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Introduction (English)

Reasoning is a non-detachable part of mankind. Many claim that humans are superior to any other
species known to us because of our analysis and reasoning abilities. We use reasoning in almost
all the actions we take. However, some humans exercise reasoning rigorously on a daily basis
or as a profession, namely mathematicians, philosophers, etc. More precisely, mathematicians
explore abstract mathematical concepts and theories via heavy usage of different styles of proofs
and reasoning. Philosophers dissect complex problems, arguments, and ideas meticulously while
examining them from multiple perspectives to arrive at a reasoned conclusion. Proof theory aims
at studying this common skill among all humans by employing logical and mathematical con-
cepts and tools. In this thesis, we direct our attention toward the challenge of gaining a deeper
understanding of equivalence among proofs.

Proof Theory

The core elements of mathematics are theorems and proofs. Often, a specific theorem can be
proven via taking different approaches, sparking the desire to study the similarities and distinc-
tions among them. Mathematicians aim to understand the commonalities and differences between
proofs in general, exploring the possibility of transforming them into one another. Sometimes
different theorems have common patterns and we want to study the context where we can apply
such particular form of reasoning.

Despite the rich landscape of mathematical proofs, mathematicians traditionally communicate
them using natural language, albeit with the inclusion of mathematical symbols. This inherent
need to delve deeper into the nature of proofs, analyze their properties, and formalize them in a
purely mathematical language has given rise to the field of proof theory. This discipline seeks to
consider proofs as mathematical objects worthy of study, a concept initially proposed by Frege in
1879 [21]. Hilbert furthered these ideas by proposing a deductive system for formalizing reason-
ing [44].

Proof theory has solidified its position as one of the foundational pillars of mathematical logic.
It introduces various formalisms to view proofs as mathematical entities, allowing for the explo-
ration of their properties through formal mathematical methods. This has practical applications,
such as the development of computer programs capable of automated theorem proving and proof
verification. Additionally, we can extract algorithms from proofs, especially when we prove the
existence of an object constructively. Moreover, we can extract counterexamples in cases of in-
valid theorems, a process known as proof mining [58]. Reverse mathematics [23], i.e. the study of
axioms necessary for the proof of specific theorems, and proof complexity, i.e. comparing differ-
ent properties and methods of proofs and more specifically the size of proof, are two more abstract
consequences of proof theory.



Hilbert’s Program

In the early 1900s, attempts were made by mathematicians such as Frege (in his Grundgesetze
der Arithmetik [22]), and Bertrand Russel and Alfred North Whitehead (in Principa Mathemat-
ica [89]) to clarify the foundations of mathematics. However, these attempts failed and they all
were found to suffer from paradoxes and inconsistencies, such as Russel’s paradox shown in [76].
Consequently, Hilbert’s program was proposed in the early 1920s as the solution to the founda-
tional crisis of mathematics. Hilbert believed that an axiomatic approach is essential for the proper
development of any kind of scientific subject. When offering an axiomatic approach, the theory is
constructed without relying on intuition, while enabling a thorough examination of the logical con-
nections among fundamental ideas and axioms. Hilbert emphasized that an axiomatic treatment
should primarily focus on developing the theory independently from the intuition of the axioms
and, most importantly, ensuring their coherence and absence of contradictions (i.e. consistency).

Gödel’s incompleteness theorems, which he published in 1931 [29], dealt a significant blow to
Hilbert’s ambitious program. In his first theorem, Gödel demonstrated that any consistent system
equipped with a computable set of axioms capable of expressing arithmetic could never achieve
completeness. This means that within such a system, it’s possible to formulate statements that are
true but cannot be derived using the formal rules of the system itself. In his second theorem, Gödel
went further to show that such a system couldn’t even prove its own consistency, let alone the con-
sistency of anything more powerful. This contradicted Hilbert’s belief that a finitistic system could
establish its own consistency and, by extension, prove the consistency of all other mathematical
propositions.

Despite the setbacks caused by Gödel’s theorems, modern research in mathematical logic,
including fields like proof theory and reverse mathematics, can be seen as natural progressions
from Hilbert’s original program. Although the program had to be adjusted to adapt to the new
realities exposed by Gödel, much of its essence and objectives remain a driving force in modern
mathematical inquiry. An example of such progression is the development in the study of proof
theory toward the 24th problem of Hilbert.

Towards the 24th Problem of Hilbert

In 1900 David Hilbert gave a lecture in Paris [43] in which he presented his now-famous 23
problems. Later on a 24th problem [86] was discovered written in his notebook [42], translated
below:1

“As 24th problem in my Paris lecture, I wanted to ask the ques-
tion: Find criteria of simplicity or rather prove the greatest sim-
plicity of given proofs. More generally develop a theory of proof
methods in mathematics. Under given conditions there can be
only one simplest proof. And if one has two proofs for a given
theorem, then one must not rest before one has reduced one to
the other or discovered which different premises (and auxiliary
means) have been used in the proofs: When one has two routes
then one must not just go these routes or find new routes, but
the whole area lying between these two routes must be investi-
gated. . . ”

After more than a century from Hilbert’s time, we find that proof theory has evolved into
a well-established mathematical discipline. However, Hilbert’s original challenge, as outlined

1Translated by Lutz Straßburger [84].
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in his notebook, remains an unsolved puzzle. The fundamental question of what makes a proof
"simple" continues to baffle us. We lack clear criteria to determine the simplicity of a proof, and we
struggle to compare proofs effectively. Surprisingly, even the simple establishment of a notion for
proof identity has turned out to be extremely hard. This sets proof theory apart from many other
mathematical fields where identifying objects of interest is more straightforward. For example,
in group theory, two groups are considered the same if they are isomorphic, and in topology,
two spaces are equivalent if they are homomorphic. This situation poses a significant challenge
for proof theory as a mathematical discipline. A first vital step toward resolving Hilbert’s 24th
problem is to develop a satisfactory notion of proof identity.

In contemporary discussions about proof identity, there are mainly two strategies employed.
The first approach involves identifying two proofs as equivalent if they can be transformed into
each other using specific proof transformations. This can be achieved through techniques like
proof normalization [68] or rule permutations [57]. The second approach focuses on defining
canonical representations for proofs. Some well-known examples include λ-terms [16], proof
nets [27], and combinatorial proofs [47].

A recurring concept in the second approach is the notion of tracking the occurrences of for-
mulas or atoms within proofs. This idea has a history that dates back to the work of Kelly and
Maclane [55], who used coherence graphs to determine morphism identity in a category. Later,
Christian Retoré introduced proof-nets as bicolored graph representations [74] of tracing atoms
and subformulas in a proof of Linear logic. This idea continued to evolve in the form of string
diagrams [78]. All these three concepts have proven effective in the context of linear logic, where
there are no contraction or weakening operations. For instance, proof nets serve as a canonical
representation for multiplicative linear logic (MLL) [27].

However, in classical settings, where we add contraction and weakening to MLL, the idea
of tracking formulas in a derivation took a different turn. Buss introduced logical flow graphs
in [12], which was later studied by Carbone in [13, 14] to explore the relationship between cuts,
contractions, and cycles in these flow graphs. It is important to note that these cycles do not exist
in linear setting. To gain a more precise understanding of these cycles, Guglielmi and Gundersen
developed atomic flows [32]. Atomic flows refine the concept of logical flow graphs by specifically
tracing atoms and completely detaching the flow from the derivation. This approach brings atomic
flows visually closer to coherence graphs and string diagrams. Moreover, atomic flows can serve
as invariants for proofs and they can play a key role in the introduction of normalization procedures
for deep inference derivations. However, atomic flows lose too much information from the proof.
It is not possible to form a canonical proof representation of atomic flows. Moreover, there is
no polynomial correctness criterion.2 Therefore they do not form a proof system in the sense of
Cook and Reckhow [17], i.e. the study of proof systems from the perspective of computational
complexity.

Although this problem has already been solved by combinatorial proofs [47], it comes with
an extremely high a price. Combinatorial proofs present a total separation between the linear part
and the resource management part of the proof, where the linear part and its correctness criterion
is due to Retoré [74]. However, performing this multiplicative/additive separation is as expensive
as normalization, and therefore leads to a size explosion.

In this thesis, we present the idea of combinatorial flows, originally inspired by L. Straßburger’s
paper [81]3, which can be observed as a merging of atomic flows and combinatorial proofs.

2Das has shown in [20] that no such criterion is possible, under the assumption that integer factoring is hard for
P/poly.

3The term combinatorial flows in this paper is used for composition over combinatorial proofs. However, in this
thesis we use the same definitions as in [66] to show that in combinatorial flows we allow more flexibility in the
compositions to the extent that we compose the linear parts of the proof freely with the resource management parts.

3



Normalization

Mathematicians often construct a proof for a theorem by establishing intermediate statements
called lemmas. These lemmas serve as pivotal steps in the deductive process, akin to the Modus
Ponens rule in a deductive system in Hilbert style. To prove a theorem, mathematicians typically
employ Modus Ponens by first proving a relevant lemma and then deducing the theorem from it.
Lemmas can involve clever tricks, such as using topology to solve numerical equations. However,
in some contexts, shifting to a different theory or language than the theorem poses challenges,
leading to a preference for lemma-free proofs, even if they are less elegant and more repetitive.

A lemma-free proof, often referred to as an analytic proof, is one that refrains from invoking
additional lemmas and remains entirely within the language and theory of the theorem itself. This
notion was introduced by Bolzano in 1817 [8] where he presented a “Purely analytic proof” of
the intermediate value theorem. Such proofs rely solely on concepts introduced in the theorem,
as opposed to introducing external mathematical methods. Gentzen later adopted and developed
this concept in his thesis [25, 26], where he introduced the sequent calculus and demonstrated
that any proof within this purely logical system can be transformed into an analytic normal form
(Hauptsatz Theorem), the cut rule which is a reformulation of Modus Ponens is redundant in a
proof by sequent calculus. This achievement led to the subformula property, ensuring that every
formula appearing in the premises of an inference rule is a subformula of its conclusion, making
the proof internally consistent.

In mathematics and computer science, we often use the term “normalization” to refer to a
procedure of rewriting steps to produce a canonical form of an object, normalization of alge-
braic varieties and database normalization are examples of such procedures. Hauptsatz theorem
is an instance of normalization, often referred to as cut-elimination. Furthermore, structural proof
theory seeks to extend Gentzen’s results to other mathematical theories often expressed as ax-
ioms. However, the addition of any new axioms or rules to a sequent calculus can disrupt the
cut-elimination process, a problem referred to as “lack of modularity” by Girard in [28]. More
specifically, cut-elimination on sequent calculus heavily relies on syntactic arguments and has
tedious case analysis.

One might ask whether the source of “lack of modularity” is in the heart of cut-elimination
itself. Atomic flows, introduced by A. Guglielmi and T. Gundersen in [32], give a negative answer
to such questions. They capture the skeleton of a proof while ignoring the syntactical content via
using a “graphical” notation. Atomic flows are only an example of such objects. In fact, Girard’s
proof nets [19, 27], which was originally proposed for linear logic [27], and Buss’ logical flow
graphs [12], proposed for classical logic, employ similar notions to atomic flows. In this thesis,
we will show that combinatorial flows have an independent normalization procedure from the
syntactical design of logical rules.

Outline

Thesis consists of three main parts: preliminaries, multiplicative and additive flows, and combina-
torial flows and their normalization. Part one is dedicated to recalling literature on mathematical
logic and graph theory while setting the foundation for part two and three where we present our
contributions.

• Part I, preliminaries, consists of chapters 1 to 4 and serves as the foundational backdrop
for the subsequent exploration of proof theory and combinatorial flows. We embark on a
journey through the literature of mathematical logic and graph theory, acquainting the reader
with essential concepts and terminology.

4



– In Chapter 1, we introduce Classical logic, its syntax, and semantics. Every logical
system is composed of two fundamental components: a formal language and a proof
system.

– In Chapter 2, we will show the latter by introducing sequent calculus, natural de-
duction, and deep inference formalisms. Moreover, we discuss normal proofs and the
importance of normalization in proof theory and computer science.

– Chapter 3, is dedicated to the presentation of atomic flows, introduced by A. Guglielmi
and T. Gundersen in [32]. Atomic flows offer a graphical representation of proofs and
formulas, allowing for a visual understanding of the logical structure underlying math-
ematical reasoning. We delve into the theoretical underpinnings of atomic flows.

– In Chapter 4, we delve into the basics of graphical representations of proofs and for-
mulas. This section is a recalling of the literature and work carried on by Christian
Retore in [73, 72, 74]. We explore various graphical techniques for visualizing logical
reasoning, providing insights into the relationship between graphical representations
and formal proof systems. This chapter serves as a bridge between traditional for-
malisms and the emerging field of combinatorial proofs and combinatorial flows.

• Part II, multiplicative and additive flows, consists of chapters 5 to 7 where we first define
how to translate derivation to basic components of combinatorial flows. As we mentioned,
the remaining two parts of this thesis (i.e this part and the next one) are dedicated to our con-
tributions where we introduce combinatorial flows, originally inspired by Lutz Straßburger’s
paper [81]. Combinatorial flows can be observed as a combination of atomic flows’ and
combinatorial proofs’ desired characteristics. The first version of our combinatorial flows is
presented as a joint work with Lutz Straßburger in WoLLIC 2022 [66] where we have intro-
duced combinatorial flows as the free composition of multiplicative flows and additive flows
(i.e resource management parts of the proof referred to as a↑-flows and a↓-flows). Below we
outline the contents of chapter 5 to chapter 7:

– In Chapter 5, we define the building blocks of combinatorial flows defined as flow-
boxes as well as different possibilities of composing them. We show how we translate
a deep inference derivation to such flows. Moreover, we dive more deeply into the
purpose of our later separation between additive and multiplicative fragments of the
logic.

– Chapter 6 and Chapter 7 are dedicated to defining smaller elements of Combinatorial
flows which are multiplicative flows and additive flows. To present the correctness
criterion, we recall RB-cographs from Chapter 4 and we define the correctness for the
linear parts (multiplicative flows) and the resource management parts (additive flows),
respectively.

– Additionally, in Chapter 7, upon further investigations on the properties of the ad-
ditive fragment (or resource management part) of classical logic, we have been able
to show that there exists no immediate need for a separation between weakening and
contraction versus co-weakening and co-contraction which results in change of pre-
sentation of combinatorial flows in comparison with our paper [66]. In section 7.3, we
show that in fact additive flows, i.e. a↓-flows and a↑-flows from [66], can be composed
to form a-flows which are based on additive nets from [38] to accommodate the us-
age of units in our setting of classical logic. Moreover, we show that a-flows can be
decomposed to a↓-flows and a↑-flows in a specific order.

• Part III, shows combinatorial flows and their normalization separated into two following
chapters:

5



– In Chapter 8 we define combinatorial flows as correct preflows based on our pa-
per [66]. Moreover, we show how to extend the translation, given in this paper, be-
tween combinatorial flows and Hughes’ combinatorial proof with cuts [49]. We adapt
the soundness and completeness of combinatorial flows, which is proven via their close
correspondence with deep inference system SKS, to the new definition of combinato-
rial flows. As an additional result in this thesis, we show the translation of natural
deduction and sequent calculus proof to combinatorial flows in section 8.2 to better
establish the correspondence between combinatorial flows and other proof systems.

– Chapter 9 investigates the normalization of combinatorial flows, which consists of
purification, horizontal composition normalization, and vertical composition normal-
ization. We introduce purification, in section 9.1, as a terminating procedure on for-
mulas inside combinatorial flows that normalizes them into unit-free formulas or units,
also in [66].
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Introduction (Français)

La capacité de raisonner fait partie intégrante de l’humanité. Beaucoup prétendent que les humains
sont supérieurs à toute autre espèce que nous connaissons en raison de nos capacités d’analyse et
de raisonnement. Nous utilisons le raisonnement dans presque toutes les actions que nous entre-
prenons. Cependant, il existe des humains qui exercent un raisonnement rigoureux au quotidien ou
à titre professionnel, à savoir les mathématiciens, les philosophes, etc. Plus précisément, les ma-
thématiciens explorent des concepts et des théories mathématiques abstraites en faisant un usage
intensif de différents styles de preuves et de raisonnements. Les philosophes disséquent méticuleu-
sement des problèmes, des arguments et des idées complexes tout en les examinant sous plusieurs
perspectives pour arriver à une conclusion raisonnée. La théorie de la démonstration vise à étudier
cette compétence commune à tous les humains en employant des concepts et des outils logiques
et mathématiques. Dans cette thèse, nous portons notre attention vers le défi d’acquérir une com-
préhension plus profonde de l’équivalence entre les preuves.

Théorie de la démonstration

Les éléments fondamentaux des mathématiques sont les théorèmes et les preuves, aussi appe-
lées démonstrations. Souvent, un théorème spécifique peut être prouvé en adoptant différentes
approches, suscitant le désir d’étudier les similitudes et les distinctions entre eux. Les mathémati-
ciens visent à comprendre les points communs et les différences entre les preuves en général, en
explorant la possibilité la possibilité de transformer certaines en d’autres. Parfois, différents théo-
rèmes ont des modèles communs et nous souhaitons étudier le contexte dans lequel nous pouvons
appliquer cette forme particulière de raisonnement.

Malgré le riche paysage de preuves mathématiques, les mathématiciens les communiquent tra-
ditionnellement en utilisant le langage naturel, mais en incluant des symboles mathématiques. Ce
besoin inhérent d’approfondir la nature des preuves, d’analyser leurs propriétés et de les forma-
liser dans un langage purement mathématique a donné naissance au domaine de la théorie de la
démonstration. Cette discipline cherche à considérer les preuves comme des objets mathématiques
dignes d’étude, un concept initialement proposé par Frege en 1879 [21]. Hilbert a approfondi ces
idées en proposant un système déductif pour formaliser le raisonnement [44].

Depuis, théorie de la démonstration a consolidé sa position comme l’un des piliers fondamen-
taux de la logique mathématique. Elle introduit divers formalismes pour considérer les preuves
comme des entités mathématiques, permettant l’exploration de leurs propriétés à travers des mé-
thodes mathématiques formelles. Cela a des applications pratiques, telles que le développement de
programmes informatiques capables de prouver automatiquement des théorèmes et de vérifier des
preuves. De plus, nous pouvons extraire des algorithmes à partir de preuves, notamment lorsque
nous prouvons l’existence d’un objet de manière constructive. Il est aussi possible d’obtenir des
contre-exemples dans les cas de théorèmes invalides, un processus connu sous le nom de proof
mining [58]. Les mathématiques à rebours [23], c’est-à-dire l’étude des axiomes nécessaires à la
preuve de théorèmes spécifiques, et la complexité de la preuve, c’est-à-dire la comparaison de dif-



férentes propriétés et méthodes de preuves et plus spécifiquement de la taille d’une preuve, sont
deux conséquences plus abstraites de théorie de la démonstration.

logique Classique

La logique classique trouve ses racines historiques dans les premières traditions philosophiques
de la Grèce antique, notamment au sein des écoles stoïciennes et autres écoles philosophiques qui
ont émergé dès le IIIe siècle avant JC. Cependant, la version moderne de la logique classique et
ses avancées ultérieures peuvent être largement attribuées aux recherches et aux contributions du
mathématicien anglais du XIXe siècle George Boole. De plus, la formalisation initiale du calcul
propositionnel classique, qui sert de système axiomatique formel pour la logique classique, a été
lancée par Gottlob Frege en 1879 [21].

Le raisonnement déductif, en général, se déroule dans le contexte d’un langage naturel enrichi
de concepts et de symboles mathématiques. Ainsi, la question suivante se pose naturellement : est-
il possible d’établir un langage formel capable de représenter rigoureusement un tel raisonnement
déductif ? Dans ce contexte, un langage formel est défini comme un ensemble structuré de chaînes
utilisant un alphabet fixe et caractérisé par des règles de syntaxe et de grammaire précises. Isolé,
un langage formel manque de signification inhérente ; ce n’est qu’à travers le prisme d’un système
déductif et de sa sémantique que le sens est attribué aux formules qu’il contient. Logique clas-
sique est un exemple d’un tel langage formel, principalement conçu pour formaliser la pratique
du raisonnement mathématique, qui possède un riche héritage historique. Dans cette thèse, nous
nous concentrerons principalement sur l’aspect propositionnel de la logique classique, y compris
les déclarations qui s’évaluent comme vraies ou fausses, communément appelées propositions.
Ainsi, le terme logique propositionnelle caractérise de manière appropriée ce fragment de logique
classique. Par exemple, une affirmation comme “la Terre est ronde” représente une proposition lar-
gement reconnue comme vraie, tandis qu’une phrase comme “Briana est drôle” ne correspond pas
aux critères d’une proposition en raison de l’ambiguïté inhérente à la proposition. attribut “drôle”.
Même si l’on tente de lui attribuer une valeur de vérité, vraie ou fausse, la nature subjective de
l’humour rend impossible une détermination définitive.

Dans les chapitres suivants, chaque fois que nous mentionnons logique classique, nous faisons
référence au fragment propositionnel de la logique classique.

Programme de Hilbert

Au début des années 1900, des tentatives ont été faites par des mathématiciens tels que Frege (dans
son Grundgesetze der Arithmetik [22]), ainsi que Bertrand Russel et Alfred North Whitehead (dans
Principa Mathematica [89] ) pour clarifier les fondements des mathématiques. Cependant, ces ten-
tatives ont échoué et elles se sont toutes révélées souffrir de paradoxes et d’incohérences, comme
le paradoxe de Russel montré dans [76]. Par conséquent, le programme de Hilbert a été proposé
au début des années 1920 comme solution à la crise fondamentale des mathématiques. Hilbert
croyait qu’une approche axiomatique est essentielle au bon développement de tout type de sujet
scientifique. Lorsqu’elle propose une approche axiomatique, la théorie est construite sans s’ap-
puyer sur l’intuition, tout en permettant un examen approfondi des liens logiques entre les idées
et les axiomes fondamentaux. Hilbert a souligné qu’un traitement axiomatique devrait principale-
ment se concentrer sur le développement de la théorie indépendamment de l’intuition des axiomes
et, surtout, garantir leur cohérence et leur absence de contradictions (c’est-à-dire la cohérence).

Les théorèmes d’incomplétude de Gödel, qu’il publia en 1931 [29], portèrent un coup dur
au programme ambitieux de Hilbert. Dans son premier théorème, Gödel a démontré que tout
système cohérent équipé d’un ensemble calculable d’axiomes capables d’exprimer l’arithmétique

8



ne pourrait jamais atteindre l’complétude. Cela signifie qu’au sein d’un tel système, il est possible
de formuler des déclarations qui sont vraies mais qui ne peuvent pas être dérivées à l’aide des
règles formelles du système lui-même. Dans son deuxième théorème, Gödel est allé plus loin en
montrant qu’un tel système ne pouvait même pas prouver sa propre cohérence, et encore moins
celle de quelque chose de plus puissant. Cela contredisait la conviction de Hilbert selon laquelle
un système finitiste pouvait établir sa propre cohérence et, par extension, prouver la cohérence de
toutes les autres propositions mathématiques.

Malgré les revers causés par les théorèmes de Gödel, la recherche moderne en logique mathé-
matique, y compris des domaines comme la théorie de la démonstration et les mathématiques à
rebours, peut être considérée comme une progression naturelle du programme original de Hilbert.
Bien que le programme ait dû être ajusté pour s’adapter aux nouvelles réalités exposées par Gödel,
une grande partie de son essence et de ses objectifs restent une force motrice dans la recherche
mathématique moderne. Un exemple d’une telle progression est le développement de l’étude de la
théorie de la démonstration vers le 24e problème de Hilbert.

Vers le 24ème problème de Hilbert

En 1900, David Hilbert donna une conférence à Paris [43] dans laquelle il présenta ses désor-
mais célèbres 23 problèmes. Plus tard, un 24ème problème [86] a été découvert écrit dans son
cahier [42], traduit ci-dessous :4

“Comme 24ème problème de mon cours de Paris, je voulais poser
la question : Trouver des critères de simplicité ou plutôt prouver
la plus grande simplicité de données preuves. Plus généralement
développer une théorie de la démonstration méthodes en mathé-
matiques. Dans des conditions données il ne peut y avoir qu’une
seule preuve la plus simple. Et si on a deux preuves pour un théo-
rème donné, puis une il ne faut pas se reposer avant d’avoir été ré-
duit à l’état autre ou découvert quels différents locaux (et moyens
auxiliaires) ont été utilisés dans les preuves : Quand on a deux iti-
néraires alors il ne faut pas il suffit de suivre ces itinéraires ou de
trouver de nouveaux itinéraires, mais le toute la zone située entre
ces deux routes doit faire l’objet d’une enquête. . .”

Plus d’un siècle après Hilbert, nous constatons que la théorie de la démonstration est devenue
une discipline mathématique bien établie. Cependant, le défi initial de Hilbert, tel qu’il est exposé
dans son carnet, reste une énigme non résolue. La question fondamentale de savoir ce qui rend une
preuve « simple » continue de nous dérouter. Nous manquons de critères clairs pour déterminer
la simplicité d’une preuve et nous avons du mal à comparer efficacement les preuves. Étonnam-
ment, même la simple mise en place d’une notion de preuve d’identité s’est révélée extrêmement
difficile. Cela distingue la théorie de la démonstration de nombreux autres domaines mathéma-
tiques dans lesquels l’identification des objets d’intérêt est plus simple. Par exemple, en théorie
des groupes, deux groupes sont considérés comme identiques s’ils sont isomorphes, et en topolo-
gie, deux espaces sont équivalents s’ils sont homomorphes. Cette situation pose un défi important
à la théorie de la démonstration en tant que discipline mathématique. Une première étape essen-
tielle vers la résolution du 24ème problème de Hilbert est de développer une notion satisfaisante
de preuve d’identité.

Dans les discussions contemporaines sur la preuve d’identité, deux stratégies sont principa-
lement utilisées. La première approche consiste à identifier deux preuves comme équivalentes si

4Traduit par Lutz Straßburger [84] de l’allemand vers l’anglais et par l’auteur de l’anglais vers le français.
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elles peuvent être transformées l’une en l’autre à l’aide de transformations de preuve spécifiques.
Ceci peut être réalisé grâce à des techniques telles que la normalisation des preuves [68] ou les
permutations de règles [57]. La deuxième approche se concentre sur la définition de représenta-
tions canoniques pour les preuves. Quelques exemples bien connus incluent les λ-terms [16], les
réseaux de preuves [27] et les preuves combinatoires [47].

Un concept récurrent dans la seconde approche est la notion de suivi des occurrences de for-
mules ou d’atomes dans les preuves. Cette idée a une histoire qui remonte aux travaux de Kelly et
Maclane [55], qui ont utilisé des graphes de cohérence pour déterminer l’identité du morphisme
dans une catégorie. Plus tard, Christian Retoré a introduit les proof-nets sous forme de représen-
tations graphiques bicolores [74] de traçage d’atomes et de sous-formules dans une preuve de
logique linéaire. Cette idée a continué à évoluer sous la forme de diagrammes de chaînes [78].
Ces trois concepts se sont révélés efficaces dans le contexte d’une logique linéaire, où il n’y a pas
d’opérations de contraction ou d’affaiblissement. Par exemple, les réseaux de preuves servent de
représentation canonique pour la logique linéaire multiplicative (MLL) [27].

Cependant, dans les contextes classiques, où l’on ajoute une contraction et un affaiblissement
à MLL, l’idée de suivre les formules dans une dérivation a pris une tournure différente. Buss a in-
troduit les logical flow graphs dans [12], qui ont ensuite été étudiés par Carbone dans [13, 14] pour
explorer la relation entre les coupures, les contractions et les cycles dans ces graphiques de flux.
Il est important de noter que ces cycles n’existent pas en milieu linéaire. Pour mieux comprendre
ces cycles, Guglielmi et Gundersen ont développé atomic flow [32]. Les flux atomiques affinent
le concept de graphiques de flux logiques en traçant spécifiquement les atomes et en détachant
complètement le flux de la dérivation. Cette approche rapproche visuellement les flux atomiques
des graphes de cohérence et des diagrammes de cordes. De plus, les flux atomiques peuvent servir
d’invariants pour les preuves et peuvent jouer un rôle clé dans l’introduction de procédures de
normalisation pour les dérivations d’inférence profonde. Cependant, les flux atomiques perdent
trop d’informations dans la preuve. Il n’est pas possible de former une représentation canonique
des flux atomiques. De plus, il n’existe pas de critère d’exactitude polynomiale.5 Par conséquent
ils ne forment pas un système de preuve au sens de Cook et Reckhow [17], c’est-à-dire l’étude des
systèmes de preuve du point de vue de la complexité informatique.

Bien que ce problème ait déjà été résolu par des preuves combinatoires [47], il a un prix
extrêmement élevé. Les preuves combinatoires présentent une séparation totale entre la partie
linéaire et la partie gestion des ressources de la preuve, où la partie linéaire et son critère de
correction sont dus à Retoré [74]. Cependant, réaliser cette séparation multiplicative/additive est
aussi coûteuse que la normalisation, et conduit donc à une explosion de taille.

Dans cette thèse, nous présentons l’idée de flux combinatoires, inspirée à l’origine de l’article
de L. Straßburger [81]6, qui peut être observé comme une fusion de flux atomiques et de preuves
combinatoires.

