
frequency !m/2⇡ of the right-propagating modes of the line
are integrated against the conjugate functions of a basis {gn}
of L2

(R,C), here, the Hermite-Gauss basis with finite carrier
frequency. Real parts are represented by solid lines, and imaginary
parts are represented by fainter colors. Each resulting outcome
xgn follows the law given by the generalized Husimi Q function
of the corresponding mode, with a squeezing factor ⇣ given by
the spectral properties of the functions gn with respect to !m

(see Sec. 3.1.3).

We can also build a frequency-resolved photon detector by measuring
â†[!]â[!], which obeys the eigenvalue relation â†[!]â[!]â†[!0] |vaci =

�!!0 â†[!0] |vaci, and recover similarly

N̂ =

Z
+1

�1
â†[!]â[!]d!. (3.27)

Photon detectors are one of the building blocks of quantum optics
above the infrared domain [74]. They can be used to herald propagat-
ing non-classical states [75–77]. They are key to applications such as
quantum computing [78, 79]. They also allow us to perform more fun-
damental experiments, such as the demonstration of Bell inequalities
violation [80] or the demonstration of the commutation relations of
photonic creation and annihilation operators [81].
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Photon detectors in the microwave range are more challenging to
build owing to the five orders of magnitude lower energy of the photons,
which requires working at temperatures in the millikelvin range. Recent
progress in superconducting qubit-based photon detectors [82, 83]
enabled the detection of individual electron spins [84] and the detection
and manipulation of individual nuclear spins [85].

3.1.5 Voltage measurement

We will here derive an idealized model of measurement in the field
of superconducting circuits. One standard tool in RF measurement
modeling is the ideal voltmeter, placed in parallel with a resistor
R = Zc at zero temperature. Crucially, a correct quantum description
of the resistor is a semi-infinite transmission line with characteristic
impedance given by R (see Fig.3.3). The voltmeter thus measures the
observable

V̂ (⌧) = V̂ (⌧)! + V̂ (⌧) =

r
~!0Zc

2
(â!(⌧) + â!†

(⌧)

+ â (⌧) + â †
(⌧)),

(3.28)

which is the sum of the (rightward) propagating voltages coming
from the transmission line on the left and the (leftward) propagating
voltages coming from the resistor. Typical RF measurements involve
demodulating the signal at frequency !0 during a certain time t.

Z
t

0

ei!0⌧ V̂ (⌧)d⌧ =

Z
t

0

r
~!0Zc

2
ei!0⌧ (â!(⌧) + â!†

(⌧)

+ â (⌧) + â †
(⌧))d⌧.

(3.29)
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Figure 3.3: Scheme of the measurement of voltage and current measurement
of a coaxial transmission line. (a) Ideal voltage and current
measurement scheme. (b) Typical records of voltage and current
measurement. They can be modeled by continuous stochastic
processes. (c) An equivalent circuit obtained from the modeling
of the resistor by a semi-infinite transmission line.

As for the heterodyne case, we can demodulate by a complex function
f(⌧) which defines an observable

V̂f =

Z
+1

�1

r
~!0Zc

2
f⇤(⌧)

�
â!(⌧) + â!†

(⌧)

+ â (⌧) + â †
(⌧)

�
d⌧

=

r
~!0Zc

2

�
Â!f + Â!†

f⇤ + Â f + Â †
f⇤

�

=

r
~!0Zc

2

�
x̂!f + x̂ f

�

(3.30)

where x̂!
f

and x̂ 
f

are defined as in Eq. (3.5) for the right- and left-
propagating field for ' = 0. Here, !m is zero, as the voltmeter operates
in the laboratory frame.

Under the same approximations made so far, we have f · f⇤ ⌧ 1.
We are then in the regime of heterodyne detection. Thus, assuming
that the left-propagating modes are in the vacuum state (the resistor
has zero temperature) and that the modes outside the bandwidth of
interest in the right-propagating modes are also in the vacuum state,
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we get that V̂f is proportional to the sum of two independent complex
observables x̂!

f
and x̂ 

f
that commute. The outcomes of x̂!

f
follow

the law given by the Q function Q
⇢̂,Âf

of the mode of interest, and
x̂ 
f

that of the vacuum state Q|0i. The probability density p of their
sum is thus

p = Q
⇢̂,Âf

⇤Q|0i. (3.31)

An idealized voltage measurement at zero temperature is thus dis-
tributed along the Q function of the incoming modes, plus some noise
due to the vacuum fluctuations of the resistor. As we will see later, this
corresponds to a heterodyne measurement with quantum efficiency
⌘ = 1/2. One can get rid of this additional noise by adding an ammeter
on the other side of the voltmeter. As we can see from [42], it amounts
to measuring the current that reads

Î(⌧) =
1

Zc

⇣
V̂!(⌧)� V̂ (⌧)

⌘
=

r
~!0

2Zc

(â!(⌧) + â!†
(⌧)

�â (⌧)� â †
(⌧)).

(3.32)

We can check that [V̂f , Îf ] = 0, thus allowing us to measure both
simultaneously. Demodulating against f gives:

Îf =

Z
+1

�1

r
~!0

2Zc

f0(⌧)e
i!0⌧

�
â!(⌧) + â!†

(⌧)

� â (⌧)� â †
(⌧)

�
d⌧

=

r
~!0

2Zc

�
Â!f + Â!†

f⇤ � Â f � Â †
f⇤

�

=

r
~!0

2Zc

�
x̂!f � x̂ f

�
.

(3.33)

We can then reconstruct x̂!
f

as

x̂!f =

s
2

Zc~!0)
V̂f +

r
2Zc

~!0

Îf , (3.34)

which describes a heterodyne measurement. Strikingly, the state of
the resistor does not matter anymore as we can separately measure
right- and left-propagating modes.
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Hence, there is no way to perform direct homodyne measurement on
the field with a voltmeter, as we are stuck to !m = 0. Furthermore, in
practice, the detectors themselves are noisy, and the signal is polluted
by modes in a thermal state T ' 300 K on the way to the detector.
For !0/2⇡ usually between 1 and 10 GHz, it corresponds to convolving
with a much broader Q function given by Eq. (2.73). At 5 GHz, the
Boltzmann factor ⌫ is equal to ⌫ = 1� 8⇥ 10

�4, which corresponds
to a Q function with a standard deviation 35 times larger than for
the vacuum state. The signal, in general made of a few photons, is
thus drowned in thermal fluctuations, which highlights the necessity
to amplify the signals before measuring them.

3.2 quantum amplifiers

We presented homodyne and heterodyne measurements and showed
that the use of a perfect voltmeter (ADC) naturally implements
a heterodyne measurement on the input modes. In practice, this
measurement, performed at room temperature, typically adds a lot
of noise compared to the zero-point fluctuations. Furthermore, losses
introduced by the lines and microwave components, and the finite
temperature of the lines also introduce noise. A solution to mitigate
the effect of this noise is to use quantum amplifiers, which we will
introduce in the following. The typical microwave measurement chain
is then described in Fig. 3.4. The noise added can be modeled by
beamsplitters along the line, which mix the input modes with modes
that are assumed to be in a thermal state. The noise introduced on
the measurement record is then a Gaussian noise. The goal of this
chapter is to understand the statistics of the integrated outcomes x0

f

obtained by the ADC when using quantum amplifiers, taking into
account these noise sources.

Along the measurement chain, the signal is attenuated, mixed with
spurious modes, and amplified, which can be cumbersome to take
into account in the statistics. In what follows, the goal is to establish
the statistics of the measurement outcomes xf obtained from the
experimental measurement outcome x0

f
referred to the input state. It

means rescaling x0
f

so that, if the input mode defined by f is in a
coherent state |↵i, the measurement outcome xf is such that its average
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xf is such that xf = ↵. This allows to treat losses, amplification, and
thermal noises in a unified way using a single parameter ⌘ called the
quantum efficiency.

Figure 3.4: Scheme of a microwave detection setup. (a) Typical microwave
detection setup comprises a quantum amplifier (QA), followed by
an amplifier at the 4 K stage of the fridge (generally a HEMT)
and room-temperature amplifiers, before being measured with a
voltmeter (ADC), usually after frequency conversion of the signal.
Losses on the line are represented by beamsplitters with trans-
parencies ⌘k and mix the probed modes with modes represented
by B̂k, which are in a thermal state. Imperfect amplification also
adds noise, represented by the B̂amp

k .

3.2.1 Beamsplitter

Losses along the line can be modeled as the action of a beamsplitter.
The effect of a beamsplitter with transparency ⌘ on the input state
is as follows: the input bosonic operator Âf is mixed with a mode B̂,
which gives the mode Â0

f
that reads

Âf ! Â0f =
p
⌘Âf +

p
1� ⌘B̂, (3.35)

where B̂ is a bosonic annihilation operator of an idler mode. Assuming
that this mode represented by B̂ is in the vacuum state, the normally
ordered moment hÂ

0†m
f

Â
0
n

f
i of Â0

f
read

hÂ
0†m
f

Â
0
n

f i =
p
⌘n+m

hÂf

†m
Âf

n

i. (3.36)
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The P distribution P
⇢̂0,Â0

f
of the mode Â0

f
is thus P

⇢̂,Âf
that of the

mode Âf scaled by p
⌘:

P
⇢̂0,Â0

f
(�) =

1

⌘
P
⇢̂,Âf

� �
p
⌘

�
= P ⌘

⇢̂,Âf
(�). (3.37)

The Wigner function W
⇢̂0,Â0

f
(�) of this new mode is obtained by

Figure 3.5: Scheme of a beamsplitter. The input mode represented by Âf

is mixed with a mode in the vacuum state, represented by B̂,
which forms a new bosonic operator Âf ’.

convolution with the Wigner function of the vacuum state

W
⇢̂0,Â0

f
= P

⇢̂0,Â0
f
⇤W |0i. (3.38)

In order to refer this Wigner function to the input Wigner function
W

⇢̂,Âf
, we rescale this Wigner function by 1p

⌘
, which we can write

W 1/⌘

⇢̂0,Â0
f

= P 1/⌘

⇢̂0,Â0
f

⇤W 1/⌘

|0i = P
⇢̂,Âf

⇤W |0i ⇤ pN = W
⇢̂,Âf

⇤ pN

(3.39)

where pN is a Gaussian function with variance �2
0

such that

�20 +
1

2
=

1

2⌘
(3.40)

obtained using W 1/⌘

|0i = W |0i ⇤ pN , which gives

�20 =
1� ⌘

2⌘
(3.41)

⌘ =
1

1 + 2�2
0

. (3.42)

Referred to the input mode, a beamsplitter with transparency ⌘ at
zero temperature thus corresponds to convolving the Wigner function
by a Gaussian function of variance �2

0
=

1�⌘
2⌘

.
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3.2.2 Phase-preserving amplifier

In general, a noisy measurement with Gaussian noise can be modeled
in the following way. The voltmeter at room temperature is giving
rescaled integrated outcomes xf following the probability density pf
such that

pf = Q
⇢̂,Âf

⇤ pN . (3.43)

where pN stands for an arbitrary Gaussian noise density of probability.
This noise is set by the microwave components, but it is at least given
by the room temperature noise, so that, to get pf close to Q

⇢̂,Âf
,

one needs to amplify the Q function. As we saw, the Q function of
the mode Âf gives the probability distribution of the measurement
of Âf + B̂† where B̂ is an independent mode assumed to be in the
vacuum state. A solution would then ideally consist of applying the
transformation Âf ! Â0

f
=

p
GÂf to amplify the Q function by

p
G. As [

p
GÂf ,

p
GÂ†

f
] = G, the commutation relations do not hold

anymore for G 6= 1. This transform amounts to uniformly scaling the
Wigner function in phase space. One way to understand why this is
non-physical is to see that any negative regions would be stretched as
well. Convolving with the Wigner function of the vacuum state could
then give negative regions, which is forbidden for Q⇢̂0 = W ⇢̂0 ⇤W 0.

In order to make it work, we need at least to introduce a third
bosonic operator B̂amp, and apply the transformation

Âf ! Â0f =

p

GÂf +

p

G� 1B̂amp†. (3.44)

This transformation is realized using two-mode squeezing. The two-
mode squeezing operator Ŝ2 is defined on two independent modes
represented by the annihilation operators â1 and â2 as

Ŝ2(⇣) = e
1

2
(⇣

⇤
â1â2�⇣â†1â

†
2
). (3.45)

Its action on â1 and â2 reads [86]

Ŝ2(�⇣)â1Ŝ2(⇣) = cosh(r)â1 � sinh(r)ei✓â†
2

(3.46)

Ŝ2(�⇣)â2Ŝ2(⇣) = cosh(r)â2 � sinh(r)ei✓â†
1
, (3.47)
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with ⇣ = rei✓. Note that we recover the single-mode squeezing operator
defined in Eq. (2.35) by setting â1 = â2.

Setting â1 = Âf , â2 = B̂amp, ✓ = ⇡ and G = cosh
2
(r), we obtain

Eq. (3.44). Assuming that the mode B̂amp is in the vacuum state,
we get the action of an ideal phase-insensitive (or phase-preserving)
amplifier. We can show with similar arguments as those given in
Sec. 3.1.2 to get Eq. (3.8) that the anti-normally ordered moments
Mnm of Â0

f
read

Mnm = hÂ
0
n

f Â
0†m
f

i

= h
�p

GÂf +

p

G� 1B̂amp†�n�pGÂf +

p

G� 1B̂amp†�†m
i

=

p

Gn+mhÂn

f Â
†m
f

i,

(3.48)

which corresponds to scaling the Husimi Q function by
p
G. In terms of

coordinates of the Q functions, the transformation given by Eq. (3.44)
then corresponds to

Q⇢̂(↵) ! Q⇢̂0 =
1

G
Q⇢̂(

↵
p
G
). (3.49)

This is illustrated in Fig 3.6. The Q function Q⇢̂0 (dark blue), associated
to the Wigner function (red) of a coherent state |↵i = |1 + ii, is simply
scaled by a factor

p
G, and gives the law of the measurement records

x0
f

obtained with the perfect ADC. For G large enough, any added
noise on the amplified Q function is negligible (convolving with pN
has almost no effect), and the rescaled measurement outcomes xf (to
refer it to the input mode) follow a law that is simply given by the
Husimi Q function of the mode.

For G big enough, the Husimi Q function is then amplified enough
to avoid distortion by the noise added after the amplifier, which allows
for a faithful heterodyne measurement of the input modes. This is
called phase-insensitive or phase-preserving amplifier, as this type of
amplification scales the signal irrespectively of its phase and does not
modify the average phase. It comes with the cost that this is the Husimi
Q function that is perfectly amplified and not the Wigner function.
This amounts to adding 1/4 to the variance of each quadrature of the
Wigner function before amplification, as is the case for heterodyne
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Figure 3.6: Phase-preserving amplification and measurement principle. Red:
Wigner function of a coherent state |↵i = |1 + ii. Dark blue: its
Husimi Q function Q|↵i. Light blue: Husimi Q function of state
obtained with a phase-preserving amplifier with gain G = 4.

detection compared to homodyne detection. If we are only interested
in one of them, using a phase-preserving amplifier amounts to adding
some noise at the input of the detector, introduced by the idler mode
represented by B̂amp. This can be thought of as a consequence of
the Heisenberg inequality: one cannot measure both quadratures of a
mode with infinite precision. Amplifying both amounts to choose to
measure both of them in some sense, hence coming with additional
noise. Here, this noise is minimal: this is known as the quantum limit
for phase-preserving amplifiers. Building such amplifiers is key to
faithful measurement and feedback control of quantum systems.

Note that the operation performed by the amplifier is unitary and
thus can be reversed: it renders the input state more robust to noise
when performing heterodyne measurement (by the ADC), but the
measurement does not happen at this point. As an example, in [87],
Flurin and coworkers use two phase-preserving amplifiers to demon-
strate how a phase-preserving amplifier entangles the signal mode
and the idler mode via two-mode squeezing. The analysis was done
using a second amplifier placed at the two outputs of the first one. In
particular, they show a setting allowing us to reverse the action of the
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first amplifier with the second one, leaving the signal and idler mode
both in the vacuum state after amplification and de-amplification.

The measurement operation happens after the amplifier. The descrip-
tion of the measurement process is still an open question in quantum
physics, and it is out of the scope of this work to answer it. In this
work, it is assumed to be performed by the room-temperature ADC,
modeled as an ideal voltmeter.

3.2.3 Phase-sensitive amplifier

The previous amplification scheme alone does not allow for homo-
dyne measurement. As explained in Sec. 3.1.3, obtaining a homodyne
measurement from a heterodyne measurement requires single-mode
squeezing. As a matter of fact, it corresponds to taking B̂amp

= Âf or
a rotated version B̂amp

= e�i✓Âf in Eq. (3.44). This gives

Âf ! Â0f =

p

GÂf +

p

G� 1ei✓Â†
f
. (3.50)

The commutation relations are preserved during this transforma-
tion. This corresponds to transforming Âf according to the single-
mode squeezing operator Ŝ(�⇣) with ⇣ = rei✓ = log

⇣p
G
⌘
ei✓ (see

Eq. (2.37)). The voltmeter outcome x0
f

then follows the Husimi Q
function of this scaled operator, which corresponds to the in-between
case discussed in Sec. 3.1.3. An example is shown in Fig. 3.7 with a
coherent state |↵i = |1 + ii and ⇣ = log 2. From the Wigner function
of |↵i in red, we see that phase-sensitive amplification enhances one
quadrature (x) and lowers the other (p) of the Wigner function W |↵ito
get a squeezed Wigner function W Ŝ(�⇣)|↵i. This amplification happens
before convolving with the Wigner function of the vacuum state to
obtain the Husimi Q function QŜ(�⇣)|↵i (dark green), which gives the
law of x0

f
. The amplified quadrature thus "survives" the convolution,

while the de-amplified one is drowned. To refer the measurement out-
come to the input mode, we can rescale the measurement records x0

f

to get xf = cosh(r)x0
f
� sinh(r)ei✓x

0⇤
f

, which follows the law given
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by the generalized Q function Qs⇣|↵i (Eq. (2.83)) whose quadrature
standard deviations read

�xQ⇣ =

r
�x2

W
+

1

4G
(3.51)

�pQ⇣ =

r
�p2

W
+

G

4
. (3.52)

We reach here a similar conclusion to Sec. 2.2.2.4: for sufficiently large
G, we get measurement records that follow a law that is very close
to the marginal of the Wigner function for the x quadrature and
something very noisy with no information on the p quadrature. A
large G value also allows us to overcome any additional noise. The
effect on the amplified quadrature would be negligible, and the one
on the de-amplified one harmless as this quadrature is already almost
pure vacuum noise from the convolution with the vacuum Wigner
function. Homodyne detection is thus achieved by a large gain phase-
sensitive amplifier followed by heterodyne measurement. The name
"phase-sensitive" here refers to the fact that incoming signals are either
amplified or de-amplified depending on their phase. In the example
shown in Fig. 3.7, a coherent state |↵i = |ii would be completely
de-amplified, whereas |↵i = |1i would be entirely amplified.

This amplifying operation is also unitary and thus can be reversed:
it only renders one quadrature of the input mode less sensitive to noise
when performing heterodyne measurement (by the ADC).

3.2.4 Quantum efficiency

In practice, the measurement outcomes can be polluted at any stage of
the setup due to the coupling of the elements of the line to unwanted
degrees of freedom (see Fig. 3.4). We will take into account here three
contributions to this noise. The first one is due to losses, modeled by
a beamsplitter of transparency ⌘k, which couples the line to modes
represented by the B̂k. The second one is the finite temperature of the
elements in the line, corresponding to having the modes represented by
B̂k in a thermal state. The last one is due to the noise of the various
amplifiers on the line, represented by the operators B̂amp

k
, which can

be in a thermal state. At room temperature, amplification typically
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3.2 quantum amplifiers

Figure 3.7: Phase-sensitive amplification and measurement principle. (a) Ac-
tion of a phase-sensitive amplifier. The state is squeezed, which
transforms W |↵i into W Ŝ(�⇣)|↵i. The corresponding measure-
ment record x0

f are distributed following QŜ(�⇣)|↵i. (b) Rescal-
ing the measurement outcome x0

f following the change of vari-
able � ! � = cosh(r)� � sinh(r)ei✓ gives xf = cosh(r)x0

f �

sinh(r)ei✓x
0⇤
f , whose distribution follows the generalized Husimi

Q function Q⇣
|↵i.

adds much more noise than the quantum limit, and real voltmeters
are imperfect. For this reason, the gain of the first amplifier is crucial
to neglect all the noise added after it. In practice, a gain of G = 20 dB

is considered enough when using a cryogenic High Electron Mobility
Transistor (HEMT) as a second amplifier.

A lot of other contributions exist (1/f noise, drifts in the setup...),
but we identified the most significant ones. They lead to an additional
Gaussian noise on the measurement outcomes. The added noise ⇢̂ can
be taken into account by convolving the Q function Q

⇢̂,Âf
of the input

mode represented by f with a Gaussian probability density pN . The
measurement records referred to the input then follow the law given
by the equivalent Q function Q

⇢̂0,Â0
f
:

Q
⇢̂0,Â0

f
= Q

⇢̂,Âf
⇤ pN . (3.53)

The Q function is obtained by convolving the Wigner function with
that of the vacuum state. To compute the effect of noise, it is thus
equivalent to apply the effect of noise directly on the Wigner function.
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quantum measurement of microwave modes

Figure 3.8: Scheme of the equivalent measurement chain characterized by
the quantum efficiency. The full measurement chain (a) can be
modeled as (b) a single beamsplitter with transparency ⌘ before
an ideal quantum amplifier (IQA) and voltage measurement. The
amplifier can be phase-sensitive or insensitive. In the latter case,
it involves the mode represented by B̂amp, which is supposed to
be in the vacuum state.

By convolving the Wigner function W
⇢̂,Âf

of the mode with pN , it
gives the noisy Wigner function W

⇢̂0,Â0
f

(again, referred to the input)

W
⇢̂0,Â0

f
= W

⇢̂,Âf
⇤ pN . (3.54)

The state ⇢̂0 is a fictional state whose measurement statistics, when
measured with ideal homodyne or heterodyne detection, are the same
as the measurement statistics of the noisy measurement chain up to a
rescaling factor.

In the case where the measurement chain is composed of phase-
preserving amplifiers only, we can assume that the added noise is
modelled by an uncorrelated Gaussian function of variance �2

0
, and

we write pN (�) = 1

2⇡�2

0

e
� |�|2

2�2
0 . Applying the results of Sec. 3.2.1, the

full measurement chain referred to the input state is equivalent to a
simplified chained composed of a single beamsplitter with transparency
⌘ =

1

1+2�2

0

followed by a perfect phase-preserving amplifier with an
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idler mode in the vacuum state and a perfect voltage measurement.
This is summarized in Fig. 3.4b. The transparency ⌘ is called the
quantum efficiency, and it fully characterizes imperfect measurements
based on heterodyne measurement. An alternative characterization is
the noise temperature. As the Wigner function of a thermal state is
also a Gaussian function, one can write, if the input mode is in the
vacuum state (W

⇢̂,Âf
= W |0i):

W
⇢̂0,Â0

f
= W

⇢̂,Âf
⇤ pN = W ⇢̂th

(3.55)

where W ⇢̂th
is the Wigner function of a mode at temperature T . We

can write the condition of equality between the variances

1

2
+ �20 =

1

2
+ nth. (3.56)

Thus, nth = �2
0
. Knowing that �2

0
=

1�⌘
2⌘

, it gives

nth =
1� ⌘

2⌘
(3.57)

⌘ =
1

2nth + 1
=

1� ⌫

1 + ⌫
(3.58)

⌫ =
1� ⌘

1 + ⌘
, (3.59)

where ⌫ = e
� ~!

kBT is the Boltzmann factor at the frequency !/2⇡ of the
mode. The quantum efficiency ⌘ can be obtained from the statistics
of the measurement of a single quadrature in the case of an input
coherent state. We can define the signal to noise ratio SNR on the
quadrature x̂ = (â+ â†)/2 as

SNR =
hx̂i2

hx̂2i � hx̂i2
. (3.60)

We compute this SNR both for the statistics of the Wigner function
of a coherent state |↵i and for the statistics of the measurement out-
comes when the input state is |↵i. The quantum efficiency ⌘ can then
be defined as the ratio between the two. However, for a heterodyne
measurement, the measurement statistics are given by the Q function,
which is the convolution of the Wigner function by that of the vacuum
state. Therefore, the reduction of SNR is at least the same as the one
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induced by a beam splitter of transparency 1/2 and connected to a
vacuum bath. Effectively, the apparent quantum efficiency is thus at
most 1/2. This can alternatively be seen by the fact that a heterodyne
measurement can be modeled as two homodyne measurements per-
formed on both sides of a balanced beamsplitter [72]: the measurement
of each quadrature looks like it is performed at half the quantum
efficiency. Thus, the quantum efficiency is often said to be limited to
1/2 for phase-preserving amplifiers with this alternative definition of ⌘.
Consequently, the minimal noise temperature is such that nth = 1/2,
which is often referred to as the "half photon of noise" necessarily
added by phase preserved amplifiers [40].

When the first amplifier is phase-sensitive, pN could in principle be
asymmetric. However, these amplifiers are typically used when only
one signal quadrature is recorded through homodyne detection. We
can then carry our analysis with a symmetric pN whose variance is
extrapolated from the SNR of the measurement of this quadrature.

For typical microwave setups, the quantum efficiency of the ampli-
fication chain is ⌘ ' 0.2, which corresponds to nth = 2 photons. At
5 GHz, it corresponds to a noise temperature of 0.6 K. The records
of quantum efficiency for homodyne measurement are up to 80 % [88,
89], and for heterodyne measurement of around 70 % [90], which goes
down to 50 % [90, 91] when taking into account the losses before
the amplifier. These losses are typically due to isolators that have to
be placed between the experiment and the amplifier to prevent any
reflection of the amplifier back on the experiment. n the experiment
presented in Chap. 4, the quantum efficiency of the amplification chain
is ⌘ ' 0.17. We attribute this relatively low value compared to the
state of the art to the microwave components between the experiment
and the TWPA (see Fig. 4.5): two circulators, a diplexer and a di-
rectional coupler. Each of these components has insertion losses that
contribute to attenuate the signal before it is amplified, thus leading
to a lowered overall quantum efficiency. The TWPA itself is expected
to limit ⌘ to a factor around 0.5 [90]2.

2 Note that this factor is exclusively due to the losses in the TWPA, and has nothing
to do with the above discussion on the quantum efficiency of a phase preserving
amplifier. If the TWPA had no losses, it could reach unit efficiency in our definition.
It just happens to be close to 0.5.
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3.3 dispersive readout of a qubit

Note that this characterization by the quantum efficiency does not
work for a photon detector. The performance of such a measurement
needs another figure of merit, which is the dark count rate [82]. We
can see it simply, considering two cases, one with a beamsplitter of
transparency 1/2, one with a beamsplitter with transparency 3/4, but
mixing with an idler mode at thermal equilibrium with nth = 1 photon.
Given the previous results, homodyne and heterodyne detection have
the same properties (up to a scaling factor), hence the characterization
by a quantum efficiency ⌘ = 1/2. However, in the second case, the
beamsplitter introduces thermal photons in the line, which causes
parasitic false positive clicks by the photon detector. In this case, the
quantum efficiency characterizes the proportion of the signal that is
lost, and the dark count the proportion of parasitic thermal noise.

3.3 dispersive readout of a qubit

The dispersive readout of a qubit is a way to read out the state of
a qubit in a QND way using a dispersively coupled cavity coupled
to a transmission line that we can probe. QND stands for Quantum
Non-Demolition, which characterizes measurement schemes that do
not destroy the measured system. The basic theory of the dispersive
readout of a qubit has been extensively studied, notably in [40, 92,
93]. What we propose here is to analyze it from the point of view of a
propagating mode measurement. Indeed, we will see that the cavity
is an encoder of the information into the transmission line directly.
We will use this simple case to introduce the key notions of dephasing
and measurement rates. In particular, we will see that homodyne
measurement with the right phase is an optimal measurement when
considering time local measurements, but can be outperformed by a
time global measurement. We will then further detail the differences
between homodyne and heterodyne measurements in terms of extracted
and destroyed information.
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3.3.1 Pointer states

The dispersive measurement of a qubit can be described as follows.
A linear cavity is coupled to a qubit in the dispersive regime. The
Hamiltonian of the system reads

Ĥ/~ =
!q

2
�̂z + !0â

†â� � |eihe| â†â (3.61)

where |eihe| = �̂z + |gihg| = �̂z+1
2

is the projector on the excited state
of the qubit, and |gihg| on the ground state. Therefore, the cavity
has a frequency !0 = !0/2⇡ if the qubit is in the ground state and a
frequency !1 = (!0 � �)/2⇡ if the qubit is excited. Connecting the
cavity to a transmission line with a rate , the response to an incoming
pulse changes depending on the state of the qubit, thus allowing us
to extract information about that state. The goal of this part is to
quantify the information content of the pulse. The quantum Langevin
equation for the cavity reads

@tâ =
i

~ [Ĥ, â]�


2
â�

p
âin, (3.62)

which gives

@tâ = �i(!0 � � |eihe|)â(t)�


2
â(t)�

p
âin(t). (3.63)

The pulses sent to the cavity are coherent pulses. Since the cavity is
supposed to be linear, the state of the transmission line, as well as
that of the cavity, are thus coherent states: a semi-classical model is
sufficient. We can solve it by replacing the operator â(t) and âin(t) by
their eigenvalues ↵(t) and ↵in(t). This gives

@t↵ = �i(!0 � � |eihe|)↵(t)�


2
↵(t)�

p
↵in(t). (3.64)

This is a linear ordinary differential equation. At this point, we keep
the projector |eihe| in a slight abuse of the notation, but it should be
seen as a scalar taking the value 1 if the qubit is in the excited, and 0

otherwise. Assuming that the cavity is initially in the vacuum state
(for infinite negative times), the solution reads

↵(t) = �
p


Z
t

�1
e�(


2
+i(!0�|eihe|�))(t�s)↵in(s)ds. (3.65)
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The input-output relations then give

↵out(t) = ↵in(t) +
p
↵(t)

= ↵in(t)� 

Z
t

�1
e�(


2
+i(!0�|eihe|�))(t�s)↵in(s)ds.

(3.66)

Performing a readout then starts by sending a pulse at frequency !
between the times t = 0 and t = T . We take ↵in(t) = ↵0

in
e�i!t between

t = 0 and t = T and ↵in(t) = 0 elsewhere. This gives

↵out(t) =↵
0

ine
�i!t�

1 +


�/2 + i(! � !0 + � |eihe|)

�

�
↵0

in
e�(


2
+i(!0�|eihe|�))t

�/2 + i(! � !0 + � |eihe|)
.

(3.67)

We choose to neglect the transient regime, given by the second term
of the equation. This approximation corresponds to the limit of long
pulses, compared to the decay time 1/ of the cavity. Neglecting the
same way the transient occurring after turning off the pulse, we end
up with

↵out(t) =↵
0

ine
�i!t

✓
1 +



�/2 + i(! � !0 + � |eihe|)

◆
1[0,T ](t).

(3.68)

Defining the annihilation operator Âf of the mode defined by f :

f(t) =
e�i!t
p
T
1[0,T ](t), (3.69)

we see that the readout operation corresponds to populating the mode
defined by f with a coherent state whose dimensionless amplitude
↵g/e

out
depends on the qubit state:

↵g

out
=

p

T↵0

in

�
1 +



�/2 + i(! � !0)

�
=

p

T (↵0

in +
p
↵g)

(3.70)

if the qubit is in the ground state and

↵e

out =

p

T↵0

in

�
1 +



�/2 + i(! � !0 + �)

�
=

p

T (↵0

in +
p
↵e)

(3.71)
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if it is in the excited state. Here, ↵e/g are the amplitude of the in-
tracavity field in the steady state for each qubit state. We call these
states the pointer states, as they are the ones that we directly measure
by homodyne or heterodyne measurement to determine the state of
the qubit. The cavity thus acts as an encoder, directly encoding the
state of the qubit into the transmission line.

3.3.2 Dephasing rate

The amount of information available depends on how well we can
distinguish these pointer states at the end of the pulse, which is given
by the absolute value of the overlap of these two states:

| h↵g

out
|↵e

outi | = e�
|↵g

out
�↵e

out
|2

2 (3.72)

with

|↵g

out
� ↵e

out|
2
= T |↵g � ↵e|

2

=
16T |↵0

in
|
22�2

(2 + 4(! � !0)
2)(2 + 4(! � !0 + �)2)

(3.73)

This overlap thus follows a simple exponential decay with time.
We now note |↵g

out
(T )i and |↵e

out(T )i the pointer states of the
outgoing field after an input pulse of duration T . Remember that we
neglected the transient, which amounts to considering that the cavity
ends up in the vacuum state |0i right after the end of the pulse. We
can then factor out its state. Neglecting the AC-Stark shift of the
qubit due to the population of the cavity and working in a rotating
frame for the qubit, the readout operation thus corresponds to the
linear map

|gi ⌦ |vaci ! |gi ⌦ |↵g

out
(T )i (3.74)

|ei ⌦ |vaci ! |ei ⌦ |↵e

out(T )i . (3.75)

Fig. 3.9 illustrates how the state of the qubit is encoded into the state
of the outgoing field.
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3.3 dispersive readout of a qubit

Figure 3.9: Scheme of the dispersive readout principle. The qubit is coupled
to a cavity, itself coupled to a transmission line. The cavity is in a
coherent state

��↵g/e

↵
that depends on the qubit state, generating

two possible coherent states in the line
���↵g/e

out

E

To illustrate the action of this map, we suppose that the qubit is
initially in the |+Xi =

|gi+|eip
2

. The initial state of the system reads

| (0)i =
|gi+ |ei

p
2

⌦ |vaci , (3.76)

and at time T :

| (T )i =
1
p
2

�
|gi ⌦ |↵g

out
(T )i+ |ei ⌦ |↵e

out(T )i
�
. (3.77)

The state of the qubit is thus entangled with the outgoing field. The
density matrix of the qubit in the basis {|ei , |gi}, obtained by tracing
out the outgoing field thus reads

⇢̂(T ) =
1

2

 
1 h↵g

out
(T )|↵e

out(T )i

h↵e
out(T )|↵

g

out
(T )i 1

!

=
1

2

0

@ 1 ei�(T )e�T
|↵e�↵g |2

2

e�i�(T )e�T
|↵e�↵g |2

2 1

1

A
(3.78)

where �(T ) is the phase of the scalar product h↵e
out(T )|↵

g

out
(T )i. We

can now define the dephasing rate as

�d =
|↵g � ↵e|

2

2
. (3.79)
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It is the rate at which the off-diagonal elements of the qubit decay
towards zero when the qubit is measured. In the Lindblad equation
(2.27), it corresponds to the action of the dissipator �d

2
D�̂z . This is

a quantity to maximize to read out the state of a qubit as fast as
possible before it has time to decay. The easiest way consists in using
more power. The quantity |↵0

in
|
2
= hâ†

in
(t)âin(t)i is indeed the photon

flux of the incoming pulse. However, this cannot be set too high, as
populating the readout too much can trigger undesired interactions
between the readout cavity and the qubit and lead to a measurement
that is not QND. This behavior limits the fidelity of the current best
dispersive readouts of transmons [94–96], and is extensively studied
to mitigate as much as possible its effects [94–101]. Below this power
limit, it has been shown in [102] that for a fixed value of � and n the
number of photons inside the resonator (which depends on ↵0

in
, ! and

), the equation (3.79) is maximized for  = � and ! = !0 � �/2,
which means probing in-between the two possible frequencies of the
readout resonator. The regime � '  is thus the most efficient and
has to be targeted in the design of the experiment.

