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Résumé

Titre: Modèles d’agents améliorés pour les foules de piétons : analyse des données empiriques de
la Fête des Lumières et affinement des interactions mécaniques, des formes de piétons et des aspects
décisionnels.

Mots clés: physique ; matière active ; dynamique de foules ; modélisation ; prise de décision ;
instabilités dynamiques ; expériences de terrain

Résumé: Avec la multiplication des événements de masse, la dynamique des foules est devenue un
sujet d’étude de plus en plus important. Comprendre comment les groupes se déplacent et évoluent
dans l’espace, en particulier à des densités moyennes et élevées, est crucial pour l’organisation de tels
événements.

La première section de cette thèse de doctorat présente l’un des premiers ensembles de données de
terrain sur les foules denses. Cet ensemble comprend aussi bien des trajectoires de piétons que des
méta-informations collectées lors de la Fête des Lumières 2022 à Lyon, dans le cadre du projet franco-
allemand MADRAS. Il comprend jusqu’à 7000 trajectoires, des données GPS, ainsi que des statistiques
sur les collisions entre personnes. Par ailleurs, des événements rares ont été identifiés, offrant ainsi une
description approfondie de la dynamique des piétons dans des scénarios réels complexes.

Je présente ensuite un cadre théorique de modélisation de la dynamique des foules qui intègre une
composante décisionnelle, où les piétons ajustent régulièrement leur vitesse désirée, et une couche
mécanique qui confronte ces décisions à la réalité physique environnante. La plupart des modèles
existants échouent à reproduire fidèlement les interactions mécaniques, car ils reposent souvent sur
des forces d’interaction idéalisées et des formes circulaires simplifiées. En m’inspirant de la littérature
scientifique sur la dynamique granulaire, j’intègre aux équations newtoniennes, des interactions
mécaniques plus réalistes, en utilisant des ressorts amortis à la fois tangentiels et normaux aux surfaces
de contact. J’utilise de plus des données anthropométriques pour représenter le plus fidèlement possible
le contour humain, en deux dimensions, plutôt que de recourir à de simples disques. Cela me permet de
créer une foule synthétique qui intègre les hétérogénéités anatomiques.

En ce qui concerne la composante décisionnelle, les piétons s’efforcent de sélectionner une vitesse
souhaitée tout en tenant compte de diverses contraintes métaboliques, physiques et psychologiques, la
plupart étayées par des données empiriques. Ces contraintes incluent :

⋆ Une contrainte de destination qui prend en compte l’objectif d’atteindre un lieu spécifique.
⋆ Des limites biomécaniques liées aux capacités musculaires et articulaires des piétons.
⋆ Un coût lié à la différence d’alignement entre le corps et la direction de mouvement
souhaité.

⋆ Une volonté de préserver sa bulle sociale, une zone que les individus souhaitent maintenir libre
de toute intrusion, qu’il s’agisse d’obstacles ou de piétons voisins.
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⋆ Une intention d’éviter les collisions ou interpénétration des espaces de confort lors d’un
déplacement, basée sur des estimations de temps avant collision.

Cette zone de confort est modélisée par un champ scalaire d’inconfort dont les courbes de niveau
ne sont pas simplement circulaires. Le modèle, dans sa globalité, est implémenté en C++ et testé
dans divers scénarios. Après validation dans des situations simples impliquant des paires de piétons
ou un piéton près d’un mur, les prédictions du modèle concordent avec les résultats d’expériences
impliquant la propagation d’une poussée à travers une rangée de personnes, ou encore d’évacuations
et de mouvements de faufilement entre murs et piétons.

J’étudie enfin les phénomènes collectifs qui se manifestent non seulement dans les foules, mais aussi
dans le trafic véhiculaire, en particulier les ondes stop-and-go résultant de la croissance d’instabilités
dynamiques. Pour mieux comprendre ces phénomènes, je simule un modèle de suivi automobile en file
qui repose sur la tendance à maintenir un temps de retard constant par rapport au véhicule suivi. Bien
que la version déterministe de ce modèle soit inconditionnellement stable, l’ajout de bruit entraîne
de manière inattendue l’apparition d’ondes stop-and-go. J’explique cette observation en utilisant une
analogie avec le pendule de Kapitza, qui développe un nouvel état stationnaire sous l’effet de fortes
vibrations. Plus précisément, une discontinuité d’un paramètre d’ordre bien choisi apparaît lorsque
le niveau de bruit ou la densité dépasse un certain seuil, faisant écho à une transition liquide-gaz. Ce
bruit peut provenir d’inexactitudes dans les observations des conducteurs et des piétons, de difficultés
dans le traitement cérébral de l’information ou d’interactions non prises en compte.

Mes recherches sur la dynamique des foules soulignent l’importance d’intégrer les processus décision-
nels aux interactions mécaniques pour approfondir la compréhension des comportements collectifs
complexes, en particulier dans les environnements bondés.
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Abstract

Title: Enhanced agent-based models for pedestrian crowds: insights from empirical data at the
Festival of Lights and refinements of mechanical interactions, pedestrian shapes, and decisional aspects.

Keywords: physics; active matter; crowd dynamics; modelling; decision-making; dynamic instabilit-
ies; field experiments

Abstract: With the surge in mass events, crowd dynamics have become an increasingly important
subject of study. Understanding how groups move and evolve in space, particularly at medium and
high densities, is crucial for organising such events.

The first section of this PhD dissertation presents one of the first field datasets on dense crowds. This
dataset includes pedestrian trajectories and meta-information collected during the 2022 Festival of
Lights in Lyon as part of the Franco-German MADRAS project. It includes up to 7000 trajectories, GPS
data, and contact information. In addition, some rare events have been identified, providing an in-depth
description of pedestrian dynamics in complex, real-life scenarios.

Subsequently, I develop a theoretical framework for modelling crowd dynamics that integrates a
decision-making component, where pedestrians regularly adjust their desired speed, and a mechanical
layer that confronts these decisions with the surrounding physical reality. Most existing models fail to
faithfully reproduce mechanical interactions, often relying on idealised interaction forces and simplified
circular shapes. Drawing inspiration from the scientific literature on grain dynamics, I integrate more
realistic mechanical interactions into the Newtonian equations, using damped springs that are tangential
and normal to the contact surfaces. I also use anthropometric data to represent the human contour as
faithfully as possible, in two dimensions, rather than using simple disks. This allows me to create a
synthetic crowd that incorporates individual heterogeneity.

Regarding decision-making, pedestrians strive to choose a desired speed while adhering to various meta-
bolic, physical, and psychological constraints, largely supported by empirical data. These constraints
include:

⋆ A destination constraint which considers the goal of reaching a specific location.
⋆ Biomechanical limits related to the muscular and articular capacities of pedestrians.
⋆ A cost associated with themisalignment between the body and the desired direction of
movement.

⋆ A desire to preserve one’s social bubble, a zone that individuals wish to keep free of any intrusion,
whether from obstacles or neighbouring pedestrians.

⋆ An intention to avoid collisions or interpenetration of comfort spaces during movement based
on the estimation of time to collision.

This comfort space is modelled by a scalar field of discomfort whose contours are not simply circular.
The full model is implemented in C++ and tested in various scenarios. After validation in simple
situations involving pairs of pedestrians or a pedestrian near a wall, I successfully compare the model’s
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predictions with experiments involving the propagation of a push through a row of people, evacuations,
and weaving movements between walls and pedestrians.

Finally, I investigate collective phenomena that occur not only in crowds but also in vehicular traffic,
specifically stop-and-gowaves resulting from the growth of dynamical instabilities. To better understand
these phenomena, I simulate a car-following model that relies on maintaining a constant time gap with
the lead vehicle. Although the deterministic version of the model is unconditionally stable, introducing
noise intriguingly leads to the emergence of stop-and-go waves. I explain this observation using an
analogy with the Kapitza pendulum, which develops a new stationary state under strong vibrations.
Specifically, discontinuities in a suitably defined order parameter appear when noise or density exceeds
a finite threshold, echoing a liquid-gas transition. This noise may stem from inaccuracies in drivers’
and pedestrians’ observations, difficulties in brain information processing, or unaccounted interactions.

My research on crowd dynamics highlights the importance of integrating decision-making processes
with mechanical interactions to deepen our understanding of complex collective behaviours, notably in
crowded environments.
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Introduction

A month into my doctoral contract in Lyon, my supervisor encouraged me to shift from reading
scientific papers about crowd dynamics (Karamouzas et al., 2014; Helbing and Molnar, 1995; van Toll
et al., 2020; Chen et al., 2018) to observing pedestrians in their natural environment. I left the institute
and headed to the city centre, where I began my observations on a bench along Rue de la République, one
of Lyon’s busiest pedestrian streets. I meticulously noted people’s actions, hoping these observations
would spark new ideas. For instance, when people are waiting at the bus stop, they are not at all lined
up according to a specific pattern; the distribution of these people at the stop is not trivial at first glance,
especially during peak hours. Empty spaces appear around people discussing and disappearing; some
of them continuously fidget and bump into others without realizing it. Although these insights were
valuable, I wished to explore scenarios involving much larger crowds.

Figure 2: Left A crowded scene on Rue du Président Édouard Herriot during Lyon’s Festival of Lights in December
2022, captured through point-of-view photography. Right A mesmerizing light animation from the festival, seen
through the same lens.

Conversations with locals revealed a significant city-wide event, gathering millions of people in total,
ideal for observation: the Festival of Lights. Held every December, this event began as a tribute to the
Virgin Mary for protecting Lyon from the plague during the religious wars. It has since evolved into a
massive international festival, celebrated for its remarkable light displays and artistic projections on
historic buildings as illustrated in Fig. 2. We contacted city officials to understand how such an event is
organised. Through our discussions, we realised our study on crowd dynamics could be practically
relevant for them in organising the Festival of Lights. Indeed, they shared situations where they had
been concerned about rapidly escalating issues: bottlenecks at Place de la Bourse and Place des Célestins,
excessive density at Place des Terreaux in 2005, and Rue Sainte-Catherine being partially obstructed by
opposing flows that could potentially lead to fatal consequences, in the worst conceivable case, without
proper management.
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Figure 3: Collective motion patterns in fish schools. Individuals’ interactions give rise to a variety of dynamical
structures that can be (a) poorly or (b) highly polarized. Other configurations of fish schooling include milling (c)
and bait ball (d) structures. The figure is taken from Lopez et al. (2012).

Observing pedestrians on the street reveals that they typically walk at a constant speed, adjusting
their pace to maintain this preferred speed, as though they were driven by a self-propelling force
enforcing constant speed. Strikingly, the observed dynamics are not time-reversible, strictly speaking
(if time were reversed, pedestrians would appear to move backwards while looking over their shoulders,
which is not observed empirically). All this points to a non-equilibrium assembly distinct from more
traditional physical systems like materials. In the latter, particles interact through spring-like forces
and can often (but not always) be approximated as being in (or close to) equilibrium. In contrast, the
non-equilibrium physics of active matter deals with multi-agent systems made of self-propelled agents
that convert energy into work, similar to how pedestrians convert the chemical energy from food
digestion into mechanical work as they walk. Assemblies of such self-propelled entities can exhibit
intriguing large-scale collective behaviours like stop-and-go waves. Other examples of self-organized
phenomena are illustrated for fish in Fig. 3.

Many models describing these movements are grounded in Newtonian physics, considering each
pedestrian as a disk moving with a preferred speed according to Newton’s laws (Johansson et al., 2007;
Czirók and Vicsek, 2000). Recently, some researchers have incorporated decision-making aspects from
game theory through the preferred speed (Hoogendoorn and H.L. Bovy, 2003; Zanardi et al., 2021). The
preferred speed is, therefore, no longer constant but the result of a decision process.

However, most models simplify pedestrians into basic shapes that fail to capture their true charac-
teristics or effects. For example, representing pedestrians as disks with shoulder-width diameters
cannot accurately replicate the observed densities at the Festival of Lights and simultaneously capture
pedestrian weaving.

To address current limitations in pedestrian dynamics research and provide valuable insights for both
the pedestrian community and potentially the organizers of the Festival of Lights, our study will proceed
as follows:
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Review of existing research We will begin by examining the current literature on crowd dynamics
to establish the current state of crowd dynamics research, focusing on theoretical and empirical
studies, identifying gaps in existing models, particularly regarding their ability to incorporate
psychological and social factors alongside physical interactions.

Data collection We will provide a detailed overview of the data collection process during the Festival
of Lights in Lyon, focusing on the various data types: pedestrian trajectories, GPS data, contacts
and surveys.

Introduction of a novel model Building on our collected data, we will introduce a novel model that
incorporates more realistic characteristics based on anthropometric data, moving beyond the
simplistic representations used in current models. In particular, I will explain how this model uses
damped springs for realistic mechanical interactions and integrates decision-making processes
based on constraints such as destination goals and collision avoidance.

Exploration of decision-making and collective behaviours Finally, wewill explore how decision-
making can reproduce emergent collective behaviours, such as stop-and-go waves, offering new
insights into how individual choices influence collective dynamics.
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CHAPTER 1

State of the art

Managing pedestrian flows is crucial during large-scale events like the Festival of Lights in Lyon.
Systematic planning and monitoring of crowd motion help identify and prevent potential risks, such
as high-density areas or erratic behaviours. However, flow management is not limited to pedestrians.

Start
End

Strategic level

Tactical level

Operational level

Figure 1.1: Schematic illustration of pedestrian dynamics modelling description levels. The strategic level entails
planning and scheduling activities. This includes determining which activities to undertake, selecting their origin
and destination, deciding the sequence in which they will occur, specifying the time and day for each activity, and
choosing the mode of transport—whether public, private or on foot. The tactical level defines a set of routes to
reach the chosen activity and, ultimately, selects the most suitable route. The operational level handles local
motion along the chosen route, focusing on collision avoidance to ensure safe and efficient travel.

Large gatherings also generate significant vehicle traffic, including bicycles, cars, and public transport,
for the arrival and departure of visitors or circulation in surrounding cities. Therefore, a comprehensive
approach to flowmanagement, encompassing pedestrians and vehicles, is essential to ensure the smooth
running of major events like the Festival of Lights. This approach can be conceptualised at three distinct
levels: strategic, tactical, and operational, using the terminology of Hoogendoorn and Bovy (2004),
which are illustrated in Fig. 1.1. Each level plays a crucial role in ensuring the safety and enjoyment
of attendees while maintaining order and efficiency. The strategic level forms the foundation of
event planning, encompassing broad decisions about schedules, potential routes, and transportation

5



Back to ToC State of the art

methods. At the tactical level, authorities focus on specific route selection and crowd guidance. Finally,
the operational level delves into the minutiae of individual movements and interactions within the
crowd. Understanding these three levels allows for a comprehensive approach to crowd management,
addressing the big picture and the finer details of event organisation.

1.1 Modelling crowds at different levels

1.1.1 Strategic level

At the strategic level, on which we will focus here, the organisers plan the broad outlines of the event.
They determine the activities to be carried out and their chronological order, identify the different
possible routes and the nature of the terrain (asphalt, grass, mixed or clay paths, and so on), and choose
the means of transporting the public and participants to these activities. While meticulous planning is
vital, organisers must also account for their audience’s typical behaviours and preferences, ensuring
that the measures implemented align with the habits and expectations of festival attendees.

1.1.1.1 Urban data and travel behaviour

Extensive research has been conducted on various daily activities and their planning. For instance, a
study from O’Fallon and Sullivan (2003) was undertaken to analyse the differences in travel behaviour
between weekdays and weekends in the three main urban areas of New Zealand, namely Auckland,
Wellington, and Christchurch. The data collected from the household travel survey includes information
on travelled distances, modes of transport, travel purposes, and vehicle occupancy. The analysis focuses
on rips, defined as any displacement between two distinct activity locations with or without pausing
for up to 90 minutes. Several key findings emerge from these data. Fewer trips are made on weekends,
particularly on Sundays. However, the distances travelled per trip are longer onweekends. Onweekdays,
nearly 45% of trips are related to work or study, as seen in Fig. 1.2.

Figure 1.2: Table showing the purpose of the trip by day of travel, taken from O’Fallon and Sullivan (2003).

Weekend travel patterns exhibit distinct characteristics compared to weekdays, with trips predominantly
focused on leisure, shopping, and social or recreational activities. While car-sharing usage remains
relatively constant throughout the week, a notable shift occurs from active modes (walking and cycling)
and public transport towards car passenger trips during weekends. This transition results in higher
vehicle occupancy on weekends, reflecting the nature of leisure activities and family or group travel.
Although socio-demographic variables such as age, income, and household composition appear to
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have limited influence on travel behaviour and mode choices in New Zealand’s main urban areas,
it’s crucial to note that these findings are specific to regions grappling with significant congestion
issues. Therefore, care should be taken when applying these findings to other contexts. The scope of
travel behaviour studies varies widely, ranging from national analyses to hyper-local investigations.
Fisher and Robinson (2010), in an article from the UK’s Centre for Time Use, provides a comprehensive
snapshot of daily behaviour across 22 countries for working individuals aged 18 to 64. Other studies
focus on different scales: Ravalet (2007) examines travel patterns at the agglomeration level, Seneviratne
and Morrall (1985) explores city centre dynamics, and Sparnaaij et al. (2022) even delve into travel
behaviour at the scale of individual restaurants. Interestingly, contrasts in travel behaviour emerge
when comparing different urban contexts. For instance, Ravalet (2007) reveals that affluent peripheral
municipalities in Lyon, France, exhibit atypical motorisation patterns. More than half of the households
in these areas are multi-motorised, starkly contrasting the less than 20% observed in other selected
zones. This disparity underscores the importance of local context in shaping travel behaviour. From a
psychological perspective, Ababio-Donkor et al. (2020) explores the impact of affect on commuting
mode choice. Affect, defined by Baumeister and Bushman (2007) as an automatic response to positive
or negative experiences, plays a crucial role in shaping travel decisions. Human memory of experiences
appears disproportionately influenced by the most intense moments and final impressions in a sequence
of events. Consequently, any prominent user experience with a particular travel mode, positive or
negative, can significantly impact future behaviour. This nuanced understanding of travel behaviour,
encompassing temporal patterns, local contexts, and psychological factors, offers valuable insights
for transportation planners and policymakers. Considering these diverse influences, more effective
strategies can be developed to manage urban mobility, especially in the Festival of Lights in Lyon
context.

1.1.1.2 Commercial pedestrian softwares

In crowd organisation and event management, careful planning is crucial for success. While traditional
methods, such as rules of thumb or empirically refined processes, are often used, there is also a growing
interest in integrating insights from public research and advanced tools. For instance, software like
Iventis, from Cusdin (2015), has been utilised in events such as the Dubai Expo 2020, an international
exhibition held in Dubai from 1 October 2021 to 31 March 2022. Iventis assists organisers by enabling
the creation of site maps, positioning infrastructure, and planning for multiple sites, which helps
ensure comprehensive planning. The software offers approximate crowd densities and visitor flow
rate calculations to help identify potential bottlenecks. Users can customise parameters like average
pedestrian size (modelled as disks), walking speeds for specific areas, initial positions, and destinations.
By assuming a constant walking speed along pedestrian paths, Iventis can estimate travel times. It also
calculates flow rates using standard fundamental diagrams (i.e., the relationship between density and
flow rate) as the one illustrated in Fig. 1.3. This static modelling approach provides an efficient and
cost-effective way to test scenarios and make real-time adjustments. However, cautiously approaching
claims about effectiveness cautiously is essential, as practical experiences may vary significantly from
theory and rule of thumb.

Vadere is an open-source framework from Kleinmeier et al. (2019), designed to simulate microscopic
pedestrian and crowd dynamics. It offers generic model classes, visualisation, and data analysis tools
for two-dimensional systems. Vadere supports various locomotion models, including the Optimal Steps
model from Seitz and Köster (2012) and Social Force models (Köster et al., 2013). Rather than being a
model itself, Vadere serves as a simulation platform that incorporates these models. It is crafted to be
lightweight and user-friendly, making it appealing for applications in crowd management.

By utilising tools like Iventis and Vadere, event organisers can enhance planning processes, encourage
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Figure 1.3: Scheme, adapted from Feliciani (2017), which illustrates common vocabulary in traffic flow for both
vehicles and pedestrians. The curve is divided into two sections. Free Flow: Individuals move with minimal
interaction, and increased density leads to higher flow. Congestion Phase: Beyond a certain density, additional
people reduce flow. The slope of a line through the origin indicates velocity at the density point where it intersects
the flow-density curve, as flow is expressed as ρv(ρ). For uniform flow, the curve’s peak, known as capacity,
represents the maximum flow for a given corridor setup, aiding in safer design.

collaboration, and proactively address crowd management challenges. Nonetheless, these tools have
certain limitations, such as the need for more precise dynamic modelling and improved real-time data
integration. Addressing these limitations through further research and development could significantly
enhance their utility in planning and managing large-scale events, contributing to a safer and more
successful experience for attendees.

1.1.2 Route choice (tactical level)

Below the planning scale lies the tactical scale, which focuses on understanding pedestrian route choices
during events such as the Festival of Lights. This involves analysing how pedestrians decide between
different paths to the same activity. For example, in the Parc de la Tête d’Or during the festival, multiple
paths—such as asphalt roads and natural soil trails—lead to the same attraction. The implicit rules
influencing route choices can differ between these environments. On asphalt roads, pedestrians are
likely to consider factors like distance, crowdedness, and travel time when choosing their routes. In
contrast, when navigating trails in the park, factors like scenery, terrain, and proximity to attractions
may guide their path selection. By understanding pedestrian decision-making at this tactical scale,
event organisers can better manage crowd flows and enhance the overall experience during the Festival
of Lights.

1.1.2.1 Human trail systems in parks

Helbing et al. (1997) developed an active walker model to explore the evolution of trails in urban green
spaces. The image used to describe the model is a hiker traversing a virgin jungle. The first hikers
use machetes to progress and build paths. They move slowly. However, this progress is capitalised
upon and extended by subsequent hikers, who can then widen the path, lay stones, gravel, and finally,
asphalt. In this model, each pedestrian evolves at a desired speed, the orientation of which results
from a weighted sum of a term related to the target and a term related to their interaction with the
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Figure 1.4: Similarity between the simulation result (left) and the trail system on the university campus of Brasilia
(right), adapted from Helbing et al. (1997).

environment expressed as the gradient of a potential. The potential used is a smoothed version of a field
G(r, t) expressing the gain of being at a particular position at time t. Physically, this smoothing can be
seen as an imprecise visibility of the environment surrounding the pedestrian. The critical equation
describing the evolution reads:

Dt [G(r, t)] =
G0(r)−G(r, t)

T (r)
+ I(r)

[
1− G(r, t)

Gmax(r)

] ∑

α∈{pedestrians}

δ(r− rα(t)) (1.1)

whereDt denotes the material derivative, G(r, t) stands for the ease of motion at position r and time t,
T (r) is a parameter reflecting the durability of paths against erosion (the larger T , the more established
the path, i.e., the easier it is to reach the destination), G0(r) is the base ease of motion, Gmax(r) is the
maximum possible ease and I(r) reflects the influence of footsteps on modifying the ease of motion.
The first term is a relaxation term accounting for spatial inhomogeneities such as obstacles, hills, or
trees. The second term reflects the tendency to prefer places already trodden by other pedestrians. After
simulating the model numerous times, one can obtain a set of trajectories. When these trajectories are
averaged spatially, they produce a density map that closely resembles the actual path map, as shown in
Fig. 1.4.

Figure 1.5: Examples of minimum Euclidian Steiner Trees, adapted from Brazil et al. (2014). The red dots are the
terminal points, i.e. the starting and destination points.

Goldstone and Roberts (2006) extended that previous work by developing a virtual platform to explore
how decentralised social groups differ from minimal Euclidean Steiner Trees, also known as cheapest
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path networks. See Fig. 1.5 for examples. These trees, as explained by Robins and Zelikovsky (2008),
are designed to minimise the total path length, calculated as the sum of all edge weights in the tree.

1.1.2.2 Navigation field as a standard tool

These field patterns are analogous to navigation maps, delineating potential pathways by considering
various activity points and their sequential order. Their effectiveness stems from their comprehensive
integration of multiple planning aspects. This holistic approach has made them particularly popular in
robotics, enabling autonomous movement in robots, as elucidated by Latombe (1991) in his seminal
work on robot motion planning. In this context, the robot is represented as a point in configuration
space, reacting to an artificial potential generated by the target and the obstacles. The target creates an
attractive potential, drawing the robot towards the goal, while the obstacles create a repulsive potential,
pushing it away. The negative gradient of the total potential is interpreted as an artificial force guiding
the robot. The robot moves systematically towards the lowest values of the global potential. For a
visual representation of the navigation field, including obstacles, please refer to Fig. 1.6.

Figure 1.6: Global potential field (b) associated with the environment (a), taken from Soulignac and Taillibert
(2006).

1.1.2.3 Shortest path in cities

An experiment by Seneviratne and Morrall (1985), in downtown Calgary, Alberta, Canada, aimed to
evaluate the factors influencing pedestrians’ route choices within the city’s central business district.
Researchers conducted an origin-destination survey interviewing 2900 pedestrians at 32 downtown
locations over nine consecutive work days. Interviewers asked pedestrians about their current trip,
including origin, destination, route taken, and the primary factor influencing their route choice from
a list of 10 options, such as shortest route, least crowded, and most attractions. As a result, the most
significant factor influencing route choice was the shortest route between origin and destination, cited
by 50.7% of respondents. Habitual behaviour was the second most common factor, with 21.7% of
respondents consistently using the same route out of habit. Secondary considerations included factors
like congestion level, safety, and visual attractions. Specific groups, like shoppers, valued routes with
more attractions, while commuters preferred direct routes.

To model such pedestrian behaviour, a potential field approach can be employed, where the field values
represent the shortest distance to the target destination, calculated using Dijkstra (2022)’s algorithm on
a graph representation of the environment. The potential field values increase as the distance from the
target increases, creating a gradient that guides pedestrians toward their destination, as illustrated in
Fig. 1.6. A repulsive term can be introduced to account for obstacles and walls, exponentially increasing
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as the distance from the obstacle decreases. This repulsive term ensures that pedestrians avoid colliding
with obstacles and walls while following the general direction towards the target, as the potential field
gradient dictates.

In most cases, the pedestrian reaches its goal without any issues. However, in specific situations, a
pedestrian may become trapped in a local minimum or need to cross a virtual barrier, such as close
walls (as discussed by Soulignac and Taillibert (2006)). To address this problem, Dorst and Trovato
(1989) proposed the so-called wavefront expansion method. The idea is first to discretise the space
into a grid and then calculate the potential field values locally. This expansion begins by defining the
target cell as 0. Then, each closest neighbour (adjacent cells which are situated in the four cardinal
directions) of the goal cell is defined as 1; then, each closest neighbour of the cells with value 1 is
defined as 2 (if it has not been evaluated before); and so on. The first three steps of the wavefront
expansion are illustrated in Fig. 1.7. By construction, each cell labelled by i > 0 has a neighbour with a
lower potential: the one labelled i− 1. Thus, there are no local minima.

Figure 1.7: Evolution of the potential field wavefront (cells filled in grey). Cell labels represent potential field
values (undefined in empty cells), extracted from Soulignac and Taillibert (2006).

More complex but crucial situations in high-density environments arise when, instead of walls, one
encounters rows of stationary pedestrians, who are not considered obstacles. This type of configuration
requires both operational-level anticipation and planning on a more global scale. The coupling between
these two levels—operational and tactical—remains a challenge for which no simple solution has yet
been found.

1.1.2.4 Fastest path in cities

In the presence of dynamic obstacles like crowds, pedestrians may not choose the shortest path
due to the risk of being trapped within the crowd. Instead, their behaviour may be to select a path
that minimises travel time. This route choice mechanism is implemented in dynamic floor field
models, as demonstrated by Höcker et al. (2010) in their work on efficient navigation methods for
microscopic pedestrian simulations. A straightforward approach is to replace the edge weight of a
graph representation of the environment, which is typically the distance between two vertices of an
edge, with the travel time. These travel times are updated in real-time based on pedestrian local density
near the edge, affecting walking speed and travel time. Fig. 1.8 illustrates an example of a dynamic
floor field that utilises travel times to guide pedestrian movement.

1.1.2.5 Real-life situations that reqire more general route choice models

We have seen that pedestrians choose their route in cities primarily based on distance and travel
time. However, Chen et al. (2023) from Purdue University noticed that subtle incentives in the urban
landscape (called nudges), such as sidewalk colour, as shown in Fig. 1.9, could significantly change path
choices.
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Figure 1.8: This figure, adapted from Höcker et al. (2010), illustrates a dynamic navigation field that calculates
pedestrian travel times from the initial vertexVI to the destination vertexVD. The most direct route is obstructed
by a crowd, which would significantly slow movement compared to unoccupied areas. As a result, the optimal
path circumvents the group of pedestrians to minimise travel time.

Figure 1.9: In the experiment conducted by Chen et al. (2023), subjects were shown a virtual red sidewalk as
part of the study. Indeed, participants experienced this virtual environment from the perspective of their virtual
apartment. As they prepared to leave, a message on the door informed them: "When the distance is less than
2.5 miles, 3 out of 4 people (75%) choose to walk rather than use motor traffic." This scenario was designed to
influence the subjects’ route choices, encouraging them to walk when deciding how to reach a destination.

To test the effectiveness of nudges, the researchers designed an online experiment involving 1984

participants recruited via MechanicalTurk (2005) (a web-based micro-work platform that aims to have
humans perform more or less complex tasks online for compensation). Participants had to imagine
themselves as tourists in a virtual fictional city and react to different scenarios involving three types of
nudges:

Sidewalk colour Comparison between uncoloured sidewalks and sidewalks painted red (energising)
or blue (calming).

Priming with images of walking shoes Exposing some participants to images of shoes before an-
swering questions about their interest in walking.

Descriptive norms Messages indicating that 75% of tourists chose to walk rather than use motorised
transport.

The results revealed significant effects of these nudges:

Colored sidewalks, whether red or blue increased the appeal of walking by about 32% compared to
uncoloured sidewalks, with no significant difference between red and blue.

Priming with images of shoes increased interest in walking by about 20%.
Normative messages positively encouraged participants to choose walking when informed that most

other tourists walked.

Another situation where pedestrian behaviour is more complex than merely optimising travel time is
when navigating a geometrically complex environment with obstacles like a pillar. Gabbana et al. (2022)
demonstrate that pedestrians tend to choose routes that minimise their perceived travel time rather
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than the overall travel time computed for all pedestrians combined. This individual optimisation can
lead to a sub-optimal traffic distribution from a system-wide perspective, deviating from what would
be considered optimal for global welfare. The distinction between optimising individual travel time
(user equilibrium) and global travel time (system optimum) is crucial in understanding these dynamics.

1.1.2.6 More general statement of the route choice problem

It appears that path choice is influenced not only by the minimisation of distance or travel time but also
by psychological factors. This concept is supported by a more comprehensive theory of path choice,
which draws inspiration from the utility theory, introduced by Von Neumann and Morgenstern (1947),
and the prospect theory, proposed by Kahneman and Tversky (1979), in decision-making. Deterministic
utility models, such as the one proposed by Bovy and Stern (2012, Chap. 5.3), assume travellers have
perfect information and choose the route that maximises their utility. The utility of route i is typically
expressed as:

Vi = β1Xi1 + β2Xi2 + . . .+ βnXin (1.2)

where Vi represents the deterministic utility, Xij denotes the attributes of route i (e.g., estimated
distance, estimated travel time - see Fig. 1.10 for the relation between subjective and objective travel
time while performing motor tasks such as walking and cognitive tasks like mental calculations), and
βj are the corresponding coefficients. The route with the highest utility is chosen with certainty. These
models are simple to implement but do not account for perception errors or taste variation among
travellers. They tend to assign all traffic to a single best route between an origin-destination pair, which
is usually unrealistic.

a) b)

Underestimationc) d)

Figure 1.10: (a) Illustration of the experiment with a pedestrian walking at different speeds on a treadmill while
looking at a screen displaying instructions. (b) Example of the screen display during the duration of a trial. (c)
Estimated duration versus actual duration, adapted from D’Agostino et al. (2023). Each coloured fit line represents
the average time estimate for an individual participant. Triangles indicate the forward irregular-speed walking
condition on a treadmill. The medium-difficulty task involved solving simple arithmetic problems, specifically
adding a 1-digit number to a 2-digit number (e.g., 4 + 13), while walking. The sum of these operations never
exceeded 100. (d) Averaged estimation bias (bias = mean(estimate - actual duration)) computed over 21-second
intervals, along with their best-fit curves. Error bars represent the standard error across participants. On average,
participants overestimated shorter durations and underestimated longer durations. That cognitive bias is widespread
in cognitive psychology when you ask someone to estimate a positive quantity, as evidenced by the experimental
findings of Izard and Dehaene (2008) and the theoretical framework proposed by Petzschner et al. (2015).
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Unlike deterministic utility models, random utility models incorporate uncertainty in route utilities,
which accounts for imperfect information, perception errors, and taste variation. This probabilistic
framework, pioneered by Becker et al. (1963) and further developed by scholars like Loomes and Sugden
(1995) and Bovy and Stern (2012), provides a more nuanced representation of traveller decision-making.
The utility of route i is expressed as:

Ui = Vi + ϵi (1.3)

where Vi is the deterministic component and ϵi is a random error term. The probability of choosing
route i is then given by:

P (i) = Prob(Ui > Uj for all j ̸= i) (1.4)

Common forms include logit (Berkson, 1944) and probit (Finney, 1947) functions. Some models, such as
the one proposed by Hoogendoorn and Bovy (2004), incorporate randomness directly into potential
trajectories using optimal control formalism. This approach yields more realistic results, particularly in
congested networks. While these random utility models offer enhanced accuracy, they are generally
more complex to define and implement.

1.1.3 Operational level

We can study the motion of crowds on an even smaller scale by looking at the walking behaviour of
pedestrians. When organising events such as the Festival of Lights, it is essential to understand how
people interact physically and far from each other to prevent disastrous events. The main models
used at the operational level are macroscopic, microscopic, and mesoscopic (see Fig. 1.11 for a visual
summary). Macroscopic models describe traffic as a continuum using aggregated quantities like density,
flow, and speed fields. They are useful for modelling collective phenomena and situations where
heterogeneity is less important. To solve them efficiently, some discrete network-based approach can
be built as shown by Göttlich et al. (2011). Microscopic models simulate individual vehicles and drivers,
making them suited for heterogeneous traffic, human behaviour analysis, and detailed visualisation.
These include follow-the-leader models (Fehrenbach et al., 2015) and cellular automata (Schadschneider,
2001). Mesoscopic models are hybrid approaches combining micro and macro elements, such as master
equations (Mahnke and Pieret, 1997) and gas-kinetic models (Festa et al., 2018). They can be tricky
to build and solve. In contrast, macroscopic models often use partial differential equations based
on fluid dynamics analogies. Specifically, they typically consist of a continuity equation for mass
conservation and a velocity-dependent equation for momentum conservation. On the other hand,
microscopic models use ordinary differential equations or discrete update rules to model individual
motions. Consequently, the choice of model usually depends on the specific application, available
data, and computational requirements. Let’s then delve into how macroscopic equations offer valuable
insights for understanding and managing crowds at the Festival of Lights. Additionally, we will explore
how the complementary use of microscopic equations further enhances these insights in the following
sub-subsections.

1.1.3.1 Unidirectional and bidirectional flow scenarios

At the heart of macroscopic models lies the mass conservation equation, commonly called the continuity
equation. It establishes a relationship between the spatial variation of flow, denoted asQ .

= ρv, and
the temporal variation of density. This relationship ensures the conservation of density over time, as
expressed by the following equation:

∂ρ

∂t
+ div(Q) = 0 (1.5)

– 14 –



Chapter 1 Back to ToC

Figure 1.11: Schematic classification of pedestrian models at the operational level with examples. Continuum
models refer to approaches that are continuous in time and space, while discrete models refer to those that are
discrete in either time or space.

(a) Continuous models (b) Kinetic models (c) Force-based models
Equation: Tordeux et al. (2018) Equation and Figure: Festa et al. (2018) Equation: Helbing and Molnar (1995)
Figure: Coscia and Canavesio (2008) Software, Figure: Pettre (2024)

(d) Macroscopic models (e) Stochastic models (f) Cellular automata
Figure: Göttlich et al. (2011) Equation: Mahnke and Pieret (1997) Figure: Burstedde et al. (2001)

Figure: Schadschneider et al. (2010)

The relationship between flow and density, or equivalently between velocity and density, can be
measured experimentally1 and is known as the fundamental diagram. Examples of fundamental
diagrams are shown in Fig. 1.12.

0 2 4 6 8 10

Density
[
ped/m2

]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

S
p

ee
d

[m
/s

]

Mori
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Figure 1.12: Examples of empirical fundamental diagrams for unidirectional flow along a corridor with a periodic
length of LX = 16 m and a width of LY = 3 m (Mōri and Tsukaguchi, 1987; Zhang et al., 2011; Helbing et al.,
2007; Older, 1968; Weidmann, 1993).

1In the experiment, a specific section of the corridor where pedestrians move is selected for observation. The average
density in this section is measured at least every two seconds to ensure the measurements remain uncorrelated throughout the
experiment. Depending on the authors’ methodology, averages may then be calculated for each density bin.
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From a modelling perspective, this relationship can be represented by determining a close relation
between velocity and density. These models are referred to as first-order models because the velocity
profile adjusts immediately to changes in the density profile. In contrast, second-order models couple
acceleration with density rather than just velocity. Depending on the specific situation being modelled,
different choices can be made regarding this relationship, as described by Coscia and Canavesio (2008):

Models of the first kind These models are associated with low-density scenarios where the speed v
(the magnitude of the velocity v) depends solely on density: v(ρ). The direction of movement is
determined by the position of pedestrians and their targets.

Model of the second kind These models apply to high-density scenarios where speed depends on
the density and its spatial gradient: v(ρ,∇ρ). Consequently, the magnitude of the velocity
can vary based on local density variations, introducing anisotropy into pedestrian behaviour.
Pedestrians are considered anisotropic pedestrians if they are not equally affected by stimuli
from all directions. In this context, it refers to walkers who follow a straight line towards their
target but whose velocity amplitude changes as the density in their neighbourhood changes.

Model of the third kind These models are particularly relevant in high-density scenarios, where
pedestrian behaviour becomes more complex. In such situations, the local density and spatial
gradient influence the magnitude and direction of pedestrian velocity: v (ρ,∇ρ). This approach
reflects the tendency of pedestrians to navigate towards their destination while simultaneously
seeking paths of least resistance. Rather than following strictly linear trajectories, individuals may
be drawn to routes with lower-density gradients, resulting in more organic and fluid movement
patterns.

First-order models can also handle obstacles by splitting the velocity vector into two contributions:
one directed towards the target and the other repelled by the obstacles. However, these models require
a specific fundamental diagram for each situation, making them impractical for diverse and complex
environments. Consequently, first-order models are primarily suited for describing well-defined and
simple scenarios.

1.1.3.2 Underground scenario

To model a more general situation, such as a crowd leaving an underground station like the one shown
in Fig. 1.13, one can use a second-order model (Bellomo and Dogbe, 2008) which includes, in addition
to a continuity equation for the density, an equation representing the Newton’s Fundamental Principle
of Dynamics:

Dt[ρ(r, t)v(r, t)] = F[ρ,v,∇] (1.6)

where Dt stands for the material derivative and F characterises both the internal driving force or
motivation and external forces applied to the elementary block of individuals in volume dxdy that
depends in principle on the local crowd density, the velocity, and their derivatives. Similarly to the first-
order model, one can distinguish three kinds of second-order models depending on the dependencies
of F and, therefore, depending on the phenomenology one would like to describe. Therefore, one can
describe the repulsive action of obstacles using a pressure-like term in F; see the article from Piccoli
and Tosin (2009) for more details.

At an even deeper level, Bruno et al. (2011) incorporated non-locality in both space and time into
pedestrian behaviour models to account for the fact that visual perception enables pedestrians to gather
and synthesise non-local information about their surroundings, a concept already widely explored in
medical (Patla, 1997) and cognitive psychology research (Gibson, 1950; Kosslyn, 1978).

Non-locality in space Each pedestrian has a defined sensory region essential for perception, evalu-
ation, and reaction, enabling them to perceive and respond to conditions beyond their immediate
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Figure 1.13: (a)Map of the underground station used for numerical simulations. Pedestrians arrive from above
(inlet boundaries) and exit to the right (outlet boundaries). The grey blocks represent pillars. (b) Instantaneous
crowd density fields (times row-wise), adapted from Bruno et al. (2011).

vicinity. They assess the perceived density as a weighted average over their entire sensory
region, with greater emphasis on the frontal area, modelling curious pedestrians who perform an
ensemble evaluation of their surroundings.

Non-locality in time The model combines two time delays: a reflex time delay for quick reactions
and a volitional time delay for more complex evaluations. This approach makes pedestrian
reactions non-local in time, accounting for both immediate and delayed responses.

1.1.3.3 Stop-and-go waves in qeues

Macroscopic equations provide valuable insights into various traffic phenomena, including phantom
jams or stop-and-go waves in vehicular traffic (Sugiyama et al., 2008), congestion patterns in pedestrian
movement (Ziemer et al., 2016), and solitons or kinks in mathematical models (Komatsu and Sasa, 1995),
(Nagatani, 1998a). Stop-and-go waves are self-organised phenomena that emerge directly from the
system’s dynamics rather than from external factors such as lane changes or pedestrian accidents2.
These waves are characterised by alternating cycles of movement and stoppage within a flow of
pedestrians or vehicles, resulting in waves of congestion propagating through the crowd. They manifest
as periods of forward motion followed by sudden halts, creating a ripple effect that travels upstream
against the direction of traffic flow. Refer to Fig. 1.14 for a visual representation of stop-and-go waves
in the context of car traffic.

Lighthill and Whitham (1955) developed a first-order macroscopic model for traffic flow, which is
characterised by its use of a single partial differential equation to describe the dynamics of traffic
density. As discussed in Sec. 1.1.3.1, the first-order model assumes that the traffic speed is a function
of vehicle concentration, typically expressed as an equation like v(t) = V [ρ(t)], where v is the traffic
speed and ρ is the vehicle density. Assuming a traffic hump as the initial condition, the model effectively
predicts the motion of traffic humps, the formation of density shock waves at bottlenecks, and the
behaviour of traffic near junctions. However, when both the density and velocity are initially uniform,
the model does not spontaneously generate shock waves. While the model is interesting, it cannot
replicate Sugiyama et al. (2008) experiment.

Conversely, Bain and Bartolo (2019) developed a second-order model to describe velocity waves in a
marathon. They incorporated a dependence of the force fieldF on a polarization field p, which accounts

2Other self-organised phenomena have been observed, and a classification based on the place and the context has been
proposed by Chen et al. (2018). Please refer to Fig. A.4 in App. A.2.
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Figure 1.14: Experimental setup and results of traffic jam formation on a circular road, adapted from Sugiyama
et al. (2008). (a) Snapshot of 22 vehicles on a 230m circular track. (b) Vehicle trajectories over two minutes show
the emergence of a traffic jam cluster and its backward propagation at approximately 20 km/h.

for local alignment between individuals, thereby providing a more comprehensive representation of
their local interactions.

Other researchers sought to examine in greater detail the impact of local interactions between pairs of
individuals on the emergence of stop-and-go waves at a large scale. To achieve this, they developed
microscopic models. For instance, Newell (1961) proposed the Optimal-Velocity Model (OVM) for a
single car file, described by the following equation of motion:

dxj(t+ τ)

dt
= V (∆xj(t)) (1.7)

where xj(t) represents the position of car j at time t, while ∆xj(t) denotes the headway of car j at
time t. The parameter τ is a time delay, and V (·) is the optimal velocity function. This model describes
how a driver adjusts his velocity based on the observed headway to the car in front. The driver aims
to achieve an optimal velocity V (·) that depends on the current headway. This velocity function can
be empirically fitted to fundamental diagrams that relate traffic density to flow. The time-delay τ
accounts for the driver’s reaction time and the car’s mechanical response, representing the lag between
observing a change in headway and adjusting the velocity accordingly. Interestingly, by setting τ = 0 in
Eq. (1.7) and taking the hydrodynamic limit to derive a macroscopic equation, one can obtain the model
proposed by Lighthill and Whitham (1955), which cannot reproduce the emergence of stop-and-go
waves. Therefore, introducing a time delay appears to be a crucial element for accurately describing
the traffic dynamic.

Unlike Newell (1961), who studied congestion waves in vehicular traffic, Fehrenbach et al. (2015)
focused on congestion waves in a single pedestrian file. They investigated the time delay and another
microscopic feature of human behaviour: the tendency to follow the leader’s velocity, i.e., the person
directly in front. More precisely, the velocity of pedestrian i verifies the following equation:

dvi
dt

(t+ τ) = C
vi+1(t)− vi(t)

|xi+1(t)− xi(t)|1+γ
(1.8)

where C > 0, τ > 0, and γ ≥ −1 are modelling constants. Intuitively, Eq. (1.8) describes a two-phase
process. In the first phase, a pedestrian observes the leader (the person directly in front of them) and
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decides based on the leader’s speed and position. In contrast, in the second phase, the pedestrian
adjusts his velocity to comply with this decision. The model incorporates a time delay τ between the
decision-making and action phases, representing the time the pedestrian needs to translate his decision
into movement.

1.1.3.4 Finding your way on a crowd

Figure 1.15: Virtual crowd display, taken from Wirth et al. (2023). Participant perspectives in high-density (A) and
low-density (B) scenarios for the first experiment are shown. Overhead views of high-density (C) and low-density
(D) conditions in the first experiment are also provided, along with configurations (E, F) for the second experiment.