Normalisation

Les mathématiciens construisent souvent une preuve d’un théorème en établissant des énoncés
intermédiaires appelés lemmes. Ces lemmes servent d’étapes cruciales dans le processus déductif,
semblables à la règle de Modus Ponens dans un système déductif de style Hilbert. Pour prouver un
théorème, les mathématiciens emploient généralement le Modus Ponens en prouvant d’abord un

5Das a montré dans [20] qu’aucun critère de ce type n’est possible, sous l’hypothèse que la factorisation entière est
difficile pour P/poly.

6Le terme flux combinatoires dans cet article désigne les compositions de preuves combinatoires. Ici, nous utilisons
les mêmes définitions que dans [66] pour montrer que dans les flux combinatoires nous autorisons plus de flexibilité
dans les compositions dans la mesure où nous composons librement les parties linéaires de la preuve avec les parties de
gestion des ressources.
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lemme pertinent, puis en en déduisant le théorème. Les lemmes peuvent impliquer des procédés
astucieux, comme l’utilisation de la topologie pour résoudre des équations numériques. Cepen-
dant, dans certains contextes, passer à une théorie ou un langage différent de celui du théorème
pose des défis, conduisant à une préférence pour les preuves sans lemme, même si elles sont moins
élégantes et plus répétitives.

Une preuve sans lemme, souvent appelée preuve analytique, est une preuve qui s’abstient d’in-
voquer des lemmes supplémentaires et reste entièrement dans le langage et la théorie du théorème
lui-même. Cette notion a été introduite par Bolzano en 1817 [8] où il a présenté une « Preuve pure-
ment analytique » du théorème des valeurs intermédiaires. De telles preuves reposent uniquement
sur des concepts introduits dans le théorème, et non sur l’introduction de méthodes mathématiques
externes. Gentzen a ensuite adopté et développé ce concept dans sa thèse [25, 26], où il a introduit
le calcul séquentiel et démontré que toute preuve au sein de ce système purement logique peut
être transformée en une norme analytique. (Théorème de Hauptsatz), la règle cut qui est une refor-
mulation de Modus Ponens est redondante dans une preuve par calcul séquentiel. Cette réussite a
conduit à la propriété de sous-formule, garantissant que chaque formule apparaissant dans les pré-
misses d’une règle d’inférence est une sous-formule de sa conclusion, rendant la preuve cohérente
en interne.

En mathématiques et en informatique, nous utilisons souvent le terme « normalisation » pour
désigner une procédure d’étapes de réécriture visant à produire une forme canonique d’un objet,
la normalisation de variétés algébriques et la normalisation de bases de données sont des exemples
de telles procédures. Le théorème de Hauptsatz est un exemple de normalisation, souvent appelé
élimination de coupure. De plus, la théorie de la démonstration structurelle cherche à étendre les
résultats de Gentzen à d’autres théories mathématiques souvent exprimées sous forme d’axiomes.
Cependant, l’ajout de nouveaux axiomes ou règles à un calcul séquentiel peut perturber le proces-
sus d’élimination des coupures, un problème appelé « manque de modularité » par Girard dans
[28]. Plus précisément, l’élimination des coupures sur le calcul séquentiel repose fortement sur
des arguments syntaxiques et nécessite une analyse de cas fastidieuse.

On pourrait se demander si la source du “manque de modularité” se trouve au cœur même
de l’élimination des coupures. Les flux atomiques, introduits par A. Guglielmi et T. Gundersen
dans [32], donnent une réponse négative à de telles questions. Ils capturent le squelette d’une
preuve tout en ignorant le contenu syntaxique via l’utilisation d’une notation “graphique”. Les flux
atomiques ne sont qu’un exemple de tels objets. En fait, les réseaux de preuve de Girard [19, 27],
qui ont été initialement proposés pour la logique linéaire [27], et les graphes de flux logiques de
Buss [12], proposés pour la logique classique, emploient des notions similaires aux flux atomiques.
Dans cette thèse, nous montrerons que les flux combinatoires ont une procédure de normalisation
indépendante de la conception syntaxique des règles logiques.

Contour

La thèse se compose de trois parties principales : les préliminaires, les flux multiplicatifs et ad-
ditifs, et les flux combinatoires et leur normalisation. La première partie est consacrée au rappel
de la littérature sur la logique mathématique et la théorie des graphes tout en jetant les bases des
deuxième et troisième parties où nous présentons nos contributions.

• Partie I, préliminaires, se compose des chapitres 1 à 4 où nous familiarisons le lecteur avec
la littérature.

– Dans le Chapitre 1, nous introduisons la logique classique, sa syntaxe et sa séman-
tique. Tout système logique est composé de deux composants fondamentaux : un lan-
gage formel et un système de preuve.
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– Dans le Chapitre 2, nous montrerons ce dernier en introduisant le calcul séquentiel,
la déduction naturelle et les formalismes d’inférence profonde. De plus, nous discu-
tons des preuves normales et de l’importance de la normalisation dans la théorie de la
démonstration et en informatique.

– Chapitre 3, est dédié à la présentation des flux atomiques, introduits par A. Guglielmi
et T. Gundersen dans [32]. Les flux atomiques offrent une représentation graphique des
preuves et des formules, permettant une compréhension visuelle de la structure logique
sous-jacente au raisonnement mathématique. Nous approfondissons les fondements
théoriques des flux atomiques.

– Dans le Chapitre 4, nous approfondissons les bases des représentations graphiques
des preuves et des formules. Cette section est un rappel de la littérature et des travaux
menés par Christian Retore dans [73, 72, 74]. Nous explorons diverses techniques
graphiques pour visualiser le raisonnement logique, fournissant ainsi un aperçu de la
relation entre les représentations graphiques et les systèmes de preuve formels. Ce
chapitre sert de pont entre les formalismes traditionnels et le domaine émergent des
preuves combinatoires et des flux combinatoires.

• Partie II, flux multiplicatifs et additifs, se compose des chapitres 5 à 7 où nous définis-
sons d’abord comment traduire la dérivation en composants de base des flux combinatoires.
Comme nous l’avons mentionné, les deux parties restantes de cette thèse (c’est-à-dire cette
partie et la suivante) sont consacrées à nos contributions où nous introduisons des flux com-
binatoires, inspirés à l’origine de l’article de Lutz Straßburger [81]. Les flux combinatoires
peuvent être observés comme une combinaison des caractéristiques souhaitées des flux ato-
miques et des preuves combinatoires. La première version de nos flux combinatoires est
présentée comme un travail conjoint avec Lutz Straßburger dans WoLLIC 2022 [66] où
nous avons introduit les flux combinatoires comme composition libre de flux multiplicatifs
et de flux additifs. (c’est-à-dire les parties de gestion des ressources de la preuve appelées
a↑-flows et a↓-flows). Ci-dessous, nous décrivons le contenu du chapitre 5 au chapitre 7 :

– Dans le Chapitre 5, nous définissons les éléments constitutifs des flux combinatoires
définis comme des flowbox ainsi que les différentes possibilités de les composer. Nous
montrons comment nous traduisons une dérivation d’inférence profonde à de tels flux.
De plus, nous approfondissons le but de notre séparation ultérieure entre les fragments
additifs et multiplicatifs de la logique.

– Chapitre 6 et Chapitre 7 sont dédiés à la définition d’éléments plus petits des flux
combinatoires qui sont des flux multiplicatifs et des flux additifs. Pour présenter le
critère de correction, nous rappelons les RB-cographs du chapitre 4 et nous définissons
la correction pour les parties linéaires (flux multiplicatifs) et les parties de gestion des
ressources (flux additifs), respectivement.

– De plus, au Chapitre 7, après des recherches plus approfondies sur les propriétés du
fragment additif (ou partie de gestion des ressources) de la logique classique, nous
avons pu montrer qu’il n’existe pas de besoin immédiat d’une séparation entre l’af-
faiblissement et la contraction par rapport à co-affaiblissement et co-contraction qui
se traduisent par un changement de présentation des flux combinatoires par rapport
à notre article [66]. Dans la section 7.3, nous montrons qu’en fait les flux additifs,
c’est-à-dire les a↓-flows et les a↑-flows de [66], peuvent être composés pour former
des a-flows qui sont basés sur des réseaux additifs de [38] pour s’adapter à l’utilisa-
tion d’unités dans notre cadre de logique classique. De plus, nous montrons que les
a-flows peuvent être décomposés en a↓-flows et a↑-flows dans un ordre spécifique.
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• Partie III, montre les flots combinatoires et leur normalisation séparés en deux chapitres
suivants :

– Dans le Chapitre 8, nous définissons les flux combinatoires comme des préflux cor-
rects basés sur notre article [66]. De plus, nous montrons comment étendre la traduc-
tion, donnée dans cet article, entre les flux combinatoires et la preuve combinatoire de
Hughes avec cuts [49]. Nous adaptons la solidité et l’exhaustivité des flux combina-
toires, qui sont prouvées par leur correspondance étroite avec le système d’inférence
profonde SKS, à la nouvelle définition des flux combinatoires. Comme résultat sup-
plémentaire dans cette thèse, nous montrons la traduction de la preuve par déduction
naturelle et par calcul séquentiel en flux combinatoires dans la section 8.2 pour mieux
établir la correspondance entre les flux combinatoires et d’autres systèmes de preuve.

– Chapitre 9 étudie la normalisation des flux combinatoires, qui consiste en une puri-
fication, une normalisation de la composition horizontale et une normalisation de la
composition verticale. Nous introduisons la purification, dans la section 9.1, comme
une procédure de terminaison sur les formules à l’intérieur de flux combinatoires qui
les normalise en formules ou unités sans unité, également dans [66].
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Part I

Preliminaries





CHAPTER 1

Classical Logic

Classical logic finds its historical roots in the early philosophical traditions of ancient Greece,
notably within the Stoic and other philosophical schools that emerged as far back as the 3rd
century B.C. However, the modern version of classical logic and its subsequent advancements
can be largely attributed to the research and contributions of the 19th-century English mathe-
matician George Boole. Furthermore, the initial formalization of classical propositional calculus,
which serves as a formal axiomatic system for classical logic, was pioneered by Gottlob Frege in
1879 [21].

Deductive reasoning, in general, unfolds within the context of a natural language enriched by
mathematical concepts and symbols. Thus, the following question arises naturally: Is it possible
to establish a formal language that can rigorously represent such deductive reasoning? In this
context, a formal language is defined as a structured collection of strings utilizing a fixed alphabet
and characterized by precise syntax and grammar rules. In isolation, a formal language lacks in-
herent meaning; it is only through the lens of a deductive system and its semantics that meaning
is attributed to the formulas within it. Classical logic is an example of such a formal language,
primarily designed to formalize the practice of mathematical reasoning, which has a rich historical
heritage. In this thesis we will focus mainly on the propositional aspect of classical logic, includ-
ing statements that evaluate as either true or false, commonly referred to as propositions. Thus, the
term propositional logic characterizes this fragment of classical logic appropriately. For instance,
a statement like “the Earth is round” represents a proposition, widely acknowledged as true, while
a sentence such as “Briana is funny” does not fit the criteria of a proposition due to the inherent
ambiguity surrounding the attribute “funny”. Even if one attempts to ascribe it a truth value of
either true or false, the subjective nature of humor renders an impossible definitive determination.

In following chapters, whenever we mention classical logic, we are referring to the proposi-
tional fragment of classical logic.

1.1 Syntax

We define the formulas of classical propositional logic, denoted by A, B, . . . to be generated from a
countable set of propositional variables {a, b, . . . } and their negations {a, b, . . . } with the following
grammar The propositional variables are the building blocks of classical logic.

A, B := t | f | a | a | A ∨ B | A ∧ B

Negation can be also extended to all formulas via De Morgan laws:

t = f f = t a = a A ∧ B = A ∨ B A ∨ B = A ∧ B
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We define the equivalence relation ≡ on formulas:

A ∧ B ≡ B ∧ A (A ∧ B) ∧C ≡ A ∧ (B ∧C) A ∧ t ≡ A t ∨ t ≡ t

A ∨ B ≡ B ∨ A (A ∨ B) ∨C ≡ A ∨ (B ∨C) A ∨ f ≡ A f ∧ f ≡ f
(1.1)

A formula A is a unit if A = t or A = f, it is unit-free if it does not contain any units, and it is
pure if either A ≡ t or A ≡ f or A ≡ A′ for some unit-free formula A′. An atom is an element
in A = {a, b, . . . } ∪ {a, b, . . . }, and they are the only variables in classical propositional logic. A
multi-set of formulas Γ = A1, . . . , An is a finite non-empty multiset of formulas. By conjunction
on Γ, denoted as

∧
Γ, we mean the conjunction of all formulas in Γ which we show as:∧

Γ B A1 ∧ · · · ∧ An

The disjunction on Γ, denoted as
∨
Γ, has the same pattern as the conjunction:∨
Γ B A1 ∨ · · · ∨ An

The negation of Γ, denoted as Γ, means that we just negate all the formulas in Γ:

Γ B A1, . . . , An

Definition 1.1. The formula tree of a formula A, denoted as T (A), is a binary-tree with vertices
labeled as subformulas of A defined inductively as follows:

• the root of the tree is the formula A;

• if A = B ∨C, then the left child of A is B and the right child is C;

• if A = B ∧C, then the left child is B and the right one is C;

• if A is an atom or unit, then it does not have a child and this is a leaf of the tree.

Note that the atom occurrences of A are the set of leaves in T (A) that are not labeled with units.
We denote it as ⌊A⌋.

Remark 1.2. A set of formulas Γ = {A1, . . . , An} is a multi-set of formulas as well and the con-
nectives

∧
Γ,
∨
Γ, and Γ are defined the same. This is an important note due to usage of set of

formulas in Section 2.1 for hypothesis of natural deduction derivation.

Definition 1.3. We define the rank of formula A, denoted as |A|, as a value defined inductively
below:

• if A is a unit: |t| = |f| = 0

• if A = a or A = a (is an atom): |a| = |a| = 1

• if A = B ∧C: then |A| = |B| + |C|

• if A = B ∨C: then |A| = |B| + |C|

Note that we defined negation of a formula inductively. Hence, the rank of negation of a formula
such as |A| is defined inductively as well. For example if A = B ∧C then:

|A| = |B ∧C| = |B ∨C| = |B| + |C|

We also can compare formulas by their rank. A formula A is smaller than a formula B, if
|A| < |B|. Similarly, we say A has smaller or the same size as B, if |A| ≤ |B|. A formula A is
minimal if for all formulas B ≡ A, we have |A| ≤ |B|.

From the inductive definition of negation using De Morgan Laws and rank of a formula fol-
lows:

Proposition 1.4. For a formula A, we have |A| = |A|.

Proof. trivial by Definition 1.3. □
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A B A ∧ B A ∨ B

t t t t

t f f t

f t f t

f f f f

Table 1.1: Truth table for conjunction and disjunction

1.2 Semantics

As previously mentioned, the formal language of classical propositional logic borrows its meaning
from its semantics, and this semantic aspect is crucial for understanding how logical propositions
are evaluated. The semantics of classical propositional logic, known as two-valued semantics,
is built upon the concept of truth values, specifically true and false. Each formula in the lan-
guage is assigned one of these two truth values based on a set of well-defined rules. To begin,
we demonstrate the practical application of truth tables as a tool for determining the truth value
of each formula. These tables offer an informal presentation of semantics, with a more precise
definition available in 1.2.2. Truth tables provide a systematic way to determine the truth value
of complex formulas by exhaustively considering all possible combinations of truth values for the
atomic propositions involved. Starting with atomic propositions, truth tables guide us in evaluat-
ing compound propositions step by step, ensuring that we adhere to the logical connectives’ rules,
including conjunction, disjunction, and negation.

For example, in a truth table, the formula A ∧ B is evaluated as true only when both A and B
are true, otherwise, it is false. Similarly, the formula A∨B is true if either A or B is true. Negation,
represented as A, flips the truth value of A. Units, such as t (always true) and f (always false), serve
as reference points for constant truth values.

In this way, the semantics of classical propositional logic, grounded in two-valued semantics
and exemplified by truth tables, provides a systematic and rigorous approach to assessing the
truth or falsity of logical propositions, forming the basis for sound deductive reasoning within this
logical system.

1.2.1 Truth Tables

A truth table shows all the possible values for a formula based on the values given to its atoms. We
show the truth table for conjunction and disjunction in Table 1.1. We know every formula can have
two values which leads to having four possible ways of choosing values for two formulas. Hence,
there is four lines in the truth table, each line showing one possible way of assigning values. The
column A ∧ B shows the truth value of conjunction in each of these cases. Similarly, the column
A ∨ B show the truth value of disjunction. These values follow the definition of conjunction and
disjunction.

1.2.2 Semantics and Interpretation

An interpretation of the language is a tuple M = ⟨d, I⟩ where d is a subset of A which is the
domain of interpretation and I : d → {t, f} is the interpretation function on d. The interpretation
function assigns true and false values to every formula in its domain. Below, we show how the
interpretation function is expanded to cover the whole language. We use the notation M ⊨ A
to denote that the interpretation M satisfies the formula A (the value assigned to A under the
interpretationM is true). If we use ⊭ it means that the formula is not being satisfied (the value of
the formula under the interpretation is false).
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• M ⊨ t

• M ⊭ f

• M ⊨ a, where a ∈ d, if I(a) = t

• M ⊭ a, where a ∈ d, if I(a) = f

• M ⊨ A ∧ B if and only ifM ⊨ A andM ⊨ B

• M ⊨ A∨ B if and only if eitherM ⊨ A orM ⊨ B (note that here it is possible that both cases
are happening)

We define a formula A to be a tautology if and only if for every interpretation M, we have
M ⊨ A. For a multi-set of formulas Γ, we say Γ is satisfied with an interpretationM (denoted as
M ⊨ Γ) if and only ifM satisfies every formula A ∈ Γ. The formula A is a semantical consequence
of a multi-set of formulas Γ (denoted as Γ ⊨ A) if and only if for all interpretationM for which
M ⊨ Γ, we also haveM ⊨ A.
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CHAPTER 2

Proof Systems

A logical system comprises two fundamental components: a formal language and a set of axioms
and inference rules for guiding logical reasoning, i.e. a deductive system or a proof system. In
our exploration of classical propositional logic in the previous chapter, we have already introduced
the formal language that serves as the framework for expressing logical propositions. In this
chapter, we will discuss several possibilities for reasoning statements in the formal language,
namely natural deduction, sequent calculus, and deep inference.

As soon as a proof system is introduced, we need to show that it is meaningful. For this
purpose we use soundness and completeness. A proof system S is sound if any formula provable
in S is also true in all structures of the semantics for the logic upon which the system is based.
A system S is complete if all the tautologies in the logic are also provable in S . It is strongly
complete if for every multi-set of formulas Γ as premises, any semantical consequence of Γ is also
derivable in S from Γ.

2.1 Natural Deduction

The term Natural Deduction refers to a class of proof systems founded on inference rules that
draw from traditional modes of reasoning with a rich historical heritage. The inception of formal
natural deduction systems is credited to Gentzen [25, 26] and Jaśkowski [53], who independently
developed these systems. Natural deduction emerged as an alternative to the Hilbert-style ax-
iomatic systems. Gentzen’s formulation, notably suited for investigating the structure of proofs,
contrasted with Jaśkowski’s version which is more suitable for practical proof-search applications.
A key distinction in natural deduction, when compared to other axiomatic systems, is its incorpo-
ration of free assumptions or hypotheses. These assumptions, initially made without commitment,
are subsequently discharged within the framework of the applied inference rules, granting flex-
ibility in proof-search strategies. In essence, natural deduction facilitates the composition and
decomposition of formulas during the proof process.

While it may be tempting to trace the historical lineage of natural deduction back to ancient
Greece, particularly to Aristotle’s syllogistic logic, such claims hold limited theoretical signifi-
cance. The introduction of natural deduction marked a profound advancement in modern logic.
For instance, natural deduction plays a pivotal role in computer science, thanks to the Curry-
Howard isomorphism [45]. This isomorphism allows us to interpret natural deduction proofs as
programming constructs, demonstrating the enduring relevance and versatility of this approach.
An illustrative example of this is the rule of modus ponens, shown below, a fundamental con-
cept to be explored in greater detail later, emphasizing natural deduction’s enduring importance in
modern logical and computational discourse.
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A B
∧I

A ∧ B

A ∧ B
∧El

A

A ∧ B
∧Er

B

A
∨Il

A ∨ B

B
∨Ir

A ∨ B A ∨ B

Γ, [A]

DA

C

∆, [B]

DB

C
∨E

C

Γ, [A]

D

f
¬I

A

A A
¬E

f

Γ, [A]

D

f
ex

A

f
fE

A

A A→ B
→ E

B

Γ, [A]

D

B
→ I

A→ B

Figure 2.1: Natural deduction rules for classical propositional logic

A A→ B

B

2.1.1 Rules

In this thesis, we primarily focus on Gentzen’s version of natural deduction. For an in-depth
comparison with Jaśkowski’s version, please refer to [37, 70].

Natural deduction comprises a set of inference rules that define the behavior of logical con-
nectives. For each connective, there exists a corresponding elimination rule and an introduction
rule, as depicted in Figure 2.1. Here, the letters A, B, and C represent logical formulas. To express
that formula A can be proven using a set of formulas denoted as Γ as premises within the frame-
work of natural deduction, we employ the notation Γ ⊢NK A. This notation signifies that there
exists at least one valid proof within the system of natural deduction (i.e. NK), employing the
inference rules depicted in Figure 2.1. Historically, the notation ⊢ is used in proof theory to show
the existence of a proof from hypothesis (shown in the left hand side of ⊢) to conclusion (shown
in the right hand side of ⊢). Moreover, we depict a natural deduction derivationD for Γ ⊢NK A as
below:

Γ

D

A

In natural deduction there exists several hypothesis and only one conclusion. The letters I
and E mean introduction and elimination of the connectives in question which are conjunction,
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[p ∨ q]1

[q]4 [q→ r]2

→ E
r

[p]4 [p→ r]3

→ E
r
∨E4

r
→ I1

(p ∨ q)→ r
→ I2

(q→ r)→ ((p ∨ q)→ r)
→ I3

(p→ r)→ ((q→ r)→ ((p ∨ q)→ r))

Figure 2.2: An example of a natural deduction proof

disjunction, negation, and implication. So far we have introduced the first three connectives but we
have not mentioned implication or how a formula with implication is defined. This is due to the fact
that the fragment of classical propositional logic that does not include implication is isomorphic
to the classical propositional logic with implication and we can interpret implication as A→ B B
A ∨ B. For simplicity and aesthetic reasons we will keep implication in the language whenever
natural deduction is being discussed.1 We also have an extra rule representing excluded middle law
(or double negation elimination) which is specific to classical logic. Brackets [] around a premise
show the discharging of it from the set of premise in the proof. One can observe discharging of
premises in rules such as ∨E, ¬I, or ex. As an example, if a disjunction elimination is being used
in the proof, we have a premise A ∨ B, there exists a dervation DA with at least some instance
of premise A and conclusion C, and there exists a derivation DB with at least some instance of
premise B and conclusion C, then by discharging premises A and B from the derivation DA and
DB, we can conclude C.

Example 2.1. The proof shown in Figure 2.2 is an example of a proof in Gentzen’s format. It uses
trees as representations of proof and is similar to sequent calculus proof trees.

The root of this proof tree shows the conclusion ((p → r) → ((q → r) → ((p ∨ q) → r))) and
the leaves are discharged hypothesis (p, and q, and p ∨ q, and p → r, and q → r). The formulas
p and q are discharged using the inference rule ∨E and the rest by using → I. The number on
top of each bracket indicates is matched with the number next to the rule that is discharging that
hypothesis.

Beyond the aesthetical aspect of introduction and elimination rules for every constant lies the
attempt to realise a deeper intuition of logical constants philosophically. It was claimed that if a
set of rules is intuitive for characterization of a constant, then it can express the meaning of it.

Theorem 2.2. The conclusion of a natural deduction proof is always a semantical consequence
of the premises. In other words, if Γ ⊢NK A, then Γ ⊨ A.

Theorem 2.3. All semantical consequences in propositional logic are provable in natural deduc-
tion. That is, if Γ ⊨ A, then Γ ⊢NK A.

2.2 Sequent Calculus

Sequent calculi is the family of deductive systems using sequents as basic judgment and there
exists many formulations of such systems. Historically, Gentzen [26] introduced natural deduction
systems NK and NJ for classical and intuitionistic logic. However, it was not possible for him

1In Section 8.2.2 of Chapter 8, we will show how to translate a natural deduction to combinatorial flows using the
interpretation of implication from formulas in natural deduction to formulas in combinatorial flows.
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to achieve a normal form for NK .2 To this purpose, he came up with classical sequent calculus
LK which uses sequents to keep track of the hypothesis formulas.

A sequent is shown as Γ ⇒ ∆, where Γ and ∆ are multi-set of formulas. The precedent
of such sequent is Γ and its succedent is ∆ (they correspond to hypothesis and conclusion of a
proof). Gentzen’s original formulation of sequent calculus showed multi-set of formulas as lists of
formulas.3 Hence, Gentzen used rules to permit the exchange of order of formulas in a sequence.
However, proofs look more simplified if we treat multi-set of formulas as finite multisets which
means that they are lists with multiplicity and no order.

According to Gentzen [26], the denotational interpretation of a sequent in this setting is that
the conjunction of precedents implies the disjunction of succedents which in the negation normal
form would be treated as the formula

∨
Γ ∨
∨
∆.

Unlike natural deduction there exists no law of excluded middle in sequent calculus. The dif-
ference between classical logic and intuitionistic logic is made by the fact that inLJ the succedent
is restricted to be at most one formula.

Moreover, in natural deduction, elimination rules get rid of formulas while in sequent calculus,
non active (formulas that are not affected by the rule) formulas do not change or get removed. In
other words, sequent calculus has subformula property which is defined as:

Definition 2.4. A proof system has subformula property if and only if all formulas in a derivation
in such system are subformulas of the conclusion of that derivation.

Sequent calculus allows easier proof analysis than natural deduction. The subformula property
allows easy induction over proof-steps. In sequent calculus every rule introduces a term on either
side of a sequent and no elimination is used which means that the usage of each inference rule
makes the sequent simpler (i.e. no new formulas are introduced). Moreover, sequent calculus is
extremely symmetrical and for every connective there exists a right rule and a left rule.

In this thesis, we show a different variant of sequent calculus than the original LK . The goal
here is to point out the difference between the multiplicative and additive fragments of classical
logic.

Definition 2.5. The sequent calculus proof SC consists of the inference rules shown in Figure 2.3.
These rules are used in the same proof tree format as natural deduction. A derivationD in SC is a
proof tree using SC inference rules with a sequent Γ⇒ ∆ in root and we denote it asD : Γ ⊢SC ∆,
depicted below. A sequent Γ ⇒ ∆ is provable in SC, denoted as Γ ⊢SC ∆, if there exists a
derivationD : Γ ⊢SC ∆.

D

Γ⇒ ∆

Note that we have shown two different instances of right rules and left rules for ∨ and ∧. These
are due to the fact that we can have independent or shared context which are also called additive
(for independent) and multiplicative (for shared) by the linear logic community. We will use the
terms multiplicative and additive in the second part of the thesis due to the fact that this separation
is between the two fragments is shown better with the combinatorial flows.

Theorem 2.6. The root sequent of a sequent calculus proof is valid. In other words, if Γ ⊢SC ∆,
then Γ ⊨

∨
∆.

2In section 2.4 we go into more details about normal proofs.
3Kleene used the word ”sequent” for the first time in [57] where he explains the origin of the term: ”Gentzen says

’sequenz’, which we translate as ’sequent’, because we have already used ’sequence’ for any succession of objects,
where the German is ’Folge’.” Nowadays, this is standard terminology.
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Identity Rules:

ax
Γ, A⇒ ∆, A

Γ⇒ ∆, A Γ, A⇒ ∆
cut

Γ⇒ ∆

Logical Rules:

Γ, A⇒ ∆
¬R

Γ⇒ ∆, A

Γ⇒ ∆, A
¬L

Γ, A⇒ ∆

Γ⇒ ∆, A Σ⇒ Π, B
∧Rm

Γ,Σ⇒ ∆,Π, A ∧ B

Γ, A, B⇒ ∆
∧Lm

Γ, A ∧ B⇒ ∆

Γ⇒ ∆, A Γ⇒ ∆, B
∧Ra

Γ⇒ ∆, A ∧ B

Γ, Ai ⇒ ∆
∧La

Γ, A1 ∧ A2 ⇒ ∆

Γ⇒ ∆, A, B
∨Rm

Γ⇒ ∆, A ∨ B

Γ, A⇒ ∆ Σ, B⇒ Π
∨Lm

Γ,Σ, A ∨ B⇒ ∆,Π

Γ⇒ ∆, Ai
∨Ra

Γ⇒ ∆, A1 ∨ A2

Γ, A⇒ ∆ Γ, B⇒ ∆
∨La

Γ, A ∨ B⇒ ∆

Structural Rules:

Γ⇒ ∆, A, A
cR

Γ⇒ ∆, A

Γ, A, A⇒ ∆
cL

Γ, A⇒ ∆

Γ⇒ ∆
wR

Γ⇒ ∆, A

Γ⇒ ∆
wL

Γ, A⇒ ∆

Figure 2.3: Sequent Calculus SC inference rules
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Theorem 2.7. If a sequent Γ ⇒ ∆ is valid in propositional logic, then it is provable in sequent
calculus. That is, if Γ ⊨

∨
∆, then Γ ⊢SC ∆.