3.3.3 Measurement rate

To understand how we can define the measurement rate, we can first
discretize Âf by dividing it into n timepieces:

Âf =

Z
T

0

1
p
T
ei!tâout(t)dt =

1
p
n

n�1X

k=0

Z (k+1)T
n

kT
n

r
n

T
ei!tâout(t)dt

=
1
p
n

n�1X

k=0

Âfk
,

(3.80)

with

fk(t) =

r
n

T
e�i!t1

[
kT
n ,

(k+1)T
n ]

. (3.81)

Naming tk =
kT

n
and �t = T

n
and taking the limit n � !T , we have

Âfk
' ei!tk

Z
tk+1

tk

1
p
�t
âout(t)dt ' ei!tk âout(tk)

p

�t. (3.82)
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First, this gives an intuition about what âout(t) is: we can think of
âout(t)

p
dt as the annihilation operator of the mode localized between

t and t+ dt in the infinitesimal limit. Second, it gives another simple
picture of the outgoing state. We can either think of it as a "long"
mode hosting a big coherent state or as a collection of "short" (in
the sense of their time extent) modes hosting small coherent states.
The size of each of the coherent states is indeed directly given by
Eq. (3.70) and Eq. (3.71) applied to T = �t, which gives amplitudes
↵g/e

out,k
= ↵g/e

out
/
p
N =

p
�t(↵0

in
+
p
↵g/e) for each of these modes. The

state
�� g/e

↵
out

of the transmission line can thus be written
��� g/e

E

out

=

���↵g/e

out

E

f

⌦ |vaci , (3.83)

or alternatively

��� g/e

E

out

=

n�1O

k=0

���
p

�t(↵0

in +
p
↵g/e)

E

fk

⌦ |vaci . (3.84)

We choose here to note the vacuum state for all the other modes of the
line by the same ket |vaci. This allows us to interpret the situation as
follows: the cavity "shoots" a series of small coherent states, streaming
a continuous flow of information into the line. The measurement rate
is defined as the information rate of this flow:

�m =
�I

�t
(3.85)

with �I defined as the mutual information between the state of the
qubit and the measurement outcome of one of these modes. The
measurement rate is thus strongly dependent on the measurement
apparatus. The maximal achievable information rate �mmax is given
by the accessible information �Iacc (see Appendix A.1.2) in a time
�t. It can be formulated in the context of communications as sending
classical binary information (the state |0i or |1i of the qubit) with
a qubit (the state of the line in Span

⇣ ���↵g/e

out

E

f

⌘
), as in Appendix

A.1.4. Computing �Iacc is done by writing the overlap between the
two pointer states as

cos
✓

2
= | h↵g

out
(�t)|↵e

out(�t)i | = e��d�t. (3.86)
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The angle ✓ is the angle they form in the Bloch sphere. Expanding it
at short times �t gives

cos
✓

2
' 1� �d�t (3.87)

cos
2
✓

2
' 1� 2�d�t (3.88)

sin
✓

2
'

p
2�d�t '

✓

2
. (3.89)

Using the results of the Appendix A.1.4, we get

�Iacc '
✓2

8
= �d�t. (3.90)

Thus, the maximal measurement rate is such that

�m
max

= �d. (3.91)

This is very convenient, as it allows for a very simple expression for
the quantum efficiency (see 3.3.4), but we have to keep in mind that
both quantities have a very different meaning: on the one hand, a
dephasing rate, which is the rate at which the overlap between the
two pointer states vanishes. On the other hand, an information rate
expressed in nats/s.

3.3.4 Measurement rate: homodyne detection

Fig. 3.10 illustrates the measurement of the qubit based on homodyne
detection. In Fig. 3.10a, the two Wigner functions of the mode of the
line corresponding to the two possible states of the qubit are shown.
The optimal detection phase, to get the best Signal-to-Noise Ratio
(SNR), is materialized by the grey dashed line. The corresponding
statistics of measurement outcomes are shown in Fig. 3.10b. The
optimal measurement phase ' is such that d(T ) = |↵g

out
� ↵e

out|(T ).
We define the SNR as in [40]:

SNR(T ) =
d(T )2

4�2
. (3.92)

In the case of an ideal homodyne measurement, we have � = 1/2.
Using Eq. (3.73) and Eq. (3.79) gives

SNR(T ) = 2�dT. (3.93)
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Figure 3.10: Dispersive readout of a qubit in phase space. (a) Scheme of
a homodyne measurement applied to the dispersive readout
of a qubit. The Wigner functions of the outgoing field condi-
tioned on the state of the qubit are pictured in blue (|gi) and
orange (|ei). The grey dashed line indicates the quadrature x
of the homodyne measurement that maximizes the SNR. (b)
Corresponding distribution of the outcomes of the homodyne
measurement, for g and e.

The SNR thus conveniently linearly increases with the integration
time.

We can compute the mutual information obtained by a homodyne
detection at short time �t by expanding the formula Eq. (A.2) for
the mutual information �I between the state of the qubit and the
measurement outcome, in the case where the initial probability of
qubit excitation P(e) = 1/2. It reads

�I = H(x)�
1

2
(H(x|e) +H(x|g)) (3.94)

where x is the measurement outcome, H(x) its Shannon entropy.
H(x|e) and H(x|g) are the Shannon entropy of x knowing the state of
the qubit. Here, H(x|e) = H(x|g) = 1

2
log 2⇡�2 + 1

2
is the differential

entropy of a Gaussian functions with variance �2. H(x) is the entropy
of the corresponding mixture of two Gaussian functions. In general,
there is no closed-form formula for this quantity. However, we can
perform an expansion for short times �t and approximate this mixture
by a single Gaussian function with the same variance �2+ d(�t)

2

4
. H(x)

becomes

H(x) '
1

2
log

✓
�2 +

d(�t)2

4

◆
+

1

2
(log(2⇡) + 1) (3.95)
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The constant terms then cancel out in the expression of �I, which
gives

�I '
1

2
log

✓
�2 +

d(�t)2

4

◆
�

1

2
log

�
�2
�

'
d(�t)2

8�2

'
SNR(�t)

2
.

(3.96)

By definition (Eq. (3.85)), �I = �m�t. For an ideal homodyne measure-
ment, � = 1/2, which gives �m = �d = �m

max. An ideal homodyne
measurement thus reaches the maximal measurement rate.

For a finite quantum efficiency ⌘, we established in Sec. 3.2.4 that
the Wigner function is convolved with a Gaussian function of standard
deviation �0 =

q
1�⌘
2⌘

, which amounts to having � =
1

2
p
⌘
, and thus

SNR(T ) = 2⌘�dT. (3.97)

The SNR is thus scaled by ⌘. This gives all the ingredients to exper-
imentally measure the quantum efficiency of a homodyne detection
performed with the optimal phase: �m is given by the SNR as a
function of time, and �d can be measured with Ramsey experiments
[103].

3.3.5 Homodyne detection does not recover all the information

Until now, we focused on the measurement rate, which is a pertinent
quantity to characterize the information obtained from time local
measurements, which corresponds to the limit T ! 0. In this regard,
an ideal homodyne measurement is optimal, as it reaches the maximum
obtainable information. However, one can wonder whether this holds
for time global measurement. The question is: how does a homodyne
measurement compare to the optimal measurement performed on
the pointer state after an arbitrary time T? As a matter of fact, a
homodyne measurement of duration T performs slightly worse than an
ideal measurement performed at time T on the mode. This is shown
in Fig. 3.11, where the mutual information obtained with a homodyne
measurement is compared to the ideal measurement using Eq. (A.15)
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as a function of | h↵e
out(T )|↵

g

out
(T )i |. The information ratio between

homodyne and ideal goes down to 0.92 for | h↵e
out(T )|↵

g

out
(T )i | ' 0.43.

The limit discussed in Sec. 3.3.4 corresponds to | h↵e
out(T )|↵

g

out
(T )i | !

1, where this ratio goes to 1, as it can be seen in Fig. 3.11.

Figure 3.11: Comparison between perfect homodyne measurement and ideal
measurement for the dispersive readout of a qubit. We plot
the mutual information between the state of the qubit and the
measurement outcomes for homodyne (blue) and ideal (green)
measurement as a function of the overlap of the pointer states.
The minimum ratio between the two mutual information is
materialized by the gray dashed line.

It is an example demonstrating the advantage of communication us-
ing global measurements over local measurements (see Appendix A.1.3).
We write here again the equations Eq. (3.83) and Eq. (3.84):

��� g/e

E

out

=

���↵g/e

out

E

f

⌦ |vaci (3.98)

=

n�1O

k=0

���
p

�t(↵0

in +
p
↵g/e)

E

fk

⌦ |vaci . (3.99)

The homodyne detection extracts the best out of the measurement
of each local mode represented by fk, as an ideal measurement on
each of them would do. However, a joint measurement performed
on all of them manages to extract even more information. This is
counterintuitive, as we are dealing with coherent pointer states, which
exhibit no entanglement in any basis. The full density matrix ⇢̂AB
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does not exhibit any entanglement either, as it is a mixture of product
states.

As to finding how to implement this optimal measurement, it is
not easy. In [104], Han and coworkers study various schemes that
aim to discriminate between two coherent states. They analyze the
information obtained, destroyed, and left in the system for each of them.
However, none of these schemes achieve the upper bound. Furthermore,
they are implemented on stationary modes, which are easier to handle
than propagating ones.

The work [105] of Strandberg and coworkers can help us think
about this situation from another point of view. They demonstrate an
implementation of a heterodyne detection of a stationary mode using
a qubit via stroboscopic SWAP interactions with a qubit followed by a
quadrature measurement of this qubit. The intuition behind this is the
fact that each of the states

���
p
�t(↵0

in
+
p
↵g/e)

E

fk

has a vanishing
number of photons for �t ! 0, so each of them can be hosted by a
qubit.

Suppose now that, as for a qubit readout, we want to distinguish
two possible coherent states in the standing mode. In the experiment,
there is only one interacting qubit to perform the qubitdyne detection.
We then have no other choice than to measure the qubit after each
interaction and reset it for the next one. By measuring the right
quadrature of the qubit each time, we recover the optimal homodyne
measurement. To recover the time global measurement that would
outperform the optimal homodyne measurement, we would need a
collection of a large number of qubits: it would then constitute a
quantum memory. After each of them interacted with the stationary
mode, a global measurement performed on the qubits would allow
us to beat the homodyne measurement. In the limit where the field
interacted with a large number of qubits, we could recover the ideal
global measurement that beats the optimal homodyne detection.

3.3.6 Using the information: measurement back-action

We established that information was available in the emitted field
of the readout cavity. The goal of this part is to understand how to
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3.3 dispersive readout of a qubit

make use of this information and to compute the back-action of the
measurement on the qubit.

We start first with the optimal homodyne detection for a pure state
of the qubit. The qubit is initially in the state | (0)i

q
= a |gi+ b |ei,

with a and b two complex coefficients. The outgoing field represented
by f starts in the vacuum state. We thus have, at t = 0:

| (0)i = | (0)i
q
⌦ |0i

f
. (3.100)

After a pulse of duration T , the state | (T )i of the system {qubit,
mode f} reads:

| (T )i = a |gi ⌦ |↵g

out
i
f
+ b |ei ⌦ |↵e

outif . (3.101)

Homodyne measurement with ' = 0 corresponds to measuring x̂. We
can write the wavefunction  g/e(x) of |↵g

out
i and |↵e

outi as

 g/e(x) =
D
x
���↵g/e

out

E
=

⇣
2

⇡

⌘ 1

4

e�(x�↵
g/e
out

)
2

. (3.102)

Using these wavefunctions, | (T )i reads

| (T )i =

Z
+1

�1
a |gi ⌦ g(x

0
)
��x0
↵
+ b |ei ⌦ e(x

0
)
��x0
↵
dx0.

(3.103)

Applying the measurement back-action corresponding to the outcome
x obtained at time T on the system gives, just after the measurement
at time T+:

| (T )i �!
x

�� (T+
)
↵
/ a |gi ⌦ g(x) |xi+ b |ei ⌦ e(x) |xi

=
�
a |gi ⌦ g(x) + b |ei ⌦ e(x)

�
⌦ |xi .

(3.104)

The back-action gives a product state. Factoring it out gives the
following transform to the qubit between time t = 0 and t = T+:

| (0)i
q
�!
x

�� (T+
)
↵
q
/  g(x)a |gi+ e(x)b |ei . (3.105)

It corresponds to a quantum measurement of the qubit defined by the
operators ⇧̂x:

⇧̂x =
 e(x) + g(x)

2
1+

 e(x)� g(x)

2
�̂z (3.106)
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with
R
⇧̂xdx = 1. Applied to the density matrix, it gives

⇢̂q �!
x
⇢̂q(T

+
) /

⇣
 e(x) + g(x)

2

⌘2
⇢̂q

+

⇣
 e(x)� g(x)

2

⌘2
�̂z⇢̂q�̂z

+
 e(x)2 � g(x)2

2

�
⇢̂q�̂z + �̂z⇢̂q

�
.

(3.107)

The Stochastic Master Equation for homodyne measurement is ob-
tained by taking the limit of short times [106]. It allows to reconstruct
continuous quantum trajectories of the qubit state [93, 107, 108].

We can discuss here two particular cases. The first is when the
homodyne measurement is along the gray dashed line in Fig. 3.10.
It corresponds to taking ↵g

out
and ↵e

out real. In this case, we see
from Eq. (3.105) that the phase of the superposition of the qubit is
unchanged. The only thing that changes is the excitation probability
of the qubit. This corresponds to the ideal homodyne case discussed
in Sec. 3.3.4 and maximizes the local information rate about the state
of the qubit. It is thus expected that the corresponding back-action
exclusively modifies this information.

The other case is when the measurement is performed along the
orthogonal direction. It corresponds to having ↵g

out
and ↵e

out imaginary.
In this case, we have | g(x)| = | e(x)| for all x: measuring x̂ does not
modify the excitation probability of the qubit, but rather the phase of
the superposition. As a consequence, it simply yields more information
about the phase of the superposition. In the continuum limit, it makes
this phase diffuse at a rate �d [107–112].

We can now understand what happens in a heterodyne measurement:
it is a detuned homodyne measurement. It means that the axis of
the measurement rotates at the frequency of the detuning. As a
consequence, it is as if we spent half of the time measuring in the
"right" direction, giving information about the qubit state, and half
of the time measuring in the "wrong" direction, making the Bloch
vector diffuse on the equator of the Bloch sphere. With this intuitive
picture, we feel that the information rate about the qubit excitation is
divided by 2. We can then interpret the inefficiency of the heterodyne
measurement as being due to an excess of back-action, as half of
the time is invested in measuring a quantity that does not bring
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3.3 dispersive readout of a qubit

any information about the qubit excitation probability. We stress the
fact that this conclusion that the heterodyne is inherently inefficient
is only true if we are looking for information about the excitation
probability of the qubit. As the qubit remains in a pure state after an
ideal heterodyne measurement, it still gives a complete knowledge of
its full quantum state. The information about the quantum state is
preserved.

This illustrates the two ways one can define the quantum efficiency.
The first one, with the SNR (Eq. (3.97)), characterizes the speed at
which information about the qubit excitation is obtained (the mea-
surement rate) by comparing it to the maximal achievable rate (the
dephasing rate) with the same quantum resource (the pointer states):
⌘ = �m/�d. From this point of view, the quantum efficiency of a het-
erodyne detection is limited to 1/2, and that of a homodyne detection
can vary as a function of the quadrature measured. The second point
of view, which was presented in Sec. 3.2.4, characterizes the amount
of quantum resource that was lost during the measurement. This
characterization thus only characterizes the measurement apparatus
and does not even bother about the existence of the qubit, nor does it
depend on what we want to learn about the system. In this sense, it is
the most general characterization of a homodyne-or heterodyne-based
detection setup. In this thesis, quantum efficiencies are given following
this point of view.

If we are only interested in the excitation probability of the qubit,
we can just look at the probability distribution of its states, which is
given by the diagonal elements of the density matrix. It gives

P0(g) = hg| ⇢̂q |gi �!
x
PT+(g) = hg| ⇢̂q(T

+
) |gi / P0(g) g(x)

2

(3.108)

P0(e) = he| ⇢̂q |ei �!
x
PT+(e) = he| ⇢̂q(T

+
) |ei / P0(e) e(x)

2

(3.109)

It corresponds, up to normalization, to a Bayes actuation of the
probability:

P0(g/e) �!
x
P(x|g/e)P0(g/e) (3.110)

where P(x|g/e) is the probability of obtaining x knowing that the
qubit was in the state g or e. This formula generalizes to any kind
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of measurement record, even noisy ones, and it shows how we can
experimentally obtain the update rule of the state probabilities of a
qubit: we only need the distribution of outcomes conditioned to each
state. More generally, x can be multidimensional, as in the experiment
presented in Chap. 4. If we have an experimental characterization of
the law of x knowing each possible parameter, then such Bayesian
actuation is possible. Note that this approach does not take into
account any coherence of the state: this gives a classical stochastic
evolution of the information we have about the state of a classical bit.

3.4 conclusion

In this chapter, we modeled the way measurements are performed on
the propagating modes in typical experiments involving superconduct-
ing circuits. We presented the notions of homodyne and heterodyne
detection and linked the integrated measurement outcome statistics
to the Wigner, Husimi Q function, and generalized Q function of the
propagating modes. We explained the roles of quantum phase-sensitive
and phase-insensitive amplifiers in the measurement. We derived their
effect on the propagating modes and what it implies for the measure-
ment outcomes obtained with a voltmeter, as in a typical microwave
experiment. We introduced the notion of quantum efficiency, which
encapsulates all the imperfections of the measurement apparatus.

In a second part, we analyzed the well-known case of the dispersive
readout of a qubit in the formalism of the propagating modes and
introduced the notions of dephasing and measurement rates. We high-
lighted that the notion of measurement rate was limited to time local
measurements. In particular, we showed that a time global measure-
ment could outperform the best time local measurements for the same
total duration. We then showed how to compute the back-action of a
homodyne measurement on the qubit and retrieved the Bayes rule for
the actuation of the qubit excitation probability. This Bayes rule is
generalized for an arbitrary number of states and an arbitrary noise
and will be used in a generalized way in Chap. 4 to compute photon
number trajectories.
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PHOTOCOUNTING





4
MONITORING THE PHOTON NUMBER OF A
CAVITY

This chapter contains the article about the monitoring of a cavity
photon number accepted for publication in PRL [6]. This experiment
has to be understood in the context of quantum trajectories and
quantum jumps. Quantum trajectories of a qubit under weak dispersive
measurement of its excitation [107–111], transverse component [113],
or homodyne or heterodyne measurement of its fluorescence [114–116]
have been demonstrated in several experimental works. Dispersive
measurement and heterodyne detection of the fluorescence of the qubit
can even be combined [112]. In this work, we use the fluorescence
emitted by a qubit to infer the number of photons in a dispersively
coupled cavity. The quantum trajectory of the qubit is not studied,
yet probing its fluorescence allows us to observe quantum jumps of
the cavity photon number. Quantum jumps, first measured [117–119]
in atomic ions and later in superconducting circuits [120], constitute
one of the key features of quantum mechanics. Their detection is key
in feedback protocols, in particular in quantum error correction.

Quantum jumps are the object of study in numerous experiments.
Notably, it was demonstrated in [121] that quantum jumps, often
thought to be unpredictable and unreversible, are continuous and
could even be reversed in the middle of the process by exploiting
the non-hermitian dynamics generated by a well-chosen environment
monitoring.

As for quantum jumps of light, they have been experimentally
evidenced using Rydberg atoms [122] and superconducting circuits
[123], and full photon number trajectories were measured in [124]
and used in a feedback protocol to stabilize Fock states [125]. These
measurement apparatuses have all in common the fact that they
use a dispersively coupled qubit to store the results of stroboscopic
measurements of the light field. In [126], Antoine Essig and coworkers
experimentally show that it is also possible to measure photon number
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trajectories by using the qubit in a fundamentally different way: instead
of storing the result of the measurements in its state, it can be used
to encode the information about the photon number into the states of
a transmission line via the photon number dependent properties of its
fluorescence in the dispersive regime. I will here summarize the main
results of [126].

Experimentally, the qubit was driven at all the possible frequencies
corresponding to every possible photon number, but a more involved
theoretical scheme was introduced, involving an infinite frequency
comb. This way of understanding the experiment considerably sim-
plified the interpretation of the qubit dynamics and allowed us to
understand the experiment as a succession of the same atomic experi-
ment, which consists in repeatedly exciting the qubit using very short
pulses and letting the qubit decay in the line. In the number-resolved
regime where the dispersive shift � is much larger than the decay rate
1/Tq of the qubit, a Gedanken experiment was developed, making use
of an array of diplexers and photon detectors. It was then shown that
the characteristic time to measure the number of photons was simply
given by Tq. Strikingly, this measurement time does not depend on
the maximal number of photons Nmax. In comparison, a heterodyne
measurement scheme was demonstrated to reach a measurement time
proportional to log(Nmax).

This first version of the experiment [126], despite an achievable
information rate theoretically higher than in the second version of the
experiment that is presented here, exhibited a lifetime of the cavity
too short for a single-shot readout of the photon number. In this
version, this issue was solved thanks to the use of a 3D aluminum
cavity with a high quality factor and a filter at the output of the qubit
to protect the cavity from decaying through it. This allows us to reach
here a measurement time that beats the decay rate of the cavity by an
order of magnitude, hence providing a single shot photon counter. The
main result of this chapter is the photon number trajectories shown
in Figs. 4.3, 1.2 and in [127], demonstrating that the quantum jumps
corresponding to the cavity losing photons can be monitored.

Sec. 4.1 reproduces the article [6], Secs. 4.2 to 4.8 reproduce the
supplementary materials of this article [128]. Sec. 4.9 provides unpub-
lished results showing Wigner functions of Fock states prepared by
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post-selection and an analysis of simulated measurement records by a
neural network.

4.1 monitoring the energy of a cavity by observing
the emission of a repeatedly excited qubit

Resolving the number of photons in an electromagnetic mode is at
the core of many quantum information protocols [129–132]. Most of
them require quantum nondemolition (QND) measurements for mea-
surement based feedback or heralding. In the microwave domain, such
measurements can be performed using dispersively coupled Rydberg
atoms [122] or superconducting qubits [133]. Predetermined [124, 134]
or adaptive [135–139] measurement sequences can monitor the photon
number in time and even detect quantum jumps. Each measurement
step yields at most a single bit of information about the photon num-
ber. By adapting each step, it is possible to reach this upper bound
and photocount in a number of cycles that scales logarithmically with
the maximal photon number [137–139]. Recently, another qubit-based
detector was introduced, which is able to track the photon number
using a train of identical qubit pulses forming a frequency comb [126].
Consequently the frequency of the qubit fluorescence encodes the
photon number at any time. While a proof-of-principle experiment
demonstrated signals proportional to the photon number [126], the
measurement rate was insufficient compared to the cavity lifetime for
single-shot extraction. Here, we demonstrate photon number tracking
in a 3D cavity using a frequency comb driving a dispersively coupled
qubit. We experimentally compare the photon number measurement
rate of our scheme based on heterodyne detection of the qubit fluores-
cence to the rate at which the environment could extract information.
This QND photon number monitor, with a fixed drive and detection
scheme, could simplify feedback schemes and quantum error correction
for bosonic codes [140] or qudits [137, 141].

The detection principle can easily be grasped with a classical analogy
(Fig. 4.1a). Consider a basket (cavity) filled with apples (photons) that
can escape. The number n of apples can be determined by hitting a
string (qubit) from which the basket hangs. The string oscillates at a
frequency depending on n and recording the emitted sound (heterodyne
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Figure 4.1: Experiment scheme and principle. (a) Acoustic analogy of the
experiment. In order to monitor the number of apples in a
basket, it is attached to a string. By repeatedly hitting the string,
recording the emitted sound reveals the number n at any time.
(b) The heterodyne detection of the driven qubit (red) emission
into the line leads to the monitoring of the photon number of
the dispersively coupled cavity (green). A notch filter centered
on !c (box) prevents the cavity from decaying through the qubit.
(c) The cavity is a high purity aluminum �/4 coaxial resonator.
Two transmon qubits on sapphire chips stick into the cavity. The
filter on the (red) qubit drive line is composed of two tantalum
spurlines and galvanically connected to a transmission line using
a pogo pin (photograph in inset). Wigner tomography of the
cavity is performed using the auxiliary transmon qubit (purple)
and its dedicated readout resonator (not shown).

measurement of fluorescence signal) reveals the apple number. Hitting
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repeatedly the string leads to the monitoring of n: in the frequency
domain, it corresponds to driving the string with a comb.

Experimentally, the basket is an aluminum �/4 coaxial cavity [142]
at frequency !c/2⇡ = 4.573 GHz. The qubit is a transmon at
!q/2⇡ = 6.181 GHz, dispersively coupled to the cavity with a fre-
quency shift ��/2⇡ = �5.25 MHz per photon. Photon number track-
ing requires to operate in the photon number resolved regime � > �2,
with �2/2⇡ ⇡ 3.5 MHz the qubit coherence rate [126]. To optimize
the information rate, we maximize the qubit emission rate 1/Tq  2�2

into the measurement line under this constraint.
To protect the cavity from decaying through the qubit, we use a

notch filter at the cavity frequency (Fig. 4.1b). The filter circuit is
composed of two on-chip spurlines in series (Fig. 4.1c). The qubit
and the notch filter are patterned out of a tantalum film on the
same sapphire chip, which is inserted into the cavity [128]. A galvanic
connection is ensured between the measurement line and the on-chip
filter using an SMA microwave connector terminated by a pogo pin 1,
which is a pin connected to a spring (Fig. 4.1c). This filter design
leads to a high coupling rate 1/Tq = (23± 3 ns)

�1 between the qubit
and the measurement line, while preserving a cavity lifetime Tc larger
than 200 µs for a single photon. The heterodyne detection benefits
from the large bandwidth of a traveling wave parametric amplifier
(TWPA [90]) that covers many �. An auxiliary transmon qubit and
its readout resonator are used to perform direct Wigner tomography
of the cavity state [128, 143–145].

The qubit is driven with a frequency comb of amplitude ⌦ and
peaks at !q + k�! where k spans all integers between �K and K. In
the lab frame, the qubit drive Hamiltonian thus reads

Ĥd = �~⌦
2

KX

k=�K
cos [(!q + k�!)t] �̂y. (4.1)

In the limit of an infinite Dirac comb (K ! 1), it becomes a series
of Dirac peaks in the time domain with a period 2⇡/�!. In the frame

1 POGO-PIN-19.0-1 by Emulation Technology
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rotating at !q � �ĉ†ĉ, and under the rotating wave approximation, it
gives

Ĥd = ~ ⇡⌦
�!

1X

l=�1
�

✓
t�

2⇡l

�!

◆
�̂(t), (4.2)

where �̂(t) = sin
�
ĉ†ĉ�t

�
�̂x�cos

�
ĉ†ĉ�t

�
�̂y and ĉ†ĉ is the photon number

in the cavity. The dynamics of the qubit Bloch vector thus consists in
periodic kicks every 2⇡/�! by an angle ✓ = 2⇡⌦/�!. The natural
choice is to have one peak per possible qubit frequency (�! = �).
The rotation axis of the kicks would then be the same for any photon
number since ' = 2⇡ĉ†ĉ�/�! is a multiple of 2⇡. However, the period
between two kicks would then be 2⇡/� ⇡ 190 ns, which is much longer
than Tq. To limit idle times in the qubit fluorescence signal, we choose
a twice larger peak spacing �! = 2�, which doubles the information
rate (Fig. 4.2a). Consequently, ' is equal to 0 mod 2⇡ for even photon
numbers and ⇡ mod 2⇡ for odd photon numbers. Therefore the kick
direction flips with each kick for odd photon numbers.

In the experiment, we choose a finite number 2K + 1 = 21 peaks in
the comb. In the frequency domain the drive is the product of a square
window of width 21�/2⇡ and the infinite comb. Consequently, in the
time domain, the resulting waveform is the convolution of the infinite
comb with a sinc function. This width sets the timescale of each qubit
kick to ⇡/21� ⇡ 5 ns, which is much shorter than Tq. Additionally,
this choice guarantees that the qubit frequency remains well within
the bandwidth of the comb, regardless of the desired photon number
ranging from 0 to Nmax = 9. To further minimize boundary effects,
we position the comb center frequency at !q � 4�, which corresponds
to the qubit frequency associated with 4 photons in the cavity.

The average predicted dynamics of the qubit is shown in Fig. 4.2b,c
when the cavity has 0 (blue) or 1 (green) photon. At intervals of ⇡/�,
the qubit state undergoes a kick lasting approximately 5 ns, followed
by relaxation as it fluoresces into the measurement line. In contrast
with even photon numbers, the rotation axis flips at every kick for
odd photon numbers. Heterodyne detection of the fluorescence field
measures the two quadratures (â†

out
+ âout)/2 and i(âout � â†

out
)/2.

The emitted field amplitude can be expressed as âout = âin� �̂�/
p
Tq,

where hâini is the driving comb and �̂� = (�̂x � i�̂y)/2 is the qubit
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Figure 4.2: Frequency comb and dynamics of the qubit under its drive.
(a) Black peaks: driving comb amplitude ⌦ Eq. (4.1) in the
frequency domain. Colored Lorentzian shapes: qubit frequency
spectra corresponding to cavity photon numbers from 0 to 6. (b)
Simulated average trajectories of the qubit in the Bloch sphere
for n = 0 (blue) and n = 1 (green). The kick angle is set to
✓ = ⇡⌦/� = 3⇡/4, and as in the experiment, �Tq = 0.76. (c)
Corresponding average values of h�̂xi as a function of time. (d)
Averaged measured record Vn(t) when the cavity is prepared in
a Fock state |ni from n = 0 to 4 from bottom to top, and for a
comb amplitude such that ✓ = ⇡⌦/� ⇡ ⇡/2. The curves are offset
by the much larger driving comb signal c(t). (e) Corresponding
quadrature In(t) of the emitted fluorescence signal reconstructed
(see text) at each qubit frequency !q � n�.

lowering operator [146]. The average dynamics of the qubit coherences
(Fig. 4.2c) can thus be directly observed in the heterodyne signal.

We first prepare a Fock state |ni using a coherent excitation on the
cavity followed by heralding using the qubit emission under a drive at
a single tone !q � n� [126, 128, 147]. We then apply the comb. The
qubit fluorescence is amplified and downconverted by a local oscillator
at !q+!IF, with !IF = 2⇡⇥66 MHz. The amplified fluorescence signal
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is recorded as a voltage V (t) using an analog-to-digital-converter. The
average Vn(t) of these records under the heralding of n photons is
shown in Fig. 4.2d offset by the contribution of the reflected driving
comb c(t) / Re(hâini) [128]. These signals can be processed to reveal
the evolution of h�̂xi and h�̂yi in the qubit frame when there are n

photons. To do so, we extract their analytic representations [128] and
demodulate them at !IF + n� to obtain two average quadratures In(t)
and Qn(t). The traces of In(t) are shown in Fig. 4.2e for n = 0 to 4 and
match the expected evolution of h�̂xi. The kicks and the subsequent
decays are visible. The kick direction alternates for odd numbers of
photons as expected. The remaining oscillations in the reconstructed
signal may be due to an imperfect subtraction of the driving comb
c(t), or to a distortion of the driving comb or output signal by the
measurement setup.

Decoding the measurement record V (t) in order to infer the pho-
ton number is a task similar to quantum sensing using continuous
measurement [55, 148–155]. Here we use the average records Vn as
demodulation weight functions, and define Nmax+1 measurement out-
comes represented as a vector ~m whose components are

mn(t) =

Z
t

t�⌧
V (t0)Vn(t

0
)dt0, (4.3)

where the integration time ⌧ = 2 µs is chosen much shorter than the
cavity lifetime Tc and multiple (21⇥) of ⇡/�. As a demonstration, we
excite the cavity with a coherent state with more than 20 photons
on average using a strong resonant pulse, then drive the qubit with
the frequency comb and record ~m as a function of time t. Quantum
jumps on a single realization can already be visualized by a simple
data processing. We perform a time independent linear transform [128]
~r(t) = G�1 ~m(t) so that, on average, rn(t) = 1 for n photons in
the cavity, while all the other components rk 6=n vanish. Concretely,
G is the Gram matrix of the average records Vn(t) so that Gnm =R
⌧

0
Vn(t)Vm(t)dt. The evolution of ~r is shown in Fig. 4.3b for one

realization of the experiment. A faint red trace emerges from the noise,
which reveals the successive losses of single photons in the cavity that
here decays from 9 to 0 photons over 1 ms. To predict the number n

of photons at any time of the evolution, the probability distribution
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Figure 4.3: Photon number tracking experiment. (a) Pulse sequence for the
observation of quantum jumps. (b) Evolution of the measure-
ment outcomes rn as a function of time t. The measurement is
performed on one realization using a driving comb whose ampli-
tude corresponds to an expected kick rotation angle ✓ = ⇡/2. (c)
Evolution of the inferred probability distribution Pt(n) of the
photon number n using the outcomes in (b). 1000 realizations in
the same conditions are available in [127].

of n is updated conditionally on the outcome ~m(t) through Bayesian
update at every time step j⌧ . It first requires determining the likelihood
P(~m|n) conditioned on the cavity being in the Fock state |ni. P(~m|n)

can be approximated by a Gaussian function of ~m owing to the small
measurement efficiency ⌘ = 0.17± 0.02. Therefore, we characterize its
distribution by the measured mean h~mi|ni and covariance matrix of ~m
for each |ni only [128]. Using this procedure, along with accounting
for photon loss during each time step j⌧ , the noisy measurement
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outcomes ~m(j⌧) of Fig. 4.3b lead to the probability distribution Pj⌧ (n)

shown in Fig. 4.3c for the same realization. Note that we assume
no prior information (P0(n) = 1/10), but this choice has anyway
no impact on the quantum trajectory after a few ⌧ . With many
realizations, we extract the average photon number decay. Interestingly,
it is not exponential, which indicates a subtle interplay between cavity
dissipation and qubit dynamics [128].

Figure 4.4: Measurement and dephasing rates. (a) Red dots: observed av-
erage measurement rate �m as a function of drive amplitude,
expressed as the qubit expected rotation angle ✓ per kick. Or-
ange shadow: measurement rate obtained using a stochastic
master equation with detection efficiency ⌘ spanning the range
[0.17, 0.20]. Blue shadow: theoretical bound for an infinite comb
and heterodyne measurement with efficiencies ⌘ 2 [0.17, 0.20]. (b)
Red dots: observed cavity dephasing rate �d as a function of ✓.
Orange: simulated measurement induced dephasing rate. Black:
theoretical accessible information rate. Blue: theoretical maximal
(⌘ = 1) measurement rate obtained by heterodyne detection.

We now determine the measurement rate �m of the photon number.
Formally, it is the time derivative of the mutual information between
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the photon number n and the outcome ~m at t = 0 [40, 92]. In the
weak measurement regime ⌧�m ⌧ 1, it can be approximated by

⌧�m =�

Z
P(~m) logP(~m)d~m

+

X

n

P0(n)

Z
P(~m|n) logP(~m|n)d~m,

(4.4)

where P(~m) =
P

n
P0(n)P(~m|n). As shown in Fig. 4.3c, at most two

photon numbers are likely at any time. We thus choose the prior
P0(q) = P0(q + 1) = 1/2, and average over all q values to compute
a measurement rate �m [128]. Plugging in Eq. (4.4) the measured
distributions P(~m|n) at various driving amplitudes ⌦, �m is obtained
as a function of the kick angle ✓ = ⇡⌦/� (Fig. 4.4a). It is maximal
when the qubit is kicked to states corresponding to the largest h�̂xi. It
can be intuitively understood since heterodyne detection probes the
quadratures of the emitted fluorescence signal, which are on average
proportional to the coherence h�̂x � i�̂yi. Notably, the rate �m is
much larger than the cavity decay rate 1/Tc (more than 16 times),
which is well in the single shot measurement regime. On average,
this measurement scheme allows us to reach more than 95% average
confidence in 20 µs [128]. Our complete model [128] reproduces the
observed rate �m using simulated measurement records by a stochastic
master equation with detection efficiency ⌘ = 0.185 ± 0.015 as a fit
parameter, in agreement with the independently measured ⌘.