Navigating through a crowd during the Festival of Light requires understanding the neighbourhood
of interaction in crowd dynamics. Traditionally, two primary models have been proposed to describe
how individuals in a crowd influence each other: the metric neighbourhood model (Cucker and Smale,
2007) and the topological neighbourhood model (Ballerini et al., 2008), initially used in the study of
self-organised patterns in animals such as birds and fish. The metric model suggests that all neighbours
within a fixed physical distance influence an individual. In contrast, the topological model posits that an
individual is influenced by a fixed number of nearest neighbours, regardless of their physical distance.
However, recent experimental studies involving pedestrians navigating through crowds (Meerhoff et al.,
2018; Wirth et al., 2023; Dachner et al., 2022) in both natural and Virtual Reality (VR) environments
(as illustrated by Fig. 1.15), have provided compelling evidence that neither of these models fully
captures the dynamics of human crowd behaviour. These studies suggest that a more accurate model
may be needed to account for the complexities of human interactions in crowds. Instead, the visual
neighbourhood model has emerged as the most accurate representation. This model is based on the
visual information available to individuals, such as their neighbours’ optical motions and visibility, as
shown in Fig. 1.16. It suggests that individuals control their movement by responding to visual cues
from their neighbours.

In this context, visual cues are optical signals that individuals gather through their sense of sight,
helping them navigate and interact with their environment. They adjust their walking speed and
direction to cancel out their neighbours’ average angular velocity and optical expansion or contraction
(optical size). These adjustments are weighted based on visibility. As a result, a neighbour’s influence
diminishes with distance, following optical principles, and is further reduced by visual obstruction
from closer individuals.
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BA C

Figure 1.16: Three ways of describing the neighbourhood pedestrian interaction. (A) Metric neighbourhood: In
this case, pedestrians interact with others within a specific radius. The influence of these interactions decreases
exponentially as the head-to-head distance increases. (B) Topological neighbourhood: This model incorporates
topological relationships. Pedestrians interact with their seven nearest neighbours, some of whom may be outside
the metric distance threshold. The choice of seven neighbours is not random; it comes from psychological studies
such as that of Miller (1956). (C) Visual neighbourhood interaction: This model considers a pedestrian’s field
of vision. Interactions occur with individuals within the pedestrian’s line of sight, accounting for occlusion. The
scheme is adapted from Wirth et al. (2023).

1.1.3.5 From microscopic description to macroscopic

When dealing with pedestrians, transitioning from a microscopic to a macroscopic description is usually
possible. Various techniques can be employed depending on the macroscopic aspects you want to
emphasise or the microscopic details you wish to abstract. This section will explore the two main
approaches used in pedestrian dynamics. To illustrate these methods, a slightly modified version of
Eq. (1.7), introduced in Sec. 1.1.3.3, will be used. This modification involves linearising the time delay τ
dependence through a first-order Taylor expansion in τ and rewriting the equation in terms of∆xi
and ∆xi+1 for consistency in notation. The modified equation reads:

d2∆xi
dt2

(t) = a

[
V (∆xi+1(t))− V (∆xi(t))−

d∆xi
dt

(t)

]
(1.9)

Coarse-Graining Approach The coarse-graining approach, as suggested by Lee et al. (2001), involves
defining macroscopic quantities such as density ρ and flow q as integrals over microscopic variables
using a kernel function ϕ. This method smooths out microscopic fluctuations to obtain continuous
macroscopic fields. The coarse-grained density and flow are defined as follows:

ρ(x, t) =

∫
dx′
∫

dt′ ϕ(x− x′, t− t′) ρ̂(x′, t′)

q(x, t) =

∫
dx′
∫

dt′ ϕ(x− x′, t− t′) q̂(x′, t′)
(1.10)

where ρ̂(x, t) is the micro density: ρ̂(x, t) =
∑

i δ(xi(t)− x), q̂(x, t) is the microscopic flow: q̂(x, t) =∑
i
dxi

dt (t) δ(xi(t) − x) and ϕ(x, t) is the coarse-graining kernel function that, depending on its
chosen shape, obscures specific microscopic details. This method transitions from discrete pedestrian
behaviours to continuous macroscopic fields. By averaging over small spatial and temporal scales, it
captures overall motion patterns while smoothing out the fine details of individual interactions.
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Nonlinear analysis The core idea of this method lies in deriving a continuous approximation of
the discrete solution at large time and space scales3. A critical question arises: where should this
approximation be made? More specifically, which set of initial parameters is most revealing?
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Figure 1.17: In the centre, the phase diagram is obtained from simulations of Eq. (1.9). Three distinct regions in
the traffic flow are identified: the stable region (white) above the coexistence curve, the metastable region
(blue) between the spinodal and coexistence curves, and the unstable region (red) below the spinodal line. The
points (∆xb, ab) and (∆xc, ac) represent bifurcation points, with (∆xc, ac) specifically denoting a critical point.
Simulation results for each of these three regions are provided, starting from initial configurations where spacings
are perturbed by white noise. It is important to note that the simulations corresponding to the red and blue panels
(right) were not performed using exactly the same potential. The parameters a and∆x have been chosen such
that: in the red region, a homogeneous initial state is linearly unstable, and in the blue region, a homogeneous
initial state is linearly stable. The dashed path illustrates the trajectory followed in our approximation. The graphs
are adapted from Nagatani (2000); Komatsu and Sasa (1995).

It’s particularly intriguing to examine solutions near a bifurcation point - a point in parameter space
where a slight change in parameters can lead to dramatically different qualitative behaviours. Linear
stability analysis can be employed to identify such a point, providing insight into the linearised system’s
behaviour. When applied to Eq. (1.9), this analysis reveals that for an initial mean spacings ∆x0 (or
equivalently an initial global density) satisfying: V ′(∆x0) >

a
2 , the system will diverge. The curve

representing the boundary of that unstable state in the (∆x0, a) space is depicted by the dotted black
line in Fig. 1.17 (middle panel). Simulation of Eq. (1.9) in the unstable state reveal a spacing profile
exhibiting a kink-antikink structure, as shown in Fig. 1.17 (red panel).

While approximate solutions can be sought anywhere in principle, the most exciting cases lie near a
specific kind of bifurcation point: a critical point denoted (∆xc, ac) i.e. a point located at the frontier
(between stable and unstable state). Therefore, let’s focus on finding an approximate solution near such
point as illustrated in Fig. 1.17 by the blue dashed path. The process involves several key steps:

• Define a small parameter to control our approximation.
• Change scale (note that without changing scale, we would merely be performing linear stability
analysis).

• Change variables by defining a continuous variable from the discrete one as a perturbation around
the solution at the critical point.

• Combine all elements, substitute and expand in order of the small parameter.

Now, let’s look at each stage in details:

Introduce a small parameter Define a small parameter, ϵ, to measure the distance from the bifurc-

3For an alternative explanation of this method in the context of pattern formation in particle assemblies, refer to the work of
Bena et al. (1993).
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ation point. For instance, express this as a = ac(1 − ϵδ), where δ is an exponent that varies
depending on the scale of interest. Visually, this is analogous to following the blue dashed vertical
path depicted in Fig. 1.17.

Change scale Introduce slow spatial and temporal variables to capture the long-wavelength behaviour,
i.e. the slow and global dynamics near the bifurcation point:

X
.
= ϵα(i+ bt), T

.
= ϵβt (1.11)

where i is the discrete index to identify a car, t is time, and b defines the shift to a moving
coordinate system (i.e. the speed in the stationary state at the bifurcation point from which the
perturbation is performed, b = V ′(∆xc) in our case), α, β are other scaling exponents.

Define a continuous variable Express the dynamical variable as expansion in ϵ around their value
at the critical point. For example:

∆xi(t) = ∆xc + ϵγR(X,T ) (1.12)

where γ is another scaling exponent, and R(X,T ) is the new spacing field.
Determine the exponents introduced in the previous definitions To determine the scaling ex-

ponents, one can decompose in Fourier modes the solution of Eq. (1.9), denoted as∆xi(t). We
express it as:

∆xi(t) = ∆xc +A ejki+ωt (1.13)

where A is a real constant known as the amplitude of the Fourier mode assumed very small
of order ϵγ , j is the imaginary unit, k is a real number referred to as the wave number or
spatial growth rate, and ω is a complex number called the pulsation or temporal growth rate.
By substituting this mode into Eq. (1.9) and solving for ω in the limit of large spatial scales (i.e.,
small wave-number), we obtain the so-called dispersion relation (Komatsu and Sasa, 1995):

ω(k) =
ac
2
jk +

ac − a
4

k2 − ac
12
jk3−ac

16
k4 +O(k5) (1.14)

The dispersion relation is pivotal in linking wave phenomena’ temporal and spatial growth rates.
By carefully analysing it, one can identify specific spatial and temporal frequencies one wishes
to eliminate or focus on. This analysis also enables the evaluation of scaling exponents that
characterise the solution one wants to look for.

a) b)

Figure 1.18: a) Real part of ω(k), representing the time growth rate of wave modes. Modes with small wave
numbers (shown in red) experience growth due to contributions from k2, while modes with large wave numbers
(shown in green) decay due to contributions from k4. b) The initial configuration, represented by the solid line,
depicts a homogeneous state slightly perturbed by white noise. As time progresses, this configuration undergoes
a transformation illustrated by the competition between the little red arrows and the green ones acting on the
different modes of the initial state. Ultimately, that initial state evolves into a well-defined soliton structure. This
evolution demonstrates the system’s tendency to self-organise from a near-uniform state into a localised, stable
wave pattern. The figure is adapted from Komatsu and Sasa (1995).

– 22 –



Chapter 1 Back to ToC

Balancing the right terms in the dispersion relation is crucial for determining the appropriate
scaling of space and time. For instance, balancing the second-order and fourth-order terms can
help identify the most stable shock waves. In the dispersion relation equation, the real terms
(highlighted in colours) govern the growth or decay of the Fourier mode. If only the red term is
considered, the Fourier mode will increase. However, if both terms are included and given equal
weight, i.e. scaling, small wavenumber modes will grow. In contrast, large wavenumber modes
will decay, potentially leading to an interesting soliton solution as illustrated in Fig. 1.18.
To determine the scaling factors, we will follow the blue dashed path illustrated in Fig. 1.17 as an
example. If we set ac − a scales as ϵ2, then k should scale as ϵ to balance second order and fourth
order term in Eq. (1.14). The scaling of t is determined by the lowest-order term in Eq. (1.14),
which is given by a dispersion term proportional to k3 when we eliminate the propagation term
proportional to k by shifting to a moving coordinate system. Thus t scales as ϵ−3. Therefore,
X ∼ ϵ and T ∼ ϵ3. To find the scaling of R(X,T ), one should decide whether to explore
solutions in the unstable or metastable regime, as illustrated in Fig. 1.17. Setting a scaling factor
of ϵ is sufficient to explore solutions in the metastable state (as depicted by the blue horizontal
dashed path in the middle panel of Fig. 1.17). This leads to the following scalings X ∼ ϵ, T ∼ ϵ3,
and R(X,T ) ∼ ϵ−1 or equivalently α = 1, β = 3, γ = 1, and δ = 2. Ultimately, to effectively
observe the emergence of slowly varying shock density waves in the unstable regime, the scaling
R(X,T ) ∼ ϵ−2 would be more suitable.

Substitute, expand and solve Substitute the perturbative expansions into the original discrete equa-
tion and expand in powers of ϵ. Collect terms of the same order in ϵ and solve the resulting
equations order by order. At the lowest non-trivial order, this yields in our case that Partial
Differential Equation (PDE) for the perturbation function R(X,T ):

∂R

∂T
− ∂3R

∂X
+
∂R3

∂X
= 0 (1.15)

It turns out that this is the modified Korteweg-de-Vries (KdV) equation, which admits soliton
solutions, among others, commonly known as stop-and-go waves. As a remark, using an altern-
ative scaling such as X ∼ ϵ, T ∼ ϵ3, and R(X,T ) ∼ ϵ−2 would lead to the Korteweg-de-Vries
(KdV) equation, whose solutions are also well-known.

It is worth noticing that the linear scaling for which all the exponents are equal to one is nothing more
than the hydrodynamic limit. As an example, Tordeux et al. (2018) derived in the hydrodynamic
limit a macroscopic first-order convection-diffusion flow model from a microscopic follow-the-leader
equation with reaction time similar to Eq. (1.7).

1.1.4 Discussion

Three distinct levels have been identified at which authorities can act to understand and manage crowds
during the Festival of Lights. While they provide a robust framework for event planning and execution,
they have limitations. The strategic level focuses on planning schedules, defining possible routes,
and determining transportation methods. Although studies exist for the city of Lyon, they remain
insufficient to provide a precise global view at this strategic level. This aspect is crucial as it forms the
foundation for organising the Festival of Lights. In the future, more comprehensive studies should be
conducted to enhance strategic planning.

Upon completion of these strategic tasks, attention shifts to the tactical level, which primarily involves
route selection. For instance, during the Festival of Lights, a typical path might be the route from
the Part-Dieu train station to an Airbnb on the peninsula of Lyon. Predicting the most frequently
used paths enables more accessible guidance for individuals, allows for the closure of specific routes
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to avoid vehicle interactions, and ultimately enhances the safety of the user experience. To further
improve tactical planning, it would be beneficial to conduct surveys on the mindset of Festival attendees
beforehand and obtain trajectory data, possibly through drone footage, to identify the most used routes.
Such information would provide insights into the most relevant psychological variables influencing
route selection.

At a deeper scale, the operational level centres on how individuals move along their chosen routes
and interact with the environment. This operational aspect is particularly critical as it helps prevent
disasters in high crowd density or general panic situations. While macroscopic models are valuable
for describing collective phenomena, they have limitations when dealing with heterogeneous crowds
that include people on scooters, police officers, and ambulances. Current models do not allow for a
simple description of all this variety. Microscopic models are generally more suitable for such scenarios.
However, caution should be exercised to avoid over-complicating these models by adding numerous
interactions to precisely fit specific situations, as these additional factors may only be relevant to the
particular case being studied.

1.2 Physical modelling of crowds at the operational level: insights from
microscopic models

1.2.1 The Social Force Model: a pioneering approach to simulating crowd dynamics

The pioneering microscopic model of crowd dynamics is the Social Force Model (SFM) proposed by
Helbing andMolnar (1995). Despite its limitations, it is still widely used in pedestrian dynamics software
for the general public (see Sec. 1.1.1.2). The SFM is a physical framework that describes pedestrian
dynamics by positing that individuals are subject to ‘social forces’, which represent internal motivations
rather than physical forces directly exerted by the environment. In the SFM, pedestrians are modelled
as point particles with an ellipsoidal comfort zone they want to preserve. The critical components of
the model are:

Driving force This force represents the desire of a pedestrian i to reach a destination at a preferred
speed. Mathematically, it is expressed as:

Fdes
i =

vdesi ei − vi

τ
(1.16)

where vdesi is the desired velocity amplitude (taken from a normal distribution centred around
1.4m/s to account for the heterogeneity of people’s behaviour), ei is the desired direction
pointing toward the destination, vi is the current velocity of pedestrian i, and τ is a relaxation
time parameter.

Repulsive potential It ensures pedestrians preserve a comfort zone around them from the intrusion
of other pedestrians. The repulsive force from another pedestrian j is derived from a potential
that represents the comfort zone of pedestrian i. It is given by:

F
rep
ij = −∇riVij(bij)

Vij = V0 exp

(
−bij
σ

) (1.17)

where V0 is a constant that denotes the strength of the interaction. The equipotential lines of
the comfort potential surrounding pedestrian i are depicted as ellipses, with bij representing the

– 24 –



Chapter 1 Back to ToC

semi-minor axis, which is given by:

bij =
1

2

√
(||rij ||+ ||rij − vi∆t||)2 − (vi∆t)

2 (1.18)

where rij = ri − rj . The ellipse is oriented in the direction of motion and intersects with
pedestrian j, as illustrated in Fig. 1.19. The characteristic length scale of the comfort potential
is denoted by σ. Notably, the scalar field is significantly influenced by the anticipated position
of pedestrian i after a short time interval ∆t, assuming constant velocity, reflecting a form of
proactive avoidance. This anticipation allows pedestrians to preemptively adjust their path to
maintain a comfortable distance from others, thereby minimising potential close encounters.
This force can be adapted to the walls and boundaries of the space in which pedestrians move by

Figure 1.19: Illustration of the elliptical personal field equipotentials of pedestrian i. The distance between the
two foci of each ellipse is ||vi∆t||, approximately equal to the length of one step of pedestrian i. The scheme is
adapted from Johansson et al. (2007).

using the following potential:

Uio = U0 exp

(
−||rio||

R

)
(1.19)

where U0 is a constant representing the strength of the repulsive interaction from the obstacle,
||rio|| is the distance between pedestrian i and the nearest point B on the obstacle denoted as o,
and R is a characteristic length scale of the repulsion from the obstacle.

Attractive potential towards a group of people, or objects An attractive interaction, denoted as
Fatt

ia , can be introduced between pedestrian i and pedestrian a to model attractions to other
pedestrians or objects, such as friends or points of interest. The associated potential is given by:

Wia = −A exp

(
−||ria||

B

)
(1.20)

whereA is a constant representing the strength of the attractive interaction, ||ria|| is the distance
between pedestrian i and the attractive point a, and B is a characteristic length scale of the
attraction.

The resulting equation of motion for a pedestrian i of massmi is:
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mi
dvi

dt
= Fdes

i +
∑

j ∈{other
pedestrians}

µij F
rep
ij +

∑

o ∈{obstacles}

µio F
rep
io +

∑

a∈{other
pedestrians}

µia F
att
ia (1.21)

where µij is a constant accounting for the pedestrian’s field of vision. It is equal to 1 when individual
j is in the pedestrian i field of view of angular size 2ϕ centred around the direction of the desired
velocity ei and c a positive constant strictly less than 1 otherwise (a similar definition holds for µio and
µia). Therefore, they can still interact with a pedestrian behind them, but less strongly than with a
pedestrian in front of them.

Figure 1.20: Above a critical pedestrian density, spontaneous lane formation emerges, with pedestrians moving
uniformly in the same direction within each lane. The diameters of the circles are a measure of the actual velocity of
motion. Empty circles represent pedestrians with a desired direction of motion opposite to pedestrians symbolised
by full circles. The figure is reproduced from Helbing and Molnar (1995).

The Social Force Model (SFM) can reproduce the self-organisation of pedestrians into lanes of uniform
walking direction, especially in high-density situations as seen in Fig. 1.20. This emergent behaviour
significantly reduces the frequency of avoidancemanoeuvres, thereby enhancing the overall efficiency of
pedestrian traffic flow. Furthermore, themodel accurately reproduces oscillatory changes in the direction
of pedestrian flow at narrow passages, a phenomenon observed in real-world settings (Hoogendoorn
and Daamen, 2005). This occurs as groups of pedestrians alternately pass through the bottleneck from
opposite directions. While the SFM has been successful in reproducing many collective phenomena, it
has several limitations:

No proper mechanical layer The original SFM does not include proper physical interactions ac-
counting for how pedestrians push, fall, deform and shudder, which is critical in high-density
scenarios. A significant step was made by Helbing et al. (2000a) with the introduction of normal
and tangential contact forces, which enhanced the realism of pedestrian dynamics simulations in
escape panic scenarios.

Lack of cognitive and decision-making processes The SFMdoes not incorporate higher-level decision-
making processes that influence pedestrian behaviour:
Memory The model does not account for previous experiences, which can influence future

behaviour. Indeed, a defining feature of living pedestrians is their capacity to assimilate
information, process it, and modify their decisions accordingly, with memory playing a
crucial role in this adaptive process. In particular, Danny Raj and Nayak (2022) focus on
developing a SFM that incorporates a pedestrian’s short-term memory of recent movements,
allowing it to evaluate its performance in achieving desired velocity and adjust its tactics in
response to immediate environmental changes.

Anticipation Pedestrians in the model cannot predict their trajectory or that of others to
avoid collisions or choose faster routes. They also cannot rotate to anticipate possible
collisions. This lack of anticipation leads to unrealistic oscillatory movements, which occur
when pedestrians try to avoid each other, as shown by Kretz (2015). Karamouzas et al.
(2009) make a step towards collision avoidance with their Predictive-Avoidance Model
(PAM), which is an enhanced version of the SFM. This approach enables each simulated
pedestrian to anticipate potential collisions within a specified anticipation time as illustrated
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in Fig. 1.21. Rather than relying on current positions, PAM calculates ‘evasive forces’ based
on the projected locations of pedestrians at the predicted moment of collision. Unlike

(a)  (b)No anticipation Anticipatory avoidance

Figure 1.21: The Social Force Model (SFM) and the Predictive-Avoidance Model (PAM) demonstrate distinct
pedestrian behaviours in simulated scenarios: (a) In the SFM simulation, two pedestrians approach each other
on a collision course. The pedestrian on the left, aiming to move right, maintains a straight path until collision
is imminent. Only then does he attempt evasive action by swerving around the other pedestrian. (b) The PAM
simulation of the same scenario reveals more realistic behaviour. Both pedestrians adjust their trajectories well
before a collision, exhibiting anticipatory movement. This proactive avoidance reflects the model’s incorporation
of pedestrian foresight. The picture is adapted from Guy and Karamouzas (2019).

Karamouzas et al. (2009), who introduced new forces to account for anticipation, Hu et al.
(2023) makes slight modifications to SFM by increasing the size of the ellipse, specifically
by significantly enlarging the ellipse’s anticipation time ∆t. This approach is akin to using
multiple steps instead of a single step to determine an individual’s comfort zone, from which
repulsion forces are calculated. The study quantifies how much the presence of anticipation,
represented by ∆t in the interaction ellipse, improves predictions of evacuation times,
social gathering behaviours, and other dynamics. The results show that improvements
are noticeable as long as∆t ∼ 20 s is not too large. Beyond this threshold, the impact of
anticipation saturates and does not significantly change outcomes.

Navigation (connecting tactical and operational levels): The model assumes that pedestrians
always move towards their destination, which may not be true in complex environments
such as labyrinths. This simplification ignores the dynamic decision-making processes
involved in navigation as mentioned in Sec. 1.1.2.2 and Sec. 1.1.2.4. Readers interested in
enhanced SFM, including navigation fields, are encouraged to consult the work of Jiang
et al. (2017b).

Brain constraints The model cannot accurately represent situations where pedestrians may
react more slowly due to divided attention or distractions, such as using a phone, being
exposed to loud noise, listening to music, being lost in thought, or conversing with someone
else. Additionally, the model does not account for biases in visual and cognitive processing,
which is especially relevant when the individual is covered in information because that’s
when most of his actions will be the result of automatic decision-making processes and will
not be the result of the deliberate decision-making process as is the case in a supermarket
or the middle of a crowd. For example, Kremer et al. (2021) develop a model to account for
variation in attention starting from the PAM.

Limited representation of group behaviour The original SFM does not adequately capture
the dynamics of pedestrian groups moving together. In particular, it does not account for
adult-child pairs, friendship, or couple interactions, which are common in real-world scen-
arios. For instance, Moussaïd et al. (2010) demonstrates that social interactions among group
members generate typical walking patterns, such as side-by-side and V-like formations,
significantly impacting overall crowd dynamics.

Difficulty in parameter calibration One of the weaknesses of the social force model is the abstract
nature of its parameters, which makes them neither directly nor easily measurable. Furthermore,
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these parameters must be systematically adjusted to replicate a specific situation4, meaning they
are inherently dependent on the context being studied. Their proliferation also complicates
identifying their precise role within the overall dynamics. Efforts are being made to develop
models (Echeverría-Huarte and Nicolas, 2023) with measurable parameters no longer tied to
specific scenarios. Such models could then be used not only to replicate scenarios but also to
make predictions.

The original SFM has undergone numerous refinements and expansions to address its limitations and
broaden its applicability across diverse scenarios. For a comprehensive overview of direct improvements
to the SFM, readers are directed to Chen et al. (2018). The following two subsections delve into critical
mechanical and decision-making factors to enhance crowd management at Lyon’s Festival of Lights.

1.2.2 Mechanical aspects

1.2.2.1 Velocity-based model

The mechanical characteristics of crowd dynamics are fundamentally related to how individual com-
ponents, particularly pedestrians, respond to stress. To illustrate this concept, consider the analogy
of a football released onto a wooden floor. Upon impact, the ball bounces, and an analysis of the
velocity of its centre of mass over time reveals discontinuities at the points of contact. Consequently,
employing Newton’s equation incorporating a first-order derivative with respect to velocity can be
neither straightforward nor mathematically intuitive for modelling such interactions. Given these
complexities, a more accessible method for mathematically defining contact involves utilising zero-order
models associated with velocity, known as velocity-based models. These models offer a simpler yet
effective approach to capturing the essence of crowd dynamics without the need for a complex theory
of contact and deformation. They can be expressed as follows:

vi(t) = Vi

(
t, {qj(t)}j∈[[1,N ]], {vj(t)}j∈[[1,N ]]

)
(1.22)

with N the number of pedestrians, Vi the velocity function of pedestrian i that may depend on time,
and the position and velocities of pedestrians, pedestrian i included, making the model implicitly
defined. Maury and Venel (2011) developed a collision-free velocity-based model to handle highly
packed crowd situations where individuals are represented as disks. Their model is based on two key
principles:

• First, they define a spontaneous velocity for each individual, representing the velocity they would
prefer in the absence of others. This is typically done using a floor field that indicates desired
directions of motion, which slightly differ from those described in Sec. 1.1.2.2. In this case, the
spontaneous velocity is proportional to the gradient of the floor field rather than the acceleration,
as illustrated by Fig. 1.22.

• Second, they compute the actual velocity by projecting Euclidianly the spontaneous velocity
onto the set of admissible velocities denoted C that do not violate non-overlapping constraints
between individuals. Therefore, the positions of all the pedestrians verify the following equation:

dq

dt
= PC (U(q)) (1.23)

denoting q ∈ R2N the position of theN pedestrians,U(q) the desired velocity field, and PC the

4A tentative listing of the various base case scenarios that all models should be capable of qualitatively replicating is provided
in Fig. A.5, as referenced in App. A.3.
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Figure 1.22: Left: Contour levels of the geodesic distance D which is the floor field. Right: Velocity field
U(q) = −s∇D(q). The figure is reproduced from Maury and Venel (2011).

Euclidian projection onto C . Intuitively, this projection operation serves as a dynamic constraint,
ensuring minimal deviation from the primary goal of reaching the target.

Numerically, Eq. (1.23) can be discretised in time by linearising the constraints on the set of admissible
velocities. Denoting by qn the position vector at time tn of all pedestrians, the discretised scheme
consists in computing the next velocity vn+1 as:

vn+1 = argmin
v∈C∆t(qn)

1

2
|U (qn)− v|2 (1.24)

where∆t is the simulation time-step, representing the time interval between two consecutive decisions,
|.| is the Euclidean norm such that |v|2 = vTv, and C∆t(qn) defines the set of feasible velocities:

C∆t(qn) = {v ∈ R2N : ∀i < j, Dij(qn+1) ≃
linearisation

Dij(qn) + ∆tGij(qn) · v ≥ 0} (1.25)

This set represents the discrete collection of velocities that ensure no overlap between pedestrians after
a small movement. Specifically, it includes all candidate velocities v such that the distance between
any pair of pedestrians i and j remains non-negative after moving for a small time step ∆t with the
candidate velocity v.

The minimisation is then computed using the method of Lagrange multipliers generalised to inequality
constraints (Kuhn and Tucker, 1951). Interestingly, these multipliers can be interpreted as interaction
pressures between individuals, similar to concepts in thermodynamics. That approach allows the model
to replicate commonly observed collective behaviours, such as forming lanes in crowded spaces and
forming arch-like structures near exits during evacuations. One of the model’s strengths lies in its
versatility. It adeptly handles complex geometries, enabling simulations of intricate scenarios like
multi-floor building evacuations. Moreover, the model provides valuable insights into potential safety
risks. Analysing pressure maps offers a method to estimate the local risk of casualties in various
scenarios.

Nevertheless, that model only considers circular shapes. Narang et al. (2017) addressed this limitation by
introducing the Elliptical Optimized Reciprocal Collision Avoidance (EORCA) model, which represents
pedestrians as ellipses or polygonal approximations of ellipses for computational efficiency (Best et al.,
2016). In this model, each agent selects an optimal velocity from a convex set of permissible velocities
that allow collision avoidance while staying as close as possible to their preferred velocity. Unlike the
approach in Maury and Venel (2011), where minimization is performed collectively across all agents,
the EORCA model applies individual minimization for each agent. This enhancement allows for more
realistic crowd simulations by enabling body rotations to avoid collisions, as illustrated in Fig. 1.23.
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Figure 1.23: In a narrow passage, two ellipses approach each other in a confined hallway. To pass safely, each
ellipse must rotate. Such behaviours, like shoulder turning, are not possible with disc-shaped agents. The figure is
taken from Best et al. (2016).

1.2.2.2 Pressure within the crowd

Crowd density is a critical factor in determining the level of danger within a gathering, but it is not
the only consideration. When crowd density exceeds six pedestrians per square meter, turbulence
can create unpredictable high velocity and pressure zones (Helbing et al., 2007). These conditions can
dynamically lead to thoracic injuries due to compression and asphyxiation when the pressure from
surrounding bodies becomes so intense that individuals cannot expand their chests to breathe.

It is essential to examine the role of pressure in crowd disasters. Previous simulations have provided
detailed pressure maps (Maury and Venel, 2011) but lack comparative data to assess potential lethality at
specific points within these simulations. A few studies, though still limited in number, have attempted
to address this gap in the literature. For instance, Smith and Lim (1995) indicate that humans can
tolerate forces exerted on the upper body ranging from 116N to 774N for a few seconds, potentially
varying results based on sex, age, and weight.

In contrast to these tolerance studies, Lobdell et al. (1973) and Kroell et al. (1974) conducted research on
the human body’s resistance to brief impacts that transfer kinetic energy. These impacts are similar
to what a pedestrian might experience in a concert when pushed by a fast-moving person. This
study allowed researchers to explore the mechanical properties of the human body and measure the
stress-strain relationship between applied pressure and deformation as illustrated in Fig. 1.24. They
determined that a force of 3000N from a mass moving at about 23 km/h is sufficient to fracture human
ribs. From these data, a mechanical model could be developed to reproduce such stress-strain behaviour.

1.2.2.3 Pedestrians as deformable grains

To incorporate the considerations described in the theory of pedestrian plasticity into a pedestrian
model such that the deformation of the human body, a more directed approach would be to work
with a second-order model, such as the social force model, rather than a first-order model like the
one proposed by Maury and Venel (2011). However, it is still possible to reconcile both approaches.
Interestingly, by subtracting by v and dividing by the simulation time step∆t, which can be interpreted
as a relaxation time denoted τmech, each side of Eq. (1.24), one gets an explicit Euler discretisation of the
second order differential equation:

v̇ =
1

τmech

(
argmin

v∈C

{
1

2
|U (q)− v|2

}
− v

)
(1.26)

Importantly, it should be noted that the equation Eq. (1.24) is not equivalent to the equation Eq. (1.26),
as a first-order model is, by definition, not a second-order model. What is presented here is merely a
method to increase the order of the first-order model, effectively promoting it to a second-order model
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Figure 1.24: (A) Experimental setup: The experimental setup utilises unembalmed human cadavers subjected to
an anteroposterior blunt force applied to the thorax. This method ensures that only kinetic energy is transmitted
over a very short duration, distinguishing it from typical plasticity measurements that involve vertical quasi-static
experiments with the transmission of potential energy. Specifically, a wooden log with a diameter of 15.24 cm
serves as the impacting mass. This log travels at a constant speed and strikes the sternum directly. To ensure
stability during the experiment, the legs of the corpses are secured to horizontal support with adhesive tape. At
the same time, the arms are raised and extended to rigid horizontal supports, also secured with adhesive tape, as
illustrated in the setup photos. The experiment is conducted after the dissipation of rigor mortis but before the
onset of decomposition to ensure the cadavers are in an optimal state for testing. High-frequency cameras are
employed to measure the body’s deflection, and pressure sensors are used to measure the force applied to the
sternum. This equipment enables the measurement of stress-strain curves (or force-deflection curves equivalently).
(B) Force-deflection curves: The force versus total deflection for a load of different masses travelling at various
velocities is plotted. Initially, the force-deflection curve exhibits a linear region where the force increases with
deflection. This linear region ends at a point typically referred to as the ‘yield point’ in material science. Beyond
this point, the curve enters a plateau or plastic region where the force levels off, indicating significant deformation
of the body part without a corresponding increase in force. Drops within this region can be interpreted as plastic
events, such as rib fractures. Finally, the force falls in the discharge zone when the load is removed. The fact that
the total deflection does not return to zero indicates that the thorax has undergone irreversible transformations,
such as fractures. The figures are reproduced from Kroell et al. (1974).

by introducing a new relaxation parameter, τmech, which is related to inertia and thus to the mass of
pedestrians. In this second-order modelling approach, pedestrians no longer change their velocity
instantaneously. Instead, the situation resembles being on an ice rink: even if pedestrians want to
change direction, they cannot do so instantaneously due to inertia.

Finally, pedestrian dynamics can also be conceptualised as a system where individuals are subject
to a relaxation force that guides them towards an optimal velocity. This velocity is selected through
anticipatory collision avoidance, where each pedestrian continually recomputes their direction of
motion to minimise their distance toward their destination while minimising potential conflicts with
others. While this approach can be applied collectively to all pedestrians using the variable v, it can be
refined by introducing heterogeneity in behaviour using vi, potentially reflecting varying degrees of
self-interest among individuals, which is essential in describing pedestrian behaviour (see Sec. 1.1.2.5).
This refinement, however, may compromise the collision-free nature of the model. Incorporating
mechanical forces similar to Newton’s equation in granular material physics can address this issue.
The resulting framework (Korbmacher et al., 2023) consists of two distinct layers. A decision-making
layer involves the minimisation of a cost function to determine optimal velocities that guide towards
the destination, minimising the possible future collision. A mechanical layer applies Newton’s second
law to govern the physical interactions between pedestrians. This dual-layer approach allows for a
more nuanced representation of pedestrian behaviour, capturing cognitive decision-making processes
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and physical constraints. The following set of equations governs it:

Decision-Making Layer:

vdes
i = argmin

vcandidate∈R2

E
(
t, {qj(t)}j∈[[1,N ]], {vj(t)}j∈[[1,N ]],vcandidate

)
Mechanical Layer:

dvi

dt
=

vdes
i − vi

τmech
+

1

mi

∑
x∈{neighbours
and obstacles}

Fmech
x→i

(1.27)

where E denotes the cost function, vcandidate is a dummy variable, vi is the translational velocity,
and τmech is a relaxation time, indicating that achieving a decision requires some time and is not
instantaneous.

1.2.2.4 Non-circular pedestrian shapes

Various shapes have been used to model solid objects in discrete element simulations, depending on the
dimension and complexity of the model, as illustrated in Tab. 1.1. Comprehensive reviews of particle

Table 1.1: Non-exhaustive solid shapes in discrete element simulations

Dimensionality Shapes
3D

• Spheres (Lubachevsky et al., 1996)
• Ellipsoids (Lin and Ng, 1997)
• Superquadrics (Williams and Pentland, 1992)
• Spherocylinders (Kidokoro et al., 2015)
• Composite of spheres (Pöschel and Buchholtz, 1995)

2D
• Disks (Haff and Anderson, 1993)
• Ellipses (Rothenburg and Bathurst, 1991)
• Polygons (Hopkins, 1992)
• Polar forms (Hogue and Newland, 1994)
• Association of disks (Gallas and Sokolowski, 1993)

shapes can be found in Dziugys and Peters (1998). Despite extensive scientific literature on grain
dynamics, few pedestrian models accurately incorporate a mechanical layer with non-circular shapes5.
The model developed by Echeverría-Huarte et al. (2020) simulates evacuation using self-propelled
spherocylindrical pedestrians in two dimensions. It incorporates self-propulsion forces, granular-type
interactions, and self-alignment torques, all governed by Newtonian mechanics. The model employs a
first-order derivative of the velocity equation alongside an angular momentum equation to describe
the evolution of pedestrian translation and orientation. The simulations explore the impact of desired
speed, obstacle distance from the exit, and angular strength on evacuation dynamics. It reveals the
complex interplay between flow and clogging dynamics, demonstrating that optimal obstacle placement
can significantly enhance evacuation efficiency by reducing clog formation. Conversely, excessive
alignment strength can impede flow.

5Chraibi et al. (2010) introduced a generalised centrifugal force model for pedestrian dynamics that uses elliptical volume
exclusion to simulate pedestrian movement more realistically. While this model provides valuable insights into pedestrian
behaviour across various geometries, it diverges from traditional mechanical models by focusing on inertial forces rather than
mechanical elements like damped springs to describe mechanical interactions.
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Figure 1.25: Sketch illustrating (a) the contact interaction between two spherocylinders; and (b) the orientation
of the acting direction, i.e. of the driving force. The blue dots indicate the endpoints of the target segment that
pedestrians aim to reach. The scheme is reproduced from Hidalgo et al. (2017).

Unlike Echeverría-Huarte et al. (2020), who incorporated obstacles, Hidalgo et al. (2017) proposed a
numerical framework to simulate pedestrian dynamics under highly competitive conditions without the
use of obstacles, as illustrated in Fig. 1.25. Their model aimed to understand the relationship between
competition (modelled as changes in desired velocity) and evacuation time. Increasing the desired
velocity (representing higher competitiveness) led to lower evacuation flow rates, consistent with the
Faster-is-Slower Effect (FSE). Additionally, higher desired velocities result in more significant flow
interruptions and longer evacuation times, particularly in the steady-state phase. The model produced
power-law tail distributions of time lapses between consecutive individuals passing through the exit,
matching experimental findings in both sheep dynamic (Zuriguel et al., 2014) and pedestrian dynamic
(Garcimartín et al., 2016).

A significant limitation of these models is their inability to adapt to different pedestrian scenarios.
In these models, orientation changes occur only through mechanical contact, not anticipation. For
instance, applying this model to the Festival of Lights would result in people colliding at wall corners
or barriers while attempting to navigate around them. The decision layer, detailed in the next section
Sec. 1.2.3, primarily addresses these collision anticipation issues.

1.2.3 Decision-making layer

Let’s take another look at the first part of Eq. (1.27), which we’ll recall for convenience:

vdes
i = argmin

u∈R2

E
(
t, {qj(t)}j∈[[1,N ]], {vj(t)}j∈[[1,N ]],u

)
(1.28)

The decision is embedded within the first part with the cost function E , which encompasses all cognitive,
psychological and biological constraints — essentially, all non-mechanical contact effects. Consequently,
all elements of anticipation are naturally contained within this function. The anticipation process
involves estimating its position and velocity as well as those of its neighbours imprecisely over a given
duration or time horizon. This horizonmay be influenced by various factors, such as physical constraints
(like their working memory capacity) and learning. Neuroscience research has long focused on the
intricacies of visual input processing and estimation. As explained by Fishburn et al. (1979), traditional
decision-making models often assume unlimited time, knowledge, and computational power, allowing
for infinite future pedestrian state estimations without temporal constraints. However, real-world
scenarios, such as navigating a crowded festival amidst visual noise, impose significant limitations on
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these resources.

In response to these constraints, some researchers like Todd and Gigerenzer (2000) propose that humans
rely on simple, fast, and frugal heuristics to make effective decisions quickly with minimal information.
Individuals may employ straightforward rules of thumb to guide their behaviour in crowd situations as
demonstrated by Seitz et al. (2016) in Fig. 1.26 instead of minimising a cost function. Two prominent

Figure 1.26: The illustration depicts four pedestrian movement heuristics, showcasing how individuals navigate
in crowded spaces. A pedestrian, represented by a yellow circle at the bottom, interacts with other pedestrians
(solid circles) as they all attempt to move upward. Dashed circles indicate potential steps based on each heuristic.
The step-or-wait heuristic involves moving forward or pausing if the desired space is occupied. Tangential
evasion allows pedestrians to sidestep around others to avoid collisions. The sideways evasion heuristic directs
pedestrians to their respective sides when the path ahead is blocked. Lastly, the follower heuristic encourages
mimicking the movement of another pedestrian heading in the same direction, illustrated by a green circle moving
towards the upper left. These cognitive shortcuts help model complex pedestrian behaviours in various crowd
scenarios, from normal foot traffic to emergency evacuations. The schemes are reproduced from Seitz et al. (2016).

heuristics are:

Follow the majority Individuals mimic the actions of the surrounding crowd (Evans et al., 2021).
Follow the leader Leaders significantly influence the behaviour of individuals within a group. The

concept of a leader can vary, encompassing those perceived as most successful or confident
(Popper, 2014), or even the nearest neighbour in the field of view (Zhao and Zhang, 2017).

These heuristics leverage the ‘wisdom of the crowd’ principle, assuming that collective behaviour is
most of the time beneficial. These strategies lead to effective outcomes in various situations, such as
locating exits or avoiding obstacles. Consequently, individuals can make rapid and beneficial decisions
without extensive analysis, resulting in adaptive behaviour. Interestingly, a similar phenomenon
occurs in sheep herds as explained by Gómez-Nava et al. (2022). Although sheep adopt a ‘follow the
leader’ heuristic, the leader changes frequently. As a result, the herd efficiently locates grazing areas,
demonstrating collective intelligence. However, the application of these heuristics is not without
risk. Certain scenarios, particularly emergencies, can lead to sub-optimal or dangerous outcomes. For
instance, during an evacuation, people might instinctively follow the largest flow of individuals, even
if it doesn’t lead to the safest or most efficient exit route as shown by Lin et al. (2020) using Virtual
Reality environment. The efficacy of these heuristics depends heavily on context. While they often
simplify decision-making in complex environments, they can also result in overlooking potentially
superior alternatives. Therefore, understanding when and how to apply these heuristics is crucial for
optimising crowd management and safety in various situations of the Festival of Lights.

Other models, more fundamental and based on neural coding and decoding (Ganguli and Simoncelli,
2014), suggest that individuals use more complex cognitive processes than simple heuristics. For
instance, individuals first encode information in their brains by constructing a mental representation of
visual input data. This representation translates visual input into a language that can be interpreted and
usable by the brain, specifically as a certain statistic of neuronal spikes, mathematically represented as a
random variable. It is now established that information is intrinsically encoded in the statistics of spikes
rather than in the spikes themselves. Therefore, measuring the state of a single neuron does not provide
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meaningful information about the processed data, much like how measuring a single bit in a computer
does not reveal the information being processed. Individuals make decisions based on this mental
representation, such as selecting a desired velocity. This step is called decoding. Computational or
resource constraints can be applied to encoding, decoding, or both. This can be framed mathematically
as an optimisation problem where the mental representation and decision are optimally computed
under biological constraints. Certain heuristics can be retrieved by structuring the problem that way,
as demonstrated in research on cognitive biases (Petzschner et al., 2015; Dufour, 2021).

This model formulation in terms of constrained optimisation, similar to Eq. (1.27), bears a striking
resemblance to statistical physics approaches that seek to minimise energy while adhering to entropy
constraints. It also shares intriguing parallels with game theory formulations in the context of robot
motion (Lavalle, 1996). As a result, interest in this type of model has been steadily growing among
researchers. Its appeal lies in its ability to provide a unified framework for examining diverse phenomena
across various situations, offering a powerful tool for interdisciplinary analysis and problem-solving.
Let’s explore the main ingredients recently implemented in this cost function.

1.2.3.1 Biomechanical cost

Walking is a complex, multi-causal process involving coordinated movements and muscle activation
to achieve a specific goal. It can be divided into two main phases according to Kibushi et al. (2018):
stance and swing (see Fig. 1.27 for an illustration). The stance phase, which makes up about 60%
of the gait cycle, includes four sub-phases: loading response (foot flat), mid-stance, late stance, and
pre-swing. During this phase, the foot is in contact with the ground, supporting the body weight. In
contrast, the swing phase, comprising the remaining 40% of the gait cycle, involves the advancement
of the non-weight-bearing leg from its position behind the body to its position in front of the body,
preparing for the next heel strike. Biomechanically, the human body can be modelled as a system of
body segments linked at joints. Therefore, human locomotion can be analysed in terms of kinematic
(relative motion between segments), kinetic (forces and moments enabling centre of mass motion), and
energetic (energy expenditure of motion).

Figure 1.27: The gait cycle is depicted through a series of simplified stick diagrams illustrating the key phases
of human walking. Each phase is represented by a minimalist human form, with the right leg in black and the
left in grey for easy distinction. The cycle begins and ends with the right heel making contact with the ground,
encompassing a full stride. The scheme is reproduced from Kibushi et al. (2018).

Biological Perspective From a biological perspective, walking requires energy primarily from
the metabolic breakdown of fuels such as carbohydrates, proteins, and fats. This process consumes
oxygen and produces carbon dioxide as a byproduct. Subsequently, muscles convert this metabolic
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energy into mechanical energy to generate forces and facilitate motion. However, this conversion is not
perfectly efficient; the metabolic efficiency is typically around 20− 25%, with the remainder dissipated
as heat. Researchers commonly employ indirect calorimetry techniques to assess energy expenditure
while walking. One such method, as described by Hills et al. (2014), measures respiratory oxygen
consumption and carbon dioxide production. This approach leverages the direct, linear relationship
between oxygen consumption and energy production, which holds at normal walking speeds (between
0.5 and 3m/s). Specifically, approximately 5 kcal is expended per litre of dioxygen (O2) consumed. It’s
important to note that various factors influence energy expenditure during walking. These include
walking speed, step size, body weight, and individual characteristics. Interestingly, Cotes and Meade
(1960) demonstrated that the energy expenditure of horizontal walking at natural step frequency is
linearly related to the square of forward velocity:

Espeed = a+ b v2 (1.29)

where a and b are constants that may depend on the type of person considered (age, gender, health).
This relationship is illustrated in Fig. 1.28.
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Figure 1.28: Energy expenditure as a function of velocity squared for subject walking naturally on a flat surface.
The figure is adapted from Cotes and Meade (1960).