The sequent calculus has many applications in computer science. However, its earliest appli-
cation was in the proof theory of arithmetic, in Gentzen’s thesis [25, 26] and in a decisive way
in [24] in the proof of the consistency of arithmetic. Moreover, Troelstra in [87] mentioned that
Ketonen’s work [56] was an early analysis of cut-free proofs in sequent calculus.

2.3 Deep Inference

Both proof systems, natural deduction and sequent calculus, that we introduced so far share a com-
mon feature: they advance by manipulating the main connectives (i.e. the outermost connective
on a formula). This leads us to the main subject of this section, the deep inference formalism,
which deviates from the significance of the main connective. The calculus of structures [31] is
the first such formalism that challenges the conventional emphasis on the main connective and
permits the rewriting of formulas deep within any context.4 It derives its name from the fact that
it blurs the distinction between sequents and formulas, offering a unique syntactic structure seen
as an equivalence class of formulas, accommodating associativity, commutativity, and unit equiv-
alences shown in (1.1). The inception of deep inference dates back to 1999-2003, starting with A.
Guglielmi’s initial manuscript in 1999 [30], followed by the first refereed papers in 2001 [10, 34].

Another formalism designed and developed in deep inference is open deduction [33]. We
will show open deduction formalism whenever we are addressing deep inference derivations.5 In
essence, deep inference aims to explore the concepts of proof composition and normalization (see
Section 2.4 for more details on normalization and normal proofs), including cut elimination [25,
26]. The roots of deep inference trace back to its early inspiration from linear logic [27]. Linear
logic, among other various ideas, suggests that logic possesses a geometric character, and there
exists a more insightful analysis of proofs concealed beneath their syntax. This notion can be
given technical significance by identifying linearity within proofs. In the realm of computing,
linearity can be construed as a means to manage quantity or resources (i.e. the distinction between
multiplicative and additive connectives).

2.3.1 Open Deduction

As already mentioned, open deduction [33] is a deep inference formalism [34], allowing to write
derivations in a way such that the same operations that are used to build formulas from atoms are
also used to build derivations from inference rules.

Figure 2.4 shows the inference rules of system SKS [10], i.e. multiplicative rules (ai↓ axiom
rule, ai↑ cut rule, s switch, and mix) and additive rules (aw↓ atomic weakening, aw↑ atomic co-
weakening, ac↓ atomic contraction, ac↑ atomic co-contraction, and m medial). They have to be
understood as rule schemas, where a can stand for an arbitrary atom and A, B,C,D for arbitrary
formulas. We call an inference system any such set of inference rules. The rules can be composed

to derivations, which are defined inductively below, and which are denoted as
A
D S

B
where A is the

premise and B is the conclusion of the derivationD, and S is the set of inference rules used inD.

1. A formula A is a derivation with premise A and conclusion A.

4The original motivation for the calculus of structures was to overcome some restrictions of the sequent calculus
which could not express a certain logic with a self-dual non-commutative connective.

5A third approach, known as nested sequents [9], integrates deep inference principles into a conventional Gentzen
formalism.
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t
ai↓

a ∨ a

(A ∨ B) ∧C
s

A ∨ (B ∧C)

a ∧ a
ai↑

f

a ∨ a
ac↓

a

(A ∧C) ∨ (B ∧ D)
m

(A ∨ B) ∧ (C ∨ D)

a
ac↑

a ∧ a

f
aw↓

a

f
mix

t

a
aw↑

t

Figure 2.4: Inference rules of system SKS

2. Every inference rule
A
ρ

B
in S, is a derivation with premise A and conclusion B.

3. If
A1

D1 S

B1

and
A2

D2 S

B2

are derivations, then the compositionsD1∧D2 andD1∨D2 are derivations

and denoted as
A1

D1 S

B1

∧

A2
D2 S

B2

and
A1

D1 S

B1

∨

A2
D2 S

B2

, respectively.

4. IfD1 is a derivation with premise A1 and conclusion B1, andD2 is a derivation with premise
A2 and conclusion B2, and A2 ≡ B1, we can composeD1 andD2 directly toD1◦D2 denoted
as:

A1
D1 S

B1
≡

A2
D2 S

B2

or

A1
D1 S

A2
D2 S

B2

or

A1
D1 S

B1
D2 S

B2

(2.1)

Finally, we define
A
D SKS

B
to be a deep inference open deduction derivation proving the for-

mula A∨B. The size of a derivationD, denoted as |D|, is the number of deep inderence rules used
inD.

Example 2.8. Figure 2.5 shows an example of an SKS derivation.

Theorem 2.9 (Soundness and Completeness of system SKS). The formula A ∨ B is a tautology if

and only if there exists an open deduction derivation
A
D SKS

B
.

Notice that in SKS we have shown weakening and contraction in atomic form. Below, we
show other forms of these rules, for formula A.

f
w↓

A

A ∨ A
c↓

A

A
c↑

A ∧ A

A
w↑

t
(2.2)

Theorem 2.10. The rules w↓, c↓, c↑, and w↑ are derivable using additive rules in SKS (i.e. aw↓,
ac↓, m, ac↑, and aw↑).

27



Chapter 2. Proof Systems

a ∨ a
ac↓

a
aw↓

t
ai↓

ā ∨ a
∧ (a ∨ ā)

s

ā ∨

a ∧ (a ∨ ā)
s

a ∨
a ∧ ā

ai↑
f

∧

a ∧ a
ai↑

f
aw↓

a

s

a ∨
ā ∧ a

ai↑
f

Figure 2.5: An open deduction derivation with premise (a ∨ a) ∧ a ∧ a and conclusion a ∨ f

Proof. We show the proof for w↓ and c↓ (for w↑ and c↑ is dual).

•
A ∨ A

c↓
A

: We proceed by induction on A and show that it is derivable only using m and ac↓.

If A = a, then we use only ac↓. If A = B ∧ C, then we have the following by induction
hypothesis on B and C.

(B ∧C) ∨ (B ∧C)
m

B ∨ B
{m,ac↓}

B
∧

C ∨C
{m,ac↓}

C

If A = B ∨C, then we have the following by induction hypothesis on B and C.

(B ∨C) ∨ (B ∨C)
≡

B ∨ B
{m,ac↓}

B
∨

C ∨C
{m,ac↓}

C

•
f

w↓
A

: We proceed by induction on A. If A = a, then we use only aw↓. If A = B ∧ C, then

we have the following by induction hypothesis on B and C.

f
≡

f
aw↓

B
∧

f
aw↓

C

If A = B ∨C, then we have the following by induction hypothesis on B and C.

f
≡

f
aw↓

B
∨

f
aw↓

C

□
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2.4 Normal Proofs

In the process of constructing a proof, we may utilize unnecessary inference rules to achieve our
goal. Gentzen was interested in the idea of introducing a proof system which allows straightfor-
ward proofs, where no formulas are introduced during the proof that do not already exist in the
conclusion. An example of such straightforward system is a proof system with the sub-formula
property. The concept behind normal form of proofs is that by eliminating unnecessary formu-
las, we remove redundant proof steps—a process commonly referred to as normalization. These
unnecessary formulas are also defined as cut formulas. In the context of natural deduction, the
modus ponens rule (or implication elimination denoted as → E) serves as an example of such
an inference rule. In sequent calculus, the cut rule, depicted below, is such an example and the
procedure of normalization is often referred to as cut elimination. Consequently, normalization is
often termed as cut normalization or cut elimination by proof theorists.

Γ⇒ ∆, A Γ, A⇒ ∆
cut

Γ⇒ ∆

Gentzen invented sequent calculus as an auxiliary proof system to prove normalization for nat-
ural deduction. Sequent calculus with multiple conclusions is particularly intended for Gentzen’s
principal theorem (Hauptsatz, refer to [25, 26]).

It is worth emphasizing that achieving a normal form in proofs does not necessarily translate to
simplicity or efficiency. In fact, non-normal proofs are often shorter and easier to comprehend for
humans. Using the cut rule in a proof can be viewed the same as employing a lemma in a mathe-
matical proof. This illustrates how significantly the length of a proof can be reduced when it is not
constrained by the requirement of normalization. However, we pay the price of exponential growth
on the size of the proof while using normalization. On the other hand, normal proofs are valuable
since they provide conceptual simplicity, and a proof theoretical justification for deduction which
leads to a fresh perspective on understanding the meaning of logics and proofs.

In subsequent developments, there was a growing concern about making proofs follow a spe-
cific pattern called strong normalization. In 1971, Prawitz [67] showed that any non-standard
elements present in a proof can be systematically converted without any particular order being
necessary. Notably, a cut can be addressed without specific order requirements. The result of this
process is the assurance of a termination of normalization which leads to a unique, standardized
proof as the final outcome. Prawitz’s theorem thus provided a robust framework for achieving
strong normalization within proof systems, ensuring the reliability and consistency of formal log-
ical reasoning.

During the same period as the developement of strong normalization, an important concept
known as the Curry-Howard correspondence emerged [45]. It essentially states that there exists a
correspondence between proof systems and models of computation. In simpler terms, it suggests
that these two families of formalisms can be viewed as equivalent and identical in their expressive
power.

The development of two fundamental methodologies, namely decomposition (initially ob-
served in [10, 35] within the context of classical logic) and splitting (credited to A. Guglielmi
and first introduced in [31]), has significantly impacted the normalization in deep inference. The
technique of cut-elimination via splitting has demonstrated its effectiveness across a wide spec-
trum of deep inference systems. For instance, we can refer to [83, 15] concerning cut-elimination
for propositional linear logic. In Chapter 9, we delve deeper into more details of normal forms for
combinatorial flows, offering a detailed examination of the normalization process.
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CHAPTER 3

Atomic Flows

Atomic flows, initially introduced by A. Guglielmi and T. Gundersen in [32], serve as a means
of representing the structural framework of a proof while disregarding its logical content. These
structures, owing to their “graphical nature”, can be thought of as akin to Girard’s proof nets [19,
27] and Buss’ logical flow graphs [12]. Initially, proof nets were devised exclusively for linear
logic, but various proposals have emerged to adapt them for classical logic, each with unique
objectives and designs, as seen in works by Laurent [62], Robinson [75], and Lamarche and
Straßburger [61]. Logical flow graphs, on the other hand, were defined specifically for classi-
cal logic, with their definition for linear logic being essentially identical, particularly in the case
of the multiplicative fragment of linear logic (MLL). However, this equivalence no longer holds
for classical logic, which is obtained by adding additional rules of contraction and weakening
(i.e. resource management) to MLL. Atomic flows represent a development that combines the
strengths of both approaches. Similar to proof nets, they simplify proof normalization by avoiding
unnecessary intricacies arising from trivial rule permutations. At the same time, similar to logical
flow graphs, they accurately capture the flow of information within a proof. Notably, they closely
resemble a variant of proof nets discussed in [82]. Since atomic flows meticulously document ev-
ery contraction and weakening applied to each atom occurrence, they can be employed to control
proof size, making them relevant to the study of proof complexity (see [11]).

Atomic flows are also very similar to string diagrams for representing morphisms in monoidal
categories (see [78] for a survey). However, in (classical) logic one usually finds two dual monoidal
structures and not just one. Thus, atomic flows are, in spirit, more closely related to coherence
graphs in monoidal closed categories [55]. Nonetheless, it should be stressed that atomic flows do
not form a monoidal closed category. The following two flows are not the same, although, during
the normalization process, we wish to reduce the atomic flow on the left (a cut connected to an
identity) to the atomic flow on the right (a single edge).

and (3.1)

In linear logic one can simply "pull the edges", a process which is called yanking, and directly
reduce the left atomic flow in (3.1) to the right one, whereas in classical logic this step might
involve duplication of large parts of the proof. The main insight coming from atomic flows is that
this duplication and the whole normalization process is independent from the logical content of
the proof and independent from the design of the logical rules in use, as is discussed in [32].

Definition 3.1. A type is a finite list of atoms, denoted by p, q, r, . . . . We write p|q to denote list
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ai↓ :
a a

ai↑ : a a

ac↓ :
a

a a
ae :

a

b

b

a

ac↑ :
a

a a

aw↓ :
a

aw↑ : a

Figure 3.1: Generators for atomic flows

concatenation and we write () to denote the empty list. An atomic flow ϕ : p −→ q is a two-
dimensional diagram [59], as shown below, were p is the input type and q is the output type.
The number of edges corresponds to the lengths of the lists, and each edge is labelled by the
corresponding list element.

ϕ

. . .

. . .

p

q

For each type q, we have the identity atomic flow, denoted as aidq, shown below:

. . .

We can compose atomic flows horizontally so for two atomic flows ϕ : p −→ q and ϕ′ : p′ −→
q′, we can define their horizontal composition as ϕ|ϕ′ : p|p′ −→ q|q′, shown below:

ϕ

. . .

. . .
ϕ′

. . .

. . .

We can also compose atomic flows vertically so for two atomic flows ϕ : p −→ q and ψ : q −→
r, we can define their vertical composition as ϕ ◦ ψ : p −→ r, shown below:

ψ

. . .

. . .

ϕ

. . .

The definition of identity atomic flows and compositions suggest the following equalities:

ϕ ◦ aid = ϕ = aid ◦ ϕ (ϕ ◦ ψ)|(ϕ′ ◦ ψ′) = (ϕ|ϕ′) ◦ (ψ|ψ′) (3.2)

Finally, Figure 3.1 shows the set of generators for atomic flows and below we explain the
typing information shown for each generator:
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• In ai↓ (resp. ai↑), the output edges (resp. the input edges) must have opposite atoms.

• In ac↓ (resp. ac↑), all input and output edges must have same atoms.

• In aw↓ (resp. aw↑), there is no restrictions.

• In ae, the left input must have the same atom as the right output and the right input must
have the same atom as the left output.

We will omit the typing of atomic flows when we show them in pictures and this information
is irrelevant. The types are strictly preventing the occurrence of illegal atomic flows such as the
one depicted below:

Theorem 3.2. Let A and B be formulas, there exists an open deduction derivation
A
D SKS

B
if and

only if there exists an atomic flow ϕ : p −→ q where p and q are types achieved by listing the atom
occurrences in A and B.

Remark 3.3. We can not read back a proof from an arbitrary atomic flow and they loose too
much information about the structure of the proof. That is, although atomic flows are sound and
complete, they have no polynomial correctness criterion, A. Das in [20] has shown that no such
criterion is possible under the assumption that factorization is hard for P/poly. Therefore, they do
not form a proof system in the sense of Cook and Reckhow [17].
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CHAPTER 4

Graphs

In this chapter we recall some definitions and theorems on graphs, e.g cographs and RB-graphs.
Graph theory, historically traced back to Euler’s 1736 solution for "Seven Bridges of Königsberg"
problem, is the study of mathematical structures used to model pairwise relations between objects.
Graphs can be used to model many types of relations in various subjects in computer science,
mathematics, social sciences, physics, and biology. Researchers have established that graph theory
is an important mathematical tool in a wide variety of subjects and proof theory is not exempt from
this. Cographs are an example of graphs which are being used in proof theory. They have a simple
structural decomposition using disjoint union and complement operations which allows us to view
them as a model for formulas. Additionally, we recall Christian Retore’s handsome proof-nets [73,
74], because we use his correctness criterion in our definition of multiplicative flows in Chapter 6.

Definition 4.1. We say that a set X is A-labelled if it is equipped with a labelling function
ℓX : X → A, mapping each element x ∈ X to an atom.

As mentioned in Definition 1.1, for a formula A, we write ⌊A⌋ to denote the set of leaves of the
formula tree of A. This set isA-labelled, with the labelling function ℓ⌊A⌋ : ⌊A⌋ → Amapping each
leaf of the formula tree to the atom occurring in that position. Note that A ≡ A′ implies ⌊A⌋ = ⌊A′⌋.

Definition 4.2. An (undirected) graph G = ⟨VG,RG⟩ is a set of vertices VG accompanied with a
binary edge relation RG ⊆ VG × VG which is irreflexive and symmetric. We omit the index G in
VG and RG when it is clear from the context. If v,w ∈ VG are vertices in G, we define vRGw to be
an edge in G (i.e. (v,w) ∈ RG).

The two graphs G = ⟨VG,RG⟩ and H = ⟨VH ,RH ⟩ are isomorphic, denoted as G = H if there
exists a bijection f : VG → VH such that for any two vertices v,w ∈ VG, the edge vRGw exists if
and only the edge f (v)RH f (w) exists.

Definition 4.3. A graph H = ⟨VH ,RH ⟩ is subgraph of G if and only if VH ⊆ VG and RH ⊆ RG.
We define H to be an induced subgraph when RH is the maximal such set (i.e. it induces all the
edges possible from RG).

In this thesis, we are only concerned with undirected graphs which have A-labeled vertex set
(i.e. the vertices are labeled by the set of atoms A). Moreover, as we mentioned in the beginning
of this chapter, we are recalling on Handsome Proof-nets [73, 74], which are bi-colored graph
representations of proofs. So in the following definitions we aim at recalling on how to define a
graph of a formula.

Definition 4.4. For two graphsG andH we define their disjoint union asG⊎H = ⟨VG⊎VH ,RG∪
RH ⟩ and their join as G ▷◁ H = ⟨VG ⊎ VH ,RG ∪ RH ∪ {(u, v), (v, u) | u ∈ VG and v ∈ VH }⟩. The
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complement of G is G = ⟨VG, {(v, u) | (v, u) < RG and v , u}⟩. The labels are preserved for G ⊎H
and G ▷◁ H and negated in G.

A graph G is a cograph if and only if it is constructed from single vertices using the operations
⊎ and complement. A graph G is a P4 if it is isomorphic to the graph shown below.

a b

c d

We define G to be P4-free if and only if there exists no induced subgraph of G which is a P4.
Cographs have been discovered by several graph thoerists in 70s, we can refer to H. A. Jung
1978 [54], D. Seinsche 1974 [77], and D. P. Sumner 1974 [85] as some of the early references on
cographs.1

Definition 4.5. An induced subgraph H of graph G is a module if and only if for all vertices
u ∈ VG \ VH the following statement holds:

∀v,w ∈ VH .uRGv⇔ uRHw (4.1)

Definition 4.6. The graph of a formula A, denoted as G(A), is defined inductively via G(t) =
G(f) = ⟨∅, ∅⟩ (the empty graph), G(a) = ⟨{•a}, ∅⟩ (a single vertex graph whose vertex is labeled by
a), and G(B ∨C) = G(B) ⊎ G(C), and G(B ∧C) = G(B) ▷◁ G(C).

Below we show an example of a graph of the formula ((a ∨ b) ∧ a) ∨ a.

ā b

ā a

From the Definition 1.1 of formula tree and Definition 4.6 of graph of a formula, it follows
that the multiset of labels in VG(A) is equal to the multiset obtained by taking the labels of leaves in
⌊A⌋. Moreover, using the previous definitions on cographs, P4-free graphs, modules, we immedi-
ately arrive at some properties of cographs which are standard results which are well-known from
literature and among graph-theorists:2

Proposition 4.7. Let G be a cograph. Then there exists a graphH which is isomorphic to G and
which can be constructed from single vertices using operations ⊎ and ▷◁.

Proof. This property is referred to as modular decomposition and can be proved algorithmically,
see [18, 36]. □

Proposition 4.8. A graph G is a cograph if and only if it is P4-free.

Proof. See [64]. □

Proposition 4.9. A graphG is a cograph if and only if it is isomorphic toG(A) for some pure formula
A.3 And for all pure formulas such as A, we have G(A) = G(A).

Proof. This is a direct consequence of Propositions 4.7 and 4.8. □

1On a side note, the mentioned representation of cographs (i.e. using disjoint union and complement operations on
graphs) is used algorithmically to efficiently solve many problems such as finding the maximum clique.

2In order to maintain this thesis self-contained, we show proofs of these results in Appendix A.
3See Chapter 1 (p. 18) for the definition of pure formulas.
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Proposition 4.10. If A and B are pure formulas, then A ≡ B implies that G(A) = G(B).

Proof. Let C1, . . . ,Cn be the sequence of formulas where A = C1 and B = Cn and Ci ≡ Ci+1
with the equivalence being one of the equivalence rules for classical propositional formulas (which
means one can turn A to B using n equivalence relations). We proceed the proof by using induction
on the pair n, which is the number of equivalence steps, and the formulas B. If n = 1, then A and
B are the same formula so their corresponding graph isomorphic. If n > 1, then by induction
hypothesis we have G(C1) = G(Cn−1). Now for each the last equivalence step we have to look at
all the equivalence relations possible. In the case that a unit is involved, it is obvious that the two
graphs are isomorphic. The same holds for commutativity. If the step is concerning associativity,
then we use induction hypothesis for the three smaller formulas to get isomorphic graphs for each
of them. Consequently, it is easy to observe that G(Cn−1) = G(Cn) which means G(C1) = G(Cn)
which implies G(A) = G(B). □

Proposition 4.11. If A and B are pure formulas which are not equivalent to units, then the iso-
morphism G(A) = G(B), implies that A ≡ B.

Proof. LetG(A) be isomorphic toG(B). By hypothesis, we know that A ≡ C where C is a unit-free
formula. So using Proposition 4.10, we have that G(A) = G(C) which means that G(C) = G(B).
Then from the fact that there exists a modular decomposition of these graphs which is shown
in [63] and C being unit free, we can deduce that B and C are equivalent as well. □

Remark 4.12. It is important to note that there is no one to one correspondence between the
equivalence of pure formulas and the isomorphism on graphs of such formulas. More specifically,
the isomorphism on graphs of two pure formulas does not imply their equivalence and this is
caused by the existence of units in the language and the definition of graph of a formula. An
example is formulas A = t∧ a and B = f∧ a where G(A) and G(B) are single vertices labeled with
the atom a thus they are isomorphic but A is not equivalent to B.

The following definition is mainly used to define correctness criterion in the second part of
this thesis (Chapters 5 to 7). First, we use well-mated relations to define flowboxes and set the
foundation for multiplicative and additive flows. Then, by using perfectly matched binary relations
in Chapter 6, we define multiplicative flows.

Definition 4.13. A binary relationB ⊆ X×X on anA-labelled set X is well-mated if it is symmetric
and we have that xBy implies ℓX(x) = ℓX(y) (i.e. label of y is the negation of label of x).4 We say
that B is perfectly matched if it is well-mated and for every x ∈ X there is exactly one y ∈ X with
xBy.5

Remark 4.14. On a side note, we can notice some similarities between the definition of a well-mated
binary relation and a graph matching, defined by W. T. Tutte in 1947 [88]. However, a match-
ing cannot include edges of the graph that share vertices. We employ the well-mated relations to
define flowboxes in Chapter 5.

Definition 4.15. Let R and S be binary relations on X ⊎ Y and Y ⊎ Z where X ∩ Z = ∅. The
composition of the two relations R and S (denoted as R ◦ S) is a binary relation on X ⊎ Z where
(a, c) ∈ R ◦ S if and only if there exists a sequence v1, v2, . . . , vn of elements in X ⊎ Y ⊎ Z such that

4Irreflexivity follows from this definition. Every symmetric irreflexive binary relation can be seen as an undirected
graph, so a well-mated relation on anA-labelled set is an undirected graph as well. The terminology is borrowed from
Andrews’ "matings" [5], the basic idea being connected dual atoms.

5We chose this terminology because of the resemblance to a perfect matching. It is justified because a relation B is
perfectly matched if and only if it is a perfect matching when seen as a graph in the sense of the previous footnote.
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axiom ∨ ∧

ā a

A B

∨

A ∨ B

A B

∧

A ∧ B

Figure 4.1: MIX R&B-proof-net connectors

a = v1, c = vn, and for every i ∈ {1, . . . , n − 1}, we have viRvi+1 if i is odd and viSvi+1 if i is even.
We define the size of a binary relation, denoted as |R|, to be the number of elements in R.

The following definitions are from Retoré’s work on Handsome proof-nets which was firstly
started by his ideas on series parallel orders during his PhD. We can refer to his 1996 paper on
multiplicative proof-nets as RB-cographs [74] as the first publication on handsome proof-nets. In
Chapter 6, we will show in detail the relation between multiplicative flows defined in this thesis
and Handsome Proof-nets. More specifically, the correctness criterion, given in Chapter 6, for
multiplicative flows is equivalent to Retoré’s criterion on Handsome proof-nets introduced in his
1999 paper [73] which is an improvement on his prior work on the subject, later continued by his
2003 paper [72] which proves the same results using equivalence with Danos Reigner’s criterion.

Definition 4.16. An RB-graph is a triple G = ⟨VG,RG,BG⟩ such that ⟨VG,RG⟩ is a labeled graph
and BG is a perfectly matched binary relation on VG. An RB-cograph is an RB-graph G where
⟨VG,RG⟩ is a cograph.

Definition 4.17. An alternating elementary cycle(æ-cycle) in an RB-graph G is a sequence of
even number of vertices x1, . . . , xn (n is even) in VG, such that xi , x j for all non equal indexes

i, j ∈ {1, . . . , n}, and we have x1Rx2Bx3Rx4 . . .RxnBx1. A chord in an æ-cycle c is an edge xiRx j
for i, j ∈ {1, . . . , n} that does not participate in c. A chordless æ-cycle is an æ-cycle with no chords.
An RB-graph G is æ-acyclic if and only if G has no chordless æ-cycle.

The following definition shows MIX R&B-proof-nets and we use the same notation as in [73].
We utilize this kind of proof-nets mainly to show soundness of our multiplicative flows, defined in
Chapter 6, with respect to the multiplicative fragment of classical logic.

Definition 4.18. Let G be an RB-cograph and let A be the formula where G(A) = G. We define
a R&B-tree TA to be a tree-shaped graph defined inductively using Figure 4.2 and the connectors
shown in Figure 4.1. A MIX R&B-proof-net of G, denoted as PG is a R&B-tree with the addition
of BG to the vertices labeled with atoms to complete the axiom connector.

We can observe that MIX R&B-proof-nets are RB-cographs by construction. We define a
MIX R&B-proof-net to be æ-acyclic if and only if it does not contain any alternating elementary
cycle.

Theorem 4.19. Let A be a pure formula. For every æ-acyclic RB-cograph G with G(A) = G, the
MIX R&B-proof-net PG is æ-acyclic.

Proof. See [73] for the proof of this theorem. □
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Formula C t or f a ∈ A A ∨ B A ∧ B

R&B-tree TC ∅ a

TA TB

A B

∨

A ∨ B

TA TB

A B

∧

A ∧ B

Figure 4.2: Construction of R&B-trees
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CHAPTER 5

From Derivations to Flows

Definition 5.1. A flowbox is a triple ϕ = ⟨A, B,Bϕ⟩, where A and B are formulas and Bϕ is a
well-mated relation on ⌊A⌋ ⊎ ⌊B⌋. For flowboxes ϕ = ⟨A, B,Bϕ⟩ and ψ = ⟨C,D,Bψ⟩, we define
ϕ ∧ ψ = ⟨A ∧C, B∧ D,Bϕ ⊎ Bψ⟩ and ϕ ∨ ψ = ⟨A ∨C, B∨ D,Bϕ ⊎ Bψ⟩, which are also flowboxes.
If ϕ = ⟨A, B1,Bϕ⟩ and ψ = ⟨B2,C,Bψ⟩ are flowboxes with B1 ≡ B2, then ϕ ◦ ψ = ⟨A,C,Bϕ ◦ Bψ⟩
is also a flowbox.

Example 5.2. Here are some examples of flowboxes. We denote them by writing the formulas on
top of each other and indicating the relation B by edges between the atom occurrences.

a ∧ ā

a ∨ (a ∧ ā) ∨ a

a ∨ (a ∧ ā) ∨ a

a ∧ f

a ∧ ā

a ∧ f

(a ∨ a) ∧ (a ∧ ā)

a ∨ f

(5.1)

The vertical composition of the first two flowboxes results in the third flowbox.

Definition 5.3. Two flowboxes ϕ = ⟨A, B,Bϕ⟩ and ψ = ⟨C,D,Bψ⟩ are equal, denoted as ϕ = ψ, if
and only if A ≡ C, and B ≡ D, and Bϕ = Bψ (i.e. for every element in Bϕ there exists an equivalent
of it inBψ). We define the size of a flowbox ϕ = ⟨A, B,Bϕ⟩, denoted as |ϕ|, to be |ϕ| = |A|+|B|+|Bϕ|.

Definition 5.4. For every formula A, we define an identity flow to be the tuple idA = ⟨A, A,Bid⟩

where every atom occurrence a in A is in relation with its corresponding occurrence in A. 1

Moreover, we define equivalence flow for formulas A and B with A ≡ B to be either the
identity flow idA or the identity flow idB. Note that based on Definition 5.3, we have that idA is
equal to idB in this case.

Proposition 5.5. Let A be a formula. The identity flow idA is a flowbox.