It is interesting to compare this measurement rate to the rate at
which information about the photon number leaks into the environ-
ment, i.e. the cavity dephasing rate �d. We compute it as the added
decay rate of Tr{⇢̂(t)â} on top of the natural decoherence rate [128].

We use the auxiliary transmon qubit (purple in Fig. 4.1c) to perform
Wigner tomography on the cavity state and extract Tr{⇢̂(t)â} =R
↵Wt(↵)d2↵, with Wt(↵) the Wigner function of ⇢̂(t). The dependence

of �d on kick angle is shown as red dots in Fig. 4.4b. Strikingly, its
maximum is reached at ✓ ⇡ ⇡, where the qubit has the largest energy
to emit, and thus the most information to leak out. We note that
the model that successfully predicts the measurement rate (orange)
underestimates the measurement induced dephasing rate at large
drive amplitudes, indicating that the driving comb leads to stronger
decoherence than anticipated.
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The dephasing rate �d is about 20 times larger than �m at ✓ = ⇡/2

(its maximum). Indeed our measurement setup does not recover the full
information available because of a limited detection efficiency and the
very use of heterodyne detection. To better understand this information
loss, we use a simplified model where the comb is infinite. It reproduces
the measured �m with 0.17 < ⌘ < 0.20 (blue in Fig. 4.4a) for small
angles ✓, but not at larger angles where the finite duration of the kicks
reduces the actual rotation angle. However, the dephasing rate is larger
than the measurement rate of an ideal (⌘ = 1) heterodyne measurement
(blue in Fig. 4.4b). Accordingly, with the same model, the upper
bound on the measurement rate for any detection scheme – accessible
information rate – (black in Fig. 4.4b) is close to the measured �d
for small angles ✓ and up to about 3 times larger than what the
best heterodyne detector could do: Even an ideal heterodyne detector
would destroy up to about 2/3 of the accessible information. The
experiment provides here a textbook example of destroyed information
by a measurement apparatus, here the heterodyne detector [156]. In
contrast to low detection efficiency, heterodyne measurement with
⌘ = 1 would reveal information even for ✓ = ⇡. Indeed, while the
average heterodyne signal is zero, its cumulants reveal the photon
number. The signal-to-noise ratio on the cumulants of order l scales
as ⌘l so that, in the experiment, the average is the main source of
information, hence the minimum at ✓ = ⇡.

In conclusion, our superconducting circuit and signal processing
demonstrate the possibility to monitor photon numbers in a cavity
with a fixed driving. Information about the photon number is extracted
up to 16 times faster than the cavity decay rate. The detector requires
20 µs of measurement on average to reach 95 % fidelity between 0 and
9 photons. A circuit using a harmonic oscillator or qudit instead of
the qubit as an encoder could enable even faster measurement rate in
future devices. A simple model quantitatively explains the dephasing
and measurement rates for small drive amplitudes. As we look ahead
to more integrated amplifiers, it would be interesting to observe how
the driving amplitude that maximizes the measurement rate evolves
with increased efficiency. Additionally, the pogo-pin and spurline filters
offer a convenient architecture for achieving galvanic coupling with
quantum circuits within a long lived microwave cavity. Interesting open
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questions remain to be explored such as the origin of the dependence
of Fock state decay rates on the comb amplitude. This seems to be a
dual effect to the readout problem of superconducting qubit [157–164].

4.2 device and measurement setup

4.2.1 Device fabrication

The circuit is composed of one 3D �/4 coaxial cavity resonator, into
which two samples are inserted. The first sample comprises the monitor-
ing transmon and its notch filter, the second contains the tomography
transmon qubit with its readout resonator and Purcell filter. These
samples are made of a 200 nm thick film of sputtered Tantalum on
a 430 µm thick sapphire substrate (deposited by Star Cryoelectron-
ics, Santa Fe, USA). The Josephson junctions of both transmons are
standard Dolan bridge e-beam evaporated Al/AlOx/Al junctions [103].

4.2.2 Measurement setup

The readout resonator, the tomography qubit, and the qubit are
driven on resonance by pulses that are generated using an OPX
from Quantum Machines®. It has a sampling rate of 1 GS/s. AWG
driving pulses are modulated at a frequency 125 MHz for readout,
110 MHz for tomography qubit, 70 MHz for cavity and 68 MHz for
the monitoring qubit. They are up-converted using I-Q mixers for the
readout resonator, monitoring qubit and cavity, regular mixers for the
tomography qubit, with continuous microwave tones produced by three
channels of an AnaPico® APUASYN20-4 for the readout resonator,
cavity and qubit, Agilent® E8257D for tomography qubit. The fourth
channel of AnaPico® APUASYN20-4 is used for the TWPA pump.
An AnaPico® APSIN12G is used to provide a strong detuned drive
on the qubit in order to calibrate the reflection coefficient [165].

The two reflected signals from the readout and qubit are combined
with a diplexer and then amplified with a TWPA provided by Lincoln
Labs [90]. The follow-up amplification is performed by a HEMT ampli-
fier from Low Noise Factory® at 4 K and by two room-temperature
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Table 4.1: Table of circuit parameters
Table of circuit parameters

Circuit parameter Symbol Hamiltonian
term

Value

Cavity frequency !c/2⇡ ~!câ†â 4.573 GHz

Qubit frequency !q/2⇡ ~!q�̂z/2 6.181 GHz

Tomography qubit fre-
quency

!t/2⇡ ~!t�̂tz/2 3.459 GHz

Readout frequency !r/2⇡ ~!rr̂†r̂ 7.875 GHz

Cavity-qubit cross Kerr
rate

�/2⇡ �~�â†â�̂z 5.25 MHz

Cavity-tomography
qubit cross-Kerr rate

�ct/2⇡ �~�ctâ†â�̂tz/2 593 kHz

Cavity self-Kerr rate �cc/2⇡ �~�ccâ†2â2 9 kHz
Circuit parameter Symbol Dissipation op-

erator
Value

Qubit decay time Tq 1/TqD�̂� 22 ns
Cavity decay time Tc 1/TcDâ 200 µs
Tomography qubit decay
time

Tt 1/TtD�̂t
�

3.6 µs

Readout decay time T1,r 1/T1,rDr̂ 415 ns
Cavity dephasing time Tc,� 2/Tc,�Dâ†â 36 µs
Tomography qubit de-
phasing time

Tq,� 1/2Tq,�D�̂t
z

12.3 µs
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amplifiers. The two signals are down-converted using image reject
mixers before digitization by the input ports of the OPX. We tune
the TWPA pump frequency (6.079 GHz) and power in order to reach
a total quantum efficiency of ⌘ = 17± 1 % at !q/2⇡ + 10 MHz. The
efficiency was extracted from the measured mean and variance of the
demodulated quadratures using the qubit as a reference for calibrat-
ing the gain of the amplification chain (see section 6 in Ref. [126]).
However, we observed on posterior experiments that this efficiency
can fluctuate by almost 20 % between !q/2⇡ and !q/2⇡ � 9�.

The frequency comb is generated by numerically computing the
temporal shape corresponding to a frequency comb. The use of an I-Q
mixer allows to use negative intermediate frequencies to expand the
comb on both sides of the source frequency.

4.2.3 Comparison with previous experiment

We summarize in table 4.2 the main differences with the reference
[126] that allowed us to reach single shot photon number measurement,
extract a measurement rate and observe quantum jumps. One big
difference is the use of a 3D cavity that extended the resonator decay
by 2 orders of magnitude. Another key difference is the use of the
analog of a Purcell filter for the cavity, galvanically connected in a 3D
design. The filter allowed us to preserve the two orders of magnitude of
improvement on the resonator lifetime despite a similar coupling rate
between qubit and cavity. The expected measurement rate is slightly
lower, because the dispersive coupling rate � between the qubit and
the cavity could have been larger to benefit from the strong qubit
emission rate into the measurement line. But this is compensated by
a far the longer decay time for the cavity.

In terms of results, the main figure of merit of the experiment
is �mTc, which was improved from 0.5 to 16, reaching the single
shot regime. Additionally, the experimental technique changed, as we
use a much wider comb experimentally, as it was proposed (but not
implemented) in [126].

The expected measurement rate for the reference [126] was not
computed but is here obtained via the same model than for the blue
curve of Fig. 4.4a in the main text.
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Figure 4.5: Schematic of the setup. Each element has its RF source, whose
color is matched. Room-temperature isolators are not represented
for the sake of clarity.

4.3 single-tone photon counting for pre- and post-
selection

4.3.1 Single shot measurement with a single tone

In this section, we focus on the case where the qubit is driven with a
single tone to determine whether the cavity contains a certain number
of photons [126, 147]. This configuration is reciprocal to the usual
dispersive readout of a qubit. We introduce the reflection coefficient
as the ratio r = hâouti/hâini in the steady state. The denominator is
calibrated by applying a strong ac Stark shift drive to the qubit
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Figure 4.6: Pogo pin and filter performances. Top panel: pictures of, from
right to left, the qubit and the on-chip filter on its support, the
pogo pin, and the pogo pin inserted in the tunnel in which the
chip is inserted. Red arrows show the pogo pin and the contact
point on the sample. Bottom panel: frequency profile of the
spurline filters, from an HFSS simulation. The actual frequency
of the cavity is represented in green, that of the qubit in dark
red.

(Fig. 4.7a), so that it is detuned far from !q. We generalize the
definition of a reflection coefficient r to the case of single measurement
records. Therefore, after a displacement of the cavity, we can build
histograms of r as a function of the frequency of the tone (Fig. 4.7b).
For a given photon number, the average reflection coefficient spans a
circle in the complex plane as the probe frequency is changed [103].
We introduce a phase ' relative to the center r0 = 0.3 + 0 ⇥ i of
that circle (see Fig. 4.7b). We recover the usual 2⇡ phase shift of the
reflection coefficient on a harmonic oscillator in the angular distribution
P('). Each number of photons leads to a unique phase shift as can
be observed in Fig. 4.7c. In particular, when we drive at !q � n�,
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Table 4.2: Summary of the differences with [126]
Work [126] This work

Architecture 2D 3D
Cavity filter no yes
Qubit decay rate 42 ns

�1
22 ns

�1

Dispersive shift �/2⇡ 4.9 MHz 5.25 MHz

Cavity decay time Tc 3.8 µs 240 µs
Bandwidth of the comb 9� 40�

Expected maximal measurement rate
�m

130 ms
�1

80 ms
�1

�mTc 0.5 16

the histogram peak corresponding to Fock state |ni is centered on a
⇡ phase shift. Thus, even though the histograms of various photon
numbers overlap, it is possible to pre/post-select this Fock state by
setting a threshold on the real value of one averaged single record.
The tighter the threshold, the higher the fidelity but the smaller the
selection yield as we discuss now.

4.3.2 Pre- and post selection using the qubit

The protocol we use to pre- and post-select a given number of photons
is shown in Fig. 4.8a. It is performed by sending a 20 µ-drive at !q�n�

before and after the measurement. For each pulse, we determine the
associated reflection coefficient. The measurement is heralded to Fock
state |ni if both measurements give reflection coefficients falling below
threshold. The thresholds we use are shown in Fig. 4.9a,c as dashed
red lines on the measured histograms at the post-selection step for
each desired photon number n. The value of the threshold r0 was
chosen so that the likelihood ratio between {the number of photons n

being equal to the selected number of photons k} and {n being equal
to k0} is higher than 100 for every target photon number k(i.e., for
any selected frequency f � k�) and for any k0 6= k:

P(Re(r) < r0|n = k)

P(Re(r) < r0|n = k0)
> 100.
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Figure 4.7: Single-frequency drive photon counting. (a) Pulse sequence. The
cavity is driven on resonance so as to excite it with large number
of photons, and a series of 10 µs readout pulse (red) with ampli-
tude ⌦ and detuning � = ! � !q are applied on the qubit while
the reflected signal is recorded to infer a reflection coefficient r.
The same protocol is then performed while applying a strong ac
Stark shift drive (gray, dashed). It detunes the qubit far from
the frequencies of interest, which provides a reference signal to
properly calibrate the reflection coefficient. (b) Histograms of
the reflection coefficient r constructed from this procedure. We
can clearly distinguish the components coming from the differ-
ent number of photons. (c) Distribution of the argument ' of
the complex number r computed from (b) as a function of the
detuning �. � appears as the frequency translation parameter
of the resonance of the qubit.

There is a trade-off between preparation fidelity by heralding and
its yield. We choose a drastic pre-selection threshold on Re(r) that
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Figure 4.8: Pre-and post-selection on the photon number. (a) Pre- and post-
selection pulse sequence. The cavity is alternatively displaced by
±↵ = 3.4 (which is believed to improve slightly the pre-selection
yield without reset compared to +↵ always). A first pre-selection
20 µs pulse is then applied to the qubit. This heralding sequence
(dashed box) is repeated until the measured Re(r) gets below
a threshold. A 20 µs comb pulse is then applied to the qubit.
In practice, it results from the concatenation of 10 identical
sequences of 2 µs. We then apply a post-selection pulse on the
qubit. (b) Estimated pre-selection fidelity as a function of the
Fock state. The selection yields associated to the threshold we
used (red dashed lines in Fig. 4.9) are given in Table 4.3. These
fidelities are determined by computing the probability to get
the right number of photons after applying the threshold. For
this, a prior probability distribution for the number of photons is
needed, which we deduced from the yield statistics in Table 4.3.

ensures preparation fidelities of at least 97 % by the pre-selection pulse
alone as shown in Fig. 4.8b while the selection yields (below 1 %) are
reported in Table 4.3.

4.4 computing the theoretical measurement rates

Our model for the measurement focuses on what happens after a single
kick of the qubit state. Indeed, the experiment can be decomposed into
a repetition of the same sequence. Every ⇡/�, the qubit is prepared
in a certain state ⇢̂q that depends on the amplitude of the comb,
and decays. Since in our case, ⇡/� ' 4Tq, we use a model where the
qubit fully relaxes to its ground state between each kick. We can thus
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Figure 4.9: Pre-and post-selected average qubit fluorescence. (a) and (c)
Histograms of the measured quadratures during the second (post-
selection) pulse on the qubit for each number n of photons
corresponding to a driving tone and heterodyne measurement at
!n. The upper threshold on Re(r) for the pre- and post-selection
readout is materialized by the dashed red lines. There are more
than one Gaussian component due to the decay between the pre-
and post-selection pulses. (b) and (d) Reconstructed average
fluorescence of the qubit for each number of photons. Note that
the figure (b) is identical to Fig. 2e.

assume the kick places the qubit in a pure state ⇢̂q = | ih | with
| i = cos(✓/2) |0i+ sin(✓/2) |1i, where ✓ = 2⇡⌦/2� is the kick angle
(see main text).

Following section F of the supplemental material of Ref. [40], the
measurement rate of the photocounting can be extracted from the
mutual information between the qubit frequency and a measurement
record, for the most entropic prior (all states assumed equally likely
initially). We compute it in the case where the qubit can only have
one out of two frequencies separated by � corresponding to a given
photon number or one more.
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Table 4.3: Yield table of the pre- and post-selection after a displacement of
↵ ⇡ 3.4 when the kick angle ✓ is set to 0.

Fock
state
fraction

Pre-
selection
fraction (%)

Post-
selection
fraction (%)

Typical number of sam-
ples 2Nn after post-
selection

0 0.5 33.3 200580
1 0.7 26.0 157370
2 0.7 19.7 119370
3 0.6 14.1 85800
4 0.5 11.1 67150
5 0.4 7.4 44990
6 0.3 4.2 25650
7 0.2 3.2 19330
8 0.2 1.9 11360
9 0.1 0.9 5580

We model the experiment as follows. The bipartite system {cavity,
qubit} starts in the initial state ⇢̂(0) = ⇢̂c ⌦ ⇢̂q. The full Stochastic
Master Equation (SME), neglecting the pure dephasing of the qubit,
of the system reads

d⇢̂ = �i
h
!câ

†â+
1

2
!q�̂z �

1

2
�â†â�̂z, ⇢̂

i
dt

+

✓
1

Tq

D�̂�(⇢̂) +
1

Tc

Dâ(⇢̂)

◆
dt

+

r
⌘

Tq

⇣
�̂�⇢̂� Tr{�̂�⇢̂}⇢̂

⌘
dW ⇤

+

r
⌘

Tq

⇣
⇢̂�̂+ � Tr{⇢̂�̂+}⇢̂

⌘
dW

(4.5)

where dW is now a complex Wiener process such that dWdW ⇤ = dt.
The complex measurement record with efficiency 0 < ⌘ < 1 reads

dyt =
q
⌘/Tq Tr{⇢̂�̂�}dt+ dW.
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It can be proven that the information contained in the measurement
record yt about the photon number in the cavity is preserved by
demodulating the measurement record as follows

m̃k =
1p
Tq

Z
+1

0

e
i(!q�k�)t� t

2Tq dyt, (4.6)

for all possible photon numbers k.
We can take into account the finite efficiency ⌘ of the detection

as a beam-splitter that combines a fraction of the field emitted by
the qubit with vacuum noise. Assuming the cavity is in state |ni, the
outcome m̃n is a stochastic variable that reads

m̃n =
p
⌘↵+

p
1� ⌘�, (4.7)

where ↵ and � are stochastic variables whose probability densities are
respectively given by the Husimi Q functions of the qubit state ⇢̂q
and of the vacuum state. Owing to the low measurement efficiency
⌘ ⇡ 0.2, the distribution function of m̃n is almost Gaussian as can
be seen in Fig. 4.10 in the cut along the real axis. For the quantum
efficiency ⌘  0.2 of the experiment, we see that the two curves are very
close, thus justifying the Gaussian approximation of the measurement
outcomes.

Figure 4.10: Gaussian approximation of the outcomes m̃n. Calculated proba-
bility distributions of P(m̃n = x) as a function of x when the cav-
ity is in |ni for (a) | i = |1i and (b) | i = (|0i+ |1i)/

p
2 . Blue:

⌘ = 1. Orange: its Gaussian approximation with same mean
and covariance matrix (on the whole complex plane m̃n 2 C).
Green: ⌘ = 0.2. Red: its Gaussian approximation. Purple: case
where | i = |0i.
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The other measurement outcomes m̃k 6=n are obtained with a wrong
demodulation frequency !q � k�. However there is still a finite overlap

�q

�q+i(k�n)� between the decaying modulation functions at n and k,
where �q = 1/Tq. The outcome m̃k 6=n can thus be written as a combi-
nation of m̃n and of a stochastic variable �k distributed as the Husimi
Q function of the vacuum state with weights corresponding to that
overlap.

m̃k 6=n =
�q

�q + i(k � n)�
m̃n +

i(k � n)�

�q + i(k � n)�
�k (4.8)

Knowing that ↵,�k, � are independent variables, one can compute
P( ~̃m|n). Knowing that the repetition time is ⌧ =

⇡

�
, we use equation

(4) in the main text to predict the measurement rates for ⌘ = 0.17, 0.2

(blue in Fig. 4a) and ⌘ = 1 (blue in Fig. 4b). For larger kick angles,
we observe a discrepancy between the experimental data and the
model in Fig. 4a. The x-axis corresponds to the ideal angle ✓ reached
by the qubit for an infinite frequency comb. However, both in the
experiment and in the simulation, the finite duration of the kicks
lowers the actually reached rotation angle below ✓. This is why the
blue curve behaves as expected while the experiment and simulations
appear distorted in ✓.

4.5 data processing

This section provides details on all the steps involved in the data
processing used in the letter.

4.5.1 Quantum model of the recorded voltage

The qubit couples the incoming modes âin(t) to the outgoing modes
âout(t) following the input-output relation

âout(t) = âin(t)�

s
1

Tq

�̂�(t). (4.9)

The outgoing modes âout(t) get amplified and downconverted by
a local oscillator at a frequency !LO/2⇡ = 6.247 GHz. The noise
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added by the amplifiers can be modeled as a finite temperature of
input modes b̂in(t), which are assumed to be in a Gibbs state. This
model (Fig. 4.11) leads to the following expression for the voltage V (t)

that is measured by the analog-to-digital converter (ADC) at room
temperature, where G encompasses the conversion factor between
the

p
Hz of the propagating mode amplitudes and Volts of the ADC

records. V (t) is the measurement outcome of the observable

V̂ (t) =
p

G
⇣
âout(t)e

i!LOt
+ â†

out
(t)e�i!LOt

⌘

+

p

G� 1

⇣
b̂†
in
(t)ei!LOt

+ b̂in(t)e
�i!LOt

⌘
.

(4.10)

Figure 4.11: Scheme of the quantum model of the detection of the fluores-
cence.

4.5.2 Data processing flow

From the measured voltages, we get several relevant quantities that are
discussed in the main text. Here, we show how they are related. Each
Fock state |ni from 0 to 9 is prepared a large number of times (see
Table. 4.3) by pre- and post-selection, leading to as many measurement
records Vn(t) of the voltage V̂ (t) over 10 slices of 2 µs.

For any measurement record V (t), we define the measurement out-
come ~m whose components are

mj =

Z
2 µs

0

V (t)Vj(t)dt, (4.11)

which corresponds to mj(2 µs) in Eq. (4.3) of the main text.
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Figure 4.12: Diagram of the signal processing (see text).

For each photon number n, we compute the mean Vn(t) of the Vn(t)

whose expectation is hV̂ (t)i|ni. We can then calculate the Gram matrix
(matrix of scalar products)

Gnm = (Vn|Vm) =

Z
2 µs

0

Vn(t)Vm(t)dt. (4.12)

Since the number of samples is finite, the mean Vn is a stochastic
variable. In order to avoid biasing the Gram matrix with the particular
realization of Vn, we compute each scalar product between averages
(Vn|Vm) by taking half the samples for the left part and the other
half for the right part (see Fig. 4.12). We also compute the covariance
matrices ⌃n of the probability distribution of the measurement out-
comes ~mn obtained from Vn(t) when there are n photons. Its matrix
elements read

⌃n

jk = Cov{(Vn|V j), (Vn|Vk)} = (mn

j
�Gjn)(mn

k
�Gkn). (4.13)
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4.5 data processing

As for the Gram matrix, we compute each scalar product (Vn|V j) by
taking half the samples for the left part and the other half for the
right part.

As explained in Fig. 4.10, the distribution probability P(~m|n) of
~mn can be approximated by a Gaussian law for our low efficiency
⌘ ' 0.2. Therefore, we use the experimentally determined Gram and
covariance matrices to reconstruct this law N (Gn,⌃n

). It is used in
the Bayesian update of the photon number and for the computation
of the measurement rate. For the estimation of P(~m|n) used in the
Bayesian filter for the photon number tracking in Fig. 3, we pre-
and post-selected 60600 ⇥ 10 realizations following the protocol in
Fig. 4.8. However, since we require many drive amplitudes for Fig. 4,
we selected only 6600⇥10 realizations for each amplitude in that figure.
We there chose to remove the numbers 8 and 9 from the analysis as
the insufficient number of samples induces very large uncertainties on
the measurement rate.

From the mn, we can compute the rn (as in the main text) and look
at their probability distribution, which is shown Fig.4.13 for r5. The
average value of r5 is 1 when there are 5 photons in the cavity (brown),
and 0 otherwise. All the records that are conditioned to other numbers
of photons have the same Gaussian law, centered around 0. Because
of the noise of the measurement, the value of the records may take
values as large as 8 or as low as -8, which can also be seen in Fig. 3b.
This is analogous to the measurement record of a dispersive readout of
a qubit. Note here that all the rn are correlated in general, so looking
at the marginals is not enough to extract all the information about
the number of photons. In particular, while this figure gives a hint
about how well we can distinguish the Fock state 5 from the others in
2 µs, it only gives a lower bound on the Signal-to Noise Ratio.

4.5.3 Reconstruction of the qubit fluorescence signal

In order to avoid being blinded by the drive, we remove the comb
contribution (which is measured by driving the qubit off resonance
using ac-Stark effect)

c(t) =
p

G
⇣
hâin(t)ie

i!LOt
+ hâ†

in
(t)ie�i!LOt

⌘
(4.14)
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Figure 4.13: Conditional probability distribution of the orthonormalized
records rn. Brown dots: measured probability distribution for
the record r5 after 2 µs of integration when 5 photons are pre-
pared in the cavity. Dots with other colors: measured probability
distribution for the record r5 when there are k photons in the
cavity, for k between 0 and 9, k 6= 5, and the same integration
time. Solid line: Gaussian fits.

to the average measurement records Vn(t) (Fig. 2d in the main text).
Following Eqs. (4.10) and (4.14), we express the expectation value

of Vn(t)� c(t) as

Vn(t)�c(t) = �

s
G

Tq

⇣
h�̂�(t)i|nie

i!LOt
+h�̂+(t)i|nie

�i!LOt

⌘
. (4.15)

Here, h�̂�(t)i|ni oscillates at (!q�n�), so h�̂�(t)i|nie
i!LOt oscillates at

!LO�!q+n� = !IF+n�. To reconstruct the fluorescence of the qubit
in the frame rotating at its frequency, we bring these oscillating signals
to zero frequency. This is performed using their Hilbert transform H

to reconstruct their analytic form �

q
G

Tq
h�̂�(t)i|nie

i!LOt (here with
negative frequencies). This allows to perform a sideband-free numerical
demodulation to recover the average coherence of the qubit. It yields

In(t)�iQn(t) = e�i(!IF+n�)t+i�n

⇣
Vn(t)�c(t)+iH[Vn�c](t)

⌘
(4.16)

where �n is chosen such that the most significant quadrature, i.e the
one carrying the most fluorescence, is In. These quadratures are plotted
in Fig. 2.e in the main text and Fig. 4.9. Note that the demodulation
frequency is (!IF + n�)/2⇡ and not �n�, which originates from the
fact that the qubit is driven with a lower sideband.
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4.5 data processing

4.5.4 Relevance of the demodulation procedure

In this section, we justify how well the demodulation we perform
following Eq. (4.3) (main text) preserves the information about the
photon number that is contained in the measurement records. Indeed,
using the average measurement record Vn(t) as a demodulation func-
tion does not straightforwardly appear equivalent to Eq. (4.6) that
states that using the demodulation function e

i(!q�n�)t� t
2Tq preserves

all the information about the photon number.
Actually, the demodulation function e

i(!q�n�)t� t
2Tq is proportional

to Tr

⇣
⇢̂n(t)�̂�

⌘
, where ⇢̂n(t) is the solution of a simple Lindblad

master equation describing the evolution of a qubit at frequency
!q � n� and with a relaxation time Tq. Therefore a valid way to
demodulate the measurement record in the experiment would be to
measure the average down-converted and pre/post-selected complex
amplitude ei!LOt

Tr

⇣
⇢̂n(t)�̂�

⌘
first, and to use it to demodulate the

measurement record. Formally, it corresponds to Vn(t)�c(t)+ iH[Vn�

c](t) defined in Eq. (4.16), where H is the Hilbert transform. However,
using Vn(t) alone does not lead to any visible loss of information
between the two methods. As a matter of fact, demodulating by
Vn(t) � c(t) + iH[Vn � c](t), Vn(t) � c(t) alone or Vn(t) does gather
the same amount of information, up to experimental uncertainties.

Note that this simplification is only possible thanks to the relatively
low quantum efficiency ⌘. Were the efficiency ⌘ close to 1, we would
be able to gather information in all cumulants of the probability
distribution of m̃ as well (see Fig. 4.10), which would require to keep
the full expression Vn(t)� c(t) + iH[Vn � c](t).

4.5.5 Measurement rate estimation

Once G and ⌃ known, the measurement rate can be computed using

⌧�m = I(n : ~m) =�

Z
P(~m) logP(~m)d~m

+

X

n

P0(n)

Z
P(~m|n) logP(~m|n)d~m,

(4.17)
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for any prior P0 for which there exists a number q such that P0(q) =

P0(q + 1) = 1/2, and where I(n : ~m) is the mutual information of n
and ~m.

A subtlety arises from the fact that this expression is only valid for
times ⌧ such that ⌧�m ⌧ 1. For the largest measurement rates we
obtained in the experiment, we cannot use the full integration time of
2 µs. However it is straightforward to compute what this expression
gives if ⌧ were as small as the period of the pulse train driving the
qubit, which is here ⇡/� = ⌧/21. For this computation, we then rescale
the Gram matrix into G0 = G/

p
21.

Note that we chose to integrate over 2 µs because of a technical
reason. It is simply the smallest multiple of the pulse train period that
is also a multiple of the inverse sampling rate of the OPX instrument
(1 ns).

The mutual information obtained in this way is actually biased.
Indeed, even if all the Gn and ⌃n are equal (I(n : ~m) = 0), their
experimental value are slightly different owing to noise, thus rendering
I(n : ~m) positive. To estimate this bias, we measured I(n : ~m0) for
zero driving amplitude, and assumed that it should be zero exactly,
neglecting the thermal emission of the qubit. We observed that I(n :

~m0) scales linearly with the inverse of the number of samples. We then
used the computed I(n : ~m0) at zero amplitude as a calibration of
the systematic errors for all the other amplitudes. For each driving
amplitude, the expected positive systematic error inversely scales with
the number of measured samples given in Table 4.3. The error bars
displayed in Fig. 4 correspond to this systematic error.

4.5.6 Simulation

In order to simulate the experiment, we numerically solve the following
Stochastic Master Equations (SME), for each n between 0 and 7.

d⇢̂(t) = �
i

~ [Ĥn, ⇢̂]dt+
1

Tq

D�̂�(⇢̂(t))dt+
r

⌘

Tq

H�̂�(⇢̂(t))dW (t),

(4.18)
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with

Ĥn = ~ (!IF + n�) |eihe| (4.19)

D
Â
(⇢̂) = Â⇢̂Â†

�
1

2

⇣
Â†Â⇢̂+ ⇢̂Â†Â

⌘
(4.20)

H
Â
(⇢̂) = ⇢̂Â†

+ Â⇢̂� Tr

n
⇢̂Â†

+ Â⇢̂
o
. (4.21)

The homodyne measurement record reads

dyt =
r

⌘

Tq

Tr(�̂x⇢̂(t))dt+ dW (t), (4.22)

where dW is a Wiener process with zero mean and variance dW 2
=

dt. The record models the outcome of a homodyne detection of the
fluorescence of the qubit for a known number of photons n in the
cavity, with a quantum efficiency of ⌘. The intermediate frequency is
!IF /2⇡ = 66 MHz.

The orange curve of Fig. 4a results from calculating 10 000 quantum
trajectories solutions of these SME for each amplitude and frequency,
for ⌘ = 0.17 and 0.2 and applied the same procedure as for the
experimental records for V (t) =

p
Gdyt/dt. The only difference is that

the average signal V was directly obtained as the solution ⇢̂(t) to the
Lindblad equations, given by Eq. (4.18) when ⌘ = 0, and computingq

⌘G

Tq
Tr(�̂x⇢̂(t)).

4.5.7 Bayesian filter for the photon number

Tracking the photon number corresponds to actuating the probability
of having n photons in the cavity Pt(n) conditioned on the measure-
ment record V from time 0 to t. Given Pj⌧ (n) and the measured
~m(j⌧ + ⌧), we compute Pj⌧+⌧ (n) as follows:

• During �t = 2 µs, apply the dissipation operator 1/TcDâ on the
diagonal density matrix of the cavity, whose diagonal elements
are the Pj⌧ (n) coefficients. We denote the resulting diagonal
elements of the density matrix as P0

j⌧
(n), and use a cavity lifetime

Tc = 200 µs,

• Actuate it with the corresponding ~m(j⌧ + ⌧) following

Pj⌧+⌧ (n) = P
0
j⌧ (n)P(~m(t)|n)/Z, (4.23)
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where Z is a normalization constant ensuring
P

n
Pj⌧+⌧ (n) = 1.

4.5.8 Average time to reach a given confidence on the photon number
measurement

Figure 4.14: Average time needed to reach various confidence thresholds as
a function of the average number of photons. Dots: average
measurement time ⌧m(x) required so that one of the photon
number probabilities Pn(t) exceeds the confidence x = 70 %

(blue), 80 % (green), 90 % (red) or 95 % (purple). The times are
represented as a function of the mean photon number at time
0. Error bars represent the uncertainty coming from the finite
number 1100 of realizations that were processed. Dashed line:
Measured 1/�m under the same conditions of driving (✓ = ⇡/2
as in Fig. 3).

In addition to the measurement rate, it is possible to extract the
average time it takes for the measurement procedure to reach a certain
confidence x < 1 in the number of photons (Fig. 4.14). Using the same
set of measurement records from which the realization in Fig. 3 is
taken, and starting at an arbitrary time t0 with an agnostic probability
vector Pt0(n) = 1/10, we process the data with the Bayesian update
without including the dissipation, until the time t0 + ⌧ at which the
estimator reaches a confidence x for one of the numbers of photons.
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4.6 dephasing rate

We then define ⌧m(x) = ⌧(x), the average time that is required to
reach the level of confidence x. Using the average expected number
of photons n (see Fig.4.17) as a function of time t0, we can plot the
average time ⌧m(x) as a function of the mean initial photon number
n̄ in Fig. 4.14. Note that ⌧m(x) differs from 1/�m, which is the time
needed to reach a fidelity of 92% (Signal-to-Noise Ratio = 2) when
thresholding for a standard qubit readout without decay. But these
two timescales give the same order of magnitude for the measurement
time.

The increase of ⌧m as a function of the average number of photons
can be understood as the fact that the effect of the dissipation increases
with the number of photons, so the cavity is increasingly more likely to
lose a photon during the measurement time, which increases the time
needed by the estimator to converge, as it has to rebuild confidence
when a photon is lost.

4.6 dephasing rate

4.6.1 Measuring the dephasing rate

To extract the dephasing rate of the cavity in Fig. 4b, we use the
technique of Ref. [126].

Performing Wigner tomography via the tomography qubit, we ex-
tract |hâ(t)i| after preparing a coherent state hâ(0)i = �1.11 in the
cavity. In order to cover the full range of dephasing rates, we perform
the tomography for multiples of ⇡/� ' 95 ns (period of the comb),
with an uneven spacing to cover fast and slow dynamics alike. An
example of such dynamics with an exponentially decaying amplitude
is shown Fig. 4.15a. We use an exponential fit to extract the dephasing
rate ��. Note that, at small qubit driving amplitude, the decay of |hâi|
is driven by the self-Kerr effect leading to a non-exponential behavior.
Fig. 4.15d shows the measured Wigner function without drive, 15.2 µs

after the displacement.
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Figure 4.15: Dephasing rate measurement and simulation. (a) Blue dots:
measured |Tr{â⇢̂(t)}| as a function of time for a comb ampli-
tude leading to a qubit kick angle ✓ = ⇡. Solid orange line:
fitted exponential decay at a rate ��. Inset: timeframes of the
measured Wigner functions. (b) Blue line and dots: simulated
|Tr{â⇢̂(t)}| as a function of time for ✓ = ⇡ using Eq. (4.26).
Solid orange line: fitted exponential decay from which the pre-
dicted dephasing rate is extracted. Inset: timeframes of the
simulated Wigner functions. A zoom on the earliest times shows
the dephasing dynamics during a period of the comb drive. (c)
Decay rate  of the cavity extracted from the decay of the mean
photon number Eq. (4.24). (d) Measured (left) and simulated
(right) Wigner functions at time t = 15.2 µs without driving
the qubit. The simulation is performed using Eq. (4.28) where
the self-Kerr rate is �cc/2⇡ = 10± 1 kHz, and pure dephasing
rate is 1

Tc,�
= (36± 6 µs)�1.
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,
If the measurement was QND, we could obtain the measurement

induced dephasing rate by subtracting the measured dephasing rate at
zero drive 1/Tc,� to the dephasing rate �� at finite drive. However, as
explained below, we observe a yet unexplained increase in the cavity
decay rate for large qubit drive that forbids such a simple approach.
We therefore proceed in two steps.