Mechanical Perspective From the mechanical perspective, several models have been developed
to explain how humans optimise different mechanical factors to minimise the overall metabolic cost.
These include the gait determinants theory, inverted pendulum theory, and dynamic walking theory,
as explained by Kuo (2007). A unifying model proposed by Faraji et al. (2018) and illustrated in
Fig. A.2 (App. A.1) tries to estimate the metabolic cost of walking from the combination of four primary
mechanical components:

Swing and torso dynamics This includes the energy required for leg swing and maintaining torso
balance.

Center of mass velocity redirection The energy needed to redirect the Center of Mass velocity
during step-to-step transitions.

Ground clearance The energy required to lift the foot off the ground during the swing phase.
Body weight support The energy needed to support the body weight during the stance phase.

We have discussed the metabolic cost of translational movement but have yet to address the rotational
cost. Although flexible humans can rotate their bodies freely, they are limited by muscle stiffness, joint
stiffness, and mobility issues. Consequently, rotating any body part incurs a metabolic and physical
cost.

From a dynamic perspective, a medical study from Lang et al. (2023) investigated the impact of
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upper body movement, particularly torso rotation, on the energy expenditure of runners. That study
identified a negative correlation between metabolic cost and the range of torso rotation, indicating that
increased torso rotation is linked to lower energy expenditure during running. This counter-intuitive
finding suggests that more significant shoulder rotation does not elevate energy costs but reduces them,
enhancing running efficiency. Additionally, shoulder and pelvis rotations increase with running speed,
highlighting their importance in maintaining balance and efficiency at higher speeds.

From a static perspective, Torén (2001) have examined muscle effort using surface ElectroMyoGraphy,
especially in the external oblique and erector spinae muscles (see App. A.1 for a visualisation), during
trunk rotation. It was found that muscle effort remains relatively low up to about a 20-degree twisting
angle but increases progressively beyond this point. This indicates that more significant trunk rotation
requires higher muscular effort, potentially raising energy expenditure.

Currently, themodel may permit a pedestrian tomove backwards. Therefore, it is essential to understand
how the desired velocity should align with the rest of the body. At first sight, we can assume that a
pedestrian’s head points toward its desired direction of motion, as turning the head relative to the body
incurs a structural cost. However, in some cases, like walking sideways on a familiar path, pedestrians
may move without looking ahead, thus avoiding head rotation. This level of detail is not considered.
We, therefore, must assess the cost of rotating the head or neck relative to other body parts. This aspect
has been explored in studies such as Liu et al. (2024), which examines the mechanical response of the
neck during passive motions. In these tests, participants’ heads are rotated by a mechanical apparatus
while a load cell measures the torque required for this rotation (see Fig. A.3 in App. A.1).

1.2.3.2 Inertia

One can incorporate an inertia term into the cost function, which effectively represents the cost of
changing the speed between the current moment and a future instant:

Einertia = KI ||vi(t+ δt)− vi(t)||2 (1.30)

As Karamouzas et al. (2017) pointed out, incorporating an inertia term to a cost function with a
future time δt equal to the simulation time step results in a second-order equation for the desired
velocity. Consequently, this approach leads to a set of Newton-like differential equations that describe
pedestrian dynamics from both decision-making and mechanical perspectives. Consequently, the
resulting trajectory more closely resembles body dynamics, allowing for smooth changes in velocity,
such as gradual acceleration or deceleration. This contrasts with first-order models, which assume zero
acceleration and constant speed, dependent on pedestrian density.

1.2.3.3 Private space

Hall and Hall (1966) have explored the role that space plays in human interactions and dynamics. They
introduced the concept of proxemics - the study of human use of space as a specialised elaboration of
culture. He argues that our spatial perceptions and behaviours are not universal but deeply influenced
by cultural and social factors. This understanding is crucial in managing multicultural events such
as the Festival of Lights, where cross-cultural interactions are commonplace. To understand how
culture may influence proxemics, let’s take a look at the human sensory apparatus and its functioning.
It includes the sensory organs (eyes, ears, skin, nose, and tongue) and the neural pathways that
process sensory information. These systems help us perceive and interact with our environment,
including the spatial relationships between ourselves and others. Sensory perception is not just a
passive reception of stimuli but an active process influenced by various factors, including cultural
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Figure 1.29: Human Interaction Area: (A) Illustration, from the website Collective (2022), of the interaction
distances according to Proxemics. (B) Human interaction area according to Proxemics. The sketch is reproduced
from Patompak et al. (2020).

norms and expectations. For instance, Cao and Gross (2015) have revealed that Chinese individuals
tend to experience sensory attenuation for sounds produced by others, perceiving them as less intense
than their British counterparts. Hall and Hall (1966) identified four primary distance zones in human
interactions by measuring the average spacing between individuals across various situations and
cultural contexts, as illustrated in Fig. 1.29. These zones - intimate, personal, social, and public - may
vary in size depending on cultural factors.

Intimate distance Intimate distance ranges from body contact to approximately 40–50 cm. This zone
is typically reserved for close relationships such as couples, parent-child pairs, and close friends.
The infringement of this intimate zone by another person can cause discomfort and may even be
perceived as painful by people from different cultures who see personal space differently. For
instance, Jourard (1966) conducted the so-called coffee study in the U.S., France, the U.K., and
Puerto Rico. He watched people sitting in cafes and recorded the rate at which people touched
each other in a one-hour sitting. Puerto Ricans touched 180 times, the French 110, the British 0,
and the Americans touched twice.

Personal distance Personal distance extends from about 40–50 cm to 120 cm. It includes two phases:
Close phase (50 to 90 cm) This range allows for physical touch and is common among people

who know each other well. It is often referred to as ‘shaking hand distance’.
Far phase (90 to 120 cm) This range does not permit touch and is typical for interactions

where a bit more formality is needed, such as meeting someone unexpectedly on the street.
This distance signals readiness for an open and neutral conversation.

Social distance Social distance ranges from approximately 120 cm to 3.5m. This distance is suitable
for casual interactions among acquaintances and strangers. It is common in business meetings,
classrooms, and other impersonal social affairs. At this distance, the tone of the conversation is
typically polite and professional.

Public distance Public distance is anything beyond 3.5m and is usually observed between foreigners
or in public speaking scenarios. This distance is ideal for lectures, speeches, and other forms of
one-way communication to a larger audience.

Proxemic zones play a key role in nonverbal communication, influencing how we interact with others
based on our relationships and cultural backgrounds. Recognising and respecting these distances
can help prevent discomfort and potential conflicts that could lead to an overreaction, which could
propagate through the crowd and lead to an unexpected crowd disaster during the Festival of Lights.
In Fig. 1.30, five different shapes of proxemic zones are illustrated, highlighting the complexity and
variability of this concept. The precise shape of an individual’s comfort zone remains a subject of
debate, as it appears to be influenced by many factors. These include the nature of the interaction, the
motion of the individuals involved, and the presence or absence of significant social signals like eye

– 38 –



Chapter 1 Back to ToC

Figure 1.30: Different representations of personal space. (a) Circular shape (Hall and Hall, 1966), (Hecht et al.,
2019), (b) More space at frontal zone (Hayduk, 1981), (Patompak et al., 2020) (c) More space at rear zone (Newman
and Pollack, 1973), (d) Elliptical shape (Helbing and Molnar, 1995), (e) Asymmetrical shape (Gérin-Lajoie et al.,
2008). The sketch is adapted from Patompak et al. (2020).

contact. While these various models offer insights, further research is needed to fully understand how
these elements interact and shape personal space across diverse situations and over time.

One approach to reconciling these different perspectives is to conceptualise proxemic zones in terms
of a comfort field surrounding an individual. This can be visualised as a series of concentric barriers
emanating from the person, as depicted in part B of Fig. 1.29 and in Fig. 1.19. The lines in these
illustrations represent thresholds of decreasing comfort as one is closer to the central individual. To
explore this concept experimentally, participants can be asked to rate their comfort on a scale from 1

(minimal comfort) to 10 (maximal comfort) as another person stands at different distances and angles
relative to them. By collecting data across a range of positions, researchers can map out a comprehensive
field of comfort around an individual. Building on this idea, in the context of interaction between
humans and robots, Neggers et al. (2022) proposed to fit this comfort field with an inverted Gaussian
function of the polar coordinates as illustrated in Fig. 1.31.

Figure 1.31: (A) Picture of the experimental set-up. (B) Schematic overview of distance d and angle θ. Distance d
represents the centre-to-centre distance between the human and the robot, and angle θ represents the polar angle
of this point. (C) Fitted contour field of comfort space of a static human. The arrow represents the orientation of a
human, with the front directed to the top of the figure. Axes represent the position in centimetres from the centre
of the human. The scale has been intentionally adjusted from that used in the article to ensure it is orthonormal.
Comfort is lower at the back of a person. The figures are adapted from Neggers et al. (2022).

We can express some criticisms regarding the employed methodology by Neggers et al. (2022). Based
on psychological research and standard survey design practices, individuals generally find it easier to
assess discomfort than comfort. This tendency is linked to a greater awareness and sensitivity towards
negative experiences, commonly called negativity bias. When using rating scales, people often prefer
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to quantify varying levels of discomfort (ranging from mild to severe) over comfort levels. Additionally,
no information is provided on how the relative orientation of nearby pedestrians affects the shape of
this scalar field.

1.2.3.4 Time to collision

The Festival of Lights draws large crowds, with people manoeuvring to avoid bumping into one another.
To navigate this bustling environment safely, pedestrians likely anticipate potential collisions and
adjust their speed accordingly. Karamouzas et al. (2014) developed a method for calculating a collision
avoidance potential based on collision anticipation, known as the Time To Collision (TTC) potential.
This method is derived from empirical data. To compute the TTC, one extrapolates the trajectories of

Figure 1.32: Calculation of the time to a collision between two pedestrians represented as disks with radius R.
The minimum separation distance is γ = 2R. The scheme is reproduced from Festa et al. (2018).

nearby pedestrians based on their current velocity, as illustrated in Fig. 1.32. This approach utilises
the radial distribution function and its relationship to pair potential energy in dilute systems. The pair
correlation function, also known as the radial distribution function, is a fundamental measure of spatial
particle distribution in a system. It quantifies the probability of finding particle pairs separated by a
distance r relative to a random distribution. Typically calculated as the ratio between the histogram
of inter-particle distances and that of randomly positioned particles (ideal gas), this function offers a
standardised method to compare spatial distributions across different materials. This function provides
valuable insights into a material or system’s structure and interactions as illustrated in Fig. 1.33. Solid
materials exhibit sharp peaks corresponding to atomic lattice positions. It can reveal information about
orientation and spatial relationships for pedestrian dynamics, particularly when modelling pedestrians
as non-spherical entities like spherocylinders.

Interestingly, expressing this density as a function of TTC rather than distance r appears more relevant
in pedestrian modelling as outlined by Karamouzas et al. (2014). Indeed, incorporating walking direction
into the calculation via TTC enables a collapse of different pair distributions computed for various
velocity norms as shown in Fig. 1.34. This suggests that TTC could be a key variable in describing
pedestrian ‘material’ and measuring potential interactions between its components. It’s worth noting
that for dilute systems, it’s possible to relate the potential interaction energy to the pair correlation
function as follows6:

g(τ) = exp

(
−E(τ)

E0

)
(1.31)

where E0 is a characteristic pedestrian energy, whose value is scene-dependent. Then Karamouzas

6Physicists refer to this as the reversible work theorem. See Chandler (1987), p. 201 for a proof.
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Figure 1.33: The pair correlation function g(r) is plotted for active particles similar to pedestrians within a 2m
radius from the exit as they flow through a bottleneck of widthW = 0.7m at a propulsion velocity vp = 1.0 m/s.
g(r) is displayed for three distinct orientations of the propulsion velocity with respect to the main axis of the
spherocylinder, as well as the special case of no preferred orientation for comparison. The distance r is normalised
by the particle’s short diameter ds. The figure is reproduced from Parisi et al. (2018).

Figure 1.34: The pair distribution function g, when plotted versus the inter-pedestrian distance r, exhibits
significantly different behaviours for pedestrian pairs with varying velocities in modulus, where v is measured in
meters per second. In contrast, when g is calculated as a function of the time-to-collision τ , the curves for different
speeds v converge and collapse onto each other, indicating a universal behaviour independent of the speed. The
figures are reproduced from Karamouzas et al. (2014).

et al. (2014) propose a functional form for E(τ) that fits the observed data:

E(τ) ∝
exp

(
− τ

τCA

)

τ2
(1.32)

where τCA denotes the time of collision anticipation, also referred to as horizon time. This is typically
on the order of seconds (e.g., 3 seconds, as noted by Karamouzas et al. (2014)). Beyond this period, the
pedestrian can no longer anticipate a collision, causing the potential to drop sharply. A closed-form
formula exists for simple shapes like disks to express the time to a collision between pedestrians, given
their positions and velocities. However, it is important to note that no general formula exists for more
complex geometries, making it challenging to numerically determine if two pedestrians will collide.
Additionally, Time To Collision values can exhibit significant discontinuities at the boundary between
non-collision and collision scenarios. These discontinuities pose challenges for motion analysis when
using differential equations, as they result in sharp discontinuities in the resulting force. To address
this issue, it is necessary to smooth these discontinuities, as highlighted by Karamouzas et al. (2017).
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1.2.4 Discussion

Cost function terms Description Illustration

Static floor field This term accounts for the goal of reaching a specific destination given already
known static obstacles.

Biomechanical

Speed: Represents the metabolic cost required to achieve a specific translational
velocity.
Inertia: Refers to the cost associated with changes in velocity over time, helping
to reproduce the smoothness of data trajectories.
Desired direction-body misalignment: Prevent the pedestrian from continu-
ously moving backwards. At first sight, we assume that a pedestrian’s head points
toward its desired direction of motion, as turning the head relative to the body
incurs a structural cost.

Private

This term captures the desire to maintain one’s personal comfort space. While its
shape may vary in different situations and with changes in velocity (Patompak
et al., 2020), we assume it remains constant due to a lack of experimental data. This
assumption is crucial for identifying stationary patterns, such as people waiting
during events like the Festival of Lights.

Time-to-collision Focuses on avoiding collisions of comfort spaces while walking.

Table 1.2: Components of the decision-making cost function. All have already been introduced into Echeverría-
Huarte and Nicolas (2023) model for circular-shaped pedestrians except the desired direction-body misalignment
term. The mathematical expressions of the biomechanical cost and Static Floor Field term, which do not depend on
the pedestrian shape, are presented in App. C.2.1 and App. C.2.2 respectively and summarised in App. C.2.3.

A portion of the literature on crowds has chosen to describe their behaviour microscopically, that is,
by imposing rules on the individuals’ dynamics, distinguishing two stages in the dynamics. The first
stage involves selecting a desired speed based on minimising a cost function that includes various
terms accounting for the desire to reach the target via a floor field and the inherent constraints of being
human. These constraints (summarised in the Tab. 1.2) include biomechanical limits related to our
muscles and joints, cognitive constraints related to our ability to extract and use information from the
surrounding environment, and more psychological factors (at a slightly higher cognitive level than the
processing of external stimuli) such as the desire to preserve comfort space and avoid collisions.

It is essential to note that these cost terms are largely well-grounded in experimental evidence and are
not merely arbitrary rules. They depend on parameters that can be measured experimentally, which
is a strength, in contrast to the classic Social Force Model, whose parameters heavily depend on the
specific scenario encountered.

A preliminary pedestrian model attempting to compile some of these elements for circular pedestrian
forms was developed by Echeverría-Huarte and Nicolas (2023), but its extension to arbitrary shapes has
not yet been achieved and is the subject of Chap. 3 of this thesis.
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CHAPTER 2

A multi-scale field study at the
Festival of Lights in Lyon

In recent years, numerous pedestrian models have been developed, with parameters calibrated using
databases of high-density trajectories collected under controlled laboratory conditions. However, this
approach has limitations in real-world applications. Here, I present one of the first comprehensive
field-collected datasets of pedestrian trajectories and meta-information that has been led to address
this gap. This extensive dataset spans several hundred square meters and captures densities reaching
up to 4 pedestrians per square meter. Furthermore, this valuable dataset will serve to calibrate the
two-dimensional model presented in Chap. 3, enhancing its real-world applicability. The data collection
occurred during the 2022 edition of the Festival of Lights in Lyon as part of the Franco-German
MADRAS project. The dataset encompasses a wealth of information, including up to 7000 trajectories,
Global Positioning System (GPS) data, and contact information. Moreover, it identifies rare events
and phenomena of interest, providing a comprehensive view of pedestrian behaviour in complex,
real-world scenarios. The methods used for data collection are presented, ensuring transparency and
reproducibility of the research.

This chapter’s content has been adapted from the article (Dufour et al., 2024f), submitted to Scientific Data.
In this work, I personally organised the data collection in Lyon, manually tracked LargeView trajectories,

gathered and analysed contact numbers, GPS tracks, and LargeView trajectories. Additionally, I contributed

to the description and methodology for the Festival of Lights, calibrated LargeView cameras, and contributed

to building an interactive app for data exploration. The data can be accessed through the following links,

each providing specific types of information:

Dataset Dufour et al. (2024a) Offers TopView trajectory data, capturing multidirectional flow patterns

and paths from a bird’s-eye perspective.

Dataset Dufour et al. (2024b) Provides GPS data, offering precise location tracking and mapping in-

formation.

Dataset Dufour et al. (2024c) Contains geometric data relevant to the study, detailing spatial configur-

ations and measurements.

Dataset Dufour et al. (2024d) Comprises TopView trajectory data at smaller densities.
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Dataset Dufour et al. (2024e) Includes survey data, which encompasses responses and feedback collected

during the research.

2.1 Introduction

Large gatherings raise challenges regarding public safety and flow management. Religious festivals,
music concerts, and significant outdoor events are particularly concerning due to their history of
inadequate crowd management, which, in the worst instances, has led to deadly stampedes or crowd
crushes (Helbing et al., 2007; Sieben and Seyfried, 2023; Feliciani et al., 2023; Sharma et al., 2023b).
These accidents are documented in the timeline in Fig. 2.1. Beyond the rules of thumb that have been
refined over the years, a deeper fundamental understanding of the dynamics of dense crowds will be
instrumental for more efficient event planning and crowd management. Here, a crowd will be described
as dense if its density exceeds the arbitrary threshold of 1.5 or 2 ped/m2, thus falling in Fruin (1970)
’s Level of Service F; critical conditions with extreme densities (say, above 8 ped/m2), which must be
avoided in practice, are left out of the scope.

Figure 2.1: Deaths and injuries resulting from crowd crush at mass gathering events, 1990–2022. The scheme is
taken from Sharma et al. (2023a).

2.1.1 Controlled experiments in the real world

The current theoretical understanding of crowd dynamics in high-density scenarios primarily stems
from controlled experiments conducted in idealised environments, such as the ones performed in
large sheds by teams from the Forschungszentrum Jülich (2020) research centre. These experiments
allow researchers to precisely control parameters and observe a range of uncommon scenarios, such
as emergency evacuations with high-density crowds, bidirectional flows, unidirectional flows, and
pedestrian dynamics at intersections (Zhang and Seyfried, 2014; Cao et al., 2017). Let us also mention
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the datasets collected by the groups of Haghani et al. (2020) and Pastor et al. (2015) to explore crowd
dynamics during emergency evacuation drills, Murakami et al. (2021) to probe the emergence of
unidirectional and bidirectional pedestrian flows or those of Nicolas et al. (2019) dedicated to the
response of crowds to the crossing of intruders. However, these highly controlled environments often
fail to reflect the full complexity of real-world situations accurately. Experimental conditions can differ
significantly from reality, and laboratory experiments frequently struggle to capture the complete
context in which behaviours occur. Factors such as social desirability bias and the artificial nature of
the lab setting can lead participants to alter their behaviour, thus affecting the validity of the results.

2.1.2 Controlled experiments in Virtual Reality

In recent years, Virtual Reality (VR) platforms have gained popularity as tools for studying crowd
behaviours due to their ability to provide low-cost, precise control over experimental conditions in
scenarios that are difficult or unethical to replicate in real life, such as emergency evacuations due
to fire (Lin et al., 2020). Locomotion trajectories in VR are qualitatively similar to reality but exhibit
quantitative differences as shown by Shipman et al. (2024), Yin et al. (2022) and Olivier et al. (2014). The
interaction loop in VR affects user behaviour, introducing perception and motion generation biases.
Needed visual feedback in VR generally enables participants to make realistic navigation decisions but
with some limitations, such as delayed collision information and slight positional offsets. Locomotion
interfaces induce various biases, including altered walking speeds, modified personal space sizes, and
increased gait instability.

2.1.3 Field data

Meanwhile, the thirst for field data to train data-based methods, such as machine learning algorithms,
remains unquenched for dense crowds because field studies usually involve situations of low density.
The primary datasets are listed in Tab. 2.1. For instance, the widely used Eidgenössische Technische
Hochschule (ETH) dataset and University of CYprus (UCY) dataset, which originate from surveillance
videos, capture pedestrian scenes at density 0.1− 0.5 ped/m2, with many pedestrian avoidance situ-
ations. In this density range, the pedestrian dynamics are governed by different mechanics than at
higher density (Fruin, 1970; Best et al., 2014; Cordes et al., 2024). Often, empirical datasets encompass a
heterogeneous mixture of road users, as in the Stanford Drone (SD) dataset, which includes pedestrians,
cyclists, skateboarders, cars, and buses. While these datasets capture small scenes, the Grand Central
Station (GCS) dataset covers a vast area in a train station in New York. Although one scene can contain
hundreds of pedestrians, the average density is below 0.2 ped/m2 due to the size of the area. Also worth
mentioning is the Edinburgh Informatics Forum (EIF) dataset, which provides trajectories of 92 000

people in a university playground from an overhead camera. The data cover 118 days of observation
with very low average densities and, most of the time, just a few pedestrians in one scene. Studies
on mass gatherings that utilise a sparse sample of smartphone signals also exist (Wirz et al., 2013).
More extensive reviews of field studies on pedestrian trajectories can be found in (Amirian et al., 2020;
Haghani, 2020; Korbmacher and Tordeux, 2022).
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2.1.4 Scientific contribution

The present work aims to compensate for the lack of field data on dense crowds by providing a
comprehensive picture of pedestrian flows at a large gathering around amajor culture and entertainment
event. For this purpose, we collected various types of data relevant to pedestrian dynamics and crowd
management at the Festival of Lights (2022), which took place in the city of Lyon, France, in December.
These data cover an extensive range of length scales, from the global flow picture and contextual
elements down to individual pedestrian trajectories and some statistics on physical contacts. In the
following, an emphasis shall be placed on all observations that depart from what is typically prescribed
or observed in controlled experiments, thus further underlining the added value of actual field data.

Table 2.1: Summary of pedestrian field datasets

Dataset name Density [ped/m2] Description References
ETH 0.1− 0.5 Captures pedestrian scenes with many

avoidance situations
(Pellegrini et al., 2009)

UCY 0.1− 0.5 Captures pedestrian scenes with many
avoidance situations

(Lerner et al., 2007)

SD < 0.1 Includes pedestrians, cyclists, skate-
boarders, cars, and buses in small scenes

(Robicquet et al., 2016)

GCS < 0.2 Covers a large area at the Train Station
in New York with many pedestrians

(Zhou et al., 2012)

EIF < 0.01 Provides trajectories of 92 000 people in
a university playground over 118 days

(Majecka, 2009)

2.1.5 Lyon’s Festival of Lights

Lyon’s yearly Festival of Lights is a four-evening event (from December 7 to 11 in 2022, mostly from 7

pm to 11 pm) wherein the city is lit up remarkably. Originally a religious tribute to the Virgin Mary,
it has become a massive international festival renowned for its innovative light shows and artistic
projections on historic buildings. The event attracts millions of local and international visitors, more
than 2 million officially in 2022, according to a newspaper article published in Le Progrès (12 Dec.
2022). Key attractions include Place des Terreaux and Place Saint-Jean, where light shows were reported
to be watched by 150 000 and 80 000 spectators every night, respectively, in 2022 as mentioned in the
newspaper article in Le Progrès (12 Dec. 2022). Quite interestingly, managing the associated crowd
flows is one of the most prickly issues for the event organisers to ensure smooth flows and reasonable
delays for a pleasant experience, but above all, to ward off crowd accidents, especially after a difficult
situation witnessed in the 2000s1 and the tragedies that have occurred in massive entertainment events
around the world, e.g. at the Love Parade in Duisburg, Germany, in 2010 (Sieben and Seyfried, 2023)
or during Halloween on the streets Seoul, Korea, in 2022 as illustrated in Fig. 2.1. This is achieved by
regulating flows at different scales: macroscopically, by suggesting routes through the city to visit
the multiple light installations, for instance, starting at Place Bellecour, moving to Place des Terreaux,
and then exploring Vieux Lyon, especially near Saint-Jean Cathedral;mesoscopically, by installing
barriers and safety agents, particularly near Place des Terreaux, and imposing unidirectional flows in
many streets to ease congestionmicroscopically by continuously monitoring the event with CCTV.
Our methodology explores these three scales for crowd flows, focusing on the microscopic one at the
central location of Place des Terreaux. The crowd’s movement was notably monitored with strategically
placed cameras, as depicted in Fig. 2.3.

1Private communication with the organisers of the event.
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2.2 Methods

2.2.1 General organisation of the data collection campaign

Data collection was planned to capture a complete picture of pedestrian motion during the Festival of
Lights. For that purpose, we combined various methods targeting different scales. Macroscopically,
we inspected the broad patterns of macroscopic crowd flows on the ground around Place des Terreaux

and recorded the scene with a broad overview. We surveyed passers-by near the square and asked them
the following questions:

• "How many people were with you?"
• "How many children were with you?"
• "What was the last screening you attended before the one at Place des Terreaux?"
• "What screening do you plan to attend next? (You can answer that you don’t know)"

We tried to limit bias in the selection of the 79 respondents by making no distinction as to general or
physical appearance and by ensuring that we interviewed a sample from around the square and not
limited to a single street. Mesoscopically, we recruited participants willing to share their GPS data
and record how often they bumped into other people. Microscopically, we installed several cameras
filming specific zones from the top (with all required authorisations to ensure privacy preservation).
Below, we make a distinction between TopView cameras (labelled 1, 2, 3, 5, 6, 7, 8) and LargeView

camera (labelled 4). An overview of the data collected in this study is shown in Fig. 2.2.

Global 
("macroscopic") view "Mesoscopic" scale

Detailed
("microscopic") scale

Distribution of the crowd
on Place des Terreaux

Local fundamental
diagrams

Statistics of physical
contacts

Street map of crowd flows

Origins and destinations of 
flows on Place des Terreaux

Composition of the crowd

Sample of full GPS tracks

'Initial' positions
on the whole square

Full trajectories in zones (of 
~10 m linear size) on Place 

des Terreaux

Figure 2.2: Scales probed in this manuscript and summary of the data collected at each scale.

2.2.2 GPS data of recruited participants and collision counts

A group of 24 undergraduate and doctoral students from the Institut Lumière Matière (ILM) in Lyon
were invited to participate in the field study. More precisely, they were asked to follow a general route
(starting from the queue at the entrance to the square, on Rue du Président Edouard Herriot to the exit
on Rue Lanterne, following the flow of the crowd), behaving as a standard spectator. Meanwhile, their
smartphones recorded their GPS positions using the GeoTracker application. Although the accuracy of
the measurements varied from phone to phone, the trajectories obtained were generally reliable, with a
margin of error of around 10 meters. Besides, each participant used a stopwatch on their smartphone
to record each moment they collided with another pedestrian. Upon synchronisation with the GPS
data, this method enabled us to determine precisely the time and the location of the collisions. Every
participant was taught what to consider a collision. Minor rubbing of clothing was therefore not
recorded. We also tried to involve spectators on site, explaining the instructions and procedures, but
none managed to send us GPS data. Over the 24 students involved in that experiment, 16 provided us
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with a detailed list of physical contacts, among which 8 could be coupled to GPS data.

1 2 3

4

Figure 2.3: A dense crowd gathered in and around Place des Terreaux following a light show on 12 December
2022, at 9 : 41 pm (Additional Video). The fields of view from our cameras are marked in blue, while the square
pink area represents the portion of the camera’s four field of view we tracked precisely. Inset: A zoomed-in view
shows two exit streets where we monitored the outflow.

2.2.3 Video processing and pedestrian tracking for the TopView cameras

To get a finer view of pedestrian trajectories, we deployed lightweight SJCAM A10 cameras, selected
for their night vision capabilities and long battery life, at strategic locations around Place des Terreaux.
These cameras filmed the scene from a zenithal perspective. Three cameras, labelled 1, 2, and 3 in
Fig. 2.4, were positioned on the north side of Place des Terreaux, protruding from the windows of an
Airbnb apartment and a restaurant on the second floor. They captured the bidirectional movement of
pedestrians below. Another camera, numbered 8, was mounted atop an existing post at the square’s
southeast corner to monitor incoming flows; however, its nighttime footage was unusable due to lighting
issues. Two additional cameras, numbered 5 and 6, were placed on Rue Constantine, one of the main
exits after the light show, hanging from the balconies of an Airbnb apartment to film pedestrian egress
from above. A final camera numbered 7 was temporarily held at the end of a stick at the southwest
corner to provide a closer view of the pedestrian outflow. The portable SJCAM A10 cameras recorded
nearly 200 GB of video at 30 frames per second.

From the collected footage, pedestrian trajectories were extracted from 10 excerpts (see Tab. 2.4), using
the PeTrack software (Boltes and Seyfried, 2013a,b). This software is commonly employed for detecting
and tracking pedestrians’ heads in controlled experimental settings. The process notably involves
calibrating the cameras to match pixel coordinates with real-world coordinates, split into two distinct
phases: intrinsic and extrinsic calibration. Intrinsic calibration corrects the optical distortions specific
to each camera lens by determining the optimum parameters to transform a reference pattern, such
as a checkerboard, into its recorded image (see App. B.2 for a detailed explanation). Then, extrinsic
calibration yields the conversion between real-world coordinates and pixel coordinates using three
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successive operations: a rotation and a translation of the reference frame, followed by a projection
to move from the camera frame to the screen frame (see App. B.1 for a detailed explanation). The
parameters of these operations minimise the differences between the known real-world coordinates of
objects (here, staff members) positioned at predefined positions (here, at regularly spaced positions on
a virtual grid) and the associated pixel coordinates. Such calibration is only an approximation if the
people who are filmed are of unequal heights, especially without a stereoscopic camera to reconstruct
the scene in three dimensions2. The inaccuracy decreases as the camera positions higher and films from
a zenithal viewpoint. In this setup, the maximum uncertainty due to differences in height is expected to
be approximately 22 cm for the CCTV footages and 8 cm for the SJCAM footages (look at App. B.3 for a
detailed explanation). Additionally, there are uncertainties in detecting the central point on the head
(approximately ≲ 5 cm) and errors arising from the fact that not all individuals stand perfectly upright.
After the calibration step, pedestrians are detected and tracked in the videos from the SJCAM footage
using a semi-automatic process with the PeTrack software. In contrast, CCTV footages are tracked
manually. Compared to controlled experimental conditions, several challenges were encountered,
primarily due to lighting conditions. To address this, pedestrian heads were initially detected manually
and then tracked frame-by-frame using the extended pyramidal iterative Lucas-Kanade feature tracker
(Bouguet, 2004) integrated into PeTrack. Although this method is notably robust, manual corrections
are frequently necessary when illumination shifts abruptly from dark to bright areas.

2.2.4 Video processing and pedestrian tracking for the LargeView cameras

In addition to the previously mentioned TopView cameras, we have gathered extensive LargeView video
footage from cameras that offer a bird’s-eye view of the entire square. Two of these cameras are located
at Place Saint-Jean. In contrast, another camera (numbered 4 in Fig. 2.4) captures Place des Terreaux from
the City Hall tower, approximately 48 meters above ground level (Archives Municipales de Lyon, 2024).
Although all recordings are accessible, only the videos from Place des Terreaux have undergone thorough
analysis and are discussed in this report. The expansive view provided by the camera, numbered 4,
along with variations in lighting, prevents the automation of tracking using PeTrack, necessitating a
semi-manual approach. Intrinsic calibration was deemed unnecessary as the camera lens exhibited
minimal optical distortion, verified by the straightness of lines in the video footage. Comprehensive
extrinsic calibration was conducted by positioning a staff member at 32 predefined, evenly spaced
points across the square (as illustrated in Fig. B.3) and applying the geometric transformations outlined
below. The resulting accuracy for absolute positions, assessed using independently collected positions
(either of the same staff member or others), ranged from 10 cm to approximately 2 meters at the
farthest end of the square, over 80 meters from the camera horizontally. Given that this inaccuracy is
primarily geometric, the relative positions between pedestrians and their neighbours are expected to be
significantly more precise.

Initially, we manually identified the positions of all individuals across the entire square at a specific
moment, occasionally reviewing video frames to locate pedestrians temporarily obscured from view.
This was done after a show cycle, as people began to exit, on Thursday, December 8. Subsequently,
we tracked a random sample of approximately 270 individuals over several seconds, with around
100 of them being tracked for a duration of 20 seconds. Finally, we focused on a specific area of
interest where opposing flows of people intersect. This area is square-shaped (before correcting for
geometric distortion) and is located near the fountain, a critical convergence point with high density.
We used custom Python-based software to manually track the trajectories of all visible individuals in

2For more detailed information on stereographic cameras, including the calculations between image coordinates and the
corresponding 3D points in real space, please refer to the work by Mussabayev et al. (2018).
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this area over approximately 30 seconds, typically pointing at a rate of two frames per second. Linear
interpolation allowed us to increase the sampling rate of the trajectories to 10 Hz before exporting
them as CSV files.

It should be noted that the resolution and quality of these videos are inferior to those of other videos.
This, combined with varying illumination, impeded the detection of some individuals, especially
children and shorter people, in specific frames. Consequently, while these trajectory sets may exhibit
imperfections compared to those extracted from the TopView cameras, they remain accurate, nearly
comprehensive, and address more complex flow scenarios than the TopView cameras.

2.2.5 Conversion into global coordinates

All trajectories were converted into global coordinates using the RGF-93 Lambert-93 coordinate refer-
ence system (EPSG:2154) for precise global positioning. This transformation involved adjusting the
positions of several landmarks visible in the videos and satellite imagery. The geometric shapes and
locations of all obstacles in the square, including the fountain, temporary crowd barriers surrounding
it, bollards, and Buren columns, were determined through direct measurements, satellite imagery, and
photographs taken on-site; they are provided as an external dataset.

2.2.6 Quantitative indicators

Relevant static and dynamic indicators can be computed using the detailed pedestrian trajectories.

Flow rate. The outflow rate during the egress from Place des Terreaux was measured by virtually
drawing cross-section lines at the two main exits, as shown in Fig. 2.3. The number of people crossing
these lines was manually counted by reviewing the recorded videos.

Density field. To be useful, the extracted microscopic trajectories often need to be smoothed into
continuous fields. Specifically, the local density field, denoted as ρ(r, t) (Johansson et al., 2008), is derived
by computing the convolution of themicroscopic particle density ρµ(r, t) = 1

A

∑
j δ (r− rj(t))—where

δ(·) is the Dirac delta function and A is the surface area—with a Gaussian kernel ϕξ(r) ∝ exp
(
− r2

2ξ2

)

whose integral is normalised to 1, for a chosen half-width ξ, viz.:

ρ(r, t) =

∫

A
ρµ(r− r′) ϕξ(r

′) d2r′ (2.1)

For further smoothing, the time dependence can also be coarse-grained by averaging the field over a
short time window ∆t:

ρ̄(r, t) =
1

∆t

∫ t+∆t
2

t−∆t
2

ρ(r, t′) dt′ (2.2)

Velocity field. Similarly, the microscopic velocities vj(t) =
1
δt ·
[
r̃j(t+ δt)− r̃j(t)

]
, estimated from

the vector difference between two positions of pedestrian j over a small time interval δt (with δt = 0.5

or 1 second in this context), can be coarse-grained. The trajectories are initially smoothed using a
second-order Butterworth low-pass filter. Trajectories that are too short for effective filtering remain
unfiltered (which represents 9% of the total number of trajectories). Near the start (ts) and end (te) of
each trajectory, linear interpolation is applied between the raw trajectory r and the filtered trajectory r̃
to address the Butterworth filter’s limitations when past or future data points are absent. This interpol-

– 50 –



Chapter 2 Back to ToC

ation is expressed as3 r̃j(t) ← α(t)rj(t) + [1 − α(t)]̃rj(t), where α(t) = max
{
e−(t−ts), e−(te−t)

}
.

Subsequently, the trajectories are converted into a velocity field through Gaussian convolution:

v(r, t) =

∑
j vj(t)ϕξ (r− r̃j(t))∑

j ϕξ (r− r̃j(t))
(2.3)

The resulting field exhibits abrupt variations due to many individuals deviating from, or walking
counter to, the primary local flow direction. Like the density field, the velocity field can be averaged
over a finite time interval ∆t to smooth out these variations:

v̄(r, t) =
1

∆t

∫ t+∆t
2

t−∆t
2

v(r, t′) dt′ (2.4)

The coarse-grained picture given by the smooth velocity field masks possible counterflows and fluctu-
ations, whose presence can be ascertained by computing a variance field:

Varv(r, t) =

∫ t+∆t
2

t−∆t
2

∑
j ϕξ (r− rj(t

′)) ∥vj(t
′)− v̄(r, t)∥2 dt′

∫ t+∆t
2

t−∆t
2

∑
j ϕξ (r− rj(t′)) dt′

(2.5)

Trajectories of counter-walking pedestrians j significantly deviate from the continuous flow, thus
exhibiting a large variance relative to the velocity field, denoted as Varjv. More precisely, the variance
is computed by averaging the squared difference between pedestrian j’s velocity vj(t) and the coarse-
grained velocity v̄(rj(t), t) at that position, over the entire duration of pedestrian j’s trajectory, i.e.
Varjv = ⟨∥vj(t)− v̄(rj(t), t)∥2⟩.

Fundamental diagram. The fundamental diagram is obtained by relating the instantaneous pedestrian
speeds ∥vj(t)∥ to the local density ρ (binned in cells of linear size 0.25m and duration 0.5 s).

2.3 Data description

2.3.1 Size of the crowd and flow directions

Place des Terreaux is centrally located in Lyon and serves as a key attraction during the Festival of
Lights. Pedestrian traffic around the square is regulated: spectators enter from the southeast via Rue
du Président Edouard Herriot, typically remain in the square for the duration of one show (6 minutes
and 30 seconds), sometimes two, and then exit either to the southwest via Rue Constantine or to the
northwest via Rue d’Algérie, as illustrated in Fig. 2.4 b.

Field surveys conducted around 11 pm on Friday revealed that most spectators had previously watched
light animations just south of the square. Upon entering Place des Terreaux, many were uncertain about
their next destination or planned to head home. These large-scale origin-destination flows are depicted
in Fig. 2.4 a. Spectators usually belong to social groups of two to four people; larger groups, up to ten
people, also exist but are less frequent. Most groups do not include children, although groups with one
or two children were observed, as shown in Fig. 2.5.

The entrance to Place des Terreaux is managed by gatekeepers who ensure the square does not exceed
approximately two-thirds capacity. They restrict access by closing a barrier before the start of each

3At the start (t = ts) and end (t = te) of the trajectory, α is close to 1, giving more weight to the original data. This helps
preserve the trajectory’s endpoints. In the middle, α decreases, giving more weight to the smoothed data. The beginning and
end of the raw trajectories are thus preserved, reducing artefacts from filtering.
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Figure 2.4: Maps of the macroscopic crowd flows during the Festival. (a) Pedestrian zone for the Festival (adapted
from the official map) indicating the distribution of origins (in blue) and destinations (in green) of around 300
people, just before and just after the show on Place des Terreaux, obtained by surveying 79 passers-by around 11
pm on Friday, December 8, 2022. (b) Local map showing the imposed flow directions around Place des Terreaux.
All figures are oriented to the North unless otherwise shown in the figure.
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Figure 2.5: The histogram illustrates the sizes of social groups, both adults and children (in blue), and only children
(in pink), as reported by survey respondents around 10 : 30 pm to 11 pm on Friday 9 December 2022. These
groups were part of the crowd preparing to enter Place des Terreaux. The counts refer to the number of groups. It
is important to note that these self-reported values indicate a significantly higher number of groups with at least
four members compared to estimates made by the authors through direct street observations.

show, leading to a queue of people standing on Rue du Président Edouard Herriot that can stretch over
several blocks. During a light show, the number of people in Place des Terreaux can significantly exceed
4000, as determined by manually detecting the initial positions of the entire crowd on video (refer to
Tab. 2.2). This number is corroborated by the cumulative pedestrian outflow measured at both exits, Rue
Constantine and Rue Paul Chenavard, at the end of a show, from 9 : 38 pm to 9 : 45 pm on 9 December
2022 (see Sec. 2.2). The total evacuation time was approximately 6.5 minutes.

The evolution of pedestrian outflows over time is illustrated in Fig. 2.6. This figure presents both the
raw, instantaneous values (depicted by dashed black lines) and the smoother curves (solid black line)
obtained by applying a Gaussian filter with a kernel standard deviation of 2.0. The maximum outflow
exceeded 11 ped/s on Rue Constantine and nearly reached 10 ped/s on Rue Paul Chenavard. In total,
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3833 pedestrians were counted, with 1803 on Rue Constantine and 2030 on Rue Paul Chenavard. These
figures correspond to a global density below one pedestrian per square meter. However, as we will
observe, the global average is not particularly insightful due to significant spatial heterogeneity. It
is important to note that both counting methods tend to underestimate the actual numbers, as not
all individuals were manually counted in the snapshots, and some remained in the square after the
show. Despite the regulated inflow, variations in the number of attendees occur during each cycle.
Remarkably, visual inspection of the entrance and egress flow points reveals a high degree of regularity
in these flows across cycles. Notably, obstacles and prohibited areas (marked in blue in Fig. 2.8) visibly
alter the flows, creating a confluence zone between the fountain and the northern building, along with
congestion points on the opposite side of the fountain. In contrast, the crowd moves almost freely along
the southern side, which is less attractive to spectators during the show, as projections are primarily
displayed on the facade of the south building.

(a) Rue Constantine

(b) Rue Paul Chenavard

Figure 2.6: Pedestrian outflows, measured in pedestrians per second, during a cycle on 10 December 2022 (a
spatio-temporal diagram used to compute the outflow is available in App. B.4).

The GPS trajectories collected from informed participants, as depicted in Fig. 2.7, illustrate potential
routes from the square’s entrance to its exit and beyond. By synchronising these trajectories with the
reported times of pushes and strong contacts, we can identify where these interactions occurred; their
locations are marked as stars on the figure. Notably, the number of such pushes varies significantly
among participants, ranging from nearly zero to approximately 100 throughout the trajectory, as
noticeable in Fig. 2.7. These variations highlight the heterogeneity of the crowd packing, the diversity of
individual behaviours, and, plausibly, different appraisals of what should be counted as a push. Still, the
order of magnitude of the frequency of strong contacts questions the collision-free navigation hypothesis
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at the heart of some models based on velocity obstacles (Van Den Berg et al., 2011; Karamouzas et al.,
2017), but also, at the other pole, the strong role played by contact forces at densities below 4 ped/m2

in some force-based models.

0 25 50 m

contact

Figure 2.7: Left panel: Ten GPS tracks are paired with contact data, with each contact marked by a red star.
Clusters of red stars appear at the entrance and exit of Place des Terreaux. Note that the satellite view timing does
not match the data, and some GPS tracks overlap buildings due to varying GPS precision across devices, providing
a general idea of contact locations. Right panel: A histogram showing the distribution of contact counts along
the path on a logarithmic scale, incorporating data from the left panel and additional entries without GPS tracks.

2.3.2 Global view of the flow patterns on Place des Terreaux

To better understand the crowd distribution and flow patterns during the evacuation of the square
after a show, we analyzed the LargeView video recordings. From a snapshot captured at the start
of the repeated evacuation process, we manually extracted the positions of all visible heads in the
crowd. These positions are represented as small red disks in Fig. 2.8 a, along with the accessible
geometry of the square. The heterogeneous spatial distribution is manifest and becomes even more
pronounced in the corresponding density field shown in Fig. 2.8 b, where local densities range from
nearly 0 ped/m2 to 4 ped/m2. The trajectories of approximately 100 randomly sampled pedestrians
tracked over about 20 seconds and shown in Fig. 2.8 a (also see Supplementary Video), further exhibit
marked heterogeneity, with a significant portion of pedestrians halted and some moving counter
to the flow. To get a broader perspective on this heterogeneity, we measured the initial velocities,
defined as the speeds of individuals when instructed to exit the square at the end of the light show,
for a larger sample of 270 people over a few seconds, as shown in Fig. 2.8 b. Plotting these initial
speeds against the local density provides the fundamental diagram presented in Fig. 2.9 (left). In
comparison to conventional fundamental diagrams (Vanumu et al., 2017), typically derived from
controlled environments. The data presented here exhibit significantly more variability. Precisely, while
the highest speeds observed at a given density align broadly with Weidmann’s empirical formula (Wirz
et al., 2013) v(ρ) = v0 ·

[
1− exp

(
−γ ·

(
1
ρ −

1
ρmax

))]
, many speed data points fall between 0 m/s and

this envelope. These points often represent individuals strolling, possibly due to social interactions
within their groups or because they are stationary. This observation parallels the debate in vehicular
traffic studies about a unique relationship between speed and density, with some advocating for a

– 54 –

https://youtu.be/1zqpJRnAqsM?si=ckTjNCplHkPSMjku


Chapter 2 Back to ToC

fundamental diagram that spans a two-dimensional region4 (Jiang et al., 2014). Despite this variability,
discernible flow patterns emerge during the evacuations of Place des Terreaux. Most pedestrians move
westward towards the two main exits at the top of Fig. 2.8. Between the fountain and the northern
building (right side of the figure), flows predominantly head west through a convergence zone, which
will be examined in more detail later. Along the road adjacent to the southern building, most trajectories
extend linearly from East to West under near free-flow conditions. In contrast, trajectories closer to the
fountain are notably shorter over the same time interval, indicating congestion and a greater diversity
of movement, with many individuals at a standstill.