Proof. Definition 5.4 shows that Bid is well-mated and for every xBidy we have that ℓ⌊A⌋(x) =
ℓ
⌊A⌋(y). Therefore idA is a flowbox. □

We can observe that the operation ◦ on flowboxes is associative with id as unit.

Remark 5.6. flowboxes are essentially the same as the B-nets where the well-mated relation Bϕ is
a B-linking defined in Definition 2.1 of [61] and the operation ◦ corresponds to the cut elimination
of B-nets based on Section 5, Cut Elimination, of the same paper. As already observed in [61],
the composition ◦ forgets too much information about the proof and its complexity. In general, we
cannot recover a derivation from a flowbox. To gain more control, we define a formal composition
that keeps the structure of the proof.

1Due to the fact that Bid is a binary relation on ⌊A⌋ ⊎ ⌊A⌋.
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Definition 5.7. We define the set of preflows to be inductively constructed as follows:

1. A flowbox ϕ = ⟨A, B,Bϕ⟩ is a preflow ϕ : A ⊢ B with premise A and conclusion B.

2. If ϕ : A ⊢ B and ψ : C ⊢ D are preflows, Then their horizontal compositions ϕ7 ψ : A ∧C ⊢
B ∧ D and ϕ6 ψ : A ∨C ⊢ B ∨ D are preflows.

3. Let ϕ : A ⊢ B1 and ψ : B2 ⊢ C be preflows with B1 ≡ B2, then the vertical composition
ϕ� ψ : A ⊢ C is a preflow.

The size of a preflow ϕ, denoted as |ϕ|, is the number of its flowboxes that are not identity or
equivalence flows. We depict the horizontal and vertical composition of preflow as follows:

A

B

ϕ 7

C

D

ψ

A

B

ϕ 6

C

D

ψ

A

B

ϕ

C

ψ

As suggested by this graphical notation, we consider preflows to be equivalent modulo associa-
tivity and the extra box equivalence shown below:

(ϕ7 ψ) 7 ξ ≡ ϕ7 (ψ7 ξ) (ϕ6 ψ) 6 ξ ≡ ϕ6 (ψ6 ξ)
(ϕ7 ψ) � (ξ 7 π) ≡ (ϕ� ξ) 7 (ψ� π) (ϕ6 ψ) � (ξ 6 π) ≡ (ϕ� ξ) 6 (ψ� π)

ϕ� (ψ� ξ) ≡ (ϕ� ψ) � ξ

(5.2)

Moreover, preflows are equivalent modulo commutativity and identity flows acting as units, shown
below:

ϕ7 ψ ≡ ψ7 ϕ ϕ6 ψ ≡ ψ6 ϕ ϕ� ψ ≡ ψ� ϕ

idA 7 idB ≡ idA∧B idA 6 idB ≡ idA∨B id � ϕ ≡ ϕ
(5.3)

We can now translate derivations into preflows by translating deep inference rules into flow-
boxes as indicated in Figure 5.1. In the case of translation from aw↓ and aw↑, we draw half lines
for better readability.

Definition 5.8. The translation T of a derivation D in deep inference , denoted as T(D), is the
preflow inductively obtained as follows. If D is a formula A, then its translation is idA. If D is a
rule instance, then the translation is shown in Figure 5.1. Finally, T(D1 ∧ D2) = T(D1) 7 T(D2)
and T(D1 ∨D2) = T(D1) 6 T(D2) and T(D1 ◦ D2) = T(D1) � T(D2).

Definition 5.9. We define the collapse ⟦ϕ⟧ of a preflow ϕ to be the flowbox inductively obtained
via ⟦ϕ 7 ψ⟧ = ⟦ϕ⟧ ∧ ⟦ψ⟧ and ⟦ϕ 6 ψ⟧ = ⟦ϕ⟧ ∨ ⟦ψ⟧ and ⟦ϕ � ψ⟧ = ⟦ϕ⟧ ◦ ⟦ψ⟧. In other words,
the collapse “executes” the operations that are used to define preflows.

Example 5.10. Figure 5.3 shows an example of a deep inference derivation alongside its trans-
lation to an atomic flow and a preflow. One can observe how similar preflows and atomic flows
translated from a derivation look like since they both are following the same tracing of atom oc-
currences as the derivation. The collapse of the preflow shown in bottom of Figure 5.3 is the
rightmost flowbox in (5.1).
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Figure 5.1: Inference rules of system SKS and their translation into flowboxes

Although preflows and atomic flows look the same, they differ in the fact that preflows keep
as much information as the open deduction derivation. The collapse of a preflow forgets all such
information and it does not keep the shape of the flow. Meanwhile, atomic flows can be obtained
by forgetting all the formulas in a preflow and keeping the shape of the flow from hypothesis to
conclusion. However, as we mentioned in Chapter 3 (p. 33), we cannot read back a proof from an
atomic flow.

To better control the information that can be removed, we propose here a solution that assigns
colors (blue and purple) to flowboxes and only allows to collapse them if they have the same color.
The idea is that the blue flowboxes encode linear (or multiplicative) behavior, and therefore blue
wires can be yanked. The purple flowboxes encode the resource management (or the additive)
behavior of the proof, and therefore purple wires cannot be yanked. Figure 5.2 shows the transla-
tion of deep inference rules to flowboxes with such colors. Note that we use the same translation
function from Figure 5.1 and just show the colors to differentiate between multiplicative and ad-
ditive flowboxes. To indicate the color in a flowbox with empty B (because of weakening), we
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Figure 5.2: Inference rules of system SKS and their translation into colored flowboxes

sometimes draw half arrows to the atoms, as done in Figure 5.1 for the translation of inference
rules aw↓ and aw↑.

Furthermore, both kinds of flowboxes obey different correctness criteria explained in Chap-
ters 6, for blue, and 7, for purple. To define these correctness criterion, we heavily rely on RB-
cographs from Chapter 4 (p. 38).
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ai↑
f

∧

a ∧ a
ai↑

f
aw↓

a

s

a ∨
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a ∨ (ā ∧ a)

a

6

f

Figure 5.3: A deep inference derivation from (a∨ a)∧ (a∧ a) to a∨ f and its translation to a preflow and an
atomic flow
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CHAPTER 6

Multiplicative Flows

As mentioned in the previous chapter, the basic idea of the correctness criterion for combinatorial
flows is the distinction between multiplicative and additive behavior of flowboxes. We begin in
this chapter with the multiplicative part, which is based on Retoré’s work on handsome proof
nets [72].

Let ϕ = ⟨A, B,Bϕ⟩ be a flowbox, where Bϕ is perfectly matched, defined in Definition 4.13
(p. 37). Then we can associate to ϕ the underlying RB-cograph G(ϕ) = ⟨Vϕ,Rϕ,Bϕ⟩, where
⟨Vϕ,Rϕ⟩ is a graph G(A ∨ B). Observe that Vϕ = V

G(A∨B) = ⌊A ∨ B⌋ = ⌊A⌋ ⊎ ⌊B⌋, allowing us to
use Bϕ in the graph. See Chapter 4 (p. 35 and 38) for the definitions of RB-cographs and graphs
of formulas.

Definition 6.1. A flowbox ϕ = ⟨A, B,Bϕ⟩ is pure if A and B are pure. It is extra pure A ∨ B is
also pure. A multiplicative flow (or m-flow) is an extra pure flowbox ϕ = ⟨A, B,Bϕ⟩, where Bϕ is
perfectly matched and G(ϕ) is æ-acyclic1, and we do not have both A ≡ t and B ≡ f.2

Remark 6.2. Note that for each flowbox ϕ with Bϕ being perfectly matched, the graph G(ϕ) is
uniquely determined. However, the converse is not true. In particular, if A and B are unit-free
formulas and ϕ = ⟨A, B,Bϕ⟩ and ϕ′ = ⟨t, A ∨ B,Bϕ⟩, then G(ϕ) = G(ϕ′).

Proposition 6.3. Let A and B be unit-free formulas. Then ϕ = ⟨A, B,Bϕ⟩ is an m-flow if and only
if ϕ′ = ⟨t, A ∨ B,Bϕ⟩ is an m-flow if and only if ϕ′′ = ⟨A ∧ B, f,B,ϕ⟩ is and m-flow.

Proof. Let A and B be unit-free formulas, then A ∨ B and A ∧ B are unit-free formulas. We also
have that A ∨ B ≡ f ∨ A ∨ B. This means that using Proposition 4.11, we have G(ϕ) = G(A ∨ B) =

G(f ∨ A ∨ B) = G(ϕ′) and G(ϕ) = G(A ∨ B) = G(f ∨ (A ∧ B)) = G(ϕ′′). Consequently either side
of the proposition can be derived from the other because the binary relation is the same, hence the
RB-cographs are equal and therefore one is æ-acyclic if the other is. □

Proposition 6.4. Let A, B, and C be pure formulas with B . t. Then ϕ = ⟨A, B ∨ C,Bϕ⟩ is an
m-flow iff ϕ′ = ⟨A ∧ B,C,Bϕ⟩ is an m-flow.

Proof. Similar to the previous Proposition using the graph isomorphisms G(ϕ) = G(A ∨ B ∨C) =
G(ϕ′). □

1We can observe that this correctness criterion is equivalent to C. Retoré’s Handsome Proof Nets [74, 71], i.e every
alternating elementary cycle in an RB-cograph contains at least a chord.

2Observe that we allow A ≡ t or B ≡ f, but not both at the same time.
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Example 6.5. Below on the left are two flowboxes that are m-flows and that have the same RB-
cograph which is shown on the right below.

t

((d ∨ d̄) ∧ (c̄ ∧ a)) ∨ ((c ∨ ā) ∨ (a ∧ ā))

(d̄ ∧ d) ∨ (c ∨ ā)

(c ∨ ā) ∨ (a ∧ ā)

a ā
d̄ a

d ā
c̄ c

When we compose two flowboxes ϕ and ψwith the operations ∧, ∨, ◦ defined in Definition 5.1,
then it is clear that the result is perfectly matched if ϕ and ψ are. From the work of Retoré [72] it
follows that also the property of being æ-acyclic is preserved, shown in theorem’s below. However,
the result does not need to be pure even if ϕ and ψ are (see Example 6.11 below). In particular,
if we have m-flows ϕ = ⟨t, B,Bϕ⟩ and ψ = ⟨C,D,Bψ⟩, where C is unit-free, then ϕ ∨ ψ is not an
m-flow because t ∨C is not pure.

Lemma 6.6. Let ϕ = ⟨A, B,Bϕ⟩ and ψ = ⟨C,D,Bψ⟩ be m-flows with A, B, C, and D as unit-free
formulas, then ϕ ∧ ψ and ϕ ∨ ψ defined in Definition 5.1 are m-flows.

Proof. We show the proof that ϕ ∧ ψ is an m-flow and the proof for ϕ ∨ ψ is dual. The formulas
A ∧C and B ∧ D are unit-free since A, B, C, and D are unit-free formulas. Moreover, the relation
binary relation Bϕ∧ψ is the disjoint union Bϕ ⊎ Bψ, based on Definition 5.1 is perfectly matched.
It only remains to show that the underlying graph of ϕ ∧ ψ (i.e. G(ϕ ∧ ψ)) is æ-acyclic. Let c be a
alternating elementary cycle in G(ϕ∧ψ). If the vertices in c are all from G(ϕ), there exists a chord
for c because ϕ is an m-flow and therefore its underlying graph is æ-acyclic, resp. for G(ψ). Now
let us assume that some vertices of c are in G(ϕ) and the rest are from G(ψ). From the fact that the
binary relation of ϕ∧ψ is the disjoint union of two binary relations Bϕ and Bψ, it follows that c has
two different vertices from B and two different vertices from D. Hence, from the fact that there
exists a conjunction between vertices of B and D, it follows that c has two chords. Therefore, the
RB-cograph G(ϕ ∧ ψ) is æ-acyclic and ϕ ∧ ψ is an m-flow. □

Theorem 6.7. Let ϕ = ⟨A, B,Bϕ⟩ and ψ = ⟨C,D,Bψ⟩ be m-flows with A, B, C, and D as pure
formulas, then ϕ ∧ ψ is an m-flow if A ∧C and B ∧ D are pure formulas (resp. ϕ ∨ ψ is an m-flow
if A ∨C and B ∨ D are pure formulas).

Proof. Lemma 6.6 is a special case of this theorem where A∧C and B∧D are equivalent to unit-
free formulas. So we only need to show the proof for the case that at least one of these formulas
is equivalent to a unit:

• If A ∧ C ≡ f, then we have A ≡ f and C ≡ f. From Definition 6.1, we have that A ∨ B and
C ∨ D should be pure formulas as well. Therefore, both B and D can not be equivalent to
unit-free formulas which means B ∧ D is also equivalent to a unit. So A ∨ C ∨ (B ∧ D) is
equivalent to a unit and therefore it is an extra pure formula which shows that ϕ ∧ ψ is a
pure flowbox. Next by using the same proof as in Lemma 6.6, we can imply that ϕ∧ψ is an
m-flow.

• If A ∧ C ≡ t, then we have A ≡ t and C ≡ t. Then, the only constraint applied by Defini-
tion 6.1 is that B and D should not be equivalent to f. However, we already know that B∧D
is a pure formula which implies that A ∨ C ∨ (B ∧ D) is pure. We can continue the proof
same as the previous case.

• If B ∧C ≡ f, then we have B ≡ f and D ≡ f. So the proof is dual to the previous case.
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Figure 6.1: Multiplicative inference rules of system SKS and their translation into m-flows (for the full
system translation, see Figure 5.2)

• If B∧D ≡ t, then we have B ≡ t and D ≡ t. So the proof is dual to the case where A∧C ≡ f.

We prove that ϕ ∨ ψ is an m-flow dually. □

Theorem 6.8. Let ϕ = ⟨A, B1,Bϕ⟩ and ψ = ⟨B2,C,Bψ⟩ be m-flows with A, B1 ≡ B2, and C as pure
formulas, then ϕ ◦ ψ as defined in Definition 5.1 is an m-flow.

Proof. First we reduce both ϕ and psi to MIX R&B-proof-nets using Theorem 4.19, shown in [72].
Now we can use standard cut elimination for linear logic proof nets to arrive at the result. Another
more recent presentation of a proof for this theorem can be found in [48]. □

Theorem 6.9. Let
A
D {ai↓,ai↑,s,mix}

B
be a derivation. If A and B are pure, then ⟦T(D)⟧ is an m-flow.

Proof. First, we show that every flowbox occurring in T(D) is an m-flow. Since D only contains
instances of ai↓, ai↑, s, and mix, it is enough to show that the translation of each rule to a flowbox,
shown in Figure 6.1, is an m-flow. Below we show the underlying graph for all these flowboxes:

ai↓ ai↑ s mix

a ā a ā

G(A) G(B) G(C)

G(A) G(B) G(C)

∅

(6.1)

For the cases of ai↓, ai↑ and mix, it is trivial that the underlying graphs shown are RB-cographs (for
mix, the notation ∅ is standing for an empty graph). The underlying RB-cograph for the translation
of s is shown schematically with graph of A, B, and C (and their negations) obtained inductively.
As (6.1) suggests, an alternating elementary cycle can not exist in G(T(s)). By construction shown
in and Lemma 6.6 and Theorem 6.8 as well as Theorem 6.7, we have that B⟦T(D)⟧ is perfectly
matched, and no alternating elementary cycle is introduced in G(⟦T(D)⟧) and that ⟦T(D)⟧ is an
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Chapter 6. Multiplicative Flows

m-flow. Note that we also utilize the equalities (5.2) to prevent non-authorized compositions on
m-flows at each step and this is possible due to the fact that A and B are pure formulas. □

Theorem 6.10. Let ϕ = ⟨A, B,Bϕ⟩ be an m-flow. Then there is a derivation
A
D {ai↓,ai↑,s,mix}

B
with

⟦T(D)⟧ = ϕ.

Proof. The simplest way to prove this is to by first reducing the underlying RB-cograph of ϕ
to a MIX R&B-proof-net using Theorem 4.19. Next, we apply the sequentialization result from
Retoré [72] to sequentialize the MIX R&B-proof-net to a sequent calculus derivation. By us-
ing the correspondence between sequent calculus and deep inference [34], we obtain the desired
deep inference derivation. Moreover, a direct sequentialization from proof nets to deep inference
derivations can be found in [84]. □

Example 6.11. Below we show on the left a derivation, whose translation to preflows is shown in
the middle. We can naively compose the lower half, but then would obtain flowboxes that are not
pure, as shown on the upper right below. Nonetheless, the complete composition is pure and an
m-flow (shown on the lower right).

(a ∧ ā) ∨

a ∧ a
ai↑

f
mix

t

 ∧ a

≡ a ∧ ā
ai↑

f
∨

t
ai↓

a ∨ ā

 ∧ a

s

a ∨
a ∧ ā

ai↑
f

aa ∧ ā

f

a ∧ ā

6

a

a

t

a ∨ ā

7a ∧ ā

f

6

a ∨ (ā ∧ a)

a

6

f

aa ∧ āa ∧ ā

((a ∧ ā) ∨ t) ∧ a

a ∨ f

y
(a ∧ ā) ∨ (a ∧ ā) ∧ a

a ∨ f

This example also shows a case of yanking, see Chapter 3 (p. 31) for the explanation of yanking.
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CHAPTER 7

Additive Flows

In the previous chapter we studied flows generated by multiplicative inference rules (i.e. ai↓, ai↑,
s, and mix). In this chapter we investigate a different type of flows generated by additive inference
rules (i.e. ac↓, aw↓, aw↑, ac↑, and m) mainly referred to as additive flows. To obtain any type of
additive flows we consider flowboxes and explore the different possibilities of correctness criterion
(namely skew fibrations [47] and additive nets [38]). Moreover, we show that checking correctness
criterion is indeed of polynomial time and they are sound and correct with respect to the additive
fragment of classical logic.

In Section 7.1, we present skew fibrations as well as their compositions. Next, using the
definition below and properties of skew fibrations we are able to define a↑-flows and a↓-flows in
Section 7.2. Moreover, we define a-flows and show that a↑-flows and a↓-flows can be composed
freely to obtain an a-flow. Additionally, we show that a-flows can be decomposed into a↑-flows
and a↓-flows. Note that this decomposition is not unique but the order is important here and not
every order of decomposition is possible. We also show that decomposing the composition of
a↓-flows and a↑-flows will not result in the same flows.

7.1 Skew Fibrations

Definition 7.1. A flowbox ϕ = ⟨A, B,Bϕ⟩ is function-like if xBϕy implies that either x ∈ ⌊A⌋ and
y ∈ ⌊B⌋ or x ∈ ⌊B⌋ and y ∈ ⌊A⌋, and for every x ∈ ⌊A⌋, there is a unique y with xBϕy. Then Bϕ
defines a function f ↓ϕ : ⌊A⌋ → ⌊B⌋, and we write ϕ as ⟨A, B, f ↓ϕ ⟩.

Similarly, we say that ϕ is cofunction-like if if xBϕy implies that either x ∈ ⌊A⌋ and y ∈ ⌊B⌋
or x ∈ ⌊B⌋ and y ∈ ⌊A⌋, and for every y ∈ ⌊B⌋ there is exactly one x ∈ ⌊A⌋ with xBϕy. In this case
we interpret the function ⌊B⌋ → ⌊A⌋ defined by Bϕ as function f ↑ϕ : ⌊B⌋ → ⌊A⌋, and we write ϕ as

⟨A, B, f ↑ϕ ⟩.
For specifying the desired properties of those functions, let us recall the notion of skew fibra-

tion.

Definition 7.2. Let G and H be graphs. A graph homomorphism f : G → H is a mapping
f : VG → VH such that for every v,w ∈ VG, if vRGw then f (v)RH f (w), and for every v ∈ VG we
have ℓG(v) = ℓH ( f (v)). A graph homomorphism f : G → H is full if for every vertex v,w ∈ VG
the existence of edge f (v)RH f (w) implies vRGw. It is injective (denoted as f : G ↣ H) if for
all vertices v,w ∈ VG, the equality f (v) = f (w) implies that v = w. It is surjective (denoted as
f : G ↠ H) if for all vertices w ∈ VH , there exists at least one vertex v ∈ VG such that f (v) = w.
It is bijective (denoted as f : G↣↠ H) if is both injective and surjective.
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Definition 7.3. A skew fibration is a graph homomorphism f : G ↪→ H where H is non-empty,
and for every v ∈ VG and w ∈ VH with f (v)RHw, there exists a vertex z in G with vRGz and
( f (z),w) < RH .

For graph homomorphisms f1 : G1 → H1 and f2 : G2 → H2 we can define their horizon-
tal compositions f1 + f2 : G1 ⊎ G2 → H1 ⊎ H2 and f1 × f2 : G1 ▷◁ G2 → H1 ▷◁ H2, acting
componentwise on the vertex set VG1 ⊎ VG2 .

Lemma 7.4. If f : G ↪→ H and g : I ↪→ J are skew fibrations, then so is f +g : G⊎H ↪→ I⊎J .
Furthermore, if either G1 , ∅ , G2 or G1 = ∅ = G2 then f × g : G ▷◁ H ↪→ I ▷◁ J is also a
skew fibration.

Proof. From Definitions 7.2 and 7.3, it immediately follows that f + g is a skew fibration. If
G1 = ∅ = G2, then both f and g are empty functions and f × g is also an empty function. Hence,
it is a skew fibration. If G1 , ∅ , G2, then it follows from Definition 7.3 that f × g is a skew
fibration. □

Lemma 7.5. Let f : G ↪→ H1 ⊎ H2 be a skew fibration. Then f = f1 + f2 for skew fibrations
f1 : G1 ↪→ H1 and f2 : G2 ↪→ H2 with G = G1 ⊎ G2. Let f : G ↪→ H1 ▷◁ H2 be a skew fibration.
Then f = f1 × f2 for skew fibrations f1 : G1 ↪→ H1 and f2 : G2 ↪→ H2 with G = G1 ▷◁ G2.

Proof. This follows immediately from the Definition 7.3 because a skew fibration is a graph ho-
momorphism. □

The vertical composition of homomorphisms f : G → H and g : H → I is defined as function
composition f ◦ g : G → I where every vertex v ∈ VG is mapped to the vertex g( f (v)) ∈ I. As
a result, this composition is a graph homomorphism. However, we can not extend this result to
skew fibrations in the general case.

Example 7.6. Below we show an example of the vertical composition of two skew fibrations
f : G ↪→ H and g : H ↪→ I. However, the composed homomorphism does not satisfy the skew
fibration property. Note that, for simplicity of the presentation, we have labeled vertices inH and
I with the label of their inverse image in the domain of skew fibration, if it exists and otherwise
with a new label. For example, instead of writing f (v) in H we have written v and y is a vertex
that has no inverse image in G so we have used a new vertex label.

G : v x

H : z v x y

I : z v x y
w

Let v ∈ VG and w ∈ VI and vRIw. We can observe that f ◦ g is not a skew fibration since there
exists no vertex u ∈ VG such that we have both vRGu and (u,w) < RI. In fact, the only other vertex
in G is x and we have xRIw.

Upon closer inspection we notice that if the two graphsH and I are cographs, then f ◦ g is a
skew fibration.
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Lemma 7.7. If f : G ↪→ H and g : H ↪→ I are skew fibrations andH , and I are cographs, then
the composition g ◦ f : G ↪→ I is a skew fibration.

Proof. See [49] or [79] for the proof using the relation between skew fibration and additive rules
in deep inference as well as the decomposition theorem on skew fibration. It is important to note
that they include the weaker version of the theorem where we state that G is also a cograph.
However, by proving the theorem directly, proven in Theorem 3 of [65], we observe that this extra
information is not necessary to the proof. We have shown the proof in Appendix B for easier
access. □

7.2 a↓-flows and a↑-flows

Definition 7.8. An a↓-flow is a function-like flowbox ϕ = ⟨A, B, f ↓ϕ ⟩ where A and B are pure and

A ̸≡ t and f ↓ϕ is a skew fibration f ↓ϕ : G(A) → G(B). Similarly, an a↑-flow is a cofunction-like

flowbox ϕ = ⟨C,D, f ↑ϕ ⟩ where C and D are pure and D ̸≡ f and f ↑ϕ is a skew fibration f ↑ϕ : G(D)→
G(C).

An important observation is that checking correctness of a↓-flows and a↑-flows is polynomial
time since one only needs to check that skew fibration property holds for each edge in the co-
domain of the graph homomorphism. Moreover, we will show the soundness and completeness
for a↓-flows and a↑-flows with respect to the additive fragment of classical logic.

Example 7.9. When drawing flowboxes that are a↓-flows or a↑-flows, we use purple arrows to
indicate the direction of the functions. Below are three examples. The first one is an a↑-flow. The
second one is an a↓-flow. The third example is not a skew fibration because in the lower graph
there is an edge between the b and the c, violating the skew fibration property.

(a ∧ (b ∨ c)) ∨ (b ∧ c)

(a ∨ b) ∧ (a ∨ b) ∧ (a ∨ c)

b̄ ∨ b̄ ∨ (b ∧ a) ∨ (b ∧ a)

b̄ ∨ c ∨ ((b ∨ b) ∧ a)

b̄ ∨ b̄ ∨ (b ∧ a) ∨ (b ∧ a)

(b̄ ∧ c) ∨ ((b ∨ b) ∧ a)

When composing flowboxes that are a↓-flows and a↑-flows, we are in a similar situation as
for multiplicative flows in the previous section. In the general case, the horizontal composition of
skew fibrations is not a skew fibration (see side condition in Lemma 7.4) so the side condition in
the following theorem is important. The vertical composition follows from Lemma 7.7.

Theorem 7.10. Let ϕ = ⟨A, B, f ↓ϕ ⟩ and ψ = ⟨C,D, f ↓ψ⟩ be a↓-flows. If A ∧ C and B ∧ D are pure

formulas, then ϕ∧ψ = ⟨A∧C, B∧D, f ↓ϕ × f ↓ψ⟩ is an a↓-flow. If A∨C and B∨D are pure formulas,

then ϕ ∨ ψ = ⟨A ∨ C, B ∨ D, f ↓ϕ + f ↓ψ⟩ is an a↓-flow. The same statements hold for ϕ and ψ as
a↑-flows.

Proof. Let ϕ and ψ be a↓-flows. Then, by Definition 7.16, f ↓ϕ and f ↓ψ are skew fibrations. We

conclude that f ↓ϕ × f ↓ψ is a skew fibration using the fact that A ∧ C and B ∧ D are pure formulas
and Lemma 7.4 therefore ϕ ∧ ψ is an a↓-flow. Similarly, using the fact that A ∨ C and B ∨ D are
pure formulas accompanied by Lemma 7.5, we conclude that f ↓ϕ + f ↓ψ is a skew fibration, therefore
ϕ ∨ ψ is an a↓-flow. If ϕ and ψ are a↑-flows, we use the same arguments with more special care
about skew fibration starting from the graph of conclusion and going to the graph of hypothesis in
an a↑-flow. □
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Theorem 7.11. Let ϕ = ⟨A, B, f ↓ϕ ⟩ and ψ = ⟨B,C, f ↓ψ⟩ be a↓-flows. Then, ϕ ◦ ψ = ⟨A,C, f ↓ψ ◦ f ↓ϕ ⟩

is an a↓-flow and it is obtained by composing f ↓ϕ and f ↓ψ . Let ϕ = ⟨A, B, f ↑ϕ ⟩ and ψ = ⟨B,C, f ↑ψ⟩ be

a↑-flows. Then, ϕ ◦ ψ = ⟨A,C, f ↑ψ ◦ f ↑ϕ ⟩ is an a↑-flow.

Proof. This follows directly from Lemma 7.7. □

Using the two previous theorems, we have an analogous result as for m-flows shown in the
theorems below:

Theorem 7.12. Let
A
D {aw↓,ac↓,m}

B
be a derivation. If A and B are pure, then ⟦T(D)⟧ is an a↓-flow.

Dually, if A and B are pure in
A
D {aw↑,ac↑,m}

B
then ⟦T(D)⟧ is an a↑-flow.

Proof. We prove this theorem by induction on the derivation D. In the base case, a derivation is
either one formula which means that T(D) is an identity flow therefore it is an a↓-flow as well, or
an instance of an additive inference rule (i.e. one of the three rules aw↓, ac↓, and m) for which
T(D) is shown in Figure 5.1 and these flowboxes are indeed a↓-flows. This proof is dual for a↑-
flows and additive inference rules aw↑, ac↑, and m. Moreover, we should note that since A and
B are pure formulas and down rules have a certain shape (specially the non existence of t in this
rules), formulas inside the derivation are pure as well. Now, we proceed to the inductive cases.

If D = D1 ◦ D2 where D1 and D2 are derivations
A

D1 {aw↓,ac↓,m}

C
and

C
D2 {aw↓,ac↓,m}

B
with C as a

pure formula, then by induction hypothesis ⟦T(D1)⟧ and ⟦T(D2)⟧ are a↓-flows. Consequently, by
Theorem 7.11, the flowbox ⟦T(D1 ◦D2)⟧ is an a↓-flow. IfD = D1 ∧D2 is a derivation whereD1

and D2 are derivations
A1

D1 {aw↓,ac↓,m}

B1

and
A2

D2 {aw↓,ac↓,m}

B2

with A1, A2, B1, and B2 as pure formulas,

then by induction hypothesis ⟦T(D1)⟧ and ⟦T(D2)⟧ are a↓-flows which then implies that ⟦T(D)⟧ is
an a↓-flow (using Theorem 7.10 and the fact that A = A1 ∧A2 and B = B1 ∧ B2 are pure formulas).
The same argument applies toD = D1∨D2. The proof for derivations with up rules {aw↑, ac↑,m}
is dual. □

As before, we also have the converse.