First, to obtain pure dephasing rates ��(✓), we subtract the con-
tribution related to the decay rate  of the cavity to the measured �.
This decay rate is determined using the tomography at various times.
For each measured Wigner function W⇢̂(t)(↵), we compute the mean
photon number

n(t) = Tr

n
â†â⇢̂(t)

o
'

7X

k=0

kPk(⇢̂(t)), (4.24)

where Pk(⇢̂) =
R
W⇢̂(↵)W|kihk|(↵)d

2↵ with W|kihk|(↵) the Wigner map
of |kihk| (see (B4) in [126]). The resulting fitted decay rate  is shown
in Fig. 4.15c as a function of the qubit kick angle ✓.

Second, in order to extract the measurement induced dephasing rate
�d plotted in Fig. 4b, we subtract the measured pure dephasing rate
without qubit driving 1/Tc,� = (36± 6 µs)�1 to the pure dephasing
rate ��(✓).

For clarity, the final expression for �d(✓) reads

�d(✓) = �(✓)� /2� 1/Tc,�. (4.25)

4.6.2 Simulation of the dephasing rates

To predict the expected dephasing rate, we use the Lindblad equation
of the qubit-cavity coupled system in the interaction picture

d⇢̂(t)

dt
= �

i

~ [Ĥint + Ĥd, ⇢̂] +
1

Tq

D�̂�(⇢̂(t)), (4.26)

with

Ĥint = �~�
2
(1+ �̂z)â

†â, (4.27)

and Ĥd defined in Eq. (4.1).
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Here, we neglect any other dephasing source, as well as the decay
rate of the cavity. We use this simulation to compute Tr{â⇢̂(t)}. Taking
only one point per period of the comb. It fits well with an exponential
decay (see Fig. 4.15b).

The dephasing rate at zero drive 1/Tc,� can be precisely determined
by fitting the dynamics of the cavity state when starting in a coherent
state. The Linblad Master equation we use takes into account the
self-Kerr effect as well as pure dephasing without drive:

d⇢̂(t)

dt
= �

i

~ [Ĥkerr, ⇢̂] +
2

Tc,�

Dâ†â(⇢̂(t)), (4.28)

where

Ĥkerr = �~�ccâ
†2â2. (4.29)

We find that the measured evolution of the cavity state is well repro-
duced when �cc/2⇡ = 10 ± 1 kHz and 1/Tc,� = (36 ± 6 µs)�1 (see
Fig. 4.15d).

4.6.3 Predicted dephasing rate

We start with the same model as in Sec. 4.4 where the qubit is kicked
once and has infinite time to decay. We can model the experiment as
follows. Irrespective of the state of the cavity, the qubit is prepared in
a state | i = cos ✓/2 |0i+ ei� sin ✓/2 |1i. It emits a state |�i

n
in the

transmission line that depends on the number of photons n, which we
can write

|�i
n
=

⇣
cos(✓/2)1

+ei� sin(✓/2)

s
1

Tq

Z
+1

0

e
�i(!q�n�)t� t

2Tq â†
out

(t)dt
⌘
|vaci

(4.30)

where |vaci is the vacuum state of the outgoing transmission line. In
the simple case where n = 0 or n = 1, the cavity can be treated as a
qubit as in Ref. [40]. Each period ⌧ =

⇡

�
of the train of pulses leads

to a decay of the off-diagonal matrix elements of the cavity density
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matrix by a factor | h�|�i
0 1

|. The dephasing rate �d (black solid line
in Fig. 4b) is thus given by

e��d⌧ = | h�|�i
0 1

|

where
h�|�i

0 1
= cos

2
(✓/2) +

sin
2 ✓/2

1� i�Tq

.

4.7 deviation to quantum nondemolition

Figure 4.16: Measurement-induced decay rate of the cavity. Probability of
measuring Re(r) below threshold during the post-selection pulse
of the sequence in Fig. 4.8a as a function of the qubit rotation
angle ✓ associated to the comb. Each line corresponds to a
different selected photon number n from 0 (dark blue) to 9

(red). The selection thresholds are the same as in Table 4.3
.

In order to better characterize how the driving amplitude of the qubit
affects the number of photons in the cavity (deviation to QNDness of
the photon number tracking), we perform several experiments. The
drive amplitude is given either as a Rabi frequency ⌦ for single tone
driving or an angle of rotation ✓ during a qubit kick.

A direct signature of non-QNDness can be seen in Fig. 4.16. It
shows the yield of the post-selection for each n (each color) as a
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Figure 4.17: Measurements of the decay rate of the cavity. (a) Pulse sequence
tracking the occupation of the vacuum state. (b) Pulse sequence
tracking the number of photons. (c) Blue dots: probability
Pt(n = 0) that the cavity is in vacuum as a function of time. The
measurement is obtained by single-tone readout of the number of
photons after a strong (|↵|2 > 20) displacement of the memory.
The fit (orange) to Eq. (4.31) gives Tc = 230 µs. The absence
of a plateau at early times despite the large displacement could
be attributed to an increasing decay rate for higher number of
photons. (d) Blue dots: reconstructed average number of photons
using 1100 records of the tracked photon number. Exponential
fits with Tc = 130 µs (orange) and Tc = 250 µs (red) are
superimposed.

function of the rotation angle ✓. The yield decreases with driving
amplitude, showing that driving the qubit changes the transition rates
between Fock states. The variation is more pronounced for larger
driving amplitudes (✓ > ⇡). As a matter of fact, the curves for n = 1

and n = 2 cross, which indicates a decay rate that changes with n.
In Fig. 4.15c, we show the observed cavity decay rate  as a function

of the angle ✓. It is obtained by computing the number of photons as
a function of time from the Wigner tomography. A small increase of 
seems to occur as ✓ grows but still an order of magnitude smaller than
the measurement rate for ✓ = ⇡/2. However a sharp rise in  occurs
for ✓ ⇡ 3⇡/2.
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4.8 dependence of the cavity lifetime on photon
number

We also performed a measurement of the average probability of having
0 photons Pt(n = 0) as a function of time (Fig. 4.17a,c). This is
obtained with a single frequency tone on the qubit at ⌦ = 5.4 MHz
after a cavity displacement. Fitting it with the decay of a coherent
state

Pt(n = 0) = |h
p
n0e
�t/Tc |0i|

2
= e�n0e

�t/Tc (4.31)

extracts the decay time Tc of one photon in the cavity.
We do not observe a plateau at initial times (small effective n0 in

Eq. (4.31)) despite the large variation of displacement amplitudes we
tested. We believe that this could be due to a nonlinear decay rate of
the cavity owing the presence of the transmon and its Purcell filter.

Using the quantum trajectories obtained with the comb drive, we
can also reconstruct the average number of photons as a function of
time. It does not decay exponentially. This non exponential cavity
decay was also observed using the tomography qubit on a different run.
As a side remark, the slight increase of the estimated mean number of
photons at small times is well understood. Indeed the comb signal is
only analyzed within the range from 0 to 9 photons so that a wrong
prior estimates the average number of photons at 4.5 initially. As the
number of photons decreases and enters the detecting window [[0, 9]],
the update tends to increase the average number of photons at short
times.

We do not have a simple explanation for this behaviour. We believe
that higher order conversion processes between the cavity and the
multiplexing qubit could be involved in these observations. As a matter
of fact, the frequency of the qubit is higher than that of the cavity,
which could more easily trigger the effects described in [161]. However,
it would be in a very unusual regime, as the cavity has a long decay
time and the qubit a low one in our work.

In a previous cool down of the same device, we measured the
decay of the cavity for a wide range of numbers of photons using the
tomography qubit. The procedure consists in first displacing the cavity
to a coherent state with about 25 average photons. The tomography
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Figure 4.18: Measurement of the average decay of the cavity with the to-
mograhy qubit. (a) Pulse sequence for the measurement of the
probability Pt(k) that there are k photons in the resonator. (b)
Measured Pt(k) as a function of time t and photon number k
after a displacement pulse of about 25 mean photons. (c) Mea-
sured decay of the average photon number n =

P30
k=0 kPt(k)

as a function of time.

qubit is then driven with a selective ⇡ pulse (at a frequency !t � k�ct,
see Table 4.1), conditioned on the number of photons being equal
to a certain k. The state of the tomography qubit is then read out
using its readout resonator. From this, we can reconstruct the average
occupation of each Fock state Pt(k) in the cavity at any time t after the
displacement (Fig. 4.18b). The behaviour of Pt(k) is non exponential
for high number of photons, and seems to drop faster for more than
10 photons. Looking at the average number of photons on Fig. 4.18b,
we fit the curve portions with several exponential functions, and see
that the decay rate of the cavity increases with the average number of
photons.

4.9 supplementary sections
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4.9.1 Wigner function of prepared Fock states

In a previous cooldown of the experiment, we could perform a Wigner
tomography of the pre-selected Fock states using the procedure de-
scribed in Sec. 4.3.2. For each number of photons between 0 and 9,
the heralding sequence shown in Fig. 4.8a was performed, before a
displaced parity measurement sequence to reconstruct the Wigner
function of the post-selected state. The resulting Wigner functions are
shown in Fig. 4.19.

4.9.2 Neural-network-assisted record analysis

One of the potential follow-up ideas of the project was to use a neural
network embedded in a Field-Programmable Gate Array (FPGA) to
analyze the time traces and to perform low-latency feedback control
on the cavity to prepare stabilize Fock states, as in [125]. Such neural
network-based feedback control was already demonstrated using weak
measurements of a qubit [166, 167]. However, this necessitates spe-
cialized hardware that was not available at this time. Still, we could
perform a few prospective tests without this hardware. It was already
demonstrated that a neural network could reconstruct quantum trajec-
tories of a qubit under a weak measurement [168, 169]. In this section,
we will demonstrate that a neural network can be trained to analyze
the fluorescence record of the qubit driven by a comb to build the
vector of probabilities in Fig. 4.3 for a time trace of 2 µs.

To do so, we generated Nsamples = 608000 stochastic records in
the same conditions as in Sec. 4.5.6 for each possible qubit frequency
associated to n between 0 and 9. The quantum efficiency is set to
⌘ = 0.15 (slightly lower than in the experiment) and the decay rate
of the qubit 1/(2⇡Tq) = 6 MHz, which corresponds to Tq = 27 ns,
(slightly longer than in the experiment). For each trace generated
for a number n of photons, the actual photon number distribution is
Pn

label
(k) = �kn. This distribution is used as a target for the training

of the NN.
This approach addresses photon counting as a classification prob-

lem. The network learns to classify the traces into 10 categories, each
corresponding to a photon number. It then falls in the category of
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Figure 4.19: Measured Wigner functions of Fock states |ni for n between 0
and 9, after a heralding sequence on heterodyne measurement
of the qubit emission.

supervised learning, as the network will be presented with the ex-
pected answer during the training. Classification is a common task in
machine learning, especially in image recognition. It also applies to
quantum tasks, for example, to detect non-classical states [170, 171]
and entanglement [172].
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The network is the simplest possible network we could build: it is
constituted of a single fully-connected layer, linking the 2001 input
time values to each of the 10 outputs constituting the output of the
network. The chosen activation function is the softmax function so
that the output of the network is a proper probability distribution. It
is build using the Keras package [173] of the library Tensorflow [174].

Keeping Ntest = 10000 trajectories for each n to evaluate the network
after the training, we trained the network for 12 epochs, using an Adam
optimizer [175] and the categorical cross-entropy as a loss function
between the distribution PNN outputted by the network and Plabel.
Because of the very high number of samples, the network converged
after only 2 epochs.

The network is then tested on a set {dyj,n
t

} of Ntest ⇥ 10 homodyne
records where n 2 J0, 9K stands for the number of photons prepared
and j 2 J0, Ntest � 1K is the sample number. Each of these records is
then associated with the distributions Pj,n

demod
(k) obtained from the

demodulation procedure described in this chapter, and Pj,n

NN
(k) from the

trained neural network. The result on a subset of the test data is shown
in Fig. 4.20. We see that both the demodulation procedure (Fig. 4.20)a
and the network (Fig. 4.20b) seem to extract some information about
the photon number, as we can distinguish the pattern of Fig. 4.20c.
Note that it does not manage to reach the precision of the targets
Pj,n

label
(k) = �kn presented in Fig. 4.20c as the information in the record

is intrinsically not sufficient to reach this level of precision.
Strikingly, we see that most features in Fig. 4.20a are replicated

in Fig. 4.20b, even though they appear random. It indicates that the
predictions Pdemod and PNN are very similar. This was expected from
the fact that this analysis is near-optimal (see Sec. 5.1.1). This seems
to indicate that the network finds a similar analysis, which we could
have investigated by trying to "open the black box". We have two
possible ideas at this stage: looking at the weights of the network to
compare them to the demodulation functions, and trying to find out
which inputs allow to obtain the most peaked functions, and compare
to the known structure of the pulses.

147



monitoring the photon number of a cavity

Figure 4.20: Comparison between the predictions obtained using the neu-
ral network and the demodulation procedure. (a) Prediction
Pdemod(k) from the demodulation-based analysis of the het-
erodyne measurement record. (b) Prediction PNN(k) from the
neural network-based analysis of the heterodyne measurement
record. (c) Label distribution Plabel, indicating the cavity pho-
ton number for each trace. The sample number is linked
to n and j by the relations sample number = 10n + j and
j = sample number mod 10.

To illustrate how close to each other our two predictors are, we
compare the average probabilities

P
n

demod(k) =
1

Ntest

X

j

Pj,n

demod
(k) (4.32)

P
n

NN(k) =
1

Ntest

X

j

Pj,n

NN
(k), (4.33)

and plotted them in Fig. 4.21: they are barely distinguishable.
To push the comparison further, we compute the prediction fidelities

of the two methods. We translate each photon number distribution P to
a photon number prediction (by taking the argmax of the distribution),
and compute the probability that this prediction is right, i.e. that the
trace was generated with this parameter. Defining

rj,n
demod

=

(
1 if argmax

k

(Pi,n

demod
) = n

0 otherwise,
(4.34)
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Figure 4.21: Comparison between the average predictions obtained using the
neural network and the demodulation procedure. (a) Average
predictor probability Pn

demod(k) for each photon number ob-
tained with the demodulation technique. (b) Average predictor
probability Pn

NN(k) for each photon number obtained with the
neural network.

and rj,n
NN

in the same way, the estimated fidelity F
j,n

demod
when there

are n photons reads

F
n

demod =
10

Ntest

X

j

rj,n. (4.35)

The fidelity for the neural network F
n

NN
is defined similarly with

the {rj,n
NN

}. The result is shown in Fig. 4.22a. Both schemes are well
above 1/10 fidelity, which shows their predictive power. We see that
both methods yield very similar results, the demodulation method
performing slightly better than the neural network for each n. The
better fidelity for n = 0 and n = 9 can simply be explained by the
fact that these two states have only one close neighbor, on contrary
to all the others, which have two of them (n� 1 and n+ 1).

The two predictors, however, have slightly different behaviors when
trying to extract a mutual information between the number of photons
k and the outcome of each predictor. For the demodulation-based
predictor, we can write this mutual information Idemod as

Idemod = H0 �
1

10

X

n

Hn, (4.36)
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Figure 4.22: Fidelity and mutual information obtained using the neural
network and the demodulation procedure. (a) Fidelity obtained
for the demodulation technique and the neural network for
each number of photons. (b) Mutual information, expressed in
bits, inferred from the statistics of the predictions using the
demodulation technique and the neural network.

where H0 is the entropy about the photon number, set to log(10) as
there are 10 possible outcomes with equal probabilities. Hn is the
conditional entropy of the predictor knowing that the photon number
is n. This mutual information characterizes how much the entropy
about the photon number is reduced thanks to the predictor.

The mutual information Idemod thus decomposes into mutual infor-
mations In

demod
conditioned on the photon number being n

Idemod =
1

10

X

n

Indemod, (4.37)

where

Indemod = H0 �Hn. (4.38)

We can estimate Hn as

Hn
= �

10

Ntest

X

j

X

k

Pj,n

demod
(k) log

⇣
Pj,n

demod
(k)

⌘
. (4.39)

The same procedure is used to compute In
NN

and Idemod from
Pj,n

demod
(k).

The result is shown in Fig. 4.22b. Strikingly, the neural network
exhibits significantly higher mutual information than the demodulation
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process. We have to be careful with this observation, as a higher mutual
information, as computed, does not necessarily implies that the network
extracts more information. It could for example output very peaked
distributions that are completely wrong.

We interpret this higher apparent mutual information by the fact
that the neural network is trained to reach the very peaked distribution
Plabel even though it does not have access to enough information to
reach it. It could be that it is encouraged during the learning part to
output peaked distributions, even though they do not necessarily reflect
the information that could be extracted from the raw measurement
record.

We thus demonstrated that neural networks can be used to process
such time traces to readout the state of the cavity. This was done
in a model-free setting, i.e. without having access to the model of
the experiment during the training. This principle could for example
be applied to process readout traces in a superconducting quantum
computer. Indeed, in processors with a lot of qubits, optimizing the
space on the chip is crucial. There is a tradeoff between the density of
elements and the parasitic couplings (crosstalks between them), which
renders the readout task more and more complex with the number
of qubits. Machine-learning-based solutions were already proposed
to adress this type of issue [176–178]. Such a model-free approach is
peculiarily useful in these cases where the model may not be known
with precision, or would require measuring a prohibitive amount of
parameters.
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5
INFORMATION AND MEASUREMENT RATES

In Ref. [126], Antoine Essig and coworkers already measured the
dephasing rate in the first version of the experiment presented in
Chap. 4. They also introduced the idea of using an infinite frequency
comb and theoretically studied the accessible information as a function
of time after one relaxation of the qubit (in the case ✓ = ⇡) in the
number-resolved regime (�� �1). In this case, they demonstrated that
the measurement time could be independent of the maximal number
of photons Nmax with an appropriate measurement setup. They also
built a model of the measurement records obtained with a heterodyne
detector and established that, under a Gaussian approximation of the
record statistics, the measurement time is proportional to log(Nmax),
where Nmax is the maximal number of photons allowed in the cavity.

The goal of this chapter is to carry further the analysis of the infor-
mation content of the fluorescence emitted by the qubit. In Fig 4.4,
we compare the measurement rate obtained experimentally to the
dephasing rate (Fig 4.4b orange and black) and to the maximal mea-
surement rate that a heterodyne measurement could reach. We will
first develop the theoretical framework that allowed us to produce
the latter curve. In a second part, we will compare the heterodyne
scheme used in the experiment to an optimal scheme maximizing the
measurement rate and to a scheme using a Frequency-Resolved Photon
Detector (FRPD), which is close to the original Gedanken experiment
[126]. In a third part, we will generalize the notion of measurement
rate to take into account the fact that our photon counter has to
discriminate between more than two possible outcomes. Finally, we
will transform the problem of discriminating between discrete fre-
quencies into a continuous frequency estimation problem and make a
theoretical comparison between heterodyne, homodyne, FRPD, and
optimal measurements. Interestingly, we will establish cases where the
homodyne measurement performs infinitely worse than a heterodyne
detection and FRPD.
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5.1 modeling the experiment

5.1.1 Heterodyne measurement

As explained in Sec. 3.3.3, in order to derive a measurement rate for
heterodyne detection of the propagating field, we need to compute the
mutual information I(k : x) between the number of photons k and the
heterodyne record x.

Let us consider the following communication scheme, pictured in
Fig. 5.1a. Alice communicates the word k 2 J0,m�1K with probability
P(k) to Bob by preparing the outgoing mode represented by functions
fk in the state ⇢̂k, and Bob performs a heterodyne measurement on
it, which gives him a record x. We are in the context developed in
Appendix A.1.1, and we can use the formula given by Eq. (A.2) applied
to a = k and b = x to compute I(k : x). This is a more general case
than for the experiment of Chap. 4, but it is handled just the same. We
write I(k : x) as a functional integral over all the possible measurement
records x

I(k : x) =�

Z
p(x) log p(x)Dx

+

X

k

P(k)

Z
pfk(x) log pfk(x)Dx,

(5.1)

where pfk(x) is the conditional probability of finding the measurement
record x knowing that the state represented by fk was chosen and

p(x) =
X

k

P(k)pfk(x) (5.2)

is the overall probability of finding the measurement record x. We can
write

I(k : x) =�

Z ⇣X

k

P(k)pfk(x)
⌘
log

 
X

k

P(k)pfk(x)

!
Dx

+

X

k

P(k)

Z
pfk(x) log(pfk(x))Dx.

(5.3)
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Factoring out the P(k) gives

I(k : x) =
X

k

P(k)

"
�

Z
pfk(x) log

 
X

l

P(l)pfl(x)

!
Dx

+

Z
pfk(x) log(pfk(x))Dx

# (5.4)

And finally, assembling the log functions in the integral:

I(k : x) =
X

k

P(k)

"
�

Z
pfk(x) log

 
X

l

P(l)
pfl(x)

pfk(x)

!
Dx

#
.

(5.5)

This expression reads more simply in terms of expectation values:

I(k : x) =
X

k

P(k)E

"
� log

 
X

l

P(l)
pfl(x)

pfk(x)

!����k
#
, (5.6)

where E[X|k] stands for the expectation value of X conditioned on
the choice k of Alice. We now only need the probability ratios pfl/pfk ,
which can be obtained from a SME. This enables a Monte-Carlo
approach to compute I(k : x): we could generate measurement records
and compute their likelihood step by step from the SME and estimate
the mutual information from it. What we are going to show here
is that there is a way to do the same kind of estimation but by
directly generating integrated measurement records, which is much
more efficient than whole stochastic trajectories. This approach is less
general than the SME, as it only works for single modes (even though
we believe that generalizing this derivation to a finite number of modes
is possible). This allowed us to compute this mutual information for a
wide range of parameters.

Let the outgoing field be in the state | outi =
P

l
 lÂ

†l
f
|vaci =

| i
f
⌦ |vaci, where f is a normalized element of L2

(R,C), and x(t)

be the complex heterodyne record. Formally, the probability pf (x) to
measure this measurement record would read:

pf (x) =
Y

t

pf (x(t)|{x(t
0 < t)}) (5.7)
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where pf (x(t)|{x(t0 < t)}) is the probability to measure x(t) at time
t knowing all the previous results at times t0 < t. This expression is
exact if the number of time values considered is finite, which is true in
practice: the measurement record x(t) at time t is integrated over the
inverse bandwidth �t of the detector. In the following, we will stick to
integral expressions for convenience, but they have to be understood
as discrete sums in the limit where the time step goes to zero and
the time extent to infinity. In this setting, we consider that the time
resolution �t is small enough and the time extent of the measurement
large enough so that f is well approximated by its discrete version.

We can decompose x against an orthonormal basis {gk}k of complex
functions such that g0 = f by demodulating against them. It gives the
integrated records xgk that read

xgk =

Z
g⇤k(t)x(t)dt. (5.8)

Note here that this basis is finite of cardinal n for a finite number n

of time values.
We saw in Sec. 3.1.2 that xgk follows the law given by the Husimi

Q function of the mode represented by gk. As in this mode basis, the
state is a product state, the xgk are statistically independent, following
the law given by the Husimi Q function of the k-th mode Q

⇢̂k,Âgk
. To

simplify the notation in this chapter, we will note Qf the Q function
of the mode defined by f in the state ⇢̂. The probability pf (x) thus
reads

pf (x) =
Y

k�0
Qgk(xgk) = Qf (xf )

Y

k�1
Q|0i(xgk) (5.9)

with Q|0i(xgk) =
1

⇡
e�|xgk |

2 the Q function of the vacuum state (we
assume the temperature to be zero). It gives

pf (x) =
Y

k�0
Qgk(xgk) =

Qf (xf )

⇡n�1
e�

P
k�1

|xgk |
2

(5.10)

We now have to use the fact that the L2 norm kxk of x is given by

kxk2 =

Z
|x(t)|2dt =

X

k

|xgk |
2 (5.11)
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Finally, this gives

pf (x) = Qf (xf )
e|xf |2

⇡n�1
e�kxk

2

=
Qf (xf )

Q|0i(xf )

e�kxk
2

⇡n
. (5.12)

We decomposed pf (x) into a part that depends on xf and a part
that depends on the norm of the full measurement record x only, and
does not depend on the state prepared. Note that in the continuum
limit, this expression goes to zero. In a real experiment, it means
that it can be very small, which could potentially pose problems if
it reaches the machine precision. This quite simple expression for pf
shows its usefulness when we want to compare two different scenarios
where the populated mode is either represented by f0 or by f1. For a
measurement record x then the likelihood ratio pf0(x)/pf1(x) between
the two reads:

pf0(x)

pf1(x)
=

Qf0
(xf0)Q|0i(xf1)

Qf1
(xf1)Q|0i(xf0)

. (5.13)

To compare the likelihood and perform a Bayesian update on the two
possible scenarios, we then only need xf0 and xf1 , and what we call
the pseudo-likelihoods L(f0|x) and L(f1|x), defined as

L(f |x) =
Qf (xf )

Q|0i(xf )
. (5.14)

In other words, one only needs to demodulate the signal by f0 and f1,
and the results contain all the information stored in the record. xf0
and xf1 are said to be a sufficient statistic [179] to discriminate the
two scenarios. This is not a likelihood in the statistical sense becauseR
L(f |x)Dx 6= 1, but it is proportional to it. Note that a similar

pseudo-likelihood is accessible from the SME.
We can now express the mutual information using L as

I(k : x) =
X

k

P(k)

"
�

Z
pfk(x) log

 
X

l

P(l)
L(fl|x)

L(fk|x)

!
Dx

#

(5.15)

=

X

k

P(k)E

"
� log

 
X

l

P(l)
L(fl|x)

L(fk|x)

!����k
#

(5.16)
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All we need to know now are the joint laws of all the xfl conditioned
on k to be able to estimate I(k : x) by a Monte Carlo method.

To do so, we assume that the populated mode is the one represented
by fk, and we write that xfl is the result of the measurement of
x̂fl = Âfl

+ B̂†
fl

, where the mode represented by B̂fl
is in the vacuum

state. We write it as a function of xfk :

x̂fl = Âfl
+ B̂†

fl
= (fl · fk)Âfk

+

p
1� |fl · fk|2Âf 0

kl
+ B̂†

fl

(5.17)

where

f 0kl =
fl � (fl · fk)p
1� |fl · fk|2

fk. (5.18)

By construction, fk · f 0kl = 0, so the corresponding annihilation opera-
tors Âfk

and Âf 0
kl

commute. The functions fk and fkl thus represent
independent modes. We can decompose B̂fl

in the same way (on two
independent modes in the vacuum state), which gives

x̂fl =(fl · fk)Âfk
+

p
1� |fl · fk|2Âf 0

kl

+(fl · fk)B̂
†
fk

+

p
1� |fl · fk|2B̂

†
f 0
kl

=(fl · fk)
�
Âfk

+ B̂†
fk

�
+

p
1� |fl · fk|2

�
Âf 0

kl
+ B̂†

f 0
kl

�
(5.19)

Thus, we can write x̂fl as a linear combination of x̂fk and an indepen-
dent observable b̂kl that is effectively a heterodyne observable on a
mode in the vacuum state. Thus, we can write

xfl = (fl · fk)xfk +
p
1� |fl · fk|2bkl (5.20)

where bkl is a random variable statistically independent on xfk that
follows the Gaussian law given by Q|0i. The correlations between the
bkl can be obtained with the same trick, which gives

E[bklb
⇤
kl0 ] = f 0kl · f

0
kl0 (5.21)

E[bklbkl0 ] = 0 (5.22)

This completely characterizes the joint law of the xfl conditioned
to the k-th mode being populated. In Monte-Carlo simulations, to
generate a sample {xfk}k2J0,m�1K, we sample xk from Qf , and the bkl

158



5.1 modeling the experiment

Figure 5.1: Scheme of the communication protocol between Alice and Bob.
(a) Alice chooses one mode function fk among m = 4 to prepare
in the state ⇢k. Here, k = 2. Bob performs a heterodyne mea-
surement and gets a record x(t). (b) Bob integrates its records
against the complex conjugates of the mode functions used by
Alice. It gives him m records xfl . Since k = 2 here, they can
be written as the sum of two vectors, one whose coefficients are
given by xf2(fl · f2), and the other with stochastic coefficients
b2l following a multidimensional complex Gaussian law, whose
covariance matrix is given by the Eq. (5.21) and Eq. (5.22).

from a multidimensional Gaussian law with zero mean, and covari-
ance matrix given by the E[bklb⇤kl0 ]. This is summarized in Fig. 5.1b.
The procedure we follow to compute I(k : x) is then a Monte-Carlo
procedure: we generate the xfl conditioned on k, compute the average
value of � log

⇣P
k
P(k) L(fl|x)L(fk|x)

⌘
for each of them, then perform their

sum over k weighted by P(k). This method is an efficient way of
computing I(k : x), as it can be written as a 2m-dimensional integral
of a mixture with non-Gaussian components. The case m = 2 already
corresponds to an integral in dimension 4, and we went up to m = 10,
which corresponds to dimension 20. Note that this procedure allows
us to compute the mutual information for a heterodyne measurement
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for any (possibly mixed) state preparation in any single mode of the
transmission line, with as many codewords as wanted. It could even be
generalized to more modes, using the multidimensional Husimi Q func-
tion introduced in Appendix B, as soon as the number of populated
modes is finite.

In the experiment described in Chap. 4, we are interested in the
peculiar case where fk(t) =

p
e�i(!0�k�)t�

2
t for t > 0, and fk(t) = 0

otherwise. It gives

fl · fk =


+ i(k � l)�
. (5.23)

We can write

Âfl
=



+ i(k � l)�
Âfk

+
i(k � l)�

+ i(k � l)�
Âf 0

kl
. (5.24)

Note that here we replaced
p

1� |fl · fk|2 =
|k�l|�r

2+

�
(k�l)�

�2 by the

factor i(k�l)�
+i(k�l)� by changing the phase in the definition of f 0

kl
which

is more convenient in what follows.
Using Eq. (5.24) and the following commutation relations

(Eq. (2.115))

[Âfl
, Â†

fk
] = (fl · fk)1 (5.25)

[Âfl
, Â†

f 0
kl
] = 0, (5.26)

we obtain the covariance matrix between the bkl, given by the coeffi-
cients (f 0

kl
· f 0

kl0):

(f 0kl · f
0
kl0)1 = [Âf 0

kl
, Â†

f 0
kl
] =



+ i(l0 � l)�
1 = [Âfl

, Â†
fl0
] (5.27)

5.1.2 Frequency-resolved photon detector

A second measurement setup that we can imagine uses a frequency-
resolved photon detector (FRPD). This is very close to the idea that
was at the origin of the photon counting project [126]. A possible
experimental implementation uses time-resolved photon detectors,
to which we are more used. It consists of an array of multiplexers
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with a very narrow linewidth, each of them having a time-resolved
photon detector behind it. This kind of architecture, out of reach
in the microwave domain, exists in the optical domain. It is even
possible to multiplex temporal or spatial modes, which allows us to
perform measurements on each mode independently. It has applications
in quantum communication [51, 52] and in quantum metrology for
separation estimation of optical sources of light [48–50].

Figure 5.2: Communication scheme with a Frequency-Resolved Photon De-
tector (FRPD). Alice prepared a mode represented by fk in the
state ⇢̂k, which goes through an array of photon detectors that
are each positioned at the output of a bandpass filter. Each de-
tector’s click gives a measure of the frequency of the wavepacket.

In the continuum limit, this setup measures â†
out

[!]âout[!]d! for ev-
ery !. In the case where there is exactly one photon in the wavepacket,
we note pf (!)d! the probability density that the photon detector at
frequency ! clicked when the mode represented by f was populated
by the Fock state |1i. We have:

pf (!)d! = h | â†
out

[!]âout[!]d! | i = |f [!]|2d!. (5.28)

In our case (Fig. 5.2), we have:

pfk(!)d! =
1

2⇡



2 + 4(! � !k)
2
d!. (5.29)

We note I1(k : !) the mutual information corresponding to this
case of a single Fock state |1i in the mode represented by f . In the
case where the propagating mode contains n photons, each of them
independently produces a click on a photon detector, so that detecting
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n photons corresponds to repeating n times the experiment with one
photon only. The outcome is a list {!j}j2J0,n�1K of all the frequencies
associated to the photon detectors that clicked. The corresponding
mutual information In(k : {!j}) reads

In(k : {!j}) = nI1. (5.30)

In the case where the photon number is not determined, we can
compute an average mutual information I(k) as

I(k) =
X

n

In(k : {!j}) = hn̂iI1 (5.31)

with hn̂i the average number of photons in the mode. Note that this
is valid only if the photon number statistics given by hn|⇢̂k|ni is the
same for all k, i.e. only if the number of detected photons carries no
information about k.

5.1.3 Accessible information and Holevo bound

The communication scheme described in the previous sections is a
quantum communication channel (see Appendix A.1), as the informa-
tion is transmitted using quantum states. When fixing the distribution
P used for the codewords of Alice, we can compute two different
bounds on the classical information that Alice can send through this
channel. These two quantities are defined in detail in Appendix A.1.

The first one is the accessible information. It sets the maximal
information that can be transmitted using multiple local uses of this
quantum channel. Here, the locality means that Alice cannot entangle
the states she sends across several uses of the channel, and Bob cannot
make joint measurements on the states received.

The second one is the Holevo bound. It sets the maximal infor-
mation that can be transferred through the channel when allowing
entanglement to Alice and joint measurement to Bob. As this case
is more permissive, the Holevo bound is larger than the accessible
information. The difference between the two is called the quantum
discord and constitutes a purely quantum resource that can be used
to beat classical schemes [180], such as in quantum radar experiments
[10].
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5.1 modeling the experiment

5.1.3.1 Accessible information

We compute the accessible information in the binary case (k = 0 or
1) where Bob receives pure states. We can apply the results derived
in Appendix A.1.4 by identifying our two states | 0i and | 1i to the
states |b0i and |b1i in the appendix. | 0i and | 1i read

| 0i = F ?

f0
(Â†n

f0
) |vaci =

X

n

 0
n

p
n!
Â†n

f0
|vaci , (5.32)

| 1i = F ?

f1
(Â†n

f1
) |vaci =

X

n

 1
n

p
n!
Â†n

f1
|vaci . (5.33)

As explained in Sec. A.1.4, all we need to get the accessible information
is their overlap | h 0| 1i |:

h 0| 1i = hvac|

X

n,m

 0⇤
n  

1
m

p
n!m!

Ân

f0
Â†m

f1
|vaci . (5.34)

Only the terms that conserve the number of photons are non-zero,
which gives

h 0| 1i = hvac|

X

n

 0⇤
n  

1
n

n!
Ân

f0
Â†n

f1
|vaci (5.35)

so

h 0| 1i =

X

n

(f0 · f1)
n 0⇤

n  
1

n. (5.36)

If the two modes are prepared in the same state, we note  0
n =  1

n =  n

for all n, which gives

h 0| 1i =

X

n

(f0 · f1)
n
| n|

2 (5.37)

where | n|
2 is the photon number probability of the state1.

We can thus compute the overlap between any single-mode states
of the transmission line. The optimal measurement to apply and
the corresponding maximal mutual information Iacc are given by the
procedure described in A.1.4, as a function of this overlap.