File Date [UTC+1] Duration # Initial Positions # Long (∼ 20 s) Tra-
jectories / All

Mean / Median
Speed [m/s]

LargeView 8 December
2022 20 : 13

20 s 4081 114 / 277 0.44 / 0.36

Table 2.2: Basic statistics for the LargeView inspected over the whole square.

Figure 2.8: A comprehensive overview of the crowd’s positions and dynamics on Place des Terreaux is presented.
Left Panel: This panel illustrates the trajectories of approximately 100 pedestrians tracked over a span of 20
seconds. Small red disks mark the initial positions of all individuals in the square. Various obstacles, such as
fountains, buildings, bollards, and barriers, are shaded in blue. Right Panel: This panel displays the initial
velocities of around 270 pedestrians, computed with a time step of ∆t = 1 s. The background features a heat map
representing the initial density field, computed using a Gaussian kernel with a half-width of σ = 0.5m.

2.3.3 Complex flow in a region of high density near the centre of the sqare

Let’s delve deeper into the pedestrian flows by examining the central zone, highlighted by the pink
rounded square in Fig. 2.3. This area, measuring 15meters by 25meters, exhibited complex patterns and
high densities during two distinct periodic egresses. We endeavoured to track all pedestrians within this
zone semi-manually, limited by the video resolution and occasional occlusions (see Sec. 2.2 for details).
The extracted trajectories can be used to construct and animate a digital twin of the crowd, providing a
direct visualisation of the crowd flow. This animation does not account for the heterogeneous sizes of
pedestrians, representing all agents as standard adults, nor does it consider their social relationships.

4as a heatmap visualising time against local density, with speed indicated by colour. It effectively allows to discriminate
between stationary individuals and dynamic instabilities, such as stop-and-go waves.
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Figure 2.9: The fundamental diagrams illustrate the relationship between pedestrian speed and local density.
The left panel depicts this relationship across the entire Place des Terreaux, using a sample of initial velocities as
shown in Fig. 2.8 (right panel). The right panel focuses on a central region of the square, where pedestrians were
exhaustively tracked for approximately 20 seconds (see Fig. 2.10). The dashed red lines represent Weidmann’s
empirical formula: v(ρ) = v0 ·

[
1− exp

(
−γ ·

(
1
ρ
− 1

ρmax

))]
with parameters v0 = 1.34m/s, γ = 1.9m−2,

and ρmax = 5.4 ped/m2.

At first glance, there is a noticeable overall flow towards the West (the top of the image). However, the
flow pattern is non-uniform, featuring counter-flows, individuals squeezing through the crowd, and
others moving slowly.

These complex features that obscure the general characteristics can be simplified by coarse-graining
trajectories into smooth density and velocity fields, as illustrated in the left panels of Fig. 2.10 and
Fig. 2.11. These smooth fields reveal noticeable density heterogeneities, but the flow pattern is more
streamlined: most velocity vectors are aligned, directed towards the top of the figure, and rarely exceed
half a meter per second. A slight tendency to navigate around densely populated areas is still observable.
These coarse-grained fields can be interpreted as the underlying base flow. On top of this base flow, the
variability of trajectories can be reintroduced by calculating local velocity variances, as shown in the
right panels of Fig. 2.10 and Fig. 2.11, highlighting trajectories that significantly deviate from the base
flow (see Sec. 2.2). This distinction between a smooth, streamlined base flow and counter-walking agents
may be beneficial from a modelling perspective, allowing for advancements beyond the homogeneous
flows predicted by macroscopic models.

The fundamental diagram relating the velocity magnitude ∥v∥(r, t) to the local density ρ(r, t) (with
time binned into intervals of 0.5 seconds) is presented in Fig. 2.9. It is essentially similar to that
obtained for a sample of pedestrians across the entire square; the maximum speed observed at a given
density exhibits a downward trend with increasing density, but all speeds below this upper bound are
represented.

File Start [UTC+1] Duration # trajectories Mean density
[ped/m2]

Mean / me-
dian speed
[m/s]

Median / Mean
trajectory dura-
tion [s]

LargeView

Zoom_A
8 December
2022 20 : 16

20 s 740 1.92 0.30 / 0.29 17.50 / 17.98

LargeView

Zoom_O
9 December
2022 21 : 05

45 s 726 1.85 0.29 / 0.27 33.21 / 41.7

Table 2.3: Basic statistics for the exhaustive trajectory dataset extracted from an area of interest in the LargeView
videos.
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Figure 2.10: Continuous description of the complex flow at the centre of the Place des Terreaux at 20 : 15, recorded
with a LargeView camera. Left panel: Local density field averaged over the time window of 10 s in our local
coordinate system. Right panel: Variance fieldVarv(r). The displayed trajectories (coloured from red to yellow as
time moves on) are those of counter-walking pedestrians, i.e., those who significantly deviate from the continuous
velocity field by Variv ⩾ 0.12 m2/s2. The arrows represent the continuous velocity field over the same time
window of 10 s. All fields have been smoothed with a characteristic length-scale ξ = 0.75m.

Figure 2.11: Continuous description of the complex flow at the centre of the Place des Terreaux at 21 : 05, recorded
with a LargeView camera. Refer to Fig. 2.10 for the rest of the caption.
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2.3.4 Unidirectional and bidirectional flow at diverse densities along the northern build-
ing

The flow pattern along the northern building of Place des Terreaux (see Fig. 2.3) appears less intricate
compared to the central region. Movement predominantly follows an East-West direction. Additionally,
the resolution and orientation of the TopView camera 2 provide higher-quality microscopic data for these
trajectories. Despite this apparent simplicity, the crowd flows deviate from the idealised unidirectional
and bidirectional flows observed in controlled experiments, albeit to varying degrees.

To gain a comprehensive understanding, the fundamental diagram is presented in Fig. 2.12, which
averages the speed of the trajectories and the global density level in one-second intervals. The scatter
in this relationship is significantly reduced compared to measurements taken in the centre of Place des
Terreaux (see Fig. 2.9). Furthermore, Tab. 2.4 provides basic statistics for each of the nine trajectory
datasets, with three sequences specifically selected for detailed analysis.

Figure 2.12: The fundamental diagram obtained by averaging the speed of the trajectories and the global density
level in the scene in time steps of one second is shown for the TopView datasets. The diagrams closely resemble
those from Feliciani (2017) for multidirectional flow, as illustrated in Fig. B.11 of the App. B.5.

File Start
[UTC+1]

End
[UTC+1]

# trajectories Mean density
[ped/m2]

Mean
speed
[m/s]

Median / Mean
trajectory dura-
tion [s]

TopView_1A 22 : 40 : 45 22 : 44 : 15 965 1.13 0.57 13.23 / 12.27
TopView_1B 22 : 55 : 06 22 : 57 : 46 685 1.07 0.52 11.76 / 12.64
TopView_1C 23 : 10 : 33 23 : 13 : 58 673 0.65 0.78 9.2 / 9.03
TopView_2A 21 : 26 : 27 21 : 29 : 07 711 1.58 0.41 19.1 / 18.11
TopView_2B 21 : 40 : 39 21 : 43 : 25 612 1.11 0.58 11.17 / 13.18
TopView_2C 22 : 55 : 18 22 : 58 : 20 693 1.06 0.54 11.96 / 12.94
TopView_2D 23 : 10 : 16 23 : 12 : 57 529 0.64 0.75 8.83 / 8.96
TopView_2E 23 : 24 : 59 23 : 26 : 11 218 0.57 0.75 8.83 / 8.63
TopView_2F 23 : 54 : 59 23 : 56 : 30 183 0.37 0.95 6.8 / 6.92

Total 5269 0.96 0.63 10.63 / 12.22

Table 2.4: Basic statistics for the exhaustive trajectory datasets extracted from TopView videos.
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2.3.4.1 Unidirectional pedestrian flow (TopView_2B)

In the TopView_2B video recording, unidirectional flow prevails. Among the 612 trajectories collected,
496 pedestrians move from right to left, 60 from left to right, 46 from bottom to top, and 10 from top
to bottom. In the left panel of Fig. 2.13, trajectories are colour-coded based on their entry and exit
points: green for entry on the left and exit on the right, grey for entry on the right and exit on the
left, red for entry from the bottom and exit at the top, and blue for entry from the top and exit at the
bottom. Despite the prevailing unidirectionality, it is noteworthy that the streamlines are not strictly
parallel in this essentially unconstrained geometry, even when focusing solely on the grey trajectories.
Examining the density and speed profiles, computed using Gaussian-kernel filters (see Eq. (2.3) and the
documentation in Mohcine and Dufour (2024) and Schrödter, Tobias and The PedPy Development Team
(2023)), Fig. 2.13 (right panel) reveals that they are relatively uniform, except for a few pedestrians
standing in the upper left of the scene, which results in density peaks.

Finally, Fig. 2.14 presents a time series of various global indicators. The cumulative inflows from the
four directions confirm the dominance of pedestrians moving to the right. Interestingly, there is a
noticeable evolution of density over time. From t = 30 s onward, the density steadily increases from
0.4 to 2.2 ped/m2, as observed in the snapshots in Fig. 2.15. The average speed in the area mirrors
this trend, decreasing steadily from about 1 to 0.3m/s. These trends align with expectations based on
existing literature on unidirectional flow in controlled experiments. The reduced average speed at low
density can be attributed to static individuals and the presence of social groups, which are known to
reduce walking speed (Nicolas and Hassan, 2023).
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Figure 2.13: Trajectories (left panel) with density and speed profiles (right panels) for the TopView_2B video
recording showing predominantly unidirectional pedestrian dynamics.
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Figure 2.14: Cumulative flow, density and mean-speed time series for the TopView_2B video recording. The density
increases over time for this video recording while the speed decreases.
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t = 0
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Figure 2.15: Snapshots of the TopView_2B video recording at different times.

2.3.4.2 Unidirectional flow with standing pedestrians as obstacles (TopView_2C)

The TopView_2C sequence, captured in the same area, introduces an additional perturbation: a group
of pedestrians standing in the upper left part of the scene. Out of the 693 trajectories recorded, 603
pedestrians move to the left, 68 to the right, 15 upward, and 7 downward, indicating a predominantly
unidirectional flow. However, the presence of the static group significantly impacts the trajectories,
compelling other pedestrians to navigate around it and causing congestion in the flow dynamics (see
Fig. 2.16, left panel).

The density and speed profiles reveal two congested queues with reduced speed around the stationary
group (see Fig. 2.16, right panels). The situation remains stationary over time, with global density
fluctuating between 0.8 and 1.3 ped/m2 and average speed ranging from 0.4 to 0.7m/s (see Fig. 2.17).
The snapshots corroborate this in Fig. 2.18, which depicts similar crowding conditions.
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Figure 2.16: Trajectories (left panel) with density and speed profiles (right panels) for the TopView_2C video
recording. The pedestrian dynamics are predominantly unidirectional, while the scene includes standing pedestrians
in the upper left corner, initiating avoidance behaviour and queuing.

2.3.4.3 Unbalanced bidirectional flow (TopView_2D)

The last recording that we describe, TopView_2D, contains 529 pedestrian trajectories, including 396

trajectories to the left, 109 to the right, 13 up and 13 down (see Fig. 2.19, left panel). The counter-
walking pedestrians can no longer be neglected. They generate a substantial counter-flow with lane
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Figure 2.17: Cumulative flow, density and mean-speed time series for the TopView_2C video recording. The
situation is relatively stationary in time.
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Figure 2.18: Snapshots of the TopView_2C video recording at different time instants.

formation by direction, separated by a group of standing pedestrians in the centre right of the scene.
Accordingly, we are dealing with an unbalanced (75% : 21%) bidirectional flow. The density and
speed profiles are relatively homogeneous, although the flow to the left is slightly more congested (see
Fig. 2.19, right panels). Again, the state is stationary in time, with a global density fluctuating between
0.4 and 1 ped/m2 and a mean speed between 0.5 and 0.9m/s (see Fig. 2.20). The snapshots show the
crowd is sparser than the previously presented video recordings (see Fig. 2.21).
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Figure 2.19: Trajectories (left panel) with density and speed profiles (right panels) for the TopView_2D video
recording (counter-flow pedestrian dynamics with lane formation).
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Figure 2.20: Cumulative flow, density and mean-speed time-series for the TopView_2D video recording. The
situation is relatively stationary in time.
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Figure 2.21: Snapshots of the TopView_2D video recording at different times.

2.3.5 Identification of singular qalitative phenomena

In this section, we highlight key features passively observed during the real-world Festival of Lights,
a complex scenario that significantly diverges from controlled settings. Many of these features arise
from the multi-directional nature of the flow or, more broadly, the diverse objectives of the pedestrians
within the crowd. These features notably include:

• temporarily static groups of people around which pedestrians are forced to navigate
• pronounced density variations
• repeated movement patterns of groups following each other through the crowd, resembling
snakes (referred to as crossing channels in the controlled experimental study by Wang et al. (2023))

• various non-standard pedestrians, such as individuals pushing strollers or pulling luggage
• a complex geometry of the premises that cannot be strictly reduced to two dimensions
• ambulances crossing the square

Depending on their prevalence and impact on pedestrian flow, these effects may need to be incorporated
into models to achieve convenient applications. We categorise these distinctive features into three
groups: (i) non-standard geometry of the premises, (ii) diversity of goals and speed preferences,
(iii) heterogeneity of the crowd composition. Additionally, we identify the video recordings and
specific times when these features can be observed.

2.3.5.1 Non-standard geometry of the premises

In contrast to the common reliance on a binary geometry, which distinguishes between accessible
and inaccessible spaces, the square in question exhibits regions of varying attractiveness. Notably, the
vicinity of the walls where shows are projected is visibly less appealing to the crowd. Some modelling
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File Start End Description
TopView_1B 0 : 00 2 : 40 (end) a 7-people group standing on the right side. People are sometimes heckling or

fighting, which makes the shape evolve (around 0 : 45)
Between 0 : 53 and 1 : 05, interactions between the standing group and a
mobile group of a similar size

TopView_1C 0 : 00 0 : 56 group of 3 people (2 adults and one child) standing in the middle
TopView_1C 0 : 25 0 : 50 group of 3 people stopping, standing and restarting moving in the bottom right

side
TopView_1C 0 : 58 1 : 30 group of 2-standing people stopping, standing and restarting on the top side.

This group is split by people passing between them
TopView_2A 0 : 00 2 : 41 (end) group of standing people on the left. The group size evolves from 2 to 8 people
TopView_2B 0 : 00 0 : 22 group of 2 standing people on the left
TopView_2B 0 : 45 1 : 12 a group of 2 walking people stops and stands on the left
TopView_2C 0 : 10 1 : 14 a group of 2 walking people stops and stands on the left
TopView_2E 0 : 00 0 : 35 2 standings groups on the top (with limited impact on flow)
TopView_2F 0 : 00 0 : 53 standing group of 3 people on the left border

Table 2.5: Situations of (temporarily) static groups.

approaches have been proposed in the literature to capture this heterogeneity (Helbing et al., 1997;
Echeverría-Huarte and Nicolas, 2023). Additionally, the geometry is neither composed of straight
borders nor entirely two-dimensional. Knee-high bollards and waist-high steel crowd barriers restrict
movement (and are thus associated with lower local density, as shown in Fig. 2.8). Still, they can overlap
with pedestrians in three dimensions.

2.3.5.2 Diversity of goals and speed preferences

We have previously highlighted the complexity and multi-directionality of the flow patterns in some
sequences. Here, we focus on the effects and implications of the diverse intentions among spectators,
including their varying goals and speed preferences.

Static groups of people. First and foremost, numerous temporarily static groups of people can be
observed, often forcing passing pedestrians to navigate around them. These groups, typically consisting
of 2 to 8 individuals, were found throughout the area of interest in the TopView recordings. Two distinct
scenarios can be identified: (i) a group moves, stops, and resumes motion; (ii) a group remains stationary
for the entire footage duration. The first scenario is particularly intriguing, as it allows us to study the
effects of people stopping, standing, and resuming motion over time.

Tab. 2.5 summarises our observations of such static groups, excluding those who stop for less than two
seconds. Although these groups are hardly included in controlled experiments of different flow types,
they disrupt the base flow, significantly impacting the dynamics. Unlike classical obstacles, these groups
are more complex because they are transient, appear and disappear, and fluctuate in size and shape
over time. This variability can result from the addition of new members (see Tab. 2.5, TopView_2A file)
or specific behaviours of group members, such as heckling (see Tab. 2.5, TopView_1B file). Additionally,
pedestrians splitting a group of stationary people have also been observed (see Tab. 2.5, TopView_1C
file).
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Running pedestrians Conversely, we noticed that some people were running in the instances listed
in Tab. 2.6.

File Start End Nature
TopView_1A 2 : 49 2 : 53 2 people accelerating to reach a speed higher than the main flow from middle

to right side
TopView_2B 0 : 09 0 : 14 3 people running from left to right side

Table 2.6: Instances of running pedestrians.

2.3.5.3 Marked density heterogeneities

Giant density fluctuations, which far exceed those expected in a physical system at equilibrium, are
common in active matter assemblies (Dey et al., 2012; Manning, 2023). In the specific case of pedestrian
assemblies, pronounced density heterogeneities are particularly noticeable. Some areas are notably
depleted, forming voids, while others are characterised by high-density clusters of tightly packed
groups within the same recording (see Tab. 2.7).

File Start End Nature
TopView_1A 1 : 09 2 : 05 gap, high-density in the left

Table 2.7: Voids and density heterogeneities.

Lines of people repeating through the crowd In dense regions, we have often observed people
worming their way through a static or counter-moving crowd and following each other, thus forming
1D snake-like structures (Tab. 2.6). People follow each other along these 1D structures, most probably
due to the depleted channels opened in the wake of the predecessors (Nicolas et al., 2019), in addition
to their possible social relationships. Similar self-organised structures have been observed in controlled
experiments of people crossing static groups and dubbed cross-channels (Wang et al., 2023). Still, they
have received much less attention than stable lanes in bidirectional flows or the stripes formed at the
intersection of two flows. Indeed, their frequency in the empirical dataset seems to owe much to the
multiple directions of pedestrians and the non-stationary character of the flow. We hypothesise that
the observed transient snakes could turn into stable lanes in stationary conditions and with a limited
number of directions, with distinct yet unknown consequences on the flow properties.

File Start End Description
TopView_1A 0 : 35 0 : 47 lane formation on both sides
TopView_1A 1 : 11 1 : 28 mini-lanes: 3 people walk counter to the main flow
TopView_1A 1 : 12 2 : 05 serpentine group at the top
TopView_1B 1 : 05 2 : 40 (end) snake/lane formation from right to left side due to a standing group;

quite high density.
TopView_2A 0 : 24 0 : 39 a group of 6 is worming their way through a dense counter-moving

crowd.
TopView_2B 0 : 27 0 : 40 a group of 7 is worming their way through a crowd moving in the same

direction. The group splits (going from bottom to right side).
TopView_2B 1 : 12 2 : 00 a lane appears on the top, opposite the main flow.
TopView_2C 0 : 27 0 : 40 a serpentine group of 2− 3 people at moderately high density (from

right to left)
TopView_2C 0 : 00 0 : 15 a serpentine group of 9 at medium density (from right to left)

Table 2.8: Serpentine groups (people walking counter to the main flow and following each other in line).
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2.3.5.4 Heterogeneity of the crowd composition

Social groups. Unlike the homogeneous crowds of individual agents traditionally considered by
crowd modellers, the crowd at the Festival of Lights primarily consists of social groups. Some of these
groups are quite large (see Fig. 2.5), even though they may become separated in practice, and some
include families with children. Naturally, this composition is expected to influence the microscopic
dynamics at play.

Pushchairs and bikes. Moreover, not all pedestrians fit the standard image of a typical pedestrian.
Some navigate through crowds of varying densities while pushing strollers, while others manoeuvre
their bicycles (Tab. 2.9). Consequently, the shape of the agent to be modelled varies significantly from
that of a standard pedestrian. Additionally, the density tends to be higher in front of strollers than
behind them, prompting pedestrians behind the pushers to frequently attempt to overtake them.

File Start End Nature
TopView_1B 0 : 01 0 : 13 pedestrian with a bike
TopView_1B 1 : 33 1 : 48 pushchair
TopView_1C 3 : 05 3 : 16 pushchair
TopView_2A 1 : 25 1 : 53 pushchair
TopView_2A 2 : 33 2 : 41 pushchair
TopView_2B 0 : 49 1 : 12 pushchair
TopView_2E 0 : 36 0 : 50 pushchair
TopView_2F 0 : 59 1 : 06 pedestrian with a bike

Table 2.9: Non-standard pedestrians (pushchairs, bikes, etc.).

Ambulances. Finally, we observed instances where an ambulance needed to navigate through the
crowd. In response, the crowd opened a pathway ahead of the vehicle to facilitate its passage.

2.4 Technical Validation

2.4.1 Trajectory datasets for the TopView recordings.

All trajectory datasets were visually inspected and manually corrected where necessary. In addition,
comparing the overlapping time series of density and mean speed obtained from the TopView_1B
and TopView_2C video recordings, on the one hand, and the TopView_1C and TopView_2D videos,
on the other hand, further validated the results (Fig. 2.23). The fields of view of these cameras are
similar (see Fig. 2.22), and their recordings overlap in time (see Tab. 2.4). We find a relatively small
root-mean-square differences (from 5 to 10%) between overlapping sequences, both for the mean speed
and for the density (see Tab. 2.10). Nonetheless, a systematic bias is observed in opposite directions for
TopView_1B/TopView_2C and TopView_1C/TopView_2D. These biases may be explained by perspective
effects and partly biased correction of optical and geometric distortions.

File RMSD Mean Speed [m/s] RMSD Density [ped/m2]
TopView_1B / TopView_2C 0.02 0.05
TopView_1C / TopView_2D 0.05 0.07

Table 2.10: Root Mean Square Differences (RMSD) between the pedestrian mean speed and density time series
for the TopView_1B and TopView_2C video recordings and the TopView_1C and TopView_2D video recordings, as
shown in Fig. 2.23.
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Figure 2.22: Point of view for the TopView_1 and TopView_2 camera videos, which capture the same scene from
different locations and angles.
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Figure 2.23: Superposition of the pedestrian mean speed (left panels) and density (right panels) time series for
the TopView_1B and TopView_2C video recordings (upper panels) and for the TopView_1C and TopView_2D video
recordings (lower panels), which capture the same scene from different locations and angles of view, and which
partly overlap in time.

2.4.2 Trajectory datasets for the LargeView recordings

As mentioned above, owing to the lower resolution of the LargeView recordings, the quality of the
extracted data is not quite as good. Occasionally, we may have failed to detect shorter individuals
or swapped intersecting trajectories. Despite these challenges, two staff members (called ‘coders’)
independently extracted trajectories from different recordings and then analysed each other’s work.
The coders largely agreed on the extracted data, although there were occasional disagreements or
uncertainties regarding some data points. The common trends observed in the density and velocity
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fields, as shown in Fig. 2.10 - Fig. 2.11, which correspond to different days of recording, further support
the robustness of the presented data.

To further validate the LargeView trajectory dataset, possible detection or tracking errors were analyzed
jointly by the two coders in a second stage. Errors were categorised as either major or minor. Major
errors included omissions of clearly visible pedestrians and the creation of non-existent ones. Minor
errors involved misidentifying or possibly swapping pedestrians as well as slightly inaccurate clicks
on a pedestrian’s head. The joint analysis led to the detection of 10 major errors (1.3%) out of ∼ 740

trajectories and 6 minor errors in the LargeView Zoom_O dataset, and 3 major errors (0.4%) out of
∼ 740 trajectories and 5 minor errors in the LargeView Zoom_A dataset, over 10 seconds. (All these
errors were corrected in the final dataset.)

In order to assess errors on the local densities, two sub-regions of rectangular shape were defined at
distinct locations in time and space, each measuring 4× 6m2, and the two coders separately counted
all people in these regions, including flickering appearances who were likely to be people, even if this
was not certain, in order to get an upper bound. Their respective counts typically differed by less
than 10%, and exceeded the number of actually tracked pedestrians by 20% to 30% in the LargeView
Zoom_O dataset and 9% to 12% in the LargeView Zoom_A dataset, depending on the location of the
rectangle. This leads to the conclusion that the local densities given by our dataset underestimate the
actual densities by at most by 9% to 30%.

2.4.3 Mapping to real-world coordinates

To map the pedestrian positions in pixel coordinates to real-world coordinates, calibration using people
standing at predefined positions was performed; the distances between the predefined positions were
carefully measured on the ground. In the most distant part of the square, the calibration error on
the real-world coordinates (but not the relative positions) may reach a couple of meters. Then, after
conversion, we successfully checked the compatibility of the crowd positions with the geometry of the
premises obtained from Google Earth data and our independent positioning of obstacles.

2.4.4 Surveys

Six distinct staff members gave out oral surveys about origins, destinations, and group sizes. In addition
to the collected statements, group sizes were also passively observed on the field.

– 67 –





CHAPTER 3

Modelling 2D pedestrian dynamics
with non-circular comfort &
physical spaces

Research is expected to alternate between theoretical models and experimental data, creating a dynamic
interplay that advances understanding. Initially, general experimental data serve as a foundation for
developing preliminary models. These models, in turn, enable predictions about pedestrian behaviour
in various situations. Subsequently, experiments are designed to validate or invalidate these predictions.
By analysing the results of new experiments, researchers can uncover novel aspects to incorporate into
the models. This iterative process not only refines the models but also provides forecasts that guide
the design of future experiments. Thus, the continuous dialogue between experimentation and theory
significantly advances research on crowd dynamics.

Figure 3.1: Tight random packing of pedestrians using disks, achieving a density of 4.0 pedestrians/m2. Details
of the algorithm used can be found in App. C.1.1. The diameters of these disks are drawn from the empirical
bideltoid breadth distribution of a portion the US population, as documented in the ANthropometric SURvey 2
(ANSURII) database from Gordon et al. (2012a). Both the disk diameters and the empirical bideltoid breadths have a
mean of 49 cm and a standard deviation of 4 cm. For further information on the definition of these measurements,
please refer to Fig. 3.2.
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Our work is no exception to these challenges. Specifically, the previously studied Festival of Lights
field experiment was conducted due to the lack of field data in medium to high-density, heterogeneous
situations involving ambulances, scooters, strollers, suitcases, children, and babies. The analysis of
these data highlighted certain aspects of crowd dynamics that current two-dimensional pedestrian
models do not yet account for.

Most existing models (Echeverría-Huarte and Nicolas, 2023) represent pedestrians as disks. However,
when bideltoid breadth is used as the disk diameter, a tight random arrangement of a real population only
reaches densities of about four pedestrians per square meter. This is far below the maximum densities
observed during the Festival of Lights, where peaks significantly exceed 4 people per square
meter, although people are not very tightly packed. Note that much higher densities (sometimes above
8 ped/m2) have been reported in various situations (Helbing et al., 2007; Pastor et al., 2015; Nicolas
et al., 2019).

Some would argue that reducing the disk diameter based on chest depth could replicate observed
densities. However, in addition to failing to replicate a realistic shape, this would fail to replicate
a critical feature: the number of neighbouring contacts. A disk-shaped model inherently limits the
maximum number of contacts to six, whereas the later proposed elongated shape allows for up to
eight contacts. This higher number of contact is observed in high-density evacuation scenarios, as
demonstrated by Garcimartín et al. (2013).

Moreover, sneaking behaviours were observed: pedestrians moving out of a dense group would rotate
their chest to make their way. At lower densities, pedestrians adopt this behaviour to avoid potential
collisions. Although one might assume that a pedestrian would rather change direction, it appears
more accessible, or less mentally taxing, to pivot the torso when a collision is imminent. The goal
is to develop a crowd dynamics model incorporating these three critical observations from the Festival
of Lights.
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(3.1)

As explained in Chap. 1, a practical approach to modelling pedestrian behaviour relies on a coupling
between a decision-making component that determines a desired speed and a mechanical layer that
confronts this decision with reality - a coupling summarised by Eq. (3.1) where E may depend on time,
position and velocity of neighbouring agents such as pedestrians, and obstacles. This choice is based
on the theoretical foundations discussed in Chap. 1.

The desired speed aims to achieve a goal while respecting metabolic, physical, and psychological
constraints as much as possible. This desired speed then serves as input to a Newtonian set of mechanical
equations, which account for the relaxation of the real pedestrian speed towards the desired speed
within the order of reaction time and potential mechanical contact forces with obstacles or other
pedestrians. A decision is made at each reaction time interval δt. Various constraints can be integrated
into the decision-making layer, solidly grounded in experimental data for a large part (Chap. 1). This
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Figure 3.2: Illustration of anthropometric measurements, adapted from Gordon et al. (2012b), highlighting the
anatomical landmarks used for standardised assessment. It specifically focuses on chest depth (a), biacromial

breadth and bideltoid breadth (b). More precisely, the biacromial breadth denotes the distance between the
acromion points at the top of the shoulder blades, measured with a firm chest while seated to ensure accuracy.

dichotomy is also practical because it allows for a unified description of seemingly diverse situations,
as illustrated by the following examples:

Decision-making layer illustration Consider a pirate ship at sea in the well-known dangerous
Singapore Strait (Liss, 2003) aiming to intercept a cargo vessel. Instead of immediately steering
directly towards the target, the pirate ship first anticipates the vessel’s future position. It then
adjusts its rudder and speed to approach the target as quickly as possible.

Mechanical layer illustration In contrast to the decision-making layer, which relies on long-range
interactions by anticipating potential collisions and the behaviour of nearby individuals, the
mechanical layer focuses on direct contact interactions. Specific scenarios heavily rely on physical
contact, such as the wall of death, a game where two walls of people collide at concerts. You can
view an example of this in action via this video link. In this game, participants lose the ability to
move freely and experience a sense of losing control, leading to a dissociation between the mind
and body. In such situations, interaction with the environment occurs solely through physical
contact.

However, existing models (Echeverría-Huarte and Nicolas, 2023) that incorporate this coupling rely on
circular shapes to represent pedestrians, resulting in the issues mentioned above. Consequently, this
chapter seeks to establish the foundation for a model that considers the inherently anisotropic nature
of pedestrians’shapes. By shape, we refer to both the physical form (handled by the mechanical layer),
which is assumed to be impenetrable yet deformable, and the decision-making shape, or comfort zone,
that individuals wish to preserve from intrusion by obstacles or neighbouring pedestrians. This comfort
zone decays relatively smoothly away from the pedestrian and it is penetrable.
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3.1 Mechanical layer

3.1.1 Physical shape

a) b)

Figure 3.3: Superposition of the cross-sectional contours of two cryogenic bodies at different altitudes. The two
bodies belonging to a woman on the left and a man on the right have significant body fat fractions (compared
to people in the ANSURII database from Gordon et al. (2012a)). The contours were obtained by processing each
section’s images of the dataset from the U.S. National Library of Medicine (1994, 1995). The upper body displays
a reddish hue, while the lower part appears bluish. The contours of the head and legs, where the hands rest,
are visible. The abdomen is discernible at the centre, with the shoulders at the extremities. The dotted outline
represents the chosen shape to model a 2D pedestrian.

To analyse pedestrians’ shapes, we studied the cross-sections of two cryogenically preserved middle-
aged (man and woman) cadavers from the U.S. National Library of Medicine (1994, 1995). This project,
initiated by the National Library of Medicine, offers a freely accessible library of images of cryosections,
Computed Tomography (CT) scans, and Magnetic Resonance Imaging (MRI) of cadavers (see Fig. 3.4
for an example of a man torso section).

To model the shape of a 2D pedestrian, we consider the exterior contour formed by the union of all
superimposed contour sections of male and female cryogenic bodies, as illustrated in Fig. 3.3 excluding
hand movements and respiratory deformations. We choose to represent this rounded contour using
five overlapping disks to cover this area: two for the shoulders, two for the pectorals, and one for the
belly, as shown in Fig. 3.3. Interestingly, this contour closely matches the thoracic section of Fig. 3.4,
with the only difference being the circle in the middle representing the belly.

3.1.2 Creating a synthetic crowd

Having chosen the shape, the next step is to expand it to an entire real population, creating a synthetic
crowd. This crowd can be utilised further in models and will possess the physical characteristics
representative of the chosen real population. Using five disks to model a pedestrian’s shape—two for
the shoulders, two for the chest, and one for the abdomen—enables easy adaptation to the diverse
morphologies found within a population. The ANSURII database from Gordon et al. (2012a) is utilised
to achieve accurate modelling, offering a standardised and comprehensive range of measurements. This
database includes 93 different metrics collected for 6000 US Army personnel, comprising 4082 men
and 1986 women. While the sample does include women, it does not perfectly represent the civilian
US population, which, according to the National Health and Nutrition Examination Surveys (NHANES)
database from Cd et al. (2012), has a higher proportion of women1. The NHANES database provides
only statistical summaries for a limited set of measurements across the entire US population. Notably,

1This can be attributed to the fact that women generally in the US have a higher life expectancy than men.
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Figure 3.4: Torso section of a cryogenic man, slice number 4405, from the U.S. National Library of Medicine
(1994, 1995) database, covered with five disks. The cross c represents the centre of the neck, which is used as the
centre of homothety. This allows us to adjust the standard shape to accommodate various measurements across
a real-world population from the ANSURII database (Gordon et al., 2012a). The ‘Kodak Q-13 Gray Scale’ ruler
measures 20.3 cm by 2.5 cm.

it does not include specific measurements such as chest depth and bideltoid breadth. Interestingly, the
biacromial breadth measurement is equal in both datasets, suggesting some consistency in skeletal
dimensions (refer to Fig. 3.2 for a visualisation of these measurements).

The discrepancy in the male-to-female ratio in the ANSURII database is not an issue for us: we can
adjust the gender proportion in our synthetic crowd by randomly removing men to achieve the desired
balance, ensuring a more representative model.

Figure 3.5: Tight random packing of pedestrians without a preferred orientation using an arrangement of five
disks, achieving a density of 7.2 pedestrians/m2. Details of the algorithm can be found in App. C.1.1. Both the
sample from the ANSURII database (Gordon et al., 2012a) and our model database exhibit a mean bideltoid breadth

of 49 cm and a mean chest depth of 25 cm. For more information on the definition of these measurements, please
refer to Fig. 3.2.

To preserve the overall shape, we use a homothety (or homogeneous dilation). Specifically, we apply a
homothety centred at c (as illustrated in Fig. 3.4) to the chosen shape contour, with a particular scale
factor to align with the empirical chest depth measurement. Another homothety also centred at c but
with a different scale factor, is used to modify the circle centres, ensuring that the bideltoid breadths
match. This sequence of two homotheties—one altering the original shape contour and the other the
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circle centres—does not perfectly preserve the initial shape (shown in Fig. 3.3) but achieves a realistic
approximation.

Consequently, we can create a synthetic two-dimensional pedestrian population with chest depth

and bideltoid breadth measurements that precisely match those from the ANSURII database while
also maintaining similar shapes. This model enables us to simulate a tight random arrangement of
individuals within a specified area shown in Fig. 3.5. The chosen shapes support the high pedestrian
densities observed near the fountain in Place des Terreaux during the Festival of Lights.

3.1.3 Mechanical interactions

Now that we have established a population of 2D shapes, we can explore the interactions that may
occur between these shapes upon contact. While constructing a specific particle shape is relatively
straightforward, determining the contact interactions is significantly more complex, with several issues
arising in this context:

Definition of contact

Firstly, it is crucial to define what contact means. Contact between two 2D shapes occurs when two
shapes interpenetrate or bond together. For disks, determining interpenetration and bounding is
straightforward. However, more sophisticated algorithms are necessary for other shapes, as explained
by Dziugys and Peters (1998) in his comprehensive review of granular material simulations.

Definition of contact surface

If contact, specifically interpenetration, is detected, the next step is determining the contact surface,
which will define the direction of the associated contact forces. This surface is the line that models the
real contact between the objects, as in reality, objects cannot interpenetrate but only deform. Modelling
the contact surface for disks of the same radius is relatively simple. However, when the radii differ,
multiple definitions arise as illustrated in Fig. 3.6 a). Defining the contact surface becomes even more
intricate for more complex shapes, such as polygons, as shown in Fig. 3.6 b). A mere 10◦ deviation in
determining the normal to the contact surface can result in unrealistic particle movements as outlined
by Hogue and Newland (1994).

Definition of contact point

Once the contact surface has been established, and consequently the direction of potential contact
forces, it is necessary to determine the point of application for these forces. For disk-shaped particles,
contact points can be defined either as the centre of the overlap area or as the midpoint of the line
connecting intersection points as illustrated in Fig. 3.6 a). The latter approach can lead to errors during
collisions with walls, as it assumes no wall deformation—an assumption only valid for perfectly rigid
walls. We will, therefore, stick to the definition of the centre of the contact area.

Mechanical interaction law

The final challenge involves determining the mechanical interaction law, which governs the deformation
and contact of the colliding materials. We first review the techniques used in granular material studies
to derive these interaction laws for pedestrians and obstacles. The elegant work of Popov and Heß
(2015) is discussed in the App. C.1.2, revisiting the expressions initially derived by Hertz (1882) for a
normal contact between two spheres and by Mindlin (1949) for a tangential contact using a foundation
of springs.

Although relationships between stress and deformation specific to the human body exist (see Fig. 1.24)
and exhibit a linear regime for small deformation, the nature of contact between different humans is
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Particle 1

Particle2

Contact surface 1

Contact surface 2

Contact point 1 Contact point 2

a)

(1) (2) (3) (4)

b)

Figure 3.6: Surface Contact and contact point definition problem. For disks (a), two primary methods are used to
define contact surfaces and points. Bisector Method: The contact surface is defined as the bisector of the shortest
line segment connecting the centres of two disks or a disk and a wall. The contact point is the centre of this
bisector (point 2). Intersection Method: The contact surface is the line connecting the intersection points of the
disks. The contact point is the midpoint of this line (point 1). This method can lead to inaccuracies when a particle
collides with a wall, as it assumes the wall is infinitely rigid and does not deform. The diagram is adapted from
Dziugys and Peters (1998). For polygons (b), the definitions of contact surfaces and points can vary significantly
for polygonal contacts as illustrated in the following scenarios: (1) One-point contact on flat surfaces (2) One-point
contact on corners (3) Multiple-point contact with polygon i inside polygon j (4) Multiple-point contact with
polygon j inside polygon i. These schemes are adapted from Hogue and Newland (1994).

not yet well understood. Contact may occur at various points as hands may also be involved. Therefore,
we model the interaction in the simplest way we find appropriate, using a single-damped spring as
illustrated in Fig. 3.7.

The motion equation for the centre of mass of pedestrian i, with massmi, is given by the following
expression. Technical details are available in App. C.1.3, and a comprehensive overview of notations,
definitions, and mathematical expressions can be found in App. C.1.5:

dvi

dt
=

vdes
i − vi

τmech
+

1

mi

∑

(j1,i1)∈C(ped)
i

(
F

∥contact
j1→i1 + F⊥contact

j1→i1

)

+
1

mi

∑

(w,i1)∈C(wall)
i

(
F

∥contact
w→i1 + F⊥contact

w→i1

) (3.2)

where a pair (j1, i1) belongs to the set C(ped)i if and only if the pedestrian components i1 (a part of
pedestrian i) and j1 are in contact. Similarly, a pair (w, i1) is included in the set C(wall)

i if and only if
the wall segment w is in contact with component i12. The symbol ∥ indicates a force tangential to the
contact surface, while ⊥ signifies a force orthogonal to the contact surface. As these forces act on the
contact centre and not directly on the centre of mass, they may introduce torque into the dynamic.
Additionally, to incorporate decision-making, a restoring force is applied to steer the pedestrian toward

2The summation encompasses all components of neighbouring shapes of pedestrian i. The notation i1 (for a component of
pedestrians i) should not be mistaken for i1, which typically refers to the first vertex of a polygonal shape i.
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Figure 3.7: The interactions between two composite disks, with radii Ri and Rj , belonging to pedestrians i and j,
can be modelled using a combination of mechanical elements. Pedestrian imoves with velocity vi, while pedestrian
j remains stationary (vj = 0). In the normal direction (orthogonal to the contact surface), the interaction is
described by a spring in parallel with a dashpot, capturing both elastic effect and energy dissipation. In the
tangential direction (parallel to the contact surface), the interaction is modelled by a spring in series with a slider,
in parallel with a dashpot. The slider represents a threshold-based element that resists motion until a certain force
is applied, after which it slips or ‘yields’ at a constant force. This models plastic deformation in granular materials,
where grains rearrange permanently once a critical stress is exceeded. Here, it refers to the Coulomb’s law: initially,
the tangential force is proportional to the extension of the spring, but once a threshold—is reached, a constant
force proportional to the normal force is applied modelling sliding of the contact. The dashed line represents the
configuration of the composite disks at the onset of contact (at time t0). Refer to App. C.1.3 for all technical details.

its desired angular velocity. Following this, the rotational dynamics are governed by:

dωi

dt
=
ωdes
i − ωi

τmech
+

1

Ii

∑

(j1,i1)∈C(ped)
i

τGi,j1→i1 +
1

Ii

∑

(w,i1)∈C(wall)
i

τGi,w→i1 (3.3)

where Ii represents the moment of inertia of pedestrian i in its principal inertia frame, projected along
the z-axis (the out-of-plane axis). ωi denotes the angular velocity of pedestrian i. The term τGi,j1→i1

refers to the torque at the centre of mass Gi of pedestrian i, resulting from pedestrian-pedestrian
interaction forces. A similar expression applies to torques arising from pedestrian-wall interactions.
The details on the numerical integration method can be found in App. C.1.6.

3.2 Decision-making layer

Each pedestrian makes a decision periodically every δt, which represents the time needed to gather
and process environmental information—essentially, their reaction time. This decision-making process,
whether conscious or unconscious, involves selecting an optimal desired translational velocity (vdes)
and rotational velocity (ωdes) from a set of alternatives. This selection is mathematically represented by
the following equation: (

vdes, ωdes) = argmin
(u,ω)∈R2×R

E(u, ω) (3.4)
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whose minimization is performed using a Nelder-Mead algorithm3 (Olsson and Nelson, 1975). The cost
function aggregates various components using a weighted sum as follows:

E(u, ω) = EBiomecha(u, ω) + ESFF(u) + ETTC(u, ω) + Eprivacy(u, ω) (3.5)

where:

• EBiomecha(u, ω) denotes the biomechanical cost,
• ESFF(u) denotes the static floor field cost,
• ETTC(u, ω) denotes the time to collision cost, and
• Eprivacy(u, ω) denotes the privacy cost.

All these components are illustrated in Fig. 3.8. For a detailed explanation of each term, refer to Tab. 1.2.
Depending on the value of the coefficients, each cost component can become significant, reflecting
diverse motivations.

Figure 3.8: Sketch illustrating the diverse contributions to the cost function optimised in the decision-making
layer. Illustration by Émilie Josse (2024) / Graphics for Science.

Among these components, only the privacy and TTC terms are affected by the shape of the comfort
zone. Therefore, we will concentrate on these two terms in the following sections.

3.2.1 Proxemics

We propose that individuals have a personal comfort zone, which can be visualised as a series of
protective barriers where personal comfort is prioritised. The height of each barrier indicates the level
of discomfort experienced when someone enters that space. Thus, the farther someone is from you, the
more comfortable you feel with their presence, as shown in Fig. 3.9 (left panel).

3Although the Melder-Mead method is a local minimum solver, it performs quite well with an appropriate initial guess.
However, it is somewhat slow; the minimization method will, therefore, require refinement in the future to effectively handle
huge crowds.
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This comfort zone can be represented as a field in a continuous space. We depicted its isolines using star-
convex polygons4 instead of continuous smooth curves. This representation simplifies the derivation
of expressions for the Time To Collision (TTC) and privacy cost terms, making them numerically
computable. It enhances both simplicity and computational efficiency. Consequently, these isolines can
be non-convex and adaptable to various unexplored situations, such as discomfort fields for an adult
with a bicycle or a pushchair (see an illustration of such a star-convex shape in App. C.2.5).

Topview
comfort level contours

y 
[c

m
]

x [cm]

Figure 3.9: Left: The inset provides a top view of the pedestrian’s scalar comfort field, with the physical form
shown in green at the centre. The 2.40 comfort level is approximated by an 8-sided polygon with unequal sides.
The field is assumed to be isotropic at each polygon vertex, allowing comfort levels to be examined in one direction
and applied similarly in others despite differences between the pedestrian’s front and back. As discussed in
Sec. 1.2.3.3, focusing on discomfort rather than comfort levels is preferable because individuals tend to discern
negative scenarios more effectively due to negativity bias. To convert comfort to discomfort, we used the formula
discomfort = 10 - comfort, where 10 represents the maximum comfort level in the experiment’s questionnaire.
These data are fitted with a ϕ function, shown in blue, effectively capturing the pedestrian’s discomfort levels as
they decrease and reach zero at a certain distance. These discomfort levels can be schematically visualised as castle
walls, as illustrated on the right side of the figure. The inset is adapted from Neggers et al. (2022). Right: This
section presents an artistic illustration of a comfort zone. The interior of the keep symbolises the human body,
while the height of the surrounding walls represents a specific level of discomfort related to someone’s presence
on these walls. As a person moves further from the keep, their presence-related discomfort diminishes, leading to
a decrease in wall height. The photo is adapted from Daria and Roberto (2024).