Theorem 7.13. Let ϕ = ⟨A, B, f ↓ϕ ⟩ be an a↓-flow. Then there is a derivation
A
D {aw↓,ac↓,m}

B
with

⟦T(D)⟧ = ϕ. Dually, for every a↑-flow ψ = ⟨A, B, f ↑ψ⟩ we have
A
D {aw↑,ac↑,m}

B
with ⟦T(D)⟧ = ψ.

Proof. This follows from one direction of Theorem 7.8 in [79] or Theorem 8.3 in [80]. We can
show the proof for ϕ and for ψ it will be dual. By Definition 7.8, the function f ↓ϕ is a skew fibration

f ↓ϕ : G(A) → G(B). If f ↓ϕ , is an empty function, it means that ϕ is a weakening so we can use a
single w↓ to prove B from A. Now using Thoerem 2.10, we obtain the desired derivation. We
continue for a non-empty function. Let us call a vertex in VG(A) good if it is in the image of f ↓ϕ
, and otherwise bad. For every bad vertex v ∈ VG(A), by skew fibration property, there exists at
least a good vertex that does not have an edge to v. Since there is at least one good vertex ( f ↓ϕ
is non-empty), we have for every bad vertex a a subformula C ∨ D in B such that (i) a is inside
D, (ii) C contains a good vertex, and furthermore (iii) all vertices in D are bad. So we can apply
w↓ to delete D. Let B0 be the formula obtained from B by repeating this process until no bad
vertices remain. Then, for each atom a define na be the number of vertices in VG(A) that f ↓ϕ maps
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to a, and let B1 be the formula obtained from B0 by replacing each a by a ∨ · · · ∨ a where there
are na copies of a. Then there is a derivation from B1 to B0 the ac↓ rule. We can define the skew
fibration f ↓ : G(A) → G(B1) which takes each vertex that f ↓ϕ maps to a to one for the new copies
of a. Now, we can observe that f ↓ is a bijective skew fibration. It follows from [79], Theorem
5.1, that there is a derivation from A to B1 using only m rule. Alternatively, every skew fibration
can be decomposed into a full injective, a full surjective, and a bijective skew fibrations which is
then shown in [49] and [79] correspond to derivations with weakenings, contractins, and medials.
Therefore, using the previous theorem, we can also observe that the translation of such derivations
is in fact the starting flow. □

7.3 A-flows

In this section we define a-flows, firstly introduced in [38] as additive nets, which are a second
approach to show additive flows as we mentioned in the beginning of this chapter. Moreover, we
show that unlike a↓-flows and a↑-flows, a-flows represent the whole additive fragment of classical
logic. From which we can observe that the result of free composition of a↓-flows and a↑-flows is
an a-flows.

We show the completeness and soundness for a-flows using additive deep inference rules
SKSa = {aw↓, ac↓,m, ac↑, aw↑}. We introduce two correctness criteria coalescence and discrete-
ness (pruning) for a-flows. We will observe that these two correctness criterion are different in time
complexity. Coalescence is a polynomial time criterion whereas pruning is exponential. However,
we will show that satisfying each criterion implies the satisfaction of the other.

We continue this section by first building the foundation to the definition of an a-flow. Let A
and B be propositional formulas. A link C � D on A∨ B is a tuple connecting a subformula C of
A to a subformula D of B. An atomic link a� a is when a link is on atom a, i.e. C = a = D. A
linking, denoted as B : A — B is a binary relation on the formula tree T (A∨B) where each element
of the relation is a link. As an example, the well-mated binary relation in a flowbox ϕ = ⟨A, B,Bϕ⟩
is a linking if for every element (a, b), (b, a) ∈ Bϕ, we have that a is an atom occurrence in A and
b is an atom occurrence in b. An axiom linking is a linking with every link as an atomic link.

Definition 7.14. A pruning r 1 for a pure formula A is function choosing one of the two conjuncts
for each conjunction in the minimal pure formula A′ ≡ A, i.e. for a subformula B ∧ C of A′, we
have that either r(B ∧ C) = B or r(B ∧ C) = C. A subformula C of A is retained by r if C is
equivalent to a minimal pure fomrula C′ which is a subformula of the formula Bi (subformula of
A′) where r(B0 ∧ B1) = Bi with i = {0, 1}. A subformula C is discarded if it is not retained by r.
Dual to the pruning, a co-pruning for A chooses on disjunctions. A pruning for formula sequent
A, B is a pair r = (rA, rB) where rA is a co-pruning for A and rB is a pruning for B. A link C � D
in the linking B : A — B is retained by r if C is retained by rA and D is retained by rB.

Definition 7.15. A linking B : A — B is discrete if either of the following statements hols:

• Both formulas A and B are equivalent to some unit-free formula and every pruning for the
formula sequent A, B retains exactly one link C � D ∈ B.

• Either A ≡ f, or B ≡ t (not both) and the linking is empty.

Definition 7.16. We define an a-flow ϕ = ⟨A, B,Bϕ⟩ as a flowbox where A and B are pure formulas
and the well-mated binary relation Bϕ is a discrete linking Bϕ : A — B.

Discreteness is the first correctness criterion for a-flows. However, as we mentioned, we can
observe that it takes exponential time to check whether a flowbox is discrete and this is due to the
fact that pruning needs to check all the possible subformula in hypothesis and conclusion.

1Prunning has first been defined by Dominic J. D. Hughes and Rob J. van Glabbeek in [51] as resolution
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In the following definition we show the second correctness criterion called coalescence crite-
rion which is a simple rewriting procedure with rules that imitate contraction and weakening in
SKS and formula equivalences. We will show that coalescence is confluent on any flow. Moreover,
we will show the relation between coalescence and discreteness.

Definition 7.17. Coalescence is a rewriting system on linkings and the steps are as follows (also
shown in Figure 7.1). Without loss of generality, let B : X — Y be a linking, then we can apply
the following rewriting steps:

• Let A be a subformula of X and B ∨ C be a subformula of Y . If one of the links A� B or
A� C exists, then we replace it with the link A� B ∨C.

• Let A be a subformula of X and B ∧ C be a subformula of Y . If both of the links A � B
and A� C exist, then replace the two links with one link A� B ∧C.

• Let A ∨ B be a subformula of X and C be a subformula of Y . If both of the links A � C
and B� C exist, then we replace both links with one link A ∨ B� C.

• Let A ∧ B be a subformula of X and C be a subformula of Y . If one of the links A� C or
B� C exists, then we replace it with the link A ∧ B� C.

• Let A ∧ t (resp. t ∧ A)be a subformula of X and B be a subformula of Y . If the link A� B
exists, then we replace it with the link A ∧ t� B (resp. t ∧ A� B).

• Let A ∨ f (resp. f ∨ A)be a subformula of X and B be a subformula of Y . If the link A� B
exists, then we replace it with the link A ∨ f� B (resp. f ∨ A� B).

• Let A be a subformula of X and B ∧ t (resp. t ∧ B) be a subformula of Y . If the link A� B
exists, then we replace it with the link A� B ∧ t (resp. A� t ∧ B).

• Let A be a subformula of X and B ∨ f (resp. f ∨ B) be a subformula of Y . If the link A� B
exists, then we replace it with the link A� B ∨ f (resp. A� f ∨ B).

A linking B : A — B, with A and B equivalent to unit-free formulas, weakly coalesces if there
is a sequence of coalescence steps starting with B and ending in a single link A� B. Moreover,
in the case that either A ≡ f or B ≡ t (and not at the same time), we say that B is empty and weakly
coalesces (there is no link to apply coalescence steps on).

It strongly coalesces if any non-empty coalescence sequence terminates in a single link A�
B. It is also important to note that if a B : A — B coalesces, the number of coalescence steps is of
polynomial order with respect to the sum of the number of links and rank of A and B (i.e. |A|+ |B|).

Lemma 7.18. A linking B : A — B that weakly coalesces, is discrete.

Proof. If at least one of the formulas A and B is equivalent to a unit, then we know that the linking
is empty therefore the second statement on Definition 7.15 is holding and B is discrete.

Next, let us assume both A and B are equivalent to unit-free formulas. Let c1, . . . , cn be the
sequence of coalescence steps that ends with a single link A� B. We do induction on n which is
the number of coalescence steps.

1. If n = 0, then no rewriting step is taken which means that there exists exactly one link and
it is the link A� B, therefore B is discrete.

2. if n = 1, we show the theorem for two of the coalescence rewriting steps,⇝c↑ and⇝w↑.
For the other two steps ⇝c↓ and ⇝w↓, the proof is dual. Also, the ⇝≡ steps aid us in
using the equivalences on formulas (note that in discreteness we check the criterion on a
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A

B∨C

⇝w↓

A

B∨C

w↓f

A

B∨C

A

B∧C

⇝c↑

A

B∧C

A∧B

C

⇝w↑

A∧B

C

w↑f

A∧B

C

A∨B

C

⇝c↓

A∨B

C

A

B∨f

⇝≡

A

B∨f

A

B∧t

⇝≡

A

B∧t

A

f∨B

⇝≡

A

f∨B

A

t∧B

⇝≡

A

t∧B

A∨f

B

⇝≡

A∨f

B

A∧t

B

⇝≡

A∧t

B

f∨A

B

⇝≡

f∨A

B

t∧A

B

⇝≡

t∧A

B

Figure 7.1: Coalescence Rules

unit-free equivalent formula). Let us assume that c1 =⇝c↑ which is shown below (note that
B = C ∧ D):

A

C∧D

⇝c↑

A

C∧D

With this assumption, we can conclude that the linking is discrete since there exists only
the two links A � C and A � D and any pruning r retains either C or D (and not both)
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from the conclusion. Now, let us assume c1 =⇝w↑ depicted below (with A = C ∧ D):

C∧D

B

⇝w↑

C∧D

B

Any pruning will retain both C and D from the hypothesis which implies that the linking is
discrete because only the link C � B is rewriting to the link A� B in the step c1.

3. If n > 1, using induction hypothesis on the n − 1 last steps as well as similar arguments to
the previous case we can deduce that B is discrete. □

Lemma 7.19. Coalescence is confluent on discrete linkings.

Proof. We proceed the proof of this Lemma the same as in [40] since the coalesce steps⇝≡ just
help us to apply equivalence on formulas.

Note that every link can be replaced by at most two rewriting steps which means that a critical
point in coalescence steps is when both rewriting steps can happen. We call these two possible
rewriting steps a critical pair. For premise A∧B and conclusion C∨D, a critical pair is as follows
and they both have the following immediate rewriting steps which result in the same link.

A∧B

C∨D

⇝w↓

A∧B

C∨D

⇝

w↑

⇝

w↑

A∧B

C∨D

⇝w↓

A∧B

C∨D

The links A � D, and B � C, and B � D have a similar proof for the same premise and
conclusion. For premise A ∧ B and conclusion C ∧ D a critical pair is:

A∧B

C∧D

c↑f

A∧B

C∧D

⇝w↑

A∧B

C∨D

And both have the following immediate rewriting step which results in the same link.

A∧B

C∧D

⇝w↑

A∧B

C∧D

c↑f

A∧B

C∧D

w↑f

A∧B

C∧D
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The proof for a critical pair where the starting links are B � C and B � D, is the same. The
critical pairs with premise A ∨ B and conclusion C ∨ D can be proven using a dual argument. For
the premise A ∨ B and conclusion C ∧ D, we have the following critical pair:

A∨B

C∧D

c↑f

A∨B

C∧D

⇝c↓

A∨B

C∧D

In order to continue coalescence steps in this critical pair, we need to show that some further
coalescence steps will provide us with a link B � D. Let us assume that the start configuration
of coalescence is the linking B : X — Y . Since coalescence implies discreteness, this linking is
discrete, and any pruning r of X,Y retaining B,D must retain exactly one link. This link must lie
within B,D, since by changing r to choose A rather than B in X, or C rather than D in Y , one of
A � C, A � D, or B � C, is retained. Hence, by discreteness, no other link than the ones
existing in A ∨ B,C ∧D may be retained by r. The links in B,D form a discrete linking, which by
Lemma 7.18 coalesces to a single link B � D. Now using the present link B � D, the critical
pair have the following rewriting steps resulting in the same link.

A∨B

C∧D

⇝c↑

A∨B

C∧D

⇝c↓

A∨B

C∧D

c↑f

A∨B

C∧D

c↓f

A∨B

C∧D

The other cases where either of the links A � C, or A � D, or B � C is not present (while
B� D is already present from the start) follow a similar proof. □

Theorem 7.20. Let B : A ⊢ B be a linking. The following are equivalent:

1. B is discrete.

2. B weakly coalesces.

3. B strongly coalesces.

Proof.

• (1 ⇒ 3) Lemma 7.19 implies that any coalescence sequence that ends in one link, provides
the link A � B. Now we only have to show that there is exists a possible coalescence
step to be applied unless we have only the link A � B. By contradiction let us assume
that after applying some coalescence steps, we arrive at the linking B′ : A — B with no next
possible coalescence step. This means that for every pattern of subformula that are the same
as in w↓ and w↑, there exists no link, and for every pattern the same as c↑ and c↓, there
exists less than two links. We can show immediately that we have a pruning that chooses
the subformulas that have no link. Hence, this pruning is not retaining any links and B′ is
not discrete. However, in proof of Theorem 7.18, we have shown that coalescence steps
keep discreteness. We started from a discrete linking B so we have contradiction and there
exists a coalescence step to apply until we obtain the single link A� B.

• (3⇒ 2) It follows trivially from the Definition 7.17.

• (2⇒ 1) This is shown in proof of Lemma 7.18. □
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Corollary 7.21. The binary relation Bϕ in an a-flow ϕ = ⟨A, B,Bϕ⟩ coalesces.

Proof. Follows from Theorem 7.20 and Definition 7.16. □

Corollary 7.22. If a linking B : A — B is well-mated and coalesces, then the flowbox ϕ = ⟨A, B,B⟩
is an a-flow.

Proof. Follows from Theorem 7.20 and Definition 7.16. □

The following theorems will investigate the compositionality of a-flows. We will show that
a-flows have the same behaviors as other kinds of additive flows. Additionally, we explore the
connection between a-flows, a↓-flows, and a↑-flows (i.e composing a↓-flows and a↑-flows freely
results in a-flows). Furthermore, we will investigate the possibility of decomposing a-flows into
a↑-flows and a↓-flows.

Theorem 7.23. Let ϕ = ⟨A, B,Bϕ⟩ and ψ = ⟨C,D,Bψ⟩ be a-flows. If A ∧ C and B ∧ D are pure
formulas, then ϕ∧ψ = ⟨A∧C, B∧D,Bϕ∪Bψ⟩ is an a-flow. If A∨C and B∨D are pure formulas,
then ϕ ∨ ψ = ⟨A ∨C, B ∨ D,Bϕ ∪ Bψ⟩ is an a-flow.

Proof. Using coalesence steps on ϕ and ψ and Corollary 7.21, we will have the links A � B
and C � D in the case that all formulas are equivalent to unit-free formulas. Below we show
that the linking consisting of these two links on both multi-sets of formulas (A ∨C), B ∨ D and
(A ∧C), B ∧ D coalesces.

A∨C

B∨D

⇝w↓

A∨C

B∨D

⇝w↓

A∨C

B∨D

⇝c↓

A∨C

B∨D

A∧C

B∧D

⇝w↑

A∧C

B∧D

⇝w↑

A∧C

B∧D

⇝c↑

A∧C

B∧D

Hence, by Corollary 7.22 both ϕ ∧ ψ and ϕ ∨ ψ are a-flows. If at least one of the formulas is
equivalent to a unit, then its corresponding corresponding linking is empty. Hence, by hypothesis
we know that A ∧ C and B ∧ D are pure formulas which implies that we can apply⇝≡ steps to
achieve goal link. Hence, ϕ ∧ ψ is an a-flow and the proof for ϕ ∨ ψ is the same. □

Theorem 7.24. Let ϕ = ⟨A, B,Bϕ⟩ and ψ = ⟨B,C,Bψ⟩ be a-flows. Then, ϕ ◦ ψ = ⟨A,C,Bϕ ◦ Bψ⟩
is an a-flow.

Proof. For the case that either of the formulas A, B, or C is equivalent to a unit, we have that either
ϕ or ψ would have empty linking which then implies that ϕ ◦ ψ has empty linking and therefore it
is an a-flow. If A, B, and C are all unit-free formulas, by way of contradiction we assume that ϕ◦ψ
is not an a-flow. So Bϕ ◦Bψ is not discrete which means that there exists a pruning r = (rA, rC) and
more than one link retained by it. Without loss of generality, let two of these links be a1 � c1 and
a2 � c2. We now show that retaining these two links means that either ϕ or ψ is not an a-flow.
Let b1 and b2 be atoms with links a1 � b1 and a2 � b2 in ϕ and links b1 � c1 and b2 � c2 in
ψ. Now we consider prunings r′ = (rA, r′B) on formula sequent A, B and r′′ = (r′′B , rC) on formula
sequent B,C where either r′B or r′′B retains both b1 and b2 (note that this is possible due to the fact
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f
aw↓

a
→

f

a

a
aw↑

t
→

a

t

a ∨ a
ac↓

a
→

a ∨ a

a

a
ac↑

a ∧ a
→

a

a ∧ a

(A ∧ B) ∨ (C ∧ D)
m

(A ∨C) ∧ (B ∨ D)
→

(A ∧ B) ∨ (C ∧ D)

(A ∨C) ∧ (B ∨ D)

Figure 7.2: Rules of SKSa and their translations to a-flows

that r′B is a pruning and r′′B is a co-pruning). Hence, the pruning that is retaining both b1 and b2
is retaining both links therefore either ϕ or ψ is not an a-flow which is in a contradictory with the
hypothesis of the theorem. □

Proposition 7.25. Let ϕ = ⟨A, B,Bϕ⟩ be an a-flow. Then, the flowbox ϕ = ⟨B, A,Bϕ⟩ is an a-flow
(if C � D is a link in Bϕ, then D� C is a link in Bϕ).

Proof. It is straightforward to show that BBϕ is discrete because of the dual nature of pruning and
co-pruning defined in Definition 7.14. Hence, the flowbox ϕ is an a-flow. □

Lemma 7.26. Let idA = ⟨A, A,Bid⟩ be an identity flowbox on a pure formula A, then idA is an
a-flow.

Proof. If A is a unit, there exists no links so idA is an a-flow. Let A be a unit-free formula, we
prove the lemma by induction on A. For A = a where a is an atom, there exists only one link
a� a so idA is an a-flow. If A = B ∧C or A = B ∨C, then by induction hypothesis we have that
idB and idC are a-flows. We continue the proof by the following cases:

• If both B and C are equivalent to unit-free formulas, then the linkings of idB and idC coalesce
to the links B� B and C � C. By using these inductive coalescence steps continued by
the steps shown below in (7.1), we will achieve the single link A� A. Therefore the linking
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Bid coalesces and by Theorem 7.20 and Definition 7.16, the flowbox idA is an a-flow.

B∧C

B∧C

⇝w↑

B∧C

B∧C

⇝w↑

B∧C

B∧C

⇝c↑

B∧C

B∧C

B∨C

B∨C

⇝w↓

B∨C

B∨C

⇝w↑

B∨C

B∨C

⇝c↑

B∨C

B∨C

(7.1)

• If both B and C are equivalent to units, then the linkings are empty and therefore the linking
of idA is also empty.

• If B ≡ t and C is equivalent to a unit-free formula, then we can observe that only A = B∧C
is possible (otherwise A is not pure). So we have the following coalescence steps:

t∧C

t∧C

⇝≡

t∧C

t∧C

⇝≡

t∧C

t∧C

• For B equivalent to a unit-free formula and C ≡ t we have the same proof as the previous
case.

• If B ≡ f and C is equivalent to a unit-free formula (resp. C ≡ f and B equivalent to a unit-free
formula), we continue the proof the same as two previous cases with the slight change that
in this case A = B ∨C. □

Theorem 7.27. Let A and B be pure formulas. If
A
D SKSa

B
is an additive deep inference proof for

the premise A and conclusion B, then ⟦T(D)⟧ is an a-flow.

Proof. By Lemma 7.26, identity flows are a-flows so the translation of identity and equivalence
rules is an a-flow. Now, We use induction on the size of the proof. If the proof is only one rule from
SKSa, then we use the translation of that rule shown in Figure 7.2. We should show that the linking
shown in each translation coalesces. This is straightforward for the weakening and contraction
rules due to the fact that they are instances of coalescence rules. Figure 7.3 demonstrates the
steps for checking the correctness of the translation of the medial rule. By Theorem 7.20 and
Definition 7.16, translation of each additive deep inference rule to a flowbox is an a-flow. Now
using Theorem 7.24, we can deduce that the vertical composition of these translations, i.e ⟦T(D)⟧,
is an a-flow. □

As we showed in the previous section, we can compose a↓-flows (resp. a↑-flows) but the
composition of a↓-flows and a↑-flows freely was not investigated. In fact with the introduction of
a-flows we show that this composition is possible. The following lemma puts the foundation for
such claim.
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(A ∧ B) ∨ (C ∧ D)

(A ∨ C) ∧ (B ∨ D)

⇝∗id

(A ∧ B) ∨ (C ∧ D)

(A ∨ C) ∧ (B ∨ D)

⇝aw↓

(A ∧ B) ∨ (C ∧ D)

(A ∨ C) ∧ (B ∨ D)

⇝aw↓

(A ∧ B) ∨ (C ∧ D)

(A ∨ C) ∧ (B ∨ D)

⇝aw↓

(A ∧ B) ∨ (C ∧ D)

(A ∨ C) ∧ (B ∨ D)

⇝aw↓

(A ∧ B) ∨ (C ∧ D)

(A ∨ C) ∧ (B ∨ D)

⇝aw↑

(A ∧ B) ∨ (C ∧ D)

(A ∨ C) ∧ (B ∨ D)

⇝aw↑

(A ∧ B) ∨ (C ∧ D)

(A ∨ C) ∧ (B ∨ D)

⇝aw↑

(A ∧ B) ∨ (C ∧ D)

(A ∨ C) ∧ (B ∨ D)

⇝aw↑

(A ∧ B) ∨ (C ∧ D)

(A ∨ C) ∧ (B ∨ D)

⇝∨

(A ∧ B) ∨ (C ∧ D)

(A ∨ C) ∧ (B ∨ D)

⇝∨

(A ∧ B) ∨ (C ∧ D)

(A ∨ C) ∧ (B ∨ D)

⇝∧

(A ∧ B) ∨ (C ∧ D)

(A ∨ C) ∧ (B ∨ D)

Figure 7.3: Correctness of the a-flow ϕ = ⟨(A ∧ B) ∨ (C ∧ D), (A ∨C) ∧ (B ∨C),Bϕ⟩ for a medial rule

Lemma 7.28. An a↓-flow ϕ = ⟨A, B, f ↓ϕ ⟩ is an a-flow. Similarly, an a↑-flow ψ = ⟨A, B, f ↑ψ⟩ is an
a-flow.
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Proof. By Theorem 7.13, there exists a derivation
A
D {ac↓,aw↓,m}

B
such that ⟦T(D)⟧ = ϕ and by using

soundness of a-flows shown in Theorem 7.27, ⟦T(D)⟧ is an a-flow (Note that the translation of
down additive inference rules are the same for a-flows and a↓-flows). Proof for ψ is similar. □

Corollary 7.29. The vertical and horizontal composition of several a↓-flows and a↑-flows is pos-
sible and the result is an a-flow.

Proof. Follows from applying Theorems 7.23 and 7.24 to Lemma 7.28. □

Furthermore, we show that a-flows can be decomposed to a↓-flows and a↑-flows which lays
the foundation to prove the correctness of a-flows through decomposition. It is important to note
that the decomposition theorem respects a certain order shown in [79]

Theorem 7.30. Let ϕ = ⟨A,C,Bϕ⟩ be an a-flow. Then, we can decompose ϕ to an a↑-flow ψ =

⟨A, B, f ↑ψ⟩ and an a↓-flow χ = ⟨B,C, f ↓χ ⟩ where ϕ = ψ ◦ χ.

Proof. Let ϕ = ⟨A,C,Bϕ⟩ be an a-flow. With the following polynomial time algorithm on the
formula C, we will create a pure formula B:

• put B0 B C and i = 0

• for each atom occurrence a in C:

– let n be the number of links connected to a
– increase i by 1
– write the formula Bi as substitution of atom a in Bi−1 with a ∨ · · · ∨ a︸      ︷︷      ︸

n times

, denoted as

Bi B Bi−1[a/ a ∨ · · · ∨ a︸      ︷︷      ︸
n times

] (as an example if we have the formula a ∧ (b ∨ a) and

we want to apply the substitution on the first occurrence of a a, we will have that
a ∧ (b ∨ a)[a/a ∨ a] is equal to the formula (a ∨ a) ∧ (b ∨ a)).

This algorithm terminates in polynomial time with respect to |C| and we write B = Bi where Bi is
the last formula obtained by the algorithm. Now we set ψ to be the tuple ⟨A, B, f ↑ψ⟩where f ↑ψ (b) = a
if the link b� a is in Bϕ. Note that in the case that an atom is substituted with copies of it in B,
then each copy should only have one link. We show such an occurrence below where a is replaced
by two copies and each copy has one link:

b ∧ (a ∨ a)

b ∧ b ∧ a

−→

b ∧ (a ∨ a)

b ∧ b ∧ (a ∨ a)

Next, we set χ to be the tuple ⟨B,C, f ↓χ ⟩ where f ↓χ (b) = c if either b is an atom occurrence in A and
the link b � c is in Bϕ, or b is one of the instances of c after duplication during the alogirthm.
Below we show an example of χ with the same ϕ as the previous example:

b ∧ (a ∨ a)

b ∧ b ∧ a

−→

b ∧ b ∧ (a ∨ a)

b ∧ b ∧ a
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Based on how we decomposed ϕ into ψ and χ, it is straightforward to show ϕ = ψ ◦ χ since we
have kept all the links as they are and duplicated instances of atoms. It only remains to show that
ψ is an a↑-flow and χ is an a↓-flow. The algorithm provides B in a way that every edge is preserved
in f ↓χ and by the definition of χ we can observe that f ↓χ is a full homomorphism. Consequently,
the flowbox χ is an a↓-flow. Next, we prove that ψ is an a↑-flow. To start, we can show that f ↑ψ
is a function since every atom occurrence has only one link based on how we defined ψ and B.
We also have to prove that f ↑ψ is a homomorphism. We continue by way of contradiction. Let a

and b be atom occurrences in B where aR
G(B)b but ( f ↑ψ (a), f ↑ψ (b)) < R

G(B) which means one of the

following configuration happens (in the left case f ↑ψ (a) = f ↑ψ (b)):

f ↑ψ (a) ∧ f ↑ψ (b)

a ∨ b

or

f ↑ψ (a)

a ∨ b

However, there is no coalescence steps applicable into any of the two configurations that could
resolve these links which is in contradiction with the fact that ϕ is an a-flow using Theorem 7.20
and Definition 7.16. Hence, the function f ↑ψ is a homomorphism and it remains to show that it
holds the skew fibration property. Let v ∈ G(B) and w ∈ G(A) be vertices with labels l(v) = a and
l(w) = b where f ↑ψ (v)R

G(A)w. By way of Contradiction let us assume for all vertices z ∈ G(B) such

that vR
G(B)z, there exists the edge f ↑ψ (z)R

G(A)w which means the following configuration exists in
ϕ:

b ∨ a ∨C

a ∨C

This configuration does not coalesce, the same as the previous two configurations it results in a
contradiction from which we can conclude that f ↑ψ is a skew fibration. Therefore, the flowbox ψ is
an a↑-flow. □

Remark 7.31. Note that the decomposition is not unique and if the algorithm in the proof of the
previous theorem is changed to a dual algorithm on the hypothesis formula, the middle formula
will be different and the reason behind this is that medial rules can act as both a↑-flows and a↓-flows
which results in several possibilities of decomposition. We show an example of such different
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decompositions below:

(b ∧ a) ∨ (b ∧ a)

b ∧ b ∧ a

−→

(b ∧ a) ∨ (b ∧ a)

(b ∧ b ∧ a) ∨ (b ∧ b ∧ a)

b ∧ b ∧ a

↓

(b ∧ a) ∨ (b ∧ a)

(b ∨ b) ∧ (b ∨ b) ∧ (a ∨ a)

b ∧ b ∧ a

Example 7.32. Below we show an example of an a-flow and its decomposition to an a↑-flow and
a↓-flow.

a

a ∧ (b ∨ a)

−→ a ∧ a

a ∧ (b ∨ a)

a

Note that decomposition is done in a very specific order which also serves for the purpose
of normalization and the normal form of flows, in Chapter 9, which are of size exponential with
respect to the original flow. A result of such behavior is that composing a↓-flows and a↑-flows to
obtain an a-flow and then decomposing this a-flow to an a↑-flow and an a↓-flow will not result in
the same thing. However, decomposing an a-flow and then composing it back has the same result
as the original a-flow. We show this with the example below:
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a ∨ a

a ∧ a

−→

a ∨ a

(a ∨ a) ∧ (a ∨ a)

a ∧ a

−→

a ∨ a

a ∧ a

a ∨ a

a

a ∧ a

−→

a ∨ a

a ∧ a

−→

a ∨ a

(a ∨ a) ∧ (a ∨ a)

a ∧ a

Theorem 7.33. Let ϕ = ⟨A, B,Ba− f lowϕ⟩ be an a-flow. Then, there exists a derivation
A
D SKSa

B
where ⟦T(D)⟧ = ϕ.