1 Note that it reads h 0| 1i = G[(f0 · f1)] where G is the probability-generating
function of the photon number distribution.
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5.1.3.2 Holevo bound

We also compute the Holevo bound in the case where Bob receives a
pure state. If Bob receives the states | ki for k < m, Eq. (5.37) gives
the Gram matrix G defined as

Gkl = {h k| li}kl. (5.38)

This matrix is positive definite if the family {| ki} is a free family,

which we consider true in the following. The Cholesky decompo-
sition gives T an upper triangular matrix such that G = T †T , which
directly gives the coordinates of all the | ki in an orthonormal basis.

As we are considering pure states here, the Holevo bound � reads

� = S
⇣X

k

P(k) | kih k|

⌘
, (5.39)

directly computable knowing the P(k) and T . S is the von Neumann
entropy.

5.2 mutual information and measurement rate

5.2.1 Frequency-resolved limit

We can now compute the mutual information I(k : x) between the
number of photons in the cavity k (or the frequency of the qubit) and
the heterodyne record x for a single kick of the qubit in the experiment
presented in Chap. 4. It can be described as follows: at t = 0, the
qubit is prepared in a state | i = cos(✓/2) |gi+ sin(✓/2) |ei which is
then released in the transmission line. Once again, this case can be
mapped onto the quantum communication scheme between Alice and
Bob described above by taking fk(t) =

p
e�i(!0�k�)t�

2
t for t > 0,

and fk(t) = 0 otherwise.
In this section, we place ourselves in the limit where �� , which

is the optimal case, as the two line modes are then orthogonal. We also
take m = 2 to stick with the way measurement rates are computed in
Chap. 4. It is illustrated in Fig. 5.3 for ✓ = ⇡. In this case, |fl · fk| =
|



+(k�l)i� | ⌧ 1: all the functions fk can be considered as orthogonal.
Therefore, if Bob demodulates the record x with the same function
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5.2 mutual information and measurement rate

fk as the one chosen by Alice, he will obtain a record that follows
the statistics given by the Husimi Q function of the corresponding
propagating mode represented by fk. If he demodulates with another
fl, he will obtain the statistics given by the Husimi Q function of the
vacuum state.

The example presented in Fig. 5.3a illustrates the case where a Fock
state |2i or a Fock state |3i is prepared in the cavity. It corresponds to
Alice having the choice between the two words k = 2 and k = 3. Let
us assume that k = 2. In the peculiar case where ✓ = ⇡, the emitted
state in the transmission line is a Fock state |1i. By demodulating by
f2 and f3, Bob either obtains outcomes obeying the statistics given
by Q|0i or Q|1i (see Fig. 5.3b). Here, the only case that would allow
Bob to unambiguously tell which word k Alice sent is the case where
Bob obtains exactly xf2 = 0. Indeed, Q|1i(0) = 0 and Q|0i = 1/⇡, so
obtaining xf2 = 0 means the mode represented by f2 is not in the Fock
state |1i, so it is the mode f3 that is in this state. As this situation
has a probability of zero to happen exactly, Bob can never ascertain
the word Alice communicates. As a consequence, this communication
protocol sends less than one bit of information per realization.

We can now compute the mutual information I = I(k : x) for all ✓.
From | i = cos(✓/2) |gi+ sin(✓/2) |ei, we use Eq. (2.70) to get the Q
function of the mode chosen by Alice, represented by fk:

Qfk
(�) =

1

⇡
e�|�|

2
⇣
cos

✓
✓

2

◆2

+ cos

✓
✓

2

◆
sin

✓
✓

2

◆
(� + �⇤)

+ sin

✓
✓

2

◆2

|�|2
⌘
.

(5.40)

Convolving with pN (see Eq. (3.54)) with �2 = 1�⌘
2⌘

gives the Husimi
Q function for a finite quantum efficiency ⌘. Fig. 5.4a shows the
mutual information I in the frequency-resolved case � �  as a
function of ✓ and ⌘. Fig. 5.4b shows cuts of this plot along the lines
⌘ = 0.1, 0.25, 0.4, 0.55, 0.7, 0.85 and 1, which correspond to increasing
values for the mutual information. The optimal angle ✓opt that maxi-
mizes I increases with ⌘, and is plotted in Fig. 5.4c. Interestingly, it
remains close to ✓ = ⇡/2 up to high quantum efficiencies compared
to the state of the art [88–91]: it crosses ✓opt = 3⇡/4 only for ⌘ ' 0.9,
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Figure 5.3: Scheme of the equivalent communication protocol between Alice
and Bob in the case m = 2. (a) Alice chooses between two
frequencies for the propagating mode. In the experiment, it
would, for example, correspond to two possible photon numbers
2 and 3 in the cavity. Here, she chooses k = 2, which prepares
a single photon state in the mode defined by f2. Bob performs
a heterodyne measurement and gets a record x(t). (b) Bob can
integrate its records against the complex conjugate of the mode
functions f2 and f3. It gives him 2 complex outcomes xf2 and xf3 .
Since k = 2 here, xf2 is sampled from the Husimi Q function of
the Fock state |1i. Since �� , xf3 is sampled from the Husimi
Q function of the vacuum state.

and reaches ✓opt = ⇡ very sharply for ⌘ = 1. The noise in the plot
is due to the remaining statistical noise due to the use of a Monte
Carlo method. We see that the number of bits transmitted saturates
at around Imax = 0.3 bits. We can link these curves to the following
expected behavior for the information as a function of the quantum
efficiency. When going through a beamsplitter with transparency ⌘,
the average signal is attenuated by a factor p⌘. However, the variance
of this average signal, which gives the noise power, is attenuated by
⌘. In fact, moments of order n are attenuated by a factor p

⌘n. We
can think of it this way: getting information from the heterodyne
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5.2 mutual information and measurement rate

Figure 5.4: Mutual information between the number of photons and a het-
erodyne measurement record as a function of the kick ampli-
tude on the qubit and the quantum efficiency. (a) Map of the
mutual information I = I(k : x) between the number of pho-
tons k 2 {0; 1} and the measurement record x of a hetero-
dyne measurement in the frequency-resolved case � �  as a
function of ✓ and ⌘. (b) Cuts of the color map along the lines
⌘ = 0.1, 0.25, 0.4, 0.55, 0.7, 0.85 and 1 corresponding to increasing
mutual information values. (c) Optimal angle ✓opt as a function
of ⌘. (d) Mutual information I as a function of the quantum
efficiency for ✓ = ⇡/2 (blue solid line) and ✓ = ⇡ (green solid
line). The blue dashed line is a linear fit for small ⌘, and the
green dashed line shows the function I = Imax⌘2.

measurement records consists in discriminating the Husimi Q function
of the mode and the Q function of the vacuum state. For small ✓,
the qubit state resembles a small coherent state of amplitude ✓/2,
thus carrying most of the information in the average amplitude. The
Husimi Q function is thus a Gaussian function, and when getting the
measurement outcomes, we want to know whether their average is 0

(vacuum) or ✓/2: the information lies in the average. A finite quantum
efficiency ⌘, which is equivalent to putting a beamsplitter on the line,
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will thus transform the problem into discriminating 0 from p
⌘✓/2.

The SNR, defined as in Eq. (3.92), is thus proportional to ⌘.
When ✓ gets close to ⇡ (and the state ⇢̂k closer to |1ih1|), this

information in the average of the outcome gets smaller and smaller as
the average signal vanishes. The information then lies in the higher-
order moments of the Q distribution, which vanish faster than the
average as a function of ⌘. We illustrate this in Fig. 5.4d by plotting
the mutual information as a function of the quantum efficiency for
✓ = ⇡/2 (blue solid line) and ✓ = ⇡ (green solid line). We fitted
these curves with a straight line for ✓ = ⇡/2 at short values (blue
dashed line) and plotted the function I = Imax⌘2 (green dashed line),
which almost coincides with the solid green line. Imax is the mutual
information attained for ⌘ = 1. Interestingly, the mutual information
is almost linear in ⌘ when it is mostly encoded in the average and
quadratic when there is no average signal. In the latter case, this is
coherent with the intuition that most of the information lies in the
variance at small ⌘: the Husimi Q function can be seen as a Gaussian
function with a slightly bigger variance than that of the vacuum state
in this regime.

An FRPD works better in this regime � � : when loaded with
1 photon, the frequency click unambiguously discriminates between
the two cases, as the two possible frequency distributions pf0 and
pf1 defined in Eq. (5.29) do not overlap. Each realization thus brings
one bit of information. This thus saturates the number (1) of bits
transmittable. The accessible information and the Holevo bound thus
amount to one bit of information each.

5.2.2 Other regimes

We further explore the full range of values for �/ and compare the
heterodyne detection, the FRPD, the accessible information, and the
Holevo bound for each of these cases. The result as a function of the
qubit excitation probability p(e) = cos(✓/2)2 is shown in Fig. 5.5. The
previous case ��  is shown in Fig. 5.5a. We see that the heterodyne
measurement performs worse than all the others but that the FRPD
does achieve the accessible information bound only for ✓ = ⇡, or
p(e) = 1. This can be understood as the fact that this measurement is
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5.2 mutual information and measurement rate

Figure 5.5: (a) to (c): Holevo bound and mutual information as a function of
p(e) = cos(✓/2)2 for the heterodyne detection, the FRPD, and
an optimal detector, for different values of �/.

completely insensitive to the coherence of the state, thus dismissing
a useful resource. Alternatively, we can think about the fact that
the FRPD gives additional information: the total number of photons
in the line, which does not help in discriminating the two scenarios.
As a consequence, this information is associated to an excess back-
action on the state, which lowers the efficiency of this measurement,
as in Sec. 3.3.6. The Holevo bound exceeds the accessible information
everywhere and saturates to 1, as expected.

Interestingly, when lowering the ratio �/, the heterodyne mea-
surement starts to perform better than the FRPD for small qubit
excitation probabilities p(e). At �/ = 1 (Fig. 5.5b), it performs worse
only for p(e) & 0.6. The FRPD performs now worse than the accessible
information, indicating that the coherence of the state becomes a cru-
cial resource. The Holevo bound is now never reached by the accessible
information. At  = 20�, the FRPD’s best performance is half the
accessible information for p(e) = 1, as for the heterodyne detection,
which performs always better than the FRPD for p(e) < 1. Strikingly,
the Holevo bound is much larger than the accessible information. As
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a matter of fact, we observed that the ratio between Holevo bound
and accessible information diverges2 for �/! 0.

Figure 5.6: Measured and theoretical measurement rates for heterodyne,
FRPD and ideal measurement. (a) Red dots: observed average
measurement rate �m as a function of drive amplitude, expressed
as the qubit expected rotation angle ✓ per kick. Blue shadow: the-
oretical bound for an infinite comb and heterodyne measurement
with efficiencies ⌘ 2 [0.17, 0.20]. Grey shadow: theoretical bound
for an infinite comb using an FRPD with efficiency ⌘ 2 [0.17, 0.20].
(b) Red dots: observed cavity dephasing rate �d as a function of
✓. Black: theoretical accessible information rate. Blue: theoreti-
cal maximal (⌘ = 1) measurement rate obtained by heterodyne
detection. Grey: theoretical maximal (⌘ = 1) measurement rate
obtained with an FRPD.

Finally, we show again the Fig. 4.4 but including this time the
FRPD, which gives the Fig. 5.6. This regime of the experiment is close
to the regime � '  =

1

T1
. The FRPD would perform better than a

heterodyne detector around ✓ = ⇡ in both cases ⌘ ' 0.17 and ⌘ = 1,

2 This divergence between communication rates is reminiscent of the Heisenberg
scaling in quantum metrology [181].
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5.3 discriminating more than two frequencies

whereas the heterodyne detector performs better in the regions where
the information lies mostly in the qubit average quadratures.

To compute a measurement rate from the mutual information I at
⌘ = 1 in this case, it is not enough to compute I

⌧
as in Eq. (4.17). Indeed,

the mutual information becomes too large compared to log(2) (the
initial entropy of Alice’s codewords) for this first-order development
to be valid. As a consequence, we corrected the measurement rate by
writing:

�m = �
eq

m (5.41)

where �eqm is defined as the equivalent measurement rate obtained for
a dispersive qubit measurement performed with ⌘ = 1 and an optimal
measurement, defined in section Sec. 3.3.5, performed after a time
⌧ =

⇡

�
, which would give the same mutual information I.

It is important to note that this procedure, applied on the optimal
measurement, allows us to recover exactly the dephasing rate as
computed in Chap. 4. The dephasing rate is thus attained for a
time global measurement (see Sec. 3.3.5) on the emitted mode over
the repetition time. However, this emitted state is now entangled
when expressed in a time basis, which forbids decomposing it on a
smaller time grid, as it was done in Sec. 3.3.3. An optimal time local
measurement could then very well miss some information and, in the
end, exhibit a measurement rate lower than the dephasing rate defined
this way. Interesting questions thus remain open: does a time local
measurement reach the dephasing rate, as it is the case for a standard
dispersive qubit readout? If not, what is the best a local measurement
could do?

5.3 discriminating more than two frequencies

This section aims at discussing how to generalize the notion of mea-
surement rate to a case with more than two outcomes. Up to this point,
we have measured the performance of our photon counter solely by
its capacity to distinguish between two consecutive photon numbers.
This is justified by three reasons. First by the fact that the frequencies
that are the hardest to distinguish are consecutive frequencies. On
average, the numbers that are far from the actual photon number
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Figure 5.7: Red dots: observed average information rate �m for ✓ = ⇡/2 when
discriminating the photon number 0 from the photon number
k, as a function of k. Blue: theoretical information rate for a
quantum efficiency ⌘ = 0.17.

are ruled out quickly. Fig. 5.7 shows the observed measurement rate
when discriminating the Fock state |0i from a Fock state |ki as a
function of k. The case k = 2 exhibits a photon number twice as high
as the case k = 1. As a consequence, the last thing to do is almost
always to discriminate between a few photon numbers. Second, once
the Bayesian estimator converges to a number of photons, the Bayesian
filter only has to detect single photon losses, and as a consequence, it
mostly has to decide between two consecutive frequencies. Finally, it
allows us to apply the theory of the qubit readout to this case with
more than two possible outcomes, and it gives an experimental way
to compare the measurement rate to a dephasing rate obtained by
Wigner tomography.

However, the corresponding binary measurement rate does not
quantify the information rate that can be transmitted over the full
bandwidth of this detection setup. It does not answer a crucial question:
how fast can the estimator converge at short times when the entropy
is maximal?
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5.3.1 Information rate

In this regard, Eq. (3.85) needs to be treated with care. Using this
formula gives the amount of information that we can transmit with this
communication channel. It thus purely gives an information rate. We
computed this information rate �i both theoretically and experimen-
tally for m = 8 possible frequencies as a function of ✓ and compared
it once again against the accessible information and to the FRPD.
We plotted the result in the Fig. 5.8. What we can notice is that it
does not change the curves qualitatively but quantitatively. We have

Figure 5.8: Information rates with 8 possible photon numbers. Red dots:
observed average information rate �i as a function of drive
amplitude, expressed as the qubit expected rotation angle ✓ per
kick. Blue shadow: theoretical bound for an infinite comb and
heterodyne measurement with efficiencies ⌘ 2 [0.17, 0.20]. Grey
shadow: theoretical bound for an infinite comb using an FRPD
with efficiency ⌘ 2 [0.17, 0.20].

approximately �i ' 3�m for the heterodyne measurement. This is
expected, as in the theoretical modeling, Alice is sending 3 bits instead
of 1. We still quantitatively reproduce the experiment for ✓  ⇡. The
amount of information transmittable with the heterodyne communica-
tion scheme typically scales with logm. Quite unexpectedly, �i ' 6�m

for the FRPD, which is at first really surprising, and seems to violate
the rules of information transfers. The reason for this behavior is sub-
tle. This is due to the fact that when adding a new possible number
of photons (a codeword in the quantum communication language),
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the associated Lorentzian distribution has an overlap with the other
distribution of the other possible number of photons that goes to zero
as a function of the difference in number of photons. Asymptotically, if
we need a frequency difference of M� to differentiate reliably the two
associated lorentzians, the amount of transferrable information per de-
tected photon is at least I = log(m/M) = log(m)� log(M) s log(m).
By contrast, with the heterodyne measurement scheme, even with an
infinitely large frequency difference, the probability distributions of
the measurement record for two different numbers of photons still have
a finite overlap. In this case, the amount of transferrable information
seems to scales like log(m) but with a certain factor x 2 [0, 1[ corre-
sponding to the fraction of information transferrable: I s x log(m).
We observed this with up to m = 8 experimentally in Fig. 5.9, where
we defined �0m = �i/ log(m) (see next Sec. 5.3.2).

However, when simulating larger values for m, this scaling changes,
and �i saturates to a certain value �max

i
. This is surprising at first

because it seems that we should be able to transfer more information
when increasing the number of possible number of photons m: if Alice
has more codewords, she should be able to transfer more information
to Bob. As discussed in [126] with a toy model in Appendix F1,
the codewords become more and more unreliably transferred, and
inferring the right number of photons takes also a measurement time
(or a number of repetitions) that is logarithmic in m. We observed
this behavior whatever the quantum efficiency or the kick angle. It is
linked to the fact that all the conditional probability distributions have
a non-vanishing overlap. Asymptotically, the probability to make a
mistake in identifying the correct number of photons in one realization
then goes to 1.

This first way of generalizing the measurement rate thus gives a nice
quantum communication point of view. However, it is not satisfactory
to define a characteristic measurement time. Indeed, we do not expect
it to be shorter for a higher number of photons but rather to increase
with the number of possible numbers of photons m.
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5.3.2 Measurement time

A simple toy model to recover such an increasing measurement time is
to look at the characteristic time Tm needed for the mutual information
to reach the initial entropy H0 about the number of photons. It
corresponds to define Tm by the equality

�iTm = H0. (5.42)

For H0 = log(m), we simply recover Tm = log(m)/�i, which gives
the expected logarithmic scaling in the number of possibilities. The
measurement rate can then be defined as

�
0
m =

1

Tm

=
�i

log(m)
. (5.43)

Note that in the case m = 2, it gives a higher measurement rate

Figure 5.9: Experimentally determined generalized measurement rate �0
m

as a function of the number of possible photon numbers m
(corresponding to photon numbers between 0 and m� 1). The
large error bar size for m � 6 is due to the lack of samples.

by a factor 1/ log(2). This solution looks satisfactory, but in our
case, the information rate seems to also logarithmically with m. The
measurement time thus seems asymptotically constant, as shown in
Fig. 5.9. To recover the expected logarithmic scaling demonstrated
in [126], we need to look at higher values for m. As �i saturates, Tm

indeed scales asymptotically with log(m).
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On a final remark, this newly defined measurement time does not
correspond to a dephasing rate. The dephasing rate is indeed only
defined between two possible photon numbers. In the end, what fully
characterizes the measurement rate is the matrix of the measurement
rates MR corresponding to the pair of states {(|ki , |li)}kl. This matrix
is pictured in Fig. 5.10. For a measurement saturating the accessible
information bound, this matrix would correspond to the dephasing
rate between the states {(|ki , |li)}kl.

Figure 5.10: Experimentally determined measurement rate matrix MR.

5.4 continuous case

The problem tackled here can be thought of as discriminating which
mode of the transmission line was populated. In the case of the
experiment of Chap. 4, it amounts to identifying the frequency at
which the wavepacket has been emitted. We can formulate this more
formally like this: we have a mode, described by the function f , which
can be translated in frequency by an offset �! that we want to
determine. The goal of the experiment is to discriminate between a
finite number of values for �!, but we can now turn it into a parameter
estimation problem: if �! can take continuous values, how fast can
we estimate it? We then turn from a communication point of view
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to a metrology point of view. The quantities to compute to quantify
the precision in the estimation of �! are the Fisher information (FI)
and the Quantum Fisher Information (QFI) (see Appendix A.2). We
can also interpret this continuous case as a binary case in the limit
where the two wavefunctions f0 and f1 are infinitely close to each
other (|f0 ·f1| ' 1). More quantitatively, in the case of balanced binary
information sent using a noisy classical channel, the mutual information
is proportional to a Fisher information (see Appendix A.2.2).

We can model the problem as follows. We consider a state | i =

| i
f
⌦ |vaci that we can shift in frequency. We receive a state

| (�!)i = T̂ �! | i (5.44)
= | i

f�!
⌦ |vaci (5.45)

where we noted f�! = T �!f , with T �! the translation operator in
the frequency domain defined in Eq. (2.123). We will now compute the
FI about �! associated to a heterodyne or homodyne measurement,
FRPD, and compare it to the QFI.

This problem can be seen in the more general setting of estimating
a parameter encoded in the modal structure of a light beam. Indeed,
the transform could be any unitary operation applied on the mode
function f , and the state may not be pure. In this regard, a more
general framework is developed in Ref. [182] to identify quantum limits
on the estimation of such parameters.

5.4.1 Quantum Fisher Information

The problem, as stated, closely aligns with the topic addressed in
Ref. [55]. We adopt the framework presented therein but focus on the
Fisher information concerning frequency rather than time. Given the
symmetric relationship between time and frequency, we can modify
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equation (2) from [55] accordingly. The Quantum Fisher Information
(QFI), FQ(�!), is expressed as:

FQ(�!) = 4(�⌧̂ )2

= 4

⇣
h (�!)| ⌧̂ 2

| (�!)i � h (!)|�⌧̂ | (�!)i2
⌘

= 4

⇣
hn̂i�⌧̂2 +�n̂2⌧2

⌘
,

(5.46)

where hn̂i is the average number of photons in the state | (�!)i, �n̂2

its variance, ⌧ =
R
+1
�1 t|f(t)|2dt the average time of the wavepacket,

defined as the average value of the operator ⌧̂ on the function f ,
and �⌧̂2 =

R
+1
�1 (t � ⌧)2|f(t)|2dt its variance. The time operator ⌧̂

is defined in Eq. (2.121), and its quantum operator counterpart ⌧̂ in
Eq. (2.129).
FQ(�!) is a sum of two terms. The first term, proportional to hn̂i,

shows the contribution of the average population of the mode. The
one proportional to �n̂2 is the contribution of the coherence of the
state. For pure states, the larger �n̂2, the more defined the phase,
as they are conjugate quantities. It is then possible to have a scaling
that is proportional to n2: for a state of the form | i = |0i+|Nip

2
, we

have �n̂2
= N2/4 = n2. Using this kind of state makes maximum

use of the resources (the number of photons) and allows to reach the
so-called Heisenberg scaling [55]. In this term proportional to �n̂2, ⌧
is the typical time allowed to measure the frequency: longer time then
means better frequency resolution. Note that this expression assumes
that the experiment started at time t = 0. It implies that the temporal
wavepackets are defined for positive times only.

An interesting property of this expression is that it only depends
on the photon number statistics of the state. In particular, it means
that changing the phases of its coordinated in the Fock basis does not
change the Fisher information.
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We can already look at different examples. In the case of a mode
prepared by a decaying linear cavity, we have f(t) =

p
e�(


2
+i!0)t. It

gives:

⌧ =
1


(5.47)

�⌧̂2 =
1

2
. (5.48)

Hence, a very simple expression for the QFI is

FQ =
4

2
�
hn̂i+�n̂2

�
. (5.49)

We can compute it in a few simple cases. For a coherent state of
amplitude ↵ prepared in the mode of interest, the average number of
photons is hn̂i = |↵|2 and the variance also reads �n̂2

= |↵|2, as the
distribution is Poissonian. It gives:

FQ =
8|↵|2

2
. (5.50)

We can also prepare a displaced vacuum squeezed state |↵, ⇣i, defined
as

|↵, ⇣i = D̂(↵)Ŝ(⇣) |0i . (5.51)

For ⇣ = r with r real, it gives

FQ =
1

2

⇣
� 3 + 2 cosh(2r) + cosh(4r)

+ 8 cosh(r)(e�3r Re(↵)2 + e3r Im(↵)2)
⌘ (5.52)

This expression is divided into two parts. The first part does not
depend on ↵ and thus remains present even for ↵ = 0. It comes from
the pure squeezing of the state. The other one that depends on ↵

can be enhanced if ↵ is imaginary and r > 0 (or ↵ real and r < 0),
which means that the amplified quadrature is aligned with ↵. Or it
can be diminished if the amplified quadrature is orthogonal to ↵. This
can be intuited from the fact that the first case has a much more
defined phase than the other, in the sense that its angular spread is
smaller in phase space. This is pictured in Fig. 5.11. The optimum
for fixed squeezing and displacement amplitudes is reached when its
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phase is the most defined. As we will see in Sec. 5.4.4, it comes from
the fact that the frequency translation can be seen at first order as
a rotation in a two-mode phase space. A more defined phase then
means higher distinguishability. This behavior is thus very close to
usual phase estimation problems.

Figure 5.11: Influence of the direction of squeezing on the QFI. We represent
two displaced vacuum states with the same absolute amplitudes
|↵1| = |↵2| = 1. The first one (left, red) is associated to a
better QFI than the second one (right, green). This can be
understood by looking at the angular spreads ✓1 and ✓2, which
are significantly different.

We can finally compute the QFI in the case where the mode is
emitted by a qubit for which the occupation probability of the Fock
states |0i and |1i are p(0) = cos(✓/2)2 and p(1) = sin(✓/2)2. The QFI
reads

FQ =
4

2
�
p(1) + p(0)p(1)

�
. (5.53)

This situation would correspond to the experiment performed in Chap-
ter 4 if the number of photons was a continuous parameter. We will
compare it to the FI obtained with an FRPD, a heterodyne, and a
homodyne detection.

5.4.2 Frequency-resolved photon detector

The photon counter case is the simplest. We can first compute it for
a single photon state. We will then use the additivity of the Fisher
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information to generalize it to arbitrary states. It corresponds to
computing the Fisher information associated to the parameter �! of
the probability density P(!) that reads

P(!) = |f [! ��!]|2. (5.54)

In the case of a linearly decaying cavity at frequency !0, we write
again Eq. (5.29) as:

P(!) =
1

2⇡



2 + 4(! � !0 +�!)2
(5.55)

which defines a Cauchy distribution. The expression of the FI associ-
ated to the location parameter of a Cauchy distribution is well known
in statistical inference. Here, it is given by:

F (�!) =
1

2

4

2
=

2

2
. (5.56)

Using the additivity of the FI, we can generalize to an arbitrary state
by writing an average FI F (�!):

F (�!) =
2hn̂i

2
(5.57)

with hn̂i the average number of photons in the prepared mode. This
gives the average FI obtained using an FRPD3.

For a coherent state, the FI thus reads

F (�!) =
2|↵|2

2
, (5.58)

which is four times smaller than the QFI. Once again, it can be
understood by the fact that this measurement does not exploit the
state coherence.

As for a displaced squeezed vacuum state, the FI reads

F (�!) =
1

2
�
2 cosh(2r)� 2 + e�2r Re(↵)2 + e2r Im(↵)2

�
.

(5.59)

Here also, it is significantly lower than the QFI.

3 In this peculiar case of a Cauchy distribution, the notion of Fisher Information
makes only sense after a large number of samples and when using efficient estimators
such as a maximum likelihood estimator [183].
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5.4.3 Heterodyne measurement

To work out the heterodyne case, we can simply use Eq. (A.18),
replacing p� by the pseudo-likelihood L defined in Eq. (5.14):

F (�!0) = E
h⇣@ log(L(�!|x))

@�!

⌘2
|�!

i
, (5.60)

where x is the measurement record. From the Sec. 5.1.1, we have both
the expression for L(�!|x) as a function of xf�! , and the law of xf�!

knowing that the only mode that is not empty in the line is the mode
defined by f�!. Thus, we have its law as a function of �!. In what
follows, we denote x(�!) = xf�! for simplicity.

Recalling that L(�!|x) = Q(x(�!))/Q|0i(x(�!)), what we need
now is the law of @x(�!)

@�!
= x0(�!). To determine it, we write

x(�!) =

Z
+1

�1
ei�!tf⇤(t)x(t)dt. (5.61)

Taking the derivative with respect to �! gives

@x(�!)

@�!
= x0(�!) =

Z
+1

�1
itei�!tf⇤(t)x(t)dt

= i

Z
+1

�1
(⌧̂f⇤�!)(t)x(t)dt.

(5.62)

We can thus write x0(�!) as another random variable, coming from
the measurement of the mode defined by ⌧̂f�!.

Applying the same techniques as in Sec. 5.1.1, we can decompose
⌧̂f�! into a part colinear to f , and an orthogonal part. We write

g�! =
1

p
⌧̂f�! · ⌧̂f�!

⌧̂f�! (5.63)

the normalized version of ⌧̂f�!. Decomposing g�! into a part parallel
to f and a part orthogonal gives

g�! =(g�! · f�!)f�!

+

p
1� |g�! · f�!|2

g�! � (g�! · f�!)f�!p
1� |g�! · f�!|2

.
(5.64)

Note that we have (⌧̂f�! · f�!) = (⌧̂f · f) = ⌧ . We can then write

Âg�! = (g0 · f)Âf�! +

p
1� |g0 · f |2B̂�! (5.65)
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where B̂�! is the bosonic operator associated to the function
g�!�(g�! ·f�!)f�!p

1�|g�! ·f�! |2
, which is assumed to be in the vacuum state. In

the end, again following the same steps as in Sec. 5.1.1:

x0(�!) = i
(⌧̂f · f)

(g0 · f)

⇣
(g0 · f)x(�!) +

p
1� |g0 · f |2b

⌘
(5.66)

where b is a Gaussian random variable, independent of xf , which
follows the probability density given by Q|0i. Note that this derivation
can be easily generalized to any kind of unitary operation Û(�) = e�i�Ô

performed on the mode function f . The previous equation reads in
general

x0(�) = i
(Ôf · f)

(g0 · f)

⇣
(g0 · f)x� +

p
1� |g0 · f |2b

⌘
(5.67)

where g0 is defined the same way from Ôf :

g0 =
1q

Ôf · Ôf
Ôf. (5.68)

We then have all the needed tools to derive the FI in the heterodyne
case. We have only two independent random variables: xf , whose law
is given by the Husimi Q function of the state of the mode prepared,
and b, which is a simple Gaussian variable. The Fisher information
thus reads as a four-dimensional integral over two complex variables:

F (�!0) =

ZZ ⇣@ log(L(�!|x))
@�!

⌘2
Qf (x)Q|0i(b)dxdb (5.69)

where x in the integral stands for the values of x(�!). Defining

h(x(�!)) = log(L(�!|x)), (5.70)

we can compute its derivative with respect to �! using the chain rule:

@

@�!
h(x(�!)) =

x0(�!) ·
� @

@ Re(x(�!))
+ i

@

@ Im(x(�!))

�
(h(�!))

(5.71)
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where (·) here stands for the complex scalar product defined as z1 ·

z2 = Re(z⇤
1
z2). It can be written in a nicer form using the Wirtinger

derivative. Defining

h0(x) =
1

2

⇣ @

@ Re(x)
� i

@

@ Re(x)

⌘
h(x), (5.72)

it gives

@

@�!
h(x(�!)) = x0(�!)h0(x(�!)) + x0(�!)⇤h0(x(�!))⇤.

(5.73)

In our peculiar case, we have

f(t) =
p
e�

�

2
+i!0

�
t
and (5.74)

f�!(t) =
p
e�

�

2
+i(!0+�!)

�
t. (5.75)

We can write

(⌧̂f · ⌧̂f) =
2

2
(5.76)

(⌧̂f · f) =
1


, (5.77)

which gives

x0(�!) =
i



�
x(�!) + b

�
. (5.78)

We can now numerically evaluate the Fisher information for any pure
state preparation in the mode f . As for the mutual information, we
computed it in the qubit case with finite quantum efficiency ⌘ 2 [0, 1]

and ✓ 2 [0,⇡]. The result is shown in Fig. 5.12. Strikingly, the FI
behaves just the same as the mutual information. We did the same
figures as in Fig. 5.4, and we see that the plots are qualitatively the
same. We could even compare the optimal angle ✓opt and see that
they are the same, up to the statistical noise in the estimation of the
mutual information. The same discussion about the moments of the
heterodyne measurements in Sec. 5.2.1 carrying the information as a
function of ⌘ can be conducted here with Fig. 5.12d. For a Fock state
|1i prepared in the mode, the heterodyne measurement performs as
well as the FRPD and half as well as an ideal measurement achieving
the QFI. This is the same as the ⌧ � regime studied in 5.2.2.
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Figure 5.12: Fisher information as a function of the quantum efficiency and
the kick amplitude on the qubit. (a) Map of the Fisher infor-
mation F of a heterodyne measurement as a function of ✓ and
⌘. (b) Cuts (a) along the lines ⌘ = 0.1, 0.25, 0.4, 0.55, 0.7, 0.85
and 1 corresponding to increasing Fisher information. (c) Dark
red solid line: Optimal angle ✓opt as a function of ⌘ for the
Fisher information. Blue dots: ✓opt for the frequency-resolved
mutual information (see Fig. 5.4. (d) Fisher information F as a
function of the quantum efficiency for ✓ = ⇡/2 (blue solid line)
and ✓ = ⇡ (green solid line). The blue dashed line is a linear
fit for small ⌘, and the green dashed line shows the function
2F = 2⌘2.

5.4.4 Homodyne measurement

We now derive the FI for a homodyne measurement performed on a
mode that is hermitian symmetric with respect to !m. For simplicity,
we consider that !m = 0. The condition that the mode is symmetric
translates into f⇤ = f : it is a real-valued function. What we want to
compute is F (�! = 0), i.e. the FI when the measurement frequency
!m is already equal to !0. As for the QFI, it makes sense when
considering the asymptotic behavior of an adaptive scheme where !m

is adapted at each iteration to the best estimation of �! so far.
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The goal here is to express a quasi-likelihood function for the mea-
surement record the same way as in Sec. 5.1.1. To do so, we will see
that we can integrate the measurement record against well-chosen
normalized real functions gn and compute the probability density of
the outcomes xgn . As we saw in Sec. 3.1.1, it corresponds to sampling
the Wigner functions of the modes represented by the elements gn.
Therefore, we have to understand how to transform the Wigner func-
tion W0 of the full transmission line under the frequency translation
T̂ �!. We will do it at first order in �!, which allows us to express the
frequency translation as a rotation in a subspace of dimension 2 only.
This leads to the definition of a simple pseudo-likelihood that we can
use to compute the Fisher information.

For a small frequency translation by �!, we can linearize the unitary
operator T̂ �! around �! = 0, which gives:

T̂ �! = 1� i�!⌧̂ (5.79)

The corresponding action on f reads

T�!f = f � i�!⌧̂f. (5.80)

It is sufficient to study the effect of T �! on Span({⌧̂nf}). From now
on, we will work in this subspace.

In order to compute the action of T �! in this space, we first build
{gn} the orthonormal basis obtained by applying the Gram-Schmidt
algorithm on the family {⌧̂nf}n2N. By construction, we have the
following properties:

g0 = f (5.81)
gn · gm = �mn (5.82)
(⌧̂gm) · (gm+k) = (gm) · (⌧̂gm+k) = 0 if k � 2. (5.83)

The latter property comes from the fact that (⌧̂gm) 2

Span({⌧̂nf}nm+1) by construction. In general, this family has an
infinite cardinal number, which we will consider true in the following.

The action of T �! on Span({⌧̂nf}) can then simply be expressed
by a change of basis

gn ! T �!gn. (5.84)
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We can check that {T �!gn} remains an orthonormal basis.
T �! is a rotation in the vector space spanned by {gn}. In this basis,

its matrix elements are of the form

(gm · T �!gn) (5.85)

which, at first order in �! becomes

gm · (T �!gn) = �i�!gm · (⌧̂gn). (5.86)

Using Eq. (5.83), the rotation matrix R�! describing T �! in the basis
{gn} finally reads, at first order in �!:

R�! ' 1� i�!⇥
0

BBBBBBBBB@

⇣
g0 · (⌧̂g0)

⌘ ⇣
g0 · (⌧̂g1)

⌘
0 0 ...

⇣
g1 · (⌧̂g0)

⌘ ⇣
g1 · (⌧̂g1)

⌘ ⇣
g1 · (⌧̂g2)

⌘
0 ...