As shown by Neggers et al. (2022), the comfort level contours close to the pedestrian tend to be
relatively homogeneous in shape (see the inset of Fig. 3.9). Therefore, our approximation appears
effective, particularly in areas not too distant from each pedestrian. The amplitude of the contours is
well-matched with a one-dimensional function, ϕ, which increases as it approaches the body shape and
diminishes at greater distances as illustrated in Fig. 3.9 (right panel):

ϕ (∥r∥) = max


0, A ·

1− ∥r∥
RCT(

∥r∥
RCT

)1/4


 (3.6)

where A = 2.62 and RCT = 2.43m.

4In geometry, star-convexity generalises the notion of convexity.
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3.2.2 Time to collision cost

Let’s examine the Time To Collision (TTC) cost denoted as V TTC
ij . While the concept of TTC dates

back to earlier works referenced in e.g. Olivier (2008)’s thesis, it was Karamouzas et al. (2014) who
demonstrated its empirical relevance in natural conditions. This concept pertains to collisions between
physical shapes and is mathematically represented as:

V TTC
ij = KTTC

exp
(
− τij

τCA

)

τ2ij
(3.7)

where τij is the TTC between pedestrians i and j, τCA is the characteristic time of collision anticipation
which was set to 3.0 s and KTTC is a parameter that adjusts the relative importance of this cost in
comparison to the other terms within the cost function. This formulation raises challenges for numerical
cost minimisation. A minor variation in the candidate velocity u can result in avoiding a collision
entirely, leading to a zero cost in energy. This creates discontinuities in the energy landscape, which
are notoriously difficult to handle numerically and probably unrealistic for pedestrians.

However, to address that issue of discontinuities, instead of considering collisions between physical
shapes, one can focus on the possible collisions between comfort spaces or, more specifically, discomfort
fields (then, rather than discussing a physical collision, we address an intrusion into a comfort zone.)
This approach is akin to a pedestrian calculating the TTC potential for each wall of the ‘castle’ of
Fig. 3.9 and then averaging them. This process effectively acts as a convolution between the discomfort
field and the TTC potential over the variable ∥r∥, which represents the distance from the castle tower
(or swelling η when referring to the ∥r∥/RCT variable as mentioned in Eq. (3.6)). For mathematical
simplicity, we will primarily use the swelling variable η to describe a specific discomfort level contour
in the following discussion.

This formulation allows us to rewrite the TTC term as a convolution over the swelling ratio of the two
interacting pedestrians as follows:

ETTC
∣∣
ij
(u, ω) =

∫ +∞

0

K(η)V TTC
ij [τη(u, ω)] dη (3.8)

where K(η) = ϕ(η RCT) is a compactly supported kernel. Notably, with this definition of η, any
discomfort level contour associated with a swelling η greater than 1 will not contribute to the integral,
as the kernel value will be zero. With this in mind, one can forget the discomfort field and instead
consider the polygonal shape as a simple pedestrian shape that can vary in size according to η. This
perspective simplifies the concept.

However, to compute this integral, we still need to understand the relationship between τ and η. Al-
though deriving an analytical expression is challenging, this relationship can be determined numerically
at a low cost. The approach is to let the two pedestrians in interaction evolve, as illustrated in Fig. 3.10
a). At each time step of this evolution, we determine the minimal swelling ratio η⋆ that leads to an
overlap between the two contours. The polygonal nature of the discomfort level contours makes this
calculation feasible with low computational cost (refer to App. C.2.6 for detailed technical information).
This process establishes a relationship between η⋆ and τ . To ensure that each η⋆ is mapped onto a
unique TTC value, we choose the minimum TTC from the calculated swelling ratios as illustrated in
Fig. 3.10 b). This approach reflects the idea that pedestrians are more sensitive to imminent collisions
than those that might occur later. More precisely, η⋆ is related to η as follows:

η(τ) = min {η⋆(τ ′) : τ ′ < τ} (3.9)
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Figure 3.10: a) Illustration of the swelling ratio η leading to an overlap between two contours at different times
in the forecast future. The left agent moves with its translational velocity (at time t) and a rotational velocity
ωTTC = ω(t) exp (−t/τCT), which decreases exponentially over time, with a cut-off time τCT set to 1 s, reflecting
that pedestrians do not behave like spinning tops. The right agent moves with a candidate translational velocity u,
and a rotational velocity that also decreases exponentially, depending on its candidate rotational velocity. The
future is discretised into time steps ∆tTTC set to 0.1 s. b) The relationship between swelling and the Time To
Collision is depicted. At time t=0, the swelling is initialised at a large value such that it touches the opposite wall,
corresponding to a zero TTC. This process is iterated to generate data points (dots on the graph). To ensure a
one-to-one relationship, only the minimal swelling ratio observed up to each point in time is considered. This
selection results in the smooth curve (solid line) displayed on the graph. The solid line represents η, while the
dashed line represents η⋆. Swelling values above one do not contribute to the integral, as the kernel for these
values equals zero.

Using a Riemann scheme (as detailed in App. C.2.7), one can then compute numerically Eq. (3.8).
Furthermore, assuming that a pedestrian primarily interacts with the individual with whom a collision
is most imminent, the total TTC interaction potential affecting pedestrian i is determined by the
maximum value among all neighbours:

ETTC
∣∣
i
(u, ω) = max

j ∈Ni

ETTC
∣∣
ij
(u, ω) (3.10)
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where Ni refers to the neighbours of i. Pedestrians and obstacles are considered neighbours if they
fall within a 70◦ half-angle visual cone and are less than 7 meters apart. Furthermore, obstacles are
automatically considered neighbours if they are within a 2-meter radius around pedestrian i. More
precisely, the distance between two pedestrians is measured from their respective centre of mass. For
obstacles, the distance is defined as the shortest Euclidean distance from the pedestrian’s centre of
mass to the obstacle.

As a side remark, when two individuals are very close, their comfort zones overlap. In such scenarios,
the integral (Eq. (3.8)) yielding the TTC cost is limited to a tiny interval in η, between ηmin and ηmax

(with transparent notations), regardless of direction. Consequently, the integral takes a negligible value.
This isn’t problematic because this term is only significant at greater distances. In this context, the
relevant factor is the privacy cost, which will be explained next.

3.2.3 Privacy cost

In contrast to the TTC term, the privacy term depends on the pedestrian’s final (contemplated) position,
i.e., at time t+ δt. Similar to the time-to-collision interaction potential, a repulsive interaction potential
can be defined for privacy interactions. Between pedestrian i and pedestrian j, this potential is denoted
as Eprivacy|ij . It represents a smooth version of a discontinuous interaction potential, which imposes a
cost when the private spaces of two pedestrians overlap at the next decisional time step. This overlap
is then smoothed out using the kernel K(η). Consequently, Eprivacy|ij depends only on the overlap at
the next decisional time step, i.e., η (τ = δt) leading to:

Eprivacy
∣∣
ij
(u, ω) = ζ K[η (δt)] (3.11)

Finally, the total short-term repulsion interaction potential affecting pedestrian i is simply the sum
over all its neighbours:

Eprivacy
∣∣
i
(u, ω) =

∑

j ∈Ni

Eprivacy
∣∣
ij
(u, ω) (3.12)

Decision-making layer
δt Decisional time step, i.e. the time interval between two consecutive decisions 0.1 s
RCT Cutoff radius of ϕ the discomfort field 2.43m
A Amplitude of ϕ the discomfort field 2.62

τTTC Time of forecasting in Time To Collision interaction term 4 s
τCA Time of collision anticipation (Karamouzas et al., 2014) 3 s
τCT Cutoff time in the angular velocity used during the evolution of interacting shape in the

computation of the Time To Collision cost
1 s

∆tTTC Time step of the evolution of interacting shape in the computation of the Time To
Collision cost

0.1 s

u∞ Preferential speed (free-walking speed) N (1.4, 0.2)m/s
dc Characteristic repulsion length of walls 20 cm

Mechanical layer
∆tmech Simulation time step for the mechanical layer 10−6 s
mi Mass of pedestrian i (kg) –
Ii Moment of inertia of pedestrian i (kgm2) –

Table 3.1: Known parameters of the model. Importantly, the Static Floor Field coefficient is not included because
it can be substituted with the free walking speed, as demonstrated in App. C.2.4. To account for heterogeneity
in free walking speed within our synthetic crowd, we employ a normal distribution with a mean of 1.4m s−1

and a standard deviation of 0.2m s−1, as referenced in (Chandra and Bharti, 2013). The mass for each pedestrian
is already given in our synthetic crowd. The moment of inertia for each pedestrian is calculated as detailed in
App. C.1.4
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Decision-making layer
KI ‘Inertial’ coefficient (kg s−1)
KTor ‘Torsion’ coefficient (J/rad2)
ζbody Repulsive coefficient for personal space (body-body interaction) (J)
ζwall Repulsive coefficient for personal space (body-wall interaction) (J)
KTTC

body Time-to-collision coefficient (body-body interaction) (kgm2)
KTTC

wall Time-to-collision coefficient (body-wall interaction) (kgm2)
Mechanical layer

τmech Relaxation time (s)
ξstaticbody Body stiffness of tangential spring to prevent slip (static) (kg/s2)
µ
dyn
body Dynamic friction coefficient for pedestrian-pedestrian contact (dynamic) (dimensionless)

γ
∥
body Damping coefficient for tangential contact force (parallel) (kg s−1)

k⊥body Body stiffness for orthogonal contact force (perpendicular) (Nm−1)
γ⊥
body Damping coefficient for orthogonal contact force (perpendicular) (kg s−1)

ξstaticwall Wall stiffness of tangential spring to prevent slip (static) (kg/s2)
µ
dyn
wall Dynamic friction coefficient for pedestrian-wall contact (dynamic) (dimensionless)

γ
∥
wall Damping coefficient for tangential contact force (parallel) on wall contacts (kg s−1)

k⊥wall Wall stiffness for orthogonal contact force (perpendicular) on wall contacts (Nm−1)
γ⊥
wall Damping coefficient for orthogonal contact force (perpendicular) on wall contacts (kg s−1)

Table 3.2: Unknown parameters that need to be fit to experimental data.

3.3 Numerical results

With our theoretical model setup, the next step is determining its parameters. Refer to Tab. 3.1 for the
parameters with known values and Tab. 3.2 for those with unknown values. We will then assess its
ability to replicate scenarios in controlled settings.

3.3.1 Qualitative replication of simple situations

We first assessed the orders of magnitude of these parameters by considering simple situations:

Starting and stopping: An unaccompanied pedestrian must start moving and be able to stop at the
target in a reasonable amount of time (KI ∼ 10−2, τmech ∼ 0.5).

Turning towards a target: A pedestrian must be able to turn to face a target (KTor ∼ 0.1).
Maintaining one’s comfort zone: A pedestrian close to a static agent wishes to maintain their com-

fort zone by moving away (ζbody ∼ 0.1). The same applies when a wall is nearby (ζwall ∼ 0.1).
Collision avoidance: When a pedestrian must go around another stationary pedestrian (KTTC

body ∼
10−2), or around an obstacle as illustrated in Fig. 3.11 (KTTC

wall ∼ 10−2).
Frontal collision: When an agent approaches a static pedestrian, they must not interpenetrate or

bounce off each other as though theywere billiard balls (k⊥body ∼ 106, γ⊥body ∼ 104). The equivalent
scenario with a wall involves k⊥wall ∼ 106 and γ⊥wall ∼ 104.

Rotational collision: A pedestrian next to another one with a fixed centre of mass tries to turn
without bouncing off like a billiard ball (ξstaticbody ∼ 105, γ∥body ∼ 104). In a similar situation, the
pedestrian must induce rotation in its neighbour by rotating himself (µdyn

body ∼ 0.1). Equivalent
scenarios when interacting with a wall have also been simulated (ξstaticwall ∼ 105, γ∥wall ∼ 104,
µ
dyn
wall ∼ 0.1).

We then tried to replicate more complex experimental scenarios in controlled settings. The focus was put
on scenarios where collective dynamics are at play and are expected to be highly sensitive to pedestrian
(physical and private-space) shapes. Significant practical properties such as the fundamental diagram (in
the sparse to moderately dense regime) had already been replicated by the simple circular specification
of the model (Echeverría-Huarte and Nicolas, 2023), for both unidirectional and bidirectional flows, as
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target

Figure 3.11: In this test scenario, a pedestrian must walk toward a target while navigating around a non-convex
obstacle. The initial body orientation is fixed arbitrarily, so that the pedestrian starts rotating as soon as the
simulation begins. Transparency increases over time.

summarised in Fig. 3.12; they will not be further discussed here.

a) Unidirectional flow b) Bidirectional flow

Figure 3.12: Fundamental diagrams relating the average pedestrian speed to themean density for (a) a unidirectional
flow along a corridor with periodic length LX = 16m and width LY = 3m. The variation of the simulated mean
speed with the density is shown along with various experimental data sets (Older, 1968; Mōri and Tsukaguchi,
1987; Weidmann, 1993; Zhang et al., 2011). (b) A bidirectional flow in a corridor. The figure is adapted from
Echeverría-Huarte and Nicolas (2023).

3.3.2 Forward propagation of a push through a row of people

We began with an experiment involving the propagation of a push through a line of people from
Feldmann and Adrian (2023). Fourteen volunteers, aged 19 to 55, participated. Five participants stood
in front of a punching bag, facing a wall within a 3-by-5 meters area as shown in Fig. 3.13. The last
person in line was pushed forward with the punching bag, manually operated by an experimenter.

Various spatial configurations were tested by adjusting the distance between subjects and their proximity
to the wall. The bag was pushed with three different intensity levels, and the pressure was measured
using a sensor on the back of the person as shown in Fig. 3.14. Another pressure sensor was placed
on the wall to capture additional data. The initial arm position was also varied: arms along the body,
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Figure 3.13: Setup of the experiments. The experimental area covered with mats has a size of 3m × 5m. On the
left side, a punching bag is suspended from the ceiling. A solid wall limits the right side of the area. Five people
lined up in a queue and are pushed forward in a controlled manner. The picture is taken from Feldmann and
Adrian (2023).

Figure 3.14: (a) A pressure sensor measures the pushing intensities at the punching bag. (b) Spatial image of a
single time frame recorded by the pressure sensor. (c) Time series of the normal force. The figure is taken from
Feldmann and Adrian (2023).

at shoulder level (to expedite recovery during the push), or in an intermediate position. Nevertheless,
pedestrians still had the right to use their hands to protect themselves and prevent injury.

To replicate this scenario using our model, we selected individuals from our synthetic population whose
mass closely matched that of the experimental subjects. We set each pedestrian’s decision-making
speed to zero to reflect their intention not to move from their initial position. The initial arm position
was simulated by appropriately adjusting the coefficient of the force normal to the contact surface k⊥body
and the damping normal coefficient γ⊥body. The optimal parameters of the mechanical layer minimised
the mean quadratic difference between the data trajectories (cut at the moment pedestrians started to
go back to their initial position) and the simulated ones for each experiment. Fig. 3.15 illustrates two
simulations compared with data, showcasing good agreement. The experimental trajectory appears
somewhat jittery because it records the movement of the head. In contrast, our model replicates the
overall body movement, ensuring it halts at the correct moment.

3.3.3 Competitive egress of pedestrians

Evacuation scenarios where mechanical contacts significantly influence outcomes warrant further
investigation. In particular, the faster is slower effect, linked to varying levels of competitiveness
during an evacuation, was observed in an experiment conducted at the University of Navarra by
Garcimartín et al. (2013). In this study, 93 to 98 volunteers participated in an evacuation exercise held
in an indoor gym. Participants were instructed to exit through a door 69 cm wide under three different
competitiveness conditions: low (no intentional contact), medium (soft contact allowed), and high
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Figure 3.15: (a) The top panel provides a top-view photo of the experiment’s initial setup. The middle panel shows
their starting positions in the simulation, while the lower panel displays their positions at the end. Initially, the
pedestrians have their arms along their bodies. At t = 0.05 s, a force starts to apply to the leftmost pedestrian.
The solid lines depict the simulated trajectories of the centroid of each pedestrian, while the dotted lines represent
the experimental trajectories of their heads. (b) Simulation of a scenario where pedestrians are closer to the wall.
The force starts to apply at t = 2.2 s. Additionally, each pedestrian starts with their hands on the shoulder blades
of the person in front. The pedestrian closest to the wall places their hands on the wall itself.

(moderate pushing permitted). By adjusting the preferential velocity of each pedestrian u∞ according
to the level of competitiveness allowed during the experiment, our model successfully replicates this
phenomenon as illustrated in Fig. 3.17.
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b)
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Figure 3.16: (a) A snapshot depicting an evacuation drill under highly competitive conditions, as described by
Garcimartín et al. (2013). (b) Similarly to above, a snapshot illustrating the egress of 93 individuals evacuating
through a narrow doorway measuring 69 cm in width. (c) A pressure map created by binning the space into
squares with a side length of 0.5m and averaging the measured pressure across the entire simulation duration. In
this context, ‘pressure’ refers to the average magnitude of normal forces measured within a specified spatial bin
divided by the perimeter of the physical body. This average is calculated over time and includes the two pressures
measured during physical contact.

A simulation snapshot is also presented in Fig. 3.16 b). The contacts between the different shapes are
represented by rods, highlighting the formation of contact arches that constrain the flow. By averaging
the magnitude of the pressures associated with these contacts over time and space, a pressure map can
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be drawn, shown in Fig. 3.16 c). This map reveals shapes similar to concentric semicircles of equal
pressure, representing these contact arches.

Figure 3.17: Left The cumulative number of exits as a function of time for two different mean preferred speeds,
u∞, demonstrating the faster is slower effect. Right Survival functionP(τ > ∆t) of time gaps between successive
egresses.

3.3.4 Two pedestrians passing each other in a corridor

Figure 3.18: (a) Scheme of the experimental setup. Two courses are created using cardboard boxes. Four participants,
represented by yellow ellipses, were positioned at the ends of these courses. Upon receiving a cue, they walked to
the opposite ends. The side on which they would pass each other was specified to them before each trial and their
initial position. (b) Experiment Snapshot for a corridor width of 60 cm. The image shows two participants passing
each other by rotating their bodies. The figure is taken from Yamamoto et al. (2019).

With the parameters of the mechanical layer specified, we can focus on experiments where decision-
making aspects play a crucial role while mechanical aspects do not. Specifically, we explored scenarios
in corridors where individuals initially positioned on opposite sides attempt to cross without making
contact with someone approaching from the opposite direction. During their journey, pedestrians
adjust their position and orientation to avoid collisions. The experiment involved four male participants
aged 18 to 25 and was conducted at The University of Tokyo. Two courses were constructed using
cardboard boxes to form corridors with widths ranging from 60 to 140 cm as illustrated in Fig. 3.18.
Participants were positioned at opposite ends of the corridor and instructed to walk towards each other,
passing midway. They wore tablets equipped with gyroscope sensors to record body rotations.

An illustrative simulation where two pedestrians navigating a corridor by rotating to avoid each other is
shown in Fig. 3.19. By adjusting the parametersKTTC

body, ζbody, and ζwall, we can replicate the experiment
qualitatively, as shown in Fig. 3.20.
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Figure 3.19: Simulation of two pedestrians passing each other in a 90 cm wide corridor. The pedestrians’ physical
bodies are depicted in a darker colour, while their maximum comfort contour space is shown in a more transparent
shade. The transparency increases over time. It evidences that the pedestrians rotate their bodies to avoid collisions.

20 s 40 s30 s 45 s 60 s

Experiments Simulations

20 s 40 s30 s 45 s 60 s
Figure 3.20: Comparison of the previous simulation results (Fig. 3.19) for the subject moving from left to right
with the measured experimental data.
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CHAPTER 4

A noise-induced Kapitza’s pendulum
instability to account for
stop-and-go dynamics in traffic

The scenarios considered so far do not consider flow instabilities. However, such instabilities are well
documented in pedestrian dynamics, as illustrated in Fig. 4.1, where alternating patterns of stalled and
moving phases emerge.

Figure 4.1: Crowd moving to the right during the Hajj in 1426H (January 12, 2006). The movement displayed
alternating patterns of jammed and moving sections, also known as stop-and-go waves in two dimensions. Moving
parts are highlighted in green, while stationary parts are shown in grayscale. The full video is available on the
Fouloscopie YouTube channel at the following link.

To investigate this phenomenon, Ziemer et al. (2016) conducted a one-dimensional experiment where
individuals moved along an elliptical path (see Fig. 4.2). By varying the pedestrian density, they
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observed that when the density exceeded a critical threshold, stop-and-go waves began to emerge.
Remarkably, even the slightest perturbation in this high-density regime was sufficient to trigger these
waves, highlighting their sensitivity to small perturbations.

Figure 4.2: Snapshot from a video showing pedestrians moving on an ellipsoidal shape. The trajectories of the
pedestrians are displayed on the right. Red segments indicate moments when pedestrians are stationary, while
gray segments represent movement. The figure is adapted from Ziemer et al. (2016).

Such instabilities are also commonly seen in single-lane traffic, as demonstrated by (Sugiyama et al.,
2008) in an experiment involving cars on a circular track. At first glance, the phenomenon appears
similar to that observed in pedestrian dynamics and can be approximately described using a linear
collective instability induced by delays and lags in the system’s dynamics.

However, such a modelling framework fails to account for the fluctuations observed during transition
periods in experimental settings (Sugiyama et al., 2008). The present study shows that an alternative
stochastic modelling approach can accurately reproduce the formation of stop-and-go dynamics. Unlike
classical methods, this new framework is unconditionally linearly stable. However, the introduction of
noise leads to a non-linear instability, resulting in the emergence of waves and oscillations within the
dynamics. This is akin to Kapitza pendulum (Butikov, 2017).

The content of this chapter is adapted from the articles (Dufour et al., 2024g) (in preparation for submission),

for the physical interpretation, and (Ehrhardt and Tordeux, 2024) (submitted to the Franklin Open journal),

which addresses the mathematical aspects. My primary contributions were in formulating the problem,

designing and carrying out numerical simulations, analysing the results, and clarifying the physical origin

of the observed phenomena.

Context

Determining the stability of many-body systems, particularly those with three or more components, is
often a complex challenge. This complexity is exemplified by the enduring question of the solar system’s
stability (Moser, 1978; Villani, 2012). The situation becomes even more intricate when deterministic
equations of motion fail to adequately describe a system’s dynamics (Gardiner, 2021). A prime example
of this complexity can be seen in vehicular traffic. Drivers are well-acquainted with stop-and-go
waves on highways, where traffic jams—sometimes referred to as phantom jams—emerge without any
apparent cause, compelling drivers to alternately slow down and speed up. The physical origins of
these phenomena remain a topic of debate, even in scenarios involving single-file traffic. This ongoing
debate has significant practical implications for both safety and congestion management. Recently,
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these issues have gained renewed attention due to instabilities observed in platooning experiments
involving Adaptive Cruise Control (ACC) vehicles (Stern et al., 2018; Gunter et al., 2020; Makridis et al.,
2021).

Many factors can destabilise traffic flow, as reaction times, delays, and inaccurate perceptions or
responses influence vehicle control and environmental perception. Some of these factors can be
included deterministically in equations of motion. Specifically, finite response times and latency in
vehicle control (Nagatani and Nakanishi, 1998; Orosz et al., 2004, 2010; Wilson and Ward, 2011; Tordeux
et al., 2012, 2018) can be modelled using inertial ordinary differential equations (Komatsu and Sasa,
1995) and delayed linear equations (Nagatani and Nakanishi, 1998). These have traditionally been
identified as causes of linear instabilities that disrupt the uniform, steady flow of a vehicle platoon
or string. Theoretical analyses, such as those by Pipes (1953); Kometani and Sasaki (1958); Chandler
et al. (1958); Herman et al. (1959); Komatsu and Sasa (1995). Additionally, numerical studies by Bando
et al. (1995, 1998) provide foundational insights into these instabilities. When response times are too
slow, the underlying dynamics can lead to the emergence of stop-and-go waves. These dynamics
replicate the amplification of spontaneous perturbations observed in experiments with Adaptive Cruise
Control-equipped vehicles. This phenomenon is particularly evident in finely-tuned non-linear models,
which accurately replicate experimental observations (Treiber et al., 2000; Tomer et al., 2000; Jiang et al.,
2001; Tordeux et al., 2010).

Figure 4.3: a) Ring of Vehicles: At the initial time, all vehicles are equally spaced and moving at the same speed.
b) Vehicle Trajectories: The trajectories of all vehicles are shown, with one vehicle’s trajectory highlighted in
red. Two distinct phases can be observed: the first phase is a homogeneous state lasting approximately 90 seconds,
followed by a second phase characterised by stop-and-go waves. c) Trajectories from Another Trial: In this
trial, the phase with stop-and-go waves begins much later, around 170 seconds. The diagrams are adapted from
Stern et al. (2018).

For cars without ACC, it has been argued that delay-induced instabilities fail to capture critical features
observed in empirical single-file traffic or controlled experiments with vehicle platoons. Tian et al.
(2016) highlight these discrepancies in empirical settings, while controlled experiments by Jiang et al.
(2018) and Tian et al. (2019) further emphasise the limitations of these models. In experiments involving
cars on a ring, such as those conducted by Sugiyama et al. (2008); Tadaki et al. (2013); Stern et al.
(2018), around twenty human-driven vehicles followed each other on a single-file loop. Above a specific
vehicular density, fully developed stop-and-go waves were observed but only after long transition
times, ranging from one to several minutes (as depicted in Fig. 4.3).

The irregular emergence of stop-and-go waves at high densities seems incompatible with linear instabil-
ities, which would cause these waves to occur systematically in the same manner and at consistent
time. Instead this phenomenon suggests a metastable state, as discussed by Nakayama et al. (2009) and
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Schadschneider et al. (2010, Chapters. 6.3, 6.5) with experimental data and by Wilson (2008) with a
deterministic non-linear model. Linearly unstable systems that directly link speed and spacing through
an optimal velocity function also fail to explain the concave growth of speed fluctuations observed in
a platoon of cars following a leader travelling at a constant speed on open roads (Fig. 4.4), as noted
by Treiber and Kesting (2017); Jiang et al. (2018); Tian et al. (2019). This latter phenomenon can be
accurately reproduced by car-following models incorporating deterministic action points, where a
response is triggered only when the stimulus exceeds a finite threshold, as Treiber and Kesting (2017)
highlighted.

a) b) c)

Figure 4.4: a) Airport Map: The map illustrates how cars are moving in a manner that approximates an open
road (Jiang et al., 2017a). b) Path Scheme: This diagram depicts the route that cars follow at the airport. GPS
devices installed in the cars enable the measurement of their trajectories (Jiang et al., 2017a). c) Velocity Analysis:
The red line represents the standard deviation of each car’s velocity along the platoon, averaged over specific time
intervals. In contrast, the black line shows simulations based on the full velocity difference model with additive
white noise. The model exhibits a convex behaviour, whereas the actual data demonstrates a concave behaviour
(Tian et al., 2019).

A realistic outcome can be achieved by augmenting the equation of motion with a stochastic term. This
approach is expressed in the following 1D equation:

dvn(t) = A
(
∆xn(t), vn(t), vn+1(t)

)
dt+ σ dWn(t) (4.1)

Here, the stochastic noise term σ dWn represents the influence of numerous degrees of freedom not
captured by the deterministic response A. The function A is dependent on several factors, including
the gap ∆xn = xn+1 − xn − ℓ, where xn is the position of the n-th car and ℓ ≥ 0 is the length of
the vehicles. It also depends on the speed vn = ẋn, among other variables. The significant impact of
noise in systems that exhibit linear instability within specific parameter ranges is well understood by
physicists and does not come as a surprise.

In physical systems, especially near dynamical instabilities, stochastic noise can lead to the so-called
noisy precursors of instability, such as sustained oscillations (Wiesenfeld, 1985). These phenomena
should not be confused with genuine instabilities.

It is well-established that additive noise does not impact the stability of a stochastic differential
equation, such as Eq. (4.1), at the linear level. However, certain parameter settings may reveal a linear
instability. To identify a bona fide noise-induced instability, Ngoduy (2021) introduced amultiplicative
noise, which increases with relative speeds. This approach significantly amplifies the noise as the
system deviates from steady flow, potentially driving it into instability through a positive feedback
mechanism. Multiplicative noise can be studied perturbatively by linearizing the response function A.
Specifically, it can modify an existing criterion for linear instability in the deterministic response A.
Hidden degrees of freedom, such as inaccurate driver perceptions or responses represented by dWn,
can indeed amplify or anticipate the existing linear instability.

In this work, we propose that a simple additive noise can significantly impact and destabilise a car-
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Figure 4.5: The Kapitza pendulum’s equilibrium position is determined by the vertical oscillatory input command,
which varies in frequency and amplitude. a)When the input amplitude and frequency are sufficiently small, the
equilibrium position is at θ = 0. The right side illustrates the effective potential energy landscape (obtained by
averaging the dynamic over the fast oscillations of the input oscillatory command, refer to Golovinski and Dubinkin
(2022) for technical details), indicating that the mass, depicted in red, can achieve different energy levels depending
on the amplitude of its oscillations. b) As the input frequency increases, the energy landscape through which
the mass moves is altered, rendering the position at θ = π, which was previously unstable, now metastable. It is
important to note that the condition for observing the inversion of stability at θ = π is applicable when the pivot
amplitude is small and the pivot frequency is large. This is because the effective energy is derived by separating the
fast and slow components of the pendulum’s motion. Improved criteria can be established to observe an inversion
of stability at θ = 0 as well (Butikov, 2017). This scheme is adapted from Bukov (2018). For a visualisation of its
movement, visit the animation from Gereshes (2019) and the interactive app from Neumann (2001).

following model that is otherwise unconditionally stable in the deterministic limit. This finding
highlights an alternative source of traffic instabilities independent of factors like response delays and
reaction times. This role of random noise had only been glimpsed in cellular automaton models for
traffic, where vehicles may randomly brake relative to their desired acceleration at each time step.
Similar effects have been noted in continuous space models (Krauß et al., 1996; Jost and Nagel, 2005).

We show that this alternative, non-perturbative stochastic route to instability arises from the excitation
of non-linearities in the response term A. Unlike traditional non-linear hydrodynamic instabilities
(Bergé, 1976), the resulting stop-and-go dynamics require the continuous noise action to be sustained, yet
they closely resemble empirical observations. The crucial role of non-linearities complicates analytical
progress; however, drawing an analogy with the Kapitza pendulum (illustrated in Fig. 4.5) — where
stable and unstable positions swap due to vertical oscillations—provides valuable insights into the
observed phenomena.

Specifically, using this analogy, we heuristically explain our findings by decomposing the noise’s effect
into a finite periodic (oscillatory) driving component and a stochastic triggering perturbation. The
periodic component stimulates the system’s non-linear response and controls the gap necessary to
trigger instability. When this gap reaches zero, the system loses stability against minor perturbations.
Consequently, the complex noise-induced non-linear instability simplifies to the more manageable
problem of determining the asymptotic stability of a periodic orbit under vanishing noise.
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4.1 Car-following models and stochastic terms

Traffic problems have given rise to models galore, likely due to their practical applications and geometric
simplicity. Insight into metastable states has been partially achieved through the use of cellular automata
and interacting particle systems (Barlovic et al., 1998; Ke-Ping and Zi-You, 2004; Kaupužs et al., 2005;
Huang et al., 2018), (Schadschneider et al., 2010, Chap. 8.1). However, our focus is on continuous
car-following models that follow the generic structure of Eq. (4.1), whether they are deterministic (with
dWn = 0) or include a stochastic component. Among the existing models, we single out four models:

Stochastic Optimal Velocity (SOV) model (Wagner, 2011; Treiber and Helbing, 2009; Wang et al.,
2020; Friesen et al., 2021)

dvn =

(
V (∆xn)− vn

T1
+

∆vn
T2

)
dt+ σ dWn (4.2)

where V : R 7→ R+ is a sigmoid-like Optimal-Velocity (OV) function as described by (Bando
et al., 1995; Jiang et al., 2001; Treiber and Helbing, 2009). This function depends on the spacing
∆xn, while T1 and T2 (both greater than zero) represent the relaxation times for optimal velocity
and speed alignment, respectively.

Inertial Car-Following (ICF) model (Tomer et al., 2000)

dvn = K ·
(
1− 2vnT + ℓ

∆xn + ℓ

)
dt+

Z2(−∆vn)
2∆xn

dt− 2Z(vn − v0) dt+ σ dWn (4.3)

where Z(x) = (x+ |x|)/2 denotes the positive part of x, T > 0 represents the desired time gap,
and ℓge0 indicates the vehicle length.

Stochastic Intelligent Driver (SID) model (Treiber and Kesting, 2017)

dvn = a

(
1−

(
fn
∆xn

)2

−
(
vn
v0

)4
)

dt+ σ dWn (4.4)

where fn = s0 + Tvn − vn∆vn/
(
2
√
ab
)
, a and b (both greater than zero) are the desired

acceleration and maximum deceleration parameters, respectively, s0 represents the minimal gap
and T > 0 the desired time gap.

Stochastic Adaptive Time Gap (SATG) model

dvn =
1

T ε
n

(λ (∆xn − Tvn) + ∆vn) dt+ σ dWn (4.5)

where λ > 0 is a sensitivity parameter, T ε
n a bounded mollifier of the time gap and T is the

desired time gap.

We will primarily simulate these models on a finite loop, employing periodic boundary conditions and a
single line of cars (without overtaking) to replicate the experimental conditions described in (Sugiyama
et al., 2008; Tadaki et al., 2013). Additional details regarding the simulation settings and the notations
used in defining the models are provided in the supplementary material App. D.1.
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Figure 4.6: Trajectories featuring stop-and-go waves in a selected simulation of the finely-tuned SATG model,
using parameters T = 0.7 s and λ = 1/3 s−1 left panel), as well as in the experiment conducted by Sugiyama
et al. (2008) (right panel).

4.2 Numerical evidence of a noise-induced instability and its empirical plaus-
ibility

At low car densities and with sufficiently small noise volatility σ, the models mentioned above exhibit
stability with linear car trajectories xn(t). However, as density increases, mostmodels tend to experience
a linear instability that leads to stop-and-go waves, at least within certain parameter ranges (Orosz
et al., 2004; Treiber and Kesting, 2017). In contrast, the Adaptive Time Gap (ATG) model (i.e., the SATG
model without stochasticity) is notable for its unconditional linear stability, as demonstrated by linear
stability analysis (refer to App. D.2). To validate these analytical predictions, we perform numerical
simulations of the models forN = 22 cars using an implicit/explicit Euler–Maruyama solver (technical
details are provided in the App. D.1). We assess the stability of the base flow by employing a disorder
parameter:

ϕ(t) =
√
⟨∆x2n⟩ − ⟨∆xn⟩2 (4.6)

where the angular brackets denote an average over cars n, deviating from zero when stop-and-go waves
appear1. To differentiate between various noise volatilities, one can define an average over time of the
simulation order parameter ⟨ϕ⟩, where the angular brackets indicate a time average of the simulation.
Apart from the residual disorder caused by noise, which induces thermal vibrations around equilibrium
positions, the simulations confirm the predictions, including the stability of the SATG uniform flow at
sufficiently low σ. However, SATG abruptly transitions to a non-uniform state (ϕ ̸= 0) as the noise
surpasses a threshold σ⋆, as illustrated in Fig. 4.7. This threshold depends on the system size and

1One may find an example of ϕ(t) on App. D.1.
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approaches zero as N →∞ (see Fig. 4.8). The abrupt and seemingly discontinuous transition in ⟨ϕ⟩
contrasts with other models’ smoother emergence of stop-and-go dynamics. Nonetheless, it coincides
with the onset of stop-and-go waves (Fig. 4.6), which, once developed, resemble those found in other
models (See App. D.1 to play with an online simulation and see by yourself the trajectories produced
by the different models mentioned above). These waves have a wavelength determined by the system
size. However, shorter-wavelength modes can also be linearly unstable in optimal velocity models,
albeit generally less so than the largest wavelength (Orosz et al., 2004). The jammed phase propagates
upstream at a speed of approximately vc = −ℓ/T ≈ −5m s−1, where ℓ is the vehicle length and T is
the desired time gap.

Figure 4.7: Standard deviation of the inter-vehicle distances in the stationary state according to noise volatility σ
for 22 vehicles with periodic boundaries and uniform initial conditions, as in the experiment by Sugiyama et al.
(2008). The continuous lines represent mean values, while the coloured areas indicate the minimum and maximum
range (refer to the App. D.1 for simulation details). Near-linear models, such as SOV model Eq. (4.2) and SICF model
Eq. (4.3), exhibit no noise-induced instability; the deviation increases linearly with σ. In contrast, non-linear models,
SID model Eq. (4.4) and SATG model Eq. (4.5), describe a phase transition to stop-and-go dynamics. The former
undergoes subcritical instability, while the latter experiences a non-linear instability. Notably, the non-linear SATG
model Eq. (4.5) displays hysteresis: when starting from a jammed initial condition, the noise amplitude threshold is
significantly lower.

In contrast to waves arising from linear instability, their emergence occurs erratically after a typically
long but highly variable transient period. This behaviour aligns with empirical data from (Sugiyama
et al., 2008; Tadaki et al., 2013), where stop-and-go waves do not consistently appear in the same manner
at a given car density. These features of the SATG model suggest a first-order transition toward traffic
instability, accompanied by metastability, as supported by empirical findings (Nakayama et al., 2009).
This is further evidenced by the bimodal distribution of ϕ at the transition, as illustrated in Fig. 4.8.
A consequence of this proposed discontinuous transition, with its associated energy barrier, is the
presence of hysteresis, a phenomenon commonly observed in traffic systems (Schadschneider et al.,
2010, Chapters. 6.5, 8.1, 9.4). Our simulations confirm the emergence of a significant hysteretic loop
when noise volatility (or car density) is increased into the high-noise region and then decreased, as
shown in Fig. 4.7. Notably, stop-and-go waves persist even below the noise level required to destabilise
the homogeneous flow.

4.3 Rationalisation with oscillatory driving

However, the hysteresis loop does not persist without noise (σ = 0). Even if the system begins in a
regime characterised by stop-and-go dynamics, it will revert to uniform flow when the noise level
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Figure 4.8: Probability density of ϕ computed along simulations for a noise volatility of 0.56ms−3/2. The solid
blue line represents the mean, while the shaded area indicates the standard error (see App. D.1 for simulation
details). The distribution exhibits bimodality, with one peak corresponding to a uniform flow perturbed by thermal-
like fluctuations and another peak associated with stop-and-go waves. Throughout the simulation, the system
transitions between these states. The inset shows that the threshold transition across the inverse system size
exhibits a quasi-affine behaviour with a non-zero y-axis intercept, suggesting that the transition persists in the
thermodynamic limit.

becomes sufficiently low (see App. D.1 Fig. D.4 a) for an illustration). In other words, noise is essential
for sustaining stop-and-go dynamics, unlike a subcritical hydrodynamic instability where noise triggers
a transition to another flow branch. This highlights the unique nature of the SATG behaviour. The
destabilisation of uniform flow at a finite σ cannot be attributed to poorly damped perturbations near
linear instability, as seen in the SID model (Treiber and Kesting, 2017) because no such instability
exists in SATG. Nor can it be attributed to the self-reinforcement of multiplicative noise, as discussed
in (Ngoduy, 2021), since SATG only incorporates an additive white noise. Lastly, in the absence of
a bifurcation in the deterministic limit, the noise-induced SATG instability does not lend itself to
continuation methods (Orosz et al., 2005), nor to a perturbative stochastic stability analysis (Gardiner,
2021).

4.4 Stability switch: analogy with the Kapitza pendulum

We hypothesize that the (finite) noise operates like an external driving force whose continuous actions
destabilize the (deterministic) fixed point. To bypass issues arising from the stochasticity of the noise, we
draw an analogywith the Kapitza pendulum, a rigid pendulum subjected to vertical oscillatory vibrations
which may stabilize its ‘inverted’ equilibrium position, here amalgamated to the state with stop-and-go
waves. Thus, we split the noise into a controlled part (periodic driving) and an uncontrolled part dW̃
(the residual stochastic perturbation). More precisely, considering a realization of the noise

(
σdWn

)

over a large time interval T , we extract the Fourier components
{
Cn(ω)

}
, with

∣∣Cn(ω)
∣∣2 → σ2 in the

limit of large T (Wiener-Khintchine relation). We arbitrarily isolate one of these modes and inject it
into the deterministic Eq. (4.5) as a (controlled) oscillatory driving

{
C cos(ωt+ φn)

}
, with C > 0 2;

2The idea of introducing oscillations also pops up when one writes an amplitude equation in hydrodynamics (Morozov and
van Saarloos, 2007), but in that case it helps probe the nonlinear growth of arbitrary perturbations.
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the residual signal is handled as perturbative white noise σ̃ dW̃n. Thus, Eq. (4.5) turns into

dvn(t) = Fn

(
t) dt+ C cos(ωt+ φn) dt+ σ̃ dW̃n(t), (4.7)

where Fn(t) =: F
(
∆xn(t), vn(t), vn+1(t)

)
.

Figure 4.9: Left panel: Stability diagram in which the action of the noise is heuristically split into a controlled
oscillatory driving (of amplitude C , here asynchronous) and a random residual σ̃. Colour overlay: standard
deviation of the gaps. In the stop-and-go waves region, two colours are discernible: yellow indicates cars that
come to a complete stop for some time, while green represents cars that oscillate back and forth with a net forward
movement. For detailed trajectories, please refer to Fig. D.4 b,c in App. D.1. Right panel: Variation of the stability
threshold C⋆ with the car density, computed with agent-based simulations of Eq. (4.7) at a driving frequency of
2π 0.05 rad/s or derived from an extended stability analysis (see main text).

Numerical simulations presented in Fig. 4.9, left panel, confirm that the oscillatory driving facilitates
the emergence of stop-and-go waves: the larger the driving amplitude C , the smaller the perturbative
noise required to trigger the instability. For strong enough driving C ⩾ C⋆, the system becomes even
unstable under vanishing noise. The threshold C⋆ depends on the chosen mode: while it is high (but
finite) for synchronous oscillations φn = φ (which maintain the gaps between successive cars), for
asynchronous driving C⋆ reaches a value C⋆ ≈ 0.5 (in the conditions of Fig. 4.7) that is very close
to the noise instability threshold σ⋆ of the initial system, with a weak frequency dependence up to
ω ≃ 2π 0.05. This comparison elucidates the mechanism whereby the instability unfurls in the pristine
SATG model: finite noise continuously excites nonlinearities in the deterministic response function
F , as does the oscillatory driving, which brings the system to the brink of stability. Accordingly, in
contrast with other mechanisms, the instability does not result from local properties of F around the
state of uniform flow but from nonlocal ones.

The oscillatory driving opens the door to a more quantitative rationalization. At zero frequency ω = 0,
the driving is equivalent to acceleration offsets bn = C cos(φn) applied to each car. As we show in
App. D.3, it turns out that these heterogeneous offsets can make the system linearly unstable for a
range of offsets bn, and implicit analytical expressions can be derived for the growth rates. Let ν({bn})
be the largest nontrivial growth rate (i.e., the real part of the eigenvalue). If the oscillatory frequency ω
is small but nonzero, the driving can be treated as quasi-stationary. Under this approximation, at each
time t′, the peak perturbation grows exponentially as exp(νt′t), where νt′ = ν(C cos(ωt′ + φn)).

To go further, since the peak growth mode mostly spans the system size, we overlook the fact that it
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may change with time t′, so that the effective growth rate over a period is

νeff(C) = ⟨νt′⟩t′

≃ ⟨ν({C cos(xn)})⟩x, (4.8)

where the angular brackets denote averages over uniform distributions of t′ or {xn}. In the last
approximation, we replaced the actual phases ωt′+φn in the cosines with random ones xn drawn from
a uniform distribution over ]− π, π]. This yields decent results, as observed numerically, especially
after averaging over the random phases φn. The thresholds C⋆ at which νeff(C) becomes positive are
determined by numerically computing the eigenvalues of Eq. (4.8). Remarkably, Fig. 4.9, right panel,
proves that C⋆, predicted by extended linear stability analysis, accurately reproduce the instability
thresholds measured in direct simulations of Eq. (4.7) under oscillatory driving, even at finite frequencies
(deviations are observed for small T at low density), and match the noise threshold σ⋆ at which the
genuine SATG model undergoes a transition (Fig. 4.7).

4.5 Back to the first-order liqid-gas transition alluded to in previous
works

All this bolsters the relevance of the Kapitza analogy. However, despite the singularity of this destabil-
izing mechanism, from a broader perspective, we find that the general picture of a first-order phase
transition established for traffic instabilities (Nagatani, 2002) originating from other processes, e.g.,
reaction delay (Nagatani, 1998b) or cellular automata simulated in continuous space (Jost and Nagel,
2005), still holds. To clarify the picture, let us map the transition to traffic oscillations onto a liquid-gas
transition by likening the noise volatility σ to the temperature and the inverse headway (local density
ρ) between cars to the density, i.e., the order parameter. In Fig. 4.10, we plot the ‘phase’ diagram of the
disorder parameter ϕ as a function of σ and ρ. A line of discontinuous transitions is clearly observed
at intermediate densities for all temperatures’ σ above a critical value, while the homogeneous state
remains stable at both low (gas-like) and high (liquid-like) densities. Amusingly, in this liquid-gas
analogy, the gas phase begins to boil’ as the temperature σ increases—a counterintuitive phenomenon
reminiscent of a paradox found in simple crowd models (Helbing et al., 2000b).