Proof. Using theorem 7.30, we show that a-flows can be decomposed into a↑-flows and a↓-flows.
Now, by Theorem 7.13 we have the derivation D and also ⟦T(D)⟧ is in fact equal to ϕ (we use
Corollary 7.29 to prove that that the composition of the translation of rules is indeed ϕ). □
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CHAPTER 8

Combinatorial Flows

Definition 8.1. A combinatorial flow is a preflow ϕ : A ⊢ B where every flowbox that occurs in
ϕ is either a multiplicative flow or an additive flow (note that this includes a↓-flows, a↑-flows, and
a-flows). We define the size of a combinatorial flow, denoted as |ϕ|, as the number of flowboxes
that are not identity or equivalence flows.

Lemma 8.2. Let ϕ : A ⊢ B be a combinatorial flow. Then, there exists a combinatorial flow
ψ : B ⊢ A and we can obtain it in linear time with respect to size of the combinatorial flow.

Proof. Straightforward using Propositions 6.3 or 7.25. □

Theorem 8.3. LetD be a derivation in SKS. Then T(D) is a combinatorial flow.

Proof. Using theorems 6.9, 7.12, and 7.27, we translate each block of multiplicative and additive
rules to m-flows, a↓-flows, a↑-flows, and a-flows. Hence, based on Definition 8.1, the preflow
T(D) is a combinatorial flow. □

We can simplify combinatorial flows by “executing” the operations in Definition 5.7. More
precisecly, a simplification of a combinatorial flow ϕ : A ⊢ B to a combinatorial flow ψ : A ⊢ B
is the binary relation, denoted as ϕ →s ψ, where ψ is obtained from ϕ by collapsing subflows in
which all flowboxes have the same type (m-flow, a↓-flow, a↑-flow, or a-flows).

Note that the difference between the collapse (which is uniquely determined) and a simplifi-
cation (which is not uniquely determined) is that in the former everything is simplified, wheras in
the latter the property of being a combinatorial flow is preserved.

Proposition 8.4. Let ϕ : A ⊢ B and ψ : A ⊢ B be combinatorial flows with ϕ→s ψ. Then, size of ψ
is smaller or equal to ψ (i.e. |ψ| ≤ |ϕ|).

Proof. Straightforward using Definitions 8.1 and 5.9. □

Combinatorial flows are equivalent modulo the following equivalences:

(ϕ6 ψ) � (ξ 6 π) ≡ (ϕ� ξ) 6 (ψ� π) (ϕ6 ψ) 6 ξ ≡ ϕ6 (ψ6 ξ)
(ϕ7 ψ) � (ξ 7 π) ≡ (ϕ� ξ) 7 (ψ� π) (ϕ7 ψ) 7 ξ ≡ ϕ7 (ψ7 ξ)

ϕ� ψ ≡ ψ� ϕ (ϕ� ψ) � ξ ≡ ϕ� (ψ� ξ)
ϕ6 ψ ≡ ψ6 ϕ id � ϕ ≡ ϕ ≡ ϕ� id

ϕ7 ψ ≡ ψ7 ϕ

(8.1)

Now, we can state the converse of Theorem 8.3.



Chapter 8. Combinatorial Flows

a ∨ a
ac↓

a
aw↓

t
ai↓

ā ∨ a
∧ (a ∨ ā)

s

ā ∨

a ∧ (a ∨ ā)
s

a ∨
a ∧ ā

ai↑
f

∧

a ∧ a
ai↑

f
aw↓

a

s

a ∨
ā ∧ a

ai↑
f

a ∨ a

a

a ∨ ā

7

t

(ā ∨ a) ∧ (a ∨ ā)

7

ā

ā

6

a ∧ (a ∨ ā)

a ∧ ā

f

a

a

6

f

a

a ∧ ā

a ∨ (ā ∧ a)

a

6

f

Figure 8.1: An open deduction derivation with hypothesis (a ∨ a) ∧ (a ∧ a) and conclusion a ∨ f, and its
translation to a preflow with colors

Theorem 8.5. Let ϕ : A ⊢ B be a combinatorial flow. Then there is a derivation
A
D SKS

B
such that

ϕ→s T(D).

Proof. This follows immediately from Theorems 6.10, 7.13, and 7.33 since every flowbox in ϕ is
either a multiplicative flow (i.e. an m-flow), or an additive flow (i.e. an a↓-flow, or an a↑-flow, or
an a-flow). □

Example 8.6. Figure 8.1 shows an open deduction derivation D on the left and we show its
translation T(D) on the right. Now we can further simplify it to obtain the combinatorial flow
shown in Figure 8.2 on the left.

Corollary 8.7. Combinatorial flows are sound and complete for classical logic.

Corollary 8.8. Combinatorial flows form a proof system in the sense of Cook and Reckhow [17].
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a ∨ a a ∧ ā

a ∨ ā

ā ∨ a

7
f

a

a ∨ f

(a ∨ a) ∧ (a ∧ ā)

a ∧ ā

f

(ā ∨ a) ∧ a

a ∨ f

Figure 8.2: A simplification of the combinatorial flow in Figure 8.1 and its purification

Proof. It can be checked in polynomial time if a preflow is a combinatorial flow. □

Example 8.9. Figure 8.11 (p. 88) shows a series of combinatorial flows, where we apply “Curry-
ing”: flipping some premises to the conclusion or vice versa. Because blue wires can be yanked,
this is easily possible, and by Theorem 8.5 there is always a corresponding derivation. However,
in the last combinatorial flow shown in the figure, there are two blue bends that are connected by
a purple edge. Therefore, this blue wires can not be yanked:

, vs. =

8.1 Combinatorial Proofs with Cuts

Definition 8.10. A combinatorial proof [47] of a pure formula A is a skew fibration f : H → G(A)
from an æ-acyclic RB-cographH to the graph of A.1

Translated to the setting of this thesis, a combinatorial proof is the composition ϕ � ψ of an
m-flow ϕ = ⟨t,H,Bϕ⟩ and an a↓-flow ψ = ⟨H, A, f ↓ψ⟩. In other words, combinatorial proofs are a
special case of combinatorial flows that make a global separation between the multiplicative and
the additive parts of a cut-free proof. In order to deal with cuts, the notion of combinatorial proof
has been extended to sequents in [49].

Definition 8.11. A combinatorial proof with cuts of a sequent Γ = A1, . . . , An of unit-free formu-
las is a skew fibration f : H → G(A1 ∨ · · · ∨ An ∨ (C1 ∧C1) ∨ · · · ∨ (Ck ∧Ck)) from an æ-acyclic
RB-cograph H to the graph of Γ,C1 ∧ C1, . . . ,Ck ∧ Ck, where C1, . . . ,Ck are arbitrary unit-free
formulas and are called the cut formulas of the proof.

These cuts can be simulated by an m-flow in combinatorial flows. More precisely, assume we
have a combinatorial proof with cuts for a sequent Γ = A, B, as shown on the left in Figure 8.3.
We have that H = HA ∨ HB and ψ = ψA 6 ψBC because of Lemma 7.5. We can translate this into
a combinatorial flow ϕ : A ⊢ B, as shown on the right in Figure 8.3. There, the m-flow ϕ′ exists by
Proposition 6.3.

1In [47], the units t and f are treated like atoms in the translation to graphs, so that the restriction to pure formulas
was not needed. However, this would make composition difficult to define, and for this reason in [49] combinatorial
proofs have been restricted to the unit-free setting.
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t

ϕ

HA ∨ HB

A ∨ B ∨ (C1 ∧C1) ∨ · · · ∨ (Cn ∧Cn)

ψ↓A 6 ψ↓BC

−→

A

ψ↑A

HA

ϕ′

HB

ψ↓BC

B ∨ (C1 ∧ C̄1) ∨ · · · ∨ (Cn ∧ C̄n)

B

Figure 8.3: Translating combinatorial proofs with cuts into combinatorial flows.

We are now going to show the converse, i.e., we will give a polynomial translation from
combinatorial flows to combinatorial proofs with cuts. For this, we have to be a bit more careful
with the units, as combinatorial proofs with cuts are only defined for unit-free formulas. We let
z0 be a fresh propositional variable, and we define the function (·)o on pure formulas as follows:
If A ≡ B for some unit-free formula B, then Ao = B. If A ≡ t, then Ao = z0 ∨ z0. If A ≡ f,
then Ao = z0 ∧ z0. Now assume we have a combinatorial flow ϕ : A ⊢ B, We can translate this
inductively into a combinatorial proof with cuts of the sequent Γ = Ao, Bo.

1. First, every m-flow, a↓-flow, and a↑-flow can be immediately translated into a combinatorial
proof. For the cases ⟨A, B,Bϕ⟩ and ⟨A, B, f ↓ψ⟩ and ⟨A, t, f ↑ψ⟩ these are shown below. The
others are similar.

Ā ∨ B

Ā ∨ B

t

Ā ∨ A

Ā ∨ B

t

z̄0 ∨ z0

z̄0 ∨ z0 ∨ Ā

t

2. if ϕ = ⟨A, B,Bϕ⟩, first we decompose it to an a↑-flow ψ = ⟨A, X, f ↑ψ⟩ and an a↓-flow χ =

⟨X, B, f ↓χ ⟩ where ϕ = ψ ◦ χ, by using the algorithm shown in Theorem 7.30. Hence, we have
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the following combinatorial proof:

X̄ ∨ X

Ā ∨ B

t

3. If ϕ = ϕ1 7 ϕ2 with ϕ1 : A1 ⊢ B1 and ϕ2 : A2 ⊢ B2 then we have by induction hypothesis
combinatorial proofs with cuts of Γ1 = Ao

1, B
o
1 and Γ2 = Ao

2, B
o
2. By the construction in [49],

we get one with conclusion Γ = Ao
1, A

o
2, B

o
1∧Bo

2 which is equivalent to (A1∨A2)o, (B1∧B2)o.
The case for ϕ = ϕ1 6 ϕ2 is similar.

4. If ϕ = ϕ1 � ϕ2 with ϕ1 : A ⊢ D1 and ϕ2 : D2 ⊢ B with D1 ≡ D2, we proceed similarly, with
the difference that we add a new cut formula Do

1. Note that G(Do
1) = G(Do

2) and Do
1 ∧ Do

1 is
added to the conclusion sequent.

8.2 Combinatorial Flows and Other Proof Systems

In the beginning of this chapter we have shown combinatorial flows as well as their soundness and
correctness using a translation function from deep inference derivations to combinatorial flows. In
order to take closer steps to answering the problem of proof equivalence, we need to investigate the
possibility of having a translation from other proof systems such as Sequent Calculus and Natural
Deduction (due to [25, 26]), shown in Chapter 2, Sections 2.2, and 2.1. We go into more details
for each of these two formalisms in the two following sections.

8.2.1 Sequent Calculus

In this section, first we define a translation function from sequent calculus derivations to combi-
natorial flows. We also show that this translation keeps the flow in polynomial size with respect to
the size of the derivation (i.e. the number of rules as well as the size of the formulas used in the
proof).

Definition 8.12. The translation Tsc of a sequent calculus derivation D : Γ ⊢SC ∆, denoted as
Tsc(D) : ∧ Γ ⊢ ∨∆, is the preflow inductively obtained as follows and we depict this procedure as
shown below:

D

Γ⇒ ∆

−→

∧Γ

∨∆

Tsc(D)

If D is only an axiom rule proving the sequent Γ, A ⇒ A,∆, then Tsc(D) returns the following
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combinatorial flow:

ax
Γ, A⇒ A,∆

−→

∧Γ ∧ A

A

A

∨∆ ∨ A

If D is not just one axiom rule, Figures 8.4, 8.5, 8.6, and 8.7 show the inductive translation the
preflow Tsc(D).

Theorem 8.13. If D : Γ ⊢SC ∆ is a sequent calculus derivation for the sequent Γ ⇒ ∆, then
Tsc(D) : ∧Γ ⊢ ∨∆ is a combinatorial flow and the size of Tsc(D) is of polynomial size with respect
to the size ofD.

Proof. The translation function is shown in Figures 8.6, 8.4, 8.5, and 8.7 and as shown in Def-
inition 8.12, this function provides a combinatorial flow inductively from the hypothesis to con-
clusion. Moreover, we can observe that the size of the combinatorial flow (i.e. the number of
flowboxes in the flow and size of their hypothesis and conclusion)is of polynomial size with re-
spect to the number of rules and size of formulas inD. □

Example 8.14. Let D be the sequent calculus derivation proving a ∧ (b ∨ c) ⊢SC (a ∧ b) ∨ c
shown below left. Then, using the translation function shown in Definition 8.12, we can provide
the translated combinatorial flow Tsc(D) shown below right.

ax
a, a⇒ a

¬L
a, a, a⇒

∧Lm
a, a ∧ a⇒

ax
a⇒ a

∨Lm
a ∨ a, a ∧ a⇒ a

−→

a

a

6

f

a ∧ a

a

7

ā

ā

(a ∨ a) ∧ a ∧ ā

8.2.2 Natural Deduction

In this section we show the correspondence between Natural Deduction [25, 26, 53, 67] and Com-
binatorial flows.

As shown in Chapter 2, in natural deduction, a formula is deduced from a collection of
premises by applying inference rules repeatedly. Figure 2.1 shows the inference rules for natu-
ral deduction for classical propositional logic. We utilize an extra connective (i.e. implication)
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Dl

Γ⇒ ∆, A

Dr

Σ⇒ Π, B
∧Rm

Γ,Σ⇒ ∆,Π, A ∧ B

−→

∧Γ

∨∆ ∨ A

Tsc(Dl)

∧Σ

∨Π ∨ B

Tsc(Dr)7

∨∆ ∨ (∨Π) ∨ (A ∧ B)

D′

Γ, A, B⇒ ∆
∧Lm

Γ, A ∧ B⇒ ∆

−→

∧Γ ∧ (A ∧ B)

∆

Tsc(D′)

Dl

Γ⇒ ∆, A

Dr

Γ⇒ ∆, B
∧Ra

Γ⇒ ∆, A ∧ B

−→

∧Γ

∧Γ

∨∆ ∨ A

Tsc(Dl)

∧Γ

∨∆ ∨ B

Tsc(Dr)7

∨∆ ∨ (∨∆) ∨ (A ∧ B)

∨∆ ∨ (A ∧ B)

D′

Γ, A⇒ ∆
∧La

Γ, A ∧ B⇒ ∆

−→ ∧Γ ∧ A

∨∆

Tsc(D′)

∧Γ ∧ (A ∧ B)

D′

Γ, B⇒ ∆
∧La

Γ, A ∧ B⇒ ∆

−→ ∧Γ ∧ B

∨∆

Tsc(D′)

∧Γ ∧ (A ∧ B)

Figure 8.4: Translation of ∧ logical rules of sequent calculus to combinatorial flows
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D′

Γ⇒ ∆, A, B
∨Rm

Γ⇒ ∆, A ∨ B

−→

∧Γ

∨∆ ∨ (A ∨ B)

Tsc(D′)

Dl

Γ, A⇒ ∆

Dr

Σ, B⇒ Π
∨Lm

Γ,Σ, A ∨ B⇒ ∆,Π

−→ ∧Γ ∧ A

∨∆

Tsc(Dl)

∧Σ ∧ B

∨Π

Tsc(Dr)6

∧Γ ∧ (∧Σ) ∧ (A ∨ B)

D′

Γ⇒ ∆, A
∨Ra

Γ⇒ ∆, A ∨ B

−→

∧Γ

∨∆ ∨ A

Tsc(D′)

∨∆ ∨ (A ∨ B)

D′

Γ⇒ ∆, B
∨Ra

Γ⇒ ∆, A ∨ B

−→

∧Γ

∨∆ ∨ B

Tsc(D′)

∨∆ ∨ (A ∨ B)

Dl

Γ, A⇒ ∆

Dr

Γ, B⇒ ∆
∨La

Γ, A ∨ B⇒ ∆

−→

∧Γ ∧ (A ∨ B)

∧Γ ∧ (∧Γ) ∧ (A ∨ B)

∧Γ ∧ A

∨∆

Tsc(Dl)

∧Γ ∧ B

∨∆

Tsc(Dr)6

∨∆

Figure 8.5: Translation of ∨ logical rules of sequent calculus to combinatorial flows
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D′

Γ, A⇒ ∆
¬R

Γ⇒ ∆, A

−→ ∧Γ ∧ A

∨∆

Tsc(D′)

Ā

Ā

6

∧Γ

D′

Γ⇒ ∆, A
¬L

Γ, A⇒ ∆

−→

∧Γ

∨∆ ∨ A

Tsc(D′)

Ā

Ā

7

∨∆

Dl

Γ⇒ ∆, A

Dr

Γ, A⇒ ∆
cut

Γ⇒ ∆

−→

∧Γ

∧Γ

∨∆ ∨ A

Tnd(Dl)

∧Γ

∧Γ

7

∨∆ ∨ (A ∧ (∧Γ))

∨∆ ∨∆

Tnd(Dr)6

∨∆

Figure 8.6: Translation of ¬ logical rules and cut rule of sequent calculus to combinatorial flows
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D′

Γ⇒ ∆, A, A
cR

Γ⇒ ∆, A

−→

∧Γ

∨∆ ∨ A ∨ A

Tsc(D′)

∨∆ ∨ A

D′

Γ, A, A⇒ ∆
cL

Γ, A⇒ ∆

−→

∧Γ ∧ A

∧Γ ∧ A ∧ A

∨∆

Tsc(D′)

D′

Γ⇒ ∆
wR

Γ⇒ ∆, A

−→

∧Γ

∨∆

Tsc(D′)

∨∆ ∨ A

D′

Γ⇒ ∆
wL

Γ, A⇒ ∆

−→

∧Γ ∧ A

∧Γ

∨∆

Tsc(D′)

Figure 8.7: Translation of structural rules of sequent calculus to combinatorial flows

in the language when we consider natural deduction, shown in Section 2.1, and we will use the
implication interpretation (i.e. A → B B A ∨ B) to translate formulas in natural deduction proofs
to formulas in the language of propositional classical logic.2

Definition 8.15. The translation Tnd of a natural deduction derivation D : Γ ⊢NK A, denoted as
Tnd(D) : ∧ Γ ⊢ A, is the preflow inductively obtained as follows and we depict this procedure as
shown below:

Γ

D

A

−→

∧Γ

A

Tnd(D)

If D is a formula A, then Tnd(D) is the identity flowbox idA, otherwise we show the inductive
translation Tnd(D) in Figures 8.8, 8.10, and 8.9.

It is important to note that in a translation of a rule such as ex shown below, we have assumed
that the formula A, which is discharged, occurs only once in the hypothesis of the derivation.

2Note that implication is generally present in the language. However, we base this thesis on the deep inference
syntax which uses negation normal form of formulas and implication connective is not discussed if not needed, which
is the case for classical propositional logic.
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Γ, [A]

D′

f
ex

A

−→

Γ

∧Γ ∧ Ā

f

Tnd(D′)

A

A

6

A

However, this is not always the case and we can assume that A is presenting more occurrences.
As an example below, we show the translation if there is two such occurrences. The solution is to
add a co-contraction on top to get rid of multiple copies of A.

∧Γ

∧Γ ∧ Ā ∧ Ā

f

Tnd(D′)

∧Γ ∧ Ā A

A

6

A

Theorem 8.16. If D : Γ ⊢NK A is a natural deduction derivation from set of hypothesis Γ to
conclusion A, then Tnd(D) : ∧Γ ⊢ A is a combinatorial flow and the size of Tnd(D) is of polynomial
size with respect to the size ofD.

Proof. By Definition 8.15, we can observe that the translation of each rule returns a combinatorial
flow inductively. Moreover, we can observe that the size of the translation is of polynomial size
with respect to the size ofD. □

Example 8.17. LetD be a natural deduction derivation proving a∧ (b∨ c) ⊢NK (a∧ b)∨ c shown
below left. Then, using the translation function shown in Definition 8.15, we can provide the
translated combinatorial flow Tnd(D) shown below right. Note that the sequent calculus derivation
in Example 8.14 (78) has the same hypothesis and conclusion. However, the translation is not the
same combinatorial flow as in this example. Therefore, one can conclude that these two proofs are
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not equivalent.

(a ∨ a) ∧ (a ∧ a)
∧Er

a ∧ a
∧El

a

−→

(a ∨ a) ∧ a ∧ ā

a

Below, we show another example that utilizes discharge on several copies of one formula at the
same time. Observe that the combinatorial flow shown is a simplified translation and there exists
an a-flow which is the composition of several identity flows, a↓-flows, and a↑-flows.

[a ∧ (b ∨ c)]2

∧Er
b ∨ c

[a ∧ (b ∨ c)]2

∧El
a [b]1

∧I
a ∧ b

∨Il
(a ∧ b) ∨ (a ∧ c)

[a ∧ (b ∨ c)]2

∧El
a [c]1

∧I
a ∧ c

∨Ir
(a ∧ b) ∨ (a ∧ c)

∨E1
(a ∧ b) ∨ (a ∧ c)

→ I2
(a ∧ (b ∨ c))→ ((a ∧ b) ∨ (a ∧ c))

↓

ā ∨ (b̄ ∧ c̄)

ā ∨ (b̄ ∧ c̄)

6

(a ∧ (b ∨ c) ∧ b) ∨ (c ∧ a ∧ (b ∨ c))

(a ∧ b) ∨ (a ∧ c)

a ∧ (b ∨ c) ∧ (b ∨ c) ∧ a ∧ (b ∨ c)

a ∧ (b ∨ c)

t
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Γ

Dl

A

∆

Dr

B
∧I

A ∧ B

−→

∧Γ

A

Tnd(Dl)

∧∆

B

Tnd(Dr)7

Γ

D′

A ∧ B
∧El

A

−→

∧Γ

A ∧ B

Tnd(D′)

A

Γ

D′

A ∧ B
∧Er

B

−→

∧Γ

A ∧ B

Tnd(D′)

B

Γ

D′

A
∨Il

A ∨ B

−→

∧Γ

A

Tnd(D′)

A ∨ B

Γ

D′

B
∨Ir

A ∨ B

−→

∧Γ

B

Tnd(D′)

A ∨ B

Γ

Dl

A ∨ B

∆, [A]

Dm

C

Σ, [B]

Dr

C
∨E

C

−→

∧∆

∧∆

7

∧Γ

A ∨ B

Tnd(Dl) 7

∧Σ

∧Σ

(∧∆ ∧ A) ∨ (∧Σ ∧ B)

C

Tnd(Dm) 6

C

Tnd(Dr)

C

Figure 8.8: Translation of conjunctive and disjunctive rules of natural deduction to combinatorial flows
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Γ, [A]

D′

f
¬I

A

−→

∧Γ

∧Γ ∧ A

f

Tnd(D′)

Ā

Ā

6

Ā

Γ

Dl

A

∆

Dr

A
¬E

f

−→

∧Γ

A

Tnd(Dl)

∧∆

Ā

Tnd(Dr)7

f

Γ, [A]

D′

B
→ I

A→ B

−→

∧Γ

Ā

Ā

∧Γ ∧ A

B

Tnd(D′) 6

Γ

Dl

A

∆

Dr

A→ B
→ E

B

−→

∧Γ

A

Tnd(Dl)

∧∆

Ā ∨ B

Tnd(Dr)7

B

Figure 8.9: Translation of negation and implication rules of natural deduction to combinatorial flows
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Γ, [A]

D′

f
ex

A

−→

Γ

∧Γ ∧ Ā

f

Tnd(D′)

A

A

6

A

Γ

D′

f
fE

A

−→

∧Γ

f

Tnd(D′)

A

Figure 8.10: Translation of the rules ex and fE of natural deduction to combinatorial flows
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(b̄ ∨ a) ∧ (ā ∨ b̄)

b̄ ∨ b̄

(b̄ ∧ b̄) ∨ (b̄ ∧ b̄)

b̄ ∧ b̄

(b̄ ∧ a) ∨ (ā ∧ b̄)

→

b̄ ∨ a

(b̄ ∨ b̄) ∨ (b ∧ a)

(b̄ ∧ b̄) ∨ (b̄ ∧ b̄)

b̄ ∧ b̄

(b̄ ∧ a) ∨ (ā ∧ b̄) b ∧ a

→

b̄ ∨ a

(b̄ ∨ (b̄ ∧ b̄)) ∨ ((b ∨ b) ∧ a)

b̄ ∧ b̄ (b̄ ∧ b̄) ∨ ((b ∨ b) ∧ a)

b̄ ∧ b̄

(b̄ ∧ a) ∨ (ā ∧ b̄) b a

→

b̄ ∨ a

(b̄ ∨ (b̄ ∧ b̄)) ∨ ((b ∨ b) ∧ a)

b̄ ∧ b̄ (b̄ ∧ b̄) ∨ ((b ∨ b) ∧ a)

b̄ ∧ b̄

b a

ā ∨ b

ā ∨ b

ā ∨ b

ā ∧ b̄

Figure 8.11: Example of applying “Currying” to a combinatorial flow.
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CHAPTER 9

Normalization

In Chapter 2, we have introduced normal form of proofs especially for the proof systems deep
inference, sequent calculus, and natural deduction as well as their applications in proof theory.
As we mentioned before, normal proofs are viewed as a way of approaching the proof identity
problem. Moreover, we gain more understanding of proofs and their structure by studying nor-
malization.

So far, we have shown how to normalize the compositions of m-flows and a-flows. However,
as soon as these elements of combinatorial flows are composed freely, we need to take other
approaches than naive composition. In fact, we have observed in Chapter 7 that it is not possible
to compose a↓-flows (resp. a↑-flows) horizontally freely in the presence of units. The first step to
doing normalization is to define the normal form of the proof:

Definition 9.1. A combinatorial flow ϕ : A ⊢ B is normal if it has one of the shapes described
below:

• It contains only one flowbox ψ = ⟨A, B,Bψ⟩ where ψ is either an m-flow or an a-flow.

A

B

or

A

B

• It is the vertical composition of an m-flow ψ = ⟨A, B1,Bψ⟩, and an a↓-flow χ = ⟨B1, B, f ↓χ ⟩
with B1 ≡ B′ ≡ B2 (denoted as ϕ = ψ� χ).

A

B′

B

• It is the vertical composition of an a↑-flow ψ = ⟨A, A1, f ↑ψ⟩, and an m-flow χ = ⟨A2, B,Bχ⟩



Chapter 9. Normalization

with A1 ≡ A′ ≡ A2 (denoted as ϕ = ψ� χ).

A

A′

B

• It is the vertical composition of an a↑-flow ψ = ⟨A, A1, f ↑ψ⟩, an m-flow χ = ⟨A2, B2,Bχ⟩, and

an a↓-flow ξ = ⟨B1, B, f ↓ξ ⟩ with A1 ≡ A′ ≡ A2 and B2 ≡ B′ ≡ B1 (denoted as ϕ = ψ� χ� ξ).

A

A′

B′

B

The last shape in the previous definition is an important shape so we give the name three-
element normal form to be able to refer to it later. A three-element normal form corresponds to
combinatorial flows of [80] which have been the main inspiration for this thesis.

In Section 7.3 of Chapter 7, we have shown that a↓-flows and a↑-flows can be composed freely
and this will result in a-flows (i.e. they are special cases of a-flows). Later in Chapter 8, we have
shown that a-flows can be used as a base flowbox in the construction of combinatorial flows for
more simplicity (the combinatorial flows take less space if they contain only a-flows and m-flows).
We also have shown, in Theorem 7.30, that an a-flow can be decomposed into an a↑-flow and an
a↓-flow and the resulting shape is shown below. 1 It can be observed that during the procedure of
normalization shown in this chapter, we apply decomposition algorithm on every a-flow present.

A

B

≡

A

C

B

(9.1)

1Note that this decomposition is not unique, refer to Remark 7.31.
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Proposition 9.2. If a normal combinatorial flow ϕ : A ⊢ B (where A and B are pure formulas
and not units) is not a three-element normal form, there exists an equivalent three-element normal
combinatorial flow with hypothesis A and conclusion B where the missing one or two elements are
identity flows.

Proof. For every normal form we show in (9.2) where the identity flows need to be added. Note
that here identity flows are shown with flow-boxes that hypothesis and conclusion are the same
but the links are colored (normally we show it with black) to refer to the element that they are
representing. Note that in the a-flow case we are using Theorem 7.30 to decompose the flow first.