0

⇣
g2 · (⌧̂g1)

⌘ ⇣
g2 · (⌧̂g2)

⌘ ✓
g2 · (⌧̂g3)

⌘
...

0 0

⇣
g3 · (⌧̂g2)

⌘ ⇣
g3 · (⌧̂g3)

⌘
...

... ... ... ... ...

1

CCCCCCCCCA

.

(5.87)

At first order, it thus only mixes the mode gm with the mode gm+1

and gm�1.
This matrix gives the coordinate transform to express how the

full Wigner function of the line W0 transforms under the frequency
translation T̂ �!. It simply reads

W0(�)
T̂ �!
��! W�! = W0(R

�1
�!

�), (5.88)

with � = (�0,�1, ...) its coordinates (see Appendix. B). At this point,
the Wigner is an infinite-dimensional quasidistribution. To work it out,
we use the fact that the only state that is not in the vacuum state is
the one represented by f . As a consequence, under the rotation, and at
first order in �!, the only two modes that are not in the vacuum state
are the ones represented by g0 and g1. The Wigner function reads

W0(�) = W f (�0)
Y

n�1
W |0i(�n) (5.89)
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before applying the rotation. Applying the rotation, it reads

W�!(�) = W0(R
�1
�!

�) = W01

�!(�0,�1)
Y

n�2
W |0i(�n) + o(�!),

(5.90)

where W 01

�!
is the two-dimension Wigner function of the modes repre-

sented by g0 and g1. Thus, we are only interested in the coordinates
�0 and �1 of W0(R

�1
�!

). As all the terms involving �n for n � 2 can
be factored out as W |0i(�n), the change of coordinate � ! R�1

�!
� for

the Wigner function W0 is equivalent to the following change of coor-
dinates in this peculiar case where only the state represented

by g0 is not the vacuum state:

R0�! ' 1� i�!

0

BBBBBBBBB@

✓
g0 · (⌧̂g0)

◆ ✓
g0 · (⌧̂g1)

◆
0 0 ...

✓
g1 · (⌧̂g0)

◆ ✓
g1 · (⌧̂g1)

◆
0 ...

0 0 1 0 ...

0 0 0 1 ...

... ... ... ... ...

1

CCCCCCCCCA

.

(5.91)

This can be understood by a geometrical argument: when only the
mode represented by f is populated, the Wigner function is invariant
under the action of R�! almost everywhere, except in the manifold
Span(g0, g1). We thus restrict our description to this space and write
S�! the restriction of R0

�!
to this subspace as:

S�! = 1� i�!

0

BB@

✓
g0 · (⌧̂g0)

◆ ✓
g0 · (⌧̂g1)

◆

✓
g1 · (⌧̂g0)

◆ ✓
g1 · (⌧̂g1)

◆

1

CCA . (5.92)

The expression of W 01

�!
is thus

W 01

�! = W 01

0 (S�1
�!

(�0,�1)) (5.93)

The transformation of W 01
0

! W 01

�!
in this subspace is pictured in

Fig. 5.13 for a coherent state |↵i prepared in the mode defined by
f = g0 (and the vacuum state in g1), shown in (a) and (c). Translating
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the mode in frequency corresponds to rotating the Wigner function
in a four-dimensional space, which we can visualize by plotting the
Wigner function of the same modes defined by g0 and g1 ((b) and (d)).
The distinguishability of the states depends on the distances in phase
space, given by �!|g0 · ⌧̂g0| = �!⌧ (⇥2 between +�! and ��!) in the
mode defined by f = g0, and �!|g1 · ⌧̂g0| (⇥2 between +�! and ��!)
in the mode defined by g1. Note that since the two modes are in a
coherent state, the state | 01i describing the two modes is separable
and reads (still at first order in �!)

| 01i ' |(1� i�!⌧)↵i ⌦
���i�!

�
g1 · (⌧̂g0)

�
↵
↵
, (5.94)

and we can factorize W 01

�!
into

W 01

�! (�0,�1) = W g0(�0)W g1(�1)

= W |(1�i�!)↵i(�0)W |(�i�!)↵i(�1).
(5.95)

This is not the case when working with non-coherent states.
Coming back to the measurement record, we can integrate it against

f⇤ = g⇤
0

and g⇤
1
, which gives measurement outcomes xg0 and xg1 . The

law of these two measurement records is given by the joint probability
density p�!(xg0 , xg1) that reads

p�!(xg0 , xg1) =

ZZ
W01

�!(xg0 + ip0, xg1 + ip1)dp0dp1. (5.96)

We can now apply the same arguments as in Sec. 5.1.1 and write a
pseudo-likelihood function

L(�!|x) = L(�!|xg0 , xg1) =
p�!(xg0 , xg1)

pvac(xg0 , xg1)
, (5.97)

where pvac

pvac =

ZZ
W |0i(xg0 + ip0)W |0i(xg1 + ip1)dp0dp1 (5.98)

is defined the same way as p0 but with the two modes defined by g0
and g1 in the vacuum state. We now have an explicit way to compute
the FI:

F (0) =

ZZ  @ log
✓
L(�!|xg0 , xg1)

◆

@�!

!2

p0(xg0 , xg1)dxg0dxg1

(5.99)
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Figure 5.13: Scheme of the transformation of the two-mode Wigner function
for a small detuning �! between the homodyne detection fre-
quency and the signal frequency. (a) and (c): Wigner functions
W f and W g1 of the modes defined by f = g0 and g1 when the
mode defined by f is in a coherent state |↵i. (b) and (d) Wigner
functions of the same modes after a time translation by +�!
(lighter red) or ��! (darker red). The direction of the displace-
ment in phase space (light grey dashed line) is orthogonal to
the direction set by ↵ (dark grey). A homodyne detection has
measurement outcomes distributed following the marginals of
W01

�! as a function of Re(�0) and Re(�1).

where p0(xg0 , xg1) factorizes as

p0(xg0 , xg1) =

Z
W f (xg0 + ip0)dp0

Z
W |0i(xg1 + ip1)dp1.

(5.100)

We can compute it for a few examples in the case f(t) =
p
e�


2
t for

t � 0 and 0 otherwise. In this case, the gn are expressed as a function
of the Laguerre polynomials Ln of order n:

gn(t) =

( p
Ln(t)e

�
2
t
if t � 0

0 otherwise.
(5.101)

190



5.4 continuous case

S�! reads

R0�! ' 1� i�!

 
1/ �1/

�1/ 3/

!
. (5.102)

We can now apply the formula Eq. (5.99) for various states prepared
in the mode f . We can first take a look at coherent states. Preparing
a state |↵i in the mode defined by f gives a Fisher information

F (0) = 8
Im(↵)2

2
. (5.103)

Interestingly, when ↵ is imaginary, F (0) is equal to the QFI. This is
expected, as the direction of displacement in phase space (Fig. 5.13) is
the same as that of the homodyne measurement. This is similar to the
ideal dispersive readout of a qubit discussed in Sec. 3.3.4, for which all
the available information is retrieved. However, for ↵ real, it vanishes.
It can be understood by the fact that the marginal distributions of
Re(�0) and Re(�1) do not change at first order, as the rotation in
phase space corresponds to a vertical displacement. This dependence
in Im(↵) is pictured in Fig. 5.13.

It does not mean that an estimator would not converge, but rather
that it would converge more slowly than in the central limit theorem.
This kind of critical point has been discussed in [184]. The convergence,
instead of scaling like 1/N for the variance, scales at most like 1/

p
N .

For a displaced squeezed state, it gives

F (0) = 8
e3r cosh(r) Im(↵)2

2
. (5.104)

It is thus equal to only one term of the QFI in Eq. (5.52), the one
proportional to Im(↵). The homodyne measurement is blind to the
component along Re(↵) and to the part that is intrinsic to a squeezed
state (the first part in the QFI). We see once again that the homodyne
detection needs a nonzero average value along the imaginary axis to
extract information.

5.4.5 Qubit case: summary

We can now compare the FI associated to each measurement and the
QFI in the qubit case (as in the experiment of Chap. 4). The homodyne
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measurement was taken in the optimal direction. Fig. 5.14 shows them
as a function of p(1). For small p(1), we see that the homodyne
measurement reaches the QFI, as expected from the fact that the state
can be assimilated to a very small coherent state. The heterodyne
measurement reaches only half of it, and the FRPD only a fourth. For
increasing p(1), the homodyne measurement performs worse and worse
until it reaches 0 for p(1) = 1. Once again, we see that the homodyne
measurement can work well only if the Wigner function of the state has
a non-zero average imaginary part, which is not the case for p(1) = 1.
This can be interpreted in the same way as for the case of a coherent
state: when the measurement frequency !m/2⇡ is aligned with the
frequency of the mode of interest, if there is no average imaginary
part, the likelihood is the same whether we are slightly detuned by
�! or by ��!. This degeneracy disappears as soon as we set �! 6= 0.
Increasing |�!| would set the measurement in-between homodyne and
heterodyne, with Fisher information continuously shifting from the
blue curve to the yellow curve in Fig. 5.14.

Figure 5.14: FI for the homodyne and heterodyne detection, for an FRPD,
and the QFI as a function of p(1).

5.5 conclusions

To give more theoretical insights about the experiment presented in
Chap. 4, we used the framework presented in Chap. 2 and Chap. 3
to compare the measurement based on heterodyne detection to the
use of a frequency-resolved photon detector, and to the accessible
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information. We could theoretically explore the full range of possible
parameters � and �1 that the experiment could have taken.

In a second part, we used the experiment as a base to discuss the
notion of measurement rate when there are more than two possible
outcomes. In particular, we distinguished the measurement rate, which
characterizes the speed at which an estimator converges toward the
right outcome, and the information rate, which is simply the rate at
which information is transmitted via the measurement setup. As these
two values could be unified in one "measurement rate" in the case of
only two possible outcomes, it is no longer the case when considering
more than two outcomes.

In a third part, we shifted the point of view to understand the
experiment of Chap. 4 as a particular case of parameter estimation
task. Generalizing it to a case where the parameter to estimate can
take continuous values, we could compare heterodyne and homodyne
detection, a frequency-resolved photon detector, and an ideal optimal
measurement. It reveals which properties of the propagating states
are best exploited by each of these measurements.
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Part IV

NEURAL -NETWORK ASS I STED STATE
PREPARATION





6
CAT STATE PREPARATION US ING NEURAL
NETWORKS

A part of this PhD work was dedicated to finding applications of
machine learning to quantum experiments in the context of the Eu-
ropean project ARTEMIS. This project was originally born from the
idea of finding complex feedback procedures to stabilize Fock states
using the measurement scheme developed in Chap. 4 [185]. It was a
very ambitious project that we could not realize fully. However, we
could still demonstrate in Sec. 4.9.2 that a neural network can process
measurement records just as well as an optimal procedure. In addition,
the following article [7], currently under review, demonstrates neural
network-assisted cat state preparation and is reproduced here in full.

6.1 introduction

Quantum information processing demands exquisite control over quan-
tum systems. While direct optimization methods have demonstrated
success in quantum control, they often necessitate access to gradient
information [3, 186–188], and require to be run for each task. Much
more flexibility is promised by the novel powerful tools emerging
from the domain of machine learning and artificial intelligence [189–
191]. Model-free reinforcement learning considers the experiment or a
simulation as a black box and trains the network on it [5, 192–203].
A few experiments have demonstrated this strategy for optimized
qubit state readout and initialization [166, 167, 204], generation of
unitaries [205], demonstrating dynamical decoupling [206], improved
measurements [207, 208], quantum state tomography [209], Wigner
negativity detection [170], Bose-Einstein condensate preparation [210],
boson sampling validation [211], quantum control in trapped ions [212],
or optimized quantum error correction [213]. Yet many experiments
can be modeled completely with only a few a priori undetermined
or evolving parameters, employing a differentiable simulation. This
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can make it feasible to take gradients directly through simulations,
the most efficient version of model-based reinforcement learning [193,
214–216]. Neural-network-based variants of this approach have yet to
be demonstrated in experiments. In this domain, it has recently been
shown theoretically that one might train a network once for a whole
family of tasks and then use it to rapidly generate control sequences
for any desired tasks selected from that family [217], making the whole
process even more efficient, exploiting the general concept of transfer
learning (learning for some tasks and benefiting from this for other
tasks).

Figure 6.1: Principle of the experiment. (a) A neural network takes the input
parameters and outputs optimized control pulses characterizing
a quantum operation.(b) These pulses drive a cavity (green)
and its dispersively coupled qubit (purple) in order to prepare a
desired quantum state. A readout resonator is used to measure
the qubit state and perform Wigner tomography of the cavity.

In this work, we demonstrate model-based reinforcement learning
for the preparation of quantum states in a cavity. We focus on arbi-
trary states within a specific class, namely two-component cat states
in a cavity. This choice stems from the potential of cat qubits for
quantum information processing, particularly in quantum sensing and
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error correction [140, 218–221]. Breakthroughs in cat qubit experi-
mentation [222–231] have prompted both academic and commercial
development of quantum processors leveraging this technology. We
designed and trained a neural network to directly generate control
pulses simultaneously applied to the cavity and a dispersively coupled
qubit (Fig. 6.1a). These control sequences are decomposed into a basis
set of a few smooth basis functions, ensuring compatibility with exist-
ing real-time control hardware. We describe how to implement such a
controller in an experiment and show how to estimate the preparation
fidelity as fast as possible. We show that the network, once trained,
is able to generate control sequences about five orders of magnitude
faster than an established gradient-based technique. The rapidity of
the control generation offered by the neural network could also prove
instrumental in the case of real-time feedback protocols, needed in
other tasks [5, 167, 195, 197, 200–202, 232].

In this work, we demonstrate model-based reinforcement learning for
the preparation of quantum states in a cavity. We focus on arbitrary
states within a specific class, namely two-component cat states in a
cavity. This choice stems from the significant promise of such states for
various quantum information processing applications such as quantum
error correction and sensing [140]. We designed and trained a neural
network to directly generate control pulses simultaneously applied
to the cavity and a dispersively coupled qubit (Fig. 6.1a). These
control sequences are decomposed into a basis set of a few smooth
basis functions, ensuring compatibility with existing real-time control
hardware. We describe how to implement such a controller in an
experiment and show how to estimate the preparation fidelity as
fast as possible. We show that the network, once trained, is able to
generate control sequences about five orders of magnitude faster than
an established gradient-based technique. The rapidity of the control
generation offered by the neural network could also prove instrumental
in the case of real-time feedback protocols, needed in other tasks [5,
167, 195, 197, 200–202, 232].

A schematics of the experimental system is shown in Fig. 6.1b
(see also Sec. 6.10). The cavity whose state preparation is optimized
by the neural network is the fundamental mode of a high-Q coaxial
�/4 resonator made of aluminum (green). Its frequency is !c/2⇡ =
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4.628 GHz and its decay time is Tc = 225 µs. The cavity is dispersively
coupled with a shift �/2⇡ = 238.5 kHz to a transmon qubit (purple)
resonating at !q/2⇡ = 3.235 GHz, and whose decay time is T1 = 35 µs
and decoherence time T2 varies between 20 and 60 µs. The transmon
qubit is also coupled to a readout mode composed of a �/2 resonator
connected to the readout line through a Purcell bandpass filter. Both
the qubit and the cavity can be directly driven through distinct
microwave ports.

In the interaction picture, the Hamiltonian of the qubit and cavity
reads

Ĥ(t)/~ = ��â†â|1ih1|q +
h
"c(t)â

†
+ "q(t)�̂+ + h.c.

i
, (6.1)

where "c(t) and "q(t) are the complex-valued time-dependent exter-
nal fields driving the cavity and the qubit in their rotating frame,
respectively. â is the annihilation operator of the cavity, |1iq is the
first excited state of the transmon and �̂+ = �̂†� = |1ih0|q is the qubit
raising operator. The system relaxation is included perturbatively in
the simulations, as discussed in Sec. 6.9.

The preparation sequence is initiated when the system is in its
ground state | (0)i = |0i

q
⌦ |0i

c
. Both qubit and cavity are then

driven during a fixed time T in order to obtain a target state in the
cavity. In this work we focus on target cat states of the form

|C'

↵ i / |↵i+ e�i' |�↵i (6.2)

where | ± ↵i are coherent states of amplitude ↵ and ' is a phase.
Additionally, we require the qubit to come back to the ground state,
so that the full target state is

|T
'

↵ i = |0i
q
⌦ |C'

↵ ic . (6.3)

Under the action of Ĥ(t) in presence of decoherence, the density
matrix of the system ⇢̂(t) evolves from ⇢̂(0) = | (0)ih (0)| to ⇢̂(T ).
The fidelity to the target state is defined as F(↵,') = hT

'
↵ | ⇢̂(T ) |T '

↵ i.
The optimization problem we set to solve consists in identifying the
two complex (and thus four real) control functions "c(t) and "q(t)

that maximize the fidelity F(↵,') after a driving time T for every
(↵,') 2 S = [0, 4]⇥ [0,⇡].
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6.2 neural network

To this end, we employ a neural network (NN). The NN input consists
of the real parameters ↵ and ' characterizing the target state |T

'
↵ i.

The NN output is a set of 9 expansion coefficients for each of the 4
real control fields in a B-spline basis (see Sec. 6.6). The encoding of
the pulses is thus very light, which potentially enables much faster
communication with the controller. As an example, loading one full
pulse sequence of 2 µs on our OPX necessitates 4 ⇥ 2000 points,
which takes approximately 450 ms, whereas loading only the 4 ⇥

9 corresponding parameters takes 24 ms, limited by the network
communication time, which is already an order of magnitude faster.

In order to apply the reinforcement learning approach, the NN is
included in the data processing pipeline shown in Fig. 6.2a. Each real
control field is constructed by summing up the B-splines weighted by
the output coefficients of the NN. In order to avoid the computational
overhead associated with the implementation of a full density matrix
⇢̂(t) simulation, the coefficients are passed to a simpler Schrödinger
equation solver, which computes the system state evolved under these
control fields | (↵,'; t)i. The fidelity F(↵,') can be approximated
by

F(↵,') '
��hT '

↵ | (↵,'; t = T )|T '

↵ | (↵,'; t = T )i
��2 ��F ,

(6.4)

where �F is a first-order correction to the fidelity due to the decoher-
ence (T1, T2, Tc, see Sec. 6.9). We then use the infidelity as the loss
function that has to be minimized:

L(↵,') = 1� F(↵,') . (6.5)

All these operations are differentiable, so gradients of the loss with
respect to the NN parameters can be computed through the complete
pipeline comprising the network, control construction and simulation,
enabling thus gradient-based NN training. The NN is trained on target
cat states |C'

↵ i sampled randomly within our parameter space S.
After a successful training, the NN is able to generate control fields
which produce the cat state for any (↵,') 2 S in a preparation time
T = 2 µs, which was selected to be close to ⇡/�.
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Figure 6.2: Data processing, training pipeline and simulation example. (a)
Schematic representation of the data processing and training
pipeline. Gradients can be taken through the network, control
construction and simulation to update the network weights while
optimizing the fidelity F via gradient ascent. The output of the
network is a vector of 36 real numbers which is then converted
into control pulses "c(t) and "q(t) with the goal of preparing a
cat state |C'

↵ i / |↵i+ e�i'
|�↵i with ' 2 [0, 2⇡] and ↵ 2 [0, 4].

(b) Simulated probability distribution of the photon number
(top) and qubit excitation (bottom) as a function of time for the
control fields shown in (a), which are generated by the neural
network when ↵ = 2 and ' = 0. The fidelity of the predicted
final state to |C'

↵ i is F(2, 0) = 94 %.

We stress that the described machine learning method to train our
NN is model-based reinforcement learning and should not be confused
with supervised learning. The method belongs to the reinforcement
learning branch since no “correct” answers are available for the searched
control signals, as would be the case in supervised learning. Moreover,
for a given target quantum state, the optimal control pulses are gener-
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ally speaking not unique and can differ significantly [217]. The typical
reinforcement learning components are identified in our approach as
follows. The agent applies control signals (action) and observes the
fidelity between the constructed quantum state and the target state
(reward). The NN encodes the agent’s choice of a particular control
pulse (policy), which is iteratively improved based on the rewards. In
this work, we employ the physical model which enables us to improve
the policy based on the reward gradients that are directly computed
through the full processing pipeline including both the physical simu-
lation as well as the neural network (Fig. 6.2a). We note that in our
approach the policy is deterministic and yields directly the control
signals. In contrast, the standard model-free policy gradient [233] needs
to use less efficient stochastic policies for exploration of the action
space in order to estimate the reward gradients.

The numerical modeling is performed on a time grid with 40 dis-
cretization intervals at the NN training stage and 200 intervals at the
subsequent testing stage. The highest included Fock state Nmax for the
cavity (determining also the output size of the pipeline in Fig. 6.2a)
is varied during the NN training between Nmax = 20 and Nmax = 60,
and fixed to the value Nmax = 70 at the testing stage. We made sure
that this choice is sufficient for accurate modeling of all quantum
states considered in this work. We use a NN of the usual dense (deep
forward, multilayer perceptron) architecture with 3 hidden layers of
the size 30, 60 and 30 neurons, respectively (in total approx. 5000
trainable parameters). It is trained using the Adam algorithm [175] on
batches sampled from S. The batch size is gradually increased with
the training stages. We use uniform sampling for ', whereas ↵’s are
sampled with a probability linearly growing with larger values. This
accounts for the fact that the NN training for the more interesting
larger amplitudes ↵ is more difficult. Additionally, at the NN training
stage both ↵ and ' intervals are slightly extended beyond the edges
in order to avoid the presence of boundary effects in S. The pipeline
discussed in the text above and shown in Fig. 6.2a was implemented in
Python using the JAX [234] and FLAX [235] libraries. We additionally
benchmark our computations by performing the same system modeling
including dissipation and decoherence with the QuTiP package [32,
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236], to extract fidelities. In appendices 6.7 and 6.8 we provide further
details on the NN training and performance study, respectively.

An example of the result of such simulations is shown in Fig. 6.2b,
where the evolution of the cavity photon number distribution and
qubit excitation is plotted as a function of time when the neural
network optimizes the creation of |C

0
2
i. The qubit and cavity get

quickly entangled leading to Pt(1q) ⇡ 1/2 for the qubit as the number
of photons in the cavity rises. The cavity goes through states with
large photon numbers and a superposition of low and large numbers
arises around 1.6 µs. At the end, the parity of the photon number
seems to flip as well as the qubit state. Since large photon numbers
are known to lead to dynamics that are not captured by a simple
model [96, 161], it is desirable to keep them small. Here, no constraint
was imposed on the maximal photon number during training, but the
chosen B-spline basis with broad basis functions indirectly limits that
number. Indeed finely controlling a system that evolves at a speed
�n in phase space requires pulses with a bandwidth of at least �n.
The bandwidth of the B-spline scales inversely with their number.
The chosen basis thus embeds a hidden cost naturally preventing
the network from finding solutions with too high photon numbers.
Tuning the number of elements in the basis then allows to control
this limitation, that can be pushed to prepare cat states with a higher
number of photons.

6.3 experimental results

We now test the NN controller on the experiment for several targeted
cat states |C'

↵ i. After the cavity and the qubit are prepared in their
ground states (see Sec. 6.11), we apply the pulse sequence generated
by the neural network on the cavity and qubit drive lines. A Wigner
tomography is then performed using the same qubit in order to di-
rectly measure the Wigner function W'

↵ (�) of the cavity after the
pulse sequence [144, 237]. It consists in mapping the displaced parity
operator ⇧̂(�) = D̂(�)ei⇡â

†
âD̂(��) onto the qubit state before reading

it out. The Wigner function is then given by W'
↵ (�) = 2h⇧̂(�)i/⇡. We

introduce Wexp(�), which is obtained by averaging the measurement
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outcomes of the observable 2⇧̂(�)/⇡. In Fig. 6.3a, it is averaged over
1000 realizations per pixel (with 21⇥ 51 pixels in total) for |C0

1
i.

From the Wigner function W'
↵ (�), we can compute the fidelity to

the target cat state |C'
↵ i as (see Sec. 6.12.1)

F(↵,') = ⇡

Z

C
W'

↵ (�)W|C'
↵ ihC'

↵ |(�)d� (6.6)

with W|C'
↵ ihC'

↵ |(�) =
2

⇡
Tr(⇧̂(�)|C'

↵ ihC
'
↵ |) the Wigner function of the

target state. Based on this formula, we can build an experimental
estimator of F(↵,') (details in Sec. 6.12.1).

Figure 6.3: Experimental Wigner functions for uniform and optimal sampling.
(a) Measured Wigner function Wexp(�) of the cavity for ↵ = 1

and ' = 0 and uniform sampling. (b) Same preparation evaluated
with optimal sampling. (c) and (d) Measured Wigner functions
of the cavity with optimal sampling for ↵ = 0 and 2, and ' = 0.

When performing state tomography of an unknown state, it makes
sense to sample uniformly W'

↵ (�). However, it is possible to obtain a
theoretically unbiased estimation of the preparation fidelity to a known
target state with maximal precision using another sampling [5] (in our
case typically half the uncertainty compared to uniform sampling).
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In Fig. 6.3b, we show the average measurement outcome Wexp(�) of
2⇧̂(�)/⇡ for N = 10

6 samples distributed in � according to the optimal
probability density popt(�) / |W|C'

↵ ihC'
↵ |(�)| for the target state |C

0
1
i.

Regions with low value for the target Wigner function appear very
noisy owing to the small number of samples per pixel. For Fig. 6.3b,
one finds F(1, 0) = 94.7 % ± 0.4 %. Details about this estimation
and the errors introduced by the decay during Wigner tomography
and by the double use (preparation and measurement) of the qubit
can be found in Sec. 6.12.2. The estimated fidelities for two other
target states in Fig. 6.3c and d are F(0, 0) = 94.3 % ± 0.2 % and
F(2, 0) = 91.1 %± 0.3 %. We deliberately focused on training the NN
for large values of ↵, which explains the low fidelity when preparing
the vacuum state.
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Figure 6.4: Experimental and theoretical infidelity as a function of ↵ and
'. (a) Red dots: measured infidelity 1� F(↵, 0) for 21 values of
↵. Each point is obtained by averaging 10

6 samples. Purple line:
simulated infidelity 1� F(↵, 0) for the same parameters. Blue
dots: infidelities obtained by simulating also the measurement
procedure and taking into account the finite thermal population
nth of the cavity. Green open circles: simulated infidelity using
pulses optimized by GRAPE followed by the Krotov method [3,
4, 236]. Double arrow: typical amount of infidelity change due to
possible T2 variations between 20 µs and 60 µs over the 8 days of
measurement (see Sec. 6.14.2). (b) Bottom: simulated infidelity
for a sampling of the whole half-disk (reflected) in the parameter
space (↵ cos('),↵ sin(')). Top: experimental infidelities obtained
with 10

5 shots sampled optimally. The measurement of these
20⇥ 9 infidelities took about 8 days as well.
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We use this measurement protocol to characterize the performance
of the neural network in the preparation of many quantum states. In
Fig. 6.4a (red dots), we show the estimated preparation infidelities
1 � F(↵,') as a function of ↵ for ' = 0 (N = 10

6 samples per pa-
rameter). For comparison, we simulate the evolution of the density
matrix ⇢̂(↵,', t) under the same drives and compute predicted in-
fidelities 1 � F(↵,') = 1 � ⇡

R
C W⇢̂(↵,',T )(�)W|C'

↵ ihC'
↵ |(�)d� (purple

line in Fig. 6.4a). Both the experiment and the prediction exhibit
the same qualitative behavior. For the smallest amplitudes, the in-
fidelity decreases before increasing steadily. At low amplitudes, the
small sampling (proportional to ↵) of the network training dominates
the infidelity of the preparation and it gets better as ↵ rises. Around
↵ ⇡ 0.5, the infidelity grows with ↵ because it is harder and harder
to faithfully prepare a cat state with higher number of photons both
theoretically and experimentally. As seen in Fig. 6.2b, the number of
photons during preparation exceeds the final one. We trained the same
neural network on a dissipation-free model of the same system (see
appendix 6.8 and Fig. 6.8 for details and an experimental test), and
obtained about 2 to 6 times smaller infidelities than with dissipation
(purple solid line in Fig. 6.4a). This indicates that the dissipation is
the main mechanism limiting the theoretical fidelity of the prepared
states.

In order to illustrate the trade-off between preparation infidelity and
duration of pulse generation, we computed the infidelity one should
obtain using a standard direct optimization method. The green open
circles in Fig. 6.4a represent the theoretical infidelities obtained using
2 µs long control pulses optimized by GRAPE (GRadient Ascent Pulse
Engineering) followed by the Krotov method [3, 4, 236]. Note that
in contrast to the 9 coefficients we use to parameterize the control
pulses with the NN, GRAPE & Krotov uses 2000 coefficients (one per
ns). Interestingly, the infidelity curve has the same slope as the one
obtained with the NN (solid purple line) in the region ↵ & 0.7. The
GRAPE & Krotov performs better by about a constant infidelity offset
of around 0.01 in this region. However, generating the control pulses
with GRAPE & Krotov for the 21 values of ↵ plotted in Fig. 6.4 a
took about 6 hours on 14 cores i9 Intel CPU. This significantly exceeds
the time of approximately 0.5 hours needed to train the NN on a
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GPU. More importantly, once trained, the NN can generate control
signals for any cat state from the parameter space about five orders
of magnitude faster than using GRAPE & Krotov: generating the 21
control pulses takes 0.3 s on an i9 Intel CPU. Note that the generation
of pulses by the NN could be considerably accelerated using dedicated
hardware (GPU, FPGA, TPU. . . ).

We also measure the preparation infidelities for several phases with
N = 10

5 samples per parameter pair (↵,') 2 [0.1, 2]⇥ [0,⇡] (Fig. 6.4b
upper panel). The predicted infidelities for the same parameter set
are shown in the bottom panel of Fig. 6.4b. From this plot, it appears
that the neural network behaves similarly for any phase ' except
at low amplitudes ↵. Beyond scarce sampling at low ↵, this can be
understood since the cat state varies rapidly with ' next to ⇡. At low
amplitude ↵, cat states |C'

↵ i are close to |0i except in the vicinity of
' = ⇡ where |C'

↵ i is close to the Fock state |1i. The large infidelity
at ' = ⇡ illustrates that a neural network performs poorly in the
neighborhood of singularities since it inherently yields solutions which
are continuous with respect to the input parameters.

Overall, we observe larger infidelities in the experiment than in the
prediction. We attribute this mismatch to two main phenomena (see
Sec. 6.14). The first one is an underestimation of the fidelity by the
measurement protocol. Indeed the qubit is not always in the ground
state at the end of the pulse sequence, which can artificially lower
the measured fidelity, since the same qubit is then re-used for the
Wigner tomography. Likewise, but with a lesser impact, the parity
measurement procedure has a finite duration tpar =

⇡

�
, during which

the cavity decay probability is non negligible. The second reason
for a deviation between experimental and theoretical fidelities is an
imperfect state initialization. After the qubit and cavity reset, there
is a remaining nth = 0.6 % thermal population in the cavity (see
Sec. 6.11.3), which is directly responsible for the same amount of
fidelity decrease �Fth ' nth. This can be understood simply: when
the cavity (or the qubit) is in the Fock state |1i before the pulse
sequence, the system is in a state that has zero overlap with the
expected initial state (ground state). Thus, at the end of the unitary
evolution, it will also have zero overlap with the expected final state,
thus exhibiting zero fidelity to the target state. On average, the fidelity
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is then lowered by �Fth ' nth. Simulating the whole measurement
procedure and taking into account the remaining thermal population
nth of the cavity, we are able to capture the measured infidelities to a
higher degree of accuracy (purple dots in Fig. 6.4a).

The measured fidelities seem to vary a bit more than expected from
the statistical error bars in Fig. 6.4a, which is not the case of the
theoretical predictions (purple solid line and purple dots). We explain
this behavior by the variability of the qubit decoherence time T2 during
the experiment. While the value of T2 for the theoretical predictions in
Fig. 6.4a was fixed to 42 µs, we have observed variations from 20 µs to
60 µs during the experiment. Since each of the two panels in Fig. 6.4
required 8 days of measurement records, it is likely that T2 varied
substantially from one point to the next. As shown in Sec. 6.14.2, our
measurement can be explained by variations of T2 that are compatible
with our observations.

6.4 conclusion

In summary, the key findings of our work are the following. (i) Fast
generation of optimized pulses for quantum state preparation using
reinforcement learning: We introduce a new approach that can gen-
erate control sequences for quantum states 5 orders of magnitude
faster than existing methods. (ii) Neural network-based control: Our
method utilizes a neural network to directly generate optimized control
pulses for a class of tasks, eliminating the need to run an optimization
algorithm for each individual task. (iii) Experimental demonstration
on cat states: We present an experiment on a superconducting circuit
showing the fidelity of cat state preparation, a promising candidate
for quantum error correcting codes. (iv) Experimental and theoret-
ical comparison between GRAPE and neural network control: We
implemented both our method and also GRAPE in order to provide a
comparison between the fidelities and speed of both techniques. (v)
Demonstration of optimal sampling for fidelity estimation: We perform
an optimal sampling of the Wigner function of a microwave cavity for
the task of estimating the preparation fidelity, and compare it to the
traditional technique of uniform sampling.
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There are multiple potential follow-up applications: one may promote
the model parameters as trainable, and directly use the experimental
measurements as input to learn the correct model parameters from the
experiment. Alternatively, one may train for a whole range of model
parameters in advance and adapt them to the experiment on the fly,
e.g. when parameters are drifting. Since the network structure is light
and easy to handle, it can form an efficient building block for complex
network-based real-time feedback control of quantum systems. In that
setting the moderate size of the network, efficient communication and
information compression are crucial for low-latency data processing,
whether the network is hosted on the FPGA controller itself or on a
dedicated hardware.

In future work on similar challenges, one can imagine variations in
the computational pipeline that connects the input task parameters
to the final control pulse shape. First of all, one may replace B-
splines by other suitable smooth parametrizations, such as Fourier
decompositions. Second, the neural network itself could take as an
additional input the time variable and be used to produce the entire
pulse shape by querying it at all required values of the time variable
on a grid, at the expense of longer inference times. Third, one can
at least imagine to replace the neural network by some alternative
architecture, such as kernel machines, or even use symbolic regression
approaches for interpretability (representing the output as a formula
whose number of terms is kept limited).

In the future, applying the scheme demonstrated here may be key
for potential applications requiring fast change of pulse parameters
(feedback, sensing, adaptive techniques, error correction etc.).
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6.6 b-spline basis set

Instead of working with the control fields directly, we consider their
expansion in a B-spline basis in the form described in Ref. [238] in
the context of computational atomic physics applications. A crucial
advantage of such an approach is a possibility to pre-load the B-splines
on the hardware and send only the expansion coefficients of control
signals for different cat states. A particular B-spline basis is built on a
fixed knot sequence t1  t2  . . .  tn+k+1 and is characterized by the
basis size n and the degree k of the B-splines. Each k-degree B-spline
Bi,k(t) with i = 1, . . . , n is a piecewise polynomial of degree k inside
the interval [ti, ti+k+1) and vanishes outside this interval. They are
constructed recursively as follows:

Bi,0(t) =

(
1, if t 2 [ti, ti+1) ,

0, otherwise ,
(6.7)

Bi,k(t) =
t� ti

ti+k � ti
Bi,k�1(t) +

ti+k+1 � t

ti+k+1 � ti+1

Bi+1,k�1(t) . (6.8)

We follow Ref. [238] and choose for the k+1 leftmost knots t1 = . . . =

tk+1 = 0 and for the k + 1 rightmost knots tn+1 = . . . = tn+k+1 = T .
The rest n� k � 1 knots are distributed uniformly between 0 and T .