Finally, we use this image to shed a different light on the hysteresis that we have observed. As one
varies σ at fixed density, similarly to what is shown in Fig. 4.7, one moves along a vertical line in
Fig. 4.10: the system does not transit between two pure states, but from a pure phase into a co-existence
region. Starting from the uniform regime, the system may avoid tipping into instability until it hits the
spinodal. In contrast, starting from the co-existence region, stop-and-go waves may persist up to a
different neutral stability line, the binodal. Interestingly, unlike in a liquid-gas mixture underneath the
binodal line, there is no static coexistence between the jammed and freely flowing phases in a steady
state; instead, the jam moves continuously. Similar transitions into circulating states have recently
been identified in other systems with non-reciprocal interactions (Fruchart et al., 2021); this is easily
rationalized by considering that each car is tied by a spring to the predecessor, but not to its follower,
so that the in and out currents cannot compensate at an interface.

Exploring variations in σ at a fixed density, as shown in Fig. 4.7, involved examining the transition
along a vertical line: the system did not shift between two pure states but from a pure phase into a
coexistence region. Unlike a liquid-gas mixture, the jammed phase in this region does not coexist with
the free phase in a steady state but moves continuously. Similar transitions into circulating states have
recently been identified in other systems with non-reciprocal interactions (Fruchart et al., 2021); this
can be easily rationalised by considering that each car is connected by a spring to a leader but not to its
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Figure 4.10: Heatmap of ⟨ϕ⟩ representing the gap standard deviation averaged over time as a function of the
inverse of σ (acting as a temperature) and the inverse of the global density ρ (acting as a volume) for an initially
jammed configuration. One can distinguish the coexistence curve, below which two phases coexist in equilibrium:
the freely moving phase and the uniform congested phase. In this coexistence region, stop-and-go waves are
observed. The nonlinear instability curve delineates the region where, starting from a freely moving phase, the
system evolves toward the coexistence phase through the growth of a nonlinear instability. This contrasts with the
linear instability curves typically found in phase diagrams, where even a slight disturbance can push the system
onto the coexistence region. In this scenario, some noise is still required to activate the nonlinear modes of the
system. The side panels show kymographs of trajectories in different regions of parameter space.

successor, preventing compensation in and out currents at an interface.

Conclusion

In summary, our study demonstrates that the Stochastic Adaptive Time Gap (SATG) model, while
exhibiting unconditional linear stability, experiences a sudden transition into a state characterised by
stop-and-go waves, closely mirroring the experimental observations of Tadaki et al. (2013), as noise
intensity increases. This transition is driven by a mechanism akin to destabilising a pendulum under
vibrations, where finite noise excites non-linear modes. This process is reminiscent of barrier crossing
observed in liquid-gas phase transitions, albeit with an unsteady coexistence phase. Although the
model we examined has unique features, the overall picture of this transition parallels that found in
deterministic car-following models with a reaction time (where reaction time acts like temperature)
as described by Nagatani and Nakanishi (1998), and even more so in the continuous version of the
Nagel-Schreckenberg cellular automaton (Krauß et al., 1996; Jost and Nagel, 2005), where cars may
brake randomly at each time step. Ultimately, our findings reinforce the analogy with classical physical
systems and suggest thatmacroscopic observations alone are insufficient to distinguish between different
physical origins of stop-and-go waves. We are planning virtual reality experiments to manipulate these
physical factors individually to pinpoint the key elements responsible for stop-and-go waves.
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Conclusion

With the surge in mass events, crowd dynamics have become an increasingly important subject of
study. Understanding how groups move and evolve in space, particularly at medium and high densities,
is crucial for organising such events.

The first section of this PhD dissertation presented one of the first field datasets on dense crowds. This
dataset includes pedestrian trajectories and meta-information collected during the 2022 Festival of
Lights in Lyon as part of the Franco-German MADRAS project. It includes up to 7000 trajectories, GPS
data, and contact information. In addition, some rare events have been identified, providing an in-depth
description of pedestrian dynamics in complex, real-life scenarios. The collection of contact data has
provided insight into the maximum number of contacts a pedestrian might experience during a journey,
which can reach around a hundred. The traditional social force model does not accurately represent
this. By coupling this data with GPS data, I discovered that these contacts are mainly associated with
behavioural changes, starting movements, and stopping. Additionally, I observed that the densities
recorded could not be replicated using simple disks with diameters equivalent to shoulder width.

Then, I developed a theoretical framework for modelling crowd dynamics that integrates a decision-
making component, where pedestrians regularly adjust their desired speed, and a mechanical layer that
confronts these decisions with the surrounding physical reality. Most existing models fail to faithfully
reproduce mechanical interactions, often relying on idealised interaction forces and simplified circular
shapes. Drawing inspiration from the scientific literature on grain dynamics, I integrate more realistic
mechanical interactions into the Newtonian equations, using damped springs that are tangential and
normal to the contact surfaces. I also use anthropometric data to represent the human contour as
faithfully as possible, in two dimensions, rather than using simple disks. This allows me to create a
synthetic crowd that incorporates individual heterogeneity.

Regarding decision-making, pedestrians strive to choose a desired speed while adhering to various meta-
bolic, physical, and psychological constraints, largely supported by empirical data. These constraints
include:

⋆ A destination constraint which considers the goal of reaching a specific location.
⋆ Biomechanical limits related to the muscular and articular capacities of pedestrians.
⋆ A cost associated with themisalignment between the body and the desired direction of
movement.

⋆ A desire to preserve one’s social bubble, a zone that individuals wish to keep free of any intrusion,
whether from obstacles or neighbouring pedestrians.

⋆ An intention to avoid collisions or interpenetration of comfort spaces during movement based
on the estimation of time to collision.
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This comfort space is modelled by a scalar field of discomfort whose contours are not simply circular.
The model is implemented in C++ and tested in various scenarios. After validation in simple situations
involving pairs of pedestrians or a pedestrian near a wall, I successfully compare the model’s predictions
with experiments involving the propagation of a push through a row of people, evacuations, andweaving
movements between walls and pedestrians. The model successfully reproduces the ‘faster is slower’
effect during an evacuation. Nevertheless, at this stage, many improvements could be made. During the
Festival of Lights, there were not only pedestrians but also strollers, wheelchairs, people with canes,
and suitcases—a wide variety of pedestrian shapes that are not accounted for in the model. The decision-
making aspect could also be significantly improved, as it does not seem to replicate the observation of
the spontaneous emergence of counter-clockwise vortex motion in assemblies of pedestrians within an
enclosure (Echeverría-Huarte et al., 2022). Decision-making elements, particularly related to how the
brain acquires and processes information, may be the source of this bias. These elements have yet to be
incorporated.

Finally, I investigate collective phenomena that occur not only in crowds but also in vehicular traffic,
specifically stop-and-gowaves resulting from the growth of dynamical instabilities. To better understand
these phenomena, I simulate a car-following model that relies on maintaining a constant time gap
with the following vehicle. Although the deterministic version of the model is unconditionally stable,
introducing noise intriguingly leads to the emergence of stop-and-go waves. I explain this observation
using an analogy with the Kapitza pendulum, which develops a new stationary state under strong
vibrations. Specifically, discontinuities in a suitably defined order parameter appear when noise
or density exceeds a finite threshold, echoing a liquid-gas transition. This noise may stem from
inaccuracies in drivers’ and pedestrians’ observations, difficulties in brain information processing, or
unaccounted interactions. I could further explore and attempt to compare the behaviour of cars with
that of pedestrians. Despite a noticeable difference in inertia, the nature of their interactions seems
fundamentally different. Virtual reality experiments, where it would be possible to impose a reaction
time artificially, could help determine whether the reaction time typically used to describe stop-and-go
waves in pedestrians and cars is the cause.

My research on crowd dynamics highlights the importance of integrating decision-making processes
with mechanical interactions to deepen our understanding of complex collective behaviours, notably in
crowded environments.
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APPENDIX A

State of the art

A.1 Bio-mechanical cost (back on pages 36, 37 and 37)

erector spinae 
muscle

external oblique 
muscle

external oblique 
muscle

Figure A.1: Illustration of the back muscles, adapted from T. Editors of Encyclopaedia Britannica (2023).
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Figure A.2: The metabolic cost model for human walking includes four primary energy components according
to Faraji et al. (2018): (A) The Three Linear Pendulum model incorporates swing cost and torso balance
cost. This model represents the legs and trunk as three linear pendulums. The costs are calculated as the integral
of the positive component of the kinetic energy change rate; (B) Center of Mass velocity redirection cost,
accounting for vertical work to change the centre of mass velocity during step transitions; (C) Ground Clearance
cost, representing the potential energy needed to lift the leg; and (D) Weight Support cost, which involves the
metabolic cost of muscles supporting the body during stance. Each component is derived from specific mechanical
and physiological parameters to estimate the overall metabolic cost.
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Figure A.3: a) Scheme of the experimental setup reproduced from Liu et al. (2024). With adjustable padded rods
and straps, participants lay prone positions with their heads secured. The head was attached to a head plate, which
was axis-symmetric about a shaft supported by two low-friction bearings. The participant’s head was rotated
at a controlled speed using a handle attached to the apparatus. As the head was rotated, the load cell recorded
the applied moment (torque) throughout the motion. b) Representation of the maximum head range of motion,
adapted from Wang et al. (2014). c)Moment-angle plot data is displayed, with men represented in blue and women
in orange (Liu et al., 2024).
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A.2 Self-organisation phenomena in crowd dynamics (back on page 17)

Figure A.4: One classification of self-organisation phenomena proposed by Chen et al. (2018). Self-
organization is a fascinating phenomenon that emerges from non-linear interactions among numerous objects or
subjects without external intervention. This process often results in various spatial-temporal patterns of motion,
as described by Camazine et al. (2020).
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A.3 Assessment of a pedestrian model (back on page 28)

Figure A.5: Crowd and individual motion base cases. The schemes are taken from Chen et al. (2018).
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APPENDIX B

A multi-scale field study at the
Festival of Lights in Lyon

B.1 Extrinsic and intrinsic calibration (back on page 49)

lens
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camera
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camera coordinate 
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Figure B.1: Schematic representation of a point P considered at infinity expressed both in the world coordinate
system in yellow (xw, yw, zw), in the camera coordinate system in red (xc, yc, zc), in the screen camera coordinate
system in blue (xi, yi), and in pixels (ui, vi).

Camera calibration parameters are typically categorized into extrinsic and intrinsic parameters (Heikkila
and Silvén, 1997). Extrinsic parameters are essential for converting the world coordinate frame, denoted
as Bc = (xw,yw, zw), into a camera-centered coordinate frame, represented as Bw = (xc,yc, zc).

109



Back to ToC Appendix B

This transformation using a pinhole camera model is depicted in Fig. B.1. The pinhole camera model
relies on the intercept theorem (théorème de Thalès in French), where each point in the world space
is projected via a straight line through the projection centre onto the image plane. For now, we will
limit our focus to the pinhole camera model; more advanced models that account for camera distortion
will be explored later App. B.2. To express an arbitrary world point P located at (xc, yc, zc) in camera

Figure B.2: Schematic representation of the three rotations of the Euler-transformation in the x-convention
representing a change of basis from Bc to Bw̄ .

coordinates, a change of basis is required. To define the orientation and position of one orthonormal
basis Bc with respect to another Bw̄ , three rotation angles and translation parameters are required.
We will use Euler angles in the x-convention: ϕ, θ, and ψ. These angles define a sequence of three
elementary rotations as illustrated in Fig. B.2:

First Rotation of angleϕ around the z-axis transforms the coordinate frame (xc,yc, zc) into (x′,y′, zc).
Second Rotation of angle θ around the x′-axis changes the coordinate frame to (x′,y′′, zw̄).
Third Rotation of angle ψ around the zw̄-axis converts the coordinate frame to (xw̄,yw̄, zw̄).

Therefore, the transformation of the point P can be performed using the following matrix equation:xwyw
zw


Bw

=

 cos(ψ) sin(ψ) 0

− sin(ψ) cos(ψ) 0

0 0 1


1 0 0

0 cos(θ) sin(θ)

0 − sin(θ) cos(θ)


 cos(ϕ) sin(ϕ) 0

− sin(ϕ) cos(ϕ) 0

0 0 1


xcyc
zc


Bc

+

txty
tz


Bw̄

=

m11 m12 m13

m21 m22 m23

m31 m32 m33


xcyc
zc


Bc︸ ︷︷ ︸

rotation

+

txty
tz


Bw̄︸ ︷︷ ︸

translation
(B.1)

where

Coef. Expression Coef. Expression
m11 cos(ψ) cos(ϕ)− sin(ψ) cos(θ) sin(ϕ) m12 cos(ψ) sin(ϕ) + sin(ψ) cos(θ) cos(ϕ)

m13 sin(ψ) sin(θ) m21 − sin(ψ) cos(ϕ)− cos(ψ) cos(θ) sin(ϕ)

m22 cos(ψ) cos(θ) cos(ϕ)− sin(ψ) sin(ϕ) m23 cos(ψ) sin(θ)

m31 sin(θ) sin(ϕ) m32 − sin(θ) cos(ϕ)

m33 cos(θ)

The intrinsic camera parameters typically include the effective focal length f and the image centre,
also known as the principal point, denoted as (Ox, Oy). In computer vision literature, placing the image
coordinate system’s origin at the image array’s upper left corner is standard. The image coordinates
are measured in pixels, necessitating coefficientsmx andmy to convert metric units into pixels. These
coefficients are typically found in the camera’s data sheets, but with our method, you can independently
determine them and verify their accuracy. Using the pinhole camera model, also known as the intercept
theorem, the projection of a point (xc, yc, zc) onto the image plane results in the point (xi, yi). This
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projection can be expressed as follows:
{

yi

yc
= f

zc
xi

xc
= f

zc

(B.2)

The transformation from the projection (xi, yi) to the image coordinates in pixels (ui, vi) involves
scaling and translating the coordinates based on the intrinsic camera parameters. The transformation
can be expressed as follows:

{
ui = mx xi +Ox

vi = my yi +Oy

(B.3)

In the following discussion, we will incorporate Ox and Oy into ui and vi, respectively, without loss of
generality. This simplification is justified because a reference point has already been selected when
determining the pixel locations of various heads in the calibration image (see Fig. B.3). In our extrinsic

Figure B.3: Image used for calibration, reconstructed from excerpts of a LargeView camera footage at Place des
Terreaux in 2023. I positioned myself at each node of the square lattice marked on the ground, where each square
has a side length of 640 cm.

calibration process, we use a height of 1.80 meters for zw , representing the student’s height in Fig. B.3.
This assumption allows us to simplify the problem by treating all individuals as having the same height.
Consequently, we can quickly solve our system of two equations with two variables, enabling us to
express xw and yw as functions of the pixel coordinates ui and vi. To proceed with the solution, we
express zc in terms of zw and the other relevant parameters as follows:

zc =
zw − tz

sin(θ) sin(ϕ)xi

f − sin(θ) cos(ϕ)yi

f + cos(θ)
(B.4)
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We reinject the expression for zc into that for xw and yw to get:

xw =

[
cos(ψ) cos(ϕ)ui

cos(θ)fmx
+

cos(ψ) sin(ϕ)vi
cos(θ)fmy

− sin(ψ) cos(θ) sin(ϕ)ui

cos(θ)fmx
+

sin(ψ) sin(θ)

cos(θ)

+
sin(ψ) cos(θ) cos(ϕ)vi

cos(θ)fmy

]
zw − tz

1 + sin(θ)
[

sin(ϕ)ui
cos(θ)fmx

− cos(ϕ)vi
cos(θ)fmy

] + tx

yw =

[
− sin(ψ) cos(ϕ)ui

cos(θ)fmx
− sin(ψ) sin(ϕ)vi

cos(θ)f
− cos(ψ) cos(θ) sin(ϕ)ui

cos(θ)fmx
+

cos(ψ) sin(θ)

cos(θ)

+
cos(ψ) cos(θ) cos(ϕ)vi

cos(θ)fmy

]
zw − tz

1 + sin(θ)
[

sin(ϕ)ui
cos(θ)fmx

− cos(ϕ)vi
cos(θ)fmy

] + ty

(B.5)

Without loss of generality, let’s make a change of variables to simplify the expressions:

tz −→ zw − tz
.
= t̄z (B.6)

mx −→ 1

fmx cos(θ)

.
= Fx (B.7)

my −→ 1

fmy cos(θ)

.
= Fy (B.8)

Furthermore, let’s denote for the sake of clarity:

γ
.
=

t̄z
1 + sin(θ) [sin(ϕ)Fxui − cos(ϕ)Fyvi]

(B.9)

We finally get:
xw = tx + tan(θ) sin(ψ)γ

+ cos(ψ) [cos(ϕ)Fxui + sin(ϕ)Fyvi] γ

+ cos(θ) sin(ψ) [cos(ϕ)Fyvi − sin(ϕ)Fxui] γ

yw = ty + tan(θ) cos(ψ)γ

− sin(ψ) [cos(ϕ)Fxui + sin(ϕ)Fyvi] γ

+ cos(θ) cos(ψ) [cos(ϕ)Fyvi − sin(ϕ)Fxui] γ

(B.10)

The relationship betweenworld coordinates and pixel coordinates is therefore determined. As illustrated
in Fig. B.3, we have the values for xi, yi, xw , yw , and zw for numerous points. The 8 unknown parameters
that need to be estimated are θ, ψ, ϕ, tx, ty , t̄z and Fx, Fy . These parameters can be determined by
minimising the least squares of the residuals between the world coordinates and the pixels coordinates.
This method provides a physical understanding of the process but is computationally inefficient and
heavily dependent on the initial parameter guess. A challenge remains: the LargeView camera was
replaced after I performed its extrinsic calibration but before the recording of the Festival of Lights.
Consequently, it is necessary to map the coordinates from Fig. B.3 to those in the LargeView camera
footage (see Fig. 2.3). Mathematically, this requires transitioning from one projective space (a vector
space with a vanishing point) to another. This transition can be accomplished using a homography,
denoted asH1. Consider a set of corresponding points, x1i1, y1i1 from one image, and x1i2, y1i2 from the
other, as illustrated in Fig. B.4. The homography relates these points, represented in homogeneous
coordinates1, as follows: xi1yi1

1

 = H

xi2yi2
1

 =

h00 h01 h02

h10 h11 h12

h20 h21 h22


xi2yi2

1

 (B.11)

The homography matrix is a 3× 3matrix with 8 Degree of Freedom (DoF). Each DoF can be intuitively
interpreted, as detailed in Tab. B.1. These include a rotation parameter, two translation parameters,

1The passage to homogeneous coordinates allow translation to be expressed as a linear operation involving matrices.
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Place des Terreaux 
(planar surface)

image 2
LargeView camera snapshot (2023)  

image 1
LargeView camera snapshot (2022)  

Figure B.4: A planar surface is observed from two distinct camera positions. To convert image 1 (see Fig. 2.3), to
image 2, used for calibration (see Fig. B.3), apply the homographyH1. Next, transform image 2 to align with a
planar surface at Place des Terreaux, which includes the heads of pedestrians standing at a height of 1.8 meters, by
applying the homographyH2. The scheme is adapted from Christiano Gava (2011).

a scale factor, and four shear factors. For computational stability (Heikkila and Silvén, 1997), the
coefficients are typically normalised such that h200+h201+h202+h210+h211+h212+h220+h221+h222 = 1.
This approach is equivalent to the previous method (see Eq. (B.1) and Eq. (B.3)), where the goal is to
map a projective plane of the real world, with the vanishing point at infinity, to the projective space
of a camera. This can be framed as a linear algebra problem, solvable using linear algebra techniques.
Specifically, determining the homography matrix parameters can be approached as an eigenvalue
problem of a specific matrix. To solve for the height unknowns, we require at least four additional
equations derived from different sets of corresponding points: x1i1, y1i1 (first point in image 1), x1i2, y1i2
(corresponding point in image 2), x2i1, y2i1 (second point in image 1), x2i2, y2i2 (corresponding point in
image 2), and so on. Let’s organise the full set of remaining equations into:

PH =




−x1i1 −y1i1 −1 0 0 0 x1i1x
1
i2 y1i1x

1
i2 x1i2

0 0 0 −x1i1 −y1i1 −1 x1i1y
1
i2 y1i1y

1
i2 y1i2

−x2i1 −y2i1 −1 0 0 0 x2i1x
2
i2 y2i1x

2
i2 x2i2

0 0 0 −x2i1 −y2i1 −1 x2i1y
2
i2 y2i1y

2
i2 y2i2

−x3i1 −y3i1 −1 0 0 0 x3i1x
3
i2 y3i1x

3
i2 x3i2

0 0 0 −x3i1 −y3i1 −1 x3i1y
3
i2 y3i1y

3
i2 y3i2

−x4i1 −y4i1 −1 0 0 0 x4i1x
4
i2 y4i1x

4
i2 x4i2

0 0 0 −x4i1 −y4i1 −1 x4i1y
4
i2 y4i1y

4
i2 y4i2







h00
h01
h02
h10
h11
h12
h20
h21
h22




=




0

0

0

0

0

0

0

0




(B.12)

where P is not a square matrix and ∥H∥22 = 1, where ∥.∥2 denotes the euclidean vector norm. We
can rewrite the expression from Eq. (B.12) as ∥PH∥2M = 0, where ∥.∥M is the standard matrix norm
(∥A|2M = ATA with A a square matrix).

This allows us to reformulate the problem as finding H∗ such that:

H∗ = argmin
H:∥H∥2

2=1

∥PH∥2M (B.13)

We want to find H that minimises HTPTPH such that HTH = 1. To achieve this, we define a loss

– 113 –



Back to ToC Appendix B

A Square Transforms
Into Transformation Matrix Transformation Properties

cos(θ) − sin(θ) tx

sin(θ) cos(θ) ty

0 0 1


Euclidean

• 3 Degree of Freedom (DoF)
• Parameters: Translation (tx, ty), rota-
tion angle θ

• Conservation of shape and area

s cos(θ) −s sin(θ) tx

s sin(θ) s cos(θ) ty

0 0 1


Similarity

• 4 DoF
• Parameters: All Euclidean parameters,
scale factor s

• Conservation of shape but not an area

a00 a01 tx

a10 a11 ty

0 0 1


= 1 µx 0

µy 1 0

0 0 1


︸ ︷︷ ︸
Shear in xy-directions

s cos(θ) −s sin(θ) tx

s sin(θ) s cos(θ) ty

0 0 1


︸ ︷︷ ︸

Similarity transformation
Affine

• 6 DoF
• Parameters: All Similarity parameters,
shear factor in xy-directions µx, µy

• Preservation of parallelism but not angles
or lengths

h00 h01 h02

h10 h11 h12

h20 h21 h22


= 1 0 0

0 1 0

µz1 µz2 1


︸ ︷︷ ︸
Perspective projection

a00 a01 tx

a10 a11 ty

0 0 1


︸ ︷︷ ︸
Affine transformation

Homography

• 8 DoF
• Parameters: All Affine parameters, shear
factors in z-direction µz1, µz1

• No preservation of parallelism, angles, or
lengths

• The perspective projection allows parallel
lines of the parallelogram to converge at a
vanishing point.

Table B.1: This 2D transformation hierarchy shows how each point (represented in homogeneous coordinates)
of the initial square is transformed using the specified transformation matrix. This process can be represented
as follows: [xnew ynew 1]T = Transformation Matrix × [xold yold 1]T . Additionally, the physical properties
associated with each type of transformation are described, and some decompositions of the transformation matrix
into simpler transformations are proposed. Note that these decompositions are not unique. The table is adapted
from Hood (2015).

function using the method of Lagrange multipliers:

L(H,λ) = HTPTPH − λ(HTH − 1) (B.14)

Taking derivatives of L(H,λ) w.r.t H we get:

PTPH = λH (B.15)

This is an eigenvalue problem. The solution to the problem is the eigenvector H with the smallest
eigenvalue λ of a square matrix PTP , which minimizes the loss function.

The initial method, which was based on a nonlinear estimation of calibration parameters, proved to be
less efficient. Therefore, we performed the calibration using the estimation of two homographies, H1

andH2, as illustrated in Fig. B.4. The first homography is used to align the coordinates from the images
of the Festival of Lights Fig. 2.3 to the calibration image Fig. B.3. The second homography aligns the
calibration image to the real-world coordinates. The estimation of these homographies is very fast and
provides excellent results, as demonstrated in Fig. B.5, where the transformed points align with the
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target points.

a) b)

Figure B.5: Verification of the calibration procedure. (a) We transformed points from the Festival of Lights image
coordinates (refer to Fig. 2.3) to the calibration image coordinates (refer to Fig. B.3) using the homography H1

as shown in Fig. B.4. The lattice nodes on the floor were used to compute this homography. (b) Points were
transformed from the calibration image coordinates to the world coordinates through the homographyH2 shown
in Fig. B.4. The red dots indicate the target points, while the blue crosses represent the transformed points.
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B.2 Camera distortion in intrinsic calibration (back on page 48)

a) b)

Figure B.6: a) Image of a planar chequerboard taken with our SJCAM A10 cameras. The chequerboard is under
perspective to notice the distortion variation when the camera-object distance changes. b) Image corrected for
radial distortion. The curved lines of the chequerboard on the left now appear straight after the correction.

The pinhole camera model is a simplified representation of a camera’s projection system, providing
a fundamental mathematical framework to describe the relationship between world and image co-
ordinates. While a useful toy, the pinhole camera model lacks the precision required for high-accuracy
applications, necessitating more comprehensive camera models. Some advanced models enhance the
pinhole approach by incorporating corrections for systematic distortions in image coordinates, which
are common due to imperfections in most cameras. Typical issues include internal misalignment within
the camera assembly, non-orthogonal alignment of the CCD sensing array with the lens’s optical axis,
and the effects of a thick lens. For example, fish-eye cameras with broad fields of view introduce
significant geometric nonlinear distortion, as shown in Fig. B.6. Distortion correction aims to convert
the distorted view of wide-angle cameras into a pinhole perspective view. However, this undistortion
process can result in images with many vacant pixels, which can be addressed using interpolation meth-
ods. Optical distortion are generally categorised into two types: chromatic and geometric. Chromatic
aberrations occur when different wavelengths of light, present in white light, fail to converge at a single
focal point. This results in colour errors, as illustrated in Fig. B.7. Since chromatic aberration is not a
significant issue for tracking pedestrians either on LargeView camera footage or in SJCAM footage,
I will not delve further into this topic. Geometric aberrations, caused essentially by lens curvature
and misalignment of the screen concerning the lens, make straight lines appear curved or wavy in
images. The two principal forms of geometric distortion considered here are radial and decentering
(tangential) distortion. The standard model for the radial and decentering distortion is a mapping U
from the distorted image coordinates (xd, yd) to the undistorted image coordinates (xu, yu) such that:

xu = xd

+ xd
(
κ1r

2
d + κ2r

4
d + κ3r

6
d + . . .

)︸ ︷︷ ︸
radial

+
[
p2

(
r2d + 2yd

2)+ 2p1xdyd
] [

1 + p3r
2
d + . . .

]︸ ︷︷ ︸
tangential

yu = yd

+ yd
(
κ1r

2
d + κ2r

4
d + κ3r

6
d + . . .

)︸ ︷︷ ︸
radial

+
[
p2

(
r2d + 2yd

2)+ 2p1xdyd
] [

1 + p3r
2
d + . . .

]︸ ︷︷ ︸
tangential

(B.16)
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a)

b)

Figure B.7: Chromatic aberration can be of two types: longitudinal a) and lateral b), depending on the direction of
incoming parallel rays. On the right side, a set of offset disks allows light to pass through, which is then gathered
and focused onto a screen to create an image. Chromatic aberrations cause the iridescent look on the disks. The
figure is adapted from Sedazzari (2015).

where xd = xd−Ox, yd = yd−Oy, r2d = xd
2+yd

2, κ1, κ2, κ3, ... are the coefficients of radial
distortion, p1, p2, p3, ... are the coefficients of the decentering distortion and rd is the radius of an
image point from the distortion centre (Ox, Oy). For an illustration of the effect of radial and tangential

a)

b)

Figure B.8: The rotationally invariant cubic distortion function, denoted as U , acts on both a circle and a grid. This
function includes coefficients κj and pj , with j ranging up to 3 (see Eq. (B.16)). The distortions are categorised as
follows: a) radial invariant distortion, b) tangential invariant distortion. The deviated pattern is shown in blue,
while the undistorted pattern is depicted in red. The figure is adapted from Ronda and Valdés (2019).

distortion on a circle and a square lattice, please refer to Fig. B.8. Eq. (B.16) comes from one model of
radial and tangential distortion commonly used and proposed by Ahmed and Farag (2005). Still, many
other models exist depending on the computational efficiency, as shown by Hughes et al. (2008).
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B.3 Uncertainty due to differences in height (back on page 49)

adult
crouching 	
adult

camera

two 	
adults

camera
a)

b)

Figure B.9: Illustration of the error introduced by assuming uniform height in the calibration procedure. (a)
Scenario with two individuals of equal height: In this situation, two individuals of the same height appear at
the same pixel location in the camera image. (b) Scenario with one individual crouching: Here, one individual
is crouching yet still appears at the same pixel location in the camera image. However, there is now a spatial
separation from the other individual.

The Fig. B.9 illustrates the error introduced by assuming everyone has the same height. In scenario (a),
two people of similar height (h1 ≃ h2) stand close together, like a couple, at nearly the same distance
(l1 ≃ l2) from the camera structure. Their heads appear on almost the same pixel in the camera image.
In scenario (b), one person crouches to a child’s height at a different distance (l2), yet their head still
appears on the same pixel. In our case, L is of the order of the distance between the camera’s base and
the fountain in the LargeView camera footage of Place des Terreaux. We encounter a worst-case error,
∆ϵ, calculated as ∆ϵ = l2 − l1 = L

H (h2 − h1). With L ≈ 70m, H ≈ 48m, and h2 − h1 ≈ 15 cm (the
height difference between filmed people and a staff reference), the error is about ∆ϵ ≈ 22 cm. For
TopView cameras, the error is approximately ∆ϵ ≈ 8 cm.

B.4 Spatio-temporal diagram to compute output flow (back on page 53)
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a) b)

Figure B.10: (a) A snapshot from Camera 7, located at the exit street Rue Paul Chenavard of Place des Terreaux, is
shown. The red line in the centre indicates the slice position used to construct the spatio-temporal graph (b) (pixel
versus frame). Only a portion of the complete spatio-temporal graph is displayed.
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B.5 Reference fundamental diagrams (back on page 58)

a) Unidirectional flow

b) Bidirectional flow

c) Multidirectional flow

Figure B.11: Comparison of fundamental diagrams for various scenarios: unidirectional flow, bidirectional flow,
and multi-directional flow (cross intersection). The Weidmann equation (Eq. (2.3.2)) is depicted in grey, while the
black line is irrelevant here. The dots indicate data points sourced from the Forschungszentrum Jülich (2020). The
figure is adapted from Feliciani (2017).
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Modelling 2D pedestrian dynamics
with non-circular comfort &
physical spaces

C.1 Mechanical layer

C.1.1 Compact random packing of pedestrians (back on pages 69, 73)

Start by selecting several pedestrians from the modelled samples. Place their barycentres uniformly
within the designated area. If two pedestrians overlap, they repel each other in a direction perpendicular
to the surface of contact, moving a distance proportional to the overlap. If multiple pedestrians overlap,
move one in the direction resulting from the sum of the unit vector orthogonal to each of its surface
contacts. Repeat this process for all pedestrians.

Apply the same procedure if pedestrians overlap with obstacles, but note that obstacles remain fixed. If
there is still available space, repeat the process with a more significant number of pedestrians. If, after
several iterations, overlaps persist, this indicates that the number of pedestrians is too high. In such
cases, repeat the process with fewer pedestrians until there are no overlaps.

C.1.2 Hertzian interaction law (back on page 74)

The material is initially approximated as a network of atoms connected by springs. Similarly, the
contact interface between two materials can be modelled as parallel linear springs along the interface
and springs in series on either side of the interface to represent the contribution of both materials to the
formation of the interface as shown in Fig. C.1 in case pedestrians are modelled as disks. Additionally,
the materials are assumed to be isotropic, homogeneous, two-dimensional, and characterised by their
elastic modulus (E), Poisson’s ratio (ν), and shear modulus (G):

Young’s modulus (E) describes a material’s resistance to longitudinal deformation under tension
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or compression. It quantifies the relationship between stress (force per unit area) and strain or
deformation in the linear elastic region. It measures how much a material stretches or compresses
when pulled or pushed.

Poisson’s ratio (ν) characterises the Poisson effect, which is the tendency of a material to expand
or contract perpendicular to the direction of applied force. It is defined as the negative ratio of
transverse to axial strains. This ratio reveals how much a material’s cross-section changes when
stretched or compressed lengthwise.

Shear modulus (G) measures a material’s resistance to shear deformation. The ratio of shear stress to
shear strain quantifies how much a material deforms when subjected to opposing forces parallel
to one of its surfaces. It describes a material’s stiffness in response to shearing forces.

Figure C.1: (a) Contact between two disks. The red lines depict the deformation of the disks of radius R1 and
R2, while the black lines represent the undeformed state. The contact is modelled using parallel springs with zero
unloaded length, each end of the spring connected to the respective disk profiles. Each spring can be divided into
two springs in series, representing the contribution of each material, with the junction at the interface between
the two disks. The contact size is denoted a. The springs’ effective normal stiffness (E∗) and tangential stiffness
(G∗) represent the combined material properties. (b) Equivalent contact model. The contact between the two
disks described in (a) can be equivalently modelled as a contact between an undeformable disk with an effective
or equivalent radius (Re) and a deformable surface composed of springs with non-zero unloaded length. This
equivalence is valid for small contact zones compared to the radius of the disks. The right-hand image provides a
simpler visualisation of this concept and will be used for subsequent illustrations. To illustrate how equivalence
may occur, we can draw an analogy with the two-body problem in physics. The solution typically involves
decomposing the motion into two components: the movement of the system’s centre of mass and the relative
motion of the bodies with respect to this centre. Analogously, in contact mechanics, we focus on the relative
motion between two body profiles in contact. The equivalence manifests also through the concept of reduced
radius, which plays a role similar to that of reduced mass in the two-body problem. This approach simplifies the
analysis by condensing the geometric properties of both bodies into a single parameter, much as the reduced mass
encapsulates the inertial properties of two bodies into one effective mass. The schemes (a) and (b) are adapted
from Popov and Heß (2015) and Wang and Zhu (2013b) respectively.

The stiffness of two springs in series is determined by the reciprocal sum of their reciprocals. Addition-
ally, the stiffness of springs in parallel is the sum of their stiffnesses, which are the same here. Therefore,
for a segment of springs with length∆x, the normal stiffness denoted∆kz , and the tangential stiffness
is given by1:

∆kz = E∗∆x with 1

E∗ =
1− ν21
E1

+
1− ν22
E2

∆kx = G∗∆x with 1

G∗ =
2− ν1
4G1

+
2− ν2
4G2

(C.1)

Given these assumptions, each portion ∆x of springs obeys the following Hooke’s law:

∆FN = ∆kzuz(x)

∆Fx = ∆kxuz(x)
(C.2)

where uz(x) denotes the spring elongation at position x. Furthermore, one can incorporate viscous

1For the detailed relations between ν, E and G, refer to Young et al. (2002).
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damping to model energy loss during impacts, which is particularly relevant for pedestrians. Indeed,
when examining the relationship between strain and stress for pedestrians, as observed in Fig. 1.24, a
hysteresis curve is present where the enclosed area is related to energy dissipation (the larger the area,
the more energy is dissipated). Two primary models for viscoelastic behaviour are the Kelvin-Voigt
model, which incorporates dashpots (with damping constant ∆γ) in parallel with elastic springs as
shown in Fig. C.2, and the Maxwell model, which places dashpots in series with elastic springs. More
complex generalisations of these models have been proposed, as described by Popov and Heß (2015).
During the Festival of Lights, the Kelvin-Voigt model would suggest that when pedestrians push against
one another, they will not simply bounce apart like billiard balls. Instead, significant energy would be
dissipated in the interaction.

Figure C.2: One-dimensional model of different materials, adapted from Popov and Heß (2015): (a) elastic model,
(b) viscoelastic model also known as Kelvin-Voigt model.

C.1.2.1 Normal force

To derive the total normal force generated by a portion ∆x of springs, let’s consider the limiting case
where the spring spacing becomes infinitesimally small, ∆x→ dx. In this scenario, the sum over a 1D
surface contact ranging from −a to a turns into an integral:

FN (a) = E∗
∫ a

−a

uz(x) dx (C.3)

For analogous computations related to damping, refer to Popov and Heß (2015, Chap. 3). The displace-
ment function, denoted uz(x), illustrated in Fig. C.1, is given by:

uz(x) =
√
R2

e − x2 −
√
R2

e − a2 (C.4)

Here, uz(x) equals zero at the interface boundary and reaches its maximum at the mid-interface.
Assuming a≪ Re, we can use a Taylor expansion to approximate the integral, yielding:

FN (a) ≃ E∗

Re
a3 (C.5)

Given that the maximum indentation depth of the contact, denoted as h, equals uz(0), we can express
a as a function of h:

a ≃
√

2Reh (C.6)

This leads to the following expression:

FN ∝
h≃0

E∗
√
RE h

3
2 (C.7)

However, Hertz approached the problem slightly differently (Popov et al., 2010). Indeed, he assumed a
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semi-circular pressure distribution within the contact area as shown in orange colour in Fig. C.3. By
integrating over the resulting circular contact surface between two spherical balls, we obtain:

FN = 2π

∫ a

0

p0
√
a2 − r2 r dr = p0

2π

3
a3 (C.8)

leading to FN ∝ h
3
2 , which is the same contact law as for the contact between two disks using a

spring foundation as seen previously. Similarly, by integrating over the resulting rectangular contact
surface between two cylinders with parallel axes, we derive:

FN = L

∫ a

−a

p0
√
a2 − x2 dx = p0

π

2
a2L (C.9)

leading to FN ∝ h. In this case, the normal force is directly proportional to the penetration depth.
This approach to compute forces normal to surface contact simplifies the analysis of complex elastic
systems. However, it may not fully capture all aspects of real thorax behaviour, especially in significant
tangential interaction between thoraxes.

Before loading 
and deformation

After loading 

After deformation

Pressure profile

load 

Figure C.3: Schematic representation of Hertzian contact between two elastic bodies under a normal load. The
initial undeformed shapes are shown in dashed lines, while the deformed shapes are represented by solid curves.
The contact size is denoted a. The half-circular pressure profile is depicted in orange. The figure is adapted from
Wang and Zhu (2013a).

C.1.2.2 Tangential force

Tangential contacts exhibit distinctive characteristics that set them apart from normal contacts. These
contacts feature localized slip zones, where portions of the contact area experience relative movement.
Additionally, tangential contacts demonstrate memory effects, with the tangential force retaining
information about the contact’s loading history. Unlike normal contacts, which can be described by a
single parameter, such as indentation depth, tangential contacts require a comprehensive understanding
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of the entire loading history. For simplicity, we will focus on contacts with a constant normal force FN

followed by an increasing moment that induces a tangential force Fx in the x-direction. Within this

Figure C.4: Tangential contact between two spheres. The contact area consists of two regions: a central stick
zone (shown in green), where there is no relative motion between the surfaces, and an outer slip zone (shown
in pink), where the surfaces slide relative to each other. As the tangential force increases, the slip zone initially
appears at the edge of the contact area. It grows inward, expanding the pink region. The stick zone (green) shrinks.
Eventually, the entire contact area may enter the slip state if the tangential force is large enough. This same pattern
of stick and slip zones would also occur for the tangential contact between two flat circular disks. The figure is
adapted from Popov et al. (2019).

scenario, a slip zone extends from the contact boundary, spanning a length of 2a. As this zone gradually
expands inward, it simultaneously reduces the size of the inner stick zone, which is characterised by a
length of 2c. For visual clarity, Fig. C.4 illustrates this concept using the contact between two spheres,
effectively demonstrating the interplay between the expanding slip zone and the contracting stick zone.
Readers interested in delving deeper into complex loading histories will find valuable insights in the
seminal work of Mindlin and Deresiewicz (1953). To analyse this scenario, we must first examine the
relationship between tangential force tx and normal stress nx. In its simplest form, Coulomb’s law of
friction governs this relationship. Imagine two rough surfaces meeting. As you increase the pressure,
pushing them together (the normal force) and sliding them against one another becomes progressively
more challenging. Intuitively, the surfaces have microscopic bumps and irregularities. Pressing harder
causes these bumps to interlock more tightly, increasing the number of contact points. Consequently,
overcoming this interlocking to initiate sliding demands a proportionally larger force. This principle
manifests in everyday experiences like opening a stubborn jar lid. By squeezing harder, you amplify the
normal force, thus increasing friction and improving your grip for twisting. Mathematically, Coulomb’s
law takes the following form:

tx(x) < µ nx(x) for stick
tx(x) = µ nx(x) for slip

(C.10)

where µ is the dynamic coefficient of friction. This law indicates that the surface remains stuck if the
tangential stress is smaller than µ times the normal stress. Once slip initiates, the tangential stress
remains constant, equals to µ nx(x). Assuming for simplicity that all points within the stick domain
undergo the same tangential displacement δx as illustrated in Fig. C.5, one can express the tangential
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force per unit length as follows:

tx(x) =

{
G∗δx for |x| ≤ c (stick)
µE∗uz(x) for c < |x| ≤ a (slip)

(C.11)

This equation incorporates both the rigid-body translation of the stick area and the Coulomb friction

Figure C.5: Each spring in the model has independent normal and tangential stiffness. All springs experience the
same elongation in the stick zone, denoted δx, while those in the slip zone - identifiable by their small green edge
circles - demonstrate a variable elongation. This elongation is proportional to the applied normal force, allowing
for dynamic adjustment based on the normal force’s magnitude. The schemes are adapted from Popov and Heß
(2015).

in the sliding area. The stick length is determined by ensuring the continuity of the tangential line load
at the transition between the stick and slip domains:

lim
x→c−

tx(x) = lim
x→c+

tx(x) = tx(c) =⇒ δx = µ
E∗

G∗ uz(c) (C.12)

Then, analogously to the normal contact problem, we can determine the tangential force by summing
the tangential spring forces:

Fx(a) =

∫ a

−a

tx(x) dx = µ [FN (a)− FN (c)] (C.13)

Consequently, we can express the tangential force as:

Fx(a) ≃
a→0

µFN (a)

(
1− c3

a3

)
(C.14)

It is worth noting that c represents the sum of all relative displacements occurring during contact,
which can be expressed as a function of the whole history of relative velocity:

c =
1

2

∫ contact
duration

0

∣∣∣v∥
1,C(t)− v

∥
2,C(t)

∣∣∣ dt (C.15)

where C denotes the contact point, i.e., the point at the interface with abscissa x = 0 in Fig. C.1. The
symbol ∥ denotes the tangential component. Note that the factor 1/2 arises solely from the definition of
c (see Fig. C.5).
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C.1.3 Mechanical interactions (back on pages 75, 76)

Consider two pedestrians, i and j, made of disks i1, i2, . . . , and j1, j2, . . . . The centres of pedestrian
i’s disks are denoted as si1, si2, . . . The position of si1 relative to the Center of Mass (CoM) is given by
the vector ∆i→i1, which points toward si1 as illustrated in Fig. C.6.

Agent j	
(physical shape)

Agent i 	
(physical shape)

Agent i (physical sh

p

Figure C.6: Collision of two physical shapes, each composed of two disks.

Each pedestrian is also characterized by an orientation, defined by the direction normal to the line
connecting the first and last disks. Specifically, for a pedestrian composed of n disks, the orientation is
given by the vector (rin − ri1)× uz as illustrated in Fig. C.7. The CoM of pedestrian i moves with a
velocity vi, and the pedestrian rotates with an angular velocity ωi.

Figure C.7: Definition of a pedestrian’s orientation
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C.1.3.1 Forces acting on the pedestrian centre of mass

The motion of a pedestrian i can be broken down into two components: the motion of its Center of
Mass (CoM) and rotational motion. The motion of the CoM is determined by applying the fundamental
principle of dynamics at that point. Pedestrian i is subject to the following forces:

⋆ A self-propelling force that converts decisions into actions over a time period τmech, is given by
mi

vdes
i −vi

τmech
.