A

B

≡

A

A

B

B

A

B

≡

A

C

C

B

A

A′

B

≡

A

A′

B

B

A

B′

B

≡

A

A

B′

B

(9.2)

□

Knowing the normal form allows us to view normalization steps as successful vertical or hor-
izontal composition of two normal combinatorial flows. Figure 9.1 shows the steps that we apply
on a combinatorial flow ϕ : A ⊢ B in order to obtain a normal combinatorial flow ψ : A ⊢ B that we
call normalized version of ψ. In front of each step we have described the combinatorial flow that
is the result of applying said step. We also show the notation used for each step.

Let ϕ : A ⊢ B and ψ : B ⊢ C be combinatorial flows that are results of the Step 4 in the
normalization steps, then we call B a cut formula for combinatorial flow ϕ� ψ. In Section 8.1 of
Chapter 8, we have shown the relation between combinatorial flows and combinatorial proofs and
how to translate one to another. As mentioned before, combinatorial proofs do not have cuts or cut
formulas by default. An auxiliary cut-conjunction is used for this purpose and the cut elimination
procedure executes on such conjunctions. Moreover, upon closer inspection, one can observe
that three-element normal combinatorial flows resemble combinatorial proofs and this has been
detailed in [79] for the case that units are not present in the language. In Figure 9.2, we show how a
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Start Combinatorial flow ϕ ϕ

Step 1
(Simplification) Combinatorial flow ψ0 which is obtained by

applying simplification on ϕ
ϕ→s ψ0

Step 2
(Purification) Purification of the simplification of ψ0 ψ0 ⇝

∗
p p(ψ0)

Step 3 Combinatorial flow ψ1 which is a free compo-
sition of several three-element normal forms
and it is equivalent to purification result

p(ψ0) ≡ ψ1

Step 4
(Horizontal
Composition)

Combinatorial flow ψ2 which results after ap-
plying horizontal composition normalization
on ψ1. Here ψ2 is vertical composition of sev-
eral three-element normal forms.

ψ1 ⇝
∗
7,6 ψ2

Step 5
(Vertical
Composition)

the normal combinatorial flow ψ obtained by
applying vertical composition normalization
on ψ2

ψ2 ⇝
∗ ψ

Figure 9.1: Normalization steps to apply on a combinatorial flow

three-element combinatorial flow in the absence of units can be turned into a combinatorial proof.
As we have shown in Proposition 9.2, any normal combinatorial flow is equivalent to a three-
element normal combinatorial flow. In the presence of units, we add auxiliary atoms if needed in
the form of a ∧ a to encode f, and a ∨ a to encode t just as we did in Section 8.1. However, this
procedure is not always needed. For example, if the m-flow in a normal combinatorial flow has
the hypothesis t, then there is no need to encode this t since by default a combinatorial proof is
a proof of a tautology and there is no hypothesis. As a consequent of this, we can see that any
combinatorial proof is already a normal combinatorial flow.

Lemma 9.3. Let A, B, C be minimal pure formulas with B . f. Then there is a one-to-one
correspondence between normal combinatorial flows ϕ : A ⊢ B ∨C and ψ : A ∧ B ⊢ C.

A

B

C

D

−→

B̄ , C

Ā ∨ D

Figure 9.2: Translation of a three-element normal combinatorial flow to a combinatorial proof
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Proof. This follows immediately from the Definition 9.1 of normal combinatorial flows and Propo-
sition 6.4 and Lemma 7.5 (accompanied by Definition 7.8 on a↓-flows and a↑-flows). □

The first step in the normalization steps is simplification shown in Chapter 8. We will show
the second step (i.e. purification) in Section 9.1 and the last step (i.e. vertical composition) in
Section 2.4. The third step is applying the Proposition 9.2 on the result of purification. In the
remaining of this section, we will show the fourth step (i.e. horizontal composition normalization).

Theorem 9.4. Let ϕ : A ⊢ C and ψ : B ⊢ D be normal combinatorial flows, with A, B, C, and D as
unit-free formulas, which are not composed of any elements with units as hypothesis or conclusion.
Then, there exist normal combinatorial flows χ : A ∧ B ⊢ C ∧ D and ω : A ∨ B ⊢ C ∨ D where χ is
obtained by the conjunction normalization on the combinatorial flow ϕ7 ψ and ω is obtained by
the disjunction normalization on the combinatorial flow ϕ 6 ψ and the size of χ and ω is less or
equal to the size of ϕ plus size of ψ (i.e. |χ| ≤ |ϕ| + |ψ| and |ω| ≤ |ϕ| + |ψ|).

Proof. We proceed with first using Proposition 9.2 to find three-element normal combinatorial
flows ϕ′ = ϕ1 � ϕ2 � ϕ3 and ψ′ = ψ1 � ψ2 � ψ3 with ϕ′ ≡ ϕ and ψ′ ≡ ψ (note that this procedure
is not affecting the size of the flows and we just add identity flows where needed) where ϕ1 and
ψ1 are a↑-flows, and ϕ2 and ψ2 are m-flows, and ϕ3 and ψ3 are a↓-flows. Using Theorems 7.23,
and 6.6, we have that χ = (ϕ1∧ψ1)�(ϕ2∧ψ2)�(ϕ3∧ψ3) and ω = (ϕ1∨ψ1)�(ϕ2∨ψ2)�(ϕ3∨ψ3)
are three-element normal combinatorial flows depicted in Figure 9.3 where in the middle we show
ϕ′ and ψ′ and the arrows to right and left show the horizontal compositions ϕ′6ψ′ and ϕ′7ψ′. □

Remark 9.5. In the presence of units the normalization on horizontal composition does not follow
the same procedure as the previous theorem. In Section 9.1, we address this in more detail and we
will show rewriting steps needed to be taken if a combinatorial flow contains units. However, it is
important to note that in some cases we are still able to apply the same normalization on horizontal
composition as the previous theorem.

Let ϕ : A ⊢ C and ψ : B ⊢ D be normal combinatorial flows where at least one of the hypothesis
A or B is the unit t and the remaining formulas are unit-free. Then, there exists a normal combi-
natorial flow χ : B ⊢ C ∧ D obtained by applying conjunction normalization on the combinatorial
flow ϕ 7 ψ. This case is possible because the flow with t as hypothesis does not contain a mean-
ingful a↑-flow, its a↓-flow can not have a t as hypothesis, and the conjunctive composition of the
two m-flows is possible, shown in Theorem 6.6. For the case that at least one of the conclusions C
or D is the unit f and the remaining formulas are unit-free, the disjunction normalization on ϕ6 ψ

is possible dually.

Example 9.6. Figure 9.4 shows an example of the algorithm shown in the proof of Theorem 9.4
where ϕ : a ∨ a ⊢ a ∧ a and ψ : a ∧ a ⊢ a ∧ (a ∨ a), shown in the middle row, are normal
combinatorial flows that are not three-element normal forms. We write their three-element normal
combinatorial flow counterparts in the first step using Theorem 9.2, on bottom left. Next, we
can perform the disjunction normalization using Theorem 9.4 to acquire ϕ ∨ ψ by performing
disjunctive composition ∨ on a↑-flows, m-flows, and a↓-flows. Note that the end result of this
example, therefore normalization, is not uniquely defined. As mentioned in the Decomposition
Theorem 7.30, we made a choice on how to decompose a-flows which then affects the procedure
of normalization and causes non-confluence. The other normalization path is shown on the top
row.

Example 9.7. Below we depict two normal combinatorial flows where the procedure in Theo-
rem 9.4 cannot be applied because of the existence of unit t in the conclusion of the flow in right.
If we were to try the naive composition, the result would be a combinatorial flow with the conclu-
sion a ∨ t which is not a pure formula.
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Z ∧W

B ∧ D

X ∧ Y

A ∧C

←−
7

Z

B

X

A

W

D

Y

C

−→
6

Z ∨W

B ∨ D

X ∨ Y

A ∨C

Figure 9.3: Horizontal compositions of normal combinatorial flows

a ∧ (ā ∨ a)

a

6

b

t

In this example the left combinatorial flow is just an m-flow but this is not the main reason
for inability of normalization on the composition. To prove this point, we can refer to Lemma 7.4
which shows that skew fibrations, therefore a↓-flows and a↑-flows, cannot be composed naively in
the presence of a unit.

Observing the latest examples finally reveals the problem that arise by adding units to the
language and the naive attempt of normalization. Therefore, in the following section we go into
details on how to approach normalization in the presence of units.

9.1 Purification

We introduced the notion of pure in Chapter 1. Moreover, the notion of correctness criteria for ad-
ditive and multiplicative flows can not exist if the formulas are not pure for the following reasons:

1. In the multiplicative case, we no longer have a canonical representation of an m-flow (see
e.g. [7, 48, 60]) and checking equivalence is PSPACE-complete [39].

2. In the additive case, the horizontal composition can break the skew fibration property or
coalescence or pruning, when units are involved. This is the reason for the side condition in
Lemma 7.4.

As we showed in the examples in previous section, with the equivalence ≡, some units occurring
in formulas can be removed, but not all. And the presence of these units can block further simpli-
fication in combinatorial flows. We have A∧ f ̸≡ f and A∨ t ̸≡ t because otherwise ≡ would change
the number of atoms in a formula, and therefore break Propositions 4.9 and 4.11. However, the
logical equivalences A∧ f⇐⇒ f and A∨ t⇐⇒ t can be used in the setting of normalization. Using
these equivalences, we can remove all units from a combinatiorial flow, and we call this process
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(a ∧ ā) ∨ (a ∧ ā)

a ∧ (ā ∨ a)

a ∧ ā

a ∧ ā

6

(a ∨ a) ∧ (a ∨ a)

a ∧ a

(a ∨ a) ∧ (a ∨ a)

a ∨ a

→6

((a ∨ a) ∧ (a ∨ a)) ∨ (a ∧ ā) ∨ (a ∧ ā)

(a ∧ a) ∨ (a ∧ (ā ∨ a))

((a ∨ a) ∧ (a ∨ a)) ∨ (a ∧ ā)

(a ∨ a) ∨ (a ∧ ā)

≡

a ∨ a

a ∧ a

6 (a ∧ ā) ∨ (a ∧ ā)

a ∧ (ā ∨ a)

a ∧ ā

≡

(a ∧ ā) ∨ (a ∧ ā)

a ∧ (ā ∨ a)

a ∧ ā

a ∧ ā

6

(a ∧ a) ∨ (a ∧ a)

a ∧ a

(a ∧ a) ∨ (a ∧ a)

a ∨ a

→6

(a ∧ a) ∨ (a ∧ a) ∨ (a ∧ ā) ∨ (a ∧ ā)

(a ∧ a) ∨ (a ∧ (ā ∨ a))

(a ∧ a) ∨ (a ∧ a) ∨ (a ∧ ā)

(a ∨ a) ∨ (a ∧ ā)

Figure 9.4: A disjunctive composition of two normal combinatorial flows and its normalization

purification. The combination of purification with horizontal composition normalizations results
in vertical composition of finite number of normal combinatorial flows.
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Definition 9.8. The purification of a formula A, denoted as p(A) is defined to be the normal form
of the rewriting relation⇝p below:

A ∧ t⇝p A t ∧ A⇝p A A ∨ t⇝p t t ∨ A⇝p t

A ∨ f⇝p A f ∨ A⇝p A A ∧ f⇝p f f ∧ A⇝p f
(9.3)

It is easy to see that this rewriting relation is terminating and confluent as in every step the size
of formula is getting smaller, and therefore the purification of a formula is well-defined. The inter-
esting observation is that this rewriting relation can be extended from formulas to combinatorial
flows.

Definition 9.9. A slice of a combinatorial flow ϕ : A ⊢ B is a formula C such that ϕ = ϕ1 � ϕ2 for
some combinatorial flows ϕ1 : A ⊢ C1 and ϕ2 : C2 ⊢ B with C1 ≡ C ≡ C2. A combinatorial flow ϕ

is pure if every slice of ϕ is pure.

Example 9.10. Below we show an example of a combinatorial proof ϕ : (a ∧ a) ∨ a ⊢ ((a ∧ b) ∨
b) ∨ ((a ∨ a) ∧ (a ∨ a)) which is not pure.

a

(a ∧ b) ∨ b̄

a ∧ a

6

a ∨ ā

(a ∨ ā) ∧ (a ∨ ā)

t

ā

We can observe that ϕ is composed of five different flowboxes. If we write ϕ = ψ � χ where
ψ : (a ∧ a) ∨ a ⊢ a ∨ t and χ : a ∨ t ⊢ ((a ∧ b) ∨ b) ∨ ((a ∨ a) ∧ (a ∨ a)) are combinatorial flows,
the slice noticed by this composition is a ∨ t and it is not a pure formula. If we consider another
composition where we have ψ : (a∧a)∨a ⊢ a∨a∨a and χ : a∨a∨a ⊢ ((a∧b)∨b)∨((a∨a)∧(a∨a)),
the slice will be the pure formula a ∨ a ∨ a which is also a unit-free formula.

Theorem 9.11. For every combinatorial flow ϕ : A ⊢ B, there is a pure combinatorial flow
p(ϕ) : p(A) ⊢ p(B). In other words, there exists a terminating purification process from ϕ to p(ϕ)
(denoted as ϕ⇝∗p p(ϕ)) with the size of p(ϕ) smaller than the size of ϕ.

Proof. Every flowbox occurring in ϕ is pure (i.e., premise and conclusion can be written as a
unit-free formula or a unit) based on the definition of flowboxes which means every m-flow, a↑-
flow, a↓-flow, and a-flow is pure. Using the equivalences in (5.2), we can change the order of
compositions in ϕ. Especially the four square shaped equivalences (for example (ϕ�ψ)7(χ�ω) ≡
(ϕ7 χ) � (ψ7 ω)) aid us in locating non-pure slices in the flow (see Example 9.10).

If a slice is not pure, then it must have a subformula of the shape A ∧ f or A ∨ t, and this is the
consequence of the horizontal compositions of flowboxes shown below for easier visualization.
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9.1. Purification

W

σ

Y

χ7

A

X

ψ

f

Z

ω7

W

σ

Y

χ6

A

X

ψ

t

Z

ω6

After identifying the smallest subformula F that is not pure (F = A ∧ f or F = A ∨ t for some
pure formula A) of a non-pure slice, we can use rewriting rules on the horizontal composition of σ
and χ, and horizontal composition of ψ and ω which are flowboxes containing F. We have listed
all possible cases and designed a rewrite system that extends (9.3) to combinatorial flows. A list
of these cases can be found in Figures 9.7, 9.8, and 9.9 for the horizontal composition using con-
junction. Note that the cases for disjunction are dual to conjunction composition. Below are two
representative cases (different cases and more details are presented in the Figure Explanation 9.1):

f

C

φ 7

B

D

ψ ⇝p

f

C ∧ D

A

C

φ 7

B

f

ψ ⇝p

A ∧ B

B

f

ψ

(9.4)

Moreover, let ψ : f ⊢ A be a flowbox which is identified inside ϕ and is vertically composed with
another flowbox χ : A ⊢ B where A and B are pure formulas, we can use the rewriting step shown
below left and return a weakening flow (i.e. an a↓-flow flowbox that has the shape of a deep
inference weakening rule aw↓).

f

A

ψ

B

χ

⇝p

f

B

A

B

ψ

t

χ

⇝p

A

t

(9.5)

To the right, we show the dual case which is for t in conclusion which rewrites it to a single co-
weakening. Each rewriting step reduces the number of flowboxes in ϕ that have a unit as premise
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Chapter 9. Normalization

or conclusion, or reduces the size of the formula that containing the unit. Therefore the rewriting
is terminating and the result combinatorial flow is pure. □

Discussion: Here we are going to explain the purification rewriting steps in more details. Let
φ and ψ be the flowboxes in question for rewriting. Then each hypothesis and conclusion of each
of them have three different possibilities: it is a unit-free formula, or it is the unit f, or it is the unit
t. Consequently, there exists 34 = 81 cases of the appearance of φ 7 ψ. All these cases and their
rewriting step are depicted in Figures 9.7 , 9.8, and 9.9. Upon closer inspection, one can notice
that there exists only seven main patterns of rewriting steps. We show these patterns in more detail
below:

1. At least one of the flowboxes has hypothesis t and conclusion f: By Theorem 8.5, every
combinatorial flow is sound. Hence, such combinatorial flow cannot exist:

A

B

φ

t

f

ψ7
not

possible

2. The purification on both hypothesis and conclusion return a unit resulting in an empty com-
binatorial flow.

A

t

φ

f

t

ψ7 ⇝p

f

t

3. The purification on only either hypothesis or conclusion returns a unit and this unit is al-
lowed in skew fibration (i.e. t for conclusion, and f for hypothesis). Consequently, the
result is a weakening or co-weakening. We delete everything and replace it with only one
weakening or one co-weakening.

A

C

φ

f

D

ψ7 ⇝p

f

C ∧ D

4. the purification on hypothesis and conclusions returns both the hypothesis and conclusion
of one of the flowboxes. We will proceed by deleting the remaining flowbox.

A

f

φ

t

D

ψ7 ⇝p

A

f

φ
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a ∨ a a ∧ ā

7a ∨ ā

(a ∨ ā)

f

a

a ∨ f

⇝∗p

(a ∨ a) ∧ (a ∧ ā)

a ∧ ā

f

(ā ∨ a) ∧ a

a ∨ f

⇝p

(a ∨ a) ∧ (a ∧ ā)

a ∧ ā

f

a

Figure 9.5: Purification Normalization Example

5. In this pattern, either only one of the conclusions is f, or only one of the hypothesis is t and
the conclusion of the opposite proof is t. The example for this pattern is shown in (9.4) (on
th bottem).

6. None of the above happens: we can keep both flowboxes and perform horizontal compo-
sition shown in Theorem 9.4. From another point of view, this pattern only happens if the
purification on hypothesis and conclusions have no meaningful changes.

The purification procedure is not confluent and we have depicted an example of this in Fig-
ure 9.6.

Theorem 9.12. Let ϕ : A ⊢ B be a combinatorial flow. Then, there exists a finite set P of purifica-
tion and horizontal normalization steps ϕ⇝P ψ where ψ = ψ1 � . . .�ψn is a pure combinatorial
flow with ψ1, . . . , ψn normal combinatorial flows.

Proof. First we perform the purification steps, Using Theorem 9.11, to obtain ϕ⇝n
p p(ϕ). Next,

we execute the horizontal normalization shown in Theorem 9.4 on p(ϕ) to get p(ϕ)→∗7,6 ψ. This
procedure terminates since in every step the number of horizontal composition in the flow reduce
at least by one. Moreover, ψ is vertical composition of normal combinatorial flows because at the
end there is no horizontal composition left and it is pure because the second step of normalization
starts with a pure combinatorial flow and horizontal normalization steps never produce a non-pure
slice in the combinatorial flow (in fact the number of units stay the same or decreases.) □

The combinatorial flow on the right in Figure 8.2 is a purification of the one on the left.
Moreover, in Figure 9.5 we show an example of steps taken in Theorem 9.12.

9.2 Cut Normalization

In the previous two sections, we defined cut formulas and introduced an algorithm for horizontal
composition. As already mentioned, there are four normalization steps(i.e. simplification, purifi-
cation, equivalences, and horizontal normalization) before arriving at vertical normalization. The
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Chapter 9. Normalization

immediate result of the previous steps is a pure combinatorial flow that only has vertical compo-
sitions of smaller three-element normal combinatorial flows. In this section, we show the vertical
normalization, referred to as cut normalization in sequent calculus, of a combinatorial flow which
is an inductive process on all existing cut formulas in said flow.

Lemma 9.13. Let ϕ : A ⊢ B ∧ C be a normal combinatorial flow, then there exists combinatorial
flows ϕl : A ⊢ B and ϕr : A ⊢ C which are obtained in polynomial time from ϕ and the size of each
flowbox in both ϕl and ϕr are less than the size of each flowbox in ϕ.

Proof. The existence of projections is not surprising with the knowledge that ∧ right introduction
inference rule in sequent calculus is invertible. In other words, we should be able to recover proof
of B and proof of C from proof of B ∧ C. We outline the algorithm of searching for empire of C
(i.e. the largest subflow containing C as conclusion) which has been shown in more detail in [79]
(Construction 6.5 Page 9).2 First we write ϕ as a three-element normal form, using Proposition 9.2.
Let us name the skew fibration function of the a↓-flow in ϕ as f ↓ϕ . By Lemma 7.5, we can write f ↓ϕ
as the conjunction of two smaller skew fibration, with co-domains G(B) and G(C). Let G be the
underlying graph of the m-flow in ϕ. Let f ↓ϕ

−1
(C) be the set of all vertices in G that are mapped by

f ↓ϕ to an atom occurrence of C. Let EC ⊆ G be the smallest set of vertices such that:

• f ↓ϕ
−1

(C) ⊆ EC

• If v ∈ EC and vBGw and w < C, then w ∈ EC.

• If V1,V2 ⊆ VG are modules of G and V1 ∩ V2 = ∅ and V1 ∪ V2 is a module such that for all
v1 ∈ V1 and v2 ∈ V2 we have that v1RGv2, then we also have that V2 ⊆ EC.

Now let the m-flow part of ϕl be the flowbox with underlying graph which is the restriction of G
to the vertices VG \ EC. We also restrict the a↓-flow and a↑-flow to the new vertices.

Based on this construction, it is easy to show that the restriction of all flowboxes still follow
the same correctness criterion. Therefore ϕl is a three-element normal combinatorial flow with
hypothesis A and conclusion B. We can define ϕr similarly. □

Dually, we can construct the right and left projections if there is a disjunctive formula in
hypothesis of a normal combinatorial flow:

Lemma 9.14. Let ϕ : A∨B ⊢ C be a normal combinatorial flow, then there exist two combinatorial
flows ϕl : A ⊢ C and ϕr : B ⊢ C which are obtained in polynomial time from ϕ and both the size of
each flowbox in both ϕl and ϕr are less than the size of each flowbox in ϕ.

Proof. Dual to the proof of previous lemma. □

Lemma 9.15. Let ϕ : A ⊢ B and ψ : B ⊢ C be three-element normal form combinatorial flows, then
there is a normal combinatorial flow χ : A ⊢ C (and we denote this as ϕ⇝∗ ψ).

Proof. We proceed by induction on the cut formula B. If B = D∧E, first we write the left and right
projections of ϕ : A ⊢ D∧E in three-element normal form by Lemma 9.14 and from ψ : D∧E ⊢ C
we obtain ψ′ : D ⊢ E ∨ C in three-element normal form by Lemma 9.3. Note that all three new

2Other constructions can be viewed in [49] where mix is present and the projection is shown on lax combinatorial
proofs and in [6] with empire construction on MLL proof-nets.
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9.2. Cut Normalization

normal combinatorial flows are in three-element normal form obtained by Theorem 9.2. Below
we show these combinatorial flows schematically:

A

D ∧ E

ϕ −→9.14

A

D

ϕl

A

E

ϕr

D ∧ E

C

ψ ≡9.3

D

C ∨ E

ψ′

Next, we compose ϕl with ψ′ to get χ1 : A ⊢ C ∨ E by induction hypothesis and by applying
Lemma 9.3 on χ1, we obtain χ2 : E ⊢ A ∨C. This procedure is shown below:

A

D

ϕl

D

C ∨ E

ψ′

⇝∗

A

C ∨ E

χ1 ⇝9.3

E

A ∨C

χ2

Next, the combinatorial flow χ2 can be composed with ϕr inductively to obtain χ3 : A ⊢ A ∨ C
from which we obtain χ4 : A∧ A ⊢ C by using Lemma 9.3. As the last step we vertically compose
χ4 with a co-contraction flowbox (i.e. an a↑-flow flowbox which has the same shape as deep
inference co-contraction rule c↑) from A to A∧ A to get χ. We show these steps in drawing below.
Note that by composing a co-contraction with a normal combinatorial flow we obtain a normal
combinatorial flow using the equivalences in (8.1).

A

E

ϕr

E

A ∨C

χ2

⇝∗

A

A ∨C

χ3 ⇝9.3,5.2

A ∧ A

C

χ4 →7.7 A ∧ A

C

χ4

A

If B = D∨E, we proceed dually to the conjunctive case. In the case that B = t, then ϕ does not have
an a↓-flow and ψ does not have an a↑-flow (unless they are identity flows or flows with hypothesis
f and conclusion t), therefore the vertical composition is trivial by first doing the normalization
on m-flows. The case that B = f is treated dually. If B = a where a is an atom, then we write
ϕ = ϕ1 � ϕ2 � ϕ3 and ψ = ψ1 � ψ2 � ψ3 where ϕ1 and ψ1 are a↑-flows, ϕ2 and ψ2 are m-flows,
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Chapter 9. Normalization

and ϕ3 and ψ3 are a↓-flows. To continue we treat normalization based on different patterns of ϕ3
shown below:

• if ϕ3 is a weakening ϕ3 = ⟨f, a, f ↓ϕ3
⟩, we use the rewriting step (9.5) on ϕ3 � ψ to obtain

a↓-flow χ1 = ⟨f,C, f ↓χ1⟩ and then composing ϕ1 � ϕ2 with χ1 by using the same pattern as
shown in (9.5) which results in χ:

A

ϕ1 � ϕ2

f

a

C

ψ

⇝

A

ϕ1 � ϕ2

f

C

• If ϕ3 is not a weakening but ψ1 is a co-weakening ψ1 = ⟨a, t, f ↑ψ1
⟩. This case gets resolved

dual to the previous case.

• If the previous two cases do not hold, then ϕ3 is a contraction ϕ3 = ⟨a ∨ · · · ∨ a, a, f ↓ϕ3
⟩ and

ψ is a co-contraction ψ1 = ⟨a, a ∧ · · · ∧ a, f ↑ψ1
⟩ and we proceed as follows. Let n be the

number of occurrences of a in hypothesis of ϕ3 and m the number of such occurrences in
the conclusion of ψ1. We proceed by first making m copies of ϕ1 � ϕ2 and composing them
horizontally by conjunctive composition. Then we advance by composing the result with an
identity flow as shown below:

A

a ∨ · · · ∨ a

ϕ1 � ϕ2 ∧ . . . ∧

A

a ∨ · · · ∨ a

ϕ1 � ϕ2

(a ∨ · · · ∨ a) ∧ · · · ∧ (a ∨ · · · ∨ a)

Next, we replace every link that starts with an instance of a in hypothesis in ψ with identity
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9.2. Cut Normalization

flow ida∨···∨a = ⟨a ∨ · · · ∨ a, a ∨ · · · ∨ a,Bid⟩ shown below:

(a ∨ · · · ∨ a) ∧ · · · ∧ (a ∨ · · · ∨ a)

C{a/a ∨ · · · ∨ a}

(ψ1 � ψ2){a/a ∨ · · · ∨ a}

(a ∨ · · · ∨ a) ∧ · · · ∧ (a ∨ · · · ∨ a)

Now, we can observe that the composition of the two recent flows is easily possible since we
turned the additive flows to identity flows therefore (a ∨ · · · ∨ a) ∧ · · · ∧ (a ∨ · · · ∨ a) is not a cut
formula. Next, we just need to add contractions a ∨ · · · ∨ a ⊢ a and co-contraction A ⊢ A ∧ · · · ∧ A
to the flow and arrive at the resulting normal combinatorial flow, show below:

A

A

a ∨ · · · ∨ a

ϕ1 � ϕ2 ∧ . . . ∧

A

a ∨ · · · ∨ a

ϕ1 � ϕ2

C{a/a ∨ · · · ∨ a}

(ψ1 � ψ2){a/a ∨ · · · ∨ a}

C{a}

□

Theorem 9.16. Let ϕ : A ⊢ B be a combinatorial flows, then there exists combinatorial a combi-
natorial ψ : A ⊢ B which is the normalized version of ϕ.

Proof. We can proceed by using definition of simplification in previous chapter (p. 73), Theo-
rem 9.11, Equivalences on combinatorial flows (8.1) (p. 73), Theorem 9.4, and Lemma 9.15. If
we apply all these steps in the same order as Figure 9.1, we can obtain ψ which is the normalized
version of ϕ and ψ is in three-element normal form. □

Example 9.17. Below we depict a combinatorial flow ϕ : a ∧ a ⊢ a ∨ a which consists of vertical
composition of two smaller normal combinatorial flows ψ : a ∧ a ⊢ (a ∨ a) ∧ (a ∨ a) and χ : (a ∨
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a) ∧ (a ∨ a) ⊢ a ∨ a.

a ∧ a

(a ∧ a) ∨ (ā ∧ a)

(a ∨ ā) ∧ (a ∨ a)

a ∨ a

There is no need for first and second step in the example as it is simplified and pure. So we write
the three-element normal forms for ψ and χ to form their composition ϕ as shown below:

a ∧ a

a ∧ a

(a ∧ a) ∨ (ā ∧ a)

(a ∨ ā) ∧ (a ∨ a)

(a ∨ ā) ∧ (a ∨ a)

a ∨ a

a ∨ a

The first step is to write the projection ψl as depicted below in top left and do cut elimination
inductively as well as applying Theorem 9.3 on χ (yanking of subformula a ∨ a) depicted below
bottom left to obtain the flow χ′ : a∨a ⊢ a∨a∨(a∨a). Next, we perform normalization inductively
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on ψl � χ′ to obtain the normal combinatorial flow π shown below right.

a ∧ a

a

a

a ∨ ā

a ∨ ā

a ∨ ā

a ∨ a ∨ (ā ∧ ā)

a ∨ a ∨ (ā ∧ ā)

⇝IH

a ∧ a

a

a

a ∨ a ∨ (ā ∧ ā)

Next, we write the projection ψr as depicted below left as well as π′ which is obtained by yanking
the subformula a ∧ a to the top on and yank all the hypothesis to the bottom in π. Finally we
normalize combinatorial flow ψr � ω by induction to obtain the normalized version of the flow ϕ
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shown below right.

a ∧ a

a

a

a ∨ a

a ∨ a

t

a ∨ ā

a ∨ a ∨ ā ∨ ā)

⇝IH

a ∧ a

a ∨ a
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φ
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C
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Figure 9.6: purification is not confluent
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Figure 9.7: Purification cases for conjunction where the hypothesis of φ is unit-free formula A
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Figure 9.8: Purification cases for conjunction where the hypothesis of φ is t
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Figure 9.9: Purification cases for conjunction where the hypothesis of φ is f
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CHAPTER 10

Conclusion and Future Work

In our investigation into the problem of proof identity, we introduced combinatorial flows as a
graphical representation of classical proofs, enhancing our understanding of proof structures. In
the initial segment of this thesis, we laid the groundwork by defining the formal language and
proof systems suitable for classical logic. This encompassed natural deduction, sequent calculus,
and deep inference. Additionally, we introduced key concepts such as atomic flows [32] and
RB-cographs [73], and we leveraged them combinatorial proofs [47] as foundational elements for
the development of combinatorial flows.