In this work we stick to a B-spline basis set of size n = 11 and degree
k = 3 shown in Fig. 6.5 for the excitation time interval T = 2 µs. We
exclude the first and last B-splines which are the only ones having
non-zero values at the interval edges. In this way, we restrict our
driving signals to start and end with zero amplitude. The problem
of the control field optimization reduces to searching for a total of
9⇥4 optimal expansion coefficients for the 2 complex (qubit + cavity),
and thus 4 real driving fields. Apart from a compact representation of
the control signals, B-splines offer also a practical advantage of being
non-zero only in restricted intervals. In particular, for the chosen basis
set only up to 4 B-splines are non-zero at each point of the driving time
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interval. This ensures compatibility with existing real-time quantum
control hardware. For instance, the OPX from Quantum Machines
can generate up to 18 signals at the same time, which would allow to
use 4 B-splines for 4 control fields at the same time.

Figure 6.5: B-spline basis of size n = 11 and degree k = 3. In this work
the first and last B-splines are excluded in order to restrict the
driving signals to those starting and ending at zero.

6.7 neural network training

Here we show details of the neural network training performed in
the way described in Section 6.2. Whereas we experimentally test
preparation of cat states with parameters ↵ 2 (0, 2) and ' 2 (0,⇡), the
neural network training is performed on a wider and more challenging
parameter space ↵ 2 (�4, 4) and ' 2 (0,⇡). Due to the equality
|C2⇡�'
↵ i = ei'|C'

�↵i obtained directly from the definition of cat states
(6.2), the neural network is equivalently able to predict control signals
for ↵ 2 (0, 4) and ' 2 (0, 2⇡).

In Fig. 6.6 we demonstrate the training procedure performed in a
few stages by gradually increasing the “complexity” of the parameter
space and the numerical model of the system. Concretely:
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• we increase the ↵-interval (0,↵(train)

max ) from ↵(train)

max = 2 to
↵(train)

max = 4;

• the number of Fock states included in the cavity numerical
modeling is increased from Nmax

cav = 20 to Nmax
cav = 60;

• since the volatility of the training loss is larger for a larger
parameter space, we increase also the batch size at later training
stages.

At the starting stage (first 1000 batches) shown by the red-
shaded area, the training often stagnates and the batch-averaged
loss hL(↵,')i

batch
does not decrease, see the upper panel of Fig. 6.6.

This is a local minimum in which the neural network learns not to
drive the qubit at all, whereas the cavity remains in a coherent state.
We overcome this trap by adding an incoherent excitation process from
ground to excited state with a rate �" = (5 µs)�1 at this initial stage.
We stress that this pumping is not present in the experiment and
is used here only to tackle the mentioned training problem. Numeri-
cally this is achieved within the perturbative framework for inclusion
of relaxation channels described in Sec. 6.9. While such a trapping
occurred at the beginning, training proceeded smoothly afterwards.

6.8 neural network performance

In order to check the neural network performance, we apply it first
to a selection of size 3200 from the parameter space ↵ 2 (0, 4) and
' 2 (0, 2⇡). In Fig. 6.7 we show the simulated fidelity of the target
states obtained by driving the system as suggested by the neural
network. The parameters (↵,') are encoded in polar coordinates. In
Fig. 6.8 (purple curve) we show additionally the results for ' = 0.
We observe indeed that the obtained fidelity is worse for larger ↵-s
justifying sampling with linearly growing density.

We demonstrate now how the final fidelity changes by increasing the
number of the B-splines in the basis set. As an example, we consider
a basis with parameters n = 25, k = 3 (see Appendix 6.6) without
the left and right B-splines consisting of 23 functions. Since the NN
outputs now 92 values instead of 36, we increased the size of the last
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Figure 6.6: Neural network training progress with batches. In the upper
panel we show the batch-averaged loss hL(↵,')ibatch, whereas
the other panels show the gradual change of the parameters
↵(train)
max , Nmax

cav , and the batch size. See text for details.

hidden layer from 30 to 90. We train this NN and demonstrate its
performance by modeling preparation of cat states with ↵ 2 (0, 4)

and ' = 0. The results are shown in Fig. 6.8 (orange curve). For
states with ↵ > 2 (which were not experimentally tested in this work)
the increase of the B-spline basis leads to a better NN performance.
For smaller ↵, however, the quality of the constructed states drops.
Getting a larger fidelity for all ↵ requires to optimize the sampling of
↵ during training.

We switch now back to the original B-spline basis of size 9 and the
original NN architecture, and study the influence of decoherence on
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Figure 6.7: Simulated infidelity of cat states obtained by driving the system in
the way suggested by the trained neural network. The parameter
space (↵,') is shown in polar coordinates. The color indicates
the infidelity L(↵,') = 1� F(↵,').

the NN performance. We model an idealistic situation without deco-
herence and repeat the NN training following the scenario described
in Appendix 6.7. The NN is then applied to prepare cat states with
↵ 2 (0, 4) and ' = 0 also in absence of the decoherence channels.
The results shown in Fig. 6.8 (brown curve) indicate approximately
2 to 6 times smaller infidelity than in the original realistic situation
suggesting that dissipation is the main source of infidelity.

6.9 accounting for decoherence

In general, the decoherence effects cannot be addressed using the
Schrödinger equation, and need switching to an open quantum system
approach such as the Lindblad equation for the density matrix. In this

216



6.9 accounting for decoherence

Figure 6.8: Simulated infidelity of cat states with ↵ 2 (0, 4) and ' = 0

obtained using the original scenario (purple curve), a larger B-
spline basis set (orange curve) and in absence of decoherence
(brown curve).

work, however, we are not interested in the whole system dynamics
upon inclusion of decoherence, but only in the correction of the final
state fidelity. Therefore, instead of solving the more complicated Lind-
blad equation, we still solve the Schrödinger equation and correct the
fidelity for the decoherence using first-order perturbation theory.

We derive here the aforementioned correction. The Lindblad equa-
tion reads

@⇢̂

@t
= �i[Ĥ, ⇢̂] +

X

i

1

⌧i
Di[⇢̂] , (6.9)

where the summation is performed over all decoherence channels with
respective characteristic times ⌧i. For each decoherence channel

Di[⇢̂] = âi⇢̂â
†
i
�

1

2
â†
i
âi⇢̂�

1

2
⇢̂â†

i
âi , (6.10)

where âi is the corresponding jump operator. In our case, for instance,
the following decoherence channels (governed by the jump operators
shown in the parenthesis) are present:

• cavity dissipation (photon annihilation operator â);
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• qubit dissipation (�̂�);

• qubit dephasing (�̂z/
p
2).

The density matrix at time t in absence of decoherence is the pure
state density matrix

⇢̂(0)(t) = | (t)i h (t)| . (6.11)

The first-order correction due to the i-th decoherence channel is

⇢̂(1)
i

(t) =
1

⌧i

Z
t

0

dt0 Û (0)
(t0, t) Di[⇢̂

(0)
(t)] Û (0)†

(t0, t) (6.12)

leading to the change in the final state fidelity at t = T with respect
to the target state |T i

�Fi =

D
T | ⇢̂(1)

i
(t = T ) |T

���T | ⇢̂(1)
i

(t = T ) |T
E

, (6.13)

We make at this point an additional assumption that the obtained
state without decoherence  (t = T ) is very close to the target state
|T i and write

�Fi ⇡

D
 (t = T )| ⇢̂(1)

i
(t = T ) | (t = T )

��� (t = T )| ⇢̂(1)
i

(t = T ) | (t = T )
E

.

(6.14)

In this approximation, the evolution operator Û(t0, T ) connects the
intermediate system state at time t0 and the target system state. From
here we obtain finally:

�Fi ⇡
1

⌧i

Z
T

0

dt0
⇥ ��⌦ (t0)|âi| (t0)

�� (t0)|âi| (t0)
↵��2

�

D
 (t0)|â†

i
âi| (t

0
)

��� (t0)|â†i âi| (t
0
)

E ⇤
.

(6.15)

6.10 device and measurement setup

6.10.1 Device fabrication

The system is composed of one 3D �/4 coaxial cavity resonator in
99.99 % pure Aluminum, into which a chip, containing the transmon
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Figure 6.9: Schematic of the measurement setup. A color matched RF source
is dedicated to each element. Room-temperature isolators are
not represented for the sake of clarity.

qubit with its readout resonator and Purcell filter, is inserted (see
Fig. 6.10). This chip is made of an etched 200 nm thick film of sputtered
Tantalum on a 430 µm thick sapphire substrate (deposited by Star
Cryoelectronics, Santa Fe, USA). The Josephson junctions of both
transmons are standard Dolan bridge e-beam evaporated Al/AlOx/Al
junctions [103].
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Table 6.1: Table of circuit parameters
Table of circuit parameters

Circuit parameter Symbol Hamiltonian term Value
Cavity frequency !c/2⇡ ~!câ†â 4.628 GHz

Qubit frequency !q/2⇡ ~!q|1ih1|q 3.235 GHz

Readout fre-
quency

!r/2⇡ ~!rr̂†r̂ 7.960 GHz

Cavity-qubit cross
Kerr rate

�/2⇡ �~�â†â|1ih1|q 238.5 kHz

Circuit parameter Symbol Dissipation opera-
tor

Value

Qubit decay time Tq 1/TqD�̂� 35 µs

Cavity decay time Tc 1/TcDâ 225 µs
Readout decay
time

T1,r 1/T1,rDr̂ 80 ns

Qubit dephasing
time

Tq,' 1/2Tq,'D�̂z 175 µs

Figure 6.10: Scheme of the device.

6.10.2 Measurement setup

The readout resonator, the cavity and the qubit are driven on resonance
by pulses that are generated using an OPX from Quantum Machines®.
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It has a sampling rate of 1 GS/s. The generated pulses are modulated
at a frequency 68 MHz for readout, !IF

q /2⇡ = 110 MHz for the
qubit, !IF

c /2⇡ = 70 MHz for cavity. They are up-converted using I-Q
mixers with continuous microwave tones produced by three channels
of an AnaPico® APUASYN20-4 for the readout resonator and cavity,
Agilent® E8257D for the qubit.

The reflected signals from the readout is amplified with a TWPA
provided by Lincoln Labs [90] powered by a pump tone at 6.038 GHz.
The follow-up amplification is performed by a HEMT amplifier from
Low Noise Factory® at 4 K and by room-temperature amplifiers. The
signal is down-converted using image reject mixers before digitization
by the input ports of the OPX.

The samples are placed inside a can comprising a layer of lead,
gold-plated copper and a layer of cryoperm. The inside of the can
is coated with an absorptive mixture of 86 % Stycast 2850 FT, 7 %
catalyst 23 LV and 7 % carbon powder.

For the cavity, the controls pipeline is as follows. We define Ic(t) and
Qc(t) the time dependent voltages to send on resonance to the cav-
ity. These controls are then converted into IIFc (t) = cos

�
!IF
c t

�
Ic(t)�

sin
�
!IF
c t

�
Qc(t) and QIF

c (t) = sin
�
!IF
c t

�
Ic(t) + cos

�
!IF
c t

�
Qc(t) and sent

on DAC OPX 5 and 6. These signals are then mixed with a local
oscillator at frequency !LO

c with an IQ mixer in a lower sideband
setting to give a RF voltage V RF

(t) / cos
�
(!LO

c � !IF
c )t

�
Ic(t) +

sin
�
(!LO

c � !IF
c )t

�
Qc(t) at the output of the IQ mixer. The pulsa-

tions !LO
c and !IF

c are chosen such that !LO
c � !IF

c = !c. Through
attenuation in the lines and the coupling of the qubit to these lines,
this translates to the control amplitudes "(t) = ⇠c(Ic(t) + iQc(t)) on
the cavity. Details about the calibration of ⇠c can be found in 6.11.4.
The qubit is driven similarly with control voltages Iq(t) and Qq(t)

from OPX channels 3 and 8.

6.11 calibration and heralding

This section aims at giving technical details about the system ini-
tialization and measurement. The initialization part was especially
complex, as we needed to make sure that both cavity and qubit are
in the ground state. This is done using standard measurement-based
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feedback techniques. On top of this standard reset protocol, the pres-
ence of a Two-Level System (TLS) made the frequency of the qubit
jitter between two frequencies at long timescales, which obviously
deteriorates the fidelity of the state preparation if not mitigated. Here,
we study this TLS dynamics and desmonstrate a heralding protocol
for the qubit Fig. 6.13, demonstrating close to total mitigation of the
TLS detrimental impact.

6.11.1 Qubit readout and reset

We readout the qubit with a square pulse of length 2.2 µs and measure
the quadrature I that encodes the qubit information. Single-shot
fidelity is around 98 %. The reset of the qubit consists in a feedback
loop using two thresholds represented in Fig. 6.11a. Exceeding the
first one (red dashed line) is the ending condition, allowing to herald
the qubit in its ground state |0i with more than 99.9 % fidelity. The
second threshold (gray dashed line) triggers a ⇡ pulse (gate X) if the
qubit is more likely to be in the excited state, (i.e I below threshold).
Getting below a third threshold (yellow dashed line in Fig. 6.11a)
allows to herald the qubit in the excited state with the same fidelity,
and is used for the reset of the cavity (see section 6.11.3).

6.11.2 TLS mitigation

Probing the frequency of the qubit is done with a standard Ramsey
pulse sequence. The signal is obtained by subtracting the results of two
Ramsey sequences performed with opposite parity for the second ⇡/2
pulse (see Fig.6.12a). We see that the qubit has two possible frequencies
(see Fig. 6.12b). We attribute this to the presence of a spurious Two
Level System (TLS) dispersively coupled to the qubit, with a dispersive
shift �/2⇡ = 32 kHz. This TLS has a thermal occupation of about
40 %, and its state switches over the course of the full experiment,
which makes the frequency of the qubit jitter between !q/2⇡ and
!q/2⇡��/2⇡. The experimental temporal Ramsey signal fits well with
a model including two frequencies with the same decay time T2, which
drifted between 20 and 60 µs over a few hours (see Fig. 6.12b).
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Figure 6.11: Readout and reset of the qubit. (a) Blue: Histogram of 20 000
single shot readouts of the qubit in its thermal state combined
with 20 000 more after an approximate ⇡ pulse. Dashed lines
represent thresholds for qubit and cavity reset operations (see
text). (b) Reset scheme. The qubit is read until the measurement
record exceeds the threshold I = 0.004 V. If the qubit is more
likely to be in the excited state, a ⇡ pulse is applied before the
readout.

The frequency jumps introduced by this TLS are detrimental to the
fidelity of the prepared state, as the state preparation needs a precise
calibration of the frequency of the qubit. We mitigated this effect using
a heralding procedure. Since the TLS state cannot be inferred from the
qubit state in one shot, we chose to take a decision using a repetition of
30 times the same Ramsey sequence on resonance with the frequency
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Figure 6.12: Ramsey measurement of the qubit. (a) Ramsey pulse sequence.
The ⇡/2 (

p
X) pulses are detuned from the qubit frequency by

around 140 kHz, and are separated by a waiting time t. The
rotation axis of the second pulse is reversed at each repetition.
(b) Blue dots: Signal averaged over a 2000 repetitions as a func-
tion of t. Orange solid line: fit with the sum of two oscillations
detuned by �/2⇡ = 32 kHz and decaying with a time T2 = 51 µs.
(c) Blue dots: Spectral density obtained by a Fourier transform
of (b). Solid orange line: Spectral density of the fit function in
(b).

that the qubit takes when the TLS is in the ground state (identified
by the highest peak in Fig. 6.12), with a delay ⌧TLS =

⇡

�
= 15.5 µs.

The pulse sequence is schematized in Fig. 6.13a. To each of the 30
measurement outcomes {Ii}1i30, we associate

ri =

(
1 if Ii < 0 V

0 else.
(6.16)

From this, we compute R =
P

30

i=1
ri. The heralding condition is then

fixed to R � 20. The Figure 6.13a shows the pulse sequence used to
perform a standard Ramsey measurement after this heralding sequence.
Figures 6.13b and c show the resulting decaying Ramsey signal and its
Fourier transform. The beating in Fig. 6.12b disappears when using
the heralding, as well as the second peak in the spectrum of Fig. 6.12c,
whose expected position is materialized by the vertical red dashed line
in 6.13c. This demonstrates a successful mitigation of the TLS effects.
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Figure 6.13: Heralding the TLS. (a) Scheme of the TLS heralding procedure.
(b) On-resonance Ramsey measurement performed using the
TLS heralding procedure. Blue dot: experimental signal. Orange
solid line: exponential fit with T2 = 50 µs. (c) Blue dot and
orange solid line: spectral density of (b) transform. Vertical
dashed line: position of the expected second peak if it were not
suppressed by the heralding procedure.

Further analysis of the TLS dynamics, and details about the deter-
mination of the heralding procedure is shown in the following.

6.11.2.1 Dynamics of the TLS and high fidelity detection of its state

We first studied the dynamics of the frequency jumps of the qubit, by
performing 10

5 times the same Ramsey measurement on resonance
with the upper frequency in 6.12b with a delay ⌧TLS. The procedure
is the same as for the parity measurement on a dispersively coupled
harmonic oscillator [145]. The pulse sequence is shown in Fig. 6.14a.
Without qubit decoherence, this would allow us to read out the state
of the TLS in a single shot.
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With the associated measurement signals {Ii}, we could first in-
vestigate the switching time of this TLS. To do this, we computed
the correlations between the measurement records Ii and Ii+k. We
define ck = Cov({Ii}, {Ii+k}), and plot this quantity as a function of
k (Fig. 6.14b). We observe a first decrease at short times k < 100, cor-
responding to a correlation time shorter than 1 ms. This we attributed
to the cavity thermal population. The much longer drift that follows is
attributed to the frequency jumps. It is not clear to us why this does
not really follow an exponential decay. We believe that the correlations
at long times of the TLS state cannot be properly captured by our
measurement because it is too short (105 shots). Fitting the beginning
of the drifts gives a characteristic time of around 400 ms, which gives
plenty of time to perform post-selection. In order to have a good
fidelity, we need to accumulate statistics over several measurements,
as ⌧TLS cannot be neglected compared to the decoherence time T2 of
the qubit. This measurement cannot be single shot.

6.11.2.2 Heralding on the TLS state

In order to understand how we can herald the state of the TLS, we
perform a running average on the {Ii} over n = 30 values of Ii defining

I
30

i =
1

30

14X

k=�15
Ii+k. (6.17)

The histograms of the {I
30

i } are shown Fig. 6.14c in blue. If we
artificially cancel the effect of any correlation in the TLS dynamics
on the measurement record Ii by shuffling the values Ii, we obtain
the orange histogram in 6.14c. Since both histograms differ, it implies
that the measurement records contain extractable information about
the TLS.

We plot the histograms of the measurement record Ii post-selected
on the condition I

30

i > �3.3 mV (Fig. 6.15a blue histogram) and
I
30

i < �3.3 mV (Fig. 6.15a orange histogram). The value of the
threshold is indicated in dashed line Fig. 6.14c.

We can now define the measurement records

ri =

(
1 if Ii < 0 V

0 else
(6.18)
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Figure 6.14: TLS state measurement. (a) Pulse sequence of the TLS state
measurement. (b) Blue: Measured covariance ck as a function
of k. Orange: Exponential fit for k < 10000. The characteristic
fitted time is 400 ms. (c) Blue: Probability density of the running
average of the {Ii}. Orange: Same quantity, but with over
{I�(i)}, where � is a random permutation. Red dashed line:
Threshold used for Fig. 6.15.

and infer a probability p(ri = 1|TLS in ground state) = p0 = 0.80

and p(ri = 1|TLS excited) = p1 = 0.45. The inferred corresponding
conditional probability laws of R p(R = n|TLS excited) and p(R =

n|TLS in ground state) are binomial laws with parameters 30 and
p0/1. Histograms of these laws are shown in orange (for p0) and blue
(for p1) in Fig. 6.15b. We deduce from this histogram that p(R �

20|TLS in ground state) = 0.0013, while p(R � 20|TLS excited) =

0.975, justifying the heralding threshold presented in Fig. 6.13a.
Note that the heralding fidelity is actually a bit lower than this,

as Ii enters in the computation of Ii, which introduces a bias. This
bias is sufficiently small so that the heralding procedure still works, as
shown in Fig. 6.13.
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Figure 6.15: Distinguishability of the TLS states. (a) Probability densities
of Ii post-selected on the value of I30i > �3.3 mV (blue) and
I
30
i  �3.3 mV.(b) Estimated probability density for the value

of R conditionned on the TLS state.

6.11.3 Heralding the cavity in the vacuum state

The cavity is reset to the vacuum state before each State Preparation
and Measurement (SPM) sequence. The complete sequence thus con-
tains an upgraded version of the TLS heralding sequence that includes
a Gaussian 20 µs long selective ⇡ pulse on the qubit at !q/2⇡�0�/2⇡

at the end (see Fig. 6.16a). The corresponding linewidth of this trun-
cated Gaussian pulse is 50 kHz, well below �/2⇡, which ensures the
selectivity of this gate. The readout of the qubit gives rcav = 1 if
the recorded quadrature goes below the threshold (dashed yellow in
Fig. 6.11). The full heralding sequence then consists in a while loop
that exits when both the cavity and the TLS are found in their ground
state.

In order to test the performance of this procedure in resetting the
cavity population, a Ramsey measurement is performed after each
heralding sequence. The result is shown in Fig. 6.16b. When the cavity
is occupied by a thermal state with nth average photons, the Ramsey
signal is supposed to be proportional to e�t/T2(1� nth + nth cos�t).
In blue, the measured signal and fit show a cavity population of
nth = 0.6 % and fitted T2 is here 40 µs after the heralding procedure,
to be compared to the orange curve, corresponding to the same fit but
with the cavity rigorously in the vacuum. This average photon number
nth is attributed to the imperfect QNDness of the qubit readout.
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Figure 6.16: Cavity vacuum heralding procedure. (a) Pulse sequence for the
TLS and vacuum heralding procedure. (b) top: Pulse sequence
and Ramsey measurement on the qubit. Blue points: measured
quadrature. Solid blue line: fit with a thermal population of
0.6 % using Eq. (6.19). Orange: expected signal for a pure vac-
uum. (c) top: high-level pulse sequence for the measurement of
the Wigner of the vacuum. Bottom left: Wigner measurement
with square uniform sampling. Bottom right: Wigner measure-
ment with optimal sampling.

We also measure the Wigner function W0 of the cavity after this reset
Fig. 6.16c with a SPM sequence showed Fig 6.19(a), without playing
the NN pulses. The left one is a Wigner tomography with 31⇥31 pixels
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averaged 1000 times each, and gives a fidelity F
square

0
= 99.4 %±0.5 %

to the vacuum. The right one is a measurement of 2⇧̂(�)/⇡ using the
optimal sampling popt detailed in the text. The estimated fidelity is
F

opt

0
= 98.9 %± 0.15 %. We attribute the apparent disagreement with

the experiment to a remaining population of the qubit after the reset
possibly due to a slightly destructive behavior of the readout.

6.11.4 Pulse calibration

The control pulses consist in two pairs of voltages signals (Ic(t), Qc(t))

and (Iq(t), Qq(t)) each upconverted by the OPX controller and a
mixer so that the drive amplitudes in the Hamiltonian read "c(t) =

⇠c(Ic(t) + iQc(t)) and "q(t) = ⇠q(Iq(t) + iQq(t)). Determining ⇠q and
⇠c is required for a proper implementation of the pulse sequences
generated by the NN.

Calibrating ⇠q is done using a standard measurement of Rabi os-
cillations. Calibrating ⇠c is done using a so-called populated Ramsey
sequence, which is a Ramsey sequence at resonance with the qubit,
which is performed after a displacement of amplitude � on the cavity
(see 6.17a). The measured Ramsey signal reads [239]

I+(t)� I�(t) / exp


�

t

T2

�

⇥ exp
⇥
|�|2(cos(�t)� 1)

⇤
cos

�
|�|2 sin(�t)

�
.

(6.19)

The curve Fig. 6.17b fitted with this expression indicates a displacement
amplitude � = 2.1 after a 200 ns long displacement pulse of amplitudes
Ic(t) = 0.03 V and Qc(t) = 0 which gives ⇠c/2⇡ = 55.2 MHz/V, as
well as a proper measurement for �. The fitted coherence time in the
presence of cavity occupation is T2 = 17.5 µs. What limits the T2 in
this case is the dephasing induced by the population of the cavity.

6.12 state preparation and fidelity measurement

6.12.1 Fidelity estimation

The goal of this section is to define the fidelity estimators used to
construct the Figure 6.4 of the main text. For any target state |T i =
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Figure 6.17: Cavity displacement calibration. (a) Pulse sequence of the
populated Ramsey measurement scheme. (b) Blue dots: mea-
sured signal for a 200 ns long displacement pulse of amplitudes
Ic(t) = 0.03 V and Qc(t) = 0. Solid line: fit using Eq. (6.19)
with T2 = 17.5 µs and � = 2.1.

| ci |0i, the fidelity of the prepared state ⇢̂ of the cavity and qubit
bipartite system is defined as

F = hT |⇢̂|T i. (6.20)

Using the decomposition ⇢̂ = ⇢̂c
00
|0ih0|+⇢̂c

11
|1ih1|+⇢̂c

01
|0ih1|+⇢̂c

10
|1ih0|,

we have

F = h c|⇢̂
c

00| ci = p0h c|⇢̂
c

0| ci, (6.21)

where ⇢̂c
0
=

⇢̂
c
00

Tr(⇢̂c
00
)

is a properly normalized density matrix for the
cavity, and p0 = Tr(⇢̂c

00
) is the probability of finding the qubit in the

ground state. This fidelity is thus the product of the probability of
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finding the qubit in the ground state and the fidelity of the cavity
conditioned to the qubit being in its ground state:

F = p0F
c. (6.22)

The probability p0 is directly obtained by measuring the qubit at the
end of the pulse sequence. Measuring F

c can be done with Wigner
tomography: we use the fact that

F
c
= ⇡

Z

C
W| cih c|(�)W⇢̂c

0
(�)d�. (6.23)

where W| cih c|(�) is the Wigner function of the target state, and W⇢̂c
0

that of the state represented by ⇢̂c
0
.

Let us assume that � is picked at random in the complex plane
following a law p(�). We can rewrite this expression of the fidelity as
the expectation

F
c
= ⇡E


W| cih c|(�)

p(�)
W⇢̂c

0
(�)

�
. (6.24)

This expression still holds when replacing the function W⇢̂c
0
(�) by a

random variable W̃exp(�) representing the outcome of the measurement
of the observable 2⇧̂(�)/⇡ with mean value W⇢̂c

0
(�). Experimentally,

the measurement record is indeed typically a binary random number in
{
2

⇡
,� 2

⇡
}. A widely used choice for p(�) is a square uniform distribution

psquare(�) =

8
>>>><

>>>>:

1

�x�y
if |Re(�)| 

�x

2

and |Im(�)| 
�y

2

0 otherwise

(6.25)

approximated by averaging W̃exp(�) on a grid of pixels. In this case,
for each �, Wexp(�) is the mean value of W̃exp(�i). We choose nxny

evenly spaced pixels on a grid of size �x⇥�y centered around 0 in
the complex plane. This is the most natural way of reconstructing
the Wigner function, as it is visually exhaustive. However, it is not
the most efficient in terms of the number of samples. In [5], it is
demonstrated that the most efficient sampling strategy is given by

popt(�) =
|W| cih c|(�)|

k W| cih c| k1
(6.26)
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with k W| cih c| k1=
R

C |W| cih c|(�)|d�. The procedure then consists
in sampling N points {�i} in the complex plane according to the law
popt, and in recording one value W̃exp(�i) for each of these points. We
can then build the estimators F̃ = p0F̃c of fidelity for both strategies.
In general, we have

F̃c =
⇡

N

X

i

W| cih c|(�i)

p(�i)
W̃exp(�i). (6.27)

Therefore, in the case of the uniform sampling, the fidelity estimator
reads

F̃c
square =

⇡�x�y

N

X

i

W| cih c|(�i)W̃exp(�i). (6.28)

In contrast, in the case of the optimal sampling it reads

F̃c
opt =

⇡ k W| cih c| k1

N

X

i

W| cih c|(�i)

|W| cih c|(�i)|
W̃exp(�i). (6.29)

Note that the expression (6.28) of F̃square is formally equivalent
to computing a discrete version of Eq. (6.23) between the target
Wigner function and the experimental one. The estimated fidelities
are compared for both strategies in Fig.6.18 where the improvement
in the statistical error can be seen in the error bars. Some values
differ between both methods, which gives a sense of the uncertainty
originating from the low frequency drifts in the contrast c̃ due to drifts
in the qubit coherence time T2 (see Sec. 6.14.2).

6.12.2 Experimental implementation

The schematics of the State Preparation and Tomography (SPM) pulse
sequence is presented in Fig. 6.19a and b. Two parity measurements
with opposite polarity are performed for each amplitude �i. Wigner
measurement of the vacuum at � = 0 are interleaved to calibrate the
possibly drifting contrast of the Wigner measurement.

Before each sequence, a heralding sequence on the TLS and on
the cavity emptiness is performed to start with a state as pure as
possible before applying the pulse sequence. For each ↵ and ', the
SPM sequence is performed for N = 10

5 times for the optimal strategy,
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Figure 6.18: Comparison between optimal and square sampling on fidelity
estimation. Red dots: Fidelity measured with optimal sampling.
Brown dots: Fidelity measured with square sampling. The error
bars are wider for about the same number of samples. Purple
dots: theoretical expectation from the solid line in Fig. 6.4a.

and N = 21⇥ 51⇥ 10
2 times for the square strategy. Knowing that

the cavity is on average in a thermal state with nth = 0.006, we now
define the experimental contrast c̃ and Wigner estimator W̃exp(�i):

W̃±
exp(�i) =

2

⇡
r±c (�i) (6.30)

W̃exp(�i) = W̃+

exp(�i)� W̃�exp(�i) (6.31)

Note that with this way of sampling the Wigner function, W̃exp(�i) is
a random number that can take discrete values in {�

2

⇡
, 0, 2

⇡
}.

We now define the estimator F̃ of the fidelity F :

c̃ =
1

(1� 2nth)N

NX

i=1

(r+
contrast,i

� r�
contrast,i

) (6.32)

F̃ =
⇡

c̃N

X

i

W| cih c|(�i)

p(�i)
W̃exp(�i) (6.33)

This renormalization by the contrast c̃ is necessary to take into
account imperfections of the measurement of ⇧̂(�), in particular the
finite coherence time of the qubit and the ⇡/2 pulses and readout
fidelities. It is also crucial to interleave the contrasts measurement and
the fidelity estimation in a SPM sequence, as the contrast typically
drifts by 10 % over several realization of fidelity measurement (typically
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6.12 state preparation and fidelity measurement

Figure 6.19: State Preparation and Measurement (SPM) sequence. (a) High-
level diagram of the SPM sequence. It lasts 8 ms for each
realization, which is dominated by the cavity reset time. (b)
High-level diagram of the Wigner sampling scheme. (c) Pulse
sequence for the Wigner measurement

comprising N = 10
5 SPM sequences). These drifts are the main reason

why Fig. 6.18 red and brown do not always agree. The contrast c̃

typically ranges from 0.8 to 0.9.
Since we do not measure the qubit at the end of the NN drive pulses,

and do not reset it, doing the Wigner tomography right away biases
the estimator F̃ towards

F
0
= h c|⇢̂

c

00| ci � h c|⇢̂
c

11| ci. (6.34)

This can be simply understood: if we post-select the qubit to be in |1i

at the beginning of the Wigner pulse sequence, then the probabilities
for it to be in |0i or |1i at the end are flipped compared to the situation
where it starts in |0i. The signal W̃exp(�i) becomes an estimator for
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Figure 6.20: Sensitivity of the fidelity estimation to the T2 time of the qubit.
(a) Red dots: measured infidelity 1 � F(↵, 0). Each point is
obtained by averaging 10

6 samples. Purple solid line: simulated
infidelity 1� F(↵, 0) for the same parameters, for T2 = 42 µs,
T2 = 50 µs and T2 = 60 µs (dark to bright). Purple points:
infidelities obtained by simulating also the experimental fidelity
measurement procedure and taking into account the finite ther-
mal population of the cavity, for T2 = 42 µs, T2 = 50 µs and
T2 = 60 µs (dark to bright).

�W⇢̂c
1
, where we defined similarly ⇢̂c

1
=

⇢̂
c
1

Tr(⇢̂c
1
)
. In the end, our estimator

W̃exp(�i) becomes such that:

E[W̃exp(�i)] = p0W⇢̂c
0
(�i)� (1� p0)W⇢̂c

1
(�i) (6.35)

E[F̃ ] = F
0
= F � F1, (6.36)

where F1 = h t| ⇢̂c1(1� p0) | ti.
The bias of this estimator thus depends on whether ⇢̂c

1
is close to

| ci or not.

6.12.3 Wigner functions of various states

A series of additional experimental tomography of several states is
shown Fig 6.21. For the square sampling strategy (Fig. 6.21a), each
pixel is averaged 1000 times. To reconstruct Wigner functions from the
optimal strategy (Fig. 6.21b), we build an histogram of the {�i} with
100⇥100 bins and average the values of the {W̃exp(�i)} corresponding

236



6.12 state preparation and fidelity measurement

Figure 6.21: Wigner functions of various cat states. (a) Renormalized re-
constructed Wigner functions for several parameters (indi-
cated in the top left) of the neural network, with square
sampling. Estimated fidelities are F(0, 0) = 93.8 % ± 0.3 %,
F(2, 0) = 89.5 ± 0.4 %. (b) Reconstructed Wigner functions
for several parameters of the neural network, with the optimal
sampling. N = 10

6 samples were used for ' = 0, N = 10
5

for ' = ⇡. estimated fidelities are F(0, 0) = 94.3 % ± 0.2 %,
F(1, 0) = 95.0 % ± 0.2 %, F(2, 0) = 91.1 % ± 0.3 % and
F(2,⇡) = 91.5± 0.8 %.

to each bin to get Wexp(�i) inside each bin. The resulting Wigner is
then very noisy when W| cih c| is close to zero. The large Signal-to-
Noise Ratio (SNR) thus concentrates on the regions where the target
Wigner function has the highest values.

In order to more closely visualize the fidelity of this Wigner function,
we renormalize it by c̃. For visualization purposes, we kept the colorbar
between �

2

⇡
and 2

⇡
, even though some pixels contain the average of

only a few {W̃exp(�i)}/c̃ 2 {�
2

⇡c̃
, 0, 2

⇡c̃
}, which can be out of range.
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Note that this does not happen on well averaged pixels. This allows
to take into account the imperfections of the measurement apparatus
to fully recover the contrast of the experimental Wigner function.

6.13 optimization using grape followed by krotov

In this section, we provide details on the numerical optimization of
the control pulses using the more traditional technique denominated
as GRAPE followed by Krotov [3, 4, 236], and about the experimental
implementation of these pulses.

6.13.1 Numerical optimization

Figure 6.22: GRAPE & Krotov-optimized control of the cavity and qubit.
(a,b) Control pulses generated using the GRAPE & Krotov
method for ↵ = 2 and ' = 0. (c) Simulated probability dis-
tribution of the photon number (top) and qubit excitation
(bottom) as a function of time for the control fields shown in
(a) and (b). The fidelity of the predicted final state to |C'

↵ i is
F(2, 0) = 95.7 %.
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Figure 6.23: Comparison between the GRAPE & Krotov method and the
NN method. (a) Reproduction of Fig. 6.4 showing the predicted
and measured infidelities when generating the pulses with the
NN. (b) Green open circles: simulated infidelity using pulses
optimized by GRAPE followed by the Krotov method [3, 4, 236].
Green dots: infidelities obtained by simulating also the residual
qubit excitation during the measurement procedure and taking
into account the finite thermal population nth of the cavity.
Blue dots with error bars: measured infidelity 1� F(↵, 0) for
21 values of ↵ using the control sequences provided by GRAPE
followed by the Krotov method. The error bars are statistical.