⋆ A force orthogonal to the contact surface and denoted as F⊥contact
spring,j→i, is proportional to the

overlap between two disks. Additionally, there is a damping force that accounts for non-inelastic
collisions, denoted as F⊥contact

viscous,j→i. When a contact occurs between the disks si1 and sj1, these
two forces can be expressed as follows:

- F⊥contact
spring,j1→i1 =

k⊥body hi1j1 n⊥
i1j1 if hi1j1 = Ri1 +Rj1 − |ri1j1| > 0 (i.e. an overlap occurs)

0 otherwise

- F⊥contact
viscous,j1→i1 =

−γ⊥
body v

⊥
ij if hi1j1 > 0 (i.e. an overlap occurs)

0 otherwise
where v⊥

ij = v⊥
i,C − v⊥

j,C .
⋆ A force tangential to the contact surface, denoted as F∥contact

j1→i1 , acts in the direction opposite to the
slip. A straightforward way to model this force is through Coulomb interaction to describe the
stick and slip mechanism, and a spring to more precisely describe the stick phase, as shown in
Eq. (C.10). Since there is only one spring, the tangential contact law can be written more simply
as follows:

F
∥contact
viscous,j1→i1 =


ξstaticbody δs

−v
∥
ij∣∣∣v∥

ij

∣∣∣ if ξstaticbody δs < µdyn
body

∣∣F⊥contact
j1→i1

∣∣ (stick)

µdyn
body

∣∣F⊥contact
j1→i1

∣∣ −v
∥
ij∣∣∣v∥

ij

∣∣∣ otherwise (slip)
(C.16)

which can be rewritten in a more condensed way as follows:

F
∥contact
spring,j1→i1 = min

(
ξstaticbody δs , µ

dyn
body

∣∣∣F⊥contact
j1→i1

∣∣∣) −v
∥
ij∣∣∣v∥

ij

∣∣∣ (C.17)

A tangential damping force is then added to the tangential spring force:

F
∥contact
viscous,j1→i1 =

−γ∥
bodyv

∥
ij if hi1j1 > 0

0 otherwise
(C.18)

C.1.3.2 Torqe for rotation of a pedestrian

The rotational motion of a pedestrian is obtained by applying the angular momentum theorem to the
pedestrian’s Center of Mass (CoM). This is done in its principal inertia base, projected along the z-axis
(the out-of-plane axis). The pedestrian experiences torque due to both the force normal and tangential
to the contact surface:

τGi,j1→i1 =
{
ri→C ×

(
F

∥contact
j1→i1 + F⊥contact

j1→i1

)}
· uz (C.19)

The self-propelling force acts directly on the CoM, resulting in zero torque. To account for decision-
making, a restoring force is applied to achieve the desired angular velocity ωdes

i within a τmech duration,
expressed as: Ii ωdes

i −ωi

τmech
.
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C.1.4 Moment of inertia calculation (back on page 81)

Each pedestrian in our synthetic crowd is represented as a combination of five disks. While an analytical
formula for the moment of inertia of such a configuration can be derived, it is quite cumbersome to
implement. Instead, we approximate the pedestrian’s boundary using an N -sided polygon, defined by
the set of vertices:

{(x1, y1), (x2, y2), . . . , (xN+1, yN+1) : (x1, y1) = (xN+1, yN+1)} , (C.20)

where (x1, y1) = (xN+1, yN+1) ensures the polygon is closed. Assuming that themassmi of pedestrian
i is uniformly distributed within this polygon, the moment of inertia Ii for this polygon can then be
computed using the following formula (Name, 1987):

Ii =
mi

12

N∑

j=1

(xjyj+1 − xj+1yj)
(
x2j + xjxj+1 + x2j+1 + y2j + yjyj+1 + y2j+1

)
, (C.21)

where j indexes the vertices of the polygon. One could raise several criticisms about calculating
a pedestrian’s moment of inertia using a two-dimensional shape. Indeed, this calculation does not
account for variations in density within the pedestrian, nor does it consider the pedestrian deformable.
Nevertheless, it introduces an inhomogeneity in the rotational equation, similar to themass for Newton’s
equation.

C.1.5 Mechanical eqations summary (back on page 75)

Pedestrian CoM dynamics

dvi

dt
=

vdes
i − vi

τmech
+

1

mi

∑

(j1,i1) ∈ C(ped)
i

(
F

∥contact
j1→i1 + F⊥contact

j1→i1

)

+
1

mi

∑

(w,i1) ∈ C(wall)
i

(
F

∥contact
w→i1 + F⊥contact

w→i1

) (C.22)

Interaction forces with a pedestrian

F
∥contact
j1→i1 = F

∥contact
spring,j1→i1 + F

∥contact
viscous,j1→i1

F
∥contact
spring,j1→i1 = min

(
ξstaticbody δs , µ

dyn
body

∣∣∣F⊥contact
j1→i1

∣∣∣) −v
∥
ij∣∣∣v∥

ij

∣∣∣
F

∥contact
viscous,j1→i1 =

−γ∥
bodyv

∥
ij if hi1j1 > 0

0 otherwise

F⊥contact
j1→i1 = F⊥contact

spring,j1→i1 + F⊥contact
viscous,j1→i1

F⊥contact
spring,j1→i1 =

k⊥body hi1j1 n⊥
i1j1 if hi1j1 > 0 (i.e. an overlap occurs)

0 otherwise

F⊥contact
viscous,j1→i1 =

−γ⊥
body v

⊥
ij if hi1j1 > 0 (i.e. an overlap occurs)

0 otherwise

(C.23)
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where
hi1j1 = Ri1 +Rj1 − |ri1→j1|

δs =

∣∣∣∣∣
∫ contact

duration

0

v
∥
ij dt

∣∣∣∣∣ (C.24)

Transport of forces to the pedestrian CoM

v
∥
ij =

(
vij · n∥

i1→j1

)
n
∥
i1→j1

vij = vi,C − vj,C

vi,C = vi + ωi × ri→C

ri→C = ri→i1 + ri1→C

n
∥
i1→j1 = uz × ni1→j1

ni1→j1 =
ri1→j1

|ri1→j1|
ri1→j1 = rj +∆j→j1 − (ri +∆i→i1)

ri1→C =

(
Ri1 −

hi1j1

2

)
ni1→j1

v⊥
ij = (vij · ni1→j1)ni1→j1

(C.25)

Interaction forces with wall

F
∥contact
spring,w→i1 = min

(
ξstaticwall δsw , µ

dyn
wall

∣∣∣F⊥contact
w→i1

∣∣∣) −v
∥
iw∣∣∣v∥

iw

∣∣∣
F

∥contact
viscous,w→i1 =

−γ∥
wallv

∥
i1w if hi1w > 0

0 otherwise

F⊥contact
w→i1 = F⊥contact

spring,w→i1 + F⊥contact
viscous,w→i1

F⊥contact
spring,w→i1 =

k⊥wall hi1w n⊥
i1w if hi1w > 0 (i.e. an overlap occurs)

0 otherwise

F⊥contact
viscous,w→i1 =

−γ⊥
wall v

⊥
iw if hi1w > 0 (i.e. an overlap occurs)

0 otherwise

(C.26)

where
hi1w = Ri1 − |ri1→w|

δsw =

∣∣∣∣∣
∫ contact

duration

0

v
∥
iwdt

∣∣∣∣∣ (C.27)

Transport of forces to the pedestrian CoM

v
∥
iw =

(
viw · n∥

i1→w

)
n
∥
i1→w

viw = vi,C

n
∥
i1→w = uz × ni1→w

ni1→w =
ri1→w

|ri1→w|
v⊥
iw = (viw · ni1→w)ni1→w

(C.28)

Rotational Dynamics

dωi

dt
=
ωdes
i − ωi

τmech
+

1

Ii

∑
(j1,i1) ∈ C(ped)

i

τGi,j1→i1 +
1

Ii

∑
(j1,i1) ∈ C(wall)

i

τGi,w→i1 (C.29)
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Torques
τGi,j1→i1 =

{
ri→C ×

(
F

∥contact
j1→i1 + F⊥contact

j1→i1

)}
· uz

τGi,w→i1 =
{
ri→C ×

(
F

∥contact
w→i1 + F⊥contact

w→i1

)}
· uz

(C.30)

Dynamic equations without interactions

dvi

dt
=

vdes
i − vi

τmech

dωi

dt
=
ωdes
i − ωi

τmech

(C.31)

where vdes
i and ωdes

i are constant within [t, t+ δt) and δt denotes the duration between each taken
decision. Therefore ∀ ∆t ∈ [0, δt),

vi(t+∆t) = vi(t) e
− ∆t

τmech + vdes
i (t)

(
1− e

− ∆t
τmech

)
ωi(t+∆t) = ωi(t) e

− ∆t
τmech + ωdes

i (t)
(
1− e

− ∆t
τmech

) (C.32)

Summary of notations and definitions The Tab. C.1 provides a comprehensive overview of all the
definitions and notations used throughout Chap. 3.

Symbol Definition
si1 Centre of disk 1 of pedestrian i

∆i→i1 Position of the disk centre si1 relative to the centre of mass of pedestrian i
Gi Centre of mass of pedestrian i
C Contact centre
Ri1 Radius of disk 1 from pedestrian i

ri1→C Position of the contact centre relative to the disk centre si1
uz Out-of-plane z-axis
hi1j1 Overlap distance between disk centres si1 and sj1
⊥ Orthogonal to the surface contact
∥ Tangential to the surface contact
v
∥
ij Tangential component of the velocity of pedestrians i relative to j at the contact centre
δs Magnitude of slip during contact

Table C.1: Definitions of the symbols that describe the geometrical aspects of the dynamics.

C.1.6 Algorithm structure (back on page 76)

To simulate crowd dynamics in the various scenarios studied, we used an algorithm outlined in the
flowchart shown in Fig. C.8. Specifically, to solve Newton’s equations of motion governing the position
and orientation of pedestrians, we employed a slightly modified Velocity Verlet algorithm introduced
by Vyas et al. (2024). This adaptation allows us to handle equations involving forces that depend on
velocity in a nonlinear manner. The method can be broken down into five distinct steps:

1. Compute forces at time t

The total force per unit mass, fi(t), can be decomposed into three components: a constant and position-
dependent term, a term linearly dependent on velocity, and a term non-linearly dependent on velocity,
as follows

fi(t) = fi,r(t) + fi,vl(t) + fi,vnl(t) (C.33)
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Start

Initialise the crowd
(agents and obstacles)

Integrate Newton
dynamics

Update mechanical
neighbours

Compute and update the desired
velocities 
for each agent (every )

Update decisional
neighbours

Simulate dynamics
(loop over time)

Stop loop ?

End

Yes

No

Figure C.8: Flowchart of the discrete element simulation algorithm used to simulate crowd dynamics.

where
fi,r(t) =

vdes
i

τmech
+

1

mi

∑

(j1,i1)∈C(ped)
i

⋃
C(wall)
i

F⊥contact
j1→i1 (t)

fi,vl(t) = −
vi(t)

τmech

fi,vnl(t) =
1

mi

∑

(j1,i1)∈C(ped)
i

⋃
C(wall)
i

F
∥contact
j1→i1 (t)

(C.34)

One can also define the total torque per unit of moment of inertia τi(t).

2. Update position and orientation at time t+∆t

The new position ri(t+∆t) is updated using

ri(t+∆t) = ri(t) + ∆t ζ2,m vi(t) +
(∆t)

2

2
[fi,r(t) + fi,vnl(t)] , (C.35)
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where ζ2,m = 1− ∆t
2τmech

. The orientation angle θi(t+∆t) is updated as

θi(t+∆t) = θi(t) + ∆t ωi(t) +
(∆t)

2

2
τi(t) (C.36)

3. Trial velocity calculation

To calculate velocities at t+∆t, we first compute trial velocities i.e. velocities at time t+ ∆t
2

• Trial translational velocity

v
try
i = ζ2,m vi(t) +

∆t

2
[fi,r(t) + fi,vnl(t)] (C.37)

where ζ2,m = 1− ∆t
2τmech

• Trial angular velocity

ω
try
i = ωi(t) +

∆t

2
τi(t) (C.38)

4. Recompute forces with trial velocities

Using the trial velocities vtry
i and ωtry

i , instead of vi(t) and ωi(t) compute the trial force and torque
denoted as fi,vnl|vtry

i , ω
try
i
(t) and τi|ωtry

i , v
try
i
(t).

5. Update final velocities

Finally, update the velocities using the recomputed forces

• Final translational velocity

vi(t+∆t) =
1

ζ2,p

[
ζ2,m vi(t) +

∆t

2
[fi,r(t) + fi,vnl(t)

fi,r(t+∆t) + fi,vnl|vtry
i , ω

try
i
(t)
]]

(C.39)

where we recall that ζ2,m = 1− ∆t
2τmech

and ζ2,p = 1 + ∆t
2τmech

• Final angular velocity

ωi(t+∆t) = ωi(t) +
∆t

2

[
τi(t) + τi|ωtry

i , v
try
i
(t)
]

(C.40)

This completes one iteration of the modified Velocity Verlet algorithm for both position and orientation
updates.

C.2 Decision-making cost

C.2.1 Static floor field term (back on page 42)

The Static Floor Field (SFF) term, denoted as ESFF, evaluates the attractiveness of a candidate position
that would result from choosing a candidate velocity u. This term is dependent on the shortest-path
distance D(r(t)) to the pedestrian’s target defined by the Eikonal equation ∥∇rD∥ = n(r) where
n(r) denotes the refractive index which measures the discomfort the pedestrian may feel about its
surrounding environment at position r as illustrated in Fig. C.9. In free space, this index is n = 1, but
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proximity to a wall increases discomfort, which is penalised by:

n(r(t)) =
1

tanh
(

dw(r(t))
dc

) (C.41)

where dw(r(t)) denotes the euclidean distance to the closest wall, and dc is a model parameter.

20 km

60 km

90 km

150 km

221 km

Lyon

Figure C.9: This map illustrates some iso-distance travel lines to reach the city of Lyon. Interestingly, these lines
are not perfect circles centred on Lyon as one should expect in an Euclidean space, indicating that some routes are
shorter than others. By considering the map as a continuous space, we can define a function that modifies the
Euclidean distance to reflect these variations in travel distances. This function, known as a refraction index, is
connected to the distance metric through the Eikonal equation. From a broader perspective, this concept enables
the transformation of a network map into a continuous map. It allows furthermore for converting a 3D terrain with
valleys into a 2D representation, or in our case, the mapping of a comfort representation into a 2D format, thereby
providing a more nuanced depiction of spatial dynamics. The map was created using the software Smappen.

Therefore, one can define the static floor field cost as follows:

ESFF (u) ∝ D(r(t) + δtu)−D(r(t))
n(r(t))

(C.42)

This equation can be interpreted as a cost associated with changes in distance to the target, incorporating
an element of anticipation. If the chosen velocity results in moving further away from the target, the
cost increases, indicating decreased satisfaction with the position. One can notice that D(r(t)) is
independent of the candidate velocity. It can, therefore, be omitted from the equation. Overall, the
static floor field term reads:

ESFF (u) = KSFF

n(r(t))
D (r(t) + δtu) (C.43)

whereKSFF is a parameter that indicates the relative importance of this term compared to others in the
cost function.
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C.2.2 Bio-mechanical term (back on page 42)

C.2.2.1 Bio-mechanical cost associated with walking speed

The literature in physiology relates the energy expenditure of walking to the rate of oxygen consumption
VO2

, which has a ‘rest’ component and a speed-dependent component:

VO2
= V

(rest)
O2

+ V
(walking)
O2

(C.44)

We are interested in the second contribution, which, in the experimental work of Ludlow and Weyand
(2016), is reasonably well fitted by an equation of the form:

E speed(u) = Ks1 +Ks2 u
2, for u ≥ uc (C.45)

where u represents the magnitude of the candidate velocity u, and uc, Ks1, Ks2 are coefficients to be
determined. This quadratic relationship aligns with other empirical studies examining human energy
expenditure during walking motion (Cotes and Meade, 1960). Finally, we choose to smoothly connect
the above E speed expression to 0 so as to avoid discontinuities with a second-order polynomial:

E speed(u) = Ks3 u+Ks4 u
2, for u < uc (C.46)

with coefficients such that they match at u = uc, for single-point value and derivative. Therefore

E speed(u) = δt

{
Ks3 u+Ks4 u

2, u < uc

Ks1 +Ks2 u
2, u ⩾ uc

(C.47)

with

Ks1 = 0.4 J s−1, Ks2 = 0.6 kg s−1, Ks3 = 7.6N, Ks4 = −35.4 kg s−1, uc = 0.1m s−1 (C.48)

This functional form fits experimental data (Ludlow and Weyand, 2016) well, as shown in Fig. C.10.

Figure C.10: Bio-mechanical cost E speed associated with the walking speed v, described by Eq. (C.47). This cost is
compared to the aggregated data from Ludlow and Weyand (2016) for the adult group, from which the base energy
consumption (i.e., at rest) has been subtracted. The diagram is taken from Echeverría-Huarte and Nicolas (2023).
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C.2.2.2 Bio-mechanical cost associated with inertia

Abrupt changes in velocity should also be barred because they are uncomfortable and bio-mechanically
costly, which suggests an ‘inertial’ contribution:

E inertia (u) = δtKI ||u− v(t)||2 (C.49)

where v(t) is the actual velocity at time t, u is the candidate velocity,KI > 0 and δt the anticipation
time (put for harmony in notations).

C.2.2.3 Bio-mechanical cost associated with the desired direction - body misalignment

Currently, the model may permit a pedestrian to move backwards. It is therefore essential to understand
how the desired velocity should align with the rest of the body. At first sight, we can assume that a
pedestrian’s head points toward its desired direction of motion, as turning the head relative to the body
incurs a structural cost. However, in some cases, like walking sideways on a familiar path, pedestrians
may move without looking ahead, thus avoiding head rotation. This level of detail is not considered.
We therefore must assess the cost of rotating the head or neck relative to other body parts. This aspect
has been explored in studies such as Liu et al. (2024), which examines the mechanical response of the
neck during passive motions. In these tests, participants’ heads are rotated by a mechanical apparatus
while a load cell measures the torque required for this rotation (see Fig. A.3). As a first approximation,
the torsional E torsion(ω) for a test angular velocity ω is well approximated by a parabolic function:

E torsion(ω) = KTor
[
θdes(t)−

(
θbody(t) + δt ω

)]2 (C.50)

where KTor > 0, vdes(t) is the desired velocity of the pedestrian at time t, θdes(t) is given by the
direction of vdes(t).

C.2.3 Decision-making eqations summary (back on page 42)

(
vdes, ωdes) = argmin

(u,ω)∈R2×R

E(u, ω)

E(u, ω) = E speed (∥u∥) + E inertia(u) + ESFF(u) + E torsion(ω)
+ ETTC(u, ω) + Eprivacy(u, ω)

E speed(∥u∥) = δt

{
Ks3 u+Ks4 u

2, u < uc

Ks1 +Ks2 u
2, u ⩾ uc

Ks1 = 0.4 J s−1, Ks2 = 0.6 kg s−1, Ks3 = 7.6N, Ks4 = −35.4 kg s−1, uc = 0.1m s−1

E inertia (u) = δtKI ||u− v(t)||2

ESFF (u) = KSFF

n(r(t))
D (r(t) + δtu)

E torsion(ω) = KTor
[
θdes(t)−

(
θbody(t) + δt ω

)]2

(C.51)

C.2.4 Derivation of the free walking speed (back on page 81)

To express the free-walking speed of pedestrians as a function of the model parameters, let us consider
isolated pedestrians. By definition, they have no interactions with other pedestrians or the built
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environment; thus, the perceived cost for motion at time t is given by:

E(u, ω) = E speed (∥u∥) + E inertia(u) + ESFF(u) + E torsion(ω) (C.52)

Interestingly, this function (with its explicit dependencies given by Eqs. (C.43), (C.47), (C.49) and (C.50))
exhibits the same qualitative dependence on the (longitudinal) speed ∥u∥ as the potential empirically
estimated by Corbetta et al. (2017) from their tracking of dilute (i.e., non-interacting) pedestrians
walking on a staircase landing (see Fig. 5 in their study), with a local minimum at ∥u∥ = 0 and a global
minimum at the free walking speed ∥u∞∥ ≈ 1m/s. It is important to note that, unlike Corbetta et al.
(2017), no exogenous noise is introduced into our decisional layer. Therefore, in the stationary state,
the actual walking speed of a given pedestrian does not fluctuate; instead, it matches the desired speed
u∞, which is determined by extremizing E(u, ω), as follows:

0 =
1

δt
∇uE

∣∣∣∣
u=u∞

= 2KI(u
∞ − v(t)) +

∂E speed

∂∥u∥
u∞

∥u∞∥
+KSFF

∇rDSFF

n(r(t))

= 2KI(u
∞ − v(t)) + 2Ks2 u

∞ −KSFF t

(C.53)

where we have used the expression of E speed for u ⩾ uc from Eq. (C.47) and defined the unit vector
t = −∇rDSFF/n(r(t)) which, by definition in section C.2.1, points towards the target. An isolated
pedestrian quickly reaches its desired velocity u∞, causing the first term to vanish in the steady state.
Consequently, we find:

u∞ =
KSFF

2Ks2
t (C.54)

This expression can be used to determine the coefficientKSFF based on the free-walking speed ∥u∞∥,
which in a free-flow scenario is typically 1.4m/s (see Fig. 1.12). A similar reasoning leads to ω∞ = 0.

C.2.5 Discomfort contour levels (back on page 78)

Figure C.11: An example of a pedestrian i’s discomfort contour level represented by a star-shaped polygon. The
vertices labelled Pi,k are indexed counter-clockwise. Each vertex is defined in polar coordinates, characterised by
its distance from the polygon centroid Ci and its orientation in the plane, denoted as θi,k .

C.2.6 Computation of the minimal swelling coefficient such that the two discomfort fields
overlap (back on page 79)

Determining the minimal swelling rate, denoted as η⋆, at which two private spaces start to overlap, is a
complex task without a straightforward formula for general shapes. However, a simple procedure can
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be employed using a simple formula for star polygons.

Consider two discomfort contours, i and j, at a given swelling η, of pedestrian i and pedestrian j,
respectively. An illustration is provided in Fig. C.12 for η equals η⋆ which we are seeking. Interestingly,
two closed polygons are in contact if at least one vertex of one belongs to an edge or overlaps with a
vertex of the other polygon. Therefore, the problem is reduced to determining the contact of one vertex
with an edge, providing that we iterate over all vertex edges possible.

Figure C.12: Two discomfort contours at η⋆—the minimum swelling at which the contours overlap—are illustrated.

You can proceed as follows. For each vertex-edge pair, compute the swelling η̂ such that P s
j lies on

the line formed by the vertices P s
i,k and P s

i,k+1. This swelling always exists (except in very specific
situations when the two polygons have the same centroid and are perfectly aligned, for instance, for
which the swelling is set to infinity). Additionally, if η̂ < 0, we set it to infinity as it is associated with a
non-physical physical situation. Next, verify whether the vertex P s

j , which lies on the line ( generated
by P s

i,kP
s
i,k+1), actually belongs to the edge itself by checking if:

•
∣∣∣Ps

i,kP
s
j

∣∣∣ <
∣∣∣Ps

i,kP
s
i,k+1

∣∣∣
• The orientation of Ps

i,kP
s
j has the same orientation as Ps

i,kP
s
i,k+1.

If these conditions are met, record the computed swelling value. This process should be repeated for
all possible vertex-edge pairs2. The minimal swelling rate η⋆ is then determined as the smallest value
among all computed swellings.

To specify the computation of swelling, we state that P s
j belongs to the line generated by the two

vertices P s
i,k and P s

i,k+1 if: (
Ps

i,kP
s
j ×Ps

i,kP
s
i,k+1

)
· uz = 0 (C.55)

where Ps
i,kP

s
j can be readily expressed in terms of the quantities at the initial swollen state:

Ps
i,kP

s
j = −η̂ CiPi,k +CiCj + η̂ CjPj

Ps
i,kP

s
i,k+1 = η̂ (CiPi,k+1 −CiPi,k)

(C.56)

Isolating η̂ leads to:

η̂ =

(
CiPi,k ×CiCj

)
· uz +

(
CiCj ×CiPi,k+1

)
· uz(

CjPj ×CiPi,k

)
· uz +

(
CiPi,k ×CiPi,k+1

)
· uz +

(
CiPi,k+1 ×CjPj

)
· uz

(C.57)

where the triple products can be computed very efficiently by utilising the property of invariance

2You will need two nested loops: the first iterates over the vertices of polygon i and the edges of polygon j, and the second
reverses this order by looping over the vertices of polygon j and the edges of polygon i. The computation time is O

(
N2

)
,

whereN is the number of vertices. Although this may seem inefficient, it is still much simpler and faster than using ellipses,
which first require solving a quartic nonlinear equation to determine if two ellipses intersect (Richter-Gebert, 2011, Chap. 11.3)
and then finding the right swelling rate iteratively.
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under circular permutation of the operands:

(CiPi,k ×CiCj) · uz = (uz ×CiPi,k) ·CiCj (C.58)

The triple product is, therefore, just a dot product between a rotated vector by an angle of π/2 and the
other vector.

In the event of contact between Pj from a pedestrian contour and a wall (for which the discomfort
contours are set equals to the physical shape and does not swell), a similar line of reasoning results in:

η̂ =

(
CiCj ×CiPi,k+1

)
· uz −

(
CiCj ×CiPi,k

)
· uz −

(
CiPi,k ×CiPi,k+1

)
· uz(

CiPj ×CiPi,k+1

)
· uz −

(
CjPj ×CiPi,k

)
· uz

(C.59)

In case of contact between Pj from a wall and a pedestrian, one finds:

η̂ =
1(

CiPi,k ×CiPi,k+1

)
· uz

[(
CiCj ×CiPi,k+1

)
· uz −

(
CiCj ×CiPi,k

)
· uz

+
(
CjPj ×CiPi,k+1

)
· uz −

(
CjPj ×CiPi,k

)
· uz

] (C.60)

C.2.7 Numerical calculation of the integral for the Time to collision cost (back on page 80)

Consider a subdivision of size N + 1 for the interval [ηmin, ηmax] (equivalently [∆tTTC, τTTC]). Outside
this interval, we set the kernelK to zero. Using the Riemann sum, the integral can be approximated as:

ETTC
∣∣
ij
(u, ω) ≈

N+1∑

k=1

K(ηk)V
TTC
ij [τηk

(u, ω)] |ηk − ηk−1| (C.61)
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Recovering stop-and-go dynamics in
traffic flow with noise-induced
Kapitza pendulum instability

D.1 Simulation setup (back on page 94)

In this study, we simulate N = 22 vehicles on a single-lane roundabout with a length of L = 231

meters (refer to Fig. D.1) to replicate the experimental conditions of Sugiyama et al. (2008); Tadaki
et al. (2013). We represent the positions and speeds of the vehicles at time t ≥ 0 as (xn(t))Nn=1 and
(vn(t))

N
n=1, respectively, where vn(t) = ẋn(t) for each vehicle n ∈ 1, . . . , N .

vn vn+1

xn+1 − xn
Ring of length
L = 231 m N = 22 vehicles

n-th vehicle (n+ 1)-th vehicle

Figure D.1: Scheme of the simulation setting for the experiment conducted by Sugiyama et al. (2008).

We suppose that the vehicles are initially ordered by their indices, i.e.,

0 ≤ x1(0) ≤ x2(0) ≤ . . . ≤ xN (0) ≤ L (D.1)

We assume that the (n+ 1)-th vehicle is the predecessor of the n-th vehicle at any time t ≥ 0. Because
of the periodic boundaries, the first vehicle is the predecessor of the N -th vehicle. The distance gap
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between vehicles, gn(t), and the speed difference, ∆vn(t), are defined as follows:
{
gn(t) = xn+1(t)− xn(t)− ℓ, n ∈ {1, . . . , N − 1},
gN (t) = L+ x1(t)− xN (t)− ℓ,

(D.2)

where ℓ = 5 m is the vehicle length, and
{

∆vn(t) = vn+1(t)− vn(t), n ∈ {1, . . . , N − 1},
∆vN (t) = v1(t)− vN (t),

(D.3)

respectively.

Stochastic Optimal Velocity (SOV) model A general class of optimal velocity and full velocity
difference linear or near-linear stochastic car-following models is given by (Wagner, 2011; Treiber and
Helbing, 2009; Wang et al., 2020; Friesen et al., 2021):

dvn(t) =

(
V (gn(t))− vn(t)

T1
+

∆vn(t)

T2

)
dt+ σ dWn(t), (D.4)

where T1 = 2.5 s, T2 = 2 s are two relaxation times, σ ∈ R is the noise volatility and V : R 7→ R+ is
the Optimal-Velocity (OV) function usually given by the sigmoid:

V (s) = v0
tanh(s/ℓ0 − κ) + tanh(κ)

1 + tanh(κ)
, (D.5)

where κ = 0.5 and ℓ0 = 20m are the shape and scale parameters respectively, and v0 = 20m s−1 is
the desired speed (Bando et al., 1995; Jiang et al., 2001; Treiber and Helbing, 2009).

Stochastic Inertial Car-Following (SICF) model from Tomer et al. (2000) reads:

dvn(t) = K ·
(
1− 2vn(t)T + ℓ

gn(t) + ℓ

)
dt+

Z2 (−∆vn(t))
2gn(t)

dt

− 2Z (vn(t)− v0) dt+ σ dWn(t),

(D.6)

where Z(x) = (x + |x|)/2 denotes the positive part of x, ℓ = 5m is the length of the vehicles,
K = 5m/s2 is a sensitivity parameter, T = 1 s is the desired time gap and σ ∈ R is the noise volatility.

Stochastic Intelligent Driver (SID) model from Treiber and Kesting (2017) is given by:

dvn(t) = a

(
1−

(
f (vn(t),∆vn(t))

gn(t)

)2

−
(
vn(t)

v0

)4)
dt+ σ dWn(t)

with f(v,∆v) = s0 + Tv − v ∆v
2
√
ab
,

(D.7)

where a = b = 2m/s2 are the desired acceleration and maximal deceleration parameter, s0 = 2m is
a minimal gap, T = 1 s is the desired time gap, v0 = 20m s−1 is the desired speed and σ ∈ R is the
noise volatility.

Stochastic Adaptive Time Gap (SATG) model The Adaptive Time Gap (ATG) car-following model
from Tordeux et al. (2010) is obtained by relaxing the time gap Tn(t) = gn/vn as Ṫn(t) = λ(T −Tn(t))
where λ is a sensitivity parameter and T is the desired time gap. Using speed and gap variables, the
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model reads v̇n(t) = [λ (gn(t)− Tvn(t)) + ∆vn(t)] /Tn(t) while the SATG model is given by:

dvn(t) = F (gn(t), vn(t), vn+1(t)) dt+ σ dWn(t), (D.8)

where F denotes the acceleration function and reads:

F (gn(t), vn(t), vn+1(t)) =
λ (gn(t)− Tvn(t)) + ∆vn(t)

T ε
Tmin,Tmax

(gn(t), vn(t))
. (D.9)

Figure D.2: Examples of LogSumExp functions.

Here, the time gap is approximated using the mollifier bounded between Tmin and Tmax:

T ε
Tmin,Tmax

(gn, vn) = fε

(
Tmin, f−ε

(
Tmax,

gn
fε(0, vn)

))
, (D.10)

where fε is the LogSumExp function

fε(a, b) = ε log (exp(a/ε) + exp(b/ε)) . (D.11)

The function fε(a, b) converges to the maximum of a and b as ε→ 0+ and the minimum as ε→ 0−

as illustrated in Fig. D.2. This smoothing technique helps prevent singularities that may occur when
vehicles collide due to noise or when their speed reaches zero.

Numerical simulation (back on page 95) We used an implicit/explicit Euler–Maruyama numerical
solver (Kloeden and Platen, 1992) for the simulation with a time step δt = 0.001 s. The solver reads for
the n-th agent, n ∈ {1, . . . , N},

{
xn(t+ δt) = xn(t) + δt vn(t+ δt)

vn(t+ δt) = vn(t) + δtA (gn(t), vn(t), vn+1(t)) +
√
δt g(vn(t)) ξn(t),

(D.12)

where (ξn(t), n = 1, . . . , N ; t ∈ δtN) are independent normal random variables and

g(v) =
σ

1 + exp(−α(v − vσ))
, σ ≥ 0, α = 103 (D.13)

is the noise volatility, which is constructed to be close to zero as v becomes less than vσ = 0.1m s−1 to
limit the collisions, and equal to the volatility constant parameter σ as v >> vσ . The parameter values
for the simulation are λ = 0.2 s−1, Tmin = 0.1 s, and Tmax = 4 s, while the desired time gap is T = 1 s

and ε = 0.01.
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Online simulation platform (back on page 96) An online simulation platform for the solver
described in Eq. (D.12) is available for the experimental setup from Sugiyama et al. (2008) and the
stochastic car-following models outlined in Equations Eq. (D.4) to Eq. (D.8). You can access this platform
at the following URL: Simulation Platform.

Example of ϕ(t) (back on page 95)

Figure D.3: The simulation of the Stochastic Adaptive Time Gap (SATG) was performed for σ = 0.55 ms−3/2.
The stop-and-go wave state is shown in red, while the homogeneous state is depicted in black.

Details on Fig. 4.7 (back on page 96) In Fig. 4.7, we conduct simulations for 5000 seconds (which
is reasonable to consider the system stationary). Following this, we average the gap standard deviation
over the next 2000 seconds, as defined in Eq. (4.6). This process is repeated for 100 independent Monte
Carlo simulations for each noise volatility level, which ranges from 0 to 1 in increments of 0.02. We
apply this to each of the four stochastic car-following models described by Eq. (D.4)–Eq. (D.8). In the
figure, the curves represent the mean values from these Monte Carlo simulations, while the coloured
areas indicate the range of variation between the minimum and maximum values.

Details on Fig. 4.8 (back on page 97) In Fig. 4.8, we conducted simulations for 5000 seconds, a
sufficient duration to consider the system stationary. Subsequently, we calculated the distribution
of φ, as defined in Eq. (4.6), over the following 2000 seconds. This procedure was repeated for 1000
independent Monte Carlo simulations.
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Details on Fig. 4.9 (back on pages 97, 98)

a) b) c)

Figure D.4: The simulations of the Stochastic Adaptive Time Gap (SATG) were performed under three different
conditions: with zero noise volatility (σ) and no amplitude (A) for the oscillatory driving (a), with σ = 0.8ms−3/2

andA = 1ms−3/2 (b), with σ = 0.8ms−3/2 andA = 9000ms−3/2 (c). Each scenario involved 22 cars on a road
of length 232m. a)Without noise volatility, the system initially displays a stop-and-go wave pattern but eventually
stabilises into a homogeneous state. b) In this setup, stop-and-go waves are observed, where cars periodically
come to a complete stop, as indicated by the red lines. c) Here, stop-and-go waves occur, but cars do not remain
stopped for long. Instead, they quickly reverse direction, ultimately maintaining a net positive flow. For clarity, the
mollifier is present only in front of the white noise and not in front of the oscillating excitation.

D.2 Eqilibrium solutions and linear stability analysis (back on page 95)

The deterministic biased adaptive time gap car-following model is given for the vehicle n ∈ {1, . . . , N}
by

v̇n(t) = F
(
gn(t), vn(t),∆vn(t)

)
+ bn (D.14)

with
F (g, v,∆v) = λv

(
1− Tv

g

)
+
v∆v

g
, λ, T > 0. (D.15)

where vn(t) is the speed, gn(t) is the gap,∆vn(t) the speed difference to the predecessor of n-th vehicle
at time t as defined previously, λ is the sensitivity parameter, T is the desired time gap parameter, and
bn is the (constant and vehicle specific) bias in the acceleration.

Equilibrium solution We considerN ≥ 2 vehicles of length ℓ ≥ 0 on a ring of length L > Nℓ. The
gap in a homogeneous configuration is given by

ge = L/N − ℓ. (D.16)

As a consequence of the bias, the equilibrium solution for which v̇n = 0 for all n ∈ {1, . . . , N} is not a
uniform distribution in space. These are the

(
ve, (g

e
n)

N
n=1

)
configurations satisfying





N∑

n=1

gen = Nge

F (gen, ve, 0) + bn = 0, ∀n ∈ {1, . . . , N}

(D.17)
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We can deduce from the second part that

gen =
λTv2e

bn + λve
, ∀n ∈ {1, . . . , N}, (D.18)

while, using the conservation of spacing
∑

n g
e
n = Nge, the equilibrium speed becomes the solution of

N∑

n=1

λTv2e
bn + λve

= Nge. (D.19)

Remark 1. The equilibrium gaps (D.18) are positive for each vehicle if

ve > −
1

λ
min
n
bn. (D.20)

Remark 2. We recover the equilibrium solution of the homogeneous ATG model

ve =
ge
T

and gen = ge for all n ∈ {1, . . . , N}, (D.21)

if the biases are zero, i.e., bn = 0 for all n ∈ {1, . . . , N}.

Remark 3. In the case where the bias bn = b is identical for all vehicles n ∈ {1, . . . , N}, we have directly

λTv2
e

b+ λve
= ge (D.22)

Assuming b > −λve (see (D.20)), we obtain

λTv2
e
− (b+ λve)ge = 0, (D.23)

and we can deduce that

ve =
geλ+

√
(geλ)2 + 4λTbge
2λT

=
ge
2T

(
1 +

√
1 +

4Tb

λge

)
(D.24)

The equilibrium speed exists if 1 + 4Tb
λge
≥ 0 and we obtain the condition

b ≥ −λge
4T

. (D.25)

Note that (D.25) implies the preliminary condition b > −λve.
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Linearisation of the system The partial derivatives of the model (D.15) at equilibrium are given by

fgn =
∂F

∂g
(gen, ve, 0) =

λTv2e
(gen)

2
, fvn =

∂F

∂v
(gen, ve, 0) = λ

(
1− 2Tve

gen

)
,

and f∆v
n =

∂F

∂∆v
(gen, ve, 0) =

ve
gen

(D.26)

The characteristic equation of the resulting linear ODE system reads

N∏

n=1

[
z2 − z(fvn − f∆v

n ) + fgn
]
− e−iθN

N∏

n=1

[
zf∆v

n + fgn
]
= 0, z ∈ C, θ ∈ [0, 2π]. (D.27)

A sufficient general linear stability condition for which all eigenvalues z have non-positive real parts,
except one equal to zero (due to the periodic boundaries), is given by Ngoduy (2015, Eq. (5))

N∑

n=1

[
1

2

(
fvn
fgn

)2

− fvnf
∆v
n

fgnf
g
n
− 1

fgn

]
≥ 0. (D.28)

We have
fvn
fgn

=
λ
(
1− 2Tve

ge
n

)

λTv2
e

(ge
n)

2

=
gen(g

e
n − 2Tve)

Tv2e
, (D.29)

while
fvnf

∆v
n

fgnf
g
n

=
λ
(
1− 2Tve

ge
n

)
ve
ge
n

λ2T 2v4
e

(ge
n)

4

=
(gen)

2(gen − 2Tve)

λT 2v3e
. (D.30)

The sufficient linear stability condition (D.28) is then given by

N∑

n=1

[
1

2

(
gen(g

e
n − 2Tve)

Tv2e

)2

− (gen)
2(gen − 2Tve)

λT 2v3e
− (gen)

2

λTv2e

]
≥ 0, (D.31)

or again

N∑

n=1

(gen)
2

[
λ(gen − 2Tve)

2

2Tv2e
− gen − 2Tve

Tve
− 1

]

=

N∑

n=1

(gen)
2

[
λ(gen − 2Tve)

2

2Tv2e
− gen − Tve

Tve

]
≥ 0. (D.32)

Then, using gen =
λTv2

e
bn+λve

and remarking that gen − 2Tve = −Tve 2bn+λve
bn+λve

while gen − Tve =

−Tve bn
bn+λve

, we obtain

N∑

n=1

(
λTv2e

bn + λve

)2




(
Tve

2bn+λve
bn+λve

)2

2Tv2e
+
Tve

bn
bn+λve

Tve


 ≥ 0. (D.33)

After simplifications (we have λ, T, ve > 0), it follows

N∑

n=1

1

(bn + λve)2

[
λT

2

(
2bn + λve
bn + λve

)2

+
bn

bn + λve

]
≥ 0, (D.34)
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or again
N∑

n=1

1

(bn + λve)4

[
λT

2
(2bn + λve)

2
+ bn(bn + λve)

]
≥ 0. (D.35)

We have

λT

2
(2bn + λve)

2
+ bn(bn + λve) = 2λTb2n +

1

2
λ3Tv2e + 2λ2Tbnve + b2n + bnλve

= b2n(2λT + 1) + bn(2λT + 1)λve +
1

2
λ3Tv2e

= bn(2λT + 1)(bn + λve) +
1

2
λ3Tv2e ,

(D.36)

and the linear stability condition can be written

N∑

n=1

bn(2λT + 1)

(bn + λve)3
+

λ3Tv2e
2(bn + λve)4

≥ 0. (D.37)

Remark 4. Since λ, T > 0, the model is unconditionally linearly stable if bn = 0 for all bn ∈ {1, . . . , N}.
Indeed the homogeneous ATG model is unconditionally linearly stable Khound et al. (2023).

Remark 5. When all the biases are identical, i.e., bn = b > −λge/(4T ) for all bn ∈ {1, . . . , N}, dividing
by λTv2

e
the last line of (D.36) and using (D.22), we obtain the linear stability condition of the ATG model

b(2λT + 1)

ge
+
λ2

2
≥ 0. (D.38)

This is

b ≥ −λ2ge
4Tλ+ 2

. (D.39)

The bias has to be negative and sufficiently low, especially for high λ or low T , to destabilise the system.

D.3 Extended stability analysis of the periodically driven system (back on
page 98)

This Section details the extended stability analysis of the car-following system in which the noise term
is substituted by an externally applied deterministic cyclic driving, with vanishing residual noise:

v̇n(t) = F
(
∆xn(t), vn(t), vn+1(t)

)
+ C cos(ωt+ φn). (D.40)

We assume that the driving frequency is low enough so that a pseudo-stationary approximation can
be performed, i.e., at each time t the system follows the biased deterministic equation of Eq. (D.14)
with bn = cos(ωt + φn). Perturbations around the thus grow at rates ν given by the real parts of
the eigenvalues z given by Eq. (D.27). Unfortunately, finding the roots z of this equation is far from
straightforward analytically. The equation is thus solved numerically, first by deducing the equilibrium
speed from Eq. (D.19) and the associated gaps, and then finding the nontrivial complex roots z ̸= 0 (the
eigenvalue 0 is not relevant physically) of Eq. (D.27) using a Newton-Raphson method with multiple
starting points located on a regular lattice in complex space; we check that no eigenvalue has been
missed by quadrupling the number of starting points. Numerically, identifying that z is a root of
Eq. (D.27) can be challenging for small λ or large T because a quasi-continuum of z values yield a
vanishingly small, but nonzero products. Accordingly, the validity of candidate roots is checked by
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calculating the ratio of the two products. We denote by ν
(
{bn}

)
= max ℜ(z) the largest growth rate

over all roots z.

If the eigenmode associated with this growth rate is roughly the same throughout the cycle (which is
reasonable, because it tends to be the mode with the largest possible wavelength in the system), then
the fastest growing perturbation (under our pseudo-stationary assumption) will unfurl as

exp

(∫ 2π

0

dx

ω
ν
(
{C cos(x+ φn)}

))
(D.41)

over a period, hence an effective growth rate

νeff(C) = ⟨ν({C cos(xn)})⟩x, (D.42)

where xn is used as a shorthand for x+φn and the angular brackets denote an average over x ∈ [0, 2π[.
We surmise that averaging νeff(C) over random, uniformly distributed phases φn is tantamount to
averaging it over uniformly distributed xn in R/2πZ. Numerical simulations confirm that this is a
decent approximation.
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Masamitsu Mōri and Hiroshi Tsukaguchi. A new method for evaluation of level of service in pedestrian facilities.
Transportation Research Part A: General, 21(3):223–234, 1987. URL https://doi.org/10.1016/0191-260
7(87)90016-1. (Cited on pages 15 and 83.)

Alexander N Morozov and Wim van Saarloos. An introductory essay on subcritical instabilities and the transition
to turbulence in visco-elastic parallel shear flows. Physics Reports, 447(3-6):112–143, 2007. URL https:
//doi.org/10.1016/j.physrep.2007.03.004. (Cited on page 97.)

Jürgen Moser. Is the solar system stable? The Mathematical Intelligencer, 1:65–71, 1978. URL https://people.m
ath.harvard.edu/~knill/teaching/mathe320_2014/blog/MoserSolar.pdf. (Cited on page 90.)

Mehdi Moussaïd, Niriaska Perozo, Simon Garnier, Dirk Helbing, and Guy Theraulaz. The walking behaviour
of pedestrian social groups and its impact on crowd dynamics. PloS one, 5(4):e10047, 2010. URL https:
//doi.org/10.1371/journal.pone.0010047. (Cited on page 27.)

Hisashi Murakami, Claudio Feliciani, Yuta Nishiyama, and Katsuhiro Nishinari. Mutual anticipation can contribute
to self-organization in human crowds. Science Advances, 7(12):eabe7758, 2021. URL https://doi.org/10.1
126/sciadv.abe7758. (Cited on page 45.)

RR Mussabayev, MN Kalimoldayev, Ye N Amirgaliyev, AT Tairova, and TR Mussabayev. Calculation of 3d
coordinates of a point on the basis of a stereoscopic system. Open Engineering, 8(1):109–117, 2018. URL
https://doi.org/10.1515/eng-2018-0016. (Cited on page 49.)

Takashi Nagatani. Modified kdv equation for jamming transition in the continuum models of traffic. Physica A:
Statistical Mechanics and Its Applications, 261(3-4):599–607, 1998a. URL https://doi.org/10.1016/S037
8-4371(98)00347-1. (Cited on page 17.)

Takashi Nagatani. Thermodynamic theory for the jamming transition in traffic flow. Physical Review E, 58(4):4271,
1998b. URL https://doi.org/10.1103/PhysRevE.58.4271. (Cited on page 99.)

Takashi Nagatani. Density waves in traffic flow. Physical Review E, 61(4):3564, 2000. URL https://doi.org/10.1
103/PhysRevE.61.3564. (Cited on page 21.)

Takashi Nagatani. The physics of traffic jams. Reports on progress in physics, 65(9):1331, 2002. URL https:
//doi.org/10.1088/0034-4885/65/9/203. (Cited on page 99.)