In the second part, we delved deeper into the interplay between the multiplicative and addi-
tive fragments of classical logic within our setting. We explored the possibility of incorporating
units into the language, acknowledging that this choice would impact the compositional nature of
proofs. We demonstrated that with specific adjustments, both multiplicative and additive flows
could adhere to the same correctness criteria established in combinatorial proofs. For multiplica-
tive flows, we focused on ensuring æ-acyclicity in RB-cographs while accommodating the exis-
tence of the mix rule and units. In the case of additive flows, we introduced the concept of a skew
fibration and enhanced it to accommodate empty flows, which mimic the behavior of weakening.
Collaborating with Willem Heijltjes and Lutz Straßburger, we employed additive nets [38] to delve
into the distinctions between the two fragments and explore the potential for a more localized, ter-
minating normalization process, though this endeavor presented notable challenges.

In the third part of this thesis, we unified these foundational elements to form combinatorial
flows, providing insights into their relationship with various proof systems, including combinato-
rial proofs with cuts, natural deduction, sequent calculus, and deep inference. While the elusive
notion of proof identity remains a complex challenge, combinatorial flows offer valuable insights
into the structures of classical logic proofs. Notably, we observed that combinatorial flows do
not encompass a notion of rule permutation, as proofs with such permutations can be translated
into the same combinatorial flow. The quest for local normalization remains an open problem,
but we have made significant strides, incorporating techniques such as purification (tailored for
compositions on combinatorial flows with units), as well as horizontal and vertical composition
normalization, to establish general normalization procedures.

The notion of combinatorial proofs has been introduced for the logics listed below as a gath-
ering effort of mainly the following people: Matteo Acclavio, Willem Heiljtjes, Dominic Hughes,
and Lutz Straßburger.

• Propositional Classical Logic [47]

• First-order Logic [52, 50, 46]

• Intuitionistic Logic [41]



Chapter 10. Conclusion and Future Work

• Modal Logics [4]

• Constructive Modal Logic [2]

• Logics of Relevance and Entailement [3]

• Multiplicative Linear Logic [48]

• Additive Linear Logic [40]

• Multiplicative Exponential Linear Logic [1]

Extending the definition for these logics into combinatorial flows remains to be investigated.
In fact, with Acclavio we have started on the development of a satisfactory definition of additive
flows for modal logics. Moreover, we believe that notions of proof identity and proof comparison
could be achieved by further studies on the properties of combinatorial flows.
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APPENDIX A

Graph Theory Proofs

Proof of Proposition 4.7. we proceed by induction on the construction of G:

• If G is a single vertex, it is clear thatH = G holds the conclusion.

• If G = I ⊎J , by induction hypothesis there exist graphs K and L which are isomorphic to
I and J and constructed from single vertices using ⊎ and ▷◁. Hence, H = K ⊎ L has the
same property.

• If G = I, by induction hypothesis there exists a graph J which is isomorphic to I and
it is constructed by operations ▷◁ and ⊎ over single vertices. If we define H by the same
construction as I with the change that we switch ▷◁ and ⊎, we only need to prove thatH is
isomorphic to G. By switching the two operations disjoint union and conjunction, we are
complementing the edge relation in the graph. SoH is isomorphic to I which is equal to G
by hypothesis. □

Proof of Proposition 4.8. See [64]. (⇒) We prove this by induction on the structure of G:

• If G is a single vertex, it is indeed a P4-free graph.

• If G = H ⊎I, by induction hypothesis we know thatH and I are P4-free. SoH ⊎I is also
P4-free since RG = RH ∪ RI .

• If G = H , by induction we knowH is P4-free. Let us assume by way of contradiction that
H is not aP4-free so it contains aP4. This leads toH containing aP4 since the complement
of a P4 is also a P4 which is a contradiction.

(⇐) We proceed by induction on the number of vertices in G. The goal in this proof is to divide
G into two induced subgraphs H and I with either G = H ▷◁ I or G = H ⊎ I which results
to G being a cograph by Proposition 4.7. If G has only a single vertex then it is obvious that it
is constructed from a single vertex. Otherwise, let v be a vertex of G. Let V1 be the set of all
neighbors of v in G.
If V1 = ∅, then G is H ⊎ I where H is the induced subgraph of G over {v} and I is the
induced subgraph of G over VG\{v}. Using induction hypothesis we know that I is constructed
from single vertices using ▷◁ and ⊎ so I is a cograph which implies that G is also a cograph.
Now we look into the case where V1 , ∅.

• If for every vertex u ∈ V1, it only exists one incident (which is the edge vRu) then let H be
the induced subgraph of G over the set of vertices {v} ∪ V1 and I = G\H . Since no vertex
in H has an edge to any vertex in I, we have G = H ⊎ I. Induction hypothesis shows us
thatH and I are both cographs so G is a cograph as well.



Appendix A. Graph Theory Proofs

• If there is at least one vertex such as u ∈ V1 such that there exists w in VG where w , v,
w < V1, and uRw, then we define the set of vertices V2 = {u|(v, u) < R and ∃w ∈ V1. uRw}.
Vertices in V2 cannot have any neighbors outside of {v}∪V1∪V2, otherwise G is not P4-free.
Now letH be the induced subgraph of G over the vertices {v} ∪ V1 ∪ V2 and I = G\H . By
induction hypothesis we know that I is a cograph. It only remains to show that H can
be constructed from single vertices using operations ▷◁ and ⊎. Let x be a vertex in V2.
Let V3 be all vertices in V1 connected to x. We prove that H = J ▷◁ K where J is
the induced subgraph of H over V3 and K is the induced subgraph of H over the vertices
{v} ∪V2 ∪ (V1\V3). We know that every vertex in V3 is connected to v and x. It only remains
to show that they are also connected to V1\V3 and V2\x. Let w be a vertex in V1\V3 and y
a vertex in V3. By looking at x, y, v, and w we can see a P4 which is contradiction with
the fact that H is P4-free. So w is connected to y since none of the edges xRHv and xRHw
can exist. Now Let z be a vertex in V2\x which is one of the incidents to w. Considering
the vertices x, y,w, and z shows us that either we have to have the edge yRHz or yRH x. The
former case would be the edge we need but if we have the later edge, then we can consider
the four vertices z, x, y, v. We know that the edges vRH x and vRHz cannot exist so the edge
yRHz should exist. So every vertex in V2\x is connected to every vertex in V3 as well. As a
result we have the two induced subgraphs J and K of H that connect together with ▷◁ and
both are cographs by induction hypothesis. □

Proof of Theorem 4.19. Let us assume that PG has an alternating elementary cycle c by way of
contradiction. Then we can write an alternating elementary cycle in G by using the edges and
links in c. For the new cycle, we keep the axiom links in c and add an edge if to atoms are
connected in c without any interruption of another atom. The new cycle created is chordless.
Hence the RB-cograph G is no æ-acyclic which is in contradiction with the hypothesis. □
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APPENDIX B

Decomposition and Composition of Skew Fibrations

This chapter of Appendix is dedicated to the proof of Lemma 7.7 copied directly from [65].
Note that the composition of two skew fibrations is not a skew fibration for arbitrary graphs.

Figure B.1 is an example where H and I are not cographs and f : G ↪→ H and g : H ↪→ I are
skew fibrations. However, f ◦ g is not a skew fibration.

G :

H :

I :

v x

f (x)

f (v) y

z

g( f (x))

g( f (v)) g(y)

g(z)

w

Figure B.1: Vertical composition of skew fibrations is not a skew fibration

Let v ∈ VG, w ∈ VI, and g( f (v))RIw. If f ◦ g was a skew fibration, there should have existed
a vertex u ∈ VG such that:

vRGu and g( f (u))RIw

One can observe that such a vertex does not exist in VG so f ◦ g is not a skew fibration. In this
example, one can notice thatH and I are not cographs. We must add more edges to RH and RI to
make sure they become cographs. Note that, adding edges can lead to adding new nodes because
of the skew fibration property for f and g.
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Theorem B.1. Let f : G ↪→ H and g : H ↪→ I be skew fibrations whereH , and I are cographs.
The composition of f ◦ g is a skew fibration (G can be an arbitrary graph).

Outline of the proof: First, decompose g into three skew fibrations that are full injective, full
surjective, and bijective. Next, we prove that the composition of each decomposed part of g with
f is a skew fibration. The following lemmas are proving these statements.

Lemma B.2. Let f : G ↪→ H be a skew fibration. Then we can decompose f to the following
three parts: f1 : G↣↠ I which is a bijective skew fibration, f2 : I ↠ J which is a full surjective
skew fibration, and f3 : J ↣ H which is a full injective skew fibration. Moreover, I and J are
cographs. ( f = f1 ◦ f2 ◦ f3)

Proof. This lemma follows from [69]. But below is the direct proof.
We construct the graphs I and J as follows:

VJ B f (VG)

RJ B {(u, v)|u, v ∈ f (VG) and uRHv}

VI B VG
RI B {{u, v}| f (u)RJ f (v)}

As we can see in the picture below, the intuition is to first add the extra edges that H has for the
set f (VG) to RI. With this kind of definition f1 can be bijective. Then we make J in such a way
that only consists of the images of VG so f2 will be surjective. Lastly, we can see that the vertices
VH\ f (VG) are new in H so f3 can be injective. In this picture we have only shown the outline of
the vertices of each graph and yellow arrows are showing the functions f1, f2, and f3. The detailed
proof follows the picture.

VG

VG

f (VG)

f (VG) VH\ f (VG)

G :

I :

J :

H :

f1

f2

f3

Let f3(u) B u for all u ∈ VJ . It is trivial that f3 is injective. By looking at the definition of RJ , we
can see that f3 is a full homomorphism. Now we move on to proving that f3 is a skew fibration.
Graph J is a cograph since f (VG) is a subgraph of VH and H is a cograph. Assume v ∈ VJ ,
w ∈ VH , and f3(v)RHw. Since VJ = f (VG), there exists a node u ∈ VG with f (u) = v. From the
fact that f is a skew fibration, we can deduce that:

∃x ∈ VG. uRGx ∧ ( f (x),w) < RH (B.1)

In addition, from f (u) f (x) = v f (x) ∈ RH and f3 being a full injective function we can derive the
following conclusion:

vRJ f (x) (B.2)
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Equations (B.1) and (B.2) show that f3 is a skew fibration.

For all vertices v ∈ VG, let f1(v) B v and f2(v) B f (v). Because of the definitions for f1, f2,
I, and J , it is obvious that f1 is bijective and f2 is full surjective. The graph I is a cograph as
well since having a P4 means that J has the same ( f2 is full) P4 which contradicts the fact that
J is a cograph (we proved this before). The function f2 is a skew fibration because it is full and
surjective. Since f1 and f3 are identity functions and ∀v ∈ VG. f2(v) = f (v), one can observe that
∀v ∈ VG. f (v) = f3( f2( f1(v))). The only remaining part is to prove that f1 is a skew fibration.

Assume v ∈ VG, w ∈ VI, and f1(v)w = vw ∈ RI. f2 and f3 are homomorphisms so:

f3( f2( f1(v))) f3( f2(w)) = f (v) f3( f2(w)) ∈ RH

Since f is a skew fibration, there exists a vertex x in VG which:

vRGx ∧ f (x) f3( f2(w)) = f3( f2( f1(x))) f3( f2(w)) < RH

Using the fact that f3 and f2 are homomorphisms we can deduce that ( f1(x),w) < RI. This means
that f1 is a skew fibration, too. □

Lemma B.3. If f : G ↪→ H is a skew fibration and g : H ↠ I is a full surjective skew fibration
whereH and I are cographs, then f ◦ g is a skew fibration.

Proof. Suppose we have v ∈ VG, w ∈ VI and g( f (v))RIw. Since g is surjective, there exists z ∈ VH
which g(z) = w. We can deduce that f (v)RHz from the fact that g is full. Following the fact that f
is a skew fibration, it can be deduced that there exists x ∈ VG with vRGx and ( f (x), z) < RH . Using
this result together with the fact that g is full, we can deduce that (g( f (x)),w) < RI.

G :

H :

I :

v

f (v)

g( f (v)) w

z

x

f (x)

g( f (x))

The picture shows the skew fibrations g and f described in the proof where the yellow arrow lines
from vertices in VG to VH represent f and the pink arrow lines from VH to VI show g. □

Lemma B.4. If f : G ↪→ H is a skew fibration and g : H ↣ I is a full injective skew fibration
whereH and I are cographs, then f ◦ g is a skew fibration.

Proof. Let v ∈ VG, w ∈ VI and g( f (v)) ∈ RI. Since g is injective, we can assume without loss of
generality that ∀u ∈ VH . g(u) = u ∈ VI. Let us define the sets X and Y as follows:

X B {x ∈ VG|vRGx}

f (X) B { f (x)|x ∈ X}

Y B {y ∈ VH | f (v)RHy and y < f (X)}

Assume by contradiction that f ◦ g is not a skew fibration. As a result:

∀x ∈ X. f (x)RIw

This is indicated in the picture below.
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G :

H :

I :

v

f (v)

f (v) w

X

f (X)

Y

f (X)

Y

In order to preserve the skew fibration property for g and f we will create an infinite sequence of
vertices y1, x1, y2, x2, . . . such that:

• yi ∈ Y and xi ∈ X

• ∀ j = 1 . . . i − 1. yi , y j ∧ xi , x j

• ∀ j = 1 . . . i − 1. (yi, y j) < RI

• ∀ j = 1 . . . i − 1. yiRI f (x j)

• (yi,w) < RI

• ∀ j = 1 . . . i − 1. f (xi)RI f (x j)

• ∀ j = 1 . . . i. ( f (xi), y j) < RI

• f (xi)RIw

The following pictures illustrate these conditions for each node in the sequence. First, each vertex
is either a member of X or Y. To the right, we can see the edges, whether they exist or not, in red
for the vertex xi according to the conditions above. For example, there is no edge between f (xi)
and y j where j = 1 . . . i in RH and RI. The left figure demonstrates the conditions for yi with red
lines or dashed lines. There is no edge from yi to all previous y’s as well as w. On the other hand,
yi has edge to all previous x’s.
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G :

H :

I :

v

f (v)

f (v) w

X

f (X)

Y

f (X)

Y

yi

yi

G :

H :

I :

v

f (v)

f (v) w

X

f (X)

Y

f (X)

Y

xi

f (xi)

f (xi)

we proceed by induction on the length of the sequence:

• Step 1. Since f (v)RIw, we have:

∃y1 ∈ VH . f (v)RHy1 ∧ (y1,w) < RI

Hence, with respect to the definition of X, y1 < X so y1 ∈ Y. All the properties hold for y1
trivially. This is indicated below:

G :

H :

I :

v

f (v)

f (v) w

y1

y1 (B.3)

• Step 2. Since f (v)RHy1, we have:

∃x1 ∈ X. ( f (x1), y1) < RH
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Appendix B. Decomposition and Composition of Skew Fibrations

It is trivial that x1 has all the claimed properties since g is injective:

G :

H :

I :

v

f (v)

f (v) w

y1

y1

x1

f (x1)

f (x1)

(B.4)

• Step 2m + 1. Assume we already have a sequence y1, x1, . . . ym, xm. In this step, we
only consider edges in RI. Note that these edges are replicated in RH since g is full. By
induction hypothesis, we know that:

a1. ∀i = 1 . . .m − 1. f (xm)RI f (xi)

b1. ∀i = 1 . . .m. ( f (xm), yi) < RI

c1. f (xm)RIw

d1. ∀i = 1 . . .m. ∀ j = 1 . . . i − 1. (yi, y j) < RI

e1. ∀i = 1 . . .m. ∀ j = 1 . . . i − 1. yiRI f (x j)

f1. ∀i = 1 . . .m. (yi,w) < RI

g1. ∀i = 1 . . .m. yi ∈ Y ∧ xi ∈ X

It follows from a1 and b1 that there exists a new vertex ym+1 such that ym+1RI f (xm) and
(ym+1,w) < RI. Using the induction hypothesis b1 and f1, we have for all i = 1 . . .m:

( f (xm), yi) < RI ∧ (yi,w) < RI ∧ (w, ym+1) < RI (B.5)

Also, we know that:
f (xm)RIw ∧ ym+1RI f (xm) (B.6)

As a result of Equations (B.5) and (B.6) plus the fact that C is a cograph:

∀i = 1 . . .m. (ym+1, yi) < RI (B.7)

The following figure shows what happens when we add the vertex ym+1 to the sequence we
already have. The red dashed lines from ym+1 to y1 and ym indicate the result from (B.7). It
means that ym+1 doesn’t have any edge to yi where i = 1 . . .m. The red line between f (xm)
and ym+1 demonstrates the last part of (B.5). Moreover, the red dashed line from w to ym+1
in I indicates the last part of (B.6).
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G :

H :

I :

v

f (v)

f (v) w

x1
. . .

xm

f (x1)
. . .

f (xm)

f (x1)
. . .

f (xm)

y1

. . .
ym ym+1

y1

. . .
ym ym+1

The properties a1 and b1 for xm and e1 for ym (which is the last vertex in the sequence) show
that:

(∀i = 1 . . .m − 1. f (xi)RI f (xm) ∧ f (xi)RIym) ∧ (ym, f (xm)) < RI (B.8)

Since C is a cograph, it follows from (B.7) and (B.8) that:

∀i = 1 . . .m. f (xi)RIym+1 (B.9)

as indicated below:

G :

H :

I :

v

f (v)

f (v) w

x1
. . .

xm

f (x1)
. . .

f (xm)

f (x1)
. . .

f (xm)

y1

. . .
ym ym+1

y1

. . .
ym ym+1

Now we have:
ym+1RI f (v) (B.10)
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Appendix B. Decomposition and Composition of Skew Fibrations

Because, otherwise ym f (v) f (xm)ym+1 would be a P4 (because of (B.7), (B.8), and (B.9)).
Since g is full, ym+1RH f (v) should hold. By the definition of ym+1 and Y, it is obvious that:

ym+1 ∈ Y (B.11)

The following figure shows that ym+1 is a neighbor of f (v) with a red line between the two.

G :

H :

I :

v

f (v)

f (v) w

x1
. . .

xm

f (x1)
. . .

f (xm)

f (x1)
. . .

f (xm)

y1

. . .
ym ym+1

y1

. . .
ym ym+1

• Step 2m + 2. The proof of this step is given in Appendix C. Assume we have a sequence
y1, x1, . . . ym, xm, ym+1. The last edge we added in the previous step was f (v)RIym+1.
Since g is a full homomorphism:

f (v)RHym+1

To preserve skew fibration property for f , we need a vertex xm+1 ∈ X such that:

( f (xm+1), ym+1) < RH (B.12)

On the other hand, the induction hypothesis for ym+1 shows that ∀i = 1 . . .m. ym+1RH f (xi)
which leads to xm+1 < {x1 . . . xm}. Moreover, from (B.12) and the fact that we assumed f ◦ g
is not a skew fibration, we can deduce that:

f (xm+1)RIw (B.13)

This is indicated below.
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G :

H :

I :

v

f (v)

f (v) w

x1
. . .

xm xm+1

f (x1)
. . .

f (xm) f (xm+1)

f (x1)
. . .

f (xm) f (xm+1)

y1

. . .
ym ym+1

y1

. . .
ym ym+1

Now we have:
∀i = 1 . . .m. f (xm+1)RI f (xi) (B.14)

because otherwise, ym+1RI f (xi)RIwRI f (xm+1) would be a P4 (because of (B.5), (B.6),
(B.9), and (B.13)). The edges added to RI and RH are indicated in the picture below:

G :

H :

I :

v

f (v)

f (v) w

x1
. . .

xm xm+1

f (x1)
. . .

f (xm) f (xm+1)

f (x1)
. . .

f (xm) f (xm+1)

y1

. . .
ym ym+1

y1

. . .
ym ym+1
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The induction hypothesis b1 for xm shows:

∀i = 1 . . .m. ( f (xm), yi) < RI (B.15)

Additionally, from the induction hypothesis for ym+1 we have:

∀i = 1 . . .m. (ym+1, yi) < RI ∧ ym+1RI f (xi) (B.16)

One can see the edges we talked about in the last two equations in the last figure. The
equations (B.12), (B.15), (B.16) and (B.14) show that(I should always remain a cograph):

∀i = 1 . . .m. ( f (xm+1), yi) < RI (B.17)

This equation states that there should exist no edge between f (xm+1) and yi for all i = 1 . . .m.
Otherwise, ym+1RI f (xm)RI f (xm+1)RIyi would be a P4 in I which contradicts the fact that
I is a cograph. The following picture shows the completed sequence after adding xm+1 in
this step.

G :

H :

I :

v

f (v)

f (v) w

x1
. . .

xm xm+1

f (x1)
. . .

f (xm) f (xm+1)

f (x1)
. . .

f (xm) f (xm+1)

y1

. . .
ym ym+1

y1

. . .
ym ym+1

(B.18)

With these induction steps we have shown under the assumption that g ◦ f is not a skew fibration,
we can create an infinite sequence of disjoint vertices. Since I is finite, we have a contradiction.

□

Lemma B.5. If f : G ↪→ H is a skew fibration and g : H ↣↠ I is a bijective skew fibration where
H and I are cographs, then f ◦ g is a skew fibration.

Proof. Proposition 6.7 in [69] shows that every bijective skew fibration is nothing but a series of
consecutive medial rules from SKS shown in Figure 2.4. Since g is a bijection, assume without
loss of generality that ∀v ∈ VH . g(v) = v. We proceed the proof by induction on the number of
medial rules.
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• number of medial rules = 1: Assume by way of contradiction that f ◦ g is not a skew
fibration. This means that:

∃v ∈ VG. ∃w ∈ VI. g( f (v))RIw ∧ ∀x ∈ VG. vRGx→ g( f (x))RIw (B.19)

In the case that f (v)RHw, we can make an infinite sequence of nodes x1, y1, x2, y2, . . .

with the same edges in RH as the sequence created in Lemma B.3. The proof for this case
is also the same as the one in Lemma B.3. The only difference is that we state everything
for H instead of I. If ( f (v),w) < RH , one can observe that f (v) and w are in two different
modules participating in the medial rule because an edge between them is being added in
RI. Assume J , K , L, andM are the modules affected by the medial rule where f (v) ∈ I
and w ∈ K . Let J = G(A), K = G(B), L = G(C), and M = G(D). This means that the
medial is changing (A ∧ C) ∨ (B ∧ D) to (A ∨ B) ∧ (C ∨ D). We show this transformation
below.

L

M

KJ

L

M

KJ

(B.20)

In (B.20), we show the change from G((A ∧ C) ∨ (B ∧ D)) to G((A ∨ B) ∧ (C ∨ D)) using
the medial rule(in other words using g). At first, all the nodes in G(A)(respectively G(B))
are connected to all the nodes in G(C)(respectively G(D)). With applying the medial rule
or g, we obtain the same vertices in the graph but the edges between vertices in G(A) (resp.
G(C)) and G(B) (resp. G(D)) will be added to this graph, where the pink downward arrows
show the application of the medial rule or the bijective homomorphism g.
Since f is a skew fibration and there exists an edge between f (v) and each vertex in L
(because f (v) ∈ J), one of the neighbors of v in VG (let us name it x) should have the
following property(for l1 ∈ γ):

( f (x), l1) < RH (B.21)

Moreover, following from the fact that x is a neighbor of v in G and contradiction hypothesis
we can deduce that:

f (x)RIw (B.22)

The following figure demonstrates the situation of the graphs in the initial case of induction
hypothesis where we first found x. The red dashed line refers to (B.21) and the red line
shows (B.22). I also have outlined the modules J , K , L, andM.
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G :

H :

I :

v

x

f (x)

f (x)

L

f (v) w

M

L

f (v) w

M

J

J

K

K

l1

l1

m1

m1

(B.23)
We can notice that f (x)l1w f (v) < RH and f (x)g1 f (v)l1 ∈ RH . In order to preserve the
cograph property forH we need to state:

( f (x),w) < RH (B.24)

Equations (B.22) and (B.24) show that an edge has been added between f (x) and w when we
applied the medial rule (or g) on H . However, we know that f (x) is not one of the vertices
affected by medial rule( f ◦ g is not a skew fibration) so g is not able to add this edge which
contradicts with the process of finding x. Consequently, at least one neighbor of v in VG is
in L after applying f and this vertex is the one we need to show f ◦ g is a skew fibration.

• number of medial rules = n+1: By Proposition 6.7 in [69] we know that the n first medial
rules are equal to a bijective skew fibration g1 : H ↣↠ H ′ where H and H ′ are cographs.
By induction hypothesis, we know that f ◦g1 is a skew fibration. Assume g2 : H ↣↠ I is the
bijective skew fibration corresponding to the n + 1th medial rule. By applying the induction
hypothesis once again, we can deduce that f ◦ g1 ◦ g2 is a skew fibration.

□

Proof for Theorem B.1. Using Lemmas B.2, B.3, B.4, and B.5, it is immediate that f ◦g is a skew
fibration. □

132



133





Titre : Flux Combinatoires

Mots clés : preuves combinatoires; inférence profonde; théorie de la démonstration; flux atomiques; calcul
séquentiel; déduction naturelle; normalisation; élimination des coupures

Résumé : Dans cette thèse, nous introduisons des
flux combinatoires pour les preuves en logique pro-
positionnelle classique comme réponse possible au
problème de l’identité des preuves et de la compa-
raison des preuves que nous appelerons le 24ème
problème de Hilbert. Les flux combinatoires sont une
représentation graphique de preuves inspirés des
propriétés des flux atomiques et des preuves com-
binatoires. Des flux atomiques, introduits par Gu-
glielemi et Gundersen, ils héritent de la correspon-
dance étroite avec la déduction ouverte, de la pos-
sibilité de retracer les occurrences des atomes dans
une dérivation et de de la compositionnalité libre.
Des preuves combinatoires, introduites par Hughes,
elles héritent du critère de correction qui permet la

reconstruction de la dérivation à partir du flux et
la différenciation entre la partie linéaire et la partie
gestion des ressources de la preuve. En fait, nous
montrerons que les flots combinatoires forment un
système de preuve au sens de Cook et Reckhow.
De plus, nous établissons une traduction entre les
dérivations de différents systèmes de preuve (à sa-
voir la déduction naturelle, le calcul séquentiel et
l’inférence profonde) et les flux combinatoires, ainsi
que leur lien avec les preuves combinatoires avec
coupures. Enfin, nous discuterons des formes nor-
males et des procédures de normalisation sur les
flux combinatoires tout en introduisant la purification
comme sous-procédure concernée par la présence
d’unités dans le langage.

Title : Combinatorial Flows

Keywords : combinatorial proofs; deep inference; proof theory; atomic flows; sequent calculus; natural de-
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Abstract : In this thesis, we introduce combinato-
rial flows for proofs in Classical propositional logic
as a possible answer to the problem of proof identity
and proof comparison which we refer to as the 24th
problem of Hilbert. Combinatorial flows are a graphi-
cal representation of proofs inspired by properties of
atomic flows and combinatorial proofs. From atomic
flows, introduced by Guglielemi and Gundersen, they
inherit the close correspondence with open deduction,
the possibility of tracing the atom occurrences in a de-
rivation, and the free compositionality. From combina-
torial proofs, introduced by Hughes, they inherit the
correctness criterion that allows the reconstruction of

the derivation from the flow and the differentiation bet-
ween the linear and the resource management part of
the proof. In fact, we will show that combinatorial flows
form a proof system in the sense of Cook and Reck-
how. Moreover, we will show how to translate between
derivations from different proof systems (namely natu-
ral deduction, sequent calculus, and deep inference)
and combinatorial flows, and we will show their rela-
tion with combinatorial proofs with cuts. Finally, we will
discuss normal forms and normalization procedures
on combinatorial flows while introducing purification
as a sub-procedure concerned with the presence of
units in language.
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