GRAPE and Krotov methods are two optimization algorithms that
aim at minimizing the same loss function L, which is the infidelity
of Eq. (6.5). We respectively implemented them in python using the
packages QuTiP 4.7.6 [236] and Krotov 1.3.0 [4]. This implementa-
tion of GRAPE only works on Hamiltonian evolution but is easy to
parallelize. Feeding the output of GRAPE as an initial guess for the
Krotov method allows to take into account decoherence. In practice,
we combine the two for generating the four control sequences Re("c(t)),
Im("c(t)), Re("q(t)), and Im("q(t)) as follows:

1. Run GRAPE algorithm based on the unitary evolution set by
the Hamiltonian (6.1) on a grid of 163 time steps uniformly
spanning a time interval of 1956 ns. The algorithm is initialized
with sinusoidal functions (one of the few allowed initialization
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in the optimize_pulse_unitary function of control.pulseoptim
in QuTiP 4.7.6) ;

2. Upsample the resulting GRAPE optimization results into a
denser time grid of 2000 time steps over the total duration time
T = 2 µs. Then smooth the pulses by convolving them with a
Gaussian function (standard deviation of 11 ns). This process
has the embedded benefit of flattening the beginning and end of
the pulses and to limit the bandwidth of the control signals to
an experimentally feasible range;

3. Run Krotov’s method based on the Lindblad master equation
on the 2000 time steps using the smoothed GRAPE pulses as
the initial guess.

Note that the dimension of the Hilbert space we use grows with
cat state amplitude ↵. The dimension Nmax is the nearest integer to
16 + 4↵+ 2↵2.

An example of control pulses is shown in Fig. 6.22a,b for the opti-
mized preparation of |C'

↵ i with ↵ = 2 and ' = 0. They present more
abrupt changes in time than the pulses that are generated by the neu-
ral network (Fig. 6.2), which can be explained by the freedom offered
by the tuning of every 2000 time steps as opposed to the 9 coefficients
of the B-spline decomposition. The photon number distribution is
shown in Fig. 6.22c.

6.13.2 Theoretical infidelities

We solve the Lindblad master equation (6.9) using the solution of
GRAPE & Krotov obtained for each amplitude ↵. The computed
infidelity at time T is shown in Fig. 6.4a.

Since we implement this optimization method experimentally on
a different cool-down, we rerun everything for the slightly different
parameters of the second cool-down (�/2⇡ = 237.5 kHz, Tq = 38 µs,
Tq,' = 70.5 µs and Tc = 220 µs) and plot the predicted fidelities in
Fig. 6.23b as a function of ↵ (green open circles).

To compare with the experimental results, we compute how the
estimation of infidelity is affected by the Wigner tomography errors.
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If we take into account the residual excitation probability of the qubit
and the thermal occupation of the cavity nth = 0.6 % as in Fig. 6.24,
we obtain an overestimation of the infidelity as shown in Fig. 6.23
(green dots). This overestimation is similar in amplitude to the one we
find for the control pulses generated by the NN (purple dots compared
to purple solid line in Fig. 6.4a).

6.13.3 Experimental implementation of GRAPE

We implement the 21 control sequences generated by GRAPE &
Krotov on a different cool-down for the same device as the one used
with the NN. The procedure for the fidelity estimation is the same as
the one described in Sec. 6.12.2, except for the computation of c̃. It
is now estimated by measuring an evenly distributed grid of 11⇥ 11

complex amplitudes � = x+ iy for the Wigner function W0(�) where
�1  x, y  1, obtained when the cavity is heralded in the vacuum.
In contrast, the formula given in Eq. (6.32) only relies on the point
� = 0.

The resulting measured infidelity is plotted as blue dots as a function
of ↵ in Fig. 6.23b. The error bars represent statistical errors. The
number of averaging of each point varies owing to frequent temperature
rises of the refrigerator triggered by another experiment. The fidelity
increases with amplitude ↵ similarly as the prediction. However, qubit
frequency drifts and thermal occupation of the cavity varied often
during the run leading to a spread of the measured fidelities beyond
the statistical uncertainty.

Overall, Fig. 6.23a,b show that the experimentally observed fidelities
are close to the predicted infidelities we should observe, owing to
measurement errors. In Fig. 6.23, the actual state fidelities at the end
of the preparation are represented by the solid purple line for the NN
and by the open green circles for GRAPE & Krotov. Both differ by
about 0.01 for large amplitudes ↵.

6.14 error analysis
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6.14.1 Error budget

In order to understand the difference between the prediction of the
state preparation fidelities (purple in Fig. 6.4a) and the measured ones
(red in Fig. 6.4a), we numerically solve a Lindblad master equation
of the whole measurement sequence that takes into account the three
phenomena leading to infidelity losses �Fth due to the remaining
thermal population of the cavity before the pulse sequence, �Fdissip

due to dissipation during the parity measurement sequence, and �Fex

due to the remaining qubit excited population before the parity mea-
surement sequence. Simulations removing separately these three effects
reveal their respective contributions. Results are shown Fig. 6.24. The
thermal population nth systematically leads to �Fth ' nth = 0.6 %,
and �Fpar varies monotonically from 0.6 % for small cat states to
2 % for the largest values. It is negative for small alphas, as relaxation
towards the vacuum actually improves the fidelity. �Fex is of the
order of 2 %. Its non trivial variations depend on the way the NN was
trained.

Figure 6.24: Influence of the measurement imperfections on the experimental
fidelity estimation. Blue dots: contribution to the infidelity
�Fdissip due to the dissipation during the parity measurement.
Orange dots: contribution due to the residual qubit excitation at
the end of the pulse sequence. Green dots: effect of the thermal
population of the cavity nth = 0.6 %.
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6.14.2 Effect of T2 fluctuations

The effect of T2 fluctuations are shown in Fig. 6.20. Simulations are
run in the same way as Fig. 6.4(a), but T2 of 42 (dark), 50 (medium)
and 60 µs (bright) are considered. The mismatch between theory and
experiment could thus be explained by variations in T2. However, we
still see that the experiment has a tendency to perform worse for
larger alphas compared to the prediction. We attribute this either to
imprecision in the measured value of �, or higher order processes taking
place during the preparation. The consequences of these two reasons
become more important when the cavity is loaded with more photons
during the preparation. As the intermediate number of photons in the
cavity typically increases for larger values of ↵, we expect a larger
deviation for larger ↵.
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APPENDIX





A
QUANTUM INFORMATION TOOLS

This appendix aims to introduce the main quantum information tools
used in this thesis.

a.1 quantum communication

a.1.1 Classical channel

A classical communication channel is depicted in Fig. A.1. The principle
is as follows: n codewords (here 0 to n�1) are used to convey a message
through a noisy channel N . As a result, when Alice sends the word
a, Bob receives an outcome b with a probability conditioned on the
codeword pa(b). This gives an overall probability distribution for b:

p(b) =
X

a

pa(b)P(a) (A.1)

The amount of information that can be transferred with a single use

Figure A.1: Scheme of a classical communication channel. Alice communi-
cates with Bob through a noisy channel using letters a (here
numbers) with a prior probability distribution P(a). Bob receives
outcomes that follow a distribution that depends on the letters
Alice sent, which allows him to infer the most likely message.
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of this channel is computed using the mutual information I(a : b),
which depends on the probability distribution P(a) of the codewords:

I(a : b) = H(b)�
X

a

P(a)H(b|a) (A.2)

where H(b) = �
P

b
p(b) log(p(b)) is the Shannon entropy of

the distribution of b, which depends on P(a), and H(b|a) =

�
P

b
p(b|a) log(p(b|a)) the entropies of the distributions p(b|a) know-

ing the value of a. This expression is simple: it is the total entropy of
b lowered by the average entropy of b when a is known.

The mutual information has an interesting property, which is that
it is additive: the information conveyed when sending (independently)
m words a1, a2...am and receiving outcomes b1, b2...bm is

Im
�
(a1, a2, ..., am) : (b1, b2..bm)

�
= mI(a : b). (A.3)

a.1.2 Quantum channel

The simplest way to extend the classical picture is illustrated in
Fig. A.2. The codewords a are associated to orthogonal states | ai 2

HA, that are sent by Alice through a noisy quantum channel N̂ . When
Alice wants to send the word a, Bob receives a corresponding density
matrix ⇢a on a Hilbert space HB and can perform a measurement on
it, which gives him an outcome b. The corresponding density matrix
of the system reads

⇢̂AB =

X

a

P(a) | aih a|⌦ ⇢a. (A.4)

This is then essentially a classical communication channel carried
by quantum states. The information carried is then computed the
same way as in the previous section. Here, Bob is free to choose
the measurement (a POVM) he wants to perform on the state. The
information carried by the corresponding channel thus depends on the
choice of measurement. As an example, if the codewords are | 0i = |gi

and | 1i = |ei the two states of a qubit, which are transferred perfectly
(⇢0 = |gihg|, ⇢1 = |eihe|), Bob can choose to measure �̂z, with outcomes
1 or �1. The information is perfectly transferred, and Alice is able to
send log 2 nats (or one bit) of information.
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Figure A.2: Scheme of a quantum communication channel. Alices sends
classical information in the form of quantum states indexed
by a through a quantum channel N̂ . Bob performs a quantum
measurement (POVM) on the density matrices he gets, which
gives him outcomes b.

However, if Bob chooses to measure �̂x, the distribution of the
outcomes will be the same (50 % chance for each) for whatever state
Alice sent. Thus, the mutual information is zero, and no information
has been transferred: the information has been destroyed, and Bob
has no way of recovering it.

A third case that can be considered is when Bob performs a weak
measurement of �̂z on the qubit. He will get a little information, or a
"hint" of the state of the qubit, but will not be able to discriminate
the two cases fully. However, further measurements may still give him
more information: some information still remains in the state of the
qubit. In [104], Han and coworkers formalize this decomposition into
the information available to Bob into the information he extracts from
his measurement, the information he destroys, and the information
remaining in the state.

The information available to Bob is obtained by performing the
measurement that maximizes the mutual information and is called
the accessible information Iacc(A : B). Given a set of measurement
operators ⇧ = {⇧̂0, ⇧̂1, ...} such that

P
k
⇧̂

†
k
⇧̂k = 1, we note I = I(a :

b⇧) when b⇧ is the outcome of the measurement.

Iacc = max
⇧

(I(a : b⇧)). (A.5)
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As for the classical case, when repeating this procedure m times, the
total transferred information will be m times the information for each
step.

a.1.3 Quantum channel with global measurements

Using m times the same channel is equivalent to considering a bigger
Hilbert space H

⌦m
A

and H
⌦m
B

. Alice sends product states made of her
initial set of states, and Bob performs a measurement comprised of
local POVM on each of the ⇢i. We can now tweak the rules of the game

Figure A.3: Scheme of a global quantum communication strategy. Alice sends
multiple states | a

ki into the quantum channel. This forms a
product state | a

0 i ⌦ | a
ai ⌦ | a

2 i .... Bob can perform a joint
measurement on the state ⇢̂ak he gets. This allows us to beat the
local measurement strategy shown in Fig. A.2.

a bit. What if Alice still uses product states (possibly different from
the original ones), but now Bob can use whatever global measurement
on this bigger Hilbert space? This is the situation described in Fig. A.3.
The Holevo-Schumacher-Westmoreland theorem [240, 241] states that
the information that we can carry this way can be larger than mIacc.
It is equal to m times the Holevo bound � [242], that reads:

� = S
�X

a

P(a)⇢̂a
�
�

X

a

P(a)S
�
⇢̂a
�

(A.6)

with S(⇢̂) = �⇢̂ log(⇢̂) the von Neumann entropy of ⇢̂. This quantity
was first derived as a bound for classical information transmittable
through a quantum channel by Holevo [242], before being shown to
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be asymptotically reached when allowing many copies for Alice (still
restricting to product states) and joint measurements for Bob with
the Holevo-Schumacher-Westmoreland theorem [240, 241].

The Holveo bound is the quantum mutual information of the state
describing this quantum communication scheme. The quantum mutual
information Iq(A : B) is defined as

Iq(A : B) = S(⇢̂A) + S(⇢̂B)� S(⇢̂AB) = � (A.7)

where ⇢̂A = TrB(⇢̂AB) and ⇢̂B = TrA(⇢̂AB) are the reduced density
matrices of each subsystem. It describes the amount of quantum
information that is shared between the subsystems A and B, and
constitutes another possible generalization of mutual information to
quantum systems, along with the accessible information.

We always have Iacc  Iq, and in general, Iacc < Iq. The difference
is called the quantum discord [243] and provides a purely quantum
additional resource that can allow us to beat classical schemes at
certain tasks. The quantum radar [10, 244] is an example of such purely
quantum advantage arising from this difference. Another example is
shown in Sec 3.3.5 in the context of the dispersive readout of a qubit.

It can also be shown that

�  �

X

a

P(a) logP(a). (A.8)

It means that Alice cannot communicate more information than with
a classical noiseless channel.

Additional quantum effects and advantages arise when Alice can
use entangled states and when allowing shared entanglement between
Alice and Bob. For example, the latter case allows Alice to send 2 bits
of information with a single qubit. This protocol is called superdense
coding, and examples can be found in Gyongyosi’s work [245].

a.1.4 Pure qubit case

Quantum discord is a quantity that is hard to compute in general
because computing Iacc is an NP-complete optimization problem [246],
as one needs to find the optimal POVM. However, the case where
Bob receives a qubit is simpler and has closed-form formulas in the
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simplest cases [247, 248]. We will here consider the simple case where
Bob gets pure qubit states |b0i and |b1i from Alice, which sends them
with maximal entropy: P(0) = P(1) = 1

2
. This case is characterized

by the overlap | hb0|b1i | = cos ✓/2 between the two states. Here, ✓ is
the angle between their respective two Bloch vectors ~u|b0i and ~u|b1i.
Without loss of generality, up to a change of phase, we can write

|b0i = cos

✓
⇡ � ✓

4

◆
|gi+ sin

✓
⇡ � ✓

4

◆
|ei (A.9)

|b1i = cos

✓
⇡ + ✓

4

◆
|gi+ sin

✓
⇡ + ✓

4

◆
|ei . (A.10)

Figure A.4: Optimal measurement to discriminate two quantum states. (a)
Representation of |b0i and |b1i in the Hilbert space. The optimal
observable |mihm| to measure is given by |mi and |mi

? as
pictured. (b) Representation of ~u|b0i and ~u|b1i in the plane (xy)
of the Bloch sphere. They form an angle ✓, and the optimal
measurement is given by ~u|mi / ~u|b1i�~u|b0i. Here, it corresponds
to the measurement of �̂z, as ~u|ei is parallel to the axis of the
Bloch sphere.

This situation is pictured in Fig. A.4a in the Hilbert space. In [247],
Fuschs shows that the optimal measurement is obtained with the
observable |mihm| given by the orthogonal kets |mi and |mi

? such
that they are symmetric with respect to the bisector of |b0i and |b1i

(grey dashed line). The geometrical construction is simpler in the
Bloch sphere, pictured Fig. A.4. The ket |mi is given by its Bloch
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vector ~u|mi / ~u|b1i � ~u|b0i in the Bloch sphere. Here, it corresponds to
measuring |eihe|, which gives b = 0 or 1. We write

p(b = 0) = p(b = 1) = p(b) =
1

2
(A.11)

p(b = 0|a = 0) = p(1|0) =
1 + sin

�
✓

2

�

2
(A.12)

p(b = 1|a = 0) = p(0|1) =
1� sin

�
✓

2

�

2
, (A.13)

which gives the following accessible information:

Iacc(A : B) =� p(0) log(p(0))� p(1) log(p(1))

+ P(0)
⇣
p(0|0) log(p(0|0)) + p(1|0) log(p(1|0))

⌘

+ P(1)
⇣
p(0|1) log(p(0|1)) + p(1|1) log(p(1|1))

⌘

(A.14)

and finally:

Iacc(A : B) =
1

2

 
(1 + sin(✓/2)) log(1 + sin(✓/2))

+ (1� sin(✓/2)) log(1� sin(✓/2))

! (A.15)

To get the formula Eq. (3.90), we take the limit ✓ ⌧ 1, which gives,
at second order in ✓

Iacc(A : B) '
✓2

8
. (A.16)

a.2 quantum metrology

a.2.1 Classical Fisher Information

The Fisher information is an important quantity in parameter estima-
tion problems. We want to estimate � the parameter of a probability
distribution p� from n independent stochastic outcomes bk, which fol-
low the law given by p�. We can build an estimator �̃n({bk}) from these
outcomes and assume that it is unbiased, i.e. that E[�̃n({bk})|�0] = �0.
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Here, E[X|�0] stands for the expectation value of X assuming the
value �0 for �. The precision of this estimator is given by its variance
��̃2. If p� is sufficiently regular, the Cramer-Rao bound gives a lower
bound on the variance of this estimator [249]:

��̃2n �
1

nF (�)
(A.17)

where F (�) is the Fisher information. It is defined as

F (�0) = E
h⇣@ log(p�(b))

@�

⌘2
|�0

i
=

X

b

⇣@p�
@�

��
�=�0

(b)
⌘2

/p�0(b).

(A.18)

Under additional regularity conditions [249], it also reads

F (�0) = �E
h@2 log(p�(b))

@�2
|�0

i
. (A.19)

As the mutual information (see Appendix A.1.1), the Fisher informa-
tion is additive: iterating n independent times the same experiment
gives a Fisher information that is n times that of a single experiment.

The existence of an estimator that saturates the Cramer-Rao bound
is not guaranteed. However, a maximum likelihood estimator �̃mn
asymptotically reaches this lower bound:

E[�̃mn |�0]
n!1
���! �0 (A.20)

n��̃m
2

n

n!1
���!

1

F (�0)
. (A.21)

The Fisher information then gives the accessible asymptotic precision
in the parameter estimation.

a.2.2 Link with the mutual information

We can link the Fisher information to the mutual information obtained
in a classical communication setting. Up to now, we supposed that
Bob obtains the outcome b with probability p0(b) if Alice sends the
bit a = 0, and with probability p1(b) if she sends the bit a = 1. Let
us replace p1(b) by an aribtrary distribution p�(b) parameterized by
� 2 R, such that p�=0 = p0. In the case where P(0) = P(1) =

1

2
,
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we can establish a result very close to a known result in information
theory relating the Kullback-Leibler divergence of the distribution p�
with respect to p0 with the Fisher information F (�0 = 0) for small �1.

We write the mutual information I�(a : b) as

I�(a : b) =�

X

b

p0(b) + p�(b)

2
log

✓
p0(b) + p�(b)

2

◆

+
1

2

X

b

p0(b) log(p0(b)) +
1

2

X

b

p�(b) log(p�(b)).

(A.24)

The first and second derivative for � = 0 of this expression gives

d

d�
I�(a : b)

��
�=0

= 0 (A.25)

d
2

d�2
I�(a : b)

��
�=0

=
1

4

X

b

⇣@p�
@�

��
�=0

(b)
⌘2

/p0(b) =
1

4
F (0)

(A.26)

where F (0) is the Fisher information associated to the parameter � of
the distributions p�. For � close to zero, we can expand I�(a : b) up
to the order 2, which gives

I�(a : b) '
F (0)

8
�2. (A.27)

The Fisher information thus becomes a relevant quantity to compute
when working in a low information regime in a classical communication
scheme.

1 The Kullback-Leibler divergence of the distribution p� with respect to p0 is defined
as

KL(p�||p0) =
X

b

p�(b) log

✓
p�
p0

◆
. (A.22)

If p� is sufficiently regular with respect to �, we can link the Kullback-Leibler
divergence to the Fisher information F (� = 0) associated to the parameter � of
the distributions by expanding it in second order with respect to � [250]:

KL(p�||p0) '
F (0)
2

�2. (A.23)
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a.2.3 Quantum Fisher Information

We can translate this parameter estimation problem to a parameter
estimation involving quantum states. Given Ô an observable, Û(�) =
e�i�Ô the unitary operation parameterized by � it generates, and
| �i = Û(�) | i the probe states, evolved according to this unitary
evolution. The question we want to answer is: if we have access to a
system in state | �i, how precise can we be on the estimation of �?
In other words, what is the best measurement to perform to get the
highest Fisher information? This is the Quantum Fisher Information
(QFI). It is defined as

FQ(�0) = max
⇧

F⇧(�0) (A.28)

where ⇧ defines a quantum measurement and F⇧ the Fisher informa-
tion associated to its outcomes. In this case, where the probe states
are pure, the QFI has a very convenient form [251]:

FQ(�0) = 4�Ô2

| �0i
= 4�Ô2

| i (A.29)

where

�Ô2

| i = h | Ô2
| i � h | Ô | i2 (A.30)

is the variance of Ô on the state | i. Note that the measurement that
achieves this bound is dependent on �0, so it is also an asymptotically
reachable bound that needs to use the previous estimations of the
parameter to get closer and closer to the optimal measurement.
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B
MULTIMODE PHASE - SPACE
REPRESENTATION

The P function, the Wigner function, and the Husimi Q function can
be generalized to n modes. This is done with two modes using the
characteristic functions in [28], but can be generalized to n modes,
as done in [43, 252]. We present here a generalized version of some
formulas given in Sec. 2.2.2.

b.1 multimode wigner function

Given n modes, represented by their bosonic operators {âk}, we call
D̂k the displacement operator of the k-th mode. We generalize the
displacement operator as a function of � = (�0,�1, ...,�n�1) one the
system by

D̂(�) =
n�1Y

k=0

D̂(�k) (B.1)

We can then generalize the formula given by Eq. (2.44) by [253]

W(�) =
2
n

⇡n
Tr

⇣
D̂(��)⇢̂D̂(�)P̂

⌘
(B.2)

Here, P̂ is the parity operator, which reads

P̂ = (�1)

P
â
†
kâk . (B.3)

b.2 multimode q function

From the generalized displacement operator, we can define a gener-
alized coherent state by applying them on the vacuum state, defined
as

|vaci =

O

k

|0i
k

(B.4)
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where |0i
k

stands for the vacuum state of the k-th mode. It gives:

|�i = D̂(�) |vaci =
O

k

|�kik (B.5)

where now |�kik is the state of the k-th mode in a coherent state of
amplitude �k.

The multimode Q function is then obtained by a generalization of
Eq. (2.64) as

Q(↵) =
1

⇡n
h�| ⇢̂ |�i , (B.6)

which defines a multidimensional probability distribution. Alterna-
tively, it can also be obtained as the generalization of Eq. (2.67)
by performing a multidimensional convolution between the Wigner
function and the vacuum Wigner function W0:

Q = W ⇤W0. (B.7)
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C
FABRICAT ION TECHNIQUES

We detail in this appendix the different experimental processes used to
fabricate the samples used in Chap. 4 and Chap. 6. These samples are
made of 200 nm of tantalum sputtered on a sapphire substrate grown
using a Heat Exchanger Method (HEM). A first optical lithography
is performed on 2’ wafers to create the circuit, which consists of
the capacitor of the transmon, the readout resonator, and the Purcell
resonator for the tomography qubit part. For the photon counting part,
it consists of the capacitor of the transmon and the filter. A second
step, the electronic lithography, is performed to create the Josephson
junctions of the transmons. The 3D cavity also goes through a cleaning
step after machining, which we will also detail in a third part.

c.1 optical lithography

The main steps of our optical lithography process are summarized in
Fig. C.1. The first one consists in depositing a layer of optical resist
on top of the tantalum. This layer is then exposed where the tantalum
needs to be removed. The exposed resist can be selectively dissolved
by a developer, which exposes the tantalum. Finally, exposing the
sample to an etching agent removes the exposed tantalum, whereas
the resist protects the unexposed regions.

c.1.1 Cleaning

The cleaning is done in acetone or NMP (or remover PG). The wafer
is then rinsed 20 s in isopropanol (propan-2-ol), abbreviated IPA, and
finally dried using nitrogen on a cleanroom wipe.
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Figure C.1: Optical lithography procedure. (a) A layer of 200 nm of tantalum
is sputtered on the sapphire substrate. This was done by STAR
Cryoelectronics company. (b) The wafer is coated with a layer
of optical resist. (c) The resist is exposed to UV light, which
alters its structure. (d) The resist is developed, which dissolves
the altered parts and exposes the tantalum. (e) The exposed
tantalum is wet etched, drawing the desired pattern in the
tantalum. (f) The resist is removed

c.1.2 Coating

The wafer is heated up to 115°C for 1 min to remove residual water.
The wafer is then coated in an S1813 photoresist with a spincoater.
The program is as follows:

• 500 rpm for 5 s, with an acceleration of 500 rpm/s ;

• 2000 rpm for 55 s, with an acceleration of 4000 rpm/s

The wafer is then baked 1 min at 115°C on a hot plate.

c.1.3 Exposure

The exposure was first done using a Smart Print from Microlight3D. It
uses a projector and a digital micromirror device (DMD), which acts
as a configurable mask to expose the desired areas. It then exposes
the whole wafer by subdividing it into zones that are exposed one
by one. While it can lead to so-called stitching errors when adjacent
areas do not reconnect properly, it was not an issue regarding our
samples, as the typical size of the details is sufficiently large. The right
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exposure intensity is determined using a dose test, which consists in
developing the same pattern exposed with increasing UV doses. The
test is then visually examined to find the dose that renders the pattern
with the highest precision. The value of the optimal exposure time
was around 4s, which can vary over several months. Once again, the
desired features were sufficiently large so that the time of exposure
could be away from the optimal time by 50 % without significantly
impacting the quality of the lithography.

The group acquired a µMLA Heisenberg laser lithography system
during my PhD thesis. Compared to the Smart Print system, this
system has a higher precision, and the stitching issues disappear. The
procedure is essentially the same as with the Smart Print. This machine
was used for the fabrication of the qubit used in Chap. 6, which is
nominally the same qubit as the tomography qubit of Chap. 4.

c.1.4 Development

The development program is as follows:

• development in MF319 for 50 s ;

• rinsing in DI water for 20 s ;

• dry with a nitrogen gun.

The MF319 is stored in a fridge at 4°C. It is important to keep
the MF319 as cold as possible, as it slows down the reaction. The
development is then less sensitive to the development time, which
makes it more stable.

c.1.5 Etching

The etching program is as follows:

• Transene Tantalum etchant 111 at room temperature for 17 s ;

• DI water for 60 s ;

• dry with a nitrogen gun.
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The result of the lithography is very sensitive to the duration of the
etching step. It is regularly updated, as external parameters like the
temperature can significantly change the optimal time. If we stop the
etching too soon, it does not have the time to remove perfectly the
tantalum in the exposed regions. If we stop it too late, it will start
to etch unwanted regions, as the resist is also etched, although at a
slower rate.

c.1.6 Dicing

The wafer is then cleaned in acetone and coated again in resist. It is
finally diced in the Nanolyon clean room. The samples are now ready
for electronic lithography.

c.2 electronic lithography

The Josephson junction (JJ) has a typical size of 200 ⇥ 200 nm
2.

To properly fabricate it, we need a precision of 10s of nanometers,
too small to be handled by optical lithography, which uses light at
365 nm wavelength. The exposure is then done in a Scanning Electron
Microscope (SEM) using electronic beam (e-beam) resists, which is
much more precise and allows to reach the desired precision. The
lithography procedure is summarized in Fig. C.2. The junctions are
fabricated using a Dolan bridge technique [254] to deposit two lay-
ers of aluminum (superconducting) separated by an aluminum oxide
(insulating) layer. The sample is coated with a double layer of poly-
methylglutarimide (PMGI) and Polymethyl methacrylate (PMMA).
The latter is a positive e-beam resist, which means that the exposed
regions are weakened and will be dissolved by the developer. After
exposure and development of the PMMA layer, the PMGI becomes
accessible in these regions. Immersing the sample in a second devel-
oper allows us to dissolve the PMGI in these regions and to create
an undercut : the PMGI is removed under the PMMA in the vicinity
of these regions, which crucially creates a bridge. Aluminum is then
deposited in two steps, following two different angles, separated by an
oxidation step, which creates the junction in AlOx. Its area is fixed by
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the two widths W1 and W2, and the thickness by the oxygen pressure
and the duration of the oxidation step. We will detail the recipe used
in the fabrication of the junctions.

Figure C.2: Josephson junction fabrication procedure. (a) Shape of the pat-
tern exposed during the lithography. The width W1 and W2 sets
the area of the JJ. (b) Scheme of the layers of PMMA and PMGI
after exposure. The PMGI is removed on a larger region under
the PMMA, creating the undercut. (c) Aluminum deposition.
A first evaporation is done with an angle of 0° (light gray) and
a second with an angle of 30° (dark gray, the angle has been
exaggerated on the figure) after an oxidation step. The oxidized
zone is materialized as a solid black line. The zone containing
the JJ is highlighted by the green rectangle. (d) Top view of the
two evaporations. The JJ is created in the overlap region.

c.2.1 Cleaning

The cleaning part of the lithography process is the part that evolved
the most in the past three years. It started from the recipe given in
[103], using toluene, acetone, methanol, IPA and a stabilized version of
the piranha solution (a mixture of sulfuric acid and hydrogen peroxide)
called Purestrip. Using this protocol during the first year, we finally
abandoned it, as the Purestrip seemed to deteriorate the samples (see
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Fig. C.3). It started to be visible after a few cycles of fabrication
performed on the same sample, but we highly suspect that it already
deteriorated the quality of the sample at the first cycle. Only after
we abandoned this step could we obtain a decay time of the cavity
Tc > 200 µs with a sapphire sample inserted, whereas it was stuck to
a few tens of µs before.

Figure C.3: Pictures of the influence of the Purestrip on the cleaning proce-
dure. Clean (a) versus dirty (b) qubit capacitor.

The use of Buffered Oxide Etch (BOE), introduced in the group
around one year ago, further improved the quality factor of the qubit:
whereas the T1 of the tomography qubit is around 3.6 µs in Chap. 4
with the old cleaning process, it reaches 38 µs in Chap. 6, with the same
design. This is not the only factor, as the shielding of the experiment
also improved during this time, but it participated a lot. The recipe
presented here is the last one, followed for the qubit of Chap. 6.

If a lithography was performed before on the sample, the sample
is first immersed in a potassium hydroxide solution with 2 % mass
concentration for a few minutes to remove the aluminum. The following
steps are as follows:

• NMP at 60°C for 30 minute ;

• rinse in IPA for 20 s ;

• dry with nitrogen gun ;
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• BOE (7:1) for 15 min ;

• DI water for 60 s ;

• dry with a nitrogen gun.

The BOE ratio of 7:1 sets the ratio between the two water solutions
it is made of; one constituted of 40 % of ammonium fluoride and the
other of 49 % hydrofluoric acid. It is important to lower as much as
possible the time between the BOE and the cooldown of the qubit to
limit the size of the reconstituted oxide layer after this step.

c.2.2 Coating

The coating step starts with a minute on the hot plate (at least 115°C)
to remove any residual humidity on the sample. Two steps are then
followed. First, the PMGI:

• 500 rpm for 5 s, acceleration 500 rpm/s, then 2000 rpm for 55 s,
acceleration 4000 rpm/s ;

• bake 5 min at 200°C.

We then let the sample cool down for at least a minute before the
second step with the PMMA:

• 500 rpm for 5 s, acceleration 500 rpm/s, then 4000 rpm for 55 s,
acceleration 4000 rpm/s ;

• bake 15 min at 180°C.

c.2.3 Exposure

The exposure step is done in a ZEISS Supra 55 VP SEM after the
deposition of 10 nm of aluminum to evacuate the electrons. The settings
are:

• voltage 30 keV ;

• working distance around 7 mm ;

• aperture 7.5 µm (current around 12 pA) ;

• 380 µC cm
�2.
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c.2.4 Development

The development steps are listed below:

• aluminum removal: KOH solution (2 % mass concentration) for
1 min ;

• deionized (DI) water for 20 s

• dry with nitrogen gun ;

• PMMA development: stir in a MIBK-IPA (1:3 in volume) solution
for 1 minute ;

• rinse in IPA beaker for 20 s ;

• dry with nitrogen gun ;

• inspect the sample with the microscope ;

• PMGI development: stir in MF319 taken straight out of the
fridge for 35 s ;

• rinse in DI water beaker for 20 s

• dry with nitrogen gun ;

c.2.5 Evaporation

The evaporation steps are the same as in [103]. Using a Plassys
evaporator:

• insert the sample in the evaporator ;

• pump the chamber at least overnight so that it reaches a pressure
below 1⇥ 10

�7
mbar ;

• ion milling for 30 s (400 V, 22 mA, Ar, 0° tilt) ;

• ion milling for 30 s (400 V, 22 mA, Ar, 30° tilt) ;

• titanium evaporation at a rate of 0.2 nm/s for 2 min, while the
sample is protected by a shutter to lower the oxygen pressure ;
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• 20 nm aluminum evaporation at rate 0.5 nm/s at 0° tilt ;

• static oxidation for 25 min with pressure between 1 and 5 mbar ;

• 40 nm aluminum evaporation at rate 0.5 nm/s at 30° tilt ;

• static oxidation for 10 min at 10 mbar.

c.2.6 Lift off

The lift-off is performed in NMP at 60°C for 30 min. After 30 min,
the sonication is turned on for a few minutes until the aluminum on
top of the resist is completely removed. The sample is then quickly
moved to another NMP beaker to get rid of the aluminum bits that
remain. It is then rinsed in IPA for 20 s and dried with nitrogen.

c.2.7 Junction resistance

After the fabrication process, we measure the resistance of the junction.
The normal-state resistance R(0) at 0 K is linked to the critical current
of the junction through the Ambegaokar–Baratoff formula [255]:

R(0) =
⇡�

2eI0
, (C.1)

where � ' 180 µeV is the superconducting gap of the aluminum. As
a function of the Josephson energy EJ , it reads:

R(0) =
⇡�'0

2eEJ

. (C.2)

The resistance measurement is performed at room temperature, which
yields a resistance R(300) at 300 K that is typically 10 to 20 % smaller
than R(0). To adjust the frequency of the qubit, we can either play on
the area W1W2 or on the oxidation pressure P and time t. We indeed
have

R(0) /

p
Pt

W1W2

. (C.3)

The relationship R(0) /
p
Pt is considered less accurate than R(0) /

1/W1W2. In our case, we fabricated the samples in batches of 2 to
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4. A good practice is then to make the main adjustments with the
junction geometry and to evaporate the samples one by one or two by
two to be able to tweak the oxidation parameters if the first sample
resistances are off.

During the development of this fabrication process by Antoine
Essig, a lot of junctions were destroyed by electrostatic discharges (see
Appendix A in [103]). The solution chosen consists in fabricating a
wire that connects the two pads of the qubit capacitor. This line is cut
using the tip of a probe at the probe station under an ionized airflow.
The airflow is maintained until the qubit is inserted into the cavity.

c.3 aluminum cavity

The 3D cavity is machined in a block of pure aluminum at 99.99 %.
The cleaning step is crucial to reach a large bare Q factor. After
receiving the cavity, the following steps are followed:

• wash with dishwashing liquid ;

• rinse in DI water ;

• acetone in sonicator for 10 min ;

• IPA in sonicator for 10 min ;

• dry with nitrogen gun ;

• type A aluminum etchant at 50°C for 45 min ;

• rinse in DI water ;

• acetone in sonicator for 5 min ;

• rinse in IPA ;

• dry with nitrogen gun ;

• bake 30 min at 50°C ;

The most important part is the etching part, which removes a
few nanometers of contaminated aluminum. Note that after several
cooldowns, the Q factor of the cavity decreases. This procedure allowed
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to reach a decay time T1 of 1 photon in the cavity of around 1 ms at
around 4.5 GHz, which corresponds to a quality factor above 4⇥ 10

6.
This was obtained for the cavity "bare", i.e. without anything else
coupled to it.
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