– 159 –

https://doi.org/10.1098/rsfs.2012.0033
https://www.sciencedirect.com/science/article/pii/S0021999196901278
https://doi.org/10.1152/japplphysiol.00864.2015
https://doi.org/10.1152/japplphysiol.00864.2015
https://doi.org/10.1103/PhysRevE.56.2666
https://homepages.inf.ed.ac.uk/rbf/DISSERTATIONS/msc_20090787.pdf
https://homepages.inf.ed.ac.uk/rbf/DISSERTATIONS/msc_20090787.pdf
https://doi.org/10.1016/j.trc.2021.103047
https://doi.org/10.1103/PhysRevLett.130.130002
https://doi.org/10.1103/PhysRevLett.130.130002
https://doi.org/10.1051/m2an/2010035
https://doi.org/10.1051/m2an/2010035
https://www.mturk.com/
https://doi.org/10.1016/j.actpsy.2018.07.009
https://psycnet.apa.org/record/1957-02914-001
https://doi.org/10.1115/1.4010702
https://doi.org/10.1115/1.4009973
https://doi.org/10.1115/1.4009973
https://madras-data-app.streamlit.app/
https://madras-data-app.streamlit.app/
https://doi.org/10.1016/0191-2607(87)90016-1
https://doi.org/10.1016/0191-2607(87)90016-1
https://doi.org/10.1016/j.physrep.2007.03.004
https://doi.org/10.1016/j.physrep.2007.03.004
https://people.math.harvard.edu/~knill/teaching/mathe320_2014/blog/MoserSolar.pdf
https://people.math.harvard.edu/~knill/teaching/mathe320_2014/blog/MoserSolar.pdf
https://doi.org/10.1371/journal.pone.0010047
https://doi.org/10.1371/journal.pone.0010047
https://doi.org/10.1126/sciadv.abe7758
https://doi.org/10.1126/sciadv.abe7758
https://doi.org/10.1515/eng-2018-0016
https://doi.org/10.1016/S0378-4371(98)00347-1
https://doi.org/10.1016/S0378-4371(98)00347-1
https://doi.org/10.1103/PhysRevE.58.4271
https://doi.org/10.1103/PhysRevE.61.3564
https://doi.org/10.1103/PhysRevE.61.3564
https://doi.org/10.1088/0034-4885/65/9/203
https://doi.org/10.1088/0034-4885/65/9/203


Takashi Nagatani and Ken Nakanishi. Delay effect on phase transitions in traffic dynamics. Physical Review E, 57
(6):6415, 1998. URL https://doi.org/10.1103/PhysRevE.57.6415. (Cited on pages 91 and 100.)

Akihiro Nakayama, Minoru Fukui, Macoto Kikuchi, Katsuya Hasebe, Katsuhiro Nishinari, Yuki Sugiyama, Shin-ichi
Tadaki, and Satoshi Yukawa. Metastability in the formation of an experimental traffic jam. New Journal of

Physics, 11(8):083025, 2009. URL https://doi.org/10.1088/1367-2630/11/8/083025. (Cited on pages 91
and 96.)

Author’s Name. Analysis of polygonal shapes. Technical Report ADA183444, Defense Technical Information
Center, 1987. URL https://apps.dtic.mil/sti/citations/ADA183444. (Cited on page 129.)

Sahil Narang, Andrew Best, and Dinesh Manocha. Interactive simulation of local interactions in dense crowds
using elliptical agents. Journal of Statistical Mechanics: Theory and Experiment, 2017(3):033403, 2017. URL
https://doi.org/10.1088/1742-5468/aa58ab. (Cited on page 29.)

Margot M. E. Neggers, Raymond H. Cuijpers, Peter A. M. Ruijten, and Wijnand A. IJsselsteijn. Determining
Shape and Size of Personal Space of a Human when Passed by a Robot. International Journal of Social

Robotics, 14(2):561–572, March 2022. ISSN 1875-4805. doi: 10.1007/s12369-021-00805-6. URL https:
//doi.org/10.1007/s12369-021-00805-6. (Cited on pages 39 and 78.)

Erik Neumann. myphysicslab: Physics simulations, 2001. URL https://www.myphysicslab.com/. (Cited on
page 93.)

Gordon Frank Newell. Nonlinear effects in the dynamics of car following. Operations research, 9(2):209–229, 1961.
URL https://pubsonline.informs.org/doi/abs/10.1287/opre.9.2.209. (Cited on page 18.)

Robert C Newman and Donald Pollack. Proxemics in deviant adolescents. Journal of Consulting and Clinical

Psychology, 40(1):6, 1973. URL https://psycnet.apa.org/doi/10.1037/h0033961. (Cited on page 39.)
D. Ngoduy. Noise-induced instability of a class of stochastic higher order continuum traffic models. Transportation

Research Part B: Methodological, 150:260, 2021. URL https://doi.org/10.1016/j.trb.2021.06.013.
(Cited on pages 92 and 97.)

Dong Ngoduy. Effect of the car-following combinations on the instability of heterogeneous traffic flow. Transport-
metrica B: Transport Dynamics, 3(1):44–58, 2015. URL https://doi.org/10.1080/21680566.2014.960503.
(Cited on page 147.)

Alexandre Nicolas and Fadratul Hafinaz Hassan. Social groups in pedestrian crowds: review of their influence
on the dynamics and their modelling. Transportmetrica A: transport science, 19(1):1970651, 2023. URL
https://doi.org/10.1080/23249935.2021.1970651. (Cited on page 59.)

Alexandre Nicolas, Marcelo Kuperman, Santiago Ibañez, Sebastián Bouzat, and Cécile Appert-Rolland. Mechanical
response of dense pedestrian crowds to the crossing of intruders. Scientific reports, 9(1):105, 2019. URL
https://doi.org/10.1038/s41598-018-36711-7. (Cited on pages 45, 64, and 70.)

S.J. Older. Movement of Pedestrians on Footways in Shopping Streets. Traffic engineering & control, 1968. URL
https://books.google.fr/books?id=mOdYcgAACAAJ. (Cited on pages 15 and 83.)

Anne-Hélène Olivier. Analyse dans le plan courbure-vitesse d’un changement de direction lors de la marche. Theses,
Université Rennes 2 ; Université Rennes 1, December 2008. URL https://theses.hal.science/tel-003
70546. (Cited on page 79.)

Anne-Hélène Olivier, Julien Bruneau, Gabriel Cirio, and Julien Pettré. A virtual reality platform to study crowd
behaviours. Transportation Research Procedia, 2:114–122, 2014. URL https://doi.org/10.1016/j.trpro.
2014.09.015. (Cited on page 45.)

DonaldMOlsson and Lloyd S Nelson. The nelder-mead simplex procedure for function minimization. Technometrics,
17(1):45–51, 1975. URL https://doi.org/10.1080/00401706.1975.10489269. (Cited on page 77.)

Gábor Orosz, R.E. Wilson, and Bernd Krauskopf. Global bifurcation investigation of an optimal velocity traffic
model with driver reaction time. Physical Review E, 70(2):026207, 2004. URL https://doi.org/10.1103/Ph
ysRevE.70.026207. (Cited on pages 91, 95, and 96.)

Gábor Orosz, Bernd Krauskopf, and R.E. Wilson. Bifurcations and multiple traffic jams in a car-following model
with reaction-time delay. Physica D: Nonlinear Phenomena, 211(3):277–293, 2005. ISSN 0167-2789. doi:
10.1016/j.physd.2005.09.004. (Cited on page 97.)

Gábor Orosz, R.E. Wilson, and Gábor Stépán. Traffic jams: dynamics and control, 2010. URL https://doi.org/
10.1098/rsta.2010.0205. (Cited on page 91.)

Carolyn O’Fallon and Charles Sullivan. Understanding and managing weekend traffic congestion. In at 26th ATRF

Conference, 2003. URL https://australasiantransportresearchforum.org.au/wp-content/uploads
/2022/03/2003_OFallon_Sullivan_c.pdf. (Cited on page 6.)

Daniel R Parisi, Raúl Cruz Hidalgo, and Iker Zuriguel. Active particles with desired orientation flowing through
a bottleneck. Scientific Reports, 8(1):9133, 2018. URL https://doi.org/10.1038/s41598-018-27478-y.
(Cited on page 41.)

José M Pastor, Angel Garcimartín, Paula A Gago, Juan P Peralta, César Martín-Gómez, Luis M Ferrer, Diego
Maza, Daniel R Parisi, Luis A Pugnaloni, and Iker Zuriguel. Experimental proof of faster-is-slower in
systems of frictional particles flowing through constrictions. Physical Review E, 92(6):062817, 2015. URL
https://doi.org/10.1103/PhysRevE.92.062817. (Cited on pages 45 and 70.)

Aftab E Patla. Understanding the roles of vision in the control of human locomotion. Gait & posture, 5(1):54–69,
1997. URL https://doi.org/10.1016/S0966-6362(96)01109-5. (Cited on page 16.)

– 160 –

https://doi.org/10.1103/PhysRevE.57.6415
https://doi.org/10.1088/1367-2630/11/8/083025
https://apps.dtic.mil/sti/citations/ADA183444
https://doi.org/10.1088/1742-5468/aa58ab
https://doi.org/10.1007/s12369-021-00805-6
https://doi.org/10.1007/s12369-021-00805-6
https://www.myphysicslab.com/
https://pubsonline.informs.org/doi/abs/10.1287/opre.9.2.209
https://psycnet.apa.org/doi/10.1037/h0033961
https://doi.org/10.1016/j.trb.2021.06.013
https://doi.org/10.1080/21680566.2014.960503
https://doi.org/10.1080/23249935.2021.1970651
https://doi.org/10.1038/s41598-018-36711-7
https://books.google.fr/books?id=mOdYcgAACAAJ
https://theses.hal.science/tel-00370546
https://theses.hal.science/tel-00370546
https://doi.org/10.1016/j.trpro.2014.09.015
https://doi.org/10.1016/j.trpro.2014.09.015
https://doi.org/10.1080/00401706.1975.10489269
https://doi.org/10.1103/PhysRevE.70.026207
https://doi.org/10.1103/PhysRevE.70.026207
https://doi.org/10.1098/rsta.2010.0205
https://doi.org/10.1098/rsta.2010.0205
https://australasiantransportresearchforum.org.au/wp-content/uploads/2022/03/2003_OFallon_Sullivan_c.pdf
https://australasiantransportresearchforum.org.au/wp-content/uploads/2022/03/2003_OFallon_Sullivan_c.pdf
https://doi.org/10.1038/s41598-018-27478-y
https://doi.org/10.1103/PhysRevE.92.062817
https://doi.org/10.1016/S0966-6362(96)01109-5


Bibliography

Pakpoom Patompak, Sungmoon Jeong, Itthisek Nilkhamhang, and Nak Young Chong. Learning proxemics for
personalized human–robot social interaction. International Journal of Social Robotics, 12:267–280, 2020. URL
https://doi.org/10.1007/s12369-019-00560-9. (Cited on pages 38, 39, and 42.)

Stefano Pellegrini, Andreas Ess, Konrad Schindler, and Luc Van Gool. You’ll never walk alone: Modeling social
behavior for multi-target tracking. In 2009 IEEE 12th international conference on computer vision, pages
261–268. IEEE, 2009. URL https://doi.org/10.1109/ICCV.2009.5459260. (Cited on page 46.)

Julien Pettre. Chaos: Crowd animation open software, 2024. URL https://project.inria.fr/crowdscience/
project/ocsr/chaos/. Inria Research Project. (Cited on page 15.)

Frederike H Petzschner, Stefan Glasauer, and Klaas E Stephan. A bayesian perspective on magnitude estimation.
Trends in cognitive sciences, 19(5):285–293, 2015. URL https://www.researchgate.net/profile/Frederi
ke-Petzschner/publication/274406769_A_Bayesian_perspective_on_magnitude_estimation/lin
ks/5b9235bf92851c78c4f3f134/A-Bayesian-perspective-on-magnitude-estimation.pdf. (Cited on
pages 13 and 35.)

Benedetto Piccoli and Andrea Tosin. Pedestrian flows in bounded domains with obstacles. Continuum Mechanics

and Thermodynamics, 21:85–107, 2009. URL https://doi.org/10.1007/s00161-009-0100-x. (Cited on
page 16.)

Louis A. Pipes. An operational analysis of traffic dynamics. Journal of Applied Physics, 24(3):274–281, 1953. URL
https://doi.org/10.1063/1.1721265. (Cited on page 91.)

Valentin L Popov and Markus Heß. Method of dimensionality reduction in contact mechanics and friction. Springer,
2015. URL https://www.researchgate.net/profile/Valentin-Popov-2/publication/326902750_M
ethod_of_Dimensionality_Reduction_in_Contact_Mechanics_User’s_Manual/links/5b73d2bda6f
dcc87df7dc572/Method-of-Dimensionality-Reduction-in-Contact-Mechanics-Users-Manual.pdf.
(Cited on pages 74, 122, 123, and 126.)

Valentin L Popov, Markus Heß, and Emanuel Willert. Handbook of contact mechanics: exact solutions of axisymmetric

contact problems. Springer Nature, 2019. URL https://library.oapen.org/bitstream/handle/20.500.
12657/23291/1006864.pdf?sequence. (Cited on page 125.)

Valentin L Popov et al. Contact mechanics and friction. Springer, 2010. URL https://doi.org/10.1007/978-3-6
62-53081-8. (Cited on page 123.)

Micha Popper. Why do people follow? In Laurent M. Lapierre and Melissa K. Carsten, editors, Followership: What

is it and Why do People Follow?, pages 109–120. Emerald, 2014. URL https://www.emeraldgrouppublishi
ng.com/archived/products/books/notable/page.htm%3Fid%3D9781783505159. (Cited on page 34.)

Thorsten Pöschel and Volkhard Buchholtz. Complex flow of granular material in a rotating cylinder. Chaos, Solitons
& Fractals, 5(10):1901–1912, 1995. URL https://doi.org/10.1016/0960-0779(94)00193-T. (Cited on
page 32.)

Emmanuel Ravalet. Modes de vie et modes de ville, activités et déplacements quotidiens à montréal et lyon.
Environnement urbain/Urban Environment, Volume 1, 2007. URL https://journals.openedition.org/eue
/1054. (Cited on page 7.)

Jürgen Richter-Gebert. Perspectives on projective geometry: a guided tour through real and complex geometry.
Springer, 2011. URL https://doi.org/10.1007/978-3-642-17286-1. (Cited on page 138.)

Alexandre Robicquet, Amir Sadeghian, Alexandre Alahi, and Silvio Savarese. Stanford drone dataset, 2016. URL
https://cvgl.stanford.edu/projects/uav_data/. (Cited on page 46.)

Gabriel Robins and Alexander Zelikovsky. Minimum steiner tree construction. In Handbook of algorithms for

physical design automation, pages 487–508. Auerbach Publications, 2008. URL https://www.cs.virginia.
edu/~robins/papers/Steiner_chapter.pdf. (Cited on page 10.)

José I Ronda andAntonio Valdés. Geometrical analysis of polynomial lens distortionmodels. Journal ofMathematical

Imaging and Vision, 61:252–268, 2019. URL https://doi.org/10.1007/s10851-018-0833-x. (Cited on
page 117.)

Leo Rothenburg and Richard J Bathurst. Numerical simulation of idealized granular assemblies with plane elliptical
particles. Computers and geotechnics, 11(4):315–329, 1991. URL https://doi.org/10.1016/0266-352X(91
)90015-8. (Cited on page 32.)

A. Schadschneider, D. Chowdhury, and K. Nishinari. Stochastic Transport in Complex Systems: From Molecules to

Vehicles. Elsevier Science, 2010. ISBN 9780080560526. URL https://books.google.fr/books?id=dRcxsa4
sobQC. (Cited on pages 15, 92, 94, and 96.)

Andreas Schadschneider. Cellular automaton approach to pedestrian dynamics-theory. arXiv preprint cond-

mat/0112117, 2001. URL https://doi.org/10.48550/arXiv.cond-mat/0112117. (Cited on page 14.)
Schrödter, Tobias and The PedPy Development Team. Pedestriandynamics/pedpy: v1.0.2, oct 2023. URL https:

//doi.org/10.5281/zenodo.10016938. (Cited on page 59.)
Claudio Sedazzari. Image quality basics, 2015. URL https://www.opto-e.com/en/basics/image-quality.

(Cited on page 117.)
Michael J Seitz and Gerta Köster. Natural discretization of pedestrian movement in continuous space. Physical

Review E—Statistical, Nonlinear, and Soft Matter Physics, 86(4):046108, 2012. URL https://doi.org/10.110
3/PhysRevE.86.046108. (Cited on page 7.)

Michael J Seitz, Nikolai WF Bode, and Gerta Köster. How cognitive heuristics can explain social interactions in
spatial movement. Journal of the Royal Society Interface, 13(121):20160439, 2016. URL https://doi.org/10
.1098/rsif.2016.0439. (Cited on page 34.)

– 161 –

https://doi.org/10.1007/s12369-019-00560-9
https://doi.org/10.1109/ICCV.2009.5459260
https://project.inria.fr/crowdscience/project/ocsr/chaos/
https://project.inria.fr/crowdscience/project/ocsr/chaos/
https://www.researchgate.net/profile/Frederike-Petzschner/publication/274406769_A_Bayesian_perspective_on_magnitude_estimation/links/5b9235bf92851c78c4f3f134/A-Bayesian-perspective-on-magnitude-estimation.pdf
https://www.researchgate.net/profile/Frederike-Petzschner/publication/274406769_A_Bayesian_perspective_on_magnitude_estimation/links/5b9235bf92851c78c4f3f134/A-Bayesian-perspective-on-magnitude-estimation.pdf
https://www.researchgate.net/profile/Frederike-Petzschner/publication/274406769_A_Bayesian_perspective_on_magnitude_estimation/links/5b9235bf92851c78c4f3f134/A-Bayesian-perspective-on-magnitude-estimation.pdf
https://doi.org/10.1007/s00161-009-0100-x
https://doi.org/10.1063/1.1721265
https://www.researchgate.net/profile/Valentin-Popov-2/publication/326902750_Method_of_Dimensionality_Reduction_in_Contact_Mechanics_User's_Manual/links/5b73d2bda6fdcc87df7dc572/Method-of-Dimensionality-Reduction-in-Contact-Mechanics-Users-Manual.pdf
https://www.researchgate.net/profile/Valentin-Popov-2/publication/326902750_Method_of_Dimensionality_Reduction_in_Contact_Mechanics_User's_Manual/links/5b73d2bda6fdcc87df7dc572/Method-of-Dimensionality-Reduction-in-Contact-Mechanics-Users-Manual.pdf
https://www.researchgate.net/profile/Valentin-Popov-2/publication/326902750_Method_of_Dimensionality_Reduction_in_Contact_Mechanics_User's_Manual/links/5b73d2bda6fdcc87df7dc572/Method-of-Dimensionality-Reduction-in-Contact-Mechanics-Users-Manual.pdf
https://library.oapen.org/bitstream/handle/20.500.12657/23291/1006864.pdf?sequence
https://library.oapen.org/bitstream/handle/20.500.12657/23291/1006864.pdf?sequence
https://doi.org/10.1007/978-3-662-53081-8
https://doi.org/10.1007/978-3-662-53081-8
https://www.emeraldgrouppublishing.com/archived/products/books/notable/page.htm%3Fid%3D9781783505159
https://www.emeraldgrouppublishing.com/archived/products/books/notable/page.htm%3Fid%3D9781783505159
https://doi.org/10.1016/0960-0779(94)00193-T
https://journals.openedition.org/eue/1054
https://journals.openedition.org/eue/1054
https://doi.org/10.1007/978-3-642-17286-1
https://cvgl.stanford.edu/projects/uav_data/
https://www.cs.virginia.edu/~robins/papers/Steiner_chapter.pdf
https://www.cs.virginia.edu/~robins/papers/Steiner_chapter.pdf
https://doi.org/10.1007/s10851-018-0833-x
https://doi.org/10.1016/0266-352X(91)90015-8
https://doi.org/10.1016/0266-352X(91)90015-8
https://books.google.fr/books?id=dRcxsa4sobQC
https://books.google.fr/books?id=dRcxsa4sobQC
https://doi.org/10.48550/arXiv.cond-mat/0112117
https://doi.org/10.5281/zenodo.10016938
https://doi.org/10.5281/zenodo.10016938
https://www.opto-e.com/en/basics/image-quality
https://doi.org/10.1103/PhysRevE.86.046108
https://doi.org/10.1103/PhysRevE.86.046108
https://doi.org/10.1098/rsif.2016.0439
https://doi.org/10.1098/rsif.2016.0439


Prianka N Seneviratne and John F Morrall. Analysis of factors affecting the choice of route of pedestrians.
Transportation Planning and Technology, 10(2):147–159, 1985. URL https://doi.org/10.1080/0308106850
8717309. (Cited on pages 7 and 10.)

Avinash Sharma, Brian McCloskey, David S. Hui, Aayushi Rambia, Adam Zumla, Tieble Traore, Shuja Shafi,
Sherif A. El-Kafrawy, Esam I. Azhar, Alimuddin Zumla, and Alfonso J. Rodriguez-Morales. Global mass
gathering events and deaths due to crowd surge, stampedes, crush and physical injuries – lessons from the
seoul halloween and other disasters. Travel Medicine and Infectious Disease, 52:102524, 2023a. ISSN 1477-8939.
URL https://doi.org/10.1016/j.tmaid.2022.102524. (Cited on page 44.)

Avinash Sharma, Brian McCloskey, David S Hui, Aayushi Rambia, Adam Zumla, Tieble Traore, Shuja Shafi, Sherif A
El-Kafrawy, Esam I Azhar, Alimuddin Zumla, et al. Global mass gathering events and deaths due to crowd
surge, stampedes, crush and physical injuries-lessons from the seoul halloween and other disasters. Travel
medicine and infectious disease, 52, 2023b. URL https://doi.org/10.1016/j.tmaid.2022.102524. (Cited
on page 44.)

Alastair Shipman, Arnab Majumdar, Zhenan Feng, and Ruggiero Lovreglio. A quantitative comparison of virtual
and physical experimental paradigms for the investigation of pedestrian responses in hostile emergencies.
Scientific reports, 14(1):6892, 2024. URL https://doi.org/10.1038/s41598-024-55253-9. (Cited on
page 45.)

Anna Sieben and Armin Seyfried. Inside a life-threatening crowd: Analysis of the love parade disaster from the
perspective of eyewitnesses. Safety science, 166:106229, 2023. URL https://doi.org/10.1016/j.ssci.202
3.106229. (Cited on pages 44 and 46.)

RA Smith and LB Lim. Experiments to investigate the level of ‘comfortable’loads for people against crush barriers.
Safety science, 18(4):329–335, 1995. URL https://doi.org/10.1016/0925-7535(94)00052-5. (Cited on
page 30.)

Michaël Soulignac and Patrick Taillibert. Fast trajectory planning for multiple site surveillance through moving
obstacles and wind. In Proceedings of the Workshop of the UK Planning and Scheduling Special Interest Group,
pages 25–33, 2006. URL https://www.cs.nott.ac.uk/~pszrq/PlanSIG/soulignac_taillibert.pdf.
(Cited on pages 10 and 11.)

Martijn Sparnaaij, Yufei Yuan, Winnie Daamen, and Dorine C Duives. A novel activity choice and scheduling
model to model activity schedules of customers and staff in dutch restaurants. arXiv preprint arXiv:2204.06775,
2022. URL https://doi.org/10.48550/arXiv.2204.06775. (Cited on page 7.)

Raphael E. Stern, Shumo Cui, Maria Laura Delle Monache, Rahul Bhadani, Matt Bunting, Miles Churchill, Nathaniel
Hamilton, R’mani Haulcy, Hannah Pohlmann, Fangyu Wu, Benedetto Piccoli, Benjamin Seibold, Jonathan
Sprinkle, and Daniel B. Work. Dissipation of stop-and-go waves via control of autonomous vehicles: Field
experiments. Transportation Research Part C: Emerging Technologies, 89:205–221, 2018. ISSN 0968-090X. URL
https://doi.org/10.1016/j.trc.2018.02.005. (Cited on page 91.)

Yuki Sugiyama, Minoru Fukui, Macoto Kikuchi, Katsuya Hasebe, Akihiro Nakayama, Katsuhiro Nishinari, Shin-ichi
Tadaki, and Satoshi Yukawa. Traffic jams without bottlenecks—experimental evidence for the physical
mechanism of the formation of a jam. New journal of physics, 10(3):033001, 2008. URL https://doi.org/10
.1088/1367-2630/10/3/033001. (Cited on pages 17, 18, 90, 91, 94, 95, 96, 141, and 144.)

T. Editors of Encyclopaedia Britannica. Erector spinae. https://www.britannica.com/science/erector-spi
nae, August 2023. (Cited on page 103.)

Shin-ichi Tadaki, Macoto Kikuchi, Minoru Fukui, Akihiro Nakayama, Katsuhiro Nishinari, Akihiro Shibata, Yuki
Sugiyama, Taturu Yosida, and Satoshi Yukawa. Phase transition in traffic jam experiment on a circuit. New
Journal of Physics, 15(10):103034, 2013. URL https://dx.doi.org/10.1088/1367-2630/15/10/103034.
(Cited on pages 91, 94, 96, 100, and 141.)

Junfang Tian, Rui Jiang, Bin Jia, Ziyou Gao, and Shoufeng Ma. Empirical analysis and simulation of the concave
growth pattern of traffic oscillations. Transportation Research Part B: Methodological, 93:338–354, 2016. URL
https://doi.org/10.1016/j.trb.2016.08.001. (Cited on page 91.)

Junfang Tian, HM Zhang, Martin Treiber, Rui Jiang, Zi-You Gao, and Bin Jia. On the role of speed adaptation and
spacing indifference in traffic instability: Evidence from car-following experiments and its stochastic model.
Transportation research part B: methodological, 129:334–350, 2019. URL https://doi.org/10.1016/j.trb.
2019.09.014. (Cited on pages 91 and 92.)

Peter M Todd and Gerd Gigerenzer. Précis of simple heuristics that make us smart. Behavioral and brain sciences,
23(5):727–741, 2000. URL https://doi.org/10.1017/S0140525X00003447. (Cited on page 34.)

Elad Tomer, Leonid Safonov, and Shlomo Havlin. Presence of many stable nonhomogeneous states in an inertial
car-following model. Physical Review Letters, 84(2):382, 2000. URL https://doi.org/10.1103/PhysRevLet
t.84.382. (Cited on pages 91, 94, and 142.)

Antoine Tordeux, Sylvain Lassarre, and Michel Roussignol. An adaptive time gap car-following model. Transporta-
tion Research Part B: Methodological, 44(8-9):1115–1131, 2010. URL https://doi.org/10.1016/j.trb.2009
.12.018. (Cited on pages 91 and 142.)

Antoine Tordeux, Michel Roussignol, and Sylvain Lassarre. Linear stability analysis of first-order delayed car-
following models on a ring. Physical Review E, 86(3):036207, 2012. ISSN 1539-3755, 1550-2376. URL
https://doi.org/10.1103/PhysRevE.86.036207. (Cited on page 91.)

Antoine Tordeux, Guillaume Costeseque, Michael Herty, and Armin Seyfried. From Traffic and Pedestrian Follow-
the-Leader Models with Reaction Time to First Order Convection-Diffusion Flow Models. SIAM Journal

on Applied Mathematics, 78(1):63–79, January 2018. ISSN 0036-1399. doi: 10.1137/16M110695X. URL
https://doi.org/10.1137/16M110695X. (Cited on pages 15, 23, and 91.)

– 162 –

https://doi.org/10.1080/03081068508717309
https://doi.org/10.1080/03081068508717309
https://doi.org/10.1016/j.tmaid.2022.102524
https://doi.org/10.1016/j.tmaid.2022.102524
https://doi.org/10.1038/s41598-024-55253-9
https://doi.org/10.1016/j.ssci.2023.106229
https://doi.org/10.1016/j.ssci.2023.106229
https://doi.org/10.1016/0925-7535(94)00052-5
https://www.cs.nott.ac.uk/~pszrq/PlanSIG/soulignac_taillibert.pdf
https://doi.org/10.48550/arXiv.2204.06775
https://doi.org/10.1016/j.trc.2018.02.005
https://doi.org/10.1088/1367-2630/10/3/033001
https://doi.org/10.1088/1367-2630/10/3/033001
https://www.britannica.com/science/erector-spinae
https://www.britannica.com/science/erector-spinae
https://dx.doi.org/10.1088/1367-2630/15/10/103034
https://doi.org/10.1016/j.trb.2016.08.001
https://doi.org/10.1016/j.trb.2019.09.014
https://doi.org/10.1016/j.trb.2019.09.014
https://doi.org/10.1017/S0140525X00003447
https://doi.org/10.1103/PhysRevLett.84.382
https://doi.org/10.1103/PhysRevLett.84.382
https://doi.org/10.1016/j.trb.2009.12.018
https://doi.org/10.1016/j.trb.2009.12.018
https://doi.org/10.1103/PhysRevE.86.036207
https://doi.org/10.1137/16M110695X


Bibliography

Anna Torén. Muscle activity and range of motion during active trunk rotation in a sitting posture. Applied

Ergonomics, 32(6):583–591, 2001. URL https://doi.org/10.1016/S0003-6870(01)00040-0. (Cited on
page 37.)

M Treiber and Dirk Helbing. Hamilton-like statistics in onedimensional driven dissipative many-particle systems.
The European Physical Journal B, 68:607–618, 2009. URL https://doi.org/10.1140/epjb/e2009-00121-8.
(Cited on pages 94 and 142.)

Martin Treiber and Arne Kesting. The intelligent driver model with stochasticity-new insights into traffic flow
oscillations. Transportation research procedia, 23:174–187, 2017. URL https://doi.org/10.1016/j.trpro.
2017.05.011. (Cited on pages 92, 94, 95, 97, and 142.)

Martin Treiber, Ansgar Hennecke, and Dirk Helbing. Congested traffic states in empirical observations and
microscopic simulations. Physical Review E, 62(2):1805–1824, August 2000. URL https://doi.org/10.110
3/PhysRevE.62.1805. (Cited on page 91.)

U.S. National Library of Medicine. Visible human project, 1994, 1995. URL https://datadiscovery.nlm.nih.go
v/Images/Visible-Human-Project/ux2j-9i9a/about_data. (Cited on pages 72 and 73.)

Jur Van Den Berg, Stephen J Guy, Ming Lin, and Dinesh Manocha. Reciprocal n-body collision avoidance.
In Robotics Research: The 14th International Symposium ISRR, pages 3–19. Springer, 2011. URL https:
//doi.org/10.1007/978-3-642-19457-3_1. (Cited on page 54.)

Wouter van Toll, Fabien Grzeskowiak, Axel López Gandía, Javad Amirian, Florian Berton, Julien Bruneau, Be-
atriz Cabrero Daniel, Alberto Jovane, and Julien Pettré. Generalized microscropic crowd simulation us-
ing costs in velocity space. In Symposium on Interactive 3D Graphics and Games, pages 1–9, 2020. URL
https://doi.org/10.1145/3384382.3384532. (Cited on page 1.)

Lakshmi Devi Vanumu, K Ramachandra Rao, and Geetam Tiwari. Fundamental diagrams of pedestrian flow
characteristics: A review. European transport research review, 9:1–13, 2017. URL https://doi.org/10.100
7/s12544-017-0264-6. (Cited on page 54.)

Cédric Villani. La meilleure et la pire des erreurs de poincaré. In Conférence donnée à l’Université de Lille1, 2012.
URL https://www.apmep.fr/IMG/pdf/503_Villani-Metz.pdf. (Cited on page 90.)

John Von Neumann and Oskar Morgenstern. Theory of games and economic behavior, 2nd rev. Princeton university
press, 1947. URL https://psycnet.apa.org/record/1947-03159-000. (Cited on page 13.)

Dhairya R Vyas, Julio M Ottino, Richard M Lueptow, and Paul B Umbanhowar. Improved velocity-verlet algorithm
for the discrete element method. arXiv preprint arXiv:2410.14798, 2024. URL https://doi.org/10.48550/a
rXiv.2410.14798. (Cited on page 131.)

Peter Wagner. A time-discrete harmonic oscillator model of human car-following. The European Physical Journal

B, 84:713–718, 2011. URL https://doi.org/10.1140/epjb/e2011-20722-8. (Cited on pages 94 and 142.)
Jiajia Wang, Zhihui Qian, Lei Ren, and Luquan Ren. A dynamic finite element model of human cervical spine with

in vivo kinematic validation. Chinese science bulletin, 59:4578–4588, 2014. URL https://doi.org/10.1007/
s11434-014-0452-x. (Cited on page 105.)

Jinghui Wang, Wei Lv, Huihua Jiang, Zhiming Fang, and Jian Ma. Exploring crowd persistent dynamism from
pedestrian crossing perspective: An empirical study. Transportation research part C: emerging technologies,
157:104400, 2023. URL https://doi.org/10.1016/j.trc.2023.104400. (Cited on pages 62 and 64.)

Q. Jane Wang and Dong Zhu. Hertz theory: Contact of ellipsoidal surfaces. In Encyclopedia of Tribology, pages
1647–1654. Springer US, Boston, MA, 2013a. ISBN 978-0-387-92897-5. URL https://doi.org/10.1007/97
8-0-387-92897-5_493. (Cited on page 124.)

Q.J. Wang and D. Zhu. Hertz theory: Contact of spherical surfaces. In Q.J. Wang and Y.W. Chung, editors,
Encyclopedia of Tribology, pages 1876–1882. Springer, Boston, MA, 2013b. ISBN 978-0-387-92896-8. doi:
10.1007/978-0-387-92897-5_492. URL https://link.springer.com/referenceworkentry/10.1007/978
-0-387-92897-5_492. (Cited on page 122.)

Yu Wang, Xiaopeng Li, Junfang Tian, and Rui Jiang. Stability analysis of stochastic linear car-following models.
Transportation Science, 54(1):274–297, 2020. URL https://doi.org/10.1287/trsc.2019.0932. (Cited on
pages 94 and 142.)

Ulrich Weidmann. Transporttechnik der fußgänger: transporttechnische eigenschaften des fußgängerverkehrs,
literaturauswertung. IVT Schriftenreihe, 90, 1993. URL https://doi.org/10.3929/ethz-a-000687810.
(Cited on pages 15 and 83.)

Kurt Wiesenfeld. Noisy precursors of nonlinear instabilities. Journal of Statistical Physics, 38:1071–1097, 1985. URL
https://doi.org/10.1007/BF01010430. (Cited on page 92.)

John R Williams and Alex P Pentland. Superquadrics and modal dynamics for discrete elements in interactive
design. Engineering Computations, 9(2):115–127, 1992. URL https://www.emerald.com/insight/content/
doi/10.1108/eb023852/full/pdf. (Cited on page 32.)

R Eddie Wilson. Mechanisms for spatio-temporal pattern formation in highway traffic models. Philosophical
Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 366(1872):2017–2032,
2008. URL https://doi.org/10.1098/rsta.2008.0018. (Cited on page 92.)

R.E. Wilson and J.A. Ward. Car-following models: Fifty years of linear stability analysis – a mathematical
perspective. Transportation Planning and Technology, 34(1):3–18, 2011. ISSN 0308-1060. URL https:
//doi.org/10.1080/03081060.2011.530826. (Cited on page 91.)

– 163 –

https://doi.org/10.1016/S0003-6870(01)00040-0
https://doi.org/10.1140/epjb/e2009-00121-8
https://doi.org/10.1016/j.trpro.2017.05.011
https://doi.org/10.1016/j.trpro.2017.05.011
https://doi.org/10.1103/PhysRevE.62.1805
https://doi.org/10.1103/PhysRevE.62.1805
https://datadiscovery.nlm.nih.gov/Images/Visible-Human-Project/ux2j-9i9a/about_data
https://datadiscovery.nlm.nih.gov/Images/Visible-Human-Project/ux2j-9i9a/about_data
https://doi.org/10.1007/978-3-642-19457-3_1
https://doi.org/10.1007/978-3-642-19457-3_1
https://doi.org/10.1145/3384382.3384532
https://doi.org/10.1007/s12544-017-0264-6
https://doi.org/10.1007/s12544-017-0264-6
https://www.apmep.fr/IMG/pdf/503_Villani-Metz.pdf
https://psycnet.apa.org/record/1947-03159-000
https://doi.org/10.48550/arXiv.2410.14798
https://doi.org/10.48550/arXiv.2410.14798
https://doi.org/10.1140/epjb/e2011-20722-8
https://doi.org/10.1007/s11434-014-0452-x
https://doi.org/10.1007/s11434-014-0452-x
https://doi.org/10.1016/j.trc.2023.104400
https://doi.org/10.1007/978-0-387-92897-5_493
https://doi.org/10.1007/978-0-387-92897-5_493
https://link.springer.com/referenceworkentry/10.1007/978-0-387-92897-5_492
https://link.springer.com/referenceworkentry/10.1007/978-0-387-92897-5_492
https://doi.org/10.1287/trsc.2019.0932
https://doi.org/10.3929/ethz-a-000687810
https://doi.org/10.1007/BF01010430
https://www.emerald.com/insight/content/doi/10.1108/eb023852/full/pdf
https://www.emerald.com/insight/content/doi/10.1108/eb023852/full/pdf
https://doi.org/10.1098/rsta.2008.0018
https://doi.org/10.1080/03081060.2011.530826
https://doi.org/10.1080/03081060.2011.530826


Trenton D Wirth, Gregory C Dachner, Kevin W Rio, and William H Warren. Is the neighborhood of interaction in
human crowds metric, topological, or visual? PNAS nexus, 2(5):pgad118, 2023. URL https://doi.org/10.1
093/pnasnexus/pgad118. (Cited on pages 19 and 20.)

Martin Wirz, Tobias Franke, Daniel Roggen, Eve Mitleton-Kelly, Paul Lukowicz, and Gerhard Tröster. Probing
crowd density through smartphones in city-scale mass gatherings. EPJ Data Science, 2:1–24, 2013. URL
https://doi.org/10.1140/epjds17. (Cited on pages 45 and 54.)

Hiroki Yamamoto, Daichi Yanagisawa, Claudio Feliciani, and Katsuhiro Nishinari. Body-rotation behavior of
pedestrians for collision avoidance in passing and cross flow. Transportation Research Part B: Methodological,
122:486–510, April 2019. ISSN 0191-2615. doi: 10.1016/j.trb.2019.03.008. URL https://doi.org/10.1016/j.
trb.2019.03.008. (Cited on page 87.)

Tairan Yin, Ludovic Hoyet, Marc Christie, Marie-Paule Cani, and Julien Pettré. The one-man-crowd: Single user
generation of crowd motions using virtual reality. IEEE Transactions on Visualization and Computer Graphics,
28(5):2245–2255, 2022. URL https://doi.org/10.1109/TVCG.2022.3150507. (Cited on page 45.)

Warren Clarence Young, Richard Gordon Budynas, Ali M Sadegh, et al. Roark’s formulas for stress and strain,
volume 7. McGraw-hill New York, 2002. URL https://jackson.engr.tamu.edu/wp-content/uploads/s
ites/229/2023/03/Roarks-formulas-for-stress-and-strain.pdf. (Cited on page 122.)

Alessandro Zanardi, Enrico Mion, Mattia Bruschetta, Saverio Bolognani, Andrea Censi, and Emilio Frazzoli.
Urban driving games with lexicographic preferences and socially efficient nash equilibria. IEEE Robotics and

Automation Letters, 6(3):4978–4985, 2021. URL https://doi.org/10.3929/ethz-b-000476638. (Cited on
page 2.)

Jun Zhang and Armin Seyfried. Comparison of intersecting pedestrian flows based on experiments. Physica A:
Statistical Mechanics and its Applications, 405:316–325, 2014. URL https://doi.org/10.1016/j.physa.20
14.03.004. (Cited on page 44.)

Jun Zhang, Wolfram Klingsch, Andreas Schadschneider, and Armin Seyfried. Transitions in pedestrian fundamental
diagrams of straight corridors and t-junctions. Journal of Statistical Mechanics: Theory and Experiment, 2011
(06):P06004, 2011. URL https://doi.org/10.1088/1742-5468/2011/06/P06004. (Cited on pages 15
and 83.)

Yongxiang Zhao and HM Zhang. A unified follow-the-leader model for vehicle, bicycle and pedestrian traffic.
Transportation research part B: methodological, 105:315–327, 2017. URL https://doi.org/10.1016/j.trb.
2017.09.004. (Cited on page 34.)

Bolei Zhou, Xiaogang Wang, and Xiaoou Tang. Grand central station dataset, 2012. URL https://www.ee.cuhk.
edu.hk/~xgwang/grandcentral.html. (Cited on page 46.)

Verena Ziemer, Armin Seyfried, and Andreas Schadschneider. Congestion dynamics in pedestrian single-file motion.
In Victor L. Knoop and Winnie Daamen, editors, Traffic and Granular Flow ’15, pages 89–96, Cham, 2016.
Springer International Publishing. URL doi.org/10.1007/978-3-319-33482-0_12. (Cited on pages 17, 89,
and 90.)

Iker Zuriguel, Daniel Ricardo Parisi, Raúl Cruz Hidalgo, Celia Lozano, Alvaro Janda, Paula Alejandra Gago,
Juan Pablo Peralta, Luis Miguel Ferrer, Luis Ariel Pugnaloni, Eric Clément, DiegoMaza, Ignacio Pagonabarraga,
and Angel Garcimartín. Clogging transition of many-particle systems flowing through bottlenecks. Scientific
Reports, 4(1):7324, December 2014. ISSN 2045-2322. doi: 10.1038/srep07324. URL https://doi.org/10.103
8/srep07324. (Cited on page 33.)

Émilie Josse. Graphisme pour la science - des visuels efficaces, 2024. URL https://graphismepourlascience.fr.
(Cited on page 77.)

– 164 –

https://doi.org/10.1093/pnasnexus/pgad118
https://doi.org/10.1093/pnasnexus/pgad118
https://doi.org/10.1140/epjds17
https://doi.org/10.1016/j.trb.2019.03.008
https://doi.org/10.1016/j.trb.2019.03.008
https://doi.org/10.1109/TVCG.2022.3150507
https://jackson.engr.tamu.edu/wp-content/uploads/sites/229/2023/03/Roarks-formulas-for-stress-and-strain.pdf
https://jackson.engr.tamu.edu/wp-content/uploads/sites/229/2023/03/Roarks-formulas-for-stress-and-strain.pdf
https://doi.org/10.3929/ethz-b-000476638
https://doi.org/10.1016/j.physa.2014.03.004
https://doi.org/10.1016/j.physa.2014.03.004
https://doi.org/10.1088/1742-5468/2011/06/P06004
https://doi.org/10.1016/j.trb.2017.09.004
https://doi.org/10.1016/j.trb.2017.09.004
https://www.ee.cuhk.edu.hk/~xgwang/grandcentral.html
https://www.ee.cuhk.edu.hk/~xgwang/grandcentral.html
doi.org/10.1007/978-3-319-33482-0_12
https://doi.org/10.1038/srep07324
https://doi.org/10.1038/srep07324
https://graphismepourlascience.fr

	List of abbreviations
	Introduction
	State of the art
	Modelling crowds at different levels
	Strategic level
	Route choice (tactical level)
	Operational level
	Discussion

	Physical modelling of crowds at the operational level: insights from microscopic models
	The Social Force Model: a pioneering approach to simulating crowd dynamics
	Mechanical aspects
	Decision-making layer
	Discussion


	A multi-scale field study at the Festival of Lights in Lyon
	Introduction
	Controlled experiments in the real world
	Controlled experiments in Virtual Reality
	Field data
	Scientific contribution
	Lyon's Festival of Lights

	Methods
	General organisation of the data collection campaign
	GPS data of recruited participants and collision counts
	Video processing and pedestrian tracking for the TopView cameras
	Video processing and pedestrian tracking for the LargeView cameras
	Conversion into global coordinates
	Quantitative indicators

	Data description
	Size of the crowd and flow directions
	Global view of the flow patterns on Place des Terreaux
	Complex flow in a region of high density near the centre of the square
	Unidirectional and bidirectional flow at diverse densities along the northern building
	Identification of singular qualitative phenomena

	Technical Validation
	Trajectory datasets for the TopView recordings.
	Trajectory datasets for the LargeView recordings
	Mapping to real-world coordinates
	Surveys


	Modelling 2D pedestrian dynamics with non-circular comfort & physical spaces
	Mechanical layer
	Physical shape
	Creating a synthetic crowd
	Mechanical interactions

	Decision-making layer
	Proxemics
	Time to collision cost
	Privacy cost

	Numerical results
	Qualitative replication of simple situations
	Forward propagation of a push through a row of people
	Competitive egress of pedestrians
	Two pedestrians passing each other in a corridor


	A noise-induced Kapitza's pendulum instability to account for stop-and-go dynamics in traffic
	Car-following models and stochastic terms
	Numerical evidence of a noise-induced instability and its empirical plausibility
	Rationalisation with oscillatory driving
	Stability switch: analogy with the Kapitza pendulum
	Back to the first-order liquid-gas transition alluded to in previous works

	Conclusion
	Appendices
	Appendix State of the art
	Bio-mechanical cost (back on pages 36, 37 and 37)
	Self-organisation phenomena in crowd dynamics (back on page 17)
	Assessment of a pedestrian model (back on page 28)

	Appendix A multi-scale field study at the Festival of Lights in Lyon
	Extrinsic and intrinsic calibration (back on page 49)
	Camera distortion in intrinsic calibration (back on page 48)
	Uncertainty due to differences in height (back on page 49)
	Spatio-temporal diagram to compute output flow (back on page 53)
	Reference fundamental diagrams (back on page 58)

	Appendix Modelling 2D pedestrian dynamics with non-circular comfort & physical spaces
	Mechanical layer
	Compact random packing of pedestrians (back on pages 69, 73)
	Hertzian interaction law (back on page 74)
	Mechanical interactions (back on pages 75, 76)
	Moment of inertia calculation (back on page 81)
	Mechanical equations summary (back on page 75)
	Algorithm structure (back on page 76)

	Decision-making cost
	Static floor field term (back on page 42)
	Bio-mechanical term (back on page 42)
	Decision-making equations summary (back on page 42)
	Derivation of the free walking speed (back on page 81)
	Discomfort contour levels (back on page 78)
	Computation of the minimal swelling coefficient such that the two discomfort fields overlap (back on page 79)
	Numerical calculation of the integral for the Time to collision cost (back on page 80)


	Appendix Recovering stop-and-go dynamics in traffic flow with noise-induced Kapitza pendulum instability
	Simulation setup (back on page 94)
	Equilibrium solutions and linear stability analysis (back on page 95)
	Extended stability analysis of the periodically driven system (back on page 98)

	Bibliography

